code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowerCAmelCase = logging.get_logger(__name__) @dataclass class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self ,**__UpperCAmelCase ) -> int: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCAmelCase__ : str = deprecated_arg[3:] lowerCAmelCase__ : Union[str, Any] = not kwargs.pop(__UpperCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowerCAmelCase__ : Union[str, Any] = kwargs.pop("""tpu_name""" ,self.tpu_name ) lowerCAmelCase__ : str = kwargs.pop("""device_idx""" ,self.device_idx ) lowerCAmelCase__ : int = kwargs.pop("""eager_mode""" ,self.eager_mode ) lowerCAmelCase__ : int = kwargs.pop("""use_xla""" ,self.use_xla ) super().__init__(**__UpperCAmelCase ) __lowercase : str = field( default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Name of TPU'''} , ) __lowercase : int = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __lowercase : bool = field(default=SCREAMING_SNAKE_CASE_ , metadata={'''help''': '''Benchmark models in eager model.'''} ) __lowercase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def UpperCAmelCase_ ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,["""tf"""] ) lowerCAmelCase__ : Any = None if self.tpu: try: if self.tpu_name: lowerCAmelCase__ : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowerCAmelCase__ : Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowerCAmelCase__ : Optional[Any] = None return tpu @cached_property def UpperCAmelCase_ ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self ,["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowerCAmelCase__ : Any = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,"""GPU""" ) lowerCAmelCase__ : str = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] ,"""GPU""" ) # disable GPU lowerCAmelCase__ : str = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def UpperCAmelCase_ ( self ) -> bool: requires_backends(self ,["""tf"""] ) return self._setup_tpu is not None @property def UpperCAmelCase_ ( self ) -> "tf.distribute.Strategy": requires_backends(self ,["""tf"""] ) return self._setup_strategy @property def UpperCAmelCase_ ( self ) -> str: requires_backends(self ,["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def UpperCAmelCase_ ( self ) -> int: requires_backends(self ,["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCAmelCase_ ( self ) -> bool: return self.n_gpu > 0
37
import math def A ( _lowercase ): return math.sqrt(_lowercase ) * math.sqrt(_lowercase ) == num def A ( _lowercase ): SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Tuple = n while left <= right: SCREAMING_SNAKE_CASE : Union[str, Any] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: SCREAMING_SNAKE_CASE : Optional[Any] = mid - 1 else: SCREAMING_SNAKE_CASE : Optional[int] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
182
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(_lowercase , _lowercase ): raise TypeError("""Input value must be a \'int\' type""" ) return bin(_lowercase ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase : Dict = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase : Union[str, Any] = 10 UpperCAmelCase : Union[str, Any] = 256 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[MinHash]: '''simple docstring''' if len(__lowerCAmelCase ) < MIN_NUM_TOKENS: return None lowercase_ = MinHash(num_perm=__lowerCAmelCase ) for token in set(__lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(__lowerCAmelCase ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , *, lowerCAmelCase_ : float = 0.85 , ): """simple docstring""" lowercase_ = duplication_jaccard_threshold lowercase_ = NUM_PERM lowercase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) lowercase_ = defaultdict(lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : MinHash): """simple docstring""" lowercase_ = self._index.query(lowerCAmelCase_) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''') return self._index.insert(lowerCAmelCase_ , lowerCAmelCase_) if len(lowerCAmelCase_) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase_) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase_ = [base] + list(lowerCAmelCase_) # reformat the cluster to be a list of dict lowercase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase_) return duplicate_clusters def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = self.get_duplicate_clusters() with open(lowerCAmelCase_ , """w""") as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ = element lowercase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[str]: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = DuplicationIndex(duplication_jaccard_threshold=__lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(__lowerCAmelCase , __lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> float: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [] for elementa in cluster: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: lowercase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__lowerCAmelCase , __lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase_ = 1 extremes.append(__lowerCAmelCase ) return extremes def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' global _shared_dataset lowercase_ = dataset lowercase_ = [] lowercase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=__lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __lowerCAmelCase , __lowerCAmelCase , ) , total=len(__lowerCAmelCase ) , ): extremes_list.append(__lowerCAmelCase ) return extremes_list def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowercase_ = make_duplicate_clusters(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} lowercase_ = {} lowercase_ = find_extremes(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase_ = element lowercase_ = duplicate_indices - set(extreme_dict.keys() ) lowercase_ = dataset.filter(lambda __lowerCAmelCase , __lowerCAmelCase : idx not in remove_indices , with_indices=__lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: lowercase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(__lowerCAmelCase )}''' ) print(F'''Number of duplicate clusters: {len(__lowerCAmelCase )}''' ) print(F'''Files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Unique files in duplicate cluster: {len(__lowerCAmelCase )}''' ) print(F'''Filtered dataset size: {len(__lowerCAmelCase )}''' ) return ds_filter, duplicate_clusters
313
0
'''simple docstring''' def __lowerCamelCase ( A__ = 10**9 ) -> int: """simple docstring""" UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCamelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
1
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ ( __lowercase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_a , '''num_heads''' ) ) class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=64 , lowerCamelCase_=3 , lowerCamelCase_=[16, 48, 96] , lowerCamelCase_=[1, 3, 6] , lowerCamelCase_=[1, 2, 10] , lowerCamelCase_=[7, 3, 3] , lowerCamelCase_=[4, 2, 2] , lowerCamelCase_=[2, 1, 1] , lowerCamelCase_=[2, 2, 2] , lowerCamelCase_=[False, False, True] , lowerCamelCase_=[0.0, 0.0, 0.0] , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=2 , ) -> List[str]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_sizes lowerCAmelCase__ = patch_stride lowerCAmelCase__ = patch_padding lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_channels lowerCAmelCase__ = embed_dim lowerCAmelCase__ = num_heads lowerCAmelCase__ = stride_kv lowerCAmelCase__ = depth lowerCAmelCase__ = cls_token lowerCAmelCase__ = attention_drop_rate lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: lowerCAmelCase__ = CvtModel(config=_a ) model.to(_a ) model.eval() lowerCAmelCase__ = model(_a ) lowerCAmelCase__ = (self.image_size, self.image_size) lowerCAmelCase__ , lowerCAmelCase__ = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCAmelCase__ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCAmelCase__ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = CvtForImageClassification(_a ) model.to(_a ) model.eval() lowerCAmelCase__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' lowercase__ : Any = (CvtModel, CvtForImageClassification) if is_torch_available() else () lowercase__ : Any = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) lowercase__ : List[Any] = False lowercase__ : Optional[Any] = False lowercase__ : Any = False lowercase__ : Any = False lowercase__ : List[str] = False def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = CvtModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: return @unittest.skip(reason='''Cvt does not output attentions''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: pass def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(_a ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: def check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(_a , _a ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = len(self.model_tester.depth ) self.assertEqual(len(_a ) , _a ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(_a , _a , _a ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @slow def __SCREAMING_SNAKE_CASE ( self ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = CvtModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _snake_case ( ) -> Union[str, Any]: lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> int: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**_a ) # verify the logits lowerCAmelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) lowerCAmelCase__ = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
350
'''simple docstring''' from __future__ import annotations def _snake_case ( A , A ) -> float: lowerCAmelCase__ = sorted(numsa + numsa ) lowerCAmelCase__ , lowerCAmelCase__ = divmod(len(A ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = [float(x) for x in input('''Enter the elements of first array: ''').split()] __UpperCAmelCase = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
228
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : int = 0 _lowerCamelCase : List[str] = len(lowercase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCamelCase : Any = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None _lowerCamelCase : str = sorted_collection[point] if current_item == item: return point else: if point < left: _lowerCamelCase : Union[str, Any] = left _lowerCamelCase : int = point elif point > right: _lowerCamelCase : Any = right _lowerCamelCase : List[str] = point else: if item < current_item: _lowerCamelCase : List[Any] = point - 1 else: _lowerCamelCase : str = point + 1 return None def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _lowerCamelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowercase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) elif point > right: return interpolation_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowercase__ , lowercase__ , lowercase__ , point - 1 ) else: return interpolation_search_by_recursion( lowercase__ , lowercase__ , point + 1 , lowercase__ ) def _snake_case ( lowercase__ ): if collection != sorted(lowercase__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys lowercase__ = 0 if debug == 1: lowercase__ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") lowercase__ = 67 lowercase__ = interpolation_search(collection, target) if result is not None: print(F"{target} found at positions: {result}") else: print("""Not found""")
96
def UpperCAmelCase_ ( _A = 1_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) SCREAMING_SNAKE_CASE__ = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
314
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=13 , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : str=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Optional[int]=512 , lowerCAmelCase__ : Dict=16 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=4 , ) -> Dict: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def snake_case__ ( self : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = True _UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = True _snake_case : Optional[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = FlaxRobertaModelTester(self ) @slow def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=lowerCAmelCase__ ) _UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ )
287
'''simple docstring''' import random class __lowerCAmelCase : """simple docstring""" @staticmethod def snake_case__ ( lowerCAmelCase__ : str ) -> tuple[list[int], list[int]]: '''simple docstring''' _UpperCamelCase = [ord(lowerCAmelCase__ ) for i in text] _UpperCamelCase = [] _UpperCamelCase = [] for i in plain: _UpperCamelCase = random.randint(1 , 300 ) _UpperCamelCase = (i + k) * k cipher.append(lowerCAmelCase__ ) key.append(lowerCAmelCase__ ) return cipher, key @staticmethod def snake_case__ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] ) -> str: '''simple docstring''' _UpperCamelCase = [] for i in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCAmelCase__ ) ) return "".join(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ , lowercase__ : List[str] = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
287
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
87
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCamelCase__ = False @skip_mps class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableDiffusionAttendAndExcitePipeline lowercase = False lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _lowerCamelCase ( cls : Tuple ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(a ) @classmethod def _lowerCamelCase ( cls : Any ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) lowerCAmelCase__ : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) lowerCAmelCase__ : str = CLIPTextModel(a ) lowerCAmelCase__ : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self : Union[str, Any] , a : Tuple , a : Union[str, Any]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : List[str] = torch.manual_seed(a ) else: lowerCAmelCase__ : Any = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[int] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : Optional[int] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : Union[str, Any] = pipe(**a ).images lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCAmelCase__ : Dict = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) lowerCAmelCase__ : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1E-3 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def _lowerCamelCase ( self : Any ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : List[str] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(a ) @classmethod def _lowerCamelCase ( cls : List[str] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(a ) def _lowerCamelCase ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = torch.manual_seed(51 ) lowerCAmelCase__ : Any = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=a , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCAmelCase__ : Optional[int] = 'a painting of an elephant with glasses' lowerCAmelCase__ : Any = [5, 7] lowerCAmelCase__ : Optional[Any] = pipe( prompt=a , token_indices=a , guidance_scale=7.5 , generator=a , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] lowerCAmelCase__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
212
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowercase ( _snake_case : Optional[int] ) ->Any: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) SCREAMING_SNAKE_CASE : Tuple = """\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n""" class _UpperCAmelCase ( __a ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE (a_ ): '''simple docstring''' __snake_case : Optional[int] = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=a__ , required=a__ , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=a__ , required=a__ , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=a__ , required=a__ , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=a__ , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=a__ , default=a__ , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=a__ ) def __init__(self , a_ , a_ , a_ , a_ , a_ , *a_ , ): '''simple docstring''' __snake_case : Any = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(f"""Loading model {model_type}""" ) __snake_case : Dict = model_type __snake_case : Optional[Any] = tf_checkpoint __snake_case : Any = pytorch_dump_output __snake_case : Any = config __snake_case : Tuple = finetuning_task_name def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) if "ckpt" in self._tf_checkpoint.lower(): __snake_case : List[Any] = self._tf_checkpoint __snake_case : List[str] = '''''' else: __snake_case : List[str] = self._tf_checkpoint __snake_case : Any = '''''' convert_transfo_xl_checkpoint_to_pytorch( a__ , self._config , self._pytorch_dump_output , a__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
359
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
0
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class __UpperCamelCase : def __init__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =str(id_ ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =[] lowerCamelCase_ ={} # {vertex:distance} def __lt__( self, lowerCAmelCase ): """simple docstring""" return self.key < other.key def __repr__( self ): """simple docstring""" return self.id def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" self.neighbors.append(lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =weight def a_ ( __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> str: """simple docstring""" # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __snake_case ) graph[b - 1].add_edge(graph[a - 1] , __snake_case ) def a_ ( __snake_case : list , __snake_case : Vertex ) -> list: """simple docstring""" lowerCamelCase_ =[] for u in graph: lowerCamelCase_ =math.inf lowerCamelCase_ =None lowerCamelCase_ =0 lowerCamelCase_ =graph[:] while q: lowerCamelCase_ =min(__snake_case ) q.remove(__snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowerCamelCase_ =u lowerCamelCase_ =u.edges[v.id] for i in range(1 , len(__snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def a_ ( __snake_case : list , __snake_case : Vertex ) -> Iterator[tuple]: """simple docstring""" for u in graph: lowerCamelCase_ =math.inf lowerCamelCase_ =None lowerCamelCase_ =0 lowerCamelCase_ =list(__snake_case ) hq.heapify(__snake_case ) while h: lowerCamelCase_ =hq.heappop(__snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowerCamelCase_ =u lowerCamelCase_ =u.edges[v.id] hq.heapify(__snake_case ) for i in range(1 , len(__snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def a_ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
75
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_( a__ ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCAmelCase_( a__ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : str = ord(a__ ) if not _is_chinese_char(a__ ): return 0 return 1 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = set() for token in tokens: SCREAMING_SNAKE_CASE : str = len(a__ ) > 1 and is_chinese(a__ ) if chinese_word: word_set.add(a__ ) SCREAMING_SNAKE_CASE : str = list(a__ ) return word_list def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : List[str] = max([len(a__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Tuple = bert_tokens SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, len(a__ ) while start < end: SCREAMING_SNAKE_CASE : Dict = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : Optional[int] = min(end - start , a__ ) for i in range(a__ , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE : List[str] = start + i SCREAMING_SNAKE_CASE : Optional[Any] = False break if single_word: start += 1 return bert_word def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(a__ ) for r in res] ltp_res.extend(a__ ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : Any = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : int = [] for input_ids, chinese_word in zip(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = [] for id in input_ids: SCREAMING_SNAKE_CASE : List[Any] = bert_tokenizer._convert_id_to_token(a__ ) input_tokens.append(a__ ) SCREAMING_SNAKE_CASE : List[str] = add_sub_symbol(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Optional[int] = token[2:] # save chinese tokens' pos if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ): ref_id.append(a__ ) ref_ids.append(a__ ) assert len(a__ ) == len(a__ ) return ref_ids def UpperCAmelCase_( a__ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : List[str] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : int = prepare_ref(a__ , a__ , a__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = [json.dumps(a__ ) + '''\n''' for ref in ref_ids] f.writelines(a__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a__ : int = parser.parse_args() main(args)
313
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def _A ( snake_case , snake_case = 16 ) -> Union[str, Any]: _lowercase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowercase : str = load_dataset("glue" , "mrpc" ) def tokenize_function(snake_case ): # max_length=None => use the model max length (it's actually the default) _lowercase : Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase : Optional[Any] = datasets.map( snake_case , batched=snake_case , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase : Any = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": _lowercase : Optional[int] = 8 else: _lowercase : List[Any] = None return tokenizer.pad( snake_case , padding="longest" , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors="pt" , ) # Instantiate dataloaders. _lowercase : List[str] = DataLoader( tokenized_datasets["train"] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) _lowercase : Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def _A ( snake_case , snake_case ) -> Tuple: # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , snake_case ) == "1": _lowercase : List[Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _lowercase : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: _lowercase : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : Optional[Any] = config["lr"] _lowercase : List[str] = int(config["num_epochs"] ) _lowercase : Union[str, Any] = int(config["seed"] ) _lowercase : Optional[int] = int(config["batch_size"] ) set_seed(snake_case ) _lowercase , _lowercase : Any = get_dataloaders(snake_case , snake_case ) _lowercase : Optional[int] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation _lowercase : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowercase : Dict = batch_size // MAX_GPU_BATCH_SIZE _lowercase : Any = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : int = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer _lowercase : Optional[Any] = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler _lowercase : Optional[int] = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=1_00 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _lowercase : str = os.path.split(snake_case )[-1].split("." )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _lowercase : str = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase : Union[str, Any] = model(**snake_case ) _lowercase : Optional[int] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _lowercase : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _lowercase : int = model(**snake_case ) _lowercase : Optional[Any] = outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase : str = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=snake_case , references=snake_case , ) _lowercase : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(snake_case ), "epoch": epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _A ( ) -> List[Any]: _lowercase : Tuple = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=snake_case , default=snake_case , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=snake_case , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) _lowercase : Tuple = parser.parse_args() _lowercase : List[str] = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
199
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = '▁' _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _snake_case = { 'google/pegasus-xsum': 512, } _snake_case = logging.get_logger(__name__) class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , _UpperCamelCase , _UpperCamelCase="<pad>" , _UpperCamelCase="</s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<mask_2>" , _UpperCamelCase="<mask_1>" , _UpperCamelCase=None , _UpperCamelCase=103 , _UpperCamelCase = None , **_UpperCamelCase , ): """simple docstring""" _lowercase : Tuple = offset if additional_special_tokens is not None: if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCamelCase )}, but is''' f''' {type(_UpperCamelCase )}''' ) _lowercase : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCamelCase ) , self.offset - 1 ) ] if len(set(_UpperCamelCase ) ) != len(_UpperCamelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) _lowercase : List[str] = additional_special_tokens_extended else: _lowercase : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] _lowercase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , mask_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token_sent=_UpperCamelCase , offset=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) _lowercase : Union[str, Any] = mask_token_sent _lowercase : str = vocab_file _lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) # add special tokens to encoder dict _lowercase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) _lowercase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def _lowerCamelCase ( self ): """simple docstring""" return len(self.sp_model ) + self.offset def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _lowercase : Optional[Any] = self.__dict__.copy() _lowercase : Union[str, Any] = None return state def __setstate__( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowercase : List[Any] = {} _lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] _lowercase : int = self.sp_model.piece_to_id(_UpperCamelCase ) return sp_id + self.offset def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: _lowercase : Any = self.sp_model.IdToPiece(index - self.offset ) return token def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[int] = [] _lowercase : Optional[Any] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCamelCase ) + token _lowercase : Tuple = [] else: current_sub_tokens.append(_UpperCamelCase ) out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def _lowerCamelCase ( self , _UpperCamelCase=False ): """simple docstring""" return 1 def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCamelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , "wb" ) as fi: _lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
199
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ): __lowercase = tempfile.mkdtemp() __lowercase = BlipImageProcessor() __lowercase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) __lowercase = BlipProcessor(UpperCAmelCase__, UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self : Tuple, **UpperCAmelCase__ : Any ): return AutoProcessor.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ).tokenizer def _lowercase ( self : List[str], **UpperCAmelCase__ : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname, **UpperCAmelCase__ ).image_processor def _lowercase ( self : Dict ): shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Dict ): __lowercase = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(UpperCAmelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : List[Any] ): __lowercase = BlipProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)" ) __lowercase = self.get_image_processor(do_normalize=UpperCAmelCase__, padding_value=1.0 ) __lowercase = BlipProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=UpperCAmelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, UpperCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, UpperCAmelCase__ ) def _lowercase ( self : Dict ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(UpperCAmelCase__, return_tensors="np" ) __lowercase = processor(images=UpperCAmelCase__, return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def _lowercase ( self : Optional[int] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = "lower newer" __lowercase = processor(text=UpperCAmelCase__ ) __lowercase = tokenizer(UpperCAmelCase__, return_token_type_ids=UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def _lowercase ( self : Tuple ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = "lower newer" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=UpperCAmelCase__, images=UpperCAmelCase__ ) self.assertListEqual(list(inputs.keys() ), ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase__ ): processor() def _lowercase ( self : List[str] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(UpperCAmelCase__ ) __lowercase = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = "lower newer" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=UpperCAmelCase__, images=UpperCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ), ["pixel_values", "input_ids", "attention_mask"] )
17
def __A ( __lowerCamelCase ) -> int: a = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __A ( __lowerCamelCase = 100 ) -> int: a = 1 a = 2 for i in range(2 , max_n + 1 ): a = pre_numerator a = 2 * i // 3 if i % 3 == 0 else 1 a = cur_numerator a = e_cont * pre_numerator + temp return sum_digits(__lowerCamelCase ) if __name__ == "__main__": print(F'{solution() = }')
228
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig __snake_case = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : int = 'tapas' def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1024 , __UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=0 , __UpperCAmelCase=10.0 , __UpperCAmelCase=0 , __UpperCAmelCase=1.0 , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=1.0 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase="ratio" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=64 , __UpperCAmelCase=32 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[str]: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_sizes _a = initializer_range _a = layer_norm_eps # Fine-tuning task hyperparameters _a = positive_label_weight _a = num_aggregation_labels _a = aggregation_loss_weight _a = use_answer_as_supervision _a = answer_loss_importance _a = use_normalized_answer_loss _a = huber_loss_delta _a = temperature _a = aggregation_temperature _a = use_gumbel_for_cells _a = use_gumbel_for_aggregation _a = average_approximation_function _a = cell_selection_preference _a = answer_loss_cutoff _a = max_num_rows _a = max_num_columns _a = average_logits_per_cell _a = select_one_column _a = allow_empty_column_selection _a = init_cell_selection_weights_to_zero _a = reset_position_index_per_cell _a = disable_per_token_loss # Aggregation hyperparameters _a = aggregation_labels _a = no_aggregation_label_index if isinstance(self.aggregation_labels , __UpperCAmelCase ): _a = {int(__UpperCAmelCase ): v for k, v in aggregation_labels.items()}
153
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
153
1
from manim import * class A__ ( __SCREAMING_SNAKE_CASE): def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase : int = [mem.copy() for i in range(6 )] lowerCamelCase : List[str] = [mem.copy() for i in range(6 )] lowerCamelCase : Dict = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase : Dict = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase : Tuple = VGroup(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase : Optional[Any] = Text("""CPU""" , font_size=2_4 ) lowerCamelCase : Optional[int] = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__magic_name__ ) lowerCamelCase : Optional[Any] = [mem.copy() for i in range(1 )] lowerCamelCase : Any = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase : int = Text("""GPU""" , font_size=2_4 ) lowerCamelCase : str = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ ) gpu.align_to(__magic_name__ , __magic_name__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(__magic_name__ ) lowerCamelCase : List[Any] = [mem.copy() for i in range(6 )] lowerCamelCase : Any = VGroup(*__magic_name__ ).arrange(__magic_name__ , buff=0 ) lowerCamelCase : Tuple = Text("""Model""" , font_size=2_4 ) lowerCamelCase : Dict = Group(__magic_name__ , __magic_name__ ).arrange(__magic_name__ , buff=0.5 , aligned_edge=__magic_name__ ) model.move_to([3, -1.0, 0] ) self.play( Create(__magic_name__ , run_time=1 ) , Create(__magic_name__ , run_time=1 ) , Create(__magic_name__ , run_time=1 ) , ) lowerCamelCase : Optional[int] = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=2_4 , ) lowerCamelCase : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase : int = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__magic_name__ , run_time=2.5 ) , Write(__magic_name__ ) , Write(__magic_name__ ) ) self.add(__magic_name__ ) lowerCamelCase : Union[str, Any] = [] lowerCamelCase : Optional[int] = [] lowerCamelCase : Dict = [] for i, rect in enumerate(__magic_name__ ): lowerCamelCase : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__magic_name__ , opacity=0.7 ) cpu_target.move_to(__magic_name__ ) cpu_target.generate_target() lowerCamelCase : List[str] = 0.46 / 4 lowerCamelCase : List[str] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__magic_name__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__magic_name__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__magic_name__ , buff=0.0 ) cpu_targs.append(__magic_name__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__magic_name__ ) ) second_animations.append(MoveToTarget(__magic_name__ , run_time=1.5 ) ) self.play(*__magic_name__ ) self.play(*__magic_name__ ) self.wait()
287
def _a ( lowerCamelCase ): return " ".join( """""".join(word[::-1] ) if len(lowerCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
287
1
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ): A__ = AutoConfig.from_pretrained(UpperCAmelCase_ ) A__ = FlaxAutoModelForSeqaSeqLM.from_config(config=UpperCAmelCase_ ) A__ = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) A__ = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": A__ = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": A__ = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): A__ = F"""layers_{str(UpperCAmelCase_ )}""" # Self-Attention A__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] A__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] A__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] A__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization A__ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: A__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] A__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: A__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] A__ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization A__ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning A__ = flax_model.params["""encoder"""]["""block"""][str(UpperCAmelCase_ )]["""layer"""] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_global_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = tax_mlp_layer_norm A__ = flax_model_encoder_layer_block # Only for layer 0: A__ = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T A__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T A__ = tax_encoder_global_rel_embedding # Assigning A__ = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] A__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): A__ = F"""layers_{str(UpperCAmelCase_ )}""" # Self-Attention A__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] A__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] A__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] A__ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization A__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention A__ = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] A__ = tax_enc_dec_attention_module["""key"""]["""kernel"""] A__ = tax_enc_dec_attention_module["""out"""]["""kernel"""] A__ = tax_enc_dec_attention_module["""query"""]["""kernel"""] A__ = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization A__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: A__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] A__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: A__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] A__ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization A__ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning A__ = flax_model.params["""decoder"""]["""block"""][str(UpperCAmelCase_ )]["""layer"""] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_pre_attention_layer_norm A__ = tax_enc_dec_attention_key A__ = tax_enc_dec_attention_out A__ = tax_enc_dec_attention_query A__ = tax_enc_dec_attention_value A__ = tax_cross_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = txa_mlp_layer_norm A__ = flax_model_decoder_layer_block # Decoder Normalization A__ = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] A__ = txa_decoder_norm # Only for layer 0: A__ = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T A__ = tax_decoder_rel_embedding # Token Embeddings A__ = tax_model["""target"""]["""token_embedder"""]["""embedding"""] A__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: A__ = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(UpperCAmelCase_ ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) SCREAMING_SNAKE_CASE_ : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
370
"""simple docstring""" import argparse SCREAMING_SNAKE_CASE_ : Any = 'docs/source/_static/js/custom.js' def _snake_case ( UpperCAmelCase_ : List[Any] ): with open(UpperCAmelCase_ , encoding="""utf-8""" , newline="""\n""" ) as f: A__ = f.readlines() A__ = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 A__ = F"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += F""" \"v{version}\": \"v{version}\",\n""" with open(UpperCAmelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : int = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() update_custom_js(args.version)
69
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: __snake_case = None try: import msvcrt except ImportError: __snake_case = None try: import fcntl except ImportError: __snake_case = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __snake_case = OSError # Data # ------------------------------------------------ __snake_case = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] __snake_case = '''3.0.12''' __snake_case = None def a ( ) -> List[str]: '''simple docstring''' global _logger UpperCamelCase__ :Any = _logger or logging.getLogger(__name__ ) return _logger class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = lock_file return None def __str__( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' self.lock.release() return None class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=-1 , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :List[str] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long UpperCamelCase__ :Tuple = self.hash_filename_if_too_long(UpperCamelCase_ , UpperCamelCase_ ) # The path to the lock file. UpperCamelCase__ :List[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCamelCase__ :Union[str, Any] = None # The default timeout value. UpperCamelCase__ :Tuple = timeout # We use this lock primarily for the lock counter. UpperCamelCase__ :List[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCamelCase__ :Union[str, Any] = 0 return None @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self._lock_file @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = float(UpperCamelCase_ ) return None def lowerCAmelCase__ ( self ): '''simple docstring''' raise NotImplementedError() def lowerCAmelCase__ ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCAmelCase__ ( self , UpperCamelCase_=None , UpperCamelCase_=0.05 ): '''simple docstring''' if timeout is None: UpperCamelCase__ :Optional[Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCamelCase__ :Optional[Any] = id(self ) UpperCamelCase__ :Any = self._lock_file UpperCamelCase__ :Optional[Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(UpperCamelCase_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCamelCase__ :Tuple = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase__ ( self , UpperCamelCase_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCamelCase__ :Dict = id(self ) UpperCamelCase__ :Optional[int] = self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() UpperCamelCase__ :Any = 0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=UpperCamelCase_ ) return None def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Any = os.path.basename(UpperCamelCase_ ) if len(UpperCamelCase_ ) > max_length and max_length > 0: UpperCamelCase__ :List[Any] = os.path.dirname(UpperCamelCase_ ) UpperCamelCase__ :str = str(hash(UpperCamelCase_ ) ) UpperCamelCase__ :List[str] = filename[: max_length - len(UpperCamelCase_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(UpperCamelCase_ , UpperCamelCase_ ) else: return path class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=-1 , UpperCamelCase_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(UpperCamelCase_ , timeout=UpperCamelCase_ , max_filename_length=UpperCamelCase_ ) UpperCamelCase__ :Any = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCamelCase__ :Optional[int] = os.open(self._lock_file , UpperCamelCase_ ) except OSError: pass else: try: msvcrt.locking(UpperCamelCase_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(UpperCamelCase_ ) else: UpperCamelCase__ :int = fd return None def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self._lock_file_fd UpperCamelCase__ :Tuple = None msvcrt.locking(UpperCamelCase_ , msvcrt.LK_UNLCK , 1 ) os.close(UpperCamelCase_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=-1 , UpperCamelCase_=None ): '''simple docstring''' UpperCamelCase__ :List[Any] = os.statvfs(os.path.dirname(UpperCamelCase_ ) ).f_namemax super().__init__(UpperCamelCase_ , timeout=UpperCamelCase_ , max_filename_length=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCamelCase__ :Union[str, Any] = os.open(self._lock_file , UpperCamelCase_ ) try: fcntl.flock(UpperCamelCase_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(UpperCamelCase_ ) else: UpperCamelCase__ :Optional[int] = fd return None def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self._lock_file_fd UpperCamelCase__ :str = None fcntl.flock(UpperCamelCase_ , fcntl.LOCK_UN ) os.close(UpperCamelCase_ ) return None class lowercase ( A__ ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCamelCase__ :Tuple = os.open(self._lock_file , UpperCamelCase_ ) except OSError: pass else: UpperCamelCase__ :int = fd return None def lowerCAmelCase__ ( self ): '''simple docstring''' os.close(self._lock_file_fd ) UpperCamelCase__ :List[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __snake_case = None if msvcrt: __snake_case = WindowsFileLock elif fcntl: __snake_case = UnixFileLock else: __snake_case = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
97
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> Any: assert _test_patching.open is open __snake_case = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> List[str]: # pandas.read_csv is not present in _test_patching __snake_case = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , snake_case_ ): pass def lowerCamelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , snake_case_ ) is None with patch_submodule(_test_patching , '''len''' , snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case = patch_submodule(_test_patching , '''open''' , snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = '''__test_patch_submodule_successive_join__''' __snake_case = '''__test_patch_submodule_successive_dirname__''' __snake_case = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> Tuple: __snake_case = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , snake_case_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , snake_case_ ): pass
24
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __lowerCamelCase : Any = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Union[str, Any] = {} state_dict.pop("pixel_mean" , snake_case_ ) state_dict.pop("pixel_std" , snake_case_ ) snake_case__ : Optional[int] = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case__ : Any = key.replace(snake_case_ , snake_case_ ) if re.match(snake_case_ , snake_case_ ): snake_case__ : Dict = int(re.match(snake_case_ , snake_case_ ).group(2 ) ) if layer_nb == 0: snake_case__ : Optional[Any] = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: snake_case__ : Any = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: snake_case__ : List[str] = key.replace("layers.2" , "proj_out" ) snake_case__ : str = value snake_case__ : Any = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Tuple="ybelkada/segment-anything" ): snake_case__ : List[Any] = hf_hub_download(snake_case_ , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: snake_case__ : Tuple = SamConfig() elif "sam_vit_l" in model_name: snake_case__ : int = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) snake_case__ : Optional[int] = SamConfig( vision_config=snake_case_ , ) elif "sam_vit_h" in model_name: snake_case__ : str = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) snake_case__ : List[str] = SamConfig( vision_config=snake_case_ , ) snake_case__ : List[str] = torch.load(snake_case_ , map_location="cpu" ) snake_case__ : Optional[Any] = replace_keys(snake_case_ ) snake_case__ : Any = SamImageProcessor() snake_case__ : Dict = SamProcessor(image_processor=snake_case_ ) snake_case__ : Optional[Any] = SamModel(snake_case_ ) hf_model.load_state_dict(snake_case_ ) snake_case__ : Union[str, Any] = hf_model.to("cuda" ) snake_case__ : Any = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" snake_case__ : Optional[Any] = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert("RGB" ) snake_case__ : List[Any] = [[[400, 650]]] snake_case__ : str = [[1]] snake_case__ : str = processor(images=np.array(snake_case_ ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : Optional[Any] = hf_model(**snake_case_ ) snake_case__ : List[Any] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 snake_case__ : Optional[int] = processor( images=np.array(snake_case_ ) , input_points=snake_case_ , input_labels=snake_case_ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : Dict = hf_model(**snake_case_ ) snake_case__ : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 snake_case__ : Optional[Any] = ((75, 275, 1725, 850),) snake_case__ : str = processor(images=np.array(snake_case_ ) , input_boxes=snake_case_ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : str = hf_model(**snake_case_ ) snake_case__ : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. snake_case__ : Optional[Any] = [[[400, 650], [800, 650]]] snake_case__ : Any = [[1, 1]] snake_case__ : List[str] = processor( images=np.array(snake_case_ ) , input_points=snake_case_ , input_labels=snake_case_ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): snake_case__ : Optional[Any] = hf_model(**snake_case_ ) snake_case__ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() __lowerCamelCase : str = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) __lowerCamelCase : Dict = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
286
from datetime import datetime import matplotlib.pyplot as plt import torch def SCREAMING_SNAKE_CASE ( snake_case_ : int ): for param in module.parameters(): snake_case__ : Tuple = False def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): snake_case__ : List[Any] = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : List[str] = plt.imshow(snake_case_ ) fig.axes.get_xaxis().set_visible(snake_case_ ) fig.axes.get_yaxis().set_visible(snake_case_ ) plt.show() def SCREAMING_SNAKE_CASE ( ): snake_case__ : str = datetime.now() snake_case__ : Optional[Any] = current_time.strftime("%H:%M:%S" ) return timestamp
286
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a_ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : List[Any]=False ): '''simple docstring''' _lowerCamelCase : Optional[int] =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def a_ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Optional[int] ='vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Optional[Any] =state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) _lowerCamelCase : Dict =state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] =in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any =in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Union[str, Any] =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] =in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] =in_proj_bias[-config.hidden_size :] def a_ ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] =dct.pop(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Optional[int] =val @torch.no_grad() def a_ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' _lowerCamelCase : List[str] =ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : int =False _lowerCamelCase : List[str] =False _lowerCamelCase : str =False _lowerCamelCase : Any =False if "vqa" in checkpoint_url: _lowerCamelCase : str =True _lowerCamelCase : List[Any] =3_129 _lowerCamelCase : Any ='huggingface/label-files' _lowerCamelCase : Dict ='vqa2-id2label.json' _lowerCamelCase : str =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : Dict ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} _lowerCamelCase : int =idalabel _lowerCamelCase : Any ={v: k for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] =ViltForQuestionAnswering(SCREAMING_SNAKE_CASE__ ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple =True _lowerCamelCase : Tuple =2 _lowerCamelCase : int ={0: 'False', 1: 'True'} _lowerCamelCase : List[Any] ={v: k for k, v in config.idalabel.items()} _lowerCamelCase : List[str] =3 _lowerCamelCase : Any =ViltForImagesAndTextClassification(SCREAMING_SNAKE_CASE__ ) elif "irtr" in checkpoint_url: _lowerCamelCase : Any =True _lowerCamelCase : str =ViltForImageAndTextRetrieval(SCREAMING_SNAKE_CASE__ ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : str =True _lowerCamelCase : Any =ViltForMaskedLM(SCREAMING_SNAKE_CASE__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : int =torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['state_dict'] _lowerCamelCase : str =create_rename_keys(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if mlm_model or irtr_model: _lowerCamelCase : Dict =['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase , _lowerCamelCase : List[Any] =model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Define processor _lowerCamelCase : List[Any] =ViltImageProcessor(size=384 ) _lowerCamelCase : Dict =BertTokenizer.from_pretrained('bert-base-uncased' ) _lowerCamelCase : Tuple =ViltProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : Any =Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=SCREAMING_SNAKE_CASE__ ).raw ) _lowerCamelCase : Union[str, Any] =Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=SCREAMING_SNAKE_CASE__ ).raw ) _lowerCamelCase : Dict =( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) _lowerCamelCase : List[str] =processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) _lowerCamelCase : Optional[int] =processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) _lowerCamelCase : Optional[int] =model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : Union[str, Any] =Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=SCREAMING_SNAKE_CASE__ ).raw ) if mlm_model: _lowerCamelCase : Union[str, Any] ='a bunch of [MASK] laying on a [MASK].' else: _lowerCamelCase : List[Any] ='How many cats are there?' _lowerCamelCase : Dict =processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) _lowerCamelCase : Dict =model(**SCREAMING_SNAKE_CASE__ ) # Verify outputs if mlm_model: _lowerCamelCase : Union[str, Any] =torch.Size([1, 11, 30_522] ) _lowerCamelCase : List[Any] =torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] =outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[Any] =torch.Size([1, 3_129] ) _lowerCamelCase : Dict =torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : List[Any] =outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : Optional[int] =torch.Size([1, 2] ) _lowerCamelCase : Dict =torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
199
# using dfs for finding eulerian path traversal def a_ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=None ): '''simple docstring''' _lowerCamelCase : Optional[Any] =(path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _lowerCamelCase , _lowerCamelCase : Dict =True, True _lowerCamelCase : Optional[Any] =dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return path def a_ ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =0 _lowerCamelCase : Union[str, Any] =-1 for i in range(SCREAMING_SNAKE_CASE__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _lowerCamelCase : Tuple =i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' _lowerCamelCase : Tuple =[[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _lowerCamelCase , _lowerCamelCase : Optional[int] =check_circuit_or_path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return _lowerCamelCase : Any =1 if check == 2: _lowerCamelCase : Tuple =odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) _lowerCamelCase : int =dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) def a_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] ={1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _lowerCamelCase : str ={1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _lowerCamelCase : List[Any] ={1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _lowerCamelCase : Any ={1: [2, 3], 2: [1, 3], 3: [1, 2]} _lowerCamelCase : Dict ={ 1: [], 2: [] # all degree is zero } _lowerCamelCase : str =10 check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) check_euler(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
199
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = R"\w+[.]\d+" _UpperCAmelCase : Union[str, Any] = re.findall(lowerCAmelCase__ , lowerCAmelCase__ ) for pat in pats: _UpperCAmelCase : Optional[Any] = key.replace(lowerCAmelCase__ , "_".join(pat.split("." ) ) ) return key def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _UpperCAmelCase : str = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _UpperCAmelCase : Dict = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer _UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _UpperCAmelCase : Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": _UpperCAmelCase : List[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=42 ): _UpperCAmelCase : Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _UpperCAmelCase : Union[str, Any] = flax_model.init_weights(PRNGKey(lowerCAmelCase__ ) ) _UpperCAmelCase : List[str] = flatten_dict(lowerCAmelCase__ ) _UpperCAmelCase : Dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase : Tuple = rename_key(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase : List[Any] = rename_key_and_reshape_tensor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown _UpperCAmelCase : List[Any] = jnp.asarray(lowerCAmelCase__ ) return unflatten_dict(lowerCAmelCase__ )
360
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
322
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def a__ ( ): """simple docstring""" print("Making key files..." ) make_key_files("rsa" , 1_024 ) print("Key files generation successful." ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" print("Generating prime p..." ) UpperCamelCase = rabinMiller.generate_large_prime(_SCREAMING_SNAKE_CASE ) print("Generating prime q..." ) UpperCamelCase = rabinMiller.generate_large_prime(_SCREAMING_SNAKE_CASE ) UpperCamelCase = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: UpperCamelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) UpperCamelCase = cryptoMath.find_mod_inverse(_SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) UpperCamelCase = (n, e) UpperCamelCase = (n, d) return (public_key, private_key) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print("\nWARNING:" ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" "Use a different name or delete these files and re-run this program." ) sys.exit() UpperCamelCase , UpperCamelCase = generate_key(_SCREAMING_SNAKE_CASE ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , "w" ) as out_file: out_file.write(F"{key_size},{public_key[0]},{public_key[1]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , "w" ) as out_file: out_file.write(F"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
153
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE = 4_000_000 ): """simple docstring""" UpperCamelCase = [] UpperCamelCase , UpperCamelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = b, a + b return sum(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''{solution() = }''')
153
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : List[str] ={ '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str =['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCAmelCase : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : int , lowercase : Optional[int] , lowercase : List[Any]=13 , lowercase : Dict=30 , lowercase : Dict=2 , lowercase : Tuple=3 , lowercase : Dict=True , lowercase : Dict=True , lowercase : Tuple=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[Any]=37 , lowercase : Union[str, Any]="gelu" , lowercase : List[str]=0.1 , lowercase : List[Any]=0.1 , lowercase : List[str]=10 , lowercase : Any=0.02 , lowercase : Union[str, Any]=3 , lowercase : Tuple=None , lowercase : List[str]=2 , ): """simple docstring""" lowercase_ :Union[str, Any] = parent lowercase_ :Optional[int] = batch_size lowercase_ :Tuple = image_size lowercase_ :Any = patch_size lowercase_ :List[Any] = num_channels lowercase_ :Optional[Any] = is_training lowercase_ :str = use_labels lowercase_ :Any = hidden_size lowercase_ :Optional[int] = num_hidden_layers lowercase_ :List[Any] = num_attention_heads lowercase_ :str = intermediate_size lowercase_ :Optional[int] = hidden_act lowercase_ :List[Any] = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :Any = type_sequence_label_size lowercase_ :Dict = initializer_range lowercase_ :List[Any] = scope lowercase_ :List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ :str = (image_size // patch_size) ** 2 lowercase_ :Any = num_patches + 2 def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ :Optional[Any] = None if self.use_labels: lowercase_ :Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ :Any = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase__ ( self : Tuple , lowercase : int , lowercase : str , lowercase : Tuple ): """simple docstring""" lowercase_ :Optional[int] = TFDeiTModel(config=lowercase ) lowercase_ :str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str , lowercase : str , lowercase : Optional[Any] , lowercase : str ): """simple docstring""" lowercase_ :List[str] = TFDeiTForMaskedImageModeling(config=lowercase ) lowercase_ :Optional[int] = model(lowercase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ :List[str] = 1 lowercase_ :List[str] = TFDeiTForMaskedImageModeling(lowercase ) lowercase_ :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ :List[str] = model(lowercase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase__ ( self : List[str] , lowercase : Any , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): """simple docstring""" lowercase_ :Tuple = self.type_sequence_label_size lowercase_ :str = TFDeiTForImageClassification(lowercase ) lowercase_ :str = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ :Optional[int] = 1 lowercase_ :Optional[int] = TFDeiTForImageClassification(lowercase ) lowercase_ :List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ :int = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Tuple = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ :Tuple = config_and_inputs lowercase_ :Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __A = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __A = False __A = False __A = False __A = False def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :List[Any] = TFDeiTModelTester(self ) lowercase_ :List[Any] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def lowercase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def lowercase__ ( self : Optional[int] ): """simple docstring""" pass def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ , lowercase_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Optional[Any] = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase_ :Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , tf.keras.layers.Dense ) ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ , lowercase_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Tuple = model_class(lowercase ) lowercase_ :Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :Tuple = [*signature.parameters.keys()] lowercase_ :Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def lowercase__ ( self : str ): """simple docstring""" lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase ) def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) def lowercase__ ( self : List[Any] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Any=False ): """simple docstring""" lowercase_ :Dict = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowercase__ ( self : List[Any] ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :List[Any] = TFDeiTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def UpperCAmelCase_ ( ): lowercase_ :List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def lowercase__ ( self : Dict ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[int] = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) lowercase_ :Optional[int] = self.default_image_processor lowercase_ :Union[str, Any] = prepare_img() lowercase_ :Dict = image_processor(images=lowercase , return_tensors="tf" ) # forward pass lowercase_ :Union[str, Any] = model(**lowercase ) # verify the logits lowercase_ :Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase ) lowercase_ :Dict = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) )
147
0
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> list[int]: if num <= 0: _a : List[Any] =F"{num}: Invalid input, please enter a positive integer." raise ValueError(_UpperCAmelCase ) _a : Union[str, Any] =[True] * (num + 1) _a : List[Any] =[] _a : List[str] =2 _a : List[str] =int(math.sqrt(_UpperCAmelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_UpperCAmelCase ) # Set multiples of start be False for i in range(start * start ,num + 1 ,_UpperCAmelCase ): if sieve[i] is True: _a : str =False start += 1 for j in range(end + 1 ,num + 1 ): if sieve[j] is True: prime.append(_UpperCAmelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
276
"""simple docstring""" import sys from collections import defaultdict class UpperCamelCase : def __init__( self) -> Optional[int]: snake_case_ = [] def a_ ( self, lowerCAmelCase__) -> Any: return self.node_position[vertex] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = pos def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case_ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case_ = 2 * start + 1 else: snake_case_ = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case_ , snake_case_ = heap[smallest_child], positions[smallest_child] snake_case_ , snake_case_ = ( heap[start], positions[start], ) snake_case_ , snake_case_ = temp, tempa snake_case_ = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child], self.get_position(positions[start])) self.set_position(positions[start], lowerCAmelCase__) self.top_to_bottom(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: snake_case_ = position[index] while index != 0: snake_case_ = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: snake_case_ = heap[parent] snake_case_ = position[parent] self.set_position(position[parent], lowerCAmelCase__) else: snake_case_ = val snake_case_ = temp self.set_position(lowerCAmelCase__, lowerCAmelCase__) break snake_case_ = parent else: snake_case_ = val snake_case_ = temp self.set_position(lowerCAmelCase__, 0) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = len(lowerCAmelCase__) // 2 - 1 for i in range(lowerCAmelCase__, -1, -1): self.top_to_bottom(lowerCAmelCase__, lowerCAmelCase__, len(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = positions[0] snake_case_ = sys.maxsize self.top_to_bottom(lowerCAmelCase__, 0, len(lowerCAmelCase__), lowerCAmelCase__) return temp def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = Heap() snake_case_ = [0] * len(UpperCAmelCase ) snake_case_ = [-1] * len(UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case_ = [] # Heap of Distance of vertices from their neighboring vertex snake_case_ = [] for vertex in range(len(UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase ) heap.node_position.append(UpperCAmelCase ) snake_case_ = [] snake_case_ = 1 snake_case_ = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case_ = 0 snake_case_ = distance heap.heapify(UpperCAmelCase , UpperCAmelCase ) for _ in range(1 , len(UpperCAmelCase ) ): snake_case_ = heap.delete_minimum(UpperCAmelCase , UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case_ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase )] ): snake_case_ = distance heap.bottom_to_top( UpperCAmelCase , heap.get_position(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase ) snake_case_ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __UpperCamelCase = int(input('''Enter number of edges: ''').strip()) __UpperCamelCase = defaultdict(list) for _ in range(edges_number): __UpperCamelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
69
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__ : Any = tempfile.mkdtemp() # fmt: off __magic_name__ : str = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __magic_name__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) __magic_name__ : int = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __magic_name__ : Union[str, Any] = {'unk_token': '<unk>'} __magic_name__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __magic_name__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) __magic_name__ : Any = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } __magic_name__ : Union[str, Any] = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def __lowerCAmelCase ( self : List[str] , **_A : int ) -> Optional[int]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def __lowerCAmelCase ( self : Optional[int] , **_A : List[str] ) -> Tuple: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def __lowerCAmelCase ( self : Optional[Any] , **_A : Optional[int] ) -> Tuple: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Any ) -> str: __magic_name__ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __magic_name__ : Dict = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : List[Any] ) -> int: __magic_name__ : Any = self.get_tokenizer() __magic_name__ : List[Any] = self.get_rust_tokenizer() __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : Union[str, Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __magic_name__ : List[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ : str = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def __lowerCAmelCase ( self : int ) -> Tuple: __magic_name__ : List[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __magic_name__ : int = self.get_image_processor(do_normalize=_A ) __magic_name__ : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __lowerCAmelCase ( self : str ) -> Any: __magic_name__ : Any = self.get_image_processor() __magic_name__ : str = self.get_tokenizer() __magic_name__ : Union[str, Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : str = self.prepare_image_inputs() __magic_name__ : int = image_processor(_A , return_tensors='np' ) __magic_name__ : Tuple = processor(images=_A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: __magic_name__ : int = self.get_image_processor() __magic_name__ : Tuple = self.get_tokenizer() __magic_name__ : int = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : Optional[int] = 'lower newer' __magic_name__ : Optional[int] = processor(text=_A , return_tensors='np' ) __magic_name__ : Optional[Any] = tokenizer(_A , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: __magic_name__ : int = self.get_image_processor() __magic_name__ : Any = self.get_tokenizer() __magic_name__ : Optional[int] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : Optional[Any] = 'lower newer' __magic_name__ : Optional[Any] = self.prepare_image_inputs() __magic_name__ : List[str] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : List[str] = 'google/owlvit-base-patch32' __magic_name__ : Optional[int] = OwlViTProcessor.from_pretrained(_A ) __magic_name__ : Union[str, Any] = ['cat', 'nasa badge'] __magic_name__ : Optional[Any] = processor(text=_A ) __magic_name__ : Tuple = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __lowerCAmelCase ( self : List[str] ) -> Any: __magic_name__ : Optional[Any] = 'google/owlvit-base-patch32' __magic_name__ : Union[str, Any] = OwlViTProcessor.from_pretrained(_A ) __magic_name__ : Tuple = [['cat', 'nasa badge'], ['person']] __magic_name__ : Dict = processor(text=_A ) __magic_name__ : List[Any] = 16 __magic_name__ : int = len(_A ) __magic_name__ : str = max([len(_A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __lowerCAmelCase ( self : int ) -> Dict: __magic_name__ : int = 'google/owlvit-base-patch32' __magic_name__ : str = OwlViTProcessor.from_pretrained(_A ) __magic_name__ : List[str] = ['cat', 'nasa badge'] __magic_name__ : Tuple = processor(text=_A ) __magic_name__ : Optional[int] = 16 __magic_name__ : int = inputs['input_ids'] __magic_name__ : Any = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : List[str] = self.get_image_processor() __magic_name__ : List[str] = self.get_tokenizer() __magic_name__ : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : List[Any] = self.prepare_image_inputs() __magic_name__ : Any = self.prepare_image_inputs() __magic_name__ : Tuple = processor(images=_A , query_images=_A ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.get_image_processor() __magic_name__ : Tuple = self.get_tokenizer() __magic_name__ : List[str] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __magic_name__ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : str = processor.batch_decode(_A ) __magic_name__ : Optional[int] = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A )
366
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase :Tuple = logging.get_logger(__name__) class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : int = ["""pixel_values"""] def __init__( self : Any , _A : bool = True , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[Any] , ) -> None: super().__init__(**_A ) __magic_name__ : List[str] = size if size is not None else {'shortest_edge': 256} __magic_name__ : str = get_size_dict(_A , default_to_square=_A ) __magic_name__ : List[str] = crop_size if crop_size is not None else {'height': 224, 'width': 224} __magic_name__ : Optional[int] = get_size_dict(_A ) __magic_name__ : Union[str, Any] = do_resize __magic_name__ : List[Any] = size __magic_name__ : List[str] = resample __magic_name__ : Dict = do_center_crop __magic_name__ : List[str] = crop_size __magic_name__ : int = do_rescale __magic_name__ : Tuple = rescale_factor __magic_name__ : List[str] = do_normalize __magic_name__ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: __magic_name__ : Optional[Any] = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __magic_name__ : Dict = get_resize_output_image_size(_A , size=size['shortest_edge'] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ) -> np.ndarray: __magic_name__ : int = get_size_dict(_A ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : np.ndarray , _A : float , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple ) -> np.ndarray: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self : List[str] , _A : ImageInput , _A : Optional[bool] = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_A : List[Any] , ) -> List[str]: __magic_name__ : int = do_resize if do_resize is not None else self.do_resize __magic_name__ : Tuple = size if size is not None else self.size __magic_name__ : Optional[Any] = get_size_dict(_A , default_to_square=_A ) __magic_name__ : Dict = resample if resample is not None else self.resample __magic_name__ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ : Dict = crop_size if crop_size is not None else self.crop_size __magic_name__ : List[str] = get_size_dict(_A ) __magic_name__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : Any = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : Tuple = image_mean if image_mean is not None else self.image_mean __magic_name__ : Union[str, Any] = image_std if image_std is not None else self.image_std __magic_name__ : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __magic_name__ : List[Any] = [to_numpy_array(_A ) for image in images] if do_resize: __magic_name__ : Union[str, Any] = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: __magic_name__ : Union[str, Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: __magic_name__ : List[Any] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: __magic_name__ : Optional[Any] = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] __magic_name__ : Union[str, Any] = [to_channel_dimension_format(_A , _A ) for image in images] __magic_name__ : List[str] = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
275
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCamelCase_ : Dict = get_logger(__name__) lowerCamelCase_ : List[str] = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class _UpperCAmelCase : '''simple docstring''' @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _UpperCAmelCase : '''simple docstring''' @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): """simple docstring""" for processor in self: A_ : Tuple = inspect.signature(processor.__call__ ).parameters if len(snake_case_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) A_ : Tuple = processor(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) else: A_ : Optional[Any] = processor(snake_case_ , snake_case_ , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) A_ : Optional[int] = temperature def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : int = scores / self.temperature return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ = -float('Inf' ) , snake_case_ = 1 ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(snake_case_ , snake_case_ ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) A_ : str = top_p A_ : Union[str, Any] = filter_value A_ : int = min_tokens_to_keep def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ , A_ : Tuple = lax.top_k(snake_case_ , scores.shape[-1] ) A_ : List[Any] = jnp.full_like(snake_case_ , self.filter_value ) A_ : List[str] = jax.nn.softmax(snake_case_ , axis=-1 ).cumsum(axis=-1 ) A_ : Optional[int] = cumulative_probs < self.top_p # include the token that is higher than top_p as well A_ : Union[str, Any] = jnp.roll(snake_case_ , 1 ) score_mask |= score_mask.at[:, 0].set(snake_case_ ) # min tokens to keep A_ : int = score_mask.at[:, : self.min_tokens_to_keep].set(snake_case_ ) A_ : Optional[Any] = jnp.where(snake_case_ , snake_case_ , snake_case_ ) A_ : List[Any] = jax.lax.sort_key_val(snake_case_ , snake_case_ )[-1] return next_scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ = -float('Inf' ) , snake_case_ = 1 ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) A_ : str = max(snake_case_ , snake_case_ ) A_ : Union[str, Any] = filter_value def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ , A_ : int = scores.shape A_ : Tuple = jnp.full(batch_size * vocab_size , self.filter_value ) A_ : Union[str, Any] = min(self.top_k , scores.shape[-1] ) # Safety check A_ , A_ : Dict = lax.top_k(snake_case_ , snake_case_ ) A_ : Optional[int] = jnp.broadcast_to((jnp.arange(snake_case_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A_ : int = topk_scores.flatten() A_ : Any = topk_indices.flatten() + shift A_ : List[str] = next_scores_flat.at[topk_indices_flat].set(snake_case_ ) A_ : Union[str, Any] = next_scores_flat.reshape(snake_case_ , snake_case_ ) return next_scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : Union[str, Any] = bos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Optional[Any] = jnp.full(scores.shape , -float('inf' ) ) A_ : Union[str, Any] = 1 - jnp.bool_(cur_len - 1 ) A_ : str = jnp.where(snake_case_ , new_scores.at[:, self.bos_token_id].set(0 ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : Dict = max_length A_ : Optional[int] = eos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Union[str, Any] = jnp.full(scores.shape , -float('inf' ) ) A_ : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A_ : Dict = jnp.where(snake_case_ , new_scores.at[:, self.eos_token_id].set(0 ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(snake_case_ , snake_case_ ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) A_ : Any = min_length A_ : List[Any] = eos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : int = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A_ : Optional[Any] = jnp.where(snake_case_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[Any] = list(snake_case_ ) A_ : Tuple = begin_index def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Dict = 1 - jnp.bool_(cur_len - self.begin_index ) A_ : int = jnp.where(snake_case_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : List[Any] = list(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Optional[Any] = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : Any = dict(snake_case_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A_ : Tuple = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A_ : Tuple = force_token_array.at[index].set(snake_case_ ) A_ : Any = jnp.intaa(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" def _force_token(snake_case_ ): A_ : List[Any] = scores.shape[0] A_ : Any = self.force_token_array[generation_idx] A_ : Tuple = jnp.ones_like(snake_case_ , dtype=scores.dtype ) * -float('inf' ) A_ : List[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A_ : int = lax.dynamic_update_slice(snake_case_ , snake_case_ , (0, current_token) ) return new_scores A_ : int = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(snake_case_ ) , lambda: scores , ) , ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Tuple = generate_config.eos_token_id A_ : Optional[int] = generate_config.no_timestamps_token_id A_ : List[str] = generate_config.no_timestamps_token_id + 1 A_ : Any = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(snake_case_ , 'max_initial_timestamp_index' ): A_ : List[Any] = generate_config.max_initial_timestamp_index else: A_ : Any = model_config.vocab_size if self.max_initial_timestamp_index is None: A_ : Optional[Any] = model_config.vocab_size def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(snake_case_ , snake_case_ ): A_ : Any = jnp.where((cur_len - self.begin_index) >= 1 , snake_case_ , snake_case_ ) A_ : Tuple = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , snake_case_ , ) A_ : Tuple = jnp.where((cur_len - self.begin_index) < 2 , snake_case_ , snake_case_ ) A_ : Any = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , snake_case_ , snake_case_ , ) return jnp.where( snake_case_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , snake_case_ , ) A_ : Tuple = jax.vmap(snake_case_ )(snake_case_ , snake_case_ ) A_ : Optional[Any] = jnp.where(cur_len == self.begin_index , snake_case_ , snake_case_ ) A_ : Tuple = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , snake_case_ , ) A_ : int = self.timestamp_begin + self.max_initial_timestamp_index A_ : List[Any] = jnp.where( snake_case_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , snake_case_ , ) # if sum of probability over timestamps is above any other token, sample timestamp A_ : Any = jax.nn.log_softmax(snake_case_ , axis=-1 ) def handle_cumulative_probs(snake_case_ , snake_case_ ): A_ : Dict = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A_ : Optional[Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , snake_case_ , ) A_ : Union[str, Any] = jax.vmap(snake_case_ )(snake_case_ , snake_case_ ) return scores
286
"""simple docstring""" import qiskit def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Tuple = qiskit.Aer.get_backend('aer_simulator' ) A_ : str = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator A_ : Optional[Any] = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase_ : List[str] = half_adder(1, 1) print(F"Half Adder Output Qubit Counts: {counts}")
286
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def __lowercase ( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> Optional[int]: __SCREAMING_SNAKE_CASE = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = input_paths_and_base_extractors[compression_format] if input_path is None: __SCREAMING_SNAKE_CASE = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(a__ ) assert base_extractor.is_extractable(a__ ) __SCREAMING_SNAKE_CASE = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(a__ , a__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __SCREAMING_SNAKE_CASE = file_path.read_text(encoding='utf-8' ) else: __SCREAMING_SNAKE_CASE = output_path.read_text(encoding='utf-8' ) __SCREAMING_SNAKE_CASE = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def __lowercase ( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } __SCREAMING_SNAKE_CASE = input_paths[compression_format] if input_path is None: __SCREAMING_SNAKE_CASE = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(a__ ) __SCREAMING_SNAKE_CASE = Extractor.infer_extractor_format(a__ ) assert extractor_format is not None __SCREAMING_SNAKE_CASE = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(a__ , a__ , a__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __SCREAMING_SNAKE_CASE = file_path.read_text(encoding='utf-8' ) else: __SCREAMING_SNAKE_CASE = output_path.read_text(encoding='utf-8' ) __SCREAMING_SNAKE_CASE = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowercase ( a__ , a__ ) -> Any: import tarfile __SCREAMING_SNAKE_CASE = tmp_path / 'data_dot_dot' directory.mkdir() __SCREAMING_SNAKE_CASE = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(a__ , 'w' ) as f: f.add(a__ , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def __lowercase ( a__ ) -> Dict: import tarfile __SCREAMING_SNAKE_CASE = tmp_path / 'data_sym_link' directory.mkdir() __SCREAMING_SNAKE_CASE = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=a__ ) with tarfile.TarFile(a__ , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def __lowercase ( a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[int]: __SCREAMING_SNAKE_CASE = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } __SCREAMING_SNAKE_CASE = insecure_tar_files[insecure_tar_file] __SCREAMING_SNAKE_CASE = tmp_path / 'extracted' TarExtractor.extract(a__ , a__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowercase ( a__ ) -> Tuple: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __SCREAMING_SNAKE_CASE = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 __SCREAMING_SNAKE_CASE = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(a__ ) assert zipfile.is_zipfile(str(a__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(a__ ) # but we're right
118
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Optional[int] = LayoutLMTokenizer UpperCamelCase__ : Any = LayoutLMTokenizerFast UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : int = True def _A ( self ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _A ( self , **_A ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_A ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' __SCREAMING_SNAKE_CASE = 'unwanted, running' return input_text, output_text def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_A , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [7, 4, 5, 10, 8, 9] ) def _A ( self ): '''simple docstring''' pass
118
1
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" a_ : str = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: a_ : Tuple = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: a_ : int = 4 a_ : str = 48 a_ : Union[str, Any] = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: a_ : List[Any] = [6, 6, 6, 6] a_ : Tuple = 60 a_ : Union[str, Any] = [6, 6, 6, 6] a_ : Optional[int] = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: a_ : Tuple = 4 a_ : Optional[int] = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: a_ : List[str] = 1 a_ : Optional[int] = 1 a_ : int = 1_26 a_ : Optional[Any] = 7 a_ : Optional[int] = 255.0 a_ : Tuple = '' return config def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : Optional[int] ) -> List[str]: """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: a_ : List[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a_ : List[Any] = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: a_ : Any = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: a_ : Tuple = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: a_ : Union[str, Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a_ : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a_ : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a_ : Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a_ : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a_ : List[str] = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: a_ : str = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: a_ : Optional[int] = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: a_ : Optional[int] = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: a_ : List[str] = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: a_ : List[Any] = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": a_ : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a_ : Optional[int] = 'layernorm.bias' if "conv_first" in name: a_ : Tuple = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: a_ : Optional[int] = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: a_ : Union[str, Any] = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: a_ : Union[str, Any] = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: a_ : Union[str, Any] = name.replace('upsample.2' , 'upsample.convolution_1' ) a_ : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": a_ : Union[str, Any] = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) a_ : Union[str, Any] = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: a_ : List[str] = 'swin2sr.' + name return name def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : List[str] ) -> Dict: """simple docstring""" for key in orig_state_dict.copy().keys(): a_ : List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: a_ : List[Any] = key.split('.' ) a_ : Optional[Any] = int(key_split[1] ) a_ : Optional[Any] = int(key_split[4] ) a_ : Tuple = config.embed_dim if "weight" in key: a_ : Union[str, Any] = val[:dim, :] a_ : Tuple = val[dim : dim * 2, :] a_ : Union[str, Any] = val[-dim:, :] else: a_ : Tuple = val[:dim] a_ : Optional[Any] = val[dim : dim * 2] a_ : Any = val[-dim:] pass else: a_ : Union[str, Any] = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : Optional[int] , __A : List[Any] ) -> Optional[int]: """simple docstring""" a_ : Any = get_config(__A ) a_ : Any = SwinaSRForImageSuperResolution(__A ) model.eval() a_ : List[str] = torch.hub.load_state_dict_from_url(__A , map_location='cpu' ) a_ : List[Any] = convert_state_dict(__A , __A ) a_ , a_ : Tuple = model.load_state_dict(__A , strict=__A ) if len(__A ) > 0: raise ValueError('Missing keys when converting: {}'.format(__A ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values a_ : Union[str, Any] = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' a_ : Tuple = Image.open(requests.get(__A , stream=__A ).raw ).convert('RGB' ) a_ : Union[str, Any] = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values a_ : Any = 1_26 if 'Jpeg' in checkpoint_url else 2_56 a_ : Optional[int] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ : str = transforms(__A ).unsqueeze(0 ) if config.num_channels == 1: a_ : int = pixel_values[:, 0, :, :].unsqueeze(1 ) a_ : int = model(__A ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: a_ : Optional[int] = torch.Size([1, 3, 5_12, 5_12] ) a_ : str = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: a_ : Dict = torch.Size([1, 3, 10_24, 10_24] ) a_ : Union[str, Any] = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here a_ : Union[str, Any] = torch.Size([1, 3, 10_24, 10_24] ) a_ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: a_ : Union[str, Any] = torch.Size([1, 3, 5_12, 5_12] ) a_ : Optional[int] = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: a_ : Any = torch.Size([1, 3, 10_24, 10_24] ) a_ : Tuple = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , __A , atol=1e-3 ) print('Looks ok!' ) a_ : int = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } a_ : List[str] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') UpperCAmelCase_ : List[str] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
32
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() a__: Dict = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def UpperCamelCase__( UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Dict=True )->Dict: if model_type not in MODEL_CLASSES: raise ValueError(f"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}." ) A__ , A__ , A__ , A__ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: A__ = cached_file(UpperCamelCase__ , UpperCamelCase__ , force_download=not use_cached_models ) A__ = config_class.from_json_file(UpperCamelCase__ ) A__ = True A__ = True print(f"Building TensorFlow model from configuration: {config}" ) A__ = model_class(UpperCamelCase__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): A__ = cached_file( UpperCamelCase__ , UpperCamelCase__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: A__ = load_pytorch_checkpoint_in_tfa_model(UpperCamelCase__ , UpperCamelCase__ ) if compare_with_pt_model: A__ = tf_model(tf_model.dummy_inputs , training=UpperCamelCase__ ) # build the network A__ = torch.load(UpperCamelCase__ , map_location='''cpu''' ) A__ = pt_model_class.from_pretrained( pretrained_model_name_or_path=UpperCamelCase__ , config=UpperCamelCase__ , state_dict=UpperCamelCase__ ) with torch.no_grad(): A__ = pt_model(**pt_model.dummy_inputs ) A__ = pto[0].numpy() A__ = tfo[0].numpy() A__ = np.amax(np.abs(np_pt - np_tf ) ) print(f"Max absolute difference between models outputs {diff}" ) assert diff <= 2e-2, f"Error, model absolute difference is >2e-2: {diff}" # Save pytorch-model print(f"Save TensorFlow model to {tf_dump_path}" ) tf_model.save_weights(UpperCamelCase__ , save_format='''h5''' ) def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : str=False , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : str=False , )->str: if args_model_type is None: A__ = list(MODEL_CLASSES.keys() ) else: A__ = [args_model_type] for j, model_type in enumerate(UpperCamelCase__ , start=1 ): print('''=''' * 1_00 ) print(f" Converting model type {j}/{len(UpperCamelCase__ )}: {model_type}" ) print('''=''' * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(f"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}." ) A__ , A__ , A__ , A__ , A__ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: A__ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: A__ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(UpperCamelCase__ , UpperCamelCase__ ) , start=1 ): print('''-''' * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f" Skipping finetuned checkpoint {model_shortcut_name}" ) continue A__ = model_shortcut_name elif only_convert_finetuned_models: print(f" Skipping not finetuned checkpoint {model_shortcut_name}" ) continue print( f" Converting checkpoint {i}/{len(UpperCamelCase__ )}: {model_shortcut_name} - model_type {model_type}" ) print('''-''' * 1_00 ) if config_shortcut_name in aws_config_map: A__ = cached_file(UpperCamelCase__ , UpperCamelCase__ , force_download=not use_cached_models ) else: A__ = config_shortcut_name if model_shortcut_name in aws_model_maps: A__ = cached_file(UpperCamelCase__ , UpperCamelCase__ , force_download=not use_cached_models ) else: A__ = model_shortcut_name if os.path.isfile(UpperCamelCase__ ): A__ = '''converted_model''' convert_pt_checkpoint_to_tf( model_type=UpperCamelCase__ , pytorch_checkpoint_path=UpperCamelCase__ , config_file=UpperCamelCase__ , tf_dump_path=os.path.join(UpperCamelCase__ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=UpperCamelCase__ , ) if remove_cached_files: os.remove(UpperCamelCase__ ) os.remove(UpperCamelCase__ ) if __name__ == "__main__": a__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( F"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') a__: Optional[Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
39
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) __SCREAMING_SNAKE_CASE = '''CIDAS/clipseg-rd64-refined''' __SCREAMING_SNAKE_CASE = '''image_segmenter''' __SCREAMING_SNAKE_CASE = CLIPSegForImageSegmentation __SCREAMING_SNAKE_CASE = ['''image''', '''text'''] __SCREAMING_SNAKE_CASE = ['''image'''] def __init__( self,*__lowerCamelCase,**__lowerCamelCase ): requires_backends(self,['''vision'''] ) super().__init__(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): return self.pre_processor(text=[label],images=[image],padding=__lowerCamelCase,return_tensors='''pt''' ) def UpperCamelCase ( self,__lowerCamelCase ): with torch.no_grad(): A__ = self.model(**__lowerCamelCase ).logits return logits def UpperCamelCase ( self,__lowerCamelCase ): A__ = outputs.cpu().detach().numpy() A__ = 0 A__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
39
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowercase( __a ): '''simple docstring''' lowercase__ = "markuplm" def __init__( self: Optional[Any], a_: List[str]=30_522, a_: List[str]=768, a_: Optional[int]=12, a_: List[str]=12, a_: Optional[int]=3_072, a_: str="gelu", a_: str=0.1, a_: int=0.1, a_: Dict=512, a_: List[Any]=2, a_: List[Any]=0.02, a_: Optional[Any]=1E-12, a_: Any=0, a_: Union[str, Any]=0, a_: int=2, a_: Union[str, Any]=256, a_: Tuple=1_024, a_: str=216, a_: str=1_001, a_: str=32, a_: Optional[Any]=50, a_: List[str]="absolute", a_: Dict=True, a_: int=None, **a_: Any, ): '''simple docstring''' super().__init__( pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_, ) _snake_case : Optional[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : Optional[Any] = hidden_act _snake_case : List[Any] = intermediate_size _snake_case : List[str] = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : Tuple = max_position_embeddings _snake_case : str = type_vocab_size _snake_case : Any = initializer_range _snake_case : Any = layer_norm_eps _snake_case : str = position_embedding_type _snake_case : List[Any] = use_cache _snake_case : Any = classifier_dropout # additional properties _snake_case : Dict = max_depth _snake_case : str = max_xpath_tag_unit_embeddings _snake_case : str = max_xpath_subs_unit_embeddings _snake_case : Union[str, Any] = tag_pad_id _snake_case : int = subs_pad_id _snake_case : List[Any] = xpath_unit_hidden_size
64
import os # Precomputes a list of the 100 first triangular numbers a : Optional[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Any = os.path.dirname(os.path.realpath(lowerCAmelCase__ ) ) UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , """words.txt""" ) UpperCAmelCase_: int = """""" with open(lowerCAmelCase__ ) as f: UpperCAmelCase_: str = f.readline() UpperCAmelCase_: Optional[int] = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] UpperCAmelCase_: Union[str, Any] = [ word for word in [sum(ord(lowerCAmelCase__ ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowerCAmelCase__ ) if __name__ == "__main__": print(solution())
147
0
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') lowerCAmelCase__ = parser.parse_args() if args.model_type == "roberta": lowerCAmelCase__ = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase__ = '''roberta''' elif args.model_type == "gpt2": lowerCAmelCase__ = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCAmelCase__ = '''transformer''' lowerCAmelCase__ = model.state_dict() lowerCAmelCase__ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCAmelCase__ = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCAmelCase__ = F"""{prefix}.embeddings.{w}.weight""" lowerCAmelCase__ = state_dict[param_name] for w in ["weight", "bias"]: lowerCAmelCase__ = F"""{prefix}.embeddings.LayerNorm.{w}""" lowerCAmelCase__ = state_dict[param_name] # Transformer Blocks # lowerCAmelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] lowerCAmelCase__ = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCAmelCase__ = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[F"""lm_head.dense.{w}"""] lowerCAmelCase__ = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCAmelCase__ = state_dict[F"""{prefix}.ln_f.{w}"""] lowerCAmelCase__ = state_dict['''lm_head.weight'''] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
364
"""simple docstring""" from itertools import permutations def snake_case_ ( A_ : tuple ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _lowerCamelCase : Any = [7, 11, 13, 17] for i, test in enumerate(A_ ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def snake_case_ ( A_ : int = 10 ): '''simple docstring''' return sum( int(''''''.join(map(A_, A_ ) ) ) for num in permutations(range(A_ ) ) if is_substring_divisible(A_ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
175
0
'''simple docstring''' from __future__ import annotations lowerCamelCase__ = tuple[int, int, int] lowerCamelCase__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowerCamelCase__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- lowerCamelCase__ = 'EGZWVONAHDCLFQMSIPJBYUKXTR' lowerCamelCase__ = 'FOBHMDKEXQNRAULPGSJVTYICZW' lowerCamelCase__ = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- lowerCamelCase__ = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- lowerCamelCase__ = 'RMDJXFUWGISLHVTCQNKYPBEZOA' lowerCamelCase__ = 'SGLCPQWZHKXAREONTFBVIYJUDM' lowerCamelCase__ = 'HVSICLTYKQUBXDWAJZOMFGPREN' lowerCamelCase__ = 'RZWQHFMVDBKICJLNTUXAGYPSOE' lowerCamelCase__ = 'LFKIJODBEGAMQPXVUHYSTCZRWN' lowerCamelCase__ = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(lowercase__ ) )) < 3: _UpperCAmelCase : Optional[Any] = F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(lowercase__ ) # Checks if rotor positions are valid _UpperCAmelCase : Any = rotpos if not 0 < rotorposa <= len(lowercase__ ): _UpperCAmelCase : Optional[Any] = F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(lowercase__ ) if not 0 < rotorposa <= len(lowercase__ ): _UpperCAmelCase : int = F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowercase__ ) if not 0 < rotorposa <= len(lowercase__ ): _UpperCAmelCase : Dict = F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(lowercase__ ) # Validates string and returns dict _UpperCAmelCase : List[Any] = _plugboard(lowercase__ ) return rotpos, rotsel, pbdict def __lowerCAmelCase (__lowerCAmelCase ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(lowercase__ , lowercase__ ): _UpperCAmelCase : Union[str, Any] = F"""Plugboard setting isn't type string ({type(lowercase__ )})""" raise TypeError(lowercase__ ) elif len(lowercase__ ) % 2 != 0: _UpperCAmelCase : List[Any] = F"""Odd number of symbols ({len(lowercase__ )})""" raise Exception(lowercase__ ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique _UpperCAmelCase : Any = set() for i in pbstring: if i not in abc: _UpperCAmelCase : Optional[int] = F"""'{i}' not in list of symbols""" raise Exception(lowercase__ ) elif i in tmppbl: _UpperCAmelCase : int = F"""Duplicate symbol ({i})""" raise Exception(lowercase__ ) else: tmppbl.add(lowercase__ ) del tmppbl # Created the dictionary _UpperCAmelCase : Optional[int] = {} for j in range(0 , len(lowercase__ ) - 1 , 2 ): _UpperCAmelCase : Tuple = pbstring[j + 1] _UpperCAmelCase : int = pbstring[j] return pb def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = (rotora, rotora, rotora) , __lowerCAmelCase = "" , ): _UpperCAmelCase : List[Any] = text.upper() _UpperCAmelCase : Optional[int] = _validator( lowercase__ , lowercase__ , plugb.upper() ) _UpperCAmelCase : Optional[int] = rotor_position _UpperCAmelCase : List[str] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _UpperCAmelCase : Optional[Any] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _UpperCAmelCase : Any = plugboard[symbol] # rotor ra -------------------------- _UpperCAmelCase : List[str] = abc.index(lowercase__ ) + rotorposa _UpperCAmelCase : Dict = rotora[index % len(lowercase__ )] # rotor rb -------------------------- _UpperCAmelCase : Optional[int] = abc.index(lowercase__ ) + rotorposa _UpperCAmelCase : Optional[Any] = rotora[index % len(lowercase__ )] # rotor rc -------------------------- _UpperCAmelCase : int = abc.index(lowercase__ ) + rotorposa _UpperCAmelCase : Any = rotora[index % len(lowercase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _UpperCAmelCase : Any = reflector[symbol] # 2nd rotors _UpperCAmelCase : int = abc[rotora.index(lowercase__ ) - rotorposa] _UpperCAmelCase : Dict = abc[rotora.index(lowercase__ ) - rotorposa] _UpperCAmelCase : Optional[Any] = abc[rotora.index(lowercase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: _UpperCAmelCase : str = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(lowercase__ ): _UpperCAmelCase : List[Any] = 0 rotorposa += 1 if rotorposa >= len(lowercase__ ): _UpperCAmelCase : List[str] = 0 rotorposa += 1 if rotorposa >= len(lowercase__ ): _UpperCAmelCase : Optional[Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(lowercase__ ) return "".join(lowercase__ ) if __name__ == "__main__": lowerCamelCase__ = 'This is my Python script that emulates the Enigma machine from WWII.' lowerCamelCase__ = (1, 1, 1) lowerCamelCase__ = 'pictures' lowerCamelCase__ = (rotora, rotora, rotora) lowerCamelCase__ = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
234
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : List[str] = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __lowerCAmelCase : Dict = Vector() def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Any = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(A_ ) , '''(0,0,0,0,0,1)''' ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(A_ ) , 4 ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Dict = Vector([1, 2] ) __lowerCAmelCase : Optional[int] = Vector([1, 2, 3, 4, 5] ) __lowerCAmelCase : Optional[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __lowerCAmelCase : str = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Tuple = Vector([1, 2, 3] ) __lowerCAmelCase : List[str] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Any = Vector([1, 2, 3] ) __lowerCAmelCase : List[str] = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : str = Vector([1, 2, 3] ) __lowerCAmelCase : List[Any] = Vector([2, -1, 4] ) # for test of dot product __lowerCAmelCase : Optional[int] = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : str = Vector([1, 2, 3] ) __lowerCAmelCase : Any = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , A_ , A_ ) ) , '''(3,4,7)''' ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Tuple = Vector([1, 0, 0, 0, 0, 0] ) __lowerCAmelCase : Optional[Any] = x.copy() self.assertEqual(str(A_ ) , str(A_ ) ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : List[str] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(A_ ) , '''(0,1,0)''' ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(A_ ) ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCAmelCase : str = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(A_ , A_ ) ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCAmelCase : Tuple = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(A_ , A_ ) ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Tuple = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __lowerCAmelCase : Union[str, Any] = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(A_ ) ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Tuple = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCAmelCase : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' __lowerCAmelCase : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowerCAmelCase : str = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def UpperCamelCase__ ( self ) ->None: '''simple docstring''' self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
275
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_ = 'pt' elif is_tf_available(): lowerCAmelCase_ = 'tf' else: lowerCAmelCase_ = 'jax' class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Optional[int] = PerceiverTokenizer _UpperCamelCase : Any = False def __a ( self : int ) -> Optional[Any]: """simple docstring""" super().setUp() lowercase : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def __a ( self : List[str] , **_A : List[str] ) -> PerceiverTokenizer: """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __a ( self : Optional[Any] , _A : Optional[Any] , _A : List[str]=False , _A : Tuple=20 , _A : List[Any]=5 ) -> Tuple[str, list]: """simple docstring""" lowercase : List[Any] = [] for i in range(len(_A ) ): try: lowercase : Dict = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase : Optional[int] = list(filter(lambda _A : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) lowercase : Tuple = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: lowercase : str = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: lowercase : str = toks + toks # toks_str = [t[1] for t in toks] lowercase : Optional[Any] = [t[0] for t in toks] # Ensure consistency lowercase : int = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: lowercase : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: lowercase : Optional[Any] = ''' ''' + output_txt lowercase : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def __a ( self : str ) -> Dict: """simple docstring""" lowercase : Optional[int] = self.perceiver_tokenizer lowercase : List[Any] = '''Unicode €.''' lowercase : Dict = tokenizer(_A ) lowercase : int = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding lowercase : List[Any] = tokenizer.decode(_A ) self.assertEqual(_A , '''[CLS]Unicode €.[SEP]''' ) lowercase : Union[str, Any] = tokenizer('''e è é ê ë''' ) lowercase : Optional[int] = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding lowercase : Dict = tokenizer.decode(_A ) self.assertEqual(_A , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Union[str, Any] = self.perceiver_tokenizer lowercase : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowercase : Dict = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on lowercase : int = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": lowercase : int = list(batch.input_ids.numpy()[0] ) else: lowercase : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def __a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : str = self.perceiver_tokenizer lowercase : str = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase : Dict = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def __a ( self : str ) -> str: """simple docstring""" lowercase : Tuple = self.perceiver_tokenizer lowercase : str = [ '''Summary of the text.''', '''Another summary.''', ] lowercase : Optional[Any] = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def __a ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowercase : Any = tempfile.mkdtemp() lowercase : Optional[Any] = ''' He is very happy, UNwant\u00E9d,running''' lowercase : Dict = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) lowercase : Optional[int] = tokenizer.__class__.from_pretrained(_A ) lowercase : Tuple = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) lowercase : List[str] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowercase : Optional[Any] = tempfile.mkdtemp() lowercase : Optional[int] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) lowercase : Dict = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) lowercase : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) lowercase : int = tokenizer.__class__.from_pretrained(_A ) lowercase : Any = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase : int = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def __a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: lowercase : Any = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: lowercase : int = json.load(_A ) lowercase : Any = [f"""<extra_id_{i}>""" for i in range(125 )] lowercase : int = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowercase : Optional[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase : Optional[int] = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase : Any = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] lowercase : Optional[int] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def __a ( self : Any ) -> Optional[int]: """simple docstring""" lowercase : Optional[int] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def __a ( self : Any ) -> Union[str, Any]: """simple docstring""" pass def __a ( self : int ) -> Dict: """simple docstring""" pass def __a ( self : List[str] ) -> Tuple: """simple docstring""" pass def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" pass def __a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowercase : Tuple = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] lowercase : str = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A )
365
class _A : # Public class to implement a graph def __init__( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : Tuple = row lowercase : Union[str, Any] = col lowercase : int = graph def __a ( self : List[Any] , _A : int , _A : int , _A : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __a ( self : int , _A : int , _A : int , _A : list[list[bool]] ) -> None: """simple docstring""" lowercase : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase : Dict = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def __a ( self : List[str] ) -> int: # And finally, count all islands. """simple docstring""" lowercase : List[str] = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase : Optional[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
116
0
def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase ) for i in range(1 , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = collection[i] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = i - 1 while low <= high: SCREAMING_SNAKE_CASE_ = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE_ = mid - 1 else: SCREAMING_SNAKE_CASE_ = mid + 1 for j in range(__UpperCamelCase , __UpperCamelCase , -1 ): SCREAMING_SNAKE_CASE_ = collection[j - 1] SCREAMING_SNAKE_CASE_ = val return collection if __name__ == "__main__": A : str = input("Enter numbers separated by a comma:\n").strip() A : Any = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
118
from functools import lru_cache @lru_cache def a__ ( __UpperCamelCase ): if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
118
1
from __future__ import annotations import math def __UpperCamelCase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ): if len(lowerCAmelCase__ ) != 2 or len(a[0] ) != 2 or len(lowerCAmelCase__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) __a : Optional[Any] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __UpperCamelCase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCAmelCase__ ) ) ] def __UpperCamelCase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCAmelCase__ ) ) ] def __UpperCamelCase ( lowerCAmelCase__ : list ): if len(lowerCAmelCase__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) __a : List[Any] = len(lowerCAmelCase__ ) __a : str = matrix_length // 2 __a : int = [[a[i][j] for j in range(lowerCAmelCase__ , lowerCAmelCase__ )] for i in range(lowerCAmelCase__ )] __a : Any = [ [a[i][j] for j in range(lowerCAmelCase__ , lowerCAmelCase__ )] for i in range(lowerCAmelCase__ , lowerCAmelCase__ ) ] __a : Tuple = [[a[i][j] for j in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ )] __a : Optional[Any] = [[a[i][j] for j in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ , lowerCAmelCase__ )] return top_left, top_right, bot_left, bot_right def __UpperCamelCase ( lowerCAmelCase__ : list ): return len(lowerCAmelCase__ ), len(matrix[0] ) def __UpperCamelCase ( lowerCAmelCase__ : list ): print('''\n'''.join(str(lowerCAmelCase__ ) for line in matrix ) ) def __UpperCamelCase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ): if matrix_dimensions(lowerCAmelCase__ ) == (2, 2): return default_matrix_multiplication(lowerCAmelCase__ , lowerCAmelCase__ ) __a , __a , __a , __a : Tuple = split_matrix(lowerCAmelCase__ ) __a , __a , __a , __a : List[Any] = split_matrix(lowerCAmelCase__ ) __a : List[str] = actual_strassen(lowerCAmelCase__ , matrix_subtraction(lowerCAmelCase__ , lowerCAmelCase__ ) ) __a : Dict = actual_strassen(matrix_addition(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) __a : Tuple = actual_strassen(matrix_addition(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) __a : Dict = actual_strassen(lowerCAmelCase__ , matrix_subtraction(lowerCAmelCase__ , lowerCAmelCase__ ) ) __a : Optional[Any] = actual_strassen(matrix_addition(lowerCAmelCase__ , lowerCAmelCase__ ) , matrix_addition(lowerCAmelCase__ , lowerCAmelCase__ ) ) __a : List[str] = actual_strassen(matrix_subtraction(lowerCAmelCase__ , lowerCAmelCase__ ) , matrix_addition(lowerCAmelCase__ , lowerCAmelCase__ ) ) __a : Optional[int] = actual_strassen(matrix_subtraction(lowerCAmelCase__ , lowerCAmelCase__ ) , matrix_addition(lowerCAmelCase__ , lowerCAmelCase__ ) ) __a : int = matrix_addition(matrix_subtraction(matrix_addition(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) , lowerCAmelCase__ ) __a : Optional[Any] = matrix_addition(lowerCAmelCase__ , lowerCAmelCase__ ) __a : str = matrix_addition(lowerCAmelCase__ , lowerCAmelCase__ ) __a : Tuple = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) , lowerCAmelCase__ ) # construct the new matrix from our 4 quadrants __a : str = [] for i in range(len(lowerCAmelCase__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowerCAmelCase__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def __UpperCamelCase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ): if matrix_dimensions(lowerCAmelCase__ )[1] != matrix_dimensions(lowerCAmelCase__ )[0]: __a : Optional[Any] = ( '''Unable to multiply these matrices, please check the dimensions.\n''' f"Matrix A: {matrixa}\n" f"Matrix B: {matrixa}" ) raise Exception(lowerCAmelCase__ ) __a : Tuple = matrix_dimensions(lowerCAmelCase__ ) __a : Union[str, Any] = matrix_dimensions(lowerCAmelCase__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __a : Any = max(*lowerCAmelCase__ , *lowerCAmelCase__ ) __a : List[Any] = int(math.pow(2 , math.ceil(math.loga(lowerCAmelCase__ ) ) ) ) __a : Tuple = matrixa __a : Any = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowerCAmelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCAmelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCAmelCase__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __a : str = actual_strassen(lowerCAmelCase__ , lowerCAmelCase__ ) # Removing the additional zeros for i in range(0 , lowerCAmelCase__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCAmelCase__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowercase__ =[ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowercase__ =[[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
90
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ ={ 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure)
90
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _a = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCamelCase ( snake_case__): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=UpperCAmelCase , speech_processor=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , scheduler=UpperCAmelCase , feature_extractor=UpperCAmelCase , ) def UpperCamelCase ( self , UpperCAmelCase = "auto" ): """simple docstring""" if slice_size == "auto": _UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.enable_attention_slicing(UpperCAmelCase ) @torch.no_grad() def __call__( self , UpperCAmelCase , UpperCAmelCase=1_6000 , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 50 , UpperCAmelCase = 7.5 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = self.speech_processor.feature_extractor( UpperCAmelCase , return_tensors='pt' , sampling_rate=UpperCAmelCase ).input_features.to(self.device ) _UpperCAmelCase = self.speech_model.generate(UpperCAmelCase , max_length=48_0000 ) _UpperCAmelCase = self.speech_processor.tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase , normalize=UpperCAmelCase )[ 0 ] if isinstance(UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = 1 elif isinstance(UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = len(UpperCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase , UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(UpperCAmelCase )}.""" ) # get prompt text embeddings _UpperCAmelCase = self.tokenizer( UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _UpperCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] _UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = text_embeddings.shape _UpperCAmelCase = text_embeddings.repeat(1 , UpperCAmelCase , 1 ) _UpperCAmelCase = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCAmelCase = 42 if negative_prompt is None: _UpperCAmelCase = [''] * batch_size elif type(UpperCAmelCase ) is not type(UpperCAmelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase )} !=""" F""" {type(UpperCAmelCase )}.""" ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = [negative_prompt] elif batch_size != len(UpperCAmelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: _UpperCAmelCase = negative_prompt _UpperCAmelCase = text_input_ids.shape[-1] _UpperCAmelCase = self.tokenizer( UpperCAmelCase , padding='max_length' , max_length=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors='pt' , ) _UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase = uncond_embeddings.shape[1] _UpperCAmelCase = uncond_embeddings.repeat(1 , UpperCAmelCase , 1 ) _UpperCAmelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _UpperCAmelCase = torch.randn(UpperCAmelCase , generator=UpperCAmelCase , device='cpu' , dtype=UpperCAmelCase ).to( self.device ) else: _UpperCAmelCase = torch.randn(UpperCAmelCase , generator=UpperCAmelCase , device=self.device , dtype=UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _UpperCAmelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _UpperCAmelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for i, t in enumerate(self.progress_bar(UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase = self.scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase ) # predict the noise residual _UpperCAmelCase = self.unet(UpperCAmelCase , UpperCAmelCase , encoder_hidden_states=UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase = noise_pred.chunk(2 ) _UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = 1 / 0.1_82_15 * latents _UpperCAmelCase = self.vae.decode(UpperCAmelCase ).sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=UpperCAmelCase , nsfw_content_detected=UpperCAmelCase )
39
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2", "stage3"] , UpperCAmelCase=[1, 2, 3] , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase ): _UpperCAmelCase = 0 return t def check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase={} ): with torch.no_grad(): _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ).to_tuple() def recursive_check(UpperCAmelCase , UpperCAmelCase ): if isinstance(UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase ) , set_nan_tensor_to_zero(UpperCAmelCase ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}. Dict has""" F""" `nan`: {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}.""" ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) @require_torch class __lowerCamelCase ( unittest.TestCase , snake_case__): """simple docstring""" UpperCamelCase__ = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase__ = MaskFormerSwinConfig def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(UpperCAmelCase ) backbone.to(UpperCAmelCase ) backbone.eval() _UpperCAmelCase = backbone(**UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**UpperCAmelCase , output_hidden_states=UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
39
1
'''simple docstring''' import math class _lowercase : def lowerCamelCase_ ( self: Dict , UpperCamelCase__: list[list[float]] , UpperCamelCase__: list[int] ): lowerCamelCase__ : int = 0.0 lowerCamelCase__ : Union[str, Any] = 0.0 for i in range(len(UpperCamelCase__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCamelCase_ ( self: Dict , UpperCamelCase__: list[list[int | float]] , UpperCamelCase__: list[int] , UpperCamelCase__: int , UpperCamelCase__: float ): for i in range(len(UpperCamelCase__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE_ () -> None: # Training Examples ( m, n ) lowerCamelCase__ : Any = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowerCamelCase__ : Dict = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowerCamelCase__ : Optional[int] = SelfOrganizingMap() lowerCamelCase__ : Optional[Any] = 3 lowerCamelCase__ : Tuple = 0.5 for _ in range(UpperCamelCase ): for j in range(len(UpperCamelCase ) ): # training sample lowerCamelCase__ : List[Any] = training_samples[j] # Compute the winning vector lowerCamelCase__ : Optional[int] = self_organizing_map.get_winner(UpperCamelCase , UpperCamelCase ) # Update the winning vector lowerCamelCase__ : str = self_organizing_map.update(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # classify test sample lowerCamelCase__ : List[Any] = [0, 0, 0, 1] lowerCamelCase__ : List[Any] = self_organizing_map.get_winner(UpperCamelCase , UpperCamelCase ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
129
'''simple docstring''' from torch import nn def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
129
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowerCAmelCase__ :Optional[int] = logging.get_logger(__name__) class __a ( snake_case_ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
329
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowercase ( ): UpperCamelCase_ : Optional[Any] = HfArgumentParser(lowerCamelCase ) UpperCamelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] UpperCamelCase_ : Dict = TensorFlowBenchmark(args=lowerCamelCase ) try: UpperCamelCase_ : Any = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCamelCase_ : Any = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' UpperCamelCase_ : Optional[int] = ' '.join(str(lowerCamelCase ).split(' ' )[:-1] ) UpperCamelCase_ : Any = '' UpperCamelCase_ : Any = eval(str(lowerCamelCase ).split(' ' )[-1] ) UpperCamelCase_ : List[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: UpperCamelCase_ : List[str] = full_error_msg + begin_error_msg + str(lowerCamelCase ) raise ValueError(lowerCamelCase ) benchmark.run() if __name__ == "__main__": main()
175
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowerCamelCase_ ( _a : Dict , _a : Optional[int] , _a : List[Any]=1024 , _a : int=1024 , _a : Dict=False , **_a : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = SeqaSeqDataset(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , type_path="""train""" , **lowerCamelCase_ ) UpperCAmelCase_ : int = tok.pad_token_id def get_lens(_a : Tuple ): UpperCAmelCase_ : Tuple = tqdm( DataLoader(lowerCamelCase_ , batch_size=512 , num_workers=8 , shuffle=lowerCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ : Tuple = [] for batch in dl: UpperCAmelCase_ : Dict = batch['''input_ids'''].ne(lowerCamelCase_ ).sum(1 ).tolist() UpperCAmelCase_ : Dict = batch['''labels'''].ne(lowerCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCamelCase_ , lowerCamelCase_ ): max_lens.append(max(lowerCamelCase_ , lowerCamelCase_ ) ) else: max_lens.extend(lowerCamelCase_ ) return max_lens UpperCAmelCase_ : str = get_lens(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = SeqaSeqDataset(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , type_path="""val""" , **lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = get_lens(lowerCamelCase_ ) pickle_save(lowerCamelCase_ , train_ds.len_file ) pickle_save(lowerCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
355
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class _snake_case ( __snake_case , __snake_case ): '''simple docstring''' A__ : Optional[Any] = "dinat" A__ : Any = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Any ,lowerCamelCase_: Any=4 ,lowerCamelCase_: Union[str, Any]=3 ,lowerCamelCase_: Union[str, Any]=64 ,lowerCamelCase_: Optional[int]=[3, 4, 6, 5] ,lowerCamelCase_: int=[2, 4, 8, 16] ,lowerCamelCase_: Optional[int]=7 ,lowerCamelCase_: Dict=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] ,lowerCamelCase_: Tuple=3.0 ,lowerCamelCase_: Any=True ,lowerCamelCase_: int=0.0 ,lowerCamelCase_: Optional[Any]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Optional[Any]=0.0_2 ,lowerCamelCase_: List[Any]=1e-5 ,lowerCamelCase_: int=0.0 ,lowerCamelCase_: int=None ,lowerCamelCase_: str=None ,**lowerCamelCase_: Dict ,) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : Tuple = num_channels UpperCAmelCase_ : Union[str, Any] = embed_dim UpperCAmelCase_ : int = depths UpperCAmelCase_ : List[Any] = len(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = num_heads UpperCAmelCase_ : Tuple = kernel_size UpperCAmelCase_ : int = dilations UpperCAmelCase_ : Optional[Any] = mlp_ratio UpperCAmelCase_ : Optional[Any] = qkv_bias UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Any = layer_norm_eps UpperCAmelCase_ : List[str] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[Any] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCAmelCase_ : Optional[int] = layer_scale_init_value UpperCAmelCase_ : List[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 ,len(lowerCamelCase_ ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ ,out_indices=lowerCamelCase_ ,stage_names=self.stage_names )
59
0
import baseaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> bytes: return baseaa.baaencode(string.encode('utf-8' ) ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> str: return baseaa.baadecode(_lowerCAmelCase ).decode('utf-8' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = """Hello World!""" SCREAMING_SNAKE_CASE__ = baseaa_encode(test) print(encoded) SCREAMING_SNAKE_CASE__ = baseaa_decode(encoded) print(decoded)
325
from __future__ import annotations from math import ceil, floor, sqrt def __UpperCamelCase ( _lowerCAmelCase = 200_0000 ) -> int: """simple docstring""" A : list[int] = [0] A : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target A : int = 0 # the area corresponding to the grid that gives the product closest to target A : int = 0 # an estimate of b, using the quadratic formula A : float # the largest integer less than b_estimate A : int # the largest integer less than b_estimate A : int # the triangle number corresponding to b_floor A : int # the triangle number corresponding to b_ceil A : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): A : Union[str, Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 A : List[Any] = floor(_lowerCAmelCase ) A : Tuple = ceil(_lowerCAmelCase ) A : int = triangle_numbers[b_floor] A : Dict = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): A : Optional[int] = triangle_b_first_guess * triangle_a A : Optional[int] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): A : Tuple = triangle_b_second_guess * triangle_a A : Tuple = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
116
0
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : str = logging.get_logger(__name__) def __lowercase ( _a ): print('''Loading config file...''' ) def flatten_yaml_as_dict(_a , _a="" , _a="." ): snake_case_ : Any = [] for k, v in d.items(): snake_case_ : Tuple = parent_key + sep + k if parent_key else k if isinstance(_a , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(_a , _a , sep=_a ).items() ) else: items.append((new_key, v) ) return dict(_a ) snake_case_ : List[Any] = argparse.Namespace() with open(_a , '''r''' ) as yaml_file: try: snake_case_ : Dict = yaml.load(_a , Loader=yaml.FullLoader ) snake_case_ : List[Any] = flatten_yaml_as_dict(_a ) for k, v in flat_cfg.items(): setattr(_a , _a , _a ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(_a , str(_a ) ) ) return config def __lowercase ( _a , _a ): snake_case_ : int = MobileViTVaConfig() snake_case_ : int = False # dataset if task_name.startswith('''imagenet1k_''' ): snake_case_ : str = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: snake_case_ : Dict = 384 else: snake_case_ : Any = 256 snake_case_ : List[Any] = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): snake_case_ : Union[str, Any] = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: snake_case_ : str = 384 else: snake_case_ : str = 256 snake_case_ : Dict = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): snake_case_ : Dict = 151 snake_case_ : Dict = 512 snake_case_ : Optional[int] = '''ade20k-id2label.json''' snake_case_ : int = True elif task_name.startswith('''voc_''' ): snake_case_ : List[Any] = 21 snake_case_ : str = 512 snake_case_ : Optional[Any] = '''pascal-voc-id2label.json''' snake_case_ : str = True # orig_config snake_case_ : Tuple = load_orig_config_file(_a ) assert getattr(_a , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" snake_case_ : Union[str, Any] = getattr(_a , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(_a , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" snake_case_ : List[str] = getattr(_a , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: snake_case_ : Optional[int] = getattr(_a , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: snake_case_ : Optional[Any] = getattr(_a , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) snake_case_ : Dict = getattr(_a , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) snake_case_ : List[Any] = getattr(_a , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label snake_case_ : int = '''huggingface/label-files''' snake_case_ : List[str] = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : int = {int(_a ): v for k, v in idalabel.items()} snake_case_ : Tuple = idalabel snake_case_ : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def __lowercase ( _a , _a , _a ): snake_case_ : int = dct.pop(_a ) snake_case_ : Optional[Any] = val def __lowercase ( _a , _a=False ): if base_model: snake_case_ : Optional[Any] = '''''' else: snake_case_ : Dict = '''mobilevitv2.''' snake_case_ : List[str] = [] for k in state_dict.keys(): if k[:8] == "encoder.": snake_case_ : Union[str, Any] = k[8:] else: snake_case_ : int = k if ".block." in k: snake_case_ : List[Any] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: snake_case_ : List[Any] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: snake_case_ : Any = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: snake_case_ : int = k_new.replace('''conv_1.''' , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: snake_case_ : str = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: snake_case_ : List[str] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: snake_case_ : List[Any] = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: snake_case_ : List[Any] = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: snake_case_ : Union[str, Any] = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: snake_case_ : int = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: snake_case_ : List[str] = [0, 1] elif i == 4: snake_case_ : List[str] = [0, 1, 2, 3] elif i == 5: snake_case_ : Any = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: snake_case_ : Optional[int] = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: snake_case_ : Union[str, Any] = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: snake_case_ : str = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: snake_case_ : Any = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: snake_case_ : int = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: snake_case_ : str = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: snake_case_ : Any = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: snake_case_ : str = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: snake_case_ : Any = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: snake_case_ : Any = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: snake_case_ : Tuple = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: snake_case_ : List[str] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def __lowercase ( _a ): snake_case_ : Dict = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(_a ) for k in keys_to_ignore: state_dict.pop(_a , _a ) def __lowercase ( ): snake_case_ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" snake_case_ : List[str] = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def __lowercase ( _a , _a , _a , _a ): snake_case_ : Optional[Any] = get_mobilevitva_config(_a , _a ) # load original state_dict snake_case_ : str = torch.load(_a , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): snake_case_ : List[str] = MobileViTVaForSemanticSegmentation(_a ).eval() snake_case_ : List[Any] = False else: snake_case_ : List[Any] = MobileViTVaForImageClassification(_a ).eval() snake_case_ : Union[str, Any] = False # remove and rename some keys of load the original model snake_case_ : Optional[Any] = checkpoint remove_unused_keys(_a ) snake_case_ : int = create_rename_keys(_a , base_model=_a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_a , _a , _a ) # load modified state_dict model.load_state_dict(_a ) # Check outputs on an image, prepared by MobileViTImageProcessor snake_case_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) snake_case_ : Any = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case_ : List[Any] = model(**_a ) # verify classification model if task_name.startswith('''imagenet''' ): snake_case_ : Optional[Any] = outputs.logits snake_case_ : int = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant snake_case_ : List[Any] = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , _a , atol=1E-4 ) Path(_a ).mkdir(exist_ok=_a ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_a ) if __name__ == "__main__": lowercase__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase__ : List[Any] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
155
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : List[Any] , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[Any] , ): super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = path_or_paths if isinstance(lowercase_ , lowercase_ ) else {self.split: path_or_paths} snake_case_ : str = Text( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , **lowercase_ , ) def _snake_case ( self : Any ): # Build iterable dataset if self.streaming: snake_case_ : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case_ : List[Any] = None snake_case_ : Optional[Any] = None snake_case_ : str = None snake_case_ : Optional[int] = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) snake_case_ : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory ) return dataset
155
1
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=64 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> List[str]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = embedding_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ) -> List[str]: '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = MobileBertModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = MobileBertForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = MobileBertForNextSentencePrediction(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = MobileBertForPreTraining(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , next_sentence_label=lowerCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = MobileBertForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MobileBertForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MobileBertForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = MobileBertForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) snake_case_ = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Dict: '''simple docstring''' __lowerCamelCase = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): __lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase__ ) __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) return inputs_dict def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = MobileBertModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase__ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase__ ) def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" return torch.tensor( UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ , ) __A = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase__ ) __lowerCamelCase = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor( [ [ [-2.4_73_65_26e07, 8.2_69_16_56e04, 1.6_52_18_38e05], [-5.7_54_17_04e-01, 3.9_05_60_22e00, 4.4_01_15_07e00], [2.6_04_73_59e00, 1.5_67_76_52e00, -1.7_32_41_88e-01], ] ] , device=lowerCamelCase__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __lowerCamelCase = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __lowerCamelCase = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
90
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''onnx'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['onnx'] ) @classmethod def lowercase_ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['onnx'] ) @classmethod def lowercase_ ( cls , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['onnx'] )
90
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any]=False ) -> Tuple: '''simple docstring''' _snake_case = OmegaConf.load(UpperCamelCase__ ) if display: print(yaml.dump(OmegaConf.to_container(UpperCamelCase__ ) ) ) return config def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[int]=None ) -> Dict: '''simple docstring''' if conf_path is None: _snake_case = './model_checkpoints/vqgan_only.yaml' _snake_case = load_config(UpperCamelCase__ , display=UpperCamelCase__ ) _snake_case = VQModel(**config.model.params ) if ckpt_path is None: _snake_case = './model_checkpoints/vqgan_only.pt' _snake_case = torch.load(UpperCamelCase__ , map_location=UpperCamelCase__ ) if ".ckpt" in ckpt_path: _snake_case = sd['state_dict'] model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) model.to(UpperCamelCase__ ) del sd return model def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> List[Any]: '''simple docstring''' _snake_case , _snake_case , _snake_case = model.encode(UpperCamelCase__ ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) _snake_case = model.decode(UpperCamelCase__ ) return xrec def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=False ) -> Any: '''simple docstring''' _snake_case , _snake_case = string.rsplit('.' , 1 ) if reload: _snake_case = importlib.import_module(UpperCamelCase__ ) importlib.reload(UpperCamelCase__ ) return getattr(importlib.import_module(UpperCamelCase__ , package=UpperCamelCase__ ) , cls ) def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int=True , UpperCamelCase__ : Tuple=True ) -> List[str]: '''simple docstring''' _snake_case = instantiate_from_config(UpperCamelCase__ ) if sd is not None: model.load_state_dict(UpperCamelCase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' if ckpt: _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) _snake_case = pl_sd['global_step'] print(F'''loaded model from global step {global_step}.''' ) else: _snake_case = {'state_dict': None} _snake_case = None _snake_case = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=UpperCamelCase__ , eval_mode=UpperCamelCase__ )['model'] return model, global_step
295
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _snake_case , _snake_case = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _snake_case = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCAmelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
295
1
from collections import deque class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = process_name # process name lowerCAmelCase__ : Union[str, Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCAmelCase__ : Optional[Any] = arrival_time lowerCAmelCase__ : int = burst_time # remaining burst time lowerCAmelCase__ : Union[str, Any] = 0 # total time of the process wait in ready queue lowerCAmelCase__ : List[str] = 0 # time from arrival time to completion time class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,) -> None: """simple docstring""" lowerCAmelCase__ : str = number_of_queues # time slice of queues that round robin algorithm applied lowerCAmelCase__ : List[Any] = time_slices # unfinished process is in this ready_queue lowerCAmelCase__ : Union[str, Any] = queue # current time lowerCAmelCase__ : List[str] = current_time # finished process is in this sequence queue lowerCAmelCase__ : deque[Process] = deque() def lowerCAmelCase__ (self ) -> list[str]: """simple docstring""" lowerCAmelCase__ : Dict = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCAmelCase__ (self ,__lowerCamelCase ) -> list[int]: """simple docstring""" lowerCAmelCase__ : List[str] = [] for i in range(len(__lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCAmelCase__ (self ,__lowerCamelCase ) -> list[int]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = [] for i in range(len(__lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCAmelCase__ (self ,__lowerCamelCase ) -> list[int]: """simple docstring""" lowerCAmelCase__ : Dict = [] for i in range(len(__lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCAmelCase__ (self ,__lowerCamelCase ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCAmelCase__ (self ,__lowerCamelCase ) -> deque[Process]: """simple docstring""" lowerCAmelCase__ : deque[Process] = deque() # sequence deque of finished process while len(__lowerCamelCase ) != 0: lowerCAmelCase__ : Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCAmelCase__ : List[Any] = 0 # set the process's turnaround time because it is finished lowerCAmelCase__ : Optional[Any] = self.current_time - cp.arrival_time # set the completion time lowerCAmelCase__ : List[Any] = self.current_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" lowerCAmelCase__ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__lowerCamelCase ) ): lowerCAmelCase__ : List[str] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCAmelCase__ : Tuple = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCAmelCase__ : int = 0 # set the finish time lowerCAmelCase__ : Optional[Any] = self.current_time # update the process' turnaround time because it is finished lowerCAmelCase__ : int = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCAmelCase__ (self ) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.round_robin( self.ready_queue ,self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __snake_case : List[str] =Process('P1', 0, 5_3) __snake_case : Dict =Process('P2', 0, 1_7) __snake_case : Union[str, Any] =Process('P3', 0, 6_8) __snake_case : Optional[Any] =Process('P4', 0, 2_4) __snake_case : Any =3 __snake_case : Optional[Any] =[1_7, 2_5] __snake_case : str =deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) __snake_case : List[Any] =Process('P1', 0, 5_3) __snake_case : int =Process('P2', 0, 1_7) __snake_case : Optional[Any] =Process('P3', 0, 6_8) __snake_case : List[str] =Process('P4', 0, 2_4) __snake_case : Tuple =3 __snake_case : Optional[Any] =[1_7, 2_5] __snake_case : Optional[Any] =deque([Pa, Pa, Pa, Pa]) __snake_case : Union[str, Any] =MLFQ(number_of_queues, time_slices, queue, 0) __snake_case : List[Any] =mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( f"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( f"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
129
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =(DPMSolverSDEScheduler,) snake_case_ =10 def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[str] = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__lowerCamelCase ) return config def lowerCAmelCase__ (self ) -> int: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] ,[0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__lowerCamelCase ,beta_end=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : List[str] = self.scheduler_classes[0] lowerCAmelCase__ : str = self.get_scheduler_config() lowerCAmelCase__ : Optional[Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = self.dummy_model() lowerCAmelCase__ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Union[str, Any] = sample.to(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : Dict = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Any = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase__ : List[Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Tuple = sample.to(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : Optional[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Any = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = self.dummy_model() lowerCAmelCase__ : List[Any] = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Any = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = output.prev_sample lowerCAmelCase__ : List[str] = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : str = self.scheduler_classes[0] lowerCAmelCase__ : List[Any] = self.get_scheduler_config() lowerCAmelCase__ : Union[str, Any] = scheduler_class(**__lowerCamelCase ,use_karras_sigmas=__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=__lowerCamelCase ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma lowerCAmelCase__ : Union[str, Any] = sample.to(__lowerCamelCase ) for t in scheduler.timesteps: lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Tuple = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : str = output.prev_sample lowerCAmelCase__ : Tuple = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
129
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __A : Optional[Any] = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __A : List[Any] = ( subprocess.check_output(f"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode('utf-8').split() ) __A : str = '|'.join(sys.argv[1:]) __A : Union[str, Any] = re.compile(Rf"""^({joined_dirs}).*?\.py$""") __A : int = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
57
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=False ): """simple docstring""" A = OmegaConf.load(lowercase__ ) if display: print(yaml.dump(OmegaConf.to_container(lowercase__ ) ) ) return config def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=None , lowercase__=None ): """simple docstring""" if conf_path is None: A = "./model_checkpoints/vqgan_only.yaml" A = load_config(lowercase__ , display=lowercase__ ) A = VQModel(**config.model.params ) if ckpt_path is None: A = "./model_checkpoints/vqgan_only.pt" A = torch.load(lowercase__ , map_location=lowercase__ ) if ".ckpt" in ckpt_path: A = sd["state_dict"] model.load_state_dict(lowercase__ , strict=lowercase__ ) model.to(lowercase__ ) del sd return model def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" A , A , A = model.encode(lowercase__ ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) A = model.decode(lowercase__ ) return xrec def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=False ): """simple docstring""" A , A = string.rsplit("." , 1 ) if reload: A = importlib.import_module(lowercase__ ) importlib.reload(lowercase__ ) return getattr(importlib.import_module(lowercase__ , package=lowercase__ ) , cls ) def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__=True , lowercase__=True ): """simple docstring""" A = instantiate_from_config(lowercase__ ) if sd is not None: model.load_state_dict(lowercase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" # load the specified checkpoint if ckpt: A = torch.load(lowercase__ , map_location="cpu" ) A = pl_sd["global_step"] print(F"""loaded model from global step {global_step}.""" ) else: A = {"state_dict": None} A = None A = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=lowercase__ , eval_mode=lowercase__ )["model"] return model, global_step
57
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class a__ ( snake_case__ ): def __init__( self , **_A ): """simple docstring""" super().__init__(**_A ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , "vision" ) self.check_model_type(_A ) def __call__( self , _A , _A = None , **_A , ): """simple docstring""" if "text_queries" in kwargs: __lowerCAmelCase = kwargs.pop("text_queries" ) if isinstance(_A , (str, Image.Image) ): __lowerCAmelCase = {"image": image, "candidate_labels": candidate_labels} else: __lowerCAmelCase = image __lowerCAmelCase = super().__call__(_A , **_A ) return results def __SCREAMING_SNAKE_CASE( self , **_A ): """simple docstring""" __lowerCAmelCase = {} if "threshold" in kwargs: __lowerCAmelCase = kwargs["threshold"] if "top_k" in kwargs: __lowerCAmelCase = kwargs["top_k"] return {}, {}, postprocess_params def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = load_image(inputs["image"] ) __lowerCAmelCase = inputs["candidate_labels"] if isinstance(_A , _A ): __lowerCAmelCase = candidate_labels.split("," ) __lowerCAmelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_A ): __lowerCAmelCase = self.tokenizer(_A , return_tensors=self.framework ) __lowerCAmelCase = self.image_processor(_A , return_tensors=self.framework ) yield { "is_last": i == len(_A ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = model_inputs.pop("target_size" ) __lowerCAmelCase = model_inputs.pop("candidate_label" ) __lowerCAmelCase = model_inputs.pop("is_last" ) __lowerCAmelCase = self.model(**_A ) __lowerCAmelCase = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def __SCREAMING_SNAKE_CASE( self , _A , _A=0.1 , _A=None ): """simple docstring""" __lowerCAmelCase = [] for model_output in model_outputs: __lowerCAmelCase = model_output["candidate_label"] __lowerCAmelCase = BaseModelOutput(_A ) __lowerCAmelCase = self.image_processor.post_process_object_detection( outputs=_A , threshold=_A , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): __lowerCAmelCase = outputs["scores"][index].item() __lowerCAmelCase = self._get_bounding_box(outputs["boxes"][index][0] ) __lowerCAmelCase = {"score": score, "label": label, "box": box} results.append(_A ) __lowerCAmelCase = sorted(_A , key=lambda _A : x["score"] , reverse=_A ) if top_k: __lowerCAmelCase = results[:top_k] return results def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = box.int().tolist() __lowerCAmelCase = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
92
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase ( A_ ): A__ : List[str] = "megatron-bert" def __init__(self : Optional[int] , snake_case__ : List[str]=2_90_56 , snake_case__ : List[Any]=10_24 , snake_case__ : str=24 , snake_case__ : Tuple=16 , snake_case__ : Union[str, Any]=40_96 , snake_case__ : str="gelu" , snake_case__ : str=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_12 , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=0.02 , snake_case__ : List[Any]=1e-12 , snake_case__ : int=0 , snake_case__ : Tuple="absolute" , snake_case__ : Any=True , **snake_case__ : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) snake_case : Tuple = vocab_size snake_case : str = hidden_size snake_case : str = num_hidden_layers snake_case : str = num_attention_heads snake_case : Optional[int] = hidden_act snake_case : int = intermediate_size snake_case : List[str] = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : List[str] = type_vocab_size snake_case : List[str] = initializer_range snake_case : Tuple = layer_norm_eps snake_case : int = position_embedding_type snake_case : str = use_cache
59
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class a_ ( unittest.TestCase ): def __a ( self :Union[str, Any]) -> Optional[int]: if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='''utf-8''' , check=_lowercase , ) assert hasattr(self , '''env''') def __a ( self :Tuple , _lowercase :Tuple=1) -> Dict: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-single" , instance_count=_lowercase , instance_type=self.instance_type , debugger_hook_config=_lowercase , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def __a ( self :Union[str, Any] , _lowercase :Any) -> List[Any]: TrainingJobAnalytics(_lowercase).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv") def __a ( self :int) -> str: # create estimator UpperCAmelCase_ = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value''']) UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value''']) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase_ = ( Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 999999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy) assert all(t <= self.results['''eval_loss'''] for t in eval_loss) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , '''w''') as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowercase)
344
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) a = logging.getLogger(__name__) def lowercase (snake_case__ : int , snake_case__ : str ) -> List[str]: '''simple docstring''' lowerCAmelCase = np.argmax(snake_case__ , axis=1 ) return np.sum(outputs == labels ) def lowercase (snake_case__ : Tuple ) -> Optional[int]: '''simple docstring''' with open(snake_case__ , encoding="""utf_8""" ) as f: lowerCAmelCase = csv.reader(snake_case__ ) lowerCAmelCase = [] next(snake_case__ ) # skip the first line for line in tqdm(snake_case__ ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowercase (snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase = [] for dataset in encoded_datasets: lowerCAmelCase = len(snake_case__ ) lowerCAmelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(snake_case__ ): lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase = with_conta lowerCAmelCase = with_conta lowerCAmelCase = len(snake_case__ ) - 1 lowerCAmelCase = len(snake_case__ ) - 1 lowerCAmelCase = with_conta lowerCAmelCase = with_conta lowerCAmelCase = mc_label lowerCAmelCase = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(snake_case__ ) for t in all_inputs ) ) return tensor_datasets def lowercase () -> Any: '''simple docstring''' lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=snake_case__ , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=snake_case__ , type=snake_case__ , required=snake_case__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=snake_case__ , default="""""" ) parser.add_argument("""--eval_dataset""" , type=snake_case__ , default="""""" ) parser.add_argument("""--seed""" , type=snake_case__ , default=42 ) parser.add_argument("""--num_train_epochs""" , type=snake_case__ , default=3 ) parser.add_argument("""--train_batch_size""" , type=snake_case__ , default=8 ) parser.add_argument("""--eval_batch_size""" , type=snake_case__ , default=16 ) parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=snake_case__ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=snake_case__ , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=snake_case__ , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=snake_case__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=snake_case__ , default=6.25e-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=snake_case__ , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=snake_case__ , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=snake_case__ , default=0.01 ) parser.add_argument("""--lm_coef""" , type=snake_case__ , default=0.9 ) parser.add_argument("""--n_valid""" , type=snake_case__ , default=374 ) parser.add_argument("""--server_ip""" , type=snake_case__ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=snake_case__ , default="""""" , help="""Can be used for distant debugging.""" ) lowerCAmelCase = parser.parse_args() print(snake_case__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowerCAmelCase = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(snake_case__ , snake_case__ ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase = ["""_start_""", """_delimiter_""", """_classify_"""] lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(snake_case__ ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(snake_case__ ) lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(snake_case__ ) ) model.to(snake_case__ ) # Load and encode the datasets def tokenize_and_encode(snake_case__ : int ): if isinstance(snake_case__ , snake_case__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(snake_case__ ) ) elif isinstance(snake_case__ , snake_case__ ): return obj return [tokenize_and_encode(snake_case__ ) for o in obj] logger.info("""Encoding dataset...""" ) lowerCAmelCase = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase = (train_dataset, eval_dataset) lowerCAmelCase = tokenize_and_encode(snake_case__ ) # Compute the max input length for the Transformer lowerCAmelCase = model.config.n_positions // 2 - 2 lowerCAmelCase = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase = min(snake_case__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase = pre_process_datasets(snake_case__ , snake_case__ , snake_case__ , *snake_case__ ) lowerCAmelCase , lowerCAmelCase = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase = TensorDataset(*snake_case__ ) lowerCAmelCase = RandomSampler(snake_case__ ) lowerCAmelCase = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=args.train_batch_size ) lowerCAmelCase = TensorDataset(*snake_case__ ) lowerCAmelCase = SequentialSampler(snake_case__ ) lowerCAmelCase = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase = args.max_steps lowerCAmelCase = args.max_steps // (len(snake_case__ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase = len(snake_case__ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase = list(model.named_parameters() ) lowerCAmelCase = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] lowerCAmelCase = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] lowerCAmelCase = AdamW(snake_case__ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase = get_linear_schedule_with_warmup( snake_case__ , num_warmup_steps=args.warmup_steps , num_training_steps=snake_case__ ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = tqdm(snake_case__ , desc="""Training""" ) for step, batch in enumerate(snake_case__ ): lowerCAmelCase = tuple(t.to(snake_case__ ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = batch lowerCAmelCase = model(snake_case__ , mc_token_ids=snake_case__ , lm_labels=snake_case__ , mc_labels=snake_case__ ) lowerCAmelCase = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase = """Training loss: {:.2e} lr: {:.2e}""".format(snake_case__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase = model.module if hasattr(snake_case__ , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase = os.path.join(args.output_dir , snake_case__ ) lowerCAmelCase = os.path.join(args.output_dir , snake_case__ ) torch.save(model_to_save.state_dict() , snake_case__ ) model_to_save.config.to_json_file(snake_case__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(snake_case__ ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase = 0, 0 lowerCAmelCase , lowerCAmelCase = 0, 0 for batch in tqdm(snake_case__ , desc="""Evaluating""" ): lowerCAmelCase = tuple(t.to(snake_case__ ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = model( snake_case__ , mc_token_ids=snake_case__ , lm_labels=snake_case__ , mc_labels=snake_case__ ) lowerCAmelCase = mc_logits.detach().cpu().numpy() lowerCAmelCase = mc_labels.to("""cpu""" ).numpy() lowerCAmelCase = accuracy(snake_case__ , snake_case__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase = eval_loss / nb_eval_steps lowerCAmelCase = eval_accuracy / nb_eval_examples lowerCAmelCase = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} lowerCAmelCase = os.path.join(args.output_dir , """eval_results.txt""" ) with open(snake_case__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , snake_case__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
155
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a = logging.get_logger(__name__) a = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'dpt' def __init__( self : int , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=3072 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : str=0.02 , lowerCAmelCase : str=1e-12 , lowerCAmelCase : Optional[Any]=384 , lowerCAmelCase : str=16 , lowerCAmelCase : int=3 , lowerCAmelCase : Tuple=False , lowerCAmelCase : Any=True , lowerCAmelCase : Tuple=[2, 5, 8, 11] , lowerCAmelCase : Tuple="project" , lowerCAmelCase : Optional[int]=[4, 2, 1, 0.5] , lowerCAmelCase : Any=[96, 192, 384, 768] , lowerCAmelCase : int=256 , lowerCAmelCase : List[Any]=-1 , lowerCAmelCase : Any=False , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=0.4 , lowerCAmelCase : Dict=255 , lowerCAmelCase : int=0.1 , lowerCAmelCase : List[Any]=[1, 1024, 24, 24] , lowerCAmelCase : str=[0, 1] , lowerCAmelCase : str=None , **lowerCAmelCase : Optional[Any] , ): super().__init__(**lowerCAmelCase ) lowerCAmelCase = hidden_size lowerCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } lowerCAmelCase = BitConfig(**lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): logger.info("""Initializing the config with a `BiT` backbone.""" ) lowerCAmelCase = BitConfig(**lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): lowerCAmelCase = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) lowerCAmelCase = backbone_featmap_shape lowerCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = [] lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = qkv_bias lowerCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) lowerCAmelCase = readout_type lowerCAmelCase = reassemble_factors lowerCAmelCase = neck_hidden_sizes lowerCAmelCase = fusion_hidden_size lowerCAmelCase = head_in_index lowerCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase = use_auxiliary_head lowerCAmelCase = auxiliary_loss_weight lowerCAmelCase = semantic_loss_ignore_index lowerCAmelCase = semantic_classifier_dropout def __lowercase ( self : Any ): lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
155
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A ) -> list: return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__A ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
351
'''simple docstring''' from ...processing_utils import ProcessorMixin class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """SpeechT5FeatureExtractor""" __lowercase = """SpeechT5Tokenizer""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = kwargs.pop('audio' , lowerCAmelCase_ ) _snake_case = kwargs.pop('text' , lowerCAmelCase_ ) _snake_case = kwargs.pop('text_target' , lowerCAmelCase_ ) _snake_case = kwargs.pop('audio_target' , lowerCAmelCase_ ) _snake_case = kwargs.pop('sampling_rate' , lowerCAmelCase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: _snake_case = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) elif text is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) else: _snake_case = None if audio_target is not None: _snake_case = self.feature_extractor(audio_target=lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_values'] elif text_target is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_ids'] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = kwargs.pop('input_values' , lowerCAmelCase_ ) _snake_case = kwargs.pop('input_ids' , lowerCAmelCase_ ) _snake_case = kwargs.pop('labels' , lowerCAmelCase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: _snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) elif input_ids is not None: _snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) else: _snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and "input_ids" in labels[0]): _snake_case = self.tokenizer.pad(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = targets['input_ids'] else: _snake_case = self.feature_extractor.feature_size _snake_case = self.feature_extractor.num_mel_bins _snake_case = self.feature_extractor.pad(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = feature_size_hack _snake_case = targets['input_values'] else: _snake_case = None if inputs is None: return targets if targets is not None: _snake_case = labels _snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: _snake_case = decoder_attention_mask return inputs def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ )
160
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase = datasets.utils.logging.get_logger(__name__) class A ( folder_based_builder.FolderBasedBuilderConfig ): UpperCamelCase_ : bool =None UpperCamelCase_ : bool =None class A ( folder_based_builder.FolderBasedBuilder ): UpperCamelCase_ : str =datasets.Audio() UpperCamelCase_ : List[str] ='''audio''' UpperCamelCase_ : Tuple =AudioFolderConfig UpperCamelCase_ : List[str] # definition at the bottom of the script UpperCamelCase_ : Optional[Any] =AudioClassification(audio_column='''audio''' , label_column='''label''' ) lowerCAmelCase = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase = AUDIO_EXTENSIONS
295
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' if len(lowercase__ ) <= 1 or n <= 1: return insert_next(lowercase__ , n - 1 ) rec_insertion_sort(lowercase__ , n - 1 ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' if index >= len(lowercase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowercase, __lowercase= ( collection[index], collection[index - 1], ) insert_next(lowercase__ , index + 1 ) if __name__ == "__main__": lowerCAmelCase = input('''Enter integers separated by spaces: ''') lowerCAmelCase = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
295
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''speech_to_text''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _UpperCAmelCase=10000 , _UpperCAmelCase=12 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=6000 , _UpperCAmelCase=1024 , _UpperCAmelCase=2 , _UpperCAmelCase=(5, 5) , _UpperCAmelCase=1024 , _UpperCAmelCase=80 , _UpperCAmelCase=1 , **_UpperCAmelCase , ): __a : Tuple = vocab_size __a : Tuple = d_model __a : List[Any] = encoder_ffn_dim __a : str = encoder_layers __a : str = encoder_attention_heads __a : Tuple = decoder_ffn_dim __a : Dict = decoder_layers __a : Any = decoder_attention_heads __a : List[Any] = dropout __a : Tuple = attention_dropout __a : str = activation_dropout __a : Dict = activation_function __a : Any = init_std __a : Any = encoder_layerdrop __a : str = decoder_layerdrop __a : int = use_cache __a : Any = encoder_layers __a : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __a : Any = max_source_positions __a : Dict = max_target_positions __a : Union[str, Any] = num_conv_layers __a : List[str] = list(_UpperCAmelCase ) __a : Optional[Any] = conv_channels __a : int = input_feat_per_channel __a : Optional[int] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ''' f"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
350
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType A : str = logging.get_logger(__name__) A : str = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off A : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] A : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Dict ="""whisper""" __UpperCAmelCase : str =["""past_key_values"""] __UpperCAmelCase : List[str] ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __a=5_18_65 , __a=80 , __a=6 , __a=4 , __a=6 , __a=4 , __a=15_36 , __a=15_36 , __a=0.0 , __a=0.0 , __a=5_02_57 , __a=True , __a=True , __a="gelu" , __a=2_56 , __a=0.0 , __a=0.0 , __a=0.0 , __a=0.0_2 , __a=False , __a=15_00 , __a=4_48 , __a=5_02_56 , __a=5_02_56 , __a=5_02_56 , __a=None , __a=[2_20, 5_02_56] , __a=False , __a=2_56 , __a=False , __a=0.0_5 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a=7 , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = num_mel_bins __lowerCAmelCase = d_model __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = max_source_positions __lowerCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase = classifier_proj_size __lowerCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase = apply_spec_augment __lowerCAmelCase = mask_time_prob __lowerCAmelCase = mask_time_length __lowerCAmelCase = mask_time_min_masks __lowerCAmelCase = mask_feature_prob __lowerCAmelCase = mask_feature_length __lowerCAmelCase = mask_feature_min_masks __lowerCAmelCase = median_filter_width super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , suppress_tokens=__a , begin_suppress_tokens=__a , **__a , ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @property def snake_case ( self ): __lowerCAmelCase = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: __lowerCAmelCase = {0: "batch"} else: __lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__a , direction="inputs" ) return common_inputs def snake_case ( self , __a , __a = -1 , __a = -1 , __a = False , __a = None , __a = 2_20_50 , __a = 5.0 , __a = 2_20 , ): __lowerCAmelCase = OrderedDict() __lowerCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=__a , framework=__a , sampling_rate=__a , time_duration=__a , frequency=__a , ) __lowerCAmelCase = encoder_inputs["input_features"].shape[2] __lowerCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , __a , __a , __a , __a ) __lowerCAmelCase = encoder_inputs.pop("input_features" ) __lowerCAmelCase = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: __lowerCAmelCase = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def snake_case ( self ): return 1e-3
57
"""simple docstring""" A : int = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
57
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = k_size // 2 UpperCamelCase_ , UpperCamelCase_ = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase_ = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[Any]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase_ = height - k_size + 1 UpperCamelCase_ = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase_ = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase_ = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase_ = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase_ = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase_ = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image UpperCamelCase_ = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE :List[str] = imread(R"""../image_data/lena.jpg""") # turn image in gray scale value SCREAMING_SNAKE_CASE :Any = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size SCREAMING_SNAKE_CASE :Any = gaussian_filter(gray, 3, sigma=1) SCREAMING_SNAKE_CASE :Optional[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("""gaussian filter with 3x3 mask""", gaussianaxa) imshow("""gaussian filter with 5x5 mask""", gaussianaxa) waitKey()
369
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=18 , _lowercase=30 , _lowercase=400 , _lowercase=True , _lowercase=None , _lowercase=True , )-> Optional[int]: UpperCamelCase_ = size if size is not None else {"height": 18, "width": 18} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = apply_ocr def UpperCAmelCase_ ( self )-> str: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , "do_resize" ) ) self.assertTrue(hasattr(_lowercase , "size" ) ) self.assertTrue(hasattr(_lowercase , "apply_ocr" ) ) def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def UpperCAmelCase_ ( self )-> Any: pass def UpperCAmelCase_ ( self )-> List[str]: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , _lowercase ) self.assertIsInstance(encoding.boxes , _lowercase ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> str: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> List[str]: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> Any: # with apply_OCR = True UpperCamelCase_ = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase_ = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) UpperCamelCase_ = Image.open(ds[0]["file"] ).convert("RGB" ) UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase_ = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 UpperCamelCase_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowercase ) self.assertListEqual(encoding.boxes , _lowercase ) # with apply_OCR = False UpperCamelCase_ = LayoutLMvaImageProcessor(apply_ocr=_lowercase ) UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
60
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''', '''False''' ) ) is not True, reason='''Skipping test because should only be run when releasing minor transformers version''', ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ) -> List[str]: if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="""utf-8""" , check=_lowerCamelCase , ) assert hasattr(self , """env""" ) def UpperCAmelCase_ ( self , _lowerCamelCase=1 ) -> int: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=_lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=_lowerCamelCase , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: TrainingJobAnalytics(_lowerCamelCase ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def UpperCAmelCase_ ( self ) -> List[Any]: # create estimator A_ : Union[str, Any] = self.create_estimator() # run training estimator.fit() # result dataframe A_ : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A_ : Dict = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) A_ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A_ : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , _lowerCamelCase )
344
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(a_ ): for j in range(a_ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" A_ : List[str] = [[float("""inf""" ) for _ in range(a_ )] for _ in range(a_ )] for i in range(a_ ): for j in range(a_ ): A_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a_ ): # looping through rows of graph array for i in range(a_ ): # looping through columns of graph array for j in range(a_ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ : List[str] = dist[i][k] + dist[k][j] _print_dist(a_ , a_ ) return dist, v if __name__ == "__main__": UpperCamelCase__ : Tuple = int(input('Enter number of vertices: ')) UpperCamelCase__ : int = int(input('Enter number of edges: ')) UpperCamelCase__ : Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCamelCase__ : Union[str, Any] = int(input('Enter source:')) UpperCamelCase__ : int = int(input('Enter destination:')) UpperCamelCase__ : Optional[Any] = float(input('Enter weight:')) UpperCamelCase__ : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
344
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : str = "▁" snake_case_ : int = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } snake_case_ : Union[str, Any] = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } snake_case_ : Optional[int] = { "facebook/s2t-small-librispeech-asr": 1024, } snake_case_ : Any = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] snake_case_ : str = {"mustc": MUSTC_LANGS} class __snake_case ( a_ ): UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = MAX_MODEL_INPUT_SIZES UpperCAmelCase__ : Dict = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] def __init__( self : Any , _snake_case : Optional[int] , _snake_case : str , _snake_case : Dict="<s>" , _snake_case : Optional[Any]="</s>" , _snake_case : List[Any]="<pad>" , _snake_case : int="<unk>" , _snake_case : Tuple=False , _snake_case : Tuple=False , _snake_case : Any=None , _snake_case : int=None , _snake_case : Dict = None , **_snake_case : Dict , ): """simple docstring""" UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , do_upper_case=_snake_case , do_lower_case=_snake_case , tgt_lang=_snake_case , lang_codes=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) UpperCAmelCase_ = do_upper_case UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = load_json(_snake_case) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = spm_file UpperCAmelCase_ = load_spm(_snake_case , self.sp_model_kwargs) if lang_codes is not None: UpperCAmelCase_ = lang_codes UpperCAmelCase_ = LANGUAGES[lang_codes] UpperCAmelCase_ = [F"""<lang:{lang}>""" for lang in self.langs] UpperCAmelCase_ = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""") for lang in self.langs} UpperCAmelCase_ = self.lang_tokens UpperCAmelCase_ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang) else: UpperCAmelCase_ = {} @property def lowerCamelCase ( self : int): """simple docstring""" return len(self.encoder) @property def lowerCamelCase ( self : str): """simple docstring""" return self._tgt_lang @tgt_lang.setter def lowerCamelCase ( self : Union[str, Any] , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = new_tgt_lang self.set_tgt_lang_special_tokens(_snake_case) def lowerCamelCase ( self : int , _snake_case : str): """simple docstring""" UpperCAmelCase_ = self.lang_code_to_id[tgt_lang] UpperCAmelCase_ = [lang_code_id] def lowerCamelCase ( self : List[str] , _snake_case : Dict): """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case) def lowerCamelCase ( self : Dict , _snake_case : int): """simple docstring""" return self.encoder.get(_snake_case , self.encoder[self.unk_token]) def lowerCamelCase ( self : Tuple , _snake_case : Dict): """simple docstring""" return self.decoder.get(_snake_case , self.unk_token) def lowerCamelCase ( self : Tuple , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCAmelCase_ = self.sp_model.decode(_snake_case) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCAmelCase_ = [] else: current_sub_tokens.append(_snake_case) UpperCAmelCase_ = self.sp_model.decode(_snake_case) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCamelCase ( self : Tuple , _snake_case : Optional[int] , _snake_case : Union[str, Any]=None): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : Dict , _snake_case : List[str] , _snake_case : Union[str, Any] = None , _snake_case : Any = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case) UpperCAmelCase_ = [1] * len(self.prefix_tokens) UpperCAmelCase_ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_snake_case)) + suffix_ones return prefix_ones + ([0] * len(_snake_case)) + ([0] * len(_snake_case)) + suffix_ones def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.encoder.copy() vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self : Optional[Any] , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = load_spm(self.spm_file , self.sp_model_kwargs) def lowerCamelCase ( self : str , _snake_case : str , _snake_case : int = None): """simple docstring""" UpperCAmelCase_ = Path(_snake_case) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" UpperCAmelCase_ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase_ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _snake_case) if os.path.abspath(self.spm_file) != os.path.abspath(_snake_case) and os.path.isfile(self.spm_file): copyfile(self.spm_file , _snake_case) elif not os.path.isfile(self.spm_file): with open(_snake_case , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_snake_case) return (str(_snake_case), str(_snake_case)) def A (__A : str , __A : Dict[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def A (__A : str ) -> Dict: """simple docstring""" with open(lowerCamelCase__ , '''r''' ) as f: return json.load(lowerCamelCase__ ) def A (__A : int , __A : str ) -> Dict: """simple docstring""" with open(lowerCamelCase__ , '''w''' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["DeiTFeatureExtractor"] snake_case_ : List[str] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any]=7 , _lowerCAmelCase : int=3 , _lowerCAmelCase : Optional[int]=18 , _lowerCAmelCase : List[str]=30 , _lowerCAmelCase : Dict=400 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]=True , ): SCREAMING_SNAKE_CASE_ = size if size is not None else {'''shortest_edge''': 20} SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = do_flip_channel_order def lowerCAmelCase_ ( self : Tuple ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCamelCase_ ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' lowercase_ = MobileViTImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = MobileViTImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : Optional[Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
225
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor'''] __lowerCAmelCase = '''SamImageProcessor''' def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __a : Any = self.image_processor __a : List[Any] = -10 __a : str = self.image_processor.size['''longest_edge'''] def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __a : Tuple = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # pop arguments that are not used in the foward but used nevertheless __a : Optional[Any] = encoding_image_processor['''original_sizes'''] if hasattr(_UpperCAmelCase , '''numpy''' ): # Checks if Torch or TF tensor __a : Optional[Any] = original_sizes.numpy() __a , __a , __a : int = self._check_and_preprocess_points( input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , ) __a : List[Any] = self._normalize_and_convert( _UpperCAmelCase , _UpperCAmelCase , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) return encoding_image_processor def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="pt" , ): if input_points is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __a : Dict = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] ) for point in input_points ] else: __a : Dict = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase ) for point, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __a , __a : Tuple = self._pad_points_and_labels(_UpperCAmelCase , _UpperCAmelCase ) __a : List[Any] = np.array(_UpperCAmelCase ) if input_labels is not None: __a : List[Any] = np.array(_UpperCAmelCase ) if input_boxes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __a : Any = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] , is_bounding_box=_UpperCAmelCase ) for box in input_boxes ] else: __a : int = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase , is_bounding_box=_UpperCAmelCase ) for box, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] __a : Optional[int] = np.array(_UpperCAmelCase ) if input_boxes is not None: if return_tensors == "pt": __a : Any = torch.from_numpy(_UpperCAmelCase ) # boxes batch size of 1 by default __a : str = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __a : Dict = tf.convert_to_tensor(_UpperCAmelCase ) # boxes batch size of 1 by default __a : str = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": __a : int = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __a : Optional[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __a : List[Any] = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __a : Optional[Any] = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": __a : Any = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __a : Union[str, Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __a : str = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __a : Dict = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = max([point.shape[0] for point in input_points] ) __a : Dict = [] for i, point in enumerate(_UpperCAmelCase ): if point.shape[0] != expected_nb_points: __a : Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __a : List[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_UpperCAmelCase ) __a : int = processed_input_points return input_points, input_labels def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): __a , __a : str = original_size __a , __a : Optional[int] = self.image_processor._get_preprocess_shape(_UpperCAmelCase , longest_edge=_UpperCAmelCase ) __a : List[str] = deepcopy(_UpperCAmelCase ).astype(_UpperCAmelCase ) if is_bounding_box: __a : Optional[int] = coords.reshape(-1 , 2 , 2 ) __a : str = coords[..., 0] * (new_w / old_w) __a : List[Any] = coords[..., 1] * (new_h / old_h) if is_bounding_box: __a : List[Any] = coords.reshape(-1 , 4 ) return coords def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if input_points is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): # Checks for TF or Torch tensor __a : str = input_points.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_points[0] , _UpperCAmelCase ): raise ValueError('''Input points must be a list of list of floating points.''' ) __a : str = [np.array(_UpperCAmelCase ) for input_point in input_points] else: __a : Optional[int] = None if input_labels is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): __a : Dict = input_labels.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_labels[0] , _UpperCAmelCase ): raise ValueError('''Input labels must be a list of list integers.''' ) __a : Dict = [np.array(_UpperCAmelCase ) for label in input_labels] else: __a : Tuple = None if input_boxes is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): __a : List[Any] = input_boxes.numpy().tolist() if ( not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_boxes[0] , _UpperCAmelCase ) or not isinstance(input_boxes[0][0] , _UpperCAmelCase ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) __a : Optional[Any] = [np.array(_UpperCAmelCase ).astype(np.floataa ) for box in input_boxes] else: __a : Union[str, Any] = None return input_points, input_labels, input_boxes @property def _lowerCamelCase ( self ): __a : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(_UpperCAmelCase ) ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.image_processor.post_process_masks(*_UpperCAmelCase , **_UpperCAmelCase )
160
0
class _lowerCamelCase: # Public class to implement a graph def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> None: """simple docstring""" _lowercase : Any = row _lowercase : str = col _lowercase : List[Any] = graph def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> None: """simple docstring""" _lowercase : List[str] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _lowercase : List[str] = [-1, 0, 1, -1, 1, -1, 0, 1] _lowercase : List[Any] = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k], j + col_nbr[k], lowerCamelCase): self.diffs(i + row_nbr[k], j + col_nbr[k], lowerCamelCase) def UpperCamelCase ( self) -> int: # And finally, count all islands. """simple docstring""" _lowercase : Union[str, Any] = [[False for j in range(self.COL)] for i in range(self.ROW)] _lowercase : Dict = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCamelCase, lowerCamelCase, lowerCamelCase) count += 1 return count
84
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _lowerCamelCase( _a ): lowercase_ : Union[str, Any] = """char""" lowercase_ : Any = """bpe""" lowercase_ : Optional[int] = """wp""" SCREAMING_SNAKE_CASE : Optional[int] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _lowerCamelCase( _a ): lowercase_ : Any = ["""image_processor""", """char_tokenizer"""] lowercase_ : Tuple = """ViTImageProcessor""" lowercase_ : List[str] = """MgpstrTokenizer""" def __init__( self, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase, ) _lowercase : str = kwargs.pop('feature_extractor') _lowercase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') _lowercase : List[Any] = tokenizer _lowercase : Tuple = AutoTokenizer.from_pretrained('gpt2') _lowercase : Tuple = AutoTokenizer.from_pretrained('bert-base-uncased') super().__init__(lowerCamelCase, lowerCamelCase) def __call__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.') if images is not None: _lowercase : Optional[Any] = self.image_processor(lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase) if text is not None: _lowercase : Optional[int] = self.char_tokenizer(lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase) if text is None: return inputs elif images is None: return encodings else: _lowercase : Optional[int] = encodings['input_ids'] return inputs def UpperCamelCase ( self, lowerCamelCase) -> Any: """simple docstring""" _lowercase , _lowercase , _lowercase : Optional[int] = sequences _lowercase : str = char_preds.size(0) _lowercase , _lowercase : List[Any] = self._decode_helper(lowerCamelCase, 'char') _lowercase , _lowercase : str = self._decode_helper(lowerCamelCase, 'bpe') _lowercase , _lowercase : str = self._decode_helper(lowerCamelCase, 'wp') _lowercase : Dict = [] _lowercase : Any = [] for i in range(lowerCamelCase): _lowercase : Optional[int] = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowercase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowercase : Union[str, Any] = scores.index(max(lowerCamelCase)) final_strs.append(strs[max_score_index]) final_scores.append(scores[max_score_index]) _lowercase : str = {} _lowercase : int = final_strs _lowercase : Optional[Any] = final_scores _lowercase : Tuple = char_strs _lowercase : Dict = bpe_strs _lowercase : Tuple = wp_strs return out def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" if format == DecodeType.CHARACTER: _lowercase : Optional[Any] = self.char_decode _lowercase : int = 1 _lowercase : int = '[s]' elif format == DecodeType.BPE: _lowercase : List[Any] = self.bpe_decode _lowercase : Union[str, Any] = 2 _lowercase : Any = '#' elif format == DecodeType.WORDPIECE: _lowercase : int = self.wp_decode _lowercase : Optional[Any] = 1_02 _lowercase : List[Any] = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''') _lowercase , _lowercase : Tuple = [], [] _lowercase : str = pred_logits.size(0) _lowercase : Tuple = pred_logits.size(1) _lowercase , _lowercase : Dict = pred_logits.topk(1, dim=-1, largest=lowerCamelCase, sorted=lowerCamelCase) _lowercase : List[str] = preds_index.view(-1, lowerCamelCase)[:, 1:] _lowercase : int = decoder(lowerCamelCase) _lowercase , _lowercase : Optional[Any] = torch.nn.functional.softmax(lowerCamelCase, dim=2).max(dim=2) _lowercase : Optional[Any] = preds_max_prob[:, 1:] for index in range(lowerCamelCase): _lowercase : List[str] = preds_str[index].find(lowerCamelCase) _lowercase : int = preds_str[index][:pred_eos] _lowercase : List[str] = preds_index[index].cpu().tolist() _lowercase : Optional[int] = pred_index.index(lowerCamelCase) if eos_token in pred_index else -1 _lowercase : int = preds_max_prob[index][: pred_eos_index + 1] _lowercase : Tuple = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCamelCase) conf_scores.append(lowerCamelCase) return dec_strs, conf_scores def UpperCamelCase ( self, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Dict = [seq.replace(' ', '') for seq in self.char_tokenizer.batch_decode(lowerCamelCase)] return decode_strs def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" return self.bpe_tokenizer.batch_decode(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = [seq.replace(' ', '') for seq in self.wp_tokenizer.batch_decode(lowerCamelCase)] return decode_strs
84
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a : int = logging.getLogger(__name__) a : List[Any] = 50 # max width of layer names a : Tuple = 70 # max width of quantizer names def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" UpperCAmelCase_: Optional[Any] = parser.add_argument_group("""quant_trainer arguments""" ) group.add_argument("""--wprec""" , type=_A , default=8 , help="""weight precision""" ) group.add_argument("""--aprec""" , type=_A , default=8 , help="""activation precision""" ) group.add_argument("""--quant-per-tensor""" , action="""store_true""" , help="""per tensor weight scaling""" ) group.add_argument("""--quant-disable""" , action="""store_true""" , help="""disable all quantizers""" ) group.add_argument("""--quant-disable-embeddings""" , action="""store_true""" , help="""disable all embeddings quantizers""" ) group.add_argument("""--quant-disable-keyword""" , type=_A , nargs="""+""" , help="""disable quantizers by keyword""" ) group.add_argument("""--quant-disable-layer-module""" , type=_A , help="""disable quantizers by keyword under layer.""" ) group.add_argument("""--quant-enable-layer-module""" , type=_A , help="""enable quantizers by keyword under layer""" ) group.add_argument("""--calibrator""" , default="""max""" , help="""which quantization range calibrator to use""" ) group.add_argument("""--percentile""" , default=_A , type=_A , help="""percentile for PercentileCalibrator""" ) group.add_argument("""--fuse-qkv""" , action="""store_true""" , help="""use the same scale factor for qkv""" ) group.add_argument("""--clip-gelu""" , metavar="""N""" , type=_A , help="""clip gelu output maximum value to N""" ) group.add_argument( """--recalibrate-weights""" , action="""store_true""" , help=( """recalibrate weight amaxes by taking the max of the weights.""" """ amaxes will be computed with the current quantization granularity (axis).""" ) , ) def lowerCAmelCase_ (lowerCAmelCase__: List[str] ): """simple docstring""" if args.calibrator == "max": UpperCAmelCase_: Optional[int] = """max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("""Specify --percentile when using percentile calibrator""" ) UpperCAmelCase_: Union[str, Any] = """histogram""" elif args.calibrator == "mse": UpperCAmelCase_: Tuple = """histogram""" else: raise ValueError(F'Invalid calibrator {args.calibrator}' ) UpperCAmelCase_: str = QuantDescriptor(num_bits=args.aprec , calib_method=_A ) UpperCAmelCase_: Dict = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_A ) quant_nn.QuantLinear.set_default_quant_desc_weight(_A ) def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: Any , lowerCAmelCase__: Any=False , lowerCAmelCase__: str=False ): """simple docstring""" logger.info("""Configuring Model for Quantization""" ) logger.info(F'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_A , ["""embeddings"""] , which="""weight""" , _disabled=_A ) if args.quant_disable: set_quantizer_by_name(_A , [""""""] , _disabled=_A ) if args.quant_disable_keyword: set_quantizer_by_name(_A , args.quant_disable_keyword , _disabled=_A ) if args.quant_disable_layer_module: set_quantizer_by_name(_A , [r"""layer.\d+.""" + args.quant_disable_layer_module] , _disabled=_A ) if args.quant_enable_layer_module: set_quantizer_by_name(_A , [r"""layer.\d+.""" + args.quant_enable_layer_module] , _disabled=_A ) if args.recalibrate_weights: recalibrate_weights(_A ) if args.fuse_qkv: fuse_qkv(_A , _A ) if args.clip_gelu: clip_gelu(_A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_A ) def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" logger.info("""Enabling Calibration""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'{name:80}: {module}' ) def lowerCAmelCase_ (lowerCAmelCase__: Dict , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" logger.info("""Loading calibrated amax""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("""percentile""" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_A ) def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: List[Any] ): """simple docstring""" def fusea(lowerCAmelCase__: Any , lowerCAmelCase__: Any , lowerCAmelCase__: List[Any] ): for mod in [qq, qk, qv]: if not hasattr(_A , """_amax""" ): print(""" WARNING: NO AMAX BUFFER""" ) return UpperCAmelCase_: Dict = qq._amax.detach().item() UpperCAmelCase_: str = qk._amax.detach().item() UpperCAmelCase_: Optional[int] = qv._amax.detach().item() UpperCAmelCase_: str = max(_A , _A , _A ) qq._amax.fill_(_A ) qk._amax.fill_(_A ) qv._amax.fill_(_A ) logger.info(F' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith(""".attention.self""" ): logger.info(F'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: List[Any] ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ): UpperCAmelCase_: Optional[int] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_A ) UpperCAmelCase_: List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(F'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(_A , """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None: UpperCAmelCase_: Union[str, Any] = mod.weight.shape[0] UpperCAmelCase_: str = mod._weight_quantizer._amax.detach() UpperCAmelCase_: Any = torch.ones(_A , dtype=amax.dtype , device=amax.device ) * amax print(F'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(_A , """_weight_quantizer""" ): if not hasattr(mod.weight_quantizer , """_amax""" ): print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase_: Any = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase_: List[str] = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase_: List[str] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_A , keepdims=_A ).detach() logger.info(F'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) UpperCAmelCase_: Optional[Any] = amax def lowerCAmelCase_ (lowerCAmelCase__: Dict , lowerCAmelCase__: Union[str, Any]=2_5 , lowerCAmelCase__: Any=1_8_0 , lowerCAmelCase__: str=None ): """simple docstring""" if ignore is None: UpperCAmelCase_: Union[str, Any] = [] elif not isinstance(_A , _A ): UpperCAmelCase_: Union[str, Any] = [ignore] UpperCAmelCase_: int = 0 for name, mod in model.named_modules(): if not hasattr(_A , """weight""" ): continue UpperCAmelCase_: Union[str, Any] = max(_A , len(_A ) ) for name, mod in model.named_modules(): UpperCAmelCase_: List[Any] = getattr(_A , """_input_quantizer""" , _A ) UpperCAmelCase_: List[Any] = getattr(_A , """_weight_quantizer""" , _A ) if not hasattr(_A , """weight""" ): continue if type(_A ) in ignore: continue if [True for s in ignore if type(_A ) is str and s in name]: continue UpperCAmelCase_: int = F'Act:{input_q.extra_repr()}' UpperCAmelCase_: Optional[int] = F'Wgt:{weight_q.extra_repr()}' UpperCAmelCase_: List[Any] = F'{name:{name_width}} {act_str} {wgt_str}' if len(_A ) <= line_width: logger.info(_A ) else: logger.info(F'{name:{name_width}} {act_str}' ) logger.info(F'{" ":{name_width}} {wgt_str}' ) def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" UpperCAmelCase_: Optional[Any] = 0 for name, mod in model.named_modules(): if isinstance(_A , pytorch_quantization.nn.TensorQuantizer ): print(F'{name:80} {mod}' ) count += 1 print(F'{count} TensorQuantizers found in model' ) def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Optional[int] , lowerCAmelCase__: Tuple , lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: Tuple = getattr(_A , _A , _A ) if quantizer_mod is not None: assert hasattr(_A , _A ) setattr(_A , _A , _A ) else: logger.warning(F'{name} has no {quantizer}' ) def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Tuple="both" , **lowerCAmelCase__: List[str] ): """simple docstring""" UpperCAmelCase_: List[Any] = F'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += F' {k}={v}' if which in ["input", "both"]: set_quantizer(_A , _A , """_input_quantizer""" , _A , _A ) if which in ["weight", "both"]: set_quantizer(_A , _A , """_weight_quantizer""" , _A , _A ) logger.info(_A ) def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] , lowerCAmelCase__: Optional[int] , **lowerCAmelCase__: int ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(_A , """_input_quantizer""" ) or hasattr(_A , """_weight_quantizer""" ): for n in names: if re.search(_A , _A ): set_quantizers(_A , _A , **_A ) elif name.endswith("""_quantizer""" ): for n in names: if re.search(_A , _A ): UpperCAmelCase_: Any = F'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += F' {k}={v}' setattr(_A , _A , _A ) logger.info(_A )
147
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = IFInpaintingSuperResolutionPipeline lowerCamelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowerCamelCase__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowerCamelCase__ : str = PipelineTesterMixin.required_optional_params - {'latents'} def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return self._get_superresolution_dummy_components() def _UpperCAmelCase ( self, lowercase_, lowercase_=0 ) -> Tuple: """simple docstring""" if str(lowercase_ ).startswith('''mps''' ): a__ =torch.manual_seed(lowercase_ ) else: a__ =torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) a__ =floats_tensor((1, 3, 16, 16), rng=random.Random(lowercase_ ) ).to(lowercase_ ) a__ =floats_tensor((1, 3, 32, 32), rng=random.Random(lowercase_ ) ).to(lowercase_ ) a__ =floats_tensor((1, 3, 32, 32), rng=random.Random(lowercase_ ) ).to(lowercase_ ) a__ ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', ) def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''', reason='''float16 requires CUDA''' ) def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" self._test_save_load_local() def _UpperCAmelCase ( self ) -> str: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2, )
188
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A_ ( _lowerCamelCase ): """simple docstring""" __UpperCamelCase = """unispeech""" def __init__( self :Optional[int] , lowercase_ :Tuple=32 , lowercase_ :int=7_68 , lowercase_ :Any=12 , lowercase_ :Any=12 , lowercase_ :Any=30_72 , lowercase_ :int="gelu" , lowercase_ :Optional[int]=0.1 , lowercase_ :List[Any]=0.1 , lowercase_ :Optional[Any]=0.1 , lowercase_ :Dict=0.0 , lowercase_ :List[str]=0.0 , lowercase_ :Dict=0.1 , lowercase_ :Optional[int]=0.1 , lowercase_ :Optional[Any]=0.02 , lowercase_ :Optional[Any]=1E-5 , lowercase_ :Any="group" , lowercase_ :List[str]="gelu" , lowercase_ :str=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ :Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ :Any=(10, 3, 3, 3, 3, 2, 2) , lowercase_ :Optional[int]=False , lowercase_ :Union[str, Any]=1_28 , lowercase_ :int=16 , lowercase_ :Any=False , lowercase_ :int=True , lowercase_ :Any=0.05 , lowercase_ :Optional[int]=10 , lowercase_ :int=2 , lowercase_ :Optional[int]=0.0 , lowercase_ :Union[str, Any]=10 , lowercase_ :Optional[Any]=0 , lowercase_ :List[str]=3_20 , lowercase_ :Optional[Any]=2 , lowercase_ :Optional[Any]=0.1 , lowercase_ :Optional[int]=1_00 , lowercase_ :Any=2_56 , lowercase_ :str=2_56 , lowercase_ :Optional[Any]=0.1 , lowercase_ :Tuple="mean" , lowercase_ :Union[str, Any]=False , lowercase_ :Any=False , lowercase_ :Tuple=2_56 , lowercase_ :Tuple=80 , lowercase_ :str=0 , lowercase_ :Dict=1 , lowercase_ :int=2 , lowercase_ :List[Any]=0.5 , **lowercase_ :str , ) -> Optional[int]: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_norm UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = list(lowercase_ ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layerdrop UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = num_ctc_classes UpperCAmelCase = vocab_size UpperCAmelCase = do_stable_layer_norm UpperCAmelCase = use_weighted_layer_sum UpperCAmelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase = num_codevectors_per_group UpperCAmelCase = num_codevector_groups UpperCAmelCase = contrastive_logits_temperature UpperCAmelCase = feat_quantizer_dropout UpperCAmelCase = num_negatives UpperCAmelCase = codevector_dim UpperCAmelCase = proj_codevector_dim UpperCAmelCase = diversity_loss_weight # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # pretraining loss UpperCAmelCase = replace_prob @property def UpperCAmelCase__ ( self :List[str] ) -> int: return functools.reduce(operator.mul , self.conv_stride , 1 )
356
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case_ = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
181
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _A ( unittest.TestCase ): def __init__( self : Union[str, Any] , _A : Optional[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _A : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _A : bool = True , _A : Optional[int]=7 , _A : int=30 , _A : str=400 , _A : List[Any]=3 , ) -> List[Any]: """simple docstring""" lowercase : Union[str, Any] = parent lowercase : Union[str, Any] = do_resize lowercase : List[str] = size if size is not None else {'''shortest_edge''': 288} lowercase : int = size_divisor lowercase : List[str] = do_rescale lowercase : Optional[Any] = rescale_factor lowercase : Dict = do_normalize lowercase : Any = do_center_crop lowercase : Union[str, Any] = image_mean lowercase : Optional[Any] = image_std lowercase : Union[str, Any] = do_pad lowercase : Union[str, Any] = batch_size lowercase : Any = num_channels lowercase : Union[str, Any] = min_resolution lowercase : int = max_resolution def __a ( self : Dict ) -> List[str]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self : Any , _A : int , _A : List[str]=False ) -> Optional[Any]: """simple docstring""" if not batched: lowercase : Dict = self.size['''shortest_edge'''] lowercase : Dict = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowercase : Optional[int] = image.size else: lowercase : List[Any] = image.shape[1], image.shape[2] lowercase : Union[str, Any] = size / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowercase : Dict = size, scale * w else: lowercase : Optional[int] = scale * h, size lowercase : List[Any] = int((1_333 / 800) * size ) if max(UpperCamelCase_ , UpperCamelCase_ ) > max_size: lowercase : int = max_size / max(UpperCamelCase_ , UpperCamelCase_ ) lowercase : str = newh * scale lowercase : Tuple = neww * scale lowercase : List[str] = int(newh + 0.5 ), int(neww + 0.5 ) lowercase : Tuple = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowercase : Optional[int] = [] for image in image_inputs: lowercase : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase : Union[str, Any] = max(UpperCamelCase_ , key=lambda _A : item[0] )[0] lowercase : Union[str, Any] = max(UpperCamelCase_ , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A ( a__ , unittest.TestCase ): _UpperCamelCase : List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase : Optional[int] = BridgeTowerImageProcessingTester(self ) @property def __a ( self : List[str] ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size_divisor''' ) ) def __a ( self : int ) -> int: """simple docstring""" pass def __a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowercase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase : int = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowercase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase : Optional[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : Tuple = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowercase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase : Tuple = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : str = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase : str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
308
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ : Dict = logging.getLogger(__name__) def _snake_case ( _snake_case : Any , _snake_case : Any ): return (preds == labels).mean() @dataclass class snake_case_: __UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class snake_case_: __UpperCamelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) __UpperCamelCase = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) __UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) try: lowerCAmelCase : Tuple = processors[data_args.task_name]() lowerCAmelCase : Any = processor.get_labels() lowerCAmelCase : Union[str, Any] = len(_snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase : List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_snake_case : EvalPrediction ) -> Dict: lowerCAmelCase : int = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_snake_case , p.label_ids )} # Data collator lowerCAmelCase : List[Any] = DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase : Union[str, Any] = Trainer( model=_snake_case , args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , compute_metrics=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase : Any = trainer.evaluate() lowerCAmelCase : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _snake_case , _snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_snake_case ) return results def _snake_case ( _snake_case : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
60
0
from __future__ import annotations def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : int ) -> list[list[int]]: '''simple docstring''' UpperCAmelCase_= [] create_all_state(1 ,lowerCAmelCase_ ,lowerCAmelCase_ ,[] ,lowerCAmelCase_ ) return result def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : int ,lowerCAmelCase_ : int ,lowerCAmelCase_ : list[int] ,lowerCAmelCase_ : list[list[int]] ,) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(lowerCAmelCase_ ,total_number - level + 2 ): current_list.append(lowerCAmelCase_ ) create_all_state(i + 1 ,lowerCAmelCase_ ,level - 1 ,lowerCAmelCase_ ,lowerCAmelCase_ ) current_list.pop() def __a ( lowerCAmelCase_ : list[list[int]] ) -> None: '''simple docstring''' for i in total_list: print(*lowerCAmelCase_ ) if __name__ == "__main__": __A = 4 __A = 2 __A = generate_all_combinations(n, k) print_all_state(total_list)
362
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['''CLIPFeatureExtractor'''] __A = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
277
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Optional[Any] = """Salesforce/blip-image-captioning-base""" _A : Dict = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) _A : int = """image_captioner""" _A : Optional[int] = AutoModelForVisionaSeq _A : List[str] = ["""image"""] _A : Tuple = ["""text"""] def __init__( self: List[Any] , *snake_case: Optional[int] , **snake_case: str ) -> Optional[int]: requires_backends(self , ["""vision"""] ) super().__init__(*snake_case , **snake_case ) def lowerCAmelCase_ ( self: Any , snake_case: "Image" ) -> Optional[Any]: return self.pre_processor(images=snake_case , return_tensors="""pt""" ) def lowerCAmelCase_ ( self: Any , snake_case: List[str] ) -> List[str]: return self.model.generate(**snake_case ) def lowerCAmelCase_ ( self: Tuple , snake_case: Tuple ) -> Tuple: return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
66
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'open-llama' def __init__( self : Any,lowercase_ : Optional[int]=1_0_0_0_0_0,lowercase_ : Union[str, Any]=4_0_9_6,lowercase_ : Dict=1_1_0_0_8,lowercase_ : Dict=3_2,lowercase_ : Optional[int]=3_2,lowercase_ : Dict="silu",lowercase_ : Union[str, Any]=2_0_4_8,lowercase_ : Optional[int]=0.02,lowercase_ : Dict=1E-6,lowercase_ : Dict=True,lowercase_ : List[Any]=0,lowercase_ : Optional[int]=1,lowercase_ : str=2,lowercase_ : str=False,lowercase_ : str=True,lowercase_ : int=0.1,lowercase_ : List[Any]=0.1,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=True,lowercase_ : Any=None,**lowercase_ : List[Any],)-> Tuple: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = initializer_range A__ = rms_norm_eps A__ = use_cache A__ = kwargs.pop( 'use_memorry_efficient_attention',lowercase_ ) A__ = hidden_dropout_prob A__ = attention_dropout_prob A__ = use_stable_embedding A__ = shared_input_output_embedding A__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,tie_word_embeddings=lowercase_,**lowercase_,) def snake_case__ ( self : str )-> str: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling,lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'got {self.rope_scaling}' ) A__ = self.rope_scaling.get('type',lowercase_ ) A__ = self.rope_scaling.get('factor',lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowercase_,lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
7
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class _a : def __init__( self : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=13 , _SCREAMING_SNAKE_CASE : Dict=7 , _SCREAMING_SNAKE_CASE : List[Any]=False , _SCREAMING_SNAKE_CASE : Union[str, Any]=True , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : int=33 , _SCREAMING_SNAKE_CASE : Any=32 , _SCREAMING_SNAKE_CASE : Tuple=5 , _SCREAMING_SNAKE_CASE : List[str]=4 , _SCREAMING_SNAKE_CASE : Optional[Any]=37 , _SCREAMING_SNAKE_CASE : List[Any]="gelu" , _SCREAMING_SNAKE_CASE : int=0.1 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , _SCREAMING_SNAKE_CASE : Optional[Any]=512 , _SCREAMING_SNAKE_CASE : Dict=16 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : Dict=0.02 , _SCREAMING_SNAKE_CASE : Optional[Any]=3 , _SCREAMING_SNAKE_CASE : str=4 , _SCREAMING_SNAKE_CASE : int=None , )-> Dict: lowerCAmelCase__ : Dict = parent lowerCAmelCase__ : List[Any] = batch_size lowerCAmelCase__ : Tuple = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : str = use_input_mask lowerCAmelCase__ : Optional[int] = use_token_type_ids lowerCAmelCase__ : List[str] = use_labels lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Optional[int] = type_vocab_size lowerCAmelCase__ : Optional[int] = type_sequence_label_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Union[str, Any] = num_labels lowerCAmelCase__ : int = num_choices lowerCAmelCase__ : Union[str, Any] = scope def UpperCAmelCase__( self : Union[str, Any] )-> List[Any]: lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : Any = None if self.use_labels: lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__( self : List[Any] )-> Tuple: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] )-> str: lowerCAmelCase__ : str = EsmModel(config=__A ) model.to(__A ) model.eval() lowerCAmelCase__ : Dict = model(__A , attention_mask=__A ) lowerCAmelCase__ : Any = model(__A ) lowerCAmelCase__ : List[Any] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple )-> List[str]: lowerCAmelCase__ : List[Any] = EsmForMaskedLM(config=__A ) model.to(__A ) model.eval() lowerCAmelCase__ : Optional[int] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] )-> int: lowerCAmelCase__ : List[Any] = self.num_labels lowerCAmelCase__ : Optional[int] = EsmForTokenClassification(config=__A ) model.to(__A ) model.eval() lowerCAmelCase__ : Dict = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__( self : Optional[int] )-> List[Any]: lowerCAmelCase__ : Any = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) : Optional[int] = config_and_inputs lowerCAmelCase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a ( A__ , A__ , unittest.TestCase): _a : Dict = False _a : List[Any] = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _a : Union[str, Any] = () _a : List[str] = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) _a : Any = True def UpperCAmelCase__( self : Dict )-> str: lowerCAmelCase__ : Any = EsmModelTester(self ) lowerCAmelCase__ : List[str] = ConfigTester(self , config_class=__A , hidden_size=37 ) def UpperCAmelCase__( self : Optional[Any] )-> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__( self : Union[str, Any] )-> str: lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def UpperCAmelCase__( self : Dict )-> Dict: lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : List[Any] = type self.model_tester.create_and_check_model(*__A ) def UpperCAmelCase__( self : int )-> Tuple: lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def UpperCAmelCase__( self : Any )-> Any: lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def UpperCAmelCase__( self : str )-> Union[str, Any]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Any = EsmModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def UpperCAmelCase__( self : List[Any] )-> str: lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowerCAmelCase__ : Dict = EsmEmbeddings(config=__A ) lowerCAmelCase__ : Optional[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowerCAmelCase__ : str = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCAmelCase__ : List[Any] = create_position_ids_from_input_ids(__A , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__A , __A ) ) ) def UpperCAmelCase__( self : List[str] )-> List[str]: lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs()[0] lowerCAmelCase__ : List[str] = EsmEmbeddings(config=__A ) lowerCAmelCase__ : int = torch.empty(2 , 4 , 30 ) lowerCAmelCase__ : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCAmelCase__ : Dict = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCAmelCase__ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__A ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__A , __A ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCAmelCase__( self : Union[str, Any] )-> Dict: pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCAmelCase__( self : List[str] )-> Dict: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__( self : List[Any] )-> str: pass @require_torch class _a ( A__): @slow def UpperCAmelCase__( self : int )-> List[str]: with torch.no_grad(): lowerCAmelCase__ : int = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() lowerCAmelCase__ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ : Optional[int] = model(__A )[0] lowerCAmelCase__ : Optional[Any] = 33 lowerCAmelCase__ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __A ) lowerCAmelCase__ : List[str] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) ) @slow def UpperCAmelCase__( self : Optional[int] )-> List[str]: with torch.no_grad(): lowerCAmelCase__ : Any = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() lowerCAmelCase__ : Dict = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase__ : Union[str, Any] = model(__A )[0] # compare the actual values for a slice. lowerCAmelCase__ : List[str] = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) )
351
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase_ ( _a ): """simple docstring""" def wrapper(*_a , **_a ): lowerCAmelCase__ : List[str] = timeit.default_timer() lowerCAmelCase__ : List[Any] = func(*_a , **_a ) lowerCAmelCase__ : Any = timeit.default_timer() - starttime return delta lowerCAmelCase__ : Any = func.__name__ return wrapper def lowerCamelCase_ ( _a , _a=100 , _a=None ): """simple docstring""" lowerCAmelCase__ : str = [] lowerCAmelCase__ : str = seq_shapes or {} for i in range(_a ): lowerCAmelCase__ : List[str] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_a , _ArrayXD ): lowerCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_a , datasets.Value ): if v.dtype == "string": lowerCAmelCase__ : Dict = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCAmelCase__ : Any = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_a , datasets.Sequence ): while isinstance(_a , datasets.Sequence ): lowerCAmelCase__ : Optional[int] = v.feature lowerCAmelCase__ : str = seq_shapes[k] lowerCAmelCase__ : Any = np.random.rand(*_a ).astype(v.dtype ) lowerCAmelCase__ : int = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase_ ( _a , _a , _a=100 , _a=None ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = generate_examples(_a , num_examples=_a , seq_shapes=_a ) with ArrowWriter(features=_a , path=_a ) as writer: for key, record in dummy_data: lowerCAmelCase__ : Optional[int] = features.encode_example(_a ) writer.write(_a ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) lowerCAmelCase__ : List[Any] = datasets.Dataset.from_file(filename=_a , info=datasets.DatasetInfo(features=_a ) ) return dataset
211
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _snake_case ( lowercase__ : str ) -> Optional[Any]: '''simple docstring''' def decorator(lowercase__ : Any ): lowerCAmelCase_ :Optional[Any] = getattr(lowercase__ , """handle_key""" , [] ) handle += [key] setattr(lowercase__ , """handle_key""" , lowercase__ ) return func return decorator def _snake_case ( *lowercase__ : List[str] ) -> List[str]: '''simple docstring''' def decorator(lowercase__ : List[str] ): lowerCAmelCase_ :List[str] = getattr(lowercase__ , """handle_key""" , [] ) handle += keys setattr(lowercase__ , """handle_key""" , lowercase__ ) return func return decorator class _SCREAMING_SNAKE_CASE ( A__ ): def __new__( cls , __A , __A , __A ) -> Union[str, Any]: lowerCAmelCase_ :Tuple = super().__new__(cls , __A , __A , __A ) if not hasattr(__A , """key_handler""" ): setattr(__A , """key_handler""" , {} ) setattr(__A , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): lowerCAmelCase_ :str = getattr(__A , """handle_key""" , [] ) for key in handled_keys: lowerCAmelCase_ :str = value return new_cls @staticmethod def __lowerCAmelCase ( cls ) -> str: lowerCAmelCase_ :Optional[int] = get_character() if char != KEYMAP["undefined"]: lowerCAmelCase_ :Optional[Any] = ord(__A ) lowerCAmelCase_ :int = cls.key_handler.get(__A ) if handler: lowerCAmelCase_ :Any = char return handler(cls ) else: return None def _snake_case ( cls : Dict ) -> Tuple: '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
84
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __UpperCAmelCase = 1.054571817e-34 # unit of ℏ : J * s __UpperCAmelCase = 3e8 # unit of c : m * s^-1 def _snake_case ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> dict[str, float]: '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: lowerCAmelCase_ :Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCAmelCase_ :Optional[Any] = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCAmelCase_ :Any = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
84
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case : Any = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] _snake_case : Dict = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] _snake_case : Optional[Any] = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) _snake_case : List[Any] = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) _snake_case : List[Any] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Union[str, Any] ): for tf_name, hf_name in patterns: __lowerCAmelCase = k.replace(lowerCAmelCase_, lowerCAmelCase_ ) return k def a_ ( lowerCAmelCase_ : dict, lowerCAmelCase_ : dict ): __lowerCAmelCase = BigBirdPegasusConfig(**lowerCAmelCase_ ) __lowerCAmelCase = BigBirdPegasusForConditionalGeneration(lowerCAmelCase_ ) __lowerCAmelCase = torch_model.state_dict() __lowerCAmelCase = {} # separating decoder weights __lowerCAmelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} __lowerCAmelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items(), 'tf -> hf conversion' ): __lowerCAmelCase = [k.endswith(lowerCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(lowerCAmelCase_ ): continue __lowerCAmelCase = DECODER_PATTERNS __lowerCAmelCase = rename_state_dict_key(lowerCAmelCase_, lowerCAmelCase_ ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCAmelCase = v.T __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items(), 'tf -> hf conversion' ): __lowerCAmelCase = [k.endswith(lowerCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(lowerCAmelCase_ ): continue __lowerCAmelCase = REMAINING_PATTERNS __lowerCAmelCase = rename_state_dict_key(lowerCAmelCase_, lowerCAmelCase_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCAmelCase = v.T __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCAmelCase = mapping['model.embed_positions.weight'] __lowerCAmelCase = mapping.pop('model.embed_positions.weight' ) __lowerCAmelCase , __lowerCAmelCase = torch_model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) __lowerCAmelCase = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a_ ( lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = tf.train.list_variables(lowerCAmelCase_ ) __lowerCAmelCase = {} __lowerCAmelCase = ['global_step'] for name, shape in tqdm(lowerCAmelCase_, desc='converting tf checkpoint to dict' ): __lowerCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCAmelCase = tf.train.load_variable(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = array return tf_weights def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : dict ): __lowerCAmelCase = get_tf_weights_as_numpy(lowerCAmelCase_ ) __lowerCAmelCase = convert_bigbird_pegasus(lowerCAmelCase_, lowerCAmelCase_ ) torch_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') _snake_case : Union[str, Any] = parser.parse_args() _snake_case : Any = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
207
class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> List[str]: __lowerCAmelCase = name __lowerCAmelCase = value __lowerCAmelCase = weight def __repr__( self : Union[str, Any] ) -> List[str]: return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase ( self : int ) -> Optional[int]: return self.value def lowercase ( self : Optional[Any] ) -> Union[str, Any]: return self.name def lowercase ( self : List[Any] ) -> Tuple: return self.weight def lowercase ( self : int ) -> Dict: return self.value / self.weight def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : int, lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = [] for i in range(len(lowerCAmelCase_ ) ): menu.append(Things(name[i], value[i], weight[i] ) ) return menu def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = sorted(lowerCAmelCase_, key=lowerCAmelCase_, reverse=lowerCAmelCase_ ) __lowerCAmelCase = [] __lowerCAmelCase , __lowerCAmelCase = 0.0, 0.0 for i in range(len(lowerCAmelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
207
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCAmelCase__ = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: lowerCAmelCase__ = json.load(f) @require_torch class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' return FSMTTokenizer.from_pretrained(lowercase ) def UpperCamelCase ( self , lowercase ) -> Optional[int]: '''simple docstring''' A__ = FSMTForConditionalGeneration.from_pretrained(lowercase ).to(lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def UpperCamelCase ( self , lowercase , lowercase ) -> List[Any]: '''simple docstring''' A__ = F'facebook/wmt19-{pair}' A__ = self.get_tokenizer(lowercase ) A__ = self.get_model(lowercase ) A__ = bleu_data[pair]["src"] A__ = bleu_data[pair]["tgt"] A__ = tokenizer(lowercase , return_tensors="pt" , truncation=lowercase , padding="longest" ).to(lowercase ) A__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) A__ = tokenizer.batch_decode( lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) A__ = calculate_bleu(lowercase , lowercase ) print(lowercase ) self.assertGreaterEqual(scores["bleu"] , lowercase )
68
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } UpperCamelCase__ = { '''facebook/bart-base''': 1_0_2_4, '''facebook/bart-large''': 1_0_2_4, '''facebook/bart-large-mnli''': 1_0_2_4, '''facebook/bart-large-cnn''': 1_0_2_4, '''facebook/bart-large-xsum''': 1_0_2_4, '''yjernite/bart_eli5''': 1_0_2_4, } @lru_cache() def a__ ( ) -> List[Any]: UpperCAmelCase__ : int = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase__ : Optional[int] = bs[:] UpperCAmelCase__ : List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase__ ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ : Any = [chr(lowerCAmelCase__ ) for n in cs] return dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: UpperCAmelCase__ : str = set() UpperCAmelCase__ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Optional[int] = char return pairs class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , _A : Optional[int] , _A : List[Any] , _A : int="replace" , _A : List[Any]="<s>" , _A : List[Any]="</s>" , _A : List[Any]="</s>" , _A : Optional[int]="<s>" , _A : List[str]="<unk>" , _A : List[str]="<pad>" , _A : Union[str, Any]="<mask>" , _A : Any=False , **_A : Dict , ): '''simple docstring''' UpperCAmelCase__ : Dict = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token UpperCAmelCase__ : Any = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token UpperCAmelCase__ : Optional[int] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token UpperCAmelCase__ : Tuple = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token UpperCAmelCase__ : int = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token UpperCAmelCase__ : Optional[Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Optional[int] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( errors=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , **_A , ) with open(_A , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase__ : Optional[Any] = json.load(_A ) UpperCAmelCase__ : Any = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : List[str] = errors # how to handle errors in decoding UpperCAmelCase__ : str = bytes_to_unicode() UpperCAmelCase__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_A , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase__ : str = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ : List[Any] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def lowercase_ ( self : int ): '''simple docstring''' return len(self.encoder ) def lowercase_ ( self : Tuple ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : List[Any] , _A : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(_A ) UpperCAmelCase__ : Dict = get_pairs(_A ) if not pairs: return token while True: UpperCAmelCase__ : Optional[Any] = min(_A , key=lambda _A : self.bpe_ranks.get(_A , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : str = bigram UpperCAmelCase__ : int = [] UpperCAmelCase__ : Tuple = 0 while i < len(_A ): try: UpperCAmelCase__ : Optional[int] = word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Tuple = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Optional[Any] = tuple(_A ) UpperCAmelCase__ : List[Any] = new_word if len(_A ) == 1: break else: UpperCAmelCase__ : Union[str, Any] = get_pairs(_A ) UpperCAmelCase__ : Optional[Any] = ''' '''.join(_A ) UpperCAmelCase__ : List[Any] = word return word def lowercase_ ( self : str , _A : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [] for token in re.findall(self.pat , _A ): UpperCAmelCase__ : str = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(''' ''' ) ) return bpe_tokens def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : int , _A : List[str] ): '''simple docstring''' return self.decoder.get(_A ) def lowercase_ ( self : Tuple , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Any = ''''''.join(_A ) UpperCAmelCase__ : List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowercase_ ( self : int , _A : str , _A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : Tuple = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : Any = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '''\n''' ) UpperCAmelCase__ : Union[str, Any] = 0 with open(_A , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase__ : List[str] = token_index writer.write(''' '''.join(_A ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowercase_ ( self : str , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : List[str] = [self.cls_token_id] UpperCAmelCase__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def lowercase_ ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : List[str] = [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : Optional[Any] , _A : Any , _A : Dict=False , **_A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): UpperCAmelCase__ : Tuple = ''' ''' + text return (text, kwargs)
181
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=7, __magic_name__=3, __magic_name__=18, __magic_name__=30, __magic_name__=400, __magic_name__=True, __magic_name__=None, __magic_name__=True, ) -> Tuple: """simple docstring""" UpperCamelCase__ : int = size if size is not None else {"height": 18, "width": 18} UpperCamelCase__ : List[Any] = parent UpperCamelCase__ : Tuple = batch_size UpperCamelCase__ : Optional[int] = num_channels UpperCamelCase__ : Tuple = image_size UpperCamelCase__ : Tuple = min_resolution UpperCamelCase__ : Optional[int] = max_resolution UpperCamelCase__ : str = do_resize UpperCamelCase__ : int = size UpperCamelCase__ : Tuple = apply_ocr def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowercase__ ( _a , unittest.TestCase ): '''simple docstring''' a : Any = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : int = LayoutLMvaImageProcessingTester(self ) @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a, '''do_resize''' ) ) self.assertTrue(hasattr(_a, '''size''' ) ) self.assertTrue(hasattr(_a, '''apply_ocr''' ) ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 18, '''width''': 18} ) UpperCamelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'''height''': 42, '''width''': 42} ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a, Image.Image ) # Test not batched input UpperCamelCase__ : Optional[Any] = image_processing(image_inputs[0], return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) self.assertIsInstance(encoding.words, _a ) self.assertIsInstance(encoding.boxes, _a ) # Test batched UpperCamelCase__ : Optional[Any] = image_processing(_a, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" # Initialize image_processing UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=_a, numpify=_a ) for image in image_inputs: self.assertIsInstance(_a, np.ndarray ) # Test not batched input UpperCamelCase__ : Optional[int] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched UpperCamelCase__ : List[str] = image_processing(_a, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" # Initialize image_processing UpperCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=_a, torchify=_a ) for image in image_inputs: self.assertIsInstance(_a, torch.Tensor ) # Test not batched input UpperCamelCase__ : List[str] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched UpperCamelCase__ : Dict = image_processing(_a, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" # with apply_OCR = True UpperCamelCase__ : Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase__ : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_docvqa''', split='''test''' ) UpperCamelCase__ : Dict = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) UpperCamelCase__ : List[Any] = image_processing(_a, return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ), len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase__ : List[Any] = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 UpperCamelCase__ : List[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, _a ) self.assertListEqual(encoding.boxes, _a ) # with apply_OCR = False UpperCamelCase__ : Any = LayoutLMvaImageProcessor(apply_ocr=_a ) UpperCamelCase__ : Dict = image_processing(_a, return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224) )
370
import qiskit def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> qiskit.result.counts.Counts: UpperCamelCase__ : Optional[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register UpperCamelCase__ : str = qiskit.QuantumCircuit(__UpperCAmelCase , __UpperCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator UpperCamelCase__ : Union[str, Any] = qiskit.execute(__UpperCAmelCase , __UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
247
0
import datasets UpperCAmelCase__ = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" UpperCAmelCase__ = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" UpperCAmelCase__ = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def A ( _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32'), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32'), }) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def _lowerCamelCase ( self : List[str] , A : Dict , A : Optional[Any]) -> List[str]: """simple docstring""" return {"accuracy": simple_accuracy(_snake_case , _snake_case)}
339
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a_ :Any = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a_ :List[str] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a_ :List[str] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : str ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def lowercase_ ( self : str, _snake_case : List[List[List[str]]], _snake_case : List[List[str]], _snake_case : int = 1, _snake_case : int = 4, ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case, hypotheses=_snake_case, min_len=_snake_case, max_len=_snake_case ) }
277
0
def lowerCAmelCase_ ( __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: List[Any] =[0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase__: List[str] =1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase__: List[Any] =min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
273
from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0) ->None: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Any =row, column lowerCamelCase__: List[str] =[[default_value for c in range(UpperCAmelCase_)] for r in range(UpperCAmelCase_)] def __str__(self : Tuple) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier lowerCamelCase__: List[str] =0 for row_vector in self.array: for obj in row_vector: lowerCamelCase__: int =max(UpperCAmelCase_ , len(str(UpperCAmelCase_))) lowerCamelCase__: Any =F"""%{max_element_length}s""" # Make string and return def single_line(UpperCAmelCase_ : list[float]) -> str: nonlocal string_format_identifier lowerCamelCase__: Tuple ="[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(UpperCAmelCase_) for row_vector in self.array) return s def __repr__(self : Optional[int]) ->str: '''simple docstring''' return str(self) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : tuple[int, int]) ->bool: '''simple docstring''' if not (isinstance(UpperCAmelCase_ , (list, tuple)) and len(UpperCAmelCase_) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self : int , UpperCAmelCase_ : tuple[int, int]) ->Any: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) return self.array[loc[0]][loc[1]] def __setitem__(self : Optional[Any] , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float) ->None: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) lowerCamelCase__: str =value def __add__(self : Dict , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == another.row and self.column == another.column # Add lowerCamelCase__: Dict =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: List[str] =self[r, c] + another[r, c] return result def __neg__(self : str) ->Matrix: '''simple docstring''' lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =-self[r, c] return result def __sub__(self : str , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' return self + (-another) def __mul__(self : List[str] , UpperCAmelCase_ : int | float | Matrix) ->Matrix: '''simple docstring''' if isinstance(UpperCAmelCase_ , (int, float)): # Scalar multiplication lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =self[r, c] * another return result elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Matrix multiplication assert self.column == another.row lowerCamelCase__: Dict =Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase__: int =F"""Unsupported type given for another ({type(UpperCAmelCase_)})""" raise TypeError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Matrix: '''simple docstring''' lowerCamelCase__: Optional[Any] =Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Optional[int] =self[r, c] return result def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix) ->Any: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase__: Tuple =v.transpose() lowerCamelCase__: Optional[Any] =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: List[str] =Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase__: Union[str, Any] =1 print(F"""a^(-1) is {ainv}""" ) # u, v lowerCamelCase__: Optional[int] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =1, 2, -3 lowerCamelCase__: Optional[Any] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(__a , __a )}""" ) def lowerCAmelCase_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
273
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
211
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __A ( A ): '''simple docstring''' __lowerCamelCase : Any = 'gptj' __lowerCamelCase : List[str] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , A=50_400 , A=2_048 , A=4_096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1E-5 , A=0.02 , A=True , A=50_256 , A=50_256 , A=False , **A , ) -> Tuple: """simple docstring""" _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class __A ( A ): '''simple docstring''' def __init__(self , A , A = "default" , A = None , A = False , ) -> List[str]: """simple docstring""" super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , '''pad_token_id''' , A ): # TODO: how to do that better? _a = 0 @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(A , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a__ (self ) -> int: """simple docstring""" return self._config.n_layer @property def a__ (self ) -> int: """simple docstring""" return self._config.n_head def a__ (self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: """simple docstring""" _a = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def a__ (self ) -> int: """simple docstring""" return 13
211
1
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case ="""\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ __snake_case ="""\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ __snake_case =""" Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Optional[int] ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : List[str]=False ) -> Any: if rouge_types is None: lowerCAmelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] lowerCAmelCase = rouge_scorer.RougeScorer(rouge_types=UpperCAmelCase__ , use_stemmer=UpperCAmelCase__ ) if use_aggregator: lowerCAmelCase = scoring.BootstrapAggregator() else: lowerCAmelCase = [] for ref, pred in zip(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = scorer.score(UpperCAmelCase__ , UpperCAmelCase__ ) if use_aggregator: aggregator.add_scores(UpperCAmelCase__ ) else: scores.append(UpperCAmelCase__ ) if use_aggregator: lowerCAmelCase = aggregator.aggregate() else: lowerCAmelCase = {} for key in scores[0]: lowerCAmelCase = [score[key] for score in scores] return result
355
'''simple docstring''' import requests from bsa import BeautifulSoup def a_ ( lowerCamelCase : str = "AAPL" ): lowerCAmelCase = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowerCAmelCase = BeautifulSoup(requests.get(lowerCamelCase ).text , 'html.parser' ) lowerCAmelCase = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
55
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer A__ : Optional[int] = ['gpt2'] A__ : str = 'gpt2' if is_tf_available(): class _UpperCAmelCase ( tf.Module ): """simple docstring""" def __init__( self : str, lowerCamelCase : str ): '''simple docstring''' super().__init__() lowercase__ = tokenizer lowercase__ = AutoConfig.from_pretrained(lowerCamelCase ) lowercase__ = TFGPTaLMHeadModel.from_config(lowerCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,), tf.string, name='''text''' ),) ) def lowercase__ ( self : Dict, lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.tokenizer(lowerCamelCase ) lowercase__ = tokenized['''input_ids'''].to_tensor() lowercase__ = tf.cast(input_ids_dense > 0, tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowercase__ = self.model(input_ids=lowerCamelCase, attention_mask=lowerCamelCase )['''logits'''] return outputs @require_tf @require_keras_nlp class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Dict ): '''simple docstring''' super().setUp() lowercase__ = [GPTaTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowercase__ = [TFGPTaTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase__ = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] lowercase__ = list(zip(self.test_sentences, self.test_sentences[::-1] ) ) def lowercase__ ( self : Dict ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers ): for test_inputs in self.test_sentences: lowercase__ = tokenizer([test_inputs], return_tensors='''tf''' ) lowercase__ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowercase__ = python_outputs[key].numpy() lowercase__ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCamelCase, tf.intaa ) == tf_outputs_values ) ) @slow def lowercase__ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowercase__ = tf.function(lowerCamelCase ) for test_inputs in self.test_sentences: lowercase__ = tf.constant(lowerCamelCase ) lowercase__ = compiled_tokenizer(lowerCamelCase ) lowercase__ = tf_tokenizer(lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowercase__ = ModelToSave(tokenizer=lowerCamelCase ) lowercase__ = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ = model.serving(lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase__ = Path(lowerCamelCase ) / '''saved.model''' tf.saved_model.save(lowerCamelCase, lowerCamelCase, signatures={'''serving_default''': model.serving} ) lowercase__ = tf.saved_model.load(lowerCamelCase ) lowercase__ = loaded_model.signatures['''serving_default'''](lowerCamelCase )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowercase__ ( self : List[str] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowercase__ = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ = tf_tokenizer(lowerCamelCase ) # Build model with some sample inputs lowercase__ = tf_tokenizer.get_config() lowercase__ = TFGPTaTokenizer.from_config(lowerCamelCase ) lowercase__ = model_from_config(lowerCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowercase__ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run lowercase__ = 123_123 for max_length in [3, 5, 1_024]: lowercase__ = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ = tf_tokenizer(lowerCamelCase, max_length=lowerCamelCase ) lowercase__ = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
207
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A__ : Optional[Any] = logging.get_logger(__name__) def a ( lowerCamelCase_ , lowerCamelCase_=False ): '''simple docstring''' lowercase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase__ = '''''' else: lowercase__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowercase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = dct.pop(lowerCamelCase_ ) lowercase__ = val def a ( ): '''simple docstring''' lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = ViTConfig() lowercase__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowercase__ = True lowercase__ = int(vit_name[-12:-10] ) lowercase__ = int(vit_name[-9:-6] ) else: lowercase__ = 1000 lowercase__ = '''huggingface/label-files''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = int(vit_name[-6:-4] ) lowercase__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowercase__ = 192 lowercase__ = 768 lowercase__ = 12 lowercase__ = 3 elif vit_name[9:].startswith('''small''' ): lowercase__ = 384 lowercase__ = 1536 lowercase__ = 12 lowercase__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowercase__ = 768 lowercase__ = 2304 lowercase__ = 8 lowercase__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowercase__ = 1024 lowercase__ = 4096 lowercase__ = 24 lowercase__ = 16 elif vit_name[4:].startswith('''huge''' ): lowercase__ = 1280 lowercase__ = 5120 lowercase__ = 32 lowercase__ = 16 # load original model from timm lowercase__ = timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase__ = timm_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase_ ) lowercase__ = create_rename_keys(lowerCamelCase_ , lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": lowercase__ = ViTModel(lowerCamelCase_ ).eval() else: lowercase__ = ViTForImageClassification(lowerCamelCase_ ).eval() model.load_state_dict(lowerCamelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowercase__ = DeiTImageProcessor(size=config.image_size ) else: lowercase__ = ViTImageProcessor(size=config.image_size ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase__ = encoding['''pixel_values'''] lowercase__ = model(lowerCamelCase_ ) if base_model: lowercase__ = timm_model.forward_features(lowerCamelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCamelCase_ , outputs.pooler_output , atol=1e-3 ) else: lowercase__ = timm_model(lowerCamelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase_ , outputs.logits , atol=1e-3 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
207
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case__ = logging.get_logger(__name__) class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = ['pixel_values'] def __init__( self : int , _lowerCamelCase : bool = True , _lowerCamelCase : int = 32 , _lowerCamelCase : List[str]=PILImageResampling.BILINEAR , _lowerCamelCase : bool = True , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" A_ : Optional[Any] = do_resize A_ : List[str] = do_rescale A_ : Union[str, Any] = size_divisor A_ : Any = resample super().__init__(**_lowerCamelCase ) def _a ( self : Optional[int] , _lowerCamelCase : np.ndarray , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Optional[ChannelDimension] = None , **_lowerCamelCase : Optional[Any] ): """simple docstring""" A_ ,A_ : Tuple = get_image_size(_lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor A_ : Union[str, Any] = height // size_divisor * size_divisor A_ : Dict = width // size_divisor * size_divisor A_ : Any = resize(_lowerCamelCase , (new_h, new_w) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) return image def _a ( self : List[str] , _lowerCamelCase : np.ndarray , _lowerCamelCase : float , _lowerCamelCase : Optional[ChannelDimension] = None , **_lowerCamelCase : Optional[int] ): """simple docstring""" return rescale(image=_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self : Optional[Any] , _lowerCamelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : str=None , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[Union[TensorType, str]] = None , _lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCamelCase : Any , ): """simple docstring""" A_ : Dict = do_resize if do_resize is not None else self.do_resize A_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale A_ : str = size_divisor if size_divisor is not None else self.size_divisor A_ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) A_ : Tuple = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. A_ : Dict = [to_numpy_array(_lowerCamelCase ) for img in images] if do_resize: A_ : Tuple = [self.resize(_lowerCamelCase , size_divisor=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_rescale: A_ : str = [self.rescale(_lowerCamelCase , scale=1 / 255 ) for image in images] A_ : List[str] = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] A_ : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
4
'''simple docstring''' import heapq def snake_case__ ( lowerCamelCase__ : dict ) -> set[int]: A_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ : str = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ : Tuple = heapq.heappop(lowerCamelCase__ )[1][0] chosen_vertices.add(lowerCamelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ : List[str] = elem[1][1].index(lowerCamelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() snake_case__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
4
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) lowerCamelCase__ = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'}) lowerCamelCase__ = list_field( default=[8, 32, 128, 512] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'}) lowerCamelCase__ = field(default=a , metadata={'help': 'Use FP16 to accelerate inference.'}) lowerCamelCase__ = field(default=a , metadata={'help': 'Benchmark training of model'}) lowerCamelCase__ = field(default=a , metadata={'help': 'Verbose memory tracing'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) lowerCamelCase__ = field( default=a , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) lowerCamelCase__ = field(default=a , metadata={'help': 'Trace memory line by line'}) lowerCamelCase__ = field(default=a , metadata={'help': 'Save result to a CSV file'}) lowerCamelCase__ = field(default=a , metadata={'help': 'Save all print statements in a log file'}) lowerCamelCase__ = field(default=a , metadata={'help': 'Whether to print environment information'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) lowerCamelCase__ = field( default=F"inference_time_{round(time())}.csv" , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) lowerCamelCase__ = field( default=F"inference_memory_{round(time())}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) lowerCamelCase__ = field( default=F"train_time_{round(time())}.csv" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) lowerCamelCase__ = field( default=F"train_memory_{round(time())}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) lowerCamelCase__ = field( default=F"env_info_{round(time())}.csv" , metadata={'help': 'CSV filename used if saving environment information.'} , ) lowerCamelCase__ = field( default=F"log_{round(time())}.csv" , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) lowerCamelCase__ = field(default=3 , metadata={'help': 'Times an experiment will be run.'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def snake_case__ ( self): '''simple docstring''' warnings.warn( f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models.", __a, ) def snake_case__ ( self): '''simple docstring''' return json.dumps(dataclasses.asdict(self), indent=2) @property def snake_case__ ( self): '''simple docstring''' if len(self.models) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased'].") return self.models @property def snake_case__ ( self): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU.") return False else: return True
36
"""simple docstring""" import os import numpy import onnx def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: A__ = a.name A__ = b.name A__ = "" A__ = "" A__ = a == b A__ = name_a A__ = name_b return res def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase_ , lowercase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowercase_ , lowercase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowercase_ , lowercase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: for n in graph_proto.node: _node_replace_input_with(lowercase_ , lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> int: A__ = list(model.graph.initializer ) A__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A__ = inits[i].name A__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowercase_ , lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: A__ = os.path.dirname(lowercase_ ) A__ = os.path.basename(lowercase_ ) A__ = onnx.load(os.path.join(lowercase_ , lowercase_ ) ) A__ = list(model.graph.initializer ) A__ = set() A__ = {} A__ = [] A__ = 0 for i in range(len(lowercase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowercase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowercase_ ) dup_set.add(lowercase_ ) A__ = inits[j].data_type A__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , lowercase_ ) total_reduced_size += mem_size A__ = inits[i].name A__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase_ ) else: A__ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 10_24 / 10_24 / 10_24 , "GB" ) A__ = sorted(lowercase_ ) _remove_dup_initializers_from_model(lowercase_ , lowercase_ , lowercase_ ) A__ = "optimized_" + model_file_name A__ = os.path.join(lowercase_ , lowercase_ ) onnx.save(lowercase_ , lowercase_ ) return new_model
247
0
from typing import Any class lowercase : def __init__( self , snake_case ): snake_case_ = data snake_case_ = None def __repr__( self ): return F'''Node({self.data})''' class lowercase : def __init__( self ): snake_case_ = None def __iter__( self ): snake_case_ = self.head while node: yield node.data snake_case_ = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case ) for item in self] ) def __getitem__( self , snake_case ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case , snake_case ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) snake_case_ = self.head for _ in range(snake_case ): snake_case_ = current.next snake_case_ = data def a ( self , snake_case ): self.insert_nth(len(self ) , snake_case ) def a ( self , snake_case ): self.insert_nth(0 , snake_case ) def a ( self , snake_case , snake_case ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) snake_case_ = Node(snake_case ) if self.head is None: snake_case_ = new_node elif index == 0: snake_case_ = self.head # link new_node to head snake_case_ = new_node else: snake_case_ = self.head for _ in range(index - 1 ): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = new_node def a ( self ): # print every node data print(self ) def a ( self ): return self.delete_nth(0 ) def a ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def a ( self , snake_case = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) snake_case_ = self.head # default first node if index == 0: snake_case_ = self.head.next else: snake_case_ = self.head for _ in range(index - 1 ): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = temp.next.next return delete_node.data def a ( self ): return self.head is None def a ( self ): snake_case_ = None snake_case_ = self.head while current: # Store the current node's next node. snake_case_ = current.next # Make the current node's next point backwards snake_case_ = prev # Make the previous node be the current node snake_case_ = current # Make the current node the next node (to progress iteration) snake_case_ = next_node # Return prev in order to put the head at the end snake_case_ = prev def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = LinkedList() assert linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(UpperCamelCase__ ) == i linked_list.insert_nth(UpperCamelCase__ , i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(UpperCamelCase__ ) == 9 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): snake_case_ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(-8 , 1 ) ) def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] snake_case_ = LinkedList() for i in test_input: linked_list.insert_tail(UpperCamelCase__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(UpperCamelCase__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head snake_case_ = linked_list.delete_head() assert result == -9 assert ( str(UpperCamelCase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail snake_case_ = linked_list.delete_tail() assert result == 12.2 assert ( str(UpperCamelCase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list snake_case_ = linked_list.delete_nth(10 ) assert result is None assert ( str(UpperCamelCase__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(UpperCamelCase__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(UpperCamelCase__ ) assert ( str(UpperCamelCase__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(UpperCamelCase__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __lowerCamelCase ( ): '''simple docstring''' from doctest import testmod testmod() snake_case_ = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(UpperCamelCase__ ) print('\nReading/changing Node data using indexing:' ) print(F'''Element at Position 1: {linked_list[1]}''' ) snake_case_ = input('Enter New Value: ' ).strip() print('New list:' ) print(UpperCamelCase__ ) print(F'''length of linked_list is : {len(UpperCamelCase__ )}''' ) if __name__ == "__main__": main()
200
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 1 snake_case_ = 2 while i * i <= n: snake_case_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = 1 snake_case_ = 1 while True: i += 1 t_num += i if count_divisors(UpperCamelCase__ ) > 500: break return t_num if __name__ == "__main__": print(solution())
200
1
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> list: '''simple docstring''' if len(UpperCamelCase__ ) < 2: return collection def circle_sort_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: UpperCAmelCase = False if low == high: return swapped UpperCAmelCase = low UpperCAmelCase = high while left < right: if collection[left] > collection[right]: UpperCAmelCase , UpperCAmelCase = ( collection[right], collection[left], ) UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: UpperCAmelCase , UpperCAmelCase = ( collection[right + 1], collection[left], ) UpperCAmelCase = True UpperCAmelCase = low + int((high - low) / 2 ) UpperCAmelCase = circle_sort_util(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = circle_sort_util(UpperCamelCase__ , mid + 1 , UpperCamelCase__ ) return swapped or left_swap or right_swap UpperCAmelCase = True while is_not_sorted is True: UpperCAmelCase = circle_sort_util(UpperCamelCase__ , 0 , len(UpperCamelCase__ ) - 1 ) return collection if __name__ == "__main__": __A : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() __A : Tuple = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
273
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __A : Dict = logging.get_logger(__name__) __A : str = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class A_ (a_ ): UpperCAmelCase__ = '''longformer''' def __init__( self , _A = 5_1_2 , _A = 2 , _A = 1 , _A = 0 , _A = 2 , _A = 3_0_5_2_2 , _A = 7_6_8 , _A = 1_2 , _A = 1_2 , _A = 3_0_7_2 , _A = "gelu" , _A = 0.1 , _A = 0.1 , _A = 5_1_2 , _A = 2 , _A = 0.02 , _A = 1E-12 , _A = False , **_A , ): '''simple docstring''' super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase = attention_window UpperCAmelCase = sep_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = onnx_export class A_ (a_ ): def __init__( self , _A , _A = "default" , _A = None ): '''simple docstring''' super().__init__(_A , _A , _A ) UpperCAmelCase = True @property def _lowercase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = super().outputs if self.task == "default": UpperCAmelCase = {0: '''batch'''} return outputs @property def _lowercase ( self ): '''simple docstring''' return 1E-4 @property def _lowercase ( self ): '''simple docstring''' return max(super().default_onnx_opset , 1_4 ) def _lowercase ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): '''simple docstring''' UpperCAmelCase = super().generate_dummy_inputs( preprocessor=_A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global UpperCAmelCase = 1 return inputs
273
1
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : CLIPSegForImageSegmentation , lowercase_ : CLIPSegProcessor , lowercase_ : AutoencoderKL , lowercase_ : CLIPTextModel , lowercase_ : CLIPTokenizer , lowercase_ : UNetaDConditionModel , lowercase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowercase_ : StableDiffusionSafetyChecker , lowercase_ : CLIPImageProcessor , ) -> List[Any]: """simple docstring""" super().__init__() if hasattr(scheduler.config , "steps_offset") and scheduler.config.steps_offset != 1: _UpperCamelCase = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowercase_ , standard_warn=lowercase_) _UpperCamelCase = dict(scheduler.config) _UpperCamelCase = 1 _UpperCamelCase = FrozenDict(lowercase_) if hasattr(scheduler.config , "skip_prk_steps") and scheduler.config.skip_prk_steps is False: _UpperCamelCase = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowercase_ , standard_warn=lowercase_) _UpperCamelCase = dict(scheduler.config) _UpperCamelCase = True _UpperCamelCase = FrozenDict(lowercase_) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 .") self.register_modules( segmentation_model=lowercase_ , segmentation_processor=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , ) def __UpperCAmelCase ( self : int , lowercase_ : Optional[Union[str, int]] = "auto") -> Optional[int]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_) def __UpperCAmelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(lowercase_) def __UpperCAmelCase ( self : Dict) -> str: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") _UpperCamelCase = torch.device("cuda") for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" if self.device != torch.device("meta") or not hasattr(self.unet , "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook") and hasattr(module._hf_hook , "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() def __call__( self : int , lowercase_ : Union[str, List[str]] , lowercase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowercase_ : str , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 50 , lowercase_ : float = 7.5 , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , **lowercase_ : List[Any] , ) -> Tuple: """simple docstring""" _UpperCamelCase = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt").to(self.device) _UpperCamelCase = self.segmentation_model(**lowercase_) _UpperCamelCase = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy() _UpperCamelCase = self.numpy_to_pil(lowercase_)[0].resize(image.size) # Run inpainting pipeline with the generated mask _UpperCamelCase = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , height=lowercase_ , width=lowercase_ , num_inference_steps=lowercase_ , guidance_scale=lowercase_ , negative_prompt=lowercase_ , num_images_per_prompt=lowercase_ , eta=lowercase_ , generator=lowercase_ , latents=lowercase_ , output_type=lowercase_ , return_dict=lowercase_ , callback=lowercase_ , callback_steps=lowercase_ , )
361
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = 30 _UpperCamelCase = self.seq_length + self.mem_len _UpperCamelCase = 15 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = [10, 50, 80] _UpperCamelCase = 32 _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = 8 _UpperCamelCase = 128 _UpperCamelCase = 2 _UpperCamelCase = 2 _UpperCamelCase = None _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 3 _UpperCamelCase = self.vocab_size - 1 _UpperCamelCase = 0.01 def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" random.seed(self.seed) tf.random.set_seed(self.seed) def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase , _UpperCamelCase = model([input_ids_a, mems_a]).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict) -> str: """simple docstring""" _UpperCamelCase = TFTransfoXLForSequenceClassification(lowercase_) _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __A = () if is_tf_available() else () __A = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str]) -> Any: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCamelCase = TFTransfoXLModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , d_embed=37) def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_) def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: _UpperCamelCase = model.get_output_embeddings() assert isinstance(lowercase_ , tf.keras.layers.Layer) _UpperCamelCase = model.get_bias() assert name is None else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" pass @slow def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFTransfoXLModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.") def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" pass @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved.") @slow def __UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103") # fmt: off _UpperCamelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _UpperCamelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _UpperCamelCase = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_)
63
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Any = "mobilenet_v1" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=224 , _UpperCAmelCase=1.0 , _UpperCAmelCase=8 , _UpperCAmelCase="relu6" , _UpperCAmelCase=True , _UpperCAmelCase=0.999 , _UpperCAmelCase=0.02 , _UpperCAmelCase=0.001 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) lowercase__: Any = num_channels lowercase__: Union[str, Any] = image_size lowercase__: int = depth_multiplier lowercase__: Any = min_depth lowercase__: Optional[Any] = hidden_act lowercase__: Union[str, Any] = tf_padding lowercase__: Optional[int] = classifier_dropout_prob lowercase__: Optional[int] = initializer_range lowercase__: List[Any] = layer_norm_eps class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :List[str] = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def _snake_case ( self ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def _snake_case ( self ): return 1e-4
177
'''simple docstring''' a_ : Any = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
55
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class a__ ( UpperCamelCase__ ): a : Optional[int] = (UnCLIPScheduler,) def lowerCAmelCase_ ( self , **A ) -> str: '''simple docstring''' a = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**__UpperCAmelCase ) return config def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__UpperCAmelCase ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCAmelCase ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__UpperCAmelCase ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__UpperCAmelCase , prev_timestep=__UpperCAmelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config(variance_type="fixed_small_log" ) a = scheduler_class(**__UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_5_4_9_6_2_5 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_9_9_4_9_8_7 ) ) < 1e-5 def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config(variance_type="learned_range" ) a = scheduler_class(**__UpperCAmelCase ) a = 0.5 assert scheduler._get_variance(1 , predicted_variance=__UpperCAmelCase ) - -1_0.1_7_1_2_7_9_0 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__UpperCAmelCase ) - -5.7_9_9_8_0_5_2 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__UpperCAmelCase ) - -0.0_0_1_0_0_1_1 < 1e-5 def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__UpperCAmelCase ) a = scheduler.timesteps a = self.dummy_model() a = self.dummy_sample_deter a = torch.manual_seed(0 ) for i, t in enumerate(__UpperCAmelCase ): # 1. predict noise residual a = model(__UpperCAmelCase , __UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 a = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample a = pred_prev_sample a = torch.sum(torch.abs(__UpperCAmelCase ) ) a = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1e-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1e-3 def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(25 ) a = scheduler.timesteps a = self.dummy_model() a = self.dummy_sample_deter a = torch.manual_seed(0 ) for i, t in enumerate(__UpperCAmelCase ): # 1. predict noise residual a = model(__UpperCAmelCase , __UpperCAmelCase ) if i + 1 == timesteps.shape[0]: a = None else: a = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 a = scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , prev_timestep=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample a = pred_prev_sample a = torch.sum(torch.abs(__UpperCAmelCase ) ) a = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1e-3 def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' pass
354
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowercase__ : str = TypeVar("T") class a__ ( Generic[T] ): def __init__( self , A = True ) -> None: '''simple docstring''' a = {} # dictionary of lists a = directed def lowerCAmelCase_ ( self , A , A ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) self.adj_list[destination_vertex].append(A ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) a = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(A ) a = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: a = [destination_vertex] a = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A ) a = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: a = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: a = [destination_vertex] a = [] return self def __repr__( self ) -> str: '''simple docstring''' return pformat(self.adj_list )
180
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 3_2 , UpperCAmelCase__ : str=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : int , ) -> None: lowerCAmelCase = do_resize lowerCAmelCase = do_rescale lowerCAmelCase = size_divisor lowerCAmelCase = resample super().__init__(**UpperCAmelCase__ ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : int ) -> np.ndarray: lowerCAmelCase , lowerCAmelCase = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCAmelCase = height // size_divisor * size_divisor lowerCAmelCase = width // size_divisor * size_divisor lowerCAmelCase = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) -> np.ndarray: return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : List[Any] , ) -> BatchFeature: lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = size_divisor if size_divisor is not None else self.size_divisor lowerCAmelCase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) lowerCAmelCase = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: lowerCAmelCase = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(UpperCAmelCase__ , scale=1 / 2_5_5 ) for image in images] lowerCAmelCase = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
4
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case =logging.get_logger(__name__) __snake_case ={ """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __snake_case ={ """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __snake_case ={ """facebook/blenderbot_small-90M""": 512, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer def __init__( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int="<|endoftext|>" , UpperCAmelCase__ : Dict="<|endoftext|>" , UpperCAmelCase__ : str="<|endoftext|>" , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Tuple=True , **UpperCAmelCase__ : Optional[Any] , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = add_prefix_space def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None ) -> Any: lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
4
1
"""simple docstring""" import pprint import requests SCREAMING_SNAKE_CASE : Optional[Any] = '''https://zenquotes.io/api''' def __UpperCAmelCase ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __UpperCAmelCase ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = random_quotes() pprint.pprint(response)
317
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 1000000 ) -> int: """simple docstring""" _lowerCAmelCase = limit + 1 _lowerCAmelCase = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowerCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
317
1
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" return math.sqrt(SCREAMING_SNAKE_CASE__ ) * math.sqrt(SCREAMING_SNAKE_CASE__ ) == num def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = 0 _SCREAMING_SNAKE_CASE : List[str] = n while left <= right: _SCREAMING_SNAKE_CASE : Any = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _SCREAMING_SNAKE_CASE : Dict = mid - 1 else: _SCREAMING_SNAKE_CASE : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
200
'''simple docstring''' from sklearn.metrics import fa_score import datasets UpperCAmelCase_ : Optional[int] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' UpperCAmelCase_ : Tuple = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' UpperCAmelCase_ : Dict = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case=1 , __snake_case="binary" , __snake_case=None ): _SCREAMING_SNAKE_CASE : Optional[int] = fa_score( __snake_case , __snake_case , labels=__snake_case , pos_label=__snake_case , average=__snake_case , sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
200
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaControlnetPipeline __SCREAMING_SNAKE_CASE : int = ['image_embeds', 'negative_image_embeds', 'hint'] __SCREAMING_SNAKE_CASE : int = ['image_embeds', 'negative_image_embeds', 'hint'] __SCREAMING_SNAKE_CASE : Dict = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : Any = False @property def _a (self ): return 32 @property def _a (self ): return 32 @property def _a (self ): return self.time_input_dim @property def _a (self ): return self.time_input_dim * 4 @property def _a (self ): return 100 @property def _a (self ): torch.manual_seed(0 ) A_ : int = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A_ : int = UNetaDConditionModel(**lowercase ) return model @property def _a (self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _a (self ): torch.manual_seed(0 ) A_ : Any = VQModel(**self.dummy_movq_kwargs ) return model def _a (self ): A_ : Optional[int] = self.dummy_unet A_ : int = self.dummy_movq A_ : Optional[int] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=lowercase , set_alpha_to_one=lowercase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowercase , ) A_ : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _a (self , lowercase , lowercase=0 ): A_ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase ) ).to(lowercase ) A_ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase ) # create hint A_ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase ) ).to(lowercase ) if str(lowercase ).startswith("""mps""" ): A_ : Union[str, Any] = torch.manual_seed(lowercase ) else: A_ : int = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : Tuple = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _a (self ): A_ : Union[str, Any] = """cpu""" A_ : Tuple = self.get_dummy_components() A_ : int = self.pipeline_class(**lowercase ) A_ : Tuple = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Optional[Any] = pipe(**self.get_dummy_inputs(lowercase ) ) A_ : List[str] = output.images A_ : Union[str, Any] = pipe( **self.get_dummy_inputs(lowercase ) , return_dict=lowercase , )[0] A_ : Any = image[0, -3:, -3:, -1] A_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : Union[str, Any] = np.array( [0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): A_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A_ : Optional[int] = torch.from_numpy(np.array(lowercase ) ).float() / 255.0 A_ : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) A_ : Tuple = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowercase ) A_ : Tuple = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) A_ : List[str] = pipeline.to(lowercase ) pipeline.set_progress_bar_config(disable=lowercase ) A_ : str = """A robot, 4k photo""" A_ : Dict = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ : str = pipe_prior( lowercase , generator=lowercase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() A_ : Dict = torch.Generator(device="""cuda""" ).manual_seed(0 ) A_ : Union[str, Any] = pipeline( image_embeds=lowercase , negative_image_embeds=lowercase , hint=lowercase , generator=lowercase , num_inference_steps=100 , output_type="""np""" , ) A_ : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowercase , lowercase )
353
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase :Dict = logging.get_logger(__name__) lowerCamelCase :Any = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : List[Any] = 'bart' __SCREAMING_SNAKE_CASE : Union[str, Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Dict = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , lowercase=50265 , lowercase=1024 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=12 , lowercase=4096 , lowercase=16 , lowercase=0.0 , lowercase=0.0 , lowercase="gelu" , lowercase=1024 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=0.0 , lowercase=False , lowercase=True , lowercase=3 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=True , lowercase=2 , lowercase=2 , **lowercase , ): A_ : Optional[int] = vocab_size A_ : Dict = max_position_embeddings A_ : Dict = d_model A_ : Any = encoder_ffn_dim A_ : Dict = encoder_layers A_ : Optional[int] = encoder_attention_heads A_ : Tuple = decoder_ffn_dim A_ : List[str] = decoder_layers A_ : int = decoder_attention_heads A_ : Dict = dropout A_ : List[str] = attention_dropout A_ : int = activation_dropout A_ : Dict = activation_function A_ : List[Any] = init_std A_ : Dict = encoder_layerdrop A_ : Tuple = decoder_layerdrop A_ : Optional[int] = classifier_dropout A_ : Union[str, Any] = use_cache A_ : Dict = encoder_layers A_ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , lowercase ): A_ : List[str] = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" ) class _lowerCAmelCase ( __UpperCAmelCase ): @property def _a (self ): if self.task in ["default", "seq2seq-lm"]: A_ : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: A_ : Union[str, Any] = {0: """batch"""} A_ : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A_ : Optional[int] = {0: """batch""", 1: """decoder_sequence"""} A_ : List[str] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. A_ : List[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: A_, A_ : Optional[int] = self.num_layers for i in range(lowercase ): A_ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} A_ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} else: A_ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def _a (self ): if self.task in ["default", "seq2seq-lm"]: A_ : int = super().outputs else: A_ : int = super(lowercase , self ).outputs if self.use_past: A_, A_ : Union[str, Any] = self.num_layers for i in range(lowercase ): A_ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} A_ : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): A_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs A_ : int = seq_length if not self.use_past else 1 A_ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) A_ : Optional[int] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} A_ : Dict = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_, A_ : Union[str, Any] = common_inputs["""input_ids"""].shape A_ : Optional[Any] = common_inputs["""decoder_input_ids"""].shape[1] A_, A_ : str = self.num_attention_heads A_ : Tuple = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Tuple = decoder_seq_length + 3 A_ : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A_ : List[str] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowercase , lowercase )] , dim=1 ) A_ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A_, A_ : Optional[int] = self.num_layers A_ : List[Any] = min(lowercase , lowercase ) A_ : Tuple = max(lowercase , lowercase ) - min_num_layers A_ : List[str] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. A_ : List[Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): A_ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_, A_ : List[str] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A_ : Optional[Any] = seqlen + 2 A_, A_ : str = self.num_layers A_, A_ : Optional[int] = self.num_attention_heads A_ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Union[str, Any] = common_inputs["""attention_mask"""].dtype A_ : int = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) A_ : int = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ : List[Any] = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : Union[str, Any] = tokenizer.num_special_tokens_to_add(lowercase ) A_ : List[Any] = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence A_ : str = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size A_ : Tuple = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def _a (self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ): if self.task in ["default", "seq2seq-lm"]: A_ : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) elif self.task == "causal-lm": A_ : List[str] = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: A_ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def _a (self , lowercase , lowercase , lowercase , lowercase ): if self.task in ["default", "seq2seq-lm"]: A_ : Optional[Any] = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: A_ : List[Any] = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase )
135
0
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowercase: List[str] = logging.get_logger(__name__) _lowercase: str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase: Any = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } _lowercase: str = { 'Salesforce/codegen-350M-mono': 2048, } class _lowercase ( lowerCamelCase_ ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["input_ids", "attention_mask"] __A = CodeGenTokenizer def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_=False , **lowerCamelCase_ , ): """simple docstring""" super().__init__( __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , add_prefix_space=__a , **__a , ) if kwargs.pop("add_bos_token" , __a ): a = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __a ) != add_prefix_space: a = getattr(__a , pre_tok_state.pop("type" ) ) a = add_prefix_space a = pre_tok_class(**__a ) a = add_prefix_space def UpperCamelCase_ (self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" a = kwargs.get("is_split_into_words" , __a ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__a , **__a ) def UpperCamelCase_ (self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" a = kwargs.get("is_split_into_words" , __a ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__a , **__a ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ): """simple docstring""" a = super().decode( token_ids=__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a , **__a , ) if truncate_before_pattern is not None and len(__a ) > 0: a = self.truncate(__a , __a ) return decoded_text def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" def find_re(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): a = pattern.search(__a , __a ) return m.start() if m else -1 a = [re.compile(__a , re.MULTILINE ) for pattern in truncate_before_pattern] a = list(re.finditer("^print" , __a , re.MULTILINE ) ) if len(__a ) > 1: a = completion[: prints[1].start()] a = list(re.finditer("^def" , __a , re.MULTILINE ) ) if len(__a ) > 1: a = completion[: defs[1].start()] a = 0 a = [ pos for pos in [find_re(__a , __a , __a ) for terminal in terminals] if pos != -1 ] if len(__a ) > 0: return completion[: min(__a )] else: return completion
227
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='deta' __a ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[str] , __a : List[str]=None , __a : Dict=9_00 , __a : str=20_48 , __a : Tuple=6 , __a : List[str]=20_48 , __a : str=8 , __a : Union[str, Any]=6 , __a : int=10_24 , __a : List[Any]=8 , __a : Dict=0.0 , __a : Tuple=True , __a : Optional[Any]="relu" , __a : Tuple=2_56 , __a : Optional[Any]=0.1 , __a : int=0.0 , __a : List[Any]=0.0 , __a : Optional[int]=0.02 , __a : str=1.0 , __a : Dict=True , __a : Dict=False , __a : Optional[int]="sine" , __a : Any=5 , __a : List[str]=4 , __a : Optional[int]=4 , __a : List[str]=True , __a : str=3_00 , __a : int=True , __a : int=True , __a : Tuple=1 , __a : Optional[int]=5 , __a : Tuple=2 , __a : Dict=1 , __a : Optional[int]=1 , __a : Any=5 , __a : Optional[int]=2 , __a : Dict=0.1 , __a : str=0.25 , **__a : Tuple , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _a = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(__a , __a ): _a = backbone_config.pop("model_type" ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(__a ) _a = backbone_config _a = num_queries _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = auxiliary_loss _a = position_embedding_type # deformable attributes _a = num_feature_levels _a = encoder_n_points _a = decoder_n_points _a = two_stage _a = two_stage_num_proposals _a = with_box_refine _a = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient _a = focal_alpha super().__init__(is_encoder_decoder=__a , **__a ) @property def UpperCamelCase__ ( self : Optional[Any] ): return self.encoder_attention_heads @property def UpperCamelCase__ ( self : Dict ): return self.d_model def UpperCamelCase__ ( self : List[str] ): _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
63
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase__ = 16 lowerCamelCase__ = 32 def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase = 16 ): _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) _UpperCAmelCase : Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : List[str] = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : int = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : List[str] = 8 else: _UpperCAmelCase : List[Any] = None return tokenizer.pad( __lowerCAmelCase , padding="longest" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. _UpperCAmelCase : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase__ = mocked_dataloaders # noqa: F811 def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , __lowerCAmelCase ) == "1": _UpperCAmelCase : str = 2 # New Code # _UpperCAmelCase : Optional[int] = int(args.gradient_accumulation_steps ) _UpperCAmelCase : List[str] = int(args.local_sgd_steps ) # Initialize accelerator _UpperCAmelCase : Dict = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowerCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : int = config["lr"] _UpperCAmelCase : str = int(config["num_epochs"] ) _UpperCAmelCase : Union[str, Any] = int(config["seed"] ) _UpperCAmelCase : Any = int(config["batch_size"] ) _UpperCAmelCase : Tuple = evaluate.load("glue" , "mrpc" ) set_seed(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : int = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : Optional[Any] = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler _UpperCAmelCase : Tuple = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() with LocalSGD( accelerator=__lowerCAmelCase , model=__lowerCAmelCase , local_sgd_steps=__lowerCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowerCAmelCase ): _UpperCAmelCase : Dict = model(**__lowerCAmelCase ) _UpperCAmelCase : int = output.loss accelerator.backward(__lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : int = model(**__lowerCAmelCase ) _UpperCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase : List[str] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) _UpperCAmelCase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __lowerCAmelCase ) def __lowerCAmelCase (): _UpperCAmelCase : Optional[int] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=__lowerCAmelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=__lowerCAmelCase , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _UpperCAmelCase : Any = parser.parse_args() _UpperCAmelCase : Union[str, Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
322
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCamelCase__ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCamelCase__ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCamelCase__ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCamelCase__ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[str] ) ->int: '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int=0.9 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : Dict=0.5 ) ->Any: '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): _UpperCAmelCase : Dict = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase__ ) , word_tokenize(lowerCamelCase__ ) , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] else: _UpperCAmelCase : Optional[int] = [ meteor_score.single_meteor_score(lowerCamelCase__ , lowerCamelCase__ , alpha=lowerCamelCase__ , beta=lowerCamelCase__ , gamma=lowerCamelCase__ ) for ref, pred in zip(lowerCamelCase__ , lowerCamelCase__ ) ] return {"meteor": np.mean(lowerCamelCase__ )}
322
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __SCREAMING_SNAKE_CASE :Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __SCREAMING_SNAKE_CASE :Any = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class A_ ( unittest.TestCase ): def lowercase ( self : List[Any] ): _UpperCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) _UpperCAmelCase = self.transformer_dir shutil.copy( os.path.join(snake_case_ , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def lowercase ( self : Optional[Any] ): _UpperCAmelCase = "src/transformers" shutil.rmtree(self.transformer_dir ) def lowercase ( self : Dict , snake_case_ : int , snake_case_ : Any , snake_case_ : Any , snake_case_ : Union[str, Any]=None ): _UpperCAmelCase = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: _UpperCAmelCase = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result _UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) _UpperCAmelCase = black.format_str(snake_case_ , mode=snake_case_ ) _UpperCAmelCase = os.path.join(self.transformer_dir , "new_code.py" ) with open(snake_case_ , "w" , newline="\n" ) as f: f.write(snake_case_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case_ ) with open(snake_case_ , "r" ) as f: self.assertTrue(f.read() , snake_case_ ) def lowercase ( self : List[Any] ): _UpperCAmelCase = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(snake_case_ , snake_case_ ) def lowercase ( self : Any ): # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , snake_case_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , snake_case_ ) , ) # Copy consistency with a really long name _UpperCAmelCase = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , f'{long_class_name}LMPredictionHead' , re.sub("Bert" , snake_case_ , snake_case_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , snake_case_ , overwrite_result=re.sub("Bert" , "TestModel" , snake_case_ ) , ) def lowercase ( self : List[Any] ): _UpperCAmelCase = check_copies.LOCALIZED_READMES["README_zh-hans.md"] _UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) _UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) _UpperCAmelCase , _UpperCAmelCase = check_copies.convert_to_localized_md( snake_case_ , snake_case_ , localized_readme["format_model_list"] ) self.assertFalse(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = check_copies.convert_to_localized_md( snake_case_ , snake_case_ , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(snake_case_ ) _UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) _UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _UpperCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) _UpperCAmelCase , _UpperCAmelCase = check_copies.convert_to_localized_md( snake_case_ , snake_case_ , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(snake_case_ , snake_case_ )
22
import torch from torch import nn class a ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1 , lowerCAmelCase_=False ) -> Any: super().__init__() _A = n_token _A = d_embed _A = d_proj _A = cutoffs + [n_token] _A = [0] + self.cutoffs _A = div_val _A = self.cutoffs[0] _A = len(self.cutoffs ) - 1 _A = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _A = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _A = nn.Parameter(torch.zeros(self.n_clusters ) ) _A = nn.ModuleList() _A = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) else: self.out_projs.append(lowerCAmelCase_ ) self.out_layers.append(nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) ) else: for i in range(len(self.cutoffs ) ): _A , _A = self.cutoff_ends[i], self.cutoff_ends[i + 1] _A = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) self.out_layers.append(nn.Linear(lowerCAmelCase_ , r_idx - l_idx ) ) _A = keep_order def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: if proj is None: _A = nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _A = nn.functional.linear(lowerCAmelCase_ , proj.t().contiguous() ) _A = nn.functional.linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=False ) -> List[Any]: if labels is not None: # Shift so that tokens < n predict n _A = hidden[..., :-1, :].contiguous() _A = labels[..., 1:].contiguous() _A = hidden.view(-1 , hidden.size(-1 ) ) _A = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: _A = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _A = self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _A = labels != -1_00 _A = torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device ) _A = ( -nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _A = nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 ) else: # construct weights and biases _A , _A = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _A , _A = self.cutoff_ends[i], self.cutoff_ends[i + 1] _A = self.out_layers[0].weight[l_idx:r_idx] _A = self.out_layers[0].bias[l_idx:r_idx] else: _A = self.out_layers[i].weight _A = self.out_layers[i].bias if i == 0: _A = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _A = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase_ ) biases.append(lowerCAmelCase_ ) _A , _A , _A = weights[0], biases[0], self.out_projs[0] _A = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) if labels is None: _A = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _A = torch.zeros_like(lowerCAmelCase_ , dtype=hidden.dtype , device=hidden.device ) _A = 0 _A = [0] + self.cutoffs for i in range(len(lowerCAmelCase_ ) - 1 ): _A , _A = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _A = (labels >= l_idx) & (labels < r_idx) _A = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _A = labels.index_select(0 , lowerCAmelCase_ ) - l_idx _A = head_logprob.index_select(0 , lowerCAmelCase_ ) _A = hidden.index_select(0 , lowerCAmelCase_ ) else: _A = hidden if i == 0: if labels is not None: _A = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _A = head_logprob[:, : self.cutoffs[0]] else: _A , _A , _A = weights[i], biases[i], self.out_projs[i] _A = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) _A = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _A = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _A = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _A = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int: if self.n_clusters == 0: _A = self._compute_logit(lowerCAmelCase_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 ) else: # construct weights and biases _A , _A = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _A , _A = self.cutoff_ends[i], self.cutoff_ends[i + 1] _A = self.out_layers[0].weight[l_idx:r_idx] _A = self.out_layers[0].bias[l_idx:r_idx] else: _A = self.out_layers[i].weight _A = self.out_layers[i].bias if i == 0: _A = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _A = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(lowerCAmelCase_ ) biases.append(lowerCAmelCase_ ) _A , _A , _A = weights[0], biases[0], self.out_projs[0] _A = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _A = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) _A = [0] + self.cutoffs for i in range(len(lowerCAmelCase_ ) - 1 ): _A , _A = cutoff_values[i], cutoff_values[i + 1] if i == 0: _A = head_logprob[:, : self.cutoffs[0]] else: _A , _A , _A = weights[i], biases[i], self.out_projs[i] _A = self._compute_logit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A = nn.functional.log_softmax(lowerCAmelCase_ , dim=1 ) _A = head_logprob[:, -i] + tail_logprob_i _A = logprob_i return out
180
0
"""simple docstring""" def lowerCAmelCase_( lowercase_ : int ) -> int: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError('''only integers accepted as input''' ) else: _lowerCamelCase = str(abs(UpperCAmelCase__ ) ) _lowerCamelCase = [list(UpperCAmelCase__ ) for char in range(len(UpperCAmelCase__ ) )] for index in range(len(UpperCAmelCase__ ) ): num_transpositions[index].pop(UpperCAmelCase__ ) return max( int(''''''.join(list(UpperCAmelCase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
0
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE = '''BlipImageProcessor''' SCREAMING_SNAKE_CASE = '''AutoTokenizer''' def __init__( self ,A ,A ): UpperCAmelCase = False super().__init__(A ,A ) UpperCAmelCase = self.image_processor def __call__( self ,A = None ,A = None ,A = True ,A = False ,A = None ,A = None ,A = 0 ,A = None ,A = None ,A = False ,A = False ,A = False ,A = False ,A = False ,A = True ,A = None ,**A ,): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: UpperCAmelCase = self.tokenizer UpperCAmelCase = self.tokenizer( text=A ,add_special_tokens=A ,padding=A ,truncation=A ,max_length=A ,stride=A ,pad_to_multiple_of=A ,return_attention_mask=A ,return_overflowing_tokens=A ,return_special_tokens_mask=A ,return_offsets_mapping=A ,return_token_type_ids=A ,return_length=A ,verbose=A ,return_tensors=A ,**A ,) return text_encoding # add pixel_values UpperCAmelCase = self.image_processor(A ,return_tensors=A ) if text is not None: UpperCAmelCase = self.tokenizer( text=A ,add_special_tokens=A ,padding=A ,truncation=A ,max_length=A ,stride=A ,pad_to_multiple_of=A ,return_attention_mask=A ,return_overflowing_tokens=A ,return_special_tokens_mask=A ,return_offsets_mapping=A ,return_token_type_ids=A ,return_length=A ,verbose=A ,return_tensors=A ,**A ,) else: UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(A ) return encoding_image_processor def _UpperCamelCase ( self ,*A ,**A ): return self.tokenizer.batch_decode(*A ,**A ) def _UpperCamelCase ( self ,*A ,**A ): return self.tokenizer.decode(*A ,**A ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _UpperCamelCase ( self ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
234
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """▁""" _UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} _UpperCamelCase = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } _UpperCamelCase = {"""vinai/bartpho-syllable""": 1024} class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self ,A ,A ,A="<s>" ,A="</s>" ,A="</s>" ,A="<s>" ,A="<unk>" ,A="<pad>" ,A="<mask>" ,A = None ,**A ,): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) UpperCAmelCase = vocab_file UpperCAmelCase = monolingual_vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCAmelCase = {} UpperCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = cnt cnt += 1 with open(A ,"""r""" ,encoding="""utf-8""" ) as f: for line in f.readlines(): UpperCAmelCase = line.strip().split()[0] UpperCAmelCase = len(self.fairseq_tokens_to_ids ) if str(A ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = len(self.fairseq_tokens_to_ids ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self ,A ): UpperCAmelCase = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self ,A ,A = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self ,A ,A = None ,A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _UpperCamelCase ( self ,A ,A = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self ): return len(self.fairseq_ids_to_tokens ) def _UpperCamelCase ( self ): UpperCAmelCase = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self ,A ): return self.sp_model.encode(A ,out_type=A ) def _UpperCamelCase ( self ,A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _UpperCamelCase ( self ,A ): return self.fairseq_ids_to_tokens[index] def _UpperCamelCase ( self ,A ): UpperCAmelCase = """""".join(A ).replace(A ,""" """ ).strip() return out_string def _UpperCamelCase ( self ,A ,A = None ): if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"""wb""" ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(A ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( A ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,A ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(A ,"""w""" ,encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(A )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
234
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCAmelCase : List[Any] = pytest.mark.integration @require_faiss class __snake_case ( a__ ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Optional[Any] = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(A ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCAmelCase__ ( self : Union[str, Any] ): import faiss __snake_case: Dataset = self._create_dummy_dataset() __snake_case: Optional[int] = dset.map( lambda A , A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=A , keep_in_memory=A ) __snake_case: Tuple = dset.add_faiss_index("""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __snake_case: Dict = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def UpperCAmelCase__ ( self : Dict ): import faiss __snake_case: Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case: Dict = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def UpperCAmelCase__ ( self : Optional[int] ): import faiss __snake_case: Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) __snake_case: Optional[Any] = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(A , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def UpperCAmelCase__ ( self : List[str] ): from elasticsearch import Elasticsearch __snake_case: Dataset = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: __snake_case: List[Any] = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __snake_case: List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __snake_case: Tuple = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=A ) __snake_case: List[Any] = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class __snake_case ( a__ ): '''simple docstring''' def UpperCAmelCase__ ( self : List[str] ): import faiss __snake_case: Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __snake_case: Optional[Any] = np.zeros(5 , dtype=np.floataa ) __snake_case: Optional[int] = 1 __snake_case: Optional[Any] = index.search(A ) self.assertRaises(A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __snake_case: Any = np.eye(5 , dtype=np.floataa )[::-1] __snake_case: Dict = index.search_batch(A ) self.assertRaises(A , index.search_batch , queries[0] ) __snake_case: List[Any] = [scores[0] for scores in total_scores] __snake_case: List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , A ) def UpperCAmelCase__ ( self : Union[str, Any] ): import faiss __snake_case: List[str] = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __snake_case: Any = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(A ): __snake_case: int = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def UpperCAmelCase__ ( self : List[str] ): import faiss __snake_case: str = faiss.IndexFlat(5 ) __snake_case: Optional[int] = FaissIndex(custom_index=A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCAmelCase__ ( self : List[str] ): import faiss __snake_case: List[str] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A ) as tmp_file: index.save(tmp_file.name ) __snake_case: Dict = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __snake_case: Optional[int] = np.zeros(5 , dtype=np.floataa ) __snake_case: Optional[int] = 1 __snake_case: Union[str, Any] = index.search(A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def A__ ( SCREAMING_SNAKE_CASE__) -> Union[str, Any]: import faiss __snake_case: Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) __snake_case: Any = "index.faiss" __snake_case: Any = F'''mock://{index_name}''' index.save(_lowerCamelCase , storage_options=mockfs.storage_options) __snake_case: str = FaissIndex.load(_lowerCamelCase , storage_options=mockfs.storage_options) __snake_case: Tuple = np.zeros(5 , dtype=np.floataa) __snake_case: Union[str, Any] = 1 __snake_case: List[Any] = index.search(_lowerCamelCase) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __snake_case ( a__ ): '''simple docstring''' def UpperCAmelCase__ ( self : List[Any] ): from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: __snake_case: Any = Elasticsearch() __snake_case: Optional[Any] = {"acknowledged": True} __snake_case: str = ElasticSearchIndex(es_client=A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query __snake_case: int = "foo" __snake_case: Optional[int] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __snake_case: Optional[Any] = index.search(A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __snake_case: Any = "foo" __snake_case: Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __snake_case: List[Any] = index.search(A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __snake_case: int = ["foo", "bar", "foobar"] __snake_case: List[str] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __snake_case: Optional[Any] = index.search_batch(A ) __snake_case: str = [scores[0] for scores in total_scores] __snake_case: List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) , 0 ) self.assertListEqual([1, 1, 1] , A ) # batched queries with timeout __snake_case: Optional[int] = ["foo", "bar", "foobar"] __snake_case: str = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __snake_case: Optional[Any] = index.search_batch(A , request_timeout=30 ) __snake_case: int = [scores[0] for scores in total_scores] __snake_case: str = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) , 0 ) self.assertListEqual([1, 1, 1] , A )
111
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class _snake_case ( a__ ): snake_case__ = "camembert" def __init__( self : Union[str, Any] , UpperCAmelCase : List[Any]=30522 , UpperCAmelCase : Optional[int]=768 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : Tuple=3072 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : Tuple=1E-12 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , UpperCAmelCase : str="absolute" , UpperCAmelCase : Dict=True , UpperCAmelCase : int=None , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Any = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : int = hidden_act __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : List[Any] = attention_probs_dropout_prob __lowerCamelCase : Dict = max_position_embeddings __lowerCamelCase : Tuple = type_vocab_size __lowerCamelCase : Any = initializer_range __lowerCamelCase : str = layer_norm_eps __lowerCamelCase : List[Any] = position_embedding_type __lowerCamelCase : Dict = use_cache __lowerCamelCase : List[Any] = classifier_dropout class _snake_case ( a__ ): @property def lowerCamelCase__ ( self : int ): if self.task == "multiple-choice": __lowerCamelCase : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCamelCase : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
135
0
import operator as op A : int = 'scaler.pt' A : List[str] = 'pytorch_model' A : List[str] = 'random_states' A : List[str] = 'optimizer' A : Dict = 'scheduler' A : Optional[Any] = 'pytorch_model.bin' A : Any = 'pytorch_model.bin.index.json' A : Any = 'model.safetensors' A : Union[str, Any] = 'model.safetensors.index.json' A : Union[str, Any] = '1.10.2' A : List[Any] = 'py38' A : int = '4.17.0' A : List[Any] = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] A : List[Any] = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] A : List[Any] = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] A : Dict = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] A : Dict = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] A : Dict = '2.0.1' A : str = ['pdsh', 'standard', 'openmpi', 'mvapich'] A : int = ['default', 'reduce-overhead', 'max-autotune'] A : Optional[Any] = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 A : int = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] A : Tuple = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] A : Optional[Any] = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
33
import os import numpy import onnx def __lowerCAmelCase ( a__ , a__ ) -> List[str]: __a = a.name __a = b.name __a = '''''' __a = '''''' __a = a == b __a = name_a __a = name_b return res def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a__ , a__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) _graph_replace_input_with(node_proto.attribute[1].g , a__ , a__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> str: for n in graph_proto.node: _node_replace_input_with(a__ , a__ , a__ ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> Union[str, Any]: __a = list(model.graph.initializer ) __a = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __a = inits[i].name __a = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a__ , a__ ) def __lowerCAmelCase ( a__ ) -> str: __a = os.path.dirname(a__ ) __a = os.path.basename(a__ ) __a = onnx.load(os.path.join(a__ , a__ ) ) __a = list(model.graph.initializer ) __a = set() __a = {} __a = [] __a = 0 for i in range(len(a__ ) ): if i in dup_set: continue for j in range(i + 1 , len(a__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a__ ) dup_set.add(a__ ) __a = inits[j].data_type __a = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , a__ ) total_reduced_size += mem_size __a = inits[i].name __a = inits[j].name if name_i in dup_map: dup_map[name_i].append(a__ ) else: __a = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) __a = sorted(a__ ) _remove_dup_initializers_from_model(a__ , a__ , a__ ) __a = '''optimized_''' + model_file_name __a = os.path.join(a__ , a__ ) onnx.save(a__ , a__ ) return new_model
33
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a = 1_6 _a = 3_2 def _a ( SCREAMING_SNAKE_CASE : Accelerator , SCREAMING_SNAKE_CASE : int = 16 ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: Optional[int] = AutoTokenizer.from_pretrained('bert-base-cased' ) __lowerCAmelCase: Union[str, Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE : Optional[int] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase: str = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase: Optional[Any] = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase: Optional[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase: Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase: Tuple = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase: Dict = 8 else: __lowerCAmelCase: Any = None return tokenizer.pad( SCREAMING_SNAKE_CASE , padding='longest' , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_tensors='pt' , ) # Instantiate dataloaders. __lowerCAmelCase: List[str] = DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a = mocked_dataloaders # noqa: F811 def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE ) == "1": __lowerCAmelCase: Union[str, Any] = 2 # New Code # __lowerCAmelCase: Any = int(args.gradient_accumulation_steps ) __lowerCAmelCase: Optional[int] = int(args.local_sgd_steps ) # Initialize accelerator __lowerCAmelCase: Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase: Dict = config['lr'] __lowerCAmelCase: Optional[int] = int(config['num_epochs'] ) __lowerCAmelCase: List[str] = int(config['seed'] ) __lowerCAmelCase: Tuple = int(config['batch_size'] ) __lowerCAmelCase: Union[str, Any] = evaluate.load('glue' , 'mrpc' ) set_seed(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase: Optional[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase: Tuple = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase: Dict = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) # Instantiate scheduler __lowerCAmelCase: Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: List[str] = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE ): model.train() with LocalSGD( accelerator=SCREAMING_SNAKE_CASE , model=SCREAMING_SNAKE_CASE , local_sgd_steps=SCREAMING_SNAKE_CASE , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = model(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = output.loss accelerator.backward(SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase: int = model(**SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase: List[str] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) __lowerCAmelCase: Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , SCREAMING_SNAKE_CASE ) def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=SCREAMING_SNAKE_CASE , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __lowerCAmelCase: Optional[Any] = parser.parse_args() __lowerCAmelCase: Dict = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
322
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Optional[int] = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
364
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case_ : int = logging.get_logger(__name__) def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: _UpperCamelCase : Any = 1_0_2_4 _UpperCamelCase : List[Any] = 4_0_9_6 _UpperCamelCase : List[str] = 2_4 _UpperCamelCase : Tuple = 1_6 _UpperCamelCase : Union[str, Any] = [5, 1_1, 1_7, 2_3] _UpperCamelCase : Any = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] _UpperCamelCase : Tuple = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: _UpperCamelCase : Optional[int] = 7_6_8 _UpperCamelCase : Optional[Any] = [1, 1, 1, 0.5] _UpperCamelCase : List[Any] = [2_5_6, 5_1_2, 7_6_8, 7_6_8] _UpperCamelCase : Optional[int] = 1_5_0 _UpperCamelCase : Tuple = 1_6 _UpperCamelCase : Dict = (1, 3_8_4, 3_8_4) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Optional[int] = 'project' if "ade" in checkpoint_url: _UpperCamelCase : Dict = True _UpperCamelCase : Dict = 7_6_8 _UpperCamelCase : Union[str, Any] = [1, 1, 1, 0.5] _UpperCamelCase : Union[str, Any] = 1_5_0 _UpperCamelCase : str = 1_6 _UpperCamelCase : Tuple = 'huggingface/label-files' _UpperCamelCase : Tuple = 'ade20k-id2label.json' _UpperCamelCase : Tuple = json.load(open(cached_download(hf_hub_url(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) ) , 'r' ) ) _UpperCamelCase : str = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} _UpperCamelCase : List[str] = idalabel _UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCamelCase : int = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCamelCase : List[str] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _UpperCamelCase : int = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _UpperCamelCase : Any = name.replace('patch_embed' , '' ) if "pos_embed" in name: _UpperCamelCase : Tuple = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _UpperCamelCase : List[str] = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _UpperCamelCase : int = name.replace('proj' , 'projection' ) if "blocks" in name: _UpperCamelCase : List[str] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _UpperCamelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _UpperCamelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: _UpperCamelCase : Tuple = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: _UpperCamelCase : str = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _UpperCamelCase : Dict = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _UpperCamelCase : List[str] = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _UpperCamelCase : List[str] = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _UpperCamelCase : Any = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _UpperCamelCase : int = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _UpperCamelCase : Dict = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _UpperCamelCase : str = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCamelCase : str = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: _UpperCamelCase : Dict = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _UpperCamelCase : Union[str, Any] = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _UpperCamelCase : Union[str, Any] = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _UpperCamelCase : int = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _UpperCamelCase : Dict = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCamelCase : str = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCamelCase : Optional[int] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCamelCase : Optional[int] = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _UpperCamelCase : List[str] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _UpperCamelCase : List[Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _UpperCamelCase : List[Any] = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _UpperCamelCase : Dict = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _UpperCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _UpperCamelCase : List[str] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _UpperCamelCase : int = name.replace('pretrained' , 'dpt' ) if "bn" in name: _UpperCamelCase : Union[str, Any] = name.replace('bn' , 'batch_norm' ) if "head" in name: _UpperCamelCase : Dict = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _UpperCamelCase : str = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _UpperCamelCase : Any = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: _UpperCamelCase : List[Any] = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: _UpperCamelCase : Dict = name.replace('..' , '.' ) if "stem.conv" in name: _UpperCamelCase : Tuple = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _UpperCamelCase : Optional[int] = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: _UpperCamelCase : List[str] = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: _UpperCamelCase : Union[str, Any] = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: _UpperCamelCase : Dict = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: _UpperCamelCase : str = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: _UpperCamelCase : Tuple = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase : List[str] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) _UpperCamelCase : List[str] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCamelCase : int = in_proj_bias[: config.hidden_size] _UpperCamelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def A__ ( ): _UpperCamelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCamelCase : List[Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : int = get_dpt_config(UpperCAmelCase_ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _UpperCamelCase : List[str] = torch.load(UpperCAmelCase_ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(UpperCAmelCase_ ) # rename keys for key in state_dict.copy().keys(): _UpperCamelCase : Any = state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : int = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ ) # load HuggingFace model _UpperCamelCase : Union[str, Any] = DPTForSemanticSegmentation(UpperCAmelCase_ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() # Check outputs on an image _UpperCamelCase : Tuple = 4_8_0 if 'ade' in checkpoint_url else 3_8_4 _UpperCamelCase : Any = DPTImageProcessor(size=UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = prepare_img() _UpperCamelCase : Optional[int] = image_processor(UpperCAmelCase_ , return_tensors='pt' ) # forward pass _UpperCamelCase : Optional[Any] = model(**UpperCAmelCase_ ).logits if 'ade' in checkpoint_url else model(**UpperCAmelCase_ ).predicted_depth if show_prediction: _UpperCamelCase : List[str] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=UpperCAmelCase_ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) snake_case_ : Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
236
0
from typing import Any class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase ) -> Optional[Any]: lowerCamelCase_ = data lowerCamelCase_ = None class _SCREAMING_SNAKE_CASE : def __init__( self ) -> List[Any]: lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.head while temp is not None: print(temp.data , end=" " ) lowerCamelCase_ = temp.next print() def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Dict: lowerCamelCase_ = Node(lowercase ) lowerCamelCase_ = self.head lowerCamelCase_ = new_node def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Dict: if node_data_a == node_data_a: return else: lowerCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase_ = node_a.next lowerCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase_ = node_a.next if node_a is None or node_a is None: return lowerCamelCase_ , lowerCamelCase_ = node_a.data, node_a.data if __name__ == "__main__": __A =LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
19
from math import isclose, sqrt def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> tuple[float, float, float]: __lowerCamelCase : Tuple = point_y / 4 / point_x __lowerCamelCase : Tuple = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __lowerCamelCase : List[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __lowerCamelCase : int = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __lowerCamelCase : Any = outgoing_gradient**2 + 4 __lowerCamelCase : Optional[int] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __lowerCamelCase : str = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 __lowerCamelCase : str = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __lowerCamelCase : Optional[Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __lowerCamelCase : Optional[Any] = x_minus if isclose(lowerCamelCase__ , lowerCamelCase__ ) else x_plus __lowerCamelCase : Tuple = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1.4 , lowerCamelCase__ = -9.6 ) -> int: __lowerCamelCase : int = 0 __lowerCamelCase : float = first_x_coord __lowerCamelCase : float = first_y_coord __lowerCamelCase : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = next_point(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
73
0
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :List[str] = XLMProphetNetTokenizer UpperCAmelCase_ :Dict = False UpperCAmelCase_ :List[str] = True def __lowerCAmelCase ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ :Optional[int] = XLMProphetNetTokenizer(__A , keep_accents=__A ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Optional[Any] = """[PAD]""" lowerCAmelCase_ :Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__A ) , 1012 ) def __lowerCAmelCase ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Optional[Any] = XLMProphetNetTokenizer(__A , keep_accents=__A ) lowerCAmelCase_ :Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase_ :List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase_ :Optional[int] = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowerCAmelCase_ :Any = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def __lowerCAmelCase ( self ) -> Any: return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :List[Any] = """Hello World!""" lowerCAmelCase_ :Optional[Any] = [3_5389, 6672, 49, 2] self.assertListEqual(__A , self.big_tokenizer.encode(__A ) ) @slow def __lowerCAmelCase ( self ) -> Any: # fmt: off lowerCAmelCase_ :Optional[int] = {"""input_ids""": [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
1
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> Union[str, Any]: if isinstance(__A , __A ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowerCAmelCase_ :Tuple = deepcopy(__A ) elif os.path.exists(__A ): with io.open(__A , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ :str = json.load(__A ) else: try: lowerCAmelCase_ :Dict = baseaa.urlsafe_baadecode(__A ).decode("""utf-8""" ) lowerCAmelCase_ :int = json.loads(__A ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) lowerCAmelCase_ :Optional[Any] = config self.set_stage_and_offload() def __lowerCAmelCase ( self ) -> Tuple: # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. lowerCAmelCase_ :Tuple = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowerCAmelCase_ :Dict = False if self.is_zeroa() or self.is_zeroa(): lowerCAmelCase_ :Optional[int] = set(["""cpu""", """nvme"""] ) lowerCAmelCase_ :Union[str, Any] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowerCAmelCase_ :Optional[int] = True def __lowerCAmelCase ( self , __A ) -> Optional[Any]: lowerCAmelCase_ :str = self.config # find the config node of interest if it exists lowerCAmelCase_ :Tuple = ds_key_long.split(""".""" ) lowerCAmelCase_ :List[str] = nodes.pop() for node in nodes: lowerCAmelCase_ :Tuple = config.get(__A ) if config is None: return None, ds_key return config, ds_key def __lowerCAmelCase ( self , __A , __A=None ) -> Optional[Any]: lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = self.find_config_node(__A ) if config is None: return default return config.get(__A , __A ) def __lowerCAmelCase ( self , __A , __A=False ) -> Optional[Any]: lowerCAmelCase_ :Tuple = self.config # find the config node of interest if it exists lowerCAmelCase_ :Union[str, Any] = ds_key_long.split(""".""" ) for node in nodes: lowerCAmelCase_ :int = config lowerCAmelCase_ :Any = config.get(__A ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__A ) def __lowerCAmelCase ( self , __A ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = self.get_value(__A ) return False if value is None else bool(__A ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: lowerCAmelCase_ :List[str] = self.get_value(__A ) return False if value is None else not bool(__A ) def __lowerCAmelCase ( self ) -> str: return self._stage == 2 def __lowerCAmelCase ( self ) -> Union[str, Any]: return self._stage == 3 def __lowerCAmelCase ( self ) -> Union[str, Any]: return self._offload class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> Optional[int]: lowerCAmelCase_ :Dict = engine def __lowerCAmelCase ( self , __A , **__A ) -> str: # runs backpropagation and handles mixed precision self.engine.backward(__A , **__A ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A ) -> List[str]: super().__init__(__A , device_placement=__A , scaler=__A ) lowerCAmelCase_ :List[str] = hasattr(self.optimizer , """overflow""" ) def __lowerCAmelCase ( self , __A=None ) -> Optional[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __lowerCAmelCase ( self ) -> List[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __lowerCAmelCase ( self ) -> int: if self.__has_overflow__: return self.optimizer.overflow return False class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A , __A ) -> Optional[int]: super().__init__(__A , __A ) def __lowerCAmelCase ( self ) -> Any: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=0.0_0_1 , __A=0 , **__A ) -> List[Any]: lowerCAmelCase_ :str = params lowerCAmelCase_ :Any = lr lowerCAmelCase_ :List[Any] = weight_decay lowerCAmelCase_ :Any = kwargs class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=None , __A=0 , **__A ) -> List[str]: lowerCAmelCase_ :Optional[int] = optimizer lowerCAmelCase_ :int = total_num_steps lowerCAmelCase_ :List[Any] = warmup_num_steps lowerCAmelCase_ :int = kwargs
1
1
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if len(__lowerCAmelCase ) == 0: return False _UpperCAmelCase : List[str] = len(__lowerCAmelCase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __lowerCAmelCase ) else: return binary_search(a_list[midpoint + 1 :] , __lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = input('Enter numbers separated by comma:\n').strip() lowerCamelCase__ = [int(item.strip()) for item in user_input.split(',')] lowerCamelCase__ = int(input('Enter the number to be found in the list:\n').strip()) lowerCamelCase__ = '' if binary_search(sequence, target) else 'not ' print(F'''{target} was {not_str}found in {sequence}''')
234
'''simple docstring''' import math def __lowerCAmelCase (__lowerCAmelCase ): return math.sqrt(__lowerCAmelCase ) * math.sqrt(__lowerCAmelCase ) == num def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = 0 _UpperCAmelCase : Tuple = n while left <= right: _UpperCAmelCase : int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _UpperCAmelCase : str = mid - 1 else: _UpperCAmelCase : List[str] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
234
1
def lowerCamelCase__ ( a__ : str , a__ : str ) -> int: if len(a__ ) != len(a__ ): raise ValueError("""String lengths must match!""" ) UpperCamelCase_ = 0 for chara, chara in zip(a__ , a__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
261
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[str] = """align_text_model""" def __init__( self , __UpperCamelCase=3_0_5_2_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=True , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = pad_token_id @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCamelCase_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Optional[int] = """align_vision_model""" def __init__( self , __UpperCamelCase = 3 , __UpperCamelCase = 6_0_0 , __UpperCamelCase = 2.0 , __UpperCamelCase = 3.1 , __UpperCamelCase = 8 , __UpperCamelCase = [3, 3, 5, 3, 5, 5, 3] , __UpperCamelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __UpperCamelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __UpperCamelCase = [] , __UpperCamelCase = [1, 2, 2, 2, 1, 2, 1] , __UpperCamelCase = [1, 2, 2, 3, 3, 4, 1] , __UpperCamelCase = [1, 6, 6, 6, 6, 6, 6] , __UpperCamelCase = 0.25 , __UpperCamelCase = "swish" , __UpperCamelCase = 2_5_6_0 , __UpperCamelCase = "mean" , __UpperCamelCase = 0.02 , __UpperCamelCase = 0.001 , __UpperCamelCase = 0.99 , __UpperCamelCase = 0.2 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = width_coefficient UpperCamelCase_ = depth_coefficient UpperCamelCase_ = depth_divisor UpperCamelCase_ = kernel_sizes UpperCamelCase_ = in_channels UpperCamelCase_ = out_channels UpperCamelCase_ = depthwise_padding UpperCamelCase_ = strides UpperCamelCase_ = num_block_repeats UpperCamelCase_ = expand_ratios UpperCamelCase_ = squeeze_expansion_ratio UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dim UpperCamelCase_ = pooling_type UpperCamelCase_ = initializer_range UpperCamelCase_ = batch_norm_eps UpperCamelCase_ = batch_norm_momentum UpperCamelCase_ = drop_connect_rate UpperCamelCase_ = sum(__UpperCamelCase ) * 4 @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCamelCase_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Tuple = """align""" A__ : int = True def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=6_4_0 , __UpperCamelCase=1.0 , __UpperCamelCase=0.02 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if text_config is None: UpperCamelCase_ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: UpperCamelCase_ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) UpperCamelCase_ = AlignTextConfig(**__UpperCamelCase ) UpperCamelCase_ = AlignVisionConfig(**__UpperCamelCase ) UpperCamelCase_ = projection_dim UpperCamelCase_ = temperature_init_value UpperCamelCase_ = initializer_range @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.text_config.to_dict() UpperCamelCase_ = self.vision_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
261
1
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins __A : Dict = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def lowercase ( __snake_case : List[Any] , __snake_case : Dict ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def lowercase ( __snake_case : List[str] ): config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=__snake_case ) def lowercase ( __snake_case : List[Any] , __snake_case : Dict ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? lowercase_ : Optional[int] = tmp_path_factory.getbasetemp() / '''cache''' lowercase_ : List[str] = test_hf_cache_home / '''datasets''' lowercase_ : Any = test_hf_cache_home / '''metrics''' lowercase_ : Optional[int] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(__snake_case ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(__snake_case ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(__snake_case ) ) lowercase_ : Optional[Any] = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(__snake_case ) ) lowercase_ : Tuple = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__snake_case ) ) @pytest.fixture(autouse=__snake_case , scope='''session''' ) def lowercase ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=__snake_case ) def lowercase ( __snake_case : List[Any] ): # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , __snake_case ) @pytest.fixture def lowercase ( __snake_case : Tuple ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , __snake_case )
33
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : Union[str, Any] = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = "vit_mae" def __init__( self : Dict , A : List[str]=7_68 , A : Any=12 , A : Union[str, Any]=12 , A : Tuple=30_72 , A : Any="gelu" , A : Tuple=0.0 , A : List[str]=0.0 , A : Tuple=0.02 , A : Tuple=1e-12 , A : int=2_24 , A : Dict=16 , A : int=3 , A : Tuple=True , A : Tuple=16 , A : Optional[Any]=5_12 , A : Union[str, Any]=8 , A : List[Any]=20_48 , A : Dict=0.75 , A : Any=False , **A : Optional[int] , ) -> Union[str, Any]: super().__init__(**A ) lowercase_ : List[Any] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : int = initializer_range lowercase_ : Dict = layer_norm_eps lowercase_ : Optional[Any] = image_size lowercase_ : str = patch_size lowercase_ : Dict = num_channels lowercase_ : Any = qkv_bias lowercase_ : Union[str, Any] = decoder_num_attention_heads lowercase_ : Optional[Any] = decoder_hidden_size lowercase_ : List[str] = decoder_num_hidden_layers lowercase_ : List[Any] = decoder_intermediate_size lowercase_ : Optional[Any] = mask_ratio lowercase_ : Optional[Any] = norm_pix_loss
33
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=4_00 , A=True , A=None , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' lowerCamelCase = size if size is not None else {"""shortest_edge""": 18} lowerCamelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = num_channels lowerCamelCase = image_size lowerCamelCase = min_resolution lowerCamelCase = max_resolution lowerCamelCase = do_resize lowerCamelCase = size lowerCamelCase = do_center_crop lowerCamelCase = crop_size lowerCamelCase = do_normalize lowerCamelCase = image_mean lowerCamelCase = image_std def __A ( self ) -> int: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = LevitImageProcessor if is_vision_available() else None def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = LevitImageProcessingTester(self ) @property def __A ( self ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """image_mean""" ) ) self.assertTrue(hasattr(A , """image_std""" ) ) self.assertTrue(hasattr(A , """do_normalize""" ) ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """do_center_crop""" ) ) self.assertTrue(hasattr(A , """size""" ) ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __A ( self ) -> Dict: '''simple docstring''' pass def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCamelCase = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
66
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) enable_full_determinism() class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Union[str, Any] = UNetaDModel UpperCamelCase : Union[str, Any] = "sample" @property def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor([10] ).to(A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (3, 32, 32) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } lowerCamelCase = self.dummy_input return init_dict, inputs_dict class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : int = UNetaDModel UpperCamelCase : Dict = "sample" @property def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 4 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor([10] ).to(A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Tuple: '''simple docstring''' return (4, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (4, 32, 32) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } lowerCamelCase = self.dummy_input return init_dict, inputs_dict def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(A ) lowerCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) model.to(A ) lowerCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) model_accelerate.to(A ) model_accelerate.eval() lowerCamelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase = noise.to(A ) lowerCamelCase = torch.tensor([10] * noise.shape[0] ).to(A ) lowerCamelCase = model_accelerate(A , A )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=A , low_cpu_mem_usage=A ) model_normal_load.to(A ) model_normal_load.eval() lowerCamelCase = model_normal_load(A , A )["""sample"""] assert torch_all_close(A , A , rtol=1e-3 ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(A ) lowerCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase = noise.to(A ) lowerCamelCase = torch.tensor([10] * noise.shape[0] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-3 ) ) class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = UNetaDModel UpperCamelCase : Optional[int] = "sample" @property def __A ( self , A=(32, 32) ) -> List[Any]: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (3, 32, 32) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } lowerCamelCase = self.dummy_input return init_dict, inputs_dict @slow def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(A ) lowerCamelCase = self.dummy_input lowerCamelCase = floats_tensor((4, 3) + (2_56, 2_56) ).to(A ) lowerCamelCase = noise lowerCamelCase = model(**A ) assert image is not None, "Make sure output is not None" @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(A ) lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (2_56, 2_56) lowerCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [1e-4] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-2 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(A ) lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [1e-4] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-2 ) ) def __A ( self ) -> List[str]: '''simple docstring''' pass
66
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Any = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCAmelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase : Dict = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase=8 ): lowercase :List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase :List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: Tuple , _lowerCAmelCase: UNetaDConditionModel , _lowerCAmelCase: DDPMScheduler , _lowerCAmelCase: VQModel , ): super().__init__() self.register_modules( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , movq=_lowerCAmelCase , ) lowercase :List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Any , _lowerCAmelCase: Tuple , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[int] ): if latents is None: lowercase :int = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) lowercase :Optional[Any] = latents.to(_lowerCAmelCase ) lowercase :int = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase :List[Any] = torch.device(F"cuda:{gpu_id}" ) lowercase :List[str] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: Dict=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase :List[Any] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=_lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase :List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase , lowercase :Dict = cpu_offload_with_hook(_lowerCAmelCase , _lowerCAmelCase , prev_module_hook=_lowerCAmelCase ) # We'll offload the last model manually. lowercase :Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self: int ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__( self: str , _lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCAmelCase: int = 5_12 , _lowerCAmelCase: int = 5_12 , _lowerCAmelCase: int = 1_00 , _lowerCAmelCase: float = 4.0 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: Optional[str] = "pil" , _lowerCAmelCase: bool = True , ): lowercase :str = self._execution_device lowercase :List[str] = guidance_scale > 1.0 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Any = torch.cat(_lowerCAmelCase , dim=0 ) lowercase :Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :List[Any] = torch.cat(_lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: lowercase :int = image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) lowercase :Any = negative_image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) lowercase :Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCAmelCase ) self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase ) lowercase :Optional[Any] = self.scheduler.timesteps lowercase :Tuple = self.unet.config.in_channels lowercase , lowercase :Optional[int] = downscale_height_and_width(_lowerCAmelCase , _lowerCAmelCase , self.movq_scale_factor ) # create initial latent lowercase :List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase :Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase :List[str] = {"image_embeds": image_embeds} lowercase :List[Any] = self.unet( sample=_lowerCAmelCase , timestep=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , added_cond_kwargs=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] if do_classifier_free_guidance: lowercase , lowercase :List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase , lowercase :Any = noise_pred.chunk(2 ) lowercase , lowercase :Dict = variance_pred.chunk(2 ) lowercase :str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase :Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase , lowercase :str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase :Tuple = self.scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase , )[0] # post-processing lowercase :Dict = self.movq.decode(_lowerCAmelCase , force_not_quantize=_lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: lowercase :Any = image * 0.5 + 0.5 lowercase :Tuple = image.clamp(0 , 1 ) lowercase :List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase :List[Any] = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
236
0
def lowerCAmelCase__ ( _a : int , _a : int , _a : list[list[int]] ): def update_area_of_max_square(_a : int , _a : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 snake_case_ : str = update_area_of_max_square(_a , col + 1 ) snake_case_ : Tuple = update_area_of_max_square(row + 1 , col + 1 ) snake_case_ : Any = update_area_of_max_square(row + 1 , _a ) if mat[row][col]: snake_case_ : Any = 1 + min([right, diagonal, down] ) snake_case_ : Optional[Any] = max(largest_square_area[0] , _a ) return sub_problem_sol else: return 0 snake_case_ : List[Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowerCAmelCase__ ( _a : int , _a : int , _a : list[list[int]] ): def update_area_of_max_square_using_dp_array( _a : int , _a : int , _a : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] snake_case_ : Any = update_area_of_max_square_using_dp_array(_a , col + 1 , _a ) snake_case_ : Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _a ) snake_case_ : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , _a , _a ) if mat[row][col]: snake_case_ : int = 1 + min([right, diagonal, down] ) snake_case_ : Tuple = max(largest_square_area[0] , _a ) snake_case_ : List[str] = sub_problem_sol return sub_problem_sol else: return 0 snake_case_ : Dict = [0] snake_case_ : int = [[-1] * cols for _ in range(_a )] update_area_of_max_square_using_dp_array(0 , 0 , _a ) return largest_square_area[0] def lowerCAmelCase__ ( _a : int , _a : int , _a : list[list[int]] ): snake_case_ : List[str] = [[0] * (cols + 1) for _ in range(rows + 1 )] snake_case_ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case_ : List[str] = dp_array[row][col + 1] snake_case_ : Union[str, Any] = dp_array[row + 1][col + 1] snake_case_ : Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: snake_case_ : Dict = 1 + min(_a , _a , _a ) snake_case_ : Tuple = max(dp_array[row][col] , _a ) else: snake_case_ : Tuple = 0 return largest_square_area def lowerCAmelCase__ ( _a : int , _a : int , _a : list[list[int]] ): snake_case_ : Tuple = [0] * (cols + 1) snake_case_ : Union[str, Any] = [0] * (cols + 1) snake_case_ : Tuple = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case_ : int = current_row[col + 1] snake_case_ : Dict = next_row[col + 1] snake_case_ : Optional[Any] = next_row[col] if mat[row][col] == 1: snake_case_ : str = 1 + min(_a , _a , _a ) snake_case_ : str = max(current_row[col] , _a ) else: snake_case_ : Optional[int] = 0 snake_case_ : str = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
354
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : List[Any] = logging.get_logger(__name__) lowercase : List[Any] = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = 'conditional_detr' A : Optional[int] = ['past_key_values'] A : List[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE="resnet50" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.25 , **_SCREAMING_SNAKE_CASE , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) snake_case_ : List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : Optional[int] = backbone_config.get("model_type" ) snake_case_ : str = CONFIG_MAPPING[backbone_model_type] snake_case_ : Tuple = config_class.from_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = use_timm_backbone snake_case_ : Optional[Any] = backbone_config snake_case_ : str = num_channels snake_case_ : Optional[Any] = num_queries snake_case_ : Optional[Any] = d_model snake_case_ : Optional[Any] = encoder_ffn_dim snake_case_ : str = encoder_layers snake_case_ : int = encoder_attention_heads snake_case_ : int = decoder_ffn_dim snake_case_ : Optional[Any] = decoder_layers snake_case_ : List[str] = decoder_attention_heads snake_case_ : List[str] = dropout snake_case_ : Optional[int] = attention_dropout snake_case_ : Tuple = activation_dropout snake_case_ : List[Any] = activation_function snake_case_ : Dict = init_std snake_case_ : str = init_xavier_std snake_case_ : Tuple = encoder_layerdrop snake_case_ : int = decoder_layerdrop snake_case_ : List[Any] = encoder_layers snake_case_ : int = auxiliary_loss snake_case_ : int = position_embedding_type snake_case_ : List[str] = backbone snake_case_ : Union[str, Any] = use_pretrained_backbone snake_case_ : Optional[Any] = dilation # Hungarian matcher snake_case_ : Tuple = class_cost snake_case_ : Tuple = bbox_cost snake_case_ : str = giou_cost # Loss coefficients snake_case_ : Union[str, Any] = mask_loss_coefficient snake_case_ : Tuple = dice_loss_coefficient snake_case_ : List[str] = cls_loss_coefficient snake_case_ : List[str] = bbox_loss_coefficient snake_case_ : List[str] = giou_loss_coefficient snake_case_ : Any = focal_alpha super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _lowerCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def _lowerCAmelCase ( self ) -> int: return self.d_model def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : List[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: snake_case_ : Optional[int] = self.backbone_config.to_dict() snake_case_ : Optional[int] = self.__class__.model_type return output class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = version.parse('1.11' ) @property def _lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCAmelCase ( self ) -> float: return 1e-5 @property def _lowerCAmelCase ( self ) -> int: return 12
36
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_: Union[str, Any] =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Optional[Any] = XLMProphetNetTokenizer a__ : Dict = False a__ : List[Any] = True def _lowercase (self : str ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def _lowercase (self : List[str] ): UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__a ) , 1012 ) def _lowercase (self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def _lowercase (self : Tuple ): UpperCAmelCase_ = XLMProphetNetTokenizer(__a , keep_accents=__a ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def _lowercase (self : Optional[int] ): return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def _lowercase (self : int ): # fmt: off UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
1
'''simple docstring''' import os from math import logaa def lowerCAmelCase_ ( snake_case_ : str = "base_exp.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(snake_case_ ) , snake_case_ ) ) ): UpperCAmelCase_ , UpperCAmelCase_ = list(map(snake_case_ , line.split("," ) ) ) if x * logaa(snake_case_ ) > largest: UpperCAmelCase_ = x * logaa(snake_case_ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
1
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_0_0 * 2**2_0, 6_0_0 * 2**2_0] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_0_0 * 2**2_0, 9_0_0 * 2**2_0] ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Tuple: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , a_ ) __A = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __A = dataset_size < in_memory_max_size else: __A = False __A = is_small_dataset(a_ ) assert result == expected
366
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,A : List[str] ,A : List[Any]=7 ,A : Any=3 ,A : int=30 ,A : List[Any]=4_00 ,A : str=True ,A : int=None ,A : List[str]=0.9 ,A : Dict=None ,A : int=True ,A : Any=[0.5, 0.5, 0.5] ,A : Optional[int]=[0.5, 0.5, 0.5] ,): __A = size if size is not None else {"shortest_edge": 30} __A = crop_size if crop_size is not None else {"height": 30, "width": 30} __A = parent __A = batch_size __A = num_channels __A = min_resolution __A = max_resolution __A = do_resize_and_center_crop __A = size __A = crop_pct __A = crop_size __A = do_normalize __A = image_mean __A = image_std def UpperCamelCase_ ( self : int ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): __A = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Tuple ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize_and_center_crop" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"crop_pct" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size ,{"height": 30, "width": 30} ) __A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def UpperCamelCase_ ( self : List[str] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
124
0