code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import math def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: if ( not isinstance(snake_case_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: if ( not isinstance(snake_case_ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
217
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : """simple docstring""" def __init__( self :Tuple , lowerCamelCase_ :Dict , lowerCamelCase_ :int=13 , lowerCamelCase_ :Optional[int]=32 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :Union[str, Any]=4 , lowerCamelCase_ :int=[10, 20, 30, 40] , lowerCamelCase_ :Dict=[2, 2, 3, 2] , lowerCamelCase_ :Any=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Any=37 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=10 , lowerCamelCase_ :int=0.02 , lowerCamelCase_ :Optional[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ :List[str]=[2, 3, 4] , lowerCamelCase_ :Optional[Any]=None , ): """simple docstring""" lowerCamelCase__ : List[Any] =parent lowerCamelCase__ : Optional[int] =batch_size lowerCamelCase__ : List[Any] =image_size lowerCamelCase__ : Dict =num_channels lowerCamelCase__ : Optional[int] =num_stages lowerCamelCase__ : Optional[int] =hidden_sizes lowerCamelCase__ : Optional[Any] =depths lowerCamelCase__ : Any =is_training lowerCamelCase__ : Optional[Any] =use_labels lowerCamelCase__ : List[str] =intermediate_size lowerCamelCase__ : int =hidden_act lowerCamelCase__ : Dict =num_labels lowerCamelCase__ : Union[str, Any] =initializer_range lowerCamelCase__ : Dict =out_features lowerCamelCase__ : List[str] =out_indices lowerCamelCase__ : Any =scope def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Any =None if self.use_labels: lowerCamelCase__ : str =ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : Tuple =self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCAmelCase__ ( self :str , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Tuple =ConvNextVaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : List[str] =ConvNextVaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =ConvNextVaBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Any =model(lowerCamelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase__ : Union[str, Any] =None lowerCamelCase__ : Dict =ConvNextVaBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[str] =model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[str] =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =config_and_inputs lowerCamelCase__ : Dict ={'pixel_values': pixel_values} return config, inputs_dict def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : str =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =config_and_inputs lowerCamelCase__ : Optional[int] ={'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class A_ ( A__ , A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" lowerCamelCase__ : int =ConvNextVaModelTester(self ) lowerCamelCase__ : Tuple =ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self :Dict ): """simple docstring""" return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def UpperCAmelCase__ ( self :str ): """simple docstring""" pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def UpperCAmelCase__ ( self :Dict ): """simple docstring""" pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def UpperCAmelCase__ ( self :int ): """simple docstring""" pass def UpperCAmelCase__ ( self :Tuple ): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase__ : List[str] =True if model_class.__name__ in [ *get_values(lowerCamelCase_ ), *get_values(lowerCamelCase_ ), ]: continue lowerCamelCase__ : Any =model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.train() lowerCamelCase__ : Union[str, Any] =self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) lowerCamelCase__ : Dict =model(**lowerCamelCase_ ).loss loss.backward() def UpperCAmelCase__ ( self :int ): """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCamelCase__ , lowerCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs_with_labels() lowerCamelCase__ : Optional[Any] =False lowerCamelCase__ : Optional[Any] =True if ( model_class.__name__ in [*get_values(lowerCamelCase_ ), *get_values(lowerCamelCase_ )] or not model_class.supports_gradient_checkpointing ): continue lowerCamelCase__ : List[str] =model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.gradient_checkpointing_enable() model.train() lowerCamelCase__ : List[Any] =self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) lowerCamelCase__ : Dict =model(**lowerCamelCase_ ).loss loss.backward() def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[Any] =model_class(lowerCamelCase_ ) lowerCamelCase__ : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Union[str, Any] =[*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] =['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def UpperCAmelCase__ ( self :int ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ :List[str] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[Any] ): lowerCamelCase__ : Tuple =model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[int] =model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) lowerCamelCase__ : int =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : Union[str, Any] =self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase__ , lowerCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : str =True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : str =True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase__ ( self :int ): """simple docstring""" lowerCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def UpperCAmelCase__ ( self :Any ): """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[int] =ConvNextVaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCAmelCase_ ( ) ->List[str]: lowerCamelCase__ : Tuple =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self :int ): """simple docstring""" lowerCamelCase__ : int =ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] =self.default_image_processor lowerCamelCase__ : int =prepare_img() lowerCamelCase__ : List[Any] =preprocessor(images=lowerCamelCase_ , return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[str] =model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : Union[str, Any] =torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) lowerCamelCase__ : Dict =torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) )
126
0
import math def __lowerCamelCase ( __a :int ) -> bool: """simple docstring""" A__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__a ) def __lowerCamelCase ( __a :float = 1 / 1_2_3_4_5 ) -> int: """simple docstring""" A__ = 0 A__ = 0 A__ = 3 while True: A__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__a ): A__ = int(__a ) total_partitions += 1 if check_partition_perfect(__a ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__a ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
276
from typing import TYPE_CHECKING from ...utils import _LazyModule A : Optional[Any] = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
1
from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): A : List[Any] = """dandelin/vilt-b32-finetuned-vqa""" A : int = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) A : Dict = """image_qa""" A : int = AutoProcessor A : Dict = AutoModelForVisualQuestionAnswering A : Dict = ["""image""", """text"""] A : Dict = ["""text"""] def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): requires_backends(self , ['''vision'''] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return self.pre_processor(_UpperCAmelCase , _UpperCAmelCase , return_tensors='''pt''' ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): with torch.no_grad(): return self.model(**_UpperCAmelCase ).logits def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
337
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCAmelCase_ = '\\n\n' UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ = """cuda""" else: UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = model.to(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ = model.config.max_length - 1 else: UpperCAmelCase__ = model.config.max_length UpperCAmelCase__ = tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase ) UpperCAmelCase__ = encodings["""input_ids"""] UpperCAmelCase__ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ = [] UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ): UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) ) UpperCAmelCase__ = encoded_texts[start_index:end_index] UpperCAmelCase__ = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 ) UpperCAmelCase__ = encoded_batch with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits UpperCAmelCase__ = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ = labels[..., 1:].contiguous() UpperCAmelCase__ = attn_mask[..., 1:].contiguous() UpperCAmelCase__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
346
0
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __lowercase : Any = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } __lowercase : Union[str, Any] = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): __a : List[str] = list(state_dict.keys() ) for name in state_dict_keys: __a : Optional[Any] = state_dict.pop(_SCREAMING_SNAKE_CASE ) # emb -> embedding if name.startswith('emb.' ): __a : int = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): __a : Dict = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention __a : Optional[int] = re.sub(r'blocks\.(\d+)\.att' , r'blocks.\1.attention' , _SCREAMING_SNAKE_CASE ) # ffn -> feed_forward __a : Tuple = re.sub(r'blocks\.(\d+)\.ffn' , r'blocks.\1.feed_forward' , _SCREAMING_SNAKE_CASE ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): __a : str = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): __a : List[Any] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): __a : Any = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": __a : int = 'rwkv.' + name __a : Optional[int] = weight return state_dict def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : List[Any]=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) __a : Union[str, Any] = 50_277 __a : Optional[Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: __a : Optional[Any] = PreTrainedTokenizerFast(tokenizer_file=_SCREAMING_SNAKE_CASE ) __a : int = len(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) # 2. Build the config __a : Any = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __a : int = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) __a : Optional[int] = RwkvConfig( vocab_size=_SCREAMING_SNAKE_CASE , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_SCREAMING_SNAKE_CASE ) # 3. Download model file then convert state_dict __a : List[str] = hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) __a : Any = convert_state_dict(_SCREAMING_SNAKE_CASE ) # 4. Split in shards and save __a : Any = shard_checkpoint(_SCREAMING_SNAKE_CASE ) for shard_file, shard in shards.items(): torch.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if index is not None: __a : int = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save the index as well with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: __a : Union[str, Any] = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + '\n' f.write(_SCREAMING_SNAKE_CASE ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) __a : Dict = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __a : int = torch.load(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) __a : Optional[int] = AutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE , max_shard_size='2GB' ) tokenizer.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) __lowercase : Union[str, Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
357
'''simple docstring''' __lowercase : Optional[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} __lowercase : List[str] = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ): __a : Any = start # add current to visited visited.append(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __a : Dict = topological_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(_SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: __a : List[Any] = topological_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": __lowercase : Union[str, Any] = topological_sort('a', [], []) print(sort)
294
0
"""simple docstring""" from math import sqrt def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Dict = 0 for i in range(1 , int(sqrt(__lowerCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__lowerCamelCase ): total += i + n // i elif i == sqrt(__lowerCamelCase ): total += i return total - n def __UpperCAmelCase ( __lowerCamelCase = 1_00_00 ) -> int: lowercase__ : Any = sum( i for i in range(1 , __lowerCamelCase ) if sum_of_divisors(sum_of_divisors(__lowerCamelCase ) ) == i and sum_of_divisors(__lowerCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
16
from __future__ import annotations def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = str(snake_case ) return n == n[::-1] def _UpperCAmelCase ( snake_case = 1_00_00_00 ): """simple docstring""" _lowerCAmelCase = 0 for i in range(1 , snake_case ): if is_palindrome(snake_case ) and is_palindrome(bin(snake_case ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
82
0
lowerCAmelCase__ :List[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def lowerCAmelCase__ ( a__: bytes ) -> bytes: '''simple docstring''' if not isinstance(a__ , a__ ): _UpperCAmelCase = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(a__ ) _UpperCAmelCase = ''.join(bin(a__ )[2:].zfill(8 ) for byte in data ) _UpperCAmelCase = len(a__ ) % 6 != 0 if padding_needed: # The padding that will be added later _UpperCAmelCase = B'=' * ((6 - len(a__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(a__ ) % 6) else: _UpperCAmelCase = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(a__ ) , 6 ) ).encode() + padding ) def lowerCAmelCase__ ( a__: str ) -> bytes: '''simple docstring''' if not isinstance(a__ , a__ ) and not isinstance(a__ , a__ ): _UpperCAmelCase = ( 'argument should be a bytes-like object or ASCII string, ' F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(a__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(a__ , a__ ): try: _UpperCAmelCase = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _UpperCAmelCase = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(a__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _UpperCAmelCase = encoded_data[:-padding] _UpperCAmelCase = ''.join( bin(B64_CHARSET.index(a__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _UpperCAmelCase = ''.join( bin(B64_CHARSET.index(a__ ) )[2:].zfill(6 ) for char in encoded_data ) _UpperCAmelCase = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(a__ ) , 8 ) ] return bytes(a__ ) if __name__ == "__main__": import doctest doctest.testmod()
369
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __a ( UpperCAmelCase ): _a : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
185
0
import random def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False ) -> dict: _lowercase : dict = {i: [] for i in range(lowerCamelCase_ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase_ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase_ ): for j in range(i + 1 , lowerCamelCase_ ): if random.random() < probability: graph[i].append(lowerCamelCase_ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase_ ) return graph def UpperCamelCase_( lowerCamelCase_ ) -> dict: return { i: [j for j in range(lowerCamelCase_ ) if i != j] for i in range(lowerCamelCase_ ) } if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def _UpperCamelCase ( UpperCamelCase__ ): if hor == 1_2_8: UpperCAmelCase__ : int = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCAmelCase__ : Tuple = (3_2, 1_2_8, 2_5_6) UpperCAmelCase__ : Union[str, Any] = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 3_2: UpperCAmelCase__ : Dict = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCAmelCase__ : Union[str, Any] = (3_2, 6_4, 1_2_8, 2_5_6) UpperCAmelCase__ : str = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") UpperCAmelCase__ : Any = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) UpperCAmelCase__ : Tuple = model.state_dict() UpperCAmelCase__ : Union[str, Any] = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 1_4, """out_channels""": 1_4, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5_5_3_6, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } UpperCAmelCase__ : List[Any] = UNetaDModel(**UpperCamelCase__ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) UpperCAmelCase__ : Optional[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCAmelCase__ : Union[str, Any] = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( ): UpperCAmelCase__ : Any = { """in_channels""": 1_4, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (3_2, 6_4, 1_2_8, 2_5_6), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5_5_3_6, """out_channels""": 1_4, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } UpperCAmelCase__ : Tuple = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) UpperCAmelCase__ : Optional[Any] = model UpperCAmelCase__ : Dict = UNetaDModel(**UpperCamelCase__ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) UpperCAmelCase__ : Dict = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCAmelCase__ : str = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
163
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __lowercase : Union[str, Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __lowercase : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) __lowercase : Optional[Any] = BeautifulSoup(res.text, 'html.parser') __lowercase : Any = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f'''https://google.com{link.get('href')}''')
294
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Tuple = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ) -> list: if any(not isinstance(_UpperCAmelCase ,_UpperCAmelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(_UpperCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_UpperCAmelCase ,sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
276
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A__: Union[str, Any] = input('''Enter image url: ''').strip() print(F"Downloading image from {url} ...") A__: Tuple = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image A__: Union[str, Any] = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] A__: List[Any] = requests.get(image_url).content A__: List[str] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"Done. Image saved to disk as {file_name}.")
276
1
import argparse import os import re import packaging.version lowercase__ ='examples/' lowercase__ ={ 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowercase__ ={ 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } lowercase__ ='README.md' def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str ): with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : str = f.read() __a , __a : List[str] = REPLACE_PATTERNS[pattern] __a : str = replace.replace('''VERSION''' , lowerCAmelCase__ ) __a : List[str] = re_pattern.sub(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Any ): for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , pattern='''examples''' ) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def __UpperCamelCase ( ): __a : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' __a : Any = '''1. Want to contribute a new model?''' with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Union[str, Any] = f.readlines() # Find the start of the list. __a : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __a : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __a : List[str] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCAmelCase__ ) def __UpperCamelCase ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __a : List[str] = f.read() __a : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : List[Any]=False ): __a : Any = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __a : List[str] = default_version.base_version elif patch: __a : Tuple = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __a : Tuple = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __a : List[str] = input(f"Which version are you releasing? [{default_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Optional[int] = default_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ , patch=lowerCAmelCase__ ) def __UpperCamelCase ( ): __a : List[Any] = get_version() __a : Optional[int] = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __a : Any = current_version.base_version # Check with the user we got that right. __a : Tuple = input(f"Which version are we developing now? [{dev_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Optional[Any] = dev_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowercase__ =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
90
import argparse import os import re import packaging.version lowercase__ ='examples/' lowercase__ ={ 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowercase__ ={ 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowercase__ ='README.md' def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.read() __a , __a : Optional[int] = REPLACE_PATTERNS[pattern] __a : List[Any] = replace.replace('''VERSION''' , lowerCAmelCase__ ) __a : Any = re_pattern.sub(lowerCAmelCase__ , lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Tuple ): for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , pattern='''examples''' ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def __UpperCamelCase ( ): __a : Optional[int] = '''🤗 Transformers currently provides the following architectures''' __a : int = '''1. Want to contribute a new model?''' with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __a : Tuple = f.readlines() # Find the start of the list. __a : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __a : Any = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __a : str = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCAmelCase__ ) def __UpperCamelCase ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __a : Optional[int] = f.read() __a : str = REPLACE_PATTERNS['''init'''][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any]=False ): __a : str = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __a : Union[str, Any] = default_version.base_version elif patch: __a : Tuple = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __a : List[str] = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __a : List[str] = input(f"Which version are you releasing? [{default_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Tuple = default_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ , patch=lowerCAmelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def __UpperCamelCase ( ): __a : Dict = get_version() __a : str = f"{current_version.major}.{current_version.minor + 1}.0.dev0" __a : Any = current_version.base_version # Check with the user we got that right. __a : Any = input(f"Which version are we developing now? [{dev_version}]" ) if len(lowerCAmelCase__ ) == 0: __a : Any = dev_version print(f"Updating version to {version}." ) global_version_update(lowerCAmelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowercase__ =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
90
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Tuple = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
347
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[Any] ) -> Dict: _a : Optional[int] = tempfile.mkdtemp() _a : Optional[Any] = SamImageProcessor() _a : int = SamProcessor(UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self : Tuple , **UpperCAmelCase__ : Any ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).image_processor def _lowercase ( self : str ) -> int: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Tuple ) -> Dict: _a : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _a : Optional[int] = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : Dict ) -> Dict: _a : List[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) _a : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Tuple: _a : Optional[Any] = self.get_image_processor() _a : int = SamProcessor(image_processor=UpperCAmelCase__ ) _a : Union[str, Any] = self.prepare_image_inputs() _a : List[str] = image_processor(UpperCAmelCase__ , return_tensors="""np""" ) _a : List[str] = processor(images=UpperCAmelCase__ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def _lowercase ( self : Optional[Any] ) -> Optional[Any]: _a : Optional[Any] = self.get_image_processor() _a : Dict = SamProcessor(image_processor=UpperCAmelCase__ ) _a : Tuple = [torch.ones((1, 3, 5, 5) )] _a : Tuple = [[1764, 2646]] _a : Optional[int] = [[683, 1024]] _a : List[Any] = processor.post_process_masks(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _a : int = processor.post_process_masks( UpperCAmelCase__ , torch.tensor(UpperCAmelCase__ ) , torch.tensor(UpperCAmelCase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _a : Optional[Any] = [np.ones((1, 3, 5, 5) )] _a : Tuple = processor.post_process_masks(UpperCAmelCase__ , np.array(UpperCAmelCase__ ) , np.array(UpperCAmelCase__ ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _a : List[str] = [[1, 0], [0, 1]] with self.assertRaises(UpperCAmelCase__ ): _a : str = processor.post_process_masks(UpperCAmelCase__ , np.array(UpperCAmelCase__ ) , np.array(UpperCAmelCase__ ) ) @require_vision @require_tf class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Any ) -> List[str]: _a : List[str] = tempfile.mkdtemp() _a : Any = SamImageProcessor() _a : Union[str, Any] = SamProcessor(UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] , **UpperCAmelCase__ : Any ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).image_processor def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Dict ) -> List[str]: _a : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _a : List[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: _a : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a : str = self.get_image_processor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) _a : Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> str: _a : Union[str, Any] = self.get_image_processor() _a : Dict = SamProcessor(image_processor=UpperCAmelCase__ ) _a : int = self.prepare_image_inputs() _a : List[str] = image_processor(UpperCAmelCase__ , return_tensors="""np""" ) _a : List[str] = processor(images=UpperCAmelCase__ , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def _lowercase ( self : Optional[Any] ) -> int: _a : Optional[Any] = self.get_image_processor() _a : Dict = SamProcessor(image_processor=UpperCAmelCase__ ) _a : Any = [tf.ones((1, 3, 5, 5) )] _a : Tuple = [[1764, 2646]] _a : str = [[683, 1024]] _a : Union[str, Any] = processor.post_process_masks(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _a : Union[str, Any] = processor.post_process_masks( UpperCAmelCase__ , tf.convert_to_tensor(UpperCAmelCase__ ) , tf.convert_to_tensor(UpperCAmelCase__ ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _a : List[Any] = [np.ones((1, 3, 5, 5) )] _a : Optional[int] = processor.post_process_masks( UpperCAmelCase__ , np.array(UpperCAmelCase__ ) , np.array(UpperCAmelCase__ ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _a : Dict = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _a : List[Any] = processor.post_process_masks( UpperCAmelCase__ , np.array(UpperCAmelCase__ ) , np.array(UpperCAmelCase__ ) , return_tensors="""tf""" ) @require_vision @require_torchvision class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : str ) -> Optional[Any]: _a : Optional[Any] = tempfile.mkdtemp() _a : Dict = SamImageProcessor() _a : List[str] = SamProcessor(UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self : Any , **UpperCAmelCase__ : Dict ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ).image_processor def _lowercase ( self : Tuple ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : str ) -> int: _a : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _a : int = [Image.fromarray(np.moveaxis(UpperCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _lowercase ( self : int ) -> List[Any]: _a : Optional[Any] = self.get_image_processor() _a : Optional[Any] = SamProcessor(image_processor=UpperCAmelCase__ ) _a : Tuple = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _a : str = [tf.convert_to_tensor(UpperCAmelCase__ )] _a : Optional[int] = [torch.tensor(UpperCAmelCase__ )] _a : Union[str, Any] = [[1764, 2646]] _a : List[str] = [[683, 1024]] _a : Optional[int] = processor.post_process_masks( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""tf""" ) _a : List[str] = processor.post_process_masks( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _lowercase ( self : str ) -> Optional[Any]: _a : List[Any] = self.get_image_processor() _a : Any = SamProcessor(image_processor=UpperCAmelCase__ ) _a : Dict = self.prepare_image_inputs() _a : List[str] = image_processor(UpperCAmelCase__ , return_tensors="""pt""" )["""pixel_values"""].numpy() _a : str = processor(images=UpperCAmelCase__ , return_tensors="""pt""" )["""pixel_values"""].numpy() _a : Optional[Any] = image_processor(UpperCAmelCase__ , return_tensors="""tf""" )["""pixel_values"""].numpy() _a : Optional[int] = processor(images=UpperCAmelCase__ , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ ) )
294
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase_ = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Any: """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main snake_case_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_UpperCamelCase , id=_UpperCamelCase )
356
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __lowerCAmelCase : lowerCamelCase_ : CommonSchedulerState # setable values lowerCamelCase_ : jnp.ndarray lowerCamelCase_ : jnp.ndarray lowerCamelCase_ : Optional[int] = None @classmethod def lowerCamelCase (cls , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' return cls(common=__magic_name__ , init_noise_sigma=__magic_name__ , timesteps=__magic_name__ ) @dataclass class __lowerCAmelCase ( _a ): lowerCamelCase_ : DDPMSchedulerState class __lowerCAmelCase ( _a, _a ): lowerCamelCase_ : List[Any] = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCamelCase_ : jnp.dtype @property def lowerCamelCase (self ) -> int: '''simple docstring''' return True @register_to_config def __init__(self , __magic_name__ = 1000 , __magic_name__ = 0.0_001 , __magic_name__ = 0.02 , __magic_name__ = "linear" , __magic_name__ = None , __magic_name__ = "fixed_small" , __magic_name__ = True , __magic_name__ = "epsilon" , __magic_name__ = jnp.floataa , ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = dtype def lowerCamelCase (self , __magic_name__ = None ) -> DDPMSchedulerState: '''simple docstring''' if common is None: snake_case_ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution snake_case_ : Any = jnp.array(1.0 , dtype=self.dtype ) snake_case_ : Optional[int] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__magic_name__ , init_noise_sigma=__magic_name__ , timesteps=__magic_name__ , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ = None ) -> jnp.ndarray: '''simple docstring''' return sample def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ = () ) -> DDPMSchedulerState: '''simple docstring''' snake_case_ : str = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 snake_case_ : List[str] = (jnp.arange(0 , __magic_name__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__magic_name__ , timesteps=__magic_name__ , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ) -> int: '''simple docstring''' snake_case_ : Any = state.common.alphas_cumprod[t] snake_case_ : Dict = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample snake_case_ : Tuple = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: snake_case_ : Any = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": snake_case_ : int = jnp.clip(__magic_name__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": snake_case_ : List[str] = jnp.log(jnp.clip(__magic_name__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": snake_case_ : str = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log snake_case_ : int = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": snake_case_ : str = variance snake_case_ : Optional[Any] = state.common.betas[t] snake_case_ : Optional[Any] = (predicted_variance + 1) / 2 snake_case_ : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: '''simple docstring''' snake_case_ : Tuple = timestep if key is None: snake_case_ : List[Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: snake_case_ , snake_case_ : Any = jnp.split(__magic_name__ , sample.shape[1] , axis=1 ) else: snake_case_ : Optional[Any] = None # 1. compute alphas, betas snake_case_ : List[Any] = state.common.alphas_cumprod[t] snake_case_ : Union[str, Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) snake_case_ : List[Any] = 1 - alpha_prod_t snake_case_ : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": snake_case_ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": snake_case_ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": snake_case_ : Optional[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: snake_case_ : Optional[int] = jnp.clip(__magic_name__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ : str = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t snake_case_ : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): snake_case_ : List[Any] = jax.random.split(__magic_name__ , num=1 ) snake_case_ : Tuple = jax.random.normal(__magic_name__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__magic_name__ , __magic_name__ , predicted_variance=__magic_name__ ) ** 0.5) * noise snake_case_ : List[str] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) snake_case_ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__magic_name__ , state=__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> jnp.ndarray: '''simple docstring''' return add_noise_common(state.common , __magic_name__ , __magic_name__ , __magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> jnp.ndarray: '''simple docstring''' return get_velocity_common(state.common , __magic_name__ , __magic_name__ , __magic_name__ ) def __len__(self ) -> int: '''simple docstring''' return self.config.num_train_timesteps
279
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"""vocab_file""": """spm_char.model"""} __UpperCAmelCase = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } __UpperCAmelCase = { """microsoft/speecht5_asr""": 10_24, """microsoft/speecht5_tts""": 10_24, """microsoft/speecht5_vc""": 10_24, } class UpperCamelCase__ ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase_ =VOCAB_FILES_NAMES UpperCAmelCase_ =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ =['input_ids', 'attention_mask'] def __init__( self , _A , _A="<s>" , _A="</s>" , _A="<unk>" , _A="<pad>" , _A = None , **_A , ) -> None: SCREAMING_SNAKE_CASE_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) @property def _UpperCamelCase ( self ) -> List[str]: return self.sp_model.get_piece_size() def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.__dict__.copy() SCREAMING_SNAKE_CASE_ = None return state def __setstate__( self , _A ) -> List[str]: SCREAMING_SNAKE_CASE_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self , _A ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( self , _A ) -> str: return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( self , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) return token def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token SCREAMING_SNAKE_CASE_ = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def _UpperCamelCase ( self , _A , _A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _UpperCamelCase ( self , _A , _A = None , _A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = [1] if token_ids_a is None: return ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones return ([0] * len(SCREAMING_SNAKE_CASE_ )) + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones def _UpperCamelCase ( self , _A , _A = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fi: SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
299
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration A__ : str = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] A__ : Dict = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] A__ : int = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ) -> List[str]: for tf_name, hf_name in patterns: __lowerCamelCase : Optional[int] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def UpperCAmelCase__ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ) -> BigBirdPegasusForConditionalGeneration: __lowerCamelCase : int = BigBirdPegasusConfig(**UpperCAmelCase_ ) __lowerCamelCase : Any = BigBirdPegasusForConditionalGeneration(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = torch_model.state_dict() __lowerCamelCase : Tuple = {} # separating decoder weights __lowerCamelCase : Dict = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} __lowerCamelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Tuple = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Tuple = DECODER_PATTERNS __lowerCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : Union[str, Any] = v.T __lowerCamelCase : str = torch.from_numpy(UpperCAmelCase_ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Optional[Any] = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Dict = REMAINING_PATTERNS __lowerCamelCase : List[str] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : List[str] = v.T __lowerCamelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __lowerCamelCase : Any = mapping['model.embed_positions.weight'] __lowerCamelCase : Union[str, Any] = mapping.pop('model.embed_positions.weight' ) __lowerCamelCase , __lowerCamelCase : List[str] = torch_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) __lowerCamelCase : Any = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Dict: __lowerCamelCase : int = tf.train.list_variables(UpperCAmelCase_ ) __lowerCamelCase : List[str] = {} __lowerCamelCase : List[Any] = ['global_step'] for name, shape in tqdm(UpperCAmelCase_ , desc='converting tf checkpoint to dict' ): __lowerCamelCase : Any = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase : Dict = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = array return tf_weights def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : dict ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = get_tf_weights_as_numpy(UpperCAmelCase_ ) __lowerCamelCase : List[str] = convert_bigbird_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") A__ : List[str] = parser.parse_args() A__ : Optional[int] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
185
0
from manim import * class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" snake_case : Any = Rectangle(height=0.5 , width=0.5 ) snake_case : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case : Optional[int] = [mem.copy() for i in range(6 )] snake_case : List[Any] = [mem.copy() for i in range(6 )] snake_case : Optional[Any] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) snake_case : List[Any] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) snake_case : int = VGroup(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) snake_case : List[str] = Text('''CPU''' , font_size=24 ) snake_case : Tuple = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase__ ) snake_case : Union[str, Any] = [mem.copy() for i in range(1 )] snake_case : Any = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) snake_case : Any = Text('''GPU''' , font_size=24 ) snake_case : str = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) gpu.align_to(UpperCamelCase__ , UpperCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCamelCase__ ) snake_case : Optional[Any] = [mem.copy() for i in range(6 )] snake_case : Union[str, Any] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) snake_case : Optional[Any] = Text('''Model''' , font_size=24 ) snake_case : Optional[int] = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCamelCase__ , run_time=1 ) , Create(UpperCamelCase__ , run_time=1 ) , Create(UpperCamelCase__ , run_time=1 ) , ) snake_case : List[str] = MarkupText( f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) snake_case : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case : Dict = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase__ , run_time=2.5 ) , Write(UpperCamelCase__ ) , Write(UpperCamelCase__ ) ) self.add(UpperCamelCase__ ) snake_case : Union[str, Any] = [] snake_case : str = [] snake_case : int = [] for i, rect in enumerate(UpperCamelCase__ ): snake_case : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase__ , opacity=0.7 ) cpu_target.move_to(UpperCamelCase__ ) cpu_target.generate_target() snake_case : Optional[int] = 0.46 / 4 snake_case : int = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCamelCase__ , buff=0.0 ) cpu_targs.append(UpperCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCamelCase__ ) ) second_animations.append(MoveToTarget(UpperCamelCase__ , run_time=1.5 ) ) self.play(*UpperCamelCase__ ) self.play(*UpperCamelCase__ ) self.wait()
354
'''simple docstring''' import requests lowercase__ = "" # <-- Put your OpenWeatherMap appid here! lowercase__ = "https://api.openweathermap.org/data/2.5/" def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = "Chicago" , SCREAMING_SNAKE_CASE__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + '''weather''' , params=locals() ).json() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = "Kolkata, India" , SCREAMING_SNAKE_CASE__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + '''forecast''' , params=locals() ).json() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 55.68 , SCREAMING_SNAKE_CASE__ = 12.57 , SCREAMING_SNAKE_CASE__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + '''onecall''' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowercase__ = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
83
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for attribute in key.split(""".""" ): _a : Optional[int] = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: _a : Optional[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: _a : str = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _a : Any = value elif weight_type == "weight_g": _a : List[str] = value elif weight_type == "weight_v": _a : Union[str, Any] = value elif weight_type == "bias": _a : Optional[Any] = value else: _a : int = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = [] _a : List[str] = fairseq_model.state_dict() _a : Dict = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a : Tuple = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) _a : List[Any] = True else: for key, mapped_key in MAPPING.items(): _a : Union[str, Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _a : str = True if "*" in mapped_key: _a : Optional[int] = name.split(UpperCamelCase__ )[0].split(""".""" )[-2] _a : Optional[Any] = mapped_key.replace("""*""" , UpperCamelCase__ ) if "weight_g" in name: _a : Tuple = """weight_g""" elif "weight_v" in name: _a : List[Any] = """weight_v""" elif "weight" in name: _a : Union[str, Any] = """weight""" elif "bias" in name: _a : Tuple = """bias""" else: _a : int = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = full_name.split("""conv_layers.""" )[-1] _a : Dict = name.split(""".""" ) _a : List[Any] = int(items[0] ) _a : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _a : Union[str, Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _a : Tuple = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _a : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _a : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = SEWConfig() if is_finetuned: _a : List[str] = model.wav_encoder.wav_model.cfg else: _a : Optional[int] = model.cfg _a : List[Any] = fs_config.conv_bias _a : str = eval(fs_config.conv_feature_layers ) _a : List[Any] = [x[0] for x in conv_layers] _a : int = [x[1] for x in conv_layers] _a : Optional[int] = [x[2] for x in conv_layers] _a : Any = """gelu""" _a : Optional[Any] = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" _a : int = 0.0 _a : List[str] = fs_config.activation_fn.name _a : Union[str, Any] = fs_config.encoder_embed_dim _a : Optional[int] = 0.02 _a : Optional[int] = fs_config.encoder_ffn_embed_dim _a : Optional[Any] = 1e-5 _a : Dict = fs_config.encoder_layerdrop _a : Optional[Any] = fs_config.encoder_attention_heads _a : List[str] = fs_config.conv_pos_groups _a : List[Any] = fs_config.conv_pos _a : str = len(UpperCamelCase__ ) _a : Optional[Any] = fs_config.encoder_layers _a : List[str] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _a : str = model.cfg _a : str = fs_config.final_dropout _a : Union[str, Any] = fs_config.layerdrop _a : str = fs_config.activation_dropout _a : Any = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _a : Optional[int] = fs_config.attention_dropout _a : List[Any] = fs_config.dropout_input _a : int = fs_config.dropout _a : Any = fs_config.mask_channel_length _a : Tuple = fs_config.mask_channel_prob _a : List[str] = fs_config.mask_length _a : List[Any] = fs_config.mask_prob _a : Tuple = """Wav2Vec2FeatureExtractor""" _a : Tuple = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True ): '''simple docstring''' if is_finetuned: _a , _a , _a : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _a , _a , _a : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _a : Union[str, Any] = SEWConfig.from_pretrained(UpperCamelCase__ ) else: _a : Optional[Any] = convert_config(model[0] , UpperCamelCase__ ) _a : Any = model[0].eval() _a : List[str] = True if config.feat_extract_norm == """layer""" else False _a : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) if is_finetuned: if dict_path: _a : List[str] = Dictionary.load(UpperCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a : Dict = target_dict.pad_index _a : str = target_dict.bos_index _a : Union[str, Any] = target_dict.pad_index _a : Union[str, Any] = target_dict.bos_index _a : Union[str, Any] = target_dict.eos_index _a : List[Any] = len(target_dict.symbols ) _a : Tuple = os.path.join(UpperCamelCase__ , """vocab.json""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(UpperCamelCase__ ) ) return os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , UpperCamelCase__ ) _a : Tuple = WavaVecaCTCTokenizer( UpperCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=UpperCamelCase__ , ) _a : Any = WavaVecaProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) _a : Dict = SEWForCTC(UpperCamelCase__ ) else: _a : Dict = SEWModel(UpperCamelCase__ ) feature_extractor.save_pretrained(UpperCamelCase__ ) recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _snake_case = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
294
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : int ) -> List[str]: _a : Any = """laion/clap-htsat-unfused""" _a : Union[str, Any] = tempfile.mkdtemp() def _lowercase ( self : List[Any] , **UpperCAmelCase__ : Any ) -> Dict: return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] , **UpperCAmelCase__ : List[str] ) -> int: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Optional[int]: _a : List[str] = self.get_tokenizer() _a : Any = self.get_feature_extractor() _a : Optional[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) _a : List[str] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Optional[int]: _a : Tuple = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _a : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _a : Union[str, Any] = self.get_feature_extractor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) _a : Union[str, Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def _lowercase ( self : List[str] ) -> Optional[Any]: _a : Optional[int] = self.get_feature_extractor() _a : Tuple = self.get_tokenizer() _a : List[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Any = floats_list((3, 1000) ) _a : List[Any] = feature_extractor(UpperCAmelCase__ , return_tensors="""np""" ) _a : List[str] = processor(audios=UpperCAmelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self : Tuple ) -> Optional[int]: _a : List[str] = self.get_feature_extractor() _a : Any = self.get_tokenizer() _a : Any = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Optional[int] = """This is a test string""" _a : Tuple = processor(text=UpperCAmelCase__ ) _a : int = tokenizer(UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : List[Any] ) -> Any: _a : str = self.get_feature_extractor() _a : List[str] = self.get_tokenizer() _a : List[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : Dict = processor.batch_decode(UpperCAmelCase__ ) _a : Any = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: _a : str = self.get_feature_extractor() _a : Optional[Any] = self.get_tokenizer() _a : Union[str, Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
294
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _snake_case ( ) -> str: '''simple docstring''' _A = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=lowerCAmelCase__ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=lowerCAmelCase__ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=lowerCAmelCase__ ) return parser.parse_args() def _snake_case ( ) -> Optional[int]: '''simple docstring''' _A = parse_args() # Import training_script as a module. _A = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _A = script_fpath.stem _A = importlib.import_module(lowerCAmelCase__ ) # Patch sys.argv _A = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
366
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a = logging.get_logger(__name__) # pylint: disable=invalid-name a = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def _snake_case ( _snake_case : Dict , _snake_case : List[Any] , _snake_case : List[Any]=8 ) -> Optional[int]: '''simple docstring''' _A = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : DDPMScheduler , _UpperCAmelCase : VQModel , ): super().__init__() self.register_modules( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , movq=_UpperCAmelCase , ) _A = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ): if latents is None: _A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A = latents.to(_UpperCAmelCase ) _A = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Tuple=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _A = torch.device(F'''cuda:{gpu_id}''' ) _A = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) _A = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A = None for cpu_offloaded_model in [self.unet, self.movq]: _A , _A = cpu_offload_with_hook(_UpperCAmelCase , _UpperCAmelCase , prev_module_hook=_UpperCAmelCase ) # We'll offload the last model manually. _A = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self : int ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCAmelCase ) def __call__( self : Union[str, Any] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 100 , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ): _A = self._execution_device _A = guidance_scale > 1.0 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = torch.cat(_UpperCAmelCase , dim=0 ) _A = image_embeds.shape[0] * num_images_per_prompt if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = torch.cat(_UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: _A = image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) _A = negative_image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) _A = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase , device=_UpperCAmelCase ) _A = self.scheduler.timesteps _A = self.unet.config.in_channels _A , _A = downscale_height_and_width(_UpperCAmelCase , _UpperCAmelCase , self.movq_scale_factor ) # create initial latent _A = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance _A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A = {'image_embeds': image_embeds} _A = self.unet( sample=_UpperCAmelCase , timestep=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , added_cond_kwargs=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] if do_classifier_free_guidance: _A , _A = noise_pred.split(latents.shape[1] , dim=1 ) _A , _A = noise_pred.chunk(2 ) _A , _A = variance_pred.chunk(2 ) _A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A , _A = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase , )[0] # post-processing _A = self.movq.decode(_UpperCAmelCase , force_not_quantize=_UpperCAmelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _A = image * 0.5 + 0.5 _A = image.clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
271
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __A = logging.getLogger() def lowerCamelCase_ ( ) -> str: """simple docstring""" __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('-f' ) __lowerCamelCase = parser.parse_args() return args.f class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def lowercase_ ( self ) -> None: '''simple docstring''' __lowerCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py' ) with patch.object(lowerCamelCase__ , 'argv' , lowerCamelCase__ ): __lowerCamelCase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCamelCase__ , 0.6_66 ) @slow @require_torch_non_multi_gpu def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(lowerCamelCase__ ) __lowerCamelCase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase__ ) __lowerCamelCase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase__ )
90
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 20_48, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__="<|endoftext|>" , lowerCamelCase__=False , **lowerCamelCase__ , ) -> int: '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCamelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**lowerCamelCase__ ) __lowerCamelCase = add_prefix_space def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[int]: '''simple docstring''' __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] return input_ids
90
1
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _lowerCamelCase = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": _lowerCamelCase = """hopper-medium-v2""" _lowerCamelCase = gym.make(env_name) _lowerCamelCase = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) _lowerCamelCase = env.reset() _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = 1000 _lowerCamelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _lowerCamelCase = pipeline(obs, planning_horizon=32) # execute action in environment _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = env.step(denorm_actions) _lowerCamelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" f""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) _lowerCamelCase = next_observation except KeyboardInterrupt: pass print(f"""Total reward: {total_reward}""")
365
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case (metaclass=__SCREAMING_SNAKE_CASE): __A : Union[str, Any] =["torch", "torchsde"] def __init__( self ,*_snake_case ,**_snake_case ): requires_backends(self ,["torch", "torchsde"] ) @classmethod def UpperCamelCase__ ( cls ,*_snake_case ,**_snake_case ): requires_backends(cls ,["torch", "torchsde"] ) @classmethod def UpperCamelCase__ ( cls ,*_snake_case ,**_snake_case ): requires_backends(cls ,["torch", "torchsde"] )
67
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : str = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCamelCase__ ( _a): UpperCAmelCase__ : Any = '''megatron-bert''' def __init__( self :int , _A :List[Any]=29_056 , _A :Optional[int]=1_024 , _A :Optional[int]=24 , _A :Any=16 , _A :List[Any]=4_096 , _A :str="gelu" , _A :str=0.1 , _A :Tuple=0.1 , _A :List[str]=512 , _A :int=2 , _A :List[str]=0.02 , _A :str=1E-12 , _A :str=0 , _A :Optional[Any]="absolute" , _A :Tuple=True , **_A :Any , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_A , **_A ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = use_cache
161
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowerCAmelCase_ = datasets.logging.get_logger(__name__) lowerCAmelCase_ = '''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' lowerCAmelCase_ = '''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' lowerCAmelCase_ = ''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' lowerCAmelCase_ = { '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def lowerCamelCase (self , __magic_name__ ) -> List[Any]: '''simple docstring''' if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) snake_case_ : Dict = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: snake_case_ : Optional[int] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: snake_case_ : Union[str, Any] = self.config_name.upper() else: raise KeyError( F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer snake_case_ : Any = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) snake_case_ : Dict = score.BleurtScorer(os.path.join(__magic_name__ , __magic_name__ ) ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = self.scorer.score(references=__magic_name__ , candidates=__magic_name__ ) return {"scores": scores}
279
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[Any] = ['''pixel_values'''] def __init__(self , __magic_name__ = True , __magic_name__ = None , __magic_name__ = PILImageResampling.BICUBIC , __magic_name__ = True , __magic_name__ = None , __magic_name__ = True , __magic_name__ = 1 / 255 , __magic_name__ = True , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , **__magic_name__ , ) -> None: '''simple docstring''' super().__init__(**__magic_name__ ) snake_case_ : str = size if size is not None else {'''shortest_edge''': 224} snake_case_ : Optional[Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) snake_case_ : Optional[int] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} snake_case_ : Tuple = get_size_dict(__magic_name__ , default_to_square=__magic_name__ , param_name='''crop_size''' ) snake_case_ : Tuple = do_resize snake_case_ : List[str] = size snake_case_ : Any = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Optional[int] = crop_size snake_case_ : List[Any] = do_rescale snake_case_ : Tuple = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case_ : Dict = image_std if image_std is not None else OPENAI_CLIP_STD snake_case_ : Optional[int] = do_convert_rgb def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ = PILImageResampling.BICUBIC , __magic_name__ = None , **__magic_name__ , ) -> np.ndarray: '''simple docstring''' snake_case_ : Optional[int] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case_ : Dict = get_resize_output_image_size(__magic_name__ , size=size['''shortest_edge'''] , default_to_square=__magic_name__ ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ) -> np.ndarray: '''simple docstring''' snake_case_ : Optional[Any] = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__magic_name__ , size=(size['''height'''], size['''width''']) , data_format=__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ) -> Optional[int]: '''simple docstring''' return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , **__magic_name__ , ) -> np.ndarray: '''simple docstring''' return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = ChannelDimension.FIRST , **__magic_name__ , ) -> PIL.Image.Image: '''simple docstring''' snake_case_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case_ : Dict = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(__magic_name__ , param_name='''size''' , default_to_square=__magic_name__ ) snake_case_ : Tuple = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : Tuple = crop_size if crop_size is not None else self.crop_size snake_case_ : Optional[int] = get_size_dict(__magic_name__ , param_name='''crop_size''' , default_to_square=__magic_name__ ) snake_case_ : Any = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Tuple = image_mean if image_mean is not None else self.image_mean snake_case_ : Optional[int] = image_std if image_std is not None else self.image_std snake_case_ : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ : Optional[Any] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ : Optional[int] = [convert_to_rgb(__magic_name__ ) for image in images] # All transformations expect numpy arrays. snake_case_ : Any = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: snake_case_ : List[str] = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_center_crop: snake_case_ : str = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images] if do_rescale: snake_case_ : List[Any] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: snake_case_ : Optional[int] = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] snake_case_ : str = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] snake_case_ : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
279
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar('''KEY''') lowerCAmelCase_ = TypeVar('''VAL''') @dataclass(frozen=_a, slots=_a ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowerCamelCase_ : KEY lowerCamelCase_ : VAL class __lowerCAmelCase ( _Item ): def __init__(self ) -> None: '''simple docstring''' super().__init__(__magic_name__ , __magic_name__ ) def __bool__(self ) -> bool: '''simple docstring''' return False lowerCAmelCase_ = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__(self , __magic_name__ = 8 , __magic_name__ = 0.75 ) -> None: '''simple docstring''' snake_case_ : List[Any] = initial_block_size snake_case_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 snake_case_ : List[str] = capacity_factor snake_case_ : int = 0 def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' return hash(__magic_name__ ) % len(self._buckets ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' snake_case_ : Optional[int] = self._buckets[ind] if not stored: snake_case_ : Optional[Any] = _Item(__magic_name__ , __magic_name__ ) self._len += 1 return True elif stored.key == key: snake_case_ : List[Any] = _Item(__magic_name__ , __magic_name__ ) return True else: return False def lowerCamelCase (self ) -> bool: '''simple docstring''' snake_case_ : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__magic_name__ ) def lowerCamelCase (self ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False snake_case_ : int = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowerCamelCase (self , __magic_name__ ) -> None: '''simple docstring''' snake_case_ : List[str] = self._buckets snake_case_ : int = [None] * new_size snake_case_ : Optional[int] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowerCamelCase (self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def lowerCamelCase (self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def lowerCamelCase (self , __magic_name__ ) -> Iterator[int]: '''simple docstring''' snake_case_ : Dict = self._get_bucket_index(__magic_name__ ) for _ in range(len(self._buckets ) ): yield ind snake_case_ : Tuple = self._get_next_ind(__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): if self._try_set(__magic_name__ , __magic_name__ , __magic_name__ ): break def __setitem__(self , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__magic_name__ , __magic_name__ ) def __delitem__(self , __magic_name__ ) -> None: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): snake_case_ : Optional[Any] = self._buckets[ind] if item is None: raise KeyError(__magic_name__ ) if item is _deleted: continue if item.key == key: snake_case_ : Union[str, Any] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self , __magic_name__ ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(__magic_name__ ): snake_case_ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__magic_name__ ) def __len__(self ) -> int: '''simple docstring''' return self._len def __iter__(self ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ) -> str: '''simple docstring''' snake_case_ : List[str] = ''' ,'''.join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
279
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
82
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer snake_case_ : List[Any] = logging.get_logger(__name__) class lowercase__ ( lowercase ): lowercase__ = """AutoTokenizer""" lowercase__ = ["""tokenizer"""] lowercase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self : List[str] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Tuple=None ): '''simple docstring''' super().__init__(lowerCamelCase__ ) _UpperCamelCase : Dict = speaker_embeddings @classmethod def UpperCamelCase_ ( cls : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : str="speaker_embeddings_path.json" ,**lowerCamelCase__ : Optional[Any] ): '''simple docstring''' if speaker_embeddings_dict_path is not None: _UpperCamelCase : Optional[Any] = get_file_from_repo( lowerCamelCase__ ,lowerCamelCase__ ,subfolder=kwargs.pop('subfolder' ,lowerCamelCase__ ) ,cache_dir=kwargs.pop('cache_dir' ,lowerCamelCase__ ) ,force_download=kwargs.pop('force_download' ,lowerCamelCase__ ) ,proxies=kwargs.pop('proxies' ,lowerCamelCase__ ) ,resume_download=kwargs.pop('resume_download' ,lowerCamelCase__ ) ,local_files_only=kwargs.pop('local_files_only' ,lowerCamelCase__ ) ,use_auth_token=kwargs.pop('use_auth_token' ,lowerCamelCase__ ) ,revision=kwargs.pop('revision' ,lowerCamelCase__ ) ,) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(lowerCamelCase__ ,lowerCamelCase__ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) _UpperCamelCase : Union[str, Any] = None else: with open(lowerCamelCase__ ) as speaker_embeddings_json: _UpperCamelCase : Optional[int] = json.load(lowerCamelCase__ ) else: _UpperCamelCase : Tuple = None _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) return cls(tokenizer=lowerCamelCase__ ,speaker_embeddings=lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : int="speaker_embeddings_path.json" ,lowerCamelCase__ : Dict="speaker_embeddings" ,lowerCamelCase__ : bool = False ,**lowerCamelCase__ : Tuple ,): '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCamelCase__ ,lowerCamelCase__ ,'v2' ) ,exist_ok=lowerCamelCase__ ) _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCamelCase : Any = self._load_voice_preset(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] ,lowerCamelCase__ ,F'{prompt_key}_{key}' ) ,voice_preset[key] ,allow_pickle=lowerCamelCase__ ,) _UpperCamelCase : List[str] = os.path.join(lowerCamelCase__ ,F'{prompt_key}_{key}.npy' ) _UpperCamelCase : str = tmp_dict with open(os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) ,'w' ) as fp: json.dump(lowerCamelCase__ ,lowerCamelCase__ ) super().save_pretrained(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str = None ,**lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : Tuple = self.speaker_embeddings[voice_preset] _UpperCamelCase : Union[str, Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) _UpperCamelCase : Dict = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] ,subfolder=kwargs.pop('subfolder' ,lowerCamelCase__ ) ,cache_dir=kwargs.pop('cache_dir' ,lowerCamelCase__ ) ,force_download=kwargs.pop('force_download' ,lowerCamelCase__ ) ,proxies=kwargs.pop('proxies' ,lowerCamelCase__ ) ,resume_download=kwargs.pop('resume_download' ,lowerCamelCase__ ) ,local_files_only=kwargs.pop('local_files_only' ,lowerCamelCase__ ) ,use_auth_token=kwargs.pop('use_auth_token' ,lowerCamelCase__ ) ,revision=kwargs.pop('revision' ,lowerCamelCase__ ) ,) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) _UpperCamelCase : List[str] = np.load(lowerCamelCase__ ) return voice_preset_dict def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Optional[dict] = None ): '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self : Any ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Any="pt" ,lowerCamelCase__ : Dict=256 ,lowerCamelCase__ : int=False ,lowerCamelCase__ : int=True ,lowerCamelCase__ : List[str]=False ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' if voice_preset is not None and not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): if ( isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCamelCase : Optional[int] = self._load_voice_preset(lowerCamelCase__ ) else: if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and not voice_preset.endswith('.npz' ): _UpperCamelCase : Tuple = voice_preset + '.npz' _UpperCamelCase : str = np.load(lowerCamelCase__ ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = BatchFeature(data=lowerCamelCase__ ,tensor_type=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.tokenizer( lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,padding='max_length' ,max_length=lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ,) if voice_preset is not None: _UpperCamelCase : Optional[Any] = voice_preset return encoded_text
83
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __snake_case : Tuple = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
58
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: Dict) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=_SCREAMING_SNAKE_CASE).to(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("google/mt5-small") __lowerCAmelCase : Tuple = tokenizer("Hello there" , return_tensors="pt").input_ids __lowerCAmelCase : List[str] = tokenizer("Hi I am" , return_tensors="pt").input_ids __lowerCAmelCase : List[str] = model(input_ids.to(_SCREAMING_SNAKE_CASE) , labels=labels.to(_SCREAMING_SNAKE_CASE)).loss __lowerCAmelCase : Optional[int] = -(labels.shape[-1] * loss.item()) __lowerCAmelCase : List[str] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
58
1
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a_ : Optional[Any] = logging.get_logger(__name__) def a_ ( __snake_case : int ) -> Optional[int]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(__snake_case : int , __snake_case : Any="" , __snake_case : List[str]="." ): lowerCamelCase_ =[] for k, v in d.items(): lowerCamelCase_ =parent_key + sep + k if parent_key else k if isinstance(__snake_case , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__snake_case , __snake_case , sep=__snake_case ).items() ) else: items.append((new_key, v) ) return dict(__snake_case ) lowerCamelCase_ =argparse.Namespace() with open(__snake_case , '''r''' ) as yaml_file: try: lowerCamelCase_ =yaml.load(__snake_case , Loader=yaml.FullLoader ) lowerCamelCase_ =flatten_yaml_as_dict(__snake_case ) for k, v in flat_cfg.items(): setattr(__snake_case , __snake_case , __snake_case ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(__snake_case , str(__snake_case ) ) ) return config def a_ ( __snake_case : Tuple , __snake_case : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ =MobileViTVaConfig() lowerCamelCase_ =False # dataset if task_name.startswith('''imagenet1k_''' ): lowerCamelCase_ =1000 if int(task_name.strip().split('''_''' )[-1] ) == 384: lowerCamelCase_ =384 else: lowerCamelCase_ =256 lowerCamelCase_ ='''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): lowerCamelCase_ =2_1000 if int(task_name.strip().split('''_''' )[-1] ) == 384: lowerCamelCase_ =384 else: lowerCamelCase_ =256 lowerCamelCase_ ='''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): lowerCamelCase_ =151 lowerCamelCase_ =512 lowerCamelCase_ ='''ade20k-id2label.json''' lowerCamelCase_ =True elif task_name.startswith('''voc_''' ): lowerCamelCase_ =21 lowerCamelCase_ =512 lowerCamelCase_ ='''pascal-voc-id2label.json''' lowerCamelCase_ =True # orig_config lowerCamelCase_ =load_orig_config_file(__snake_case ) assert getattr(__snake_case , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" lowerCamelCase_ =getattr(__snake_case , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(__snake_case , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowerCamelCase_ =getattr(__snake_case , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowerCamelCase_ =getattr(__snake_case , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: lowerCamelCase_ =getattr(__snake_case , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) lowerCamelCase_ =getattr(__snake_case , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) lowerCamelCase_ =getattr(__snake_case , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label lowerCamelCase_ ='''huggingface/label-files''' lowerCamelCase_ =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ ={int(__snake_case ): v for k, v in idalabel.items()} lowerCamelCase_ =idalabel lowerCamelCase_ ={v: k for k, v in idalabel.items()} return config def a_ ( __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =dct.pop(__snake_case ) lowerCamelCase_ =val def a_ ( __snake_case : List[str] , __snake_case : Optional[int]=False ) -> Optional[int]: """simple docstring""" if base_model: lowerCamelCase_ ='''''' else: lowerCamelCase_ ='''mobilevitv2.''' lowerCamelCase_ =[] for k in state_dict.keys(): if k[:8] == "encoder.": lowerCamelCase_ =k[8:] else: lowerCamelCase_ =k if ".block." in k: lowerCamelCase_ =k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: lowerCamelCase_ =k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: lowerCamelCase_ =k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: lowerCamelCase_ =k_new.replace('''conv_1.''' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: lowerCamelCase_ =k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: lowerCamelCase_ =k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: lowerCamelCase_ =k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: lowerCamelCase_ =k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: lowerCamelCase_ =k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: lowerCamelCase_ =k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: lowerCamelCase_ =[0, 1] elif i == 4: lowerCamelCase_ =[0, 1, 2, 3] elif i == 5: lowerCamelCase_ =[0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: lowerCamelCase_ =k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: lowerCamelCase_ =k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: lowerCamelCase_ =k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: lowerCamelCase_ =k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: lowerCamelCase_ =k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: lowerCamelCase_ =k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: lowerCamelCase_ =k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: lowerCamelCase_ =k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: lowerCamelCase_ =k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: lowerCamelCase_ =k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: lowerCamelCase_ =k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: lowerCamelCase_ =k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def a_ ( __snake_case : Any ) -> Dict: """simple docstring""" lowerCamelCase_ =[] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(__snake_case ) for k in keys_to_ignore: state_dict.pop(__snake_case , __snake_case ) def a_ ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ='''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowerCamelCase_ =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def a_ ( __snake_case : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ =get_mobilevitva_config(__snake_case , __snake_case ) # load original state_dict lowerCamelCase_ =torch.load(__snake_case , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): lowerCamelCase_ =MobileViTVaForSemanticSegmentation(__snake_case ).eval() lowerCamelCase_ =False else: lowerCamelCase_ =MobileViTVaForImageClassification(__snake_case ).eval() lowerCamelCase_ =False # remove and rename some keys of load the original model lowerCamelCase_ =checkpoint remove_unused_keys(__snake_case ) lowerCamelCase_ =create_rename_keys(__snake_case , base_model=__snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) # load modified state_dict model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase_ =image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ =model(**__snake_case ) # verify classification model if task_name.startswith('''imagenet''' ): lowerCamelCase_ =outputs.logits lowerCamelCase_ =logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant lowerCamelCase_ =torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""imagenet1k_256""", type=str, help=( """Name of the task for which the MobileViTV2 model you'd like to convert is trained on . """ """ Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 """ ), choices=[ """imagenet1k_256""", """imagenet1k_384""", """imagenet21k_to_1k_256""", """imagenet21k_to_1k_384""", """ade20k_deeplabv3""", """voc_deeplabv3""", ], ) parser.add_argument( """--orig_checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument("""--orig_config_path""", required=True, type=str, help="""Path to the original config file.""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) a_ : Dict = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
75
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __lowerCAmelCase = HUGGINGFACE_HUB_CACHE __lowerCAmelCase = """config.json""" __lowerCAmelCase = """diffusion_pytorch_model.bin""" __lowerCAmelCase = """diffusion_flax_model.msgpack""" __lowerCAmelCase = """model.onnx""" __lowerCAmelCase = """diffusion_pytorch_model.safetensors""" __lowerCAmelCase = """weights.pb""" __lowerCAmelCase = """https://huggingface.co""" __lowerCAmelCase = default_cache_path __lowerCAmelCase = """diffusers_modules""" __lowerCAmelCase = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) __lowerCAmelCase = ["""fp16""", """non-ema"""] __lowerCAmelCase = """.self_attn"""
271
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """data2vec-text""" def __init__( self , __lowerCamelCase=3_0522 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-1_2 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) __A : Tuple = vocab_size __A : int = hidden_size __A : int = num_hidden_layers __A : List[Any] = num_attention_heads __A : str = hidden_act __A : List[str] = intermediate_size __A : int = hidden_dropout_prob __A : str = attention_probs_dropout_prob __A : List[Any] = max_position_embeddings __A : Any = type_vocab_size __A : Optional[int] = initializer_range __A : List[Any] = layer_norm_eps __A : Optional[int] = position_embedding_type __A : List[Any] = use_cache __A : str = classifier_dropout class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCamelCase__( self ): '''simple docstring''' if self.task == "multiple-choice": __A : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __A : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
291
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCamelCase__( self ): '''simple docstring''' super().setUp() # fmt: off __A : int = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __A : Dict = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) + '''\n''' ) def UpperCamelCase__( self , **__lowerCamelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : List[str] = '''tester''' __A : Dict = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def UpperCamelCase__( self ): '''simple docstring''' pass def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __A : Union[str, Any] = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) __A : Optional[Any] = tokenizer.encode([special_token] , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __A : List[Any] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __A , __A : str = self.get_input_output_texts(__lowerCamelCase ) __A : Union[str, Any] = tokenizer.tokenize(__lowerCamelCase ) __A : Union[str, Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) __A : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertNotEqual(len(__lowerCamelCase ) , 0 ) __A : Union[str, Any] = tokenizer.decode(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , __lowerCamelCase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def UpperCamelCase__( self ): '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def UpperCamelCase__( self ): '''simple docstring''' pass
291
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCAmelCase : Optional[int] = 10 def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for i in range(_UpperCAmelCase , _UpperCAmelCase ): if array[i] == target: return i return -1 def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = len(_UpperCAmelCase ) while left <= right: if right - left < precision: return lin_search(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: SCREAMING_SNAKE_CASE_: Optional[Any] = one_third - 1 elif array[two_third] < target: SCREAMING_SNAKE_CASE_: Dict = two_third + 1 else: SCREAMING_SNAKE_CASE_: List[Any] = one_third + 1 SCREAMING_SNAKE_CASE_: Any = two_third - 1 else: return -1 def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if left < right: if right - left < precision: return lin_search(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE_: int = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_UpperCAmelCase , one_third - 1 , _UpperCAmelCase , _UpperCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _UpperCAmelCase , _UpperCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : int = input("""Enter numbers separated by comma:\n""").strip() lowerCAmelCase : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." lowerCAmelCase : Optional[int] = int(input("""Enter the number to be found in the list:\n""").strip()) lowerCAmelCase : List[Any] = ite_ternary_search(collection, target) lowerCAmelCase : Dict = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCamelCase_ : """simple docstring""" def __init__( self : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : int=3 , _lowerCamelCase : Dict=7 , _lowerCamelCase : str=True , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=True , _lowerCamelCase : Tuple=99 , _lowerCamelCase : str=32 , _lowerCamelCase : Dict=5 , _lowerCamelCase : Union[str, Any]=4 , _lowerCamelCase : Dict=37 , _lowerCamelCase : Any="gelu" , _lowerCamelCase : int=0.1 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Union[str, Any]=512 , _lowerCamelCase : Optional[Any]=16 , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : List[Any]=0.02 , _lowerCamelCase : Any=3 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : Any=None , ): """simple docstring""" A_ : List[Any] = parent A_ : Optional[int] = batch_size A_ : Optional[int] = seq_length A_ : Dict = is_training A_ : Optional[int] = use_input_mask A_ : Any = use_token_type_ids A_ : Any = use_labels A_ : Optional[int] = vocab_size A_ : Optional[Any] = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : str = num_attention_heads A_ : List[Any] = intermediate_size A_ : str = hidden_act A_ : Any = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Optional[int] = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : int = num_choices A_ : Optional[int] = scope def _a ( self : List[str] ): """simple docstring""" A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : List[str] = None if self.use_input_mask: A_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A_ : int = None A_ : str = None A_ : Union[str, Any] = None A_ : Dict = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : List[Any] ): """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_lowerCamelCase , ) def _a ( self : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict ): """simple docstring""" A_ : Dict = FalconModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) A_ : Any = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , ): """simple docstring""" A_ : Union[str, Any] = True A_ : Any = FalconModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) A_ : Optional[int] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , ) A_ : Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , ): """simple docstring""" A_ : str = FalconForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Any , ): """simple docstring""" A_ : List[Any] = True A_ : Optional[int] = True A_ : List[str] = FalconForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass A_ : List[str] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase , ) A_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A_ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) A_ : str = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )['''hidden_states'''][0] A_ : Union[str, Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )['''hidden_states'''][0] # select random slice A_ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A_ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) ) def _a ( self : int ): """simple docstring""" A_ : Dict = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) : str = config_and_inputs A_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ (a__, a__, a__, unittest.TestCase ): """simple docstring""" _lowerCAmelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _lowerCAmelCase = (FalconForCausalLM,) if is_torch_available() else () _lowerCAmelCase = ( { 'feature-extraction': FalconModel, 'text-classification': FalconForSequenceClassification, 'text-generation': FalconForCausalLM, 'question-answering': FalconForQuestionAnswering, 'token-classification': FalconForTokenClassification, 'zero-shot': FalconForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False def _a ( self : List[str] ): """simple docstring""" A_ : str = FalconModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def _a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : int ): """simple docstring""" A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self : Optional[Any] ): """simple docstring""" A_ ,*A_ : str = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: A_ : Dict = alibi self.model_tester.create_and_check_model(_lowerCamelCase , *_lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ ,A_ : int = self.model_tester.prepare_config_and_inputs_for_common() A_ : List[Any] = 3 A_ : Any = input_dict['''input_ids'''] A_ : Tuple = input_ids.ne(1 ).to(_lowerCamelCase ) A_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A_ : Dict = FalconForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : List[Any] ): """simple docstring""" A_ ,A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() A_ : Dict = 3 A_ : int = '''single_label_classification''' A_ : Dict = input_dict['''input_ids'''] A_ : Dict = input_ids.ne(1 ).to(_lowerCamelCase ) A_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A_ : List[str] = FalconForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ ,A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Dict = input_dict['''input_ids'''] A_ : List[Any] = FalconForCausalLM(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Union[str, Any] = model(_lowerCamelCase , use_cache=_lowerCamelCase ) A_ : Union[str, Any] = input_ids.shape[0] A_ : Tuple = model._convert_to_rw_cache(result.past_key_values ) A_ : List[str] = model._convert_cache_to_standard_format(_lowerCamelCase , _lowerCamelCase ) for layer in range(len(_lowerCamelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _a ( self : Optional[int] ): """simple docstring""" A_ ,A_ : int = self.model_tester.prepare_config_and_inputs_for_common() A_ : Tuple = 3 A_ : str = '''multi_label_classification''' A_ : Union[str, Any] = input_dict['''input_ids'''] A_ : List[Any] = input_ids.ne(1 ).to(_lowerCamelCase ) A_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A_ : List[str] = FalconForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A_ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Union[str, Any] ): """simple docstring""" for model_class in self.all_generative_model_classes: A_ ,A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_lowerCamelCase , '''use_cache''' ): return A_ : Tuple = model_class(_lowerCamelCase ).to(_lowerCamelCase ) if "use_cache" not in inputs: A_ : str = True A_ : Tuple = model(**_lowerCamelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return A_ : List[Any] = ( getattr(_lowerCamelCase , '''decoder_layers''' , _lowerCamelCase ) or getattr(_lowerCamelCase , '''num_decoder_layers''' , _lowerCamelCase ) or config.num_hidden_layers ) A_ : List[Any] = getattr(_lowerCamelCase , '''num_kv_heads''' , config.num_attention_heads ) A_ : Dict = getattr(_lowerCamelCase , '''d_model''' , config.hidden_size ) A_ : Optional[int] = embed_dim // num_attention_heads A_ : List[Any] = outputs['''past_key_values'''] self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) A_ ,A_ : int = inputs['''input_ids'''].shape for i in range(_lowerCamelCase ): if config.new_decoder_architecture: A_ : int = config.num_attention_heads elif config.multi_query: A_ : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" @slow def _a ( self : int ): """simple docstring""" A_ : List[Any] = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) A_ : Tuple = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(_lowerCamelCase ) A_ : List[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(_lowerCamelCase ) A_ : Optional[Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) A_ : Tuple = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=19 ) A_ : int = tokenizer.batch_decode(_lowerCamelCase )[0] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) @slow def _a ( self : Union[str, Any] ): """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: A_ : str = AutoTokenizer.from_pretrained(_lowerCamelCase ) A_ : str = FalconForCausalLM.from_pretrained(_lowerCamelCase ) model.eval() model.to(_lowerCamelCase ) A_ : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(_lowerCamelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=4 ) model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=4 ) model.generate(**_lowerCamelCase , num_beams=2 , max_new_tokens=4 ) @slow def _a ( self : Optional[int] ): """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: A_ : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) A_ : Optional[Any] = FalconForCausalLM.from_pretrained(_lowerCamelCase ) model.eval() model.to(device=_lowerCamelCase ) A_ : Tuple = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(_lowerCamelCase ) # Test results are the same with and without cache A_ : str = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=20 , use_cache=_lowerCamelCase ) A_ : int = model.generate(**_lowerCamelCase , do_sample=_lowerCamelCase , max_new_tokens=20 , use_cache=_lowerCamelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
4
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowerCamelCase__ ) ) def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if index == len(lowerCamelCase__ ): return True # Recursive Step for i in range(lowerCamelCase__ ): if valid_coloring(graph[index] , lowerCamelCase__ , lowerCamelCase__ ): # Color current vertex A_ : int = i # Validate coloring if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , index + 1 ): return True # Backtrack A_ : str = -1 return False def snake_case__ ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int ) -> list[int]: A_ : List[str] = [-1] * len(lowerCamelCase__ ) if util_color(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , 0 ): return colored_vertices return []
4
1
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ = datasets.logging.get_logger(__name__) lowerCAmelCase_ = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' lowerCAmelCase_ = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' lowerCAmelCase_ = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase="dummy_doc" ) -> Dict: """simple docstring""" snake_case_ : Any = {doc: key_lines} snake_case_ : Dict = {doc: sys_lines} snake_case_ : Any = {} snake_case_ : str = 0 snake_case_ : str = 0 snake_case_ : Tuple = 0 snake_case_ : List[Any] = 0 snake_case_ : Optional[Any] = 0 snake_case_ : Dict = 0 snake_case_ , snake_case_ : str = reader.get_doc_mentions(_UpperCamelCase , key_doc_lines[doc] , _UpperCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: snake_case_ : Tuple = reader.set_annotated_parse_trees(_UpperCamelCase , key_doc_lines[doc] , _UpperCamelCase , _UpperCamelCase ) snake_case_ , snake_case_ : Any = reader.get_doc_mentions(_UpperCamelCase , sys_doc_lines[doc] , _UpperCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: snake_case_ : Dict = reader.set_annotated_parse_trees(_UpperCamelCase , key_doc_lines[doc] , _UpperCamelCase , _UpperCamelCase ) if remove_nested: snake_case_ , snake_case_ : str = reader.remove_nested_coref_mentions(_UpperCamelCase , _UpperCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters snake_case_ , snake_case_ : List[Any] = reader.remove_nested_coref_mentions(_UpperCamelCase , _UpperCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters snake_case_ : Tuple = reader.get_mention_assignments(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Tuple = reader.get_mention_assignments(_UpperCamelCase , _UpperCamelCase ) snake_case_ : List[str] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( '''Number of resulting singleton clusters in the key ''' f'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( f'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' '''files, respectively''' ) return doc_coref_infos def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" snake_case_ : int = get_coref_infos(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ : Union[str, Any] = {} snake_case_ : Optional[Any] = 0 snake_case_ : Tuple = 0 for name, metric in metrics: snake_case_ , snake_case_ , snake_case_ : List[str] = evaluator.evaluate_documents(_UpperCamelCase , _UpperCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'''{name}/recall''': recall, f'''{name}/precision''': precision, f'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , f'''Recall: {recall * 100:.2f}''' , f''' Precision: {precision * 100:.2f}''' , f''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: snake_case_ : Tuple = (conll / 3) * 100 logger.info(f'''CoNLL score: {conll:.2f}''' ) output_scores.update({'''conll_score''': conll} ) return output_scores def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Union[str, Any] = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: snake_case_ : str = line.split()[5] if not parse_col == "-": snake_case_ : Optional[int] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=True , __magic_name__=False , __magic_name__=False , __magic_name__=False ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: snake_case_ : List[Any] = util.check_gold_parse_annotation(__magic_name__ ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" snake_case_ : Union[str, Any] = evaluate( key_lines=__magic_name__ , sys_lines=__magic_name__ , metrics=__magic_name__ , NP_only=__magic_name__ , remove_nested=__magic_name__ , keep_singletons=__magic_name__ , min_span=__magic_name__ , ) return score
279
from __future__ import annotations def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, list[float]]: """simple docstring""" snake_case_ : Dict = list(range(len(_UpperCamelCase ) ) ) snake_case_ : Dict = [v / w for v, w in zip(_UpperCamelCase , _UpperCamelCase )] index.sort(key=lambda _UpperCamelCase : ratio[i] , reverse=_UpperCamelCase ) snake_case_ : float = 0 snake_case_ : list[float] = [0] * len(_UpperCamelCase ) for i in index: if weight[i] <= capacity: snake_case_ : Dict = 1 max_value += value[i] capacity -= weight[i] else: snake_case_ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
279
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __lowerCamelCase : Any = 4 __lowerCamelCase : Any = 3 class A__ ( __snake_case ): pass def A_ ( _lowerCAmelCase ) -> str: for shard in shards: for i in range(_lowerCAmelCase ): yield {"i": i, "shard": shard} def A_ ( ) -> Optional[int]: UpperCamelCase : Dict = int(os.environ["RANK"] ) UpperCamelCase : int = int(os.environ["WORLD_SIZE"] ) UpperCamelCase : Tuple = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCAmelCase ) parser.add_argument("--local_rank" , type=_lowerCAmelCase ) parser.add_argument("--num_workers" , type=_lowerCAmelCase , default=0 ) UpperCamelCase : Union[str, Any] = parser.parse_args() UpperCamelCase : int = args.streaming UpperCamelCase : Tuple = args.num_workers UpperCamelCase : Tuple = {"shards": [F"""shard_{shard_idx}""" for shard_idx in range(_lowerCAmelCase )]} UpperCamelCase : List[str] = IterableDataset.from_generator(_lowerCAmelCase , gen_kwargs=_lowerCAmelCase ) if not streaming: UpperCamelCase : List[str] = Dataset.from_list(list(_lowerCAmelCase ) ) UpperCamelCase : List[str] = split_dataset_by_node(_lowerCAmelCase , rank=_lowerCAmelCase , world_size=_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = torch.utils.data.DataLoader(_lowerCAmelCase , num_workers=_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCamelCase : Optional[int] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCamelCase : Tuple = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
140
from __future__ import annotations def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) UpperCamelCase : str = number_of_bytes // partitions UpperCamelCase : List[Any] = [] for i in range(_lowerCAmelCase ): UpperCamelCase : Optional[Any] = i * bytes_per_partition + 1 UpperCamelCase : Any = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
140
1
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCamelCase ( __lowerCamelCase : Tuple ) ->Tuple: _SCREAMING_SNAKE_CASE = fname.split(os.path.sep )[-1] return re.search(R"""^(.*)_\d+\.jpg$""" , __lowerCamelCase ).groups()[0] class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A=None , A=None ) -> int: _SCREAMING_SNAKE_CASE = file_names _SCREAMING_SNAKE_CASE = image_transform _SCREAMING_SNAKE_CASE = label_to_id def __len__( self ) -> Optional[Any]: return len(self.file_names ) def __getitem__( self , A ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.file_names[idx] _SCREAMING_SNAKE_CASE = PIL.Image.open(A ) _SCREAMING_SNAKE_CASE = raw_image.convert("""RGB""" ) if self.image_transform is not None: _SCREAMING_SNAKE_CASE = self.image_transform(A ) _SCREAMING_SNAKE_CASE = extract_label(A ) if self.label_to_id is not None: _SCREAMING_SNAKE_CASE = self.label_to_id[label] return {"image": image, "label": label} def lowerCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Tuple ) ->str: # Initialize accelerator if args.with_tracking: _SCREAMING_SNAKE_CASE = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: _SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _SCREAMING_SNAKE_CASE = config["""lr"""] _SCREAMING_SNAKE_CASE = int(config["""num_epochs"""] ) _SCREAMING_SNAKE_CASE = int(config["""seed"""] ) _SCREAMING_SNAKE_CASE = int(config["""batch_size"""] ) _SCREAMING_SNAKE_CASE = config["""image_size"""] if not isinstance(__lowerCamelCase , (list, tuple) ): _SCREAMING_SNAKE_CASE = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": _SCREAMING_SNAKE_CASE = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _SCREAMING_SNAKE_CASE = int(args.checkpointing_steps ) else: raise ValueError( F'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: _SCREAMING_SNAKE_CASE = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _SCREAMING_SNAKE_CASE = os.path.split(__lowerCamelCase )[-1].split(""".""" )[0] accelerator.init_trackers(__lowerCamelCase , __lowerCamelCase ) # Grab all the image filenames _SCREAMING_SNAKE_CASE = [os.path.join(args.data_dir , __lowerCamelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences _SCREAMING_SNAKE_CASE = [extract_label(__lowerCamelCase ) for fname in file_names] _SCREAMING_SNAKE_CASE = list(set(__lowerCamelCase ) ) id_to_label.sort() _SCREAMING_SNAKE_CASE = {lbl: i for i, lbl in enumerate(__lowerCamelCase )} # Set the seed before splitting the data. np.random.seed(__lowerCamelCase ) torch.manual_seed(__lowerCamelCase ) torch.cuda.manual_seed_all(__lowerCamelCase ) # Split our filenames between train and validation _SCREAMING_SNAKE_CASE = np.random.permutation(len(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = int(0.8 * len(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = random_perm[:cut] _SCREAMING_SNAKE_CASE = random_perm[cut:] # For training we use a simple RandomResizedCrop _SCREAMING_SNAKE_CASE = Compose([RandomResizedCrop(__lowerCamelCase , scale=(0.5, 1.0) ), ToTensor()] ) _SCREAMING_SNAKE_CASE = PetsDataset( [file_names[i] for i in train_split] , image_transform=__lowerCamelCase , label_to_id=__lowerCamelCase ) # For evaluation, we use a deterministic Resize _SCREAMING_SNAKE_CASE = Compose([Resize(__lowerCamelCase ), ToTensor()] ) _SCREAMING_SNAKE_CASE = PetsDataset([file_names[i] for i in eval_split] , image_transform=__lowerCamelCase , label_to_id=__lowerCamelCase ) # Instantiate dataloaders. _SCREAMING_SNAKE_CASE = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 ) _SCREAMING_SNAKE_CASE = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _SCREAMING_SNAKE_CASE = create_model("""resnet50d""" , pretrained=__lowerCamelCase , num_classes=len(__lowerCamelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _SCREAMING_SNAKE_CASE = False for param in model.get_classifier().parameters(): _SCREAMING_SNAKE_CASE = True # We normalize the batches of images to be a bit faster. _SCREAMING_SNAKE_CASE = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) _SCREAMING_SNAKE_CASE = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _SCREAMING_SNAKE_CASE = OneCycleLR(optimizer=__lowerCamelCase , max_lr=__lowerCamelCase , epochs=__lowerCamelCase , steps_per_epoch=len(__lowerCamelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # We need to keep track of how many total steps we have iterated over _SCREAMING_SNAKE_CASE = 0 # We also need to keep track of the starting epoch so files are named properly _SCREAMING_SNAKE_CASE = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) _SCREAMING_SNAKE_CASE = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _SCREAMING_SNAKE_CASE = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _SCREAMING_SNAKE_CASE = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _SCREAMING_SNAKE_CASE = os.path.splitext(__lowerCamelCase )[0] if "epoch" in training_difference: _SCREAMING_SNAKE_CASE = int(training_difference.replace("""epoch_""" , """""" ) ) + 1 _SCREAMING_SNAKE_CASE = None else: _SCREAMING_SNAKE_CASE = int(training_difference.replace("""step_""" , """""" ) ) _SCREAMING_SNAKE_CASE = resume_step // len(__lowerCamelCase ) resume_step -= starting_epoch * len(__lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase , __lowerCamelCase ): model.train() if args.with_tracking: _SCREAMING_SNAKE_CASE = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _SCREAMING_SNAKE_CASE = accelerator.skip_first_batches(__lowerCamelCase , __lowerCamelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _SCREAMING_SNAKE_CASE = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _SCREAMING_SNAKE_CASE = {k: v.to(accelerator.device ) for k, v in batch.items()} _SCREAMING_SNAKE_CASE = (batch["""image"""] - mean) / std _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.nn.functional.cross_entropy(__lowerCamelCase , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE = F'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , __lowerCamelCase ) accelerator.save_state(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. _SCREAMING_SNAKE_CASE = {k: v.to(accelerator.device ) for k, v in batch.items()} _SCREAMING_SNAKE_CASE = (batch["""image"""] - mean) / std with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = outputs.argmax(dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch["""label"""]) ) _SCREAMING_SNAKE_CASE = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _SCREAMING_SNAKE_CASE = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}: {100 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { """accuracy""": 100 * eval_metric, """train_loss""": total_loss.item() / len(__lowerCamelCase ), """epoch""": epoch, } , step=__lowerCamelCase , ) if checkpointing_steps == "epoch": _SCREAMING_SNAKE_CASE = F'epoch_{epoch}' if args.output_dir is not None: _SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , __lowerCamelCase ) accelerator.save_state(__lowerCamelCase ) if args.with_tracking: accelerator.end_training() def lowerCamelCase ( ) ->int: _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=__lowerCamelCase , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCamelCase , default=__lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=__lowerCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=__lowerCamelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = {"""lr""": 3e-2, """num_epochs""": 3, """seed""": 42, """batch_size""": 64, """image_size""": 224} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
58
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger() @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def snake_case_( self , A , A , A ) -> Optional[int]: _SCREAMING_SNAKE_CASE = len(list(m.modules() ) ) == 1 or isinstance(A , nn.Convad ) or isinstance(A , nn.BatchNormad ) if has_not_submodules: self.traced.append(A ) def __call__( self , A ) -> str: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A ) [x.remove() for x in self.handles] return self @property def snake_case_( self ) -> str: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a_ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 0 UpperCamelCase = field(default_factory=snake_case_ ) UpperCamelCase = field(default_factory=snake_case_ ) def __call__( self , A ) -> List[str]: _SCREAMING_SNAKE_CASE = Tracker(self.dest )(A ).parametrized _SCREAMING_SNAKE_CASE = Tracker(self.src )(A ).parametrized _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.src_skip , A ) ) _SCREAMING_SNAKE_CASE = list(filter(lambda A : type(A ) not in self.dest_skip , A ) ) if len(A ) != len(A ): raise Exception( f'Numbers of operations are different. Source module has {len(A )} operations while' f' destination module has {len(A )}.' ) for dest_m, src_m in zip(A , A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : ResNetConfig , __lowerCamelCase : Path , __lowerCamelCase : bool = True ) ->int: print(F'Converting {name}...' ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ResNetForImageClassification(__lowerCamelCase ).eval() _SCREAMING_SNAKE_CASE = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCamelCase ) assert torch.allclose(from_model(__lowerCamelCase ) , our_model(__lowerCamelCase ).logits ), "The model logits don't match the original one." _SCREAMING_SNAKE_CASE = F'resnet{"-".join(name.split("resnet" ) )}' print(__lowerCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=__lowerCamelCase , ) # we can use the convnext one _SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=__lowerCamelCase , ) print(F'Pushed {checkpoint_name}' ) def lowerCamelCase ( __lowerCamelCase : Path , __lowerCamelCase : str = None , __lowerCamelCase : bool = True ) ->Any: _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = 1000 _SCREAMING_SNAKE_CASE = (1, num_labels) _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(__lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowercase_ = parser.parse_args() lowercase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
58
1
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def __lowercase ( _a , _a ): snake_case_ : Tuple = int(_a ) assert noofclusters < len(_a ) # Find out the dimensionality snake_case_ : Union[str, Any] = len(vectors[0] ) # Will help select random centroids from among the available vectors snake_case_ : List[Any] = list(range(len(_a ) ) ) shuffle(_a ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. snake_case_ : Tuple = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION snake_case_ : Tuple = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points snake_case_ : Tuple = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_a ) ] ##These nodes will assign the centroid Variables the appropriate ##values snake_case_ : Dict = tf.placeholder('''float64''' , [dim] ) snake_case_ : List[Any] = [] for centroid in centroids: cent_assigns.append(tf.assign(_a , _a ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) snake_case_ : Tuple = [tf.Variable(0 ) for i in range(len(_a ) )] ##These nodes will assign an assignment Variable the appropriate ##value snake_case_ : Dict = tf.placeholder('''int32''' ) snake_case_ : Optional[int] = [] for assignment in assignments: cluster_assigns.append(tf.assign(_a , _a ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input snake_case_ : Optional[Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors snake_case_ : List[str] = tf.reduce_mean(_a , 0 ) ##Node for computing Euclidean distances # Placeholders for input snake_case_ : int = tf.placeholder('''float''' , [dim] ) snake_case_ : int = tf.placeholder('''float''' , [dim] ) snake_case_ : int = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_a , _a ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input snake_case_ : Optional[Any] = tf.placeholder('''float''' , [noofclusters] ) snake_case_ : int = tf.argmin(_a , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. snake_case_ : Any = tf.initialize_all_variables() # Initialize all variables sess.run(_a ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. snake_case_ : Optional[int] = 100 for _ in range(_a ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_a ) ): snake_case_ : Optional[Any] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. snake_case_ : Dict = [ sess.run(_a , feed_dict={va: vect, va: sess.run(_a )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input snake_case_ : Tuple = sess.run( _a , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_a ): # Collect all the vectors assigned to this cluster snake_case_ : Tuple = [ vectors[i] for i in range(len(_a ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location snake_case_ : Optional[int] = sess.run( _a , feed_dict={mean_input: array(_a )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments snake_case_ : Optional[Any] = sess.run(_a ) snake_case_ : Optional[Any] = sess.run(_a ) return centroids, assignments
155
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase__ : Any = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Tuple = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : Union[str, Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } lowercase__ : Any = { '''google/rembert''': 2_56, } lowercase__ : Optional[Any] = '''▁''' class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Tuple = VOCAB_FILES_NAMES _lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Tuple = RemBertTokenizer def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Optional[int]=None , lowercase_ : List[Any]=True , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : List[Any]="[CLS]" , lowercase_ : Union[str, Any]="[SEP]" , lowercase_ : str="<unk>" , lowercase_ : Tuple="[SEP]" , lowercase_ : Optional[int]="<pad>" , lowercase_ : List[Any]="[CLS]" , lowercase_ : Union[str, Any]="[MASK]" , **lowercase_ : Dict , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : List[str] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) snake_case_ : Optional[int] = do_lower_case snake_case_ : List[Any] = remove_space snake_case_ : str = keep_accents snake_case_ : str = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True def _snake_case ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ : Optional[int] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] def _snake_case ( self : Dict , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ : Union[str, Any] = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not os.path.isdir(lowercase_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowercase_ ) ) return snake_case_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
155
1
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Any = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) lowerCAmelCase : List[str] = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowerCAmelCase : int = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowerCAmelCase : List[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) lowerCAmelCase : Any = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) lowerCAmelCase : str = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) lowerCAmelCase : List[str] = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) lowerCAmelCase : Union[str, Any] = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) lowerCAmelCase : Optional[Any] = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) lowerCAmelCase : List[str] = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) lowerCAmelCase : Optional[Any] = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) lowerCAmelCase : Union[str, Any] = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) lowerCAmelCase : int = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) lowerCAmelCase : List[str] = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) lowerCAmelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCAmelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCAmelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCAmelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCAmelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCAmelCase : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCAmelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCAmelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCAmelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCAmelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCAmelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_MAPPING lowerCAmelCase : Tuple = auto_class_update(FlaxAutoModel) class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCAmelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase : int = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase : str = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase : Tuple = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCAmelCase : Optional[int] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase : Tuple = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCAmelCase : Dict = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCAmelCase : int = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[int] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase : List[Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class __magic_name__ ( _BaseAutoModelClass ): '''simple docstring''' __UpperCamelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCAmelCase : str = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
291
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ) -> Union[str, Any]: lowerCamelCase = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=snake_case__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=snake_case__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=snake_case__ ) return parser.parse_args() def a__ ( ) -> List[str]: lowerCamelCase = parse_args() # Import training_script as a module. lowerCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCamelCase = script_fpath.stem lowerCamelCase = importlib.import_module(snake_case__ ) # Patch sys.argv lowerCamelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
291
1
UpperCAmelCase_ : List[Any] = 9.8_0_6_6_5 def _A (__a , __a , __a = g ) -> float: """simple docstring""" if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
360
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def _A (__a ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _A (__a ) -> np.ndarray: """simple docstring""" return (gray > 1_27) & (gray <= 2_55) def _A (__a , __a ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros_like(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE_ : Union[str, Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE_ : Any = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCAmelCase_ : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" UpperCAmelCase_ : List[Any] = np.array(Image.open(lena_path)) # kernel to be applied UpperCAmelCase_ : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCAmelCase_ : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCAmelCase_ : List[str] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
318
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCAmelCase_ : def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : str=False , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : List[str]=9_9 , UpperCAmelCase__ : Union[str, Any]=3_2 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : str=3_7 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : int=1_6 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : int=4 , UpperCAmelCase__ : Any=None , ) -> Dict: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Dict ) -> str: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCAmelCase__ , ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> Dict: lowerCAmelCase = FalconModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , ) -> Optional[int]: lowerCAmelCase = True lowerCAmelCase = FalconModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , ) -> Tuple: lowerCAmelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , ) -> Optional[int]: lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0] lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def __UpperCAmelCase ( self : Dict ) -> List[Any]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : List[Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : List[Any] = (FalconForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : str = False lowerCamelCase : Tuple = False def __UpperCAmelCase ( self : Optional[int] ) -> Dict: lowerCAmelCase = FalconModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> Any: lowerCAmelCase , *lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCAmelCase = alibi self.model_tester.create_and_check_model(UpperCAmelCase__ , *UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Tuple ) -> int: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = FalconForCausalLM(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model._convert_to_rw_cache(result.past_key_values ) lowerCAmelCase = model._convert_cache_to_standard_format(UpperCAmelCase__ , UpperCAmelCase__ ) for layer in range(len(UpperCAmelCase__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __UpperCAmelCase ( self : int ) -> Dict: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCAmelCase__ , 'use_cache' ): return lowerCAmelCase = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) if "use_cache" not in inputs: lowerCAmelCase = True lowerCAmelCase = model(**UpperCAmelCase__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCAmelCase = ( getattr(UpperCAmelCase__ , 'decoder_layers' , UpperCAmelCase__ ) or getattr(UpperCAmelCase__ , 'num_decoder_layers' , UpperCAmelCase__ ) or config.num_hidden_layers ) lowerCAmelCase = getattr(UpperCAmelCase__ , 'num_kv_heads' , config.num_attention_heads ) lowerCAmelCase = getattr(UpperCAmelCase__ , 'd_model' , config.hidden_size ) lowerCAmelCase = embed_dim // num_attention_heads lowerCAmelCase = outputs['past_key_values'] self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) lowerCAmelCase , lowerCAmelCase = inputs['input_ids'].shape for i in range(UpperCAmelCase__ ): if config.new_decoder_architecture: lowerCAmelCase = config.num_attention_heads elif config.multi_query: lowerCAmelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: lowerCAmelCase = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) lowerCAmelCase = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) lowerCAmelCase = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=1_9 ) lowerCAmelCase = tokenizer.batch_decode(UpperCAmelCase__ )[0] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Tuple ) -> List[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , num_beams=2 , max_new_tokens=4 ) @slow def __UpperCAmelCase ( self : Dict ) -> Any: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(device=UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) # Test results are the same with and without cache lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=2_0 , use_cache=UpperCAmelCase__ ) lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=2_0 , use_cache=UpperCAmelCase__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
4
'''simple docstring''' import os __snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def a_ ( lowerCamelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = 0 while index < len(lowerCamelCase ) - 1: lowerCAmelCase = SYMBOLS[numerals[index]] lowerCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( lowerCamelCase : int ): lowerCAmelCase = '' lowerCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 lowerCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( lowerCamelCase : str = "/p089_roman.txt" ): lowerCAmelCase = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: lowerCAmelCase = filea.readlines() for line in lines: lowerCAmelCase = line.strip() lowerCAmelCase = parse_roman_numerals(lowerCamelCase ) lowerCAmelCase = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
4
1
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase = logging.get_logger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = [] def parse_line(SCREAMING_SNAKE_CASE_ : Optional[int] ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE_ ) > 0: SCREAMING_SNAKE_CASE = '\n'.join(SCREAMING_SNAKE_CASE_ ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE_ ) buffer.clear() continue else: SCREAMING_SNAKE_CASE = line.strip() buffer.append(SCREAMING_SNAKE_CASE_ ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> str: SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) return selected_warnings if __name__ == "__main__": def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]: return values.split(',' ) __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase = extract_warnings(args.output_dir, args.targets) __UpperCamelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
38
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def UpperCamelCase ( __lowercase : np.ndarray ,__lowercase : float ,__lowercase : int = 1_60_00 ): '''simple docstring''' A_ : Dict = int(round(sample_rate * max_length ) ) if len(__lowercase ) <= sample_length: return wav A_ : Optional[Any] = randint(0 ,len(__lowercase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = field(default=__A , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) lowerCamelCase_ = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowerCamelCase_ = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) lowerCamelCase_ = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) lowerCamelCase_ = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) lowerCamelCase_ = field( default=__A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCamelCase_ = field( default=__A , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) lowerCamelCase_ = field( default=2_0 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) lowerCamelCase_ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) lowerCamelCase_ = field( default=__A , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowerCAmelCase_ ( self ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , lowercase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def UpperCamelCase ( ): '''simple docstring''' A_ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ , A_ , A_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ , A_ , A_ : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' ,__lowercase ,__lowercase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ : Tuple = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. A_ : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. A_ : Optional[Any] = DatasetDict() A_ : List[str] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.train_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) A_ : Optional[int] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=data_args.eval_split_name ,use_auth_token=True if model_args.use_auth_token else None ,) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--audio_column_name` to the correct audio column - one of ' f'''{', '.join(raw_datasets['train'].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--label_column_name` to the correct text column - one of ' f'''{', '.join(raw_datasets['train'].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy A_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path ,return_attention_mask=model_args.attention_mask ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. A_ : int = raw_datasets.cast_column( data_args.audio_column_name ,datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) A_ : Union[str, Any] = feature_extractor.model_input_names[0] def train_transforms(__lowercase : int ): A_ : str = [] for audio in batch[data_args.audio_column_name]: A_ : Dict = random_subsample( audio['array'] ,max_length=data_args.max_length_seconds ,sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__lowercase ) A_ : Union[str, Any] = feature_extractor(__lowercase ,sampling_rate=feature_extractor.sampling_rate ) A_ : Tuple = {model_input_name: inputs.get(__lowercase )} A_ : int = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__lowercase : Optional[int] ): A_ : Tuple = [audio['array'] for audio in batch[data_args.audio_column_name]] A_ : Optional[Any] = feature_extractor(__lowercase ,sampling_rate=feature_extractor.sampling_rate ) A_ : Optional[Any] = {model_input_name: inputs.get(__lowercase )} A_ : Optional[int] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ : List[Any] = raw_datasets['train'].features[data_args.label_column_name].names A_ , A_ : int = {}, {} for i, label in enumerate(__lowercase ): A_ : Tuple = str(__lowercase ) A_ : str = label # Load the accuracy metric from the datasets package A_ : int = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__lowercase : Dict ): A_ : Optional[Any] = np.argmax(eval_pred.predictions ,axis=1 ) return metric.compute(predictions=__lowercase ,references=eval_pred.label_ids ) A_ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(__lowercase ) ,labelaid=__lowercase ,idalabel=__lowercase ,finetuning_task='audio-classification' ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) A_ : List[Any] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('.ckpt' in model_args.model_name_or_path ) ,config=__lowercase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: A_ : str = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__lowercase ,output_all_columns=__lowercase ) if training_args.do_eval: if data_args.max_eval_samples is not None: A_ : Tuple = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__lowercase ,output_all_columns=__lowercase ) # Initialize our trainer A_ : List[Any] = Trainer( model=__lowercase ,args=__lowercase ,train_dataset=raw_datasets['train'] if training_args.do_train else None ,eval_dataset=raw_datasets['eval'] if training_args.do_eval else None ,compute_metrics=__lowercase ,tokenizer=__lowercase ,) # Training if training_args.do_train: A_ : int = None if training_args.resume_from_checkpoint is not None: A_ : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ : Optional[Any] = last_checkpoint A_ : List[Any] = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics('train' ,train_result.metrics ) trainer.save_metrics('train' ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ : Dict = trainer.evaluate() trainer.log_metrics('eval' ,__lowercase ) trainer.save_metrics('eval' ,__lowercase ) # Write model card and (optionally) push to hub A_ : int = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
140
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _UpperCAmelCase = """sshleifer/bart-tiny-random""" _UpperCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self ): """simple docstring""" return AutoConfig.from_pretrained(lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : Tuple = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : int = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : str = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=lowercase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ , *A_ : List[str] = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaises(lowercase ): create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=lowercase , d=lowercase )
140
1
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers snake_case : Optional[int] = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any]=None ): require_version(deps[pkg] , __lowerCAmelCase )
109
snake_case : str = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def __lowercase ( __lowerCAmelCase : float ): assert type(__lowerCAmelCase ) in (int, float) and decimal == int(__lowerCAmelCase ) a__ = int(__lowerCAmelCase ) a__ = '' a__ = False if decimal < 0: a__ = True decimal *= -1 while decimal > 0: a__ , a__ = divmod(__lowerCAmelCase , 1_6 ) a__ = values[remainder] + hexadecimal a__ = '0x' + hexadecimal if negative: a__ = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
109
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : str , lowerCAmelCase : Optional[Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): lowerCAmelCase = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(lowerCAmelCase ) def __lowercase ( self : List[str] ): lowerCAmelCase = """sshleifer/tiny-gpt2""" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = """sgugger/tiny-distilbert-classification""" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , only_pretrain_model=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = """sshleifer/tiny-gpt2""" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , torchscript=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def __lowercase ( self : str ): lowerCAmelCase = """sshleifer/tiny-gpt2""" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , fpaa=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self : Tuple ): lowerCAmelCase = """sshleifer/tiny-gpt2""" lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) # set architectures equal to `None` lowerCAmelCase = None lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self : List[Any] ): lowerCAmelCase = """sshleifer/tiny-gpt2""" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def __lowercase ( self : Any ): lowerCAmelCase = """sshleifer/tiny-gpt2""" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowerCAmelCase , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowercase ( self : Tuple ): lowerCAmelCase = """sshleifer/tiny-gpt2""" lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = """sshleifer/tinier_bart""" lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = """sshleifer/tiny-gpt2""" lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowercase ( self : Any ): lowerCAmelCase = """sshleifer/tinier_bart""" lowerCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowercase ( self : Optional[Any] ): lowerCAmelCase = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , save_to_csv=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(lowerCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(lowerCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(lowerCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(lowerCAmelCase , """env.csv""" ) , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(lowerCAmelCase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , """env.csv""" ) ).exists() ) def __lowercase ( self : List[Any] ): lowerCAmelCase = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(lowerCAmelCase : int ): self.assertTrue(hasattr(lowerCAmelCase , """sequential""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """cumulative""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """current""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCAmelCase , """log.txt""" ) , log_print=lowerCAmelCase , trace_memory_line_by_line=lowerCAmelCase , multi_process=lowerCAmelCase , ) lowerCAmelCase = PyTorchBenchmark(lowerCAmelCase ) lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowerCAmelCase , """log.txt""" ) ).exists() )
155
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
155
1
"""simple docstring""" from math import factorial, pi def _lowerCAmelCase ( lowercase_ , lowercase_ = 30 ): if not isinstance(lowercase_ , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(lowercase_ , lowercase_ ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) UpperCAmelCase = float(lowercase_ ) UpperCAmelCase = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase_ ) ) def _lowerCAmelCase ( lowercase_ , lowercase_ = 30 ): if not isinstance(lowercase_ , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(lowercase_ , lowercase_ ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) UpperCAmelCase = float(lowercase_ ) UpperCAmelCase = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
370
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Any , lowercase_ :Optional[Any] , lowercase_ :int=13 , lowercase_ :Optional[Any]=7 , lowercase_ :List[str]=True , lowercase_ :Dict=True , lowercase_ :str=True , lowercase_ :Optional[Any]=True , lowercase_ :Dict=99 , lowercase_ :int=32 , lowercase_ :str=5 , lowercase_ :Dict=4 , lowercase_ :Tuple=37 , lowercase_ :Dict="gelu" , lowercase_ :List[str]=0.1 , lowercase_ :int=0.1 , lowercase_ :Any=5_12 , lowercase_ :Optional[Any]=16 , lowercase_ :Optional[int]=2 , lowercase_ :Union[str, Any]=0.02 , lowercase_ :Dict=False , lowercase_ :Tuple=True , lowercase_ :Optional[Any]="None" , lowercase_ :int=3 , lowercase_ :Tuple=4 , lowercase_ :Optional[int]=None , ) -> Tuple: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = relative_attention UpperCAmelCase = position_biased_input UpperCAmelCase = pos_att_type UpperCAmelCase = scope def UpperCAmelCase__ ( self :Any ) -> Tuple: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self :Tuple ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str ) -> List[str]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str , lowercase_ :Tuple , lowercase_ :str , lowercase_ :int , lowercase_ :Union[str, Any] , lowercase_ :List[str] , lowercase_ :Optional[int] ) -> Optional[int]: UpperCAmelCase = DebertaVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase = model(lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase = model(lowercase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Dict , lowercase_ :List[str] , lowercase_ :Any , lowercase_ :List[str] , lowercase_ :Tuple , lowercase_ :List[Any] , lowercase_ :int ) -> Any: UpperCAmelCase = DebertaVaForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Any , lowercase_ :List[Any] , lowercase_ :Any , lowercase_ :Dict , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Dict ) -> Union[str, Any]: UpperCAmelCase = self.num_labels UpperCAmelCase = DebertaVaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :Union[str, Any] , lowercase_ :Dict , lowercase_ :Union[str, Any] , lowercase_ :Any , lowercase_ :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :Any ) -> List[Any]: UpperCAmelCase = self.num_labels UpperCAmelCase = DebertaVaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self :Any , lowercase_ :Any , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :Union[str, Any] , lowercase_ :Dict , lowercase_ :List[Any] , lowercase_ :Optional[int] ) -> Dict: UpperCAmelCase = DebertaVaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :Any , lowercase_ :Any ) -> List[Any]: UpperCAmelCase = DebertaVaForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self :Dict ) -> int: UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCamelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[int]: UpperCAmelCase = DebertaVaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :Optional[Any] ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> List[Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[int]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> Union[str, Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowercase_ ) @slow def UpperCAmelCase__ ( self :Any ) -> Optional[int]: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = DebertaVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def UpperCAmelCase__ ( self :str ) -> Tuple: pass @slow def UpperCAmelCase__ ( self :List[Any] ) -> Any: UpperCAmelCase = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCAmelCase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ )[0] # compare the actual values for a slice. UpperCAmelCase = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
181
0
"""simple docstring""" import numpy as np def a_ ( lowerCamelCase ): return 1 / (1 + np.exp(-vector )) def a_ ( lowerCamelCase ): return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
98
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : Optional[int] = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''</s>''' lowerCamelCase_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A ) , 1_1_0_3 ) def UpperCAmelCase__ (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : str = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowerCamelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCamelCase_ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowerCamelCase_ : Any = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : List[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCamelCase_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowerCamelCase_ : Tuple = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCamelCase_ : str = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''This is going to be way too long.''' * 1_5_0, '''short example'''] lowerCamelCase_ : int = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : List[Any] = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Dict = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ (self ): # fmt: off lowerCamelCase_ : int = {'''input_ids''': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = PegasusTokenizer lowerCamelCase : Optional[Any] = PegasusTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : str = True def UpperCAmelCase__ (self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ : str = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ (self ): return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def UpperCAmelCase__ (self , **A ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return ("This is a test", "This is a test") def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCamelCase_ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] lowerCamelCase_ : int = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = ['''This is going to be way too long.''' * 1_0_0_0, '''short example'''] lowerCamelCase_ : str = ['''not super long but more than 5 tokens''', '''tiny'''] lowerCamelCase_ : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowerCamelCase_ : List[str] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
318
0
"""simple docstring""" from random import randint, random def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False , lowercase__ = False , lowercase__ = 5 , ): _lowerCamelCase : Optional[Any] = [[-1] * number_of_cells] # Create a highway without any car _lowerCamelCase : Any = 0 _lowerCamelCase : List[str] = max(_a , 0 ) while i < number_of_cells: _lowerCamelCase : Optional[Any] = ( randint(0 , _a ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Any = 0 _lowerCamelCase : int = highway_now[car_index + 1 :] for cell in range(len(_a ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_a , -1 ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = len(_a ) # Beforce calculations, the highway is empty _lowerCamelCase : Any = [-1] * number_of_cells for car_index in range(_a ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _lowerCamelCase : Any = min(highway_now[car_index] + 1 , _a ) # Number of empty cell before the next car _lowerCamelCase : Optional[int] = get_distance(_a , _a ) - 1 # We can't have the car causing an accident _lowerCamelCase : Union[str, Any] = min(next_highway[car_index] , _a ) if random() < probability: # Randomly, a driver will slow down _lowerCamelCase : Tuple = max(next_highway[car_index] - 1 , 0 ) return next_highway def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = len(highway[0] ) for i in range(_a ): _lowerCamelCase : str = update(highway[i] , _a , _a ) _lowerCamelCase : Any = [-1] * number_of_cells for car_index in range(_a ): _lowerCamelCase : Any = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _lowerCamelCase : Any = (car_index + speed) % number_of_cells # Commit the change of position _lowerCamelCase : Optional[int] = speed highway.append(_a ) return highway if __name__ == "__main__": import doctest doctest.testmod()
360
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
12
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : str = ["""image_processor""", """tokenizer"""] snake_case__ : str = """BlipImageProcessor""" snake_case__ : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): UpperCamelCase :List[Any] = False super().__init__(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Tuple = self.image_processor def __call__( self : Tuple , __lowerCamelCase : ImageInput = None , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: UpperCamelCase :List[str] = self.tokenizer UpperCamelCase :int = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) return text_encoding # add pixel_values UpperCamelCase :Any = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) if text is not None: UpperCamelCase :Dict = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) else: UpperCamelCase :Optional[int] = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def _A ( self : Dict , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Optional[int] ): return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _A ( self : int , *__lowerCamelCase : str , **__lowerCamelCase : int ): return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def _A ( self : Union[str, Any] ): UpperCamelCase :List[str] = self.tokenizer.model_input_names UpperCamelCase :Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
38
from collections.abc import Generator from math import sin def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" if len(__magic_name__ ) != 32: raise ValueError("""Input must be of length 32""" ) UpperCamelCase :int = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase :Any = format(__magic_name__ , """08x""" )[-8:] UpperCamelCase :Union[str, Any] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" UpperCamelCase :str = B"""""" for char in message: bit_string += format(__magic_name__ , """08b""" ).encode("""utf-8""" ) UpperCamelCase :Any = format(len(__magic_name__ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__magic_name__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__magic_name__ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(__magic_name__ ) , 512 ): UpperCamelCase :Tuple = bit_string[pos : pos + 512] UpperCamelCase :Optional[int] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase :List[str] = format(__magic_name__ , """032b""" ) UpperCamelCase :Any = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(__magic_name__ , 2 ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return (a + b) % 2**32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" UpperCamelCase :Tuple = preprocess(__magic_name__ ) UpperCamelCase :List[str] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCamelCase :Union[str, Any] = 0X67_45_23_01 UpperCamelCase :Union[str, Any] = 0XEF_CD_AB_89 UpperCamelCase :List[str] = 0X98_BA_DC_FE UpperCamelCase :int = 0X10_32_54_76 UpperCamelCase :int = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__magic_name__ ): UpperCamelCase :Optional[Any] = aa UpperCamelCase :Any = ba UpperCamelCase :Tuple = ca UpperCamelCase :List[str] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCamelCase :int = d ^ (b & (c ^ d)) UpperCamelCase :Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCamelCase :str = c ^ (d & (b ^ c)) UpperCamelCase :Union[str, Any] = (5 * i + 1) % 16 elif i <= 47: UpperCamelCase :str = b ^ c ^ d UpperCamelCase :Optional[int] = (3 * i + 5) % 16 else: UpperCamelCase :List[str] = c ^ (b | not_aa(__magic_name__ )) UpperCamelCase :int = (7 * i) % 16 UpperCamelCase :Dict = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCamelCase :Tuple = d UpperCamelCase :str = c UpperCamelCase :Tuple = b UpperCamelCase :Optional[Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCamelCase :List[str] = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :str = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :int = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :Optional[Any] = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :Optional[Any] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
38
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_:Optional[int] = { """configuration_vision_text_dual_encoder""": ["""VisionTextDualEncoderConfig"""], """processing_vision_text_dual_encoder""": ["""VisionTextDualEncoderProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Optional[int] = ["""VisionTextDualEncoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Optional[Any] = ["""FlaxVisionTextDualEncoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Tuple = ["""TFVisionTextDualEncoderModel"""] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys SCREAMING_SNAKE_CASE_:Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
115
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Dict = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : int = "altclip_text_model" def __init__( self, lowerCamelCase__=25_0002, lowerCamelCase__=1024, lowerCamelCase__=24, lowerCamelCase__=16, lowerCamelCase__=4096, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=514, lowerCamelCase__=1, lowerCamelCase__=0.02, lowerCamelCase__=0.02, lowerCamelCase__=1e-05, lowerCamelCase__=1, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__="absolute", lowerCamelCase__=True, lowerCamelCase__=768, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, eos_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : Union[str, Any] = vocab_size A : Dict = hidden_size A : Union[str, Any] = num_hidden_layers A : List[str] = num_attention_heads A : str = hidden_act A : Dict = intermediate_size A : List[str] = hidden_dropout_prob A : Optional[Any] = attention_probs_dropout_prob A : Tuple = max_position_embeddings A : Optional[Any] = type_vocab_size A : Optional[Any] = initializer_range A : Optional[int] = initializer_factor A : Tuple = layer_norm_eps A : List[str] = position_embedding_type A : int = use_cache A : int = project_dim class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[Any] = "altclip_vision_model" def __init__( self, lowerCamelCase__=768, lowerCamelCase__=3072, lowerCamelCase__=512, lowerCamelCase__=12, lowerCamelCase__=12, lowerCamelCase__=3, lowerCamelCase__=224, lowerCamelCase__=32, lowerCamelCase__="quick_gelu", lowerCamelCase__=1e-5, lowerCamelCase__=0.0, lowerCamelCase__=0.02, lowerCamelCase__=1.0, **lowerCamelCase__, ): super().__init__(**lowerCamelCase__ ) A : Optional[Any] = hidden_size A : Optional[int] = intermediate_size A : Union[str, Any] = projection_dim A : str = num_hidden_layers A : int = num_attention_heads A : Optional[Any] = num_channels A : Tuple = patch_size A : List[Any] = image_size A : Optional[int] = initializer_range A : Union[str, Any] = initializer_factor A : List[str] = attention_dropout A : int = layer_norm_eps A : str = hidden_act @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__, **lowerCamelCase__ ): cls._set_token_in_kwargs(lowerCamelCase__ ) A , A : Optional[Any] = cls.get_config_dict(lowerCamelCase__, **lowerCamelCase__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": A : Any = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls, """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase__, **lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[Any] = "altclip" __lowerCamelCase : List[Any] = True def __init__( self, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=768, lowerCamelCase__=2.6592, **lowerCamelCase__ ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). A : Dict = kwargs.pop("""text_config_dict""", lowerCamelCase__ ) A : str = kwargs.pop("""vision_config_dict""", lowerCamelCase__ ) super().__init__(**lowerCamelCase__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: A : Dict = {} # This is the complete result when using `text_config_dict`. A : str = AltCLIPTextConfig(**lowerCamelCase__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: A : Optional[Any] = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: A : Optional[int] = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(lowerCamelCase__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: A : int = {} # This is the complete result when using `vision_config_dict`. A : Union[str, Any] = AltCLIPVisionConfig(**lowerCamelCase__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: A : Optional[int] = { str(lowerCamelCase__ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: A : Optional[int] = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: A : Any = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(lowerCamelCase__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: A : Tuple = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: A : Union[str, Any] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) A : Dict = AltCLIPTextConfig(**lowerCamelCase__ ) A : Optional[int] = AltCLIPVisionConfig(**lowerCamelCase__ ) A : List[str] = projection_dim A : Any = logit_scale_init_value A : Tuple = 1.0 @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ): return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : str = copy.deepcopy(self.__dict__ ) A : Any = self.text_config.to_dict() A : List[str] = self.vision_config.to_dict() A : Union[str, Any] = self.__class__.model_type return output
115
1
"""simple docstring""" A: Tuple = 0 # The first color of the flag. A: Any = 1 # The second color of the flag. A: List[Any] = 2 # The third color of the flag. A: Optional[int] = (red, white, blue) def _snake_case ( UpperCamelCase : list ): if not sequence: return [] if len(UpperCamelCase ) == 1: return list(UpperCamelCase ) UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : List[str] = len(UpperCamelCase ) - 1 UpperCAmelCase : List[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCAmelCase , UpperCAmelCase : str = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCAmelCase , UpperCAmelCase : str = sequence[high], sequence[mid] high -= 1 else: UpperCAmelCase : Union[str, Any] = F"The elements inside the sequence must contains only {colors} values" raise ValueError(UpperCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() A: Tuple = input("Enter numbers separated by commas:\n").strip() A: List[str] = [int(item.strip()) for item in user_input.split(",")] print(f"""{dutch_national_flag_sort(unsorted)}""")
109
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A: Optional[Any] = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[str] = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
1
"""simple docstring""" from __future__ import annotations import math def a_ ( _lowercase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( _lowercase ): """simple docstring""" _UpperCamelCase : List[str] = str(_lowercase ) _UpperCamelCase : str = [n] for i in range(1 , len(_lowercase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def a_ ( _lowercase ): """simple docstring""" if len(str(_lowercase ) ) > 3: if not is_prime(int(str(_lowercase )[-3:] ) ) or not is_prime(int(str(_lowercase )[:3] ) ): return False return True def a_ ( _lowercase = 11 ): """simple docstring""" _UpperCamelCase : list[int] = [] _UpperCamelCase : Optional[int] = 13 while len(_lowercase ) != count: if validate(_lowercase ): _UpperCamelCase : int = list_truncated_nums(_lowercase ) if all(is_prime(_lowercase ) for i in list_nums ): list_truncated_primes.append(_lowercase ) num += 2 return list_truncated_primes def a_ ( ): """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"{sum(compute_truncated_primes(11)) = }")
371
"""simple docstring""" from __future__ import annotations from random import choice def a_ ( _lowercase ): return choice(_lowercase ) def a_ ( _lowercase , _lowercase ): _UpperCamelCase : Optional[int] = random_pivot(_lowercase ) # partition based on pivot # linear time _UpperCamelCase : Union[str, Any] = [e for e in lst if e < pivot] _UpperCamelCase : int = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowercase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowercase ) < k - 1: return kth_number(_lowercase , k - len(_lowercase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowercase , _lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
128
0
'''simple docstring''' def UpperCamelCase_ ( A__ : Optional[Any] ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCamelCase_ ( A__ : List[Any] = 50_00 ): '''simple docstring''' lowerCAmelCase_ : Tuple = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase__ )] for i, pentagonal_i in enumerate(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): lowerCAmelCase_ : Any = pentagonal_nums[j] lowerCAmelCase_ : Optional[int] = pentagonal_i + pentagonal_j lowerCAmelCase_ : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase__ ) and is_pentagonal(lowerCAmelCase__ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
120
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(lowerCAmelCase__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
181
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _snake_case = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class a__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls ): """simple docstring""" _lowercase : List[Any] = TOKEN HfFolder.save_token(_a ) @classmethod def _lowerCamelCase ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) _lowercase : Optional[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a , repo_id="test-config" , push_to_hub=_a , use_auth_token=self._token ) _lowercase : Dict = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) _lowercase : Union[str, Any] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a , repo_id="valid_org/test-config-org" , push_to_hub=_a , use_auth_token=self._token ) _lowercase : Tuple = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) def _lowerCamelCase ( self ): """simple docstring""" CustomConfig.register_for_auto_class() _lowercase : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) _lowercase : int = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=_a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class a__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowercase : int = c.n_embd + 1 # int _lowercase : str = c.resid_pdrop + 1.0 # float _lowercase : Dict = not c.scale_attn_weights # bool _lowercase : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(_a , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(_a , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(_a , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(_a , c.summary_type , "mismatch for key: summary_type" ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = PretrainedConfig() _lowercase : int = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _a , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) _lowercase : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(_a , _a )] if len(_a ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f''' {', '.join(_a )}.''' ) def _lowerCamelCase ( self ): """simple docstring""" with self.assertRaises(_a ): # config is in subfolder, the following should not work without specifying the subfolder _lowercase : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) _lowercase : List[str] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(_a ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = mock.Mock() _lowercase : Any = 500 _lowercase : Any = {} _lowercase : Any = HTTPError _lowercase : List[Any] = {} # Download this model to make sure it's in the cache. _lowercase : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_a ) as mock_head: _lowercase : Optional[int] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = AutoConfig.from_pretrained("bert-base-cased" ) _lowercase : List[str] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_a ) _lowercase : str = 2 json.dump(configuration.to_dict() , open(os.path.join(_a , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowercase : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowercase : Tuple = ['config.42.0.0.json'] _lowercase : int = 768 configuration.save_pretrained(_a ) shutil.move(os.path.join(_a , "config.4.0.0.json" ) , os.path.join(_a , "config.42.0.0.json" ) ) _lowercase : int = AutoConfig.from_pretrained(_a ) self.assertEqual(new_configuration.hidden_size , 768 ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = 'hf-internal-testing/test-two-configs' import transformers as new_transformers _lowercase : Optional[int] = 'v4.0.0' _lowercase : Tuple = new_transformers.models.auto.AutoConfig.from_pretrained( _a , return_unused_kwargs=_a ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_a , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowercase : str = 'v3.0.0' _lowercase : Optional[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(_a ) self.assertEqual(old_configuration.hidden_size , 768 )
355
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) def _A ( snake_case=None , snake_case=None ) -> Any: return field(default_factory=lambda: default , metadata=snake_case ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=lowerCamelCase_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) _SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowerCamelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _SCREAMING_SNAKE_CASE : bool = field( default=lowerCamelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=lowerCamelCase_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=lowerCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=lowerCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) _SCREAMING_SNAKE_CASE : List[str] = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class a__ : _SCREAMING_SNAKE_CASE : WavaVecaProcessor _SCREAMING_SNAKE_CASE : Union[bool, str] = True _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[int] = None def __call__( self , _UpperCamelCase ): """simple docstring""" _lowercase : List[str] = [{"input_values": feature["input_values"]} for feature in features] _lowercase : Dict = [{"input_ids": feature["labels"]} for feature in features] _lowercase : Any = self.processor.pad( _UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) _lowercase : Union[str, Any] = self.processor.pad( labels=_UpperCamelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly _lowercase : List[str] = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _lowercase : Optional[Any] = labels return batch class a__ ( lowerCamelCase_ ): def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" model.train() _lowercase : str = self._prepare_inputs(_UpperCamelCase ) if self.use_amp: with autocast(): _lowercase : Optional[int] = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) else: _lowercase : Tuple = self.compute_loss(_UpperCamelCase , _UpperCamelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _lowercase : int = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowercase : Any = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: _lowercase : Optional[int] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCamelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCamelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCamelCase ) else: loss.backward() return loss.detach() def _A ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase : int = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowercase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , snake_case ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _lowercase : Tuple = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) _lowercase : Any = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer _lowercase : Dict = F'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(snake_case ): _lowercase : List[str] = re.sub(snake_case , "" , batch["sentence"] ).lower() + " " return batch _lowercase : int = train_dataset.map(snake_case , remove_columns=["sentence"] ) _lowercase : int = eval_dataset.map(snake_case , remove_columns=["sentence"] ) def extract_all_chars(snake_case ): _lowercase : Optional[int] = " ".join(batch["text"] ) _lowercase : int = list(set(snake_case ) ) return {"vocab": [vocab], "all_text": [all_text]} _lowercase : Dict = train_dataset.map( snake_case , batched=snake_case , batch_size=-1 , keep_in_memory=snake_case , remove_columns=train_dataset.column_names , ) _lowercase : List[Any] = train_dataset.map( snake_case , batched=snake_case , batch_size=-1 , keep_in_memory=snake_case , remove_columns=eval_dataset.column_names , ) _lowercase : Dict = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) _lowercase : List[str] = {v: k for k, v in enumerate(snake_case )} _lowercase : Union[str, Any] = vocab_dict[" "] del vocab_dict[" "] _lowercase : Dict = len(snake_case ) _lowercase : Dict = len(snake_case ) with open("vocab.json" , "w" ) as vocab_file: json.dump(snake_case , snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : Dict = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) _lowercase : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=snake_case , return_attention_mask=snake_case ) _lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=snake_case , tokenizer=snake_case ) _lowercase : int = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _lowercase : Optional[Any] = min(len(snake_case ) , data_args.max_train_samples ) _lowercase : Any = train_dataset.select(range(snake_case ) ) if data_args.max_val_samples is not None: _lowercase : Any = eval_dataset.select(range(data_args.max_val_samples ) ) _lowercase : Dict = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(snake_case ): _lowercase , _lowercase : List[str] = torchaudio.load(batch["path"] ) _lowercase : List[Any] = resampler(snake_case ).squeeze().numpy() _lowercase : str = 1_60_00 _lowercase : Optional[int] = batch["text"] return batch _lowercase : Dict = train_dataset.map( snake_case , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _lowercase : List[str] = eval_dataset.map( snake_case , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(snake_case ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' _lowercase : str = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(snake_case ) return batch _lowercase : Any = train_dataset.map( snake_case , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case , num_proc=data_args.preprocessing_num_workers , ) _lowercase : Dict = eval_dataset.map( snake_case , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=snake_case , num_proc=data_args.preprocessing_num_workers , ) # Metric _lowercase : Optional[int] = datasets.load_metric("wer" ) def compute_metrics(snake_case ): _lowercase : Dict = pred.predictions _lowercase : int = np.argmax(snake_case , axis=-1 ) _lowercase : str = processor.tokenizer.pad_token_id _lowercase : Optional[int] = processor.batch_decode(snake_case ) # we do not want to group tokens when computing the metrics _lowercase : int = processor.batch_decode(pred.label_ids , group_tokens=snake_case ) _lowercase : Optional[int] = wer_metric.compute(predictions=snake_case , references=snake_case ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _lowercase : str = DataCollatorCTCWithPadding(processor=snake_case , padding=snake_case ) # Initialize our Trainer _lowercase : List[str] = CTCTrainer( model=snake_case , data_collator=snake_case , args=snake_case , compute_metrics=snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowercase : Any = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _lowercase : Tuple = model_args.model_name_or_path else: _lowercase : Any = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _lowercase : str = trainer.train(resume_from_checkpoint=snake_case ) trainer.save_model() _lowercase : List[str] = train_result.metrics _lowercase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case ) ) _lowercase : Any = min(snake_case , len(snake_case ) ) trainer.log_metrics("train" , snake_case ) trainer.save_metrics("train" , snake_case ) trainer.save_state() # Evaluation _lowercase : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowercase : Optional[Any] = trainer.evaluate() _lowercase : Optional[Any] = data_args.max_val_samples if data_args.max_val_samples is not None else len(snake_case ) _lowercase : Tuple = min(snake_case , len(snake_case ) ) trainer.log_metrics("eval" , snake_case ) trainer.save_metrics("eval" , snake_case ) return results if __name__ == "__main__": main()
199
0
"""simple docstring""" from math import loga def a_ ( _lowerCAmelCase : int ): '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
77
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} UpperCAmelCase_ = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] UpperCAmelCase_ = 0 for log in Path().glob('*.log'): UpperCAmelCase_ = 0 with open(log, 'r') as f: for line in f: UpperCAmelCase_ = json.loads(line) if line.get('nodeid', '') != "": UpperCAmelCase_ = line['nodeid'] if line.get('duration', None) is not None: UpperCAmelCase_ = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ = [] log.unlink() UpperCAmelCase_ = '' UpperCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ = [] UpperCAmelCase_ = {} for test in failed_tests: UpperCAmelCase_ = test[0].split('::') UpperCAmelCase_ = data[0].split('/')[-1] if data[0] not in filesafailed: UpperCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ = [test[0] for test in failed_table] UpperCAmelCase_ = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.' UpperCAmelCase_ = len(err) + 10 UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: UpperCAmelCase_ = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase_ = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) UpperCAmelCase_ = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ = '' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ = row[0] else: UpperCAmelCase_ = '' UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
12
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCAmelCase_ ( __lowerCamelCase : Union[str, Any] ): lowercase_ :Optional[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase_ :List[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase_ :List[Any] = 4 lowercase_ :Any = 48 lowercase_ :str = "pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase_ :Optional[int] = [6, 6, 6, 6] lowercase_ :List[Any] = 60 lowercase_ :Union[str, Any] = [6, 6, 6, 6] lowercase_ :str = "pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase_ :Optional[int] = 4 lowercase_ :Dict = "nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase_ :List[Any] = 1 lowercase_ :str = 1 lowercase_ :int = 1_26 lowercase_ :List[str] = 7 lowercase_ :Optional[Any] = 2_55.0 lowercase_ :Any = "" return config def UpperCAmelCase_ ( __lowerCamelCase : List[Any] ,__lowerCamelCase : List[Any] ): if "patch_embed.proj" in name and "layers" not in name: lowercase_ :Optional[Any] = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowercase_ :int = name.replace("patch_embed.norm" ,"embeddings.patch_embeddings.layernorm" ) if "layers" in name: lowercase_ :Tuple = name.replace("layers" ,"encoder.stages" ) if "residual_group.blocks" in name: lowercase_ :Any = name.replace("residual_group.blocks" ,"layers" ) if "attn.proj" in name: lowercase_ :Dict = name.replace("attn.proj" ,"attention.output.dense" ) if "attn" in name: lowercase_ :Union[str, Any] = name.replace("attn" ,"attention.self" ) if "norm1" in name: lowercase_ :Optional[Any] = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: lowercase_ :Tuple = name.replace("norm2" ,"layernorm_after" ) if "mlp.fc1" in name: lowercase_ :Tuple = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: lowercase_ :int = name.replace("mlp.fc2" ,"output.dense" ) if "q_bias" in name: lowercase_ :List[str] = name.replace("q_bias" ,"query.bias" ) if "k_bias" in name: lowercase_ :Union[str, Any] = name.replace("k_bias" ,"key.bias" ) if "v_bias" in name: lowercase_ :Optional[int] = name.replace("v_bias" ,"value.bias" ) if "cpb_mlp" in name: lowercase_ :List[str] = name.replace("cpb_mlp" ,"continuous_position_bias_mlp" ) if "patch_embed.proj" in name: lowercase_ :str = name.replace("patch_embed.proj" ,"patch_embed.projection" ) if name == "norm.weight": lowercase_ :Dict = "layernorm.weight" if name == "norm.bias": lowercase_ :Any = "layernorm.bias" if "conv_first" in name: lowercase_ :Union[str, Any] = name.replace("conv_first" ,"first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase_ :Optional[int] = name.replace("conv_last" ,"final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase_ :Any = name.replace("conv_before_upsample.0" ,"conv_before_upsample" ) if "upsample.0" in name: lowercase_ :Tuple = name.replace("upsample.0" ,"upsample.convolution_0" ) if "upsample.2" in name: lowercase_ :List[str] = name.replace("upsample.2" ,"upsample.convolution_1" ) lowercase_ :List[Any] = "upsample." + name elif config.upsampler == "pixelshuffledirect": lowercase_ :str = name.replace("upsample.0.weight" ,"upsample.conv.weight" ) lowercase_ :Union[str, Any] = name.replace("upsample.0.bias" ,"upsample.conv.bias" ) else: pass else: lowercase_ :Dict = "swin2sr." + name return name def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Optional[Any] ): for key in orig_state_dict.copy().keys(): lowercase_ :Optional[Any] = orig_state_dict.pop(lowercase__ ) if "qkv" in key: lowercase_ :List[str] = key.split("." ) lowercase_ :str = int(key_split[1] ) lowercase_ :List[Any] = int(key_split[4] ) lowercase_ :Any = config.embed_dim if "weight" in key: lowercase_ :Union[str, Any] = val[:dim, :] lowercase_ :Dict = val[dim : dim * 2, :] lowercase_ :Tuple = val[-dim:, :] else: lowercase_ :str = val[:dim] lowercase_ :int = val[dim : dim * 2] lowercase_ :Optional[Any] = val[-dim:] pass else: lowercase_ :List[Any] = val return orig_state_dict def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[Any] ): lowercase_ :Any = get_config(lowercase__ ) lowercase_ :List[Any] = SwinaSRForImageSuperResolution(lowercase__ ) model.eval() lowercase_ :Union[str, Any] = torch.hub.load_state_dict_from_url(lowercase__ ,map_location="cpu" ) lowercase_ :Any = convert_state_dict(lowercase__ ,lowercase__ ) lowercase_ , lowercase_ :Dict = model.load_state_dict(lowercase__ ,strict=lowercase__ ) if len(lowercase__ ) > 0: raise ValueError("Missing keys when converting: {}".format(lowercase__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values lowercase_ :int = "https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" lowercase_ :Any = Image.open(requests.get(lowercase__ ,stream=lowercase__ ).raw ).convert("RGB" ) lowercase_ :Optional[Any] = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase_ :Any = 1_26 if "Jpeg" in checkpoint_url else 2_56 lowercase_ :List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) lowercase_ :Optional[Any] = transforms(lowercase__ ).unsqueeze(0 ) if config.num_channels == 1: lowercase_ :str = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase_ :Union[str, Any] = model(lowercase__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase_ :int = torch.Size([1, 3, 5_12, 5_12] ) lowercase_ :Any = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase_ :Dict = torch.Size([1, 3, 10_24, 10_24] ) lowercase_ :List[str] = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase_ :List[str] = torch.Size([1, 3, 10_24, 10_24] ) lowercase_ :Dict = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase_ :Union[str, Any] = torch.Size([1, 3, 5_12, 5_12] ) lowercase_ :str = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase_ :Union[str, Any] = torch.Size([1, 3, 10_24, 10_24] ) lowercase_ :Optional[Any] = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] ,lowercase__ ,atol=1e-3 ) print("Looks ok!" ) lowercase_ :int = { "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } lowercase_ :Tuple = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase__ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": lowerCAmelCase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') lowerCAmelCase : Tuple =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
363
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCAmelCase : Any =logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ): if isinstance(__lowerCamelCase ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCamelCase ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCamelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class a_ ( _lowerCAmelCase ): __A = ["pixel_values"] def __init__( self : List[str] , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Tuple , ): """simple docstring""" super().__init__(**lowercase ) lowercase_ :Any = size if size is not None else {"shortest_edge": 256} lowercase_ :int = get_size_dict(lowercase , default_to_square=lowercase ) lowercase_ :str = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase_ :List[str] = get_size_dict(lowercase , param_name="crop_size" ) lowercase_ :List[str] = do_resize lowercase_ :Any = size lowercase_ :Union[str, Any] = do_center_crop lowercase_ :Union[str, Any] = crop_size lowercase_ :Optional[Any] = resample lowercase_ :List[str] = do_rescale lowercase_ :List[Any] = rescale_factor lowercase_ :Dict = offset lowercase_ :Optional[Any] = do_normalize lowercase_ :Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ :Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Optional[Any] , ): """simple docstring""" lowercase_ :List[Any] = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" in size: lowercase_ :int = get_resize_output_image_size(lowercase , size["shortest_edge"] , default_to_square=lowercase ) elif "height" in size and "width" in size: lowercase_ :Union[str, Any] = (size["height"], size["width"]) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : str , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : str , ): """simple docstring""" lowercase_ :Any = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase ) def lowercase__ ( self : List[str] , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : bool = True , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[str] , ): """simple docstring""" lowercase_ :List[str] = image.astype(np.floataa ) if offset: lowercase_ :List[str] = image - (scale / 2) return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : Tuple , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Dict , ): """simple docstring""" return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : Tuple , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. lowercase_ :Optional[int] = to_numpy_array(lowercase ) if do_resize: lowercase_ :Tuple = self.resize(image=lowercase , size=lowercase , resample=lowercase ) if do_center_crop: lowercase_ :Any = self.center_crop(lowercase , size=lowercase ) if do_rescale: lowercase_ :Optional[Any] = self.rescale(image=lowercase , scale=lowercase , offset=lowercase ) if do_normalize: lowercase_ :Tuple = self.normalize(image=lowercase , mean=lowercase , std=lowercase ) lowercase_ :Optional[Any] = to_channel_dimension_format(lowercase , lowercase ) return image def lowercase__ ( self : Dict , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : Optional[int] , ): """simple docstring""" lowercase_ :str = do_resize if do_resize is not None else self.do_resize lowercase_ :Optional[Any] = resample if resample is not None else self.resample lowercase_ :Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ :Dict = do_rescale if do_rescale is not None else self.do_rescale lowercase_ :Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ :Dict = offset if offset is not None else self.offset lowercase_ :Tuple = do_normalize if do_normalize is not None else self.do_normalize lowercase_ :int = image_mean if image_mean is not None else self.image_mean lowercase_ :Optional[int] = image_std if image_std is not None else self.image_std lowercase_ :int = size if size is not None else self.size lowercase_ :Optional[int] = get_size_dict(lowercase , default_to_square=lowercase ) lowercase_ :List[Any] = crop_size if crop_size is not None else self.crop_size lowercase_ :List[str] = get_size_dict(lowercase , param_name="crop_size" ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) lowercase_ :List[str] = make_batched(lowercase ) lowercase_ :List[Any] = [ [ self._preprocess_image( image=lowercase , do_resize=lowercase , size=lowercase , resample=lowercase , do_center_crop=lowercase , crop_size=lowercase , do_rescale=lowercase , rescale_factor=lowercase , offset=lowercase , do_normalize=lowercase , image_mean=lowercase , image_std=lowercase , data_format=lowercase , ) for img in video ] for video in videos ] lowercase_ :Optional[int] = {"pixel_values": videos} return BatchFeature(data=lowercase , tensor_type=lowercase )
147
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> list[str]: '''simple docstring''' if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) __UpperCAmelCase : Optional[Any] = number_of_bytes // partitions __UpperCAmelCase : Tuple = [] for i in range(_UpperCamelCase ): __UpperCAmelCase : str = i * bytes_per_partition + 1 __UpperCAmelCase : Tuple = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
115
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
115
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 7 , SCREAMING_SNAKE_CASE__ : int = 1_00_00_00 ): __UpperCamelCase =0 __UpperCamelCase =1 for current_denominator in range(1 , limit + 1 ): __UpperCamelCase =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __UpperCamelCase =current_numerator __UpperCamelCase =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
117
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Features ): __UpperCamelCase =np.inf def set_batch_size(SCREAMING_SNAKE_CASE__ : FeatureType ) -> None: nonlocal batch_size if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and feature.dtype == "binary": __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return None if batch_size is np.inf else batch_size class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ = None , A_ = None , A_ = None , A_ = False , A_ = False , A_ = None , **A_ , ) -> Dict: super().__init__( A_ , split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , num_proc=A_ , **A_ , ) __UpperCamelCase =path_or_paths if isinstance(A_ , A_ ) else {self.split: path_or_paths} __UpperCamelCase =_PACKAGED_DATASETS_MODULES['parquet'][1] __UpperCamelCase =Parquet( cache_dir=A_ , data_files=A_ , features=A_ , hash=A_ , **A_ , ) def _a ( self ) -> List[Any]: # Build iterable dataset if self.streaming: __UpperCamelCase =self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None self.builder.download_and_prepare( download_config=A_ , download_mode=A_ , verification_mode=A_ , base_path=A_ , num_proc=self.num_proc , ) __UpperCamelCase =self.builder.as_dataset( split=self.split , verification_mode=A_ , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ = None , **A_ , ) -> List[Any]: __UpperCamelCase =dataset __UpperCamelCase =path_or_buf __UpperCamelCase =batch_size or get_writer_batch_size(dataset.features ) __UpperCamelCase =parquet_writer_kwargs def _a ( self ) -> int: __UpperCamelCase =self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __UpperCamelCase =self._write(file_obj=A_ , batch_size=A_ , **self.parquet_writer_kwargs ) else: __UpperCamelCase =self._write(file_obj=self.path_or_buf , batch_size=A_ , **self.parquet_writer_kwargs ) return written def _a ( self , A_ , A_ , **A_ ) -> int: __UpperCamelCase =0 __UpperCamelCase =parquet_writer_kwargs.pop('path_or_buf' , A_ ) __UpperCamelCase =self.dataset.features.arrow_schema __UpperCamelCase =pq.ParquetWriter(A_ , schema=A_ , **A_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , A_ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __UpperCamelCase =query_table( table=self.dataset._data , key=slice(A_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(A_ ) written += batch.nbytes writer.close() return written
117
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class _lowercase ( a_ ): def __init__( self: Dict ): self.test() def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : List[Any] = False while not completed: if counter == 1: self.reset() lowerCamelCase__ : Optional[Any] = self.advance() if not self.does_advance(snake_case__ ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = self.update(snake_case__ ) counter += 1 if counter > 10_000: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def lowerCamelCase_ ( self: Tuple ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: Optional[int] ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Any ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCamelCase_ ( self: Optional[int] ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCamelCase_ ( self: Union[str, Any] ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCamelCase_ ( self: str , UpperCamelCase__: int=False ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _lowercase ( a_ ): def __init__( self: str , UpperCamelCase__: str ): super(snake_case__ , self ).__init__() if not isinstance(snake_case__ , snake_case__ ) or len(snake_case__ ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(snake_case__ , snake_case__ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) lowerCamelCase__ : Tuple = token_ids lowerCamelCase__ : Any = len(self.token_ids ) lowerCamelCase__ : Any = -1 # the index of the currently fulfilled step lowerCamelCase__ : Union[str, Any] = False def lowerCamelCase_ ( self: List[str] ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: int ): if not isinstance(snake_case__ , snake_case__ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(snake_case__ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Optional[int] ): if not isinstance(snake_case__ , snake_case__ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(snake_case__ )}''' ) lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : int = False if self.does_advance(snake_case__ ): self.fulfilled_idx += 1 lowerCamelCase__ : Dict = True if self.fulfilled_idx == (self.seqlen - 1): lowerCamelCase__ : List[str] = True lowerCamelCase__ : Optional[int] = completed else: # failed to make progress. lowerCamelCase__ : List[Any] = True self.reset() return stepped, completed, reset def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Any = 0 def lowerCamelCase_ ( self: str ): return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase_ ( self: Any , UpperCamelCase__: Tuple=False ): lowerCamelCase__ : Any = PhrasalConstraint(self.token_ids ) if stateful: lowerCamelCase__ : List[Any] = self.seqlen lowerCamelCase__ : List[str] = self.fulfilled_idx lowerCamelCase__ : List[str] = self.completed return new_constraint class _lowercase : def __init__( self: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any]=True ): lowerCamelCase__ : Any = max([len(snake_case__ ) for one in nested_token_ids] ) lowerCamelCase__ : Any = {} for token_ids in nested_token_ids: lowerCamelCase__ : str = root for tidx, token_id in enumerate(snake_case__ ): if token_id not in level: lowerCamelCase__ : Dict = {} lowerCamelCase__ : Tuple = level[token_id] if no_subsets and self.has_subsets(snake_case__ , snake_case__ ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" F''' {nested_token_ids}.''' ) lowerCamelCase__ : Union[str, Any] = root def lowerCamelCase_ ( self: str , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : int = self.trie for current_token in current_seq: lowerCamelCase__ : List[Any] = start[current_token] lowerCamelCase__ : str = list(start.keys() ) return next_tokens def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: List[str] ): lowerCamelCase__ : Optional[int] = self.next_tokens(snake_case__ ) return len(snake_case__ ) == 0 def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: int ): lowerCamelCase__ : Union[str, Any] = list(root.values() ) if len(snake_case__ ) == 0: return 1 else: return sum([self.count_leaves(snake_case__ ) for nn in next_nodes] ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Dict , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : Dict = self.count_leaves(snake_case__ ) return len(snake_case__ ) != leaf_count class _lowercase ( a_ ): def __init__( self: Dict , UpperCamelCase__: Optional[Any] ): super(snake_case__ , self ).__init__() if not isinstance(snake_case__ , snake_case__ ) or len(snake_case__ ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(snake_case__ , snake_case__ ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(snake_case__ , snake_case__ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) lowerCamelCase__ : Optional[Any] = DisjunctiveTrie(snake_case__ ) lowerCamelCase__ : List[Any] = nested_token_ids lowerCamelCase__ : Optional[Any] = self.trie.max_height lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = False def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Any = self.trie.next_tokens(self.current_seq ) if len(snake_case__ ) == 0: return None else: return token_list def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Optional[int] ): if not isinstance(snake_case__ , snake_case__ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(snake_case__ )}''' ) lowerCamelCase__ : int = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: int ): if not isinstance(snake_case__ , snake_case__ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(snake_case__ )}''' ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Any = False lowerCamelCase__ : str = False if self.does_advance(snake_case__ ): self.current_seq.append(snake_case__ ) lowerCamelCase__ : List[str] = True else: lowerCamelCase__ : Optional[int] = True self.reset() lowerCamelCase__ : str = self.trie.reached_leaf(self.current_seq ) lowerCamelCase__ : Union[str, Any] = completed return stepped, completed, reset def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : str = False lowerCamelCase__ : Dict = [] def lowerCamelCase_ ( self: Optional[Any] ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: List[Any]=False ): lowerCamelCase__ : int = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCamelCase__ : Optional[Any] = self.seqlen lowerCamelCase__ : Optional[int] = self.current_seq lowerCamelCase__ : Optional[int] = self.completed return new_constraint class _lowercase : def __init__( self: List[Any] , UpperCamelCase__: Tuple ): lowerCamelCase__ : Optional[Any] = constraints # max # of steps required to fulfill a given constraint lowerCamelCase__ : Optional[Any] = max([c.seqlen for c in constraints] ) lowerCamelCase__ : str = len(snake_case__ ) lowerCamelCase__ : Dict = False self.init_state() def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Dict = [] lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Any = [constraint.copy(stateful=snake_case__ ) for constraint in self.constraints] def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Union[str, Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Tuple = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCamelCase__ : Dict = constraint.advance() if isinstance(snake_case__ , snake_case__ ): token_list.append(snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): token_list.extend(snake_case__ ) else: lowerCamelCase__ : Union[str, Any] = self.inprogress_constraint.advance() if isinstance(snake_case__ , snake_case__ ): token_list.append(snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): token_list.extend(snake_case__ ) if len(snake_case__ ) == 0: return None else: return token_list def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: Any ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCamelCase__ , lowerCamelCase__ : List[str] = self.add(snake_case__ ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase_ ( self: Any , UpperCamelCase__: Dict ): if not isinstance(snake_case__ , snake_case__ ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = False, False if self.completed: lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : List[Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.inprogress_constraint.update(snake_case__ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=snake_case__ ) ) lowerCamelCase__ : Optional[Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCamelCase__ : Dict = None if len(self.pending_constraints ) == 0: # we're done! lowerCamelCase__ : int = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(snake_case__ ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = pending_constraint.update(snake_case__ ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(snake_case__ ) lowerCamelCase__ : Dict = None if not complete and stepped: lowerCamelCase__ : Union[str, Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCamelCase__ : Optional[Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCamelCase__ : Any = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase_ ( self: int , UpperCamelCase__: str=True ): lowerCamelCase__ : str = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCamelCase__ : List[str] = [ constraint.copy(stateful=snake_case__ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCamelCase__ : Optional[int] = self.inprogress_constraint.copy(stateful=snake_case__ ) lowerCamelCase__ : List[Any] = [constraint.copy() for constraint in self.pending_constraints] return new_state
41
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) UpperCAmelCase : Tuple =_symbol_database.Default() UpperCAmelCase : List[Any] =_descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) UpperCAmelCase : Optional[int] =globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: UpperCAmelCase : str =None UpperCAmelCase : List[Any] =b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" UpperCAmelCase : str =45 UpperCAmelCase : Optional[Any] =1581 UpperCAmelCase : Dict =1517 UpperCAmelCase : str =1570 UpperCAmelCase : Optional[int] =1584 UpperCAmelCase : str =1793 UpperCAmelCase : Any =1795 UpperCAmelCase : Dict =1916 UpperCAmelCase : str =1864 UpperCAmelCase : Dict =1905 UpperCAmelCase : Union[str, Any] =1919 UpperCAmelCase : Any =2429 UpperCAmelCase : Dict =2208 UpperCAmelCase : int =2418 UpperCAmelCase : str =2323 UpperCAmelCase : Any =2407 # @@protoc_insertion_point(module_scope)
128
0
"""simple docstring""" a_ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} a_ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __lowercase ( snake_case_ : dict[int, list[int]] ,snake_case_ : int ,snake_case_ : list[bool] ) ->list[int]: '''simple docstring''' __A : Tuple = True __A : Optional[Any] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(snake_case_ ,snake_case_ ,snake_case_ ) order.append(snake_case_ ) return order def __lowercase ( snake_case_ : dict[int, list[int]] ,snake_case_ : int ,snake_case_ : list[bool] ) ->list[int]: '''simple docstring''' __A : int = True __A : List[Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(snake_case_ ,snake_case_ ,snake_case_ ) return component def __lowercase ( snake_case_ : dict[int, list[int]] ) ->list[list[int]]: '''simple docstring''' __A : List[str] = len(snake_case_ ) * [False] __A : dict[int, list[int]] = {vert: [] for vert in range(len(snake_case_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(snake_case_ ) __A : Any = [] for i, was_visited in enumerate(snake_case_ ): if not was_visited: order += topology_sort(snake_case_ ,snake_case_ ,snake_case_ ) __A : List[str] = [] __A : Optional[Any] = len(snake_case_ ) * [False] for i in range(len(snake_case_ ) ): __A : int = order[len(snake_case_ ) - i - 1] if not visited[vert]: __A : Optional[Any] = find_components(snake_case_ ,snake_case_ ,snake_case_ ) components_list.append(snake_case_ ) return components_list
291
"""simple docstring""" def __lowercase ( snake_case_ : int ) ->Optional[Any]: '''simple docstring''' stooge(snake_case_ ,0 ,len(snake_case_ ) - 1 ) return arr def __lowercase ( snake_case_ : Optional[Any] ,snake_case_ : Union[str, Any] ,snake_case_ : Any ) ->Tuple: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __A , __A : Optional[int] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __A : Any = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case_ ,snake_case_ ,(h - t) ) # Recursively sort last 2/3 elements stooge(snake_case_ ,i + t ,(snake_case_) ) # Recursively sort first 2/3 elements stooge(snake_case_ ,snake_case_ ,(h - t) ) if __name__ == "__main__": a_ = input("""Enter numbers separated by a comma:\n""").strip() a_ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
291
1
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) SCREAMING_SNAKE_CASE_: Tuple ={ 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 10_00, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 10_00, 'block_out_channels': [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } SCREAMING_SNAKE_CASE_: Tuple ={ 'sample_size': 2_56, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } SCREAMING_SNAKE_CASE_: Any ={ 'num_train_timesteps': 40, 'sigma_min': 0.002, 'sigma_max': 80.0, } SCREAMING_SNAKE_CASE_: List[str] ={ 'num_train_timesteps': 2_01, 'sigma_min': 0.002, 'sigma_max': 80.0, } SCREAMING_SNAKE_CASE_: List[Any] ={ 'num_train_timesteps': 1_51, 'sigma_min': 0.002, 'sigma_max': 80.0, } def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Dict=False ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] UpperCAmelCase_ = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] UpperCAmelCase_ = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] UpperCAmelCase_ = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] UpperCAmelCase_ = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] UpperCAmelCase_ = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] UpperCAmelCase_ = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] UpperCAmelCase_ = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] UpperCAmelCase_ = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] UpperCAmelCase_ = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: UpperCAmelCase_ = checkpoint[f"""{old_prefix}.skip_connection.weight"""] UpperCAmelCase_ = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : Any , snake_case_ : Any=None ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) UpperCAmelCase_ = checkpoint[f"""{old_prefix}.norm.weight"""] UpperCAmelCase_ = checkpoint[f"""{old_prefix}.norm.bias"""] UpperCAmelCase_ = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase_ = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = torch.load(snake_case_ , map_location="cpu" ) UpperCAmelCase_ = {} UpperCAmelCase_ = checkpoint["time_embed.0.weight"] UpperCAmelCase_ = checkpoint["time_embed.0.bias"] UpperCAmelCase_ = checkpoint["time_embed.2.weight"] UpperCAmelCase_ = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: UpperCAmelCase_ = checkpoint["label_emb.weight"] UpperCAmelCase_ = checkpoint["input_blocks.0.0.weight"] UpperCAmelCase_ = checkpoint["input_blocks.0.0.bias"] UpperCAmelCase_ = unet_config["down_block_types"] UpperCAmelCase_ = unet_config["layers_per_block"] UpperCAmelCase_ = unet_config["attention_head_dim"] UpperCAmelCase_ = unet_config["block_out_channels"] UpperCAmelCase_ = 1 UpperCAmelCase_ = channels_list[0] for i, layer_type in enumerate(snake_case_ ): UpperCAmelCase_ = channels_list[i] UpperCAmelCase_ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(snake_case_ ): UpperCAmelCase_ = f"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = f"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ = convert_resnet(snake_case_ , snake_case_ , snake_case_ , snake_case_ , has_skip=snake_case_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(snake_case_ ): UpperCAmelCase_ = f"""down_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = f"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ = convert_resnet(snake_case_ , snake_case_ , snake_case_ , snake_case_ , has_skip=snake_case_ ) UpperCAmelCase_ = f"""down_blocks.{i}.attentions.{j}""" UpperCAmelCase_ = f"""input_blocks.{current_layer}.1""" UpperCAmelCase_ = convert_attention( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) current_layer += 1 if i != len(snake_case_ ) - 1: UpperCAmelCase_ = f"""down_blocks.{i}.downsamplers.0""" UpperCAmelCase_ = f"""input_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) current_layer += 1 UpperCAmelCase_ = current_channels # hardcoded the mid-block for now UpperCAmelCase_ = "mid_block.resnets.0" UpperCAmelCase_ = "middle_block.0" UpperCAmelCase_ = convert_resnet(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = "mid_block.attentions.0" UpperCAmelCase_ = "middle_block.1" UpperCAmelCase_ = convert_attention(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = "mid_block.resnets.1" UpperCAmelCase_ = "middle_block.2" UpperCAmelCase_ = convert_resnet(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = 0 UpperCAmelCase_ = unet_config["up_block_types"] for i, layer_type in enumerate(snake_case_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ = f"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = f"""output_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(snake_case_ , snake_case_ , snake_case_ , snake_case_ , has_skip=snake_case_ ) current_layer += 1 if i != len(snake_case_ ) - 1: UpperCAmelCase_ = f"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase_ = f"""output_blocks.{current_layer-1}.1""" UpperCAmelCase_ = convert_resnet(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ = f"""up_blocks.{i}.resnets.{j}""" UpperCAmelCase_ = f"""output_blocks.{current_layer}.0""" UpperCAmelCase_ = convert_resnet(snake_case_ , snake_case_ , snake_case_ , snake_case_ , has_skip=snake_case_ ) UpperCAmelCase_ = f"""up_blocks.{i}.attentions.{j}""" UpperCAmelCase_ = f"""output_blocks.{current_layer}.1""" UpperCAmelCase_ = convert_attention( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) current_layer += 1 if i != len(snake_case_ ) - 1: UpperCAmelCase_ = f"""up_blocks.{i}.upsamplers.0""" UpperCAmelCase_ = f"""output_blocks.{current_layer-1}.2""" UpperCAmelCase_ = convert_resnet(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = checkpoint["out.0.weight"] UpperCAmelCase_ = checkpoint["out.0.bias"] UpperCAmelCase_ = checkpoint["out.2.weight"] UpperCAmelCase_ = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Tuple =argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') SCREAMING_SNAKE_CASE_: Union[str, Any] =parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[Any] =strabool(args.class_cond) SCREAMING_SNAKE_CASE_: List[Any] =os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: SCREAMING_SNAKE_CASE_: int =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): SCREAMING_SNAKE_CASE_: Tuple =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: SCREAMING_SNAKE_CASE_: Any =TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: SCREAMING_SNAKE_CASE_: Union[str, Any] =None SCREAMING_SNAKE_CASE_: Any =con_pt_to_diffuser(args.unet_path, unet_config) SCREAMING_SNAKE_CASE_: str =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: SCREAMING_SNAKE_CASE_: str =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: SCREAMING_SNAKE_CASE_: List[Any] =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): SCREAMING_SNAKE_CASE_: Optional[Any] =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") SCREAMING_SNAKE_CASE_: Union[str, Any] =CMStochasticIterativeScheduler(**scheduler_config) SCREAMING_SNAKE_CASE_: Union[str, Any] =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCamelCase = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class A ( unittest.TestCase ): def lowerCamelCase ( self : Dict , lowercase_ : Path , lowercase_ : Union[str, None] = None , lowercase_ : Union[List[str], None] = None , lowercase_ : Union[str, List[str], None] = None , lowercase_ : bool = True , ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Optional[Any] =[file for file in os.listdir(lowercase_ ) if os.path.isfile(os.path.join(lowercase_ , lowercase_ ) )] if identifier is not None: _lowerCamelCase : Any =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase_ , lowercase_ ): for n_ in n_identifier: _lowerCamelCase : Any =[file for file in files if n_ not in file] else: _lowerCamelCase : List[Any] =[file for file in files if n_identifier not in file] _lowerCamelCase : List[Any] =ignore_files or [] ignore_files.append('__init__.py' ) _lowerCamelCase : List[Any] =[file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase_ ) if only_modules: _lowerCamelCase : Optional[int] =file.split('.' )[0] try: _lowerCamelCase : Any =getattr(lowercase_ , lowercase_ ) _lowerCamelCase : Optional[int] =doctest.DocTestSuite(lowercase_ ) _lowerCamelCase : List[Any] =unittest.TextTestRunner().run(lowercase_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: _lowerCamelCase : int =doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCamelCase ( self : Any ) -> Tuple: """simple docstring""" _lowerCamelCase : int =Path('src/transformers' ) _lowerCamelCase : Optional[Any] ='modeling' _lowerCamelCase : List[str] =[ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase_ , identifier=lowercase_ , ignore_files=lowercase_ ) def lowerCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" _lowerCamelCase : Optional[int] =Path('src/transformers' ) _lowerCamelCase : Union[str, Any] ='tokenization' self.analyze_directory(lowercase_ , identifier=lowercase_ ) def lowerCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _lowerCamelCase : str =Path('src/transformers' ) _lowerCamelCase : Any ='configuration' self.analyze_directory(lowercase_ , identifier=lowercase_ ) def lowerCamelCase ( self : List[str] ) -> Dict: """simple docstring""" _lowerCamelCase : Union[str, Any] =Path('src/transformers' ) _lowerCamelCase : int =['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase_ , n_identifier=lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _lowerCamelCase : str =Path('docs/source' ) _lowerCamelCase : Dict =['favicon.ico'] self.analyze_directory(lowercase_ , ignore_files=lowercase_ , only_modules=lowercase_ )
199
0
'''simple docstring''' import os import pytest from attr import dataclass lowercase__ = "us-east-1" # defaults region @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : str UpperCAmelCase_ : Union[str, Any] = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" UpperCAmelCase_ : int = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5_500, } UpperCAmelCase_ : Dict = {**hyperparameters, """max_steps""": 1_000} @property def UpperCAmelCase_ ( self : int ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCAmelCase_ ( self : Optional[int] ) -> str: return f"""{self.framework}-transfromers-test""" @property def UpperCAmelCase_ ( self : Tuple ) -> str: return f"""./tests/sagemaker/scripts/{self.framework}""" @property def UpperCAmelCase_ ( self : str ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = SageMakerTestEnvironment(framework=request.cls.framework )
280
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : str ) -> Tuple: UpperCAmelCase : Any = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) UpperCAmelCase : Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) UpperCAmelCase : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: print(f"""Found {torch.cuda.device_count()} devices.""" ) UpperCAmelCase : Dict = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: print(f"""Found {torch.cuda.device_count()} devices.""" ) UpperCAmelCase : int = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : Optional[int] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) UpperCAmelCase : Dict = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ = Accelerator() lowercase__ = (accelerator.state.process_index + 2, 10) lowercase__ = torch.randint(0, 10, shape).to(accelerator.device) lowercase__ = "" lowercase__ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase__ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase__ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
280
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[int] = LDMTextToImagePipeline snake_case__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } snake_case__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } snake_case__ : int = TEXT_TO_IMAGE_BATCH_PARAMS snake_case__ : str = False def UpperCAmelCase_ ( self : Dict ) -> Any: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=(3_2, 6_4) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __SCREAMING_SNAKE_CASE = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int]=0 ) -> Union[str, Any]: if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = LDMTextToImagePipeline(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 1_6, 1_6, 3) __SCREAMING_SNAKE_CASE = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[Any]: __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) ) __SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : str ) -> List[str]: __SCREAMING_SNAKE_CASE = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 2_5_6, 2_5_6, 3) __SCREAMING_SNAKE_CASE = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] ) __SCREAMING_SNAKE_CASE = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any]=torch.floataa , UpperCAmelCase__ : Optional[Any]=0 ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) ) __SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 5_0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ).images[0] __SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) __SCREAMING_SNAKE_CASE = np.abs(expected_image - image ).max() assert max_diff < 1E-3
54
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer a : Dict = logging.get_logger(__name__) a : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp a : Tuple = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } a : Optional[int] = { 'RUCAIBox/mvp': 1_024, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['''input_ids''', '''attention_mask'''] A = MvpTokenizer def __init__(self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="replace", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Union[str, Any]: super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, errors=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, mask_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, trim_offsets=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""", SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCAmelCase_: str = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop("""type""" ) ) UpperCAmelCase_: Dict = add_prefix_space UpperCAmelCase_: List[str] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase_: Optional[int] = """post_processor""" UpperCAmelCase_: Any = getattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if tokenizer_component_instance: UpperCAmelCase_: Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase_: Optional[int] = tuple(state["""sep"""] ) if "cls" in state: UpperCAmelCase_: int = tuple(state["""cls"""] ) UpperCAmelCase_: Any = False if state.get("""add_prefix_space""", SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCAmelCase_: Tuple = add_prefix_space UpperCAmelCase_: Union[str, Any] = True if state.get("""trim_offsets""", SCREAMING_SNAKE_CASE_ ) != trim_offsets: UpperCAmelCase_: Optional[Any] = trim_offsets UpperCAmelCase_: Dict = True if changes_to_apply: UpperCAmelCase_: Tuple = getattr(SCREAMING_SNAKE_CASE_, state.pop("""type""" ) ) UpperCAmelCase_: Dict = component_class(**SCREAMING_SNAKE_CASE_ ) setattr(self.backend_tokenizer, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) @property def __snake_case (self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: List[Any] = AddedToken(SCREAMING_SNAKE_CASE_, lstrip=SCREAMING_SNAKE_CASE_, rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else value UpperCAmelCase_: str = value def __snake_case (self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCAmelCase_: int = kwargs.get("""is_split_into_words""", SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> BatchEncoding: UpperCAmelCase_: Union[str, Any] = kwargs.get("""is_split_into_words""", SCREAMING_SNAKE_CASE_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCAmelCase_: Any = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> int: UpperCAmelCase_: Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: Dict = [self.sep_token_id] UpperCAmelCase_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
147
0
def _lowercase ( UpperCamelCase_ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) for i in range(length - 1 ): SCREAMING_SNAKE_CASE__ = i for k in range(i + 1 , UpperCamelCase_ ): if collection[k] < collection[least]: SCREAMING_SNAKE_CASE__ = k if least != i: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (collection[i], collection[least]) return collection if __name__ == "__main__": __snake_case = input("""Enter numbers separated by a comma:\n""").strip() __snake_case = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
363
from __future__ import annotations from collections.abc import Generator def _lowercase ( ) -> Generator[int, None, None]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = 2 while True: SCREAMING_SNAKE_CASE__ = factor_map.pop(UpperCamelCase_ , UpperCamelCase_ ) if factor: SCREAMING_SNAKE_CASE__ = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE__ = factor else: SCREAMING_SNAKE_CASE__ = prime yield prime prime += 1 def _lowercase ( UpperCamelCase_ = 1e10 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = sieve() SCREAMING_SNAKE_CASE__ = 1 while True: SCREAMING_SNAKE_CASE__ = next(UpperCamelCase_ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCamelCase_ ) n += 2 if __name__ == "__main__": print(solution())
169
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin snake_case__ : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right snake_case__ : Tuple = 250004 snake_case__ : int = 250020 @require_sentencepiece @require_tokenizers class A_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = MBartaaTokenizer lowerCAmelCase__ = MBartaaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def _lowerCAmelCase (self :List[Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __A = MBartaaTokenizer(_UpperCamelCase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase (self :Any )-> Tuple: __A = '''<s>''' __A = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCAmelCase (self :Optional[int] )-> List[Any]: __A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_UpperCamelCase ) , 1054 ) def _lowerCAmelCase (self :Tuple )-> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def _lowerCAmelCase (self :Union[str, Any] )-> Union[str, Any]: __A = MBartaaTokenizer(_UpperCamelCase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_UpperCamelCase ) __A = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __A = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCamelCase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __A = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __A = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def _lowerCAmelCase (self :str )-> Optional[Any]: # fmt: off __A = {'''input_ids''': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def _lowerCAmelCase (self :Dict )-> int: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __A = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __A = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) __A = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) __A = tempfile.mkdtemp() __A = tokenizer_r.save_pretrained(_UpperCamelCase ) __A = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __A = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_UpperCamelCase , _UpperCamelCase ) # Checks everything loads correctly in the same way __A = tokenizer_r.from_pretrained(_UpperCamelCase ) __A = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCamelCase ) # Save tokenizer rust, legacy_format=True __A = tempfile.mkdtemp() __A = tokenizer_r.save_pretrained(_UpperCamelCase , legacy_format=_UpperCamelCase ) __A = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCamelCase , _UpperCamelCase ) # Checks everything loads correctly in the same way __A = tokenizer_r.from_pretrained(_UpperCamelCase ) __A = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase ) ) shutil.rmtree(_UpperCamelCase ) # Save tokenizer rust, legacy_format=False __A = tempfile.mkdtemp() __A = tokenizer_r.save_pretrained(_UpperCamelCase , legacy_format=_UpperCamelCase ) __A = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __A = tokenizer_r.from_pretrained(_UpperCamelCase ) __A = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase ) ) shutil.rmtree(_UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): lowerCAmelCase__ = """facebook/mbart-large-50-one-to-many-mmt""" lowerCAmelCase__ = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowerCAmelCase__ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowerCAmelCase__ = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def _lowerCAmelCase (cls :List[Any] )-> str: __A = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __A = 1 return cls def _lowerCAmelCase (self :Union[str, Any] )-> Union[str, Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_0038 ) def _lowerCAmelCase (self :Union[str, Any] )-> Optional[Any]: __A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCamelCase ) def _lowerCAmelCase (self :Tuple )-> List[Any]: self.assertIn(_UpperCamelCase , self.tokenizer.all_special_ids ) __A = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] __A = self.tokenizer.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) __A = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCamelCase ) def _lowerCAmelCase (self :List[str] )-> Any: __A = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _UpperCamelCase ) __A = 10 __A = self.tokenizer(_UpperCamelCase , max_length=_UpperCamelCase , truncation=_UpperCamelCase ).input_ids[0] self.assertEqual(ids[0] , _UpperCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCAmelCase (self :Any )-> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_0053, 25_0001] ) def _lowerCAmelCase (self :Tuple )-> Union[str, Any]: __A = tempfile.mkdtemp() __A = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCamelCase ) __A = MBartaaTokenizer.from_pretrained(_UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCamelCase ) @require_torch def _lowerCAmelCase (self :int )-> List[str]: __A = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCamelCase , return_tensors='''pt''' ) __A = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _lowerCAmelCase (self :List[Any] )-> Tuple: __A = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __A = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __A = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowerCAmelCase (self :Tuple )-> Optional[Any]: __A = self.tokenizer(self.src_text , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=3 , return_tensors='''pt''' ) __A = self.tokenizer( text_target=self.tgt_text , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=10 , return_tensors='''pt''' ) __A = targets['''input_ids'''] __A = shift_tokens_right(_UpperCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowerCAmelCase (self :Dict )-> Optional[Any]: __A = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_UpperCamelCase ) , { # en_XX, A, test, EOS '''input_ids''': [[25_0004, 62, 3034, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_0001, } , )
117
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor snake_case__ : int = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _a ( lowerCamelCase: List[Any] ) -> List[Any]: '''simple docstring''' if isinstance(lowerCamelCase , torch.Tensor ): return image elif isinstance(lowerCamelCase , PIL.Image.Image ): __A = [image] __A = [trans(img.convert('''RGB''' ) ) for img in image] __A = torch.stack(lowerCamelCase ) return image class A_ ( _lowerCamelCase ): def __init__(self :List[str] , _UpperCamelCase :List[Any] , _UpperCamelCase :List[str] )-> List[Any]: super().__init__() # make sure scheduler can always be converted to DDIM __A = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) def _lowerCAmelCase (self :int , _UpperCamelCase :Optional[Any] )-> Union[str, Any]: if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :Dict , _UpperCamelCase :List[str] , _UpperCamelCase :List[str] )-> Union[str, Any]: # get the original timestep using init_timestep __A = min(int(num_inference_steps * strength ) , _UpperCamelCase ) __A = max(num_inference_steps - init_timestep , 0 ) __A = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCAmelCase (self :str , _UpperCamelCase :Tuple , _UpperCamelCase :List[str] , _UpperCamelCase :int , _UpperCamelCase :List[str] , _UpperCamelCase :int , _UpperCamelCase :Dict=None )-> List[str]: if not isinstance(_UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_UpperCamelCase )}""" ) __A = image.to(device=_UpperCamelCase , dtype=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(_UpperCamelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __A = init_latents.shape __A = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) # get latents print('''add noise to latents at timestep''' , _UpperCamelCase ) __A = self.scheduler.add_noise(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __A = init_latents return latents @torch.no_grad() def __call__(self :List[str] , _UpperCamelCase :Union[torch.FloatTensor, PIL.Image.Image] = None , _UpperCamelCase :float = 0.8 , _UpperCamelCase :int = 1 , _UpperCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCamelCase :float = 0.0 , _UpperCamelCase :int = 50 , _UpperCamelCase :Optional[bool] = None , _UpperCamelCase :Optional[str] = "pil" , _UpperCamelCase :bool = True , )-> Union[ImagePipelineOutput, Tuple]: self.check_inputs(_UpperCamelCase ) # 2. Preprocess image __A = preprocess(_UpperCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(_UpperCamelCase , device=self.device ) __A , __A = self.get_timesteps(_UpperCamelCase , _UpperCamelCase , self.device ) __A = timesteps[:1].repeat(_UpperCamelCase ) # 4. Prepare latent variables __A = self.prepare_latents(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.unet.dtype , self.device , _UpperCamelCase ) __A = latents # 5. Denoising loop for t in self.progress_bar(_UpperCamelCase ): # 1. predict noise model_output __A = self.unet(_UpperCamelCase , _UpperCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A = self.scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , eta=_UpperCamelCase , use_clipped_model_output=_UpperCamelCase , generator=_UpperCamelCase , ).prev_sample __A = (image / 2 + 0.5).clamp(0 , 1 ) __A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_UpperCamelCase )
117
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Any = "encodec" def __init__( self , A_=[1.5, 3.0, 6.0, 12.0, 24.0] , A_=24000 , A_=1 , A_=False , A_=None , A_=None , A_=128 , A_=32 , A_=1 , A_=[8, 5, 4, 2] , A_="weight_norm" , A_=7 , A_=7 , A_=3 , A_=2 , A_=True , A_="reflect" , A_=2 , A_=2 , A_=1.0 , A_=1024 , A_=None , A_=True , **A_ , ) -> Any: __UpperCamelCase =target_bandwidths __UpperCamelCase =sampling_rate __UpperCamelCase =audio_channels __UpperCamelCase =normalize __UpperCamelCase =chunk_length_s __UpperCamelCase =overlap __UpperCamelCase =hidden_size __UpperCamelCase =num_filters __UpperCamelCase =num_residual_layers __UpperCamelCase =upsampling_ratios __UpperCamelCase =norm_type __UpperCamelCase =kernel_size __UpperCamelCase =last_kernel_size __UpperCamelCase =residual_kernel_size __UpperCamelCase =dilation_growth_rate __UpperCamelCase =use_causal_conv __UpperCamelCase =pad_mode __UpperCamelCase =compress __UpperCamelCase =num_lstm_layers __UpperCamelCase =trim_right_ratio __UpperCamelCase =codebook_size __UpperCamelCase =codebook_dim if codebook_dim is not None else hidden_size __UpperCamelCase =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**lowercase_ ) @property def _a ( self ) -> int: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _a ( self ) -> List[Any]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _a ( self ) -> Any: __UpperCamelCase =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _a ( self ) -> Union[str, Any]: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
371
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : bool = False UpperCAmelCase__ : float = 3.0 class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def _a ( self ) -> Union[str, Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCamelCase =GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() __UpperCamelCase =Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __UpperCamelCase =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , A_ ) @require_multi_gpu def _a ( self ) -> Optional[int]: __UpperCamelCase =['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": _A = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _A = Accelerator(kwargs_handlers=[ddp_scaler]) _A = torch.nn.Linear(100, 200) _A = accelerator.prepare(model) # Check the values changed in kwargs _A = '' _A = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
117
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = KandinskyImgaImgPipeline __UpperCamelCase = ["prompt", "image_embeds", "negative_image_embeds", "image"] __UpperCamelCase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] __UpperCamelCase = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __UpperCamelCase = False @property def _lowerCAmelCase ( self ): """simple docstring""" return 32 @property def _lowerCAmelCase ( self ): """simple docstring""" return 32 @property def _lowerCAmelCase ( self ): """simple docstring""" return self.time_input_dim @property def _lowerCAmelCase ( self ): """simple docstring""" return self.time_input_dim * 4 @property def _lowerCAmelCase ( self ): """simple docstring""" return 100 @property def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def _lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) lowerCamelCase = MultilingualCLIP(_a ) lowerCamelCase = text_encoder.eval() return text_encoder @property def _lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCamelCase = UNetaDConditionModel(**_a ) return model @property def _lowerCAmelCase ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.dummy_text_encoder lowerCamelCase = self.dummy_tokenizer lowerCamelCase = self.dummy_unet lowerCamelCase = self.dummy_movq lowerCamelCase = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowerCamelCase = DDIMScheduler(**_a ) lowerCamelCase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowerCAmelCase ( self , _a , _a=0 ): """simple docstring""" lowerCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) lowerCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): lowerCamelCase = torch.manual_seed(_a ) else: lowerCamelCase = torch.Generator(device=_a ).manual_seed(_a ) lowerCamelCase = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """cpu""" lowerCamelCase = self.get_dummy_components() lowerCamelCase = self.pipeline_class(**_a ) lowerCamelCase = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCamelCase = pipe(**self.get_dummy_inputs(_a ) ) lowerCamelCase = output.images lowerCamelCase = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCamelCase = """A red cartoon frog, 4k""" lowerCamelCase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) lowerCamelCase = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) lowerCamelCase = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) lowerCamelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCamelCase , lowerCamelCase = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowerCamelCase = pipeline( _a , image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) lowerCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
291
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCAmelCase : int = None lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Union[str, Any] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } lowerCAmelCase : Optional[int] = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } lowerCAmelCase : Union[str, Any] = """▁""" # Segments (not really needed) lowerCAmelCase : str = 0 lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : Tuple = 2 lowerCAmelCase : Optional[Any] = 3 lowerCAmelCase : List[Any] = 4 class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = "left" __UpperCamelCase = XLNetTokenizer def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , **_a , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( vocab_file=_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , **_a , ) lowerCamelCase = 3 lowerCamelCase = do_lower_case lowerCamelCase = remove_space lowerCamelCase = keep_accents lowerCamelCase = vocab_file lowerCamelCase = False if not self.vocab_file else True def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = [self.sep_token_id] lowerCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
291
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowercase_ ( snake_case_ ): _lowerCamelCase = 42 class lowercase_ ( snake_case_ , snake_case_ ): @register_to_config def __init__( self , lowercase_ = 65_536 , lowercase_ = None , lowercase_ = 2 , lowercase_ = 2 , lowercase_ = 0 , lowercase_ = "fourier" , lowercase_ = True , lowercase_ = False , lowercase_ = 0.0 , lowercase_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowercase_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowercase_ = "UNetMidBlock1D" , lowercase_ = None , lowercase_ = (32, 32, 64) , lowercase_ = None , lowercase_ = 8 , lowercase_ = 1 , lowercase_ = False , ): super().__init__() _snake_case : List[str] = sample_size # time if time_embedding_type == "fourier": _snake_case : List[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowercase_ , log=lowercase_ , flip_sin_to_cos=lowercase_ ) _snake_case : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": _snake_case : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowercase_ , downscale_freq_shift=lowercase_ ) _snake_case : str = block_out_channels[0] if use_timestep_embedding: _snake_case : List[Any] = block_out_channels[0] * 4 _snake_case : int = TimestepEmbedding( in_channels=lowercase_ , time_embed_dim=lowercase_ , act_fn=lowercase_ , out_dim=block_out_channels[0] , ) _snake_case : str = nn.ModuleList([] ) _snake_case : str = None _snake_case : Optional[int] = nn.ModuleList([] ) _snake_case : List[str] = None # down _snake_case : Any = in_channels for i, down_block_type in enumerate(lowercase_ ): _snake_case : Optional[int] = output_channel _snake_case : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels _snake_case : Dict = i == len(lowercase_ ) - 1 _snake_case : str = get_down_block( lowercase_ , num_layers=lowercase_ , in_channels=lowercase_ , out_channels=lowercase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowercase_ ) # mid _snake_case : Dict = get_mid_block( lowercase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowercase_ , add_downsample=lowercase_ , ) # up _snake_case : Optional[int] = list(reversed(lowercase_ ) ) _snake_case : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: _snake_case : List[Any] = out_channels else: _snake_case : Optional[int] = block_out_channels[0] for i, up_block_type in enumerate(lowercase_ ): _snake_case : Optional[Any] = output_channel _snake_case : List[str] = ( reversed_block_out_channels[i + 1] if i < len(lowercase_ ) - 1 else final_upsample_channels ) _snake_case : Dict = i == len(lowercase_ ) - 1 _snake_case : List[Any] = get_up_block( lowercase_ , num_layers=lowercase_ , in_channels=lowercase_ , out_channels=lowercase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowercase_ ) _snake_case : Optional[Any] = output_channel # out _snake_case : Dict = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _snake_case : List[Any] = get_out_block( out_block_type=lowercase_ , num_groups_out=lowercase_ , embed_dim=block_out_channels[0] , out_channels=lowercase_ , act_fn=lowercase_ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = True , ): _snake_case : Optional[int] = timestep if not torch.is_tensor(lowercase_ ): _snake_case : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowercase_ ) and len(timesteps.shape ) == 0: _snake_case : str = timesteps[None].to(sample.device ) _snake_case : List[Any] = self.time_proj(lowercase_ ) if self.config.use_timestep_embedding: _snake_case : int = self.time_mlp(lowercase_ ) else: _snake_case : str = timestep_embed[..., None] _snake_case : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _snake_case : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _snake_case : Tuple = () for downsample_block in self.down_blocks: _snake_case : Tuple = downsample_block(hidden_states=lowercase_ , temb=lowercase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _snake_case : Tuple = self.mid_block(lowercase_ , lowercase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _snake_case : Optional[int] = down_block_res_samples[-1:] _snake_case : List[Any] = down_block_res_samples[:-1] _snake_case : Tuple = upsample_block(lowercase_ , res_hidden_states_tuple=lowercase_ , temb=lowercase_ ) # 5. post-process if self.out_block: _snake_case : Any = self.out_block(lowercase_ , lowercase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowercase_ )
356
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __SCREAMING_SNAKE_CASE : Any = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __SCREAMING_SNAKE_CASE : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def snake_case (__lowercase ) -> str: '''simple docstring''' if "://" in dataset_path: _snake_case : Tuple = dataset_path.split("://" )[1] return dataset_path def snake_case (__lowercase ) -> bool: '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def snake_case (__lowercase , __lowercase , __lowercase ) -> str: '''simple docstring''' _snake_case : Optional[int] = not is_remote_filesystem(__lowercase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__lowercase ) , fs._strip_protocol(__lowercase ) ) else: fs.mv(__lowercase , __lowercase , recursive=__lowercase ) def snake_case () -> None: '''simple docstring''' if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _snake_case : List[str] = None _snake_case : str = None _snake_case : List[Any] = threading.Lock()
284
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _SCREAMING_SNAKE_CASE ( a ) -> Optional[int]: __A : List[Any] = np.inf def set_batch_size(a ) -> None: nonlocal batch_size if isinstance(a , a ): __A : List[str] = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(a , a ): __A : Tuple = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(a , a ) and feature.dtype == "binary": __A : int = min(a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(a , a ) return None if batch_size is np.inf else batch_size class _A( snake_case__ ): """simple docstring""" def __init__( self , _A , _A = None , _A = None , _A = None , _A = False , _A = False , _A = None , **_A , ): super().__init__( _A , split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , num_proc=_A , **_A , ) __A : Dict = path_or_paths if isinstance(_A , _A ) else {self.split: path_or_paths} __A : List[Any] = _PACKAGED_DATASETS_MODULES['parquet'][1] __A : Any = Parquet( cache_dir=_A , data_files=_A , features=_A , hash=_A , **_A , ) def UpperCAmelCase_ ( self ): # Build iterable dataset if self.streaming: __A : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __A : Tuple = None __A : int = None __A : List[str] = None __A : int = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , num_proc=self.num_proc , ) __A : List[str] = self.builder.as_dataset( split=self.split , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class _A: """simple docstring""" def __init__( self , _A , _A , _A = None , **_A , ): __A : Optional[int] = dataset __A : int = path_or_buf __A : Optional[int] = batch_size or get_writer_batch_size(dataset.features ) __A : List[str] = parquet_writer_kwargs def UpperCAmelCase_ ( self ): __A : Dict = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __A : List[str] = self._write(file_obj=_A , batch_size=_A , **self.parquet_writer_kwargs ) else: __A : List[Any] = self._write(file_obj=self.path_or_buf , batch_size=_A , **self.parquet_writer_kwargs ) return written def UpperCAmelCase_ ( self , _A , _A , **_A ): __A : Any = 0 __A : Tuple = parquet_writer_kwargs.pop('path_or_buf' , _A ) __A : Union[str, Any] = self.dataset.features.arrow_schema __A : Optional[Any] = pq.ParquetWriter(_A , schema=_A , **_A ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _A ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __A : Optional[Any] = query_table( table=self.dataset._data , key=slice(_A , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_A ) written += batch.nbytes writer.close() return written
280
def _SCREAMING_SNAKE_CASE ( a , a = 0 ) -> list: __A : int = length or len(a ) __A : str = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __A , __A : Optional[int] = list_data[i + 1], list_data[i] __A : Union[str, Any] = True return list_data if not swapped else bubble_sort(a , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
280
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __UpperCAmelCase : str = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCAmelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) __UpperCAmelCase : str = "audio" __UpperCAmelCase : str = "labels" def __lowercase ( self : str ,_a : Union[str, Any] ): '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] ,a_ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) _a : Any = copy.deepcopy(self ) _a : Dict = self.label_schema.copy() _a : Tuple = features[self.label_column] _a : Tuple = label_schema return task_template @property def __lowercase ( self : Any ): '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
358
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
from string import ascii_uppercase a : Dict = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: int ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 3_6: raise ValueError("""base must be <= 36""" ) UpperCAmelCase_: Union[str, Any] = """""" UpperCAmelCase_: Tuple = 0 UpperCAmelCase_: Dict = 0 while div != 1: UpperCAmelCase_ , UpperCAmelCase_: Any = divmod(_lowerCAmelCase , _lowerCAmelCase ) if base >= 1_1 and 9 < mod < 3_6: UpperCAmelCase_: Any = ALPHABET_VALUES[str(_lowerCAmelCase )] else: UpperCAmelCase_: Any = str(_lowerCAmelCase ) new_value += actual_value UpperCAmelCase_: Dict = num // base UpperCAmelCase_: Optional[int] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_lowerCAmelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
147
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Union[str, Any] = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
169
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def A ( _lowercase , _lowercase , _lowercase ): # Initialise PyTorch model SCREAMING_SNAKE_CASE : Union[str, Any] = LxmertConfig.from_json_file(_lowercase ) print(f"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE : Optional[Any] = LxmertForPreTraining(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
354
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase__ : def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]="resnet50" , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Any=True , UpperCamelCase__ : int=True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : Union[str, Any] = out_indices if out_indices is not None else [4] SCREAMING_SNAKE_CASE : List[Any] = stage_names SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : Optional[int] = backbone SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : Dict = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : List[Any] = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = is_training def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values def __A ( self : List[Any] ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __A ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = TimmBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(UpperCamelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = (TimmBackbone,) if is_torch_available() else () UpperCamelCase_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = TimmBackboneModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def __A ( self : List[Any] ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''resnet18''' SCREAMING_SNAKE_CASE : str = '''microsoft/resnet-18''' SCREAMING_SNAKE_CASE : Dict = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = AutoBackbone.from_pretrained(UpperCamelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) SCREAMING_SNAKE_CASE : List[str] = AutoBackbone.from_pretrained(UpperCamelCase__ , use_timm_backbone=UpperCamelCase__ , out_indices=[1, 2, 3] ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoBackbone.from_pretrained(UpperCamelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __A ( self : int ): '''simple docstring''' pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __A ( self : Any ): '''simple docstring''' pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : int ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __A ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __A ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self : int ): '''simple docstring''' pass def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Any = self.has_attentions # no need to test all models as different heads yield the same functionality SCREAMING_SNAKE_CASE : Any = self.all_model_classes[0] SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = model(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = outputs[0][-1] # Encoder-/Decoder-only models SCREAMING_SNAKE_CASE : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: SCREAMING_SNAKE_CASE : Any = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCamelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(**UpperCamelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE : int = model(**UpperCamelCase__ )
258
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __lowerCamelCase : List[Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __lowerCamelCase : List[Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def _snake_case ( lowerCAmelCase : Vector , lowerCAmelCase : Vector ): """simple docstring""" return np.sqrt(np.sum((np.asarray(lowerCAmelCase ) - np.asarray(lowerCAmelCase )) ** 2 ) ) def _snake_case ( lowerCAmelCase : Vector , lowerCAmelCase : Vector ): """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase , lowerCAmelCase ) ) ** (1 / 2) if __name__ == "__main__": def _snake_case ( ): """simple docstring""" from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
18
from __future__ import annotations def _a ( lowerCamelCase: list[int | str] ) -> None: '''simple docstring''' create_state_space_tree(lowerCamelCase , [] , 0 , [0 for i in range(len(lowerCamelCase ) )] ) def _a ( lowerCamelCase: list[int | str] , lowerCamelCase: list[int | str] , lowerCamelCase: int , lowerCamelCase: list[int] , ) -> None: '''simple docstring''' if index == len(lowerCamelCase ): print(lowerCamelCase ) return for i in range(len(lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __A = True create_state_space_tree(lowerCamelCase , lowerCamelCase , index + 1 , lowerCamelCase ) current_sequence.pop() __A = False snake_case__ : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) snake_case__ : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
117
0
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __snake_case : Optional[int] = 'scheduler_config.json' class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowercase : Tuple = 1 __lowercase : int = 2 __lowercase : Tuple = 3 __lowercase : Any = 4 __lowercase : List[Any] = 5 __lowercase : int = 6 __lowercase : Union[str, Any] = 7 __lowercase : Union[str, Any] = 8 __lowercase : Union[str, Any] = 9 __lowercase : Optional[int] = 10 __lowercase : Union[str, Any] = 11 __lowercase : Tuple = 12 __lowercase : Optional[int] = 13 __lowercase : Tuple = 14 @dataclass class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowercase : List[Any] = 42 class __UpperCAmelCase : '''simple docstring''' __lowercase : List[Any] = SCHEDULER_CONFIG_NAME __lowercase : Dict = [] __lowercase : Any = True @classmethod def __A ( cls , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: A_ = cls.load_config( pretrained_model_name_or_path=_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE , return_commit_hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) return cls.from_config(_SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , **_SCREAMING_SNAKE_CASE ) -> List[Any]: self.save_config(save_directory=_SCREAMING_SNAKE_CASE , push_to_hub=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def __A ( self ) -> Optional[int]: return self._get_compatibles() @classmethod def __A ( cls ) -> Optional[Any]: A_ = list(set([cls.__name__] + cls._compatibles ) ) A_ = importlib.import_module(__name__.split('''.''' )[0] ) A_ = [ getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for c in compatible_classes_str if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] return compatible_classes
363
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : int = StableUnCLIPImgaImgPipeline a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS a__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__ : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a__ : int = frozenset([] ) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Tuple = 32 __UpperCamelCase :Optional[int] = embedder_hidden_size # image encoding components __UpperCamelCase :Union[str, Any] = CLIPImageProcessor(crop_size=32 , size=32) torch.manual_seed(0) __UpperCamelCase :Union[str, Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__lowercase , projection_dim=__lowercase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) __UpperCamelCase :str = StableUnCLIPImageNormalizer(embedding_dim=__lowercase) __UpperCamelCase :Optional[int] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''') torch.manual_seed(0) __UpperCamelCase :Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') torch.manual_seed(0) __UpperCamelCase :Dict = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )) torch.manual_seed(0) __UpperCamelCase :List[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowercase , layers_per_block=1 , upcast_attention=__lowercase , use_linear_projection=__lowercase , ) torch.manual_seed(0) __UpperCamelCase :Tuple = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='''v_prediction''' , set_alpha_to_one=__lowercase , steps_offset=1 , ) torch.manual_seed(0) __UpperCamelCase :List[str] = AutoencoderKL() __UpperCamelCase :Tuple = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0 , __lowercase=True) -> str: if str(__lowercase).startswith('''mps'''): __UpperCamelCase :Union[str, Any] = torch.manual_seed(__lowercase) else: __UpperCamelCase :int = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase)).to(__lowercase) if pil_image: __UpperCamelCase :List[Any] = input_image * 0.5 + 0.5 __UpperCamelCase :Optional[Any] = input_image.clamp(0 , 1) __UpperCamelCase :int = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() __UpperCamelCase :Optional[Any] = DiffusionPipeline.numpy_to_pil(__lowercase)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase :Tuple = self.get_dummy_components() __UpperCamelCase :Any = StableUnCLIPImgaImgPipeline(**__lowercase) __UpperCamelCase :Optional[Any] = sd_pipe.to(__lowercase) sd_pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :List[Any] = self.get_dummy_inputs(__lowercase) inputs.update({'''image_embeds''': None}) __UpperCamelCase :Any = sd_pipe(**__lowercase).images __UpperCamelCase :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase :List[Any] = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Optional[Any] = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=__lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Optional[Any] = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__lowercase) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase__ ( self) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__lowercase) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') __UpperCamelCase :Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''') __UpperCamelCase :List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :int = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :Dict = pipe(__lowercase , '''anime turle''' , generator=__lowercase , output_type='''np''') __UpperCamelCase :Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') __UpperCamelCase :Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''') __UpperCamelCase :Any = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :int = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :Optional[int] = pipe(__lowercase , '''anime turle''' , generator=__lowercase , output_type='''np''') __UpperCamelCase :List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCamelCase :List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa) __UpperCamelCase :Union[str, Any] = pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :Optional[Any] = pipe( __lowercase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) __UpperCamelCase :int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
43
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int]=None, lowerCAmelCase_ : List[Any]=None ): if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(lowerCAmelCase_, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _UpperCAmelCase : """simple docstring""" a_ = OPTConfig a_ = {} a_ = """gelu""" def __init__( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=1_3 , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Any=9_9 , lowerCAmelCase_ : Any=1_6 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Tuple=2_0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Dict=1_6 , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = embed_dim __lowerCAmelCase = word_embed_proj_dim __lowerCAmelCase = False def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase_ , **self.config_updates , ) __lowerCAmelCase = prepare_opt_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def lowercase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict ) -> List[str]: __lowerCAmelCase = TFOPTModel(config=lowerCAmelCase_ ) __lowerCAmelCase = inputs_dict['input_ids'] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict['attention_mask'][:1, :] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) @require_tf class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () a_ = (TFOPTForCausalLM,) if is_tf_available() else () a_ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) a_ = False a_ = False a_ = False a_ = 10 def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = TFOPTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> Tuple: self.config_tester.run_common_tests() def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ): if hasattr(lowerCAmelCase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) __lowerCAmelCase = _get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) __lowerCAmelCase = _get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase_ ) __lowerCAmelCase = _get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) __lowerCAmelCase = _get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowerCAmelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase_ ) # check that weights remain the same after resizing __lowerCAmelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCAmelCase = False self.assertTrue(lowerCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase_ ) __lowerCAmelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowerCAmelCase = False self.assertTrue(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any] ): return tf.constant(lowerCAmelCase_, dtype=tf.intaa ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" a_ = 99 def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowerCAmelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowerCAmelCase = input_ids.shape[0] __lowerCAmelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : str ) -> List[str]: __lowerCAmelCase = TFOPTModel.from_pretrained('facebook/opt-350m' ) __lowerCAmelCase = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase = tf.not_equal(lowerCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).last_hidden_state __lowerCAmelCase = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-3 ) ) __lowerCAmelCase = tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) __lowerCAmelCase = xla_generate(lowerCAmelCase_ , lowerCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-2 ) ) @require_tf @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : int ) -> Dict: super().setUp() __lowerCAmelCase = 'facebook/opt-350m' def lowercase ( self : Dict ) -> Any: __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowerCAmelCase = GPTaTokenizer.from_pretrained(self.path_model ) __lowerCAmelCase = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowerCAmelCase = tokenizer(lowerCAmelCase_ , return_tensors='tf' , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowerCAmelCase = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) __lowerCAmelCase = tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) __lowerCAmelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) @require_tf @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase ( self : Optional[int] ) -> int: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowercase ( self : int ) -> str: __lowerCAmelCase = 'facebook/opt-125m' __lowerCAmelCase = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] __lowerCAmelCase = [] __lowerCAmelCase = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: __lowerCAmelCase = tokenizer(lowerCAmelCase_ , return_tensors='tf' ).input_ids __lowerCAmelCase = model.generate(lowerCAmelCase_ , max_length=1_0 ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase = 'facebook/opt-350m' __lowerCAmelCase = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = 'left' # use different length sentences to test batching __lowerCAmelCase = [ 'Hello, my dog is a little', 'Today, I', ] __lowerCAmelCase = tokenizer(lowerCAmelCase_ , return_tensors='tf' , padding=lowerCAmelCase_ ) __lowerCAmelCase = inputs['input_ids'] __lowerCAmelCase = model.generate(input_ids=lowerCAmelCase_ , attention_mask=inputs['attention_mask'] ) __lowerCAmelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCAmelCase = model.generate(input_ids=lowerCAmelCase_ ) __lowerCAmelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) __lowerCAmelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCAmelCase = model.generate(input_ids=lowerCAmelCase_ , max_length=model.config.max_length - num_paddings ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , [non_padded_sentence, padded_sentence] ) def lowercase ( self : List[Any] ) -> List[Any]: __lowerCAmelCase = 'facebook/opt-350m' __lowerCAmelCase = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] __lowerCAmelCase = [] __lowerCAmelCase = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: __lowerCAmelCase = tokenizer(lowerCAmelCase_ , return_tensors='tf' ).input_ids __lowerCAmelCase = model.generate(lowerCAmelCase_ , max_length=1_0 ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
284
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig _a = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = """tapas""" def __init__( self , lowercase_=3_0522 , lowercase_=768 , lowercase_=12 , lowercase_=12 , lowercase_=3072 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1024 , lowercase_=[3, 256, 256, 2, 256, 256, 10] , lowercase_=0.02 , lowercase_=1E-1_2 , lowercase_=0 , lowercase_=10.0 , lowercase_=0 , lowercase_=1.0 , lowercase_=None , lowercase_=1.0 , lowercase_=False , lowercase_=None , lowercase_=1.0 , lowercase_=1.0 , lowercase_=False , lowercase_=False , lowercase_="ratio" , lowercase_=None , lowercase_=None , lowercase_=64 , lowercase_=32 , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=True , lowercase_=False , lowercase_=None , lowercase_=None , **lowercase_ , ): """simple docstring""" super().__init__(pad_token_id=lowercase_ , **lowercase_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : str = type_vocab_sizes UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : List[Any] = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase_ : Any = positive_label_weight UpperCAmelCase_ : List[Any] = num_aggregation_labels UpperCAmelCase_ : Any = aggregation_loss_weight UpperCAmelCase_ : Optional[Any] = use_answer_as_supervision UpperCAmelCase_ : Optional[int] = answer_loss_importance UpperCAmelCase_ : str = use_normalized_answer_loss UpperCAmelCase_ : Dict = huber_loss_delta UpperCAmelCase_ : List[str] = temperature UpperCAmelCase_ : Union[str, Any] = aggregation_temperature UpperCAmelCase_ : List[Any] = use_gumbel_for_cells UpperCAmelCase_ : Tuple = use_gumbel_for_aggregation UpperCAmelCase_ : str = average_approximation_function UpperCAmelCase_ : Dict = cell_selection_preference UpperCAmelCase_ : Optional[Any] = answer_loss_cutoff UpperCAmelCase_ : Optional[int] = max_num_rows UpperCAmelCase_ : Optional[Any] = max_num_columns UpperCAmelCase_ : Union[str, Any] = average_logits_per_cell UpperCAmelCase_ : int = select_one_column UpperCAmelCase_ : List[str] = allow_empty_column_selection UpperCAmelCase_ : Tuple = init_cell_selection_weights_to_zero UpperCAmelCase_ : int = reset_position_index_per_cell UpperCAmelCase_ : Optional[int] = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase_ : int = aggregation_labels UpperCAmelCase_ : List[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , lowercase_ ): UpperCAmelCase_ : str = {int(lowercase_ ): v for k, v in aggregation_labels.items()}
23
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Any = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
0
"""simple docstring""" # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _lowerCAmelCase : Optional[Any] = "pytorch_model.bin" _lowerCAmelCase : Dict = "pytorch_model.bin.index.json" _lowerCAmelCase : Optional[Any] = "adapter_config.json" _lowerCAmelCase : List[str] = "adapter_model.bin" _lowerCAmelCase : str = "adapter_model.safetensors" _lowerCAmelCase : List[str] = "tf_model.h5" _lowerCAmelCase : int = "tf_model.h5.index.json" _lowerCAmelCase : int = "model.ckpt" _lowerCAmelCase : Union[str, Any] = "flax_model.msgpack" _lowerCAmelCase : Any = "flax_model.msgpack.index.json" _lowerCAmelCase : Dict = "model.safetensors" _lowerCAmelCase : Any = "model.safetensors.index.json" _lowerCAmelCase : str = "config.json" _lowerCAmelCase : List[Any] = "preprocessor_config.json" _lowerCAmelCase : Dict = FEATURE_EXTRACTOR_NAME _lowerCAmelCase : Any = "generation_config.json" _lowerCAmelCase : Dict = "modelcard.json" _lowerCAmelCase : Any = "▁" _lowerCAmelCase : str = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _lowerCAmelCase : Optional[Any] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _lowerCAmelCase : str = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _lowerCAmelCase : int = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" if version.parse(_snake_case ) < version.parse(_snake_case ): if "dev" in min_version: __a =( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: __a =F'This example requires a minimum version of {min_version},' error_message += F' but the version found is {__version__}.\n' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
371
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() A : Dict = logging.get_logger(__name__) A : Any = 'https://openaipublic.azureedge.net/jukebox/models/' A : Any = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def a__ ( __UpperCamelCase ): if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 1_0: SCREAMING_SNAKE_CASE_ = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 1_0: SCREAMING_SNAKE_CASE_ = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 1_0: SCREAMING_SNAKE_CASE_ = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 1_0: SCREAMING_SNAKE_CASE_ = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: SCREAMING_SNAKE_CASE_ = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: SCREAMING_SNAKE_CASE_ = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: SCREAMING_SNAKE_CASE_ = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: SCREAMING_SNAKE_CASE_ = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = {} import re SCREAMING_SNAKE_CASE_ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) SCREAMING_SNAKE_CASE_ = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) SCREAMING_SNAKE_CASE_ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) SCREAMING_SNAKE_CASE_ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) SCREAMING_SNAKE_CASE_ = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) SCREAMING_SNAKE_CASE_ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) SCREAMING_SNAKE_CASE_ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) SCREAMING_SNAKE_CASE_ = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) SCREAMING_SNAKE_CASE_ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = re_encoder_block_conv_in.match(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regex_match.groups() SCREAMING_SNAKE_CASE_ = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE_ = re_encoder_block_conv_in.sub(__UpperCamelCase , __UpperCamelCase ) elif re_encoder_block_resnet.fullmatch(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = re_encoder_block_resnet.match(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regex_match.groups() SCREAMING_SNAKE_CASE_ = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ = {"1": 1, "3": 2}[groups[-2]] SCREAMING_SNAKE_CASE_ = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' SCREAMING_SNAKE_CASE_ = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE_ = prefix + resnet_block SCREAMING_SNAKE_CASE_ = re_encoder_block_resnet.sub(__UpperCamelCase , __UpperCamelCase ) elif re_encoder_block_proj_out.fullmatch(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = re_encoder_block_proj_out.match(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regex_match.groups() SCREAMING_SNAKE_CASE_ = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' SCREAMING_SNAKE_CASE_ = re_encoder_block_proj_out.sub(__UpperCamelCase , __UpperCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = re_decoder_block_conv_out.match(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regex_match.groups() SCREAMING_SNAKE_CASE_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE_ = re_decoder_block_conv_out.sub(__UpperCamelCase , __UpperCamelCase ) elif re_decoder_block_resnet.fullmatch(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = re_decoder_block_resnet.match(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regex_match.groups() SCREAMING_SNAKE_CASE_ = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ = {"1": 1, "3": 2}[groups[-2]] SCREAMING_SNAKE_CASE_ = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' SCREAMING_SNAKE_CASE_ = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE_ = prefix + resnet_block SCREAMING_SNAKE_CASE_ = re_decoder_block_resnet.sub(__UpperCamelCase , __UpperCamelCase ) elif re_decoder_block_proj_in.fullmatch(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = re_decoder_block_proj_in.match(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regex_match.groups() SCREAMING_SNAKE_CASE_ = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' SCREAMING_SNAKE_CASE_ = re_decoder_block_proj_in.sub(__UpperCamelCase , __UpperCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = re_prior_cond_conv_out.match(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regex_match.groups() SCREAMING_SNAKE_CASE_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE_ = re_prior_cond_conv_out.sub(__UpperCamelCase , __UpperCamelCase ) elif re_prior_cond_resnet.fullmatch(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = re_prior_cond_resnet.match(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regex_match.groups() SCREAMING_SNAKE_CASE_ = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ = {"1": 1, "3": 2}[groups[-2]] SCREAMING_SNAKE_CASE_ = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' SCREAMING_SNAKE_CASE_ = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE_ = prefix + resnet_block SCREAMING_SNAKE_CASE_ = re_prior_cond_resnet.sub(__UpperCamelCase , __UpperCamelCase ) elif re_prior_cond_proj_in.fullmatch(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = re_prior_cond_proj_in.match(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regex_match.groups() SCREAMING_SNAKE_CASE_ = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' SCREAMING_SNAKE_CASE_ = re_prior_cond_proj_in.sub(__UpperCamelCase , __UpperCamelCase ) # keep original key else: SCREAMING_SNAKE_CASE_ = original_key SCREAMING_SNAKE_CASE_ = replace_key(__UpperCamelCase ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: SCREAMING_SNAKE_CASE_ = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) SCREAMING_SNAKE_CASE_ = original_key SCREAMING_SNAKE_CASE_ = original_key SCREAMING_SNAKE_CASE_ = value return new_dict @torch.no_grad() def a__ ( __UpperCamelCase=None , __UpperCamelCase=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): SCREAMING_SNAKE_CASE_ = requests.get(F'''{PREFIX}{file}''' , allow_redirects=__UpperCamelCase ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__UpperCamelCase ) open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , "wb" ).write(r.content ) SCREAMING_SNAKE_CASE_ = MODEL_MAPPING[model_name.split("/" )[-1]] SCREAMING_SNAKE_CASE_ = JukeboxConfig.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = JukeboxModel(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = {} for i, dict_name in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )["model"] SCREAMING_SNAKE_CASE_ = {} for k in old_dic.keys(): if k.endswith(".b" ): SCREAMING_SNAKE_CASE_ = old_dic[k] elif k.endswith(".w" ): SCREAMING_SNAKE_CASE_ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: SCREAMING_SNAKE_CASE_ = old_dic[k] else: SCREAMING_SNAKE_CASE_ = old_dic[k] SCREAMING_SNAKE_CASE_ = "vqvae" if i == 0 else F'''priors.{3 - i}''' SCREAMING_SNAKE_CASE_ = fix_jukebox_keys(__UpperCamelCase , model.state_dict() , __UpperCamelCase , __UpperCamelCase ) weight_dict.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = weight_dict.pop(0 ) model.vqvae.load_state_dict(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , "w" ) as txtfile: json.dump(__UpperCamelCase , __UpperCamelCase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) return weight_dict if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) A : Optional[Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
118
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __a ( ) ->None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
258
0
from __future__ import annotations import requests def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(lowercase ).json() def _SCREAMING_SNAKE_CASE ( lowercase : int = 10 ): '''simple docstring''' lowerCamelCase_ = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' lowerCamelCase_ = requests.get(lowercase ).json()[:max_stories] return [get_hackernews_story(lowercase ) for story_id in story_ids] def _SCREAMING_SNAKE_CASE ( lowercase : int = 10 ): '''simple docstring''' lowerCamelCase_ = hackernews_top_stories(lowercase ) return "\n".join('* [{title}]({url})'.format(**lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
208
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = 42 class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self : Tuple , A_ : int = 32 , A_ : int = 64 , A_ : int = 20 , A_ : int = 768 , A_ : Optional[Any]=77 , A_ : Optional[int]=4 , A_ : float = 0.0 , A_ : str = "silu" , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Optional[str] = "linear" , A_ : Optional[str] = "prd" , A_ : Optional[int] = None , A_ : Optional[int] = None , A_ : Optional[int] = None , ) -> List[Any]: """simple docstring""" super().__init__() lowerCamelCase_ = num_attention_heads lowerCamelCase_ = attention_head_dim lowerCamelCase_ = num_attention_heads * attention_head_dim lowerCamelCase_ = additional_embeddings lowerCamelCase_ = time_embed_dim or inner_dim lowerCamelCase_ = embedding_proj_dim or embedding_dim lowerCamelCase_ = clip_embed_dim or embedding_dim lowerCamelCase_ = Timesteps(A_ , A_ , 0 ) lowerCamelCase_ = TimestepEmbedding(A_ , A_ , out_dim=A_ , act_fn=A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ ) if embedding_proj_norm_type is None: lowerCamelCase_ = None elif embedding_proj_norm_type == "layer": lowerCamelCase_ = nn.LayerNorm(A_ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) lowerCamelCase_ = nn.Linear(A_ , A_ ) if encoder_hid_proj_type is None: lowerCamelCase_ = None elif encoder_hid_proj_type == "linear": lowerCamelCase_ = nn.Linear(A_ , A_ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , A_ ) ) if added_emb_type == "prd": lowerCamelCase_ = nn.Parameter(torch.zeros(1 , 1 , A_ ) ) elif added_emb_type is None: lowerCamelCase_ = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) lowerCamelCase_ = nn.ModuleList( [ BasicTransformerBlock( A_ , A_ , A_ , dropout=A_ , activation_fn='gelu' , attention_bias=A_ , ) for d in range(A_ ) ] ) if norm_in_type == "layer": lowerCamelCase_ = nn.LayerNorm(A_ ) elif norm_in_type is None: lowerCamelCase_ = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) lowerCamelCase_ = nn.LayerNorm(A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ ) lowerCamelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) lowerCamelCase_ = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , A_ , persistent=A_ ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , A_ ) ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , A_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self : str ) -> Dict[str, AttentionProcessor]: """simple docstring""" lowerCamelCase_ = {} def fn_recursive_add_processors(A_ : str , A_ : torch.nn.Module , A_ : Dict[str, AttentionProcessor] ): if hasattr(A_ , 'set_processor' ): lowerCamelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , A_ , A_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(A_ , A_ , A_ ) return processors def a__ ( self : List[Any] , A_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Dict: """simple docstring""" lowerCamelCase_ = len(self.attn_processors.keys() ) if isinstance(A_ , A_ ) and len(A_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(A_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(A_ : str , A_ : torch.nn.Module , A_ : Union[str, Any] ): if hasattr(A_ , 'set_processor' ): if not isinstance(A_ , A_ ): module.set_processor(A_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , A_ , A_ ) for name, module in self.named_children(): fn_recursive_attn_processor(A_ , A_ , A_ ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" self.set_attn_processor(AttnProcessor() ) def a__ ( self : Dict , A_ : List[Any] , A_ : Union[torch.Tensor, float, int] , A_ : torch.FloatTensor , A_ : Optional[torch.FloatTensor] = None , A_ : Optional[torch.BoolTensor] = None , A_ : bool = True , ) -> str: """simple docstring""" lowerCamelCase_ = hidden_states.shape[0] lowerCamelCase_ = timestep if not torch.is_tensor(A_ ): lowerCamelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ = timesteps * torch.ones(A_ , dtype=timesteps.dtype , device=timesteps.device ) lowerCamelCase_ = self.time_proj(A_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCamelCase_ = timesteps_projected.to(dtype=self.dtype ) lowerCamelCase_ = self.time_embedding(A_ ) if self.embedding_proj_norm is not None: lowerCamelCase_ = self.embedding_proj_norm(A_ ) lowerCamelCase_ = self.embedding_proj(A_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCamelCase_ = self.encoder_hidden_states_proj(A_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowerCamelCase_ = self.proj_in(A_ ) lowerCamelCase_ = self.positional_embedding.to(hidden_states.dtype ) lowerCamelCase_ = [] lowerCamelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(A_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCamelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCamelCase_ = hidden_states[:, None, :] lowerCamelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCamelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(A_ , -1 , -1 ) additional_embeds.append(A_ ) lowerCamelCase_ = torch.cat( A_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCamelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCamelCase_ = F.pad( A_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCamelCase_ = hidden_states + positional_embeddings if attention_mask is not None: lowerCamelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 lowerCamelCase_ = F.pad(A_ , (0, self.additional_embeddings) , value=0.0 ) lowerCamelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCamelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCamelCase_ = self.norm_in(A_ ) for block in self.transformer_blocks: lowerCamelCase_ = block(A_ , attention_mask=A_ ) lowerCamelCase_ = self.norm_out(A_ ) if self.prd_embedding is not None: lowerCamelCase_ = hidden_states[:, -1] else: lowerCamelCase_ = hidden_states[:, additional_embeddings_len:] lowerCamelCase_ = self.proj_to_clip_embeddings(A_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=A_ ) def a__ ( self : Tuple , A_ : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
208
1
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A : str = logging.getLogger(__name__) def _lowerCamelCase ( _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=16 , _UpperCamelCase = 10 , _UpperCamelCase = 2 ): '''simple docstring''' def get_dataset(_UpperCamelCase ): __lowerCAmelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_UpperCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __lowerCAmelCase = get_dataset(_UpperCamelCase ) __lowerCAmelCase = get_dataset(_UpperCamelCase ) __lowerCAmelCase = DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , batch_size=_UpperCamelCase , num_workers=4 ) __lowerCAmelCase = DataLoader(_UpperCamelCase , shuffle=_UpperCamelCase , batch_size=_UpperCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowerCAmelCase = [] for epoch in range(_UpperCamelCase ): # Train quickly model.train() for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch __lowerCAmelCase = model(_UpperCamelCase ) __lowerCAmelCase = torch.nn.functional.mse_loss(_UpperCamelCase , _UpperCamelCase ) accelerator.backward(_UpperCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() __lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) __lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) def snake_case ( self , __a ): return x * self.a + self.b class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(total_limit=1 , project_dir=__a , automatic_checkpoint_naming=__a ) # Train baseline __lowerCAmelCase = Accelerator(project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() # Train baseline __lowerCAmelCase = Accelerator() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) # Save initial __lowerCAmelCase = os.path.join(__a , "initial" ) accelerator.save_state(__a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() __lowerCAmelCase = train(3 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = Accelerator() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) accelerator.load_state(__a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) __lowerCAmelCase = train(2 , __a , __a , __a , __a ) # Save everything __lowerCAmelCase = os.path.join(__a , "checkpoint" ) accelerator.save_state(__a ) # Load everything back in and make sure all states work accelerator.load_state(__a ) test_rands += train(1 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__a ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) # Save initial accelerator.save_state() ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() __lowerCAmelCase = train(3 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__a ) __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a ) accelerator.load_state(os.path.join(__a , "checkpoints" , "checkpoint_0" ) ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) __lowerCAmelCase = train(2 , __a , __a , __a , __a ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__a , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , __a , __a , __a , __a ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = torch.tensor([1, 2, 3] ) __lowerCAmelCase = torch.tensor([2, 3, 4] ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(net.parameters() ) __lowerCAmelCase = Accelerator() with self.assertRaises(__a ) as ve: accelerator.register_for_checkpointing(__a , __a , __a , __a ) __lowerCAmelCase = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase = torch.optim.lr_scheduler.StepLR(__a , step_size=1 , gamma=0.9_9 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__a ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( __a , __a , __a , __a , __a ) # Save initial accelerator.save_state() __lowerCAmelCase = scheduler.state_dict() train(3 , __a , __a , __a , __a , __a ) self.assertNotEqual(__a , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__a , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(__a , scheduler.state_dict() ) def snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=__a , total_limit=2 ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=__a , project_config=__a ) __lowerCAmelCase = accelerator.prepare(__a ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__a , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(__a , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def snake_case ( self ): __lowerCAmelCase = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(__a , env=os.environ.copy() ) if __name__ == "__main__": A : Optional[Any] = "/tmp/accelerate/state_checkpointing" A : Tuple = DummyModel() A : List[str] = torch.optim.Adam(params=model.parameters(), lr=1e-3) A : Optional[Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A , A : Dict = dummy_dataloaders() A : Dict = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A : Dict = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A , A , A , A , A : Optional[Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A , A : Any = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A : Union[str, Any] = group["params"][0].device break assert param_device.type == accelerator.device.type A : Dict = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: A : Union[str, Any] = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: A : Optional[int] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
57
from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
import enum import shutil import sys __A , __A = shutil.get_terminal_size() __A = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class _SCREAMING_SNAKE_CASE ( enum.Enum ): '''simple docstring''' lowercase_ = 0 lowercase_ = 1 def lowerCAmelCase_ ( __a , __a="" ) -> List[Any]: """simple docstring""" sys.stdout.write(str(__a ) + end ) sys.stdout.flush() def lowerCAmelCase_ ( __a , __a , __a="" ) -> Tuple: """simple docstring""" forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , __a ) def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" forceWrite("\r" ) def lowerCAmelCase_ ( __a , __a ) -> Optional[int]: """simple docstring""" forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" forceWrite(" " * TERMINAL_WIDTH ) reset_cursor() def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" reset_cursor() forceWrite("-" * TERMINAL_WIDTH )
273
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "sentencepiece.bpe.model"} __A = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __A = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off __A = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = ["input_ids", "attention_mask"] lowercase_ = [] lowercase_ = [] def __init__(self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : List[str]="</s>" , UpperCAmelCase_ : List[str]="<s>" , UpperCAmelCase_ : Tuple="<unk>" , UpperCAmelCase_ : List[Any]="<pad>" , UpperCAmelCase_ : Tuple="<mask>" , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict=False , **UpperCAmelCase_ : Tuple , ) ->List[str]: '''simple docstring''' lowerCamelCase__: Any =AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token lowerCamelCase__: Any ={} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase__: List[str] =legacy_behaviour super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: Optional[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: str =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase__: str ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase__: List[str] =1 lowerCamelCase__: Any =len(self.sp_model) lowerCamelCase__: Any ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCAmelCase_) } lowerCamelCase__: Dict ={v: k for k, v in self.lang_code_to_id.items()} lowerCamelCase__: Optional[int] =len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) lowerCamelCase__: List[str] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCamelCase__: List[str] =list(self.lang_code_to_id.keys()) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens]) lowerCamelCase__: int =src_lang if src_lang is not None else "eng_Latn" lowerCamelCase__: List[str] =self.lang_code_to_id[self._src_lang] lowerCamelCase__: Optional[int] =tgt_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__(self : List[str]) ->int: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Any =None lowerCamelCase__: Optional[int] =self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , UpperCAmelCase_ : Union[str, Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: List[Any] ={} lowerCamelCase__: Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : str) ->None: '''simple docstring''' lowerCamelCase__: Any =new_src_lang self.set_src_lang_special_tokens(self._src_lang) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) lowerCamelCase__: int =[1] * len(self.prefix_tokens) lowerCamelCase__: Any =[1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase_)) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase_)) + ([0] * len(UpperCAmelCase_)) + suffix_ones def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] lowerCamelCase__: List[str] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] , UpperCAmelCase_ : Optional[str] , **UpperCAmelCase_ : Optional[int]) ->Dict: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") lowerCamelCase__: Optional[int] =src_lang lowerCamelCase__: Dict =self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: int =self.convert_tokens_to_ids(UpperCAmelCase_) lowerCamelCase__: Tuple =tgt_lang_id return inputs def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: Dict =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Optional[int]) ->List[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: str =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Optional[Any] =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str = "eng_Latn" , UpperCAmelCase_ : Optional[List[str]] = None , UpperCAmelCase_ : str = "fra_Latn" , **UpperCAmelCase_ : Dict , ) ->BatchEncoding: '''simple docstring''' lowerCamelCase__: Tuple =src_lang lowerCamelCase__: Union[str, Any] =tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->int: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : List[Any]) ->None: '''simple docstring''' lowerCamelCase__: int =self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowerCamelCase__: Any =[] lowerCamelCase__: Tuple =[self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__: Any =[self.cur_lang_code] lowerCamelCase__: Dict =[self.eos_token_id] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str) ->None: '''simple docstring''' lowerCamelCase__: Any =self.lang_code_to_id[lang] if self.legacy_behaviour: lowerCamelCase__: int =[] lowerCamelCase__: str =[self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__: Union[str, Any] =[self.cur_lang_code] lowerCamelCase__: Optional[Any] =[self.eos_token_id]
273
1
'''simple docstring''' from itertools import product def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ) -> list[int]: UpperCAmelCase : Union[str, Any] = sides_number UpperCAmelCase : Optional[Any] = max_face_number * dice_number UpperCAmelCase : Tuple = [0] * (max_total + 1) UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : Union[str, Any] = range(_lowerCAmelCase , max_face_number + 1 ) for dice_numbers in product(_lowerCAmelCase , repeat=_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = sum(_lowerCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def snake_case_ ( ) -> float: UpperCAmelCase : str = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCAmelCase : int = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCAmelCase : str = 0 UpperCAmelCase : List[Any] = 9 UpperCAmelCase : Optional[Any] = 4 * 9 UpperCAmelCase : Tuple = 6 for peter_total in range(_lowerCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCAmelCase : Optional[int] = (4**9) * (6**6) UpperCAmelCase : Union[str, Any] = peter_wins_count / total_games_number UpperCAmelCase : Dict = round(_lowerCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"{solution() = }")
23
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = "pixel_values" lowerCAmelCase__ = False lowerCAmelCase__ = TimmBackboneConfig def __init__( self , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , "timm" ) super().__init__(__a ) lowercase_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(__a , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) lowercase_ = getattr(__a , "use_pretrained_backbone" , __a ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. lowercase_ = config.out_indices if getattr(__a , "out_indices" , __a ) is not None else (-1,) lowercase_ = timm.create_model( config.backbone , pretrained=__a , features_only=config.features_only , in_chans=config.num_channels , out_indices=__a , **__a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowercase_ = self._backbone.return_layers lowercase_ = {layer["module"]: str(__a ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__a ) @classmethod def A__ ( cls , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig lowercase_ = kwargs.pop("config" , TimmBackboneConfig() ) lowercase_ = kwargs.pop("use_timm_backbone" , __a ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) lowercase_ = kwargs.pop("num_channels" , config.num_channels ) lowercase_ = kwargs.pop("features_only" , config.features_only ) lowercase_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) lowercase_ = kwargs.pop("out_indices" , config.out_indices ) lowercase_ = TimmBackboneConfig( backbone=__a , num_channels=__a , features_only=__a , use_pretrained_backbone=__a , out_indices=__a , ) return super()._from_config(__a , **__a ) def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' pass def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowercase_ = self._all_layers lowercase_ = self._backbone(__a , **__a ) lowercase_ = self._return_layers lowercase_ = tuple(hidden_states[i] for i in self.out_indices ) else: lowercase_ = self._backbone(__a , **__a ) lowercase_ = None lowercase_ = tuple(__a ) lowercase_ = tuple(__a ) if hidden_states is not None else None if not return_dict: lowercase_ = (feature_maps,) if output_hidden_states: lowercase_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=__a , hidden_states=__a , attentions=__a )
362
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ = 10_00 ) -> int: A__ = 2**power A__ = 0 while n: A__ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
247
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class a__ ( lowerCamelCase_ ): '''simple docstring''' lowercase__ : str = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase__ : ClassVar[Features] = Features({"text": Value("string" )} ) lowercase__ : ClassVar[Features] = Features({"labels": ClassLabel} ) lowercase__ : str = "text" lowercase__ : str = "labels" def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Optional[Any]: if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __snake_case ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) lowerCAmelCase__ = copy.deepcopy(self ) lowerCAmelCase__ = self.label_schema.copy() lowerCAmelCase__ = features[self.label_column] lowerCAmelCase__ = label_schema return task_template @property def __SCREAMING_SNAKE_CASE ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
371
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __UpperCAmelCase = logging.get_logger(__name__) class a__ ( a__ ): '''simple docstring''' lowercase__ : int = "linear" lowercase__ : Any = "cosine" lowercase__ : Optional[int] = "cosine_with_restarts" lowercase__ : Optional[Any] = "polynomial" lowercase__ : Tuple = "constant" lowercase__ : Optional[int] = "constant_with_warmup" lowercase__ : Optional[int] = "piecewise_constant" def _snake_case ( A , A = -1 ) -> Any: return LambdaLR(A , lambda A : 1 , last_epoch=A ) def _snake_case ( A , A , A = -1 ) -> Optional[Any]: def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1.0 , A ) ) return 1.0 return LambdaLR(A , A , last_epoch=A ) def _snake_case ( A , A , A = -1 ) -> Union[str, Any]: lowerCAmelCase__ = {} lowerCAmelCase__ = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: lowerCAmelCase__ , lowerCAmelCase__ = rule_str.split(''':''' ) lowerCAmelCase__ = int(A ) lowerCAmelCase__ = float(A ) lowerCAmelCase__ = value lowerCAmelCase__ = float(rule_list[-1] ) def create_rules_function(A , A ): def rule_func(A ) -> float: lowerCAmelCase__ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowerCAmelCase__ = create_rules_function(A , A ) return LambdaLR(A , A , last_epoch=A ) def _snake_case ( A , A , A , A=-1 ) -> Optional[int]: def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(A , A , A ) def _snake_case ( A , A , A , A = 0.5 , A = -1 ) -> List[str]: def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) lowerCAmelCase__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(A ) * 2.0 * progress )) ) return LambdaLR(A , A , A ) def _snake_case ( A , A , A , A = 1 , A = -1 ) -> Union[str, Any]: def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) lowerCAmelCase__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(A ) * progress) % 1.0) )) ) return LambdaLR(A , A , A ) def _snake_case ( A , A , A , A=1E-7 , A=1.0 , A=-1 ) -> Union[str, Any]: lowerCAmelCase__ = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowerCAmelCase__ = lr_init - lr_end lowerCAmelCase__ = num_training_steps - num_warmup_steps lowerCAmelCase__ = 1 - (current_step - num_warmup_steps) / decay_steps lowerCAmelCase__ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(A , A , A ) __UpperCAmelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def _snake_case ( A , A , A = None , A = None , A = None , A = 1 , A = 1.0 , A = -1 , ) -> int: lowerCAmelCase__ = SchedulerType(A ) lowerCAmelCase__ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(A , last_epoch=A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(A , step_rules=A , last_epoch=A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(A , num_warmup_steps=A , last_epoch=A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( A , num_warmup_steps=A , num_training_steps=A , num_cycles=A , last_epoch=A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( A , num_warmup_steps=A , num_training_steps=A , power=A , last_epoch=A , ) return schedule_func( A , num_warmup_steps=A , num_training_steps=A , last_epoch=A )
228
0
'''simple docstring''' from __future__ import annotations def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> bool: __lowerCamelCase : List[str] = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern __lowerCamelCase ,__lowerCamelCase : Optional[int] = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowerCamelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def a_ ( _lowerCAmelCase ) -> list[int]: __lowerCamelCase : str = [0] __lowerCamelCase : Tuple = 0 __lowerCamelCase : List[Any] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowerCamelCase : str = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) _UpperCamelCase = 'abc1abc12' _UpperCamelCase = 'alskfjaldsabc1abc1abc12k23adsfabcabc' _UpperCamelCase = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _UpperCamelCase = 'ABABX' _UpperCamelCase = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) _UpperCamelCase = 'AAAB' _UpperCamelCase = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) _UpperCamelCase = 'abcdabcy' _UpperCamelCase = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) _UpperCamelCase = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
208
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =["""image_processor""", """tokenizer"""] a_ ="""OwlViTImageProcessor""" a_ =("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Any , _a : str=None , _a : Optional[Any]=None , **_a : int ) -> List[str]: __lowerCamelCase : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _a , ) __lowerCamelCase : Tuple = kwargs.pop('feature_extractor' ) __lowerCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_a , _a ) def __call__( self : Tuple , _a : Tuple=None , _a : int=None , _a : List[Any]=None , _a : List[Any]="max_length" , _a : Union[str, Any]="np" , **_a : Union[str, Any] ) -> List[str]: if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(_a , _a ) or (isinstance(_a , _a ) and not isinstance(text[0] , _a )): __lowerCamelCase : Any = [self.tokenizer(_a , padding=_a , return_tensors=_a , **_a )] elif isinstance(_a , _a ) and isinstance(text[0] , _a ): __lowerCamelCase : List[Any] = [] # Maximum number of queries across batch __lowerCamelCase : str = max([len(_a ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_a ) != max_num_queries: __lowerCamelCase : List[Any] = t + [' '] * (max_num_queries - len(_a )) __lowerCamelCase : Dict = self.tokenizer(_a , padding=_a , return_tensors=_a , **_a ) encodings.append(_a ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __lowerCamelCase : Optional[Any] = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __lowerCamelCase : str = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __lowerCamelCase : int = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __lowerCamelCase : List[str] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __lowerCamelCase : str = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __lowerCamelCase : Optional[Any] = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __lowerCamelCase : List[Any] = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __lowerCamelCase : int = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __lowerCamelCase : Any = BatchEncoding() __lowerCamelCase : Dict = input_ids __lowerCamelCase : str = attention_mask if query_images is not None: __lowerCamelCase : Optional[int] = BatchEncoding() __lowerCamelCase : List[Any] = self.image_processor( _a , return_tensors=_a , **_a ).pixel_values __lowerCamelCase : str = query_pixel_values if images is not None: __lowerCamelCase : Union[str, Any] = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: __lowerCamelCase : Tuple = image_features.pixel_values return encoding elif query_images is not None and images is not None: __lowerCamelCase : Tuple = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def _lowercase ( self : Optional[Any] , *_a : List[str] , **_a : Dict ) -> int: return self.image_processor.post_process(*_a , **_a ) def _lowercase ( self : str , *_a : str , **_a : List[str] ) -> int: return self.image_processor.post_process_object_detection(*_a , **_a ) def _lowercase ( self : int , *_a : List[Any] , **_a : Optional[int] ) -> str: return self.image_processor.post_process_image_guided_detection(*_a , **_a ) def _lowercase ( self : Tuple , *_a : Optional[Any] , **_a : List[Any] ) -> Tuple: return self.tokenizer.batch_decode(*_a , **_a ) def _lowercase ( self : str , *_a : Optional[Any] , **_a : str ) -> Union[str, Any]: return self.tokenizer.decode(*_a , **_a ) @property def _lowercase ( self : Any ) -> Any: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _a , ) return self.image_processor_class @property def _lowercase ( self : Union[str, Any] ) -> Any: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _a , ) return self.image_processor
208
1
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Any = XLMTokenizer snake_case__ : Dict = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _lowerCamelCase : Union[str, Any] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowerCamelCase : List[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] _lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = '''lower newer''' _lowerCamelCase : Optional[int] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : List[str] = XLMTokenizer(self.vocab_file , self.merges_file ) _lowerCamelCase : Union[str, Any] = '''lower''' _lowerCamelCase : List[Any] = ['''low''', '''er</w>'''] _lowerCamelCase : Dict = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : int = tokens + ['''<unk>'''] _lowerCamelCase : Dict = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Any = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) _lowerCamelCase : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
354
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( _lowercase , unittest.TestCase): # TODO: is there an appropriate internal test set? snake_case__ : List[str] = "ssube/stable-diffusion-x4-upscaler-onnx" def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : int=0 ): """simple docstring""" _lowerCamelCase : Tuple = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.manual_seed(__lowerCAmelCase ) _lowerCamelCase : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCamelCase : Any = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = self.get_dummy_inputs() _lowerCamelCase : Optional[Any] = pipe(**__lowerCAmelCase ).images _lowerCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.get_dummy_inputs() _lowerCamelCase : str = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.get_dummy_inputs() _lowerCamelCase : Tuple = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Union[str, Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowerCamelCase : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCamelCase : List[Any] = pipe(**__lowerCAmelCase ).images _lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase): @property def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = ort.SessionOptions() _lowerCamelCase : List[str] = False return options def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase : Any = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default _lowerCamelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = '''A fantasy landscape, trending on artstation''' _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : List[Any] = output.images _lowerCamelCase : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase : int = init_image.resize((1_2_8, 1_2_8) ) _lowerCamelCase : str = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) _lowerCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = '''A fantasy landscape, trending on artstation''' _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : Union[str, Any] = output.images _lowerCamelCase : Optional[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : str = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
175
0
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> bool: '''simple docstring''' UpperCAmelCase = 0 for ch in input_str: UpperCAmelCase = ord(UpperCamelCase__ ) UpperCAmelCase = pow(2 , UpperCamelCase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
273
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __A : str = random.Random() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__=1.0 , UpperCamelCase__=None , UpperCamelCase__=None ) -> Tuple: '''simple docstring''' if rng is None: UpperCAmelCase = global_rng UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class A_ (unittest.TestCase ): def __init__( self , _A , _A=7 , _A=4_0_0 , _A=2_0_0_0 , _A=1 , _A=0.0 , _A=1_6_0_0_0 , _A=True , _A=8_0 , _A=1_6 , _A=6_4 , _A="hann_window" , _A=8_0 , _A=7_6_0_0 , _A=1E-10 , _A=True , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = min_seq_length UpperCAmelCase = max_seq_length UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase = feature_size UpperCAmelCase = padding_value UpperCAmelCase = sampling_rate UpperCAmelCase = do_normalize UpperCAmelCase = num_mel_bins UpperCAmelCase = hop_length UpperCAmelCase = win_length UpperCAmelCase = win_function UpperCAmelCase = fmin UpperCAmelCase = fmax UpperCAmelCase = mel_floor UpperCAmelCase = return_attention_mask def _lowercase ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _lowercase ( self , _A=False , _A=False ): '''simple docstring''' def _flatten(_A ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(_A ) for x in speech_inputs] return speech_inputs def _lowercase ( self , _A=False , _A=False ): '''simple docstring''' if equal_length: UpperCAmelCase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch class A_ (a_ , unittest.TestCase ): UpperCAmelCase__ = SpeechTaFeatureExtractor def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = SpeechTaFeatureExtractionTester(self ) def _lowercase ( self , _A ): '''simple docstring''' self.assertTrue(np.all(np.mean(_A , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_A , axis=0 ) - 1 ) < 1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test batched UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): UpperCAmelCase = feat_extract(_A , padding=_A , max_length=_A , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) UpperCAmelCase = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): UpperCAmelCase = feat_extract(_A , max_length=_A , padding=_A ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = [np.asarray(_A ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase = feature_extractor(audio_target=_A , padding=_A , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test batched UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCAmelCase = np.asarray(_A ) UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_A ) == len(_A ) for x, y in zip(_A , processed_features[input_name] ) ) ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_A ) UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_A ) UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' )[input_name] UpperCAmelCase = feat_extract.pad(_A , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_dict UpperCAmelCase = True UpperCAmelCase = self.feature_extraction_class(**_A ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = [len(_A ) for x in speech_inputs] UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feat_extract_dict UpperCAmelCase = True UpperCAmelCase = self.feature_extraction_class(**_A ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = [len(_A ) for x in speech_inputs] UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = min(_A ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _lowercase ( self , _A ): '''simple docstring''' from datasets import load_dataset UpperCAmelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] ) # fmt: on UpperCAmelCase = self._load_datasamples(1 ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = feature_extractor(_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , _A , atol=1E-6 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on UpperCAmelCase = self._load_datasamples(1 ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = feature_extractor(audio_target=_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , _A , atol=1E-4 ) )
273
1
'''simple docstring''' from __future__ import annotations def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> list[int]: __snake_case : str = 0 __snake_case : Optional[int] = len(_UpperCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __snake_case : int = i + 1 else: __snake_case : Optional[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 1_1, 1_5], 9) = }""")
367
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer A__ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : List[Any] = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } A__ : List[Any] = { '''google/electra-small-generator''': 5_1_2, '''google/electra-base-generator''': 5_1_2, '''google/electra-large-generator''': 5_1_2, '''google/electra-small-discriminator''': 5_1_2, '''google/electra-base-discriminator''': 5_1_2, '''google/electra-large-discriminator''': 5_1_2, } A__ : Optional[Any] = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_INIT_CONFIGURATION A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ElectraTokenizer def __init__( self : int , __a : List[Any]=None , __a : int=None , __a : List[str]=True , __a : Any="[UNK]" , __a : Any="[SEP]" , __a : Union[str, Any]="[PAD]" , __a : Dict="[CLS]" , __a : List[Any]="[MASK]" , __a : str=True , __a : Optional[int]=None , **__a : Optional[int] , ) -> str: '''simple docstring''' super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) __snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __a ) != do_lower_case or normalizer_state.get('strip_accents' , __a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __a ) != tokenize_chinese_chars ): __snake_case : List[Any] = getattr(__a , normalizer_state.pop('type' ) ) __snake_case : str = do_lower_case __snake_case : Optional[int] = strip_accents __snake_case : Any = tokenize_chinese_chars __snake_case : Union[str, Any] = normalizer_class(**__a ) __snake_case : Any = do_lower_case def A_ ( self : Any , __a : List[str] , __a : Optional[Any]=None ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[int] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' __snake_case : Tuple = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
0
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase : Dict = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main lowercase_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__SCREAMING_SNAKE_CASE , id=__SCREAMING_SNAKE_CASE )
93
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a__( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = StableUnCLIPImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def lowercase_ ( self : int ): a : Dict = 32 a : str = embedder_hidden_size # image encoding components a : List[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) a : Dict = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__snake_case , projection_dim=__snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) a : Dict = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) a : Optional[int] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) a : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) a : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) a : Union[str, Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) a : List[Any] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL() a : str = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def lowercase_ ( self : Tuple , __snake_case : List[str] , __snake_case : Union[str, Any]=0 , __snake_case : Tuple=True ): if str(__snake_case ).startswith('mps' ): a : Tuple = torch.manual_seed(__snake_case ) else: a : List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if pil_image: a : Optional[Any] = input_image * 0.5 + 0.5 a : Optional[Any] = input_image.clamp(0 , 1 ) a : Dict = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a : int = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowercase_ ( self : Optional[Any] ): a : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : Union[str, Any] = self.get_dummy_components() a : Any = StableUnCLIPImgaImgPipeline(**__snake_case ) a : Tuple = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) a : Union[str, Any] = self.get_dummy_inputs(__snake_case ) inputs.update({'image_embeds': None} ) a : str = sd_pipe(**__snake_case ).images a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a : Optional[int] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : List[str] ): a : int = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def lowercase_ ( self : int ): a : Optional[int] = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase_ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case ) @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any] ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) a : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) a : Optional[int] = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Optional[int] ): a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) a : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) a : str = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Any ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) a : Optional[Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = pipe( __snake_case , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) a : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : Union[str, Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } lowerCamelCase : Dict = {'allegro/herbert-base-cased': 5_1_4} lowerCamelCase : str = {} class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = HerbertTokenizer def __init__( self , A=None , A=None , A=None , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A="</s>" , **A , ) -> List[str]: super().__init__( A , A , tokenizer_file=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , sep_token=A , **A , ) def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Optional[Any] = [self.cls_token_id] snake_case : str = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Optional[Any] = [self.sep_token_id] snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: snake_case : Dict = self._tokenizer.model.save(A , name=A ) return tuple(A )
367
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : List[str] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
176
0
'''simple docstring''' from math import loga def _A ( A__ ): """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
104
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCamelCase : Union[str, Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: for attribute in key.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: a = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: a = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> int: a = [] a = fairseq_model.state_dict() a = hf_model.feature_extractor a = hf_model.adapter for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) a = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: a = True if "*" in mapped_key: a = name.split(__lowerCamelCase )[0].split(""".""" )[-2] a = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: a = """weight_g""" elif "weight_v" in name: a = """weight_v""" elif "bias" in name: a = """bias""" elif "weight" in name: a = """weight""" else: a = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: a = full_name.split("""conv_layers.""" )[-1] a = name.split(""".""" ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: a = full_name.split("""adaptor.""" )[-1] a = name.split(""".""" ) if items[1].isdigit(): a = int(items[1] ) else: a = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' a = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' a = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' a = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' a = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' a = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' a = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) def __A ( __lowerCamelCase ) -> Tuple: a , a = emb.weight.shape a = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) a = emb.weight.data return lin_layer @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: a = WavaVecaConfig.from_pretrained( __lowerCamelCase , add_adapter=__lowerCamelCase , adapter_stride=__lowerCamelCase , adapter_kernel_size=__lowerCamelCase , use_auth_token=__lowerCamelCase , output_hidden_size=__lowerCamelCase , ) a = MBartConfig.from_pretrained(__lowerCamelCase ) # load model a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) a = model[0].eval() # load feature extractor a = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase , use_auth_token=__lowerCamelCase ) # set weights for wav2vec2 encoder a = WavaVecaModel(__lowerCamelCase ) recursively_load_weights_wavaveca(model.encoder , __lowerCamelCase ) # load decoder weights a = MBartForCausalLM(__lowerCamelCase ) a , a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__lowerCamelCase ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) a = SpeechEncoderDecoderModel(encoder=__lowerCamelCase , decoder=__lowerCamelCase ) a = False a = MBartaaTokenizer(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) a = hf_wavavec.config.to_dict() a = tokenizer.pad_token_id a = tokenizer.bos_token_id a = tokenizer.eos_token_id a = """mbart50""" a = """wav2vec2""" a = tokenizer.eos_token_id a = 25_0004 a = tokenizer.eos_token_id a = SpeechEncoderDecoderConfig.from_dict(__lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250_004, type=int, help="`decoder_start_token_id` of model config") __UpperCamelCase : int = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
228
0
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str ) -> str: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] = None ) -> Dict: __a = tesseract_config if tesseract_config is not None else '' # apply OCR __a = to_pil_image(_A ) __a = pil_image.size __a = pytesseract.image_to_data(_A , lang=_A , output_type='''dict''' , config=_A ) __a = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates __a = [idx for idx, word in enumerate(_A ) if not word.strip()] __a = [word for idx, word in enumerate(_A ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __a = [] for x, y, w, h in zip(_A , _A , _A , _A ): __a = [x, y, x + w, y + h] actual_boxes.append(_A ) # finally, normalize the bounding boxes __a = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_A , _A , _A ) ) assert len(_A ) == len(_A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __UpperCAmelCase : Dict = ['pixel_values'] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = None , _a = "" , **_a , ): super().__init__(**snake_case__ ) __a = size if size is not None else {'height': 224, 'width': 224} __a = get_size_dict(snake_case__ ) __a = do_resize __a = size __a = resample __a = apply_ocr __a = ocr_lang __a = tesseract_config def __UpperCAmelCase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ): __a = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) __a = (size['height'], size['width']) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def __UpperCAmelCase ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ): __a = do_resize if do_resize is not None else self.do_resize __a = size if size is not None else self.size __a = get_size_dict(snake_case__ ) __a = resample if resample is not None else self.resample __a = apply_ocr if apply_ocr is not None else self.apply_ocr __a = ocr_lang if ocr_lang is not None else self.ocr_lang __a = tesseract_config if tesseract_config is not None else self.tesseract_config __a = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __a = [to_numpy_array(snake_case__ ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __a = [] __a = [] for image in images: __a = apply_tesseract(snake_case__ , snake_case__ , snake_case__ ) words_batch.append(snake_case__ ) boxes_batch.append(snake_case__ ) if do_resize: __a = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __a = [flip_channel_order(snake_case__ ) for image in images] __a = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] __a = BatchFeature(data={'''pixel_values''': images} , tensor_type=snake_case__ ) if apply_ocr: __a = words_batch __a = boxes_batch return data
352
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) __a = image_processor.post_process_semantic_segmentation(outputs=_a ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
11
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The column name of the images in the files.'} ) __UpperCAmelCase : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'A folder containing the training data.'} ) __UpperCAmelCase : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'A folder containing the validation data.'} ) __UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __UpperCAmelCase : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __UpperCAmelCase ( self ): __a = {} if self.train_dir is not None: __a = self.train_dir if self.validation_dir is not None: __a = self.validation_dir __a = data_files if data_files else None @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __UpperCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __UpperCAmelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __UpperCAmelCase : str = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Name or path of preprocessor config.'} ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __UpperCAmelCase : float = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : float = field( default=1e-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def lowercase ( lowerCAmelCase__ : int ) -> Tuple: __a = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def lowercase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. __a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __a = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase__ ) and data_args.train_val_split > 0.0: __a = ds['''train'''].train_test_split(data_args.train_val_split ) __a = split['''train'''] __a = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: __a = ViTMAEConfig.from_pretrained(model_args.config_name , **lowerCAmelCase__ ) elif model_args.model_name_or_path: __a = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ ) else: __a = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __a = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCAmelCase__ ) elif model_args.model_name_or_path: __a = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ ) else: __a = ViTImageProcessor() # create model if model_args.model_name_or_path: __a = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) __a = ViTMAEForPreTraining(lowerCAmelCase__ ) if training_args.do_train: __a = ds['''train'''].column_names else: __a = ds['''validation'''].column_names if data_args.image_column_name is not None: __a = data_args.image_column_name elif "image" in column_names: __a = '''image''' elif "img" in column_names: __a = '''img''' else: __a = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __a = image_processor.size['''shortest_edge'''] else: __a = (image_processor.size['''height'''], image_processor.size['''width''']) __a = Compose( [ Lambda(lambda lowerCAmelCase__ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(lowerCAmelCase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowerCAmelCase__ : Union[str, Any] ): __a = [transforms(lowerCAmelCase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: __a = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: __a = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCAmelCase__ ) # Compute absolute learning rate __a = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __a = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer __a = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: __a = None if training_args.resume_from_checkpoint is not None: __a = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a = last_checkpoint __a = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __a = trainer.evaluate() trainer.log_metrics('''eval''' , lowerCAmelCase__ ) trainer.save_metrics('''eval''' , lowerCAmelCase__ ) # Write model card and (optionally) push to hub __a = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : List[Any] ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
175
0
import pytest __snake_case :Union[str, Any] = '__dummy_dataset1__' __snake_case :Dict = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __snake_case ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __snake_case ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = dataset_loading_script_name __a = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase_ ) __a = script_dir / f'{script_name}.py' with open(lowerCamelCase_ , '''w''' ) as f: f.write(lowerCamelCase_ ) return str(lowerCamelCase_ )
358
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_UpperCAmelCase )] ) __a = np.array(_UpperCAmelCase ) __a = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _UpperCAmelCase ) ) , x.transpose() ) , _UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = (1, 2, 1) __a = (1, 1, 0, 7) __a = SARIMAX( _UpperCAmelCase , exog=_UpperCAmelCase , order=_UpperCAmelCase , seasonal_order=_UpperCAmelCase ) __a = model.fit(disp=_UpperCAmelCase , maxiter=600 , method='''nm''' ) __a = model_fit.predict(1 , len(_UpperCAmelCase ) , exog=[test_match] ) return result[0] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_UpperCAmelCase , _UpperCAmelCase ) __a = regressor.predict(_UpperCAmelCase ) return y_pred[0] def __snake_case ( _UpperCAmelCase ): train_user.sort() __a = np.percentile(_UpperCAmelCase , 25 ) __a = np.percentile(_UpperCAmelCase , 75 ) __a = qa - qa __a = qa - (iqr * 0.1) return low_lim def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = 0 __a = 0 for i in list_vote: if i > actual_result: __a = not_safe + 1 else: if abs(abs(_UpperCAmelCase ) - abs(_UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __snake_case :Any = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __snake_case :List[Any] = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __snake_case :Dict = Normalizer().fit_transform(data_input_df.values) # split data __snake_case :Any = normalize_df[:, 2].tolist() __snake_case :Tuple = normalize_df[:, 0].tolist() __snake_case :Union[str, Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __snake_case :Tuple = normalize_df[:, [1, 2]].tolist() __snake_case :List[str] = x[: len(x) - 1] __snake_case :int = x[len(x) - 1 :] # for linear regression & sarimax __snake_case :int = total_date[: len(total_date) - 1] __snake_case :Dict = total_user[: len(total_user) - 1] __snake_case :int = total_match[: len(total_match) - 1] __snake_case :List[Any] = total_date[len(total_date) - 1 :] __snake_case :Tuple = total_user[len(total_user) - 1 :] __snake_case :List[str] = total_match[len(total_match) - 1 :] # voting system with forecasting __snake_case :Optional[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __snake_case :Union[str, Any] = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
131
0
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __UpperCamelCase =number_of_bytes // partitions __UpperCamelCase =[] for i in range(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =i * bytes_per_partition + 1 __UpperCamelCase =( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
62
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCAmelCase__ = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ElectraTokenizer def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
0
0
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=__lowercase , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=__lowercase , default=5 ) parser.add_argument("--batch_size" , type=__lowercase , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=__lowercase , default=1 ) parser.add_argument("--freeze" , type=__lowercase , default=__lowercase ) parser.add_argument("--learning_rate" , type=__lowercase , default=5E-4 ) parser.add_argument("--seed" , type=__lowercase , default=0 ) parser.add_argument("--lr_scheduler_type" , type=__lowercase , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=__lowercase , default=10 ) parser.add_argument("--weight_decay" , type=__lowercase , default=0.01 ) parser.add_argument("--output_dir" , type=__lowercase , default="./results" ) return parser.parse_args() __SCREAMING_SNAKE_CASE :Union[str, Any] = load('''accuracy''') def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(__lowercase , axis=1 ) return metric.compute(predictions=__lowercase , references=__lowercase ) class A_ ( lowerCAmelCase_ ): def __init__( self : List[Any] , snake_case_ : Dict ): super().__init__() _UpperCAmelCase = trainer def lowercase ( self : Tuple , snake_case_ : str , snake_case_ : List[str] , snake_case_ : Dict , **snake_case_ : str ): if control.should_evaluate: _UpperCAmelCase = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def UpperCAmelCase_ ( ) -> int: '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset("codeparrot/codecomplex" , split="train" ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test["test"].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(__lowercase : List[str] ): _UpperCAmelCase = tokenizer(example["src"] , truncation=__lowercase , max_length=1024 ) _UpperCAmelCase = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( __lowercase , batched=__lowercase , remove_columns=train_test_validation["train"].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=__lowercase ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) _UpperCAmelCase = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=__lowercase , data_collator=__lowercase , compute_metrics=__lowercase , ) print("Training..." ) trainer.add_callback(CustomCallback(__lowercase ) ) trainer.train() if __name__ == "__main__": main()
156
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : list ) -> list: '''simple docstring''' _UpperCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping _UpperCAmelCase = True for i in range(0 , len(__lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False for i in range(1 , len(__lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') __SCREAMING_SNAKE_CASE :Optional[Any] = [int(x) for x in input().split()] # inputing elements of the list in one line __SCREAMING_SNAKE_CASE :List[str] = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
156
1
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class A_ ( _UpperCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = CustomTokenizer pass
151
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): A__ : List[str] =["""pixel_values"""] def __init__( self : Dict , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int=PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Any , ): SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = size_divisor SCREAMING_SNAKE_CASE__ = resample super().__init__(**UpperCAmelCase_ ) def A_ ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[ChannelDimension] = None , **UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_image_size(UpperCAmelCase_ ) # Rounds the height and width down to the closest multiple of size_divisor SCREAMING_SNAKE_CASE__ = height // size_divisor * size_divisor SCREAMING_SNAKE_CASE__ = width // size_divisor * size_divisor SCREAMING_SNAKE_CASE__ = resize(UpperCAmelCase_ , (new_h, new_w) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) return image def A_ ( self : Any , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[ChannelDimension] = None , **UpperCAmelCase_ : List[str] ): return rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[TensorType, str]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : List[Any] , ): SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = size_divisor if size_divisor is not None else self.size_divisor SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) SCREAMING_SNAKE_CASE__ = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(UpperCAmelCase_ ) for img in images] if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(UpperCAmelCase_ , size_divisor=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(UpperCAmelCase_ , scale=1 / 255 ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE__ = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
176
0
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore __UpperCAmelCase = namedtuple('''covid_data''', '''cases deaths recovered''') def _snake_case ( A = "https://www.worldometers.info/coronavirus/" ) -> covid_data: lowerCAmelCase__ = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(A ).content ).xpath(A ) ) __UpperCAmelCase = '''Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}''' print(fmt.format(*covid_stats()))
228
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __UpperCAmelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class a__ ( unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase__ : List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase__ : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase__ : Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) lowerCAmelCase__ = text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] ) lowerCAmelCase__ = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) lowerCAmelCase__ = text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) # Legacy behavior lowerCAmelCase__ = text_classifier('''This is great !''' , return_all_scores=lowerCamelCase_ ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) lowerCAmelCase__ = text_classifier('''This is great !''' , return_all_scores=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] ) lowerCAmelCase__ = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) lowerCAmelCase__ = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ {'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_0''', '''score''': 0.504}, ] , ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> int: import torch lowerCAmelCase__ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @require_tf def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @slow @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = pipeline('''text-classification''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) @slow @require_tf def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = pipeline('''text-classification''' , framework='''tf''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: lowerCAmelCase__ = TextClassificationPipeline(model=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: lowerCAmelCase__ = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCAmelCase__ = '''HuggingFace is in''' lowerCAmelCase__ = text_classifier(lowerCamelCase_ ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) lowerCAmelCase__ = ['''HuggingFace is in ''', '''Paris is in France'''] lowerCAmelCase__ = text_classifier(lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}, {'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCAmelCase__ = text_classifier(lowerCamelCase_ , top_k=lowerCamelCase_ ) lowerCAmelCase__ = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [[{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] * N, [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] * N] , ) lowerCAmelCase__ = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} lowerCAmelCase__ = text_classifier(lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , {'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCAmelCase__ = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(lowerCamelCase_ ): text_classifier(lowerCamelCase_ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCAmelCase__ = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
228
1
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ (a__ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" @property def __magic_name__ (self ) -> Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = ort.SessionOptions() SCREAMING_SNAKE_CASE__ : Union[str, Any] = False return options def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) SCREAMING_SNAKE_CASE__ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) SCREAMING_SNAKE_CASE__ : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = """A red cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ : int = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE__ : Dict = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = output.images SCREAMING_SNAKE_CASE__ : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) SCREAMING_SNAKE_CASE__ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = """A red cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE__ : str = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Any = output.images SCREAMING_SNAKE_CASE__ : int = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
25
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> str: if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , ) assert hasattr(self , "env") def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: _A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings _A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , ) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: # create estimator _A : Union[str, Any] = self.create_estimator(__lowerCamelCase) # run training estimator.fit() # result dataframe _A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
11
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Tuple = SwinConfig(image_size=192 ) if "base" in model_name: __lowerCAmelCase : Optional[int] = 6 __lowerCAmelCase : Dict = 128 __lowerCAmelCase : Any = (2, 2, 18, 2) __lowerCAmelCase : Tuple = (4, 8, 16, 32) elif "large" in model_name: __lowerCAmelCase : Optional[Any] = 12 __lowerCAmelCase : List[Any] = 192 __lowerCAmelCase : Tuple = (2, 2, 18, 2) __lowerCAmelCase : List[Any] = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) __lowerCAmelCase : Optional[int] = window_size __lowerCAmelCase : Any = embed_dim __lowerCAmelCase : List[str] = depths __lowerCAmelCase : int = num_heads return config def __lowerCAmelCase (_UpperCamelCase ): if "encoder.mask_token" in name: __lowerCAmelCase : Tuple = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: __lowerCAmelCase : Union[str, Any] = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: __lowerCAmelCase : List[str] = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: __lowerCAmelCase : List[str] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __lowerCAmelCase : List[str] = name.replace('attn' , 'attention.self' ) if "norm1" in name: __lowerCAmelCase : int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __lowerCAmelCase : Optional[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __lowerCAmelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __lowerCAmelCase : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __lowerCAmelCase : Union[str, Any] = "layernorm.weight" if name == "encoder.norm.bias": __lowerCAmelCase : Optional[Any] = "layernorm.bias" if "decoder" in name: pass else: __lowerCAmelCase : List[str] = "swin." + name return name def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): for key in orig_state_dict.copy().keys(): __lowerCAmelCase : Tuple = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: __lowerCAmelCase : str = key.split('.' ) __lowerCAmelCase : Tuple = int(key_split[2] ) __lowerCAmelCase : List[str] = int(key_split[4] ) __lowerCAmelCase : Any = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowerCAmelCase : List[Any] = val[:dim, :] __lowerCAmelCase : Dict = val[ dim : dim * 2, : ] __lowerCAmelCase : List[str] = val[-dim:, :] else: __lowerCAmelCase : Tuple = val[ :dim ] __lowerCAmelCase : str = val[ dim : dim * 2 ] __lowerCAmelCase : Dict = val[ -dim: ] else: __lowerCAmelCase : List[Any] = val return orig_state_dict def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Tuple = torch.load(_snake_case , map_location='cpu' )["model"] __lowerCAmelCase : List[str] = get_swin_config(_snake_case ) __lowerCAmelCase : int = SwinForMaskedImageModeling(_snake_case ) model.eval() __lowerCAmelCase : Tuple = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) __lowerCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase : int = ViTImageProcessor(size={'height': 192, 'width': 192} ) __lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) __lowerCAmelCase : int = image_processor(images=_snake_case , return_tensors='pt' ) with torch.no_grad(): __lowerCAmelCase : List[str] = model(**_snake_case ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(F"Pushing model and image processor for {model_name} to hub" ) model.push_to_hub(F"microsoft/{model_name}" ) image_processor.push_to_hub(F"microsoft/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
369
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=36 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : List[str] = parent __lowerCAmelCase : Optional[int] = batch_size __lowerCAmelCase : List[Any] = seq_length __lowerCAmelCase : List[Any] = is_training __lowerCAmelCase : Tuple = use_input_mask __lowerCAmelCase : Tuple = use_token_type_ids __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : Tuple = vocab_size __lowerCAmelCase : List[Any] = embedding_size __lowerCAmelCase : List[Any] = hidden_size __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : int = num_hidden_groups __lowerCAmelCase : List[Any] = num_attention_heads __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : Optional[Any] = hidden_dropout_prob __lowerCAmelCase : List[Any] = attention_probs_dropout_prob __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : str = type_vocab_size __lowerCAmelCase : List[Any] = type_sequence_label_size __lowerCAmelCase : List[Any] = initializer_range __lowerCAmelCase : Tuple = num_labels __lowerCAmelCase : int = num_choices __lowerCAmelCase : Dict = scope def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Any = None if self.use_token_type_ids: __lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : Any = None if self.use_labels: __lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = AlbertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = AlbertForPreTraining(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , sentence_order_label=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = AlbertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = AlbertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = self.num_labels __lowerCAmelCase : str = AlbertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = self.num_labels __lowerCAmelCase : List[str] = AlbertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = self.num_choices __lowerCAmelCase : Dict = AlbertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase : Dict = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) : int = config_and_inputs __lowerCAmelCase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : List[str] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A_ : str = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) A_ : Union[str, Any] = True def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowerCAmelCase : Optional[Any] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = AlbertModelTester(self ) __lowerCAmelCase : List[str] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase : Optional[Any] = type self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[int] = AlbertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): __lowerCAmelCase : str = AlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase : List[str] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowerCAmelCase : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] __lowerCAmelCase : Dict = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
182
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCamelCase = random.Random() def lowerCamelCase_ ( _a , _a=1.0 , _a=None , _a=None ): """simple docstring""" if rng is None: lowerCAmelCase__ : Tuple = global_rng lowerCAmelCase__ : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _a ( unittest.TestCase): def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str=7 , _SCREAMING_SNAKE_CASE : str=400 , _SCREAMING_SNAKE_CASE : Any=2000 , _SCREAMING_SNAKE_CASE : List[Any]=1 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE : Tuple=1_6000 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : List[Any]=True , )-> Any: lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = min_seq_length lowerCAmelCase__ : int = max_seq_length lowerCAmelCase__ : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ : Optional[Any] = feature_size lowerCAmelCase__ : Union[str, Any] = padding_value lowerCAmelCase__ : Tuple = sampling_rate lowerCAmelCase__ : int = return_attention_mask lowerCAmelCase__ : Optional[int] = do_normalize def UpperCAmelCase__( self : Union[str, Any] )-> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any]=False , _SCREAMING_SNAKE_CASE : str=False )-> Tuple: def _flatten(_SCREAMING_SNAKE_CASE : Union[str, Any] ): return list(itertools.chain(*_SCREAMING_SNAKE_CASE ) ) if equal_length: lowerCAmelCase__ : int = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase__ : Tuple = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ : Optional[int] = [np.asarray(_SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs class _a ( _lowercase , unittest.TestCase): _a : List[str] = WavaVecaFeatureExtractor def UpperCAmelCase__( self : Union[str, Any] )-> List[str]: lowerCAmelCase__ : List[str] = WavaVecaFeatureExtractionTester(self ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Optional[int]: self.assertTrue(np.all(np.mean(_SCREAMING_SNAKE_CASE , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_SCREAMING_SNAKE_CASE , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCAmelCase__( self : int )-> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase__ : Optional[Any] = [np.asarray(_SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase__ : Optional[Any] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values lowerCAmelCase__ : int = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test batched lowerCAmelCase__ : Any = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values lowerCAmelCase__ : Dict = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase__ : List[Any] = np.asarray(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values lowerCAmelCase__ : Optional[int] = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def UpperCAmelCase__( self : Dict )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase__ : Tuple = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase__ : str = [None, 1600, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : int = feat_extract(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) lowerCAmelCase__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCAmelCase__( self : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : List[str] = range(800 , 1400 , 200 ) lowerCAmelCase__ : List[Any] = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase__ : Optional[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] lowerCAmelCase__ : Optional[int] = [None, 1600, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : List[str] = feat_extract(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCAmelCase__( self : List[str] )-> int: lowerCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase__ : str = feat_extract( _SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) lowerCAmelCase__ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCAmelCase__( self : Tuple )-> str: lowerCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase__ : List[str] = feat_extract( _SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) lowerCAmelCase__ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowerCAmelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCAmelCase__ : str = feat_extract( _SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) lowerCAmelCase__ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def UpperCAmelCase__( self : List[Any] )-> List[str]: import torch lowerCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : Union[str, Any] = np.random.rand(100 ).astype(np.floataa ) lowerCAmelCase__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase__ : List[Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCAmelCase__( self : Optional[int] )-> Dict: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCAmelCase__ : Tuple = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
131
0
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
1
def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: __lowercase , __lowercase : List[str] = len(__lowerCAmelCase ), len(grid[0] ) if ( min(__lowerCAmelCase , __lowerCAmelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __lowercase : Optional[Any] = 0 count += depth_first_search(__lowerCAmelCase , row + 1 , __lowerCAmelCase , __lowerCAmelCase ) count += depth_first_search(__lowerCAmelCase , row - 1 , __lowerCAmelCase , __lowerCAmelCase ) count += depth_first_search(__lowerCAmelCase , __lowerCAmelCase , col + 1 , __lowerCAmelCase ) count += depth_first_search(__lowerCAmelCase , __lowerCAmelCase , col - 1 , __lowerCAmelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
156
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __lowerCAmelCase : Optional[Any] = {"UserAgent": UserAgent().random} def UpperCAmelCase_ ( __lowerCAmelCase ) -> dict: __lowercase : Optional[Any] = script.contents[0] __lowercase : int = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : Optional[int] ): __lowercase : Dict = F'https://www.instagram.com/{username}/' __lowercase : Tuple = self.get_json() def snake_case_ ( self : Tuple ): __lowercase : List[Any] = requests.get(self.url , headers=_snake_case ).text __lowercase : str = BeautifulSoup(_snake_case , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Optional[Any] ): return F'{self.__class__.__name__}(\'{self.username}\')' def __str__( self : Optional[int] ): return F'{self.fullname} ({self.username}) is {self.biography}' @property def snake_case_ ( self : Dict ): return self.user_data["username"] @property def snake_case_ ( self : List[Any] ): return self.user_data["full_name"] @property def snake_case_ ( self : Optional[Any] ): return self.user_data["biography"] @property def snake_case_ ( self : Any ): return self.user_data["business_email"] @property def snake_case_ ( self : int ): return self.user_data["external_url"] @property def snake_case_ ( self : Union[str, Any] ): return self.user_data["edge_followed_by"]["count"] @property def snake_case_ ( self : Dict ): return self.user_data["edge_follow"]["count"] @property def snake_case_ ( self : Any ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def snake_case_ ( self : int ): return self.user_data["profile_pic_url_hd"] @property def snake_case_ ( self : Optional[Any] ): return self.user_data["is_verified"] @property def snake_case_ ( self : Optional[Any] ): return self.user_data["is_private"] def UpperCAmelCase_ ( __lowerCAmelCase = "github" ) -> None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __lowercase : Dict = InstagramUser(__lowerCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __lowerCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] = InstagramUser("github") print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
156
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Dict = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class snake_case_( lowerCamelCase__ ): __UpperCamelCase = '''realm''' def __init__( self : str , UpperCamelCase_ : Union[str, Any]=3_0_5_2_2 , UpperCamelCase_ : Union[str, Any]=7_6_8 , UpperCamelCase_ : int=1_2_8 , UpperCamelCase_ : Union[str, Any]=1_2 , UpperCamelCase_ : List[Any]=1_2 , UpperCamelCase_ : Optional[Any]=8 , UpperCamelCase_ : Union[str, Any]=3_0_7_2 , UpperCamelCase_ : Optional[int]="gelu_new" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Optional[int]=5_1_2 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : List[str]=1E-12 , UpperCamelCase_ : Dict=2_5_6 , UpperCamelCase_ : int=1_0 , UpperCamelCase_ : List[str]=1E-3 , UpperCamelCase_ : Dict=5 , UpperCamelCase_ : int=3_2_0 , UpperCamelCase_ : Tuple=1_3_3_5_3_7_1_8 , UpperCamelCase_ : Optional[Any]=5_0_0_0 , UpperCamelCase_ : str=1 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Union[str, Any]=2 , **UpperCamelCase_ : Dict , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) # Common config lowerCAmelCase : Dict = vocab_size lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[Any] = retriever_proj_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Union[str, Any] = num_candidates lowerCAmelCase : str = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Optional[Any] = type_vocab_size lowerCAmelCase : Union[str, Any] = layer_norm_eps # Reader config lowerCAmelCase : int = span_hidden_size lowerCAmelCase : Optional[int] = max_span_width lowerCAmelCase : Optional[Any] = reader_layer_norm_eps lowerCAmelCase : Tuple = reader_beam_size lowerCAmelCase : Optional[int] = reader_seq_len # Retrieval config lowerCAmelCase : List[str] = num_block_records lowerCAmelCase : Union[str, Any] = searcher_beam_size
358
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Optional[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict="[UNK]" , UpperCamelCase_ : Any="[SEP]" , UpperCamelCase_ : Any="[PAD]" , UpperCamelCase_ : Tuple="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[int] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : Tuple = do_lower_case lowerCAmelCase : Union[str, Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : str = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = do_lower_case def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=None ): lowerCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : Optional[Any] = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
314
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __UpperCamelCase : str = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''linear''' UpperCamelCase__ = '''cosine''' UpperCamelCase__ = '''cosine_with_restarts''' UpperCamelCase__ = '''polynomial''' UpperCamelCase__ = '''constant''' UpperCamelCase__ = '''constant_with_warmup''' UpperCamelCase__ = '''piecewise_constant''' def __A ( __lowerCamelCase , __lowerCamelCase = -1 ) -> List[Any]: return LambdaLR(__lowerCamelCase , lambda __lowerCamelCase : 1 , last_epoch=__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = -1 ) -> Tuple: def lr_lambda(__lowerCamelCase ): if current_step < num_warmup_steps: return float(__lowerCamelCase ) / float(max(1.0 , __lowerCamelCase ) ) return 1.0 return LambdaLR(__lowerCamelCase , __lowerCamelCase , last_epoch=__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = -1 ) -> str: a = {} a = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: a , a = rule_str.split(""":""" ) a = int(__lowerCamelCase ) a = float(__lowerCamelCase ) a = value a = float(rule_list[-1] ) def create_rules_function(__lowerCamelCase , __lowerCamelCase ): def rule_func(__lowerCamelCase ) -> float: a = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func a = create_rules_function(__lowerCamelCase , __lowerCamelCase ) return LambdaLR(__lowerCamelCase , __lowerCamelCase , last_epoch=__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=-1 ) -> List[str]: def lr_lambda(__lowerCamelCase ): if current_step < num_warmup_steps: return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 0.5 , __lowerCamelCase = -1 ) -> List[Any]: def lr_lambda(__lowerCamelCase ): if current_step < num_warmup_steps: return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) ) a = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 , __lowerCamelCase = -1 ) -> Optional[int]: def lr_lambda(__lowerCamelCase ): if current_step < num_warmup_steps: return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) ) a = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-7 , __lowerCamelCase=1.0 , __lowerCamelCase=-1 ) -> List[str]: a = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(__lowerCamelCase ): if current_step < num_warmup_steps: return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: a = lr_init - lr_end a = num_training_steps - num_warmup_steps a = 1 - (current_step - num_warmup_steps) / decay_steps a = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCamelCase : List[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1.0 , __lowerCamelCase = -1 , ) -> Dict: a = SchedulerType(__lowerCamelCase ) a = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__lowerCamelCase , last_epoch=__lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__lowerCamelCase , step_rules=__lowerCamelCase , last_epoch=__lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__lowerCamelCase , num_warmup_steps=__lowerCamelCase , last_epoch=__lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __lowerCamelCase , num_warmup_steps=__lowerCamelCase , num_training_steps=__lowerCamelCase , num_cycles=__lowerCamelCase , last_epoch=__lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __lowerCamelCase , num_warmup_steps=__lowerCamelCase , num_training_steps=__lowerCamelCase , power=__lowerCamelCase , last_epoch=__lowerCamelCase , ) return schedule_func( __lowerCamelCase , num_warmup_steps=__lowerCamelCase , num_training_steps=__lowerCamelCase , last_epoch=__lowerCamelCase )
228
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Dict[Optional[str], Type[Formatter]] = {} __UpperCamelCase : Dict[Optional[str], str] = {} __UpperCamelCase : Dict[Optional[str], Exception] = {} def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , ) -> Optional[int]: a = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) a = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) a = format_type def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None ) -> List[str]: a = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): a = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: __UpperCamelCase : str = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: __UpperCamelCase : List[str] = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: __UpperCamelCase : List[str] = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def __A ( __lowerCamelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __A ( __lowerCamelCase , **__lowerCamelCase ) -> Formatter: a = get_format_type_from_alias(__lowerCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__lowerCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
228
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _A = logging.get_logger(__name__) _A = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class _lowerCamelCase ( lowercase_ ): _lowerCamelCase :Optional[Any] = "bart" _lowerCamelCase :List[str] = ["past_key_values"] _lowerCamelCase :List[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[Any] , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : List[Any]=10_24 , UpperCamelCase : Any=12 , UpperCamelCase : List[str]=40_96 , UpperCamelCase : Union[str, Any]=16 , UpperCamelCase : Tuple=12 , UpperCamelCase : str=40_96 , UpperCamelCase : List[Any]=16 , UpperCamelCase : Optional[int]=0.0 , UpperCamelCase : Any=0.0 , UpperCamelCase : List[str]="gelu" , UpperCamelCase : List[str]=10_24 , UpperCamelCase : int=0.1 , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : str=0.02 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[str]=False , UpperCamelCase : List[str]=True , UpperCamelCase : Tuple=3 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Any=0 , UpperCamelCase : str=2 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Union[str, Any]=2 , **UpperCamelCase : int , ) -> Dict: """simple docstring""" lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : Union[str, Any] = d_model lowerCAmelCase__ : List[str] = encoder_ffn_dim lowerCAmelCase__ : str = encoder_layers lowerCAmelCase__ : Optional[Any] = encoder_attention_heads lowerCAmelCase__ : List[Any] = decoder_ffn_dim lowerCAmelCase__ : Tuple = decoder_layers lowerCAmelCase__ : List[str] = decoder_attention_heads lowerCAmelCase__ : Dict = dropout lowerCAmelCase__ : Dict = attention_dropout lowerCAmelCase__ : Dict = activation_dropout lowerCAmelCase__ : Tuple = activation_function lowerCAmelCase__ : List[str] = init_std lowerCAmelCase__ : List[str] = encoder_layerdrop lowerCAmelCase__ : Dict = decoder_layerdrop lowerCAmelCase__ : Any = classifier_dropout lowerCAmelCase__ : Optional[int] = use_cache lowerCAmelCase__ : Optional[Any] = encoder_layers lowerCAmelCase__ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=a__ , pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , forced_eos_token_id=a__ , **a__ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , a__ ): lowerCAmelCase__ : str = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" ) class _lowerCamelCase ( lowercase_ ): @property def _lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCAmelCase__ : int = {0: """batch"""} lowerCAmelCase__ : Dict = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowerCAmelCase__ : List[Any] = {0: """batch""", 1: """decoder_sequence"""} lowerCAmelCase__ : str = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(a__ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCAmelCase__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.num_layers for i in range(a__ ): lowerCAmelCase__ : Optional[Any] = {0: """batch""", 2: """past_sequence + sequence"""} lowerCAmelCase__ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} else: lowerCAmelCase__ : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def _lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase__ : Dict = super().outputs else: lowerCAmelCase__ : Optional[int] = super(a__ , self ).outputs if self.use_past: lowerCAmelCase__ , lowerCAmelCase__ : int = self.num_layers for i in range(a__ ): lowerCAmelCase__ : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} lowerCAmelCase__ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _lowerCAmelCase ( self : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] = -1 , UpperCamelCase : Tuple = -1 , UpperCamelCase : Optional[int] = False , UpperCamelCase : str = None , ) -> Mapping[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) # Generate decoder inputs lowerCAmelCase__ : Any = seq_length if not self.use_past else 1 lowerCAmelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) lowerCAmelCase__ : Dict = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowerCAmelCase__ : List[Any] = dict(**a__ , **a__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = common_inputs["""input_ids"""].shape lowerCAmelCase__ : Optional[Any] = common_inputs["""decoder_input_ids"""].shape[1] lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self.num_attention_heads lowerCAmelCase__ : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase__ : Any = decoder_seq_length + 3 lowerCAmelCase__ : Any = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCAmelCase__ : int = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(a__ , a__ )] , dim=1 ) lowerCAmelCase__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.num_layers lowerCAmelCase__ : Tuple = min(a__ , a__ ) lowerCAmelCase__ : List[str] = max(a__ , a__ ) - min_num_layers lowerCAmelCase__ : int = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(a__ ): common_inputs["past_key_values"].append( ( torch.zeros(a__ ), torch.zeros(a__ ), torch.zeros(a__ ), torch.zeros(a__ ), ) ) # TODO: test this. lowerCAmelCase__ : str = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(a__ , a__ ): common_inputs["past_key_values"].append((torch.zeros(a__ ), torch.zeros(a__ )) ) return common_inputs def _lowerCAmelCase ( self : int , UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] = -1 , UpperCamelCase : Optional[Any] = -1 , UpperCamelCase : Any = False , UpperCamelCase : Any = None , ) -> Mapping[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase__ : Any = seqlen + 2 lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.num_layers lowerCAmelCase__ , lowerCAmelCase__ : int = self.num_attention_heads lowerCAmelCase__ : Dict = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase__ : int = common_inputs["""attention_mask"""].dtype lowerCAmelCase__ : List[str] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(a__ , a__ , dtype=a__ )] , dim=1 ) lowerCAmelCase__ : List[Any] = [ (torch.zeros(a__ ), torch.zeros(a__ )) for _ in range(a__ ) ] return common_inputs def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : List[Any] = -1 , UpperCamelCase : int = -1 , UpperCamelCase : str = False , UpperCamelCase : List[Any] = None , ) -> Mapping[str, Any]: """simple docstring""" lowerCAmelCase__ : str = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase__ : Tuple = tokenizer.num_special_tokens_to_add(a__ ) lowerCAmelCase__ : Optional[int] = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a__ ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase__ : Optional[Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCAmelCase__ : str = dict(tokenizer(a__ , return_tensors=a__ ) ) return common_inputs def _lowerCAmelCase ( self : int , UpperCamelCase : str , UpperCamelCase : List[Any] = -1 , UpperCamelCase : List[str] = -1 , UpperCamelCase : Optional[int] = False , UpperCamelCase : Optional[Any] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase__ : List[str] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) elif self.task == "causal-lm": lowerCAmelCase__ : List[Any] = self._generate_dummy_inputs_for_causal_lm( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) else: lowerCAmelCase__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) return common_inputs def _lowerCAmelCase ( self : Any , UpperCamelCase : List[str] , UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : str ) -> List[Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase__ : Tuple = super()._flatten_past_key_values_(a__ , a__ , a__ , a__ ) else: lowerCAmelCase__ : int = super(a__ , self )._flatten_past_key_values_( a__ , a__ , a__ , a__ )
354
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a_ ): _lowerCamelCase :Dict = ["image_processor", "tokenizer"] _lowerCamelCase :Dict = "BlipImageProcessor" _lowerCamelCase :Any = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[Any] = False super().__init__(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = self.image_processor def __call__( self : int , UpperCamelCase : ImageInput = None , UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase : bool = True , UpperCamelCase : Union[bool, str, PaddingStrategy] = False , UpperCamelCase : Union[bool, str, TruncationStrategy] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : int = 0 , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = False , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[str, TensorType]] = None , **UpperCamelCase : Optional[int] , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase__ : Any = self.tokenizer lowerCAmelCase__ : Optional[int] = self.tokenizer( text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) return text_encoding # add pixel_values lowerCAmelCase__ : Tuple = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase ) if text is not None: lowerCAmelCase__ : Optional[int] = self.tokenizer( text=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) else: lowerCAmelCase__ : Tuple = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase ) return encoding_image_processor def _lowerCAmelCase ( self : int , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[str] ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] , *UpperCamelCase : Tuple , **UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.tokenizer.model_input_names lowerCAmelCase__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
212
0