code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def _lowerCamelCase( ): __a = 0 for i in range(1 , 1_0_0_1 ): total += i**i return str(a )[-1_0:] if __name__ == "__main__": print(solution())
261
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE__:Any = random.Random() if is_torch_available(): import torch def _lowerCamelCase( a , a=1.0 , a=None , a=None ): if rng is None: __a = global_rng __a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=True , ): __a = parent __a = batch_size __a = min_seq_length __a = max_seq_length __a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a = feature_size __a = padding_value __a = sampling_rate __a = return_attention_mask __a = do_normalize def a__ ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , lowerCamelCase=False , lowerCamelCase=False ): def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: __a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : str = ASTFeatureExtractor def a__ ( self ): __a = ASTFeatureExtractionTester(self ) def a__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __a = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __a = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __a = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a = np.asarray(lowerCamelCase ) __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) @require_torch def a__ ( self ): import torch __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = np.random.rand(100 ).astype(np.floataa ) __a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ ( self , lowerCamelCase ): from datasets import load_dataset __a = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __a = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def a__ ( self ): # fmt: off __a = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on __a = self._load_datasamples(1 ) __a = ASTFeatureExtractor() __a = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
261
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A_ : int = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _UpperCAmelCase : Optional[Any] = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(lowerCAmelCase_ , id=lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' if exitstatus == 5: _UpperCAmelCase : List[str] = 0 # Doctest custom flag to ignore output. A_ : Optional[Any] = doctest.register_optionflag("""IGNORE_RESULT""") A_ : Tuple = doctest.OutputChecker class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ,a_ ,a_ ,a_ ) -> List[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,a_ ,a_ ,a_ ) A_ : str = CustomOutputChecker A_ : str = HfDoctestModule A_ : Optional[Any] = HfDocTestParser
349
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
1
"""simple docstring""" def A_ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase, _lowercase ): raise TypeError("""Input value must be an 'int' type""" ) snake_case_ :Any = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
66
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : str = StableDiffusionSAGPipeline _A : Optional[Any] = TEXT_TO_IMAGE_PARAMS _A : Any = TEXT_TO_IMAGE_BATCH_PARAMS _A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS _A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS _A : List[str] = False def lowerCAmelCase_ ( self: Optional[Any] ) -> str: torch.manual_seed(0 ) snake_case_ :Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case_ :Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) snake_case_ :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ :Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) snake_case_ :Tuple = CLIPTextModel(snake_case ) snake_case_ :str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ :Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase_ ( self: List[str] , snake_case: Tuple , snake_case: List[str]=0 ) -> str: if str(snake_case ).startswith("""mps""" ): snake_case_ :Tuple = torch.manual_seed(snake_case ) else: snake_case_ :Optional[int] = torch.Generator(device=snake_case ).manual_seed(snake_case ) snake_case_ :Any = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self: Optional[int] ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: int ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self: int ) -> List[str]: snake_case_ :Any = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) snake_case_ :int = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Union[str, Any] = """.""" snake_case_ :str = torch.manual_seed(0 ) snake_case_ :str = sag_pipe( [prompt] , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) snake_case_ :List[Any] = output.images snake_case_ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ :List[Any] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase_ ( self: Dict ) -> str: snake_case_ :Tuple = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) snake_case_ :Optional[int] = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Tuple = """.""" snake_case_ :Union[str, Any] = torch.manual_seed(0 ) snake_case_ :Tuple = sag_pipe( [prompt] , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) snake_case_ :Optional[int] = output.images snake_case_ :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ :Tuple = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase_ ( self: List[str] ) -> List[str]: snake_case_ :Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) snake_case_ :int = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Tuple = """.""" snake_case_ :Optional[int] = torch.manual_seed(0 ) snake_case_ :List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) snake_case_ :Optional[Any] = output.images assert image.shape == (1, 512, 768, 3)
66
1
from __future__ import annotations lowerCAmelCase__ : List[Any] =[-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase__ : Dict =[-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : int = len(A__ ) for i in range(A__ ): SCREAMING_SNAKE_CASE_ : float = -1 for j in range(i + 1, A__ ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE_ : Optional[int] = arr[j] break result.append(A__ ) return result def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : str = [] for i, outer in enumerate(A__ ): SCREAMING_SNAKE_CASE_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE_ : List[Any] = inner break result.append(A__ ) return result def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = len(A__ ) SCREAMING_SNAKE_CASE_ : list[float] = [] SCREAMING_SNAKE_CASE_ : list[float] = [-1] * arr_size for index in reversed(range(A__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE_ : Any = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase__ : Optional[Any] =( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
162
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowerCAmelCase__ : Optional[Any] =logging.getLogger(__name__) def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Any = np.argmax(A__, axis=1 ) return np.sum(outputs == labels ) def a__ ( A__ ): with open(A__, encoding='utf_8' ) as f: SCREAMING_SNAKE_CASE_ : int = csv.reader(A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] next(A__ ) # skip the first line for line in tqdm(A__ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( A__, A__, A__, A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : str = [] for dataset in encoded_datasets: SCREAMING_SNAKE_CASE_ : str = len(A__ ) SCREAMING_SNAKE_CASE_ : List[Any] = np.zeros((n_batch, 2, input_len), dtype=np.intaa ) SCREAMING_SNAKE_CASE_ : str = np.zeros((n_batch, 2), dtype=np.intaa ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.full((n_batch, 2, input_len), fill_value=-1_0_0, dtype=np.intaa ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros((n_batch,), dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(A__ ): SCREAMING_SNAKE_CASE_ : List[str] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] SCREAMING_SNAKE_CASE_ : Any = with_conta SCREAMING_SNAKE_CASE_ : Union[str, Any] = with_conta SCREAMING_SNAKE_CASE_ : Dict = len(A__ ) - 1 SCREAMING_SNAKE_CASE_ : str = len(A__ ) - 1 SCREAMING_SNAKE_CASE_ : Any = with_conta SCREAMING_SNAKE_CASE_ : str = with_conta SCREAMING_SNAKE_CASE_ : List[str] = mc_label SCREAMING_SNAKE_CASE_ : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(A__ ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): SCREAMING_SNAKE_CASE_ : Any = argparse.ArgumentParser() parser.add_argument('--model_name', type=A__, default='openai-gpt', help='pretrained model name' ) parser.add_argument('--do_train', action='store_true', help='Whether to run training.' ) parser.add_argument('--do_eval', action='store_true', help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir', default=A__, type=A__, required=A__, help='The output directory where the model predictions and checkpoints will be written.', ) parser.add_argument('--train_dataset', type=A__, default='' ) parser.add_argument('--eval_dataset', type=A__, default='' ) parser.add_argument('--seed', type=A__, default=4_2 ) parser.add_argument('--num_train_epochs', type=A__, default=3 ) parser.add_argument('--train_batch_size', type=A__, default=8 ) parser.add_argument('--eval_batch_size', type=A__, default=1_6 ) parser.add_argument('--adam_epsilon', default=1E-8, type=A__, help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm', type=A__, default=1 ) parser.add_argument( '--max_steps', default=-1, type=A__, help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ), ) parser.add_argument( '--gradient_accumulation_steps', type=A__, default=1, help='Number of updates steps to accumulate before performing a backward/update pass.', ) parser.add_argument('--learning_rate', type=A__, default=6.25E-5 ) parser.add_argument('--warmup_steps', default=0, type=A__, help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule', type=A__, default='warmup_linear' ) parser.add_argument('--weight_decay', type=A__, default=0.01 ) parser.add_argument('--lm_coef', type=A__, default=0.9 ) parser.add_argument('--n_valid', type=A__, default=3_7_4 ) parser.add_argument('--server_ip', type=A__, default='', help='Can be used for distant debugging.' ) parser.add_argument('--server_port', type=A__, default='', help='Can be used for distant debugging.' ) SCREAMING_SNAKE_CASE_ : Any = parser.parse_args() print(A__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=A__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE_ : str = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(A__, A__ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset SCREAMING_SNAKE_CASE_ : List[Any] = ['_start_', '_delimiter_', '_classify_'] SCREAMING_SNAKE_CASE_ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(A__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer.convert_tokens_to_ids(A__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(A__ ) ) model.to(A__ ) # Load and encode the datasets def tokenize_and_encode(A__ ): if isinstance(A__, A__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(A__ ) ) elif isinstance(A__, A__ ): return obj return [tokenize_and_encode(A__ ) for o in obj] logger.info('Encoding dataset...' ) SCREAMING_SNAKE_CASE_ : int = load_rocstories_dataset(args.train_dataset ) SCREAMING_SNAKE_CASE_ : int = load_rocstories_dataset(args.eval_dataset ) SCREAMING_SNAKE_CASE_ : Optional[Any] = (train_dataset, eval_dataset) SCREAMING_SNAKE_CASE_ : List[str] = tokenize_and_encode(A__ ) # Compute the max input length for the Transformer SCREAMING_SNAKE_CASE_ : Tuple = model.config.n_positions // 2 - 2 SCREAMING_SNAKE_CASE_ : Optional[int] = max( len(story[:max_length] ) + max(len(conta[:max_length] ), len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) SCREAMING_SNAKE_CASE_ : str = min(A__, model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders SCREAMING_SNAKE_CASE_ : Tuple = pre_process_datasets(A__, A__, A__, *A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = tensor_datasets[0], tensor_datasets[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = TensorDataset(*A__ ) SCREAMING_SNAKE_CASE_ : str = RandomSampler(A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = DataLoader(A__, sampler=A__, batch_size=args.train_batch_size ) SCREAMING_SNAKE_CASE_ : List[Any] = TensorDataset(*A__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = SequentialSampler(A__ ) SCREAMING_SNAKE_CASE_ : str = DataLoader(A__, sampler=A__, batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: SCREAMING_SNAKE_CASE_ : int = args.max_steps SCREAMING_SNAKE_CASE_ : Any = args.max_steps // (len(A__ ) // args.gradient_accumulation_steps) + 1 else: SCREAMING_SNAKE_CASE_ : List[Any] = len(A__ ) // args.gradient_accumulation_steps * args.num_train_epochs SCREAMING_SNAKE_CASE_ : Optional[Any] = list(model.named_parameters() ) SCREAMING_SNAKE_CASE_ : Optional[int] = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] SCREAMING_SNAKE_CASE_ : Optional[Any] = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] SCREAMING_SNAKE_CASE_ : Optional[Any] = AdamW(A__, lr=args.learning_rate, eps=args.adam_epsilon ) SCREAMING_SNAKE_CASE_ : List[Any] = get_linear_schedule_with_warmup( A__, num_warmup_steps=args.warmup_steps, num_training_steps=A__ ) if args.do_train: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ), desc='Epoch' ): SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : List[Any] = tqdm(A__, desc='Training' ) for step, batch in enumerate(A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = tuple(t.to(A__ ) for t in batch ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = batch SCREAMING_SNAKE_CASE_ : Tuple = model(A__, mc_token_ids=A__, lm_labels=A__, mc_labels=A__ ) SCREAMING_SNAKE_CASE_ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() SCREAMING_SNAKE_CASE_ : Tuple = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 SCREAMING_SNAKE_CASE_ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(A__, scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer SCREAMING_SNAKE_CASE_ : List[str] = model.module if hasattr(A__, 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(args.output_dir, A__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(args.output_dir, A__ ) torch.save(model_to_save.state_dict(), A__ ) model_to_save.config.to_json_file(A__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned SCREAMING_SNAKE_CASE_ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) SCREAMING_SNAKE_CASE_ : int = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(A__ ) if args.do_eval: model.eval() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = 0, 0 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = 0, 0 for batch in tqdm(A__, desc='Evaluating' ): SCREAMING_SNAKE_CASE_ : int = tuple(t.to(A__ ) for t in batch ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = batch with torch.no_grad(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = model( A__, mc_token_ids=A__, lm_labels=A__, mc_labels=A__ ) SCREAMING_SNAKE_CASE_ : List[Any] = mc_logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE_ : Union[str, Any] = mc_labels.to('cpu' ).numpy() SCREAMING_SNAKE_CASE_ : Dict = accuracy(A__, A__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 SCREAMING_SNAKE_CASE_ : List[str] = eval_loss / nb_eval_steps SCREAMING_SNAKE_CASE_ : List[Any] = eval_accuracy / nb_eval_examples SCREAMING_SNAKE_CASE_ : List[Any] = tr_loss / nb_tr_steps if args.do_train else None SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} SCREAMING_SNAKE_CASE_ : int = os.path.join(args.output_dir, 'eval_results.txt' ) with open(A__, 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s', A__, str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
162
1
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _snake_case = True except ImportError: _snake_case = False try: from torch.hub import _get_torch_home _snake_case = _get_torch_home() except ImportError: _snake_case = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) _snake_case = os.path.join(torch_cache_home, 'transformers') _snake_case = 'https://cdn.huggingface.co' _snake_case = 'https://s3.amazonaws.com/models.huggingface.co/bert' _snake_case = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) _snake_case = os.path.join(PATH, 'config.yaml') _snake_case = os.path.join(PATH, 'attributes.txt') _snake_case = os.path.join(PATH, 'objects.txt') _snake_case = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) _snake_case = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) _snake_case = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) _snake_case = 'pytorch_model.bin' _snake_case = 'config.yaml' def _A ( snake_case=OBJECTS , snake_case=ATTRIBUTES ) -> int: _lowercase : Tuple = [] with open(_lowerCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) _lowercase : Tuple = [] with open(_lowerCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def _A ( snake_case ) -> Any: _lowercase : str = OrderedDict() with open(_lowerCamelCase , "rb" ) as f: _lowercase : Optional[int] = pkl.load(_lowerCamelCase )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): _lowercase : int = ckp.pop(_lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): _lowercase : Optional[int] = torch.tensor(_lowerCamelCase ) else: assert isinstance(_lowerCamelCase , torch.tensor ), type(_lowerCamelCase ) _lowercase : int = v return r class a__ : _SCREAMING_SNAKE_CASE : str = {} def __init__( self , _UpperCamelCase , _UpperCamelCase = "root" , _UpperCamelCase=0 ): """simple docstring""" _lowercase : str = name _lowercase : List[Any] = level _lowercase : List[str] = {} for k, v in dictionary.items(): if v is None: raise ValueError() _lowercase : Union[str, Any] = copy.deepcopy(__a ) _lowercase : Tuple = copy.deepcopy(__a ) if isinstance(__a , __a ): _lowercase : Any = Config(__a , name=__a , level=level + 1 ) _lowercase : int = v setattr(self , __a , __a ) _lowercase : List[str] = d def __repr__( self ): """simple docstring""" return str(list((self._pointer.keys()) ) ) def __setattr__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Any = val _lowercase : int = val _lowercase : Tuple = key.split("." ) _lowercase : Union[str, Any] = len(__a ) - 1 _lowercase : Any = self._pointer if len(__a ) > 1: for i, l in enumerate(__a ): if hasattr(self , __a ) and isinstance(getattr(self , __a ) , __a ): setattr(getattr(self , __a ) , ".".join(levels[i:] ) , __a ) if l == last_level: _lowercase : Optional[int] = val else: _lowercase : str = pointer[l] def _lowerCamelCase ( self ): """simple docstring""" return self._pointer def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" with open(f'''{file_name}''' , "w" ) as stream: dump(__a , __a ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" with open(f'''{file_name}''' , "w" ) as stream: json.dump(__a , __a ) @staticmethod def _lowerCamelCase ( _UpperCamelCase ): """simple docstring""" with open(__a ) as stream: _lowercase : Dict = load(__a , Loader=__a ) return data def __str__( self ): """simple docstring""" _lowercase : List[str] = " " if self._name != "root": _lowercase : Dict = f'''{t * (self._level-1)}{self._name}:\n''' else: _lowercase : str = "" _lowercase : str = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__a , __a ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(__a ).__name__})\n''' _lowercase : Optional[int] = level return r[:-1] @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" _lowercase : Tuple = cls.get_config_dict(__a , **__a ) return cls(__a ) @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" _lowercase : Optional[int] = kwargs.pop("cache_dir" , __a ) _lowercase : str = kwargs.pop("force_download" , __a ) _lowercase : Optional[Any] = kwargs.pop("resume_download" , __a ) _lowercase : str = kwargs.pop("proxies" , __a ) _lowercase : int = kwargs.pop("local_files_only" , __a ) if os.path.isdir(__a ): _lowercase : str = os.path.join(__a , __a ) elif os.path.isfile(__a ) or is_remote_url(__a ): _lowercase : List[str] = pretrained_model_name_or_path else: _lowercase : int = hf_bucket_url(__a , filename=__a , use_cdn=__a ) try: # Load from URL or cache if already cached _lowercase : Optional[Any] = cached_path( __a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _lowercase : Tuple = Config.load_yaml(__a ) except EnvironmentError: _lowercase : List[Any] = "Can't load config for" raise EnvironmentError(__a ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(__a ), kwargs def _A ( snake_case ) -> List[str]: _lowercase : Dict = torch.load("dump.pt" , map_location=in_tensor.device ) _lowercase : List[str] = in_tensor.numpy() _lowercase : Optional[Any] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(_lowerCamelCase , _lowerCamelCase , rtol=0.01 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(_lowerCamelCase , _lowerCamelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def _A ( snake_case ) -> Union[str, Any]: _lowercase : List[Any] = urlparse(_lowerCamelCase ) return parsed.scheme in ("http", "https") def _A ( snake_case , snake_case , snake_case=True ) -> Optional[int]: _lowercase : str = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _lowercase : Any = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def _A ( snake_case , snake_case , snake_case=None , snake_case=0 , snake_case=None , ) -> Any: _lowercase : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_lowerCamelCase , _lowerCamelCase ): ua += "; " + "; ".join("{}/{}".format(_lowerCamelCase , _lowerCamelCase ) for k, v in user_agent.items() ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): ua += "; " + user_agent _lowercase : int = {"user-agent": ua} if resume_size > 0: _lowercase : List[Any] = "bytes=%d-" % (resume_size,) _lowercase : Tuple = requests.get(_lowerCamelCase , stream=_lowerCamelCase , proxies=_lowerCamelCase , headers=_lowerCamelCase ) if response.status_code == 4_16: # Range not satisfiable return _lowercase : List[str] = response.headers.get("Content-Length" ) _lowercase : Any = resume_size + int(_lowerCamelCase ) if content_length is not None else None _lowercase : List[Any] = tqdm( unit="B" , unit_scale=_lowerCamelCase , total=_lowerCamelCase , initial=_lowerCamelCase , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(_lowerCamelCase ) ) temp_file.write(_lowerCamelCase ) progress.close() def _A ( snake_case , snake_case=None , snake_case=False , snake_case=None , snake_case=10 , snake_case=False , snake_case=None , snake_case=False , ) -> Dict: if cache_dir is None: _lowercase : int = TRANSFORMERS_CACHE if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowercase : Any = str(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) _lowercase : Union[str, Any] = None if not local_files_only: try: _lowercase : List[Any] = requests.head(_lowerCamelCase , allow_redirects=_lowerCamelCase , proxies=_lowerCamelCase , timeout=_lowerCamelCase ) if response.status_code == 2_00: _lowercase : Any = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _lowercase : int = url_to_filename(_lowerCamelCase , _lowerCamelCase ) # get cache path to put the file _lowercase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_lowerCamelCase ): return cache_path else: _lowercase : int = [ file for file in fnmatch.filter(os.listdir(_lowerCamelCase ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(_lowerCamelCase ) > 0: return os.path.join(_lowerCamelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(_lowerCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _lowercase : int = cache_path + ".lock" with FileLock(_lowerCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(_lowerCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _lowercase : List[str] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(_lowerCamelCase , "a+b" ) as f: yield f _lowercase : Optional[int] = _resumable_file_manager if os.path.exists(_lowerCamelCase ): _lowercase : str = os.stat(_lowerCamelCase ).st_size else: _lowercase : Union[str, Any] = 0 else: _lowercase : int = partial(tempfile.NamedTemporaryFile , dir=_lowerCamelCase , delete=_lowerCamelCase ) _lowercase : List[str] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , _lowerCamelCase , temp_file.name , ) http_get( _lowerCamelCase , _lowerCamelCase , proxies=_lowerCamelCase , resume_size=_lowerCamelCase , user_agent=_lowerCamelCase , ) os.replace(temp_file.name , _lowerCamelCase ) _lowercase : int = {"url": url, "etag": etag} _lowercase : int = cache_path + ".json" with open(_lowerCamelCase , "w" ) as meta_file: json.dump(_lowerCamelCase , _lowerCamelCase ) return cache_path def _A ( snake_case , snake_case=None ) -> str: _lowercase : List[Any] = url.encode("utf-8" ) _lowercase : Union[str, Any] = shaaaa(_lowerCamelCase ) _lowercase : str = url_hash.hexdigest() if etag: _lowercase : Tuple = etag.encode("utf-8" ) _lowercase : Optional[Any] = shaaaa(_lowerCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def _A ( snake_case , snake_case=None , snake_case=False , snake_case=None , snake_case=False , snake_case=None , snake_case=False , snake_case=False , snake_case=False , ) -> int: if cache_dir is None: _lowercase : Any = TRANSFORMERS_CACHE if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowercase : int = str(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowercase : int = str(_lowerCamelCase ) if is_remote_url(_lowerCamelCase ): # URL, so get it from the cache (downloading if necessary) _lowercase : Tuple = get_from_cache( _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , proxies=_lowerCamelCase , resume_download=_lowerCamelCase , user_agent=_lowerCamelCase , local_files_only=_lowerCamelCase , ) elif os.path.exists(_lowerCamelCase ): # File, and it exists. _lowercase : str = url_or_filename elif urlparse(_lowerCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(_lowerCamelCase ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(_lowerCamelCase ) ) if extract_compressed_file: if not is_zipfile(_lowerCamelCase ) and not tarfile.is_tarfile(_lowerCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _lowercase : Tuple = os.path.split(_lowerCamelCase ) _lowercase : Union[str, Any] = output_file.replace("." , "-" ) + "-extracted" _lowercase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.isdir(_lowerCamelCase ) and os.listdir(_lowerCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions _lowercase : Any = output_path + ".lock" with FileLock(_lowerCamelCase ): shutil.rmtree(_lowerCamelCase , ignore_errors=_lowerCamelCase ) os.makedirs(_lowerCamelCase ) if is_zipfile(_lowerCamelCase ): with ZipFile(_lowerCamelCase , "r" ) as zip_file: zip_file.extractall(_lowerCamelCase ) zip_file.close() elif tarfile.is_tarfile(_lowerCamelCase ): _lowercase : List[Any] = tarfile.open(_lowerCamelCase ) tar_file.extractall(_lowerCamelCase ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(_lowerCamelCase ) ) return output_path_extracted return output_path def _A ( snake_case , snake_case="," ) -> Tuple: assert isinstance(_lowerCamelCase , _lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): with open(_lowerCamelCase ) as f: _lowercase : Optional[int] = eval(f.read() ) else: _lowercase : Union[str, Any] = requests.get(_lowerCamelCase ) try: _lowercase : str = requests.json() except Exception: _lowercase : str = req.content.decode() assert data is not None, "could not connect" try: _lowercase : Optional[Any] = eval(_lowerCamelCase ) except Exception: _lowercase : int = data.split("\n" ) req.close() return data def _A ( snake_case ) -> Any: _lowercase : str = requests.get(_lowerCamelCase ) _lowercase : Any = np.array(Image.open(BytesIO(response.content ) ) ) return img def _A ( snake_case ) -> Any: _lowercase : List[str] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_lowerCamelCase ) with open(_lowerCamelCase , "rb" ) as stream: _lowercase : Any = pkl.load(_lowerCamelCase ) _lowercase : Optional[Any] = weights.pop("model" ) _lowercase : Any = {} for k, v in model.items(): _lowercase : Union[str, Any] = torch.from_numpy(_lowerCamelCase ) if "running_var" in k: _lowercase : str = torch.tensor([0] ) _lowercase : str = k.replace("running_var" , "num_batches_tracked" ) _lowercase : List[str] = zero return new def _A ( ) -> Optional[int]: print(F'''{os.path.abspath(os.path.join(_lowerCamelCase , os.pardir ) )}/demo.ipynb''' ) def _A ( snake_case , snake_case="RGB" ) -> int: assert isinstance(_lowerCamelCase , _lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): _lowercase : List[str] = cva.imread(_lowerCamelCase ) else: _lowercase : List[str] = get_image_from_url(_lowerCamelCase ) assert img is not None, F'''could not connect to: {im}''' _lowercase : Optional[Any] = cva.cvtColor(_lowerCamelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": _lowercase : Optional[Any] = img[:, :, ::-1] return img def _A ( snake_case , snake_case=1 ) -> Optional[int]: return (images[i : i + batch] for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ))
250
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCAmelCase_ ( a): def snake_case__ ( self, __a): '''simple docstring''' return 0.0 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCAmelCase : Optional[int] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 512 _lowerCAmelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCAmelCase : Optional[Any] = [filter_type.process(_lowerCamelCase ) for item in inputs] _lowerCAmelCase : int = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase : str = np.abs(np.fft.fft(_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = 20 * np.logaa(_lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _lowerCAmelCase : List[Any] = get_bounds(_lowerCamelCase , _lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(_lowerCamelCase ) plt.show() def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 512 _lowerCAmelCase : Optional[Any] = [1] + [0] * (size - 1) _lowerCAmelCase : str = [filter_type.process(_lowerCamelCase ) for item in inputs] _lowerCAmelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCAmelCase : Optional[Any] = np.angle(np.fft.fft(_lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(_lowerCamelCase , -2 * pi ) ) plt.show()
36
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __magic_name__ : '''simple docstring''' @staticmethod def _lowerCAmelCase ( *_a , **_a ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __magic_name__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) lowerCamelCase = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = object_detector(examples[0] , threshold=0.0 ) lowerCamelCase = len(_a ) self.assertGreater(_a , 0 ) self.assertEqual( _a , [ { """score""": ANY(_a ), """label""": ANY(_a ), """box""": {"""xmin""": ANY(_a ), """ymin""": ANY(_a ), """xmax""": ANY(_a ), """ymax""": ANY(_a )}, } for i in range(_a ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass @require_torch def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) lowerCamelCase = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) lowerCamelCase = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline("""zero-shot-object-detection""" ) lowerCamelCase = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) lowerCamelCase = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass @require_torch @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = 0.2 lowerCamelCase = pipeline("""zero-shot-object-detection""" ) lowerCamelCase = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=_a , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = 2 lowerCamelCase = pipeline("""zero-shot-object-detection""" ) lowerCamelCase = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=_a , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
168
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def _lowerCAmelCase ( self , **_a ): """simple docstring""" lowerCamelCase = { """num_train_timesteps""": 1_100, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_a ) return config def _lowerCAmelCase ( self ): """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def _lowerCAmelCase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def _lowerCAmelCase ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def _lowerCAmelCase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCamelCase = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase = self.dummy_model() lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase = scheduler.scale_model_input(_a , _a ) lowerCamelCase = model(_a , _a ) lowerCamelCase = scheduler.step(_a , _a , _a ) lowerCamelCase = output.prev_sample lowerCamelCase = torch.sum(torch.abs(_a ) ) lowerCamelCase = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def _lowerCAmelCase ( self ): """simple docstring""" if torch_device == "mps": return lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config() lowerCamelCase = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase = self.dummy_model() lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase = scheduler.scale_model_input(_a , _a ) lowerCamelCase = model(_a , _a ) lowerCamelCase = scheduler.step(_a , _a , _a ) lowerCamelCase = output.prev_sample lowerCamelCase = torch.sum(torch.abs(_a ) ) lowerCamelCase = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def _lowerCAmelCase ( self ): """simple docstring""" if torch_device == "mps": return lowerCamelCase = self.scheduler_classes[0] lowerCamelCase = self.get_scheduler_config() lowerCamelCase = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) lowerCamelCase = self.dummy_model() lowerCamelCase = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase = scheduler.scale_model_input(_a , _a ) lowerCamelCase = model(_a , _a ) lowerCamelCase = scheduler.step(_a , _a , _a ) lowerCamelCase = output.prev_sample lowerCamelCase = torch.sum(torch.abs(_a ) ) lowerCamelCase = torch.mean(torch.abs(_a ) ) if str(_a ).startswith("""cpu""" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
168
1
'''simple docstring''' import argparse from collections import defaultdict import yaml _lowerCamelCase : Optional[Any] = 'docs/source/en/_toctree.yml' def __a ( UpperCAmelCase ) ->List[Any]: """simple docstring""" A = defaultdict(UpperCAmelCase ) A = [] A = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(UpperCAmelCase ) A = new_doc_list A = [key for key, value in counts.items() if value > 1] A = [] for duplicate_key in duplicates: A = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(UpperCAmelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) A = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCAmelCase ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(UpperCAmelCase ) # Sort return overview_doc def __a ( UpperCAmelCase=False ) ->Union[str, Any]: """simple docstring""" with open(UpperCAmelCase , encoding="""utf-8""" ) as f: A = yaml.safe_load(f.read() ) # Get to the API doc A = 0 while content[api_idx]["title"] != "API": api_idx += 1 A = content[api_idx]["""sections"""] # Then to the model doc A = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 A = api_doc[scheduler_idx]["""sections"""] A = clean_doc_toc(UpperCAmelCase ) A = False if new_scheduler_doc != scheduler_doc: A = True if overwrite: A = new_scheduler_doc if diff: if overwrite: A = api_doc with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCAmelCase , allow_unicode=UpperCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def __a ( UpperCAmelCase=False ) ->int: """simple docstring""" with open(UpperCAmelCase , encoding="""utf-8""" ) as f: A = yaml.safe_load(f.read() ) # Get to the API doc A = 0 while content[api_idx]["title"] != "API": api_idx += 1 A = content[api_idx]["""sections"""] # Then to the model doc A = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 A = False A = api_doc[pipeline_idx]["""sections"""] A = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: A = pipeline_doc["""section"""] A = clean_doc_toc(UpperCAmelCase ) if overwrite: A = new_sub_pipeline_doc new_pipeline_docs.append(UpperCAmelCase ) # sort overall pipeline doc A = clean_doc_toc(UpperCAmelCase ) if new_pipeline_docs != pipeline_docs: A = True if overwrite: A = new_pipeline_docs if diff: if overwrite: A = api_doc with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCAmelCase , allow_unicode=UpperCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowerCamelCase : List[Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
258
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = XLMRobertaTokenizer _snake_case = XLMRobertaTokenizerFast _snake_case = True _snake_case = True def UpperCAmelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing snake_case : Tuple = XLMRobertaTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self ) -> int: snake_case : str = """<pad>""" snake_case : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase ( self ) -> int: snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A ) , 1_0_0_2 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = XLMRobertaTokenizer(A , keep_accents=A ) snake_case : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case : Any = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCAmelCase ( self ) -> Optional[Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case : List[Any] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : Dict = self.rust_tokenizer_class.from_pretrained(A , **A ) snake_case : int = self.tokenizer_class.from_pretrained(A , **A ) snake_case : Optional[int] = tempfile.mkdtemp() snake_case : List[Any] = tokenizer_r.save_pretrained(A ) snake_case : Optional[Any] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case : Union[str, Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way snake_case : str = tokenizer_r.from_pretrained(A ) snake_case : Dict = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True snake_case : List[Any] = tempfile.mkdtemp() snake_case : Tuple = tokenizer_r.save_pretrained(A , legacy_format=A ) snake_case : Any = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way snake_case : int = tokenizer_r.from_pretrained(A ) snake_case : Any = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False snake_case : Tuple = tempfile.mkdtemp() snake_case : str = tokenizer_r.save_pretrained(A , legacy_format=A ) snake_case : Optional[int] = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case : Dict = tokenizer_r.from_pretrained(A ) snake_case : List[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @cached_property def UpperCAmelCase ( self ) -> str: return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def UpperCAmelCase ( self ) -> Optional[int]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A , f.name ) snake_case : Any = XLMRobertaTokenizer(f.name , keep_accents=A ) snake_case : List[Any] = pickle.dumps(A ) pickle.loads(A ) def UpperCAmelCase ( self ) -> Any: if not self.test_rust_tokenizer: return snake_case : str = self.get_tokenizer() snake_case : List[str] = self.get_rust_tokenizer() snake_case : str = """I was born in 92000, and this is falsé.""" snake_case : Optional[int] = tokenizer.tokenize(A ) snake_case : List[Any] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) snake_case : List[Any] = tokenizer.encode(A , add_special_tokens=A ) snake_case : Optional[int] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) snake_case : Optional[Any] = self.get_rust_tokenizer() snake_case : str = tokenizer.encode(A ) snake_case : Dict = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) @slow def UpperCAmelCase ( self ) -> List[Any]: snake_case : Dict = """Hello World!""" snake_case : Union[str, Any] = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def UpperCAmelCase ( self ) -> str: snake_case : int = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) snake_case : Tuple = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def UpperCAmelCase ( self ) -> str: # fmt: off snake_case : Tuple = {"""input_ids""": [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
124
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _UpperCamelCase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ): """simple docstring""" return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": __UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , sep="""\t""" , header=lowerCAmelCase__ ) for answer_list in data[1]: __UpperCAmelCase : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : str = [[reference] for reference in references] __UpperCAmelCase : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __UpperCAmelCase : int = 100.0 * em / total __UpperCAmelCase : Dict = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = args.k __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Dict = [line.strip() for line in open(lowerCAmelCase__ , """r""" ).readlines()] __UpperCAmelCase : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __UpperCAmelCase : List[str] = set(hypo.split("""\t""" )[:k] ) __UpperCAmelCase : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __UpperCAmelCase : List[str] = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ): """simple docstring""" def strip_title(lowerCAmelCase__ : Optional[int] ): if title.startswith("""\"""" ): __UpperCAmelCase : List[Any] = title[1:] if title.endswith("""\"""" ): __UpperCAmelCase : int = title[:-1] return title __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) __UpperCAmelCase : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) __UpperCAmelCase : int = question_enc_outputs[0] __UpperCAmelCase : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __UpperCAmelCase : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __UpperCAmelCase : Union[str, Any] = [] for docs in all_docs: __UpperCAmelCase : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase__ ) ) return provenance_strings def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): __UpperCAmelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors="""pt""" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = inputs_dict.input_ids.to(args.device ) __UpperCAmelCase : List[Any] = inputs_dict.attention_mask.to(args.device ) __UpperCAmelCase : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __UpperCAmelCase : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase__ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase__ , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase__ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase__ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase__ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase__ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase__ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase__ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase__ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase__ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase__ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase__ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def lowercase_ ( lowerCAmelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = {} if args.model_type is None: __UpperCAmelCase : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __UpperCAmelCase : Dict = args.n_docs if args.index_name is not None: __UpperCAmelCase : Union[str, Any] = args.index_name if args.index_path is not None: __UpperCAmelCase : Dict = args.index_path else: __UpperCAmelCase : str = BartForConditionalGeneration __UpperCAmelCase : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __UpperCAmelCase : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase__ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __UpperCAmelCase : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __UpperCAmelCase : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __UpperCAmelCase : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __UpperCAmelCase : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __UpperCAmelCase : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) + """\n""" ) preds_file.flush() __UpperCAmelCase : List[str] = [] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write("""\n""".join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _UpperCamelCase = get_args() main(args)
16
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self ) -> Any: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) __UpperCAmelCase : List[str] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : Dict = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) __UpperCAmelCase : str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() __UpperCAmelCase : str = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) @slow @require_torch def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__UpperCAmelCase ) @slow @require_tf def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) __UpperCAmelCase : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None self.run_pipeline_test(__UpperCAmelCase , [] ) @require_tf def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : str = None self.run_pipeline_test(__UpperCAmelCase , [] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) __UpperCAmelCase : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = fill_masker.tokenizer __UpperCAmelCase : Union[str, Any] = fill_masker.model __UpperCAmelCase : Tuple = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : int = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Union[str, Any] = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , ) with self.assertRaises(__UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase ) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase ) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Dict = tokenizer.get_vocab() __UpperCAmelCase : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase ) __UpperCAmelCase : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Call argument __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__UpperCAmelCase ) ) # Score equivalence __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : Dict = [top_mask["""token_str"""] for top_mask in outputs] __UpperCAmelCase : str = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ) == set(__UpperCAmelCase ): __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets=__UpperCAmelCase ) __UpperCAmelCase : int = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Any = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Dict = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""""""] ) with self.assertRaises(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets="""""" ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2 ) __UpperCAmelCase : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __UpperCAmelCase : int = tokenizer.get_vocab() __UpperCAmelCase : List[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # top_k=2, ntargets=3 __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : str = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=__UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase : Tuple = [el["""token_str"""] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase ).issubset(__UpperCAmelCase ): __UpperCAmelCase : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=__UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase ) , nested_simplify(__UpperCAmelCase ) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase : Dict = sorted(vocab.keys() )[:3] __UpperCAmelCase : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase : Optional[int] = fill_masker(f'My name is {tokenizer.mask_token}' , targets=__UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase ) , 3 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) __UpperCAmelCase : Dict = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], [ {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, {"""sequence""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase ), """token""": ANY(__UpperCAmelCase ), """token_str""": ANY(__UpperCAmelCase )}, ], ] , )
16
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a__ : Optional[Any] = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def _lowercase ( __A ): '''simple docstring''' config.addinivalue_line( """markers""" ,"""is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" ,"""is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" ,"""is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" ,"""is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" ,"""accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" ,"""tool_tests: mark the tool tests that are run on their specific schedule""" ) def _lowercase ( __A ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__A ) def _lowercase ( __A ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main __UpperCamelCase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__A ,id=__A ) def _lowercase ( __A ,__A ): '''simple docstring''' if exitstatus == 5: __UpperCamelCase = 0 # Doctest custom flag to ignore output. a__ : List[Any] = doctest.register_optionflag('IGNORE_RESULT') a__ : Optional[int] = doctest.OutputChecker class UpperCAmelCase__ ( UpperCAmelCase_): def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase , lowercase , lowercase ) a__ : Any = CustomOutputChecker a__ : Tuple = HfDoctestModule a__ : Union[str, Any] = HfDocTestParser
349
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Any = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
349
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a__ ( a__ ): '''simple docstring''' def __init__( self , *lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ) -> int: super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = eval_examples lowerCAmelCase__ = post_process_function def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_ = "eval" ) -> str: lowerCAmelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase__ = self.get_eval_dataloader(lowerCamelCase_ ) lowerCAmelCase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase__ = self.compute_metrics lowerCAmelCase__ = None lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCAmelCase__ = time.time() try: lowerCAmelCase__ = eval_loop( lowerCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase_ , metric_key_prefix=lowerCamelCase_ , ) finally: lowerCAmelCase__ = compute_metrics lowerCAmelCase__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase_ , lowerCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCAmelCase__ = self.post_process_function(lowerCamelCase_ , lowerCamelCase_ , output.predictions ) lowerCAmelCase__ = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowerCAmelCase__ = metrics.pop(lowerCamelCase_ ) metrics.update(output.metrics ) else: lowerCAmelCase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCAmelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCamelCase_ ) return metrics def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_ = "test" ) -> Any: lowerCAmelCase__ = self.get_test_dataloader(lowerCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase__ = self.compute_metrics lowerCAmelCase__ = None lowerCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCAmelCase__ = time.time() try: lowerCAmelCase__ = eval_loop( lowerCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCamelCase_ , metric_key_prefix=lowerCamelCase_ , ) finally: lowerCAmelCase__ = compute_metrics lowerCAmelCase__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCamelCase_ , lowerCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase__ = self.post_process_function(lowerCamelCase_ , lowerCamelCase_ , output.predictions , '''predict''' ) lowerCAmelCase__ = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowerCAmelCase__ = metrics.pop(lowerCamelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCamelCase_ )
228
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __UpperCAmelCase = logging.get_logger(__name__) class a__ ( a__ ): '''simple docstring''' lowercase__ : int = "linear" lowercase__ : Any = "cosine" lowercase__ : Optional[int] = "cosine_with_restarts" lowercase__ : Optional[Any] = "polynomial" lowercase__ : Tuple = "constant" lowercase__ : Optional[int] = "constant_with_warmup" lowercase__ : Optional[int] = "piecewise_constant" def _snake_case ( A , A = -1 ) -> Any: return LambdaLR(A , lambda A : 1 , last_epoch=A ) def _snake_case ( A , A , A = -1 ) -> Optional[Any]: def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1.0 , A ) ) return 1.0 return LambdaLR(A , A , last_epoch=A ) def _snake_case ( A , A , A = -1 ) -> Union[str, Any]: lowerCAmelCase__ = {} lowerCAmelCase__ = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: lowerCAmelCase__ , lowerCAmelCase__ = rule_str.split(''':''' ) lowerCAmelCase__ = int(A ) lowerCAmelCase__ = float(A ) lowerCAmelCase__ = value lowerCAmelCase__ = float(rule_list[-1] ) def create_rules_function(A , A ): def rule_func(A ) -> float: lowerCAmelCase__ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowerCAmelCase__ = create_rules_function(A , A ) return LambdaLR(A , A , last_epoch=A ) def _snake_case ( A , A , A , A=-1 ) -> Optional[int]: def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(A , A , A ) def _snake_case ( A , A , A , A = 0.5 , A = -1 ) -> List[str]: def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) lowerCAmelCase__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(A ) * 2.0 * progress )) ) return LambdaLR(A , A , A ) def _snake_case ( A , A , A , A = 1 , A = -1 ) -> Union[str, Any]: def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) lowerCAmelCase__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(A ) * progress) % 1.0) )) ) return LambdaLR(A , A , A ) def _snake_case ( A , A , A , A=1E-7 , A=1.0 , A=-1 ) -> Union[str, Any]: lowerCAmelCase__ = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowerCAmelCase__ = lr_init - lr_end lowerCAmelCase__ = num_training_steps - num_warmup_steps lowerCAmelCase__ = 1 - (current_step - num_warmup_steps) / decay_steps lowerCAmelCase__ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(A , A , A ) __UpperCAmelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def _snake_case ( A , A , A = None , A = None , A = None , A = 1 , A = 1.0 , A = -1 , ) -> int: lowerCAmelCase__ = SchedulerType(A ) lowerCAmelCase__ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(A , last_epoch=A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(A , step_rules=A , last_epoch=A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(A , num_warmup_steps=A , last_epoch=A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( A , num_warmup_steps=A , num_training_steps=A , num_cycles=A , last_epoch=A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( A , num_warmup_steps=A , num_training_steps=A , power=A , last_epoch=A , ) return schedule_func( A , num_warmup_steps=A , num_training_steps=A , last_epoch=A )
228
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
162
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "roc_bert" def __init__( self , UpperCamelCase__=30522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=768 , UpperCamelCase__=910 , UpperCamelCase__=512 , UpperCamelCase__=24858 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps A_ = use_cache A_ = enable_pronunciation A_ = enable_shape A_ = pronunciation_embed_dim A_ = pronunciation_vocab_size A_ = shape_embed_dim A_ = shape_vocab_size A_ = concat_input A_ = position_embedding_type A_ = classifier_dropout super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ )
162
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = ['image_processor', 'tokenizer'] lowercase = 'CLIPImageProcessor' lowercase = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self : Union[str, Any] , lowerCamelCase : List[str]=None , lowerCamelCase : Union[str, Any]=None , **lowerCamelCase : List[Any] ) -> Optional[Any]: lowerCAmelCase_ : List[str] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase , ) lowerCAmelCase_ : Optional[int] = kwargs.pop("""feature_extractor""" ) lowerCAmelCase_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Optional[Any] , lowerCamelCase : List[Any]=None , lowerCamelCase : Tuple=None , lowerCamelCase : int=None , **lowerCamelCase : int ) -> Optional[int]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCAmelCase_ : int = self.tokenizer(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if images is not None: lowerCAmelCase_ : int = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: lowerCAmelCase_ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def __lowercase ( self : int , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Union[str, Any] ) -> List[str]: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __lowercase ( self : Optional[int] , *lowerCamelCase : str , **lowerCamelCase : Union[str, Any] ) -> List[str]: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def __lowercase ( self : Optional[Any] ) -> int: lowerCAmelCase_ : List[str] = self.tokenizer.model_input_names lowerCAmelCase_ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
371
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( A__ : int | float | str , A__ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] lowerCAmelCase_ : str = int(A__ ) lowerCAmelCase_ : Tuple = int(A__ ) lowerCAmelCase_ : list[str] = [] for temp in range(int(A__ ) ): series.append(f'1 / {pow(temp + 1 , int(A__ ) )}' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() __A : str = int(input("Enter the last number (nth term) of the P-Series")) __A : Tuple = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
89
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = (DDIMParallelScheduler,) _lowerCAmelCase = (("""eta""", 0.0), ("""num_inference_steps""", 5_0)) def __UpperCAmelCase ( self , **__magic_name__ ) -> Union[str, Any]: _a = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**__magic_name__ ) return config def __UpperCAmelCase ( self , **__magic_name__ ) -> str: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__magic_name__ ) _a = scheduler_class(**__magic_name__ ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__magic_name__ ) for t in scheduler.timesteps: _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ).prev_sample return sample def __UpperCAmelCase ( self ) -> str: for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def __UpperCAmelCase ( self ) -> List[Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__magic_name__ ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def __UpperCAmelCase ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def __UpperCAmelCase ( self ) -> int: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__magic_name__ ) def __UpperCAmelCase ( self ) -> List[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def __UpperCAmelCase ( self ) -> Dict: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__magic_name__ ) def __UpperCAmelCase ( self ) -> List[str]: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__magic_name__ ) def __UpperCAmelCase ( self ) -> str: self.check_over_configs(thresholding=__magic_name__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__magic_name__ , prediction_type=__magic_name__ , sample_max_value=__magic_name__ , ) def __UpperCAmelCase ( self ) -> List[Any]: for t in [1, 10, 49]: self.check_over_forward(time_step=__magic_name__ ) def __UpperCAmelCase ( self ) -> int: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__magic_name__ , num_inference_steps=__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[Any]: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__magic_name__ , eta=__magic_name__ ) def __UpperCAmelCase ( self ) -> List[str]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__magic_name__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_4_7_7_1 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_2_4_6_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.0_2 ) ) < 1e-5 def __UpperCAmelCase ( self ) -> List[str]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__magic_name__ ) _a , _a = 10, 0.0 scheduler.set_timesteps(__magic_name__ ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__magic_name__ )[0:3, None].repeat(1 , __magic_name__ ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__magic_name__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __magic_name__ ) _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1e-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1e-3 def __UpperCAmelCase ( self ) -> List[Any]: _a = self.full_loop() _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1e-3 def __UpperCAmelCase ( self ) -> int: _a = self.full_loop(prediction_type='v_prediction' ) _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1e-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1e-3 def __UpperCAmelCase ( self ) -> Any: # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__magic_name__ , beta_start=0.0_1 ) _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1e-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1e-3 def __UpperCAmelCase ( self ) -> Optional[int]: # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__magic_name__ , beta_start=0.0_1 ) _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1e-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1e-3
168
'''simple docstring''' import math class a : def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: _a = 0.0 _a = 0.0 for i in range(len(__magic_name__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> list[list[int | float]]: for i in range(len(__magic_name__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _A () -> None: '''simple docstring''' _a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a = SelfOrganizingMap() _a = 3 _a = 0.5 for _ in range(lowerCAmelCase__ ): for j in range(len(lowerCAmelCase__ ) ): # training sample _a = training_samples[j] # Compute the winning vector _a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # Update the winning vector _a = self_organizing_map.update(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # classify test sample _a = [0, 0, 0, 1] _a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
168
1
from math import loga def lowerCamelCase_ ( _UpperCamelCase ) -> Tuple: """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
351
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase_ ( _UpperCamelCase ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> XGBClassifier: """simple docstring""" snake_case_ : Optional[Any] = XGBClassifier() classifier.fit(_UpperCamelCase , _UpperCamelCase ) return classifier def lowerCamelCase_ ( ) -> None: """simple docstring""" snake_case_ : Optional[Any] = load_iris() snake_case_ , snake_case_ : str = data_handling(_UpperCamelCase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ : Dict = train_test_split( _UpperCamelCase , _UpperCamelCase , test_size=0.25 ) snake_case_ : List[str] = iris['''target_names'''] # Create an XGBoost Classifier from the training data snake_case_ : int = xgboost(_UpperCamelCase , _UpperCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , display_labels=_UpperCamelCase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
279
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: return max(metric_fn(__lowerCamelCase , __lowerCamelCase ) for gt in ground_truths ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: lowercase__ : List[Any] = [line.strip() for line in open(__lowerCamelCase , '''r''' ).readlines()] lowercase__ : Union[str, Any] = [] if args.gold_data_mode == "qa": lowercase__ : List[Any] = pd.read_csv(__lowerCamelCase , sep='''\t''' , header=__lowerCamelCase ) for answer_list in data[1]: lowercase__ : List[str] = ast.literal_eval(__lowerCamelCase ) answers.append(__lowerCamelCase ) else: lowercase__ : int = [line.strip() for line in open(__lowerCamelCase , '''r''' ).readlines()] lowercase__ : str = [[reference] for reference in references] lowercase__ : str = 0 for prediction, ground_truths in zip(__lowerCamelCase , __lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) fa += metric_max_over_ground_truths(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : str = 1_0_0.0 * em / total lowercase__ : Tuple = 1_0_0.0 * fa / total logger.info(f"""F1: {fa:.2f}""" ) logger.info(f"""EM: {em:.2f}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Union[str, Any] = args.k lowercase__ : Tuple = [line.strip() for line in open(__lowerCamelCase , '''r''' ).readlines()] lowercase__ : Any = [line.strip() for line in open(__lowerCamelCase , '''r''' ).readlines()] lowercase__ : Dict = 0 for hypo, reference in zip(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Tuple = set(hypo.split('''\t''' )[:k] ) lowercase__ : int = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowercase__ : int = 1_0_0.0 * em / total logger.info(f"""Precision@{k}: {em: .2f}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: def strip_title(__lowerCamelCase ): if title.startswith('''"''' ): lowercase__ : List[str] = title[1:] if title.endswith('''"''' ): lowercase__ : List[str] = title[:-1] return title lowercase__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase , return_tensors='''pt''' , padding=__lowerCamelCase , truncation=__lowerCamelCase , )['''input_ids'''].to(args.device ) lowercase__ : Tuple = rag_model.rag.question_encoder(__lowerCamelCase ) lowercase__ : Union[str, Any] = question_enc_outputs[0] lowercase__ : Dict = rag_model.retriever( __lowerCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) lowercase__ : List[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowercase__ : Union[str, Any] = [] for docs in all_docs: lowercase__ : List[Any] = [strip_title(__lowerCamelCase ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(__lowerCamelCase ) ) return provenance_strings def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: with torch.no_grad(): lowercase__ : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase , return_tensors='''pt''' , padding=__lowerCamelCase , truncation=__lowerCamelCase ) lowercase__ : Dict = inputs_dict.input_ids.to(args.device ) lowercase__ : int = inputs_dict.attention_mask.to(args.device ) lowercase__ : Optional[Any] = rag_model.generate( # rag_model overwrites generate __lowerCamelCase , attention_mask=__lowerCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__lowerCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowercase__ : Any = rag_model.retriever.generator_tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) if args.print_predictions: for q, a in zip(__lowerCamelCase , __lowerCamelCase ): logger.info('''Q: {} - A: {}'''.format(__lowerCamelCase , __lowerCamelCase ) ) return answers def __UpperCAmelCase ( ) -> str: lowercase__ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=__lowerCamelCase , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=__lowerCamelCase , choices=['''exact''', '''compressed''', '''legacy'''] , type=__lowerCamelCase , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=__lowerCamelCase , type=__lowerCamelCase , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=__lowerCamelCase , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=__lowerCamelCase , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=__lowerCamelCase , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=__lowerCamelCase , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=__lowerCamelCase , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=__lowerCamelCase , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=__lowerCamelCase , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=__lowerCamelCase , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=__lowerCamelCase , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) lowercase__ : List[Any] = parser.parse_args() lowercase__ : Dict = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : str = {} if args.model_type is None: lowercase__ : int = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): lowercase__ : str = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration lowercase__ : Union[str, Any] = args.n_docs if args.index_name is not None: lowercase__ : Any = args.index_name if args.index_path is not None: lowercase__ : List[str] = args.index_path else: lowercase__ : Union[str, Any] = BartForConditionalGeneration lowercase__ : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , __lowerCamelCase ) lowercase__ : Optional[int] = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k lowercase__ : Union[str, Any] = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(__lowerCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(__lowerCamelCase ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): lowercase__ : Any = RagRetriever.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) lowercase__ : Optional[int] = model_class.from_pretrained(__lowerCamelCase , retriever=__lowerCamelCase , **__lowerCamelCase ) model.retriever.init_retrieval() else: lowercase__ : str = model_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: lowercase__ : Dict = [] for line in tqdm(__lowerCamelCase ): questions.append(line.strip() ) if len(__lowerCamelCase ) == args.eval_batch_size: lowercase__ : Optional[int] = evaluate_batch_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) preds_file.write('''\n'''.join(__lowerCamelCase ) + '''\n''' ) preds_file.flush() lowercase__ : List[Any] = [] if len(__lowerCamelCase ) > 0: lowercase__ : Union[str, Any] = evaluate_batch_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) preds_file.write('''\n'''.join(__lowerCamelCase ) ) preds_file.flush() score_fn(__lowerCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCAmelCase_ = get_args() main(args)
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
1
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase ): def run_func(__lowerCamelCase ): @wraps(_snake_case ) def run_in_eager_mode(*__lowerCamelCase, **__lowerCamelCase ): return func(*_snake_case, **_snake_case ) @wraps(_snake_case ) @tf.function(experimental_compile=_snake_case ) def run_in_graph_mode(*__lowerCamelCase, **__lowerCamelCase ): return func(*_snake_case, **_snake_case ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = random.Random() UpperCAmelCase_ : Optional[Any] = [rng.randint(0, vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_snake_case, shape=(batch_size, sequence_length), dtype=tf.intaa ) class A_ (__snake_case ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = """TensorFlow""" @property def UpperCamelCase__ ( self ): """simple docstring""" return tf.__version__ def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ : List[str] = self._prepare_inference_func(a_ , a_ , a_ ) return self._measure_speed(_inference ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ : Optional[int] = self._prepare_train_func(a_ , a_ , a_ ) return self._measure_speed(_train ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a_ ) UpperCAmelCase_ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ : Tuple = self._prepare_inference_func(a_ , a_ , a_ ) return self._measure_memory(_inference ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a_ ) UpperCAmelCase_ : str = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ : str = self._prepare_train_func(a_ , a_ , a_ ) return self._measure_memory(_train ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase_ : Dict = ( hasattr(a_ , "architectures" ) and isinstance(config.architectures , a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ : List[str] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ : str = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase_ : Optional[Any] = getattr(a_ , a_ ) UpperCAmelCase_ : Dict = model_cls(a_ ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase_ : Optional[Any] = TF_MODEL_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently UpperCAmelCase_ : Any = config.vocab_size if hasattr(a_ , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase_ : Union[str, Any] = random_input_ids(a_ , a_ , a_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(a_ , decoder_input_ids=a_ , training=a_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(a_ , training=a_ ) UpperCAmelCase_ : List[Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase_ : Optional[Any] = ( hasattr(a_ , "architectures" ) and isinstance(config.architectures , a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ : Dict = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ : Any = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase_ : List[str] = getattr(a_ , a_ ) UpperCAmelCase_ : int = model_cls(a_ ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase_ : Any = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently UpperCAmelCase_ : Optional[Any] = config.vocab_size if hasattr(a_ , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase_ : Union[str, Any] = random_input_ids(a_ , a_ , a_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase_ : str = model(a_ , decoder_input_ids=a_ , labels=a_ , training=a_ )[0] UpperCAmelCase_ : Any = tf.gradients(a_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCAmelCase_ : Union[str, Any] = model(a_ , labels=a_ , training=a_ )[0] UpperCAmelCase_ : List[Any] = tf.gradients(a_ , model.trainable_variables ) return gradients UpperCAmelCase_ : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(a_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase_ : Union[str, Any] = timeit.repeat( a_ , repeat=self.args.repeat , number=10 , ) return min(a_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCAmelCase_ : List[Any] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won\'t log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCAmelCase_ : Any = '''N/A''' else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCAmelCase_ : int = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase_ : Any = nvml.nvmlDeviceGetMemoryInfo(a_ ) UpperCAmelCase_ : List[str] = meminfo.used UpperCAmelCase_ : Any = Memory(a_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCAmelCase_ : int = None else: UpperCAmelCase_ : Optional[Any] = measure_peak_memory_cpu(a_ ) UpperCAmelCase_ : str = Memory(a_ ) if isinstance(a_ , a_ ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase_ : str = stop_memory_tracing(a_ ) if memory is None: UpperCAmelCase_ : str = summary.total else: UpperCAmelCase_ : List[str] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) return "N/A", None
351
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : int = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def __A ( __lowerCamelCase ) -> Union[str, Any]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: a = k.replace(__lowerCamelCase , __lowerCamelCase ) if k.startswith("""encoder""" ): a = k.replace(""".attn""" , """.self_attn""" ) a = k.replace("""norm1""" , """self_attn_layer_norm""" ) a = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): a = k.replace("""norm1""" , """self_attn_layer_norm""" ) a = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) a = k.replace("""norm3""" , """final_layer_norm""" ) return k def __A ( __lowerCamelCase ) -> str: a = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: a = sd.pop(__lowerCamelCase ) a = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd a = v __UpperCamelCase : Union[str, Any] = ["START"] @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: a = torch.load(__lowerCamelCase , map_location="""cpu""" ) a = model["""model"""] a = BlenderbotConfig.from_json_file(__lowerCamelCase ) a = BlenderbotForConditionalGeneration(__lowerCamelCase ) a = m.model.state_dict().keys() a = [] a = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue a = rename_state_dict_key(__lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: a = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowerCamelCase ) m.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) m.half() m.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase : List[str] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
228
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __UpperCamelCase : Union[str, Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: for attribute in key.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: a = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: a = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> int: a = [] a = fairseq_model.state_dict() a = hf_model.feature_extractor a = hf_model.adapter for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) a = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: a = True if "*" in mapped_key: a = name.split(__lowerCamelCase )[0].split(""".""" )[-2] a = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: a = """weight_g""" elif "weight_v" in name: a = """weight_v""" elif "bias" in name: a = """bias""" elif "weight" in name: a = """weight""" else: a = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple: a = full_name.split("""conv_layers.""" )[-1] a = name.split(""".""" ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: a = full_name.split("""adaptor.""" )[-1] a = name.split(""".""" ) if items[1].isdigit(): a = int(items[1] ) else: a = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' a = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' a = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' a = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' a = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' a = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' a = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) def __A ( __lowerCamelCase ) -> Tuple: a , a = emb.weight.shape a = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) a = emb.weight.data return lin_layer @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: a = WavaVecaConfig.from_pretrained( __lowerCamelCase , add_adapter=__lowerCamelCase , adapter_stride=__lowerCamelCase , adapter_kernel_size=__lowerCamelCase , use_auth_token=__lowerCamelCase , output_hidden_size=__lowerCamelCase , ) a = MBartConfig.from_pretrained(__lowerCamelCase ) # load model a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) a = model[0].eval() # load feature extractor a = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase , use_auth_token=__lowerCamelCase ) # set weights for wav2vec2 encoder a = WavaVecaModel(__lowerCamelCase ) recursively_load_weights_wavaveca(model.encoder , __lowerCamelCase ) # load decoder weights a = MBartForCausalLM(__lowerCamelCase ) a , a = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__lowerCamelCase ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) a = SpeechEncoderDecoderModel(encoder=__lowerCamelCase , decoder=__lowerCamelCase ) a = False a = MBartaaTokenizer(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) a = hf_wavavec.config.to_dict() a = tokenizer.pad_token_id a = tokenizer.bos_token_id a = tokenizer.eos_token_id a = """mbart50""" a = """wav2vec2""" a = tokenizer.eos_token_id a = 25_0004 a = tokenizer.eos_token_id a = SpeechEncoderDecoderConfig.from_dict(__lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250_004, type=int, help="`decoder_start_token_id` of model config") __UpperCamelCase : int = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
228
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def snake_case_ (__A : int ) -> str: __lowerCAmelCase : Union[str, Any] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f'''{test_file} instead.''' ) __lowerCAmelCase : Optional[Any] = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) __lowerCAmelCase : Tuple = components[:-1] + [test_fn.replace(""".py""" , """""" )] __lowerCAmelCase : Tuple = """.""".join(__A ) return test_module_path def snake_case_ (__A : Union[str, Any] ) -> int: __lowerCAmelCase : Tuple = get_module_path(__A ) __lowerCAmelCase : List[Any] = importlib.import_module(__A ) return test_module def snake_case_ (__A : str ) -> Optional[Any]: __lowerCAmelCase : int = [] __lowerCAmelCase : str = get_test_module(__A ) for attr in dir(__A ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(__A , __A ) ) # sort with class names return sorted(__A , key=lambda __A : x.__name__ ) def snake_case_ (__A : List[Any] ) -> Any: __lowerCAmelCase : Any = [] __lowerCAmelCase : Any = get_test_module(__A ) for attr in dir(__A ): __lowerCAmelCase : Optional[Any] = getattr(__A , __A ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __lowerCAmelCase : List[str] = getattr(__A , """all_model_classes""" , [] ) if len(__A ) > 0: test_classes.append(__A ) # sort with class names return sorted(__A , key=lambda __A : x.__name__ ) def snake_case_ (__A : List[Any] ) -> Tuple: __lowerCAmelCase : List[str] = get_test_classes(__A ) __lowerCAmelCase : Optional[int] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__A , key=lambda __A : x.__name__ ) def snake_case_ (__A : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase : List[Any] = test_class() if hasattr(__A , """setUp""" ): test.setUp() __lowerCAmelCase : Any = None if hasattr(__A , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __lowerCAmelCase : Optional[Any] = test.model_tester.__class__ return model_tester def snake_case_ (__A : Optional[Any] , __A : str ) -> List[Any]: __lowerCAmelCase : Any = get_test_classes(__A ) __lowerCAmelCase : Tuple = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__A ) # sort with class names return sorted(__A , key=lambda __A : x.__name__ ) def snake_case_ (__A : List[Any] , __A : Optional[Any] ) -> Any: __lowerCAmelCase : List[Any] = get_test_classes_for_model(__A , __A ) __lowerCAmelCase : str = [] for test_class in test_classes: __lowerCAmelCase : List[str] = get_model_tester_from_test_class(__A ) if tester_class is not None: tester_classes.append(__A ) # sort with class names return sorted(__A , key=lambda __A : x.__name__ ) def snake_case_ (__A : Union[str, Any] ) -> Tuple: __lowerCAmelCase : Any = get_test_classes(__A ) __lowerCAmelCase : int = {test_class: get_model_tester_from_test_class(__A ) for test_class in test_classes} return test_tester_mapping def snake_case_ (__A : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase : List[str] = get_model_classes(__A ) __lowerCAmelCase : str = { model_class: get_test_classes_for_model(__A , __A ) for model_class in model_classes } return model_test_mapping def snake_case_ (__A : List[str] ) -> List[str]: __lowerCAmelCase : Tuple = get_model_classes(__A ) __lowerCAmelCase : Union[str, Any] = { model_class: get_tester_classes_for_model(__A , __A ) for model_class in model_classes } return model_to_tester_mapping def snake_case_ (__A : List[str] ) -> str: if isinstance(__A , __A ): return o elif isinstance(__A , __A ): return o.__name__ elif isinstance(__A , (list, tuple) ): return [to_json(__A ) for x in o] elif isinstance(__A , __A ): return {to_json(__A ): to_json(__A ) for k, v in o.items()} else: return o
139
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : int=18 , lowerCAmelCase : int=30 , lowerCAmelCase : Optional[int]=4_00 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=None , lowerCAmelCase : List[str]=True , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=True , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} __lowerCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowerCAmelCase : str = parent __lowerCAmelCase : List[str] = batch_size __lowerCAmelCase : int = num_channels __lowerCAmelCase : List[str] = image_size __lowerCAmelCase : Optional[int] = min_resolution __lowerCAmelCase : List[str] = max_resolution __lowerCAmelCase : List[Any] = do_resize __lowerCAmelCase : Optional[int] = size __lowerCAmelCase : List[Any] = do_center_crop __lowerCAmelCase : Optional[Any] = crop_size __lowerCAmelCase : int = do_flip_channel_order def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[str] =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_flip_channel_order""" ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input __lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : str = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input __lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : Tuple = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input __lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : Tuple = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
139
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __lowerCamelCase : str = logging.getLogger(__name__) @dataclass class __snake_case : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 @dataclass class __snake_case : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None class __snake_case ( _UpperCamelCase ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' lowerCAmelCase_ = 'test' class __snake_case : @staticmethod def __a ( _lowercase : List[str] , _lowercase : Union[Split, str] ): """simple docstring""" raise NotImplementedError @staticmethod def __a ( _lowercase : str ): """simple docstring""" raise NotImplementedError @staticmethod def __a ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : Dict=False , _lowercase : int="[CLS]" , _lowercase : List[Any]=1 , _lowercase : Optional[int]="[SEP]" , _lowercase : Any=False , _lowercase : int=False , _lowercase : Tuple=0 , _lowercase : Any=0 , _lowercase : int=-1_00 , _lowercase : List[Any]=0 , _lowercase : str=True , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = {label: i for i, label in enumerate(_UpperCAmelCase )} SCREAMING_SNAKE_CASE__ = [] for ex_index, example in enumerate(_UpperCAmelCase ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d of %d""" , _UpperCAmelCase , len(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(_UpperCAmelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_UpperCAmelCase ) > 0: tokens.extend(_UpperCAmelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_UpperCAmelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ = tokenizer.num_special_tokens_to_add() if len(_UpperCAmelCase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ = [sequence_a_segment_id] * len(_UpperCAmelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ = [cls_token] + tokens SCREAMING_SNAKE_CASE__ = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ = [1 if mask_padding_with_zero else 0] * len(_UpperCAmelCase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ = max_seq_length - len(_UpperCAmelCase ) if pad_on_left: SCREAMING_SNAKE_CASE__ = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(_UpperCAmelCase ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(_UpperCAmelCase ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(_UpperCAmelCase ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(_UpperCAmelCase ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(_UpperCAmelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ = None features.append( InputFeatures( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , label_ids=_UpperCAmelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class __snake_case ( _UpperCamelCase ): lowerCAmelCase_ = 42 lowerCAmelCase_ = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[Any]=False , _lowercase : Split = Split.train , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join( _UpperCAmelCase , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ = cached_features_file + '.lock' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ = torch.load(_UpperCAmelCase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ = token_classification_task.read_examples_from_file(_UpperCAmelCase , _UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ = token_classification_task.convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _UpperCAmelCase ) def __len__( self : Any ): """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowercase : Dict ): """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class __snake_case : lowerCAmelCase_ = 42 lowerCAmelCase_ = -1_00 def __init__( self : str , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : int=False , _lowercase : Split = Split.train , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = token_classification_task.read_examples_from_file(_UpperCAmelCase , _UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ = token_classification_task.convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ = tf.data.Dataset.from_generator( _UpperCAmelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ = tf.data.Dataset.from_generator( _UpperCAmelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Optional[Any] ): """simple docstring""" return len(self.features ) def __getitem__( self : str , _lowercase : int ): """simple docstring""" return self.features[i]
219
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : str = LayoutLMTokenizer lowerCAmelCase : Tuple = LayoutLMTokenizerFast lowerCAmelCase : List[Any] = True lowerCAmelCase : int = True def __lowercase ( self : Dict ): super().setUp() _a : int = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _a : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase ( self : Dict ,**_UpperCAmelCase : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Tuple ): _a : Optional[int] = 'UNwant\u00E9d,running' _a : List[Any] = 'unwanted, running' return input_text, output_text def __lowercase ( self : Optional[int] ): _a : Optional[Any] = self.tokenizer_class(self.vocab_file ) _a : Optional[Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,[7, 4, 5, 10, 8, 9] ) def __lowercase ( self : Optional[int] ): pass
89
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline UpperCamelCase__ = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = "cpu" UpperCamelCase__ = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" UpperCamelCase__ = "path-to-your-trained-model" UpperCamelCase__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: UpperCamelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) UpperCamelCase__ = pipe.to(device) # to channels last UpperCamelCase__ = pipe.unet.to(memory_format=torch.channels_last) UpperCamelCase__ = pipe.vae.to(memory_format=torch.channels_last) UpperCamelCase__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: UpperCamelCase__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex UpperCamelCase__ = torch.randn(2, 4, 64, 64) UpperCamelCase__ = torch.rand(1) * 999 UpperCamelCase__ = torch.randn(2, 77, 768) UpperCamelCase__ = (sample, timestep, encoder_hidden_status) try: UpperCamelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: UpperCamelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) UpperCamelCase__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) UpperCamelCase__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: UpperCamelCase__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute UpperCamelCase__ = 666 UpperCamelCase__ = torch.Generator(device).manual_seed(seed) UpperCamelCase__ = {"generator": generator} if args.steps is not None: UpperCamelCase__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): UpperCamelCase__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
352
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Any = """xlnet""" snake_case : Optional[Any] = ["""mems"""] snake_case : Any = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowerCAmelCase=32000 , __lowerCAmelCase=1024 , __lowerCAmelCase=24 , __lowerCAmelCase=16 , __lowerCAmelCase=4096 , __lowerCAmelCase="gelu" , __lowerCAmelCase=True , __lowerCAmelCase="bi" , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=-1 , __lowerCAmelCase=False , __lowerCAmelCase="last" , __lowerCAmelCase=True , __lowerCAmelCase="tanh" , __lowerCAmelCase=0.1 , __lowerCAmelCase=5 , __lowerCAmelCase=5 , __lowerCAmelCase=5 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = n_layer UpperCamelCase__ = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) UpperCamelCase__ = d_model // n_head UpperCamelCase__ = ff_activation UpperCamelCase__ = d_inner UpperCamelCase__ = untie_r UpperCamelCase__ = attn_type UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = dropout UpperCamelCase__ = mem_len UpperCamelCase__ = reuse_len UpperCamelCase__ = bi_data UpperCamelCase__ = clamp_len UpperCamelCase__ = same_length UpperCamelCase__ = summary_type UpperCamelCase__ = summary_use_proj UpperCamelCase__ = summary_activation UpperCamelCase__ = summary_last_dropout UpperCamelCase__ = start_n_top UpperCamelCase__ = end_n_top UpperCamelCase__ = bos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , __lowerCAmelCase , ) UpperCamelCase__ = kwargs["""use_cache"""] UpperCamelCase__ = use_mems_eval UpperCamelCase__ = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def _lowerCamelCase ( self ): logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowerCamelCase ( self , __lowerCAmelCase ): # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
87
0
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = PriorTransformer lowerCAmelCase : int = "hidden_states" @property def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = 4 lowercase__ : List[Any] = 8 lowercase__ : Any = 7 lowercase__ : int = floats_tensor((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : Any = floats_tensor((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : int = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCAmelCase ( self : str ,_snake_case : str=0 ) -> Optional[Any]: """simple docstring""" torch.manual_seed(_snake_case ) lowercase__ : Optional[Any] = 4 lowercase__ : Optional[int] = 8 lowercase__ : Any = 7 lowercase__ : str = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : List[Any] = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : Dict = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return (4, 8) @property def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return (4, 8) def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Tuple = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } lowercase__ : Any = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : int ) -> int: """simple docstring""" lowercase__ , lowercase__ : Tuple = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' ,output_loading_info=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(_snake_case ) lowercase__ : Optional[Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : Any = self.prepare_init_args_and_inputs_for_common() lowercase__ : List[str] = self.model_class(**_snake_case ) lowercase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : int = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] ,_snake_case ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) lowercase__ : Dict = model.to(_snake_case ) if hasattr(_snake_case ,'''set_default_attn_processor''' ): model.set_default_attn_processor() lowercase__ : Dict = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ : Optional[int] = model(**_snake_case )[0] lowercase__ : str = output[0, :5].flatten().cpu() print(_snake_case ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ : Optional[Any] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(_snake_case ,_snake_case ,rtol=1e-2 ) ) @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Dict ,_snake_case : List[str]=1 ,_snake_case : Tuple=768 ,_snake_case : List[Any]=77 ,_snake_case : Optional[Any]=0 ) -> List[Any]: """simple docstring""" torch.manual_seed(_snake_case ) lowercase__ : Tuple = batch_size lowercase__ : List[str] = embedding_dim lowercase__ : Tuple = num_embeddings lowercase__ : int = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : str = torch.randn((batch_size, embedding_dim) ).to(_snake_case ) lowercase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_snake_case ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[Any] ,_snake_case : Optional[Any] ) -> int: """simple docstring""" lowercase__ : List[Any] = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' ,subfolder='''prior''' ) model.to(_snake_case ) lowercase__ : List[str] = self.get_dummy_seed_input(seed=_snake_case ) with torch.no_grad(): lowercase__ : List[str] = model(**_snake_case )[0] assert list(sample.shape ) == [1, 768] lowercase__ : List[str] = sample[0, :8].flatten().cpu() print(_snake_case ) lowercase__ : Optional[Any] = torch.tensor(_snake_case ) assert torch_all_close(_snake_case ,_snake_case ,atol=1e-3 )
16
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : lowerCamelCase_ : str lowerCamelCase_ : List[str] lowerCamelCase_ : Optional[List[str]] @dataclass class __lowerCAmelCase : lowerCamelCase_ : List[int] lowerCamelCase_ : List[int] lowerCamelCase_ : Optional[List[int]] = None lowerCamelCase_ : Optional[List[int]] = None class __lowerCAmelCase ( _a ): lowerCamelCase_ : str = '''train''' lowerCamelCase_ : List[str] = '''dev''' lowerCamelCase_ : List[Any] = '''test''' class __lowerCAmelCase : @staticmethod def lowerCamelCase (__magic_name__ , __magic_name__ ) -> List[InputExample]: '''simple docstring''' raise NotImplementedError @staticmethod def lowerCamelCase (__magic_name__ ) -> List[str]: '''simple docstring''' raise NotImplementedError @staticmethod def lowerCamelCase (__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False , __magic_name__="[CLS]" , __magic_name__=1 , __magic_name__="[SEP]" , __magic_name__=False , __magic_name__=False , __magic_name__=0 , __magic_name__=0 , __magic_name__=-100 , __magic_name__=0 , __magic_name__=True , ) -> List[InputFeatures]: '''simple docstring''' snake_case_ : Optional[int] = {label: i for i, label in enumerate(__magic_name__ )} snake_case_ : Dict = [] for ex_index, example in enumerate(__magic_name__ ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' , __magic_name__ , len(__magic_name__ ) ) snake_case_ : List[str] = [] snake_case_ : List[str] = [] for word, label in zip(example.words , example.labels ): snake_case_ : Optional[Any] = tokenizer.tokenize(__magic_name__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__magic_name__ ) > 0: tokens.extend(__magic_name__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__magic_name__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. snake_case_ : Union[str, Any] = tokenizer.num_special_tokens_to_add() if len(__magic_name__ ) > max_seq_length - special_tokens_count: snake_case_ : str = tokens[: (max_seq_length - special_tokens_count)] snake_case_ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] snake_case_ : Union[str, Any] = [sequence_a_segment_id] * len(__magic_name__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: snake_case_ : Union[str, Any] = [cls_token] + tokens snake_case_ : List[Any] = [pad_token_label_id] + label_ids snake_case_ : Optional[Any] = [cls_token_segment_id] + segment_ids snake_case_ : Optional[Any] = tokenizer.convert_tokens_to_ids(__magic_name__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. snake_case_ : int = [1 if mask_padding_with_zero else 0] * len(__magic_name__ ) # Zero-pad up to the sequence length. snake_case_ : Optional[int] = max_seq_length - len(__magic_name__ ) if pad_on_left: snake_case_ : Optional[Any] = ([pad_token] * padding_length) + input_ids snake_case_ : Optional[int] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask snake_case_ : Optional[Any] = ([pad_token_segment_id] * padding_length) + segment_ids snake_case_ : Dict = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__magic_name__ ) == max_seq_length assert len(__magic_name__ ) == max_seq_length assert len(__magic_name__ ) == max_seq_length assert len(__magic_name__ ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(__magic_name__ ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(__magic_name__ ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: snake_case_ : int = None features.append( InputFeatures( input_ids=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , label_ids=__magic_name__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class __lowerCAmelCase ( _a ): lowerCamelCase_ : List[InputFeatures] lowerCamelCase_ : int = nn.CrossEntropyLoss().ignore_index def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__=False , __magic_name__ = Split.train , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = os.path.join( __magic_name__ , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(__magic_name__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ : Dict = cached_features_file + '''.lock''' with FileLock(__magic_name__ ): if os.path.exists(__magic_name__ ) and not overwrite_cache: logger.info(F'''Loading features from cached file {cached_features_file}''' ) snake_case_ : Dict = torch.load(__magic_name__ ) else: logger.info(F'''Creating features from dataset file at {data_dir}''' ) snake_case_ : Any = token_classification_task.read_examples_from_file(__magic_name__ , __magic_name__ ) # TODO clean up all this to leverage built-in features of tokenizers snake_case_ : int = token_classification_task.convert_examples_to_features( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__magic_name__ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , __magic_name__ ) def __len__(self ) -> Optional[Any]: '''simple docstring''' return len(self.features ) def __getitem__(self , __magic_name__ ) -> InputFeatures: '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class __lowerCAmelCase : lowerCamelCase_ : List[InputFeatures] lowerCamelCase_ : int = -100 def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__=False , __magic_name__ = Split.train , ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = token_classification_task.read_examples_from_file(__magic_name__ , __magic_name__ ) # TODO clean up all this to leverage built-in features of tokenizers snake_case_ : int = token_classification_task.convert_examples_to_features( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__magic_name__ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: snake_case_ : Optional[Any] = tf.data.Dataset.from_generator( __magic_name__ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: snake_case_ : int = tf.data.Dataset.from_generator( __magic_name__ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__(self ) -> str: '''simple docstring''' return len(self.features ) def __getitem__(self , __magic_name__ ) -> InputFeatures: '''simple docstring''' return self.features[i]
279
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase_ : List[Any] = {'''vocab_file''': '''sentencepiece.model'''} UpperCamelCase_ : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } UpperCamelCase_ : Any = { '''google/rembert''': 256, } class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE="[CLS]" ,_SCREAMING_SNAKE_CASE="[SEP]" ,_SCREAMING_SNAKE_CASE="[UNK]" ,_SCREAMING_SNAKE_CASE="[SEP]" ,_SCREAMING_SNAKE_CASE="[PAD]" ,_SCREAMING_SNAKE_CASE="[CLS]" ,_SCREAMING_SNAKE_CASE="[MASK]" ,**_SCREAMING_SNAKE_CASE ,) -> Union[str, Any]: super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE ,remove_space=_SCREAMING_SNAKE_CASE ,keep_accents=_SCREAMING_SNAKE_CASE ,bos_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,sep_token=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,cls_token=_SCREAMING_SNAKE_CASE ,mask_token=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor() self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ) -> List[Any]: return len(self.sp_model ) def _lowercase ( self ) -> Any: _snake_case = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self ,_SCREAMING_SNAKE_CASE ) -> Dict: _snake_case = d _snake_case = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> List[Any]: _snake_case = self.sp_model.EncodeAsPieces(_SCREAMING_SNAKE_CASE ) return pieces def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> List[Any]: return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> Any: return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: _snake_case = self.sp_model.decode_pieces(_SCREAMING_SNAKE_CASE ) return out_string def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("Vocabulary path ({}) should be a directory".format(_SCREAMING_SNAKE_CASE ) ) return _snake_case = os.path.join( _SCREAMING_SNAKE_CASE ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file ,_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
142
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def __a ( _UpperCamelCase: Callable[[int | float], int | float] , _UpperCamelCase: int | float , _UpperCamelCase: int | float , _UpperCamelCase: int = 100 , ) -> float: """simple docstring""" _snake_case = x_start _snake_case = fnc(_UpperCamelCase ) _snake_case = 0.0 for _ in range(_UpperCamelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area _snake_case = (x_end - x_start) / steps + xa _snake_case = fnc(_UpperCamelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _snake_case = xa _snake_case = fxa return area if __name__ == "__main__": def __a ( _UpperCamelCase: Any ) -> Optional[int]: """simple docstring""" return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') UpperCamelCase_ : Optional[int] = 10 while i <= 100000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
142
1
'''simple docstring''' __SCREAMING_SNAKE_CASE :int = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __SCREAMING_SNAKE_CASE :Any = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCAmelCase_ ( __lowercase : dict[int, list[int]] , __lowercase : int , __lowercase : list[bool] ) -> list[int]: '''simple docstring''' _UpperCAmelCase = True _UpperCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__lowercase , __lowercase , __lowercase ) order.append(__lowercase ) return order def UpperCAmelCase_ ( __lowercase : dict[int, list[int]] , __lowercase : int , __lowercase : list[bool] ) -> list[int]: '''simple docstring''' _UpperCAmelCase = True _UpperCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__lowercase , __lowercase , __lowercase ) return component def UpperCAmelCase_ ( __lowercase : dict[int, list[int]] ) -> list[list[int]]: '''simple docstring''' _UpperCAmelCase = len(__lowercase ) * [False] _UpperCAmelCase = {vert: [] for vert in range(len(__lowercase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__lowercase ) _UpperCAmelCase = [] for i, was_visited in enumerate(__lowercase ): if not was_visited: order += topology_sort(__lowercase , __lowercase , __lowercase ) _UpperCAmelCase = [] _UpperCAmelCase = len(__lowercase ) * [False] for i in range(len(__lowercase ) ): _UpperCAmelCase = order[len(__lowercase ) - i - 1] if not visited[vert]: _UpperCAmelCase = find_components(__lowercase , __lowercase , __lowercase ) components_list.append(__lowercase ) return components_list
22
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : str = self.unet.config.sample_size UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size) UpperCAmelCase : int = self.unet UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma UpperCAmelCase : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean UpperCAmelCase : int = sample_mean.clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
23
0
'''simple docstring''' from functools import lru_cache @lru_cache def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> int: if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
362
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures") class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[Any] )-> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__snake_case ) as mock_head: snake_case = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Tuple )-> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def lowerCAmelCase ( self : Union[str, Any] )-> str: with self.assertRaises(__snake_case ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__snake_case ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : Optional[int] )-> Dict: snake_case = TOKEN HfFolder.save_token(__snake_case ) @classmethod def lowerCAmelCase ( cls : List[Any] )-> str: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""test-image-processor""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : List[Any] )-> int: snake_case = ViTImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __snake_case , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def lowerCAmelCase ( self : str )-> Tuple: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(__snake_case ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
3
0
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def A_ ( snake_case = 2000000 ): SCREAMING_SNAKE_CASE:list[int] = [0] SCREAMING_SNAKE_CASE:int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target SCREAMING_SNAKE_CASE:int = 0 # the area corresponding to the grid that gives the product closest to target SCREAMING_SNAKE_CASE:int = 0 # an estimate of b, using the quadratic formula SCREAMING_SNAKE_CASE:float # the largest integer less than b_estimate SCREAMING_SNAKE_CASE:int # the largest integer less than b_estimate SCREAMING_SNAKE_CASE:int # the triangle number corresponding to b_floor SCREAMING_SNAKE_CASE:int # the triangle number corresponding to b_ceil SCREAMING_SNAKE_CASE:int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): SCREAMING_SNAKE_CASE:List[str] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 SCREAMING_SNAKE_CASE:Dict = floor(snake_case ) SCREAMING_SNAKE_CASE:Any = ceil(snake_case ) SCREAMING_SNAKE_CASE:Tuple = triangle_numbers[b_floor] SCREAMING_SNAKE_CASE:int = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): SCREAMING_SNAKE_CASE:List[Any] = triangle_b_first_guess * triangle_a SCREAMING_SNAKE_CASE:Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): SCREAMING_SNAKE_CASE:str = triangle_b_second_guess * triangle_a SCREAMING_SNAKE_CASE:Union[str, Any] = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
139
'''simple docstring''' from __future__ import annotations def A_ ( snake_case , snake_case , snake_case , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
139
1
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __snake_case = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __snake_case = logging.getLogger() def __lowerCAmelCase ( ) -> Tuple: """simple docstring""" snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) snake_case : Tuple = parser.parse_args() return args.f def __lowerCAmelCase ( lowercase : List[str] , lowercase : Any="eval" ) -> List[Any]: """simple docstring""" snake_case : List[Any] = os.path.join(lowercase , F'{split}_results.json' ) if os.path.exists(lowercase ): with open(lowercase , "r" ) as f: return json.load(lowercase ) raise ValueError(F'can\'t find {path}' ) __snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _lowerCAmelCase ( snake_case_ ): def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : List[Any] = self.get_auto_remove_tmp_dir() snake_case : Optional[int] = F'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(UpperCamelCase__ , "argv" , UpperCamelCase__ ): run_flax_glue.main() snake_case : Optional[Any] = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Dict = self.get_auto_remove_tmp_dir() snake_case : Dict = F'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(UpperCamelCase__ , "argv" , UpperCamelCase__ ): run_clm_flax.main() snake_case : Optional[Any] = get_results(UpperCamelCase__ ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Any = self.get_auto_remove_tmp_dir() snake_case : Optional[Any] = F'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(UpperCamelCase__ , "argv" , UpperCamelCase__ ): run_summarization_flax.main() snake_case : int = get_results(UpperCamelCase__ , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = self.get_auto_remove_tmp_dir() snake_case : Tuple = F'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(UpperCamelCase__ , "argv" , UpperCamelCase__ ): run_mlm_flax.main() snake_case : Dict = get_results(UpperCamelCase__ ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : List[str] = self.get_auto_remove_tmp_dir() snake_case : Union[str, Any] = F'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(UpperCamelCase__ , "argv" , UpperCamelCase__ ): run_ta_mlm_flax.main() snake_case : Optional[int] = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = 7 if get_gpu_count() > 1 else 2 snake_case : List[str] = self.get_auto_remove_tmp_dir() snake_case : Optional[int] = F'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(UpperCamelCase__ , "argv" , UpperCamelCase__ ): run_flax_ner.main() snake_case : Tuple = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : str = self.get_auto_remove_tmp_dir() snake_case : int = F'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(UpperCamelCase__ , "argv" , UpperCamelCase__ ): run_qa.main() snake_case : Any = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
112
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( snake_case_ , unittest.TestCase ): __UpperCAmelCase : List[Any] = MgpstrTokenizer __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : List[str] = False def lowerCamelCase ( self ) -> int: '''simple docstring''' super().setUp() # fmt: off snake_case : List[str] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on snake_case : Union[str, Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) def lowerCamelCase ( self , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : int = "tester" snake_case : List[str] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def lowerCamelCase ( self ) -> str: '''simple docstring''' pass def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : int = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): snake_case : List[Any] = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) snake_case : str = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 1 ) snake_case : List[Any] = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertTrue(special_token not in decoded ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): snake_case ,snake_case : Union[str, Any] = self.get_input_output_texts(UpperCamelCase__ ) snake_case : Dict = tokenizer.tokenize(UpperCamelCase__ ) snake_case : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) snake_case : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertNotEqual(len(UpperCamelCase__ ) , 0 ) snake_case : Tuple = tokenizer.decode(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(text_a.replace(" " , "" ) , UpperCamelCase__ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' pass
112
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ , A_ = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis lowerCAmelCase__ : Optional[int] = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] lowerCAmelCase__ : int = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCamelCase , 1 ): if n < _p: # then we have our last prime to check lowerCAmelCase__ : List[str] = primes[:idx] break lowerCAmelCase__ : Optional[Any] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCAmelCase__ : str = False for r in range(_lowerCamelCase ): lowerCAmelCase__ : int = pow(_lowerCamelCase , d * 2**r , _lowerCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCAmelCase__ : Tuple = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def __SCREAMING_SNAKE_CASE ( ): assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
106
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class snake_case_ ( unittest.TestCase ): def __init__( self : Tuple , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=56 , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : int=True , lowercase_ : Any=99 , lowercase_ : int=32 , lowercase_ : str=2 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=7 , lowercase_ : Dict="gelu_new" , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=5_12 , lowercase_ : Optional[Any]=16 , lowercase_ : List[Any]=2 , lowercase_ : Dict=0.02 , lowercase_ : int=4 , lowercase_ : Tuple="block_sparse" , lowercase_ : Dict=True , lowercase_ : Optional[int]=False , lowercase_ : Dict=2 , lowercase_ : int=3 , ) -> Union[str, Any]: lowercase__ : Dict = parent lowercase__ : Dict = batch_size lowercase__ : Tuple = seq_length lowercase__ : Dict = is_training lowercase__ : Dict = use_attention_mask lowercase__ : Tuple = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : Any = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : str = intermediate_size lowercase__ : int = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_size lowercase__ : Dict = type_sequence_label_size lowercase__ : Any = initializer_range lowercase__ : List[str] = num_choices lowercase__ : str = rescale_embeddings lowercase__ : Optional[Any] = attention_type lowercase__ : Optional[int] = use_bias lowercase__ : Optional[int] = block_size lowercase__ : str = num_random_blocks def __UpperCamelCase ( self : str ) -> Optional[Any]: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int] = None if self.use_token_type_ids: lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : int = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self : Union[str, Any] ) -> int: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class snake_case_ ( __A ,unittest.TestCase ): __A : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __A : List[str] = False __A : Any = False def __UpperCamelCase ( self : List[str] ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Optional[int] ) -> Dict: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : List[str] ) -> Any: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Tuple ) -> str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: super().test_hidden_states_output() @slow def __UpperCamelCase ( self : Optional[int] ) -> Tuple: for model_class_name in self.all_model_classes: lowercase__ : Optional[Any] = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowercase_ ) def __UpperCamelCase ( self : int ) -> Optional[int]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : str ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : Tuple , lowercase_ : int=None , **lowercase_ : Dict ): return model(input_ids=lowercase_ , attention_mask=lowercase_ , **lowercase_ ) with self.subTest("JIT Enabled" ): lowercase__ : int = model_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowercase__ : Any = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCamelCase ( self : List[Any] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : List[Any]=1E-5 , lowercase_ : Any="outputs" , lowercase_ : List[str]=None ) -> List[Any]: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
87
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase__ ( _UpperCAmelCase ): A__ : List[str] =(DPMSolverSinglestepScheduler,) A__ : int =(("""num_inference_steps""", 2_5),) def A_ ( self : Optional[Any] , **UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE__ = { 'num_train_timesteps': 1000, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**UpperCAmelCase_ ) return config def A_ ( self : int , UpperCAmelCase_ : int=0 , **UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop('num_inference_steps' , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler_class.from_pretrained(UpperCAmelCase_ ) new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = sample, sample for t in range(UpperCAmelCase_ , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A_ ( self : List[Any] ): pass def A_ ( self : Tuple , UpperCAmelCase_ : List[Any]=0 , **UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ = kwargs.pop('num_inference_steps' , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler_class.from_pretrained(UpperCAmelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE__ = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = new_scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A_ ( self : int , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : List[str] ): if scheduler is None: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample return sample def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE__ = 50 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.2_574 ) < 1e-3 def A_ ( self : int ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def A_ ( self : Optional[int] ): # make sure that iterating over schedulers with same config names gives same results # for defaults SCREAMING_SNAKE_CASE__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE__ = self.full_loop(scheduler=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 SCREAMING_SNAKE_CASE__ = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ = self.full_loop(scheduler=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def A_ ( self : Optional[Any] ): self.check_over_configs(thresholding=UpperCAmelCase_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , algorithm_type='dpmsolver++' , solver_order=UpperCAmelCase_ , solver_type=UpperCAmelCase_ , ) def A_ ( self : List[str] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def A_ ( self : Dict ): for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase_ , solver_type=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , algorithm_type=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = self.full_loop( solver_order=UpperCAmelCase_ , solver_type=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , algorithm_type=UpperCAmelCase_ , ) assert not torch.isnan(UpperCAmelCase_ ).any(), "Samples have nan numbers" def A_ ( self : Any ): self.check_over_configs(lower_order_final=UpperCAmelCase_ ) self.check_over_configs(lower_order_final=UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def A_ ( self : List[Any] ): self.check_over_configs(variance_type=UpperCAmelCase_ ) self.check_over_configs(variance_type='learned_range' ) def A_ ( self : Optional[Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=UpperCAmelCase_ , time_step=0 ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.full_loop() SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = self.full_loop(use_karras_sigmas=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.2_248 ) < 1e-3 def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.full_loop(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.1_453 ) < 1e-3 def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.0_649 ) < 1e-3 def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample assert sample.dtype == torch.floataa
359
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __snake_case = False try: __snake_case = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class lowercase__ : def __init__( self : Optional[Any] , UpperCAmelCase_ : str = None , UpperCAmelCase_ : list = [] ): SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = choices SCREAMING_SNAKE_CASE__ = prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE__ = '*' else: SCREAMING_SNAKE_CASE__ = '➔ ' def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCAmelCase_ ) else: forceWrite(self.choices[index] , UpperCAmelCase_ ) def A_ ( self : List[str] , UpperCAmelCase_ : int ): if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(UpperCAmelCase_ ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def A_ ( self : List[Any] , UpperCAmelCase_ : Direction , UpperCAmelCase_ : int = 1 ): SCREAMING_SNAKE_CASE__ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCAmelCase_ ) move_cursor(UpperCAmelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def A_ ( self : Optional[Any] ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def A_ ( self : List[Any] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def A_ ( self : Dict ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def A_ ( self : Optional[Any] ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCAmelCase_ )] for number in range(10 )] ) def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE__ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCAmelCase_ ) else: return else: return def A_ ( self : Optional[int] , UpperCAmelCase_ : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) SCREAMING_SNAKE_CASE__ = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCAmelCase_ ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE__ = int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE__ = default_choice else: SCREAMING_SNAKE_CASE__ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(UpperCAmelCase_ , '\n' ) return choice
169
0
from pathlib import Path import numpy as np from PIL import Image def _a ( UpperCAmelCase ) -> np.ndarray: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _a ( UpperCAmelCase ) -> np.ndarray: """simple docstring""" return (gray > 127) & (gray <= 255) def _a ( UpperCAmelCase , UpperCAmelCase ) -> np.ndarray: """simple docstring""" lowerCamelCase__ : Tuple = np.zeros_like(UpperCAmelCase ) lowerCamelCase__ : int = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCamelCase__ : List[str] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCamelCase__ : List[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCamelCase__ : Optional[Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image _A : int = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' _A : Tuple = np.array(Image.open(lena_path)) # kernel to be applied _A : Tuple = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _A : Any = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _A : Union[str, Any] = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
142
def _a ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(1_00, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
142
1
'''simple docstring''' def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = len(_A ) _lowerCAmelCase : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCAmelCase : Dict = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCAmelCase : int = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCAmelCase : List[Any] = subset[i - 1][j] if arr[i - 1] <= j: _lowerCAmelCase : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
362
'''simple docstring''' lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag. lowerCAmelCase : Optional[int] = 1 # The second color of the flag. lowerCAmelCase : int = 2 # The third color of the flag. lowerCAmelCase : Any = (red, white, blue) def lowercase (_A ): """simple docstring""" if not sequence: return [] if len(_A ) == 1: return list(_A ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : List[str] = len(_A ) - 1 _lowerCAmelCase : Optional[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
25
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : List[Any] =IFInpaintingPipeline lowercase_ : Optional[int] =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowercase_ : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase_ : str =PipelineTesterMixin.required_optional_params - {'''latents'''} def A__ ( self): return self._get_dummy_components() def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(A__)).to(A__) lowercase = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(A__)).to(A__) lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def A__ ( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''') def A__ ( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def A__ ( self): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def A__ ( self): self._test_save_load_local() def A__ ( self): self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,)
101
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowercase : str = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowercase : str = get_tests_dir('fixtures/vocab.json') lowercase : int = get_tests_dir('fixtures') class A ( unittest.TestCase ): __magic_name__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = 0 def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : List[Any] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A : Union[str, Any] = WavaVecaConfig() A : List[str] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) ) A : Optional[Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A : Dict = WavaVecaFeatureExtractor() A : List[str] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A : str = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(SCREAMING_SNAKE_CASE ) # drop `processor_class` in tokenizer with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''r''' ) as f: A : Dict = json.load(SCREAMING_SNAKE_CASE ) config_dict.pop('''processor_class''' ) with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE ) ) A : Optional[Any] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A : List[Any] = WavaVecaFeatureExtractor() A : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A : str = WavaVecaProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(SCREAMING_SNAKE_CASE ) # drop `processor_class` in feature extractor with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''r''' ) as f: A : str = json.load(SCREAMING_SNAKE_CASE ) config_dict.pop('''processor_class''' ) with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE ) ) A : str = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A : str = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(SCREAMING_SNAKE_CASE ) # copy relevant files copyfile(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' ) as f: f.write('''{}''' ) A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE ): A : Optional[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE ): A : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A : List[str] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A : Tuple = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A : List[str] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) A : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE ): AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API A : List[Any] = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: A : Tuple = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.txt''' ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A : Optional[int] = CustomTokenizer(SCREAMING_SNAKE_CASE ) A : Any = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(SCREAMING_SNAKE_CASE ) A : List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" class A ( __snake_case ): __magic_name__ = False class A ( __snake_case ): __magic_name__ = False class A ( __snake_case ): __magic_name__ = '''AutoFeatureExtractor''' __magic_name__ = '''AutoTokenizer''' __magic_name__ = False try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) AutoProcessor.register(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local classes. A : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A : Optional[int] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A : Tuple = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : int = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Optional[int] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class A ( unittest.TestCase ): __magic_name__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def __lowerCAmelCase ( cls ) -> Dict: """simple docstring""" A : Optional[int] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE ) @classmethod def __lowerCAmelCase ( cls ) -> Any: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Union[str, Any] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(SCREAMING_SNAKE_CASE , '''test-processor''' ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A : int = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(SCREAMING_SNAKE_CASE , '''test-processor-org''' ) , push_to_hub=SCREAMING_SNAKE_CASE , use_auth_token=self._token , organization='''valid_org''' , ) A : int = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A : Any = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: A : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , '''vocab.txt''' ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A : str = CustomTokenizer(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = CustomProcessor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor' , token=self._token ) A : List[str] = Repository(SCREAMING_SNAKE_CASE , clone_from=F'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) ) as f: A : Dict = json.load(SCREAMING_SNAKE_CASE ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , '''custom_processing.py''' ) ) ) repo.push_to_hub() A : Optional[int] = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
3
0
from collections import defaultdict from math import ceil, sqrt def UpperCamelCase ( _A = 1000000, _A = 10 ): """simple docstring""" __magic_name__ : defaultdict = defaultdict(_A ) for outer_width in range(3, (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __magic_name__ : str = max( ceil(sqrt(outer_width * outer_width - t_limit ) ), 1 ) else: __magic_name__ : Dict = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_A, outer_width - 1, 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
138
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase ( _A ): """simple docstring""" if not isinstance(_A, _A ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) __magic_name__ : Dict = precision __magic_name__ : str = ceil(precision / 14 ) __magic_name__ : List[str] = 426880 * Decimal(10005 ).sqrt() __magic_name__ : List[Any] = 1 __magic_name__ : Dict = 13591409 __magic_name__ : Tuple = Decimal(_A ) for k in range(1, _A ): __magic_name__ : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_A ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __magic_name__: Tuple = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
138
1
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) __SCREAMING_SNAKE_CASE : int = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(lowerCAmelCase__ ) from datasets import load_dataset __SCREAMING_SNAKE_CASE : List[str] = load_dataset("""nielsr/rvlcdip-demo""" ) __SCREAMING_SNAKE_CASE : List[Any] = dataset["""train"""][0]["""image"""].convert("""RGB""" ) __SCREAMING_SNAKE_CASE : Tuple = image_processor(lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : Union[str, Any] = model(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = outputs.logits __SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=lowerCAmelCase__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
112
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase__ : Tuple = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCamelCase__ : List[Any] = { '''allenai/led-base-16384''': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Tuple = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : Any = bs[:] __SCREAMING_SNAKE_CASE : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] ): __SCREAMING_SNAKE_CASE : Dict = set() __SCREAMING_SNAKE_CASE : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : str = char return pairs class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = VOCAB_FILES_NAMES _A : Any = PRETRAINED_VOCAB_FILES_MAP _A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]="replace" , lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : List[str]="</s>" , lowerCAmelCase__ : Tuple="</s>" , lowerCAmelCase__ : Tuple="<s>" , lowerCAmelCase__ : Union[str, Any]="<unk>" , lowerCAmelCase__ : Union[str, Any]="<pad>" , lowerCAmelCase__ : int="<mask>" , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __SCREAMING_SNAKE_CASE : str = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : Union[str, Any] = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __SCREAMING_SNAKE_CASE : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __SCREAMING_SNAKE_CASE : int = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : int = {} __SCREAMING_SNAKE_CASE : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : str = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self : Any ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Any ): """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = bigram __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : Optional[int] = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Dict = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Dict = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Tuple = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Union[str, Any] = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = word return word def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Any = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : List[str] ): """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : Optional[int] ): """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = """""".join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __SCREAMING_SNAKE_CASE : int = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __SCREAMING_SNAKE_CASE : Tuple = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __SCREAMING_SNAKE_CASE : List[Any] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : int = """ """ + text return (text, kwargs) def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = super()._pad( encoded_inputs=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) # Load from model defaults if return_attention_mask is None: __SCREAMING_SNAKE_CASE : Tuple = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __SCREAMING_SNAKE_CASE : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __SCREAMING_SNAKE_CASE : str = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCAmelCase__ ) if needs_to_be_padded: __SCREAMING_SNAKE_CASE : Dict = len(lowerCAmelCase__ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __SCREAMING_SNAKE_CASE : Union[str, Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": __SCREAMING_SNAKE_CASE : Dict = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
112
1
def _UpperCAmelCase (UpperCamelCase_ : dict ): '''simple docstring''' _lowerCAmelCase : Tuple = set() # edges = list of graph's edges _lowerCAmelCase : int = get_edges(__A ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _lowerCAmelCase , _lowerCAmelCase : List[str] = edges.pop() chosen_vertices.add(__A ) chosen_vertices.add(__A ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__A ) return chosen_vertices def _UpperCAmelCase (UpperCamelCase_ : dict ): '''simple docstring''' _lowerCAmelCase : str = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
357
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _UpperCAmelCase (UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict ): '''simple docstring''' _lowerCAmelCase : Optional[int] = k_size // 2 _lowerCAmelCase , _lowerCAmelCase : List[str] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _lowerCAmelCase : Optional[int] = 1 / (2 * pi * sigma) * exp(-(square(UpperCamelCase_ ) + square(UpperCamelCase_ )) / (2 * square(UpperCamelCase_ )) ) return g def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = image.shape[0], image.shape[1] # dst image height and width _lowerCAmelCase : Optional[Any] = height - k_size + 1 _lowerCAmelCase : Tuple = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _lowerCAmelCase : Tuple = zeros((dst_height * dst_width, k_size * k_size) ) _lowerCAmelCase : int = 0 for i, j in product(range(UpperCamelCase_ ) , range(UpperCamelCase_ ) ): _lowerCAmelCase : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] ) _lowerCAmelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) _lowerCAmelCase : Optional[Any] = gen_gaussian_kernel(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Dict = ravel(UpperCamelCase_ ) # reshape and get the dst image _lowerCAmelCase : List[str] = dot(UpperCamelCase_ , UpperCamelCase_ ).reshape(UpperCamelCase_ , UpperCamelCase_ ).astype(UpperCamelCase_ ) return dst if __name__ == "__main__": # read original image _lowerCamelCase : int = imread(R"../image_data/lena.jpg") # turn image in gray scale value _lowerCamelCase : List[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _lowerCamelCase : int = gaussian_filter(gray, 3, sigma=1) _lowerCamelCase : List[str] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
159
0
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 0 , lowercase_ = 0 ) -> Optional[int]: """simple docstring""" A__ = right or len(_lowerCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_lowerCAmelCase , _lowerCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
14
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
169
0
from collections.abc import Callable def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : float = a _A : float = b if function(snake_case_ ) == 0: # one of the a or b is a root for the function return a elif function(snake_case_ ) == 0: return b elif ( function(snake_case_ ) * function(snake_case_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: _A : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(snake_case_ ) == 0: return mid elif function(snake_case_ ) * function(snake_case_ ) < 0: _A : List[str] = mid else: _A : str = mid _A : Dict = start + (end - start) / 2.0 return mid def lowerCAmelCase_ ( snake_case_ ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
343
from __future__ import annotations from collections.abc import Callable _snake_case = list[list[float | int]] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] _A : int _A : int _A : int _A : int _A : int _A : float for row in range(snake_case_ ): for col in range(snake_case_ ): _A : Dict = matrix[row][col] _A : List[Any] = vector[row][0] _A : List[Any] = 0 _A : Optional[Any] = 0 while row < size and col < size: # pivoting _A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A , _A : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1,snake_case_ ): _A : str = augmented[rowa][col] / augmented[row][col] _A : List[Any] = 0 for cola in range(col + 1,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1,snake_case_ ): for row in range(snake_case_ ): _A : int = augmented[row][col] / augmented[col][col] for cola in range(snake_case_,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ ) ] def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] _A : Matrix = [[0] for _ in range(snake_case_ )] _A : Matrix _A : int _A : int _A : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): _A : str = (x_val + 1) ** (size - col - 1) _A : List[str] = y_val _A : Any = solve(snake_case_,snake_case_ ) def interpolated_func(snake_case_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def lowerCAmelCase_ ( snake_case_ ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ): _A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )] _A : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 ) ] _A : int = 0 _A : Callable[[int], int] _A : int for poly in polynomials: _A : Optional[int] = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
343
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowercase ( a__ ): _a = '''wavlm''' def __init__( self , _a=32 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=0.1 , _a=0.02 , _a=1e-5 , _a="group" , _a="gelu" , _a=(512, 512, 512, 512, 512, 512, 512) , _a=(5, 2, 2, 2, 2, 2, 2) , _a=(10, 3, 3, 3, 3, 2, 2) , _a=False , _a=128 , _a=16 , _a=320 , _a=800 , _a=False , _a=True , _a=0.05 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=320 , _a=2 , _a=0.1 , _a=100 , _a=256 , _a=256 , _a=0.1 , _a="mean" , _a=False , _a=False , _a=256 , _a=(512, 512, 512, 512, 1500) , _a=(5, 3, 3, 1, 1) , _a=(1, 2, 3, 1, 1) , _a=512 , _a=80 , _a=0 , _a=1 , _a=2 , _a=False , _a=3 , _a=2 , _a=3 , _a=None , **_a , ) -> Optional[Any]: super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) _A : Dict = hidden_size _A : Any = feat_extract_norm _A : str = feat_extract_activation _A : Any = list(SCREAMING_SNAKE_CASE__ ) _A : Any = list(SCREAMING_SNAKE_CASE__ ) _A : List[str] = list(SCREAMING_SNAKE_CASE__ ) _A : List[Any] = conv_bias _A : Dict = num_buckets _A : List[str] = max_bucket_distance _A : Union[str, Any] = num_conv_pos_embeddings _A : Optional[int] = num_conv_pos_embedding_groups _A : Optional[Any] = len(self.conv_dim ) _A : Optional[int] = num_hidden_layers _A : Tuple = intermediate_size _A : List[str] = hidden_act _A : Tuple = num_attention_heads _A : Any = hidden_dropout _A : int = attention_dropout _A : List[Any] = activation_dropout _A : Tuple = feat_proj_dropout _A : Any = final_dropout _A : Optional[int] = layerdrop _A : int = layer_norm_eps _A : Optional[Any] = initializer_range _A : Optional[Any] = num_ctc_classes _A : List[str] = vocab_size _A : Optional[Any] = do_stable_layer_norm _A : List[str] = use_weighted_layer_sum _A : Optional[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _A : Optional[Any] = apply_spec_augment _A : List[str] = mask_time_prob _A : Any = mask_time_length _A : Tuple = mask_time_min_masks _A : Optional[int] = mask_feature_prob _A : List[str] = mask_feature_length # parameters for pretraining with codevector quantized representations _A : Any = num_codevectors_per_group _A : str = num_codevector_groups _A : Tuple = contrastive_logits_temperature _A : Any = num_negatives _A : Dict = codevector_dim _A : List[str] = proj_codevector_dim _A : Union[str, Any] = diversity_loss_weight # ctc loss _A : List[Any] = ctc_loss_reduction _A : Tuple = ctc_zero_infinity # adapter _A : Dict = add_adapter _A : List[str] = adapter_kernel_size _A : Optional[int] = adapter_stride _A : List[str] = num_adapter_layers _A : List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _A : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _A : List[str] = list(SCREAMING_SNAKE_CASE__ ) _A : int = list(SCREAMING_SNAKE_CASE__ ) _A : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ ) _A : int = xvector_output_dim @property def a__ ( self ) -> List[str]: return functools.reduce(operator.mul , self.conv_stride , 1 )
26
"""simple docstring""" import mpmath # for roots of unity import numpy as np class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(poly_a or [0] )[:] SCREAMING_SNAKE_CASE__ : Tuple = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() SCREAMING_SNAKE_CASE__ : int = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() SCREAMING_SNAKE_CASE__ : List[str] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 SCREAMING_SNAKE_CASE__ : Optional[int] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform SCREAMING_SNAKE_CASE__ : List[str] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product SCREAMING_SNAKE_CASE__ : Tuple = self.__multiply() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(SCREAMING_SNAKE_CASE__ ) <= 1: return dft[0] # SCREAMING_SNAKE_CASE__ : Optional[Any] = self.c_max_length // 2 while next_ncol > 0: SCREAMING_SNAKE_CASE__ : Any = [[] for i in range(SCREAMING_SNAKE_CASE__ )] SCREAMING_SNAKE_CASE__ : Tuple = self.root**next_ncol # First half of next step SCREAMING_SNAKE_CASE__ : str = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(SCREAMING_SNAKE_CASE__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step SCREAMING_SNAKE_CASE__ : int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(SCREAMING_SNAKE_CASE__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_dft SCREAMING_SNAKE_CASE__ : Tuple = next_ncol // 2 return dft[0] def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.__dft("""A""" ) SCREAMING_SNAKE_CASE__ : Dict = self.__dft("""B""" ) SCREAMING_SNAKE_CASE__ : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 while next_ncol <= self.c_max_length: SCREAMING_SNAKE_CASE__ : List[str] = [[] for i in range(SCREAMING_SNAKE_CASE__ )] SCREAMING_SNAKE_CASE__ : Tuple = self.root ** (next_ncol // 2) SCREAMING_SNAKE_CASE__ : Any = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update SCREAMING_SNAKE_CASE__ : Optional[Any] = new_inverse_c next_ncol *= 2 # Unpack SCREAMING_SNAKE_CASE__ : Optional[Any] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__(self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = """A = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) SCREAMING_SNAKE_CASE__ : int = """A*B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : Any ): # Load configuration defined in the metadata file with open(_lowerCAmelCase ) as metadata_file: lowerCAmelCase = json.load(_lowerCAmelCase ) lowerCAmelCase = LukeConfig(use_entity_aware_attention=_lowerCAmelCase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path lowerCAmelCase = torch.load(_lowerCAmelCase , map_location='cpu' )["""module"""] # Load the entity vocab file lowerCAmelCase = load_original_entity_vocab(_lowerCAmelCase ) # add an entry for [MASK2] lowerCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks lowerCAmelCase = AddedToken('<ent>' , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) lowerCAmelCase = AddedToken('<ent2>' , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'r' ) as f: lowerCAmelCase = json.load(_lowerCAmelCase ) lowerCAmelCase = """MLukeTokenizer""" with open(os.path.join(_lowerCAmelCase , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase = MLukeTokenizer.from_pretrained(_lowerCAmelCase ) # Initialize the embeddings of the special tokens lowerCAmelCase = tokenizer.convert_tokens_to_ids(['@'] )[0] lowerCAmelCase = tokenizer.convert_tokens_to_ids(['#'] )[0] lowerCAmelCase = state_dict["""embeddings.word_embeddings.weight"""] lowerCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) lowerCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) lowerCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCAmelCase = state_dict[bias_name] lowerCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCAmelCase = f'''encoder.layer.{layer_index}.attention.self.''' lowerCAmelCase = state_dict[prefix + matrix_name] lowerCAmelCase = state_dict[prefix + matrix_name] lowerCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCAmelCase = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowerCAmelCase = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowerCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCAmelCase = state_dict["""entity_predictions.bias"""] lowerCAmelCase = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowerCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCAmelCase = LukeForMaskedLM(config=_lowerCAmelCase ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): lowerCAmelCase = state_dict[key] else: lowerCAmelCase = state_dict[key] lowerCAmelCase = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) if set(_lowerCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(_lowerCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCAmelCase = MLukeTokenizer.from_pretrained(_lowerCAmelCase , task='entity_classification' ) lowerCAmelCase = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" lowerCAmelCase = (0, 9) lowerCAmelCase = tokenizer(_lowerCAmelCase , entity_spans=[span] , return_tensors='pt' ) lowerCAmelCase = model(**_lowerCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase = torch.Size((1, 33, 768) ) lowerCAmelCase = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase = torch.Size((1, 1, 768) ) lowerCAmelCase = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowerCAmelCase = MLukeTokenizer.from_pretrained(_lowerCAmelCase ) lowerCAmelCase = """Tokyo is the capital of <mask>.""" lowerCAmelCase = (24, 30) lowerCAmelCase = tokenizer(_lowerCAmelCase , entity_spans=[span] , return_tensors='pt' ) lowerCAmelCase = model(**_lowerCAmelCase ) lowerCAmelCase = encoding["""input_ids"""][0].tolist() lowerCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) lowerCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowerCAmelCase ) lowerCAmelCase = outputs.entity_logits[0][0].argmax().item() lowerCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(_lowerCAmelCase ) ) model.save_pretrained(_lowerCAmelCase ) def a_ ( lowerCamelCase : int ): lowerCAmelCase = ["""[MASK]""", """[PAD]""", """[UNK]"""] lowerCAmelCase = [json.loads(_lowerCAmelCase ) for line in open(_lowerCAmelCase )] lowerCAmelCase = {} for entry in data: lowerCAmelCase = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCAmelCase = entity_id break lowerCAmelCase = f'''{language}:{entity_name}''' lowerCAmelCase = entity_id return new_mapping if __name__ == "__main__": __snake_case =argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __snake_case =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
371
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Dict=3_2 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : List[str]=1_0 , UpperCAmelCase__ : Optional[int]=[8, 1_6, 3_2, 6_4] , UpperCAmelCase__ : str=[1, 1, 2, 1] , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Dict="relu" , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Tuple=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : Union[str, Any]=[2, 3, 4] , UpperCAmelCase__ : Any=1 , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = num_channels lowerCAmelCase = embeddings_size lowerCAmelCase = hidden_sizes lowerCAmelCase = depths lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = hidden_act lowerCAmelCase = num_labels lowerCAmelCase = scope lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = out_features lowerCAmelCase = out_indices lowerCAmelCase = num_groups def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : int ) -> int: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Any: lowerCAmelCase = BitModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> List[str]: lowerCAmelCase = self.num_labels lowerCAmelCase = BitForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ) -> Any: lowerCAmelCase = BitBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase = None lowerCAmelCase = BitBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Optional[int] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCamelCase : Optional[Any] = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] = False lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : Optional[int] = False def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase = BitModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self : Any ) -> Optional[Any]: return @unittest.skip(reason='Bit does not output attentions' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def __UpperCAmelCase ( self : Dict ) -> Optional[int]: pass def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(UpperCAmelCase__ ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(config=UpperCAmelCase__ ) for name, module in model.named_modules(): if isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: def check_hidden_states_output(UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] ): lowerCAmelCase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase = layer_type lowerCAmelCase = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: pass def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = BitModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : int ) -> Optional[int]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase__ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**UpperCAmelCase__ ) # verify the logits lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @require_torch class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : int = (BitBackbone,) if is_torch_available() else () lowerCamelCase : Dict = BitConfig lowerCamelCase : Tuple = False def __UpperCAmelCase ( self : str ) -> Optional[Any]: lowerCAmelCase = BitModelTester(self )
55
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __A ( lowerCAmelCase ): lowerCAmelCase_ : int = 0 lowerCAmelCase_ : bool = False lowerCAmelCase_ : float = 3.0 class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=UpperCAmelCase_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def lowercase__ ( self : Dict ): # If no defaults are changed, `to_kwargs` returns an empty dict. lowerCAmelCase : Dict = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() lowerCAmelCase : int = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) lowerCAmelCase : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , UpperCAmelCase_ ) @require_multi_gpu def lowercase__ ( self : Tuple ): lowerCAmelCase : int = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy() ) if __name__ == "__main__": __A : Dict = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __A : Optional[int] = Accelerator(kwargs_handlers=[ddp_scaler]) __A : Tuple = torch.nn.Linear(100, 200) __A : int = accelerator.prepare(model) # Check the values changed in kwargs __A : List[Any] = '''''' __A : str = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
138
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
138
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = 9, 14 # noqa: F841 UpperCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase = defaultdict(A__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase = mst(A__ ) UpperCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase = tuple(answer[:2] ) UpperCAmelCase = tuple(edge[::-1] ) assert edge in result or reverse in result
152
def _lowerCAmelCase ( A__: int = 1000 ): '''simple docstring''' UpperCAmelCase = 2**power UpperCAmelCase = str(A__ ) UpperCAmelCase = list(A__ ) UpperCAmelCase = 0 for i in list_num: sum_of_num += int(A__ ) return sum_of_num if __name__ == "__main__": __magic_name__ = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) __magic_name__ = solution(power) print("Sum of the digits is: ", result)
152
1
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : def __init__( self : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : MutableSequence[float] ) -> None: if len(UpperCAmelCase__ ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) lowerCAmelCase = list(UpperCAmelCase__ ) lowerCAmelCase = degree def __add__( self : Any , UpperCAmelCase__ : Polynomial ) -> Polynomial: if self.degree > polynomial_a.degree: lowerCAmelCase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , UpperCAmelCase__ ) else: lowerCAmelCase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , UpperCAmelCase__ ) def __sub__( self : str , UpperCAmelCase__ : Polynomial ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : int ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : int , UpperCAmelCase__ : Polynomial ) -> Polynomial: lowerCAmelCase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : int | float ) -> int | float: lowerCAmelCase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : List[Any] ) -> str: lowerCAmelCase = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(UpperCAmelCase__ ) return polynomial def __repr__( self : str ) -> str: return self.__str__() def __UpperCAmelCase ( self : Optional[Any] ) -> Polynomial: lowerCAmelCase = [0] * self.degree for i in range(self.degree ): lowerCAmelCase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : int | float = 0 ) -> Polynomial: lowerCAmelCase = [0] * (self.degree + 2) lowerCAmelCase = constant for i in range(self.degree + 1 ): lowerCAmelCase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , UpperCAmelCase__ ) def __eq__( self : List[str] , UpperCAmelCase__ : object ) -> bool: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : int , UpperCAmelCase__ : object ) -> bool: return not self.__eq__(UpperCAmelCase__ )
4
from __future__ import annotations def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :float , lowerCAmelCase_ :float )->float: '''simple docstring''' if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :float , lowerCAmelCase_ :float , )->float: '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _lowerCAmelCase ( lowerCAmelCase_ :float , lowerCAmelCase_ :float , lowerCAmelCase_ :float , )->float: '''simple docstring''' if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( lowerCAmelCase_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
159
0
"""simple docstring""" import argparse import os import re snake_case_ = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict snake_case_ = re.compile(R"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings snake_case_ = re.compile(R"""\s*\(\s*\"(\S[^\"]+)\"""") def _lowerCAmelCase ( lowercase_ , lowercase_ = False ): with open(lowercase_ , 'r' , encoding='utf-8' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = content.split('\n' ) UpperCAmelCase = [] UpperCAmelCase = 0 while line_idx < len(lowercase_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: UpperCAmelCase = len(re.search(R'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 UpperCAmelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": UpperCAmelCase = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers UpperCAmelCase = sorted(lowercase_ , key=lambda lowercase_ : _re_identifier.search(lowercase_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(lowercase_ ) ) elif "\n".join(lowercase_ ) != content: return True def _lowerCAmelCase ( lowercase_ = False ): UpperCAmelCase = [os.path.join(lowercase_ , lowercase_ ) for f in os.listdir(lowercase_ ) if f.endswith('.py' )] UpperCAmelCase = [sort_auto_mapping(lowercase_ , overwrite=lowercase_ ) for fname in fnames] if not overwrite and any(lowercase_ ): UpperCAmelCase = [f for f, d in zip(lowercase_ , lowercase_ ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(lowercase_ )}. Run `make style` to fix""" ' this.' ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") snake_case_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
181
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
181
1
from collections.abc import Callable def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' UpperCamelCase = a UpperCamelCase = b if function(UpperCamelCase_ ) == 0: # one of the a or b is a root for the function return a elif function(UpperCamelCase_ ) == 0: return b elif ( function(UpperCamelCase_ ) * function(UpperCamelCase_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: UpperCamelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(UpperCamelCase_ ) == 0: return mid elif function(UpperCamelCase_ ) * function(UpperCamelCase_ ) < 0: UpperCamelCase = mid else: UpperCamelCase = mid UpperCamelCase = start + (end - start) / 2.0 return mid def lowercase( UpperCamelCase_ ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
343
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCamelCase_ ) * abs(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
343
1
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = ['''image_processor''', '''tokenizer'''] lowerCAmelCase_ = '''AutoImageProcessor''' lowerCAmelCase_ = '''AutoTokenizer''' def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase__ , ) lowercase_ : Tuple = kwargs.pop('''feature_extractor''' ) lowercase_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ : List[Any] = self.image_processor lowercase_ : Any = False def __call__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase_ : Union[str, Any] = kwargs.pop('''images''' , lowerCAmelCase__ ) lowercase_ : Tuple = kwargs.pop('''text''' , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase_ : Dict = args[0] lowercase_ : str = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowercase_ : Optional[Any] = self.image_processor(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: lowercase_ : List[str] = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif images is None: return encodings else: lowercase_ : Optional[Any] = encodings["input_ids"] return inputs def _snake_case ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _snake_case ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @contextmanager def _snake_case ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowercase_ : Optional[Any] = True lowercase_ : List[Any] = self.tokenizer yield lowercase_ : Union[str, Any] = self.image_processor lowercase_ : int = False def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if added_vocab is None: lowercase_ : str = self.tokenizer.get_added_vocab() lowercase_ : int = {} while tokens: lowercase_ : Union[str, Any] = re.search(R'''<s_(.*?)>''' , lowerCAmelCase__ , re.IGNORECASE ) if start_token is None: break lowercase_ : Union[str, Any] = start_token.group(1 ) lowercase_ : Union[str, Any] = re.search(RF'''</s_{key}>''' , lowerCAmelCase__ , re.IGNORECASE ) lowercase_ : Tuple = start_token.group() if end_token is None: lowercase_ : Any = tokens.replace(lowerCAmelCase__ , '''''' ) else: lowercase_ : Any = end_token.group() lowercase_ : Tuple = re.escape(lowerCAmelCase__ ) lowercase_ : Any = re.escape(lowerCAmelCase__ ) lowercase_ : Optional[Any] = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''' , lowerCAmelCase__ , re.IGNORECASE ) if content is not None: lowercase_ : Union[str, Any] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowercase_ : Optional[Any] = self.tokenajson(lowerCAmelCase__ , is_inner_value=lowerCAmelCase__ , added_vocab=lowerCAmelCase__ ) if value: if len(lowerCAmelCase__ ) == 1: lowercase_ : str = value[0] lowercase_ : Tuple = value else: # leaf nodes lowercase_ : List[Any] = [] for leaf in content.split(R'''<sep/>''' ): lowercase_ : Union[str, Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowercase_ : Tuple = leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase__ ) if len(output[key] ) == 1: lowercase_ : Tuple = output[key][0] lowercase_ : Tuple = tokens[tokens.find(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowerCAmelCase__ , added_vocab=lowerCAmelCase__ ) if len(lowerCAmelCase__ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _snake_case ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase__ , ) return self.image_processor_class @property def _snake_case ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase__ , ) return self.image_processor
367
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__SCREAMING_SNAKE_CASE ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
264
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def SCREAMING_SNAKE_CASE_ (UpperCamelCase=32 , UpperCamelCase=10 , UpperCamelCase=100 , UpperCamelCase=1026 , UpperCamelCase=True , UpperCamelCase="data/tokenized_stories_train_wikitext103.jbl" , UpperCamelCase="igf_context_pairs.jbl" , ) -> List[str]: set_seed(3 ) # generate train_data and objective_set lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = generate_datasets( UpperCamelCase , UpperCamelCase , number=UpperCamelCase , min_len=1026 , trim=UpperCamelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCamelCase__ : Any = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model lowerCamelCase__ : Optional[int] = load_gpta("""gpt2""" ).to(UpperCamelCase ) print("""computing perplexity on objective set""" ) lowerCamelCase__ : Dict = compute_perplexity(UpperCamelCase , UpperCamelCase , UpperCamelCase ).item() print("""perplexity on objective set:""" , UpperCamelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=15 , UpperCamelCase=128 , UpperCamelCase=100 , UpperCamelCase="igf_model.pt" , ) -> str: set_seed(42 ) # Load pre-trained model lowerCamelCase__ : Optional[int] = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model lowerCamelCase__ : List[Any] = SecondaryLearner(UpperCamelCase ) # Train secondary learner lowerCamelCase__ : List[str] = train_secondary_learner( UpperCamelCase , UpperCamelCase , max_epochs=UpperCamelCase , batch_size=UpperCamelCase , eval_freq=100 , igf_model_path=UpperCamelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=32 , UpperCamelCase=1000 , UpperCamelCase=16 , UpperCamelCase=1.0 , UpperCamelCase=recopy_gpta , UpperCamelCase=None , UpperCamelCase=10 , UpperCamelCase="gpt2_finetuned.pt" , ) -> List[Any]: lowerCamelCase__ : List[str] = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) lowerCamelCase__ : Union[str, Any] = RandomSampler(UpperCamelCase ) lowerCamelCase__ : str = DataLoader(UpperCamelCase , sampler=UpperCamelCase ) lowerCamelCase__ : Optional[int] = max_steps // (len(UpperCamelCase )) + 1 lowerCamelCase__ : int = 0 lowerCamelCase__ : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = recopy_model(UpperCamelCase , UpperCamelCase , UpperCamelCase ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCamelCase ) secondary_learner.eval() lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Any = 0 lowerCamelCase__ : Optional[int] = [] lowerCamelCase__ : List[Any] = [] # Compute the performance of the transformer model at the beginning lowerCamelCase__ : Optional[int] = compute_perplexity(UpperCamelCase , UpperCamelCase , UpperCamelCase ) test_perps.append(UpperCamelCase ) print("""Test perplexity, step""" , UpperCamelCase , """:""" , UpperCamelCase ) for epoch in range(int(UpperCamelCase ) ): for step, example in enumerate(UpperCamelCase ): torch.cuda.empty_cache() lowerCamelCase__ : Optional[int] = random.randint(0 , example.size(2 ) - context_len - 1 ) lowerCamelCase__ : Dict = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCamelCase__ : int = model(UpperCamelCase , labels=UpperCamelCase ) lowerCamelCase__ : Dict = True if secondary_learner is not None: lowerCamelCase__ : str = secondary_learner.forward( torch.tensor(UpperCamelCase , dtype=torch.long , device=UpperCamelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCamelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowerCamelCase__ : List[str] = -1 if predicted_q < threshold: lowerCamelCase__ : str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowerCamelCase__ : Optional[int] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCamelCase__ : Optional[Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCamelCase__ : Any = compute_perplexity(UpperCamelCase , UpperCamelCase , UpperCamelCase ) test_perps.append(UpperCamelCase ) print("""Test perplexity, step""" , UpperCamelCase , """:""" , UpperCamelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , UpperCamelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def SCREAMING_SNAKE_CASE_ () -> List[Any]: lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=UpperCamelCase , default=UpperCamelCase , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=UpperCamelCase , default=UpperCamelCase , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=UpperCamelCase , type=UpperCamelCase , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=UpperCamelCase , default=UpperCamelCase , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=32 , type=UpperCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=100 , type=UpperCamelCase , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=100 , type=UpperCamelCase , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1000 , type=UpperCamelCase , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=128 , type=UpperCamelCase , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=16 , type=UpperCamelCase , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=10 , type=UpperCamelCase , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=100 , type=UpperCamelCase , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1026 , type=UpperCamelCase , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=15 , type=UpperCamelCase , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=UpperCamelCase , type=UpperCamelCase , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=UpperCamelCase , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=UpperCamelCase , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=UpperCamelCase , type=UpperCamelCase , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=UpperCamelCase , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner lowerCamelCase__ : int = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner lowerCamelCase__ : List[Any] = training_secondary_learner( UpperCamelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model lowerCamelCase__ : List[Any] = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowerCamelCase__ , lowerCamelCase__ : List[str] = generate_datasets( context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1026 , trim=UpperCamelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCamelCase , UpperCamelCase , UpperCamelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=UpperCamelCase , secondary_learner=UpperCamelCase , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
41
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class snake_case : """simple docstring""" @staticmethod def snake_case ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" pass def __snake_case ( UpperCAmelCase_ : List[Any] ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a_ : Dict = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model=UpperCamelCase , tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) lowerCamelCase_ = "What is the placebo?" lowerCamelCase_ = [ { "image": load_image(UpperCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = dqa_pipeline(UpperCamelCase , top_k=2 ) self.assertEqual( UpperCamelCase , [ [ {"score": ANY(UpperCamelCase ), "answer": ANY(UpperCamelCase ), "start": ANY(UpperCamelCase ), "end": ANY(UpperCamelCase )}, {"score": ANY(UpperCamelCase ), "answer": ANY(UpperCamelCase ), "start": ANY(UpperCamelCase ), "end": ANY(UpperCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "How many cats are there?" lowerCamelCase_ = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , UpperCamelCase ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , UpperCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCamelCase_ = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(UpperCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCamelCase_ = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , words=UpperCamelCase , boxes=UpperCamelCase , top_k=2 ) self.assertEqual(UpperCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=UpperCamelCase ) lowerCamelCase_ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=UpperCamelCase , revision="3dc6de3" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCamelCase_ = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): """simple docstring""" lowerCamelCase_ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=UpperCamelCase ) lowerCamelCase_ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=UpperCamelCase , revision="3dc6de3" , max_seq_len=50 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(UpperCamelCase ) , UpperCamelCase , "" ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def snake_case ( self ): """simple docstring""" lowerCamelCase_ = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = "What is the invoice number?" lowerCamelCase_ = dqa_pipeline(image=UpperCamelCase , question=UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(UpperCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def snake_case ( self ): """simple docstring""" pass
55
0
"""simple docstring""" def lowercase ( A_ = 10 , A_ = 22 )-> int: '''simple docstring''' a : str = range(1 , A_ ) a : List[Any] = range(1 , A_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
226
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowercase = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def lowercase ( A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' a : List[str] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): a : str = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , A_ , ) is not None ): a : List[Any] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: a : str = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files a : Tuple = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] a : str = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed a : int = True if not attribute_used: a : Dict = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: a : Optional[int] = True elif attribute in ["tie_word_embeddings"] and default_value is False: a : List[Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: a : str = True elif attribute.endswith("_token_id" ): a : str = True # configuration class specific cases if not case_allowed: a : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) a : Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowercase ( A_ )-> Tuple: '''simple docstring''' a : Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters ) a : Any = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] a : str = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass a : Dict = {} if len(config_class.attribute_map ) > 0: a : int = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files a : int = inspect.getsourcefile(A_ ) a : Union[str, Any] = os.path.dirname(A_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. a : Optional[Any] = [os.path.join(A_ , A_ ) for fn in os.listdir(A_ ) if fn.startswith("modeling_" )] # Get the source code strings a : Tuple = [] for path in modeling_paths: if os.path.isfile(A_ ): with open(A_ ) as fp: modeling_sources.append(fp.read() ) a : Optional[Any] = [] for config_param, default_value in zip(A_ , A_ ): # `attributes` here is all the variant names for `config_param` a : str = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(A_ , A_ , A_ , A_ ): unused_attributes.append(attributes[0] ) return sorted(A_ ) def lowercase ( )-> str: '''simple docstring''' a : List[Any] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) a : str = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda A_ : inspect.isclass(A_ ) and issubclass(A_ , A_ ) and inspect.getmodule(A_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: a : Union[str, Any] = check_config_attributes_being_used(A_ ) if len(A_ ) > 0: a : Dict = unused_attributes if len(A_ ) > 0: a : Union[str, Any] = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(A_ ) if __name__ == "__main__": check_config_attributes()
226
1
'''simple docstring''' def _a( UpperCamelCase__ : int = 1_0_0_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =2**power SCREAMING_SNAKE_CASE__ : Union[str, Any] =str(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =list(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =0 for i in list_num: sum_of_num += int(UpperCamelCase__ ) return sum_of_num if __name__ == "__main__": a_ = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) a_ = solution(power) print('Sum of the digits is: ', result)
152
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser a_ = re.compile(R'\s+') def _a( UpperCamelCase__ : str ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(UpperCamelCase__, '''''', example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def _a( UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =[len(UpperCamelCase__ ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(UpperCamelCase__ ), "line_max": max(UpperCamelCase__ )} def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Any ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Optional[Any]=5 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''auto-generated''', '''autogenerated''', '''automatically generated'''] SCREAMING_SNAKE_CASE__ : Dict =example['''content'''].splitlines() for _, line in zip(range(UpperCamelCase__ ), UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def _a( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple=5, UpperCamelCase__ : Optional[Any]=0.0_5 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =['''unit tests''', '''test file''', '''configuration file'''] SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines() SCREAMING_SNAKE_CASE__ : List[str] =0 SCREAMING_SNAKE_CASE__ : Optional[Any] =0 # first test for _, line in zip(range(UpperCamelCase__ ), UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test SCREAMING_SNAKE_CASE__ : List[str] =example['''content'''].count('''\n''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =['''def ''', '''class ''', '''for ''', '''while '''] SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Dict=4 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =example['''content'''].splitlines() SCREAMING_SNAKE_CASE__ : Optional[Any] =0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def _a( UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =tokenizer(example['''content'''], truncation=UpperCamelCase__ )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] =len(example['''content'''] ) / len(UpperCamelCase__ ) return {"ratio": ratio} def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict ={} results.update(get_hash(UpperCamelCase__ ) ) results.update(line_stats(UpperCamelCase__ ) ) results.update(alpha_stats(UpperCamelCase__ ) ) results.update(char_token_ratio(UpperCamelCase__ ) ) results.update(is_autogenerated(UpperCamelCase__ ) ) results.update(is_config_or_test(UpperCamelCase__ ) ) results.update(has_no_keywords(UpperCamelCase__ ) ) results.update(has_few_assignments(UpperCamelCase__ ) ) return results def _a( UpperCamelCase__ : Tuple, UpperCamelCase__ : List[Any], UpperCamelCase__ : str ): '''simple docstring''' if not check_uniques(UpperCamelCase__, UpperCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def _a( UpperCamelCase__ : str ): '''simple docstring''' with open(UpperCamelCase__, '''rb''' ) as f_in: with gzip.open(str(UpperCamelCase__ ) + '''.gz''', '''wb''', compresslevel=6 ) as f_out: shutil.copyfileobj(UpperCamelCase__, UpperCamelCase__ ) os.unlink(UpperCamelCase__ ) # Settings a_ = HfArgumentParser(PreprocessingArguments) a_ = parser.parse_args() if args.num_workers is None: a_ = multiprocessing.cpu_count() a_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset a_ = time.time() a_ = load_dataset(args.dataset_name, split='train') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing a_ = time.time() a_ = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes a_ = set(ds.unique('hash')) a_ = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics a_ = time.time() a_ = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: a_ = time.time() a_ , a_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file a_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) a_ = output_dir / 'data' data_dir.mkdir(exist_ok=True) a_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): a_ = str(data_dir / F'''file-{file_number+1:012}.json''') a_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
152
1
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case : Tuple = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" snake_case : List[str] = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert("RGB" ) return image def __lowerCAmelCase ( lowercase : List[str] ) -> Dict: """simple docstring""" snake_case : Any = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def __lowerCAmelCase ( lowercase : List[str] , lowercase : List[str] , lowercase : Tuple ) -> Optional[Any]: """simple docstring""" snake_case : Tuple = dct.pop(lowercase ) snake_case : Optional[int] = val def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases snake_case : Any = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) snake_case : int = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict snake_case : Optional[int] = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) ) snake_case : Union[str, Any] = qkv_bias def __lowerCAmelCase ( lowercase : List[Any] , lowercase : Optional[int] ) -> List[str]: """simple docstring""" snake_case : str = 364 if "coco" in model_name else 224 snake_case : Optional[int] = BlipaVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: snake_case : int = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=lowercase ).to_dict() elif "opt-6.7b" in model_name: snake_case : Dict = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=lowercase ).to_dict() elif "t5-xl" in model_name: snake_case : Dict = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: snake_case : str = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() snake_case : List[Any] = BlipaConfig(vision_config=lowercase , text_config=lowercase ) return config, image_size @torch.no_grad() def __lowerCAmelCase ( lowercase : Any , lowercase : Union[str, Any]=None , lowercase : Optional[Any]=False ) -> str: """simple docstring""" snake_case : int = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) snake_case : Any = tokenizer("\n" , add_special_tokens=lowercase ).input_ids[0] snake_case ,snake_case : List[str] = get_blipa_config(lowercase , eos_token_id=lowercase ) snake_case : List[str] = BlipaForConditionalGeneration(lowercase ).eval() snake_case : str = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } snake_case ,snake_case : Union[str, Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) snake_case : List[Any] = "cuda" if torch.cuda.is_available() else "cpu" snake_case ,snake_case ,snake_case : Optional[int] = load_model_and_preprocess( name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase ) original_model.eval() print("Done!" ) # update state dict keys snake_case : int = original_model.state_dict() snake_case : Optional[int] = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): snake_case : Optional[int] = state_dict.pop(lowercase ) if key.startswith("Qformer.bert" ): snake_case : Union[str, Any] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: snake_case : int = key.replace("self" , "attention" ) if "opt_proj" in key: snake_case : str = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: snake_case : Tuple = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): snake_case : Optional[Any] = key.replace("opt" , "language" ) if key.startswith("t5" ): snake_case : Optional[Any] = key.replace("t5" , "language" ) snake_case : Tuple = val # read in qv biases read_in_q_v_bias(lowercase , lowercase ) snake_case ,snake_case : Optional[Any] = hf_model.load_state_dict(lowercase , strict=lowercase ) assert len(lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] snake_case : List[Any] = load_demo_image() snake_case : List[str] = vis_processors["eval"](lowercase ).unsqueeze(0 ).to(lowercase ) snake_case : Optional[int] = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(lowercase ) # create processor snake_case : List[Any] = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=lowercase , image_std=lowercase ) snake_case : Optional[int] = BlipaProcessor(image_processor=lowercase , tokenizer=lowercase ) snake_case : List[str] = processor(images=lowercase , return_tensors="pt" ).pixel_values.to(lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase , lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "opt" in model_name: snake_case : List[str] = original_model({"image": original_pixel_values, "text_input": [""]} ).logits snake_case : List[str] = hf_model(lowercase , lowercase ).logits else: snake_case : int = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits snake_case : Tuple = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) snake_case : Dict = hf_model(lowercase , lowercase , labels=lowercase ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": snake_case : str = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowercase ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": snake_case : int = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowercase ) else: # cast to same type snake_case : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(lowercase ) , lowercase , atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) snake_case : Dict = "" snake_case : List[Any] = tokenizer(lowercase , return_tensors="pt" ).input_ids.to(lowercase ) snake_case : Any = original_model.generate({"image": original_pixel_values} ) snake_case : Dict = hf_model.generate( lowercase , lowercase , do_sample=lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , lowercase ) snake_case : Any = input_ids.shape[1] snake_case : List[Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase ) snake_case : str = [text.strip() for text in output_text] print("HF generation:" , lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() __snake_case = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) __snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
112
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __snake_case = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , ) -> Tuple: '''simple docstring''' snake_case : List[Any] = [file for file in os.listdir(UpperCamelCase__ ) if os.path.isfile(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) )] if identifier is not None: snake_case : Optional[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): for n_ in n_identifier: snake_case : str = [file for file in files if n_ not in file] else: snake_case : str = [file for file in files if n_identifier not in file] snake_case : Tuple = ignore_files or [] ignore_files.append("__init__.py" ) snake_case : Optional[Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , UpperCamelCase__ ) if only_modules: snake_case : str = file.split("." )[0] try: snake_case : Optional[int] = getattr(UpperCamelCase__ , UpperCamelCase__ ) snake_case : str = doctest.DocTestSuite(UpperCamelCase__ ) snake_case : Optional[Any] = unittest.TextTestRunner().run(UpperCamelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: snake_case : Tuple = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Tuple = Path("src/transformers" ) snake_case : List[Any] = "modeling" snake_case : Dict = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ , ignore_files=UpperCamelCase__ ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = Path("src/transformers" ) snake_case : Optional[Any] = "tokenization" self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = Path("src/transformers" ) snake_case : Optional[Any] = "configuration" self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = Path("src/transformers" ) snake_case : List[str] = ["configuration", "modeling", "tokenization"] self.analyze_directory(UpperCamelCase__ , n_identifier=UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Any = Path("docs/source" ) snake_case : Tuple = ["favicon.ico"] self.analyze_directory(UpperCamelCase__ , ignore_files=UpperCamelCase__ , only_modules=UpperCamelCase__ )
112
1
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : list[Any] = [] UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return self.head == self.tail def lowercase_ ( self : Dict , _A : Any ): '''simple docstring''' self.data.append(_A ) UpperCAmelCase__ : Optional[int] = self.tail + 1 def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.data[self.head] UpperCAmelCase__ : Optional[Any] = self.head + 1 return ret def lowercase_ ( self : List[str] ): '''simple docstring''' return self.tail - self.head def lowercase_ ( self : Optional[int] ): '''simple docstring''' print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class lowerCamelCase_ : def __init__( self : Any , _A : Any ): '''simple docstring''' UpperCAmelCase__ : str = data UpperCAmelCase__ : MyNode | None = None UpperCAmelCase__ : MyNode | None = None UpperCAmelCase__ : int = 1 def lowercase_ ( self : List[str] ): '''simple docstring''' return self.data def lowercase_ ( self : Tuple ): '''simple docstring''' return self.left def lowercase_ ( self : Optional[int] ): '''simple docstring''' return self.right def lowercase_ ( self : List[Any] ): '''simple docstring''' return self.height def lowercase_ ( self : Any , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Any = data def lowercase_ ( self : List[str] , _A : MyNode | None ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = node def lowercase_ ( self : str , _A : MyNode | None ): '''simple docstring''' UpperCAmelCase__ : int = node def lowercase_ ( self : Optional[int] , _A : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = height def a__ ( lowerCAmelCase__ ) -> int: if node is None: return 0 return node.get_height() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if a > b: return a return b def a__ ( lowerCAmelCase__ ) -> MyNode: print('''left rotation node:''' , node.get_data() ) UpperCAmelCase__ : Optional[Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def a__ ( lowerCAmelCase__ ) -> MyNode: print('''right rotation node:''' , node.get_data() ) UpperCAmelCase__ : List[str] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def a__ ( lowerCAmelCase__ ) -> MyNode: UpperCAmelCase__ : int = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCAmelCase__ ) ) return right_rotation(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> MyNode: UpperCAmelCase__ : Union[str, Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCAmelCase__ ) ) return left_rotation(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> MyNode | None: if node is None: return MyNode(lowerCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected UpperCAmelCase__ : Union[str, Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child UpperCAmelCase__ : Tuple = right_rotation(lowerCAmelCase__ ) else: UpperCAmelCase__ : Any = lr_rotation(lowerCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , lowerCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: UpperCAmelCase__ : str = node.get_right() assert right_child is not None if data < right_child.get_data(): UpperCAmelCase__ : Optional[Any] = rl_rotation(lowerCAmelCase__ ) else: UpperCAmelCase__ : str = left_rotation(lowerCAmelCase__ ) UpperCAmelCase__ : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) return node def a__ ( lowerCAmelCase__ ) -> Any: while True: UpperCAmelCase__ : Optional[int] = root.get_right() if right_child is None: break UpperCAmelCase__ : str = right_child return root.get_data() def a__ ( lowerCAmelCase__ ) -> Any: while True: UpperCAmelCase__ : List[str] = root.get_left() if left_child is None: break UpperCAmelCase__ : int = left_child return root.get_data() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> MyNode | None: UpperCAmelCase__ : Any = root.get_left() UpperCAmelCase__ : Dict = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: UpperCAmelCase__ : str = get_left_most(lowerCAmelCase__ ) root.set_data(lowerCAmelCase__ ) root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) elif left_child is not None: UpperCAmelCase__ : int = left_child elif right_child is not None: UpperCAmelCase__ : Optional[int] = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) if get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): UpperCAmelCase__ : Any = left_rotation(lowerCAmelCase__ ) else: UpperCAmelCase__ : Tuple = rl_rotation(lowerCAmelCase__ ) elif get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): UpperCAmelCase__ : Dict = right_rotation(lowerCAmelCase__ ) else: UpperCAmelCase__ : Dict = lr_rotation(lowerCAmelCase__ ) UpperCAmelCase__ : int = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCAmelCase__ ) return root class lowerCamelCase_ : def __init__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : MyNode | None = None def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return get_height(self.root ) def lowercase_ ( self : Optional[Any] , _A : Any ): '''simple docstring''' print('''insert:''' + str(_A ) ) UpperCAmelCase__ : Dict = insert_node(self.root , _A ) def lowercase_ ( self : Optional[Any] , _A : Any ): '''simple docstring''' print('''delete:''' + str(_A ) ) if self.root is None: print('''Tree is empty!''' ) return UpperCAmelCase__ : Optional[Any] = del_node(self.root , _A ) def __str__( self : List[str] , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' UpperCAmelCase__ : Dict = '''''' UpperCAmelCase__ : Any = MyQueue() q.push(self.root ) UpperCAmelCase__ : str = self.get_height() if layer == 0: return output UpperCAmelCase__ : Optional[int] = 0 while not q.is_empty(): UpperCAmelCase__ : Optional[int] = q.pop() UpperCAmelCase__ : Optional[Any] = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(_A ) q.push(_A ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space UpperCAmelCase__ : Optional[int] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , _A ) - 1: UpperCAmelCase__ : Union[str, Any] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def a__ ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() UpperCamelCase__ = AVLtree() UpperCamelCase__ = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
181
'''simple docstring''' # Algorithm for the pigeonhole sorting def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Any = min(lowerCAmelCase__ ) # min() finds the minimum value UpperCAmelCase__ : Optional[int] = max(lowerCAmelCase__ ) # max() finds the maximum value UpperCAmelCase__ : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size UpperCAmelCase__ : Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. UpperCAmelCase__ : Optional[int] = 0 for count in range(lowerCAmelCase__ ): while holes[count] > 0: holes[count] -= 1 UpperCAmelCase__ : Dict = count + min_val i += 1 def a__ ( ) -> Union[str, Any]: UpperCAmelCase__ : List[str] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCAmelCase__ ) print('''Sorted order is:''' , ''' '''.join(lowerCAmelCase__ ) ) if __name__ == "__main__": main()
181
1
import string def snake_case_ ( lowerCAmelCase_ : str ): for key in range(len(string.ascii_uppercase ) ): __lowercase : Any = """""" for symbol in message: if symbol in string.ascii_uppercase: __lowercase : Union[str, Any] = string.ascii_uppercase.find(lowerCAmelCase_ ) __lowercase : Any = num - key if num < 0: __lowercase : Optional[int] = num + len(string.ascii_uppercase ) __lowercase : List[Any] = translated + string.ascii_uppercase[num] else: __lowercase : Union[str, Any] = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def snake_case_ ( ): __lowercase : int = input("""Encrypted message: """ ) __lowercase : int = message.upper() decrypt(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
306
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
1
def lowerCAmelCase_ ( __a , __a , __a ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__a ) ) def lowerCAmelCase_ ( __a , __a , __a , __a ) -> bool: """simple docstring""" if index == len(__a ): return True # Recursive Step for i in range(__a ): if valid_coloring(graph[index] , __a , __a ): # Color current vertex lowerCamelCase__: int =i # Validate coloring if util_color(__a , __a , __a , index + 1 ): return True # Backtrack lowerCamelCase__: List[Any] =-1 return False def lowerCAmelCase_ ( __a , __a ) -> list[int]: """simple docstring""" lowerCamelCase__: Dict =[-1] * len(__a ) if util_color(__a , __a , __a , 0 ): return colored_vertices return []
10
"""simple docstring""" import sys lowercase__ : Dict = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __lowercase ( _a ): snake_case_ : List[Any] = 1 for digit in s: product *= int(_a ) return product def __lowercase ( _a = N ): snake_case_ : Optional[int] = -sys.maxsize - 1 snake_case_ : str = n[:13] snake_case_ : List[Any] = 13 while cur_index < len(_a ) - 13: if int(n[cur_index] ) >= int(substr[0] ): snake_case_ : int = substr[1:] + n[cur_index] cur_index += 1 else: snake_case_ : Optional[Any] = max(_a , str_eval(_a ) ) snake_case_ : Any = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'{solution() = }')
264
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def UpperCamelCase (lowercase_: int = 3 ) -> qiskit.result.counts.Counts: if isinstance(_snake_case , _snake_case ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(_snake_case ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) A__ : List[str] = QuantumRegister(_snake_case , """qr""" ) A__ : Tuple = ClassicalRegister(_snake_case , """cr""" ) A__ : int = QuantumCircuit(_snake_case , _snake_case ) A__ : Tuple = number_of_qubits for i in range(_snake_case ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_snake_case ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_snake_case , _snake_case ) # simulate with 10000 shots A__ : Optional[int] = Aer.get_backend("""qasm_simulator""" ) A__ : Any = execute(_snake_case , _snake_case , shots=10000 ) return job.result().get_counts(_snake_case ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
352
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _a : '''simple docstring''' def __init__( self , A__ , ): A__ : Any = parent A__ : Any = 13 A__ : Optional[Any] = 7 A__ : Union[str, Any] = 30 A__ : str = self.seq_length + self.mem_len A__ : Dict = 15 A__ : int = True A__ : Tuple = True A__ : Union[str, Any] = 99 A__ : Optional[Any] = [10, 50, 80] A__ : str = 32 A__ : Tuple = 32 A__ : Union[str, Any] = 4 A__ : Optional[Any] = 8 A__ : int = 128 A__ : List[Any] = 2 A__ : List[str] = 2 A__ : int = None A__ : List[str] = 1 A__ : Union[str, Any] = 0 A__ : List[str] = 3 A__ : int = self.vocab_size - 1 A__ : Optional[Any] = 0.0_1 def __A ( self ): A__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[Any] = None if self.use_labels: A__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , A__ , A__ , A__ , A__ ): A__ : Dict = TFTransfoXLModel(A__ ) A__ , A__ : Tuple = model(A__ ).to_tuple() A__ : List[str] = {"""input_ids""": input_ids_a, """mems""": mems_a} A__ , A__ : str = model(A__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , A__ , A__ , A__ , A__ ): A__ : Optional[int] = TFTransfoXLLMHeadModel(A__ ) A__ , A__ : int = model(A__ ).to_tuple() A__ : int = {"""input_ids""": input_ids_a, """labels""": lm_labels} A__ , A__ : Optional[Any] = model(A__ ).to_tuple() A__ , A__ : Union[str, Any] = model([input_ids_a, mems_a] ).to_tuple() A__ : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} A__ , A__ : Tuple = model(A__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , A__ , A__ , A__ , A__ ): A__ : Any = TFTransfoXLForSequenceClassification(A__ ) A__ : Optional[Any] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): A__ : Optional[Any] = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__)) : List[Any] = config_and_inputs A__ : int = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) UpperCAmelCase__: Optional[Any] = () if is_tf_available() else () UpperCAmelCase__: int = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented UpperCAmelCase__: Optional[int] = False UpperCAmelCase__: Optional[int] = False UpperCAmelCase__: Tuple = False UpperCAmelCase__: List[str] = False def __A ( self , A__ , A__ , A__ , A__ , A__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): A__ : Tuple = TFTransfoXLModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=A__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*A__ ) def __A ( self ): self.model_tester.set_seed() A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*A__ ) def __A ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*A__ ) def __A ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() A__ : Union[str, Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: A__ : Any = model_class(A__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: A__ : Optional[Any] = model.get_output_embeddings() assert isinstance(A__ , tf.keras.layers.Layer ) A__ : Tuple = model.get_bias() assert name is None else: A__ : Dict = model.get_output_embeddings() assert x is None A__ : int = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : List[Any] = TFTransfoXLModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class _a (unittest.TestCase ): '''simple docstring''' @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): A__ : List[Any] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off A__ : Tuple = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off A__ : Dict = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> A__ : Any = model.generate(A__ , max_length=200 , do_sample=A__ ) self.assertListEqual(output_ids[0].numpy().tolist() , A__ )
141
0
def a ( _UpperCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
226
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a_ , '''width_multiplier''' ) ) class UpperCAmelCase__ : '''simple docstring''' def __init__( self : str , a_ : Any , a_ : Tuple=13 , a_ : Tuple=64 , a_ : Optional[int]=2 , a_ : List[str]=3 , a_ : Optional[Any]="swish" , a_ : Optional[Any]=3 , a_ : str=32 , a_ : Dict=0.1 , a_ : int=0.0_2 , a_ : Tuple=True , a_ : List[Any]=True , a_ : Optional[int]=10 , a_ : Optional[int]=None , a_ : Dict=0.2_5 , a_ : Tuple=0.0 , a_ : List[Any]=0.0 , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : List[Any] = patch_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : Any = make_divisible(5_12 * width_multiplier , divisor=8 ) __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Dict = conv_kernel_size __UpperCAmelCase : Optional[Any] = output_stride __UpperCAmelCase : Dict = classifier_dropout_prob __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : Tuple = num_labels __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Optional[Any] = scope __UpperCAmelCase : Optional[Any] = width_multiplier __UpperCAmelCase : List[str] = ffn_dropout __UpperCAmelCase : Dict = attn_dropout def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def snake_case__ ( self : Optional[Any] , a_ : Dict , a_ : List[Any] , a_ : Dict , a_ : Tuple ): '''simple docstring''' __UpperCAmelCase : List[str] = MobileViTVaModel(config=a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : Tuple = model(a_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : Union[str, Any] , a_ : Dict , a_ : Union[str, Any] , a_ : str , a_ : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : List[str] = MobileViTVaForImageClassification(a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : List[Any] = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : str , a_ : List[str] , a_ : Optional[Any] , a_ : List[str] , a_ : int ): '''simple docstring''' __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : List[Any] = MobileViTVaForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __UpperCAmelCase : List[str] = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = config_and_inputs __UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = MobileViTVaModelTester(self ) __UpperCAmelCase : Union[str, Any] = MobileViTVaConfigTester(self , config_class=a_ , has_text_modality=a_ ) def snake_case__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def snake_case__ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def snake_case__ ( self : Tuple ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def snake_case__ ( self : Dict ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' pass def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(a_ ) __UpperCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Any = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def snake_case__ ( self : int ): '''simple docstring''' def check_hidden_states_output(a_ : List[Any] , a_ : List[Any] , a_ : Union[str, Any] ): __UpperCAmelCase : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(a_ , a_ ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : str = 5 self.assertEqual(len(a_ ) , a_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __UpperCAmelCase : Any = 2 for i in range(len(a_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(a_ , a_ , a_ ) def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @slow def snake_case__ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = MobileViTVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def a ( ): '''simple docstring''' __UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self : Optional[int] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( a_ ) __UpperCAmelCase : Optional[int] = self.default_image_processor __UpperCAmelCase : int = prepare_img() __UpperCAmelCase : Union[str, Any] = image_processor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**a_ ) # verify the logits __UpperCAmelCase : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a_ ) __UpperCAmelCase : Any = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) ) @slow def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : int = model.to(a_ ) __UpperCAmelCase : str = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Tuple = image_processor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**a_ ) __UpperCAmelCase : int = outputs.logits # verify the logits __UpperCAmelCase : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , a_ ) __UpperCAmelCase : List[Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=a_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-4 ) ) @slow def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Tuple = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : Optional[int] = model.to(a_ ) __UpperCAmelCase : List[Any] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Dict = image_processor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**a_ ) __UpperCAmelCase : Optional[Any] = outputs.logits.detach().cpu() __UpperCAmelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=a_ , target_sizes=[(50, 60)] ) __UpperCAmelCase : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , a_ ) __UpperCAmelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=a_ ) __UpperCAmelCase : Optional[int] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , a_ )
226
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__: Optional[Any] = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: List[str] = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __magic_name__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__: int = logging.get_logger(__name__) __magic_name__: Any = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} __magic_name__: Union[str, Any] = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } __magic_name__: Optional[Any] = { "abeja/gpt-neox-japanese-2.7b": 2_048, } def UpperCamelCase ( _A, _A ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Tuple = json.loads(f.read() ) __magic_name__ : Optional[Any] = collections.OrderedDict() __magic_name__ : List[str] = collections.OrderedDict() __magic_name__ : int = collections.OrderedDict() with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Tuple = f.readlines() __magic_name__ : Optional[int] = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(_A ): __magic_name__ : Dict = b __magic_name__ : Optional[Any] = idx for wd in b: __magic_name__ : Dict = idx return vocab, raw_vocab, ids_to_tokens, emoji class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|startoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> str: super().__init__( unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , do_clean_text=lowerCAmelCase__ , **lowerCAmelCase__ , ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) __magic_name__ : Dict = do_clean_text __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Union[str, Any] = load_vocab_and_emoji(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : str = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __magic_name__ ( self ) -> Union[str, Any]: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __magic_name__ ( self ) -> List[Any]: return dict(self.raw_vocab , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: return self.subword_tokenizer.tokenize(lowerCAmelCase__ , clean=self.do_clean_text ) def __magic_name__ ( self , lowerCAmelCase__ ) -> int: return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : int = """""".join(lowerCAmelCase__ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ ) -> List[int]: __magic_name__ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: __magic_name__ : int = input_ids[-self.model_max_length :] return input_ids def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: __magic_name__ : Dict = 0 if os.path.isdir(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: __magic_name__ : Optional[Any] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : Any = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) __magic_name__ : Optional[Any] = token_index writer.write(""",""".join(lowerCAmelCase__ ) + """\n""" ) index += 1 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , lowerCAmelCase__ ) return vocab_file, emoji_file class snake_case__ ( _lowerCAmelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: __magic_name__ : str = vocab # same as swe __magic_name__ : int = ids_to_tokens # same as bpe __magic_name__ : List[str] = emoji __magic_name__ : Optional[Any] = np.max([len(lowerCAmelCase__ ) for w in self.vocab.keys()] ) __magic_name__ : str = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) __magic_name__ : str = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) __magic_name__ : Any = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) __magic_name__ : List[str] = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __magic_name__ : Dict = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __magic_name__ : List[Any] = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) __magic_name__ : str = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" __magic_name__ : Dict = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" __magic_name__ : Optional[int] = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self ) -> int: return len(self.ids_to_tokens ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : Any = self.content_repattera.sub("""<URL>""" , lowerCAmelCase__ ) __magic_name__ : Any = self.content_repattera.sub("""<EMAIL>""" , lowerCAmelCase__ ) __magic_name__ : Dict = self.content_repattera.sub("""<TEL>""" , lowerCAmelCase__ ) __magic_name__ : Tuple = self.content_repattera.sub("""<DATE>""" , lowerCAmelCase__ ) __magic_name__ : str = self.content_repattera.sub("""<DATE>""" , lowerCAmelCase__ ) __magic_name__ : Tuple = self.content_repattera.sub("""<PRICE>""" , lowerCAmelCase__ ) __magic_name__ : Dict = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __magic_name__ : str = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Any: __magic_name__ : Union[str, Any] = text.replace(""" """ , """<SP>""" ) __magic_name__ : Optional[int] = text.replace(""" """ , """<SP>""" ) __magic_name__ : int = text.replace("""\r\n""" , """<BR>""" ) __magic_name__ : Optional[Any] = text.replace("""\n""" , """<BR>""" ) __magic_name__ : List[Any] = text.replace("""\r""" , """<BR>""" ) __magic_name__ : List[str] = text.replace("""\t""" , """<TAB>""" ) __magic_name__ : Optional[Any] = text.replace("""—""" , """ー""" ) __magic_name__ : int = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: __magic_name__ : List[Any] = text.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if clean: __magic_name__ : List[str] = self.clean_text(lowerCAmelCase__ ) def check_simbol(lowerCAmelCase__ ): __magic_name__ : int = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 2: __magic_name__ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2_a1 and c <= 0Xc2_bf) or (c >= 0Xc7_80 and c <= 0Xc7_83) or (c >= 0Xca_b9 and c <= 0Xcb_bf) or (c >= 0Xcc_80 and c <= 0Xcd_a2) ): return True return False def checkuae(lowerCAmelCase__ ): __magic_name__ : List[Any] = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 3: __magic_name__ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_80_80 and c <= 0Xe2_b0_7f: return True return False __magic_name__ : Optional[Any] = 0 __magic_name__ : List[str] = [] while pos < len(lowerCAmelCase__ ): __magic_name__ : Optional[int] = min(len(lowerCAmelCase__ ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 __magic_name__ : int = [] # (token_id, token, pos) for e in range(lowerCAmelCase__ , lowerCAmelCase__ , -1 ): __magic_name__ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase__ ) > 2: __magic_name__ : Union[str, Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCAmelCase__ ) > 0: # the smallest token_id is adopted __magic_name__ ,__magic_name__ ,__magic_name__ : str = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[0] )[0] result.append(lowerCAmelCase__ ) __magic_name__ : List[Any] = e else: __magic_name__ : Dict = pos + 1 __magic_name__ : str = text[pos:end] if check_simbol(lowerCAmelCase__ ): result.append("""<KIGOU>""" ) elif checkuae(lowerCAmelCase__ ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) __magic_name__ : List[str] = end return result def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__="\n" ) -> Optional[int]: __magic_name__ : Tuple = [] __magic_name__ : Tuple = [] __magic_name__ : str = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode("""utf-8""" , errors="""replace""" ) ) __magic_name__ : List[Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(lowerCAmelCase__ ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode("""utf-8""" , errors="""replace""" ) ) __magic_name__ : Union[str, Any] = """""".join(lowerCAmelCase__ ) return text
138
0
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def lowerCAmelCase_ ( _lowerCamelCase: int ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = precision __SCREAMING_SNAKE_CASE : List[str] = ceil(precision / 14 ) __SCREAMING_SNAKE_CASE : List[Any] = 42_68_80 * Decimal(1_00_05 ).sqrt() __SCREAMING_SNAKE_CASE : Optional[Any] = 1 __SCREAMING_SNAKE_CASE : List[str] = 13_59_14_09 __SCREAMING_SNAKE_CASE : int = Decimal(_lowerCamelCase ) for k in range(1 , _lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCamelCase__ : Any = 50 print(f"The first {n} digits of pi is: {pi(n)}")
112
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : Union[str, Any] = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Optional[Any] = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } UpperCamelCase__ : Optional[Any] = { '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } UpperCamelCase__ : Dict = { '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } UpperCamelCase__ : Optional[int] = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase__ : Optional[Any] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase__ : Any = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : str = VOCAB_FILES_NAMES _A : str = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A : Any = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _A : Any = DPRContextEncoderTokenizer class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Dict = VOCAB_FILES_NAMES _A : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _A : Tuple = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _A : Dict = DPRQuestionEncoderTokenizer UpperCamelCase__ : str = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase__ : List[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase__ : Any = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(lowerCamelCase__ ) class _UpperCamelCase : '''simple docstring''' def __call__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Union[bool, str] = False , lowerCAmelCase__ : Union[bool, str] = False , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[bool] = None , **lowerCAmelCase__ : str , ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) elif titles is None or texts is None: __SCREAMING_SNAKE_CASE : List[Any] = titles if texts is None else texts return super().__call__( lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [titles] __SCREAMING_SNAKE_CASE : Tuple = texts if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [texts] __SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = questions if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [questions] * n_passages assert len(lowerCAmelCase__ ) == len( lowerCAmelCase__ ), F"There should be as many titles than texts but got {len(lowerCAmelCase__ )} titles and {len(lowerCAmelCase__ )} texts." __SCREAMING_SNAKE_CASE : int = super().__call__(lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )["""input_ids"""] __SCREAMING_SNAKE_CASE : str = super().__call__(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )["""input_ids"""] __SCREAMING_SNAKE_CASE : Optional[Any] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] } if return_attention_mask is not False: __SCREAMING_SNAKE_CASE : int = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __SCREAMING_SNAKE_CASE : int = attention_mask return self.pad(lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : BatchEncoding , lowerCAmelCase__ : DPRReaderOutput , lowerCAmelCase__ : int = 1_6 , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : int = 4 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = reader_input["""input_ids"""] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = reader_output[:3] __SCREAMING_SNAKE_CASE : Tuple = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = sorted(range(lowerCAmelCase__ ) , reverse=lowerCAmelCase__ , key=relevance_logits.__getitem__ ) __SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __SCREAMING_SNAKE_CASE : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __SCREAMING_SNAKE_CASE : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __SCREAMING_SNAKE_CASE : List[Any] = sequence_ids.index(self.pad_token_id ) else: __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase__ , top_spans=lowerCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase__ , start_index=lowerCAmelCase__ , end_index=lowerCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase__ ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [] for start_index, start_score in enumerate(lowerCAmelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] , reverse=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" __SCREAMING_SNAKE_CASE : Optional[Any] = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' _A : Optional[int] = VOCAB_FILES_NAMES _A : int = READER_PRETRAINED_VOCAB_FILES_MAP _A : str = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : str = READER_PRETRAINED_INIT_CONFIGURATION _A : Dict = ['''input_ids''', '''attention_mask'''] _A : Tuple = DPRReaderTokenizer
112
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case : Optional[int] = LDMTextToImagePipeline snake_case : str = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } snake_case : Optional[int] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } snake_case : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS snake_case : Any = False def _lowerCamelCase ( self ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCamelCase__ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase__ = CLIPTextModel(__lowerCAmelCase ) UpperCamelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase__ = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): if str(__lowerCAmelCase ).startswith("""mps""" ): UpperCamelCase__ = torch.manual_seed(__lowerCAmelCase ) else: UpperCamelCase__ = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) UpperCamelCase__ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowerCamelCase ( self ): UpperCamelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = LDMTextToImagePipeline(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase__ = self.get_dummy_inputs(__lowerCAmelCase ) UpperCamelCase__ = pipe(**__lowerCAmelCase ).images UpperCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) UpperCamelCase__ = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=torch.floataa , __lowerCAmelCase=0 ): UpperCamelCase__ = torch.manual_seed(__lowerCAmelCase ) UpperCamelCase__ = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 32, 32) ) UpperCamelCase__ = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) UpperCamelCase__ = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowerCamelCase ( self ): UpperCamelCase__ = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase__ = self.get_inputs(__lowerCAmelCase ) UpperCamelCase__ = pipe(**__lowerCAmelCase ).images UpperCamelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) UpperCamelCase__ = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) UpperCamelCase__ = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _lowerCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=torch.floataa , __lowerCAmelCase=0 ): UpperCamelCase__ = torch.manual_seed(__lowerCAmelCase ) UpperCamelCase__ = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 32, 32) ) UpperCamelCase__ = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) UpperCamelCase__ = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowerCamelCase ( self ): UpperCamelCase__ = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase__ = self.get_inputs(__lowerCAmelCase ) UpperCamelCase__ = pipe(**__lowerCAmelCase ).images[0] UpperCamelCase__ = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) UpperCamelCase__ = np.abs(expected_image - image ).max() assert max_diff < 1E-3
352
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Any = """xlnet""" snake_case : Optional[Any] = ["""mems"""] snake_case : Any = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowerCAmelCase=32000 , __lowerCAmelCase=1024 , __lowerCAmelCase=24 , __lowerCAmelCase=16 , __lowerCAmelCase=4096 , __lowerCAmelCase="gelu" , __lowerCAmelCase=True , __lowerCAmelCase="bi" , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=-1 , __lowerCAmelCase=False , __lowerCAmelCase="last" , __lowerCAmelCase=True , __lowerCAmelCase="tanh" , __lowerCAmelCase=0.1 , __lowerCAmelCase=5 , __lowerCAmelCase=5 , __lowerCAmelCase=5 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = n_layer UpperCamelCase__ = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) UpperCamelCase__ = d_model // n_head UpperCamelCase__ = ff_activation UpperCamelCase__ = d_inner UpperCamelCase__ = untie_r UpperCamelCase__ = attn_type UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = dropout UpperCamelCase__ = mem_len UpperCamelCase__ = reuse_len UpperCamelCase__ = bi_data UpperCamelCase__ = clamp_len UpperCamelCase__ = same_length UpperCamelCase__ = summary_type UpperCamelCase__ = summary_use_proj UpperCamelCase__ = summary_activation UpperCamelCase__ = summary_last_dropout UpperCamelCase__ = start_n_top UpperCamelCase__ = end_n_top UpperCamelCase__ = bos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , __lowerCAmelCase , ) UpperCamelCase__ = kwargs["""use_cache"""] UpperCamelCase__ = use_mems_eval UpperCamelCase__ = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def _lowerCamelCase ( self ): logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowerCamelCase ( self , __lowerCAmelCase ): # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
87
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( snake_case__ ,snake_case__=False ,snake_case__=False ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = """backbone.""" if is_semantic else """""" _SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'{prefix}blocks.{i}.norm1.weight', F'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm1.bias', F'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.weight', F'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.bias', F'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.weight', F'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.bias', F'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.weight', F'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.bias', F'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.weight', F'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.bias', F'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (F'{prefix}cls_token', """beit.embeddings.cls_token"""), (F'{prefix}patch_embed.proj.weight', """beit.embeddings.patch_embeddings.projection.weight"""), (F'{prefix}patch_embed.proj.bias', """beit.embeddings.patch_embeddings.projection.bias"""), (F'{prefix}pos_embed', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=False ,snake_case__=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): _SCREAMING_SNAKE_CASE = """backbone.""" if is_semantic else """""" # queries, keys and values _SCREAMING_SNAKE_CASE = state_dict.pop(F'{prefix}blocks.{i}.attn.qkv.weight' ) _SCREAMING_SNAKE_CASE = state_dict.pop(F'{prefix}blocks.{i}.attn.q_bias' ) _SCREAMING_SNAKE_CASE = state_dict.pop(F'{prefix}blocks.{i}.attn.v_bias' ) _SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] _SCREAMING_SNAKE_CASE = q_bias _SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] _SCREAMING_SNAKE_CASE = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained _SCREAMING_SNAKE_CASE = state_dict.pop(F'{prefix}blocks.{i}.gamma_1' ) _SCREAMING_SNAKE_CASE = state_dict.pop(F'{prefix}blocks.{i}.gamma_2' ) _SCREAMING_SNAKE_CASE = gamma_a _SCREAMING_SNAKE_CASE = gamma_a def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = dct.pop(snake_case__ ) _SCREAMING_SNAKE_CASE = val def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(snake_case__ ,stream=snake_case__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=False ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = False if """rvlcdip""" in checkpoint_url else True _SCREAMING_SNAKE_CASE = BeitConfig(use_absolute_position_embeddings=snake_case__ ,use_mask_token=snake_case__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 # labels if "rvlcdip" in checkpoint_url: _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = """rvlcdip-id2label.json""" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(snake_case__ ,snake_case__ ,repo_type="""dataset""" ) ,"""r""" ) ) _SCREAMING_SNAKE_CASE = {int(snake_case__ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(snake_case__ ,map_location="""cpu""" )["""model"""] _SCREAMING_SNAKE_CASE = create_rename_keys(snake_case__ ,has_lm_head=snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ ,snake_case__ ,snake_case__ ) read_in_q_k_v(snake_case__ ,snake_case__ ,has_lm_head=snake_case__ ) # load HuggingFace model _SCREAMING_SNAKE_CASE = BeitForMaskedImageModeling(snake_case__ ) if has_lm_head else BeitForImageClassification(snake_case__ ) model.eval() model.load_state_dict(snake_case__ ) # Check outputs on an image _SCREAMING_SNAKE_CASE = BeitImageProcessor( size=config.image_size ,resample=PILImageResampling.BILINEAR ,do_center_crop=snake_case__ ) _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=snake_case__ ,return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = encoding["""pixel_values"""] _SCREAMING_SNAKE_CASE = model(snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.logits # verify logits _SCREAMING_SNAKE_CASE = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(snake_case__ ), "Shape of logits not as expected" Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: if has_lm_head: _SCREAMING_SNAKE_CASE = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: _SCREAMING_SNAKE_CASE = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(snake_case__ ,snake_case__ ) ,organization="""nielsr""" ,commit_message="""Add image processor""" ,use_temp_dir=snake_case__ ,) model.push_to_hub( repo_path_or_name=Path(snake_case__ ,snake_case__ ) ,organization="""nielsr""" ,commit_message="""Add model""" ,use_temp_dir=snake_case__ ,) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) UpperCamelCase = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
306
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __UpperCAmelCase = '''.''' if __name__ == "__main__": __UpperCAmelCase = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') __UpperCAmelCase = [] __UpperCAmelCase = [] with open(doctest_file_path) as fp: for line in fp: __UpperCAmelCase = line.strip() __UpperCAmelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __UpperCAmelCase = '''\n'''.join(non_existent_paths) raise ValueError(F"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
362
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=19, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> Optional[int]: UpperCamelCase : Any = parent UpperCamelCase : Optional[Any] = batch_size UpperCamelCase : Optional[Any] = seq_length UpperCamelCase : Tuple = is_training UpperCamelCase : List[str] = use_input_mask UpperCamelCase : Optional[int] = use_token_type_ids UpperCamelCase : Any = use_labels UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : int = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : List[str] = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : str = type_sequence_label_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : List[Any] = num_labels UpperCamelCase : Any = num_choices UpperCamelCase : Tuple = scope def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Optional[Any] = None if self.use_input_mask: UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None if self.use_labels: UpperCamelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size], self.num_choices ) UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = EsmConfig( vocab_size=33, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=SCREAMING_SNAKE_CASE_, esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False}, ) return config def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Union[str, Any] = EsmForProteinFolding(config=SCREAMING_SNAKE_CASE_ ).float() model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[int] = (EsmForProteinFolding,) if is_torch_available() else () UpperCAmelCase__ : int = () UpperCAmelCase__ : List[str] = {} if is_torch_available() else {} UpperCAmelCase__ : Optional[int] = False def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = EsmFoldModelTester(self ) UpperCamelCase : List[str] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> int: self.config_tester.run_common_tests() def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Does not support attention outputs' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def snake_case_ ( self ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('ESMFold only has one output format.' ) def snake_case_ ( self ) -> int: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold does not support input chunking.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> Any: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> List[Any]: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def snake_case_ ( self ) -> List[str]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Optional[Any]: pass @require_torch class lowerCAmelCase_ ( a__ ): @slow def snake_case_ ( self ) -> str: UpperCamelCase : Union[str, Any] = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() UpperCamelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )['positions'] UpperCamelCase : int = torch.tensor([2.58_28, 0.79_93, -10.93_34], dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
103
0
import random from typing import Any def UpperCamelCase_( lowerCamelCase_ ) -> list[Any]: for _ in range(len(lowerCamelCase_ ) ): _lowercase : Optional[int] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase : str = random.randint(0 , len(lowerCamelCase_ ) - 1 ) _lowercase , _lowercase : Optional[int] = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE : int = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
21
'''simple docstring''' def __UpperCamelCase ( lowercase__ : str, lowercase__ : bool = False ): '''simple docstring''' if not isinstance(lowercase__, lowercase__ ): __lowercase =F'''Expected string as input, found {type(lowercase__ )}''' raise ValueError(lowercase__ ) if not isinstance(lowercase__, lowercase__ ): __lowercase =F'''Expected boolean as use_pascal parameter, found {type(lowercase__ )}''' raise ValueError(lowercase__ ) __lowercase =input_str.split('_' ) __lowercase =0 if use_pascal else 1 __lowercase =words[start_index:] __lowercase =[word[0].upper() + word[1:] for word in words_to_capitalize] __lowercase ='' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
141
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __A : Tuple = None __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __A : Tuple = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } __A : List[Any] = { 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off __A : Dict = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] def __init__(self : Any , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : str="<s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : Any="</s>" , __SCREAMING_SNAKE_CASE : Any="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="<unk>" , __SCREAMING_SNAKE_CASE : Tuple="<pad>" , __SCREAMING_SNAKE_CASE : str="<mask>" , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Tuple=False , **__SCREAMING_SNAKE_CASE : Dict , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else mask_token A = legacy_behaviour super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , legacy_behaviour=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) A = vocab_file A = False if not self.vocab_file else True A = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) A = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) for lang_code in FAIRSEQ_LANGUAGE_CODES } A = src_lang if src_lang is not None else "eng_Latn" A = self.convert_tokens_to_ids(self._src_lang) A = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def SCREAMING_SNAKE_CASE__ (self : Any): return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ (self : Optional[Any] , __SCREAMING_SNAKE_CASE : str): A = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def SCREAMING_SNAKE_CASE__ (self : Tuple , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ (self : Tuple , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] , __SCREAMING_SNAKE_CASE : Optional[str] , **__SCREAMING_SNAKE_CASE : List[Any]): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") A = src_lang A = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) A = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) A = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ (self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str = "eng_Latn" , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , __SCREAMING_SNAKE_CASE : str = "fra_Latn" , **__SCREAMING_SNAKE_CASE : Tuple , ): A = src_lang A = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Any): return self.set_src_lang_special_tokens(self.src_lang) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): return self.set_tgt_lang_special_tokens(self.tgt_lang) def SCREAMING_SNAKE_CASE__ (self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]): A = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) if self.legacy_behaviour: A = [] A = [self.eos_token_id, self.cur_lang_code] else: A = [self.cur_lang_code] A = [self.eos_token_id] A = self.convert_ids_to_tokens(self.prefix_tokens) A = self.convert_ids_to_tokens(self.suffix_tokens) A = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : str): A = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) if self.legacy_behaviour: A = [] A = [self.eos_token_id, self.cur_lang_code] else: A = [self.cur_lang_code] A = [self.eos_token_id] A = self.convert_ids_to_tokens(self.prefix_tokens) A = self.convert_ids_to_tokens(self.suffix_tokens) A = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__SCREAMING_SNAKE_CASE): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""") return A = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__SCREAMING_SNAKE_CASE): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE) return (out_vocab_file,)
57
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __A : Tuple = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __UpperCamelCase ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ (cls : int): A = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE) @classmethod def SCREAMING_SNAKE_CASE__ (cls : Dict): try: delete_repo(token=cls._token , repo_id="test-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config") except HTTPError: pass def SCREAMING_SNAKE_CASE__ (self : Dict): A = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) config.push_to_hub("test-config" , use_auth_token=self._token) A = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="test-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__SCREAMING_SNAKE_CASE , repo_id="test-config" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) A = BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def SCREAMING_SNAKE_CASE__ (self : int): A = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token) A = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id="valid_org/test-config-org" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token) A = BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): CustomConfig.register_for_auto_class() A = CustomConfig(attribute=4_2) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"}) A = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=__SCREAMING_SNAKE_CASE) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig") self.assertEqual(new_config.attribute , 4_2) class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A = c.n_embd + 1 # int A = c.resid_pdrop + 1.0 # float A = not c.scale_attn_weights # bool A = c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(__SCREAMING_SNAKE_CASE , c.n_embd , "mismatch for key: n_embd") self.assertEqual(__SCREAMING_SNAKE_CASE , c.resid_pdrop , "mismatch for key: resid_pdrop") self.assertEqual(__SCREAMING_SNAKE_CASE , c.scale_attn_weights , "mismatch for key: scale_attn_weights") self.assertEqual(__SCREAMING_SNAKE_CASE , c.summary_type , "mismatch for key: summary_type") def SCREAMING_SNAKE_CASE__ (self : Dict): A = PretrainedConfig() A = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __SCREAMING_SNAKE_CASE , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"]) A = [key for key, value in config_common_kwargs.items() if value == getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] if len(__SCREAMING_SNAKE_CASE) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {", ".join(__SCREAMING_SNAKE_CASE)}.""") def SCREAMING_SNAKE_CASE__ (self : Dict): with self.assertRaises(__SCREAMING_SNAKE_CASE): # config is in subfolder, the following should not work without specifying the subfolder A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder") A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert") self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : int): # A mock response for an HTTP head request to emulate server down A = mock.Mock() A = 5_0_0 A = {} A = HTTPError A = {} # Download this model to make sure it's in the cache. A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__SCREAMING_SNAKE_CASE) as mock_head: A = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # This test is for deprecated behavior and can be removed in v5 A = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json") def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = AutoConfig.from_pretrained("bert-base-cased") A = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__SCREAMING_SNAKE_CASE) A = 2 json.dump(configuration.to_dict() , open(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json") , "w")) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A = ["config.42.0.0.json"] A = 7_6_8 configuration.save_pretrained(__SCREAMING_SNAKE_CASE) shutil.move(os.path.join(__SCREAMING_SNAKE_CASE , "config.4.0.0.json") , os.path.join(__SCREAMING_SNAKE_CASE , "config.42.0.0.json")) A = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 7_6_8) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. A = "hf-internal-testing/test-two-configs" import transformers as new_transformers A = "v4.0.0" A , A = new_transformers.models.auto.AutoConfig.from_pretrained( __SCREAMING_SNAKE_CASE , return_unused_kwargs=__SCREAMING_SNAKE_CASE) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__SCREAMING_SNAKE_CASE , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A = "v3.0.0" A = old_transformers.models.auto.AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertEqual(old_configuration.hidden_size , 7_6_8)
57
1
from __future__ import annotations class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , _snake_case : Optional[int]=None ): __lowercase : Dict = data __lowercase : List[Any] = None def __repr__( self : Tuple ): __lowercase : Any = [] __lowercase : Dict = self while temp: string_rep.append(F'{temp.data}' ) __lowercase : Any = temp.next return "->".join(UpperCAmelCase_ ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> List[Any]: if not elements_list: raise Exception('''The Elements List is empty''' ) __lowercase : Dict = Node(elements_list[0] ) for i in range(1 , len(_UpperCAmelCase ) ): __lowercase : Union[str, Any] = Node(elements_list[i] ) __lowercase : Union[str, Any] = current.next return head def UpperCAmelCase_ ( __lowerCAmelCase ) -> None: if head_node is not None and isinstance(_UpperCAmelCase , _UpperCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def UpperCAmelCase_ ( ) -> int: from doctest import testmod testmod() __lowercase : Optional[int] = make_linked_list([14, 52, 14, 12, 43] ) print('''Linked List:''' ) print(_UpperCAmelCase ) print('''Elements in Reverse:''' ) print_reverse(_UpperCAmelCase ) if __name__ == "__main__": main()
156
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : Union[str, Any] = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=None ) -> Dict: '''simple docstring''' require_version(deps[pkg], _UpperCAmelCase )
138
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : List[str] = "▁" _lowercase : Optional[Any] = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } _lowercase : Optional[int] = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } _lowercase : str = { "facebook/s2t-small-librispeech-asr": 1_0_2_4, } _lowercase : List[Any] = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] _lowercase : Union[str, Any] = {"mustc": MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = MAX_MODEL_INPUT_SIZES _a = ['input_ids', 'attention_mask'] _a = [] def __init__( self : Optional[Any], lowerCamelCase : str, lowerCamelCase : Optional[Any], lowerCamelCase : int="<s>", lowerCamelCase : List[str]="</s>", lowerCamelCase : Any="<pad>", lowerCamelCase : List[str]="<unk>", lowerCamelCase : Optional[Any]=False, lowerCamelCase : Tuple=False, lowerCamelCase : Any=None, lowerCamelCase : List[str]=None, lowerCamelCase : Optional[Dict[str, Any]] = None, **lowerCamelCase : Dict, )-> None: lowerCamelCase__ : Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, pad_token=lowerCamelCase, do_upper_case=lowerCamelCase, do_lower_case=lowerCamelCase, tgt_lang=lowerCamelCase, lang_codes=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) lowerCamelCase__ : Any =do_upper_case lowerCamelCase__ : Optional[int] =do_lower_case lowerCamelCase__ : Any =load_json(lowerCamelCase ) lowerCamelCase__ : List[str] ={v: k for k, v in self.encoder.items()} lowerCamelCase__ : Optional[Any] =spm_file lowerCamelCase__ : str =load_spm(lowerCamelCase, self.sp_model_kwargs ) if lang_codes is not None: lowerCamelCase__ : str =lang_codes lowerCamelCase__ : Union[str, Any] =LANGUAGES[lang_codes] lowerCamelCase__ : Optional[int] =[F'''<lang:{lang}>''' for lang in self.langs] lowerCamelCase__ : Any ={lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} lowerCamelCase__ : Tuple =self.lang_tokens lowerCamelCase__ : str =tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowerCamelCase__ : Any ={} @property def snake_case ( self : int )-> int: return len(self.encoder ) @property def snake_case ( self : List[Any] )-> str: return self._tgt_lang @tgt_lang.setter def snake_case ( self : Optional[int], lowerCamelCase : Union[str, Any] )-> None: lowerCamelCase__ : Union[str, Any] =new_tgt_lang self.set_tgt_lang_special_tokens(lowerCamelCase ) def snake_case ( self : List[Any], lowerCamelCase : str )-> None: lowerCamelCase__ : Tuple =self.lang_code_to_id[tgt_lang] lowerCamelCase__ : Union[str, Any] =[lang_code_id] def snake_case ( self : int, lowerCamelCase : str )-> List[str]: return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase ) def snake_case ( self : Optional[int], lowerCamelCase : Tuple )-> str: return self.encoder.get(lowerCamelCase, self.encoder[self.unk_token] ) def snake_case ( self : Any, lowerCamelCase : int )-> str: return self.decoder.get(lowerCamelCase, self.unk_token ) def snake_case ( self : Tuple, lowerCamelCase : List[str] )-> str: lowerCamelCase__ : List[Any] =[] lowerCamelCase__ : Tuple ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowerCamelCase__ : Tuple =self.sp_model.decode(lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowerCamelCase__ : Dict =[] else: current_sub_tokens.append(lowerCamelCase ) lowerCamelCase__ : int =self.sp_model.decode(lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def snake_case ( self : Tuple, lowerCamelCase : List[Any], lowerCamelCase : Optional[Any]=None )-> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def snake_case ( self : List[Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None, lowerCamelCase : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase, token_ids_a=lowerCamelCase, already_has_special_tokens=lowerCamelCase ) lowerCamelCase__ : Optional[Any] =[1] * len(self.prefix_tokens ) lowerCamelCase__ : Tuple =[1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase )) + ([0] * len(lowerCamelCase )) + suffix_ones def snake_case ( self : Optional[int] )-> Dict: lowerCamelCase__ : Union[str, Any] =self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] )-> Dict: lowerCamelCase__ : Tuple =self.__dict__.copy() lowerCamelCase__ : Any =None return state def __setstate__( self : List[str], lowerCamelCase : Dict )-> None: lowerCamelCase__ : Union[str, Any] =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCamelCase__ : Optional[Any] ={} lowerCamelCase__ : int =load_spm(self.spm_file, self.sp_model_kwargs ) def snake_case ( self : List[str], lowerCamelCase : str, lowerCamelCase : Optional[str] = None )-> Tuple[str]: lowerCamelCase__ : Optional[int] =Path(lowerCamelCase ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' lowerCamelCase__ : Tuple =save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowerCamelCase__ : List[str] =save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder, lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file, lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(lowerCamelCase, '''wb''' ) as fi: lowerCamelCase__ : Union[str, Any] =self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (str(lowerCamelCase ), str(lowerCamelCase )) def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Dict[str, Any] ): """simple docstring""" lowerCamelCase__ : Optional[int] =sentencepiece.SentencePieceProcessor(**__lowerCamelCase ) spm.Load(str(__lowerCamelCase ) ) return spm def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" with open(__lowerCamelCase , '''r''' ) as f: return json.load(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : str ): """simple docstring""" with open(__lowerCamelCase , '''w''' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase , indent=2 )
272
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _lowercase : Any = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
272
1
"""simple docstring""" __UpperCamelCase : Optional[int] = [0, 2, 4, 6, 8] __UpperCamelCase : Optional[int] = [1, 3, 5, 7, 9] def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowerCAmelCase__ : str = 0 for digit in range(10 ): lowerCAmelCase__ : str = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCamelCase , _lowerCamelCase ) return result lowerCAmelCase__ : Dict = 0 for digita in range(10 ): lowerCAmelCase__ : int = digita if (remainder + digita) % 2 == 0: lowerCAmelCase__ : Optional[Any] = ODD_DIGITS else: lowerCAmelCase__ : str = EVEN_DIGITS for digita in other_parity_digits: lowerCAmelCase__ : List[str] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCamelCase , _lowerCamelCase , ) return result def __SCREAMING_SNAKE_CASE ( A_ = 9 ): lowerCAmelCase__ : Tuple = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_lowerCamelCase , 0 , [0] * length , _lowerCamelCase ) return result if __name__ == "__main__": print(F'''{solution() = }''')
106
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class snake_case_ ( unittest.TestCase ): def __init__( self : Tuple , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=56 , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : int=True , lowercase_ : Any=99 , lowercase_ : int=32 , lowercase_ : str=2 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=7 , lowercase_ : Dict="gelu_new" , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=5_12 , lowercase_ : Optional[Any]=16 , lowercase_ : List[Any]=2 , lowercase_ : Dict=0.02 , lowercase_ : int=4 , lowercase_ : Tuple="block_sparse" , lowercase_ : Dict=True , lowercase_ : Optional[int]=False , lowercase_ : Dict=2 , lowercase_ : int=3 , ) -> Union[str, Any]: lowercase__ : Dict = parent lowercase__ : Dict = batch_size lowercase__ : Tuple = seq_length lowercase__ : Dict = is_training lowercase__ : Dict = use_attention_mask lowercase__ : Tuple = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : Any = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : str = intermediate_size lowercase__ : int = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_size lowercase__ : Dict = type_sequence_label_size lowercase__ : Any = initializer_range lowercase__ : List[str] = num_choices lowercase__ : str = rescale_embeddings lowercase__ : Optional[Any] = attention_type lowercase__ : Optional[int] = use_bias lowercase__ : Optional[int] = block_size lowercase__ : str = num_random_blocks def __UpperCamelCase ( self : str ) -> Optional[Any]: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int] = None if self.use_token_type_ids: lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : int = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self : Union[str, Any] ) -> int: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class snake_case_ ( __A ,unittest.TestCase ): __A : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __A : List[str] = False __A : Any = False def __UpperCamelCase ( self : List[str] ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Optional[int] ) -> Dict: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : List[str] ) -> Any: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Tuple ) -> str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: super().test_hidden_states_output() @slow def __UpperCamelCase ( self : Optional[int] ) -> Tuple: for model_class_name in self.all_model_classes: lowercase__ : Optional[Any] = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowercase_ ) def __UpperCamelCase ( self : int ) -> Optional[int]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : str ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : Tuple , lowercase_ : int=None , **lowercase_ : Dict ): return model(input_ids=lowercase_ , attention_mask=lowercase_ , **lowercase_ ) with self.subTest("JIT Enabled" ): lowercase__ : int = model_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowercase__ : Any = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCamelCase ( self : List[Any] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : List[Any]=1E-5 , lowercase_ : Any="outputs" , lowercase_ : List[str]=None ) -> List[Any]: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
87
0
'''simple docstring''' UpperCamelCase_ : Optional[int] = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} UpperCamelCase_ : Any = ['''a''', '''b''', '''c''', '''d''', '''e'''] def __a ( _UpperCamelCase: Dict , _UpperCamelCase: int , _UpperCamelCase: Dict ) -> Optional[Any]: """simple docstring""" _snake_case = start # add current to visited visited.append(_UpperCamelCase ) _snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _snake_case = topological_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # if all neighbors visited add current to sort sort.append(_UpperCamelCase ) # if all vertices haven't been visited select a new one to visit if len(_UpperCamelCase ) != len(_UpperCamelCase ): for vertice in vertices: if vertice not in visited: _snake_case = topological_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # return sort return sort if __name__ == "__main__": UpperCamelCase_ : Any = topological_sort('''a''', [], []) print(sort)
362
'''simple docstring''' def __a ( _UpperCamelCase: int ) -> None: """simple docstring""" _snake_case = generate_pascal_triangle(_UpperCamelCase ) for row_idx in range(_UpperCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def __a ( _UpperCamelCase: int ) -> list[list[int]]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _snake_case = [] for current_row_idx in range(_UpperCamelCase ): _snake_case = populate_current_row(_UpperCamelCase , _UpperCamelCase ) triangle.append(_UpperCamelCase ) return triangle def __a ( _UpperCamelCase: list[list[int]] , _UpperCamelCase: int ) -> list[int]: """simple docstring""" _snake_case = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _snake_case , _snake_case = 1, 1 for current_col_idx in range(1 , _UpperCamelCase ): calculate_current_element( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return current_row def __a ( _UpperCamelCase: list[list[int]] , _UpperCamelCase: list[int] , _UpperCamelCase: int , _UpperCamelCase: int , ) -> None: """simple docstring""" _snake_case = triangle[current_row_idx - 1][current_col_idx - 1] _snake_case = triangle[current_row_idx - 1][current_col_idx] _snake_case = above_to_left_elt + above_to_right_elt def __a ( _UpperCamelCase: int ) -> list[list[int]]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _snake_case = [[1]] for row_index in range(1 , _UpperCamelCase ): _snake_case = [0] + result[-1] + [0] _snake_case = row_index + 1 # Calculate the number of distinct elements in a row _snake_case = sum(divmod(_UpperCamelCase , 2 ) ) _snake_case = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _snake_case = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _snake_case = row_first_half + row_second_half result.append(_UpperCamelCase ) return result def __a ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase: Callable , _UpperCamelCase: int ) -> None: _snake_case = F"""{func.__name__}({value})""" _snake_case = timeit(F"""__main__.{call}""" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_UpperCamelCase , _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
142
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase_ ( _UpperCAmelCase : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : List[Any] = emb.weight.shape _UpperCAmelCase : Optional[int] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) _UpperCAmelCase : List[str] = emb.weight.data return lin_layer def UpperCamelCase_ ( _UpperCAmelCase : Any ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = torch.load(_UpperCAmelCase , map_location="cpu" ) _UpperCAmelCase : Any = mam_aaa["args"] or mam_aaa["cfg"]["model"] _UpperCAmelCase : List[Any] = mam_aaa["model"] remove_ignore_keys_(_UpperCAmelCase ) _UpperCAmelCase : int = state_dict["encoder.embed_tokens.weight"].shape[0] _UpperCAmelCase : Tuple = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1_024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) _UpperCAmelCase : Union[str, Any] = state_dict["decoder.embed_tokens.weight"] _UpperCAmelCase : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) _UpperCAmelCase : Optional[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __SCREAMING_SNAKE_CASE : int = parser.parse_args() __SCREAMING_SNAKE_CASE : Optional[int] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
31
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __snake_case : def __init__( self : Tuple , A_ : Any , A_ : Tuple=1_3 , A_ : str=7 , A_ : Any=True , A_ : Union[str, Any]=True , A_ : int=False , A_ : int=True , A_ : List[Any]=9_9 , A_ : Dict=6_4 , A_ : int=5 , A_ : List[Any]=4 , A_ : Optional[Any]=6_4 , A_ : str="gelu" , A_ : Union[str, Any]=0.1 , A_ : List[Any]=0.1 , A_ : Any=5_1_2 , A_ : Union[str, Any]=1_6 , A_ : str=2 , A_ : Any=0.02 , A_ : str=3 , A_ : Optional[int]=4 , A_ : int=None , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : List[Any] = batch_size lowerCAmelCase_ : List[Any] = seq_length lowerCAmelCase_ : int = is_training lowerCAmelCase_ : Union[str, Any] = use_input_mask lowerCAmelCase_ : Tuple = use_token_type_ids lowerCAmelCase_ : List[Any] = use_labels lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : List[str] = num_attention_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : str = num_labels lowerCAmelCase_ : List[str] = num_choices lowerCAmelCase_ : Optional[Any] = scope def UpperCAmelCase__ ( self : Dict): return MPNetConfig.from_pretrained('''microsoft/mpnet-base''') def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCAmelCase_ : int = None if self.use_input_mask: lowerCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length]) lowerCAmelCase_ : Any = None lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[Any] = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) lowerCAmelCase_ : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Dict , A_ : Dict , A_ : int , A_ : Tuple , A_ : List[str] , A_ : str , A_ : List[Any]): lowerCAmelCase_ : int = MPNetModel(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Any = model(A_ , A_) lowerCAmelCase_ : Union[str, Any] = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self : List[str] , A_ : Union[str, Any] , A_ : List[Any] , A_ : Optional[int] , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any): lowerCAmelCase_ : Any = MPNetForQuestionAnswering(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : int = model( A_ , attention_mask=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Tuple , A_ : List[str] , A_ : Optional[Any] , A_ : Dict , A_ : Union[str, Any] , A_ : Tuple): lowerCAmelCase_ : Tuple = self.num_labels lowerCAmelCase_ : Any = MPNetForSequenceClassification(A_) model.to(A_) model.eval() lowerCAmelCase_ : Dict = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Tuple , A_ : Dict , A_ : Tuple , A_ : Dict , A_ : List[str] , A_ : List[Any]): lowerCAmelCase_ : int = self.num_choices lowerCAmelCase_ : List[str] = MPNetForMultipleChoice(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowerCAmelCase_ : int = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowerCAmelCase_ : Optional[int] = model( A_ , attention_mask=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Any , A_ : int , A_ : Any , A_ : List[Any] , A_ : Any , A_ : Union[str, Any]): lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : Tuple = MPNetForTokenClassification(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[int] = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) : Union[str, Any] = config_and_inputs lowerCAmelCase_ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _a = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = True def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[Any] = MPNetModelTester(self) lowerCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=A_ , hidden_size=3_7) def UpperCAmelCase__ ( self : Any): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*A_) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*A_) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*A_) @require_torch class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = MPNetModel.from_pretrained('''microsoft/mpnet-base''') lowerCAmelCase_ : Optional[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) lowerCAmelCase_ : Union[str, Any] = model(A_)[0] lowerCAmelCase_ : Optional[int] = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , A_) lowerCAmelCase_ : Tuple = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]]) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1e-4))
103
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] ,*lowerCamelCase__ : int ,lowerCamelCase__ : str=None ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Tuple=None ,**lowerCamelCase__ : str ) -> int: '''simple docstring''' super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = eval_examples SCREAMING_SNAKE_CASE = post_process_function SCREAMING_SNAKE_CASE = quant_trainer_args SCREAMING_SNAKE_CASE = 128 # default number of calibration samples def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Optional[Any]=None ) -> int: '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset SCREAMING_SNAKE_CASE = self._remove_unused_columns(lowerCamelCase__ ,description="""Calibration""" ) return DataLoader( lowerCamelCase__ ,batch_size=self.args.eval_batch_size ,collate_fn=self.data_collator ,drop_last=self.args.dataloader_drop_last ,num_workers=self.args.dataloader_num_workers ,pin_memory=self.args.dataloader_pin_memory ,shuffle=lowerCamelCase__ ,) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : List[str]=None ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset SCREAMING_SNAKE_CASE = self.get_calib_dataloader(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.model quant_trainer.configure_model(lowerCamelCase__ ,self.quant_trainer_args ,calib=lowerCamelCase__ ) model.eval() quant_trainer.enable_calibration(lowerCamelCase__ ) logger.info("""***** Running calibration *****""" ) logger.info(F""" Num examples = {self.calib_num}""" ) logger.info(F""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(lowerCamelCase__ ): # Prediction step SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.prediction_step(lowerCamelCase__ ,lowerCamelCase__ ,prediction_loss_only=lowerCamelCase__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCamelCase__ ,self.quant_trainer_args ) SCREAMING_SNAKE_CASE = model def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : str = "eval" ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE = self.get_eval_dataloader(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE = self.compute_metrics SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE = eval_loop( lowerCamelCase__ ,description="""Evaluation""" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=lowerCamelCase__ ,) finally: SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: SCREAMING_SNAKE_CASE = self.post_process_function(lowerCamelCase__ ,lowerCamelCase__ ,output.predictions ) SCREAMING_SNAKE_CASE = self.compute_metrics(lowerCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE = metrics.pop(lowerCamelCase__ ) self.log(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,lowerCamelCase__ ) return metrics def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : str = "test" ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_test_dataloader(lowerCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE = self.compute_metrics SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE = eval_loop( lowerCamelCase__ ,description="""Prediction""" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=lowerCamelCase__ ,) finally: SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE = self.post_process_function(lowerCamelCase__ ,lowerCamelCase__ ,output.predictions ,"""predict""" ) SCREAMING_SNAKE_CASE = self.compute_metrics(lowerCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE = metrics.pop(lowerCamelCase__ ) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Dict="./" ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.eval_dataset SCREAMING_SNAKE_CASE = self.get_eval_dataloader(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = next(iter(lowerCamelCase__ ) ) # saving device - to make it consistent SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple SCREAMING_SNAKE_CASE = tuple(v.to(lowerCamelCase__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.model.to(lowerCamelCase__ ) model.eval() model.float() SCREAMING_SNAKE_CASE = model.module if hasattr(lowerCamelCase__ ,"""module""" ) else model quant_trainer.configure_model(lowerCamelCase__ ,self.quant_trainer_args ) SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ ,"""model.onnx""" ) logger.info(F"""exporting model to {output_model_file}""" ) SCREAMING_SNAKE_CASE = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,export_params=lowerCamelCase__ ,opset_version=13 ,do_constant_folding=lowerCamelCase__ ,input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] ,output_names=["""output_start_logits""", """output_end_logits"""] ,dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } ,verbose=lowerCamelCase__ ,) logger.info("""onnx export finished""" )
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
193
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def snake_case ( self ): with self.assertRaises(__a ): __lowerCAmelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def snake_case ( self ): with self.assertRaises(__a ): __lowerCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def snake_case ( self ): __lowerCAmelCase = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def snake_case ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __lowerCAmelCase = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def snake_case ( self ): __lowerCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def snake_case ( self ): __lowerCAmelCase = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def snake_case ( self ): __lowerCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def snake_case ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): __lowerCAmelCase = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def snake_case ( self ): __lowerCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def snake_case ( self ): __lowerCAmelCase = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def snake_case ( self ): import PIL.Image __lowerCAmelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=__a ) as mock_cast_to_python_objects: __lowerCAmelCase = pa.array(TypedSequence([{"path": None, "bytes": B"image_bytes"}, pil_image] , type=Image() ) ) __lowerCAmelCase , __lowerCAmelCase = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , __a ) self.assertFalse(kwargs["optimize_list_casting"] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = pa.BufferReader(_UpperCamelCase ) if isinstance(_UpperCamelCase , pa.Buffer ) else pa.memory_map(_UpperCamelCase ) __lowerCAmelCase = pa.ipc.open_stream(_UpperCamelCase ) __lowerCAmelCase = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = pa.BufferOutputStream() __lowerCAmelCase = pa.schema(_UpperCamelCase ) if fields else None with ArrowWriter(stream=_UpperCamelCase , schema=_UpperCamelCase , writer_batch_size=_UpperCamelCase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) __lowerCAmelCase , __lowerCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __lowerCAmelCase = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(_UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = pa.BufferOutputStream() __lowerCAmelCase = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=_UpperCamelCase , features=_UpperCamelCase ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) __lowerCAmelCase , __lowerCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata __lowerCAmelCase = pa.BufferReader(output.getvalue() ) __lowerCAmelCase = pa.ipc.open_stream(_UpperCamelCase ) __lowerCAmelCase = f.read_all() __lowerCAmelCase = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_UpperCamelCase ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_UpperCamelCase , writer_batch_size=_UpperCamelCase , hash_salt="split_name" , check_duplicates=_UpperCamelCase , ) as writer: with pytest.raises(_UpperCamelCase ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) __lowerCAmelCase , __lowerCAmelCase = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_UpperCamelCase , writer_batch_size=_UpperCamelCase , hash_salt="split_name" , check_duplicates=_UpperCamelCase , ) as writer: with pytest.raises(_UpperCamelCase ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) __lowerCAmelCase , __lowerCAmelCase = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_UpperCamelCase , writer_batch_size=_UpperCamelCase , hash_salt="split_name" , check_duplicates=_UpperCamelCase , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) __lowerCAmelCase , __lowerCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = pa.BufferOutputStream() __lowerCAmelCase = pa.schema(_UpperCamelCase ) if fields else None with ArrowWriter(stream=_UpperCamelCase , schema=_UpperCamelCase , writer_batch_size=_UpperCamelCase ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) __lowerCAmelCase , __lowerCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __lowerCAmelCase = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(_UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = pa.BufferOutputStream() __lowerCAmelCase = pa.schema(_UpperCamelCase ) if fields else None with ArrowWriter(stream=_UpperCamelCase , schema=_UpperCamelCase , writer_batch_size=_UpperCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) __lowerCAmelCase , __lowerCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __lowerCAmelCase = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(_UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = pa.BufferOutputStream() __lowerCAmelCase = pa.schema(_UpperCamelCase ) if fields else None with ArrowWriter(stream=_UpperCamelCase , schema=_UpperCamelCase , writer_batch_size=_UpperCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) __lowerCAmelCase , __lowerCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: __lowerCAmelCase = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(_UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _lowerCamelCase ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = {"col_1": pa.string(), "col_2": pa.intaa()} __lowerCAmelCase = os.path.join(_UpperCamelCase , "test.arrow" ) with ArrowWriter(path=_UpperCamelCase , schema=pa.schema(_UpperCamelCase ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) __lowerCAmelCase , __lowerCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_UpperCamelCase , metadata=writer._schema.metadata ) _check_output(_UpperCamelCase , 1 ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if pa.types.is_list(_UpperCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if isinstance(lst[0] , _UpperCamelCase ): change_first_primitive_element_in_list(lst[0] , _UpperCamelCase ) else: __lowerCAmelCase = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = pa.array(TypedSequence(_UpperCamelCase , optimized_int_type=_UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = pa.array(OptimizedTypedSequence(_UpperCamelCase , col=_UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications __lowerCAmelCase = copy.deepcopy(_UpperCamelCase ) __lowerCAmelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = pa.array(OptimizedTypedSequence(_UpperCamelCase , col=_UpperCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=_UpperCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "mock://dataset-train.arrow" with ArrowWriter(path=_UpperCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_UpperCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) __lowerCAmelCase , __lowerCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = pa.BufferOutputStream() with ParquetWriter(stream=_UpperCamelCase ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) __lowerCAmelCase , __lowerCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 __lowerCAmelCase = pa.BufferReader(output.getvalue() ) __lowerCAmelCase = pq.read_table(_UpperCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' import PIL.Image __lowerCAmelCase = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_UpperCamelCase , format="png" ) __lowerCAmelCase = pa.BufferOutputStream() with ParquetWriter( stream=_UpperCamelCase , features=Features({"image": Image()} ) , embed_local_files=_UpperCamelCase ) as writer: writer.write({"image": image_path} ) writer.finalize() __lowerCAmelCase = pa.BufferReader(output.getvalue() ) __lowerCAmelCase = pq.read_table(_UpperCamelCase ) __lowerCAmelCase = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , _UpperCamelCase ) with open(_UpperCamelCase , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = pa.schema([pa.field("col_1" , pa.string() , nullable=_UpperCamelCase )] ) __lowerCAmelCase = pa.BufferOutputStream() with ArrowWriter(stream=_UpperCamelCase ) as writer: writer._build_writer(inferred_schema=_UpperCamelCase ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
57
"""simple docstring""" from __future__ import annotations def _lowerCamelCase ( _UpperCamelCase = 4 ): '''simple docstring''' __lowerCAmelCase = abs(_UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(_UpperCamelCase )] for y in range(_UpperCamelCase )] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return reverse_row(transpose(_UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return reverse_row(reverse_column(_UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return reverse_column(transpose(_UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [list(_UpperCamelCase ) for x in zip(*_UpperCamelCase )] return matrix def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = matrix[::-1] return matrix def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [x[::-1] for x in matrix] return matrix def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' for i in matrix: print(*_UpperCamelCase ) if __name__ == "__main__": A : Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A : List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A : str = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
57
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __a = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __a = cvtColor(img, COLOR_BGR2GRAY) def __lowercase ( ) ->str: """simple docstring""" lowercase : str = cn.convert_to_negative(_UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def __lowercase ( ) ->List[str]: """simple docstring""" with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCamelCase, 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def __lowercase ( ) ->Dict: """simple docstring""" lowercase : Optional[Any] = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def __lowercase ( ) ->List[Any]: """simple docstring""" lowercase : Optional[Any] = imread('''digital_image_processing/image_data/lena_small.jpg''', 0 ) # assert ambiguous array for all == True assert canny_img.all() lowercase : Optional[Any] = canny.canny(_UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def __lowercase ( ) ->Dict: """simple docstring""" assert gg.gaussian_filter(_UpperCamelCase, 5, sigma=0.9 ).all() def __lowercase ( ) ->Any: """simple docstring""" lowercase : List[str] = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) lowercase : Any = conv.img_convolve(_UpperCamelCase, _UpperCamelCase ).astype(_UpperCamelCase ) assert res.any() def __lowercase ( ) ->List[str]: """simple docstring""" assert med.median_filter(_UpperCamelCase, 3 ).any() def __lowercase ( ) ->str: """simple docstring""" lowercase , lowercase : Dict = sob.sobel_filter(_UpperCamelCase ) assert grad.any() and theta.any() def __lowercase ( ) ->Dict: """simple docstring""" lowercase : int = sp.make_sepia(_UpperCamelCase, 20 ) assert sepia.all() def __lowercase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" ) ->Dict: """simple docstring""" lowercase : Tuple = bs.Burkes(imread(_UpperCamelCase, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def __lowercase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg", ) ->Dict: """simple docstring""" lowercase : List[Any] = rs.NearestNeighbour(imread(_UpperCamelCase, 1 ), 400, 200 ) nn.process() assert nn.output.any() def __lowercase ( ) ->Optional[Any]: """simple docstring""" lowercase : Optional[Any] = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowercase : str = imread(_UpperCamelCase, 0 ) # Test for get_neighbors_pixel function() return not None lowercase : str = 0 lowercase : Optional[Any] = 0 lowercase : Optional[int] = image[x_coordinate][y_coordinate] lowercase : Any = lbp.get_neighbors_pixel( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowercase : Optional[int] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): lowercase : List[Any] = lbp.local_binary_value(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) assert lbp_image.any()
173
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowercase ( _UpperCamelCase, _UpperCamelCase=0.9_9_9, _UpperCamelCase="cosine", ) ->Tuple: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase : List[str] = [] for i in range(_UpperCamelCase ): lowercase : List[str] = i / num_diffusion_timesteps lowercase : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCamelCase ) / alpha_bar_fn(_UpperCamelCase ), _UpperCamelCase ) ) return torch.tensor(_UpperCamelCase, dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE ( A__ , A__ ): A : Any = [e.name for e in KarrasDiffusionSchedulers] A : Dict = 2 @register_to_config def __init__( self , SCREAMING_SNAKE_CASE__ = 1000 , SCREAMING_SNAKE_CASE__ = 0.00085 , SCREAMING_SNAKE_CASE__ = 0.012 , SCREAMING_SNAKE_CASE__ = "linear" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "epsilon" , SCREAMING_SNAKE_CASE__ = "linspace" , SCREAMING_SNAKE_CASE__ = 0 , ): if trained_betas is not None: lowercase : str = torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase : Union[str, Any] = torch.linspace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase : str = betas_for_alpha_bar(SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowercase : Optional[int] = 1.0 - self.betas lowercase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): if schedule_timesteps is None: lowercase : Union[str, Any] = self.timesteps lowercase : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase : List[Any] = 1 if len(SCREAMING_SNAKE_CASE__ ) > 1 else 0 else: lowercase : int = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep lowercase : Optional[Any] = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCamelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): lowercase : Optional[Any] = self.index_for_timestep(SCREAMING_SNAKE_CASE__ ) if self.state_in_first_order: lowercase : Any = self.sigmas[step_index] else: lowercase : Optional[int] = self.sigmas_interpol[step_index] lowercase : Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): lowercase : Any = num_inference_steps lowercase : Optional[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase : Dict = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Union[str, Any] = (np.arange(0 , SCREAMING_SNAKE_CASE__ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase : Dict = (np.arange(SCREAMING_SNAKE_CASE__ , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE__ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) lowercase : int = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase : Optional[int] = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = np.interp(SCREAMING_SNAKE_CASE__ , np.arange(0 , len(SCREAMING_SNAKE_CASE__ ) ) , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase : str = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ ) # interpolate sigmas lowercase : int = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() lowercase : Optional[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowercase : Optional[int] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): # mps does not support float64 lowercase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) else: lowercase : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) # interpolate timesteps lowercase : Any = self.sigma_to_t(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ , dtype=timesteps.dtype ) lowercase : List[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() lowercase : Dict = torch.cat([timesteps[:1], interleaved_timesteps] ) lowercase : int = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase : Dict = defaultdict(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): # get log sigma lowercase : Any = sigma.log() # get distribution lowercase : Optional[Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range lowercase : List[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowercase : str = low_idx + 1 lowercase : Union[str, Any] = self.log_sigmas[low_idx] lowercase : Union[str, Any] = self.log_sigmas[high_idx] # interpolate sigmas lowercase : Dict = (low - log_sigma) / (low - high) lowercase : Union[str, Any] = w.clamp(0 , 1 ) # transform interpolation to time range lowercase : List[str] = (1 - w) * low_idx + w * high_idx lowercase : Tuple = t.view(sigma.shape ) return t @property def __lowerCamelCase ( self ): return self.sample is None def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = True , ): lowercase : Optional[Any] = self.index_for_timestep(SCREAMING_SNAKE_CASE__ ) # advance index counter by 1 lowercase : Dict = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase : Union[str, Any] = self.sigmas[step_index] lowercase : List[Any] = self.sigmas_interpol[step_index + 1] lowercase : Any = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowercase : Any = self.sigmas[step_index - 1] lowercase : List[Any] = self.sigmas_interpol[step_index] lowercase : Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase : Union[str, Any] = 0 lowercase : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase : List[Any] = sigma_hat if self.state_in_first_order else sigma_interpol lowercase : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol lowercase : Any = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase : Union[str, Any] = sigma_interpol - sigma_hat # store for 2nd order step lowercase : Optional[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowercase : str = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowercase : str = sigma_next - sigma_hat lowercase : List[str] = self.sample lowercase : Optional[int] = None lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase : int = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE__ ): # mps does not support float64 lowercase : Tuple = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowercase : List[Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowercase : List[str] = self.timesteps.to(original_samples.device ) lowercase : Any = timesteps.to(original_samples.device ) lowercase : Tuple = [self.index_for_timestep(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for t in timesteps] lowercase : Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase : Any = sigma.unsqueeze(-1 ) lowercase : Optional[Any] = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
173
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __lowercase = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __lowercase = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''ernie_m''' UpperCAmelCase_ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , __lowerCAmelCase = 250002 , __lowerCAmelCase = 768 , __lowerCAmelCase = 12 , __lowerCAmelCase = 12 , __lowerCAmelCase = 3072 , __lowerCAmelCase = "gelu" , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 514 , __lowerCAmelCase = 0.02 , __lowerCAmelCase = 1 , __lowerCAmelCase = 1E-0_5 , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=0.0 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = classifier_dropout lowerCAmelCase = is_decoder lowerCAmelCase = act_dropout
272
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCamelCase : Tuple = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class A__ ( __snake_case ): _UpperCAmelCase :Optional[int] = 'roberta' def __init__( self , A_=5_0265 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ): '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase : Dict = vocab_size UpperCamelCase : Dict = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : List[Any] = num_attention_heads UpperCamelCase : Union[str, Any] = hidden_act UpperCamelCase : Tuple = intermediate_size UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = max_position_embeddings UpperCamelCase : Any = type_vocab_size UpperCamelCase : Tuple = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : Any = position_embedding_type UpperCamelCase : Union[str, Any] = use_cache UpperCamelCase : Tuple = classifier_dropout class A__ ( __snake_case ): @property def __UpperCamelCase( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
140
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : Dict = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :int = AlbertTokenizer _UpperCAmelCase :int = AlbertTokenizerFast _UpperCAmelCase :int = True _UpperCAmelCase :List[str] = True _UpperCAmelCase :Optional[Any] = True def __UpperCamelCase( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase : List[str] = AlbertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = "this is a test" UpperCamelCase : List[Any] = "this is a test" return input_text, output_text def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = "<pad>" UpperCamelCase : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(A_ ) , 3_0000 ) def __UpperCamelCase( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def __UpperCamelCase( self ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase : Any = self.get_tokenizer() UpperCamelCase : Optional[int] = self.get_rust_tokenizer() UpperCamelCase : List[Any] = "I was born in 92000, and this is falsé." UpperCamelCase : Optional[Any] = tokenizer.tokenize(A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase : Optional[Any] = tokenizer.encode(A_ , add_special_tokens=A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase : List[Any] = self.get_rust_tokenizer() UpperCamelCase : Union[str, Any] = tokenizer.encode(A_ ) UpperCamelCase : Optional[int] = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = AlbertTokenizer(A_ , keep_accents=A_ ) UpperCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(A_ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [48, 25, 21, 1289] ) UpperCamelCase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( A_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) UpperCamelCase : Optional[int] = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual(A_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCamelCase : List[str] = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = AlbertTokenizer(A_ ) UpperCamelCase : Dict = tokenizer.encode("sequence builders" ) UpperCamelCase : Tuple = tokenizer.encode("multi-sequence build" ) UpperCamelCase : str = tokenizer.build_inputs_with_special_tokens(A_ ) UpperCamelCase : int = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
140
1
def __lowercase ( __lowerCAmelCase : str ): a__ = 0 # if input_string is "aba" than new_input_string become "a|b|a" a__ = '''''' a__ = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCAmelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring a__ = 0, 0 # length[i] shows the length of palindromic substring with center i a__ = [1 for i in range(len(__lowerCAmelCase ) )] # for each character in new_string find corresponding palindromic string a__ = 0 for j in range(len(__lowerCAmelCase ) ): a__ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCAmelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 a__ = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: a__ = j - k + 1 # noqa: E741 a__ = j + k - 1 # update max_length and start position if max_length < length[j]: a__ = length[j] a__ = j # create that string a__ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
240
import argparse import os import re import packaging.version _A : Optional[int] = 'examples/' _A : str = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _A : Any = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } _A : List[str] = 'README.md' def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase__ : Tuple = f.read() lowerCamelCase__ , lowerCamelCase__ : Optional[int] = REPLACE_PATTERNS[pattern] lowerCamelCase__ : Union[str, Any] = replace.replace('''VERSION''' , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = re_pattern.sub(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" for folder, directories, fnames in os.walk(UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , pattern='''examples''' ) def _a ( UpperCAmelCase , UpperCAmelCase=False ) -> Dict: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not patch: update_version_in_examples(UpperCAmelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : Any = '''🤗 Transformers currently provides the following architectures''' lowerCamelCase__ : Dict = '''1. Want to contribute a new model?''' with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase__ : str = f.readlines() # Find the start of the list. lowerCamelCase__ : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowerCamelCase__ : Any = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: lowerCamelCase__ : List[str] = f.read() lowerCamelCase__ : Any = REPLACE_PATTERNS['''init'''][0].search(UpperCAmelCase ).groups()[0] return packaging.version.parse(UpperCAmelCase ) def _a ( UpperCAmelCase=False ) -> str: """simple docstring""" lowerCamelCase__ : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowerCamelCase__ : Union[str, Any] = default_version.base_version elif patch: lowerCamelCase__ : str = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: lowerCamelCase__ : Dict = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. lowerCamelCase__ : str = input(f"Which version are you releasing? [{default_version}]" ) if len(UpperCAmelCase ) == 0: lowerCamelCase__ : int = default_version print(f"Updating version to {version}." ) global_version_update(UpperCAmelCase , patch=UpperCAmelCase ) def _a ( ) -> List[Any]: """simple docstring""" lowerCamelCase__ : List[str] = get_version() lowerCamelCase__ : Optional[int] = f"{current_version.major}.{current_version.minor + 1}.0.dev0" lowerCamelCase__ : Union[str, Any] = current_version.base_version # Check with the user we got that right. lowerCamelCase__ : Dict = input(f"Which version are we developing now? [{dev_version}]" ) if len(UpperCAmelCase ) == 0: lowerCamelCase__ : Tuple = dev_version print(f"Updating version to {version}." ) global_version_update(UpperCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _A : Any = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _A : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
142
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase__ ( A__ : Optional[Any] ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase__ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" __lowerCamelCase = [1, 2, 3] with pytest.raises(A__ ): with parallel_backend("""unsupported backend""" ): map_nested(A__ , A__ , num_proc=2 ) with pytest.raises(A__ ): with parallel_backend("""unsupported backend""" ): map_nested(A__ , A__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = [1, 2] __lowerCamelCase = {"""a""": 1, """b""": 2} __lowerCamelCase = {"""a""": [1, 2], """b""": [3, 4]} __lowerCamelCase = {"""a""": {"""1""": 1}, """b""": 2} __lowerCamelCase = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} __lowerCamelCase = [2, 3] __lowerCamelCase = {"""a""": 2, """b""": 3} __lowerCamelCase = {"""a""": [2, 3], """b""": [4, 5]} __lowerCamelCase = {"""a""": {"""1""": 2}, """b""": 3} __lowerCamelCase = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa assert map_nested(A__ , A__ , num_proc=A__ ) == expected_map_nested_sa
371
import qiskit def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) __lowerCamelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase_ = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
29
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _SCREAMING_SNAKE_CASE : str = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" a = None a = "utf-8" a = None a = None a = True # deprecated a = None # deprecated a = 10 << 20 # 10MB a = None class UpperCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" a = JsonConfig def lowercase_ ( self : Dict ) -> int: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) SCREAMING_SNAKE_CASE__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : str ) -> Any: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCamelCase , (str, list, tuple) ): SCREAMING_SNAKE_CASE__ = data_files if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = [files] SCREAMING_SNAKE_CASE__ = [dl_manager.iter_files(__lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE__ = [] for split_name, files in data_files.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = [files] SCREAMING_SNAKE_CASE__ = [dl_manager.iter_files(__lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def lowercase_ ( self : str , __lowerCamelCase : Optional[int] ) -> Optional[int]: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE__ = self.config.features.arrow_schema.field(__lowerCamelCase ).type SCREAMING_SNAKE_CASE__ = pa_table.append_column(__lowerCamelCase , pa.array([None] * len(__lowerCamelCase ) , type=__lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE__ = table_cast(__lowerCamelCase , self.config.features.arrow_schema ) return pa_table def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[Any] ) -> int: for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE__ = json.load(__lowerCamelCase ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowerCamelCase , (list, tuple) ): SCREAMING_SNAKE_CASE__ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE__ = {col: [row.get(__lowerCamelCase ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE__ = dataset SCREAMING_SNAKE_CASE__ = pa.Table.from_pydict(__lowerCamelCase ) yield file_idx, self._cast_table(__lowerCamelCase ) # If the file has one json object per line else: with open(__lowerCamelCase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE__ = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: SCREAMING_SNAKE_CASE__ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE__ = batch.decode(self.config.encoding , errors=__lowerCamelCase ).encode('''utf-8''' ) try: while True: try: SCREAMING_SNAKE_CASE__ = paj.read_json( io.BytesIO(__lowerCamelCase ) , read_options=paj.ReadOptions(block_size=__lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(__lowerCamelCase ) or block_size > len(__lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(__lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE__ = json.load(__lowerCamelCase ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCamelCase )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowerCamelCase , __lowerCamelCase ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE__ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE__ = {col: [row.get(__lowerCamelCase ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE__ = pa.Table.from_pydict(__lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCamelCase )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__lowerCamelCase ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCamelCase )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCamelCase ) batch_idx += 1
314
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a__: List[Any] = logging.getLogger() def UpperCamelCase__( )->Union[str, Any]: A__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) A__ = parser.parse_args() return args.f class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def UpperCamelCase ( self ): A__ = logging.StreamHandler(sys.stdout ) logger.addHandler(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0,'''run_glue_deebert.py''' ) with patch.object(__lowerCamelCase,'''argv''',__lowerCamelCase ): A__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__lowerCamelCase,0.666 ) @slow @require_torch_non_multi_gpu def UpperCamelCase ( self ): A__ = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase )
193
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _snake_case = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None lowerCamelCase__ = 'utf-8' lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True # deprecated lowerCamelCase__ = None # deprecated lowerCamelCase__ = 10 << 20 # 10MB lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = JsonConfig def snake_case__ ( self): '''simple docstring''' if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead") _lowerCAmelCase : int = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.") if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported") return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : Tuple = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : Union[str, Any] = data_files if isinstance(__a, __a): _lowerCAmelCase : str = [files] _lowerCAmelCase : int = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : str = [files] _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): _lowerCAmelCase : Optional[Any] = self.config.features.arrow_schema.field(__a).type _lowerCAmelCase : str = pa_table.append_column(__a, pa.array([None] * len(__a), type=__a)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : List[Any] = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__a)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__a, encoding=self.config.encoding, errors=self.config.encoding_errors) as f: _lowerCAmelCase : Any = json.load(__a) # We keep only the field we are interested in _lowerCAmelCase : Union[str, Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__a, (list, tuple)): _lowerCAmelCase : List[Any] = set().union(*[row.keys() for row in dataset]) _lowerCAmelCase : Any = {col: [row.get(__a) for row in dataset] for col in keys} else: _lowerCAmelCase : Dict = dataset _lowerCAmelCase : Dict = pa.Table.from_pydict(__a) yield file_idx, self._cast_table(__a) # If the file has one json object per line else: with open(__a, "rb") as f: _lowerCAmelCase : Tuple = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _lowerCAmelCase : List[Any] = max(self.config.chunksize // 32, 16 << 10) _lowerCAmelCase : Any = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: _lowerCAmelCase : Any = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__a) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _lowerCAmelCase : int = batch.decode(self.config.encoding, errors=__a).encode("utf-8") try: while True: try: _lowerCAmelCase : Optional[Any] = paj.read_json( io.BytesIO(__a), read_options=paj.ReadOptions(block_size=__a)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__a, pa.ArrowInvalid) and "straddling" not in str(__a) or block_size > len(__a) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"Batch of {len(__a)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.") block_size *= 2 except pa.ArrowInvalid as e: try: with open( __a, encoding=self.config.encoding, errors=self.config.encoding_errors) as f: _lowerCAmelCase : Dict = json.load(__a) except json.JSONDecodeError: logger.error(f"Failed to read file '{file}' with error {type(__a)}: {e}") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__a, __a): # list is the only sequence type supported in JSON try: _lowerCAmelCase : str = set().union(*[row.keys() for row in dataset]) _lowerCAmelCase : str = {col: [row.get(__a) for row in dataset] for col in keys} _lowerCAmelCase : List[str] = pa.Table.from_pydict(__a) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"Failed to read file '{file}' with error {type(__a)}: {e}") raise ValueError(f"Not able to read records in the JSON file at {file}.") from None yield file_idx, self._cast_table(__a) break else: logger.error(f"Failed to read file '{file}' with error {type(__a)}: {e}") raise ValueError( f"Not able to read records in the JSON file at {file}. " f"You should probably indicate the field of the JSON file containing your records. " f"This JSON file contain the following fields: {str(list(dataset.keys()))}. " f"Select the correct one and provide it as `field='XXX'` to the dataset loading method. ") from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__a) batch_idx += 1
352
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
300
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _UpperCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =state_dict.pop(lowercase ) SCREAMING_SNAKE_CASE_: List[str] =val def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE_: Tuple =key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) SCREAMING_SNAKE_CASE_: List[str] =value else: SCREAMING_SNAKE_CASE_: str =value return new_state_dict def __magic_name__ ( lowercase , lowercase=False ): SCREAMING_SNAKE_CASE_: Optional[int] ="""""" if is_panoptic: SCREAMING_SNAKE_CASE_: int ="""conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE_: Optional[Any] =state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE_: Optional[Any] =state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_: Optional[int] =in_proj_weight[:256, :] SCREAMING_SNAKE_CASE_: int =in_proj_bias[:256] SCREAMING_SNAKE_CASE_: Optional[int] =in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE_: Union[str, Any] =in_proj_bias[256:512] SCREAMING_SNAKE_CASE_: Optional[Any] =in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE_: Any =in_proj_bias[-256:] def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[int] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE_: str =Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: SCREAMING_SNAKE_CASE_: Dict ="""resnet101""" if "dc5" in model_name: SCREAMING_SNAKE_CASE_: Union[str, Any] =True SCREAMING_SNAKE_CASE_: Any ="""panoptic""" in model_name if is_panoptic: SCREAMING_SNAKE_CASE_: int =250 else: SCREAMING_SNAKE_CASE_: Dict =91 SCREAMING_SNAKE_CASE_: Optional[int] ="""huggingface/label-files""" SCREAMING_SNAKE_CASE_: List[str] ="""coco-detection-id2label.json""" SCREAMING_SNAKE_CASE_: Optional[Any] =json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE_: Optional[Any] ={int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: List[str] =idalabel SCREAMING_SNAKE_CASE_: Dict ={v: k for k, v in idalabel.items()} # load image processor SCREAMING_SNAKE_CASE_: int ="""coco_panoptic""" if is_panoptic else """coco_detection""" SCREAMING_SNAKE_CASE_: Optional[int] =ConditionalDetrImageProcessor(format=lowercase ) # prepare image SCREAMING_SNAKE_CASE_: Optional[int] =prepare_img() SCREAMING_SNAKE_CASE_: int =image_processor(images=lowercase , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE_: str =encoding["""pixel_values"""] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub SCREAMING_SNAKE_CASE_: Any =torch.hub.load("""DeppMeng/ConditionalDETR""" , lowercase , pretrained=lowercase ).eval() SCREAMING_SNAKE_CASE_: Union[str, Any] =conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: SCREAMING_SNAKE_CASE_: Dict ="""conditional_detr.""" + src rename_key(lowercase , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =rename_backbone_keys(lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase , is_panoptic=lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE_: int ="""conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): SCREAMING_SNAKE_CASE_: Any =state_dict.pop(lowercase ) SCREAMING_SNAKE_CASE_: List[str] =val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE_: List[str] =state_dict.pop(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: SCREAMING_SNAKE_CASE_: List[str] =state_dict.pop(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): SCREAMING_SNAKE_CASE_: Optional[Any] =state_dict.pop(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE_: List[Any] =ConditionalDetrForSegmentation(lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase ) model.load_state_dict(lowercase ) model.eval() model.push_to_hub(repo_id=lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion SCREAMING_SNAKE_CASE_: Optional[Any] =conditional_detr(lowercase ) SCREAMING_SNAKE_CASE_: Dict =model(lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _UpperCAmelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
173
"""simple docstring""" from sklearn.metrics import recall_score import datasets _UpperCAmelCase = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ _UpperCAmelCase = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ _UpperCAmelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[Any]="binary" , lowerCAmelCase : int=None , lowerCAmelCase : str="warn" , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =recall_score( lowerCAmelCase , lowerCAmelCase , labels=lowerCAmelCase , pos_label=lowerCAmelCase , average=lowerCAmelCase , sample_weight=lowerCAmelCase , zero_division=lowerCAmelCase , ) return {"recall": float(lowerCAmelCase ) if score.size == 1 else score}
173
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=1_8 , __UpperCamelCase=3_0 , __UpperCamelCase=4_0_0 , __UpperCamelCase=True , __UpperCamelCase=3_2 , __UpperCamelCase=True , ): """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size_divisor UpperCamelCase_ = do_rescale def lowerCamelCase_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowercase_ ( _UpperCAmelCase , unittest.TestCase ): A__ : Any = GLPNImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = GLPNImageProcessingTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size_divisor""" ) ) self.assertTrue(hasattr(lowercase_ , """resample""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
371
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase__ ( a__ : Dict , a__ : Dict=None ) -> Union[str, Any]: UpperCamelCase_ = None if token is not None: UpperCamelCase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} UpperCamelCase_ = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' UpperCamelCase_ = requests.get(a__ , headers=a__ ).json() UpperCamelCase_ = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) UpperCamelCase_ = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(a__ ): UpperCamelCase_ = requests.get(url + f'''&page={i + 2}''' , headers=a__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCamelCase__ ( a__ : Union[str, Any] , a__ : Any=None ) -> Optional[int]: UpperCamelCase_ = None if token is not None: UpperCamelCase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} UpperCamelCase_ = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' UpperCamelCase_ = requests.get(a__ , headers=a__ ).json() UpperCamelCase_ = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) UpperCamelCase_ = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(a__ ): UpperCamelCase_ = requests.get(url + f'''&page={i + 2}''' , headers=a__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCamelCase__ ( a__ : Dict , a__ : Tuple , a__ : Union[str, Any] , a__ : List[Any] ) -> List[Any]: UpperCamelCase_ = None if token is not None: UpperCamelCase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} UpperCamelCase_ = requests.get(a__ , headers=a__ , allow_redirects=a__ ) UpperCamelCase_ = result.headers["""Location"""] UpperCamelCase_ = requests.get(a__ , allow_redirects=a__ ) UpperCamelCase_ = os.path.join(a__ , f'''{artifact_name}.zip''' ) with open(a__ , """wb""" ) as fp: fp.write(response.content ) def lowerCamelCase__ ( a__ : Dict , a__ : Tuple=None ) -> Optional[int]: UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = None with zipfile.ZipFile(a__ ) as z: for filename in z.namelist(): if not os.path.isdir(a__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(a__ ) as f: for line in f: UpperCamelCase_ = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCamelCase_ = line[: line.index(""": """ )] UpperCamelCase_ = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed UpperCamelCase_ = line[len("""FAILED """ ) :] failed_tests.append(a__ ) elif filename == "job_name.txt": UpperCamelCase_ = line if len(a__ ) != len(a__ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(a__ )} for `errors` ''' f'''and {len(a__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) UpperCamelCase_ = None if job_name and job_links: UpperCamelCase_ = job_links.get(a__ , a__ ) # A list with elements of the form (line of error, error, failed test) UpperCamelCase_ = [x + [y] + [job_link] for x, y in zip(a__ , a__ )] return result def lowerCamelCase__ ( a__ : Any , a__ : Union[str, Any]=None ) -> Dict: UpperCamelCase_ = [] UpperCamelCase_ = [os.path.join(a__ , a__ ) for p in os.listdir(a__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(a__ , job_links=a__ ) ) return errors def lowerCamelCase__ ( a__ : Union[str, Any] , a__ : Tuple=None ) -> List[Any]: UpperCamelCase_ = Counter() counter.update([x[1] for x in logs] ) UpperCamelCase_ = counter.most_common() UpperCamelCase_ = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCamelCase_ = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} UpperCamelCase_ = dict(sorted(r.items() , key=lambda a__ : item[1]["count"] , reverse=a__ ) ) return r def lowerCamelCase__ ( a__ : Optional[int] ) -> Optional[Any]: UpperCamelCase_ = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): UpperCamelCase_ = test.split("""/""" )[2] else: UpperCamelCase_ = None return test def lowerCamelCase__ ( a__ : List[str] , a__ : Optional[int]=None ) -> Dict: UpperCamelCase_ = [(x[0], x[1], get_model(x[2] )) for x in logs] UpperCamelCase_ = [x for x in logs if x[2] is not None] UpperCamelCase_ = {x[2] for x in logs} UpperCamelCase_ = {} for test in tests: UpperCamelCase_ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) UpperCamelCase_ = counter.most_common() UpperCamelCase_ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCamelCase_ = sum(error_counts.values() ) if n_errors > 0: UpperCamelCase_ = {"""count""": n_errors, """errors""": error_counts} UpperCamelCase_ = dict(sorted(r.items() , key=lambda a__ : item[1]["count"] , reverse=a__ ) ) return r def lowerCamelCase__ ( a__ : Any ) -> List[Any]: UpperCamelCase_ = """| no. | error | status |""" UpperCamelCase_ = """|-:|:-|:-|""" UpperCamelCase_ = [header, sep] for error in reduced_by_error: UpperCamelCase_ = reduced_by_error[error]["""count"""] UpperCamelCase_ = f'''| {count} | {error[:100]} | |''' lines.append(a__ ) return "\n".join(a__ ) def lowerCamelCase__ ( a__ : Optional[int] ) -> str: UpperCamelCase_ = """| model | no. of errors | major error | count |""" UpperCamelCase_ = """|-:|-:|-:|-:|""" UpperCamelCase_ = [header, sep] for model in reduced_by_model: UpperCamelCase_ = reduced_by_model[model]["""count"""] UpperCamelCase_ , UpperCamelCase_ = list(reduced_by_model[model]["""errors"""].items() )[0] UpperCamelCase_ = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(a__ ) return "\n".join(a__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') _A = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _A = get_job_links(args.workflow_run_id, token=args.token) _A = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _A = k.find(''' / ''') _A = k[index + len(''' / ''') :] _A = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _A = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _A = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _A = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _A = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _A = reduce_by_error(errors) _A = reduce_by_model(errors) _A = make_github_table(reduced_by_error) _A = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
261
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''data2vec-audio''' def __init__( self , lowercase=3_2 , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="gelu" , lowercase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(1_0, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=1_6 , lowercase=1_9 , lowercase=5 , lowercase=0.05 , lowercase=1_0 , lowercase=2 , lowercase=0.0 , lowercase=1_0 , lowercase=0 , lowercase="sum" , lowercase=False , lowercase=False , lowercase=2_5_6 , lowercase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=5_1_2 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): """simple docstring""" super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) A_ : str = hidden_size A_ : Optional[int] = feat_extract_activation A_ : Any = list(lowercase ) A_ : Tuple = list(lowercase ) A_ : Dict = list(lowercase ) A_ : List[Any] = conv_bias A_ : str = num_conv_pos_embeddings A_ : int = num_conv_pos_embedding_groups A_ : Optional[Any] = conv_pos_kernel_size A_ : int = len(self.conv_dim ) A_ : Any = num_hidden_layers A_ : str = intermediate_size A_ : Optional[int] = hidden_act A_ : Any = num_attention_heads A_ : Optional[int] = hidden_dropout A_ : Union[str, Any] = attention_dropout A_ : Any = activation_dropout A_ : int = feat_proj_dropout A_ : List[str] = final_dropout A_ : List[Any] = layerdrop A_ : Optional[int] = layer_norm_eps A_ : Tuple = initializer_range A_ : Optional[int] = vocab_size A_ : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ : Optional[int] = mask_time_prob A_ : Dict = mask_time_length A_ : List[str] = mask_time_min_masks A_ : List[str] = mask_feature_prob A_ : Dict = mask_feature_length A_ : List[Any] = mask_feature_min_masks # ctc loss A_ : Dict = ctc_loss_reduction A_ : Dict = ctc_zero_infinity # adapter A_ : List[str] = add_adapter A_ : List[Any] = adapter_kernel_size A_ : List[str] = adapter_stride A_ : Dict = num_adapter_layers A_ : Any = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A_ : Any = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A_ : Optional[Any] = list(lowercase ) A_ : Dict = list(lowercase ) A_ : Tuple = list(lowercase ) A_ : int = xvector_output_dim @property def lowerCAmelCase_ ( self ): """simple docstring""" return math.prod(self.conv_stride )
140
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''time_series_transformer''' lowerCamelCase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowercase = None , lowercase = None , lowercase = "student_t" , lowercase = "nll" , lowercase = 1 , lowercase = [1, 2, 3, 4, 5, 6, 7] , lowercase = "mean" , lowercase = 0 , lowercase = 0 , lowercase = 0 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = 3_2 , lowercase = 3_2 , lowercase = 2 , lowercase = 2 , lowercase = 2 , lowercase = 2 , lowercase = True , lowercase = "gelu" , lowercase = 6_4 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 1_0_0 , lowercase = 0.02 , lowercase=True , **lowercase , ): """simple docstring""" A_ : Tuple = prediction_length A_ : Any = context_length or prediction_length A_ : Any = distribution_output A_ : Dict = loss A_ : int = input_size A_ : Any = num_time_features A_ : List[str] = lags_sequence A_ : List[Any] = scaling A_ : str = num_dynamic_real_features A_ : List[Any] = num_static_real_features A_ : Optional[int] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) A_ : Any = cardinality else: A_ : Any = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) A_ : int = embedding_dimension else: A_ : Tuple = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] A_ : Optional[int] = num_parallel_samples # Transformer architecture configuration A_ : Any = input_size * len(lowercase ) + self._number_of_features A_ : List[str] = d_model A_ : Union[str, Any] = encoder_attention_heads A_ : int = decoder_attention_heads A_ : int = encoder_ffn_dim A_ : str = decoder_ffn_dim A_ : Tuple = encoder_layers A_ : Tuple = decoder_layers A_ : List[str] = dropout A_ : str = attention_dropout A_ : List[Any] = activation_dropout A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : Optional[int] = activation_function A_ : str = init_std A_ : int = use_cache super().__init__(is_encoder_decoder=lowercase , **lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
140
1
# Lint as: python3 import itertools import os import re UpperCamelCase = re.compile(R'''([A-Z]+)([A-Z][a-z])''') UpperCamelCase = re.compile(R'''([a-z\d])([A-Z])''') UpperCamelCase = re.compile(R'''(?<!_)_(?!_)''') UpperCamelCase = re.compile(R'''(_{2,})''') UpperCamelCase = R'''^\w+(\.\w+)*$''' UpperCamelCase = R'''<>:/\|?*''' def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = _uppercase_uppercase_re.sub(r"""\1_\2""" ,snake_case__ ) _SCREAMING_SNAKE_CASE = _lowercase_uppercase_re.sub(r"""\1_\2""" ,snake_case__ ) return name.lower() def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = _single_underscore_re.split(snake_case__ ) _SCREAMING_SNAKE_CASE = [_multiple_underscores_re.split(snake_case__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(snake_case__ ) if n != """""" ) def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" if os.path.basename(snake_case__ ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Any: """simple docstring""" if os.path.basename(snake_case__ ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re ,snake_case__ ): raise ValueError(F'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return F'{filename_prefix_for_name(snake_case__ )}-{split}' def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = filename_prefix_for_split(snake_case__ ,snake_case__ ) if filetype_suffix: prefix += F'.{filetype_suffix}' _SCREAMING_SNAKE_CASE = os.path.join(snake_case__ ,snake_case__ ) return F'{filepath}*' def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = filename_prefix_for_split(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = os.path.join(snake_case__ ,snake_case__ ) if shard_lengths: _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = [F'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(snake_case__ )] if filetype_suffix: _SCREAMING_SNAKE_CASE = [filename + F'.{filetype_suffix}' for filename in filenames] return filenames else: _SCREAMING_SNAKE_CASE = prefix if filetype_suffix: filename += F'.{filetype_suffix}' return [filename]
125
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
125
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 600851475143 ) -> Tuple: try: _a : Tuple =int(__snake_case ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _a : List[Any] =2 _a : str =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _a : str =i while n % i == 0: _a : List[Any] =n // i i += 1 return int(__snake_case ) if __name__ == "__main__": print(F"{solution() = }")
276
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCAmelCase = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __snake_case : str ): '''simple docstring''' if "://" in dataset_path: UpperCAmelCase_ : int = dataset_path.split('://' )[1] return dataset_path def lowercase__ ( __snake_case : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = not is_remote_filesystem(__snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__snake_case ) , fs._strip_protocol(__snake_case ) ) else: fs.mv(__snake_case , __snake_case , recursive=__snake_case ) def lowercase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = threading.Lock()
29
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): lowerCAmelCase__ = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } lowerCAmelCase__ , lowerCAmelCase__ = input_paths_and_base_extractors[compression_format] if input_path is None: lowerCAmelCase__ = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) assert base_extractor.is_extractable(lowerCAmelCase__ ) lowerCAmelCase__ = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowerCAmelCase__ = file_path.read_text(encoding='utf-8' ) else: lowerCAmelCase__ = output_path.read_text(encoding='utf-8' ) lowerCAmelCase__ = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): lowerCAmelCase__ = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } lowerCAmelCase__ = input_paths[compression_format] if input_path is None: lowerCAmelCase__ = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) lowerCAmelCase__ = Extractor.infer_extractor_format(lowerCAmelCase__ ) assert extractor_format is not None lowerCAmelCase__ = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowerCAmelCase__ = file_path.read_text(encoding='utf-8' ) else: lowerCAmelCase__ = output_path.read_text(encoding='utf-8' ) lowerCAmelCase__ = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): import tarfile lowerCAmelCase__ = tmp_path / 'data_dot_dot' directory.mkdir() lowerCAmelCase__ = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(lowerCAmelCase__ , 'w' ) as f: f.add(lowerCAmelCase__ , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def __lowerCamelCase ( lowerCAmelCase__ ): import tarfile lowerCAmelCase__ = tmp_path / 'data_sym_link' directory.mkdir() lowerCAmelCase__ = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=lowerCAmelCase__ ) with tarfile.TarFile(lowerCAmelCase__ , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } lowerCAmelCase__ = insecure_tar_files[insecure_tar_file] lowerCAmelCase__ = tmp_path / 'extracted' TarExtractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __lowerCamelCase ( lowerCAmelCase__ ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowerCAmelCase__ = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 lowerCAmelCase__ = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(lowerCAmelCase__ ) assert zipfile.is_zipfile(str(lowerCAmelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCAmelCase__ ) # but we're right
119
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class a_ : '''simple docstring''' UpperCAmelCase_ = None UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = None UpperCAmelCase_ = 1 UpperCAmelCase_ = None UpperCAmelCase_ = False UpperCAmelCase_ = None UpperCAmelCase_ = None def __snake_case ( self : Dict): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
119
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _a ( unittest.TestCase ): def __init__( self: Tuple , UpperCamelCase_: Any , UpperCamelCase_: List[Any]=13 , UpperCamelCase_: int=7 , UpperCamelCase_: int=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[int]=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: int=4 , UpperCamelCase_: List[str]=37 , UpperCamelCase_: Tuple="gelu" , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Union[str, Any]=512 , UpperCamelCase_: Tuple=16 , UpperCamelCase_: Tuple=2 , UpperCamelCase_: Union[str, Any]=0.02 , UpperCamelCase_: List[Any]=4 , ) -> List[str]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase_ ( self: Tuple ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self: Optional[Any] ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _a ( lowerCamelCase__ , unittest.TestCase ): _lowercase : str = True _lowercase : Optional[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self: Tuple ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''roberta-base''' , from_pt=UpperCamelCase_ ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ )
110
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self :Union[str, Any] , *snake_case :Tuple , **snake_case :Any ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
300
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __UpperCAmelCase : def __init__( self: Optional[int] , UpperCAmelCase_: int , UpperCAmelCase_: List[str]=13 , UpperCAmelCase_: Dict=2 , UpperCAmelCase_: Any=24 , UpperCAmelCase_: Dict=16 , UpperCAmelCase_: Any=True , UpperCAmelCase_: int=True , UpperCAmelCase_: str=32 , UpperCAmelCase_: List[Any]=5 , UpperCAmelCase_: Optional[Any]=4 , UpperCAmelCase_: List[str]=37 , UpperCAmelCase_: List[Any]="gelu" , UpperCAmelCase_: Any=0.1 , UpperCAmelCase_: Optional[Any]=0.1 , UpperCAmelCase_: str=10 , UpperCAmelCase_: int=0.02 , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: List[str]=2 , UpperCAmelCase_: Optional[Any]=2 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = max_length _SCREAMING_SNAKE_CASE = num_mel_bins _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = frequency_stride _SCREAMING_SNAKE_CASE = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _SCREAMING_SNAKE_CASE = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _SCREAMING_SNAKE_CASE = (self.max_length - self.patch_size) // self.time_stride + 1 _SCREAMING_SNAKE_CASE = frequency_out_dimension * time_out_dimension _SCREAMING_SNAKE_CASE = num_patches + 2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_values, labels def UpperCamelCase ( self: List[str] ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCamelCase ( self: int , UpperCAmelCase_: List[str] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ASTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_values""": input_values} return config, inputs_dict @require_torch class __UpperCAmelCase (UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): __snake_case : int = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __snake_case : List[str] = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) __snake_case : Tuple = False __snake_case : Dict = False __snake_case : str = False __snake_case : List[Any] = False def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ASTModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["""input_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = ASTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __lowerCamelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" ,filename="""sample_audio.flac""" ,repo_type="""dataset""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = torchaudio.load(_lowerCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class __UpperCAmelCase (unittest.TestCase ): @cached_property def UpperCamelCase ( self: Tuple ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.default_feature_extractor _SCREAMING_SNAKE_CASE = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE = self.default_feature_extractor _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = prepare_audio() _SCREAMING_SNAKE_CASE = audio.squeeze().numpy() _SCREAMING_SNAKE_CASE = feature_extractor(_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**_lowerCAmelCase ) # verify the logits _SCREAMING_SNAKE_CASE = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _SCREAMING_SNAKE_CASE = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
354
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __UpperCAmelCase : def __init__( self: Tuple , UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 512 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Tuple ): '''simple docstring''' ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase ( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ) # Also check the case where encoder outputs are not passed _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFEsmForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __snake_case : Tuple = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) __snake_case : List[str] = False __snake_case : Union[str, Any] = False def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _SCREAMING_SNAKE_CASE = model.get_bias() assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for k, v in name.items(): assert isinstance(UpperCAmelCase_ , tf.Variable ) else: _SCREAMING_SNAKE_CASE = model.get_output_embeddings() assert x is None _SCREAMING_SNAKE_CASE = model.get_bias() assert name is None @require_tf class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCAmelCase_ ) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase__ : Optional[int]=0.01 , UpperCAmelCase__ : Optional[Any]=1_000) ->Optional[int]: '''simple docstring''' A__ = p_stop A__ = max_length def __iter__( self : List[Any]) ->List[Any]: '''simple docstring''' A__ = 0 A__ = False while not stop and count < self.max_length: yield count count += 1 A__ = random.random() < self.p_stop class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Any=True) ->Optional[Any]: '''simple docstring''' A__ = [ BatchSamplerShard(UpperCAmelCase__ , 2 , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__) for i in range(2) ] A__ = [list(UpperCAmelCase__) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(UpperCAmelCase__) for shard in batch_sampler_shards] , [len(UpperCAmelCase__) for e in expected]) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Any: '''simple docstring''' A__ = BatchSampler(range(24) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__) A__ = BatchSampler(range(24) , batch_size=3 , drop_last=UpperCAmelCase__) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__) # Check the shards when the dataset is a round multiple of batch size but not total batch size. A__ = BatchSampler(range(21) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__) A__ = BatchSampler(range(21) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. A__ = BatchSampler(range(22) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__) A__ = BatchSampler(range(22) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. A__ = BatchSampler(range(20) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__) A__ = BatchSampler(range(20) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__) # Check the shards when the dataset is very small. A__ = BatchSampler(range(2) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__) A__ = BatchSampler(range(2) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: '''simple docstring''' A__ = BatchSampler(range(24) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__) A__ = BatchSampler(range(24) , batch_size=4 , drop_last=UpperCAmelCase__) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__) # Check the shards when the dataset is not a round multiple of batch size. A__ = BatchSampler(range(22) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__) A__ = BatchSampler(range(22) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__) # Check the shards when the dataset is not a round multiple of batch size or num_processes. A__ = BatchSampler(range(21) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__) A__ = BatchSampler(range(21) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__) # Check the shards when the dataset is very small. A__ = BatchSampler(range(2) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__) A__ = BatchSampler(range(2) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: '''simple docstring''' A__ = BatchSampler(range(24) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__) A__ = BatchSampler(range(24) , batch_size=3 , drop_last=UpperCAmelCase__) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__) # Check the shards when the dataset is a round multiple of batch size but not total batch size. A__ = BatchSampler(range(21) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__) A__ = BatchSampler(range(21) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. A__ = BatchSampler(range(22) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__) A__ = BatchSampler(range(22) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. A__ = BatchSampler(range(20) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__) A__ = BatchSampler(range(20) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__) # Check the shards when the dataset is very small. A__ = BatchSampler(range(2) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__) A__ = BatchSampler(range(2) , batch_size=3 , drop_last=UpperCAmelCase__) A__ = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: '''simple docstring''' A__ = BatchSampler(range(24) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__) A__ = BatchSampler(range(24) , batch_size=4 , drop_last=UpperCAmelCase__) # Expected shouldn't change self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__) # Check the shards when the dataset is not a round multiple of batch size. A__ = BatchSampler(range(22) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__) A__ = BatchSampler(range(22) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__) # Check the shards when the dataset is not a round multiple of batch size or num_processes. A__ = BatchSampler(range(21) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__) A__ = BatchSampler(range(21) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__) # Check the shards when the dataset is very small. A__ = BatchSampler(range(2) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__) A__ = BatchSampler(range(2) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = [[], []] self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' A__ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] A__ = [BatchSamplerShard(UpperCAmelCase__ , 2 , UpperCAmelCase__ , even_batches=UpperCAmelCase__) for i in range(2)] self.assertEqual(len(batch_sampler_shards[0]) , 3) self.assertEqual(len(batch_sampler_shards[1]) , 2) self.assertListEqual(list(batch_sampler_shards[0]) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]]) self.assertListEqual(list(batch_sampler_shards[1]) , [[3, 4], [9, 10, 11]]) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : List[str]=False) ->Optional[Any]: '''simple docstring''' random.seed(UpperCAmelCase__) A__ = list(UpperCAmelCase__) A__ = [ IterableDatasetShard( UpperCAmelCase__ , batch_size=UpperCAmelCase__ , drop_last=UpperCAmelCase__ , num_processes=UpperCAmelCase__ , process_index=UpperCAmelCase__ , split_batches=UpperCAmelCase__ , ) for i in range(UpperCAmelCase__) ] A__ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(UpperCAmelCase__) iterable_dataset_lists.append(list(UpperCAmelCase__)) A__ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size A__ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__)) self.assertTrue(len(UpperCAmelCase__) % shard_batch_size == 0) A__ = [] for idx in range(0 , len(UpperCAmelCase__) , UpperCAmelCase__): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(UpperCAmelCase__) < len(UpperCAmelCase__): reference += reference self.assertListEqual(UpperCAmelCase__ , reference[: len(UpperCAmelCase__)]) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ = 42 A__ = RandomIterableDataset() self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__) # Edge case with a very small dataset A__ = RandomIterableDataset(max_length=2) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__) self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = BatchSampler(range(16) , batch_size=4 , drop_last=UpperCAmelCase__) A__ = SkipBatchSampler(UpperCAmelCase__ , 2) self.assertListEqual(list(UpperCAmelCase__) , [[8, 9, 10, 11], [12, 13, 14, 15]]) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' A__ = SkipDataLoader(list(range(16)) , batch_size=4 , skip_batches=2) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]]) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: '''simple docstring''' A__ = DataLoader(list(range(16)) , batch_size=4) A__ = skip_first_batches(UpperCAmelCase__ , num_batches=2) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]]) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' A__ = DataLoaderShard(list(range(16)) , batch_size=4) for idx, _ in enumerate(UpperCAmelCase__): self.assertEqual(dataloader.end_of_dataloader , idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(UpperCAmelCase__): self.assertEqual(dataloader.end_of_dataloader , idx == 3) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' Accelerator() A__ = DataLoaderDispatcher(range(16) , batch_size=4) for idx, _ in enumerate(UpperCAmelCase__): self.assertEqual(dataloader.end_of_dataloader , idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(UpperCAmelCase__): self.assertEqual(dataloader.end_of_dataloader , idx == 3)
14
"""simple docstring""" import copy import re class snake_case__ : _snake_case : Dict = """hp""" _snake_case : List[str] = {} _snake_case : int = None @classmethod def a__ ( cls , lowerCamelCase , lowerCamelCase ): __a = prefix __a = defaults cls.build_naming_info() @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): if len(lowerCamelCase ) == 0: return "" __a = None if any(char.isdigit() for char in word ): raise Exception(F"Parameters should not contain numbers: '{word}' contains a number" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowerCamelCase ) + 1 ): __a = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __a = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCamelCase ): __a = "" while integer != 0: __a = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s __a = 0 while True: __a = word + "#" + int_to_alphabetic(lowerCamelCase ) if sword in info["reverse_short_word"]: continue else: __a = sword break __a = short_word __a = word return short_word @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): __a = param_name.split("_" ) __a = [TrialShortNamer.shortname_for_word(lowerCamelCase , lowerCamelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __a = ["", "_"] for separator in separators: __a = separator.join(lowerCamelCase ) if shortname not in info["reverse_short_param"]: __a = shortname __a = param_name return shortname return param_name @staticmethod def a__ ( lowerCamelCase , lowerCamelCase ): __a = TrialShortNamer.shortname_for_key(lowerCamelCase , lowerCamelCase ) __a = short_name __a = param_name @classmethod def a__ ( cls ): if cls.NAMING_INFO is not None: return __a = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } __a = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCamelCase , lowerCamelCase ) __a = info @classmethod def a__ ( cls , lowerCamelCase ): cls.build_naming_info() assert cls.PREFIX is not None __a = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"You should provide a default value for the param name {k} with value {v}" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __a = cls.NAMING_INFO["short_param"][k] if isinstance(lowerCamelCase , lowerCamelCase ): __a = 1 if v else 0 __a = "" if isinstance(lowerCamelCase , (int, float) ) else "-" __a = F"{key}{sep}{v}" name.append(lowerCamelCase ) return "_".join(lowerCamelCase ) @classmethod def a__ ( cls , lowerCamelCase ): __a = repr[len(cls.PREFIX ) + 1 :] if repr == "": __a = [] else: __a = repr.split("_" ) __a = {} for value in values: if "-" in value: __a , __a = value.split("-" ) else: __a = re.sub("[0-9.]" , "" , lowerCamelCase ) __a = float(re.sub("[^0-9.]" , "" , lowerCamelCase ) ) __a = cls.NAMING_INFO["reverse_short_param"][p_k] __a = p_v for k in cls.DEFAULTS: if k not in parameters: __a = cls.DEFAULTS[k] return parameters
261
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def UpperCamelCase_( _snake_case : Union[str, Any]=None ): """simple docstring""" __a =argparse.ArgumentParser(add_help=_snake_case , allow_abbrev=_snake_case ) # The main config parser __a =config_command_parser(_snake_case ) # The subparser to add commands to __a =config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(_snake_case , parents=[parent_parser] ) update_command_parser(_snake_case , parents=[parent_parser] ) return config_parser def UpperCamelCase_( ): """simple docstring""" __a =get_config_parser() __a =config_parser.parse_args() if not hasattr(_snake_case , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(_snake_case ) if __name__ == "__main__": main()
355
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
0
'''simple docstring''' import math def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : float, SCREAMING_SNAKE_CASE__ : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(SCREAMING_SNAKE_CASE__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
125
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __a : def __init__( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any]=13 , __magic_name__ : int=7 , __magic_name__ : int=False , __magic_name__ : str=True , __magic_name__ : int=False , __magic_name__ : Optional[int]=False , __magic_name__ : List[Any]=19 , __magic_name__ : Any=32 , __magic_name__ : List[Any]=5 , __magic_name__ : Dict=4 , __magic_name__ : Optional[int]=37 , __magic_name__ : str="gelu" , __magic_name__ : int=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[str]=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Union[str, Any]=0.0_2 , __magic_name__ : int=3 , __magic_name__ : Dict=4 , __magic_name__ : str=None , ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : Tuple = use_input_mask UpperCAmelCase_ : Union[str, Any] = use_token_type_ids UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : Tuple = type_vocab_size UpperCAmelCase_ : Dict = type_sequence_label_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : List[str] = num_choices UpperCAmelCase_ : Optional[Any] = scope def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Tuple = None if self.use_input_mask: UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[Any] = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__magic_name__ , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def UpperCAmelCase__ ( self : str , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[str] = EsmForProteinFolding(config=__magic_name__ ).float() model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : int = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Any = False __a : Any = (EsmForProteinFolding,) if is_torch_available() else () __a : Any = () __a : Optional[Any] = {} if is_torch_available() else {} __a : List[str] = False def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = EsmFoldModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip('''Does not support attention outputs''' ) def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" pass @unittest.skip def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" pass @unittest.skip('''ESMFold only has one output format.''' ) def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def UpperCAmelCase__ ( self : Any ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold does not support input chunking.''' ) def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" pass @require_torch class __a (lowerCamelCase ): @slow def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() UpperCAmelCase_ : Optional[int] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase_ : Tuple = model(__magic_name__ )['''positions'''] UpperCAmelCase_ : Dict = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __magic_name__ , atol=1E-4 ) )
125
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowercase ( UpperCamelCase__ ): _a = '''fnet''' def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int: super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) _A : str = vocab_size _A : Tuple = max_position_embeddings _A : Tuple = hidden_size _A : List[Any] = num_hidden_layers _A : Union[str, Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : List[str] = hidden_dropout_prob _A : Union[str, Any] = initializer_range _A : Optional[Any] = type_vocab_size _A : List[Any] = layer_norm_eps _A : Union[str, Any] = use_tpu_fourier_optimizations _A : List[Any] = tpu_short_seq_length
357
def lowerCAmelCase_ ( snake_case_ = 1000 ): _A : List[Any] = 3 _A : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
343
0
from math import log from scipy.constants import Boltzmann, physical_constants __UpperCAmelCase = 300 # TEMPERATURE (unit = K) def UpperCamelCase ( snake_case__ : float , snake_case__ : float , snake_case__ : float , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
119
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __UpperCAmelCase = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __UpperCAmelCase = json.load(f) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return FSMTTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : List[Any] = FSMTForConditionalGeneration.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCamelCase : int = F"""facebook/wmt19-{pair}""" UpperCamelCase : Optional[int] = self.get_tokenizer(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.get_model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = bleu_data[pair]['src'] UpperCamelCase : Tuple = bleu_data[pair]['tgt'] UpperCamelCase : List[Any] = tokenizer(SCREAMING_SNAKE_CASE_, return_tensors='pt', truncation=SCREAMING_SNAKE_CASE_, padding='longest' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model.generate( input_ids=batch.input_ids, num_beams=8, ) UpperCamelCase : Tuple = tokenizer.batch_decode( SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = calculate_bleu(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(scores['bleu'], SCREAMING_SNAKE_CASE_ )
119
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ : List[Any] ={'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict =['''YolosFeatureExtractor'''] A__ : Tuple =['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] =[ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys A__ : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
220
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("""String lengths must match!""" ) _lowerCAmelCase = 0 for chara, chara in zip(lowerCAmelCase , lowerCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
220
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): debug_launcher(test_script.main ) def __UpperCAmelCase ( self ): debug_launcher(test_ops.main )
45
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : Union[str, Any] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
125
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_a ) , "Tatoeba directory does not exist." ) class __snake_case (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Dict = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> int: '''simple docstring''' self.resolver.convert_models(["""heb-eng"""] ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
159
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _lowerCamelCase : Tuple = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _lowerCamelCase : List[str] = get_tests_dir("fixtures/vocab.json") _lowerCamelCase : str = get_tests_dir("fixtures") class __snake_case (unittest.TestCase ): lowerCAmelCase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: '''simple docstring''' _lowerCAmelCase : Any = 0 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : List[Any] = WavaVecaConfig() _lowerCAmelCase : str = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) _lowerCAmelCase : Any = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """vocab.json""" ) ) _lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Any = WavaVecaFeatureExtractor() _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) _lowerCAmelCase : List[str] = WavaVecaProcessor(_UpperCAmelCase , _UpperCAmelCase ) # save in new folder processor.save_pretrained(_UpperCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """r""" ) as f: _lowerCAmelCase : Union[str, Any] = json.load(_UpperCAmelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """w""" ) as f: f.write(json.dumps(_UpperCAmelCase ) ) _lowerCAmelCase : List[Any] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Dict = WavaVecaFeatureExtractor() _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) _lowerCAmelCase : str = WavaVecaProcessor(_UpperCAmelCase , _UpperCAmelCase ) # save in new folder processor.save_pretrained(_UpperCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """r""" ) as f: _lowerCAmelCase : str = json.load(_UpperCAmelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """w""" ) as f: f.write(json.dumps(_UpperCAmelCase ) ) _lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Tuple = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(_UpperCAmelCase ) # copy relevant files copyfile(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , """w""" ) as f: f.write("""{}""" ) _lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: '''simple docstring''' with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : Any = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : List[str] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_UpperCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) _lowerCAmelCase : Optional[int] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) _lowerCAmelCase : Union[str, Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version _lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase ) _lowerCAmelCase : List[str] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' try: AutoConfig.register("""custom""" , _UpperCAmelCase ) AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase ) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase ): AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCAmelCase : List[str] = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Tuple = os.path.join(_UpperCAmelCase , """vocab.txt""" ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _lowerCAmelCase : str = CustomTokenizer(_UpperCAmelCase ) _lowerCAmelCase : List[str] = CustomProcessor(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: '''simple docstring''' class __snake_case (_a ): lowerCAmelCase__ = False class __snake_case (_a ): lowerCAmelCase__ = False class __snake_case (_a ): lowerCAmelCase__ = "AutoFeatureExtractor" lowerCAmelCase__ = "AutoTokenizer" lowerCAmelCase__ = False try: AutoConfig.register("""custom""" , _UpperCAmelCase ) AutoFeatureExtractor.register(_UpperCAmelCase , _UpperCAmelCase ) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) AutoProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # If remote code is not set, the default is to use local classes. _lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. _lowerCAmelCase : str = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. _lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: '''simple docstring''' _lowerCAmelCase : List[str] = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class __snake_case (unittest.TestCase ): lowerCAmelCase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def SCREAMING_SNAKE_CASE ( cls : int ) -> Any: '''simple docstring''' _lowerCAmelCase : List[str] = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple ) -> Optional[int]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : Optional[int] = WavaVecaProcessor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_UpperCAmelCase , """test-processor""" ) , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) _lowerCAmelCase : str = WavaVecaProcessor.from_pretrained(f"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(new_processor.feature_extractor , _UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: '''simple docstring''' _lowerCAmelCase : int = WavaVecaProcessor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_UpperCAmelCase , """test-processor-org""" ) , push_to_hub=_UpperCAmelCase , use_auth_token=self._token , organization="""valid_org""" , ) _lowerCAmelCase : str = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(new_processor.feature_extractor , _UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _lowerCAmelCase : Any = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : int = os.path.join(_UpperCAmelCase , """vocab.txt""" ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) _lowerCAmelCase : List[str] = CustomTokenizer(_UpperCAmelCase ) _lowerCAmelCase : List[str] = CustomProcessor(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"{USER}/test-dynamic-processor" , token=self._token ) _lowerCAmelCase : Union[str, Any] = Repository(_UpperCAmelCase , clone_from=f"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(_UpperCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_UpperCAmelCase , """tokenizer_config.json""" ) ) as f: _lowerCAmelCase : str = json.load(_UpperCAmelCase ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , """custom_processing.py""" ) ) ) repo.push_to_hub() _lowerCAmelCase : Tuple = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor" , trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
159
1
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) def UpperCamelCase_( snake_case : torch.nn.Module , snake_case : BnbQuantizationConfig , snake_case : Union[str, os.PathLike] = None , snake_case : Optional[Dict[str, Union[int, str, torch.device]]] = None , snake_case : Optional[List[str]] = None , snake_case : Optional[Dict[Union[int, str], Union[int, str]]] = None , snake_case : Optional[Union[str, os.PathLike]] = None , snake_case : bool = False , ): '''simple docstring''' snake_case_ = bnb_quantization_config.load_in_abit snake_case_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) snake_case_ = [] # custom device map if isinstance(snake_case , snake_case ) and len(device_map.keys() ) > 1: snake_case_ = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: snake_case_ = get_keys_to_not_convert(snake_case ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case ) snake_case_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: snake_case_ = [] snake_case_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case ) # compatibility with peft snake_case_ = load_in_abit snake_case_ = load_in_abit snake_case_ = get_parameter_device(snake_case ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) snake_case_ = replace_with_bnb_layers(snake_case , snake_case , modules_to_not_convert=snake_case ) # convert param to the right dtype snake_case_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: snake_case_ = name.replace(".weight" , "" ).replace(".bias" , "" ) snake_case_ = getattr(snake_case , snake_case , snake_case ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(snake_case ): param.to(snake_case ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): snake_case_ = replace_with_bnb_layers( snake_case , snake_case , modules_to_not_convert=snake_case ) snake_case_ = get_quantized_model_device_map( snake_case , snake_case , snake_case , max_memory=snake_case , no_split_module_classes=snake_case , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): snake_case_ = True snake_case_ = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( snake_case , snake_case , snake_case , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case , offload_state_dict=snake_case , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case , device_map=snake_case , offload_dir=snake_case ) def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Optional[Any]=None , snake_case : Any=None , snake_case : Any=None ): '''simple docstring''' if device_map is None: if torch.cuda.is_available(): snake_case_ = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(snake_case , snake_case ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) snake_case_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) snake_case_ = {} snake_case_ = special_dtypes snake_case_ = no_split_module_classes snake_case_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": snake_case_ = get_balanced_memory( snake_case , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case , **snake_case , ) snake_case_ = max_memory snake_case_ = infer_auto_device_map(snake_case , **snake_case ) if isinstance(snake_case , snake_case ): # check if don't have any quantized module on the cpu snake_case_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules snake_case_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def UpperCamelCase_( snake_case : Tuple , snake_case : str , snake_case : int=None , snake_case : Optional[Any]=None ): '''simple docstring''' if modules_to_not_convert is None: snake_case_ = [] snake_case_ , snake_case_ = _replace_with_bnb_layers( snake_case , snake_case , snake_case , snake_case ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def UpperCamelCase_( snake_case : List[Any] , snake_case : Optional[int] , snake_case : int=None , snake_case : Any=None , ): '''simple docstring''' snake_case_ = False for name, module in model.named_children(): if current_key_name is None: snake_case_ = [] current_key_name.append(snake_case ) if isinstance(snake_case , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` snake_case_ = ".".join(snake_case ) snake_case_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: snake_case_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) snake_case_ = module.weight.data if module.bias is not None: snake_case_ = module.bias.data bnb_module.requires_grad_(snake_case ) setattr(snake_case , snake_case , snake_case ) snake_case_ = True if len(list(module.children() ) ) > 0: snake_case_ , snake_case_ = _replace_with_bnb_layers( snake_case , snake_case , snake_case , snake_case ) snake_case_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase_( snake_case : Optional[Any] ): '''simple docstring''' with init_empty_weights(): snake_case_ = deepcopy(snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager` snake_case_ = find_tied_parameters(snake_case ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case , snake_case ): snake_case_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case_ = sum(snake_case , [] ) snake_case_ = len(snake_case ) > 0 # Check if it is a base model snake_case_ = False if hasattr(snake_case , "base_model_prefix" ): snake_case_ = not hasattr(snake_case , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case_ = list(model.named_children() ) snake_case_ = [list_modules[-1][0]] # add last module together with tied weights snake_case_ = set(snake_case ) - set(snake_case ) snake_case_ = list(set(snake_case ) ) + list(snake_case ) # remove ".weight" from the keys snake_case_ = [".weight", ".bias"] snake_case_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case_ = name.replace(snake_case , "" ) filtered_module_names.append(snake_case ) return filtered_module_names def UpperCamelCase_( snake_case : List[Any] ): '''simple docstring''' for m in model.modules(): if isinstance(snake_case , bnb.nn.Linearabit ): return True return False def UpperCamelCase_( snake_case : nn.Module ): '''simple docstring''' return next(parameter.parameters() ).device def UpperCamelCase_( snake_case : int , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Dict , snake_case : int , snake_case : int ): '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(snake_case , snake_case , 0 , dtype=snake_case , value=snake_case ) snake_case_ = param_name snake_case_ = model if "." in tensor_name: snake_case_ = tensor_name.split("." ) for split in splits[:-1]: snake_case_ = getattr(snake_case , snake_case ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) snake_case_ = new_module snake_case_ = splits[-1] # offload weights snake_case_ = False offload_weight(module._parameters[tensor_name] , snake_case , snake_case , index=snake_case ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , snake_case , index=snake_case , ) else: offload_weight(snake_case , snake_case , snake_case , index=snake_case ) offload_weight(snake_case , param_name.replace("weight" , "SCB" ) , snake_case , index=snake_case ) set_module_tensor_to_device(snake_case , snake_case , "meta" , dtype=snake_case , value=torch.empty(*param.size() ) )
85
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
309
"""simple docstring""" __UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ): lowerCAmelCase = len(_UpperCAmelCase ) * [False] lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) lowerCAmelCase = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
309
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : """simple docstring""" def __init__( self : str,lowercase_ : str,lowercase_ : Tuple=1_3,lowercase_ : List[Any]=3_2,lowercase_ : Union[str, Any]=3,lowercase_ : Dict=4,lowercase_ : Dict=[1_0, 2_0, 3_0, 4_0],lowercase_ : Any=[2, 2, 3, 2],lowercase_ : str=True,lowercase_ : Optional[Any]=True,lowercase_ : Optional[Any]=3_7,lowercase_ : Optional[int]="gelu",lowercase_ : Optional[Any]=1_0,lowercase_ : Dict=0.02,lowercase_ : Dict=["stage2", "stage3", "stage4"],lowercase_ : Union[str, Any]=3,lowercase_ : Optional[Any]=None,)-> Optional[int]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_stages A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = intermediate_size A__ = hidden_act A__ = type_sequence_label_size A__ = initializer_range A__ = out_features A__ = num_labels A__ = scope A__ = num_stages def snake_case__ ( self : Tuple )-> Optional[Any]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels,num_stages=self.num_stages,hidden_sizes=self.hidden_sizes,depths=self.depths,is_training=self.is_training,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,out_features=self.out_features,) def snake_case__ ( self : Tuple )-> Union[str, Any]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config(),hidden_size=5_1_2,pool_scales=[1, 2, 3, 6],use_auxiliary_head=lowercase_,auxiliary_loss_weight=0.4,auxiliary_in_channels=4_0,auxiliary_channels=2_5_6,auxiliary_num_convs=1,auxiliary_concat_input=lowercase_,loss_ignore_index=2_5_5,num_labels=self.num_labels,) def snake_case__ ( self : Optional[Any],lowercase_ : Dict,lowercase_ : int,lowercase_ : Optional[int] )-> Dict: '''simple docstring''' A__ = UperNetForSemanticSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_ ) self.parent.assertEqual( result.logits.shape,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case__ ( self : int )-> Dict: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCamelCase = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' A__ = UperNetModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,has_text_modality=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : Optional[Any] )-> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : int )-> Tuple: '''simple docstring''' return def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1],lowercase_ ) def snake_case__ ( self : List[str] )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def snake_case__ ( self : Any )-> List[Any]: '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def snake_case__ ( self : str )-> int: '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def snake_case__ ( self : int )-> Any: '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case__ ( self : Union[str, Any] )-> Tuple: '''simple docstring''' pass def snake_case__ ( self : int )-> Any: '''simple docstring''' def check_hidden_states_output(lowercase_ : str,lowercase_ : Union[str, Any],lowercase_ : Any ): A__ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase_,lowercase_ ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(lowercase_ ),expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ),[self.model_tester.image_size // 4, self.model_tester.image_size // 4],) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(lowercase_,lowercase_,lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(lowercase_,lowercase_,lowercase_ ) def snake_case__ ( self : Optional[Any] )-> Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(lowercase_ ) A__ = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: A__ = model_class(config=lowercase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(),[0.0, 1.0],msg=F'Parameter {name} of model {model_class} seems not properly initialized',) @unittest.skip(reason='UperNet does not have tied weights' ) def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' pass @slow def snake_case__ ( self : Dict )-> Dict: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = UperNetForSemanticSegmentation.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _snake_case( ) -> int: '''simple docstring''' A__ = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) A__ = Image.open(SCREAMING_SNAKE_CASE__ ).convert('RGB' ) return image @require_torch @require_vision @slow class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[int] )-> List[Any]: '''simple docstring''' A__ = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) A__ = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowercase_ ) A__ = prepare_img() A__ = processor(images=lowercase_,return_tensors='pt' ).to(lowercase_ ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3],lowercase_,atol=1E-4 ) ) def snake_case__ ( self : Any )-> Any: '''simple docstring''' A__ = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) A__ = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowercase_ ) A__ = prepare_img() A__ = processor(images=lowercase_,return_tensors='pt' ).to(lowercase_ ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape,lowercase_ ) A__ = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3],lowercase_,atol=1E-4 ) )
7
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' # Base Case if index == len(UpperCamelCase_ ): return True # Recursive Step for i in range(UpperCamelCase_ ): if valid_coloring(graph[index] , UpperCamelCase_ , UpperCamelCase_ ): # Color current vertex UpperCamelCase = i # Validate coloring if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ): return True # Backtrack UpperCamelCase = -1 return False def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' UpperCamelCase = [-1] * len(UpperCamelCase_ ) if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 ): return colored_vertices return []
343
0
"""simple docstring""" class snake_case : def __init__( self : Optional[int] ): '''simple docstring''' a : dict[str, TrieNode] = {} # Mapping from char to TrieNode a : str = False def lowerCamelCase__ ( self : Tuple , A : list[str] ): '''simple docstring''' for word in words: self.insert(A ) def lowerCamelCase__ ( self : Dict , A : str ): '''simple docstring''' a : List[str] = self for char in word: if char not in curr.nodes: a : Dict = TrieNode() a : Any = curr.nodes[char] a : List[str] = True def lowerCamelCase__ ( self : str , A : str ): '''simple docstring''' a : Tuple = self for char in word: if char not in curr.nodes: return False a : Optional[Any] = curr.nodes[char] return curr.is_leaf def lowerCamelCase__ ( self : int , A : str ): '''simple docstring''' def _delete(A : TrieNode , A : str , A : int ) -> bool: if index == len(A ): # If word does not exist if not curr.is_leaf: return False a : int = False return len(curr.nodes ) == 0 a : Tuple = word[index] a : Dict = curr.nodes.get(A ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted a : str = _delete(A , A , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , A , 0 ) def snake_case (A_ :TrieNode , A_ :str ): '''simple docstring''' if node.is_leaf: print(A_ , end=' ' ) for key, value in node.nodes.items(): print_words(A_ , word + key ) def snake_case (): '''simple docstring''' a : Dict = 'banana bananas bandana band apple all beast'.split() a : Optional[Any] = TrieNode() root.insert_many(A_ ) # print_words(root, "") assert all(root.find(A_ ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def snake_case (A_ :str , A_ :bool ): '''simple docstring''' print(str(A_ ) , 'works!' if passes else 'doesn\'t work :(' ) def snake_case (): '''simple docstring''' assert test_trie() def snake_case (): '''simple docstring''' print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
186
"""simple docstring""" import argparse import os import re import packaging.version _UpperCamelCase : Optional[Any] = 'examples/' _UpperCamelCase : Any = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _UpperCamelCase : List[str] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } _UpperCamelCase : List[str] = 'README.md' def snake_case (A_ :str , A_ :Optional[Any] , A_ :Any ): '''simple docstring''' with open(A_ , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.read() a, a : Any = REPLACE_PATTERNS[pattern] a : Dict = replace.replace('VERSION' , A_ ) a : Union[str, Any] = re_pattern.sub(A_ , A_ ) with open(A_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(A_ ) def snake_case (A_ :List[Any] ): '''simple docstring''' for folder, directories, fnames in os.walk(A_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(A_ , A_ ) , A_ , pattern='examples' ) def snake_case (A_ :Tuple , A_ :Optional[Any]=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A_ , A_ , A_ ) if not patch: update_version_in_examples(A_ ) def snake_case (): '''simple docstring''' a : str = '🤗 Transformers currently provides the following architectures' a : Dict = '1. Want to contribute a new model?' with open(A_ , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Optional[Any] = f.readlines() # Find the start of the list. a : List[str] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): a : int = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(A_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(A_ ) def snake_case (): '''simple docstring''' with open(REPLACE_FILES['init'] , 'r' ) as f: a : List[str] = f.read() a : str = REPLACE_PATTERNS['init'][0].search(A_ ).groups()[0] return packaging.version.parse(A_ ) def snake_case (A_ :Optional[Any]=False ): '''simple docstring''' a : Optional[int] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: a : Tuple = default_version.base_version elif patch: a : Union[str, Any] = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: a : Optional[Any] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. a : Union[str, Any] = input(f'''Which version are you releasing? [{default_version}]''' ) if len(A_ ) == 0: a : int = default_version print(f'''Updating version to {version}.''' ) global_version_update(A_ , patch=A_ ) def snake_case (): '''simple docstring''' a : str = get_version() a : Optional[int] = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' a : Optional[int] = current_version.base_version # Check with the user we got that right. a : str = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(A_ ) == 0: a : Union[str, Any] = dev_version print(f'''Updating version to {version}.''' ) global_version_update(A_ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _UpperCamelCase : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
186
1
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a ( a_ ): UpperCAmelCase_ : List[Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : str ="AutoImageProcessor" UpperCAmelCase_ : Any ="AutoTokenizer" def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): lowercase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _lowerCamelCase , ) lowercase = kwargs.pop('feature_extractor' ) lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_lowerCamelCase , _lowerCamelCase ) lowercase = self.image_processor lowercase = False def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) lowercase = kwargs.pop('images' , _lowerCamelCase ) lowercase = kwargs.pop('text' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowercase = args[0] lowercase = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: lowercase = self.image_processor(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if text is not None: lowercase = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: lowercase = encodings['input_ids'] return inputs def UpperCamelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def UpperCamelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def UpperCamelCase_ ( self ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) lowercase = True lowercase = self.tokenizer yield lowercase = self.image_processor lowercase = False def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=None ): if added_vocab is None: lowercase = self.tokenizer.get_added_vocab() lowercase = {} while tokens: lowercase = re.search(R'<s_(.*?)>' , _lowerCamelCase , re.IGNORECASE ) if start_token is None: break lowercase = start_token.group(1 ) lowercase = re.search(RF'</s_{key}>' , _lowerCamelCase , re.IGNORECASE ) lowercase = start_token.group() if end_token is None: lowercase = tokens.replace(_lowerCamelCase , '' ) else: lowercase = end_token.group() lowercase = re.escape(_lowerCamelCase ) lowercase = re.escape(_lowerCamelCase ) lowercase = re.search(F'{start_token_escaped}(.*?){end_token_escaped}' , _lowerCamelCase , re.IGNORECASE ) if content is not None: lowercase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowercase = self.tokenajson(_lowerCamelCase , is_inner_value=_lowerCamelCase , added_vocab=_lowerCamelCase ) if value: if len(_lowerCamelCase ) == 1: lowercase = value[0] lowercase = value else: # leaf nodes lowercase = [] for leaf in content.split(R'<sep/>' ): lowercase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowercase = leaf[1:-2] # for categorical special tokens output[key].append(_lowerCamelCase ) if len(output[key] ) == 1: lowercase = output[key][0] lowercase = tokens[tokens.find(_lowerCamelCase ) + len(_lowerCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_lowerCamelCase , added_vocab=_lowerCamelCase ) if len(_lowerCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCamelCase_ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _lowerCamelCase , ) return self.image_processor_class @property def UpperCamelCase_ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _lowerCamelCase , ) return self.image_processor
220
"""simple docstring""" # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class a ( a_ ): def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = None , _lowerCamelCase = 5_0 , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ): lowercase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_lowerCamelCase , ) lowercase = image.to(self.device ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample lowercase = (image / 2 + 0.5).clamp(0 , 1 ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_lowerCamelCase ), "This is a local test"
220
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __UpperCAmelCase : '''simple docstring''' def __init__(self : Optional[int] , _lowerCAmelCase : Union[str, Any] , ): A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = """gelu""" A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def A (self : List[str] ): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A (self : Dict ): ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A (self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ): A = TFEsmModel(config=__lowerCAmelCase ) A = {"""input_ids""": input_ids, """attention_mask""": input_mask} A = model(__lowerCAmelCase ) A = [input_ids, input_mask] A = model(__lowerCAmelCase ) A = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A (self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : int , ): A = True A = TFEsmModel(config=__lowerCAmelCase ) A = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } A = model(__lowerCAmelCase ) A = [input_ids, input_mask] A = model(__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ) # Also check the case where encoder outputs are not passed A = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A (self : int , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ): A = TFEsmForMaskedLM(config=__lowerCAmelCase ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A (self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): A = self.num_labels A = TFEsmForTokenClassification(config=__lowerCAmelCase ) A = {"""input_ids""": input_ids, """attention_mask""": input_mask} A = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A (self : List[str] ): A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __lowerCAmelCase = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def A (self : Tuple ): A = TFEsmModelTester(self ) A = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def A (self : int ): self.config_tester.run_common_tests() def A (self : List[str] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A (self : Tuple ): A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCAmelCase ) def A (self : Optional[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def A (self : Dict ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def A (self : Optional[int] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def A (self : List[Any] ): pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def A (self : str ): pass def A (self : Dict ): A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__lowerCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for k, v in name.items(): assert isinstance(__lowerCAmelCase , tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def A (self : Union[str, Any] ): A = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(__lowerCAmelCase )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , __lowerCAmelCase ) # compare the actual values for a slice. A = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def A (self : List[str] ): A = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(__lowerCAmelCase )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
358
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowerCamelCase : Any = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) A = primes[group]["""prime"""] A = primes[group]["""generator"""] A = int(hexlify(urandom(32 ) ) , base=16 ) def A (self : Optional[Any] ): return hex(self.__private_key )[2:] def A (self : Union[str, Any] ): A = pow(self.generator , self.__private_key , self.prime ) return hex(_lowerCAmelCase )[2:] def A (self : Any , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowerCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def A (self : List[str] , _lowerCAmelCase : str ): A = int(_lowerCAmelCase , base=16 ) if not self.is_valid_public_key(_lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , self.__private_key , self.prime ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() @staticmethod def A (_lowerCAmelCase : int , _lowerCAmelCase : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowerCAmelCase , (prime - 1) // 2 , _lowerCAmelCase ) == 1 ) @staticmethod def A (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : int = 14 ): A = int(_lowerCAmelCase , base=16 ) A = int(_lowerCAmelCase , base=16 ) A = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""Invalid public key""" ) A = pow(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return shaaaa(str(_lowerCAmelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
337
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Union[str, Any] , lowerCAmelCase_ :Optional[int] )->Dict: '''simple docstring''' snake_case_ = TaConfig.from_json_file(lowerCAmelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ = TaForConditionalGeneration(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
159
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE :Union[str, Any] = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE :Any = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] _SCREAMING_SNAKE_CASE = GPTaTokenizer def __init__( self : Any , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Union[str, Any]="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) snake_case_ = kwargs.pop("add_bos_token" , _lowerCAmelCase ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _lowerCAmelCase ) != add_prefix_space: snake_case_ = getattr(_lowerCAmelCase , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**_lowerCAmelCase ) snake_case_ = add_prefix_space def lowerCAmelCase__ ( self : List[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : List[str] ) -> BatchEncoding: """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Dict , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[str] ) -> BatchEncoding: """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowerCAmelCase__ ( self : int , _lowerCAmelCase : "Conversation" ) -> List[int]: """simple docstring""" snake_case_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) + [self.eos_token_id] ) if len(_lowerCAmelCase ) > self.model_max_length: snake_case_ = input_ids[-self.model_max_length :] return input_ids
159
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCAmelCase_ ( __a ) -> Optional[int]: """simple docstring""" lowerCamelCase__: Union[str, Any] =[ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: Optional[Any] =emb.weight.shape lowerCamelCase__: Dict =nn.Linear(__a , __a , bias=__a ) lowerCamelCase__: Optional[int] =emb.weight.data return lin_layer def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" lowerCamelCase__: int =torch.load(__a , map_location="cpu" ) lowerCamelCase__: str =Namespace(**checkpoint["cfg"]["model"] ) lowerCamelCase__: Any =checkpoint["model"] remove_ignore_keys_(__a ) lowerCamelCase__: Dict =state_dict["decoder.embed_tokens.weight"].shape[0] lowerCamelCase__: Union[str, Any] ={key.replace("decoder" , "model" ): val for key, val in state_dict.items()} lowerCamelCase__: List[str] =XGLMConfig( vocab_size=__a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCamelCase__: Optional[Any] =XGLMForCausalLM(__a ) lowerCamelCase__: str =model.load_state_dict(__a , strict=__a ) print(__a ) lowerCamelCase__: int =make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") __A = parser.parse_args() __A = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
273
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "distilbert" lowercase_ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self : Any , UpperCAmelCase_ : str=30_522 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : List[Any]=4 * 768 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.2 , UpperCAmelCase_ : int=0 , **UpperCAmelCase_ : List[Any] , ) ->Any: '''simple docstring''' lowerCamelCase__: int =vocab_size lowerCamelCase__: Any =max_position_embeddings lowerCamelCase__: Optional[int] =sinusoidal_pos_embds lowerCamelCase__: str =n_layers lowerCamelCase__: str =n_heads lowerCamelCase__: str =dim lowerCamelCase__: Optional[Any] =hidden_dim lowerCamelCase__: Dict =dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: int =activation lowerCamelCase__: Dict =initializer_range lowerCamelCase__: Optional[Any] =qa_dropout lowerCamelCase__: int =seq_classif_dropout super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__: Dict ={0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__: Optional[int] ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
273
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _lowerCAmelCase : int = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=False , ) -> List[str]: output_path.parent.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , use_external_data_format=_lowerCAmelCase , enable_onnx_checker=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) else: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) @torch.no_grad() def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Any = False ) -> Optional[Any]: A_ : str = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A_ : Union[str, Any] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: A_ : int = '''cpu''' A_ : Any = StableDiffusionPipeline.from_pretrained(_lowerCAmelCase , torch_dtype=_lowerCAmelCase ).to(_lowerCAmelCase ) A_ : Tuple = Path(_lowerCAmelCase ) # TEXT ENCODER A_ : List[Any] = pipeline.text_encoder.config.max_position_embeddings A_ : Optional[Any] = pipeline.text_encoder.config.hidden_size A_ : Dict = pipeline.tokenizer( "A sample prompt" , padding="max_length" , max_length=pipeline.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="pt" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=_lowerCAmelCase , dtype=torch.intaa )) , output_path=output_path / "text_encoder" / "model.onnx" , ordered_input_names=["input_ids"] , output_names=["last_hidden_state", "pooler_output"] , dynamic_axes={ "input_ids": {0: "batch", 1: "sequence"}, } , opset=_lowerCAmelCase , ) del pipeline.text_encoder # UNET A_ : Tuple = pipeline.unet.config.in_channels A_ : str = pipeline.unet.config.sample_size A_ : str = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), torch.randn(2 ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), torch.randn(2 , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=_lowerCAmelCase , ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"] , output_names=["out_sample"] , dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "timestep": {0: "batch"}, "encoder_hidden_states": {0: "batch", 1: "sequence"}, } , opset=_lowerCAmelCase , use_external_data_format=_lowerCAmelCase , ) A_ : List[str] = str(unet_path.absolute().as_posix() ) A_ : Optional[int] = os.path.dirname(_lowerCAmelCase ) A_ : Optional[Any] = onnx.load(_lowerCAmelCase ) # clean up existing tensor files shutil.rmtree(_lowerCAmelCase ) os.mkdir(_lowerCAmelCase ) # collate external tensor files into one onnx.save_model( _lowerCAmelCase , _lowerCAmelCase , save_as_external_data=_lowerCAmelCase , all_tensors_to_one_file=_lowerCAmelCase , location="weights.pb" , convert_attribute=_lowerCAmelCase , ) del pipeline.unet # VAE ENCODER A_ : Union[str, Any] = pipeline.vae A_ : Tuple = vae_encoder.config.in_channels A_ : Any = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A_ : int = lambda _lowerCAmelCase , _lowerCAmelCase : vae_encoder.encode(_lowerCAmelCase , _lowerCAmelCase )[0].sample() onnx_export( _lowerCAmelCase , model_args=( torch.randn(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=output_path / "vae_encoder" / "model.onnx" , ordered_input_names=["sample", "return_dict"] , output_names=["latent_sample"] , dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=_lowerCAmelCase , ) # VAE DECODER A_ : int = pipeline.vae A_ : Union[str, Any] = vae_decoder.config.latent_channels A_ : List[str] = vae_decoder.config.out_channels # forward only through the decoder part A_ : Optional[Any] = vae_encoder.decode onnx_export( _lowerCAmelCase , model_args=( torch.randn(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=_lowerCAmelCase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A_ : Dict = pipeline.safety_checker A_ : Union[str, Any] = safety_checker.config.vision_config.num_channels A_ : str = safety_checker.config.vision_config.image_size A_ : Union[str, Any] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), torch.randn(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), ) , output_path=output_path / "safety_checker" / "model.onnx" , ordered_input_names=["clip_input", "images"] , output_names=["out_images", "has_nsfw_concepts"] , dynamic_axes={ "clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "images": {0: "batch", 1: "height", 2: "width", 3: "channels"}, } , opset=_lowerCAmelCase , ) del pipeline.safety_checker A_ : Dict = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker" ) A_ : Dict = pipeline.feature_extractor else: A_ : int = None A_ : List[Any] = None A_ : Dict = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / "unet" ) , scheduler=pipeline.scheduler , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(_lowerCAmelCase ) print("ONNX pipeline saved to" , _lowerCAmelCase ) del pipeline del onnx_pipeline A_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase , provider="CPUExecutionProvider" ) print("ONNX pipeline is loadable" ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _lowerCAmelCase : Any = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
300
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case : Optional[Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Union[str, Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __snake_case : Optional[int] = 1_9_2 __snake_case : List[Any] = 7_6_8 __snake_case : List[Any] = 1_2 __snake_case : Union[str, Any] = 3 __snake_case : Union[str, Any] = [8_0_0, 1_3_3_3] __snake_case : Optional[int] = False elif yolos_name == "yolos_s_dWr": __snake_case : Tuple = 3_3_0 __snake_case : Optional[int] = 1_4 __snake_case : str = 6 __snake_case : Tuple = 1_3_2_0 elif "yolos_s" in yolos_name: __snake_case : str = 3_8_4 __snake_case : List[Any] = 1_5_3_6 __snake_case : List[Any] = 1_2 __snake_case : List[str] = 6 elif "yolos_b" in yolos_name: __snake_case : Any = [8_0_0, 1_3_4_4] __snake_case : Any = 9_1 __snake_case : Tuple = "huggingface/label-files" __snake_case : Optional[Any] = "coco-detection-id2label.json" __snake_case : Any = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) __snake_case : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __snake_case : Optional[Any] = idalabel __snake_case : Dict = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case : Dict = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) __snake_case : List[Any] = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __snake_case : Any = in_proj_weight[: config.hidden_size, :] __snake_case : int = in_proj_bias[: config.hidden_size] __snake_case : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case : List[str] = in_proj_weight[-config.hidden_size :, :] __snake_case : str = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __lowerCamelCase ): if "backbone" in name: __snake_case : str = name.replace("backbone" , "vit" ) if "cls_token" in name: __snake_case : int = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: __snake_case : List[Any] = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: __snake_case : List[Any] = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: __snake_case : Union[str, Any] = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: __snake_case : List[Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: __snake_case : Union[str, Any] = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: __snake_case : int = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __snake_case : int = name.replace("attn" , "attention.self" ) if "norm1" in name: __snake_case : List[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __snake_case : Optional[Any] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __snake_case : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __snake_case : Any = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: __snake_case : Optional[int] = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: __snake_case : Optional[Any] = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: __snake_case : Optional[int] = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): for key in orig_state_dict.copy().keys(): __snake_case : List[Any] = orig_state_dict.pop(__lowerCamelCase ) if "qkv" in key: __snake_case : Union[str, Any] = key.split("." ) __snake_case : Tuple = int(key_split[2] ) __snake_case : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __snake_case : List[Any] = val[:dim, :] __snake_case : Optional[Any] = val[ dim : dim * 2, : ] __snake_case : str = val[-dim:, :] else: __snake_case : Union[str, Any] = val[:dim] __snake_case : Any = val[dim : dim * 2] __snake_case : List[Any] = val[-dim:] else: __snake_case : Union[str, Any] = val return orig_state_dict def lowerCAmelCase_ ( ): __snake_case : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Tuple = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False ): __snake_case : str = get_yolos_config(__lowerCamelCase ) # load original state_dict __snake_case : List[str] = torch.load(__lowerCamelCase , map_location="cpu" )["model"] # load 🤗 model __snake_case : List[str] = YolosForObjectDetection(__lowerCamelCase ) model.eval() __snake_case : List[str] = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor __snake_case : Tuple = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 __snake_case : List[Any] = YolosImageProcessor(format="coco_detection" , size=__lowerCamelCase ) __snake_case : Optional[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) __snake_case : Optional[Any] = model(**__lowerCamelCase ) __snake_case : Any = outputs.logits, outputs.pred_boxes __snake_case : Optional[Any] = None, None if yolos_name == "yolos_ti": __snake_case : int = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) __snake_case : Any = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": __snake_case : Optional[Any] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) __snake_case : Optional[Any] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": __snake_case : Tuple = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) __snake_case : Optional[Any] = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": __snake_case : Tuple = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) __snake_case : List[Any] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": __snake_case : Optional[int] = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) __snake_case : Optional[int] = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: __snake_case : Any = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) __snake_case : int = model_mapping[yolos_name] image_processor.push_to_hub(__lowerCamelCase , organization="hustvl" ) model.push_to_hub(__lowerCamelCase , organization="hustvl" ) if __name__ == "__main__": _snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case : Any = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
350
from __future__ import annotations from functools import lru_cache from math import ceil _snake_case : Tuple = 100 _snake_case : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) _snake_case : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def lowerCAmelCase_ ( __lowerCamelCase ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case : set[int] = set() __snake_case : int __snake_case : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCAmelCase_ ( __lowerCamelCase = 5_0_0_0 ): for number_to_partition in range(1 , __lowerCamelCase ): if len(partition(__lowerCamelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
134
0