code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _A = logging.get_logger(__name__) # General docstring _A = '''RegNetConfig''' # Base docstring _A = '''facebook/regnet-y-040''' _A = [1, 1_088, 7, 7] # Image classification docstring _A = '''facebook/regnet-y-040''' _A = '''tabby, tabby cat''' _A = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowercase_ ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 3 , __UpperCamelCase = 1 , __UpperCamelCase = 1 , __UpperCamelCase = "relu" , ): """simple docstring""" super().__init__() UpperCamelCase_ = nn.Convad( _a , _a , kernel_size=_a , stride=_a , padding=kernel_size // 2 , groups=_a , bias=_a , ) UpperCamelCase_ = nn.BatchNormad(_a ) UpperCamelCase_ = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.convolution(_a ) UpperCamelCase_ = self.normalization(_a ) UpperCamelCase_ = self.activation(_a ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self , __UpperCamelCase ): """simple docstring""" super().__init__() UpperCamelCase_ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) UpperCamelCase_ = config.num_channels def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) UpperCamelCase_ = self.embedder(_a ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 2 ): """simple docstring""" super().__init__() UpperCamelCase_ = nn.Convad(_a , _a , kernel_size=1 , stride=_a , bias=_a ) UpperCamelCase_ = nn.BatchNormad(_a ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.convolution(_a ) UpperCamelCase_ = self.normalization(_a ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" super().__init__() UpperCamelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) UpperCamelCase_ = nn.Sequential( nn.Convad(_a , _a , kernel_size=1 ) , nn.ReLU() , nn.Convad(_a , _a , kernel_size=1 ) , nn.Sigmoid() , ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.pooler(_a ) UpperCamelCase_ = self.attention(_a ) UpperCamelCase_ = hidden_state * attention return hidden_state class lowercase_ ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 ): """simple docstring""" super().__init__() UpperCamelCase_ = in_channels != out_channels or stride != 1 UpperCamelCase_ = max(1 , out_channels // config.groups_width ) UpperCamelCase_ = ( RegNetShortCut(_a , _a , stride=_a ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase_ = nn.Sequential( RegNetConvLayer(_a , _a , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_a , _a , stride=_a , groups=_a , activation=config.hidden_act ) , RegNetConvLayer(_a , _a , kernel_size=1 , activation=_a ) , ) UpperCamelCase_ = ACTaFN[config.hidden_act] def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = hidden_state UpperCamelCase_ = self.layer(_a ) UpperCamelCase_ = self.shortcut(_a ) hidden_state += residual UpperCamelCase_ = self.activation(_a ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 ): """simple docstring""" super().__init__() UpperCamelCase_ = in_channels != out_channels or stride != 1 UpperCamelCase_ = max(1 , out_channels // config.groups_width ) UpperCamelCase_ = ( RegNetShortCut(_a , _a , stride=_a ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase_ = nn.Sequential( RegNetConvLayer(_a , _a , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_a , _a , stride=_a , groups=_a , activation=config.hidden_act ) , RegNetSELayer(_a , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_a , _a , kernel_size=1 , activation=_a ) , ) UpperCamelCase_ = ACTaFN[config.hidden_act] def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = hidden_state UpperCamelCase_ = self.layer(_a ) UpperCamelCase_ = self.shortcut(_a ) hidden_state += residual UpperCamelCase_ = self.activation(_a ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 2 , __UpperCamelCase = 2 , ): """simple docstring""" super().__init__() UpperCamelCase_ = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer UpperCamelCase_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _a , _a , _a , stride=_a , ) , *[layer(_a , _a , _a ) for _ in range(depth - 1 )] , ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.layers(_a ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self , __UpperCamelCase ): """simple docstring""" super().__init__() UpperCamelCase_ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCamelCase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_a , config.depths[1:] ): self.stages.append(RegNetStage(_a , _a , _a , depth=_a ) ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = True ): """simple docstring""" UpperCamelCase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase_ = hidden_states + (hidden_state,) UpperCamelCase_ = stage_module(_a ) if output_hidden_states: UpperCamelCase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_a , hidden_states=_a ) class lowercase_ ( lowercase__ ): A__ : int = RegNetConfig A__ : Any = '''regnet''' A__ : Optional[Any] = '''pixel_values''' A__ : List[str] = True def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if isinstance(_a , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" if isinstance(_a , _a ): UpperCamelCase_ = value _A = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _A = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , lowercase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowercase_ ( lowercase__ ): def __init__( self , __UpperCamelCase ): """simple docstring""" super().__init__(_a ) UpperCamelCase_ = config UpperCamelCase_ = RegNetEmbeddings(_a ) UpperCamelCase_ = RegNetEncoder(_a ) UpperCamelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_a , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None ): """simple docstring""" UpperCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ = self.embedder(_a ) UpperCamelCase_ = self.encoder( _a , output_hidden_states=_a , return_dict=_a ) UpperCamelCase_ = encoder_outputs[0] UpperCamelCase_ = self.pooler(_a ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_a , pooler_output=_a , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , lowercase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowercase_ ( lowercase__ ): def __init__( self , __UpperCamelCase ): """simple docstring""" super().__init__(_a ) UpperCamelCase_ = config.num_labels UpperCamelCase_ = RegNetModel(_a ) # classification head UpperCamelCase_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase_ ( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , ): """simple docstring""" UpperCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ = self.regnet(_a , output_hidden_states=_a , return_dict=_a ) UpperCamelCase_ = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase_ = self.classifier(_a ) UpperCamelCase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase_ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase_ = 'single_label_classification' else: UpperCamelCase_ = 'multi_label_classification' if self.config.problem_type == "regression": UpperCamelCase_ = MSELoss() if self.num_labels == 1: UpperCamelCase_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase_ = loss_fct(_a , _a ) elif self.config.problem_type == "single_label_classification": UpperCamelCase_ = CrossEntropyLoss() UpperCamelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase_ = BCEWithLogitsLoss() UpperCamelCase_ = loss_fct(_a , _a ) if not return_dict: UpperCamelCase_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_a , logits=_a , hidden_states=outputs.hidden_states )
122
'''simple docstring''' import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : Tuple ,*_a : List[str] ,**_a : Any ): '''simple docstring''' warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' ,_a ,) super().__init__(*_a ,**_a )
271
0
"""simple docstring""" from importlib import import_module from .logging import get_logger _a : int= get_logger(__name__) class UpperCamelCase : def __init__(self : Optional[Any] , _A : Optional[Any] , _A : List[Any]=None) -> Dict: __snake_case : List[Any] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__'): setattr(self , _A , getattr(_A , _A)) __snake_case : Optional[int] = module._original_module if isinstance(_A , _PatchedModuleObj) else module class UpperCamelCase : UpperCAmelCase : Optional[Any] = [] def __init__(self : str , _A : Union[str, Any] , _A : str , _A : Tuple , _A : List[Any]=None) -> Union[str, Any]: __snake_case : List[Any] = obj __snake_case : Tuple = target __snake_case : int = new __snake_case : Union[str, Any] = target.split('.')[0] __snake_case : Optional[int] = {} __snake_case : Dict = attrs or [] def __enter__(self : Optional[Any]) -> Optional[int]: *__snake_case , __snake_case : Dict = self.target.split('.') # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_A)): try: __snake_case : List[str] = import_module('.'.join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __snake_case : Union[str, Any] = getattr(self.obj , _A) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_A , _PatchedModuleObj) and obj_attr._original_module is submodule) ): __snake_case : Optional[int] = obj_attr # patch at top level setattr(self.obj , _A , _PatchedModuleObj(_A , attrs=self.attrs)) __snake_case : Any = getattr(self.obj , _A) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_A , _A , _PatchedModuleObj(getattr(_A , _A , _A) , attrs=self.attrs)) __snake_case : List[str] = getattr(_A , _A) # finally set the target attribute setattr(_A , _A , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __snake_case : str = getattr(import_module('.'.join(_A)) , _A) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _A) is attr_value: __snake_case : str = getattr(self.obj , _A) setattr(self.obj , _A , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __snake_case : Optional[int] = globals()['__builtins__'][target_attr] setattr(self.obj , _A , self.new) else: raise RuntimeError(f"Tried to patch attribute {target_attr} instead of a submodule.") def __exit__(self : List[Any] , *_A : Tuple) -> Dict: for attr in list(self.original): setattr(self.obj , _A , self.original.pop(_A)) def _lowercase (self : int) -> Tuple: self.__enter__() self._active_patches.append(self) def _lowercase (self : List[str]) -> List[str]: try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
95
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _a : Tuple= logging.get_logger(__name__) class UpperCamelCase ( lowercase ): def __init__(self : int , *_A : str , **_A : List[str]) -> None: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , _A , ) super().__init__(*_A , **_A)
95
1
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar __UpperCAmelCase = TypeVar("""KT""") __UpperCAmelCase = TypeVar("""VT""") class UpperCamelCase__ ( Generic[KT, VT] ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase_ : KT | str = "root" , lowerCamelCase_ : VT | None = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = key SCREAMING_SNAKE_CASE : List[str] = value SCREAMING_SNAKE_CASE : list[Node[KT, VT]] = [] def __repr__( self : Tuple ): '''simple docstring''' return f'''Node({self.key}: {self.value})''' @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return len(self.forward ) class UpperCamelCase__ ( Generic[KT, VT] ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : float = 0.5 , lowerCamelCase_ : int = 16 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Node[KT, VT] = Node[KT, VT]() SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : List[str] = p SCREAMING_SNAKE_CASE : Optional[int] = max_level def __str__( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = list(self ) if len(lowerCAmelCase_ ) == 0: return f'''SkipList(level={self.level})''' SCREAMING_SNAKE_CASE : Optional[Any] = max((len(str(lowerCAmelCase_ ) ) for item in items) , default=4 ) SCREAMING_SNAKE_CASE : Union[str, Any] = max(lowerCAmelCase_ , 4 ) + 4 SCREAMING_SNAKE_CASE : List[Any] = self.head SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = node.forward.copy() lines.append(f'''[{node.key}]'''.ljust(lowerCAmelCase_ , """-""" ) + """* """ * len(lowerCAmelCase_ ) ) lines.append(""" """ * label_size + """| """ * len(lowerCAmelCase_ ) ) while len(node.forward ) != 0: SCREAMING_SNAKE_CASE : Optional[Any] = node.forward[0] lines.append( f'''[{node.key}]'''.ljust(lowerCAmelCase_ , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = node.forward lines.append("""None""".ljust(lowerCAmelCase_ ) + """* """ * len(lowerCAmelCase_ ) ) return f'''SkipList(level={self.level})\n''' + "\n".join(lowerCAmelCase_ ) def __iter__( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.head while len(node.forward ) != 0: yield node.forward[0].key SCREAMING_SNAKE_CASE : Tuple = node.forward[0] def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 1 while random() < self.p and level < self.max_level: level += 1 return level def lowerCamelCase_ ( self : Any , lowerCamelCase_ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[str] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: SCREAMING_SNAKE_CASE : str = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(lowerCAmelCase_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : KT ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self._locate_node(lowerCAmelCase_ ) if node is not None: for i, update_node in enumerate(lowerCAmelCase_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: SCREAMING_SNAKE_CASE : str = node.forward[i] else: SCREAMING_SNAKE_CASE : List[Any] = update_node.forward[:i] def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : KT , lowerCamelCase_ : VT ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self._locate_node(lowerCAmelCase_ ) if node is not None: SCREAMING_SNAKE_CASE : Dict = value else: SCREAMING_SNAKE_CASE : Tuple = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , lowerCAmelCase_ ): update_vector.append(self.head ) SCREAMING_SNAKE_CASE : List[str] = level SCREAMING_SNAKE_CASE : str = Node(lowerCAmelCase_ , lowerCAmelCase_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE : int = new_node def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : VT ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._locate_node(lowerCAmelCase_ ) if node is not None: return node.value return None def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) SCREAMING_SNAKE_CASE : Any = skip_list.head SCREAMING_SNAKE_CASE : Optional[Any] = {} while node.level != 0: SCREAMING_SNAKE_CASE : str = node.forward[0] SCREAMING_SNAKE_CASE : Union[str, Any] = node.value assert len(__snake_case ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) SCREAMING_SNAKE_CASE : List[Any] = skip_list.head SCREAMING_SNAKE_CASE : Dict = {} while node.level != 0: SCREAMING_SNAKE_CASE : Optional[Any] = node.forward[0] SCREAMING_SNAKE_CASE : Any = node.value if len(__snake_case ) != 4: print() assert len(__snake_case ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = SkipList() assert skip_list.find("""Some key""" ) is None def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 1_42 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(lowerCamelCase_ ): yield node.key for forward_node in node.forward: yield from traverse_keys(__snake_case ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __A ( ): """simple docstring""" def is_sorted(lowerCamelCase_ ): return all(next_item >= item for item, next_item in zip(__snake_case , lst[1:] ) ) SCREAMING_SNAKE_CASE : Dict = SkipList() for i in range(10 ): skip_list.insert(__snake_case , __snake_case ) assert is_sorted(list(__snake_case ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__snake_case ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(__snake_case ) ) def __A ( ): """simple docstring""" for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
323
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : MutableSequence[float] ) -> None: '''simple docstring''' if len(lowerCAmelCase_ ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) A__ : list[float] =list(lowerCAmelCase_ ) A__ : Optional[int] =degree def __add__( self : Union[str, Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' if self.degree > polynomial_a.degree: A__ : int =self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase_ ) else: A__ : Any =polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase_ ) def __sub__( self : str , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : List[Any] ) -> Polynomial: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : str , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : int | float ) -> int | float: '''simple docstring''' A__ : int | float =0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : List[str] ) -> str: '''simple docstring''' A__ : Optional[int] ="""""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ ) return polynomial def __repr__( self : Optional[Any] ) -> str: '''simple docstring''' return self.__str__() def lowercase__ ( self : str ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * self.degree for i in range(self.degree ): A__ : Union[str, Any] =self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : int | float = 0 ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * (self.degree + 2) A__ : Any =constant for i in range(self.degree + 1 ): A__ : str =self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase_ ) def __eq__( self : Optional[int] , lowerCAmelCase_ : object ) -> bool: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Optional[Any] , lowerCAmelCase_ : object ) -> bool: '''simple docstring''' return not self.__eq__(lowerCAmelCase_ )
134
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) lowerCAmelCase__ : Dict = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCAmelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
371
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase_ ( _UpperCamelCase ): '''simple docstring''' __A : Any = """openai/whisper-base""" __A : Optional[Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) __A : Tuple = """transcriber""" __A : Union[str, Any] = WhisperProcessor __A : Optional[int] = WhisperForConditionalGeneration __A : List[Any] = ["""audio"""] __A : List[Any] = ["""text"""] def _snake_case ( self , __A ): """simple docstring""" return self.pre_processor(__lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self , __A ): """simple docstring""" return self.model.generate(inputs=__lowerCamelCase ) def _snake_case ( self , __A ): """simple docstring""" return self.pre_processor.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )[0]
283
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class snake_case__ (_UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = XLMRobertaTokenizer SCREAMING_SNAKE_CASE_ : int = XLMRobertaTokenizerFast SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True def __UpperCAmelCase ( self : int ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing a = XLMRobertaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : List[str] ) -> Any: a = "<pad>" a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 10_02 ) def __UpperCAmelCase ( self : List[Any] ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __UpperCAmelCase ( self : Dict ) -> List[str]: a = XLMRobertaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) a = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a = (self.rust_tokenizer_class, "hf-internal-testing/tiny-xlm-roberta", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) a = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False a = tempfile.mkdtemp() a = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) a = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way a = tokenizer_r.from_pretrained(__lowerCamelCase ) a = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @cached_property def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: return XLMRobertaTokenizer.from_pretrained("xlm-roberta-base" ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCamelCase , f.name ) a = XLMRobertaTokenizer(f.name , keep_accents=__lowerCamelCase ) a = pickle.dumps(__lowerCamelCase ) pickle.loads(__lowerCamelCase ) def __UpperCAmelCase ( self : int ) -> str: if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = "I was born in 92000, and this is falsé." a = tokenizer.tokenize(__lowerCamelCase ) a = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def __UpperCAmelCase ( self : Dict ) -> Any: a = "Hello World!" a = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def __UpperCAmelCase ( self : Tuple ) -> int: a = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) a = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: # fmt: off a = {"input_ids": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="xlm-roberta-base" , revision="d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3" , )
107
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCamelCase ( snake_case__ : int ) -> Any: UpperCamelCase : Optional[int] = SwinvaConfig() UpperCamelCase : str = swinva_name.split('_' ) UpperCamelCase : Any = name_split[1] if "to" in name_split[3]: UpperCamelCase : List[str] = int(name_split[3][-3:] ) else: UpperCamelCase : List[str] = int(name_split[3] ) if "to" in name_split[2]: UpperCamelCase : List[Any] = int(name_split[2][-2:] ) else: UpperCamelCase : str = int(name_split[2][6:] ) if model_size == "tiny": UpperCamelCase : Tuple = 96 UpperCamelCase : str = (2, 2, 6, 2) UpperCamelCase : List[str] = (3, 6, 12, 24) elif model_size == "small": UpperCamelCase : Optional[Any] = 96 UpperCamelCase : int = (2, 2, 18, 2) UpperCamelCase : str = (3, 6, 12, 24) elif model_size == "base": UpperCamelCase : int = 128 UpperCamelCase : Optional[int] = (2, 2, 18, 2) UpperCamelCase : int = (4, 8, 16, 32) else: UpperCamelCase : Dict = 192 UpperCamelCase : Any = (2, 2, 18, 2) UpperCamelCase : str = (6, 12, 24, 48) if "to" in swinva_name: UpperCamelCase : List[Any] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): UpperCamelCase : Union[str, Any] = 21841 UpperCamelCase : List[Any] = 'huggingface/label-files' UpperCamelCase : str = 'imagenet-22k-id2label.json' UpperCamelCase : Union[str, Any] = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : int = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase : Dict = idalabel UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} else: UpperCamelCase : Dict = 1000 UpperCamelCase : str = 'huggingface/label-files' UpperCamelCase : Optional[Any] = 'imagenet-1k-id2label.json' UpperCamelCase : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase : Optional[Any] = idalabel UpperCamelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCamelCase : Any = img_size UpperCamelCase : Any = num_classes UpperCamelCase : Optional[int] = embed_dim UpperCamelCase : Optional[Any] = depths UpperCamelCase : Optional[int] = num_heads UpperCamelCase : Optional[Any] = window_size return config def UpperCamelCase ( snake_case__ : List[str] ) -> str: if "patch_embed.proj" in name: UpperCamelCase : Tuple = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: UpperCamelCase : List[str] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: UpperCamelCase : List[Any] = 'encoder.' + name if "attn.proj" in name: UpperCamelCase : Union[str, Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase : Dict = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase : List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase : str = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: UpperCamelCase : int = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: UpperCamelCase : Tuple = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: UpperCamelCase : Optional[Any] = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: UpperCamelCase : Optional[Any] = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": UpperCamelCase : Optional[int] = 'layernorm.weight' if name == "norm.bias": UpperCamelCase : List[str] = 'layernorm.bias' if "head" in name: UpperCamelCase : Optional[Any] = name.replace('head' , 'classifier' ) else: UpperCamelCase : Optional[int] = 'swinv2.' + name return name def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : List[Any] ) -> List[Any]: for key in orig_state_dict.copy().keys(): UpperCamelCase : Any = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: UpperCamelCase : Tuple = key.split('.' ) UpperCamelCase : Tuple = int(key_split[1] ) UpperCamelCase : Any = int(key_split[3] ) UpperCamelCase : Any = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCamelCase : List[str] = val[:dim, :] UpperCamelCase : str = val[dim : dim * 2, :] UpperCamelCase : str = val[-dim:, :] else: UpperCamelCase : int = val[:dim] UpperCamelCase : Any = val[ dim : dim * 2 ] UpperCamelCase : Optional[int] = val[-dim:] else: UpperCamelCase : Union[str, Any] = val return orig_state_dict def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : str ) -> List[Any]: UpperCamelCase : Dict = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() UpperCamelCase : int = get_swinva_config(snake_case__ ) UpperCamelCase : List[str] = SwinvaForImageClassification(snake_case__ ) model.eval() UpperCamelCase : Any = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) UpperCamelCase : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase : Dict = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) UpperCamelCase : Optional[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) UpperCamelCase : Tuple = image_processor(images=snake_case__ , return_tensors='pt' ) UpperCamelCase : Optional[Any] = timm_model(inputs['pixel_values'] ) UpperCamelCase : Union[str, Any] = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case__ ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __UpperCAmelCase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
103
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = JukeboxTokenizer UpperCAmelCase__ : Optional[int] = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def snake_case_ ( self ) -> Optional[Any]: import torch UpperCamelCase : Tuple = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) UpperCamelCase : List[str] = tokenizer(**self.metas )['input_ids'] # fmt: off UpperCamelCase : Dict = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2] ) ) @require_torch def snake_case_ ( self ) -> Optional[Any]: import torch UpperCamelCase : str = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) UpperCamelCase : Dict = tokenizer(**self.metas )['input_ids'] # fmt: off UpperCamelCase : Optional[int] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2] ) )
103
1
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params __a = getLogger(__name__) __a = 'cuda' if torch.cuda.is_available() else 'cpu' def __UpperCAmelCase ( a_: Tuple, a_: Optional[Any], a_: Union[str, Any], a_: str = 8, a_: Union[str, Any] = DEFAULT_DEVICE, a_: str=False, a_: Optional[Any]="summarization", a_: str=None, **a_: Any, ): _UpperCAmelCase : Tuple = Path(_lowerCAmelCase ).open("w", encoding="utf-8" ) _UpperCAmelCase : List[str] = str(_lowerCAmelCase ) _UpperCAmelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase ) if fpaa: _UpperCAmelCase : Dict = model.half() _UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _UpperCAmelCase : Optional[Any] = time.time() # update config with task specific params use_task_specific_params(_lowerCAmelCase, _lowerCAmelCase ) if prefix is None: _UpperCAmelCase : Union[str, Any] = prefix or getattr(model.config, "prefix", "" ) or "" for examples_chunk in tqdm(list(chunks(_lowerCAmelCase, _lowerCAmelCase ) ) ): _UpperCAmelCase : Tuple = [prefix + text for text in examples_chunk] _UpperCAmelCase : List[str] = tokenizer(_lowerCAmelCase, return_tensors="pt", truncation=_lowerCAmelCase, padding="longest" ).to(_lowerCAmelCase ) _UpperCAmelCase : List[str] = model.generate( input_ids=batch.input_ids, attention_mask=batch.attention_mask, **_lowerCAmelCase, ) _UpperCAmelCase : int = tokenizer.batch_decode(_lowerCAmelCase, skip_special_tokens=_lowerCAmelCase, clean_up_tokenization_spaces=_lowerCAmelCase ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() _UpperCAmelCase : Any = int(time.time() - start_time ) # seconds _UpperCAmelCase : Dict = len(_lowerCAmelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs, 4 )} def __UpperCAmelCase ( ): return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def __UpperCAmelCase ( a_: Any=True ): _UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("model_name", type=_lowerCAmelCase, help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path", type=_lowerCAmelCase, help="like cnn_dm/test.source" ) parser.add_argument("save_path", type=_lowerCAmelCase, help="where to save summaries" ) parser.add_argument("--reference_path", type=_lowerCAmelCase, required=_lowerCAmelCase, help="like cnn_dm/test.target" ) parser.add_argument("--score_path", type=_lowerCAmelCase, required=_lowerCAmelCase, default="metrics.json", help="where to save metrics" ) parser.add_argument("--device", type=_lowerCAmelCase, required=_lowerCAmelCase, default=_lowerCAmelCase, help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix", type=_lowerCAmelCase, required=_lowerCAmelCase, default=_lowerCAmelCase, help="will be added to the begininng of src examples" ) parser.add_argument("--task", type=_lowerCAmelCase, default="summarization", help="used for task_specific_params + metrics" ) parser.add_argument("--bs", type=_lowerCAmelCase, default=8, required=_lowerCAmelCase, help="batch size" ) parser.add_argument( "--n_obs", type=_lowerCAmelCase, default=-1, required=_lowerCAmelCase, help="How many observations. Defaults to all." ) parser.add_argument("--fp16", action="store_true" ) parser.add_argument("--dump-args", action="store_true", help="print the custom hparams with the results" ) parser.add_argument( "--info", nargs="?", type=_lowerCAmelCase, const=datetime_now(), help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ), ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _UpperCAmelCase , _UpperCAmelCase : Any = parser.parse_known_args() _UpperCAmelCase : List[str] = parse_numeric_n_bool_cl_kwargs(_lowerCAmelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _UpperCAmelCase : int = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _UpperCAmelCase : Any = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCAmelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) _UpperCAmelCase : List[Any] = generate_summaries_or_translations( _lowerCAmelCase, args.save_path, args.model_name, batch_size=args.bs, device=args.device, fpaa=args.fpaa, task=args.task, prefix=args.prefix, **_lowerCAmelCase, ) if args.reference_path is None: return {} # Compute scores _UpperCAmelCase : int = calculate_bleu if "translation" in args.task else calculate_rouge _UpperCAmelCase : Any = [x.rstrip() for x in open(args.save_path ).readlines()] _UpperCAmelCase : Optional[Any] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCAmelCase )] _UpperCAmelCase : Dict = score_fn(_lowerCAmelCase, _lowerCAmelCase ) scores.update(_lowerCAmelCase ) if args.dump_args: scores.update(_lowerCAmelCase ) if args.info: _UpperCAmelCase : Any = args.info if verbose: print(_lowerCAmelCase ) if args.score_path is not None: json.dump(_lowerCAmelCase, open(args.score_path, "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
145
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def lowercase (_lowerCAmelCase ): for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
301
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class a : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , A_=0 , ): '''simple docstring''' _UpperCAmelCase : Tuple = parent _UpperCAmelCase : int = batch_size _UpperCAmelCase : Tuple = seq_length _UpperCAmelCase : Tuple = is_training _UpperCAmelCase : Dict = use_input_mask _UpperCAmelCase : List[Any] = use_token_type_ids _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = type_vocab_size _UpperCAmelCase : Optional[int] = type_sequence_label_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : List[str] = num_labels _UpperCAmelCase : Optional[int] = num_choices _UpperCAmelCase : str = scope _UpperCAmelCase : Optional[int] = projection_dim def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Optional[int] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : str = None if self.use_token_type_ids: _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Tuple = None _UpperCAmelCase : List[str] = None _UpperCAmelCase : Dict = None if self.use_labels: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Optional[int] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) _UpperCAmelCase : Optional[Any] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = TFDPRContextEncoder(config=A_ ) _UpperCAmelCase : Union[str, Any] = model(A_ , attention_mask=A_ , token_type_ids=A_ ) _UpperCAmelCase : Dict = model(A_ , token_type_ids=A_ ) _UpperCAmelCase : Any = model(A_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Dict = TFDPRQuestionEncoder(config=A_ ) _UpperCAmelCase : Tuple = model(A_ , attention_mask=A_ , token_type_ids=A_ ) _UpperCAmelCase : Dict = model(A_ , token_type_ids=A_ ) _UpperCAmelCase : Dict = model(A_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = TFDPRReader(config=A_ ) _UpperCAmelCase : Union[str, Any] = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : int = config_and_inputs _UpperCAmelCase : int = {"input_ids": input_ids} return config, inputs_dict @require_tf class a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _lowercase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _lowercase = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} _lowercase = False _lowercase = False _lowercase = False _lowercase = False _lowercase = False def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = TFDPRModelTester(self ) _UpperCAmelCase : List[Any] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def _UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*A_ ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : int = TFDPRContextEncoder.from_pretrained(A_ ) self.assertIsNotNone(A_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[str] = TFDPRContextEncoder.from_pretrained(A_ ) self.assertIsNotNone(A_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Union[str, Any] = TFDPRQuestionEncoder.from_pretrained(A_ ) self.assertIsNotNone(A_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFDPRReader.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf class a ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) _UpperCAmelCase : Tuple = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _UpperCAmelCase : Optional[int] = model(A_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCAmelCase : List[str] = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
189
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class a ( UpperCAmelCase ): _lowercase = "autoformer" _lowercase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = [1, 2, 3, 4, 5, 6, 7] , A_ = True , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 64 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 32 , A_ = 32 , A_ = "gelu" , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.02 , A_ = True , A_=True , A_ = 10 , A_ = 25 , A_ = 3 , **A_ , ): '''simple docstring''' _UpperCAmelCase : List[Any] = prediction_length _UpperCAmelCase : Dict = context_length if context_length is not None else prediction_length _UpperCAmelCase : Tuple = distribution_output _UpperCAmelCase : List[Any] = loss _UpperCAmelCase : Optional[Any] = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : str = lags_sequence _UpperCAmelCase : Union[str, Any] = scaling _UpperCAmelCase : Union[str, Any] = num_dynamic_real_features _UpperCAmelCase : int = num_static_real_features _UpperCAmelCase : int = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Union[str, Any] = cardinality else: _UpperCAmelCase : Any = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : int = embedding_dimension else: _UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : Union[str, Any] = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features _UpperCAmelCase : int = d_model _UpperCAmelCase : Any = encoder_attention_heads _UpperCAmelCase : str = decoder_attention_heads _UpperCAmelCase : Union[str, Any] = encoder_ffn_dim _UpperCAmelCase : Any = decoder_ffn_dim _UpperCAmelCase : Any = encoder_layers _UpperCAmelCase : Optional[int] = decoder_layers _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Dict = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : int = decoder_layerdrop _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : str = init_std _UpperCAmelCase : Tuple = use_cache # Autoformer _UpperCAmelCase : str = label_length _UpperCAmelCase : Any = moving_average _UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
189
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor UpperCAmelCase : Any = random.Random() def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any]=1.0 , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Optional[int]=None ): """simple docstring""" if rng is None: a__ : Optional[int] =global_rng a__ : Optional[Any] =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=2_0_0_0 , lowerCAmelCase__=2_4 , lowerCAmelCase__=2_4 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1_6_0_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=True , ) -> Tuple: '''simple docstring''' a__ : int =parent a__ : str =batch_size a__ : int =min_seq_length a__ : Any =max_seq_length a__ : Optional[Any] =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__ : Optional[int] =feature_size a__ : Tuple =num_mel_bins a__ : Optional[int] =padding_value a__ : Optional[Any] =sampling_rate a__ : List[str] =return_attention_mask a__ : str =do_normalize def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase ( self , lowerCAmelCase__=False , lowerCAmelCase__=False ) -> Dict: '''simple docstring''' def _flatten(lowerCAmelCase__ ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: a__ : Any =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a__ : Optional[int] =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__ : Optional[int] =[np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : List[Any] = SpeechaTextFeatureExtractor if is_speech_available() else None def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Any =SpeechaTextFeatureExtractionTester(self ) def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' self.assertTrue(np.all(np.mean(lowerCAmelCase__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase__ , axis=0 ) - 1 ) < 1E-3 ) ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : List[str] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__ : List[Any] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : List[Any] =[np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test feature size a__ : int =feature_extractor(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input a__ : Optional[int] =feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features a__ : Optional[Any] =feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test batched a__ : Dict =feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features a__ : Union[str, Any] =feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a__ : Optional[int] =[floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] a__ : Any =np.asarray(lowerCAmelCase__ ) a__ : List[str] =feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features a__ : str =feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : Dict =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : int =["longest", "max_length", "do_not_pad"] a__ : Optional[Any] =[None, 1_6, None] for max_length, padding in zip(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : List[str] =feature_extractor( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ ) a__ : Dict =inputs.input_features a__ : Optional[int] =inputs.attention_mask a__ : List[Any] =[np.sum(lowerCAmelCase__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : List[str] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : Union[str, Any] =["longest", "max_length", "do_not_pad"] a__ : Optional[int] =[None, 1_6, None] for max_length, padding in zip(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Optional[int] =feature_extractor( lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" , return_attention_mask=lowerCAmelCase__ ) a__ : Optional[int] =inputs.input_features a__ : List[str] =inputs.attention_mask a__ : Union[str, Any] =[np.sum(lowerCAmelCase__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _lowercase ( self ) -> int: '''simple docstring''' a__ : str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : List[Any] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : Dict =feature_extractor( lowerCAmelCase__ , padding="max_length" , max_length=4 , truncation=lowerCAmelCase__ , return_tensors="np" , return_attention_mask=lowerCAmelCase__ , ) a__ : Optional[int] =inputs.input_features a__ : Tuple =inputs.attention_mask a__ : Optional[Any] =np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Any =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : Tuple =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : Dict =feature_extractor( lowerCAmelCase__ , padding="longest" , max_length=4 , truncation=lowerCAmelCase__ , return_tensors="np" , return_attention_mask=lowerCAmelCase__ , ) a__ : Union[str, Any] =inputs.input_features a__ : Union[str, Any] =inputs.attention_mask a__ : List[Any] =np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4) ) a__ : List[Any] =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : Any =feature_extractor( lowerCAmelCase__ , padding="longest" , max_length=1_6 , truncation=lowerCAmelCase__ , return_tensors="np" , return_attention_mask=lowerCAmelCase__ , ) a__ : Tuple =inputs.input_features a__ : List[Any] =inputs.attention_mask a__ : int =np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4) ) def _lowercase ( self ) -> int: '''simple docstring''' import torch a__ : Union[str, Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : Dict =np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) a__ : List[str] =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__ : List[str] =feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a__ : Tuple =feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowercase ( self , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' from datasets import load_dataset a__ : Tuple =load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech a__ : List[str] =ds.sort("id" ).select(range(lowerCAmelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : Any =np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on a__ : Any =self._load_datasamples(1 ) a__ : Any =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : Tuple =feature_extractor(lowerCAmelCase__ , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) ) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , lowerCAmelCase__ , atol=1E-4 ) )
95
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __lowerCAmelCase : def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() def _lowercase ( self ) -> int: '''simple docstring''' raise NotImplementedError() class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , **lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : str =tokenizer a__ : List[str] =skip_prompt a__ : List[Any] =decode_kwargs # variables used in the streaming process a__ : Dict =[] a__ : int =0 a__ : str =True def _lowercase ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: a__ : Any =value[0] if self.skip_prompt and self.next_tokens_are_prompt: a__ : Dict =False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) a__ : Union[str, Any] =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): a__ : List[Any] =text[self.print_len :] a__ : List[str] =[] a__ : Optional[int] =0 # If the last token is a CJK character, we print the characters. elif len(lowerCAmelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): a__ : List[str] =text[self.print_len :] self.print_len += len(lowerCAmelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: a__ : str =text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(lowerCAmelCase__ ) self.on_finalized_text(lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' if len(self.token_cache ) > 0: a__ : Union[str, Any] =self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) a__ : List[Any] =text[self.print_len :] a__ : List[str] =[] a__ : Optional[int] =0 else: a__ : Union[str, Any] ="" a__ : Any =True self.on_finalized_text(lowerCAmelCase__ , stream_end=lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Optional[Any]: '''simple docstring''' print(lowerCAmelCase__ , flush=lowerCAmelCase__ , end="" if not stream_end else None ) def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : str =Queue() a__ : Optional[Any] =None a__ : Any =timeout def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> List[str]: '''simple docstring''' self.text_queue.put(lowerCAmelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Dict: '''simple docstring''' return self def _lowercase ( self ) -> int: '''simple docstring''' a__ : int =self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
95
1
"""simple docstring""" import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests A_ : Optional[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
362
"""simple docstring""" from __future__ import annotations def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : list[int] = [] lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[Any] = sum(_lowerCamelCase ) create_state_space_tree(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return result def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): if sum(_lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(_lowerCamelCase )) < max_sum: return if sum(_lowerCamelCase ) == max_sum: result.append(_lowerCamelCase ) return for index in range(_lowerCamelCase , len(_lowerCamelCase ) ): create_state_space_tree( _lowerCamelCase , _lowerCamelCase , index + 1 , [*path, nums[index]] , _lowerCamelCase , remaining_nums_sum - nums[index] , ) A_ : Optional[Any] = [3, 34, 4, 12, 5, 2] A_ : List[str] = 9 A_ : List[Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase : Dict = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ _lowerCamelCase : Union[str, Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ _lowerCamelCase : Optional[Any] = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[Any]="auto" , UpperCAmelCase__ : Tuple=-1 , UpperCAmelCase__ : Any=0.9 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : Any=500 , UpperCAmelCase__ : str="gpt2-large" , UpperCAmelCase__ : Dict=-1 , UpperCAmelCase__ : int=1_024 , UpperCAmelCase__ : Any=25 , UpperCAmelCase__ : Optional[int]=5 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[Any]=25 , ) ->Any: '''simple docstring''' A__ = compute_mauve( p_text=UpperCAmelCase__ , q_text=UpperCAmelCase__ , p_features=UpperCAmelCase__ , q_features=UpperCAmelCase__ , p_tokens=UpperCAmelCase__ , q_tokens=UpperCAmelCase__ , num_buckets=UpperCAmelCase__ , pca_max_data=UpperCAmelCase__ , kmeans_explained_var=UpperCAmelCase__ , kmeans_num_redo=UpperCAmelCase__ , kmeans_max_iter=UpperCAmelCase__ , featurize_model_name=UpperCAmelCase__ , device_id=UpperCAmelCase__ , max_text_length=UpperCAmelCase__ , divergence_curve_discretization_size=UpperCAmelCase__ , mauve_scaling_factor=UpperCAmelCase__ , verbose=UpperCAmelCase__ , seed=UpperCAmelCase__ , ) return out
14
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: List[str] , UpperCamelCase: str=13 , UpperCamelCase: int=7 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , UpperCamelCase: Dict=False , UpperCamelCase: Optional[int]=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: List[str]=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Union[str, Any]=5_12 , UpperCamelCase: str=16 , UpperCamelCase: int=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=4 , UpperCamelCase: List[str]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> Dict: snake_case__ = LlamaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , ) -> str: snake_case__ = True snake_case__ = LlamaModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , ) -> Any: snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: List[str] , ) -> Union[str, Any]: snake_case__ = True snake_case__ = True snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , use_cache=UpperCamelCase , ) snake_case__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] # select random slice snake_case__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = LlamaModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'single_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'multi_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self: Dict ) -> Any: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ids_tensor([1, 10] , config.vocab_size ) snake_case__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = LlamaModel(UpperCamelCase ) original_model.to(UpperCamelCase ) original_model.eval() snake_case__ = original_model(UpperCamelCase ).last_hidden_state snake_case__ = original_model(UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = {'type': scaling_type, 'factor': 10.0} snake_case__ = LlamaModel(UpperCamelCase ) scaled_model.to(UpperCamelCase ) scaled_model.eval() snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) snake_case__ = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' snake_case__ = 'Simply put, the theory of relativity states that ' snake_case__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) snake_case__ = tokenizer.encode(UpperCamelCase , return_tensors='pt' ) snake_case__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCamelCase ) # greedy generation outputs snake_case__ = model.generate(UpperCamelCase , max_new_tokens=64 , top_p=UpperCamelCase , temperature=1 , do_sample=UpperCamelCase ) snake_case__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
307
0
"""simple docstring""" import os import sys _snake_case = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _snake_case = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCAmelCase__ ( *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
324
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase : UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , ): '''simple docstring''' def _dataset(UpperCamelCase__ , UpperCamelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , ref_path=UpperCamelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCamelCase__ , file_path=UpperCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCAmelCase__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _a , _a , _a : List[str] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _a : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _a : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _a : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _a : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _a : List[Any] = AutoModelWithLMHead.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: _a : Optional[Any] = min(data_args.block_size , tokenizer.max_len ) # Get datasets _a : Optional[Any] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _a : Optional[int] = ( get_dataset(UpperCamelCase__ , tokenizer=UpperCamelCase__ , evaluate=UpperCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _a : Union[str, Any] = DataCollatorForWholeWordMask( tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) else: _a : str = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , data_collator=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , prediction_loss_only=UpperCamelCase__ , ) # Training if training_args.do_train: _a : Optional[Any] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _a : int = trainer.evaluate() _a : Dict = math.exp(eval_output["""eval_loss"""] ) _a : Union[str, Any] = {"""perplexity""": perplexity} _a : Optional[Any] = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCamelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCamelCase__ ) return results def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
324
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = IFImgaImgSuperResolutionPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _a = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase__ ( self : str): return self._get_superresolution_dummy_components() def UpperCAmelCase__ ( self : str , A_ : Any , A_ : Optional[int]=0): if str(A_).startswith('''mps'''): lowerCAmelCase_ : Dict = torch.manual_seed(A_) else: lowerCAmelCase_ : Optional[Any] = torch.Generator(device=A_).manual_seed(A_) lowerCAmelCase_ : Any = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A_)).to(A_) lowerCAmelCase_ : Optional[int] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(A_)).to(A_) lowerCAmelCase_ : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : Tuple): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def UpperCAmelCase__ ( self : List[Any]): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def UpperCAmelCase__ ( self : Dict): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def UpperCAmelCase__ ( self : str): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def UpperCAmelCase__ ( self : List[str]): self._test_save_load_local() def UpperCAmelCase__ ( self : List[str]): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
103
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version A__ : Tuple = get_logger(__name__) class __snake_case : _a = '''dummy_data''' _a = '''datasets''' _a = False def __init__( self : Optional[Any] , A_ : str , A_ : str , A_ : Union[Version, str] , A_ : Optional[str] = None , A_ : bool = False , A_ : bool = True , A_ : Optional[List[Callable]] = None , ): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Any = dataset_name lowerCAmelCase_ : Union[str, Any] = cache_dir lowerCAmelCase_ : List[Any] = use_local_dummy_data lowerCAmelCase_ : Optional[Any] = config # download_callbacks take a single url as input lowerCAmelCase_ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCAmelCase_ : Tuple = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCAmelCase_ : int = str(A_) # to be downloaded lowerCAmelCase_ : Dict = None lowerCAmelCase_ : Optional[int] = None @property def UpperCAmelCase__ ( self : List[str]): if self._dummy_file is None: lowerCAmelCase_ : int = self.download_dummy_data() return self._dummy_file @property def UpperCAmelCase__ ( self : str): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name) @property def UpperCAmelCase__ ( self : str): return os.path.join(self.dummy_data_folder , '''dummy_data.zip''') def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Any = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCAmelCase_ : Union[str, Any] = cached_path( A_ , cache_dir=self.cache_dir , extract_compressed_file=A_ , force_extract=A_) return os.path.join(A_ , self.dummy_file_name) @property def UpperCAmelCase__ ( self : List[str]): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def UpperCAmelCase__ ( self : Optional[int]): if self._bucket_url is None: lowerCAmelCase_ : str = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''')) return self._bucket_url @property def UpperCAmelCase__ ( self : List[Any]): # return full path if its a dir if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''').split('''/''')[:-1]) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Dict , *A_ : List[Any]): if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCAmelCase_ : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCAmelCase_ : Optional[int] = self.dummy_file_name # special case when data_url is a dict if isinstance(A_ , A_): return self.create_dummy_data_dict(A_ , A_) elif isinstance(A_ , (list, tuple)): return self.create_dummy_data_list(A_ , A_) else: return self.create_dummy_data_single(A_ , A_) def UpperCAmelCase__ ( self : Optional[int] , A_ : Tuple , *A_ : int): return self.download_and_extract(A_) def UpperCAmelCase__ ( self : Tuple , A_ : List[str] , A_ : Optional[Any]): return self.download_and_extract(A_) def UpperCAmelCase__ ( self : int , A_ : Optional[int] , *A_ : str , **A_ : List[Any]): return path def UpperCAmelCase__ ( self : Tuple): return {} def UpperCAmelCase__ ( self : Optional[Any] , A_ : Union[str, Any] , A_ : List[Any]): lowerCAmelCase_ : Union[str, Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A_ , A_): for single_url in single_urls: download_callback(A_) else: lowerCAmelCase_ : Any = single_urls download_callback(A_) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A_ , A_): lowerCAmelCase_ : Any = [os.path.join(A_ , urllib.parse.quote_plus(Path(A_).name)) for x in single_urls] else: lowerCAmelCase_ : Optional[int] = single_urls lowerCAmelCase_ : List[str] = os.path.join(A_ , urllib.parse.quote_plus(Path(A_).name)) lowerCAmelCase_ : Dict = value # make sure that values are unique if all(isinstance(A_ , A_) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique lowerCAmelCase_ : Tuple = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCAmelCase__ ( self : Dict , A_ : List[str] , A_ : str): lowerCAmelCase_ : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCAmelCase_ : str = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A_)) for url in data_url) lowerCAmelCase_ : Optional[Any] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''') for url in data_url) if data_url and (is_tf_records or is_pubmed_records): lowerCAmelCase_ : Any = [data_url[0]] * len(A_) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A_) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase_ : int = os.path.join(A_ , urllib.parse.quote_plus(single_url.split('''/''')[-1])) dummy_data_list.append(A_) return dummy_data_list def UpperCAmelCase__ ( self : List[str] , A_ : Optional[Any] , A_ : Tuple): for download_callback in self.download_callbacks: download_callback(A_) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase_ : Tuple = os.path.join(A_ , urllib.parse.quote_plus(data_url.split('''/''')[-1])) if os.path.exists(A_) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCAmelCase__ ( self : int): pass def UpperCAmelCase__ ( self : Optional[int]): pass def UpperCAmelCase__ ( self : List[str] , A_ : str): def _iter_archive_members(A_ : Any): # this preserves the order of the members inside the ZIP archive lowerCAmelCase_ : Optional[int] = Path(self.dummy_file).parent lowerCAmelCase_ : Optional[int] = path.relative_to(A_) with ZipFile(self.local_path_to_dummy_data) as zip_file: lowerCAmelCase_ : Tuple = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(A_) lowerCAmelCase_ : List[Any] = Path(A_) lowerCAmelCase_ : Optional[int] = _iter_archive_members(A_) if self.use_local_dummy_data else path.rglob('''*''') for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''')): yield file_path.relative_to(A_).as_posix(), file_path.open('''rb''') def UpperCAmelCase__ ( self : Dict , A_ : Any): if not isinstance(A_ , A_): lowerCAmelCase_ : Dict = [paths] for path in paths: if os.path.isfile(A_): if os.path.basename(A_).startswith(('''.''', '''__''')): return yield path else: for dirpath, dirnames, filenames in os.walk(A_): if os.path.basename(A_).startswith(('''.''', '''__''')): continue dirnames.sort() for filename in sorted(A_): if filename.startswith(('''.''', '''__''')): continue yield os.path.join(A_ , A_)
103
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Any = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 SCREAMING_SNAKE_CASE__ : Optional[Any] = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class lowerCAmelCase__ ( _lowercase ): a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["""input_ids""", """attention_mask"""] a__ : Tuple = TaTokenizer a__ : Optional[int] = [] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="<pad>" , SCREAMING_SNAKE_CASE__ : str=1_00 , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Optional[int]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowerCamelCase = [f'''<extra_id_{i}>''' for i in range(__UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __lowerCamelCase = len(set(filter(lambda SCREAMING_SNAKE_CASE__ : bool('''extra_id_''' in str(__UpperCamelCase ) ) , __UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , extra_ids=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) __lowerCamelCase = vocab_file __lowerCamelCase = False if not self.vocab_file else True __lowerCamelCase = extra_ids @staticmethod def __A ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __lowerCamelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __UpperCamelCase , ) return max_model_length def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __lowerCamelCase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self : Tuple ) -> int: return list( set(filter(lambda SCREAMING_SNAKE_CASE__ : bool(re.search(R'''<extra_id_\d+>''' , __UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self : Tuple ) -> Tuple: return [self.convert_tokens_to_ids(__UpperCamelCase ) for token in self.get_sentinel_tokens()]
360
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
0
from cva import destroyAllWindows, imread, imshow, waitKey def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]: # getting number of pixels in the image UpperCamelCase__ , UpperCamelCase__ : Any = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): UpperCamelCase__ : List[Any] = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowerCamelCase : str =imread('''image_data/lena.jpg''', 1) # convert to its negative lowerCamelCase : Union[str, Any] =convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
189
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __a ( A__ ): def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : List[str] = tempfile.mkdtemp() UpperCamelCase__ : Any = 8 # DPR tok UpperCamelCase__ : List[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase__ : Any = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok UpperCamelCase__ : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase__ : int = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase__ : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__ : Union[str, Any] = {"unk_token": "<unk>"} UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ : str = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def __lowercase ( self : int ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __lowercase ( self : Tuple ): '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def __lowercase ( self : Optional[int] ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : int = self.get_dummy_dataset() UpperCamelCase__ : List[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: UpperCamelCase__ : str = dataset UpperCamelCase__ : Optional[int] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __lowercase ( self : int , SCREAMING_SNAKE_CASE : bool ): '''simple docstring''' UpperCamelCase__ : Dict = self.get_dummy_dataset() UpperCamelCase__ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , "dataset" ) UpperCamelCase__ : List[str] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset UpperCamelCase__ : str = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCamelCase__ : List[Any] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) , ) return retriever def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase__ : List[str] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) UpperCamelCase__ : Tuple = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE , open(SCREAMING_SNAKE_CASE , "wb" ) ) UpperCamelCase__ : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) UpperCamelCase__ : List[str] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Tuple = self.get_dummy_canonical_hf_index_retriever() UpperCamelCase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: UpperCamelCase__ : Optional[int] = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Any = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : int = 1 UpperCamelCase__ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Any = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : int = 1 UpperCamelCase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : List[str] = 1 UpperCamelCase__ : Any = self.get_dummy_legacy_index_retriever() UpperCamelCase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : int = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase ( self : int ): '''simple docstring''' import torch UpperCamelCase__ : Optional[Any] = 1 UpperCamelCase__ : Optional[int] = self.get_dummy_canonical_hf_index_retriever() UpperCamelCase__ : Optional[Any] = [[5, 7], [10, 11]] UpperCamelCase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : int = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[str] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) UpperCamelCase__ : List[Any] = retriever( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = [[5, 7], [10, 11]] UpperCamelCase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCamelCase__ : Optional[int] = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual( len(SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
189
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[int] = "big_bird" def __init__( self, SCREAMING_SNAKE_CASE_=5_0358, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu_new", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=66, SCREAMING_SNAKE_CASE_="block_sparse", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Tuple: super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, sep_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : int = vocab_size UpperCamelCase : str = max_position_embeddings UpperCamelCase : List[str] = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : List[str] = intermediate_size UpperCamelCase : int = hidden_act UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : str = attention_probs_dropout_prob UpperCamelCase : Dict = initializer_range UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : List[str] = layer_norm_eps UpperCamelCase : Optional[int] = use_cache UpperCamelCase : Tuple = rescale_embeddings UpperCamelCase : Tuple = attention_type UpperCamelCase : Optional[int] = use_bias UpperCamelCase : Dict = block_size UpperCamelCase : Any = num_random_blocks UpperCamelCase : List[Any] = classifier_dropout class lowerCAmelCase_ ( a__ ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
103
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowerCAmelCase_ : @staticmethod def snake_case_ ( *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: pass def UpperCamelCase ( snake_case__ : Image ) -> str: UpperCamelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase__ : str = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : List[str] = DepthEstimationPipeline(model=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, SCREAMING_SNAKE_CASE_ ) import datasets UpperCamelCase : int = datasets.load_dataset('hf-internal-testing/fixtures_image_utils', 'image', split='test' ) UpperCamelCase : Tuple = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ], SCREAMING_SNAKE_CASE_, ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def snake_case_ ( self ) -> Optional[int]: pass @slow @require_torch def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Optional[Any] = 'Intel/dpt-large' UpperCamelCase : Tuple = pipeline('depth-estimation', model=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) UpperCamelCase : int = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ), 29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ), 2.6_62 ) @require_torch def snake_case_ ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
103
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = filter(lambda SCREAMING_SNAKE_CASE__ : p.requires_grad , model.parameters() ) UpperCAmelCase__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase_ = logging.getLogger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' if metric == "rouge2": UpperCAmelCase__ = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": UpperCAmelCase__ = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": UpperCAmelCase__ = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": UpperCAmelCase__ = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) UpperCAmelCase__ = ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , monitor=F'''val_{metric}''' , mode="""max""" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return EarlyStopping( monitor=F'''val_{metric}''' , mode="""min""" if """loss""" in metric else """max""" , patience=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , ) class lowerCAmelCase_ ( pl.Callback ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = {f'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_UpperCAmelCase ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : pl.Trainer , _UpperCAmelCase : pl.LightningModule , _UpperCAmelCase : str , _UpperCAmelCase : int=True ): """simple docstring""" logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) UpperCAmelCase__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results UpperCAmelCase__ = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase__ = od / """test_results.txt""" UpperCAmelCase__ = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase__ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' UpperCAmelCase__ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_UpperCAmelCase ) generations_file.parent.mkdir(exist_ok=_UpperCAmelCase ) with open(_UpperCAmelCase , """a+""" ) as writer: for key in sorted(_UpperCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase__ = metrics[key] if isinstance(_UpperCAmelCase , torch.Tensor ): UpperCAmelCase__ = val.item() UpperCAmelCase__ = f'''{key}: {val:.6f}\n''' writer.write(_UpperCAmelCase ) if not save_generations: return if "preds" in metrics: UpperCAmelCase__ = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_UpperCAmelCase ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ): """simple docstring""" try: UpperCAmelCase__ = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase__ = pl_module.model.num_parameters() UpperCAmelCase__ = count_trainable_parameters(_UpperCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : pl.Trainer , _UpperCAmelCase : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_UpperCAmelCase , _UpperCAmelCase , """test""" ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : pl.Trainer , _UpperCAmelCase : Any ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
346
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
346
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : int = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''longformer''' def __init__( self : Dict , lowercase_ : Union[List[int], int] = 512 , lowercase_ : int = 2 , lowercase_ : int = 1 , lowercase_ : int = 0 , lowercase_ : int = 2 , lowercase_ : int = 30522 , lowercase_ : int = 768 , lowercase_ : int = 12 , lowercase_ : int = 12 , lowercase_ : int = 3072 , lowercase_ : str = "gelu" , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , lowercase_ : int = 512 , lowercase_ : int = 2 , lowercase_ : float = 0.02 , lowercase_ : float = 1E-12 , lowercase_ : bool = False , **lowercase_ : List[str] , ): super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowercase_ : List[Any] = attention_window lowercase_ : Dict = sep_token_id lowercase_ : str = bos_token_id lowercase_ : str = eos_token_id lowercase_ : Dict = vocab_size lowercase_ : Optional[int] = hidden_size lowercase_ : List[Any] = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Any = hidden_act lowercase_ : int = intermediate_size lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Optional[int] = max_position_embeddings lowercase_ : Dict = type_vocab_size lowercase_ : Tuple = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Tuple = onnx_export class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : "PretrainedConfig" , lowercase_ : str = "default" , lowercase_ : "List[PatchingSpec]" = None ): super().__init__(lowercase_ , lowercase_ , lowercase_ ) lowercase_ : Dict = True @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): if self.task == "multiple-choice": lowercase_ : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase_ : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : int = super().outputs if self.task == "default": lowercase_ : Optional[int] = {0: """batch"""} return outputs @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return 1E-4 @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : "PreTrainedTokenizerBase" , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional[TensorType] = None , ): lowercase_ : str = super().generate_dummy_inputs( preprocessor=lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowercase_ : int = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global lowercase_ : List[Any] = 1 return inputs
21
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
1
'''simple docstring''' import os import sys lowercase__ : Optional[int] = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase__ : Optional[int] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def a__ ( *lowercase : Dict, **lowercase : Union[str, Any] ) -> int: """simple docstring""" return AutoConfig.from_pretrained(*lowercase, **lowercase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def a__ ( *lowercase : Optional[Any], **lowercase : List[str] ) -> Any: """simple docstring""" return AutoTokenizer.from_pretrained(*lowercase, **lowercase ) @add_start_docstrings(AutoModel.__doc__ ) def a__ ( *lowercase : Dict, **lowercase : str ) -> int: """simple docstring""" return AutoModel.from_pretrained(*lowercase, **lowercase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def a__ ( *lowercase : Any, **lowercase : List[Any] ) -> Optional[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*lowercase, **lowercase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def a__ ( *lowercase : str, **lowercase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*lowercase, **lowercase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def a__ ( *lowercase : Any, **lowercase : Tuple ) -> int: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*lowercase, **lowercase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def a__ ( *lowercase : List[Any], **lowercase : Dict ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*lowercase, **lowercase )
324
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : str = logging.get_logger(__name__) lowercase__ : Any = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Tuple = 'deformable_detr' _snake_case : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = backbone_config.get('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(lowerCAmelCase__ ) _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha _UpperCamelCase = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def snake_case__ ( self : int ) -> int: '''simple docstring''' return self.d_model def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
324
1
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 a__ = get_tests_dir('''fixtures/dummy-config.json''') class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Union[str, Any]: _a : str = 0 def __lowercase ( self ) -> Any: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def __lowercase ( self ) -> Optional[int]: _a : List[str] = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowercase ( self ) -> int: _a : Any = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowercase ( self ) -> Any: _a : Union[str, Any] = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowercase ( self ) -> str: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _a : int = os.path.join(UpperCAmelCase_ , '''fake-roberta''' ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) _a : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) def __lowercase ( self ) -> List[Any]: try: AutoConfig.register('''custom''' , UpperCAmelCase_ ) # Wrong model type will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register('''model''' , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register('''bert''' , UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API _a : List[str] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) _a : Dict = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __lowercase ( self ) -> Union[str, Any]: with self.assertRaisesRegex( UpperCAmelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): _a : Union[str, Any] = AutoConfig.from_pretrained('''bert-base''' ) def __lowercase ( self ) -> Tuple: with self.assertRaisesRegex( UpperCAmelCase_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _a : int = AutoConfig.from_pretrained(UpperCAmelCase_ , revision='''aaaaaa''' ) def __lowercase ( self ) -> Tuple: with self.assertRaisesRegex( UpperCAmelCase_ , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): _a : Tuple = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def __lowercase ( self ) -> Optional[int]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): _a : int = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): _a : Any = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCAmelCase_ ) _a : Optional[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) _a : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def __lowercase ( self ) -> Union[str, Any]: class UpperCAmelCase_ ( snake_case__ ): """simple docstring""" UpperCAmelCase__ : str = "new-model" try: AutoConfig.register('''new-model''' , UpperCAmelCase_ ) # If remote code is not set, the default is to use local _a : Union[str, Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. _a : int = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub _a : Tuple = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
364
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
0
"""simple docstring""" from math import sqrt def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" __SCREAMING_SNAKE_CASE = True # 0 and 1 are none primes. if number <= 1: __SCREAMING_SNAKE_CASE = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __SCREAMING_SNAKE_CASE = False break # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'status' must been from type bool" return status def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __SCREAMING_SNAKE_CASE = list(range(2 , n + 1 ) ) __SCREAMING_SNAKE_CASE = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __SCREAMING_SNAKE_CASE = 0 # filters actual prime numbers. __SCREAMING_SNAKE_CASE = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" __SCREAMING_SNAKE_CASE = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" __SCREAMING_SNAKE_CASE = [] # this list will be returns of the function. # potential prime number factors. __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __SCREAMING_SNAKE_CASE = 0 # prime factorization of 'number' __SCREAMING_SNAKE_CASE = prime_factorization(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __SCREAMING_SNAKE_CASE = 0 # prime factorization of 'number' __SCREAMING_SNAKE_CASE = prime_factorization(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" __SCREAMING_SNAKE_CASE = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __SCREAMING_SNAKE_CASE = get_prime_numbers(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = len(lowerCAmelCase_ ) # run variable for while-loops. __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = None # exit variable. for break up the loops __SCREAMING_SNAKE_CASE = True while i < len_pn and loop: __SCREAMING_SNAKE_CASE = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __SCREAMING_SNAKE_CASE = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __SCREAMING_SNAKE_CASE = 0 while numbera != 0: __SCREAMING_SNAKE_CASE = numbera % numbera __SCREAMING_SNAKE_CASE = numbera __SCREAMING_SNAKE_CASE = rest # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __SCREAMING_SNAKE_CASE = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __SCREAMING_SNAKE_CASE = prime_factorization(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = max(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __SCREAMING_SNAKE_CASE = prime_fac_a.count(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_ , lowerCAmelCase_ ) ): ans *= n else: __SCREAMING_SNAKE_CASE = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __SCREAMING_SNAKE_CASE = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __SCREAMING_SNAKE_CASE = p_number_a + 1 # jump to the next number __SCREAMING_SNAKE_CASE = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" __SCREAMING_SNAKE_CASE = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" __SCREAMING_SNAKE_CASE = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __SCREAMING_SNAKE_CASE = gcd(abs(lowerCAmelCase_ ) , abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" __SCREAMING_SNAKE_CASE = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 1 # this will be return for _ in range(n - 1 ): __SCREAMING_SNAKE_CASE = ans ans += fiba __SCREAMING_SNAKE_CASE = tmp return ans
54
UpperCAmelCase__ = {} def A ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _UpperCAmelCase = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _UpperCAmelCase = _calculate(days - 1 , _UpperCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _UpperCAmelCase = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _UpperCAmelCase = _calculate(days - 1 , _UpperCAmelCase , 0 ) _UpperCAmelCase = state_late + state_absent + state_ontime _UpperCAmelCase = prizestrings return prizestrings def A ( _UpperCAmelCase : int = 30 ) -> int: '''simple docstring''' return _calculate(_UpperCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
339
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : int = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] lowerCamelCase_ : List[str] = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def _A ( lowercase ): """simple docstring""" a =torch.load(lowercase , map_location='''cpu''' ) return sd def _A ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" a =OrderedDict() a =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue a =key for name_pair in rename_keys_prefix: a =new_key.replace(name_pair[0] , name_pair[1] ) a =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately a =new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def _A ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: a ='''pretraining''' if "vcr" in checkpoint_path: a ={'''visual_embedding_dim''': 5_12} elif "vqa_advanced" in checkpoint_path: a ={'''visual_embedding_dim''': 20_48} elif "vqa" in checkpoint_path: a ={'''visual_embedding_dim''': 20_48} elif "nlvr" in checkpoint_path: a ={'''visual_embedding_dim''': 10_24} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: a ={'''visual_embedding_dim''': 5_12} a ='''multichoice''' elif "vqa_advanced" in checkpoint_path: a ={'''visual_embedding_dim''': 20_48} a ='''vqa_advanced''' elif "vqa" in checkpoint_path: a ={'''visual_embedding_dim''': 20_48, '''num_labels''': 31_29} a ='''vqa''' elif "nlvr" in checkpoint_path: a ={ '''visual_embedding_dim''': 10_24, '''num_labels''': 2, } a ='''nlvr''' a =VisualBertConfig(**lowercase ) # Load State Dict a =load_state_dict(lowercase ) a =get_new_dict(lowercase , lowercase ) if model_type == "pretraining": a =VisualBertForPreTraining(lowercase ) elif model_type == "vqa": a =VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": a =VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": a =VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") lowerCamelCase_ : Optional[int] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
215
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCamelCase_ : Optional[int] = None lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : str = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase_ : int = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } lowerCamelCase_ : Optional[Any] = { """google/rembert""": 2_5_6, } lowerCamelCase_ : Optional[Any] = """▁""" class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = RemBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A=True , __A=False , __A="[CLS]" , __A="[SEP]" , __A="<unk>" , __A="[SEP]" , __A="<pad>" , __A="[CLS]" , __A="[MASK]" , **__A , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , ) a =do_lower_case a =remove_space a =keep_accents a =vocab_file a =False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1] def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__A ) ) return a =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
215
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) A__ : str = '''bert-base-cased''' A__ : Optional[int] = '''fp16''' A__ : Optional[int] = '''bf16''' A__ : Any = [FPaa, BFaa] @require_fsdp @require_cuda class __snake_case ( UpperCamelCase_ ): def UpperCAmelCase__ ( self : str): super().setUp() lowerCAmelCase_ : int = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def UpperCAmelCase__ ( self : Any): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(A_): lowerCAmelCase_ : Optional[int] = self.dist_env.copy() lowerCAmelCase_ : Optional[Any] = F"""{i + 1}""" lowerCAmelCase_ : List[Any] = strategy with mockenv_context(**A_): lowerCAmelCase_ : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1)) def UpperCAmelCase__ ( self : Any): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(A_): lowerCAmelCase_ : Tuple = self.dist_env.copy() lowerCAmelCase_ : str = prefetch_policy with mockenv_context(**A_): lowerCAmelCase_ : List[str] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1)) def UpperCAmelCase__ ( self : int): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(A_): lowerCAmelCase_ : Optional[int] = self.dist_env.copy() lowerCAmelCase_ : str = state_dict_type with mockenv_context(**A_): lowerCAmelCase_ : Optional[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : str = AutoModel.from_pretrained(A_) for policy in FSDP_AUTO_WRAP_POLICY: lowerCAmelCase_ : Tuple = self.dist_env.copy() lowerCAmelCase_ : List[str] = policy if policy == "TRANSFORMER_BASED_WRAP": lowerCAmelCase_ : List[str] = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": lowerCAmelCase_ : Optional[int] = '''2000''' with mockenv_context(**A_): lowerCAmelCase_ : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A_) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) lowerCAmelCase_ : str = self.dist_env.copy() lowerCAmelCase_ : List[str] = '''TRANSFORMER_BASED_WRAP''' lowerCAmelCase_ : Optional[int] = '''T5Layer''' with mockenv_context(**A_): lowerCAmelCase_ : List[str] = FullyShardedDataParallelPlugin() with self.assertRaises(A_) as cm: fsdp_plugin.set_auto_wrap_policy(A_) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception)) lowerCAmelCase_ : Union[str, Any] = self.dist_env.copy() lowerCAmelCase_ : List[Any] = '''SIZE_BASED_WRAP''' lowerCAmelCase_ : List[Any] = '''0''' with mockenv_context(**A_): lowerCAmelCase_ : str = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A_) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def UpperCAmelCase__ ( self : Optional[Any]): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowerCAmelCase_ : Dict = self.dist_env.copy() lowerCAmelCase_ : List[str] = mp_dtype with mockenv_context(**A_): lowerCAmelCase_ : List[Any] = Accelerator() if mp_dtype == "fp16": lowerCAmelCase_ : Optional[Any] = torch.floataa elif mp_dtype == "bf16": lowerCAmelCase_ : Any = torch.bfloataa lowerCAmelCase_ : Optional[Any] = MixedPrecision(param_dtype=A_ , reduce_dtype=A_ , buffer_dtype=A_) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , A_) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , A_)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(A_) def UpperCAmelCase__ ( self : Any): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowerCAmelCase_ : Any = self.dist_env.copy() lowerCAmelCase_ : Union[str, Any] = str(A_).lower() with mockenv_context(**A_): lowerCAmelCase_ : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=A_)) @require_fsdp @require_multi_gpu @slow class __snake_case ( UpperCamelCase_ ): def UpperCAmelCase__ ( self : List[Any]): super().setUp() lowerCAmelCase_ : Optional[Any] = 0.82 lowerCAmelCase_ : Union[str, Any] = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] lowerCAmelCase_ : Union[str, Any] = { '''multi_gpu_fp16''': 3_2_0_0, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_0_0_0, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_9_0_0, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowerCAmelCase_ : Union[str, Any] = 1_6_0 lowerCAmelCase_ : List[Any] = 1_6_0 lowerCAmelCase_ : Dict = inspect.getfile(accelerate.test_utils) lowerCAmelCase_ : str = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps''']) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : Tuple = os.path.join(self.test_scripts_folder , '''test_performance.py''') lowerCAmelCase_ : Tuple = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: lowerCAmelCase_ : Union[str, Any] = cmd.copy() for i, strategy in enumerate(A_): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""") break if "fp32" in config: cmd_config.append('''--mixed_precision=no''') else: cmd_config.append('''--mixed_precision=fp16''') if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''') elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''') cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(A_ , env=os.environ.copy()) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''') lowerCAmelCase_ : List[str] = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(A_): lowerCAmelCase_ : List[Any] = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""") if strategy != "FULL_SHARD": continue lowerCAmelCase_ : int = len(A_) for state_dict_type in FSDP_STATE_DICT_TYPE: lowerCAmelCase_ : List[str] = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""") cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(A_ , env=os.environ.copy()) lowerCAmelCase_ : int = cmd_config[:-1] lowerCAmelCase_ : List[str] = os.path.join(self.tmpdir , '''epoch_0''') cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(A_ , env=os.environ.copy()) def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : int = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''') lowerCAmelCase_ : Dict = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowerCAmelCase_ : Tuple = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16''']) else: cmd_config.extend(['''--mixed_precision=no''']) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp''']) for i, strategy in enumerate(A_): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""") break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''') elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''') cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(A_ , env=os.environ.copy())
103
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' ,'''False''' ) ) is not True ,reason='''Skipping test because should only be run when releasing minor transformers version''' ,) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : int): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=A_ , ) assert hasattr(self , '''env''') def UpperCAmelCase__ ( self : Union[str, Any] , A_ : str=1): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=A_ , instance_type=self.instance_type , debugger_hook_config=A_ , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def UpperCAmelCase__ ( self : List[str] , A_ : Optional[Any]): TrainingJobAnalytics(A_).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""") def UpperCAmelCase__ ( self : int): # create estimator lowerCAmelCase_ : List[Any] = self.create_estimator() # run training estimator.fit() # result dataframe lowerCAmelCase_ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis lowerCAmelCase_ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value''']) lowerCAmelCase_ : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value''']) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase_ : Dict = ( Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy) assert all(t <= self.results['''eval_loss'''] for t in eval_loss) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''') as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , A_)
103
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case_ : Optional[int] = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } snake_case_ : Dict = { 'google/realm-cc-news-pretrained-embedder': 512, 'google/realm-cc-news-pretrained-encoder': 512, 'google/realm-cc-news-pretrained-scorer': 512, 'google/realm-cc-news-pretrained-openqa': 512, 'google/realm-orqa-nq-openqa': 512, 'google/realm-orqa-nq-reader': 512, 'google/realm-orqa-wq-openqa': 512, 'google/realm-orqa-wq-reader': 512, } snake_case_ : Optional[Any] = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class lowercase__ ( lowercase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = RealmTokenizer def __init__( self : Optional[int] ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : int=None ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Optional[int]="[UNK]" ,lowerCamelCase__ : Tuple="[SEP]" ,lowerCamelCase__ : Union[str, Any]="[PAD]" ,lowerCamelCase__ : List[Any]="[CLS]" ,lowerCamelCase__ : Dict="[MASK]" ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Tuple=None ,**lowerCamelCase__ : List[Any] ,): '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) _UpperCamelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_a ) != do_lower_case or normalizer_state.get('strip_accents' ,_a ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_a ) != tokenize_chinese_chars ): _UpperCamelCase : List[Any] = getattr(_a ,normalizer_state.pop('type' ) ) _UpperCamelCase : Any = do_lower_case _UpperCamelCase : int = strip_accents _UpperCamelCase : Tuple = tokenize_chinese_chars _UpperCamelCase : List[Any] = normalizer_class(**_a ) _UpperCamelCase : Dict = do_lower_case def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : int ,**lowerCamelCase__ : List[Any] ): '''simple docstring''' _UpperCamelCase : str = PaddingStrategy.MAX_LENGTH _UpperCamelCase : Tuple = text _UpperCamelCase : Tuple = kwargs.pop('text_pair' ,_a ) _UpperCamelCase : Tuple = kwargs.pop('return_tensors' ,_a ) _UpperCamelCase : Tuple = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_a ): if batch_text_pair is not None: _UpperCamelCase : int = batch_text_pair[idx] else: _UpperCamelCase : Tuple = None _UpperCamelCase : List[Any] = super().__call__(_a ,_a ,return_tensors=_a ,**_a ) _UpperCamelCase : List[str] = encoded_candidates.get('input_ids' ) _UpperCamelCase : int = encoded_candidates.get('attention_mask' ) _UpperCamelCase : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_a ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_a ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_a ) _UpperCamelCase : List[Any] = {key: item for key, item in output_data.items() if len(_a ) != 0} return BatchEncoding(_a ,tensor_type=_a ) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : List[str]=None ): '''simple docstring''' _UpperCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Any = [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' _UpperCamelCase : Tuple = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
355
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness snake_case_ : List[str] = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' snake_case_ : Tuple = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' snake_case_ : str = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' snake_case_ : str = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' snake_case_ : List[Any] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) ,homepage='https://github.com/openai/human-eval' ,codebase_urls=['https://github.com/openai/human-eval'] ,reference_urls=['https://github.com/openai/human-eval'] ,license=_LICENSE ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any]=[1, 10, 100] ,lowerCamelCase__ : int=4 ,lowerCamelCase__ : List[Any]=3.0 ): '''simple docstring''' if os.getenv('HF_ALLOW_CODE_EVAL' ,0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Optional[int] = Counter() _UpperCamelCase : int = 0 _UpperCamelCase : Dict = defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ ,lowerCamelCase__ ) ): for candidate in candidates: _UpperCamelCase : int = candidate + '\n' + test_case _UpperCamelCase : Optional[Any] = (test_program, timeout, task_id, completion_id[task_id]) _UpperCamelCase : Dict = executor.submit(lowerCamelCase__ ,*lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): _UpperCamelCase : Dict = future.result() results[result["task_id"]].append((result['completion_id'], result) ) _UpperCamelCase , _UpperCamelCase : List[str] = [], [] for result in results.values(): result.sort() _UpperCamelCase : Optional[Any] = [r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) _UpperCamelCase : List[str] = np.array(lowerCamelCase__ ) _UpperCamelCase : List[Any] = np.array(lowerCamelCase__ ) _UpperCamelCase : Tuple = k _UpperCamelCase : Tuple = {F'pass@{k}': estimate_pass_at_k(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def estimator(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = itertools.repeat(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) else: assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = iter(UpperCAmelCase_ ) return np.array([estimator(int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) , UpperCAmelCase_ ) for n, c in zip(UpperCAmelCase_ , UpperCAmelCase_ )] )
236
0
def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : str = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCamelCase_( lowerCamelCase_ = 5000 ) -> int: _lowercase : Optional[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCamelCase_ )] for i, pentagonal_i in enumerate(lowerCamelCase_ ): for j in range(lowerCamelCase_ , len(lowerCamelCase_ ) ): _lowercase : List[Any] = pentagonal_nums[j] _lowercase : Optional[int] = pentagonal_i + pentagonal_j _lowercase : str = pentagonal_j - pentagonal_i if is_pentagonal(lowerCamelCase_ ) and is_pentagonal(lowerCamelCase_ ): return b return -1 if __name__ == "__main__": print(F"{solution() = }")
21
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: _lowercase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowercase : int = x_den * y_den * z_den _lowercase : int = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_( lowerCamelCase_ = 35 ) -> int: _lowercase : set = set() _lowercase : int _lowercase : Fraction = Fraction(0 ) _lowercase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowercase : int = x_num * y_den + x_den * y_num _lowercase : int = x_den * y_den _lowercase : str = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : List[Any] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowercase : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : int = int(sqrt(lowerCamelCase_ ) ) _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Optional[int] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 _lowercase : Any = x_num * y_num _lowercase : str = x_den * y_num + x_num * y_den _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : str = x_num * x_num * y_num * y_num _lowercase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : List[str] = int(sqrt(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
21
1
'''simple docstring''' import numpy as np def lowerCamelCase (_SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float ): return np.where(vector > 0 , _SCREAMING_SNAKE_CASE , (alpha * (np.exp(_SCREAMING_SNAKE_CASE ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' import re from filelock import FileLock try: import nltk __lowercase : Optional[Any] = True except (ImportError, ModuleNotFoundError): __lowercase : Dict = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): re.sub('<n>' , '' , _SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_SCREAMING_SNAKE_CASE ) )
294
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> None: warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" ,__UpperCAmelCase ,) super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase )
37
import math def UpperCAmelCase ( a_ , a_ = 0 , a_ = 0 ) -> list: """simple docstring""" __A = end or len(a_ ) for i in range(a_ , a_ ): __A = i __A = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __A = array[temp_index - 1] temp_index -= 1 __A = temp_index_value return array def UpperCAmelCase ( a_ , a_ , a_ ) -> None: # Max Heap """simple docstring""" __A = index __A = 2 * index + 1 # Left Node __A = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __A = left_index if right_index < heap_size and array[largest] < array[right_index]: __A = right_index if largest != index: __A , __A = array[largest], array[index] heapify(a_ , a_ , a_ ) def UpperCAmelCase ( a_ ) -> list: """simple docstring""" __A = len(a_ ) for i in range(n // 2 , -1 , -1 ): heapify(a_ , a_ , a_ ) for i in range(n - 1 , 0 , -1 ): __A , __A = array[0], array[i] heapify(a_ , 0 , a_ ) return array def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" __A = low __A = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __A , __A = array[j], array[i] i += 1 def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if len(a_ ) == 0: return array __A = 2 * math.ceil(math.loga(len(a_ ) ) ) __A = 1_6 return intro_sort(a_ , 0 , len(a_ ) , a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(a_ ) max_depth -= 1 __A = median_of_a(a_ , a_ , start + ((end - start) // 2) + 1 , end - 1 ) __A = partition(a_ , a_ , a_ , a_ ) intro_sort(a_ , a_ , a_ , a_ , a_ ) __A = p return insertion_sort(a_ , a_ , a_ ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE :List[Any] = input('Enter numbers separated by a comma : ').strip() SCREAMING_SNAKE_CASE :str = [float(item) for item in user_input.split(',')] print(sort(unsorted))
15
0
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _a ( a :List[str] , a :Tuple , a :Union[str, Any] , a :Optional[int] ) -> int: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: a = TOKENIZER_CLASSES else: a = {tokenizer_name: getattr(a , tokenizer_name + '''Fast''' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: a = TOKENIZER_CLASSES[tokenizer_name] a = True if checkpoint_name is None: a = list(tokenizer_class.max_model_input_sizes.keys() ) else: a = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer a = tokenizer_class.from_pretrained(a , force_download=a ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: a , a = checkpoint.split('''/''' ) a = os.path.join(a , a ) elif add_prefix: a = checkpoint a = dump_path else: a = None a = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a = file_path.split(a )[-1][0] if next_char == "/": a = os.path.join(a , a ) a = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) a = tokenizer.save_pretrained( a , legacy_format=a , filename_prefix=a ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(a ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) UpperCAmelCase__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowercase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[Any] = pipeline(task="""text-generation""" ,model="""sshleifer/tiny-ctrl""" ,framework="""pt""" ) # Using `do_sample=False` to force deterministic output _UpperCAmelCase : List[str] = text_generator("""This is a test""" ,do_sample=a_ ) self.assertEqual( a_ ,[ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] ,) _UpperCAmelCase : int = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( a_ ,[ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] ,) _UpperCAmelCase : Any = text_generator("""This is a test""" ,do_sample=a_ ,num_return_sequences=2 ,return_tensors=a_ ) self.assertEqual( a_ ,[ {"""generated_token_ids""": ANY(a_ )}, {"""generated_token_ids""": ANY(a_ )}, ] ,) _UpperCAmelCase : Tuple = text_generator.model.config.eos_token_id _UpperCAmelCase : Union[str, Any] = """<pad>""" _UpperCAmelCase : Any = text_generator( ["""This is a test""", """This is a second test"""] ,do_sample=a_ ,num_return_sequences=2 ,batch_size=2 ,return_tensors=a_ ,) self.assertEqual( a_ ,[ [ {"""generated_token_ids""": ANY(a_ )}, {"""generated_token_ids""": ANY(a_ )}, ], [ {"""generated_token_ids""": ANY(a_ )}, {"""generated_token_ids""": ANY(a_ )}, ], ] ,) @require_tf def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = pipeline(task="""text-generation""" ,model="""sshleifer/tiny-ctrl""" ,framework="""tf""" ) # Using `do_sample=False` to force deterministic output _UpperCAmelCase : List[Any] = text_generator("""This is a test""" ,do_sample=a_ ) self.assertEqual( a_ ,[ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] ,) _UpperCAmelCase : Any = text_generator(["""This is a test""", """This is a second test"""] ,do_sample=a_ ) self.assertEqual( a_ ,[ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] ,) def _snake_case ( self ,a_ ,a_ ,a_ ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = TextGenerationPipeline(model=a_ ,tokenizer=a_ ) return text_generator, ["This is a test", "Another test"] def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Dict = """Hello I believe in""" _UpperCAmelCase : Any = pipeline("""text-generation""" ,model="""hf-internal-testing/tiny-random-gpt2""" ) _UpperCAmelCase : Optional[int] = text_generator(a_ ) self.assertEqual( a_ ,[{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] ,) _UpperCAmelCase : Union[str, Any] = text_generator(a_ ,stop_sequence=""" fe""" ) self.assertEqual(a_ ,[{"""generated_text""": """Hello I believe in fe"""}] ) def _snake_case ( self ,a_ ,a_ ) -> int: _UpperCAmelCase : Tuple = text_generator.model _UpperCAmelCase : Union[str, Any] = text_generator.tokenizer _UpperCAmelCase : Optional[int] = text_generator("""This is a test""" ) self.assertEqual(a_ ,[{"""generated_text""": ANY(a_ )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) _UpperCAmelCase : Optional[Any] = text_generator("""This is a test""" ,return_full_text=a_ ) self.assertEqual(a_ ,[{"""generated_text""": ANY(a_ )}] ) self.assertNotIn("""This is a test""" ,outputs[0]["""generated_text"""] ) _UpperCAmelCase : Optional[Any] = pipeline(task="""text-generation""" ,model=a_ ,tokenizer=a_ ,return_full_text=a_ ) _UpperCAmelCase : str = text_generator("""This is a test""" ) self.assertEqual(a_ ,[{"""generated_text""": ANY(a_ )}] ) self.assertNotIn("""This is a test""" ,outputs[0]["""generated_text"""] ) _UpperCAmelCase : List[str] = text_generator("""This is a test""" ,return_full_text=a_ ) self.assertEqual(a_ ,[{"""generated_text""": ANY(a_ )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) _UpperCAmelCase : str = text_generator(["""This is great !""", """Something else"""] ,num_return_sequences=2 ,do_sample=a_ ) self.assertEqual( a_ ,[ [{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}], [{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}], ] ,) if text_generator.tokenizer.pad_token is not None: _UpperCAmelCase : Optional[Any] = text_generator( ["""This is great !""", """Something else"""] ,num_return_sequences=2 ,batch_size=2 ,do_sample=a_ ) self.assertEqual( a_ ,[ [{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}], [{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}], ] ,) with self.assertRaises(a_ ): _UpperCAmelCase : str = text_generator("""test""" ,return_full_text=a_ ,return_text=a_ ) with self.assertRaises(a_ ): _UpperCAmelCase : Dict = text_generator("""test""" ,return_full_text=a_ ,return_tensors=a_ ) with self.assertRaises(a_ ): _UpperCAmelCase : Union[str, Any] = text_generator("""test""" ,return_text=a_ ,return_tensors=a_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCAmelCase : Optional[Any] = text_generator("""""" ) self.assertEqual(a_ ,[{"""generated_text""": ANY(a_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCAmelCase : List[Any] = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCAmelCase : int = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 10_000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 ,max_new_tokens=20 ) _UpperCAmelCase : List[Any] = text_generator("""This is a test""" * 500 ,handle_long_generation="""hole""" ,max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(a_ ): text_generator( """This is a test""" * 500 ,handle_long_generation="""hole""" ,max_new_tokens=tokenizer.model_max_length + 10 ,) @require_torch @require_accelerate @require_torch_gpu def _snake_case ( self ) -> Union[str, Any]: import torch # Classic `model_kwargs` _UpperCAmelCase : Tuple = pipeline( model="""hf-internal-testing/tiny-random-bloom""" ,model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} ,) self.assertEqual(pipe.model.device ,torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype ,torch.bfloataa ) _UpperCAmelCase : Union[str, Any] = pipe("""This is a test""" ) self.assertEqual( a_ ,[ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] ,) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCAmelCase : Dict = pipeline(model="""hf-internal-testing/tiny-random-bloom""" ,device_map="""auto""" ,torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device ,torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype ,torch.bfloataa ) _UpperCAmelCase : Tuple = pipe("""This is a test""" ) self.assertEqual( a_ ,[ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] ,) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCAmelCase : int = pipeline(model="""hf-internal-testing/tiny-random-bloom""" ,device_map="""auto""" ) self.assertEqual(pipe.model.device ,torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype ,torch.floataa ) _UpperCAmelCase : List[Any] = pipe("""This is a test""" ) self.assertEqual( a_ ,[ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] ,) @require_torch @require_torch_gpu def _snake_case ( self ) -> str: import torch _UpperCAmelCase : int = pipeline(model="""hf-internal-testing/tiny-random-bloom""" ,device=0 ,torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def _snake_case ( self ) -> Dict: import torch _UpperCAmelCase : List[str] = pipeline(model="""hf-internal-testing/tiny-random-bloom""" ,device_map="""auto""" ,torch_dtype=torch.floataa ) pipe("""This is a test""" ,do_sample=a_ ,top_p=0.5 ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : str = """Hello world""" _UpperCAmelCase : Optional[int] = pipeline("""text-generation""" ,model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": _UpperCAmelCase : str = logging.get_logger("""transformers.generation.tf_utils""" ) else: _UpperCAmelCase : List[Any] = logging.get_logger("""transformers.generation.utils""" ) _UpperCAmelCase : int = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(a_ ) as cl: _UpperCAmelCase : Dict = text_generator(a_ ,max_length=10 ,max_new_tokens=1 ) self.assertIn(a_ ,cl.out ) # The user only sets one -> no warning with CaptureLogger(a_ ) as cl: _UpperCAmelCase : List[str] = text_generator(a_ ,max_new_tokens=1 ) self.assertNotIn(a_ ,cl.out ) with CaptureLogger(a_ ) as cl: _UpperCAmelCase : Dict = text_generator(a_ ,max_length=10 ) self.assertNotIn(a_ ,cl.out )
215
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = RemBertConfig.from_json_file(lowerCAmelCase_ ) print("""Building PyTorch model from configuration: {}""".format(str(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Any = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowerCAmelCase_ ) ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A_ : Any = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
215
1
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = """Hello world! cécé herlolip""" def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = FairseqRobertaModel.from_pretrained(lowercase ) roberta.eval() # disable dropout SCREAMING_SNAKE_CASE : Any = roberta.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE : Optional[int] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: SCREAMING_SNAKE_CASE : List[Any] = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" , lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = XLMRobertaXLForSequenceClassification(lowercase ) if classification_head else XLMRobertaXLForMaskedLM(lowercase ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE : Optional[Any] = roberta_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE : int = roberta_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE : List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. SCREAMING_SNAKE_CASE : str = roberta_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE : Any = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE : BertLayer = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] SCREAMING_SNAKE_CASE : RobertaAttention = layer.attention SCREAMING_SNAKE_CASE : str = roberta_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE : Dict = roberta_layer.self_attn_layer_norm.bias # self attention SCREAMING_SNAKE_CASE : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) SCREAMING_SNAKE_CASE : Optional[int] = roberta_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE : List[str] = roberta_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE : Any = roberta_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE : List[Any] = roberta_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE : Union[str, Any] = roberta_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE : Union[str, Any] = roberta_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape SCREAMING_SNAKE_CASE : Optional[Any] = roberta_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE : Optional[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm SCREAMING_SNAKE_CASE : List[str] = roberta_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE : Optional[int] = roberta_layer.final_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE : Dict = roberta_layer.fca.weight SCREAMING_SNAKE_CASE : Dict = roberta_layer.fca.bias # output SCREAMING_SNAKE_CASE : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape SCREAMING_SNAKE_CASE : List[str] = roberta_layer.fca.weight SCREAMING_SNAKE_CASE : int = roberta_layer.fca.bias # end of layer if classification_head: SCREAMING_SNAKE_CASE : Union[str, Any] = roberta.model.classification_heads["mnli"].dense.weight SCREAMING_SNAKE_CASE : int = roberta.model.classification_heads["mnli"].dense.bias SCREAMING_SNAKE_CASE : List[Any] = roberta.model.classification_heads["mnli"].out_proj.weight SCREAMING_SNAKE_CASE : List[Any] = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE : Tuple = roberta.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE : Dict = roberta.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE : Tuple = roberta.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE : List[str] = roberta.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE : Tuple = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE : torch.Tensor = roberta.encode(lowercase ).unsqueeze(0 ) # batch of size 1 SCREAMING_SNAKE_CASE : List[Any] = model(lowercase )[0] if classification_head: SCREAMING_SNAKE_CASE : Any = roberta.model.classification_heads["mnli"](roberta.extract_features(lowercase ) ) else: SCREAMING_SNAKE_CASE : Optional[int] = roberta.model(lowercase )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 SCREAMING_SNAKE_CASE : Tuple = torch.allclose(lowercase , lowercase , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(lowercase ).mkdir(parents=lowercase , exist_ok=lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) snake_case = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
319
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
1
import string def UpperCAmelCase__ ( lowerCamelCase ): for key in range(len(string.ascii_uppercase ) ): lowercase :Any = "" for symbol in message: if symbol in string.ascii_uppercase: lowercase :Dict = string.ascii_uppercase.find(lowerCamelCase ) lowercase :Optional[Any] = num - key if num < 0: lowercase :Union[str, Any] = num + len(string.ascii_uppercase ) lowercase :List[str] = translated + string.ascii_uppercase[num] else: lowercase :int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def UpperCAmelCase__ ( ): lowercase :Tuple = input("Encrypted message: " ) lowercase :Dict = message.upper() decrypt(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
236
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Dict = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _UpperCAmelCase : Union[str, Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] _UpperCAmelCase : List[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class __lowerCAmelCase ( lowerCAmelCase): _a = '''whisper''' _a = ['''past_key_values'''] _a = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self: int , _lowerCAmelCase: str=5_18_65 , _lowerCAmelCase: str=80 , _lowerCAmelCase: int=6 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=6 , _lowerCAmelCase: List[Any]=4 , _lowerCAmelCase: Any=15_36 , _lowerCAmelCase: Union[str, Any]=15_36 , _lowerCAmelCase: str=0.0 , _lowerCAmelCase: str=0.0 , _lowerCAmelCase: List[Any]=5_02_57 , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: str="gelu" , _lowerCAmelCase: Dict=2_56 , _lowerCAmelCase: Union[str, Any]=0.0 , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: Dict=0.0 , _lowerCAmelCase: Union[str, Any]=0.02 , _lowerCAmelCase: Any=False , _lowerCAmelCase: List[str]=15_00 , _lowerCAmelCase: Tuple=4_48 , _lowerCAmelCase: Optional[Any]=5_02_56 , _lowerCAmelCase: Dict=5_02_56 , _lowerCAmelCase: List[Any]=5_02_56 , _lowerCAmelCase: Union[str, Any]=None , _lowerCAmelCase: str=[2_20, 5_02_56] , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: Optional[int]=2_56 , _lowerCAmelCase: int=False , _lowerCAmelCase: Dict=0.05 , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: List[str]=2 , _lowerCAmelCase: Tuple=0.0 , _lowerCAmelCase: str=10 , _lowerCAmelCase: Union[str, Any]=0 , _lowerCAmelCase: List[Any]=7 , **_lowerCAmelCase: Union[str, Any] , ): lowercase :Optional[Any] = vocab_size lowercase :Optional[int] = num_mel_bins lowercase :Union[str, Any] = d_model lowercase :List[Any] = encoder_layers lowercase :Optional[Any] = encoder_attention_heads lowercase :Union[str, Any] = decoder_layers lowercase :List[str] = decoder_attention_heads lowercase :Optional[int] = decoder_ffn_dim lowercase :List[Any] = encoder_ffn_dim lowercase :Optional[Any] = dropout lowercase :Tuple = attention_dropout lowercase :Tuple = activation_dropout lowercase :Optional[Any] = activation_function lowercase :Any = init_std lowercase :Optional[int] = encoder_layerdrop lowercase :Optional[int] = decoder_layerdrop lowercase :str = use_cache lowercase :Optional[Any] = encoder_layers lowercase :List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase :Any = max_source_positions lowercase :Optional[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase :int = classifier_proj_size lowercase :List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase :Tuple = apply_spec_augment lowercase :int = mask_time_prob lowercase :Union[str, Any] = mask_time_length lowercase :Dict = mask_time_min_masks lowercase :Tuple = mask_feature_prob lowercase :List[Any] = mask_feature_length lowercase :List[Any] = mask_feature_min_masks lowercase :Any = median_filter_width super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , suppress_tokens=_lowerCAmelCase , begin_suppress_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) class __lowerCAmelCase ( lowerCAmelCase): @property def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Tuple = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowercase :List[Any] = {0: "batch"} else: lowercase :str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) return common_inputs def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase: int = -1 , _lowerCAmelCase: int = -1 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional["TensorType"] = None , _lowerCAmelCase: int = 2_20_50 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: int = 2_20 , ): lowercase :List[str] = OrderedDict() lowercase :str = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_lowerCAmelCase , framework=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , time_duration=_lowerCAmelCase , frequency=_lowerCAmelCase , ) lowercase :Optional[Any] = encoder_inputs["input_features"].shape[2] lowercase :List[str] = encoder_sequence_length // 2 if self.use_past else seq_length lowercase :Dict = super().generate_dummy_inputs( preprocessor.tokenizer , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase :str = encoder_inputs.pop("input_features" ) lowercase :Optional[int] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowercase :List[str] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def SCREAMING_SNAKE_CASE ( self: str ): return 1e-3
236
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'sentencepiece.model'} a_ = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } a_ = { 'google/rembert': 256, } class _lowercase ( snake_case_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , snake_case : Optional[int] , snake_case : Tuple=False , snake_case : str=True , snake_case : Any=True , snake_case : Dict="[CLS]" , snake_case : Optional[Any]="[SEP]" , snake_case : List[Any]="[UNK]" , snake_case : Optional[Any]="[SEP]" , snake_case : Union[str, Any]="[PAD]" , snake_case : List[Any]="[CLS]" , snake_case : Optional[Any]="[MASK]" , **snake_case : List[Any] , ) -> List[Any]: """simple docstring""" super().__init__( do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , **snake_case , ) UpperCamelCase_ : List[str] = do_lower_case UpperCamelCase_ : Dict = remove_space UpperCamelCase_ : Optional[int] = keep_accents UpperCamelCase_ : Union[str, Any] = vocab_file UpperCamelCase_ : Any = spm.SentencePieceProcessor() self.sp_model.Load(snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> str: """simple docstring""" UpperCamelCase_ : Any = self.__dict__.copy() UpperCamelCase_ : Any = None return state def __setstate__( self : Optional[Any] , snake_case : List[str] ) -> str: """simple docstring""" UpperCamelCase_ : List[str] = d UpperCamelCase_ : int = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : List[Any] , snake_case : str=False ) -> List[str]: """simple docstring""" UpperCamelCase_ : Dict = self.sp_model.EncodeAsPieces(snake_case ) return pieces def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Any ) -> str: """simple docstring""" return self.sp_model.PieceToId(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : Dict ) -> Dict: """simple docstring""" return self.sp_model.IdToPiece(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : int ) -> str: """simple docstring""" UpperCamelCase_ : str = self.sp_model.decode_pieces(snake_case ) return out_string def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ : Any = [self.sep_token_id] UpperCamelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1] def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = [self.sep_token_id] UpperCamelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(snake_case ): logger.error('Vocabulary path ({}) should be a directory'.format(snake_case ) ) return UpperCamelCase_ : Optional[Any] = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ): copyfile(self.vocab_file , snake_case ) return (out_vocab_file,)
50
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowercase ( unittest.TestCase ): def __init__( self : List[Any] , snake_case : int , snake_case : Union[str, Any]=2 , snake_case : Optional[Any]=5_6 , snake_case : Dict=True , snake_case : Optional[Any]=True , snake_case : Any=True , snake_case : List[Any]=True , snake_case : Tuple=9_9 , snake_case : Any=3_2 , snake_case : List[Any]=2 , snake_case : Optional[Any]=2 , snake_case : str=7 , snake_case : Dict="gelu_new" , snake_case : List[str]=0.1 , snake_case : Dict=0.1 , snake_case : Optional[Any]=5_1_2 , snake_case : Tuple=1_6 , snake_case : Dict=2 , snake_case : List[str]=0.02 , snake_case : Optional[int]=4 , snake_case : str="block_sparse" , snake_case : List[Any]=True , snake_case : int=False , snake_case : Tuple=2 , snake_case : Optional[int]=3 , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = parent UpperCamelCase_ : str = batch_size UpperCamelCase_ : List[str] = seq_length UpperCamelCase_ : Union[str, Any] = is_training UpperCamelCase_ : Dict = use_attention_mask UpperCamelCase_ : List[Any] = use_token_type_ids UpperCamelCase_ : Optional[Any] = use_labels UpperCamelCase_ : Dict = vocab_size UpperCamelCase_ : Union[str, Any] = hidden_size UpperCamelCase_ : Optional[Any] = num_hidden_layers UpperCamelCase_ : Any = num_attention_heads UpperCamelCase_ : Optional[Any] = intermediate_size UpperCamelCase_ : Optional[Any] = hidden_act UpperCamelCase_ : int = hidden_dropout_prob UpperCamelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase_ : List[str] = max_position_embeddings UpperCamelCase_ : List[Any] = type_vocab_size UpperCamelCase_ : Any = type_sequence_label_size UpperCamelCase_ : Optional[int] = initializer_range UpperCamelCase_ : int = num_choices UpperCamelCase_ : str = rescale_embeddings UpperCamelCase_ : List[Any] = attention_type UpperCamelCase_ : Optional[Any] = use_bias UpperCamelCase_ : List[str] = block_size UpperCamelCase_ : int = num_random_blocks def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: """simple docstring""" UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : str = None if self.use_attention_mask: UpperCamelCase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ : int = None if self.use_token_type_ids: UpperCamelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : Tuple = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : Any = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : int = config_and_inputs UpperCamelCase_ : Tuple = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class _lowercase ( snake_case_ , unittest.TestCase ): lowercase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ : List[str] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: """simple docstring""" super().test_hidden_states_output() @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase_ : Optional[Any] = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_ : Optional[Any] = self._prepare_for_class(snake_case , snake_case ) UpperCamelCase_ : Optional[Any] = model_class(snake_case ) @jax.jit def model_jitted(snake_case : str , snake_case : List[str]=None , **snake_case : Tuple ): return model(input_ids=snake_case , attention_mask=snake_case , **snake_case ) with self.subTest('JIT Enabled' ): UpperCamelCase_ : List[str] = model_jitted(**snake_case ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase_ : List[str] = model_jitted(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) ) for jitted_output, output in zip(snake_case , snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Optional[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Optional[int]=1e-5 , snake_case : Tuple="outputs" , snake_case : Dict=None ) -> Dict: """simple docstring""" if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case )
50
1
"""simple docstring""" import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: re.sub("<n>" , "" , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
247
"""simple docstring""" _snake_case = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _snake_case = [{'type': 'code', 'content': INSTALL_CONTENT}] _snake_case = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
294
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __UpperCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[str] ) -> List[Any]: '''simple docstring''' for attribute in key.split(""".""" ): lowerCAmelCase_ : List[Any] = getattr(lowercase__ , lowercase__ ) if weight_type is not None: lowerCAmelCase_ : Optional[Any] = getattr(lowercase__ , lowercase__ ).shape else: lowerCAmelCase_ : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase_ : Union[str, Any] = value elif weight_type == "weight_g": lowerCAmelCase_ : Dict = value elif weight_type == "weight_v": lowerCAmelCase_ : List[Any] = value elif weight_type == "bias": lowerCAmelCase_ : Dict = value else: lowerCAmelCase_ : List[Any] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Optional[int] = fairseq_model.state_dict() lowerCAmelCase_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCAmelCase_ : List[Any] = None for name, value in fairseq_dict.items(): lowerCAmelCase_ : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase_ : Any = True elif name.split(""".""" )[0] == "proj": lowerCAmelCase_ : List[str] = fairseq_model.proj lowerCAmelCase_ : List[str] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase_ : Dict = True if "*" in mapped_key: lowerCAmelCase_ : Optional[int] = name.split(lowercase__ )[0].split(""".""" )[-2] lowerCAmelCase_ : List[Any] = mapped_key.replace("""*""" , lowercase__ ) if "weight_g" in name: lowerCAmelCase_ : List[Any] = """weight_g""" elif "weight_v" in name: lowerCAmelCase_ : Any = """weight_v""" elif "bias" in name: lowerCAmelCase_ : Union[str, Any] = """bias""" elif "weight" in name: lowerCAmelCase_ : str = """weight""" else: lowerCAmelCase_ : List[Any] = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def __UpperCamelCase ( lowercase__ : str , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase_ : Optional[Any] = name.split(""".""" ) lowerCAmelCase_ : Optional[int] = int(items[0] ) lowerCAmelCase_ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCAmelCase_ : List[str] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCAmelCase_ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCAmelCase_ : Union[str, Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCAmelCase_ : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase__ ) def __UpperCamelCase ( lowercase__ : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = emb.weight.shape lowerCAmelCase_ : Optional[Any] = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) lowerCAmelCase_ : Optional[int] = emb.weight.data return lin_layer def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ : int = f.readlines() lowerCAmelCase_ : Dict = [line.split(""" """ )[0] for line in lines] lowerCAmelCase_ : Optional[Any] = len(lowercase__ ) lowerCAmelCase_ : Dict = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(lowercase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : str , lowercase__ : List[str] , lowercase__ : int , ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = WavaVecaConfig.from_pretrained(lowercase__ ) lowerCAmelCase_ : List[Any] = SpeechaTextaConfig.from_pretrained( lowercase__ , vocab_size=lowercase__ , decoder_layers=lowercase__ , do_stable_layer_norm=lowercase__ ) lowerCAmelCase_ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowerCAmelCase_ : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder lowerCAmelCase_ : int = WavaVecaModel(lowercase__ ) lowerCAmelCase_ : List[Any] = recursively_load_weights_wavaveca(model.encoder , lowercase__ ) lowerCAmelCase_ : Dict = SpeechaTextaForCausalLM(lowercase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Any = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowercase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowerCAmelCase_ : str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowerCAmelCase_ : int = SpeechEncoderDecoderModel(encoder=lowercase__ , decoder=lowercase__ ) lowerCAmelCase_ : Dict = False # add projection layer lowerCAmelCase_ : List[Any] = nn.Parameter(projection_layer.weight ) lowerCAmelCase_ : Optional[int] = nn.Parameter(projection_layer.bias ) lowerCAmelCase_ : Union[str, Any] = create_vocab_dict(lowercase__ ) with open(os.path.join(lowercase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(lowercase__ , lowercase__ ) lowerCAmelCase_ : int = SpeechaTextaTokenizer(os.path.join(lowercase__ , """vocab.json""" ) ) tokenizer.save_pretrained(lowercase__ ) lowerCAmelCase_ : Optional[Any] = hf_wavavec.config.to_dict() lowerCAmelCase_ : Union[str, Any] = tokenizer.pad_token_id lowerCAmelCase_ : List[str] = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer.eos_token_id lowerCAmelCase_ : Optional[int] = """speech_to_text_2""" lowerCAmelCase_ : Union[str, Any] = """wav2vec2""" lowerCAmelCase_ : Any = SpeechEncoderDecoderConfig.from_dict(lowercase__ ) hf_wavavec.save_pretrained(lowercase__ ) feature_extractor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
28
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__( UpperCamelCase__ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ['''image_processor''', '''tokenizer'''] UpperCAmelCase_ : Tuple = '''LayoutLMv3ImageProcessor''' UpperCAmelCase_ : Optional[Any] = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _a , ) lowerCAmelCase = kwargs.pop("""feature_extractor""") lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""") if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""") super().__init__(_a , _a) def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""") if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""") # first, apply the image processor lowerCAmelCase = self.image_processor(images=_a , return_tensors=_a) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a): lowerCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase = features["""words"""] lowerCAmelCase = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values lowerCAmelCase = features.pop("""pixel_values""") if return_overflowing_tokens is True: lowerCAmelCase = self.get_overflowing_images(_a , encoded_inputs["""overflow_to_sample_mapping"""]) lowerCAmelCase = images return encoded_inputs def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(_a) != len(_a): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f" {len(_a)} and {len(_a)}") return images_with_overflow def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return self.tokenizer.batch_decode(*_a , **_a) def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return self.tokenizer.decode(*_a , **_a) @property def a_ ( self): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def a_ ( self): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _a , ) return self.image_processor_class @property def a_ ( self): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _a , ) return self.image_processor
272
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> Any: _A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _A : List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _A : List[str] = model(_a )["""last_hidden_state"""] _A : Union[str, Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _a ) # compare the actual values for a slice. _A : List[Any] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
26
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets a : Tuple = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' a : List[str] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' a : List[Any] = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def __a ( self ) -> Dict: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ) -> Any: a : Optional[int] = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) a : List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] a : Union[str, Any] = TER( normalized=lowerCAmelCase__ , no_punct=lowerCAmelCase__ , asian_support=lowerCAmelCase__ , case_sensitive=lowerCAmelCase__ , ) a : Optional[Any] = sb_ter.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
79
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _SCREAMING_SNAKE_CASE ( _lowercase : dict ) ->tuple: '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray ) ->XGBClassifier: '''simple docstring''' a : List[Any] = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' a : List[str] = load_iris() a, a : Optional[int] = data_handling(_lowercase ) a, a, a, a : Tuple = train_test_split( _lowercase , _lowercase , test_size=0.25 ) a : List[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data a : Dict = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
79
1
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = '''Hello world! cécé herlolip''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Any: A: List[str] = FairseqRobertaModel.from_pretrained(__lowercase ) roberta.eval() # disable dropout A: Tuple = roberta.model.encoder.sentence_encoder A: Tuple = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: A: Union[str, Any] = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , __lowercase ) A: Any = XLMRobertaXLForSequenceClassification(__lowercase ) if classification_head else XLMRobertaXLForMaskedLM(__lowercase ) model.eval() # Now let's copy all the weights. # Embeddings A: Union[str, Any] = roberta_sent_encoder.embed_tokens.weight A: int = roberta_sent_encoder.embed_positions.weight A: Dict = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. A: Dict = roberta_sent_encoder.layer_norm.weight A: Union[str, Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A: BertLayer = model.roberta.encoder.layer[i] A: TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] A: RobertaAttention = layer.attention A: Optional[Any] = roberta_layer.self_attn_layer_norm.weight A: Dict = roberta_layer.self_attn_layer_norm.bias # self attention A: BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) A: Dict = roberta_layer.self_attn.q_proj.weight A: List[Any] = roberta_layer.self_attn.q_proj.bias A: int = roberta_layer.self_attn.k_proj.weight A: int = roberta_layer.self_attn.k_proj.bias A: Tuple = roberta_layer.self_attn.v_proj.weight A: Optional[Any] = roberta_layer.self_attn.v_proj.bias # self-attention output A: BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape A: str = roberta_layer.self_attn.out_proj.weight A: List[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm A: List[Any] = roberta_layer.final_layer_norm.weight A: Dict = roberta_layer.final_layer_norm.bias # intermediate A: BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape A: List[Any] = roberta_layer.fca.weight A: Dict = roberta_layer.fca.bias # output A: BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape A: Any = roberta_layer.fca.weight A: List[Any] = roberta_layer.fca.bias # end of layer if classification_head: A: Optional[Any] = roberta.model.classification_heads['''mnli'''].dense.weight A: Any = roberta.model.classification_heads['''mnli'''].dense.bias A: str = roberta.model.classification_heads['''mnli'''].out_proj.weight A: int = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head A: str = roberta.model.encoder.lm_head.dense.weight A: int = roberta.model.encoder.lm_head.dense.bias A: List[Any] = roberta.model.encoder.lm_head.layer_norm.weight A: str = roberta.model.encoder.lm_head.layer_norm.bias A: List[str] = roberta.model.encoder.lm_head.weight A: str = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. A: torch.Tensor = roberta.encode(__lowercase ).unsqueeze(0 ) # batch of size 1 A: Optional[int] = model(__lowercase )[0] if classification_head: A: int = roberta.model.classification_heads['''mnli'''](roberta.extract_features(__lowercase ) ) else: A: Dict = roberta.model(__lowercase )[0] print(our_output.shape , their_output.shape ) A: Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 A: str = torch.allclose(__lowercase , __lowercase , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(__lowercase ).mkdir(parents=__lowercase , exist_ok=__lowercase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) UpperCamelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
319
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer UpperCamelCase_ : Tuple = False def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' super().setUp() A: Optional[int] = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length: A: int = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0: while len(SCREAMING_SNAKE_CASE_ ) < min_length: A: Dict = toks + toks # toks_str = [t[1] for t in toks] A: Union[str, Any] = [t[0] for t in toks] # Ensure consistency A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1: A: int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) ) if with_prefix_space: A: Tuple = ''' ''' + output_txt A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) return output_txt, output_ids def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Any = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[str] = '''Hello how are you''' A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Dict ) -> Optional[Any]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] A: List[str] = tokenizer.decode(sample_ids[0] ) A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def _snake_case ( self : Any ) -> Optional[int]: '''simple docstring''' A: int = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: List[Any] = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def _snake_case ( self : List[str] ) -> int: '''simple docstring''' A: Optional[Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Optional[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Dict ) -> Any: '''simple docstring''' A: Optional[int] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off A: str = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter A: Tuple = tokenizer.decode(sample_ids[0] ) A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def _snake_case ( self : int ) -> List[str]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Union[str, Any] = '''Hello how are you''' A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Any: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Any = '''Hello how are you''' A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A: List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = '''Hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' ) def _snake_case ( self : str ) -> str: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: str = '''Hello how Are you''' A: Union[str, Any] = '''hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off A: Tuple = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Any = [d[key] for d in offsets] return retrieved_list def _snake_case ( self : Any ) -> Tuple: '''simple docstring''' A: str = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _snake_case ( self : Any ) -> List[Any]: '''simple docstring''' A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) ) # transform list to ModelOutput A: Dict = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): [recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off A: int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids] check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def _snake_case ( self : int ) -> int: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def _snake_case ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def _snake_case ( self : Dict ) -> List[Any]: '''simple docstring''' pass def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: str = tokenizer.vocab_size A: str = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) ) A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) ) A: int = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _snake_case ( self : str ) -> Tuple: '''simple docstring''' A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
319
1
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _lowerCamelCase : Union[str, Any] = str(bin(lowercase__ ) )[2:] # remove the leading "0b" _lowerCamelCase : List[Any] = str(bin(lowercase__ ) )[2:] # remove the leading "0b" _lowerCamelCase : List[str] = max(len(lowercase__ ) , len(lowercase__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
1
from string import ascii_uppercase _UpperCAmelCase : Tuple = {char: i for i, char in enumerate(ascii_uppercase)} _UpperCAmelCase : Optional[Any] = dict(enumerate(ascii_uppercase)) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[Any] = len(_UpperCAmelCase ) lowerCamelCase__ : List[Any] = 0 while True: if x == i: lowerCamelCase__ : Any = 0 if len(_UpperCAmelCase ) == len(_UpperCAmelCase ): break key += key[i] i += 1 return key def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase__ : Union[str, Any] = '' lowerCamelCase__ : Union[str, Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: lowerCamelCase__ : Any = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase__ : Dict = '' lowerCamelCase__ : Tuple = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowerCamelCase__ : Tuple = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def SCREAMING_SNAKE_CASE ( ) -> None: lowerCamelCase__ : Tuple = 'THE GERMAN ATTACK' lowerCamelCase__ : Optional[Any] = 'SECRET' lowerCamelCase__ : int = generate_key(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : int = cipher_text(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(_UpperCAmelCase , _UpperCAmelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
50
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[int] = transformerDimSize lowerCamelCase__ : Optional[Any] = imageDimSize super().__init__(**UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = MCLIPConfig def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple: lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
50
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = DDIMPipeline SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) lowercase__ : Any = DDIMScheduler() lowercase__ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> int: if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : Optional[Any] = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : int = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : List[Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : int = '''cpu''' lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : str = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : str = self.get_dummy_inputs(__lowerCAmelCase ) lowercase__ : str = pipe(**__lowerCAmelCase ).images lowercase__ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__ : Optional[int] = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowercase__ : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def _lowerCAmelCase( self ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> List[str]: super().test_save_load_local(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : List[str] = '''google/ddpm-cifar10-32''' lowercase__ : List[Any] = UNetaDModel.from_pretrained(__lowerCAmelCase ) lowercase__ : str = DDIMScheduler() lowercase__ : List[Any] = DDIMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ddim.to(__lowerCAmelCase ) ddim.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Optional[int] = ddim(generator=__lowerCAmelCase , eta=0.0 , output_type='''numpy''' ).images lowercase__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Optional[int] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = '''google/ddpm-ema-bedroom-256''' lowercase__ : Tuple = UNetaDModel.from_pretrained(__lowerCAmelCase ) lowercase__ : Union[str, Any] = DDIMScheduler.from_pretrained(__lowerCAmelCase ) lowercase__ : List[Any] = DDIMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ddpm.to(__lowerCAmelCase ) ddpm.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.manual_seed(0 ) lowercase__ : Optional[Any] = ddpm(generator=__lowerCAmelCase , output_type='''numpy''' ).images lowercase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ : Union[str, Any] = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
214
'''simple docstring''' import re from filelock import FileLock try: import nltk __a: Tuple = True except (ImportError, ModuleNotFoundError): __a: List[Any] = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __UpperCamelCase ( UpperCAmelCase ): re.sub('''<n>''' , '''''' , UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCAmelCase ) )
214
1
'''simple docstring''' from timeit import timeit _lowerCamelCase : List[str] = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" UpperCamelCase = 0 UpperCamelCase = len(A__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" UpperCamelCase = len(A__ ) // 2 UpperCamelCase = len(A__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(A__ ) ) def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" if len(A__ ) <= 2: return True if s[0] == s[len(A__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" return s == s[::-1] def __lowerCamelCase ( A__ ) -> None: """simple docstring""" UpperCamelCase = F"""all({name}(key) is value for key, value in test_data.items())""" UpperCamelCase = F"""from __main__ import test_data, {name}""" UpperCamelCase = 500_000 UpperCamelCase = timeit(stmt=A__ , setup=A__ , number=A__ ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : List[Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = DanceDiffusionPipeline lowercase__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase__ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } lowercase__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : str = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=16000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=lowerCamelCase__ ,use_timestep_embedding=lowerCamelCase__ ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _UpperCamelCase : int = IPNDMScheduler() _UpperCamelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int=0 ): '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): _UpperCamelCase : Union[str, Any] = torch.manual_seed(lowerCamelCase__ ) else: _UpperCamelCase : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _UpperCamelCase : str = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : List[str] = self.get_dummy_components() _UpperCamelCase : int = DanceDiffusionPipeline(**lowerCamelCase__ ) _UpperCamelCase : List[str] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCamelCase : List[Any] = pipe(**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = output.audios _UpperCamelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCamelCase : Dict = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase_ ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = torch_device _UpperCamelCase : Dict = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _UpperCamelCase : str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = pipe(generator=lowerCamelCase__ ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _UpperCamelCase : Optional[int] = output.audios _UpperCamelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase : Tuple = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = torch_device _UpperCamelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _UpperCamelCase : Any = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = pipe(generator=lowerCamelCase__ ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _UpperCamelCase : Any = output.audios _UpperCamelCase : str = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase : Any = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
236
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() snake_case_ : Dict = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=True ): if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[str] = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: _UpperCamelCase : Optional[int] = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) _UpperCamelCase : Optional[Any] = config_class.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = True _UpperCamelCase : List[str] = True print(f'Building TensorFlow model from configuration: {config}' ) _UpperCamelCase : Any = model_class(UpperCAmelCase_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): _UpperCamelCase : Union[str, Any] = cached_file( UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: _UpperCamelCase : List[Any] = load_pytorch_checkpoint_in_tfa_model(UpperCAmelCase_ , UpperCAmelCase_ ) if compare_with_pt_model: _UpperCamelCase : Optional[int] = tf_model(tf_model.dummy_inputs , training=UpperCAmelCase_ ) # build the network _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : List[str] = pt_model_class.from_pretrained( pretrained_model_name_or_path=UpperCAmelCase_ , config=UpperCAmelCase_ , state_dict=UpperCAmelCase_ ) with torch.no_grad(): _UpperCamelCase : Optional[Any] = pt_model(**pt_model.dummy_inputs ) _UpperCamelCase : int = pto[0].numpy() _UpperCamelCase : Any = tfo[0].numpy() _UpperCamelCase : Dict = np.amax(np.abs(np_pt - np_tf ) ) print(f'Max absolute difference between models outputs {diff}' ) assert diff <= 2E-2, f'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(f'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(UpperCAmelCase_ , save_format='h5' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=False , ): if args_model_type is None: _UpperCamelCase : List[Any] = list(MODEL_CLASSES.keys() ) else: _UpperCamelCase : Tuple = [args_model_type] for j, model_type in enumerate(UpperCAmelCase_ , start=1 ): print('=' * 1_0_0 ) print(f' Converting model type {j}/{len(UpperCAmelCase_ )}: {model_type}' ) print('=' * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: _UpperCamelCase : List[Any] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: _UpperCamelCase : int = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(UpperCAmelCase_ , UpperCAmelCase_ ) , start=1 ): print('-' * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f' Skipping finetuned checkpoint {model_shortcut_name}' ) continue _UpperCamelCase : Dict = model_shortcut_name elif only_convert_finetuned_models: print(f' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( f' Converting checkpoint {i}/{len(UpperCAmelCase_ )}: {model_shortcut_name} - model_type {model_type}' ) print('-' * 1_0_0 ) if config_shortcut_name in aws_config_map: _UpperCamelCase : Any = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) else: _UpperCamelCase : str = config_shortcut_name if model_shortcut_name in aws_model_maps: _UpperCamelCase : int = cached_file(UpperCAmelCase_ , UpperCAmelCase_ , force_download=not use_cached_models ) else: _UpperCamelCase : List[str] = model_shortcut_name if os.path.isfile(UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = 'converted_model' convert_pt_checkpoint_to_tf( model_type=UpperCAmelCase_ , pytorch_checkpoint_path=UpperCAmelCase_ , config_file=UpperCAmelCase_ , tf_dump_path=os.path.join(UpperCAmelCase_ , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=UpperCAmelCase_ , ) if remove_cached_files: os.remove(UpperCAmelCase_ ) os.remove(UpperCAmelCase_ ) if __name__ == "__main__": snake_case_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') snake_case_ : Optional[int] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
236
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def __lowercase ( __lowercase , __lowercase=False ) -> int: '''simple docstring''' _A = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _A = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def __lowercase ( __lowercase , __lowercase , __lowercase=False ) -> Tuple: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _A = "" else: _A = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _A = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _A = in_proj_weight[ : config.hidden_size, : ] _A = in_proj_bias[: config.hidden_size] _A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A = in_proj_weight[ -config.hidden_size :, : ] _A = in_proj_bias[-config.hidden_size :] def __lowercase ( __lowercase ) -> List[str]: '''simple docstring''' _A = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def __lowercase ( __lowercase , __lowercase , __lowercase ) -> Tuple: '''simple docstring''' _A = dct.pop(__lowercase ) _A = val def __lowercase ( ) -> List[str]: '''simple docstring''' _A = "http://images.cocodataset.org/val2017/000000039769.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def __lowercase ( __lowercase , __lowercase , __lowercase=False ) -> Tuple: '''simple docstring''' _A = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=__lowercase , ) _A = ViTHybridConfig(backbone_config=__lowercase , image_size=384 , num_labels=1000 ) _A = False # load original model from timm _A = timm.create_model(__lowercase , pretrained=__lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _A = timm_model.state_dict() if base_model: remove_classification_head_(__lowercase ) _A = create_rename_keys(__lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase , __lowercase ) _A = "huggingface/label-files" _A = "imagenet-1k-id2label.json" _A = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _A = {int(__lowercase ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _A = ViTHybridModel(__lowercase ).eval() else: _A = ViTHybridForImageClassification(__lowercase ).eval() model.load_state_dict(__lowercase ) # create image processor _A = create_transform(**resolve_data_config({} , model=__lowercase ) ) _A = transform.transforms _A = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } _A = ViTHybridImageProcessor( do_resize=__lowercase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__lowercase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=__lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _A = prepare_img() _A = transform(__lowercase ).unsqueeze(0 ) _A = processor(__lowercase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__lowercase , __lowercase ) # verify logits with torch.no_grad(): _A = model(__lowercase ) _A = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: _A = timm_model.forward_features(__lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowercase , outputs.pooler_output , atol=1e-3 ) else: _A = timm_model(__lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowercase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowercase ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) lowerCamelCase_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
79
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' assert isinstance(__lowercase , __lowercase ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: _A = F'''The input value of [n={number}] has to be > 0''' raise ValueError(__lowercase ) else: _A = sylvester(number - 1 ) _A = num - 1 _A = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
79
1
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _lowercase ( snake_case_ , unittest.TestCase ): lowercase = ReformerTokenizer lowercase = ReformerTokenizerFast lowercase = True lowercase = False lowercase = True def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[str]: """simple docstring""" super().setUp() UpperCamelCase_ : Dict = ReformerTokenizer(snake_case , keep_accents=snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Union[str, Any] = '<s>' UpperCamelCase_ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case ) , 1_0_0_0 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase_ : Any = self.get_tokenizer() UpperCamelCase_ : List[str] = self.get_rust_tokenizer() UpperCamelCase_ : Union[str, Any] = 'I was born in 92000, and this is falsé.' UpperCamelCase_ : Dict = tokenizer.tokenize(snake_case ) UpperCamelCase_ : Dict = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCamelCase_ : List[str] = tokenizer.encode(snake_case , add_special_tokens=snake_case ) UpperCamelCase_ : Optional[Any] = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCamelCase_ : Any = self.get_rust_tokenizer() UpperCamelCase_ : Tuple = tokenizer.encode(snake_case ) UpperCamelCase_ : Optional[Any] = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : int=1_5 ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) # Simple input UpperCamelCase_ : int = 'This is a simple input' UpperCamelCase_ : List[Any] = ['This is a simple input 1', 'This is a simple input 2'] UpperCamelCase_ : List[Any] = ('This is a simple input', 'This is a pair') UpperCamelCase_ : Dict = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length' ) # Simple input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length' ) # Simple input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode , snake_case , max_length=snake_case , padding='max_length' ) # Pair input self.assertRaises(snake_case , tokenizer_r.encode_plus , snake_case , max_length=snake_case , padding='max_length' ) # Pair input self.assertRaises( snake_case , tokenizer_r.batch_encode_plus , snake_case , max_length=snake_case , padding='max_length' , ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ : Dict = ReformerTokenizer(snake_case , keep_accents=snake_case ) UpperCamelCase_ : Optional[int] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) UpperCamelCase_ : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) UpperCamelCase_ : Any = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) UpperCamelCase_ : Any = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict: """simple docstring""" return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[Any] = 'Hello World!' UpperCamelCase_ : Optional[Any] = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7] self.assertListEqual(snake_case , self.big_tokenizer.encode(snake_case ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Union[str, Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) UpperCamelCase_ : Union[str, Any] = [ 1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 3_5, 2_8, 2_7_5, 3, 2_5_9, 2_9_7, 2_6_0, 8_4, 4, 3_5, 1_1_0, 4_4, 8, 2_5_9, 9_1, 2_6_8, 2_1, 1_1, 2_0_9, 2_7_4, 1_0_9, 2_6_6, 2_7_7, 1_1_7, 8_6, 9_3, 3_1_5, 2_5_8, 2_7_8, 2_5_8, 2_7_7, 2_5_8, 0, 2_5_8, 2_8_8, 2_5_8, 3_1_9, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 2_8_7, 2_5_8, 3_1_5, 2_5_8, 2_8_9, 2_5_8, 2_7_8, 9_9, 2_6_9, 2_6_6, 2_6_2, 8, 2_5_9, 2_4_1, 4, 2_1_7, 2_3_0, 2_6_8, 2_6_6, 5_5, 1_6_8, 1_0_6, 7_5, 1_9_3, 2_6_6, 2_2_3, 2_7, 4_9, 2_6, 2_8_2, 2_5, 2_6_4, 2_9_9, 1_9, 2_6, 0, 2_5_8, 2_7_7, 1_1_7, 8_6, 9_3, 1_7_6, 1_8_3, 2_7_0, 1_1, 2_6_2, 4_2, 6_1, 2_6_5, ] self.assertListEqual(snake_case , self.big_tokenizer.encode(snake_case ) ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCamelCase_ : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:1_0] UpperCamelCase_ : List[str] = ' '.join(snake_case ) UpperCamelCase_ : int = self.big_tokenizer.encode_plus(snake_case , return_tensors='pt' ) UpperCamelCase_ : Union[str, Any] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='pt' ) UpperCamelCase_ : Optional[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCamelCase_ : List[Any] = encoded_sequence['input_ids'].shape UpperCamelCase_ : int = ReformerModel(snake_case ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case ) model(**snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: """simple docstring""" UpperCamelCase_ : Optional[Any] = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCamelCase_ : Tuple = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name='google/reformer-crime-and-punishment' , revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a' , padding=snake_case , sequences=snake_case , )
351
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowercase : def __init__( self : List[Any] , snake_case : int , snake_case : Any=9_9 , snake_case : Tuple=1_3 , snake_case : str=7 , snake_case : List[str]=9 , snake_case : Optional[Any]=True , snake_case : Any=True , snake_case : Optional[Any]=False , snake_case : List[str]=3_2 , snake_case : str=5 , snake_case : Any=4 , snake_case : List[str]=3_7 , snake_case : Optional[Any]=8 , snake_case : Optional[Any]=0.1 , snake_case : Dict=0.002 , snake_case : Any=1 , snake_case : Optional[int]=0 , snake_case : List[str]=0 , snake_case : List[str]=None , snake_case : List[str]=None , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : int = parent UpperCamelCase_ : List[Any] = batch_size UpperCamelCase_ : int = encoder_seq_length UpperCamelCase_ : int = decoder_seq_length # For common tests UpperCamelCase_ : List[Any] = self.decoder_seq_length UpperCamelCase_ : Optional[Any] = is_training UpperCamelCase_ : Tuple = use_attention_mask UpperCamelCase_ : int = use_labels UpperCamelCase_ : List[str] = vocab_size UpperCamelCase_ : Dict = hidden_size UpperCamelCase_ : Any = num_hidden_layers UpperCamelCase_ : Any = num_attention_heads UpperCamelCase_ : Dict = d_ff UpperCamelCase_ : List[Any] = relative_attention_num_buckets UpperCamelCase_ : List[Any] = dropout_rate UpperCamelCase_ : Dict = initializer_factor UpperCamelCase_ : Union[str, Any] = eos_token_id UpperCamelCase_ : Optional[int] = pad_token_id UpperCamelCase_ : List[str] = decoder_start_token_id UpperCamelCase_ : str = None UpperCamelCase_ : int = decoder_layers def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: """simple docstring""" return TaConfig.from_pretrained('google/umt5-base' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int]=None , snake_case : List[Any]=None , snake_case : int=None , snake_case : Optional[int]=None , snake_case : Tuple=None , ) -> List[str]: """simple docstring""" if attention_mask is None: UpperCamelCase_ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase_ : Optional[int] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase_ : Optional[int] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=snake_case ) if decoder_head_mask is None: UpperCamelCase_ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=snake_case ) if cross_attn_head_mask is None: UpperCamelCase_ : Optional[Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCamelCase_ : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase_ : Union[str, Any] = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : Any = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : Dict = self.get_config() UpperCamelCase_ : Dict = config.num_attention_heads UpperCamelCase_ : Optional[int] = self.prepare_inputs_dict(snake_case , snake_case , snake_case ) return config, input_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Any = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Dict , snake_case : List[str] , snake_case : Tuple , snake_case : int , snake_case : List[str] , snake_case : Optional[Any] , ) -> Tuple: """simple docstring""" UpperCamelCase_ : int = UMTaModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Any = model( input_ids=snake_case , decoder_input_ids=snake_case , attention_mask=snake_case , decoder_attention_mask=snake_case , ) UpperCamelCase_ : List[str] = model(input_ids=snake_case , decoder_input_ids=snake_case ) UpperCamelCase_ : Optional[Any] = result.last_hidden_state UpperCamelCase_ : Optional[Any] = result.past_key_values UpperCamelCase_ : Optional[int] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(snake_case ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Tuple , snake_case : str , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : int = UMTaModel(config=snake_case ).get_decoder().to(snake_case ).eval() # first forward pass UpperCamelCase_ : str = model(snake_case , use_cache=snake_case ) UpperCamelCase_ : List[Any] = model(snake_case ) UpperCamelCase_ : Dict = model(snake_case , use_cache=snake_case ) self.parent.assertTrue(len(snake_case ) == len(snake_case ) ) self.parent.assertTrue(len(snake_case ) == len(snake_case ) + 1 ) UpperCamelCase_, UpperCamelCase_ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCamelCase_ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ : List[Any] = model(snake_case )['last_hidden_state'] UpperCamelCase_ : List[str] = model(snake_case , past_key_values=snake_case )['last_hidden_state'] # select random slice UpperCamelCase_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase_ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Tuple , snake_case : int , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = UMTaModel(config=snake_case ).to(snake_case ).half().eval() UpperCamelCase_ : Union[str, Any] = model(**snake_case )['last_hidden_state'] self.parent.assertFalse(torch.isnan(snake_case ).any().item() ) @require_torch class _lowercase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowercase = (UMTaForConditionalGeneration,) if is_torch_available() else () lowercase = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = True lowercase = True # The small UMT5 model needs higher percentages for CPU/MP tests lowercase = [0.8, 0.9] def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : List[str] = UMTaModel(config_and_inputs[0] ).to(snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=snake_case , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : Union[str, Any] = config_and_inputs[0] UpperCamelCase_ : Tuple = UMTaForConditionalGeneration(snake_case ).eval() model.to(snake_case ) UpperCamelCase_ : str = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=snake_case ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ), } for attn_name, (name, mask) in zip(snake_case , head_masking.items() ): UpperCamelCase_ : Optional[int] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCamelCase_ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=snake_case ) UpperCamelCase_ : Any = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=snake_case , return_dict_in_generate=snake_case , **snake_case , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCamelCase_ : int = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ : str = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=snake_case ).to(snake_case ) UpperCamelCase_ : int = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=snake_case , legacy=snake_case ) UpperCamelCase_ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] UpperCamelCase_ : Dict = tokenizer(snake_case , return_tensors='pt' , padding=snake_case ).input_ids # fmt: off UpperCamelCase_ : List[str] = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(snake_case , snake_case ) UpperCamelCase_ : int = model.generate(input_ids.to(snake_case ) ) UpperCamelCase_ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] UpperCamelCase_ : Dict = tokenizer.batch_decode(snake_case ) self.assertEqual(snake_case , snake_case )
50
0
def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowerCamelCase = str(bin(A__ ) )[2:] # remove the leading "0b" __lowerCamelCase = str(bin(A__ ) )[2:] # remove the leading "0b" __lowerCamelCase = max(len(A__ ) , len(A__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) , b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
12
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
1
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) # TODO Update this lowerCamelCase_ = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase_ (lowerCamelCase__ ): __magic_name__ = '''esm''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[str]=768 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : Union[str, Any]=3_072 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Optional[int]=1_026 , lowerCAmelCase_ : Optional[Any]=0.0_2 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : Optional[Any]="absolute" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Any , ) -> List[Any]: super().__init__(pad_token_id=__lowerCamelCase , mask_token_id=__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : int = position_embedding_type UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : Dict = emb_layer_norm_before UpperCAmelCase_ : int = token_dropout UpperCAmelCase_ : Optional[int] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) UpperCAmelCase_ : Optional[int] = EsmFoldConfig() elif isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = EsmFoldConfig(**__lowerCamelCase ) UpperCAmelCase_ : int = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) UpperCAmelCase_ : Dict = get_default_vocab_list() else: UpperCAmelCase_ : Any = vocab_list else: UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , __lowerCamelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: UpperCAmelCase_ : int = super().to_dict() if isinstance(self.esmfold_config , __lowerCamelCase ): UpperCAmelCase_ : List[Any] = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase_ : __magic_name__ = None __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = 0 __magic_name__ = True __magic_name__ = False __magic_name__ = 1_28 __magic_name__ = None def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: if self.trunk is None: UpperCAmelCase_ : Union[str, Any] = TrunkConfig() elif isinstance(self.trunk , __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = TrunkConfig(**self.trunk ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = asdict(self ) UpperCAmelCase_ : str = self.trunk.to_dict() return output @dataclass class UpperCamelCase_ : __magic_name__ = 48 __magic_name__ = 10_24 __magic_name__ = 1_28 __magic_name__ = 32 __magic_name__ = 32 __magic_name__ = 32 __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = False __magic_name__ = 4 __magic_name__ = 1_28 __magic_name__ = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: if self.structure_module is None: UpperCAmelCase_ : Tuple = StructureModuleConfig() elif isinstance(self.structure_module , __lowerCamelCase ): UpperCAmelCase_ : List[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) UpperCAmelCase_ : Tuple = self.sequence_state_dim // self.sequence_head_width UpperCAmelCase_ : Union[str, Any] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : int = asdict(self ) UpperCAmelCase_ : List[str] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase_ : __magic_name__ = 3_84 __magic_name__ = 1_28 __magic_name__ = 16 __magic_name__ = 1_28 __magic_name__ = 12 __magic_name__ = 4 __magic_name__ = 8 __magic_name__ = 0.1 __magic_name__ = 8 __magic_name__ = 1 __magic_name__ = 2 __magic_name__ = 7 __magic_name__ = 10 __magic_name__ = 1e-8 __magic_name__ = 1e5 def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: return asdict(self ) def snake_case ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
356
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : Collection[float] | None = None ) -> None: if components is None: UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[Any] = list(lowerCAmelCase_ ) def __len__( self : Union[str, Any] ) -> int: return len(self.__components ) def __str__( self : List[str] ) -> str: return "(" + ",".join(map(lowerCAmelCase_ , self.__components ) ) + ")" def __add__( self : Dict , lowerCAmelCase_ : Vector ) -> Vector: UpperCAmelCase_ : Optional[int] = len(self ) if size == len(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[Any] = [self.__components[i] + other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: raise Exception("must have the same size" ) def __sub__( self : List[str] , lowerCAmelCase_ : Vector ) -> Vector: UpperCAmelCase_ : List[str] = len(self ) if size == len(lowerCAmelCase_ ): UpperCAmelCase_ : List[Any] = [self.__components[i] - other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : Any , lowerCAmelCase_ : float ) -> Vector: ... @overload def __mul__( self : Optional[int] , lowerCAmelCase_ : Vector ) -> float: ... def __mul__( self : Dict , lowerCAmelCase_ : float | Vector ) -> float | Vector: if isinstance(lowerCAmelCase_ , (float, int) ): UpperCAmelCase_ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(self ) == len(lowerCAmelCase_ ): UpperCAmelCase_ : Dict = len(self ) UpperCAmelCase_ : Dict = [self.__components[i] * other.component(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ )] return sum(lowerCAmelCase_ ) else: # error case raise Exception("invalid operand!" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Vector: return Vector(self.__components ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int ) -> float: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) UpperCAmelCase_ : List[str] = value def _SCREAMING_SNAKE_CASE ( self : Dict ) -> float: if len(self.__components ) == 0: raise Exception("Vector is empty" ) UpperCAmelCase_ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Vector , lowerCAmelCase_ : bool = False ) -> float: UpperCAmelCase_ : int = self * other UpperCAmelCase_ : Tuple = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def snake_case ( A__ ): assert isinstance(A__ ,A__ ) return Vector([0] * dimension ) def snake_case ( A__ ,A__ ): assert isinstance(A__ ,A__ ) and (isinstance(A__ ,A__ )) UpperCAmelCase_ : Any = [0] * dimension UpperCAmelCase_ : Dict = 1 return Vector(A__ ) def snake_case ( A__ ,A__ ,A__ ): assert ( isinstance(A__ ,A__ ) and isinstance(A__ ,A__ ) and (isinstance(A__ ,(int, float) )) ) return x * scalar + y def snake_case ( A__ ,A__ ,A__ ): random.seed(A__ ) UpperCAmelCase_ : Tuple = [random.randint(A__ ,A__ ) for _ in range(A__ )] return Vector(A__ ) class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : list[list[float]] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ : List[Any] = matrix UpperCAmelCase_ : List[Any] = w UpperCAmelCase_ : List[Any] = h def __str__( self : int ) -> str: UpperCAmelCase_ : Tuple = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Any , lowerCAmelCase_ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase_ : List[Any] = [] for i in range(self.__height ): UpperCAmelCase_ : Optional[Any] = [ self.__matrix[i][j] + other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Optional[int] , lowerCAmelCase_ : Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase_ : Union[str, Any] = [] for i in range(self.__height ): UpperCAmelCase_ : Union[str, Any] = [ self.__matrix[i][j] - other.component(lowerCAmelCase_ , lowerCAmelCase_ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase_ ) return Matrix(lowerCAmelCase_ , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Tuple , lowerCAmelCase_ : float ) -> Matrix: ... @overload def __mul__( self : Tuple , lowerCAmelCase_ : Vector ) -> Vector: ... def __mul__( self : Any , lowerCAmelCase_ : float | Vector ) -> Vector | Matrix: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # matrix-vector if len(lowerCAmelCase_ ) == self.__width: UpperCAmelCase_ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): UpperCAmelCase_ : Any = [ self.__matrix[i][j] * other.component(lowerCAmelCase_ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase_ , sum(lowerCAmelCase_ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(lowerCAmelCase_ , (int, float) ): # matrix-scalar UpperCAmelCase_ : int = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase_ , self.__width , self.__height ) return None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.__height def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.__width def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : float ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: UpperCAmelCase_ : List[Any] = value else: raise Exception("change_component: indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) UpperCAmelCase_ : Optional[Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : Union[str, Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase_ , self.__width - 1 , self.__height - 1 ).determinant() def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase_ , lowerCAmelCase_ ) else: raise Exception("Indices out of bounds" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCAmelCase_ : List[Any] = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase_ ) for y in range(self.__width ) ] return sum(lowerCAmelCase_ ) def snake_case ( A__ ): UpperCAmelCase_ : list[list[float]] = [[0] * n for _ in range(A__ )] return Matrix(A__ ,A__ ,A__ ) def snake_case ( A__ ,A__ ,A__ ,A__ ): random.seed(A__ ) UpperCAmelCase_ : list[list[float]] = [ [random.randint(A__ ,A__ ) for _ in range(A__ )] for _ in range(A__ ) ] return Matrix(A__ ,A__ ,A__ )
253
0
# flake8: noqa # Lint as: python3 snake_case_ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
214
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : int = """switch_transformers""" __lowerCamelCase : Optional[Any] = ["""past_key_values"""] __lowerCamelCase : Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , a=3_2128 , a=768 , a=64 , a=2048 , a=64 , a=12 , a=3 , a=12 , a=3 , a=12 , a=8 , a=False , a=0.01 , a="float32" , a=False , a=32 , a=128 , a=0.1 , a=1e-6 , a=0.001 , a=0.001 , a=1.0 , a="relu" , a=True , a=False , a=True , a=0 , a=1 , **a , ): lowercase__ : Optional[int] = vocab_size lowercase__ : List[Any] = d_model lowercase__ : List[Any] = d_kv lowercase__ : Any = d_ff lowercase__ : Optional[int] = num_sparse_encoder_layers lowercase__ : Tuple = num_layers lowercase__ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ : str = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: lowercase__ : Optional[Any] = self.num_layers // self.num_sparse_encoder_layers else: lowercase__ : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: lowercase__ : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: lowercase__ : int = self.num_decoder_layers # HACK: this will create 0 sparse layers lowercase__ : List[Any] = num_heads lowercase__ : Union[str, Any] = num_experts lowercase__ : str = expert_capacity lowercase__ : List[Any] = router_bias lowercase__ : Optional[int] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""") lowercase__ : str = router_dtype lowercase__ : Optional[int] = router_ignore_padding_tokens lowercase__ : int = relative_attention_num_buckets lowercase__ : Optional[Any] = relative_attention_max_distance lowercase__ : List[str] = dropout_rate lowercase__ : str = layer_norm_epsilon lowercase__ : int = initializer_factor lowercase__ : int = feed_forward_proj lowercase__ : Dict = use_cache lowercase__ : int = add_router_probs lowercase__ : int = router_z_loss_coef lowercase__ : List[Any] = router_aux_loss_coef lowercase__ : int = self.feed_forward_proj.split('-') lowercase__ : Optional[int] = act_info[-1] lowercase__ : Dict = act_info[0] == 'gated' if len(a) > 1 and act_info[0] != "gated" or len(a) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase__ : Optional[int] = 'gelu_new' super().__init__( pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , **a , )
214
1
import re def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(A__ , A__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
351
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _a : _lowercase : CommonSchedulerState # setable values _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : Optional[int] = None @classmethod def lowerCamelCase_ ( cls: Dict , UpperCamelCase_: CommonSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray ) -> List[str]: """simple docstring""" return cls(common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ ) @dataclass class _a ( UpperCamelCase__ ): _lowercase : DDPMSchedulerState class _a ( UpperCamelCase__ , UpperCamelCase__ ): _lowercase : Tuple = [e.name for e in FlaxKarrasDiffusionSchedulers] _lowercase : jnp.dtype @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return True @register_to_config def __init__( self: Any , UpperCamelCase_: int = 1_000 , UpperCamelCase_: float = 0.0001 , UpperCamelCase_: float = 0.02 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[jnp.ndarray] = None , UpperCamelCase_: str = "fixed_small" , UpperCamelCase_: bool = True , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: jnp.dtype = jnp.floataa , ) -> int: """simple docstring""" lowercase__ = dtype def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: lowercase__ = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase__ = jnp.array(1.0 , dtype=self.dtype ) lowercase__ = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: Optional[int] = None ) -> jnp.ndarray: """simple docstring""" return sample def lowerCamelCase_ ( self: Dict , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: int , UpperCamelCase_: Tuple = () ) -> DDPMSchedulerState: """simple docstring""" lowercase__ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase__ = (jnp.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: str=None ) -> List[Any]: """simple docstring""" lowercase__ = state.common.alphas_cumprod[t] lowercase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase__ = jnp.clip(UpperCamelCase_ , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase__ = jnp.log(jnp.clip(UpperCamelCase_ , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": lowercase__ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase__ = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase__ = variance lowercase__ = state.common.betas[t] lowercase__ = (predicted_variance + 1) / 2 lowercase__ = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase_ ( self: Any , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: int , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: Optional[jax.random.KeyArray] = None , UpperCamelCase_: bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" lowercase__ = timestep if key is None: lowercase__ = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ = jnp.split(UpperCamelCase_ , sample.shape[1] , axis=1 ) else: lowercase__ = None # 1. compute alphas, betas lowercase__ = state.common.alphas_cumprod[t] lowercase__ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase__ = 1 - alpha_prod_t lowercase__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ = model_output elif self.config.prediction_type == "v_prediction": lowercase__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ = jnp.clip(UpperCamelCase_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase__ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase__ = jax.random.split(UpperCamelCase_ , num=1 ) lowercase__ = jax.random.normal(UpperCamelCase_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(UpperCamelCase_ , UpperCamelCase_ , predicted_variance=UpperCamelCase_ ) ** 0.5) * noise lowercase__ = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=UpperCamelCase_ , state=UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: DDPMSchedulerState , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , UpperCamelCase_: jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __len__( self: str ) -> List[Any]: """simple docstring""" return self.config.num_train_timesteps
93
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :int = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: lowercase :Tuple = 1024 lowercase :Tuple = 4096 lowercase :Union[str, Any] = 24 lowercase :Tuple = 16 lowercase :Optional[Any] = [5, 11, 17, 23] lowercase :Optional[Any] = [256, 512, 1024, 1024] lowercase :Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowercase :Any = 768 lowercase :Optional[int] = [1, 1, 1, 0.5] lowercase :int = [256, 512, 768, 768] lowercase :str = 150 lowercase :Tuple = 16 lowercase :List[str] = (1, 384, 384) lowercase :Any = False lowercase :Optional[int] = "project" if "ade" in checkpoint_url: lowercase :Dict = True lowercase :str = 768 lowercase :Tuple = [1, 1, 1, 0.5] lowercase :Dict = 150 lowercase :Any = 16 lowercase :List[Any] = "huggingface/label-files" lowercase :Union[str, Any] = "ade20k-id2label.json" lowercase :List[str] = json.load(open(cached_download(hf_hub_url(lowerCamelCase, lowerCamelCase, repo_type="dataset" ) ), "r" ) ) lowercase :Optional[Any] = {int(lowerCamelCase ): v for k, v in idalabel.items()} lowercase :Union[str, Any] = idalabel lowercase :Optional[Any] = {v: k for k, v in idalabel.items()} lowercase :List[str] = [1, 150, 480, 480] return config, expected_shape def UpperCAmelCase__ ( lowerCamelCase ): lowercase :List[str] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(lowerCamelCase, lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase :Any = name.replace("pretrained.model", "dpt.encoder" ) if "pretrained.model" in name: lowercase :int = name.replace("pretrained.model", "dpt.embeddings" ) if "patch_embed" in name: lowercase :Any = name.replace("patch_embed", "" ) if "pos_embed" in name: lowercase :Optional[Any] = name.replace("pos_embed", "position_embeddings" ) if "attn.proj" in name: lowercase :List[str] = name.replace("attn.proj", "attention.output.dense" ) if "proj" in name and "project" not in name: lowercase :str = name.replace("proj", "projection" ) if "blocks" in name: lowercase :List[Any] = name.replace("blocks", "layer" ) if "mlp.fc1" in name: lowercase :str = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: lowercase :Any = name.replace("mlp.fc2", "output.dense" ) if "norm1" in name and "backbone" not in name: lowercase :Any = name.replace("norm1", "layernorm_before" ) if "norm2" in name and "backbone" not in name: lowercase :Any = name.replace("norm2", "layernorm_after" ) if "scratch.output_conv" in name: lowercase :Optional[Any] = name.replace("scratch.output_conv", "head" ) if "scratch" in name: lowercase :Union[str, Any] = name.replace("scratch", "neck" ) if "layer1_rn" in name: lowercase :str = name.replace("layer1_rn", "convs.0" ) if "layer2_rn" in name: lowercase :Dict = name.replace("layer2_rn", "convs.1" ) if "layer3_rn" in name: lowercase :Tuple = name.replace("layer3_rn", "convs.2" ) if "layer4_rn" in name: lowercase :Optional[int] = name.replace("layer4_rn", "convs.3" ) if "refinenet" in name: lowercase :Any = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase :Any = name.replace(F"refinenet{layer_idx}", F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowercase :str = name.replace("out_conv", "projection" ) if "resConfUnit1" in name: lowercase :Optional[Any] = name.replace("resConfUnit1", "residual_layer1" ) if "resConfUnit2" in name: lowercase :int = name.replace("resConfUnit2", "residual_layer2" ) if "conv1" in name: lowercase :Optional[int] = name.replace("conv1", "convolution1" ) if "conv2" in name: lowercase :List[str] = name.replace("conv2", "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase :Tuple = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase :Dict = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase :Any = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase :Optional[Any] = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase :Dict = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase :Any = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase :List[Any] = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase :str = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase :str = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase :List[Any] = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase :Any = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase :Any = name.replace("pretrained", "dpt" ) if "bn" in name: lowercase :Optional[int] = name.replace("bn", "batch_norm" ) if "head" in name: lowercase :Union[str, Any] = name.replace("head", "head.head" ) if "encoder.norm" in name: lowercase :Optional[Any] = name.replace("encoder.norm", "layernorm" ) if "auxlayer" in name: lowercase :str = name.replace("auxlayer", "auxiliary_head.head" ) if "backbone" in name: lowercase :List[str] = name.replace("backbone", "backbone.bit.encoder" ) if ".." in name: lowercase :Optional[int] = name.replace("..", "." ) if "stem.conv" in name: lowercase :Union[str, Any] = name.replace("stem.conv", "bit.embedder.convolution" ) if "blocks" in name: lowercase :List[str] = name.replace("blocks", "layers" ) if "convolution" in name and "backbone" in name: lowercase :int = name.replace("convolution", "conv" ) if "layer" in name and "backbone" in name: lowercase :List[str] = name.replace("layer", "layers" ) if "backbone.bit.encoder.bit" in name: lowercase :Dict = name.replace("backbone.bit.encoder.bit", "backbone.bit" ) if "embedder.conv" in name: lowercase :Dict = name.replace("embedder.conv", "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: lowercase :str = name.replace("backbone.bit.encoder.stem.norm", "backbone.bit.embedder.norm" ) return name def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase :str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowercase :str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase :List[str] = in_proj_weight[: config.hidden_size, :] lowercase :int = in_proj_bias[: config.hidden_size] lowercase :Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase :Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase :Dict = in_proj_weight[ -config.hidden_size :, : ] lowercase :List[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( ): lowercase :List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase :Any = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase , lowercase :Optional[int] = get_dpt_config(lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowercase :List[str] = torch.load(lowerCamelCase, map_location="cpu" ) # remove certain keys remove_ignore_keys_(lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): lowercase :int = state_dict.pop(lowerCamelCase ) lowercase :Dict = val # read in qkv matrices read_in_q_k_v(lowerCamelCase, lowerCamelCase ) # load HuggingFace model lowercase :int = DPTForSemanticSegmentation(lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # Check outputs on an image lowercase :Union[str, Any] = 480 if "ade" in checkpoint_url else 384 lowercase :Optional[int] = DPTImageProcessor(size=lowerCamelCase ) lowercase :Dict = prepare_img() lowercase :Optional[Any] = image_processor(lowerCamelCase, return_tensors="pt" ) # forward pass lowercase :Any = model(**lowerCamelCase ).logits if "ade" in checkpoint_url else model(**lowerCamelCase ).predicted_depth if show_prediction: lowercase :List[Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode="bicubic", align_corners=lowerCamelCase, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _UpperCAmelCase : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
236
import numpy # List of input, output pairs _UpperCAmelCase : List[str] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _UpperCAmelCase : Optional[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) _UpperCAmelCase : Tuple = [2, 4, 1, 5] _UpperCAmelCase : Union[str, Any] = len(train_data) _UpperCAmelCase : Dict = 0.0_0_9 def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase="train" ): return calculate_hypothesis_value(lowerCamelCase, lowerCamelCase ) - output( lowerCamelCase, lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :str = 0 for i in range(len(lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=m ): lowercase :Union[str, Any] = 0 for i in range(lowerCamelCase ): if index == -1: summation_value += _error(lowerCamelCase ) else: summation_value += _error(lowerCamelCase ) * train_data[i][0][index] return summation_value def UpperCAmelCase__ ( lowerCamelCase ): lowercase :int = summation_of_cost_derivative(lowerCamelCase, lowerCamelCase ) / m return cost_derivative_value def UpperCAmelCase__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowercase :str = 0.000_002 lowercase :Tuple = 0 lowercase :Optional[int] = 0 while True: j += 1 lowercase :Union[str, Any] = [0, 0, 0, 0] for i in range(0, len(lowerCamelCase ) ): lowercase :Dict = get_cost_derivative(i - 1 ) lowercase :Optional[Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase, lowerCamelCase, atol=lowerCamelCase, rtol=lowerCamelCase, ): break lowercase :Union[str, Any] = temp_parameter_vector print(("Number of iterations:", j) ) def UpperCAmelCase__ ( ): for i in range(len(lowerCamelCase ) ): print(("Actual output value:", output(lowerCamelCase, "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowerCamelCase, "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
236
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class SCREAMING_SNAKE_CASE__ : def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple): """simple docstring""" return None class SCREAMING_SNAKE_CASE__ : def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" return None class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self : str): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a , """tf""" , 1_2 , **__a) @require_torch @slow def _UpperCAmelCase ( self : str): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__a , """pt""" , 1_2 , **__a) @require_torch @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" from transformers import BertModel lowercase_ = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""") as vocab_file: vocab_file.write("""\n""".join(__a)) vocab_file.flush() lowercase_ = BertTokenizerFast(vocab_file.name) with TemporaryDirectory() as bert_save_dir: lowercase_ = BertModel(BertConfig(vocab_size=len(__a))) model.save_pretrained(__a) self._test_export(__a , """pt""" , 1_2 , __a) @require_tf @slow def _UpperCAmelCase ( self : Dict): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ = self._test_export(__a , """tf""" , 1_2 , **__a) lowercase_ = quantize(Path(__a)) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""") @require_torch @slow def _UpperCAmelCase ( self : Dict): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase_ = self._test_export(__a , """pt""" , 1_2 , **__a) lowercase_ = quantize(__a) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__a).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""") def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Any): """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: lowercase_ = Path(__a).joinpath("""model.onnx""") # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__a , __a , __a , __a , __a , **__a) return path except Exception as e: self.fail(__a) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" from transformers import BertModel lowercase_ = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""")) lowercase_ = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""") self._test_infer_dynamic_axis(__a , __a , """pt""") @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self : List[Any]): """simple docstring""" from transformers import TFBertModel lowercase_ = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""")) lowercase_ = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""") self._test_infer_dynamic_axis(__a , __a , """tf""") def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = FeatureExtractionPipeline(__a , __a) lowercase_ = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] lowercase_ , lowercase_ , lowercase_ , lowercase_ = infer_shapes(__a , __a) # Assert all variables are present self.assertEqual(len(__a) , len(__a)) self.assertTrue(all(var_name in shapes for var_name in variable_names)) self.assertSequenceEqual(variable_names[:3] , __a) self.assertSequenceEqual(variable_names[3:] , __a) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""}) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""}) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""}) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = ["""input_ids""", """attention_mask""", """token_type_ids"""] lowercase_ = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} lowercase_ , lowercase_ = ensure_valid_input(FuncContiguousArgs() , __a , __a) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__a) , 3) # Should have exactly the same input names self.assertEqual(set(__a) , set(__a)) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__a , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""])) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase_ , lowercase_ = ensure_valid_input(FuncNonContiguousArgs() , __a , __a) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__a) , 1) self.assertEqual(len(__a) , 1) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""]) self.assertEqual(ordered_input_names[0] , """input_ids""") def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""") , """-test""") self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix())
368
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 if start < end: lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ , lowercase_ = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 ) count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase ) return count def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 lowercase_ = randint(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = a[end] lowercase_ = a[pivot] lowercase_ = temp lowercase_ = start - 1 for index in range(__lowerCAmelCase , __lowerCAmelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase_ = new_pivot_index + 1 lowercase_ = a[new_pivot_index] lowercase_ = a[index] lowercase_ = temp lowercase_ = a[new_pivot_index + 1] lowercase_ = a[end] lowercase_ = temp return new_pivot_index + 1, count UpperCAmelCase : Union[str, Any] = TemporaryFile() UpperCAmelCase : Optional[int] = 100 # 1000 elements are to be sorted UpperCAmelCase , UpperCAmelCase : List[str] = 0, 1 # mean and standard deviation UpperCAmelCase : Optional[Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[str] = np.load(outfile) UpperCAmelCase : List[Any] = len(M) - 1 UpperCAmelCase : Optional[int] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
313
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') lowerCAmelCase = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : _lowercase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) _lowercase : Optional[str] = field(default=UpperCamelCase__ , metadata={'''help''': '''A folder containing the training data.'''} ) _lowercase : Optional[str] = field(default=UpperCamelCase__ , metadata={'''help''': '''A folder containing the validation data.'''} ) _lowercase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) _lowercase : int = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) _lowercase : float = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" lowercase__ = {} if self.train_dir is not None: lowercase__ = self.train_dir if self.validation_dir is not None: lowercase__ = self.validation_dir lowercase__ = data_files if data_files else None @dataclass class _a : _lowercase : str = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCamelCase__ )} , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) _lowercase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowercase : str = field(default=UpperCamelCase__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) _lowercase : bool = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class _a : def __init__( self: Optional[int] , UpperCamelCase_: Optional[Any]=192 , UpperCamelCase_: Optional[int]=32 , UpperCamelCase_: int=4 , UpperCamelCase_: List[Any]=0.6 ) -> Tuple: """simple docstring""" lowercase__ = input_size lowercase__ = mask_patch_size lowercase__ = model_patch_size lowercase__ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) lowercase__ = self.input_size // self.mask_patch_size lowercase__ = self.mask_patch_size // self.model_patch_size lowercase__ = self.rand_size**2 lowercase__ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self: Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = np.random.permutation(self.token_count )[: self.mask_count] lowercase__ = np.zeros(self.token_count , dtype=UpperCamelCase_ ) lowercase__ = 1 lowercase__ = mask.reshape((self.rand_size, self.rand_size) ) lowercase__ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = torch.stack([example['''pixel_values'''] for example in examples] ) lowercase__ = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _a ( ): """simple docstring""" lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: lowercase__ = ds['''train'''].train_test_split(data_args.train_val_split ) lowercase__ = split['''train'''] lowercase__ = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.config_name_or_path , **SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE ) else: lowercase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(SCREAMING_SNAKE_CASE , '''decoder_type''' ): lowercase__ = '''simmim''' # adapt config lowercase__ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase__ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase__ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase__ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowercase__ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE ) else: lowercase__ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase__ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase__ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase__ = AutoModelForMaskedImageModeling.from_config(SCREAMING_SNAKE_CASE ) if training_args.do_train: lowercase__ = ds['''train'''].column_names else: lowercase__ = ds['''validation'''].column_names if data_args.image_column_name is not None: lowercase__ = data_args.image_column_name elif "image" in column_names: lowercase__ = '''image''' elif "img" in column_names: lowercase__ = '''img''' else: lowercase__ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase__ = Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase__ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(SCREAMING_SNAKE_CASE ): lowercase__ = [transforms(SCREAMING_SNAKE_CASE ) for image in examples[image_column_name]] lowercase__ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase__ = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase__ = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE ) # Initialize our trainer lowercase__ = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub lowercase__ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
110
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
0
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _lowerCAmelCase ( ) -> int: __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=UpperCamelCase_ , default=UpperCamelCase_ , required=UpperCamelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=UpperCamelCase_ , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=UpperCamelCase_ , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=UpperCamelCase_ , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=UpperCamelCase_ , default=0 , help="""cuda_id.""" , ) __SCREAMING_SNAKE_CASE = parser.parse_args() return args def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: if not len(UpperCamelCase_ ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = imgs[0].size __SCREAMING_SNAKE_CASE = Image.new("""RGB""" , size=(cols * w, rows * h) ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = grid.size for i, img in enumerate(UpperCamelCase_ ): grid.paste(UpperCamelCase_ , box=(i % cols * w, i // cols * h) ) return grid def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_="robotic cat with wings" , UpperCamelCase_=7.5 , UpperCamelCase_=50 , UpperCamelCase_=1 , UpperCamelCase_=42 , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = torch.Generator(pipeline.device ).manual_seed(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = pipeline( UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ , generator=UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ , ).images __SCREAMING_SNAKE_CASE = int(math.sqrt(UpperCamelCase_ ) ) __SCREAMING_SNAKE_CASE = image_grid(UpperCamelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __magic_name__ = parse_args() # Load models and create wrapper for stable diffusion __magic_name__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") __magic_name__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") __magic_name__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") __magic_name__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") __magic_name__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __magic_name__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): __magic_name__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: __magic_name__ = unet.to(torch.device("cuda", args.cuda_id)) __magic_name__ = pipeline.to(unet.device) __magic_name__, __magic_name__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) __magic_name__ = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
358
"""simple docstring""" from string import ascii_uppercase __magic_name__ = {str(ord(c) - 55): c for c in ascii_uppercase} def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while div != 1: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = divmod(UpperCamelCase_ , UpperCamelCase_ ) if base >= 11 and 9 < mod < 36: __SCREAMING_SNAKE_CASE = ALPHABET_VALUES[str(UpperCamelCase_ )] else: __SCREAMING_SNAKE_CASE = str(UpperCamelCase_ ) new_value += actual_value __SCREAMING_SNAKE_CASE = num // base __SCREAMING_SNAKE_CASE = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase_ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
255
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
88
import os def A_ ( a = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a ) , a ) ) as in_file: SCREAMING_SNAKE_CASE_ : Dict = in_file.read() SCREAMING_SNAKE_CASE_ : Dict = [[int(a ) for cell in row.split(',' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE_ : str = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE_ : Any = len(grid[0] ) SCREAMING_SNAKE_CASE_ : Any = [[0 for i in range(a )] for j in range(a )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid[0][0] for i in range(1 , a ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , a ): SCREAMING_SNAKE_CASE_ : Dict = grid[i][0] + dp[i - 1][0] for i in range(1 , a ): for j in range(1 , a ): SCREAMING_SNAKE_CASE_ : Optional[int] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
253
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
273
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = CTRLTokenizer lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__: Optional[Any] =["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] lowerCamelCase__: Optional[Any] =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: Union[str, Any] =["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] lowerCamelCase__: Union[str, Any] ={"unk_token": "<unk>"} lowerCamelCase__: Union[str, Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) lowerCamelCase__: Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCAmelCase_) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : List[str] , **UpperCAmelCase_ : str) ->List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int ="adapt react readapt apt" lowerCamelCase__: int ="adapt react readapt apt" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) lowerCamelCase__: Union[str, Any] ="adapt react readapt apt" lowerCamelCase__: Tuple ="adapt re@@ a@@ c@@ t re@@ adapt apt".split() lowerCamelCase__: Dict =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokens + [tokenizer.unk_token] lowerCamelCase__: List[str] =[0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
273
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class snake_case_ ( unittest.TestCase ): def __init__( self : Tuple , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=56 , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : int=True , lowercase_ : Any=99 , lowercase_ : int=32 , lowercase_ : str=2 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=7 , lowercase_ : Dict="gelu_new" , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=5_12 , lowercase_ : Optional[Any]=16 , lowercase_ : List[Any]=2 , lowercase_ : Dict=0.02 , lowercase_ : int=4 , lowercase_ : Tuple="block_sparse" , lowercase_ : Dict=True , lowercase_ : Optional[int]=False , lowercase_ : Dict=2 , lowercase_ : int=3 , ) -> Union[str, Any]: lowercase__ : Dict = parent lowercase__ : Dict = batch_size lowercase__ : Tuple = seq_length lowercase__ : Dict = is_training lowercase__ : Dict = use_attention_mask lowercase__ : Tuple = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : Any = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : str = intermediate_size lowercase__ : int = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_size lowercase__ : Dict = type_sequence_label_size lowercase__ : Any = initializer_range lowercase__ : List[str] = num_choices lowercase__ : str = rescale_embeddings lowercase__ : Optional[Any] = attention_type lowercase__ : Optional[int] = use_bias lowercase__ : Optional[int] = block_size lowercase__ : str = num_random_blocks def __UpperCamelCase ( self : str ) -> Optional[Any]: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_attention_mask: lowercase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int] = None if self.use_token_type_ids: lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : int = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __UpperCamelCase ( self : Union[str, Any] ) -> int: lowercase__ : int = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = config_and_inputs lowercase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class snake_case_ ( __A ,unittest.TestCase ): __A : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __A : List[str] = False __A : Any = False def __UpperCamelCase ( self : List[str] ) -> List[Any]: lowercase__ : Union[str, Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Optional[int] ) -> Dict: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : List[str] ) -> Any: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Tuple ) -> str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: super().test_hidden_states_output() @slow def __UpperCamelCase ( self : Optional[int] ) -> Tuple: for model_class_name in self.all_model_classes: lowercase__ : Optional[Any] = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowercase_ ) def __UpperCamelCase ( self : int ) -> Optional[int]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCamelCase ( self : str ) -> Any: lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : Tuple , lowercase_ : int=None , **lowercase_ : Dict ): return model(input_ids=lowercase_ , attention_mask=lowercase_ , **lowercase_ ) with self.subTest("JIT Enabled" ): lowercase__ : int = model_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowercase__ : Any = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCamelCase ( self : List[Any] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : List[Any]=1E-5 , lowercase_ : Any="outputs" , lowercase_ : List[str]=None ) -> List[Any]: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
87
'''simple docstring''' from math import isqrt, loga def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Any = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = False return [i for i in range(2 , __SCREAMING_SNAKE_CASE ) if is_prime[i]] def snake_case_ ( __SCREAMING_SNAKE_CASE : int = 800800 , __SCREAMING_SNAKE_CASE : int = 800800 ): """simple docstring""" lowercase_ : Union[str, Any] = degree * loga(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = int(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = calculate_prime_numbers(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = 0 lowercase_ : List[Any] = 0 lowercase_ : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
93
0
import math def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> int: '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float ) -> List[Any]: '''simple docstring''' if ( not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : str ) -> Dict: # noqa: E741 '''simple docstring''' while r - l > 1: UpperCamelCase__ = (l + r) // 2 if v[m] >= key: UpperCamelCase__ = m else: UpperCamelCase__ = m # noqa: E741 return r def SCREAMING_SNAKE_CASE__( _UpperCamelCase : list[int] ) -> int: '''simple docstring''' if len(_UpperCamelCase ) == 0: return 0 UpperCamelCase__ = [0] * len(_UpperCamelCase ) UpperCamelCase__ = 1 UpperCamelCase__ = v[0] for i in range(1 , len(_UpperCamelCase ) ): if v[i] < tail[0]: UpperCamelCase__ = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ = v[i] length += 1 else: UpperCamelCase__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
31
0
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): if isinstance(A_ , A_ ): lowerCAmelCase__ : List[Any] = np.full((len(A_ ), sequence_length, 2) , A_ ) else: lowerCAmelCase__ : List[str] = np.full((len(A_ ), sequence_length) , A_ ) for i, tensor in enumerate(A_ ): if padding_side == "right": if isinstance(A_ , A_ ): lowerCAmelCase__ : Any = tensor[:sequence_length] else: lowerCAmelCase__ : Optional[int] = tensor[:sequence_length] else: if isinstance(A_ , A_ ): lowerCAmelCase__ : str = tensor[:sequence_length] else: lowerCAmelCase__ : Optional[Any] = tensor[:sequence_length] return out_tensor.tolist() def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Tuple = ord(A_ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowerCAmelCase__ : int = unicodedata.category(A_ ) if cat.startswith('''P''' ): return True return False @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None lowercase__ = -100 lowercase__ = "pt" def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Union[str, Any] ): import torch lowerCAmelCase__ : int = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCAmelCase__ : str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowerCAmelCase__ : Tuple = self.tokenizer.pad( lowercase_ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='''pt''' if labels is None else None ,) if labels is None: return batch lowerCAmelCase__ : List[str] = torch.tensor(batch['''entity_ids'''] ).shape[1] lowerCAmelCase__ : Optional[Any] = self.tokenizer.padding_side if padding_side == "right": lowerCAmelCase__ : List[str] = [ list(lowercase_ ) + [self.label_pad_token_id] * (sequence_length - len(lowercase_ )) for label in labels ] else: lowerCAmelCase__ : int = [ [self.label_pad_token_id] * (sequence_length - len(lowercase_ )) + list(lowercase_ ) for label in labels ] lowerCAmelCase__ : Tuple = [feature['''ner_tags'''] for feature in features] lowerCAmelCase__ : str = padding_tensor(lowercase_ ,-1 ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : Optional[int] = [feature['''original_entity_spans'''] for feature in features] lowerCAmelCase__ : Optional[Any] = padding_tensor(lowercase_ ,(-1, -1) ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : List[Any] = {k: torch.tensor(lowercase_ ,dtype=torch.intaa ) for k, v in batch.items()} return batch
106
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[Any] = original_name.split('''.''' )[0] snake_case__ : List[str] = key.split('''.''' ) snake_case__ : Optional[int] = int(key_list[key_list.index(__lowerCAmelCase ) - 2] ) snake_case__ : Optional[int] = int(key_list[key_list.index(__lowerCAmelCase ) - 1] ) snake_case__ : Any = orig_block_num - offset snake_case__ : Tuple = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" snake_case__ : Optional[int] = OrderedDict() snake_case__ , snake_case__ : List[str] = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): snake_case__ : int = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 snake_case__ : Tuple = key[: key.find('''proj''' )] snake_case__ : Union[str, Any] = key.replace(__lowerCAmelCase , f"""patch_embeddings.{total_embed_found}.""" ) snake_case__ : Dict = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: snake_case__ : Optional[int] = '''poolformer.encoder.''' + key if "mlp.fc1" in key: snake_case__ : Optional[int] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: snake_case__ : Optional[Any] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: snake_case__ : int = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''norm1''' , '''before_norm''' ) if "norm2" in key: snake_case__ : Tuple = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: snake_case__ : str = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: snake_case__ : Optional[int] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: snake_case__ : Union[str, Any] = key.replace('''head''' , '''classifier''' ) snake_case__ : Union[str, Any] = value return new_state_dict def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case__ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : List[str] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image @torch.no_grad() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : List[str] = PoolFormerConfig() # set attributes based on model_name snake_case__ : List[Any] = '''huggingface/label-files''' snake_case__ : Union[str, Any] = model_name[-3:] snake_case__ : List[Any] = 1000 snake_case__ : Tuple = '''imagenet-1k-id2label.json''' snake_case__ : Optional[int] = (1, 1000) # set config attributes snake_case__ : Dict = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Tuple = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} if size == "s12": snake_case__ : List[str] = [2, 2, 6, 2] snake_case__ : Union[str, Any] = [64, 128, 320, 512] snake_case__ : Optional[int] = 4.0 snake_case__ : Tuple = 0.9 elif size == "s24": snake_case__ : Tuple = [4, 4, 12, 4] snake_case__ : Tuple = [64, 128, 320, 512] snake_case__ : List[Any] = 4.0 snake_case__ : Dict = 0.9 elif size == "s36": snake_case__ : Optional[Any] = [6, 6, 18, 6] snake_case__ : str = [64, 128, 320, 512] snake_case__ : List[Any] = 4.0 snake_case__ : Any = 1E-6 snake_case__ : Any = 0.9 elif size == "m36": snake_case__ : Any = [6, 6, 18, 6] snake_case__ : Union[str, Any] = [96, 192, 384, 768] snake_case__ : Dict = 4.0 snake_case__ : Union[str, Any] = 1E-6 snake_case__ : List[Any] = 0.95 elif size == "m48": snake_case__ : Optional[int] = [8, 8, 24, 8] snake_case__ : List[str] = [96, 192, 384, 768] snake_case__ : str = 4.0 snake_case__ : str = 1E-6 snake_case__ : Any = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor snake_case__ : Optional[Any] = PoolFormerImageProcessor(crop_pct=__lowerCAmelCase ) # Prepare image snake_case__ : Optional[int] = prepare_img() snake_case__ : str = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict snake_case__ : List[str] = torch.load(__lowerCAmelCase , map_location=torch.device('''cpu''' ) ) # rename keys snake_case__ : str = rename_keys(__lowerCAmelCase ) # create HuggingFace model and load state dict snake_case__ : List[str] = PoolFormerForImageClassification(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Define image processor snake_case__ : int = PoolFormerImageProcessor(crop_pct=__lowerCAmelCase ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass snake_case__ : Dict = model(__lowerCAmelCase ) snake_case__ : str = outputs.logits # define expected logit slices for different models if size == "s12": snake_case__ : Tuple = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": snake_case__ : Optional[int] = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": snake_case__ : int = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": snake_case__ : Optional[int] = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": snake_case__ : List[str] = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1E-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) A__ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
44
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__(self : Tuple , a__ : int , a__ : List[Any]=13 , a__ : Optional[int]=3 , a__ : List[str]=224 , a__ : List[Any]=30 , a__ : Union[str, Any]=400 , a__ : str=True , a__ : List[Any]=None , a__ : int=True , a__ : Dict=[0.5, 0.5, 0.5] , a__ : Union[str, Any]=[0.5, 0.5, 0.5] , ): """simple docstring""" __snake_case = size if size is not None else {'''height''': 18, '''width''': 18} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std def a (self : Any ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Optional[Any] = ViTImageProcessor if is_vision_available() else None def a (self : Optional[int] ): """simple docstring""" __snake_case = EfficientFormerImageProcessorTester(self ) @property def a (self : List[str] ): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def a (self : str ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) def a (self : Any ): """simple docstring""" pass def a (self : str ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_proc_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input __snake_case = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processor(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a (self : List[str] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_proc_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input __snake_case = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processor(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a (self : Dict ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_proc_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input __snake_case = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processor(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
24
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 42 class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): @register_to_config def __init__( self : Optional[int], lowerCAmelCase : int = 32, lowerCAmelCase : int = 64, lowerCAmelCase : int = 20, lowerCAmelCase : int = 768, lowerCAmelCase : Optional[Any]=77, lowerCAmelCase : Tuple=4, lowerCAmelCase : float = 0.0, lowerCAmelCase : str = "silu", lowerCAmelCase : Optional[str] = None, lowerCAmelCase : Optional[str] = None, lowerCAmelCase : Optional[str] = "linear", lowerCAmelCase : Optional[str] = "prd", lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Optional[int] = None, ) -> List[Any]: super().__init__() lowercase : List[Any] = num_attention_heads lowercase : int = attention_head_dim lowercase : List[Any] = num_attention_heads * attention_head_dim lowercase : Tuple = additional_embeddings lowercase : Dict = time_embed_dim or inner_dim lowercase : Optional[Any] = embedding_proj_dim or embedding_dim lowercase : int = clip_embed_dim or embedding_dim lowercase : List[str] = Timesteps(lowerCAmelCase, lowerCAmelCase, 0 ) lowercase : List[str] = TimestepEmbedding(lowerCAmelCase, lowerCAmelCase, out_dim=lowerCAmelCase, act_fn=lowerCAmelCase ) lowercase : List[str] = nn.Linear(lowerCAmelCase, lowerCAmelCase ) if embedding_proj_norm_type is None: lowercase : str = None elif embedding_proj_norm_type == "layer": lowercase : Tuple = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) lowercase : List[str] = nn.Linear(lowerCAmelCase, lowerCAmelCase ) if encoder_hid_proj_type is None: lowercase : Optional[int] = None elif encoder_hid_proj_type == "linear": lowercase : Dict = nn.Linear(lowerCAmelCase, lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) lowercase : Dict = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, lowerCAmelCase ) ) if added_emb_type == "prd": lowercase : Union[str, Any] = nn.Parameter(torch.zeros(1, 1, lowerCAmelCase ) ) elif added_emb_type is None: lowercase : str = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) lowercase : Dict = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, dropout=lowerCAmelCase, activation_fn='gelu', attention_bias=lowerCAmelCase, ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": lowercase : str = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: lowercase : Optional[int] = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) lowercase : int = nn.LayerNorm(lowerCAmelCase ) lowercase : str = nn.Linear(lowerCAmelCase, lowerCAmelCase ) lowercase : Optional[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -1_0000.0 ) causal_attention_mask.triu_(1 ) lowercase : List[str] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask', lowerCAmelCase, persistent=lowerCAmelCase ) lowercase : Any = nn.Parameter(torch.zeros(1, lowerCAmelCase ) ) lowercase : Any = nn.Parameter(torch.zeros(1, lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase ( self : Tuple ) -> Dict[str, AttentionProcessor]: lowercase : Any = {} def fn_recursive_add_processors(lowerCAmelCase : str, lowerCAmelCase : torch.nn.Module, lowerCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(lowerCAmelCase, 'set_processor' ): lowercase : List[str] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''', lowerCAmelCase, lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) return processors def lowercase ( self : Union[str, Any], lowerCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Tuple: lowercase : str = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase, lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase : str, lowerCAmelCase : torch.nn.Module, lowerCAmelCase : Union[str, Any] ): if hasattr(lowerCAmelCase, 'set_processor' ): if not isinstance(lowerCAmelCase, lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''', lowerCAmelCase, lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: self.set_attn_processor(AttnProcessor() ) def lowercase ( self : Any, lowerCAmelCase : int, lowerCAmelCase : Union[torch.Tensor, float, int], lowerCAmelCase : torch.FloatTensor, lowerCAmelCase : Optional[torch.FloatTensor] = None, lowerCAmelCase : Optional[torch.BoolTensor] = None, lowerCAmelCase : bool = True, ) -> List[Any]: lowercase : Optional[Any] = hidden_states.shape[0] lowercase : Union[str, Any] = timestep if not torch.is_tensor(lowerCAmelCase ): lowercase : List[str] = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: lowercase : List[str] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase : Optional[int] = timesteps * torch.ones(lowerCAmelCase, dtype=timesteps.dtype, device=timesteps.device ) lowercase : Dict = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowercase : Optional[int] = timesteps_projected.to(dtype=self.dtype ) lowercase : Any = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: lowercase : Any = self.embedding_proj_norm(lowerCAmelCase ) lowercase : List[str] = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowercase : str = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowercase : Optional[Any] = self.proj_in(lowerCAmelCase ) lowercase : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) lowercase : Dict = [] lowercase : Optional[int] = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowercase : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowercase : Union[str, Any] = hidden_states[:, None, :] lowercase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowercase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase, -1, -1 ) additional_embeds.append(lowerCAmelCase ) lowercase : Union[str, Any] = torch.cat( lowerCAmelCase, dim=1, ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowercase : Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowercase : List[Any] = F.pad( lowerCAmelCase, ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ), value=0.0, ) lowercase : str = hidden_states + positional_embeddings if attention_mask is not None: lowercase : Tuple = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 lowercase : List[Any] = F.pad(lowerCAmelCase, (0, self.additional_embeddings), value=0.0 ) lowercase : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowercase : Union[str, Any] = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0 ) if self.norm_in is not None: lowercase : List[Any] = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: lowercase : Tuple = block(lowerCAmelCase, attention_mask=lowerCAmelCase ) lowercase : Optional[Any] = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: lowercase : Optional[Any] = hidden_states[:, -1] else: lowercase : Any = hidden_states[:, additional_embeddings_len:] lowercase : Optional[int] = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def lowercase ( self : Any, lowerCAmelCase : Dict ) -> Dict: lowercase : int = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
255
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Union[str, Any] ={ 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] =[ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __snake_case : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case : Optional[int] ={ 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int =['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple =['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __snake_case : str =_LazyModule(__name__, globals()['__file__'], _import_structure)
94
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' UpperCAmelCase = FunnelConfig.from_json_file(UpperCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase = FunnelBaseModel(UpperCamelCase__ ) if base_model else FunnelModel(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __A : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
273
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class A_ : def __init__( self , _A , _A=1_4 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_input_mask UpperCAmelCase = use_labels UpperCAmelCase = use_mc_token_ids UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = self.vocab_size - 1 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None if self.use_mc_token_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _lowercase ( self ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _lowercase ( self , _A , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = CTRLModel(config=_A ) model.to(_A ) model.eval() model(_A , token_type_ids=_A , head_mask=_A ) model(_A , token_type_ids=_A ) UpperCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _lowercase ( self , _A , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = CTRLLMHeadModel(_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def _lowercase ( self , _A , _A , _A , _A , *_A ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = CTRLForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class A_ (a_ , a_ , a_ , unittest.TestCase ): UpperCAmelCase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase__ = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase__ = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = CTRLModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_A , n_embd=3_7 ) def _lowercase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowercase ( self ): '''simple docstring''' pass @slow def _lowercase ( self ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = CTRLModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _lowercase ( self ): '''simple docstring''' pass @require_torch class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(_A ) UpperCAmelCase = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] , dtype=torch.long , device=_A ) # Legal the president is UpperCAmelCase = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a UpperCAmelCase = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].tolist() , _A )
273
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if "img_encoder.pos_embed" in name: _a : List[str] = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: _a : str = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: _a : Optional[int] = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: _a : Optional[Any] = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: _a : Optional[int] = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: _a : Dict = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: _a : int = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: _a : str = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: _a : Optional[int] = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: _a : Optional[Any] = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: _a : str = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: _a : List[Any] = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: _a : Any = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: _a : Optional[int] = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: _a : Union[str, Any] = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: _a : Any = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: _a : Tuple = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: _a : Tuple = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: _a : List[Any] = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: _a : str = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: _a : Union[str, Any] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: _a : List[str] = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: _a : Union[str, Any] = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: _a : Any = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _a : List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _a : Tuple = key.split(""".""" ) _a , _a : Optional[Any] = int(key_split[2] ), int(key_split[4] ) _a : Dict = config.vision_config.hidden_size if "weight" in key: _a : List[str] = val[:dim, :] _a : Any = val[dim : dim * 2, :] _a : Any = val[-dim:, :] else: _a : List[str] = val[:dim] _a : Optional[Any] = val[dim : dim * 2] _a : Dict = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _a : Tuple = key.split(""".""" ) _a : Optional[Any] = int(key_split[3] ) _a : Dict = config.text_config.hidden_size if "weight" in key: _a : Optional[int] = val[:dim, :] _a : Union[str, Any] = val[ dim : dim * 2, : ] _a : str = val[-dim:, :] else: _a : Optional[int] = val[:dim] _a : Dict = val[dim : dim * 2] _a : Optional[int] = val[-dim:] else: _a : str = rename_key(__A ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _a : Any = val.squeeze_() else: _a : str = val return orig_state_dict def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _a : List[Any] = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="groupvit-gcc-yfcc" , UpperCamelCase__=False ): '''simple docstring''' _a : List[Any] = GroupViTConfig() _a : str = GroupViTModel(__A ).eval() _a : int = torch.load(__A , map_location="""cpu""" )["""model"""] _a : Optional[Any] = convert_state_dict(__A , __A ) _a , _a : List[str] = model.load_state_dict(__A , strict=__A ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__A ) == 0) # verify result _a : Dict = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) _a : Optional[int] = prepare_img() _a : Tuple = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=__A , padding=__A , return_tensors="""pt""" ) with torch.no_grad(): _a : Optional[Any] = model(**__A ) if model_name == "groupvit-gcc-yfcc": _a : Dict = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": _a : Dict = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , __A , atol=1e-3 ) processor.save_pretrained(__A ) model.save_pretrained(__A ) print("""Successfully saved processor and model to""" , __A ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(__A , organization="""nielsr""" ) model.push_to_hub(__A , organization="""nielsr""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) _snake_case = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
357
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
0
from __future__ import annotations __A =list[list[int]] # assigning initial values to the grid __A =[ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __A =[ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase_ ( lowerCamelCase__ ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase_ ( lowerCamelCase__ ): if location := find_empty_location(lowerCamelCase__ ): lowerCamelCase_ , lowerCamelCase_ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 1_0 ): if is_safe(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = digit if sudoku(lowerCamelCase__ ) is not None: return grid lowerCamelCase_ = 0 return None def lowerCamelCase_ ( lowerCamelCase__ ): for row in grid: for cell in row: print(lowerCamelCase__ , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 2_0) print_solution(example_grid) print('''\nExample grid solution:''') __A =sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
19
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __SCREAMING_SNAKE_CASE : Optional[int] = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE ={ "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
"""simple docstring""" class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : List[Any] = name lowercase_ : int = val def __str__( self ) -> Tuple: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return self.val < other.val class UpperCamelCase : def __init__( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = {} lowercase_ : Tuple = {} lowercase_ : Union[str, Any] = self.build_heap(__UpperCamelCase ) def __getitem__( self ,__UpperCamelCase ) -> int: '''simple docstring''' return self.get_value(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' return (idx - 1) // 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return idx * 2 + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple: '''simple docstring''' return idx * 2 + 2 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' return self.heap_dict[key] def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = len(__UpperCamelCase ) - 1 lowercase_ : Optional[int] = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): lowercase_ : Any = idx lowercase_ : str = i.val for i in range(__UpperCamelCase ,-1 ,-1 ): self.sift_down(__UpperCamelCase ,__UpperCamelCase ) return array def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' while True: lowercase_ : List[str] = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 lowercase_ : List[str] = self.get_right_child_idx(__UpperCamelCase ) lowercase_ : List[str] = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: lowercase_ : List[str] = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: lowercase_ : Dict = r if smallest != idx: lowercase_ , lowercase_ : Union[str, Any] = array[smallest], array[idx] ( ( lowercase_ ) , ( lowercase_ ) , ) : str = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase_ : Any = smallest else: break def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Dict = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase_ , lowercase_ : Any = self.heap[idx], self.heap[p] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase_ : int = p lowercase_ : str = self.get_parent_idx(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return self.heap[0] def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.heap[-1], self.heap[0] lowercase_ , lowercase_ : Tuple = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase_ : Tuple = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 ,self.heap ) return x def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' self.heap.append(__UpperCamelCase ) lowercase_ : Tuple = len(self.heap ) - 1 lowercase_ : Optional[int] = node.val self.sift_up(len(self.heap ) - 1 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.heap ) == 0 def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase_ : Any = new_value lowercase_ : List[str] = new_value self.sift_up(self.idx_of_element[node] ) __SCREAMING_SNAKE_CASE =Node("R", -1) __SCREAMING_SNAKE_CASE =Node("B", 6) __SCREAMING_SNAKE_CASE =Node("A", 3) __SCREAMING_SNAKE_CASE =Node("X", 1) __SCREAMING_SNAKE_CASE =Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __SCREAMING_SNAKE_CASE =MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
321
0
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A_ (SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = TransfoXLTokenizer SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : int = False def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() UpperCAmelCase_ : int = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **a__ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = """<unk> UNwanted , running""" UpperCAmelCase_ : List[str] = """<unk> unwanted, running""" return input_text, output_text def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=a__ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize("<unk> UNwanted , running" ) self.assertListEqual(a__ , ["<unk>", "unwanted", ",", "running"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [0, 4, 8, 7] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = TransfoXLTokenizer(lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["hello", "!", "how", "are", "you", "?"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = TransfoXLTokenizer(lower_case=a__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = TransfoXLTokenizer(lower_case=a__ ) UpperCAmelCase_ : Dict = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" UpperCAmelCase_ : Tuple = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(a__ ) , a__ ) self.assertEqual(tokenizer.convert_tokens_to_string(a__ ) , a__ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = len(a__ ) tokenizer.add_tokens(["new1", "new2"] ) tokenizer.move_added_token("new1" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(a__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , "new1" )
61
"""simple docstring""" from __future__ import annotations _a : List[str] = 10 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ) -> list[int]: _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Union[str, Any] = max(_lowerCamelCase ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase : list[list] = [[] for _ in range(_lowerCamelCase )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase : Tuple = int((i / placement) % RADIX ) buckets[tmp].append(_lowerCamelCase ) # put each buckets' contents into list_of_ints _lowerCAmelCase : List[str] = 0 for b in range(_lowerCamelCase ): for i in buckets[b]: _lowerCAmelCase : Any = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
44
0
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _a ( _SCREAMING_SNAKE_CASE ) -> Dict: snake_case_ = torch.exp(_SCREAMING_SNAKE_CASE ) snake_case_ = torch.sum(_SCREAMING_SNAKE_CASE , dim=1 ) # sum of exp(x_i) snake_case_ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_SCREAMING_SNAKE_CASE ) - B / A class __A (nn.Module): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : Tuple ) ->int: """simple docstring""" super().__init__() snake_case_ = config.output_attentions snake_case_ = config.output_hidden_states snake_case_ = nn.ModuleList([BertLayer(UpperCAmelCase_ ) for _ in range(config.num_hidden_layers )] ) snake_case_ = nn.ModuleList([BertHighway(UpperCAmelCase_ ) for _ in range(config.num_hidden_layers )] ) snake_case_ = [-1 for _ in range(config.num_hidden_layers )] def lowerCAmelCase ( self : str , UpperCAmelCase_ : int ) ->Optional[int]: """simple docstring""" if (type(UpperCAmelCase_ ) is float) or (type(UpperCAmelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): snake_case_ = x else: snake_case_ = x def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Any=None , ) ->Optional[Any]: """simple docstring""" snake_case_ = () snake_case_ = () snake_case_ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) snake_case_ = layer_module( UpperCAmelCase_ , UpperCAmelCase_ , head_mask[i] , UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = layer_outputs[0] if self.output_attentions: snake_case_ = all_attentions + (layer_outputs[1],) snake_case_ = (hidden_states,) if self.output_hidden_states: snake_case_ = current_outputs + (all_hidden_states,) if self.output_attentions: snake_case_ = current_outputs + (all_attentions,) snake_case_ = self.highway[i](UpperCAmelCase_ ) # logits, pooled_output if not self.training: snake_case_ = highway_exit[0] snake_case_ = entropy(UpperCAmelCase_ ) snake_case_ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy snake_case_ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: snake_case_ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCAmelCase_ , i + 1 ) else: snake_case_ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) snake_case_ = (hidden_states,) if self.output_hidden_states: snake_case_ = outputs + (all_hidden_states,) if self.output_attentions: snake_case_ = outputs + (all_attentions,) snake_case_ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , snake_case__ , ) class __A (snake_case__): '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : List[str] ) ->Tuple: """simple docstring""" super().__init__(UpperCAmelCase_ ) snake_case_ = config snake_case_ = BertEmbeddings(UpperCAmelCase_ ) snake_case_ = DeeBertEncoder(UpperCAmelCase_ ) snake_case_ = BertPooler(UpperCAmelCase_ ) self.init_weights() def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def lowerCAmelCase ( self : str ) ->Union[str, Any]: """simple docstring""" return self.embeddings.word_embeddings def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) ->Any: """simple docstring""" snake_case_ = value def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Tuple ) ->Optional[int]: """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=None , ) ->Optional[int]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: snake_case_ = input_ids.size() elif inputs_embeds is not None: snake_case_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) snake_case_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case_ = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if encoder_attention_mask is None: snake_case_ = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: snake_case_ = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case_ = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: snake_case_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: snake_case_ = encoder_attention_mask[:, None, None, :] snake_case_ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility snake_case_ = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case_ = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) snake_case_ = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) snake_case_ = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(UpperCAmelCase_ ) snake_case_ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __A (snake_case__): '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = message snake_case_ = exit_layer # start from 1! class __A (nn.Module): '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : str ) ->List[Any]: """simple docstring""" super().__init__() snake_case_ = BertPooler(UpperCAmelCase_ ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.Linear(config.hidden_size , config.num_labels ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Dict ) ->List[Any]: """simple docstring""" snake_case_ = encoder_outputs[0] snake_case_ = self.pooler(UpperCAmelCase_ ) # "return" pooler_output # BertModel snake_case_ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification snake_case_ = bmodel_output[1] snake_case_ = self.dropout(UpperCAmelCase_ ) snake_case_ = self.classifier(UpperCAmelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , snake_case__ , ) class __A (snake_case__): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[int] ) ->Union[str, Any]: """simple docstring""" super().__init__(UpperCAmelCase_ ) snake_case_ = config.num_labels snake_case_ = config.num_hidden_layers snake_case_ = DeeBertModel(UpperCAmelCase_ ) snake_case_ = nn.Dropout(config.hidden_dropout_prob ) snake_case_ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[Any]=-1 , UpperCAmelCase_ : Optional[Any]=False , ) ->List[Any]: """simple docstring""" snake_case_ = self.num_layers try: snake_case_ = self.bert( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits snake_case_ = outputs[1] snake_case_ = self.dropout(UpperCAmelCase_ ) snake_case_ = self.classifier(UpperCAmelCase_ ) snake_case_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case_ = e.message snake_case_ = e.exit_layer snake_case_ = outputs[0] if not self.training: snake_case_ = entropy(UpperCAmelCase_ ) snake_case_ = [] snake_case_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case_ = [] for highway_exit in outputs[-1]: snake_case_ = highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case_ = MSELoss() snake_case_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCAmelCase_ ) if train_highway: snake_case_ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case_ = (loss,) + outputs if not self.training: snake_case_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
366
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __SCREAMING_SNAKE_CASE : Dict = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' __SCREAMING_SNAKE_CASE : Optional[int] = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' __SCREAMING_SNAKE_CASE : Tuple = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __A (datasets.Metric): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) ->Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int="auto" , UpperCAmelCase_ : Dict=-1 , UpperCAmelCase_ : Optional[Any]=0.9 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : Optional[int]=500 , UpperCAmelCase_ : Any="gpt2-large" , UpperCAmelCase_ : Union[str, Any]=-1 , UpperCAmelCase_ : Optional[Any]=1_024 , UpperCAmelCase_ : Dict=25 , UpperCAmelCase_ : Optional[Any]=5 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=25 , ) ->List[Any]: """simple docstring""" snake_case_ = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
233
0
'''simple docstring''' def lowerCamelCase__ ( ): for n in range(1 , 100_0000 ): yield n * (n + 1) // 2 def lowerCamelCase__ ( _A ): a : List[str] = 1 a : List[str] = 2 while i * i <= n: a : int = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase__ ( ): return next(i for i in triangle_number_generator() if count_divisors(UpperCAmelCase_ ) > 500 ) if __name__ == "__main__": print(solution())
297
from __future__ import annotations def __lowerCamelCase ( UpperCAmelCase_ : dict , UpperCAmelCase_ : str ): """simple docstring""" a , a :Optional[Any] = set(UpperCAmelCase_ ), [start] while stack: a :Optional[int] = stack.pop() explored.add(UpperCAmelCase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCAmelCase_ ) return explored snake_case : Optional[int] = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
94
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class a__ ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = [] _lowercase : Optional[int] = [] for i in range(self.num_layers ): _lowercase : List[Any] = self.in_channels if i == 0 else self.out_channels _lowercase : int = FlaxResnetBlockaD( in_channels=_UpperCamelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCamelCase ) _lowercase : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCamelCase ) _lowercase : Union[str, Any] = resnets _lowercase : Any = attentions if self.add_downsample: _lowercase : str = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ): """simple docstring""" _lowercase : Any = () for resnet, attn in zip(self.resnets , self.attentions ): _lowercase : str = resnet(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) _lowercase : Dict = attn(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) output_states += (hidden_states,) if self.add_downsample: _lowercase : Union[str, Any] = self.downsamplers_a(_UpperCamelCase ) output_states += (hidden_states,) return hidden_states, output_states class a__ ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = [] for i in range(self.num_layers ): _lowercase : Union[str, Any] = self.in_channels if i == 0 else self.out_channels _lowercase : Tuple = FlaxResnetBlockaD( in_channels=_UpperCamelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCamelCase ) _lowercase : Optional[Any] = resnets if self.add_downsample: _lowercase : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ): """simple docstring""" _lowercase : Dict = () for resnet in self.resnets: _lowercase : Any = resnet(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) output_states += (hidden_states,) if self.add_downsample: _lowercase : Dict = self.downsamplers_a(_UpperCamelCase ) output_states += (hidden_states,) return hidden_states, output_states class a__ ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = [] _lowercase : Optional[int] = [] for i in range(self.num_layers ): _lowercase : List[str] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowercase : Dict = self.prev_output_channel if i == 0 else self.out_channels _lowercase : int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCamelCase ) _lowercase : int = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCamelCase ) _lowercase : int = resnets _lowercase : Optional[int] = attentions if self.add_upsample: _lowercase : Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ): """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _lowercase : Any = res_hidden_states_tuple[-1] _lowercase : Optional[Any] = res_hidden_states_tuple[:-1] _lowercase : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowercase : List[str] = resnet(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) _lowercase : int = attn(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) if self.add_upsample: _lowercase : Optional[Any] = self.upsamplers_a(_UpperCamelCase ) return hidden_states class a__ ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = [] for i in range(self.num_layers ): _lowercase : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowercase : str = self.prev_output_channel if i == 0 else self.out_channels _lowercase : Tuple = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCamelCase ) _lowercase : List[str] = resnets if self.add_upsample: _lowercase : List[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ): """simple docstring""" for resnet in self.resnets: # pop res hidden states _lowercase : Optional[int] = res_hidden_states_tuple[-1] _lowercase : Tuple = res_hidden_states_tuple[:-1] _lowercase : Any = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowercase : Optional[Any] = resnet(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) if self.add_upsample: _lowercase : Any = self.upsamplers_a(_UpperCamelCase ) return hidden_states class a__ ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _lowercase : Optional[int] = [] for _ in range(self.num_layers ): _lowercase : Any = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCamelCase ) _lowercase : int = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCamelCase ) _lowercase : Tuple = resnets _lowercase : Optional[int] = attentions def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ): """simple docstring""" _lowercase : List[Any] = self.resnets[0](_UpperCamelCase , _UpperCamelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _lowercase : Tuple = attn(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) _lowercase : Optional[Any] = resnet(_UpperCamelCase , _UpperCamelCase , deterministic=_UpperCamelCase ) return hidden_states
199
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Any = 'roc_bert' def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1E-1_2 , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=768 , _UpperCamelCase=910 , _UpperCamelCase=512 , _UpperCamelCase=24858 , _UpperCamelCase=True , **_UpperCamelCase , ): """simple docstring""" _lowercase : str = vocab_size _lowercase : List[str] = max_position_embeddings _lowercase : List[Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : int = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Dict = initializer_range _lowercase : List[Any] = type_vocab_size _lowercase : Tuple = layer_norm_eps _lowercase : Optional[int] = use_cache _lowercase : Tuple = enable_pronunciation _lowercase : Optional[int] = enable_shape _lowercase : int = pronunciation_embed_dim _lowercase : List[str] = pronunciation_vocab_size _lowercase : int = shape_embed_dim _lowercase : str = shape_vocab_size _lowercase : str = concat_input _lowercase : Dict = position_embedding_type _lowercase : Optional[Any] = classifier_dropout super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase )
199
1
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ReformerTokenizer lowerCamelCase = ReformerTokenizerFast lowerCamelCase = True lowerCamelCase = False lowerCamelCase = True def snake_case__ ( self : Any )-> str: '''simple docstring''' super().setUp() A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Optional[int] )-> Optional[int]: '''simple docstring''' A__ = '<s>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ ) def snake_case__ ( self : str )-> Tuple: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'<unk>' ) self.assertEqual(vocab_keys[1],'<s>' ) self.assertEqual(vocab_keys[-1],'j' ) self.assertEqual(len(lowercase_ ),1_0_0_0 ) def snake_case__ ( self : Dict )-> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,1_0_0_0 ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = 'I was born in 92000, and this is falsé.' A__ = tokenizer.tokenize(lowercase_ ) A__ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(lowercase_ ) A__ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) def snake_case__ ( self : int,lowercase_ : Optional[int]=1_5 )-> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ ) # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' pass def snake_case__ ( self : Dict )-> str: '''simple docstring''' A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ),[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2],) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ],) A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4],) A__ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ],) @cached_property def snake_case__ ( self : Optional[int] )-> Any: '''simple docstring''' return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def snake_case__ ( self : str )-> Tuple: '''simple docstring''' A__ = 'Hello World!' A__ = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7] self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) ) @slow def snake_case__ ( self : Optional[int] )-> str: '''simple docstring''' A__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A__ = [ 1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 3_5, 2_8, 2_7_5, 3, 2_5_9, 2_9_7, 2_6_0, 8_4, 4, 3_5, 1_1_0, 4_4, 8, 2_5_9, 9_1, 2_6_8, 2_1, 1_1, 2_0_9, 2_7_4, 1_0_9, 2_6_6, 2_7_7, 1_1_7, 8_6, 9_3, 3_1_5, 2_5_8, 2_7_8, 2_5_8, 2_7_7, 2_5_8, 0, 2_5_8, 2_8_8, 2_5_8, 3_1_9, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 0, 2_5_8, 2_8_7, 2_5_8, 3_1_5, 2_5_8, 2_8_9, 2_5_8, 2_7_8, 9_9, 2_6_9, 2_6_6, 2_6_2, 8, 2_5_9, 2_4_1, 4, 2_1_7, 2_3_0, 2_6_8, 2_6_6, 5_5, 1_6_8, 1_0_6, 7_5, 1_9_3, 2_6_6, 2_2_3, 2_7, 4_9, 2_6, 2_8_2, 2_5, 2_6_4, 2_9_9, 1_9, 2_6, 0, 2_5_8, 2_7_7, 1_1_7, 8_6, 9_3, 1_7_6, 1_8_3, 2_7_0, 1_1, 2_6_2, 4_2, 6_1, 2_6_5, ] self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) ) @require_torch @slow def snake_case__ ( self : int )-> Any: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0] A__ = ' '.join(lowercase_ ) A__ = self.big_tokenizer.encode_plus(lowercase_,return_tensors='pt' ) A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='pt' ) A__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A__ = encoded_sequence['input_ids'].shape A__ = ReformerModel(lowercase_ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase_ ) model(**lowercase_ ) @slow def snake_case__ ( self : int )-> Tuple: '''simple docstring''' A__ = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A__ = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=lowercase_,model_name='google/reformer-crime-and-punishment',revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a',padding=lowercase_,sequences=lowercase_,)
7
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase__ : Union[str, Any] = logging.get_logger(__name__) # General docstring lowercase__ : Dict = 'ResNetConfig' # Base docstring lowercase__ : str = 'microsoft/resnet-50' lowercase__ : Tuple = [1, 20_48, 7, 7] # Image classification docstring lowercase__ : Optional[Any] = 'microsoft/resnet-50' lowercase__ : List[str] = 'tiger cat' lowercase__ : List[Any] = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Convad( lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ ) _UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = self.convolution(lowerCAmelCase__ ) _UpperCamelCase = self.normalization(lowerCAmelCase__ ) _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple: '''simple docstring''' super().__init__() _UpperCamelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _UpperCamelCase = config.num_channels def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.pooler(lowerCAmelCase__ ) return embedding class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = self.convolution(lowerCAmelCase__ ) _UpperCamelCase = self.normalization(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str: '''simple docstring''' super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = ( ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , ) _UpperCamelCase = ACTaFN[activation] def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]: '''simple docstring''' _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(lowerCAmelCase__ ) _UpperCamelCase = self.shortcut(lowerCAmelCase__ ) hidden_state += residual _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = out_channels // reduction _UpperCamelCase = ( ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , ) _UpperCamelCase = ACTaFN[activation] def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(lowerCAmelCase__ ) _UpperCamelCase = self.shortcut(lowerCAmelCase__ ) hidden_state += residual _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int: '''simple docstring''' super().__init__() _UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer _UpperCamelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = input for layer in self.layers: _UpperCamelCase = layer(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' _UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) _UpperCamelCase = stage_module(lowerCAmelCase__ ) if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = ResNetConfig _snake_case : Union[str, Any] = 'resnet' _snake_case : Optional[int] = 'pixel_values' _snake_case : int = True def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = value lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = config _UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ ) _UpperCamelCase = ResNetEncoder(lowerCAmelCase__ ) _UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.encoder( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = encoder_outputs[0] _UpperCamelCase = self.pooler(lowerCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = config.num_labels _UpperCamelCase = ResNetModel(lowerCAmelCase__ ) # classification head _UpperCamelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCamelCase = self.classifier(lowerCAmelCase__ ) _UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCamelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCamelCase = '''single_label_classification''' else: _UpperCamelCase = '''multi_label_classification''' if self.config.problem_type == "regression": _UpperCamelCase = MSELoss() if self.num_labels == 1: _UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCamelCase = BCEWithLogitsLoss() _UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: _UpperCamelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase__ ) super()._init_backbone(lowerCAmelCase__ ) _UpperCamelCase = [config.embedding_size] + config.hidden_sizes _UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ ) _UpperCamelCase = ResNetEncoder(lowerCAmelCase__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput: '''simple docstring''' _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _UpperCamelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
324
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
192
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _UpperCAmelCase = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def UpperCamelCase ( __lowercase : str ,__lowercase : Dict=None ): '''simple docstring''' require_version(deps[pkg] ,__lowercase )
192
1
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _a = logging.get_logger(__name__) def __a ( __lowerCamelCase, __lowerCamelCase ): try: with open(__UpperCamelCase, "rb" ) as flax_state_f: UpperCAmelCase_ : Optional[int] = from_bytes(__UpperCamelCase, flax_state_f.read() ) except UnpicklingError as e: try: with open(__UpperCamelCase ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__UpperCamelCase, __UpperCamelCase ) def __a ( __lowerCamelCase, __lowerCamelCase ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCAmelCase_ : Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda __lowerCamelCase : x.dtype == jnp.bfloataa, __UpperCamelCase ) ).values() if any(__UpperCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCAmelCase_ : Tuple = jax.tree_util.tree_map( lambda __lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, __UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = "" UpperCAmelCase_ : Dict = flatten_dict(__UpperCamelCase, sep="." ) UpperCAmelCase_ : List[Any] = pt_model.state_dict() # keep track of unexpected & missing keys UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase_ : Dict = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: UpperCAmelCase_ : str = flax_key_tuple_array[:-1] + ["weight"] UpperCAmelCase_ : List[str] = jnp.transpose(__UpperCamelCase, (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": UpperCAmelCase_ : List[Any] = flax_key_tuple_array[:-1] + ["weight"] UpperCAmelCase_ : Optional[int] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": UpperCAmelCase_ : str = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__UpperCamelCase ): UpperCAmelCase_ : Dict = ( flax_key_tuple_string.replace("_0", ".0" ) .replace("_1", ".1" ) .replace("_2", ".2" ) .replace("_3", ".3" ) .replace("_4", ".4" ) .replace("_5", ".5" ) .replace("_6", ".6" ) .replace("_7", ".7" ) .replace("_8", ".8" ) .replace("_9", ".9" ) ) UpperCAmelCase_ : Any = ".".join(__UpperCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase_ : Any = np.asarray(__UpperCamelCase ) if not isinstance(__UpperCamelCase, np.ndarray ) else flax_tensor UpperCAmelCase_ : Any = torch.from_numpy(__UpperCamelCase ) # remove from missing keys missing_keys.remove(__UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCamelCase ) pt_model.load_state_dict(__UpperCamelCase ) # re-transform missing_keys to list UpperCAmelCase_ : Optional[Any] = list(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(__UpperCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" " use it for predictions and inference." ) return pt_model
61
'''simple docstring''' from __future__ import annotations import math class a_ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = size # approximate the overall size of segment tree with given value UpperCamelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCamelCase = [0 for i in range(0 , 4 * size )] UpperCamelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return idx * 2 def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return idx * 2 + 1 def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if left_element == right_element: UpperCamelCase = a[left_element - 1] else: UpperCamelCase = (left_element + right_element) // 2 self.build(self.left(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.build(self.right(_SCREAMING_SNAKE_CASE ) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = max( self.segment_tree[self.left(_SCREAMING_SNAKE_CASE )] , self.segment_tree[self.right(_SCREAMING_SNAKE_CASE )] ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if self.flag[idx] is True: UpperCamelCase = self.lazy[idx] UpperCamelCase = False if left_element != right_element: UpperCamelCase = self.lazy[idx] UpperCamelCase = self.lazy[idx] UpperCamelCase = True UpperCamelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCamelCase = val if left_element != right_element: UpperCamelCase = val UpperCamelCase = val UpperCamelCase = True UpperCamelCase = True return True UpperCamelCase = (left_element + right_element) // 2 self.update(self.left(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.update(self.right(_SCREAMING_SNAKE_CASE ) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = max( self.segment_tree[self.left(_SCREAMING_SNAKE_CASE )] , self.segment_tree[self.right(_SCREAMING_SNAKE_CASE )] ) return True def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int | float: """simple docstring""" if self.flag[idx] is True: UpperCamelCase = self.lazy[idx] UpperCamelCase = False if left_element != right_element: UpperCamelCase = self.lazy[idx] UpperCamelCase = self.lazy[idx] UpperCamelCase = True UpperCamelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCamelCase = (left_element + right_element) // 2 UpperCamelCase = self.query(self.left(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.query(self.right(_SCREAMING_SNAKE_CASE ) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __str__( self ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] SCREAMING_SNAKE_CASE__ = 1_5 SCREAMING_SNAKE_CASE__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
321
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __snake_case : List[Any] = None __snake_case : str = logging.get_logger(__name__) __snake_case : Union[str, Any] = '▁' __snake_case : str = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __snake_case : str = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } __snake_case : Union[str, Any] = { 'google/pegasus-xsum': 512, } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PegasusTokenizer SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self: str , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: List[str]="<pad>" , _SCREAMING_SNAKE_CASE: Any="</s>" , _SCREAMING_SNAKE_CASE: Dict="<unk>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_2>" , _SCREAMING_SNAKE_CASE: Optional[int]="<mask_1>" , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Tuple=103 , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): raise TypeError( F"""additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE)}, but is""" F""" {type(_SCREAMING_SNAKE_CASE)}""") __lowerCAmelCase : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_SCREAMING_SNAKE_CASE) , self.offset - 1) ] if len(set(_SCREAMING_SNAKE_CASE)) != len(_SCREAMING_SNAKE_CASE): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""") __lowerCAmelCase : Union[str, Any] = additional_special_tokens_extended else: __lowerCAmelCase : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset)] super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = vocab_file __lowerCAmelCase : List[str] = False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F""" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}""") return [1 if x in all_special_ids else 0 for x in seq] def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=None) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(_SCREAMING_SNAKE_CASE): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return __lowerCAmelCase : Dict = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(_SCREAMING_SNAKE_CASE): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE) return (out_vocab_file,)
367
"""simple docstring""" from __future__ import annotations from math import gcd def _lowercase ( __snake_case ,__snake_case = 2 ,__snake_case = 1 ,__snake_case = 3 ,) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("The input value cannot be less than 2" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__snake_case ,__snake_case ,__snake_case ) -> int: return (pow(__snake_case ,2 ) + step) % modulus for _ in range(__snake_case ): # These track the position within the cycle detection logic. __lowerCAmelCase : Union[str, Any] = seed __lowerCAmelCase : Optional[Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __lowerCAmelCase : Tuple = rand_fn(__snake_case ,__snake_case ,__snake_case ) __lowerCAmelCase : Any = rand_fn(__snake_case ,__snake_case ,__snake_case ) __lowerCAmelCase : List[Any] = rand_fn(__snake_case ,__snake_case ,__snake_case ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __lowerCAmelCase : List[Any] = gcd(hare - tortoise ,__snake_case ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __lowerCAmelCase : str = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __snake_case : Any = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) __snake_case : List[str] = parser.parse_args() __snake_case : List[Any] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"""{args.num} is probably prime""") else: __snake_case : Any = args.num // divisor print(F"""{args.num} = {divisor} * {quotient}""")
58
0
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset a__ : Dict = '''bert-base-cased''' a__ : Optional[int] = '''google/pegasus-xsum''' a__ : List[Any] = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] a__ : Dict = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] a__ : Dict = '''patrickvonplaten/t5-tiny-random''' a__ : List[Any] = '''sshleifer/bart-tiny-random''' a__ : List[str] = '''sshleifer/tiny-mbart''' a__ : Tuple = '''sshleifer/tiny-marian-en-de''' def snake_case ( UpperCAmelCase , UpperCAmelCase )-> List[Any]: """simple docstring""" __A = """\n""".join(lowerCAmelCase_ ) Path(lowerCAmelCase_ ).open('w' ).writelines(lowerCAmelCase_ ) def snake_case ( UpperCAmelCase )-> Dict: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase_ , f'{split}.source' ) , lowerCAmelCase_ ) _dump_articles(os.path.join(lowerCAmelCase_ , f'{split}.target' ) , lowerCAmelCase_ ) return tmp_dir class UpperCamelCase__ ( __a): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowercase_ ( self :Union[str, Any] , _A :Tuple ) -> List[str]: '''simple docstring''' __A = AutoTokenizer.from_pretrained(__a ) __A = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __A = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __A = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __A = 4 __A = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __A = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. __A = SeqaSeqDataset( __a , data_dir=__a , type_path='train' , max_source_length=__a , max_target_length=__a , src_lang=__a , tgt_lang=__a , ) __A = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__a , __a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __A = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowercase_ ( self :Tuple , _A :List[Any] ) -> Tuple: '''simple docstring''' __A = AutoTokenizer.from_pretrained(__a ) __A = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __A = max(len(tokenizer.encode(__a ) ) for a in ARTICLES ) __A = max(len(tokenizer.encode(__a ) ) for a in SUMMARIES ) __A = 4 __A = LegacySeqaSeqDataset( __a , data_dir=__a , type_path='train' , max_source_length=20 , max_target_length=__a , ) __A = DataLoader(__a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowercase_ ( self :Any ) -> int: '''simple docstring''' __A = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) __A = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __A = tmp_dir.joinpath('train.source' ).open().readlines() __A = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__a , __a , 128 , __a ) __A = {x.name for x in tmp_dir.iterdir()} __A = {x.name for x in save_dir.iterdir()} __A = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__a ) < len(__a ) assert len(__a ) == 1 assert len(packed_examples[0] ) == sum(len(__a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def lowercase_ ( self :int ) -> Dict: '''simple docstring''' if not FAIRSEQ_AVAILABLE: return __A = self._get_dataset(max_len=64 ) __A = 64 __A = ds.make_dynamic_sampler(__a , required_batch_size_multiple=__a ) __A = [len(__a ) for x in batch_sampler] assert len(set(__a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__a ) == len(__a ) # no dropped or added examples __A = DataLoader(__a , batch_sampler=__a , collate_fn=ds.collate_fn , num_workers=2 ) __A = [] __A = [] for batch in data_loader: __A = batch["""input_ids"""].shape __A = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __A = np.product(batch['input_ids'].shape ) num_src_per_batch.append(__a ) if num_src_tokens > (max_tokens * 1.1): failures.append(__a ) assert num_src_per_batch[0] == max(__a ) if failures: raise AssertionError(F'too many tokens in {len(__a )} batches' ) def lowercase_ ( self :Dict ) -> Tuple: '''simple docstring''' __A = self._get_dataset(max_len=512 ) __A = 2 __A = ds.make_sortish_sampler(__a , shuffle=__a ) __A = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 ) __A = DataLoader(__a , batch_size=__a , collate_fn=ds.collate_fn , num_workers=2 , sampler=__a ) __A = tokenizer.pad_token_id def count_pad_tokens(_A :Any , _A :List[Any]="input_ids" ): return [batch[k].eq(__a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__a , k='labels' ) ) < sum(count_pad_tokens(__a , k='labels' ) ) assert sum(count_pad_tokens(__a ) ) < sum(count_pad_tokens(__a ) ) assert len(__a ) == len(__a ) def lowercase_ ( self :Tuple , _A :Any=1_000 , _A :Union[str, Any]=128 ) -> Optional[Any]: '''simple docstring''' if os.getenv('USE_REAL_DATA' , __a ): __A = """examples/seq2seq/wmt_en_ro""" __A = max_len * 2 * 64 if not Path(__a ).joinpath('train.len' ).exists(): save_len_file(__a , __a ) else: __A = """examples/seq2seq/test_data/wmt_en_ro""" __A = max_len * 4 save_len_file(__a , __a ) __A = AutoTokenizer.from_pretrained(__a ) __A = SeqaSeqDataset( __a , data_dir=__a , type_path='train' , max_source_length=__a , max_target_length=__a , n_obs=__a , ) return ds, max_tokens, tokenizer def lowercase_ ( self :Tuple ) -> str: '''simple docstring''' __A = self._get_dataset() __A = set(DistributedSortishSampler(__a , 256 , num_replicas=2 , rank=0 , add_extra_examples=__a ) ) __A = set(DistributedSortishSampler(__a , 256 , num_replicas=2 , rank=1 , add_extra_examples=__a ) ) assert idsa.intersection(__a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowercase_ ( self :Optional[Any] , _A :Dict ) -> Tuple: '''simple docstring''' __A = AutoTokenizer.from_pretrained(__a , use_fast=__a ) if tok_name == MBART_TINY: __A = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __A = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __A = SeqaSeqDataset( __a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __A = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__a ) == 1 if tok_name == BART_TINY else len(__a ) == 0
161
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[str] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : Optional[Any] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __lowercase : Union[str, Any] = 128 elif "12-12" in model_name: __lowercase : Tuple = 12 __lowercase : List[Any] = 12 elif "14-14" in model_name: __lowercase : int = 14 __lowercase : Dict = 14 elif "16-16" in model_name: __lowercase : str = 16 __lowercase : Dict = 16 else: raise ValueError("""Model not supported""" ) __lowercase : Union[str, Any] = """huggingface/label-files""" if "speech-commands" in model_name: __lowercase : List[Any] = 35 __lowercase : str = """speech-commands-v2-id2label.json""" else: __lowercase : Any = 527 __lowercase : Dict = """audioset-id2label.json""" __lowercase : Optional[Any] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : List[str] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : List[str] = {v: k for k, v in idalabel.items()} return config def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): if "module.v" in name: __lowercase : List[str] = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: __lowercase : int = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: __lowercase : str = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: __lowercase : Any = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowercase : Optional[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __lowercase : Union[str, Any] = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __lowercase : int = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __lowercase : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __lowercase : Dict = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowercase : Tuple = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowercase : Any = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowercase : Optional[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __lowercase : Tuple = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __lowercase : Optional[Any] = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: __lowercase : List[str] = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] ): for key in orig_state_dict.copy().keys(): __lowercase : str = orig_state_dict.pop(lowerCAmelCase_ ) if "qkv" in key: __lowercase : Optional[int] = key.split(""".""" ) __lowercase : Optional[int] = int(key_split[3] ) __lowercase : Any = config.hidden_size if "weight" in key: __lowercase : Union[str, Any] = val[:dim, :] __lowercase : Union[str, Any] = val[dim : dim * 2, :] __lowercase : Dict = val[-dim:, :] else: __lowercase : Optional[int] = val[:dim] __lowercase : Any = val[dim : dim * 2] __lowercase : int = val[-dim:] else: __lowercase : Any = val return orig_state_dict def snake_case_ ( lowerCAmelCase_ : Optional[int] ): __lowercase : int = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int=False ): __lowercase : List[Any] = get_audio_spectrogram_transformer_config(lowerCAmelCase_ ) __lowercase : Tuple = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict __lowercase : str = model_name_to_url[model_name] __lowercase : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" ) # remove some keys remove_keys(lowerCAmelCase_ ) # rename some keys __lowercase : Optional[Any] = convert_state_dict(lowerCAmelCase_ , lowerCAmelCase_ ) # load 🤗 model __lowercase : str = ASTForAudioClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __lowercase : Tuple = -4.2_677_393 if """speech-commands""" not in model_name else -6.845_978 __lowercase : Optional[int] = 4.5_689_974 if """speech-commands""" not in model_name else 5.5_654_526 __lowercase : Union[str, Any] = 1024 if """speech-commands""" not in model_name else 128 __lowercase : Any = ASTFeatureExtractor(mean=lowerCAmelCase_ , std=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) if "speech-commands" in model_name: __lowercase : Optional[int] = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) __lowercase : Union[str, Any] = dataset[0]["""audio"""]["""array"""] else: __lowercase : List[Any] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) __lowercase , __lowercase : Union[str, Any] = torchaudio.load(lowerCAmelCase_ ) __lowercase : Union[str, Any] = waveform.squeeze().numpy() __lowercase : int = feature_extractor(lowerCAmelCase_ , sampling_rate=16000 , return_tensors="""pt""" ) # forward pass __lowercase : Tuple = model(**lowerCAmelCase_ ) __lowercase : int = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __lowercase : Union[str, Any] = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __lowercase : Optional[int] = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __lowercase : Union[str, Any] = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __lowercase : Optional[Any] = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __lowercase : List[Any] = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __lowercase : str = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __lowercase : List[str] = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": __lowercase : List[Any] = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(F"MIT/{model_name}" ) feature_extractor.push_to_hub(F"MIT/{model_name}" ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase : Tuple = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
233
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _UpperCAmelCase : Any = logging.getLogger(__name__) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :str = np.argmax(lowerCamelCase, axis=1 ) return np.sum(outputs == labels ) def UpperCAmelCase__ ( lowerCamelCase ): with open(lowerCamelCase, encoding="utf_8" ) as f: lowercase :List[Any] = csv.reader(lowerCamelCase ) lowercase :List[str] = [] next(lowerCamelCase ) # skip the first line for line in tqdm(lowerCamelCase ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :List[Any] = [] for dataset in encoded_datasets: lowercase :Tuple = len(lowerCamelCase ) lowercase :List[str] = np.zeros((n_batch, 2, input_len), dtype=np.intaa ) lowercase :Dict = np.zeros((n_batch, 2), dtype=np.intaa ) lowercase :Dict = np.full((n_batch, 2, input_len), fill_value=-100, dtype=np.intaa ) lowercase :Tuple = np.zeros((n_batch,), dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(lowerCamelCase ): lowercase :str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase :int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase :Dict = with_conta lowercase :List[Any] = with_conta lowercase :List[str] = len(lowerCamelCase ) - 1 lowercase :List[str] = len(lowerCamelCase ) - 1 lowercase :Dict = with_conta lowercase :Any = with_conta lowercase :Optional[Any] = mc_label lowercase :List[str] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(lowerCamelCase ) for t in all_inputs ) ) return tensor_datasets def UpperCAmelCase__ ( ): lowercase :List[Any] = argparse.ArgumentParser() parser.add_argument("--model_name", type=lowerCamelCase, default="openai-gpt", help="pretrained model name" ) parser.add_argument("--do_train", action="store_true", help="Whether to run training." ) parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir", default=lowerCamelCase, type=lowerCamelCase, required=lowerCamelCase, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--train_dataset", type=lowerCamelCase, default="" ) parser.add_argument("--eval_dataset", type=lowerCamelCase, default="" ) parser.add_argument("--seed", type=lowerCamelCase, default=42 ) parser.add_argument("--num_train_epochs", type=lowerCamelCase, default=3 ) parser.add_argument("--train_batch_size", type=lowerCamelCase, default=8 ) parser.add_argument("--eval_batch_size", type=lowerCamelCase, default=16 ) parser.add_argument("--adam_epsilon", default=1e-8, type=lowerCamelCase, help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm", type=lowerCamelCase, default=1 ) parser.add_argument( "--max_steps", default=-1, type=lowerCamelCase, help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ), ) parser.add_argument( "--gradient_accumulation_steps", type=lowerCamelCase, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", type=lowerCamelCase, default=6.25e-5 ) parser.add_argument("--warmup_steps", default=0, type=lowerCamelCase, help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule", type=lowerCamelCase, default="warmup_linear" ) parser.add_argument("--weight_decay", type=lowerCamelCase, default=0.01 ) parser.add_argument("--lm_coef", type=lowerCamelCase, default=0.9 ) parser.add_argument("--n_valid", type=lowerCamelCase, default=374 ) parser.add_argument("--server_ip", type=lowerCamelCase, default="", help="Can be used for distant debugging." ) parser.add_argument("--server_port", type=lowerCamelCase, default="", help="Can be used for distant debugging." ) lowercase :Optional[int] = parser.parse_args() print(lowerCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=lowerCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowercase :str = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowercase :Dict = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(lowerCamelCase, lowerCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowercase :Optional[Any] = ["_start_", "_delimiter_", "_classify_"] lowercase :Optional[Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(lowerCamelCase ) lowercase :List[str] = tokenizer.convert_tokens_to_ids(lowerCamelCase ) lowercase :List[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(lowerCamelCase ) ) model.to(lowerCamelCase ) # Load and encode the datasets def tokenize_and_encode(lowerCamelCase ): if isinstance(lowerCamelCase, lowerCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCamelCase ) ) elif isinstance(lowerCamelCase, lowerCamelCase ): return obj return [tokenize_and_encode(lowerCamelCase ) for o in obj] logger.info("Encoding dataset..." ) lowercase :List[Any] = load_rocstories_dataset(args.train_dataset ) lowercase :str = load_rocstories_dataset(args.eval_dataset ) lowercase :Optional[Any] = (train_dataset, eval_dataset) lowercase :Optional[int] = tokenize_and_encode(lowerCamelCase ) # Compute the max input length for the Transformer lowercase :List[Any] = model.config.n_positions // 2 - 2 lowercase :List[Any] = max( len(story[:max_length] ) + max(len(conta[:max_length] ), len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowercase :Optional[Any] = min(lowerCamelCase, model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowercase :str = pre_process_datasets(lowerCamelCase, lowerCamelCase, lowerCamelCase, *lowerCamelCase ) lowercase , lowercase :Any = tensor_datasets[0], tensor_datasets[1] lowercase :Tuple = TensorDataset(*lowerCamelCase ) lowercase :List[str] = RandomSampler(lowerCamelCase ) lowercase :Union[str, Any] = DataLoader(lowerCamelCase, sampler=lowerCamelCase, batch_size=args.train_batch_size ) lowercase :str = TensorDataset(*lowerCamelCase ) lowercase :List[str] = SequentialSampler(lowerCamelCase ) lowercase :List[str] = DataLoader(lowerCamelCase, sampler=lowerCamelCase, batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowercase :Any = args.max_steps lowercase :Dict = args.max_steps // (len(lowerCamelCase ) // args.gradient_accumulation_steps) + 1 else: lowercase :Optional[int] = len(lowerCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs lowercase :List[str] = list(model.named_parameters() ) lowercase :int = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowercase :List[Any] = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowercase :Optional[Any] = AdamW(lowerCamelCase, lr=args.learning_rate, eps=args.adam_epsilon ) lowercase :Tuple = get_linear_schedule_with_warmup( lowerCamelCase, num_warmup_steps=args.warmup_steps, num_training_steps=lowerCamelCase ) if args.do_train: lowercase , lowercase , lowercase :Any = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ), desc="Epoch" ): lowercase :str = 0 lowercase :List[str] = 0 lowercase :Tuple = tqdm(lowerCamelCase, desc="Training" ) for step, batch in enumerate(lowerCamelCase ): lowercase :Dict = tuple(t.to(lowerCamelCase ) for t in batch ) lowercase , lowercase , lowercase , lowercase :Tuple = batch lowercase :List[str] = model(lowerCamelCase, mc_token_ids=lowerCamelCase, lm_labels=lowerCamelCase, mc_labels=lowerCamelCase ) lowercase :Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowercase :Any = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowercase :List[Any] = "Training loss: {:.2e} lr: {:.2e}".format(lowerCamelCase, scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowercase :Tuple = model.module if hasattr(lowerCamelCase, "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowercase :Any = os.path.join(args.output_dir, lowerCamelCase ) lowercase :Optional[int] = os.path.join(args.output_dir, lowerCamelCase ) torch.save(model_to_save.state_dict(), lowerCamelCase ) model_to_save.config.to_json_file(lowerCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowercase :Tuple = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowercase :Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(lowerCamelCase ) if args.do_eval: model.eval() lowercase , lowercase :Optional[Any] = 0, 0 lowercase , lowercase :Optional[Any] = 0, 0 for batch in tqdm(lowerCamelCase, desc="Evaluating" ): lowercase :str = tuple(t.to(lowerCamelCase ) for t in batch ) lowercase , lowercase , lowercase , lowercase :str = batch with torch.no_grad(): lowercase , lowercase , lowercase , lowercase :List[Any] = model( lowerCamelCase, mc_token_ids=lowerCamelCase, lm_labels=lowerCamelCase, mc_labels=lowerCamelCase ) lowercase :Optional[Any] = mc_logits.detach().cpu().numpy() lowercase :List[Any] = mc_labels.to("cpu" ).numpy() lowercase :Optional[int] = accuracy(lowerCamelCase, lowerCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowercase :List[Any] = eval_loss / nb_eval_steps lowercase :Any = eval_accuracy / nb_eval_examples lowercase :Tuple = tr_loss / nb_tr_steps if args.do_train else None lowercase :Dict = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowercase :Any = os.path.join(args.output_dir, "eval_results.txt" ) with open(lowerCamelCase, "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s", lowerCamelCase, str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
158
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self: Dict , _lowerCAmelCase: Dict , _lowerCAmelCase: Any=13 , _lowerCAmelCase: List[str]=10 , _lowerCAmelCase: Dict=3 , _lowerCAmelCase: Dict=2 , _lowerCAmelCase: Any=2 , _lowerCAmelCase: Any=2 , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: Dict=True , _lowerCAmelCase: Optional[Any]=32 , _lowerCAmelCase: Union[str, Any]=5 , _lowerCAmelCase: str=4 , _lowerCAmelCase: str=37 , _lowerCAmelCase: Any="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: List[str]=0.02 , _lowerCAmelCase: Union[str, Any]=0.9 , _lowerCAmelCase: int=None , ): lowercase :Dict = parent lowercase :Optional[int] = batch_size lowercase :List[Any] = image_size lowercase :int = num_channels lowercase :Any = patch_size lowercase :str = tubelet_size lowercase :Optional[Any] = num_frames lowercase :Optional[Any] = is_training lowercase :Tuple = use_labels lowercase :Union[str, Any] = hidden_size lowercase :Any = num_hidden_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[int] = intermediate_size lowercase :Union[str, Any] = hidden_act lowercase :int = hidden_dropout_prob lowercase :List[str] = attention_probs_dropout_prob lowercase :List[str] = type_sequence_label_size lowercase :Union[str, Any] = initializer_range lowercase :Optional[Any] = mask_ratio lowercase :List[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase :List[str] = (image_size // patch_size) ** 2 lowercase :Dict = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase :Optional[Any] = int(mask_ratio * self.seq_length ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :Tuple = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase :Dict = None if self.use_labels: lowercase :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase :Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self: List[str] ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict ): lowercase :List[Any] = VideoMAEModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase :int = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: str , _lowerCAmelCase: Optional[int] ): lowercase :str = VideoMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase :Tuple = torch.ones((self.num_masks,) ) lowercase :str = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase :Optional[int] = mask.expand(self.batch_size , -1 ).bool() lowercase :List[Any] = model(_lowerCAmelCase , _lowerCAmelCase ) # model only returns predictions for masked patches lowercase :Any = mask.sum().item() lowercase :Optional[Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :Union[str, Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase :str = config_and_inputs lowercase :Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): _a = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _a = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :str = VideoMAEModelTester(self ) lowercase :str = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: str , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any]=False ): lowercase :Union[str, Any] = copy.deepcopy(_lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase :Tuple = torch.ones((self.model_tester.num_masks,) ) lowercase :Optional[Any] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase :List[Any] = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase :Optional[int] = bool_masked_pos.to(_lowerCAmelCase ) if return_labels: if model_class in [ *get_values(_lowerCAmelCase ), ]: lowercase :List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self: Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self: str ): pass def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): lowercase , lowercase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Union[str, Any] = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase :List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase , lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Tuple = model_class(_lowerCAmelCase ) lowercase :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase :Optional[int] = [*signature.parameters.keys()] lowercase :List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self: Any ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase :int = VideoMAEModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): if not self.has_attentions: pass else: lowercase , lowercase :Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase :Optional[Any] = True for model_class in self.all_model_classes: lowercase :Tuple = self.model_tester.seq_length - self.model_tester.num_masks lowercase :Dict = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase :Any = True lowercase :Tuple = False lowercase :str = True lowercase :List[Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase :Any = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase :Optional[Any] = True lowercase :str = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :Any = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase :List[Any] = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase :int = len(_lowerCAmelCase ) # Check attention is always last and order is fine lowercase :int = True lowercase :Union[str, Any] = True lowercase :int = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :Optional[int] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCAmelCase ) ) lowercase :Tuple = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self: str ): def check_hidden_states_output(_lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Tuple ): lowercase :Dict = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase :Tuple = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase :Tuple = outputs.hidden_states lowercase :Any = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) lowercase :str = self.model_tester.seq_length - self.model_tester.num_masks lowercase :List[str] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase , lowercase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :Any = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase :Optional[Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): pass def UpperCAmelCase__ ( ): lowercase :str = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) lowercase :List[str] = np.load(lowerCamelCase ) return list(lowerCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self: Dict ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Tuple = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( _lowerCAmelCase ) lowercase :Tuple = self.default_image_processor lowercase :Optional[Any] = prepare_video() lowercase :str = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase :List[str] = model(**_lowerCAmelCase ) # verify the logits lowercase :Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase :Optional[int] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :List[str] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(_lowerCAmelCase ) lowercase :List[Any] = self.default_image_processor lowercase :str = prepare_video() lowercase :Optional[int] = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # add boolean mask, indicating which patches to mask lowercase :Optional[Any] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowercase :str = torch.load(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase :Optional[Any] = model(**_lowerCAmelCase ) # verify the logits lowercase :str = torch.Size([1, 14_08, 15_36] ) lowercase :Union[str, Any] = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=_lowerCAmelCase ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase :Union[str, Any] = torch.tensor([0.51_42] , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase :Any = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=_lowerCAmelCase ).to( _lowerCAmelCase ) with torch.no_grad(): lowercase :List[str] = model(**_lowerCAmelCase ) lowercase :Tuple = torch.tensor(torch.tensor([0.64_69] ) , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1e-4 ) )
158
1
import argparse import copy def a_ ( SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' _lowerCamelCase : List[str] ={} with open(SCREAMING_SNAKE_CASE__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _lowerCamelCase : List[str] =[] _list.append([line.split()[1], line.split()[2]] ) _lowerCamelCase : Union[str, Any] =_list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _lowerCamelCase : int =[] _list.append([line.split()[0], line.split()[2]] ) _lowerCamelCase : Tuple =_list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def a_ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ ) as f: _lowerCamelCase : Any =f.read(1 ) _lowerCamelCase : str =start_node _lowerCamelCase : Optional[Any] =[] _lowerCamelCase : List[str] =start_node _lowerCamelCase : int =0 while visiting not in first_solution: _lowerCamelCase : Optional[int] =10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE__ ) and k[0] not in first_solution: _lowerCamelCase : Dict =k[1] _lowerCamelCase : Tuple =k[0] first_solution.append(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : List[Any] =distance_of_first_solution + int(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Union[str, Any] =best_node first_solution.append(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Optional[int] =0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _lowerCamelCase : str =( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def a_ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' _lowerCamelCase : Any =[] for n in solution[1:-1]: _lowerCamelCase : int =solution.index(SCREAMING_SNAKE_CASE__ ) for kn in solution[1:-1]: _lowerCamelCase : str =solution.index(SCREAMING_SNAKE_CASE__ ) if n == kn: continue _lowerCamelCase : Union[str, Any] =copy.deepcopy(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : str =kn _lowerCamelCase : Optional[int] =n _lowerCamelCase : Union[str, Any] =0 for k in _tmp[:-1]: _lowerCamelCase : Dict =_tmp[_tmp.index(SCREAMING_SNAKE_CASE__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _lowerCamelCase : Optional[Any] =distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _lowerCamelCase : Union[str, Any] =len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def a_ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =1 _lowerCamelCase : Optional[Any] =first_solution _lowerCamelCase : Tuple =[] _lowerCamelCase : Optional[int] =distance_of_first_solution _lowerCamelCase : str =solution while count <= iters: _lowerCamelCase : List[Any] =find_neighborhood(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : List[str] =0 _lowerCamelCase : Union[str, Any] =neighborhood[index_of_best_solution] _lowerCamelCase : Union[str, Any] =len(SCREAMING_SNAKE_CASE__ ) - 1 _lowerCamelCase : List[str] =False while not found: _lowerCamelCase : str =0 while i < len(SCREAMING_SNAKE_CASE__ ): if best_solution[i] != solution[i]: _lowerCamelCase : List[str] =best_solution[i] _lowerCamelCase : int =solution[i] break _lowerCamelCase : Optional[int] =i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _lowerCamelCase : Tuple =True _lowerCamelCase : int =best_solution[:-1] _lowerCamelCase : List[Any] =neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _lowerCamelCase : int =cost _lowerCamelCase : Tuple =solution else: _lowerCamelCase : List[str] =index_of_best_solution + 1 _lowerCamelCase : Any =neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE__ ) >= size: tabu_list.pop(0 ) _lowerCamelCase : Tuple =count + 1 return best_solution_ever, best_cost def a_ ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): '''simple docstring''' _lowerCamelCase : Optional[Any] =generate_neighbours(args.File ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] =generate_first_solution( args.File , SCREAMING_SNAKE_CASE__ ) _lowerCamelCase , _lowerCamelCase : str =tabu_search( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
199
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = '▁' lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : Tuple =BigBirdTokenizer UpperCamelCase__ : Union[str, Any] =BigBirdTokenizerFast UpperCamelCase__ : Any =True UpperCamelCase__ : Optional[Any] =True def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().setUp() _lowerCamelCase : List[Any] =self.tokenizer_class(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _lowerCamelCase : List[Any] ='<s>' _lowerCamelCase : Optional[Any] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[int] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(lowercase_ ) , 1004 ) def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Union[str, Any] =self.get_tokenizer() _lowerCamelCase : int =self.get_rust_tokenizer() _lowerCamelCase : int ='I was born in 92000, and this is falsé.' _lowerCamelCase : int =tokenizer.tokenize(lowercase_ ) _lowerCamelCase : List[Any] =rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Any =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _lowerCamelCase : str =rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : str =self.get_rust_tokenizer() _lowerCamelCase : Union[str, Any] =tokenizer.encode(lowercase_ ) _lowerCamelCase : List[Any] =rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : str =BigBirdTokenizer(lowercase_ , keep_accents=lowercase_ ) _lowerCamelCase : int =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [285, 46, 10, 170, 382] , ) _lowerCamelCase : Optional[Any] =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Any =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCamelCase : Optional[int] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _lowerCamelCase : List[str] ='Hello World!' _lowerCamelCase : Tuple =[65, 1_8536, 2260, 101, 66] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : int =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off _lowerCamelCase : Tuple =[65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @require_torch @slow def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _lowerCamelCase : Union[str, Any] =list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCamelCase : List[Any] =' '.join(lowercase_ ) _lowerCamelCase : List[str] =self.big_tokenizer.encode_plus(lowercase_ , return_tensors='pt' , return_token_type_ids=lowercase_ ) _lowerCamelCase : Optional[int] =self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=lowercase_ ) _lowerCamelCase : List[str] =BigBirdConfig(attention_type='original_full' ) _lowerCamelCase : Optional[Any] =BigBirdModel(lowercase_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase_ ) model(**lowercase_ ) @slow def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Dict =BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) _lowerCamelCase : int =tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] ={'input_ids': [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
199
1
from collections.abc import Sequence def lowerCAmelCase_ (lowerCAmelCase__: Sequence[float] , lowerCAmelCase__: bool = False ): """simple docstring""" if not arr: return 0 UpperCAmelCase_: Optional[Any] = 0 if allow_empty_subarrays else float("""-inf""" ) UpperCAmelCase_: str = 0.0 for num in arr: UpperCAmelCase_: List[str] = max(0 if allow_empty_subarrays else num , curr_sum + num ) UpperCAmelCase_: Union[str, Any] = max(lowerCAmelCase__ , lowerCAmelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() a : List[str] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
82
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> int: UpperCAmelCase_: List[Any] = parent UpperCAmelCase_: int = batch_size UpperCAmelCase_: Any = seq_length UpperCAmelCase_: Optional[int] = is_training UpperCAmelCase_: Dict = use_input_mask UpperCAmelCase_: Optional[int] = use_token_type_ids UpperCAmelCase_: Dict = use_labels UpperCAmelCase_: List[str] = vocab_size UpperCAmelCase_: Union[str, Any] = hidden_size UpperCAmelCase_: List[Any] = num_hidden_layers UpperCAmelCase_: Tuple = num_attention_heads UpperCAmelCase_: Optional[int] = intermediate_size UpperCAmelCase_: Tuple = hidden_act UpperCAmelCase_: Tuple = hidden_dropout_prob UpperCAmelCase_: List[str] = attention_probs_dropout_prob UpperCAmelCase_: Any = max_position_embeddings UpperCAmelCase_: List[Any] = type_vocab_size UpperCAmelCase_: List[str] = type_sequence_label_size UpperCAmelCase_: Tuple = initializer_range UpperCAmelCase_: Optional[int] = num_labels UpperCAmelCase_: Union[str, Any] = num_choices UpperCAmelCase_: Any = scope def __snake_case (self ) -> Tuple: UpperCAmelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase_: str = None if self.use_input_mask: UpperCAmelCase_: Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_: int = None if self.use_token_type_ids: UpperCAmelCase_: int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase_: Dict = None UpperCAmelCase_: List[str] = None UpperCAmelCase_: Any = None if self.use_labels: UpperCAmelCase_: Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase_: Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase_: Optional[int] = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase_: List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case (self ) -> List[Any]: return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, use_stable_embedding=SCREAMING_SNAKE_CASE_, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCAmelCase_: List[Any] = OpenLlamaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: UpperCAmelCase_: Tuple = True UpperCAmelCase_: List[Any] = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Any = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Optional[int] = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: str = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> List[Any]: UpperCAmelCase_: Any = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> Any: UpperCAmelCase_: Tuple = True UpperCAmelCase_: Optional[int] = True UpperCAmelCase_: Dict = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # first forward pass UpperCAmelCase_: str = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, use_cache=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_: Tuple = ids_tensor((self.batch_size, 3), config.vocab_size ) UpperCAmelCase_: Optional[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and UpperCAmelCase_: str = torch.cat([input_ids, next_tokens], dim=-1 ) UpperCAmelCase_: str = torch.cat([input_mask, next_mask], dim=-1 ) UpperCAmelCase_: Dict = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_, )["""hidden_states"""][0] UpperCAmelCase_: Tuple = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_, )["""hidden_states"""][0] # select random slice UpperCAmelCase_: str = ids_tensor((1,), output_from_past.shape[-1] ).item() UpperCAmelCase_: str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_: Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-3 ) ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ): List[Any] = config_and_inputs UpperCAmelCase_: List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) A = (OpenLlamaForCausalLM,) if is_torch_available() else () A = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) A = False A = False def __snake_case (self ) -> int: UpperCAmelCase_: str = OpenLlamaModelTester(self ) UpperCAmelCase_: Any = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case (self ) -> Optional[int]: self.config_tester.run_common_tests() def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_: Dict = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_ , UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: int = 3 UpperCAmelCase_: Tuple = input_dict["""input_ids"""] UpperCAmelCase_: Optional[int] = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) UpperCAmelCase_: Optional[int] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def __snake_case (self ) -> int: UpperCAmelCase_ , UpperCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: Dict = 3 UpperCAmelCase_: Optional[Any] = """single_label_classification""" UpperCAmelCase_: Optional[int] = input_dict["""input_ids"""] UpperCAmelCase_: str = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) UpperCAmelCase_: List[str] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: Optional[int] = 3 UpperCAmelCase_: int = """multi_label_classification""" UpperCAmelCase_: Tuple = input_dict["""input_ids"""] UpperCAmelCase_: int = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_: Optional[Any] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Any = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def __snake_case (self ) -> int: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: Dict = ids_tensor([1, 10], config.vocab_size ) UpperCAmelCase_: Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_: Any = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) original_model.to(SCREAMING_SNAKE_CASE_ ) original_model.eval() UpperCAmelCase_: Any = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state UpperCAmelCase_: Tuple = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_: Optional[Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase_: int = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) scaled_model.to(SCREAMING_SNAKE_CASE_ ) scaled_model.eval() UpperCAmelCase_: Union[str, Any] = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state UpperCAmelCase_: Union[str, Any] = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) ) else: self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) )
82
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _a (__magic_name__ ): '''simple docstring''' def __get__( self , A__ , A__=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) A__ : List[str] = """__cached_""" + self.fget.__name__ A__ : List[Any] = getattr(A__ , A__ , A__ ) if cached is None: A__ : Optional[int] = self.fget(A__ ) setattr(A__ , A__ , A__ ) return cached def UpperCamelCase (lowercase_: Any ) -> List[Any]: A__ : List[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def UpperCamelCase (lowercase_: Optional[int] ) -> Dict: if is_torch_fx_proxy(lowercase_ ): return True if is_torch_available(): import torch if isinstance(lowercase_ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowercase_ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowercase_ , (jnp.ndarray, Tracer) ): return True return isinstance(lowercase_ , np.ndarray ) def UpperCamelCase (lowercase_: Dict ) -> Tuple: return isinstance(lowercase_ , np.ndarray ) def UpperCamelCase (lowercase_: Tuple ) -> Optional[int]: return _is_numpy(lowercase_ ) def UpperCamelCase (lowercase_: Union[str, Any] ) -> Any: import torch return isinstance(lowercase_ , torch.Tensor ) def UpperCamelCase (lowercase_: List[str] ) -> List[Any]: return False if not is_torch_available() else _is_torch(lowercase_ ) def UpperCamelCase (lowercase_: List[str] ) -> List[str]: import torch return isinstance(lowercase_ , torch.device ) def UpperCamelCase (lowercase_: Optional[Any] ) -> int: return False if not is_torch_available() else _is_torch_device(lowercase_ ) def UpperCamelCase (lowercase_: Tuple ) -> Any: import torch if isinstance(lowercase_ , lowercase_ ): if hasattr(lowercase_ , lowercase_ ): A__ : Union[str, Any] = getattr(lowercase_ , lowercase_ ) else: return False return isinstance(lowercase_ , torch.dtype ) def UpperCamelCase (lowercase_: Union[str, Any] ) -> int: return False if not is_torch_available() else _is_torch_dtype(lowercase_ ) def UpperCamelCase (lowercase_: Union[str, Any] ) -> Any: import tensorflow as tf return isinstance(lowercase_ , tf.Tensor ) def UpperCamelCase (lowercase_: List[str] ) -> Optional[Any]: return False if not is_tf_available() else _is_tensorflow(lowercase_ ) def UpperCamelCase (lowercase_: Any ) -> int: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowercase_ , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(lowercase_ ) return type(lowercase_ ) == tf.Tensor def UpperCamelCase (lowercase_: Any ) -> int: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowercase_ ) def UpperCamelCase (lowercase_: Dict ) -> Any: import jax.numpy as jnp # noqa: F811 return isinstance(lowercase_ , jnp.ndarray ) def UpperCamelCase (lowercase_: Any ) -> Optional[Any]: return False if not is_flax_available() else _is_jax(lowercase_ ) def UpperCamelCase (lowercase_: Optional[int] ) -> int: if isinstance(lowercase_ , (dict, UserDict) ): return {k: to_py_obj(lowercase_ ) for k, v in obj.items()} elif isinstance(lowercase_ , (list, tuple) ): return [to_py_obj(lowercase_ ) for o in obj] elif is_tf_tensor(lowercase_ ): return obj.numpy().tolist() elif is_torch_tensor(lowercase_ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowercase_ ): return np.asarray(lowercase_ ).tolist() elif isinstance(lowercase_ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def UpperCamelCase (lowercase_: Any ) -> Any: if isinstance(lowercase_ , (dict, UserDict) ): return {k: to_numpy(lowercase_ ) for k, v in obj.items()} elif isinstance(lowercase_ , (list, tuple) ): return np.array(lowercase_ ) elif is_tf_tensor(lowercase_ ): return obj.numpy() elif is_torch_tensor(lowercase_ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowercase_ ): return np.asarray(lowercase_ ) else: return obj class _a (__magic_name__ ): '''simple docstring''' def __A ( self ): A__ : Optional[int] = fields(self ) # Safety and consistency checks if not len(A__ ): raise ValueError(F"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""" ) A__ : Optional[Any] = getattr(self , class_fields[0].name ) A__ : Dict = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(A__ ): if isinstance(A__ , A__ ): A__ : Dict = first_field.items() A__ : Union[str, Any] = True else: try: A__ : Union[str, Any] = iter(A__ ) A__ : int = True except TypeError: A__ : Any = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(A__ ): if ( not isinstance(A__ , (list, tuple) ) or not len(A__ ) == 2 or not isinstance(element[0] , A__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute A__ : Union[str, Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: A__ : int = element[1] elif first_field is not None: A__ : Union[str, Any] = first_field else: for field in class_fields: A__ : Tuple = getattr(self , field.name ) if v is not None: A__ : str = v def __delitem__( self , *A__ , **A__ ): raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def __A ( self , *A__ , **A__ ): raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def __A ( self , *A__ , **A__ ): raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def __A ( self , *A__ , **A__ ): raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self , A__ ): if isinstance(A__ , A__ ): A__ : Union[str, Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , A__ , A__ ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(A__ , A__ ) super().__setattr__(A__ , A__ ) def __setitem__( self , A__ , A__ ): # Will raise a KeyException if needed super().__setitem__(A__ , A__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(A__ , A__ ) def __A ( self ): return tuple(self[k] for k in self.keys() ) class _a (__magic_name__ , __magic_name__ ): '''simple docstring''' @classmethod def __A ( cls , A__ ): raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[str] = '''longest''' UpperCAmelCase__: Optional[int] = '''max_length''' UpperCAmelCase__: List[str] = '''do_not_pad''' class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[Any] = '''pt''' UpperCAmelCase__: Dict = '''tf''' UpperCAmelCase__: Tuple = '''np''' UpperCAmelCase__: List[Any] = '''jax''' class _a : '''simple docstring''' def __init__( self , A__ ): A__ : Any = context_managers A__ : Any = ExitStack() def __enter__( self ): for context_manager in self.context_managers: self.stack.enter_context(A__ ) def __exit__( self , *A__ , **A__ ): self.stack.__exit__(*A__ , **A__ ) def UpperCamelCase (lowercase_: Dict ) -> Dict: A__ : str = infer_framework(lowercase_ ) if framework == "tf": A__ : str = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ : int = inspect.signature(model_class.forward ) # PyTorch models else: A__ : Union[str, Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def UpperCamelCase (lowercase_: Optional[Any] ) -> List[Any]: A__ : Optional[int] = model_class.__name__ A__ : int = infer_framework(lowercase_ ) if framework == "tf": A__ : List[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": A__ : Tuple = inspect.signature(model_class.forward ) # PyTorch models else: A__ : Optional[int] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def UpperCamelCase (lowercase_: MutableMapping , lowercase_: str = "" , lowercase_: str = "." ) -> List[Any]: def _flatten_dict(lowercase_: Union[str, Any] , lowercase_: Union[str, Any]="" , lowercase_: List[Any]="." ): for k, v in d.items(): A__ : List[str] = str(lowercase_ ) + delimiter + str(lowercase_ ) if parent_key else k if v and isinstance(lowercase_ , lowercase_ ): yield from flatten_dict(lowercase_ , lowercase_ , delimiter=lowercase_ ).items() else: yield key, v return dict(_flatten_dict(lowercase_ , lowercase_ , lowercase_ ) ) @contextmanager def UpperCamelCase (lowercase_: Optional[int] , lowercase_: bool = False ) -> Optional[int]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: Optional[Any]=None ) -> int: if is_numpy_array(lowercase_ ): return np.transpose(lowercase_ , axes=lowercase_ ) elif is_torch_tensor(lowercase_ ): return array.T if axes is None else array.permute(*lowercase_ ) elif is_tf_tensor(lowercase_ ): import tensorflow as tf return tf.transpose(lowercase_ , perm=lowercase_ ) elif is_jax_tensor(lowercase_ ): return jnp.transpose(lowercase_ , axes=lowercase_ ) else: raise ValueError(f"""Type not supported for transpose: {type(lowercase_ )}.""" ) def UpperCamelCase (lowercase_: Dict , lowercase_: Union[str, Any] ) -> List[str]: if is_numpy_array(lowercase_ ): return np.reshape(lowercase_ , lowercase_ ) elif is_torch_tensor(lowercase_ ): return array.reshape(*lowercase_ ) elif is_tf_tensor(lowercase_ ): import tensorflow as tf return tf.reshape(lowercase_ , lowercase_ ) elif is_jax_tensor(lowercase_ ): return jnp.reshape(lowercase_ , lowercase_ ) else: raise ValueError(f"""Type not supported for reshape: {type(lowercase_ )}.""" ) def UpperCamelCase (lowercase_: int , lowercase_: List[str]=None ) -> Any: if is_numpy_array(lowercase_ ): return np.squeeze(lowercase_ , axis=lowercase_ ) elif is_torch_tensor(lowercase_ ): return array.squeeze() if axis is None else array.squeeze(dim=lowercase_ ) elif is_tf_tensor(lowercase_ ): import tensorflow as tf return tf.squeeze(lowercase_ , axis=lowercase_ ) elif is_jax_tensor(lowercase_ ): return jnp.squeeze(lowercase_ , axis=lowercase_ ) else: raise ValueError(f"""Type not supported for squeeze: {type(lowercase_ )}.""" ) def UpperCamelCase (lowercase_: str , lowercase_: Optional[Any] ) -> str: if is_numpy_array(lowercase_ ): return np.expand_dims(lowercase_ , lowercase_ ) elif is_torch_tensor(lowercase_ ): return array.unsqueeze(dim=lowercase_ ) elif is_tf_tensor(lowercase_ ): import tensorflow as tf return tf.expand_dims(lowercase_ , axis=lowercase_ ) elif is_jax_tensor(lowercase_ ): return jnp.expand_dims(lowercase_ , axis=lowercase_ ) else: raise ValueError(f"""Type not supported for expand_dims: {type(lowercase_ )}.""" ) def UpperCamelCase (lowercase_: Tuple ) -> Optional[int]: if is_numpy_array(lowercase_ ): return np.size(lowercase_ ) elif is_torch_tensor(lowercase_ ): return array.numel() elif is_tf_tensor(lowercase_ ): import tensorflow as tf return tf.size(lowercase_ ) elif is_jax_tensor(lowercase_ ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(lowercase_ )}.""" ) def UpperCamelCase (lowercase_: str , lowercase_: str ) -> Union[str, Any]: for key, value in auto_map.items(): if isinstance(lowercase_ , (tuple, list) ): A__ : Any = [f"""{repo_id}--{v}""" if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: A__ : Any = f"""{repo_id}--{value}""" return auto_map def UpperCamelCase (lowercase_: List[str] ) -> int: for base_class in inspect.getmro(lowercase_ ): A__ : Tuple = base_class.__module__ A__ : int = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
192
import argparse import os import re A_ : List[str] = 'src/diffusers' # Pattern that looks at the indentation in a line. A_ : Union[str, Any] = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. A_ : int = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A_ : Optional[int] = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. A_ : List[Any] = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A_ : List[str] = re.compile(r'\[([^\]]+)\]') def UpperCamelCase (lowercase_: List[str] ) -> Dict: A__ : Optional[Any] = _re_indent.search(lowercase_ ) return "" if search is None else search.groups()[0] def UpperCamelCase (lowercase_: Dict , lowercase_: Any="" , lowercase_: Any=None , lowercase_: Any=None ) -> Tuple: A__ : Optional[Any] = 0 A__ : str = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(lowercase_ ): index += 1 A__ : Tuple = ["""\n""".join(lines[:index] )] else: A__ : Optional[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). A__ : Union[str, Any] = [lines[index]] index += 1 while index < len(lowercase_ ) and (end_prompt is None or not lines[index].startswith(lowercase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(lowercase_ ) ) if index < len(lowercase_ ) - 1: A__ : Union[str, Any] = [lines[index + 1]] index += 1 else: A__ : List[Any] = [] else: blocks.append("""\n""".join(lowercase_ ) ) A__ : int = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase_ ) > 0: blocks.append("""\n""".join(lowercase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def UpperCamelCase (lowercase_: str ) -> str: def _inner(lowercase_: Union[str, Any] ): return key(lowercase_ ).lower().replace("""_""" , """""" ) return _inner def UpperCamelCase (lowercase_: int , lowercase_: Any=None ) -> str: # If no key is provided, we use a noop. def noop(lowercase_: Any ): return x if key is None: A__ : Optional[Any] = noop # Constants are all uppercase, they go first. A__ : Optional[int] = [obj for obj in objects if key(lowercase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. A__ : List[Any] = [obj for obj in objects if key(lowercase_ )[0].isupper() and not key(lowercase_ ).isupper()] # Functions begin with a lowercase, they go last. A__ : Tuple = [obj for obj in objects if not key(lowercase_ )[0].isupper()] A__ : Any = ignore_underscore(lowercase_ ) return sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) def UpperCamelCase (lowercase_: List[Any] ) -> List[Any]: # This inner function sort imports between [ ]. def _replace(lowercase_: List[Any] ): A__ : Tuple = match.groups()[0] if "," not in imports: return f"""[{imports}]""" A__ : Optional[int] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(lowercase_ )] ) + "]" A__ : Dict = import_statement.split("""\n""" ) if len(lowercase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. A__ : List[str] = 2 if lines[1].strip() == """[""" else 1 A__ : Any = [(i, _re_strip_line.search(lowercase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] A__ : Any = sort_objects(lowercase_ , key=lambda lowercase_ : x[1] ) A__ : int = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: A__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: A__ : Any = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ : Tuple = keys[:-1] A__ : List[Any] = get_indent(lines[1] ) + """, """.join([f"""\"{k}\"""" for k in sort_objects(lowercase_ )] ) return "\n".join(lowercase_ ) else: # Finally we have to deal with imports fitting on one line A__ : int = _re_bracket_content.sub(_replace , lowercase_ ) return import_statement def UpperCamelCase (lowercase_: Optional[int] , lowercase_: str=True ) -> Any: with open(lowercase_ , """r""" ) as f: A__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 A__ : Tuple = split_code_in_indented_blocks( lowercase_ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. A__ : int = main_blocks[block_idx] A__ : Optional[Any] = block.split("""\n""" ) # Get to the start of the imports. A__ : Any = 0 while line_idx < len(lowercase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: A__ : Optional[Any] = len(lowercase_ ) else: line_idx += 1 if line_idx >= len(lowercase_ ): continue # Ignore beginning and last line: they don't contain anything. A__ : Union[str, Any] = """\n""".join(block_lines[line_idx:-1] ) A__ : List[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. A__ : Union[str, Any] = split_code_in_indented_blocks(lowercase_ , indent_level=lowercase_ ) # We have two categories of import key: list or _import_structure[key].append/extend A__ : Optional[Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. A__ : int = [(pattern.search(lowercase_ ).groups()[0] if pattern.search(lowercase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. A__ : int = [(i, key) for i, key in enumerate(lowercase_ ) if key is not None] A__ : List[Any] = [x[0] for x in sorted(lowercase_ , key=lambda lowercase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. A__ : Optional[int] = 0 A__ : Any = [] for i in range(len(lowercase_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: A__ : Any = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowercase_ ) count += 1 # And we put our main block back together with its first and last line. A__ : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase_ ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(lowercase_ , """w""" ) as f: f.write("""\n""".join(lowercase_ ) ) def UpperCamelCase (lowercase_: Any=True ) -> Any: A__ : Dict = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: A__ : List[Any] = sort_imports(os.path.join(lowercase_ , """__init__.py""" ) , check_only=lowercase_ ) if result: A__ : Optional[int] = [os.path.join(lowercase_ , """__init__.py""" )] if len(lowercase_ ) > 0: raise ValueError(f"""Would overwrite {len(lowercase_ )} files, run `make style`.""" ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A_ : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
192
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} UpperCAmelCase__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) UpperCAmelCase__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"latents"} def _a ( self ) -> Optional[Any]: return self._get_superresolution_dummy_components() def _a ( self , A_ , A_=0 ) -> Union[str, Any]: if str(A_ ).startswith('mps' ): __UpperCamelCase =torch.manual_seed(A_ ) else: __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase =floats_tensor((1, 3, 16, 16) , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _a ( self ) -> str: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _a ( self ) -> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _a ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _a ( self ) -> Tuple: self._test_save_load_local() def _a ( self ) -> Tuple: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
117
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "MCTCTFeatureExtractor" UpperCAmelCase__ : str = "AutoTokenizer" def __init__( self , A_ , A_ ) -> Dict: super().__init__(A_ , A_ ) __UpperCamelCase =self.feature_extractor __UpperCamelCase =False def __call__( self , *A_ , **A_ ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A_ , **A_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __UpperCamelCase =kwargs.pop('raw_speech' ) else: __UpperCamelCase =kwargs.pop('audio' , A_ ) __UpperCamelCase =kwargs.pop('sampling_rate' , A_ ) __UpperCamelCase =kwargs.pop('text' , A_ ) if len(A_ ) > 0: __UpperCamelCase =args[0] __UpperCamelCase =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __UpperCamelCase =self.feature_extractor(A_ , *A_ , sampling_rate=A_ , **A_ ) if text is not None: __UpperCamelCase =self.tokenizer(A_ , **A_ ) if text is None: return inputs elif audio is None: return encodings else: __UpperCamelCase =encodings['input_ids'] return inputs def _a ( self , *A_ , **A_ ) -> str: return self.tokenizer.batch_decode(*A_ , **A_ ) def _a ( self , *A_ , **A_ ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A_ , **A_ ) __UpperCamelCase =kwargs.pop('input_features' , A_ ) __UpperCamelCase =kwargs.pop('labels' , A_ ) if len(A_ ) > 0: __UpperCamelCase =args[0] __UpperCamelCase =args[1:] if input_features is not None: __UpperCamelCase =self.feature_extractor.pad(A_ , *A_ , **A_ ) if labels is not None: __UpperCamelCase =self.tokenizer.pad(A_ , **A_ ) if labels is None: return input_features elif input_features is None: return labels else: __UpperCamelCase =labels['input_ids'] return input_features def _a ( self , *A_ , **A_ ) -> Optional[int]: return self.tokenizer.decode(*A_ , **A_ ) @contextmanager def _a ( self ) -> str: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __UpperCamelCase =True __UpperCamelCase =self.tokenizer yield __UpperCamelCase =self.feature_extractor __UpperCamelCase =False
117
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : Any = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class _snake_case ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 'roberta-prelayernorm' def __init__( self , _lowerCamelCase=5_0265 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) a :Dict = vocab_size a :Any = hidden_size a :int = num_hidden_layers a :Any = num_attention_heads a :int = hidden_act a :Dict = intermediate_size a :int = hidden_dropout_prob a :List[Any] = attention_probs_dropout_prob a :Any = max_position_embeddings a :Tuple = type_vocab_size a :Optional[int] = initializer_range a :Optional[int] = layer_norm_eps a :Union[str, Any] = position_embedding_type a :Tuple = use_cache a :str = classifier_dropout class _snake_case ( snake_case_ ): @property def SCREAMING_SNAKE_CASE__ ( self ): if self.task == "multiple-choice": a :str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a :Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
94
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''bridgetower_vision_model''' def __init__( self , A=768 , A=12 , A=3 , A=16 , A=288 , A=1 , A=1e-05 , A=False , A=True , A=False , **A , ) -> Dict: super().__init__(**A ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = patch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = stop_gradient _SCREAMING_SNAKE_CASE = share_layernorm _SCREAMING_SNAKE_CASE = remove_last_layer @classmethod def snake_case_( cls , A , **A ) -> "PretrainedConfig": _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cls.get_config_dict(A , **A ) if config_dict.get("""model_type""" ) == "bridgetower": _SCREAMING_SNAKE_CASE = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''bridgetower_text_model''' def __init__( self , A=5_0265 , A=768 , A=12 , A=12 , A=1 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=514 , A=1 , A=1e-05 , A=1 , A=0 , A=2 , A="absolute" , A=True , **A , ) -> Union[str, Any]: super().__init__(**A ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id @classmethod def snake_case_( cls , A , **A ) -> "PretrainedConfig": _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = cls.get_config_dict(A , **A ) if config_dict.get("""model_type""" ) == "bridgetower": _SCREAMING_SNAKE_CASE = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''bridgetower''' def __init__( self , A=True , A="gelu" , A=768 , A=1 , A=1e-05 , A=False , A="add" , A=12 , A=6 , A=False , A=False , A=None , A=None , **A , ) -> Tuple: # TODO: remove this once the Hub files are updated. _SCREAMING_SNAKE_CASE = kwargs.pop("""text_config_dict""" , A ) _SCREAMING_SNAKE_CASE = kwargs.pop("""vision_config_dict""" , A ) super().__init__(**A ) _SCREAMING_SNAKE_CASE = share_cross_modal_transformer_layers _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = initializer_factor _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = share_link_tower_layers _SCREAMING_SNAKE_CASE = link_tower_type _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = tie_word_embeddings _SCREAMING_SNAKE_CASE = init_layernorm_from_vision_encoder if text_config is None: _SCREAMING_SNAKE_CASE = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _SCREAMING_SNAKE_CASE = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _SCREAMING_SNAKE_CASE = BridgeTowerTextConfig(**A ) _SCREAMING_SNAKE_CASE = BridgeTowerVisionConfig(**A ) @classmethod def snake_case_( cls , A , A , **A ) -> int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A ) def snake_case_( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE = self.text_config.to_dict() _SCREAMING_SNAKE_CASE = self.vision_config.to_dict() _SCREAMING_SNAKE_CASE = self.__class__.model_type return output
58
0
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: UpperCamelCase_: List[str] = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' , '1.0.0' , _lowerCamelCase , standard_warn=_lowerCamelCase ) UpperCamelCase_: Tuple = dict(scheduler.config ) UpperCamelCase_: Dict = 1 UpperCamelCase_: List[Any] = FrozenDict(_lowerCamelCase ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: UpperCamelCase_: Union[str, Any] = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' , '1.0.0' , _lowerCamelCase , standard_warn=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = dict(scheduler.config ) UpperCamelCase_: Tuple = True UpperCamelCase_: Optional[Any] = FrozenDict(_lowerCamelCase ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=_lowerCamelCase , segmentation_processor=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , ) def _a ( self , _lowerCamelCase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase_: Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def _a ( self ): self.enable_attention_slicing(_lowerCamelCase ) def _a ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCamelCase_: Optional[Any] = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _a ( self ): if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 5_1_2 , _lowerCamelCase = 5_1_2 , _lowerCamelCase = 5_0 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ): UpperCamelCase_: Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) UpperCamelCase_: Union[str, Any] = self.segmentation_model(**_lowerCamelCase ) UpperCamelCase_: int = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCamelCase_: Dict = self.numpy_to_pil(_lowerCamelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCamelCase_: int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , )
292
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> np.array: UpperCamelCase_: Dict = F'''{sampling_rate}''' UpperCamelCase_: Any = '1' UpperCamelCase_: Any = 'f32le' UpperCamelCase_: Union[str, Any] = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(UpperCAmelCase__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCamelCase_: Optional[Any] = ffmpeg_process.communicate(UpperCAmelCase__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error UpperCamelCase_: Union[str, Any] = output_stream[0] UpperCamelCase_: List[str] = np.frombuffer(UpperCAmelCase__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = "f32le" , ) -> Tuple: UpperCamelCase_: Any = F'''{sampling_rate}''' UpperCamelCase_: Union[str, Any] = '1' if format_for_conversion == "s16le": UpperCamelCase_: Optional[Any] = 2 elif format_for_conversion == "f32le": UpperCamelCase_: Any = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) UpperCamelCase_: int = platform.system() if system == "Linux": UpperCamelCase_: Tuple = 'alsa' UpperCamelCase_: List[str] = 'default' elif system == "Darwin": UpperCamelCase_: int = 'avfoundation' UpperCamelCase_: Union[str, Any] = ':0' elif system == "Windows": UpperCamelCase_: Tuple = 'dshow' UpperCamelCase_: Dict = 'default' UpperCamelCase_: Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] UpperCamelCase_: Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCamelCase_: Optional[int] = _ffmpeg_stream(UpperCAmelCase__ , UpperCAmelCase__ ) for item in iterator: yield item def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = "f32le" , ) -> Any: if stream_chunk_s is not None: UpperCamelCase_: List[Any] = stream_chunk_s else: UpperCamelCase_: Dict = chunk_length_s UpperCamelCase_: List[str] = ffmpeg_microphone(UpperCAmelCase__ , UpperCAmelCase__ , format_for_conversion=UpperCAmelCase__ ) if format_for_conversion == "s16le": UpperCamelCase_: Union[str, Any] = np.intaa UpperCamelCase_: List[Any] = 2 elif format_for_conversion == "f32le": UpperCamelCase_: str = np.floataa UpperCamelCase_: Tuple = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: UpperCamelCase_: int = chunk_length_s / 6 UpperCamelCase_: Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(UpperCAmelCase__ , (int, float) ): UpperCamelCase_: Union[str, Any] = [stride_length_s, stride_length_s] UpperCamelCase_: Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCamelCase_: Dict = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCamelCase_: Optional[int] = datetime.datetime.now() UpperCamelCase_: Optional[int] = datetime.timedelta(seconds=UpperCAmelCase__ ) for item in chunk_bytes_iter(UpperCAmelCase__ , UpperCAmelCase__ , stride=(stride_left, stride_right) , stream=UpperCAmelCase__ ): # Put everything back in numpy scale UpperCamelCase_: Tuple = np.frombuffer(item['raw'] , dtype=UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) UpperCamelCase_: int = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ) -> int: UpperCamelCase_: str = b'' UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) UpperCamelCase_: List[str] = 0 for raw in iterator: acc += raw if stream and len(UpperCAmelCase__ ) < chunk_len: UpperCamelCase_: Optional[Any] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(UpperCAmelCase__ ) >= chunk_len: # We are flushing the accumulator UpperCamelCase_: int = (_stride_left, stride_right) UpperCamelCase_: Optional[Any] = {'raw': acc[:chunk_len], 'stride': stride} if stream: UpperCamelCase_: Any = False yield item UpperCamelCase_: Optional[int] = stride_left UpperCamelCase_: Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(UpperCAmelCase__ ) > stride_left: UpperCamelCase_: int = {'raw': acc, 'stride': (_stride_left, 0)} if stream: UpperCamelCase_: Optional[Any] = False yield item def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> int: UpperCamelCase_: Any = 2**2_4 # 16Mo try: with subprocess.Popen(UpperCAmelCase__ , stdout=subprocess.PIPE , bufsize=UpperCAmelCase__ ) as ffmpeg_process: while True: UpperCamelCase_: Any = ffmpeg_process.stdout.read(UpperCAmelCase__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
292
1
'''simple docstring''' import numpy as np import qiskit def __a(SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int | None = None ): '''simple docstring''' _lowerCAmelCase = np.random.default_rng(seed=SCREAMING_SNAKE_CASE_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowerCAmelCase = 6 * key_len # Measurement basis for Alice's qubits. _lowerCAmelCase = rng.integers(2 , size=SCREAMING_SNAKE_CASE_ ) # The set of states Alice will prepare. _lowerCAmelCase = rng.integers(2 , size=SCREAMING_SNAKE_CASE_ ) # Measurement basis for Bob's qubits. _lowerCAmelCase = rng.integers(2 , size=SCREAMING_SNAKE_CASE_ ) # Quantum Circuit to simulate BB84 _lowerCAmelCase = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE_ , name="BB84" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(SCREAMING_SNAKE_CASE_ ): if alice_state[index] == 1: bbaa_circ.x(SCREAMING_SNAKE_CASE_ ) if alice_basis[index] == 1: bbaa_circ.h(SCREAMING_SNAKE_CASE_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(SCREAMING_SNAKE_CASE_ ): if bob_basis[index] == 1: bbaa_circ.h(SCREAMING_SNAKE_CASE_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowerCAmelCase = qiskit.Aer.get_backend("aer_simulator" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowerCAmelCase = qiskit.execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=1 , seed_simulator=SCREAMING_SNAKE_CASE_ ) # Returns the result of measurement. _lowerCAmelCase = job.result().get_counts(SCREAMING_SNAKE_CASE_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowerCAmelCase = "".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowerCAmelCase = gen_key[:key_len] if len(SCREAMING_SNAKE_CASE_ ) >= key_len else gen_key.ljust(SCREAMING_SNAKE_CASE_ , "0" ) return key if __name__ == "__main__": print(f'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
158
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
1
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : str = {"vocab_file": "spiece.model"} _lowerCAmelCase : List[str] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } _lowerCAmelCase : Optional[Any] = { "google/bigbird-roberta-base": 40_96, "google/bigbird-roberta-large": 40_96, "google/bigbird-base-trivia-itc": 40_96, } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[Any] = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , A : Union[str, Any] , A : List[str]="<unk>" , A : List[Any]="<s>" , A : Dict="</s>" , A : Any="<pad>" , A : List[str]="[SEP]" , A : Optional[Any]="[MASK]" , A : List[str]="[CLS]" , A : Optional[Dict[str, Any]] = None , **A : Optional[int] , ): _UpperCAmelCase : str = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token _UpperCAmelCase : Optional[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token _UpperCAmelCase : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token _UpperCAmelCase : Optional[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token _UpperCAmelCase : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token _UpperCAmelCase : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : Optional[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token _UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sep_token=A , mask_token=A , cls_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) _UpperCAmelCase : int = vocab_file _UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def snake_case_ ( self : List[str] ): return self.sp_model.get_piece_size() def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): _UpperCAmelCase : Optional[Any] = self.__dict__.copy() _UpperCAmelCase : str = None return state def __setstate__( self : Optional[Any] , A : Any ): _UpperCAmelCase : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : List[str] = {} _UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self : Union[str, Any] , A : str ): return self.sp_model.encode(A , out_type=A ) def snake_case_ ( self : int , A : Optional[Any] ): return self.sp_model.piece_to_id(A ) def snake_case_ ( self : str , A : Union[str, Any] ): _UpperCAmelCase : Optional[Any] = self.sp_model.IdToPiece(A ) return token def snake_case_ ( self : Optional[Any] , A : Union[str, Any] ): _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[Any] = "" _UpperCAmelCase : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token _UpperCAmelCase : List[Any] = True _UpperCAmelCase : str = [] else: current_sub_tokens.append(A ) _UpperCAmelCase : Dict = False out_string += self.sp_model.decode(A ) return out_string.strip() def snake_case_ ( self : Union[str, Any] , A : List[int] , A : bool = False , A : bool = None , A : bool = True , **A : Dict , ): _UpperCAmelCase : int = kwargs.pop("use_source_tokenizer" , A ) _UpperCAmelCase : Dict = self.convert_ids_to_tokens(A , skip_special_tokens=A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Tuple = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) _UpperCAmelCase : Union[str, Any] = [] sub_texts.append(A ) else: current_sub_text.append(A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(A ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _UpperCAmelCase : List[Any] = re.sub(R" (\[(MASK|SEP)\])" , R"\1" , " ".join(A ) ) else: _UpperCAmelCase : Optional[Any] = "".join(A ) _UpperCAmelCase : Optional[int] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _UpperCAmelCase : str = self.clean_up_tokenization(A ) return clean_text else: return text def snake_case_ ( self : Dict , A : str , A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase : Tuple = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , "wb" ) as fi: _UpperCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def snake_case_ ( self : Union[str, Any] , A : List[int] , A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] _UpperCAmelCase : str = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case_ ( self : Optional[int] , A : List[int] , A : Optional[List[int]] = None , A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def snake_case_ ( self : Any , A : List[int] , A : Optional[List[int]] = None ): _UpperCAmelCase : Union[str, Any] = [self.sep_token_id] _UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
352
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict=28_123 ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i _UpperCAmelCase : Any = set() _UpperCAmelCase : List[str] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(SCREAMING_SNAKE_CASE__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
202
0
from __future__ import annotations from collections.abc import MutableSequence class __lowerCAmelCase : def __init__( self , _snake_case , _snake_case ): """simple docstring""" if len(_snake_case ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) _lowerCAmelCase = list(_snake_case ) _lowerCAmelCase = degree def __add__( self , _snake_case ): """simple docstring""" if self.degree > polynomial_a.degree: _lowerCAmelCase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _snake_case ) else: _lowerCAmelCase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _snake_case ) def __sub__( self , _snake_case ): """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): """simple docstring""" _lowerCAmelCase = """""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_snake_case ) return polynomial def __repr__( self ): """simple docstring""" return self.__str__() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _snake_case ) def snake_case ( self , _snake_case = 0 ): """simple docstring""" _lowerCAmelCase = [0] * (self.degree + 2) _lowerCAmelCase = constant for i in range(self.degree + 1 ): _lowerCAmelCase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _snake_case ) def __eq__( self , _snake_case ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , _snake_case ): """simple docstring""" return not self.__eq__(_snake_case )
82
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A__ = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCamelCase__ ): def __init__( self , **_snake_case ): """simple docstring""" requires_backends(self , ["""bs4"""] ) super().__init__(**_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _lowerCAmelCase = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) _lowerCAmelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = BeautifulSoup(_snake_case , """html.parser""" ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _lowerCAmelCase = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(_snake_case ) != len(_snake_case ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = """""" for tagname, subs in zip(_snake_case , _snake_case ): xpath += F'/{tagname}' if subs != 0: xpath += F'[{subs}]' return xpath def __call__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): _lowerCAmelCase = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): _lowerCAmelCase = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F'but is of type {type(_snake_case )}.' ) _lowerCAmelCase = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: _lowerCAmelCase = [html_strings] # Get nodes + xpaths _lowerCAmelCase = [] _lowerCAmelCase = [] for html_string in html_strings: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) _lowerCAmelCase = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): _lowerCAmelCase = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict _lowerCAmelCase = {"""nodes""": nodes, """xpaths""": xpaths} _lowerCAmelCase = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
82
1
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __A = logging.getLogger(__name__) class snake_case : def __init__( self : List[str])-> str: '''simple docstring''' __lowerCAmelCase: List[Any] = False def lowercase_ ( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any])-> List[str]: '''simple docstring''' if not self.initialized: __lowerCAmelCase: List[Any] = RagRetriever( UpperCamelCase__ , question_encoder_tokenizer=UpperCamelCase__ , generator_tokenizer=UpperCamelCase__ , index=UpperCamelCase__ , init_retrieval=UpperCamelCase__ , ) __lowerCAmelCase: Any = True def lowercase_ ( self : str)-> int: '''simple docstring''' self.retriever.index.init_index() def lowercase_ ( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int)-> Dict: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Tuple = self.retriever._main_retrieve(UpperCamelCase__ , UpperCamelCase__) return doc_ids, retrieved_doc_embeds class snake_case ( __snake_case ): def __init__( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict=None)-> Optional[Any]: '''simple docstring''' if index is not None and index.is_initialized() and len(UpperCamelCase__) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py ") super().__init__( UpperCamelCase__ , question_encoder_tokenizer=UpperCamelCase__ , generator_tokenizer=UpperCamelCase__ , index=UpperCamelCase__ , init_retrieval=UpperCamelCase__ , ) __lowerCAmelCase: Dict = retrieval_workers if len(self.retrieval_workers) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) for worker in self.retrieval_workers ]) def lowercase_ ( self : Tuple)-> Union[str, Any]: '''simple docstring''' logger.info("initializing retrieval") if len(self.retrieval_workers) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers]) else: # Non-distributed training. Load index into this same process. self.index.init_index() def lowercase_ ( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any])-> Union[str, Any]: '''simple docstring''' if len(self.retrieval_workers) > 0: # Select a random retrieval actor. __lowerCAmelCase: Any = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers) - 1)] __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = ray.get(random_worker.retrieve.remote(UpperCamelCase__ , UpperCamelCase__)) else: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._main_retrieve(UpperCamelCase__ , UpperCamelCase__) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase__) @classmethod def lowercase_ ( cls : int , UpperCamelCase__ : Any , UpperCamelCase__ : Any=None , **UpperCamelCase__ : Union[str, Any])-> Optional[int]: '''simple docstring''' return super(UpperCamelCase__ , cls).get_tokenizers(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__) @classmethod def lowercase_ ( cls : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : List[str])-> Dict: '''simple docstring''' __lowerCAmelCase: Optional[Any] = kwargs.pop("config" , UpperCamelCase__) or RagConfig.from_pretrained(UpperCamelCase__ , **UpperCamelCase__) __lowerCAmelCase: Dict = RagTokenizer.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = rag_tokenizer.question_encoder __lowerCAmelCase: List[Any] = rag_tokenizer.generator if indexed_dataset is not None: __lowerCAmelCase: List[Any] = "custom" __lowerCAmelCase: Any = CustomHFIndex(config.retrieval_vector_size , UpperCamelCase__) else: __lowerCAmelCase: Tuple = cls._build_index(UpperCamelCase__) return cls( UpperCamelCase__ , question_encoder_tokenizer=UpperCamelCase__ , generator_tokenizer=UpperCamelCase__ , retrieval_workers=UpperCamelCase__ , index=UpperCamelCase__ , )
108
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1_0**-1_0 ) -> float: __lowerCAmelCase: Union[str, Any] = a while True: __lowerCAmelCase: Optional[int] = Decimal(__SCREAMING_SNAKE_CASE ) - ( Decimal(eval(__SCREAMING_SNAKE_CASE ) ) / Decimal(eval(str(diff(__SCREAMING_SNAKE_CASE ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__SCREAMING_SNAKE_CASE ) ) < precision: # noqa: S307 return float(__SCREAMING_SNAKE_CASE ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
108
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer snake_case__ : Union[str, Any] = 'bart' snake_case__ : Dict = True @st.cache(allow_output_mutation=lowerCamelCase ) def _a ( ) -> Optional[int]: '''simple docstring''' if LOAD_DENSE_INDEX: __A = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __A = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __A = qar_model.eval() else: __A , __A = (None, None) if MODEL_TYPE == "bart": __A = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __A = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __A = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __A = sas_model.eval() else: __A , __A = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase ) def _a ( ) -> Any: '''simple docstring''' if LOAD_DENSE_INDEX: __A = faiss.StandardGpuResources() __A = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __A = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) __A = faiss.IndexFlatIP(1_28 ) __A = faiss.index_cpu_to_gpu(lowerCamelCase , 1 , lowerCamelCase ) wikiaab_gpu_index_flat.add(lowerCamelCase ) # TODO fix for larger GPU else: __A , __A = (None, None) __A = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase ) def _a ( ) -> Optional[Any]: '''simple docstring''' __A = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __A = elia['''train_eli5'''] __A = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) __A = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(lowerCamelCase ) return (elia_train, eli5_train_q_index) snake_case__ , snake_case__ , snake_case__ : str = load_indexes() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = load_models() snake_case__ , snake_case__ : List[Any] = load_train_data() def _a ( lowerCamelCase: int , lowerCamelCase: Optional[int]=10 ) -> Union[str, Any]: '''simple docstring''' __A = embed_questions_for_retrieval([question] , lowerCamelCase , lowerCamelCase ) __A , __A = eli5_train_q_index.search(lowerCamelCase , lowerCamelCase ) __A = [elia_train[int(lowerCamelCase )] for i in I[0]] return nn_examples def _a ( lowerCamelCase: Optional[Any] , lowerCamelCase: Dict="wiki40b" , lowerCamelCase: Optional[int]="dense" , lowerCamelCase: str=10 ) -> str: '''simple docstring''' if source == "none": __A , __A = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __A , __A = query_qa_dense_index( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __A , __A = query_es_index( lowerCamelCase , lowerCamelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=lowerCamelCase , ) __A = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __A = '''question: {} context: {}'''.format(lowerCamelCase , lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase : None), } ) def _a ( lowerCamelCase: List[Any] , lowerCamelCase: List[Any] , lowerCamelCase: str , lowerCamelCase: Dict=64 , lowerCamelCase: Optional[int]=2_56 , lowerCamelCase: Dict=False , lowerCamelCase: Union[str, Any]=2 , lowerCamelCase: Any=0.95 , lowerCamelCase: List[str]=0.8 ) -> List[str]: '''simple docstring''' with torch.no_grad(): __A = qa_sas_generate( lowerCamelCase , lowerCamelCase , lowerCamelCase , num_answers=1 , num_beams=lowerCamelCase , min_len=lowerCamelCase , max_len=lowerCamelCase , do_sample=lowerCamelCase , temp=lowerCamelCase , top_p=lowerCamelCase , top_k=lowerCamelCase , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar snake_case__ : List[str] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' snake_case__ : Optional[int] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia snake_case__ : List[str] = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) snake_case__ : Union[str, Any] = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] snake_case__ : int = st.sidebar.checkbox('Demo options') if demo_options: snake_case__ : List[Any] = st.sidebar.selectbox( '', action_list, index=3, ) snake_case__ : Optional[Any] = action_list.index(action_st) snake_case__ : Tuple = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) snake_case__ : List[str] = show_type == 'Show full text of passages' else: snake_case__ : Optional[int] = 3 snake_case__ : Optional[Any] = True snake_case__ : Union[str, Any] = st.sidebar.checkbox('Retrieval options') if retrieval_options: snake_case__ : List[Any] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) snake_case__ : str = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) snake_case__ : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: snake_case__ : Union[str, Any] = 'wiki40b' snake_case__ : Optional[Any] = 'dense' snake_case__ : int = 'beam' snake_case__ : Tuple = 2 snake_case__ : List[Any] = 64 snake_case__ : List[str] = 256 snake_case__ : Optional[int] = None snake_case__ : str = None snake_case__ : Union[str, Any] = st.sidebar.checkbox('Generation options') if generate_options: snake_case__ : Optional[Any] = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) snake_case__ : Union[str, Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) snake_case__ : List[Any] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) snake_case__ : List[str] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": snake_case__ : int = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: snake_case__ : int = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) snake_case__ : int = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) snake_case__ : Optional[int] = None # start main text snake_case__ : Optional[Any] = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] snake_case__ : Union[str, Any] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": snake_case__ : List[Any] = st.text_input('Enter your question here:', '') else: snake_case__ : List[str] = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": snake_case__ , snake_case__ : List[str] = make_support(question, source=wiki_source, method='dense', n_results=10) snake_case__ , snake_case__ : str = make_support(question, source=wiki_source, method='sparse', n_results=10) snake_case__ : Union[str, Any] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] snake_case__ : Optional[Any] = support_list[:10] snake_case__ : List[str] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: snake_case__ , snake_case__ : Dict = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: snake_case__ , snake_case__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): snake_case__ : List[Any] = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) snake_case__ : int = res[1].strip() if sec_titles == "": snake_case__ : Optional[Any] = '[{}]({})'.format(res[0], wiki_url) else: snake_case__ : Dict = sec_titles.split(' & ') snake_case__ : str = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: snake_case__ : Any = find_nearest_training(question) snake_case__ : Tuple = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) snake_case__ : int = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) snake_case__ : Optional[Any] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
117
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case__ : Tuple = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _a ( lowerCamelCase: Any , lowerCamelCase: Union[str, Any] , lowerCamelCase: int=None , lowerCamelCase: Optional[Any]=None , lowerCamelCase: Tuple=None , lowerCamelCase: Union[str, Any]=None , lowerCamelCase: Optional[Any]=None , lowerCamelCase: Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' if attention_mask is None: __A = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __A = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __A = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __A = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __A = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : def __init__(self :int , _UpperCamelCase :Optional[int] , _UpperCamelCase :Dict=13 , _UpperCamelCase :Optional[Any]=7 , _UpperCamelCase :str=True , _UpperCamelCase :Tuple=False , _UpperCamelCase :int=99 , _UpperCamelCase :int=16 , _UpperCamelCase :int=2 , _UpperCamelCase :int=4 , _UpperCamelCase :str=4 , _UpperCamelCase :Dict="gelu" , _UpperCamelCase :int=0.1 , _UpperCamelCase :Tuple=0.1 , _UpperCamelCase :Union[str, Any]=32 , _UpperCamelCase :Any=2 , _UpperCamelCase :Union[str, Any]=1 , _UpperCamelCase :Tuple=0 , _UpperCamelCase :List[str]=0.0_2 , )-> str: __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = eos_token_id __A = pad_token_id __A = bos_token_id __A = initializer_range def _lowerCAmelCase (self :Optional[int] )-> Union[str, Any]: __A = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __A = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __A = shift_tokens_right(_UpperCamelCase , 1 , 2 ) __A = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCamelCase , ) __A = prepare_blenderbot_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, inputs_dict def _lowerCAmelCase (self :Union[str, Any] )-> Tuple: __A , __A = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCAmelCase (self :Dict , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :Dict , _UpperCamelCase :Optional[int] )-> str: __A = 20 __A = model_class_name(_UpperCamelCase ) __A = model.encode(inputs_dict['''input_ids'''] ) __A , __A = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __A = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) __A = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __A = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) __A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __A = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCamelCase , ) __A = model.decode(_UpperCamelCase , _UpperCamelCase ) __A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :int , _UpperCamelCase :List[str] , _UpperCamelCase :Any )-> Dict: __A = 20 __A = model_class_name(_UpperCamelCase ) __A = model.encode(inputs_dict['''input_ids'''] ) __A , __A = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __A = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __A = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase ) __A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __A = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) __A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __A = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) __A = model.decode(_UpperCamelCase , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase ) __A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class A_ ( unittest.TestCase ): lowerCAmelCase__ = 99 def _lowerCAmelCase (self :Dict )-> int: __A = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __A = input_ids.shape[0] __A = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowerCAmelCase (self :Any )-> List[Any]: __A , __A , __A = self._get_config_and_data() __A = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase ) __A = lm_model(input_ids=_UpperCamelCase ) __A = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _UpperCamelCase ) def _lowerCAmelCase (self :int )-> Dict: __A = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __A = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase ) __A = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __A = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __A = lm_model(input_ids=_UpperCamelCase , decoder_input_ids=_UpperCamelCase ) __A = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _UpperCamelCase ) def _lowerCAmelCase (self :Tuple )-> Tuple: __A = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __A = shift_tokens_right(_UpperCamelCase , 1 , 2 ) __A = np.equal(_UpperCamelCase , 1 ).astype(np.floataa ).sum() __A = np.equal(_UpperCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_UpperCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ ( _lowerCamelCase , unittest.TestCase , _lowerCamelCase ): lowerCAmelCase__ = True lowerCAmelCase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _lowerCAmelCase (self :List[str] )-> Optional[int]: __A = FlaxBlenderbotModelTester(self ) def _lowerCAmelCase (self :List[str] )-> List[str]: __A , __A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase (self :Dict )-> List[str]: __A , __A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase (self :Union[str, Any] )-> Union[str, Any]: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __A = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) __A = model_class(_UpperCamelCase ) @jax.jit def encode_jitted(_UpperCamelCase :int , _UpperCamelCase :int=None , **_UpperCamelCase :Dict ): return model.encode(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) with self.subTest('''JIT Enabled''' ): __A = encode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __A = encode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCAmelCase (self :List[str] )-> List[Any]: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __A = model_class(_UpperCamelCase ) __A = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __A = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_UpperCamelCase :str , _UpperCamelCase :Tuple , _UpperCamelCase :Dict ): return model.decode( decoder_input_ids=_UpperCamelCase , decoder_attention_mask=_UpperCamelCase , encoder_outputs=_UpperCamelCase , ) with self.subTest('''JIT Enabled''' ): __A = decode_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __A = decode_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCAmelCase (self :int )-> Optional[int]: for model_class_name in self.all_model_classes: __A = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __A = np.ones((1, 1) ) * model.config.eos_token_id __A = model(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def _lowerCAmelCase (self :Dict )-> List[str]: __A = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} __A = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} __A = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_UpperCamelCase ) __A = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) __A = ['''Sam'''] __A = tokenizer(_UpperCamelCase , return_tensors='''jax''' ) __A = model.generate(**_UpperCamelCase , **_UpperCamelCase ) __A = '''Sam is a great name. It means "sun" in Gaelic.''' __A = tokenizer.batch_decode(_UpperCamelCase , **_UpperCamelCase ) assert generated_txt[0].strip() == tgt_text
117
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase , ) -> Optional[Any]: __UpperCamelCase :Optional[int] = parent __UpperCamelCase :Optional[int] = 13 __UpperCamelCase :Dict = 7 __UpperCamelCase :Optional[int] = True __UpperCamelCase :List[str] = True __UpperCamelCase :List[Any] = True __UpperCamelCase :Union[str, Any] = True __UpperCamelCase :Any = True __UpperCamelCase :Optional[int] = False __UpperCamelCase :Any = False __UpperCamelCase :str = False __UpperCamelCase :Optional[Any] = 2 __UpperCamelCase :Optional[int] = 99 __UpperCamelCase :Any = 0 __UpperCamelCase :List[Any] = 32 __UpperCamelCase :int = 2 __UpperCamelCase :Optional[Any] = 4 __UpperCamelCase :Dict = 0.1 __UpperCamelCase :Optional[Any] = 0.1 __UpperCamelCase :str = 512 __UpperCamelCase :Any = 16 __UpperCamelCase :str = 2 __UpperCamelCase :Dict = 0.02 __UpperCamelCase :List[Any] = 3 __UpperCamelCase :Optional[int] = 4 __UpperCamelCase :Tuple = '''last''' __UpperCamelCase :Any = True __UpperCamelCase :Union[str, Any] = None __UpperCamelCase :Tuple = 0 def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :Any = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa) __UpperCamelCase :Tuple = None if self.use_input_lengths: __UpperCamelCase :List[str] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase :Any = None if self.use_token_type_ids: __UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) __UpperCamelCase :Dict = None __UpperCamelCase :List[str] = None __UpperCamelCase :Union[str, Any] = None if self.use_labels: __UpperCamelCase :Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCamelCase :List[str] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa) __UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) __UpperCamelCase :Optional[int] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Optional[Any]: __UpperCamelCase :str = TFFlaubertModel(config=__lowercase) __UpperCamelCase :List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} __UpperCamelCase :Optional[int] = model(__lowercase) __UpperCamelCase :Optional[int] = [input_ids, input_mask] __UpperCamelCase :Union[str, Any] = model(__lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> int: __UpperCamelCase :str = TFFlaubertWithLMHeadModel(__lowercase) __UpperCamelCase :List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} __UpperCamelCase :Optional[int] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Any: __UpperCamelCase :Any = TFFlaubertForQuestionAnsweringSimple(__lowercase) __UpperCamelCase :str = {'''input_ids''': input_ids, '''lengths''': input_lengths} __UpperCamelCase :int = model(__lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Any: __UpperCamelCase :int = TFFlaubertForSequenceClassification(__lowercase) __UpperCamelCase :List[Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths} __UpperCamelCase :Any = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Tuple: __UpperCamelCase :Optional[int] = self.num_labels __UpperCamelCase :int = TFFlaubertForTokenClassification(config=__lowercase) __UpperCamelCase :Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCamelCase :Optional[Any] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[Any]: __UpperCamelCase :Any = self.num_choices __UpperCamelCase :Any = TFFlaubertForMultipleChoice(config=__lowercase) __UpperCamelCase :List[str] = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) __UpperCamelCase :Optional[Any] = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) __UpperCamelCase :Tuple = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) __UpperCamelCase :Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __UpperCamelCase :List[Any] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :Any = config_and_inputs __UpperCamelCase :int = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : List[Any] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) a__ : Tuple = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a__ : Tuple = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) a__ : Tuple = False a__ : Any = False def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :int = TFFlaubertModelTester(self) __UpperCamelCase :Dict = ConfigTester(self , config_class=__lowercase , emb_dim=37) def UpperCamelCase__ ( self) -> str: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowercase) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowercase) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowercase) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__lowercase) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__lowercase) @slow def UpperCamelCase__ ( self) -> Union[str, Any]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Any = TFFlaubertModel.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :List[Any] = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''') __UpperCamelCase :Tuple = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase :Union[str, Any] = model(__lowercase)[0] __UpperCamelCase :str = tf.TensorShape((1, 8, 512)) self.assertEqual(output.shape , __lowercase) # compare the actual values for a slice. __UpperCamelCase :Optional[int] = tf.convert_to_tensor( [ [ [-1.8_76_87_73, -1.56_65_55, 0.27_07_24_18], [-1.6_92_00_38, -0.5_87_35_05, 1.9_32_95_99], [-2.9_56_39_85, -1.6_99_38_35, 1.7_97_20_52], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
105
1
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self :List[Any] ): A = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def lowerCamelCase ( self :List[Any] ): A = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def lowerCamelCase ( self :str ): A = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__UpperCamelCase ) ) def lowerCamelCase ( self :Dict ): A = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(__UpperCamelCase ) ) def lowerCamelCase ( self :Tuple ): A = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(__UpperCamelCase ) ) def lowerCamelCase ( self :Optional[Any] ): A = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] A = "fp16" self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase ( self :List[str] ): A = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] A = "fp16" self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase ( self :str ): # pass variant but use the non-variant filenames A = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] A = "fp16" self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase ( self :Optional[int] ): A = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = "fp16" self.assertFalse(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase ( self :Optional[int] ): A = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] A = "fp16" self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase ( self :Any ): # pass variant but use the non-variant filenames A = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] A = "fp16" self.assertTrue(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) ) def lowerCamelCase ( self :List[Any] ): A = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] A = "fp16" self.assertFalse(is_safetensors_compatible(__UpperCamelCase , variant=__UpperCamelCase ) )
292
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _snake_case : Union[str, Any] = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
292
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _SCREAMING_SNAKE_CASE : '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' return self.get_dummy_input() @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""") def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[str]=False , ) ->str: '''simple docstring''' lowerCamelCase__: str =4 lowerCamelCase__: Dict =32 lowerCamelCase__: int =(32, 32) lowerCamelCase__: Optional[int] =torch.manual_seed(0) lowerCamelCase__: Dict =torch.device(UpperCAmelCase_) lowerCamelCase__: int =(batch_size, num_channels) + sizes lowerCamelCase__: Union[str, Any] =randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_) lowerCamelCase__: Optional[Any] ={"hidden_states": hidden_states} if include_temb: lowerCamelCase__: Any =128 lowerCamelCase__: Any =randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase_ , device=UpperCAmelCase_) if include_res_hidden_states_tuple: lowerCamelCase__: Tuple =torch.manual_seed(1) lowerCamelCase__: int =(randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_),) if include_encoder_hidden_states: lowerCamelCase__: List[Any] =floats_tensor((batch_size, 32, 32)).to(UpperCAmelCase_) if include_skip_sample: lowerCamelCase__: int =randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase_ , device=UpperCAmelCase_) return dummy_input def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] ={ "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": lowerCamelCase__: Any =32 if self.block_type == "mid": init_dict.pop("out_channels") lowerCamelCase__: Tuple =self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =self.prepare_init_args_and_inputs_for_common() lowerCamelCase__: Optional[int] =self.block_class(**UpperCAmelCase_) unet_block.to(UpperCAmelCase_) unet_block.eval() with torch.no_grad(): lowerCamelCase__: Union[str, Any] =unet_block(**UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Tuple =output[0] self.assertEqual(output.shape , self.output_shape) lowerCamelCase__: Optional[Any] =output[0, -1, -3:, -3:] lowerCamelCase__: str =torch.tensor(UpperCAmelCase_).to(UpperCAmelCase_) assert torch_all_close(output_slice.flatten() , UpperCAmelCase_ , atol=5E-3) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps") def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.prepare_init_args_and_inputs_for_common() lowerCamelCase__: Optional[int] =self.block_class(**UpperCAmelCase_) model.to(UpperCAmelCase_) model.train() lowerCamelCase__: Any =model(**UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: List[Any] =output[0] lowerCamelCase__: Dict =torch.device(UpperCAmelCase_) lowerCamelCase__: Optional[int] =randn_tensor(output.shape , device=UpperCAmelCase_) lowerCamelCase__: Dict =torch.nn.functional.mse_loss(UpperCAmelCase_ , UpperCAmelCase_) loss.backward()
362
from math import pow def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> tuple[int, int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowerCamelCase__: Optional[Any] =int(pow(__a , __a ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowerCamelCase__ , lowerCamelCase__: int =backtrack( __a , __a , current_number + 1 , __a , __a ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowerCamelCase__ , lowerCamelCase__: Dict =backtrack( __a , __a , current_number + 1 , __a , __a ) return current_sum, solutions_count def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(__a , __a , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
273
0
def a_ ( _A , _A ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def a_ ( ) -> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
307
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _A : int = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class a__ ( unittest.TestCase, a_ ): def __magic_name__ ( self ): lowercase : Tuple = load_tool("text-question-answering" ) self.tool.setup() lowercase : Dict = load_tool("text-question-answering" , remote=_a ) def __magic_name__ ( self ): lowercase : str = self.tool(_a , "What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.remote_tool(_a , "What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : int = self.tool(text=_a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" ) def __magic_name__ ( self ): lowercase : Optional[Any] = self.remote_tool(text=_a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(_a , "launched the BigScience Research Workshop" )
202
0
__UpperCAmelCase = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
28
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase__ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } lowerCAmelCase__ = { '''facebook/bart-base''': 1_024, '''facebook/bart-large''': 1_024, '''facebook/bart-large-mnli''': 1_024, '''facebook/bart-large-cnn''': 1_024, '''facebook/bart-large-xsum''': 1_024, '''yjernite/bart_eli5''': 1_024, } @lru_cache() def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowerCAmelCase : int = bs[:] lowerCAmelCase : List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 lowerCAmelCase : Optional[int] = [chr(SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Any = set() lowerCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase : str = char return pairs class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Any =VOCAB_FILES_NAMES a : List[Any] =PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict =["input_ids", "attention_mask"] def __init__( self , snake_case__ , snake_case__ , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , **snake_case__ , ): """simple docstring""" lowerCAmelCase : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token lowerCAmelCase : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token lowerCAmelCase : List[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token lowerCAmelCase : Any = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token lowerCAmelCase : Any = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) with open(snake_case__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase : Union[str, Any] = json.load(snake_case__ ) lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} lowerCAmelCase : Union[str, Any] = errors # how to handle errors in decoding lowerCAmelCase : int = bytes_to_unicode() lowerCAmelCase : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: lowerCAmelCase : Dict = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase : Tuple = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase : Union[str, Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : str = {} lowerCAmelCase : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase : List[str] = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowercase__ ( self ): """simple docstring""" return len(self.encoder ) def lowercase__ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if token in self.cache: return self.cache[token] lowerCAmelCase : Tuple = tuple(snake_case__ ) lowerCAmelCase : Tuple = get_pairs(snake_case__ ) if not pairs: return token while True: lowerCAmelCase : Optional[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase , lowerCAmelCase : Tuple = bigram lowerCAmelCase : Optional[int] = [] lowerCAmelCase : str = 0 while i < len(snake_case__ ): try: lowerCAmelCase : Dict = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase : List[str] = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase : Optional[Any] = tuple(snake_case__ ) lowerCAmelCase : Any = new_word if len(snake_case__ ) == 1: break else: lowerCAmelCase : List[str] = get_pairs(snake_case__ ) lowerCAmelCase : List[str] = " ".join(snake_case__ ) lowerCAmelCase : Tuple = word return word def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = [] for token in re.findall(self.pat , snake_case__ ): lowerCAmelCase : Optional[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case__ ).split(" " ) ) return bpe_tokens def lowercase__ ( self , snake_case__ ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self , snake_case__ ): """simple docstring""" return self.decoder.get(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = "".join(snake_case__ ) lowerCAmelCase : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : Optional[int] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(snake_case__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + "\n" ) lowerCAmelCase : int = 0 with open(snake_case__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase : int = token_index writer.write(" ".join(snake_case__ ) + "\n" ) index += 1 return vocab_file, merge_file def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase : Union[str, Any] = [self.cls_token_id] lowerCAmelCase : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = [self.sep_token_id] lowerCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self , snake_case__ , snake_case__=False , **snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case__ ) > 0 and not text[0].isspace()): lowerCAmelCase : List[Any] = " " + text return (text, kwargs)
108
"""simple docstring""" import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''T5Config''' def a__ ( SCREAMING_SNAKE_CASE : jnp.array , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = jnp.zeros_like(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCAmelCase : List[str] = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = jnp.where(shifted_input_ids == -1_0_0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return shifted_input_ids class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] ="mt5" a : Tuple =MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="mt5" a : Optional[Any] =MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str ="mt5" a : Dict =MTaConfig
108
1
from numpy import exp, pi, sqrt def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = 0.0 , _UpperCamelCase = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
279
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) lowerCAmelCase_ = None lowerCAmelCase_ = { '''7B''': 1_1_0_0_8, '''13B''': 1_3_8_2_4, '''30B''': 1_7_9_2_0, '''65B''': 2_2_0_1_6, '''70B''': 2_8_6_7_2, } lowerCAmelCase_ = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1 , _UpperCamelCase=256 ) -> Optional[int]: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[Any]: """simple docstring""" with open(_UpperCamelCase , '''r''' ) as f: return json.load(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" with open(_UpperCamelCase , '''w''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ) -> Optional[Any]: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : int = os.path.join(_UpperCamelCase , '''tmp''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : Dict = read_json(os.path.join(_UpperCamelCase , '''params.json''' ) ) snake_case_ : Tuple = NUM_SHARDS[model_size] snake_case_ : Optional[Any] = params['''n_layers'''] snake_case_ : int = params['''n_heads'''] snake_case_ : Dict = n_heads // num_shards snake_case_ : List[Any] = params['''dim'''] snake_case_ : str = dim // n_heads snake_case_ : Any = 10_000.0 snake_case_ : Any = 1.0 / (base ** (torch.arange(0 , _UpperCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case_ : Optional[Any] = params['''n_kv_heads'''] # for GQA / MQA snake_case_ : Optional[Any] = n_heads_per_shard // num_key_value_heads snake_case_ : List[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case_ : str = n_heads snake_case_ : Optional[int] = n_heads_per_shard snake_case_ : str = dim # permute for sliced rotary def permute(_UpperCamelCase , _UpperCamelCase=n_heads , _UpperCamelCase=dim , _UpperCamelCase=dim ): return w.view(_UpperCamelCase , dima // n_heads // 2 , 2 , _UpperCamelCase ).transpose(1 , 2 ).reshape(_UpperCamelCase , _UpperCamelCase ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case_ : Optional[Any] = torch.load(os.path.join(_UpperCamelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded snake_case_ : Union[str, Any] = [ torch.load(os.path.join(_UpperCamelCase , f'''consolidated.{i:02d}.pth''' ) , map_location='''cpu''' ) for i in range(_UpperCamelCase ) ] snake_case_ : Optional[Any] = 0 snake_case_ : str = {'''weight_map''': {}} for layer_i in range(_UpperCamelCase ): snake_case_ : Optional[int] = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case_ : str = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case_ : Union[str, Any] = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case_ : int = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ : Optional[int] = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) snake_case_ : int = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Optional[int] = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_UpperCamelCase )] , dim=1 ) snake_case_ : Dict = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_UpperCamelCase )] , dim=0 ) snake_case_ : Union[str, Any] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_UpperCamelCase )] , dim=1 ) snake_case_ : Optional[int] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_UpperCamelCase )] , dim=0 ) snake_case_ : str = inv_freq for k, v in state_dict.items(): snake_case_ : Dict = filename param_count += v.numel() torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ : Any = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case_ : List[str] = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: snake_case_ : Dict = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_UpperCamelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_UpperCamelCase )] , dim=0 ), } for k, v in state_dict.items(): snake_case_ : List[str] = filename param_count += v.numel() torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) # Write configs snake_case_ : int = {'''total_size''': param_count * 2} write_json(_UpperCamelCase , os.path.join(_UpperCamelCase , '''pytorch_model.bin.index.json''' ) ) snake_case_ : str = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 snake_case_ : Optional[int] = params['''multiple_of'''] if '''multiple_of''' in params else 256 snake_case_ : Optional[Any] = LlamaConfig( hidden_size=_UpperCamelCase , intermediate_size=compute_intermediate_size(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_UpperCamelCase , ) config.save_pretrained(_UpperCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) snake_case_ : Union[str, Any] = LlamaForCausalLM.from_pretrained(_UpperCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_UpperCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_UpperCamelCase , safe_serialization=_UpperCamelCase ) shutil.rmtree(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case_ : Union[str, Any] = tokenizer_class(_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) def lowerCamelCase_ ( ) -> int: """simple docstring""" snake_case_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_UpperCamelCase , help='''Whether or not to save using `safetensors`.''' ) snake_case_ : Dict = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case_ : Dict = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _UpperCamelCase ) if __name__ == "__main__": main()
279
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __UpperCamelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=64 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> Optional[Any]: a : Dict = parent a : List[str] = batch_size a : Any = seq_length a : Dict = is_training a : List[str] = use_input_mask a : Any = use_token_type_ids a : List[Any] = use_labels a : Tuple = vocab_size a : List[Any] = hidden_size a : Optional[int] = num_hidden_layers a : Union[str, Any] = num_attention_heads a : str = intermediate_size a : Dict = hidden_act a : int = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : int = max_position_embeddings a : Optional[Any] = type_vocab_size a : Any = type_sequence_label_size a : List[str] = initializer_range a : List[Any] = num_labels a : Optional[int] = num_choices a : Optional[Any] = scope a : List[str] = vocab_size - 1 def __a ( self ) -> List[Any]: a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Tuple = None if self.use_input_mask: a : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) a : List[str] = None if self.use_labels: a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : Any = self.get_config() return config, input_ids, input_mask, token_labels def __a ( self ) -> Any: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __a ( self ) -> List[Any]: a, a, a, a : List[Any] = self.prepare_config_and_inputs() a : int = True return config, input_ids, input_mask, token_labels def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: a : Dict = GPTNeoXModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: a : str = True a : Dict = GPTNeoXModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : Optional[int] = GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: a : Union[str, Any] = self.num_labels a : Optional[int] = GPTNeoXForQuestionAnswering(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: a : Union[str, Any] = self.num_labels a : Union[str, Any] = GPTNeoXForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: a : List[str] = self.num_labels a : Tuple = GPTNeoXForTokenClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: a : Any = True a : Union[str, Any] = GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass a : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) a : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) a : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) a : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) a : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) a : Union[str, Any] = output_from_no_past["hidden_states"][0] a : int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] # select random slice a : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() a : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() a : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def __a ( self ) -> Any: a : Any = self.prepare_config_and_inputs() a, a, a, a : int = config_and_inputs a : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , a__ , unittest.TestCase ): lowerCamelCase : List[Any] =( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : str =(GPTNeoXForCausalLM,) if is_torch_available() else () lowerCamelCase : List[Any] =( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : List[str] =False lowerCamelCase : Optional[Any] =False lowerCamelCase : int =False lowerCamelCase : List[Any] =False def __a ( self ) -> Optional[int]: a : Optional[int] = GPTNeoXModelTester(self ) a : Tuple = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=64 , num_attention_heads=8 ) def __a ( self ) -> List[str]: self.config_tester.run_common_tests() def __a ( self ) -> List[str]: a, a, a, a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Optional[Any]: a, a, a, a : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Dict: # This regression test was failing with PyTorch < 1.3 a, a, a, a : str = self.model_tester.prepare_config_and_inputs_for_decoder() a : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> List[Any]: a, a, a, a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Dict: a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase__ ) def __a ( self ) -> str: a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def __a ( self ) -> int: a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def __a ( self ) -> int: pass @parameterized.expand([("linear",), ("dynamic",)] ) def __a ( self , lowerCAmelCase__ ) -> List[Any]: a, a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a : List[str] = ids_tensor([1, 10] , config.vocab_size ) a : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a : str = GPTNeoXModel(lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) original_model.eval() a : str = original_model(lowerCAmelCase__ ).last_hidden_state a : Dict = original_model(lowerCAmelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a : int = {"type": scaling_type, "factor": 10.0} a : Optional[int] = GPTNeoXModel(lowerCAmelCase__ ) scaled_model.to(lowerCAmelCase__ ) scaled_model.eval() a : Optional[Any] = scaled_model(lowerCAmelCase__ ).last_hidden_state a : Optional[int] = scaled_model(lowerCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def __a ( self ) -> List[Any]: a : Optional[Any] = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: a : int = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCAmelCase__ ) a : Any = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCAmelCase__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 a : int = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" a : Optional[Any] = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=20 ) a : str = tokenizer.batch_decode(lowerCAmelCase__ )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
105
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , ) -> int: super().__init__() self.register_modules(transformer=lowerCAmelCase__ , vae=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) # create a imagenet -> id dictionary for easier use a : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): a : int = int(lowerCAmelCase__ ) a : Any = dict(sorted(self.labels.items() ) ) def __a ( self , lowerCAmelCase__ ) -> List[int]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Optional[Any] = list(lowerCAmelCase__ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = 50 , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> Union[ImagePipelineOutput, Tuple]: a : Dict = len(lowerCAmelCase__ ) a : Tuple = self.transformer.config.sample_size a : Tuple = self.transformer.config.in_channels a : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase__ , device=self.device , dtype=self.transformer.dtype , ) a : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents a : List[str] = torch.tensor(lowerCAmelCase__ , device=self.device ).reshape(-1 ) a : str = torch.tensor([1000] * batch_size , device=self.device ) a : Dict = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: a : Any = latent_model_input[: len(lowerCAmelCase__ ) // 2] a : Tuple = torch.cat([half, half] , dim=0 ) a : List[str] = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = t if not torch.is_tensor(lowerCAmelCase__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) a : Optional[int] = latent_model_input.device.type == "mps" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Union[str, Any] = torch.floataa if is_mps else torch.floataa else: a : str = torch.intaa if is_mps else torch.intaa a : List[str] = torch.tensor([timesteps] , dtype=lowerCAmelCase__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: a : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML a : Dict = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output a : Union[str, Any] = self.transformer( lowerCAmelCase__ , timestep=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ).sample # perform guidance if guidance_scale > 1: a, a : Any = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] a, a : Union[str, Any] = torch.split(lowerCAmelCase__ , len(lowerCAmelCase__ ) // 2 , dim=0 ) a : Dict = uncond_eps + guidance_scale * (cond_eps - uncond_eps) a : Optional[int] = torch.cat([half_eps, half_eps] , dim=0 ) a : Optional[int] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: a, a : str = torch.split(lowerCAmelCase__ , lowerCAmelCase__ , dim=1 ) else: a : Any = noise_pred # compute previous image: x_t -> x_t-1 a : Optional[int] = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample if guidance_scale > 1: a, a : Tuple = latent_model_input.chunk(2 , dim=0 ) else: a : Tuple = latent_model_input a : Optional[Any] = 1 / self.vae.config.scaling_factor * latents a : Any = self.vae.decode(lowerCAmelCase__ ).sample a : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a : int = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase__ )
105
1
import requests from bsa import BeautifulSoup def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : dict ): __lowerCAmelCase = BeautifulSoup(requests.get(lowerCAmelCase_, params=lowerCAmelCase_ ).content, 'html.parser' ) __lowerCAmelCase = soup.find('div', attrs={'class': 'gs_ri'} ) __lowerCAmelCase = div.find('div', attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": _snake_case : Tuple = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
364
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _snake_case : int = True except (ImportError, AttributeError): _snake_case : int = object def a_ ( *lowerCAmelCase_ : List[str], **lowerCAmelCase_ : Optional[Any] ): pass _snake_case : Union[str, Any] = False _snake_case : int = logging.get_logger('transformers-cli/serving') def a_ ( lowerCAmelCase_ : Namespace ): __lowerCAmelCase = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(lowerCAmelCase_, args.host, args.port, args.workers ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 a_ = 42 class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @staticmethod def lowercase ( lowerCAmelCase_ : ArgumentParser ) -> Union[str, Any]: __lowerCAmelCase = parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=lowerCAmelCase_ , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=lowerCAmelCase_ , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=lowerCAmelCase_ , default=8_8_8_8 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=lowerCAmelCase_ , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=lowerCAmelCase_ , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=lowerCAmelCase_ , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=lowerCAmelCase_ , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=lowerCAmelCase_ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=lowerCAmelCase_ ) def __init__( self : List[str] , lowerCAmelCase_ : Pipeline , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> str: __lowerCAmelCase = pipeline __lowerCAmelCase = host __lowerCAmelCase = port __lowerCAmelCase = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(f"""Serving model over {host}:{port}""" ) __lowerCAmelCase = FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=lowerCAmelCase_ , response_class=lowerCAmelCase_ , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=lowerCAmelCase_ , response_class=lowerCAmelCase_ , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=lowerCAmelCase_ , response_class=lowerCAmelCase_ , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=lowerCAmelCase_ , response_class=lowerCAmelCase_ , methods=['POST'] , ), ] , timeout=6_0_0 , ) def lowercase ( self : Tuple ) -> str: run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowercase ( self : Any ) -> List[str]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowercase ( self : int , lowerCAmelCase_ : str = Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) , lowerCAmelCase_ : bool = Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) ) -> Dict: try: __lowerCAmelCase = self._pipeline.tokenizer.tokenize(lowerCAmelCase_ ) if return_ids: __lowerCAmelCase = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) return ServeTokenizeResult(tokens=lowerCAmelCase_ , tokens_ids=lowerCAmelCase_ ) else: return ServeTokenizeResult(tokens=lowerCAmelCase_ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'model': '', 'error': str(lowerCAmelCase_ )} ) def lowercase ( self : int , lowerCAmelCase_ : List[int] = Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) , lowerCAmelCase_ : bool = Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) , lowerCAmelCase_ : bool = Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) , ) -> Union[str, Any]: try: __lowerCAmelCase = self._pipeline.tokenizer.decode(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return ServeDeTokenizeResult(model='' , text=lowerCAmelCase_ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'model': '', 'error': str(lowerCAmelCase_ )} ) async def lowercase ( self : List[Any] , lowerCAmelCase_ : Union[str, Any]=Body(lowerCAmelCase_ , embed=lowerCAmelCase_ ) ) -> int: # Check we don't have empty string if len(lowerCAmelCase_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __lowerCAmelCase = self._pipeline(lowerCAmelCase_ ) return ServeForwardResult(output=lowerCAmelCase_ ) except Exception as e: raise HTTPException(5_0_0 , {'error': str(lowerCAmelCase_ )} )
207
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Dict: a__ = inspect.getfile(accelerate.test_utils ) a__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 a__ = test_metrics @require_cpu def lowerCamelCase__( self :Union[str, Any] ) -> Dict: debug_launcher(self.test_metrics.main ,num_processes=1 ) @require_cpu def lowerCamelCase__( self :List[Any] ) -> int: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowerCamelCase__( self :Any ) -> Dict: self.test_metrics.main() @require_multi_gpu def lowerCamelCase__( self :Tuple ) -> str: print(F'Found {torch.cuda.device_count()} devices.' ) a__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() )
240
import cva import numpy as np class A_ : def __init__( self , _A , _A ): '''simple docstring''' if k in (0.04, 0.06): UpperCAmelCase = k UpperCAmelCase = window_size else: raise ValueError('''invalid k value''' ) def __str__( self ): '''simple docstring''' return str(self.k ) def _lowercase ( self , _A ): '''simple docstring''' UpperCAmelCase = cva.imread(_A , 0 ) UpperCAmelCase , UpperCAmelCase = img.shape UpperCAmelCase = [] UpperCAmelCase = img.copy() UpperCAmelCase = cva.cvtColor(_A , cva.COLOR_GRAY2RGB ) UpperCAmelCase , UpperCAmelCase = np.gradient(_A ) UpperCAmelCase = dx**2 UpperCAmelCase = dy**2 UpperCAmelCase = dx * dy UpperCAmelCase = 0.04 UpperCAmelCase = self.window_size // 2 for y in range(_A , h - offset ): for x in range(_A , w - offset ): UpperCAmelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase = (wxx * wyy) - (wxy**2) UpperCAmelCase = wxx + wyy UpperCAmelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_5_5 ) return color_img, corner_list if __name__ == "__main__": __A : Tuple = HarrisCorner(0.04, 3) __A , __A : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
273
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase ( self : Union[str, Any] ) -> Any: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def lowercase ( self : Tuple ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def lowercase ( self : int ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.dummy_uncond_unet __lowerCAmelCase = DDIMScheduler() __lowerCAmelCase = self.dummy_vq_model __lowerCAmelCase = LDMPipeline(unet=lowerCAmelCase_ , vqvae=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) ldm.to(lowerCAmelCase_ ) ldm.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = ldm(generator=lowerCAmelCase_ , num_inference_steps=2 , output_type='numpy' ).images __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = ldm(generator=lowerCAmelCase_ , num_inference_steps=2 , output_type='numpy' , return_dict=lowerCAmelCase_ )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) __lowerCAmelCase = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowerCAmelCase_ ) ldm.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = ldm(generator=lowerCAmelCase_ , num_inference_steps=5 , output_type='numpy' ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowerCAmelCase = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) __lowerCAmelCase = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
207
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : List[Any] , lowerCAmelCase_ : int = 6_5_5_3_6 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : str = "fourier" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Tuple[int] = (3_2, 3_2, 6_4) , lowerCAmelCase_ : str = None , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : bool = False , ) -> Optional[int]: super().__init__() __lowerCAmelCase = sample_size # time if time_embedding_type == "fourier": __lowerCAmelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCAmelCase_ , log=lowerCAmelCase_ , flip_sin_to_cos=lowerCAmelCase_ ) __lowerCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": __lowerCAmelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCAmelCase_ , downscale_freq_shift=lowerCAmelCase_ ) __lowerCAmelCase = block_out_channels[0] if use_timestep_embedding: __lowerCAmelCase = block_out_channels[0] * 4 __lowerCAmelCase = TimestepEmbedding( in_channels=lowerCAmelCase_ , time_embed_dim=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , out_dim=block_out_channels[0] , ) __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None # down __lowerCAmelCase = in_channels for i, down_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_down_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCAmelCase_ ) # mid __lowerCAmelCase = get_mid_block( lowerCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCAmelCase_ , add_downsample=lowerCAmelCase_ , ) # up __lowerCAmelCase = list(reversed(lowerCAmelCase_ ) ) __lowerCAmelCase = reversed_block_out_channels[0] if out_block_type is None: __lowerCAmelCase = out_channels else: __lowerCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(lowerCAmelCase_ ) - 1 else final_upsample_channels ) __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_up_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCAmelCase_ ) __lowerCAmelCase = output_channel # out __lowerCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) __lowerCAmelCase = get_out_block( out_block_type=lowerCAmelCase_ , num_groups_out=lowerCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[torch.Tensor, float, int] , lowerCAmelCase_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: __lowerCAmelCase = timestep if not torch.is_tensor(lowerCAmelCase_ ): __lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCAmelCase_ ) and len(timesteps.shape ) == 0: __lowerCAmelCase = timesteps[None].to(sample.device ) __lowerCAmelCase = self.time_proj(lowerCAmelCase_ ) if self.config.use_timestep_embedding: __lowerCAmelCase = self.time_mlp(lowerCAmelCase_ ) else: __lowerCAmelCase = timestep_embed[..., None] __lowerCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __lowerCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __lowerCAmelCase = () for downsample_block in self.down_blocks: __lowerCAmelCase , __lowerCAmelCase = downsample_block(hidden_states=lowerCAmelCase_ , temb=lowerCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __lowerCAmelCase = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __lowerCAmelCase = down_block_res_samples[-1:] __lowerCAmelCase = down_block_res_samples[:-1] __lowerCAmelCase = upsample_block(lowerCAmelCase_ , res_hidden_states_tuple=lowerCAmelCase_ , temb=lowerCAmelCase_ ) # 5. post-process if self.out_block: __lowerCAmelCase = self.out_block(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCAmelCase_ )
207
1
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Optional[int] ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(UpperCamelCase__ ): UpperCamelCase = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def A ( self : List[Any] ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(UpperCamelCase__ ): UpperCamelCase = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def A ( self : Union[str, Any] ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase__ ) UpperCamelCase = FlaxBertModel.from_pretrained(UpperCamelCase__ ) UpperCamelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase__ : str ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() @slow def A ( self : List[Any] ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: UpperCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase__ ) UpperCamelCase = FlaxRobertaModel.from_pretrained(UpperCamelCase__ ) UpperCamelCase = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase__ : str ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() def A ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCamelCase = FlaxAutoModel.from_pretrained('bert-base' ) def A ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCamelCase = FlaxAutoModel.from_pretrained(UpperCamelCase__ , revision='aaaaaa' ) def A ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): UpperCamelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def A ( self : str ): """simple docstring""" with self.assertRaisesRegex(UpperCamelCase__ , 'Use `from_pt=True` to load this model' ): UpperCamelCase = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
28
'''simple docstring''' def __lowerCamelCase ( A__ = 10**9 ) -> int: """simple docstring""" UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCamelCase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
28
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE : List[str] = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Any = ['''PerceiverFeatureExtractor'''] __SCREAMING_SNAKE_CASE : str = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def snake_case (__lowercase , __lowercase , __lowercase=None , __lowercase=None ) -> Tuple: '''simple docstring''' if attention_mask is None: _snake_case : List[Any] = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowercase_ : _lowerCamelCase = OPTConfig _lowerCamelCase = {} _lowerCamelCase = 'gelu' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=99 , lowercase_=16 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=20 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=16 , lowercase_=16 , ): _snake_case : Dict = parent _snake_case : List[str] = batch_size _snake_case : Optional[Any] = seq_length _snake_case : Dict = is_training _snake_case : List[Any] = use_labels _snake_case : Dict = vocab_size _snake_case : Tuple = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Tuple = intermediate_size _snake_case : Dict = hidden_act _snake_case : Any = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Tuple = max_position_embeddings _snake_case : List[Any] = eos_token_id _snake_case : Optional[int] = pad_token_id _snake_case : Dict = bos_token_id _snake_case : List[Any] = embed_dim _snake_case : Optional[int] = word_embed_proj_dim _snake_case : Union[str, Any] = False def UpperCamelCase ( self ): _snake_case : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : int = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) _snake_case : Any = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : Any = TFOPTModel(config=lowercase_ ) _snake_case : int = inputs_dict["input_ids"] _snake_case : Optional[int] = input_ids[:1, :] _snake_case : Any = inputs_dict["attention_mask"][:1, :] _snake_case : List[str] = 1 # first forward pass _snake_case : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) _snake_case ,_snake_case : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : int = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ )[0] _snake_case : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : int = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : List[str] = output_from_no_past[:, -3:, random_slice_idx] _snake_case : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class lowercase_ ( __snake_case , __snake_case , unittest.TestCase ): _lowerCamelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _lowerCamelCase = (TFOPTForCausalLM,) if is_tf_available() else () _lowerCamelCase = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = 10 def UpperCamelCase ( self ): _snake_case : Dict = TFOPTModelTester(self ) _snake_case : Optional[int] = ConfigTester(self , config_class=lowercase_ ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def UpperCamelCase ( self ): _snake_case ,_snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _snake_case : Dict = model_class(config=lowercase_ ) _snake_case : Union[str, Any] = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) _snake_case : Optional[Any] = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) _snake_case : int = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) _snake_case : Tuple = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _snake_case : Any = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing _snake_case : Dict = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _snake_case : Optional[int] = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) _snake_case : Optional[int] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _snake_case : str = False self.assertTrue(lowercase_ ) def snake_case (__lowercase ) -> Dict: '''simple docstring''' return tf.constant(__lowercase , dtype=tf.intaa ) @require_tf class lowercase_ ( unittest.TestCase ): _lowerCamelCase = 99 def UpperCamelCase ( self ): _snake_case : Any = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _snake_case : Optional[int] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _snake_case : List[Any] = input_ids.shape[0] _snake_case : List[str] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowercase_ ( unittest.TestCase ): @slow def UpperCamelCase ( self ): _snake_case : Optional[Any] = TFOPTModel.from_pretrained("facebook/opt-350m" ) _snake_case : Optional[Any] = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _snake_case : Optional[int] = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): _snake_case : List[Any] = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state _snake_case : List[str] = (1, 11, 512) self.assertEqual(output.shape , lowercase_ ) _snake_case : Optional[int] = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) _snake_case : List[Any] = tf.function(lowercase_ , jit_compile=lowercase_ ) _snake_case : Tuple = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): super().setUp() _snake_case : Optional[int] = "facebook/opt-350m" def UpperCamelCase ( self ): _snake_case : Union[str, Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) _snake_case : Optional[Any] = GPTaTokenizer.from_pretrained(self.path_model ) _snake_case : List[str] = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _snake_case : List[Any] = tokenizer(lowercase_ , return_tensors="tf" , padding=lowercase_ , add_special_tokens=lowercase_ ) _snake_case : List[str] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _snake_case : Tuple = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) _snake_case : List[Any] = tf.function(lowercase_ , jit_compile=lowercase_ ) _snake_case : Tuple = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class lowercase_ ( unittest.TestCase ): @property def UpperCamelCase ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCamelCase ( self ): _snake_case : List[Any] = "facebook/opt-125m" _snake_case : int = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _snake_case : str = [] _snake_case : Any = GPTaTokenizer.from_pretrained(lowercase_ ) _snake_case : List[Any] = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: _snake_case : str = tokenizer(lowercase_ , return_tensors="tf" ).input_ids _snake_case : Any = model.generate(lowercase_ , max_length=10 ) _snake_case : List[str] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase ( self ): _snake_case : Optional[int] = "facebook/opt-350m" _snake_case : Dict = GPTaTokenizer.from_pretrained(lowercase_ ) _snake_case : Dict = TFOPTForCausalLM.from_pretrained(lowercase_ ) _snake_case : int = "left" # use different length sentences to test batching _snake_case : Union[str, Any] = [ "Hello, my dog is a little", "Today, I", ] _snake_case : Optional[Any] = tokenizer(lowercase_ , return_tensors="tf" , padding=lowercase_ ) _snake_case : List[Any] = inputs["input_ids"] _snake_case : Union[str, Any] = model.generate(input_ids=lowercase_ , attention_mask=inputs["attention_mask"] ) _snake_case : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _snake_case : List[str] = model.generate(input_ids=lowercase_ ) _snake_case : Dict = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) _snake_case : int = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _snake_case : int = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) _snake_case : Tuple = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) _snake_case : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) _snake_case : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) _snake_case : Optional[Any] = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def UpperCamelCase ( self ): _snake_case : Tuple = "facebook/opt-350m" _snake_case : Optional[int] = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _snake_case : str = [] _snake_case : str = GPTaTokenizer.from_pretrained(lowercase_ ) _snake_case : List[str] = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: _snake_case : Dict = tokenizer(lowercase_ , return_tensors="tf" ).input_ids _snake_case : Any = model.generate(lowercase_ , max_length=10 ) _snake_case : Tuple = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
284
0
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase_ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCAmelCase_ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : int = BlenderbotSmallTokenizer def __init__(self , __magic_name__=None , __magic_name__=None , __magic_name__="<|endoftext|>" , __magic_name__="<|endoftext|>" , __magic_name__="<|endoftext|>" , __magic_name__=False , __magic_name__=True , **__magic_name__ , ) -> Any: '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=__magic_name__ , merges=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , ) , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , **__magic_name__ , ) snake_case_ : List[Any] = add_prefix_space def lowerCamelCase (self , __magic_name__ , __magic_name__=None ) -> List[str]: '''simple docstring''' snake_case_ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' snake_case_ : Tuple = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
279
from math import factorial lowerCAmelCase_ = {str(digit): factorial(digit) for digit in range(1_0)} def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_UpperCamelCase ) ) def lowerCamelCase_ ( _UpperCamelCase = 60 , _UpperCamelCase = 1_000_000 ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length snake_case_ : Optional[Any] = 0 # the cached sizes of the previous chains snake_case_ : dict[int, int] = {} for start_chain_element in range(1 , _UpperCamelCase ): # The temporary set will contain the elements of the chain snake_case_ : List[str] = set() snake_case_ : List[Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. snake_case_ : Any = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_UpperCamelCase ) chain_set_length += 1 snake_case_ : List[Any] = digit_factorial_sum(_UpperCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] snake_case_ : List[str] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
279
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( _SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = KandinskyImgaImgPipeline lowercase = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] lowercase = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] lowercase = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase = False @property def __lowercase ( self : List[Any] ) -> str: return 32 @property def __lowercase ( self : Dict ) -> Optional[Any]: return 32 @property def __lowercase ( self : int ) -> Optional[int]: return self.time_input_dim @property def __lowercase ( self : Optional[int] ) -> Any: return self.time_input_dim * 4 @property def __lowercase ( self : List[str] ) -> Dict: return 1_00 @property def __lowercase ( self : Dict ) -> Optional[Any]: lowerCAmelCase_ : Any = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def __lowercase ( self : Optional[int] ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase_ : Dict = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) lowerCAmelCase_ : str = MultilingualCLIP(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = text_encoder.eval() return text_encoder @property def __lowercase ( self : List[Any] ) -> int: torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCAmelCase_ : List[Any] = UNetaDConditionModel(**lowerCamelCase ) return model @property def __lowercase ( self : int ) -> Union[str, Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self : Tuple ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase_ : Any = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase_ : List[Any] = self.dummy_text_encoder lowerCAmelCase_ : List[str] = self.dummy_tokenizer lowerCAmelCase_ : Union[str, Any] = self.dummy_unet lowerCAmelCase_ : Union[str, Any] = self.dummy_movq lowerCAmelCase_ : Any = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowerCAmelCase_ : List[Any] = DDIMScheduler(**lowerCamelCase ) lowerCAmelCase_ : List[str] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __lowercase ( self : Dict , lowerCamelCase : Dict , lowerCamelCase : int=0 ) -> Any: lowerCAmelCase_ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCamelCase ) # create init_image lowerCAmelCase_ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(lowerCamelCase ).startswith("""mps""" ): lowerCAmelCase_ : Any = torch.manual_seed(lowerCamelCase ) else: lowerCAmelCase_ : Optional[int] = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowerCAmelCase_ : str = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __lowercase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase_ : Union[str, Any] = """cpu""" lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : Optional[Any] = self.pipeline_class(**lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCAmelCase_ : int = pipe(**self.get_dummy_inputs(lowerCamelCase ) ) lowerCAmelCase_ : Tuple = output.images lowerCAmelCase_ : int = pipe( **self.get_dummy_inputs(lowerCamelCase ) , return_dict=lowerCamelCase , )[0] lowerCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Tuple = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : Dict ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase_ : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) lowerCAmelCase_ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCAmelCase_ : int = """A red cartoon frog, 4k""" lowerCAmelCase_ : Dict = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) lowerCAmelCase_ : Any = pipeline.to(lowerCamelCase ) pipeline.set_progress_bar_config(disable=lowerCamelCase ) lowerCAmelCase_ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = pipe_prior( lowerCamelCase , generator=lowerCamelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowerCAmelCase_ : Tuple = pipeline( lowerCamelCase , image=lowerCamelCase , image_embeds=lowerCamelCase , negative_image_embeds=lowerCamelCase , generator=lowerCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) lowerCAmelCase_ : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase )
89
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __A : Tuple = "sshleifer/mar_enro_6_3_student" class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __lowercase ( self : List[Any] ) -> Optional[Any]: super().setUp() lowerCAmelCase_ : Any = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=lowerCamelCase , ) lowerCAmelCase_ : Optional[Any] = F'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def __lowercase ( self : str ) -> str: MarianMTModel.from_pretrained(lowerCamelCase ) @slow @require_torch_gpu def __lowercase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase_ : str = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script lowerCAmelCase_ : Dict = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() lowerCAmelCase_ : Optional[int] = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): lowerCAmelCase_ : Optional[int] = bash_script.replace(lowerCamelCase , str(lowerCamelCase ) ) lowerCAmelCase_ : Optional[Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowerCAmelCase_ : Tuple = F'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowerCAmelCase_ : Tuple = ["""finetune.py"""] + bash_script.split() + args with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser() lowerCAmelCase_ : Any = pl.Trainer.add_argparse_args(lowerCamelCase ) lowerCAmelCase_ : List[str] = SummarizationModule.add_model_specific_args(lowerCamelCase , os.getcwd() ) lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : Dict = main(lowerCamelCase ) # Check metrics lowerCAmelCase_ : int = load_json(model.metrics_save_path ) lowerCAmelCase_ : Optional[Any] = metrics["""val"""][0] lowerCAmelCase_ : Tuple = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , lowerCamelCase ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase_ : Union[str, Any] = os.listdir(lowerCamelCase ) lowerCAmelCase_ : Any = [x for x in contents if x.endswith(""".ckpt""" )][0] lowerCAmelCase_ : Union[str, Any] = os.path.join(args.output_dir , lowerCamelCase ) lowerCAmelCase_ : int = torch.load(lowerCamelCase , map_location="""cpu""" ) lowerCAmelCase_ : List[str] = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase_ : List[str] = {os.path.basename(lowerCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def __lowercase ( self : Optional[Any] ) -> Dict: lowerCAmelCase_ : List[str] = F'{self.test_file_dir_str}/test_data/wmt_en_ro' lowerCAmelCase_ : Dict = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 1_28, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script lowerCAmelCase_ : int = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) lowerCAmelCase_ : str = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) lowerCAmelCase_ : Tuple = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): lowerCAmelCase_ : Optional[int] = bash_script.replace(lowerCamelCase , str(lowerCamelCase ) ) lowerCAmelCase_ : int = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = bash_script.replace("""--fp16""" , """""" ) lowerCAmelCase_ : Dict = 6 lowerCAmelCase_ : List[Any] = ( ["""distillation.py"""] + bash_script.split() + [ F'--output_dir={output_dir}', """--gpus=1""", """--learning_rate=1e-3""", F'--num_train_epochs={epochs}', """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): lowerCAmelCase_ : Dict = argparse.ArgumentParser() lowerCAmelCase_ : int = pl.Trainer.add_argparse_args(lowerCamelCase ) lowerCAmelCase_ : List[str] = SummarizationDistiller.add_model_specific_args(lowerCamelCase , os.getcwd() ) lowerCAmelCase_ : List[Any] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowerCAmelCase_ : str = distill_main(lowerCamelCase ) # Check metrics lowerCAmelCase_ : Union[str, Any] = load_json(model.metrics_save_path ) lowerCAmelCase_ : Union[str, Any] = metrics["""val"""][0] lowerCAmelCase_ : Union[str, Any] = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , lowerCamelCase ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase_ : Union[str, Any] = os.listdir(lowerCamelCase ) lowerCAmelCase_ : Dict = [x for x in contents if x.endswith(""".ckpt""" )][0] lowerCAmelCase_ : Optional[int] = os.path.join(args.output_dir , lowerCamelCase ) lowerCAmelCase_ : int = torch.load(lowerCamelCase , map_location="""cpu""" ) lowerCAmelCase_ : Tuple = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase_ : Union[str, Any] = {os.path.basename(lowerCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
89
1