source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(data, orig_initial, mask=None, maxiter=0, epsfcn=0.001, dmin=0, dmax= np.inf, sector_width=np.pi / 9.0, extent=10, callback=None): if mask is None: mask = np.ones(data.shape) data = data.astype(np.double) def x(orig, data, mask, orig_orig, callback): I = [None] * 4 p, Ints, A = radint_nsector(data, None, -1, -1, -1, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask=mask, phi0=np.pi / 4 - 0.5 * sector_width, dphi=sector_width, Nsector=4) minpix = max(max(p.min(0).tolist()), dmin) maxpix = min(min(p.max(0).tolist()), dmax) if maxpix < minpix: raise ValueError( 'The four slices do not overlap! Please give a better approximation for the origin or use another centering method.' ) for i in range(4): I[i] = Ints[:, i][(p[:, i] >= minpix) & (p[:, i] <= maxpix)] ret = ((I[0] - I[2]) ** 2 + (I[1] - I[3]) ** 2) / (maxpix - minpix) if callback is not None: callback() return ret orig = scipy.optimize.leastsq(targetfunc, np.array([extent, extent]), args=(data, 1 - mask.astype(np.uint8), np.array(orig_initial) - extent, callback), maxfev=maxiter, epsfcn=0.01) return orig[0] + np.array(orig_initial) - extent
findbeam_slices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, orig_initial, mask=None, maxiter=0, epsfcn=0.001, dmin=0, dmax=\n np.inf, sector_width=np.pi / 9.0, extent=10, callback=None):\n if mask is None:\n mask = np.ones(data.shape)\n data = data.astype(np.double)\n\n def x(orig, data, mask, orig_orig, callback):\n I = [None] * 4\n p, Ints, A = radint_nsector(data, None, -1, -1, -1, orig[0] +\n orig_orig[0], orig[1] + orig_orig[1], mask=mask, phi0=np.pi / 4 -\n 0.5 * sector_width, dphi=sector_width, Nsector=4)\n minpix = max(max(p.min(0).tolist()), dmin)\n maxpix = min(min(p.max(0).tolist()), dmax)\n if maxpix < minpix:\n raise ValueError(\n 'The four slices do not overlap! Please give a better approximation for the origin or use another centering method.'\n )\n for i in range(4):\n I[i] = Ints[:, i][(p[:, i] >= minpix) & (p[:, i] <= maxpix)]\n ret = ((I[0] - I[2]) ** 2 + (I[1] - I[3]) ** 2) / (maxpix - minpix)\n if callback is not None:\n callback()\n return ret\n orig = scipy.optimize.leastsq(targetfunc, np.array([extent, extent]),\n args=(data, 1 - mask.astype(np.uint8), np.array(orig_initial) -\n extent, callback), maxfev=maxiter, epsfcn=0.01)\n return orig[0] + np.array(orig_initial) - extent\n", "role": "user" }, { "content": "findbeam_slices", "role": "assistant" } ]
def x(data, orig_initial, mask=None, maxiter=100, Ntheta=50, dmin=0, dmax= np.inf, extent=10, callback=None): if mask is None: mask = np.ones(data.shape) data = data.astype(np.double) def x(orig, data, mask, orig_orig, callback): def x(p, x, y): return (y - np.sin(x + p[1]) * p[0] - p[2]) / np.sqrt(len(x)) t, I, a = azimintpix(data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask.astype('uint8'), Ntheta, dmin, dmax) if len(a) > (a > 0).sum(): raise ValueError( 'findbeam_azimuthal: non-complete azimuthal average, please consider changing dmin, dmax and/or orig_initial!' ) p = (I.max() - I.min()) / 2.0, t[I == I.max()][0], I.mean() p = scipy.optimize.leastsq(sinfun, p, (t, I))[0] if callback is not None: callback() return abs(p[0]) orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]), args=(data, 1 - mask, np.array(orig_initial) - extent, callback), maxiter=maxiter, disp=0) return orig1 + np.array(orig_initial) - extent
findbeam_azimuthal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, orig_initial, mask=None, maxiter=100, Ntheta=50, dmin=0, dmax=\n np.inf, extent=10, callback=None):\n if mask is None:\n mask = np.ones(data.shape)\n data = data.astype(np.double)\n\n def x(orig, data, mask, orig_orig, callback):\n\n def x(p, x, y):\n return (y - np.sin(x + p[1]) * p[0] - p[2]) / np.sqrt(len(x))\n t, I, a = azimintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask.astype('uint8'), Ntheta, dmin, dmax)\n if len(a) > (a > 0).sum():\n raise ValueError(\n 'findbeam_azimuthal: non-complete azimuthal average, please consider changing dmin, dmax and/or orig_initial!'\n )\n p = (I.max() - I.min()) / 2.0, t[I == I.max()][0], I.mean()\n p = scipy.optimize.leastsq(sinfun, p, (t, I))[0]\n if callback is not None:\n callback()\n return abs(p[0])\n orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),\n args=(data, 1 - mask, np.array(orig_initial) - extent, callback),\n maxiter=maxiter, disp=0)\n return orig1 + np.array(orig_initial) - extent\n", "role": "user" }, { "content": "findbeam_azimuthal", "role": "assistant" } ]
def x(data, orig_initial, mask=None, maxiter=100, Ntheta=50, dmin=0, dmax= np.inf, extent=10, callback=None): if Ntheta % 2: raise ValueError('Ntheta should be even!') if mask is None: mask = np.ones_like(data).astype(np.uint8) data = data.astype(np.double) def x(orig, data, mask, orig_orig, callback): I = azimintpix(data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, Ntheta, dmin, dmax)[1] if callback is not None: callback() return np.sum((I[:Ntheta / 2] - I[Ntheta / 2:]) ** 2) / Ntheta orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]), args=(data, 1 - mask, np.array(orig_initial) - extent, callback), maxiter=maxiter, disp=0) return orig1 + np.array(orig_initial) - extent
findbeam_azimuthal_fold
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, orig_initial, mask=None, maxiter=100, Ntheta=50, dmin=0, dmax=\n np.inf, extent=10, callback=None):\n if Ntheta % 2:\n raise ValueError('Ntheta should be even!')\n if mask is None:\n mask = np.ones_like(data).astype(np.uint8)\n data = data.astype(np.double)\n\n def x(orig, data, mask, orig_orig, callback):\n I = azimintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask, Ntheta, dmin, dmax)[1]\n if callback is not None:\n callback()\n return np.sum((I[:Ntheta / 2] - I[Ntheta / 2:]) ** 2) / Ntheta\n orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),\n args=(data, 1 - mask, np.array(orig_initial) - extent, callback),\n maxiter=maxiter, disp=0)\n return orig1 + np.array(orig_initial) - extent\n", "role": "user" }, { "content": "findbeam_azimuthal_fold", "role": "assistant" } ]
def x(data, pri, threshold=0.05): rowmin = np.floor(min(pri[2:])) rowmax = np.ceil(max(pri[2:])) colmin = np.floor(min(pri[:2])) colmax = np.ceil(max(pri[:2])) if threshold is not None: B = data[rowmin:rowmax, colmin:colmax] Ri = np.arange(rowmin, rowmax) Ci = np.arange(colmin, colmax) Ravg = B.mean(1) Cavg = B.mean(0) maxR = Ravg.max() maxRpos = Ravg.argmax() maxC = Cavg.max() maxCpos = Cavg.argmax() Rmin = Ri[(Ravg - Ravg[0] >= (maxR - Ravg[0]) * threshold) & (Ri < maxRpos)][0] Rmax = Ri[(Ravg - Ravg[-1] >= (maxR - Ravg[-1]) * threshold) & (Ri > maxRpos)][-1] Cmin = Ci[(Cavg - Cavg[0] >= (maxC - Cavg[0]) * threshold) & (Ci < maxCpos)][0] Cmax = Ci[(Cavg - Cavg[-1] >= (maxC - Cavg[-1]) * threshold) & (Ci > maxCpos)][-1] else: Rmin = rowmin Rmax = rowmax Cmin = colmin Cmax = colmax d = data[Rmin:Rmax + 1, Cmin:Cmax + 1] x = np.arange(Rmin, Rmax + 1) y = np.arange(Cmin, Cmax + 1) bcx = (d.sum(1) * x).sum() / d.sum() bcy = (d.sum(0) * y).sum() / d.sum() return bcx, bcy
findbeam_semitransparent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, pri, threshold=0.05):\n rowmin = np.floor(min(pri[2:]))\n rowmax = np.ceil(max(pri[2:]))\n colmin = np.floor(min(pri[:2]))\n colmax = np.ceil(max(pri[:2]))\n if threshold is not None:\n B = data[rowmin:rowmax, colmin:colmax]\n Ri = np.arange(rowmin, rowmax)\n Ci = np.arange(colmin, colmax)\n Ravg = B.mean(1)\n Cavg = B.mean(0)\n maxR = Ravg.max()\n maxRpos = Ravg.argmax()\n maxC = Cavg.max()\n maxCpos = Cavg.argmax()\n Rmin = Ri[(Ravg - Ravg[0] >= (maxR - Ravg[0]) * threshold) & (Ri <\n maxRpos)][0]\n Rmax = Ri[(Ravg - Ravg[-1] >= (maxR - Ravg[-1]) * threshold) & (Ri >\n maxRpos)][-1]\n Cmin = Ci[(Cavg - Cavg[0] >= (maxC - Cavg[0]) * threshold) & (Ci <\n maxCpos)][0]\n Cmax = Ci[(Cavg - Cavg[-1] >= (maxC - Cavg[-1]) * threshold) & (Ci >\n maxCpos)][-1]\n else:\n Rmin = rowmin\n Rmax = rowmax\n Cmin = colmin\n Cmax = colmax\n d = data[Rmin:Rmax + 1, Cmin:Cmax + 1]\n x = np.arange(Rmin, Rmax + 1)\n y = np.arange(Cmin, Cmax + 1)\n bcx = (d.sum(1) * x).sum() / d.sum()\n bcy = (d.sum(0) * y).sum() / d.sum()\n return bcx, bcy\n", "role": "user" }, { "content": "findbeam_semitransparent", "role": "assistant" } ]
def x(data, orig_initial, mask, rmin, rmax, maxiter=100, drive_by= 'amplitude', extent=10, callback=None): orig_initial = np.array(orig_initial) mask = 1 - mask.astype(np.uint8) data = data.astype(np.double) pix = np.arange(rmin * 1.0, rmax * 1.0, 1) if drive_by.lower() == 'hwhm': def x(orig, data, mask, orig_orig, callback): I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1] hwhm = float(misc.findpeak_single(pix, I)[1]) if callback is not None: callback() return abs(hwhm) elif drive_by.lower() == 'amplitude': def x(orig, data, mask, orig_orig, callback): I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1] fp = misc.findpeak_single(pix, I) height = -float(fp[2] + fp[3]) if callback is not None: callback() return height else: raise ValueError('Invalid argument for drive_by %s' % drive_by) orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]), args=(data, mask, orig_initial - extent, callback), maxiter=maxiter, disp=0) return np.array(orig_initial) - extent + orig1
findbeam_radialpeak
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, orig_initial, mask, rmin, rmax, maxiter=100, drive_by=\n 'amplitude', extent=10, callback=None):\n orig_initial = np.array(orig_initial)\n mask = 1 - mask.astype(np.uint8)\n data = data.astype(np.double)\n pix = np.arange(rmin * 1.0, rmax * 1.0, 1)\n if drive_by.lower() == 'hwhm':\n\n def x(orig, data, mask, orig_orig, callback):\n I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask, pix)[1]\n hwhm = float(misc.findpeak_single(pix, I)[1])\n if callback is not None:\n callback()\n return abs(hwhm)\n elif drive_by.lower() == 'amplitude':\n\n def x(orig, data, mask, orig_orig, callback):\n I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask, pix)[1]\n fp = misc.findpeak_single(pix, I)\n height = -float(fp[2] + fp[3])\n if callback is not None:\n callback()\n return height\n else:\n raise ValueError('Invalid argument for drive_by %s' % drive_by)\n orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),\n args=(data, mask, orig_initial - extent, callback), maxiter=maxiter,\n disp=0)\n return np.array(orig_initial) - extent + orig1\n", "role": "user" }, { "content": "findbeam_radialpeak", "role": "assistant" } ]
def x(data, orig_initial, mask, rmin, rmax, maxiter=100, extent=10, callback=None): orig_initial = np.array(orig_initial) mask = 1 - mask.astype(np.uint8) data = data.astype(np.double) pix = np.arange(rmin * 1.0, rmax * 1.0, 1) pix2 = pix ** 2 def x(orig, data, mask, orig_orig, callback): I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1] p = np.polyfit(pix2, np.log(I), 1)[0] if callback is not None: callback() return p orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]), args=(data, mask, orig_initial - extent, callback), maxiter=maxiter, disp=0) return np.array(orig_initial) - extent + orig1
findbeam_Guinier
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, orig_initial, mask, rmin, rmax, maxiter=100, extent=10,\n callback=None):\n orig_initial = np.array(orig_initial)\n mask = 1 - mask.astype(np.uint8)\n data = data.astype(np.double)\n pix = np.arange(rmin * 1.0, rmax * 1.0, 1)\n pix2 = pix ** 2\n\n def x(orig, data, mask, orig_orig, callback):\n I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask, pix)[1]\n p = np.polyfit(pix2, np.log(I), 1)[0]\n if callback is not None:\n callback()\n return p\n orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),\n args=(data, mask, orig_initial - extent, callback), maxiter=maxiter,\n disp=0)\n return np.array(orig_initial) - extent + orig1\n", "role": "user" }, { "content": "findbeam_Guinier", "role": "assistant" } ]
def x(data, orig_initial, mask, rmin, rmax, maxiter=100, drive_by='R2', extent=10, callback=None): orig_initial = np.array(orig_initial) mask = 1 - mask.astype(np.uint8) data = data.astype(np.double) pix = np.arange(rmin * 1.0, rmax * 1.0, 1) def x(orig, data, mask, orig_orig, callback): I, E = radintpix(data, None, orig[0] + orig_orig[0], orig[1] + orig_orig[1], mask, pix)[1:3] p, dp, stat = misc.easylsq.nlsq_fit(pix, I, E, lambda q, A, alpha: A * q ** alpha, [1.0, -3.0]) if callback is not None: callback() if drive_by == 'R2': return 1 - stat['R2'] elif drive_by.startswith('Chi2'): return stat[drive_by] orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]), args=(data, mask, orig_initial - extent, callback), maxiter=maxiter, disp=False) return np.array(orig_initial) - extent + orig1
findbeam_powerlaw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, orig_initial, mask, rmin, rmax, maxiter=100, drive_by='R2',\n extent=10, callback=None):\n orig_initial = np.array(orig_initial)\n mask = 1 - mask.astype(np.uint8)\n data = data.astype(np.double)\n pix = np.arange(rmin * 1.0, rmax * 1.0, 1)\n\n def x(orig, data, mask, orig_orig, callback):\n I, E = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask, pix)[1:3]\n p, dp, stat = misc.easylsq.nlsq_fit(pix, I, E, lambda q, A, alpha: \n A * q ** alpha, [1.0, -3.0])\n if callback is not None:\n callback()\n if drive_by == 'R2':\n return 1 - stat['R2']\n elif drive_by.startswith('Chi2'):\n return stat[drive_by]\n orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),\n args=(data, mask, orig_initial - extent, callback), maxiter=maxiter,\n disp=False)\n return np.array(orig_initial) - extent + orig1\n", "role": "user" }, { "content": "findbeam_powerlaw", "role": "assistant" } ]
def x(self) ->ErrorValue: try: return ErrorValue(self._data['geometry']['beamposy'], self._data[ 'geometry']['beamposy.err']) except KeyError: return ErrorValue(self._data['geometry']['beamposy'], 0.0)
beamcenterx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->ErrorValue:\n try:\n return ErrorValue(self._data['geometry']['beamposy'], self._data[\n 'geometry']['beamposy.err'])\n except KeyError:\n return ErrorValue(self._data['geometry']['beamposy'], 0.0)\n", "role": "user" }, { "content": "beamcenterx", "role": "assistant" } ]
def x(self) ->ErrorValue: try: return ErrorValue(self._data['geometry']['beamposx'], self._data[ 'geometry']['beamposx.err']) except KeyError: return ErrorValue(self._data['geometry']['beamposx'], 0.0)
beamcentery
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->ErrorValue:\n try:\n return ErrorValue(self._data['geometry']['beamposx'], self._data[\n 'geometry']['beamposx.err'])\n except KeyError:\n return ErrorValue(self._data['geometry']['beamposx'], 0.0)\n", "role": "user" }, { "content": "beamcentery", "role": "assistant" } ]
def x(self) ->Optional[str]: mask = self._data['geometry']['mask'] if os.path.abspath(mask): mask = os.path.split(mask)[-1] return mask
maskname
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Optional[str]:\n mask = self._data['geometry']['mask']\n if os.path.abspath(mask):\n mask = os.path.split(mask)[-1]\n return mask\n", "role": "user" }, { "content": "maskname", "role": "assistant" } ]
def x(x, yerr): x = np.array(x) assert isinstance(x, np.ndarray) yerr = np.array(yerr) return 0.5 * np.sqrt((x[1] - x[0]) ** 2 * yerr[0] ** 2 + np.sum((x[2:] - x[:-2]) ** 2 * yerr[1:-1] ** 2) + (x[-1] - x[-2]) ** 2 * yerr[-1] ** 2)
errtrapz
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, yerr):\n x = np.array(x)\n assert isinstance(x, np.ndarray)\n yerr = np.array(yerr)\n return 0.5 * np.sqrt((x[1] - x[0]) ** 2 * yerr[0] ** 2 + np.sum((x[2:] -\n x[:-2]) ** 2 * yerr[1:-1] ** 2) + (x[-1] - x[-2]) ** 2 * yerr[-1] ** 2)\n", "role": "user" }, { "content": "errtrapz", "role": "assistant" } ]
def x(self, fitfunction, parinit, unfittableparameters=(), *args, **kwargs): kwargs['otherparameters'] = unfittableparameters fitter = Fitter(fitfunction, parinit, self.q, self.Intensity, self. qError, self.Error, *args, **kwargs) fixedvalues = [[None, p][isinstance(p, FixedParameter)] for p in parinit] fitter.fixparameters(fixedvalues) fitter.fit() pars = fitter.parameters() uncs = fitter.uncertainties() stats = fitter.stats() results = [ErrorValue(p, u) for p, u in zip(pars, uncs)] + [stats, type (self)(self.q, stats['func_value'])] return results
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fitfunction, parinit, unfittableparameters=(), *args, **kwargs):\n kwargs['otherparameters'] = unfittableparameters\n fitter = Fitter(fitfunction, parinit, self.q, self.Intensity, self.\n qError, self.Error, *args, **kwargs)\n fixedvalues = [[None, p][isinstance(p, FixedParameter)] for p in parinit]\n fitter.fixparameters(fixedvalues)\n fitter.fit()\n pars = fitter.parameters()\n uncs = fitter.uncertainties()\n stats = fitter.stats()\n results = [ErrorValue(p, u) for p, u in zip(pars, uncs)] + [stats, type\n (self)(self.q, stats['func_value'])]\n return results\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(self, exponent=1, errorrequested=True): y = self.Intensity * self.q ** exponent m = np.trapz(y, self.q) if errorrequested: err = self.Error * self.q ** exponent dm = errtrapz(self.q, err) return ErrorValue(m, dm) else: return m
momentum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, exponent=1, errorrequested=True):\n y = self.Intensity * self.q ** exponent\n m = np.trapz(y, self.q)\n if errorrequested:\n err = self.Error * self.q ** exponent\n dm = errtrapz(self.q, err)\n return ErrorValue(m, dm)\n else:\n return m\n", "role": "user" }, { "content": "momentum", "role": "assistant" } ]
def x(self, other, qmin=None, qmax=None, Npoints=None): if qmin is None: qmin = max(self.q.min(), other.q.min()) if qmax is None: xmax = min(self.q.max(), other.q.max()) data1 = self.trim(qmin, qmax) data2 = other.trim(qmin, qmax) if Npoints is None: Npoints = min(len(data1), len(data2)) commonx = np.linspace(max(data1.q.min(), data2.q.min()), min(data2.q. max(), data1.q.max()), Npoints) data1 = data1.interpolate(commonx) data2 = data2.interpolate(commonx) return nonlinear_odr(data1.Intensity, data2.Intensity, data1.Error, data2.Error, lambda x, a: a * x, [1])[0]
scalefactor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, qmin=None, qmax=None, Npoints=None):\n if qmin is None:\n qmin = max(self.q.min(), other.q.min())\n if qmax is None:\n xmax = min(self.q.max(), other.q.max())\n data1 = self.trim(qmin, qmax)\n data2 = other.trim(qmin, qmax)\n if Npoints is None:\n Npoints = min(len(data1), len(data2))\n commonx = np.linspace(max(data1.q.min(), data2.q.min()), min(data2.q.\n max(), data1.q.max()), Npoints)\n data1 = data1.interpolate(commonx)\n data2 = data2.interpolate(commonx)\n return nonlinear_odr(data1.Intensity, data2.Intensity, data1.Error,\n data2.Error, lambda x, a: a * x, [1])[0]\n", "role": "user" }, { "content": "scalefactor", "role": "assistant" } ]
def x(self, covar): covar_resolved = np.empty((len(self._fixed_parameters), len(self. _fixed_parameters))) indices_of_fixed_parameters = [i for i in range(len(self.parameters())) if self._fixed_parameters[i] is not None] indices_of_free_parameters = [i for i in range(len(self.parameters())) if self._fixed_parameters[i] is None] for i in range(covar_resolved.shape[0]): if i in indices_of_fixed_parameters: covar_resolved[i, :] = 0 continue for j in range(covar_resolved.shape[1]): if j in indices_of_fixed_parameters: covar_resolved[:, j] = 0 continue covar_resolved[i, j] = covar[indices_of_free_parameters.index(i ), indices_of_free_parameters.index(j)] return covar_resolved
substitute_fixed_parameters_covar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, covar):\n covar_resolved = np.empty((len(self._fixed_parameters), len(self.\n _fixed_parameters)))\n indices_of_fixed_parameters = [i for i in range(len(self.parameters())) if\n self._fixed_parameters[i] is not None]\n indices_of_free_parameters = [i for i in range(len(self.parameters())) if\n self._fixed_parameters[i] is None]\n for i in range(covar_resolved.shape[0]):\n if i in indices_of_fixed_parameters:\n covar_resolved[i, :] = 0\n continue\n for j in range(covar_resolved.shape[1]):\n if j in indices_of_fixed_parameters:\n covar_resolved[:, j] = 0\n continue\n covar_resolved[i, j] = covar[indices_of_free_parameters.index(i\n ), indices_of_free_parameters.index(j)]\n return covar_resolved\n", "role": "user" }, { "content": "substitute_fixed_parameters_covar", "role": "assistant" } ]
def x(self, filename: str) ->np.ndarray: mask = scipy.io.loadmat(self.find_file(filename, what='mask')) maskkey = [k for k in mask.keys() if not (k.startswith('_') or k. endswith('_'))][0] return mask[maskkey].astype(np.bool)
loadmask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename: str) ->np.ndarray:\n mask = scipy.io.loadmat(self.find_file(filename, what='mask'))\n maskkey = [k for k in mask.keys() if not (k.startswith('_') or k.\n endswith('_'))][0]\n return mask[maskkey].astype(np.bool)\n", "role": "user" }, { "content": "loadmask", "role": "assistant" } ]
def x(self, fsn: int) ->classes2.Curve: return classes2.Curve.new_from_file(self.find_file(self._exposureclass + '_%05d.txt' % fsn))
loadcurve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fsn: int) ->classes2.Curve:\n return classes2.Curve.new_from_file(self.find_file(self._exposureclass +\n '_%05d.txt' % fsn))\n", "role": "user" }, { "content": "loadcurve", "role": "assistant" } ]
def x(name, load_header=False, load_data=True, for_nexus=False): with open(name, 'rb') as f: cbfbin = f.read() datastart = cbfbin.find(b'\x0c\x1a\x04\xd5') + 4 hed = [x.strip() for x in cbfbin[:datastart].split(b'\n')] header = {} readingmode = None for i in range(len(hed)): if not hed[i]: continue elif hed[i] == b';': continue elif hed[i].startswith(b'_array_data.header_convention'): header['CBF_header_convention'] = str(hed[i][len( b'_array_data.header_convention'):].strip().replace(b'"', b''), encoding='utf-8') elif hed[i].startswith(b'_array_data.header_contents'): readingmode = 'PilatusHeader' elif hed[i].startswith(b'_array_data.data'): readingmode = 'CIFHeader' elif readingmode == 'PilatusHeader': if not hed[i].startswith(b'#'): continue line = hed[i].strip()[1:].strip() try: header['CBF_Date'] = dateutil.parser.parse(line) header['Date'] = header['CBF_Date'] continue except (ValueError, TypeError): pass treated = False for sep in (b':', b'='): if treated: continue if line.count(sep) == 1: name, value = tuple(x.strip() for x in line.split(sep, 1)) try: m = re.match( b'^(?P<number>-?(\\d+(.\\d+)?(e-?\\d+)?))\\s+(?P<unit>m|s|counts|eV)$' , value).groupdict() value = float(m['number']) m['unit'] = str(m['unit'], encoding='utf-8') except AttributeError: pass header[str(name, 'utf-8')] = value treated = True if treated: continue if line.startswith(b'Pixel_size'): header['XPixel'], header['YPixel'] = tuple([(float(a.strip( ).split(b' ')[0]) * 1000) for a in line[len( b'Pixel_size'):].split(b'x')]) else: try: m = re.match( b'^(?P<label>[a-zA-Z0-9,_\\.\\-!\\?\\ ]*?)\\s+(?P<number>-?(\\d+(.\\d+)?(e-?\\d+)?))\\s+(?P<unit>m|s|counts|eV)$' , line).groupdict() except AttributeError: pass else: m['label'] = str(m['label'], 'utf-8') m['unit'] = str(m['unit'], encoding='utf-8') if m['unit'] == b'counts': header[m['label']] = int(m['number']) else: header[m['label']] = float(m['number']) if 'sensor' in m['label'] and 'thickness' in m['label']: header[m['label']] *= 1000000.0 elif readingmode == 'CIFHeader': line = hed[i] for sep in (b':', b'='): if line.count(sep) == 1: label, content = tuple(x.strip() for x in line.split( sep, 1)) if b'"' in content: content = content.replace(b'"', b'') try: content = int(content) except ValueError: content = str(content, encoding='utf-8') header['CBF_' + str(label, encoding='utf-8')] = content else: pass ret = [] if load_data: if header['CBF_X-Binary-Element-Type'] != 'signed 32-bit integer': raise NotImplementedError( 'element type is not "signed 32-bit integer" in CBF, but %s.' % header['CBF_X-Binary-Element-Type']) if header['CBF_conversions'] != 'x-CBF_BYTE_OFFSET': raise NotImplementedError( 'compression is not "x-CBF_BYTE_OFFSET" in CBF!') dim1 = header['CBF_X-Binary-Size-Fastest-Dimension'] dim2 = header['CBF_X-Binary-Size-Second-Dimension'] nbytes = header['CBF_X-Binary-Size'] cbfdata = cbfdecompress(bytearray(cbfbin[datastart:datastart + nbytes]), dim1, dim2, for_nexus) ret.append(cbfdata) if load_header: ret.append(header) return tuple(ret)
readcbf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, load_header=False, load_data=True, for_nexus=False):\n with open(name, 'rb') as f:\n cbfbin = f.read()\n datastart = cbfbin.find(b'\\x0c\\x1a\\x04\\xd5') + 4\n hed = [x.strip() for x in cbfbin[:datastart].split(b'\\n')]\n header = {}\n readingmode = None\n for i in range(len(hed)):\n if not hed[i]:\n continue\n elif hed[i] == b';':\n continue\n elif hed[i].startswith(b'_array_data.header_convention'):\n header['CBF_header_convention'] = str(hed[i][len(\n b'_array_data.header_convention'):].strip().replace(b'\"',\n b''), encoding='utf-8')\n elif hed[i].startswith(b'_array_data.header_contents'):\n readingmode = 'PilatusHeader'\n elif hed[i].startswith(b'_array_data.data'):\n readingmode = 'CIFHeader'\n elif readingmode == 'PilatusHeader':\n if not hed[i].startswith(b'#'):\n continue\n line = hed[i].strip()[1:].strip()\n try:\n header['CBF_Date'] = dateutil.parser.parse(line)\n header['Date'] = header['CBF_Date']\n continue\n except (ValueError, TypeError):\n pass\n treated = False\n for sep in (b':', b'='):\n if treated:\n continue\n if line.count(sep) == 1:\n name, value = tuple(x.strip() for x in line.split(sep, 1))\n try:\n m = re.match(\n b'^(?P<number>-?(\\\\d+(.\\\\d+)?(e-?\\\\d+)?))\\\\s+(?P<unit>m|s|counts|eV)$'\n , value).groupdict()\n value = float(m['number'])\n m['unit'] = str(m['unit'], encoding='utf-8')\n except AttributeError:\n pass\n header[str(name, 'utf-8')] = value\n treated = True\n if treated:\n continue\n if line.startswith(b'Pixel_size'):\n header['XPixel'], header['YPixel'] = tuple([(float(a.strip(\n ).split(b' ')[0]) * 1000) for a in line[len(\n b'Pixel_size'):].split(b'x')])\n else:\n try:\n m = re.match(\n b'^(?P<label>[a-zA-Z0-9,_\\\\.\\\\-!\\\\?\\\\ ]*?)\\\\s+(?P<number>-?(\\\\d+(.\\\\d+)?(e-?\\\\d+)?))\\\\s+(?P<unit>m|s|counts|eV)$'\n , line).groupdict()\n except AttributeError:\n pass\n else:\n m['label'] = str(m['label'], 'utf-8')\n m['unit'] = str(m['unit'], encoding='utf-8')\n if m['unit'] == b'counts':\n header[m['label']] = int(m['number'])\n else:\n header[m['label']] = float(m['number'])\n if 'sensor' in m['label'] and 'thickness' in m['label']:\n header[m['label']] *= 1000000.0\n elif readingmode == 'CIFHeader':\n line = hed[i]\n for sep in (b':', b'='):\n if line.count(sep) == 1:\n label, content = tuple(x.strip() for x in line.split(\n sep, 1))\n if b'\"' in content:\n content = content.replace(b'\"', b'')\n try:\n content = int(content)\n except ValueError:\n content = str(content, encoding='utf-8')\n header['CBF_' + str(label, encoding='utf-8')] = content\n else:\n pass\n ret = []\n if load_data:\n if header['CBF_X-Binary-Element-Type'] != 'signed 32-bit integer':\n raise NotImplementedError(\n 'element type is not \"signed 32-bit integer\" in CBF, but %s.' %\n header['CBF_X-Binary-Element-Type'])\n if header['CBF_conversions'] != 'x-CBF_BYTE_OFFSET':\n raise NotImplementedError(\n 'compression is not \"x-CBF_BYTE_OFFSET\" in CBF!')\n dim1 = header['CBF_X-Binary-Size-Fastest-Dimension']\n dim2 = header['CBF_X-Binary-Size-Second-Dimension']\n nbytes = header['CBF_X-Binary-Size']\n cbfdata = cbfdecompress(bytearray(cbfbin[datastart:datastart +\n nbytes]), dim1, dim2, for_nexus)\n ret.append(cbfdata)\n if load_header:\n ret.append(header)\n return tuple(ret)\n", "role": "user" }, { "content": "readcbf", "role": "assistant" } ]
def x(filename, bdfext='.bdf', bhfext='.bhf'): return header.readbhfv1(filename, True, bdfext, bhfext)
readbdfv1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, bdfext='.bdf', bhfext='.bhf'):\n return header.readbhfv1(filename, True, bdfext, bhfext)\n", "role": "user" }, { "content": "readbdfv1", "role": "assistant" } ]
def x(filename): if filename.upper().endswith('.MAT'): m = scipy.io.loadmat(filename) elif filename.upper().endswith('.NPZ'): m = np.load(filename) else: m = {'Intensity': np.loadtxt(filename)} name, ext = os.path.splitext(filename) errorfilename = name + '_error' + ext if os.path.exists(errorfilename): m['Error'] = np.loadtxt(errorfilename) Intensity = m['Intensity'] try: Error = m['Error'] return Intensity, Error except: return Intensity, None
readint2dnorm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n if filename.upper().endswith('.MAT'):\n m = scipy.io.loadmat(filename)\n elif filename.upper().endswith('.NPZ'):\n m = np.load(filename)\n else:\n m = {'Intensity': np.loadtxt(filename)}\n name, ext = os.path.splitext(filename)\n errorfilename = name + '_error' + ext\n if os.path.exists(errorfilename):\n m['Error'] = np.loadtxt(errorfilename)\n Intensity = m['Intensity']\n try:\n Error = m['Error']\n return Intensity, Error\n except:\n return Intensity, None\n", "role": "user" }, { "content": "readint2dnorm", "role": "assistant" } ]
def x(filename, Intensity, Error=None): whattosave = {'Intensity': Intensity} if Error is not None: whattosave['Error'] = Error if filename.upper().endswith('.NPZ'): np.savez(filename, **whattosave) elif filename.upper().endswith('.MAT'): scipy.io.savemat(filename, whattosave) else: np.savetxt(filename, Intensity) if Error is not None: name, ext = os.path.splitext(filename) np.savetxt(name + '_error' + ext, Error)
writeint2dnorm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, Intensity, Error=None):\n whattosave = {'Intensity': Intensity}\n if Error is not None:\n whattosave['Error'] = Error\n if filename.upper().endswith('.NPZ'):\n np.savez(filename, **whattosave)\n elif filename.upper().endswith('.MAT'):\n scipy.io.savemat(filename, whattosave)\n else:\n np.savetxt(filename, Intensity)\n if Error is not None:\n name, ext = os.path.splitext(filename)\n np.savetxt(name + '_error' + ext, Error)\n", "role": "user" }, { "content": "writeint2dnorm", "role": "assistant" } ]
def x(filename, fieldname=None): f = scipy.io.loadmat(filename) if fieldname is not None: return f[fieldname].astype(np.uint8) else: validkeys = [k for k in list(f.keys()) if not (k.startswith('_') and k.endswith('_'))] if len(validkeys) < 1: raise ValueError('mask file contains no masks!') if len(validkeys) > 1: raise ValueError('mask file contains multiple masks!') return f[validkeys[0]].astype(np.uint8)
readmask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, fieldname=None):\n f = scipy.io.loadmat(filename)\n if fieldname is not None:\n return f[fieldname].astype(np.uint8)\n else:\n validkeys = [k for k in list(f.keys()) if not (k.startswith('_') and\n k.endswith('_'))]\n if len(validkeys) < 1:\n raise ValueError('mask file contains no masks!')\n if len(validkeys) > 1:\n raise ValueError('mask file contains multiple masks!')\n return f[validkeys[0]].astype(np.uint8)\n", "role": "user" }, { "content": "readmask", "role": "assistant" } ]
def x(filename): edf = header.readehf(filename) f = open(filename, 'rb') f.read(edf['EDF_HeaderSize']) if edf['DataType'] == 'FloatValue': dtype = np.float32 else: raise NotImplementedError('Not supported data type: %s' % edf[ 'DataType']) edf['data'] = np.fromstring(f.read(edf['EDF_BinarySize']), dtype).reshape( edf['Dim_1'], edf['Dim_2']) return edf
readedf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n edf = header.readehf(filename)\n f = open(filename, 'rb')\n f.read(edf['EDF_HeaderSize'])\n if edf['DataType'] == 'FloatValue':\n dtype = np.float32\n else:\n raise NotImplementedError('Not supported data type: %s' % edf[\n 'DataType'])\n edf['data'] = np.fromstring(f.read(edf['EDF_BinarySize']), dtype).reshape(\n edf['Dim_1'], edf['Dim_2'])\n return edf\n", "role": "user" }, { "content": "readedf", "role": "assistant" } ]
def x(filename, bdfext='.bdf', bhfext='.bhf'): datas = header.readbhfv2(filename, True, bdfext, bhfext) return datas
readbdfv2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, bdfext='.bdf', bhfext='.bhf'):\n datas = header.readbhfv2(filename, True, bdfext, bhfext)\n return datas\n", "role": "user" }, { "content": "readbdfv2", "role": "assistant" } ]
def x(filename): hed = header.readmarheader(filename) with open(filename, 'rb') as f: h = f.read(hed['recordlength']) data = np.fromstring(f.read(2 * hed['Xsize'] * hed['Ysize']), '<u2' ).astype(np.float64) if hed['highintensitypixels'] > 0: raise NotImplementedError( 'Intensities over 65535 are not yet supported!') data = data.reshape(hed['Xsize'], hed['Ysize']) return data, hed
readmar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n hed = header.readmarheader(filename)\n with open(filename, 'rb') as f:\n h = f.read(hed['recordlength'])\n data = np.fromstring(f.read(2 * hed['Xsize'] * hed['Ysize']), '<u2'\n ).astype(np.float64)\n if hed['highintensitypixels'] > 0:\n raise NotImplementedError(\n 'Intensities over 65535 are not yet supported!')\n data = data.reshape(hed['Xsize'], hed['Ysize'])\n return data, hed\n", "role": "user" }, { "content": "readmar", "role": "assistant" } ]
def x(filename, bdf, bdfext='.bdf', bhfext='.bhf'): if filename.endswith(bdfext): basename = filename[:-len(bdfext)] elif filename.endswith(bhfext): basename = filename[:-len(bhfext)] else: basename = filename header.writebhfv2(basename + '.bhf', bdf) f = open(basename + '.bdf', 'wb') keys = ['RAWDATA', 'RAWERROR', 'CORRDATA', 'CORRERROR', 'NANDATA'] keys.extend([x for x in list(bdf.keys()) if isinstance(bdf[x], np. ndarray) and x not in keys]) for k in keys: if k not in list(bdf.keys()): continue f.write('#%s[%d:%d]\n' % (k, bdf['xdim'], bdf['ydim'])) f.write(np.rot90(bdf[k], 3).astype('float32').tostring(order='F')) f.close()
writebdfv2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, bdf, bdfext='.bdf', bhfext='.bhf'):\n if filename.endswith(bdfext):\n basename = filename[:-len(bdfext)]\n elif filename.endswith(bhfext):\n basename = filename[:-len(bhfext)]\n else:\n basename = filename\n header.writebhfv2(basename + '.bhf', bdf)\n f = open(basename + '.bdf', 'wb')\n keys = ['RAWDATA', 'RAWERROR', 'CORRDATA', 'CORRERROR', 'NANDATA']\n keys.extend([x for x in list(bdf.keys()) if isinstance(bdf[x], np.\n ndarray) and x not in keys])\n for k in keys:\n if k not in list(bdf.keys()):\n continue\n f.write('#%s[%d:%d]\\n' % (k, bdf['xdim'], bdf['ydim']))\n f.write(np.rot90(bdf[k], 3).astype('float32').tostring(order='F'))\n f.close()\n", "role": "user" }, { "content": "writebdfv2", "role": "assistant" } ]
def x(mask, binx, biny, enlarge=False): if not enlarge and (mask.shape[0] % binx or mask.shape[1] % biny): raise ValueError( 'The number of pixels of the mask matrix should be divisible by the binning in each direction!' ) if enlarge: return mask.repeat(binx, axis=0).repeat(biny, axis=1) else: return mask[::binx, ::biny]
rebinmask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mask, binx, biny, enlarge=False):\n if not enlarge and (mask.shape[0] % binx or mask.shape[1] % biny):\n raise ValueError(\n 'The number of pixels of the mask matrix should be divisible by the binning in each direction!'\n )\n if enlarge:\n return mask.repeat(binx, axis=0).repeat(biny, axis=1)\n else:\n return mask[::binx, ::biny]\n", "role": "user" }, { "content": "rebinmask", "role": "assistant" } ]
def x(padded_string): length = len(padded_string) reminder = len(padded_string) % 4 if reminder: return padded_string.ljust(length + 4 - reminder, b'.') return padded_string
fill_padding
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(padded_string):\n length = len(padded_string)\n reminder = len(padded_string) % 4\n if reminder:\n return padded_string.ljust(length + 4 - reminder, b'.')\n return padded_string\n", "role": "user" }, { "content": "fill_padding", "role": "assistant" } ]
def x(encoded): padded_string = fill_padding(encoded) return urlsafe_b64decode(padded_string.replace(b'.', b'='))
decode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(encoded):\n padded_string = fill_padding(encoded)\n return urlsafe_b64decode(padded_string.replace(b'.', b'='))\n", "role": "user" }, { "content": "decode", "role": "assistant" } ]
def x(arg): if isinstance(arg, np.ndarray): return arg.flatten() if isinstance(arg, str): return [arg] if isinstance(arg, list) or isinstance(arg, tuple) or isinstance(arg, dict ) or isinstance(arg, set): return list(arg) return [arg]
normalize_listargument
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arg):\n if isinstance(arg, np.ndarray):\n return arg.flatten()\n if isinstance(arg, str):\n return [arg]\n if isinstance(arg, list) or isinstance(arg, tuple) or isinstance(arg, dict\n ) or isinstance(arg, set):\n return list(arg)\n return [arg]\n", "role": "user" }, { "content": "normalize_listargument", "role": "assistant" } ]
def x(val, use_dateutilparser=False): if use_dateutilparser: funcs = [int, float, parse_list_from_string, dateutil.parser.parse, str ] else: funcs = [int, float, parse_list_from_string, str] if val.strip().startswith("'") and val.strip().endswith("'") or val.strip( ).startswith('"') and val.strip().endswith('"'): return val[1:-1] for f in funcs: try: return f(val) except (ValueError, UnicodeEncodeError, UnicodeDecodeError) as ve: pass raise ValueError('Cannot parse number:', val)
parse_number
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(val, use_dateutilparser=False):\n if use_dateutilparser:\n funcs = [int, float, parse_list_from_string, dateutil.parser.parse, str\n ]\n else:\n funcs = [int, float, parse_list_from_string, str]\n if val.strip().startswith(\"'\") and val.strip().endswith(\"'\") or val.strip(\n ).startswith('\"') and val.strip().endswith('\"'):\n return val[1:-1]\n for f in funcs:\n try:\n return f(val)\n except (ValueError, UnicodeEncodeError, UnicodeDecodeError) as ve:\n pass\n raise ValueError('Cannot parse number:', val)\n", "role": "user" }, { "content": "parse_number", "role": "assistant" } ]
def x(original_dict, separator='.', max_recursion_depth=None): if max_recursion_depth is not None and max_recursion_depth <= 0: return original_dict if max_recursion_depth is None: next_recursion_depth = None else: next_recursion_depth = max_recursion_depth - 1 dict1 = {} for k in original_dict: if not isinstance(original_dict[k], dict): dict1[k] = original_dict[k] else: dict_recursed = flatten_hierarchical_dict(original_dict[k], separator, next_recursion_depth) dict1.update(dict([(k + separator + x, dict_recursed[x]) for x in dict_recursed])) return dict1
flatten_hierarchical_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(original_dict, separator='.', max_recursion_depth=None):\n if max_recursion_depth is not None and max_recursion_depth <= 0:\n return original_dict\n if max_recursion_depth is None:\n next_recursion_depth = None\n else:\n next_recursion_depth = max_recursion_depth - 1\n dict1 = {}\n for k in original_dict:\n if not isinstance(original_dict[k], dict):\n dict1[k] = original_dict[k]\n else:\n dict_recursed = flatten_hierarchical_dict(original_dict[k],\n separator, next_recursion_depth)\n dict1.update(dict([(k + separator + x, dict_recursed[x]) for x in\n dict_recursed]))\n return dict1\n", "role": "user" }, { "content": "flatten_hierarchical_dict", "role": "assistant" } ]
def x(Nchars=6, randstrbase= '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'): return ''.join([randstrbase[random.randint(0, len(randstrbase) - 1)] for i in range(Nchars)])
random_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Nchars=6, randstrbase=\n '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'):\n return ''.join([randstrbase[random.randint(0, len(randstrbase) - 1)] for\n i in range(Nchars)])\n", "role": "user" }, { "content": "random_str", "role": "assistant" } ]
def x(fsns, xlsname, dirs, whattolist=None, headerformat='org_%05d.header'): if whattolist is None: whattolist = [('FSN', 'FSN'), ('Time', 'MeasTime'), ('Energy', 'Energy'), ('Distance', 'Dist'), ('Position', 'PosSample'), ( 'Transmission', 'Transm'), ('Temperature', 'Temperature'), ( 'Title', 'Title'), ('Date', ('Day', 'Month', 'Year', 'Hour', 'Minutes'), '%02d.%02d.%04d %02d:%02d')] wb = xlwt.Workbook(encoding='utf8') ws = wb.add_sheet('Measurements') for i in range(len(whattolist)): ws.write(0, i, whattolist[i][0]) i = 1 for fsn in fsns: try: hed = readB1header(findfileindirs(headerformat % fsn, dirs)) except IOError: continue for j in range(len(whattolist)): if np.isscalar(whattolist[j][1]): fields = tuple([whattolist[j][1]]) else: fields = whattolist[j][1] if len(whattolist[j]) == 2: if len(fields) >= 2: strtowrite = ''.join([str(hed[f]) for f in fields]) else: strtowrite = hed[fields[0]] elif len(whattolist[j]) >= 3: strtowrite = whattolist[j][2] % tuple([hed[f] for f in fields]) else: assert False ws.write(i, j, strtowrite) i += 1 wb.save(xlsname)
listB1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fsns, xlsname, dirs, whattolist=None, headerformat='org_%05d.header'):\n if whattolist is None:\n whattolist = [('FSN', 'FSN'), ('Time', 'MeasTime'), ('Energy',\n 'Energy'), ('Distance', 'Dist'), ('Position', 'PosSample'), (\n 'Transmission', 'Transm'), ('Temperature', 'Temperature'), (\n 'Title', 'Title'), ('Date', ('Day', 'Month', 'Year', 'Hour',\n 'Minutes'), '%02d.%02d.%04d %02d:%02d')]\n wb = xlwt.Workbook(encoding='utf8')\n ws = wb.add_sheet('Measurements')\n for i in range(len(whattolist)):\n ws.write(0, i, whattolist[i][0])\n i = 1\n for fsn in fsns:\n try:\n hed = readB1header(findfileindirs(headerformat % fsn, dirs))\n except IOError:\n continue\n for j in range(len(whattolist)):\n if np.isscalar(whattolist[j][1]):\n fields = tuple([whattolist[j][1]])\n else:\n fields = whattolist[j][1]\n if len(whattolist[j]) == 2:\n if len(fields) >= 2:\n strtowrite = ''.join([str(hed[f]) for f in fields])\n else:\n strtowrite = hed[fields[0]]\n elif len(whattolist[j]) >= 3:\n strtowrite = whattolist[j][2] % tuple([hed[f] for f in fields])\n else:\n assert False\n ws.write(i, j, strtowrite)\n i += 1\n wb.save(xlsname)\n", "role": "user" }, { "content": "listB1", "role": "assistant" } ]
def x(q, Intensity, Error, R0=None, r=None): q = np.array(q) Intensity = np.array(Intensity) Error = np.array(Error) if R0 is None: r0s = np.linspace(1, 2 * np.pi / q.min(), 1000) def x(q, Intensity, r0): p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1) return ((np.polyval(p, q) - Intensity) ** 2).sum() / (len(q) - 3) chi2 = np.array([naive_fit_chi2(q, Intensity, r0) for r0 in r0s. tolist()]) R0 = r0s[chi2 == chi2.min()][0] def x(q, Intensity, r0): p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1) return np.exp(p[1]), -2 * p[0] - 4 K, n = naive_fit(q, Intensity, R0) def x(q, A, r0, n): return A * (q ** 2 + 3 / r0 ** 2) ** (-(n + 4.0) * 0.5) p, dp, statdict = easylsq.nlsq_fit(q, Intensity, Error, SR_function, (K, R0, n)) n = ErrorValue(p[2], dp[2]) r0 = ErrorValue(p[1], dp[1]) A = ErrorValue(p[0], dp[0]) if r is None: r = np.linspace(np.pi / q.max(), np.pi / q.min(), 1000) return A, r0, n, r, maxwellian(r, r0, n), statdict
fit_shullroess
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, Intensity, Error, R0=None, r=None):\n q = np.array(q)\n Intensity = np.array(Intensity)\n Error = np.array(Error)\n if R0 is None:\n r0s = np.linspace(1, 2 * np.pi / q.min(), 1000)\n\n def x(q, Intensity, r0):\n p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1)\n return ((np.polyval(p, q) - Intensity) ** 2).sum() / (len(q) - 3)\n chi2 = np.array([naive_fit_chi2(q, Intensity, r0) for r0 in r0s.\n tolist()])\n R0 = r0s[chi2 == chi2.min()][0]\n\n def x(q, Intensity, r0):\n p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1)\n return np.exp(p[1]), -2 * p[0] - 4\n K, n = naive_fit(q, Intensity, R0)\n\n def x(q, A, r0, n):\n return A * (q ** 2 + 3 / r0 ** 2) ** (-(n + 4.0) * 0.5)\n p, dp, statdict = easylsq.nlsq_fit(q, Intensity, Error, SR_function, (K,\n R0, n))\n n = ErrorValue(p[2], dp[2])\n r0 = ErrorValue(p[1], dp[1])\n A = ErrorValue(p[0], dp[0])\n if r is None:\n r = np.linspace(np.pi / q.max(), np.pi / q.min(), 1000)\n return A, r0, n, r, maxwellian(r, r0, n), statdict\n", "role": "user" }, { "content": "fit_shullroess", "role": "assistant" } ]
def x(r, r0, n): r0 = ErrorValue(r0) n = ErrorValue(n) expterm = np.exp(-r ** 2 / r0.val ** 2) dmaxdr0 = -2 * r ** n.val * r0.val ** (-n.val - 4) * ((n.val + 1) * r0. val ** 2 - 2 * r ** 2) * expterm / gamma((n.val + 1) * 0.5) dmaxdn = -r ** n.val * r0.val ** (-n.val - 1) * expterm * (2 * np.log( r0.val) - 2 * np.log(r) + psi((n.val + 1) * 0.5)) / gamma((n.val + 1) * 0.5) maxwellian = 2 * r ** n.val * r0.val ** (-n.val - 1) * expterm / gamma( (n.val + 1) * 0.5) dmaxwellian = (dmaxdn ** 2 * n.err ** 2 + dmaxdr0 ** 2 * r0.err ** 2 ) ** 0.5 return ErrorValue(maxwellian, dmaxwellian)
maxwellian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(r, r0, n):\n r0 = ErrorValue(r0)\n n = ErrorValue(n)\n expterm = np.exp(-r ** 2 / r0.val ** 2)\n dmaxdr0 = -2 * r ** n.val * r0.val ** (-n.val - 4) * ((n.val + 1) * r0.\n val ** 2 - 2 * r ** 2) * expterm / gamma((n.val + 1) * 0.5)\n dmaxdn = -r ** n.val * r0.val ** (-n.val - 1) * expterm * (2 * np.log(\n r0.val) - 2 * np.log(r) + psi((n.val + 1) * 0.5)) / gamma((n.val + \n 1) * 0.5)\n maxwellian = 2 * r ** n.val * r0.val ** (-n.val - 1) * expterm / gamma(\n (n.val + 1) * 0.5)\n dmaxwellian = (dmaxdn ** 2 * n.err ** 2 + dmaxdr0 ** 2 * r0.err ** 2\n ) ** 0.5\n return ErrorValue(maxwellian, dmaxwellian)\n", "role": "user" }, { "content": "maxwellian", "role": "assistant" } ]
def x(filename, dirs=None, use_pythonpath=True, use_searchpath=True, notfound_is_fatal=True, notfound_val=None): if os.path.isabs(filename): if os.path.exists(filename): return filename elif notfound_is_fatal: raise IOError('File ' + filename + ' not found.') else: return notfound_val if dirs is None: dirs = [] dirs = normalize_listargument(dirs) if not dirs: dirs = ['.'] if use_pythonpath: dirs.extend(sys.path) if use_searchpath: dirs.extend(sastool_search_path) dirs = [os.path.expanduser(d) for d in dirs] logger.debug('Searching for file %s in several folders: %s' % (filename, ', '.join(dirs))) for d in dirs: if os.path.exists(os.path.join(d, filename)): logger.debug('Found file %s in folder %s.' % (filename, d)) return os.path.join(d, filename) logger.debug('Not found file %s in any folders.' % filename) if notfound_is_fatal: raise IOError('File %s not found in any of the directories.' % filename ) else: return notfound_val
findfileindirs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, dirs=None, use_pythonpath=True, use_searchpath=True,\n notfound_is_fatal=True, notfound_val=None):\n if os.path.isabs(filename):\n if os.path.exists(filename):\n return filename\n elif notfound_is_fatal:\n raise IOError('File ' + filename + ' not found.')\n else:\n return notfound_val\n if dirs is None:\n dirs = []\n dirs = normalize_listargument(dirs)\n if not dirs:\n dirs = ['.']\n if use_pythonpath:\n dirs.extend(sys.path)\n if use_searchpath:\n dirs.extend(sastool_search_path)\n dirs = [os.path.expanduser(d) for d in dirs]\n logger.debug('Searching for file %s in several folders: %s' % (filename,\n ', '.join(dirs)))\n for d in dirs:\n if os.path.exists(os.path.join(d, filename)):\n logger.debug('Found file %s in folder %s.' % (filename, d))\n return os.path.join(d, filename)\n logger.debug('Not found file %s in any folders.' % filename)\n if notfound_is_fatal:\n raise IOError('File %s not found in any of the directories.' % filename\n )\n else:\n return notfound_val\n", "role": "user" }, { "content": "findfileindirs", "role": "assistant" } ]
def x(matrix, bcx, bcy, pixsizeperdist): col, row = np.meshgrid(list(range(matrix.shape[1])), list(range(matrix. shape[0]))) return np.arctan(np.sqrt((row - bcx) ** 2 + (col - bcy) ** 2) * pixsizeperdist)
twotheta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(matrix, bcx, bcy, pixsizeperdist):\n col, row = np.meshgrid(list(range(matrix.shape[1])), list(range(matrix.\n shape[0])))\n return np.arctan(np.sqrt((row - bcx) ** 2 + (col - bcy) ** 2) *\n pixsizeperdist)\n", "role": "user" }, { "content": "twotheta", "role": "assistant" } ]
def x(twotheta, sampletodetectordistance, pixelsize=None): if pixelsize is None: pixelsize = 1 return sampletodetectordistance ** 2 / np.cos(twotheta ) ** 3 / pixelsize ** 2
solidangle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(twotheta, sampletodetectordistance, pixelsize=None):\n if pixelsize is None:\n pixelsize = 1\n return sampletodetectordistance ** 2 / np.cos(twotheta\n ) ** 3 / pixelsize ** 2\n", "role": "user" }, { "content": "solidangle", "role": "assistant" } ]
def x(twotheta, dtwotheta, sampletodetectordistance, dsampletodetectordistance, pixelsize=None): SAC = solidangle(twotheta, sampletodetectordistance, pixelsize) if pixelsize is None: pixelsize = 1 return SAC, sampletodetectordistance * (4 * dsampletodetectordistance ** 2 * np.cos(twotheta) ** 2 + 9 * dtwotheta ** 2 * sampletodetectordistance ** 2 * np.sin(twotheta) ** 2) ** 0.5 / np.cos( twotheta) ** 4 / pixelsize ** 2
solidangle_errorprop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(twotheta, dtwotheta, sampletodetectordistance,\n dsampletodetectordistance, pixelsize=None):\n SAC = solidangle(twotheta, sampletodetectordistance, pixelsize)\n if pixelsize is None:\n pixelsize = 1\n return SAC, sampletodetectordistance * (4 * dsampletodetectordistance **\n 2 * np.cos(twotheta) ** 2 + 9 * dtwotheta ** 2 * \n sampletodetectordistance ** 2 * np.sin(twotheta) ** 2) ** 0.5 / np.cos(\n twotheta) ** 4 / pixelsize ** 2\n", "role": "user" }, { "content": "solidangle_errorprop", "role": "assistant" } ]
def x(twotheta, transmission): cor = np.ones(twotheta.shape) if transmission == 1: return cor mud = -np.log(transmission) cor[twotheta > 0] = transmission * mud * (1 - 1 / np.cos(twotheta[ twotheta > 0])) / (np.exp(-mud / np.cos(twotheta[twotheta > 0])) - np.exp(-mud)) return cor
angledependentabsorption
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(twotheta, transmission):\n cor = np.ones(twotheta.shape)\n if transmission == 1:\n return cor\n mud = -np.log(transmission)\n cor[twotheta > 0] = transmission * mud * (1 - 1 / np.cos(twotheta[\n twotheta > 0])) / (np.exp(-mud / np.cos(twotheta[twotheta > 0])) -\n np.exp(-mud))\n return cor\n", "role": "user" }, { "content": "angledependentabsorption", "role": "assistant" } ]
def x(twotheta, dtwotheta, transmission, dtransmission): return angledependentabsorption(twotheta, transmission ), _calc_angledependentabsorption_error(twotheta, dtwotheta, transmission, dtransmission)
angledependentabsorption_errorprop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(twotheta, dtwotheta, transmission, dtransmission):\n return angledependentabsorption(twotheta, transmission\n ), _calc_angledependentabsorption_error(twotheta, dtwotheta,\n transmission, dtransmission)\n", "role": "user" }, { "content": "angledependentabsorption_errorprop", "role": "assistant" } ]
def x(twotheta, mu_air, sampletodetectordistance): return np.exp(mu_air * sampletodetectordistance / np.cos(twotheta))
angledependentairtransmission
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(twotheta, mu_air, sampletodetectordistance):\n return np.exp(mu_air * sampletodetectordistance / np.cos(twotheta))\n", "role": "user" }, { "content": "angledependentairtransmission", "role": "assistant" } ]
def x(twotheta, dtwotheta, mu_air, dmu_air, sampletodetectordistance, dsampletodetectordistance): return np.exp(mu_air * sampletodetectordistance / np.cos(twotheta) ), np.sqrt(dmu_air ** 2 * sampletodetectordistance ** 2 * np.exp(2 * mu_air * sampletodetectordistance / np.cos(twotheta)) / np.cos( twotheta) ** 2 + dsampletodetectordistance ** 2 * mu_air ** 2 * np. exp(2 * mu_air * sampletodetectordistance / np.cos(twotheta)) / np. cos(twotheta) ** 2 + dtwotheta ** 2 * mu_air ** 2 * sampletodetectordistance ** 2 * np.exp(2 * mu_air * sampletodetectordistance / np.cos(twotheta)) * np.sin(twotheta) ** 2 / np.cos(twotheta) ** 4)
angledependentairtransmission_errorprop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(twotheta, dtwotheta, mu_air, dmu_air, sampletodetectordistance,\n dsampletodetectordistance):\n return np.exp(mu_air * sampletodetectordistance / np.cos(twotheta)\n ), np.sqrt(dmu_air ** 2 * sampletodetectordistance ** 2 * np.exp(2 *\n mu_air * sampletodetectordistance / np.cos(twotheta)) / np.cos(\n twotheta) ** 2 + dsampletodetectordistance ** 2 * mu_air ** 2 * np.\n exp(2 * mu_air * sampletodetectordistance / np.cos(twotheta)) / np.\n cos(twotheta) ** 2 + dtwotheta ** 2 * mu_air ** 2 * \n sampletodetectordistance ** 2 * np.exp(2 * mu_air *\n sampletodetectordistance / np.cos(twotheta)) * np.sin(twotheta) ** \n 2 / np.cos(twotheta) ** 4)\n", "role": "user" }, { "content": "angledependentairtransmission_errorprop", "role": "assistant" } ]
def x(self, filename: str, strip_path: bool=True, what='exposure') ->str: if what == 'exposure': path = self._path elif what == 'header': path = self._headerpath elif what == 'mask': path = self._maskpath else: path = self._path tried = [] if strip_path: filename = os.path.split(filename)[-1] for d in path: if os.path.exists(os.path.join(d, filename)): tried.append(os.path.join(d, filename)) return os.path.join(d, filename) raise FileNotFoundError('Not found: {}. Tried: {}'.format(filename, ', '.join(tried)))
find_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename: str, strip_path: bool=True, what='exposure') ->str:\n if what == 'exposure':\n path = self._path\n elif what == 'header':\n path = self._headerpath\n elif what == 'mask':\n path = self._maskpath\n else:\n path = self._path\n tried = []\n if strip_path:\n filename = os.path.split(filename)[-1]\n for d in path:\n if os.path.exists(os.path.join(d, filename)):\n tried.append(os.path.join(d, filename))\n return os.path.join(d, filename)\n raise FileNotFoundError('Not found: {}. Tried: {}'.format(filename,\n ', '.join(tried)))\n", "role": "user" }, { "content": "find_file", "role": "assistant" } ]
def x(self, subpath: str): for d in self._path: if os.path.exists(os.path.join(d, subpath)): return os.path.join(d, subpath) raise FileNotFoundError
get_subpath
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subpath: str):\n for d in self._path:\n if os.path.exists(os.path.join(d, subpath)):\n return os.path.join(d, subpath)\n raise FileNotFoundError\n", "role": "user" }, { "content": "get_subpath", "role": "assistant" } ]
def x(self, filename: str, header_data: Optional[Header]=None, mask_data: Optional[np.ndarray]=None):
new_from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename: str, header_data: Optional[Header]=None, mask_data:\n Optional[np.ndarray]=None):\n", "role": "user" }, { "content": "new_from_file", "role": "assistant" } ]
def x(self, only_valid=True) ->ErrorValue: if not only_valid: mask = 1 else: mask = self.mask return ErrorValue((self.intensity * mask).sum(), ((self.error * mask) ** 2).sum() ** 0.5)
sum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, only_valid=True) ->ErrorValue:\n if not only_valid:\n mask = 1\n else:\n mask = self.mask\n return ErrorValue((self.intensity * mask).sum(), ((self.error * mask) **\n 2).sum() ** 0.5)\n", "role": "user" }, { "content": "sum", "role": "assistant" } ]
def x(self, only_valid=True) ->ErrorValue: if not only_valid: intensity = self.intensity error = self.error else: intensity = self.intensity[self.mask] error = self.error[self.mask] return ErrorValue(intensity.mean(), (error ** 2).mean() ** 0.5)
mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, only_valid=True) ->ErrorValue:\n if not only_valid:\n intensity = self.intensity\n error = self.error\n else:\n intensity = self.intensity[self.mask]\n error = self.error[self.mask]\n return ErrorValue(intensity.mean(), (error ** 2).mean() ** 0.5)\n", "role": "user" }, { "content": "mean", "role": "assistant" } ]
def x(self) ->ErrorValue: row, column = np.ogrid[0:self.shape[0], 0:self.shape[1]] rho = (((self.header.beamcentery - row) * self.header.pixelsizey) ** 2 + ((self.header.beamcenterx - column) * self.header.pixelsizex) ** 2 ) ** 0.5 assert isinstance(self.header.pixelsizex, ErrorValue) assert isinstance(self.header.pixelsizey, ErrorValue) assert isinstance(rho, ErrorValue) return (rho / self.header.distance).arctan()
twotheta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->ErrorValue:\n row, column = np.ogrid[0:self.shape[0], 0:self.shape[1]]\n rho = (((self.header.beamcentery - row) * self.header.pixelsizey) ** 2 +\n ((self.header.beamcenterx - column) * self.header.pixelsizex) ** 2\n ) ** 0.5\n assert isinstance(self.header.pixelsizex, ErrorValue)\n assert isinstance(self.header.pixelsizey, ErrorValue)\n assert isinstance(rho, ErrorValue)\n return (rho / self.header.distance).arctan()\n", "role": "user" }, { "content": "twotheta", "role": "assistant" } ]
def x(self, row: float, column: float): qrow = 4 * np.pi * np.sin(0.5 * np.arctan((row - float(self.header. beamcentery)) * float(self.header.pixelsizey) / float(self.header. distance))) / float(self.header.wavelength) qcol = 4 * np.pi * np.sin(0.5 * np.arctan((column - float(self.header. beamcenterx)) * float(self.header.pixelsizex) / float(self.header. distance))) / float(self.header.wavelength) return qrow, qcol
pixel_to_q
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, row: float, column: float):\n qrow = 4 * np.pi * np.sin(0.5 * np.arctan((row - float(self.header.\n beamcentery)) * float(self.header.pixelsizey) / float(self.header.\n distance))) / float(self.header.wavelength)\n qcol = 4 * np.pi * np.sin(0.5 * np.arctan((column - float(self.header.\n beamcenterx)) * float(self.header.pixelsizex) / float(self.header.\n distance))) / float(self.header.wavelength)\n return qrow, qcol\n", "role": "user" }, { "content": "pixel_to_q", "role": "assistant" } ]
def x(self, *args, show_crosshair=True, show_mask=True, show_qscale=True, axes=None, invalid_color='black', mask_opacity=0.8, show_colorbar=True, **kwargs): if 'aspect' not in kwargs: kwargs['aspect'] = 'equal' if 'interpolation' not in kwargs: kwargs['interpolation'] = 'nearest' if 'origin' not in kwargs: kwargs['origin'] = 'upper' if show_qscale: ymin, xmin = self.pixel_to_q(0, 0) ymax, xmax = self.pixel_to_q(*self.shape) if kwargs['origin'].upper() == 'UPPER': kwargs['extent'] = [xmin, xmax, -ymax, -ymin] else: kwargs['extent'] = [xmin, xmax, ymin, ymax] bcx = 0 bcy = 0 else: bcx = self.header.beamcenterx bcy = self.header.beamcentery xmin = 0 xmax = self.shape[1] ymin = 0 ymax = self.shape[0] if kwargs['origin'].upper() == 'UPPER': kwargs['extent'] = [0, self.shape[1], self.shape[0], 0] else: kwargs['extent'] = [0, self.shape[1], 0, self.shape[0]] if axes is None: axes = plt.gca() ret = axes.imshow(self.intensity, **kwargs) if show_mask: if (self.mask == 0).sum(): mf = np.ones(self.mask.shape, np.float) mf[self.mask != 0] = np.nan kwargs['cmap'] = matplotlib.cm.gray_r kwargs['alpha'] = mask_opacity kwargs['norm'] = matplotlib.colors.Normalize() axes.imshow(mf, **kwargs) if show_crosshair: ax = axes.axis() axes.plot([xmin, xmax], [bcy] * 2, 'w-') axes.plot([bcx] * 2, [ymin, ymax], 'w-') axes.axis(ax) axes.set_facecolor(invalid_color) if show_colorbar: if isinstance(show_colorbar, matplotlib.axes.Axes): axes.figure.colorbar(ret, cax=show_colorbar) else: cax = [i.colorbar[1] for i in axes.images if i.colorbar is not None ] cax = [c for c in cax if c in c.figure.axes] if cax: cax = cax[0] else: cax = None axes.figure.colorbar(ret, cax=cax, ax=axes) axes.figure.canvas.draw() return ret
imshow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, show_crosshair=True, show_mask=True, show_qscale=True,\n axes=None, invalid_color='black', mask_opacity=0.8, show_colorbar=True,\n **kwargs):\n if 'aspect' not in kwargs:\n kwargs['aspect'] = 'equal'\n if 'interpolation' not in kwargs:\n kwargs['interpolation'] = 'nearest'\n if 'origin' not in kwargs:\n kwargs['origin'] = 'upper'\n if show_qscale:\n ymin, xmin = self.pixel_to_q(0, 0)\n ymax, xmax = self.pixel_to_q(*self.shape)\n if kwargs['origin'].upper() == 'UPPER':\n kwargs['extent'] = [xmin, xmax, -ymax, -ymin]\n else:\n kwargs['extent'] = [xmin, xmax, ymin, ymax]\n bcx = 0\n bcy = 0\n else:\n bcx = self.header.beamcenterx\n bcy = self.header.beamcentery\n xmin = 0\n xmax = self.shape[1]\n ymin = 0\n ymax = self.shape[0]\n if kwargs['origin'].upper() == 'UPPER':\n kwargs['extent'] = [0, self.shape[1], self.shape[0], 0]\n else:\n kwargs['extent'] = [0, self.shape[1], 0, self.shape[0]]\n if axes is None:\n axes = plt.gca()\n ret = axes.imshow(self.intensity, **kwargs)\n if show_mask:\n if (self.mask == 0).sum():\n mf = np.ones(self.mask.shape, np.float)\n mf[self.mask != 0] = np.nan\n kwargs['cmap'] = matplotlib.cm.gray_r\n kwargs['alpha'] = mask_opacity\n kwargs['norm'] = matplotlib.colors.Normalize()\n axes.imshow(mf, **kwargs)\n if show_crosshair:\n ax = axes.axis()\n axes.plot([xmin, xmax], [bcy] * 2, 'w-')\n axes.plot([bcx] * 2, [ymin, ymax], 'w-')\n axes.axis(ax)\n axes.set_facecolor(invalid_color)\n if show_colorbar:\n if isinstance(show_colorbar, matplotlib.axes.Axes):\n axes.figure.colorbar(ret, cax=show_colorbar)\n else:\n cax = [i.colorbar[1] for i in axes.images if i.colorbar is not None\n ]\n cax = [c for c in cax if c in c.figure.axes]\n if cax:\n cax = cax[0]\n else:\n cax = None\n axes.figure.colorbar(ret, cax=cax, ax=axes)\n axes.figure.canvas.draw()\n return ret\n", "role": "user" }, { "content": "imshow", "role": "assistant" } ]
def x(self, qrange=None, pixel=False, returnmask=False, errorpropagation=3, abscissa_errorpropagation=3, raw_result=False) ->Curve: retmask = None if isinstance(qrange, str): if qrange == 'linear': qrange = None autoqrange_linear = True elif qrange == 'log': qrange = None autoqrange_linear = False else: raise ValueError('Value given for qrange (%s) not understood.' % qrange) else: autoqrange_linear = True if pixel: abscissa_kind = 3 else: abscissa_kind = 0 res = radint_fullq_errorprop(self.intensity, self.error, self.header. wavelength.val, self.header.wavelength.err, self.header.distance. val, self.header.distance.err, self.header.pixelsizey.val, self. header.pixelsizex.val, self.header.beamcentery.val, self.header. beamcentery.err, self.header.beamcenterx.val, self.header. beamcenterx.err, (self.mask == 0).astype(np.uint8), qrange, returnmask=returnmask, errorpropagation=errorpropagation, autoqrange_linear=autoqrange_linear, abscissa_kind=abscissa_kind, abscissa_errorpropagation=abscissa_errorpropagation) q, dq, I, E, area = res[:5] if not raw_result: c = Curve(q, I, E, dq) if returnmask: return c, res[5] else: return c elif returnmask: return q, dq, I, E, area, res[5] else: return q, dq, I, E, area
radial_average
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, qrange=None, pixel=False, returnmask=False, errorpropagation=3,\n abscissa_errorpropagation=3, raw_result=False) ->Curve:\n retmask = None\n if isinstance(qrange, str):\n if qrange == 'linear':\n qrange = None\n autoqrange_linear = True\n elif qrange == 'log':\n qrange = None\n autoqrange_linear = False\n else:\n raise ValueError('Value given for qrange (%s) not understood.' %\n qrange)\n else:\n autoqrange_linear = True\n if pixel:\n abscissa_kind = 3\n else:\n abscissa_kind = 0\n res = radint_fullq_errorprop(self.intensity, self.error, self.header.\n wavelength.val, self.header.wavelength.err, self.header.distance.\n val, self.header.distance.err, self.header.pixelsizey.val, self.\n header.pixelsizex.val, self.header.beamcentery.val, self.header.\n beamcentery.err, self.header.beamcenterx.val, self.header.\n beamcenterx.err, (self.mask == 0).astype(np.uint8), qrange,\n returnmask=returnmask, errorpropagation=errorpropagation,\n autoqrange_linear=autoqrange_linear, abscissa_kind=abscissa_kind,\n abscissa_errorpropagation=abscissa_errorpropagation)\n q, dq, I, E, area = res[:5]\n if not raw_result:\n c = Curve(q, I, E, dq)\n if returnmask:\n return c, res[5]\n else:\n return c\n elif returnmask:\n return q, dq, I, E, area, res[5]\n else:\n return q, dq, I, E, area\n", "role": "user" }, { "content": "radial_average", "role": "assistant" } ]
def x(self): self.mask = np.logical_and(self.mask, ~(self.intensity < 0))
mask_negative
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.mask = np.logical_and(self.mask, ~(self.intensity < 0))\n", "role": "user" }, { "content": "mask_negative", "role": "assistant" } ]
def x(self): self.mask = np.logical_and(self.mask, ~np.isnan(self.intensity))
mask_nan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.mask = np.logical_and(self.mask, ~np.isnan(self.intensity))\n", "role": "user" }, { "content": "mask_nan", "role": "assistant" } ]
def x(self): self.mask = np.logical_and(self.mask, np.isfinite(self.intensity))
mask_nonfinite
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.mask = np.logical_and(self.mask, np.isfinite(self.intensity))\n", "role": "user" }, { "content": "mask_nonfinite", "role": "assistant" } ]
def x(self) ->ErrorValue: if 'DistCalibrated' in self._data: dist = self._data['DistCalibrated'] else: dist = self._data['Dist'] if 'DistCalibratedError' in self._data: disterr = self._data['DistCalibratedError'] elif 'DistError' in self._data: disterr = self._data['DistError'] else: disterr = 0.0 return ErrorValue(dist, disterr)
distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->ErrorValue:\n if 'DistCalibrated' in self._data:\n dist = self._data['DistCalibrated']\n else:\n dist = self._data['Dist']\n if 'DistCalibratedError' in self._data:\n disterr = self._data['DistCalibratedError']\n elif 'DistError' in self._data:\n disterr = self._data['DistError']\n else:\n disterr = 0.0\n return ErrorValue(dist, disterr)\n", "role": "user" }, { "content": "distance", "role": "assistant" } ]
def x(self) ->Optional[ErrorValue]: try: return ErrorValue(self._data['Temperature'], self._data.setdefault( 'TemperatureError', 0.0)) except KeyError: return None
temperature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Optional[ErrorValue]:\n try:\n return ErrorValue(self._data['Temperature'], self._data.setdefault(\n 'TemperatureError', 0.0))\n except KeyError:\n return None\n", "role": "user" }, { "content": "temperature", "role": "assistant" } ]
def x(self) ->datetime.datetime: return self._data['Date'] - datetime.timedelta(0, float(self. exposuretime), 0)
date
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->datetime.datetime:\n return self._data['Date'] - datetime.timedelta(0, float(self.\n exposuretime), 0)\n", "role": "user" }, { "content": "date", "role": "assistant" } ]
def x(self) ->ErrorValue: try: return ErrorValue(self._data['Flux'], self._data.setdefault( 'FluxError', 0.0)) except KeyError: return 1 / self.pixelsizex / self.pixelsizey / ErrorValue(self. _data['NormFactor'], self._data.setdefault('NormFactorError', 0.0))
flux
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->ErrorValue:\n try:\n return ErrorValue(self._data['Flux'], self._data.setdefault(\n 'FluxError', 0.0))\n except KeyError:\n return 1 / self.pixelsizex / self.pixelsizey / ErrorValue(self.\n _data['NormFactor'], self._data.setdefault('NormFactorError', 0.0))\n", "role": "user" }, { "content": "flux", "role": "assistant" } ]
def x(x: np.ndarray, y: np.ndarray, dy: np.ndarray, func: Callable, params_init: np.ndarray, verbose: bool=False, **kwargs): newfunc, newparinit = hide_fixedparams(func, params_init) p, dp, statdict = nlsq_fit(x, y, dy, newfunc, newparinit, verbose, **kwargs ) p, statdict['Covariance'] = resubstitute_fixedparams(p, params_init, statdict['Covariance']) dp, statdict['Correlation_coeffs'] = resubstitute_fixedparams(dp, [type (p_)(0) for p_ in params_init], statdict['Correlation_coeffs']) def x(p_, dp_): if isinstance(p_, FixedParameter) or isinstance(dp_, FixedParameter): return p_ else: return ErrorValue(p_, dp_) return tuple([convert(p_, dp_) for p_, dp_ in zip(p, dp)] + [statdict])
nonlinear_leastsquares
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x: np.ndarray, y: np.ndarray, dy: np.ndarray, func: Callable,\n params_init: np.ndarray, verbose: bool=False, **kwargs):\n newfunc, newparinit = hide_fixedparams(func, params_init)\n p, dp, statdict = nlsq_fit(x, y, dy, newfunc, newparinit, verbose, **kwargs\n )\n p, statdict['Covariance'] = resubstitute_fixedparams(p, params_init,\n statdict['Covariance'])\n dp, statdict['Correlation_coeffs'] = resubstitute_fixedparams(dp, [type\n (p_)(0) for p_ in params_init], statdict['Correlation_coeffs'])\n\n def x(p_, dp_):\n if isinstance(p_, FixedParameter) or isinstance(dp_, FixedParameter):\n return p_\n else:\n return ErrorValue(p_, dp_)\n return tuple([convert(p_, dp_) for p_, dp_ in zip(p, dp)] + [statdict])\n", "role": "user" }, { "content": "nonlinear_leastsquares", "role": "assistant" } ]
def x(x, y, dx, dy, func, params_init, **kwargs): odrmodel = odr.Model(lambda pars, x: func(x, *pars)) if dx is not None: xfixed = np.isfinite(dx) else: xfixed = None odrdata = odr.RealData(x, y, sx=dx, sy=dy, fix=xfixed) odrodr = odr.ODR(odrdata, odrmodel, params_init, ifixb=[(not isinstance (p, FixedParameter)) for p in params_init], **kwargs) odroutput = odrodr.run() statdict = odroutput.__dict__.copy() statdict['Covariance'] = odroutput.cov_beta statdict['Correlation_coeffs'] = odroutput.cov_beta / np.outer(odroutput .sd_beta, odroutput.sd_beta) statdict['DoF'] = len(x) - len(odroutput.beta) statdict['Chi2_reduced'] = statdict['res_var'] statdict['func_value'] = statdict['y'] statdict['Chi2'] = statdict['sum_square'] def x(p_, dp_, pi): if isinstance(pi, FixedParameter): return FixedParameter(p_) else: return ErrorValue(p_, dp_) return tuple([convert(p_, dp_, pi) for p_, dp_, pi in zip(odroutput. beta, odroutput.sd_beta, params_init)] + [statdict])
nonlinear_odr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, dx, dy, func, params_init, **kwargs):\n odrmodel = odr.Model(lambda pars, x: func(x, *pars))\n if dx is not None:\n xfixed = np.isfinite(dx)\n else:\n xfixed = None\n odrdata = odr.RealData(x, y, sx=dx, sy=dy, fix=xfixed)\n odrodr = odr.ODR(odrdata, odrmodel, params_init, ifixb=[(not isinstance\n (p, FixedParameter)) for p in params_init], **kwargs)\n odroutput = odrodr.run()\n statdict = odroutput.__dict__.copy()\n statdict['Covariance'] = odroutput.cov_beta\n statdict['Correlation_coeffs'] = odroutput.cov_beta / np.outer(odroutput\n .sd_beta, odroutput.sd_beta)\n statdict['DoF'] = len(x) - len(odroutput.beta)\n statdict['Chi2_reduced'] = statdict['res_var']\n statdict['func_value'] = statdict['y']\n statdict['Chi2'] = statdict['sum_square']\n\n def x(p_, dp_, pi):\n if isinstance(pi, FixedParameter):\n return FixedParameter(p_)\n else:\n return ErrorValue(p_, dp_)\n return tuple([convert(p_, dp_, pi) for p_, dp_, pi in zip(odroutput.\n beta, odroutput.sd_beta, params_init)] + [statdict])\n", "role": "user" }, { "content": "nonlinear_odr", "role": "assistant" } ]
def x(xs, ys, dys, func, params_inits, verbose=False, **kwargs): p, dp, statdict = simultaneous_nlsq_fit(xs, ys, dys, func, params_inits, verbose, **kwargs) params = [[ErrorValue(p_, dp_) for p_, dp_ in zip(pcurrent, dpcurrent)] for pcurrent, dpcurrent in zip(p, dp)] return tuple(params + [statdict])
simultaneous_nonlinear_leastsquares
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(xs, ys, dys, func, params_inits, verbose=False, **kwargs):\n p, dp, statdict = simultaneous_nlsq_fit(xs, ys, dys, func, params_inits,\n verbose, **kwargs)\n params = [[ErrorValue(p_, dp_) for p_, dp_ in zip(pcurrent, dpcurrent)] for\n pcurrent, dpcurrent in zip(p, dp)]\n return tuple(params + [statdict])\n", "role": "user" }, { "content": "simultaneous_nonlinear_leastsquares", "role": "assistant" } ]
def x(x, y, dy, func, params_init, verbose=False, **kwargs): if verbose: t0 = time.monotonic() print('nlsq_fit starting.') else: t0 = 0 func_orig = func params_init_orig = params_init func, params_init = hide_fixedparams(func_orig, params_init_orig) if dy is None or (dy == np.nan).sum() > 0 or (dy <= 0).sum() > 0: if verbose: print('nlsq_fit: no weighting') dy = None def x(params, x, y, dy): if dy is None: return func(x, *params.tolist()) - y else: return (func(x, *params.tolist()) - y) / dy if verbose: print('nlsq_fit: now doing the fitting...') t1 = time.monotonic() else: t1 = 0 par, cov, infodict, mesg, ier = leastsq(objectivefunc, np.array( params_init), (x, y, dy), full_output=True, **kwargs) if verbose: print('nlsq_fit: fitting done in %.2f seconds.' % (time.monotonic() - t1)) print('nlsq_fit: status from scipy.optimize.leastsq(): %d (%s)' % ( ier, mesg)) print('nlsq_fit: extracting statistics.') if cov is None: cov = np.ones((len(par), len(par))) * np.nan if dy is None: sserr = np.sum((func(x, *par.tolist()) - y) ** 2) sstot = np.sum((y - np.mean(y)) ** 2) else: sserr = np.sum(((func(x, *par.tolist()) - y) / dy) ** 2) sstot = np.sum((y - np.mean(y)) ** 2 / dy ** 2) r2 = 1 - sserr / sstot statdict = {'DoF': len(x) - len(par), 'Chi2': (infodict['fvec'] ** 2). sum(), 'R2': r2, 'num_func_eval': infodict['nfev'], 'func_value': func(x, *par.tolist()), 'message': mesg, 'error_flag': ier} statdict['Chi2_reduced'] = statdict['Chi2'] / statdict['DoF'] statdict['Covariance'] = cov * statdict['Chi2_reduced'] par, statdict['Covariance'] = resubstitute_fixedparams(par, params_init_orig, statdict['Covariance']) dpar = np.sqrt(statdict['Covariance'].diagonal()) statdict['Correlation_coeffs'] = statdict['Covariance'] / np.outer(dpar, dpar) if verbose: print('nlsq_fit: returning with results.') print('nlsq_fit: total time: %.2f sec.' % (time.monotonic() - t0)) return par, dpar, statdict
nlsq_fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, dy, func, params_init, verbose=False, **kwargs):\n if verbose:\n t0 = time.monotonic()\n print('nlsq_fit starting.')\n else:\n t0 = 0\n func_orig = func\n params_init_orig = params_init\n func, params_init = hide_fixedparams(func_orig, params_init_orig)\n if dy is None or (dy == np.nan).sum() > 0 or (dy <= 0).sum() > 0:\n if verbose:\n print('nlsq_fit: no weighting')\n dy = None\n\n def x(params, x, y, dy):\n if dy is None:\n return func(x, *params.tolist()) - y\n else:\n return (func(x, *params.tolist()) - y) / dy\n if verbose:\n print('nlsq_fit: now doing the fitting...')\n t1 = time.monotonic()\n else:\n t1 = 0\n par, cov, infodict, mesg, ier = leastsq(objectivefunc, np.array(\n params_init), (x, y, dy), full_output=True, **kwargs)\n if verbose:\n print('nlsq_fit: fitting done in %.2f seconds.' % (time.monotonic() -\n t1))\n print('nlsq_fit: status from scipy.optimize.leastsq(): %d (%s)' % (\n ier, mesg))\n print('nlsq_fit: extracting statistics.')\n if cov is None:\n cov = np.ones((len(par), len(par))) * np.nan\n if dy is None:\n sserr = np.sum((func(x, *par.tolist()) - y) ** 2)\n sstot = np.sum((y - np.mean(y)) ** 2)\n else:\n sserr = np.sum(((func(x, *par.tolist()) - y) / dy) ** 2)\n sstot = np.sum((y - np.mean(y)) ** 2 / dy ** 2)\n r2 = 1 - sserr / sstot\n statdict = {'DoF': len(x) - len(par), 'Chi2': (infodict['fvec'] ** 2).\n sum(), 'R2': r2, 'num_func_eval': infodict['nfev'], 'func_value':\n func(x, *par.tolist()), 'message': mesg, 'error_flag': ier}\n statdict['Chi2_reduced'] = statdict['Chi2'] / statdict['DoF']\n statdict['Covariance'] = cov * statdict['Chi2_reduced']\n par, statdict['Covariance'] = resubstitute_fixedparams(par,\n params_init_orig, statdict['Covariance'])\n dpar = np.sqrt(statdict['Covariance'].diagonal())\n statdict['Correlation_coeffs'] = statdict['Covariance'] / np.outer(dpar,\n dpar)\n if verbose:\n print('nlsq_fit: returning with results.')\n print('nlsq_fit: total time: %.2f sec.' % (time.monotonic() - t0))\n return par, dpar, statdict\n", "role": "user" }, { "content": "nlsq_fit", "role": "assistant" } ]
def x(xs, ys, dys, func, params_inits, verbose=False, **kwargs): if not isinstance(xs, collections.Sequence) or not isinstance(ys, collections.Sequence) or not isinstance(dys, collections.Sequence ) or not isinstance(params_inits, collections.Sequence): raise ValueError( 'Parameters `xs`, `ys`, `dys` and `params_inits` should be tuples or lists.' ) Ndata = len(xs) if len(ys) != Ndata or len(dys) != Ndata or len(params_inits) != Ndata: raise ValueError( 'Parameters `xs`, `ys`, `dys` and `params_inits` should have the same length.' ) if not all([isinstance(x, collections.Sequence) for x in params_inits]): raise ValueError( 'Elements of `params_inits` should be tuples or Python lists.') Ns = set([len(x) for x in params_inits]) if len(Ns) != 1: raise ValueError( 'Elements of `params_inits` should have the same length.') Npar = Ns.pop() for i in range(Ndata): if dys[i] is None: dys[i] = np.ones(len(xs[i]), np.double) * np.nan xcat = np.concatenate(xs) ycat = np.concatenate(ys) dycat = np.concatenate(dys) lens = [len(x) for x in xs] starts = [int(sum(lens[:i])) for i in range(len(lens))] ends = [int(sum(lens[:i + 1])) for i in range(len(lens))] paramcat = [] param_indices = [] for j in range(Ndata): param_indices.append([]) jorig = j for i in range(Npar): j = jorig while params_inits[j][i] is None and j >= 0: j = j - 1 if j < 0: raise ValueError( 'None of the parameters in the very first dataset should be `None`.' ) if jorig == j: paramcat.append(params_inits[j][i]) param_indices[jorig].append(len(paramcat) - 1) else: param_indices[jorig].append(param_indices[j][i]) if verbose: print('Number of datasets for simultaneous fitting:', Ndata) print('Total number of data points:', len(xcat)) print('Number of parameters in each dataset:', Npar) print('Total number of parameters:', Ndata * Npar) print('Number of independent parameters:', len(paramcat)) def x(x, *params): y = [] for j in range(Ndata): if verbose > 1: print('Simultaneous fitting: evaluating function for dataset #' , j, '/', Ndata) pars = [params[i] for i in param_indices[j]] y.append(func(x[starts[j]:ends[j]], *pars)) return np.concatenate(tuple(y)) pflat, dpflat, statdictflat = nlsq_fit(xcat, ycat, dycat, func_flat, paramcat, verbose, **kwargs) for n in ['func_value', 'R2', 'Chi2', 'Chi2_reduced', 'DoF', 'Covariance', 'Correlation_coeffs']: statdictflat[n + '_global'] = statdictflat[n] statdictflat[n] = [] p = [] dp = [] for j in range(Ndata): p.append([pflat[i] for i in param_indices[j]]) dp.append([dpflat[i] for i in param_indices[j]]) statdictflat['func_value'].append(statdictflat['func_value_global'] [starts[j]:ends[j]]) if np.isfinite(dys[j]).all(): statdictflat['Chi2'].append((((statdictflat['func_value'][-1] - ys[j]) / dys[j]) ** 2).sum()) sstot = np.sum((ys[j] - np.mean(ys[j])) ** 2 / dys[j] ** 2) else: statdictflat['Chi2'].append(((statdictflat['func_value'][-1] - ys[j]) ** 2).sum()) sstot = np.sum((ys[j] - np.mean(ys[j])) ** 2) sserr = statdictflat['Chi2'][-1] statdictflat['R2'].append(1 - sserr / sstot) statdictflat['DoF'].append(len(xs[j] - len(p[-1]))) statdictflat['Covariance'].append(slice_covarmatrix(statdictflat[ 'Covariance_global'], param_indices[j])) statdictflat['Correlation_coeffs'].append(slice_covarmatrix( statdictflat['Correlation_coeffs_global'], param_indices[j])) statdictflat['Chi2_reduced'].append(statdictflat['Chi2'][-1] / statdictflat['DoF'][-1]) return p, dp, statdictflat
simultaneous_nlsq_fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(xs, ys, dys, func, params_inits, verbose=False, **kwargs):\n if not isinstance(xs, collections.Sequence) or not isinstance(ys,\n collections.Sequence) or not isinstance(dys, collections.Sequence\n ) or not isinstance(params_inits, collections.Sequence):\n raise ValueError(\n 'Parameters `xs`, `ys`, `dys` and `params_inits` should be tuples or lists.'\n )\n Ndata = len(xs)\n if len(ys) != Ndata or len(dys) != Ndata or len(params_inits) != Ndata:\n raise ValueError(\n 'Parameters `xs`, `ys`, `dys` and `params_inits` should have the same length.'\n )\n if not all([isinstance(x, collections.Sequence) for x in params_inits]):\n raise ValueError(\n 'Elements of `params_inits` should be tuples or Python lists.')\n Ns = set([len(x) for x in params_inits])\n if len(Ns) != 1:\n raise ValueError(\n 'Elements of `params_inits` should have the same length.')\n Npar = Ns.pop()\n for i in range(Ndata):\n if dys[i] is None:\n dys[i] = np.ones(len(xs[i]), np.double) * np.nan\n xcat = np.concatenate(xs)\n ycat = np.concatenate(ys)\n dycat = np.concatenate(dys)\n lens = [len(x) for x in xs]\n starts = [int(sum(lens[:i])) for i in range(len(lens))]\n ends = [int(sum(lens[:i + 1])) for i in range(len(lens))]\n paramcat = []\n param_indices = []\n for j in range(Ndata):\n param_indices.append([])\n jorig = j\n for i in range(Npar):\n j = jorig\n while params_inits[j][i] is None and j >= 0:\n j = j - 1\n if j < 0:\n raise ValueError(\n 'None of the parameters in the very first dataset should be `None`.'\n )\n if jorig == j:\n paramcat.append(params_inits[j][i])\n param_indices[jorig].append(len(paramcat) - 1)\n else:\n param_indices[jorig].append(param_indices[j][i])\n if verbose:\n print('Number of datasets for simultaneous fitting:', Ndata)\n print('Total number of data points:', len(xcat))\n print('Number of parameters in each dataset:', Npar)\n print('Total number of parameters:', Ndata * Npar)\n print('Number of independent parameters:', len(paramcat))\n\n def x(x, *params):\n y = []\n for j in range(Ndata):\n if verbose > 1:\n print('Simultaneous fitting: evaluating function for dataset #'\n , j, '/', Ndata)\n pars = [params[i] for i in param_indices[j]]\n y.append(func(x[starts[j]:ends[j]], *pars))\n return np.concatenate(tuple(y))\n pflat, dpflat, statdictflat = nlsq_fit(xcat, ycat, dycat, func_flat,\n paramcat, verbose, **kwargs)\n for n in ['func_value', 'R2', 'Chi2', 'Chi2_reduced', 'DoF',\n 'Covariance', 'Correlation_coeffs']:\n statdictflat[n + '_global'] = statdictflat[n]\n statdictflat[n] = []\n p = []\n dp = []\n for j in range(Ndata):\n p.append([pflat[i] for i in param_indices[j]])\n dp.append([dpflat[i] for i in param_indices[j]])\n statdictflat['func_value'].append(statdictflat['func_value_global']\n [starts[j]:ends[j]])\n if np.isfinite(dys[j]).all():\n statdictflat['Chi2'].append((((statdictflat['func_value'][-1] -\n ys[j]) / dys[j]) ** 2).sum())\n sstot = np.sum((ys[j] - np.mean(ys[j])) ** 2 / dys[j] ** 2)\n else:\n statdictflat['Chi2'].append(((statdictflat['func_value'][-1] -\n ys[j]) ** 2).sum())\n sstot = np.sum((ys[j] - np.mean(ys[j])) ** 2)\n sserr = statdictflat['Chi2'][-1]\n statdictflat['R2'].append(1 - sserr / sstot)\n statdictflat['DoF'].append(len(xs[j] - len(p[-1])))\n statdictflat['Covariance'].append(slice_covarmatrix(statdictflat[\n 'Covariance_global'], param_indices[j]))\n statdictflat['Correlation_coeffs'].append(slice_covarmatrix(\n statdictflat['Correlation_coeffs_global'], param_indices[j]))\n statdictflat['Chi2_reduced'].append(statdictflat['Chi2'][-1] /\n statdictflat['DoF'][-1])\n return p, dp, statdictflat\n", "role": "user" }, { "content": "simultaneous_nlsq_fit", "role": "assistant" } ]
def x(self: 'ErrorValue', extra_digits: int=0, plusminus: str=' +/- ', fmt: str=None) ->str: if isinstance(fmt, str) and fmt.lower().endswith('tex'): return re.subn('(\\d*)(\\.(\\d)*)?[eE]([+-]?\\d+)', lambda m: ( '$%s%s\\cdot 10^{%s}$' % (m.group(1), m.group(2), m.group(4))). replace('None', ''), self.tostring(extra_digits=extra_digits, plusminus=plusminus, fmt=None))[0] if isinstance(self.val, numbers.Real): try: Ndigits = -int(math.floor(math.log10(self.err))) + extra_digits except (OverflowError, ValueError): return str(self.val) + plusminus + str(self.err) else: return str(round(self.val, Ndigits)) + plusminus + str(round( self.err, Ndigits)) return str(self.val) + ' +/- ' + str(self.err)
tostring
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self: 'ErrorValue', extra_digits: int=0, plusminus: str=' +/- ', fmt:\n str=None) ->str:\n if isinstance(fmt, str) and fmt.lower().endswith('tex'):\n return re.subn('(\\\\d*)(\\\\.(\\\\d)*)?[eE]([+-]?\\\\d+)', lambda m: (\n '$%s%s\\\\cdot 10^{%s}$' % (m.group(1), m.group(2), m.group(4))).\n replace('None', ''), self.tostring(extra_digits=extra_digits,\n plusminus=plusminus, fmt=None))[0]\n if isinstance(self.val, numbers.Real):\n try:\n Ndigits = -int(math.floor(math.log10(self.err))) + extra_digits\n except (OverflowError, ValueError):\n return str(self.val) + plusminus + str(self.err)\n else:\n return str(round(self.val, Ndigits)) + plusminus + str(round(\n self.err, Ndigits))\n return str(self.val) + ' +/- ' + str(self.err)\n", "role": "user" }, { "content": "tostring", "role": "assistant" } ]
def x(self: 'ErrorValue') ->np.ndarray: if isinstance(self.val, np.ndarray): return np.random.randn(self.val.shape) * self.err + self.val else: return np.random.randn() * self.err + self.val
random
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self: 'ErrorValue') ->np.ndarray:\n if isinstance(self.val, np.ndarray):\n return np.random.randn(self.val.shape) * self.err + self.val\n else:\n return np.random.randn() * self.err + self.val\n", "role": "user" }, { "content": "random", "role": "assistant" } ]
def x(cls, func, *args, **kwargs): def x(x): if isinstance(x, cls): return x.random() else: return x if 'NMC' not in kwargs: kwargs['NMC'] = 1000 if 'exceptions_to_skip' not in kwargs: kwargs['exceptions_to_skip'] = [] if 'exceptions_to_repeat' not in kwargs: kwargs['exceptions_to_repeat'] = [] meanvalue = func(*args) stdcollector = meanvalue * 0 mciters = 0 while mciters < kwargs['NMC']: try: stdcollector += (func(*[do_random(a) for a in args]) - meanvalue ) ** 2 mciters += 1 except Exception as e: if any(isinstance(e, etype) for etype in kwargs[ 'exceptions_to_skip']): kwargs['NMC'] -= 1 elif any(isinstance(e, etype) for etype in kwargs[ 'exceptions_to_repeat']): pass else: raise return cls(meanvalue, stdcollector ** 0.5 / (kwargs['NMC'] - 1))
evalfunc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, func, *args, **kwargs):\n\n def x(x):\n if isinstance(x, cls):\n return x.random()\n else:\n return x\n if 'NMC' not in kwargs:\n kwargs['NMC'] = 1000\n if 'exceptions_to_skip' not in kwargs:\n kwargs['exceptions_to_skip'] = []\n if 'exceptions_to_repeat' not in kwargs:\n kwargs['exceptions_to_repeat'] = []\n meanvalue = func(*args)\n stdcollector = meanvalue * 0\n mciters = 0\n while mciters < kwargs['NMC']:\n try:\n stdcollector += (func(*[do_random(a) for a in args]) - meanvalue\n ) ** 2\n mciters += 1\n except Exception as e:\n if any(isinstance(e, etype) for etype in kwargs[\n 'exceptions_to_skip']):\n kwargs['NMC'] -= 1\n elif any(isinstance(e, etype) for etype in kwargs[\n 'exceptions_to_repeat']):\n pass\n else:\n raise\n return cls(meanvalue, stdcollector ** 0.5 / (kwargs['NMC'] - 1))\n", "role": "user" }, { "content": "evalfunc", "role": "assistant" } ]
def x(q, R): return 4 * np.pi / q ** 3 * (np.sin(q * R) - q * R * np.cos(q * R))
Fsphere
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, R):\n return 4 * np.pi / q ** 3 * (np.sin(q * R) - q * R * np.cos(q * R))\n", "role": "user" }, { "content": "Fsphere", "role": "assistant" } ]
def x(q, G, Rg, s): return G / q ** (3 - s) * np.exp(-(q * Rg) ** 2 / s)
GeneralGuinier
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, G, Rg, s):\n return G / q ** (3 - s) * np.exp(-(q * Rg) ** 2 / s)\n", "role": "user" }, { "content": "GeneralGuinier", "role": "assistant" } ]
def x(q, G, Rg, alpha): return GuinierPorodMulti(q, G, Rg, alpha)
GuinierPorod
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, G, Rg, alpha):\n return GuinierPorodMulti(q, G, Rg, alpha)\n", "role": "user" }, { "content": "GuinierPorod", "role": "assistant" } ]
def x(q, a, alpha, Rg): return PorodGuinierMulti(q, a, alpha, Rg)
PorodGuinier
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, a, alpha, Rg):\n return PorodGuinierMulti(q, a, alpha, Rg)\n", "role": "user" }, { "content": "PorodGuinier", "role": "assistant" } ]
def x(q, a, alpha, Rg, beta): return PorodGuinierMulti(q, a, alpha, Rg, beta)
PorodGuinierPorod
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, a, alpha, Rg, beta):\n return PorodGuinierMulti(q, a, alpha, Rg, beta)\n", "role": "user" }, { "content": "PorodGuinierPorod", "role": "assistant" } ]
def x(q, G, Rg1, alpha, Rg2): return GuinierPorodMulti(q, G, Rg1, alpha, Rg2)
GuinierPorodGuinier
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, G, Rg1, alpha, Rg2):\n return GuinierPorodMulti(q, G, Rg1, alpha, Rg2)\n", "role": "user" }, { "content": "GuinierPorodGuinier", "role": "assistant" } ]
def x(q, a, alpha, sigma): return a * q ** alpha * np.exp(-q ** 2 / (2 * sigma ** 2))
DampedPowerlaw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, a, alpha, sigma):\n return a * q ** alpha * np.exp(-q ** 2 / (2 * sigma ** 2))\n", "role": "user" }, { "content": "DampedPowerlaw", "role": "assistant" } ]
def x(q, A, mu, sigma, N=1000): Rmin = 0 Rmax = np.exp(mu + 3 * sigma) R = np.linspace(Rmin, Rmax, N + 1)[1:] P = 1 / np.sqrt(2 * np.pi * sigma ** 2 * R ** 2) * np.exp(-(np.log(R) - mu) ** 2 / (2 * sigma ** 2)) def x(q, R): qR = np.outer(q, R) q1 = np.outer(q, np.ones_like(R)) return 4 * np.pi / q1 ** 3 * (np.sin(qR) - qR * np.cos(qR)) I = Fsphere_outer(q, R) ** 2 * np.outer(np.ones_like(q), P) return A * I.sum(1) / P.sum()
LogNormSpheres
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, A, mu, sigma, N=1000):\n Rmin = 0\n Rmax = np.exp(mu + 3 * sigma)\n R = np.linspace(Rmin, Rmax, N + 1)[1:]\n P = 1 / np.sqrt(2 * np.pi * sigma ** 2 * R ** 2) * np.exp(-(np.log(R) -\n mu) ** 2 / (2 * sigma ** 2))\n\n def x(q, R):\n qR = np.outer(q, R)\n q1 = np.outer(q, np.ones_like(R))\n return 4 * np.pi / q1 ** 3 * (np.sin(qR) - qR * np.cos(qR))\n I = Fsphere_outer(q, R) ** 2 * np.outer(np.ones_like(q), P)\n return A * I.sum(1) / P.sum()\n", "role": "user" }, { "content": "LogNormSpheres", "role": "assistant" } ]
def x(q, A, R0, sigma, N=1000, weighting='intensity'): Rmin = max(0, R0 - 3 * sigma) Rmax = R0 + 3 * sigma R = np.linspace(Rmin, Rmax, N + 1)[1:] P = 1 / np.sqrt(2 * np.pi * sigma ** 2) * np.exp(-(R - R0) ** 2 / (2 * sigma ** 2)) def x(q, R): qR = np.outer(q, R) return 3 / qR ** 3 * (np.sin(qR) - qR * np.cos(qR)) V = R ** 3 * 4 * np.pi / 3.0 if weighting == 'intensity': P = P * V * V elif weighting == 'volume': P = P * V elif weighting == 'number': pass else: raise ValueError('Invalid weighting: ' + str(weighting)) I = Fsphere_outer(q, R) ** 2 * np.outer(np.ones_like(q), P) return A * I.sum(1) / P.sum()
GaussSpheres
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, A, R0, sigma, N=1000, weighting='intensity'):\n Rmin = max(0, R0 - 3 * sigma)\n Rmax = R0 + 3 * sigma\n R = np.linspace(Rmin, Rmax, N + 1)[1:]\n P = 1 / np.sqrt(2 * np.pi * sigma ** 2) * np.exp(-(R - R0) ** 2 / (2 * \n sigma ** 2))\n\n def x(q, R):\n qR = np.outer(q, R)\n return 3 / qR ** 3 * (np.sin(qR) - qR * np.cos(qR))\n V = R ** 3 * 4 * np.pi / 3.0\n if weighting == 'intensity':\n P = P * V * V\n elif weighting == 'volume':\n P = P * V\n elif weighting == 'number':\n pass\n else:\n raise ValueError('Invalid weighting: ' + str(weighting))\n I = Fsphere_outer(q, R) ** 2 * np.outer(np.ones_like(q), P)\n return A * I.sum(1) / P.sum()\n", "role": "user" }, { "content": "GaussSpheres", "role": "assistant" } ]
def x(q, A, alpha, G, Rg, beta, C): return PowerlawPlusConstant(q, A, alpha, C) + GuinierPorod(q, G, Rg, beta)
PowerlawGuinierPorodConst
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, A, alpha, G, Rg, beta, C):\n return PowerlawPlusConstant(q, A, alpha, C) + GuinierPorod(q, G, Rg, beta)\n", "role": "user" }, { "content": "PowerlawGuinierPorodConst", "role": "assistant" } ]
def x(q, G, *Rgsalphas): scalefactor = G funcs = [lambda q: Guinier(q, G, Rgsalphas[0])] indices = np.ones_like(q, dtype=np.bool) constraints = [] for i in range(1, len(Rgsalphas)): if i % 2: qsep = _PGgen_qsep(Rgsalphas[i], Rgsalphas[i - 1], 3) scalefactor = _PGgen_A(Rgsalphas[i], Rgsalphas[i - 1], 3, scalefactor) funcs.append(lambda q, a=scalefactor, alpha=Rgsalphas[i]: Powerlaw(q, a, alpha)) else: qsep = _PGgen_qsep(Rgsalphas[i - 1], Rgsalphas[i], 3) scalefactor = _PGgen_G(Rgsalphas[i - 1], Rgsalphas[i], 3, scalefactor) funcs.append(lambda q, G=scalefactor, Rg=Rgsalphas[i]: Guinier( q, G, Rg)) constraints.append(indices & (q < qsep)) indices[q < qsep] = False constraints.append(indices) return np.piecewise(q, constraints, funcs)
GuinierPorodMulti
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, G, *Rgsalphas):\n scalefactor = G\n funcs = [lambda q: Guinier(q, G, Rgsalphas[0])]\n indices = np.ones_like(q, dtype=np.bool)\n constraints = []\n for i in range(1, len(Rgsalphas)):\n if i % 2:\n qsep = _PGgen_qsep(Rgsalphas[i], Rgsalphas[i - 1], 3)\n scalefactor = _PGgen_A(Rgsalphas[i], Rgsalphas[i - 1], 3,\n scalefactor)\n funcs.append(lambda q, a=scalefactor, alpha=Rgsalphas[i]:\n Powerlaw(q, a, alpha))\n else:\n qsep = _PGgen_qsep(Rgsalphas[i - 1], Rgsalphas[i], 3)\n scalefactor = _PGgen_G(Rgsalphas[i - 1], Rgsalphas[i], 3,\n scalefactor)\n funcs.append(lambda q, G=scalefactor, Rg=Rgsalphas[i]: Guinier(\n q, G, Rg))\n constraints.append(indices & (q < qsep))\n indices[q < qsep] = False\n constraints.append(indices)\n return np.piecewise(q, constraints, funcs)\n", "role": "user" }, { "content": "GuinierPorodMulti", "role": "assistant" } ]
def x(q, A, *alphasRgs): scalefactor = A funcs = [lambda q: Powerlaw(q, A, alphasRgs[0])] indices = np.ones_like(q, dtype=np.bool) constraints = [] for i in range(1, len(alphasRgs)): if i % 2: qsep = _PGgen_qsep(alphasRgs[i - 1], alphasRgs[i], 3) scalefactor = _PGgen_G(alphasRgs[i - 1], alphasRgs[i], 3, scalefactor) funcs.append(lambda q, G=scalefactor, Rg=alphasRgs[i]: Guinier( q, G, Rg)) else: qsep = _PGgen_qsep(alphasRgs[i], alphasRgs[i - 1], 3) scalefactor = _PGgen_A(alphasRgs[i], alphasRgs[i - 1], 3, scalefactor) funcs.append(lambda q, a=scalefactor, alpha=alphasRgs[i]: a * q ** alpha) constraints.append(indices & (q < qsep)) indices[q < qsep] = False constraints.append(indices) return np.piecewise(q, constraints, funcs)
PorodGuinierMulti
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, A, *alphasRgs):\n scalefactor = A\n funcs = [lambda q: Powerlaw(q, A, alphasRgs[0])]\n indices = np.ones_like(q, dtype=np.bool)\n constraints = []\n for i in range(1, len(alphasRgs)):\n if i % 2:\n qsep = _PGgen_qsep(alphasRgs[i - 1], alphasRgs[i], 3)\n scalefactor = _PGgen_G(alphasRgs[i - 1], alphasRgs[i], 3,\n scalefactor)\n funcs.append(lambda q, G=scalefactor, Rg=alphasRgs[i]: Guinier(\n q, G, Rg))\n else:\n qsep = _PGgen_qsep(alphasRgs[i], alphasRgs[i - 1], 3)\n scalefactor = _PGgen_A(alphasRgs[i], alphasRgs[i - 1], 3,\n scalefactor)\n funcs.append(lambda q, a=scalefactor, alpha=alphasRgs[i]: a * q **\n alpha)\n constraints.append(indices & (q < qsep))\n indices[q < qsep] = False\n constraints.append(indices)\n return np.piecewise(q, constraints, funcs)\n", "role": "user" }, { "content": "PorodGuinierMulti", "role": "assistant" } ]
def x(q, factor, *args, **kwargs): if kwargs.get('startswithguinier', True): funcs = [lambda q, A=factor: GeneralGuinier(q, A, args[0], args[1])] i = 2 guiniernext = False else: funcs = [lambda q, A=factor: Powerlaw(q, A, args[0])] i = 1 guiniernext = True indices = np.ones_like(q, dtype=np.bool) constraints = [] while i < len(args): if guiniernext: qsep = _PGgen_qsep(args[i - 1], args[i], args[i + 1]) factor = _PGgen_G(args[i - 1], args[i], args[i + 1], factor) funcs.append(lambda q, G=factor, Rg=args[i], s=args[i + 1]: GeneralGuinier(q, G, Rg, s)) guiniernext = False i += 2 else: qsep = _PGgen_qsep(args[i], args[i - 2], args[i - 1]) factor = _PGgen_A(args[i], args[i - 2], args[i - 1], factor) funcs.append(lambda q, a=factor, alpha=args[i]: a * q ** alpha) guiniernext = True i += 1 constraints.append(indices & (q < qsep)) indices[q < qsep] = False constraints.append(indices) return np.piecewise(q, constraints, funcs)
GeneralGuinierPorod
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, factor, *args, **kwargs):\n if kwargs.get('startswithguinier', True):\n funcs = [lambda q, A=factor: GeneralGuinier(q, A, args[0], args[1])]\n i = 2\n guiniernext = False\n else:\n funcs = [lambda q, A=factor: Powerlaw(q, A, args[0])]\n i = 1\n guiniernext = True\n indices = np.ones_like(q, dtype=np.bool)\n constraints = []\n while i < len(args):\n if guiniernext:\n qsep = _PGgen_qsep(args[i - 1], args[i], args[i + 1])\n factor = _PGgen_G(args[i - 1], args[i], args[i + 1], factor)\n funcs.append(lambda q, G=factor, Rg=args[i], s=args[i + 1]:\n GeneralGuinier(q, G, Rg, s))\n guiniernext = False\n i += 2\n else:\n qsep = _PGgen_qsep(args[i], args[i - 2], args[i - 1])\n factor = _PGgen_A(args[i], args[i - 2], args[i - 1], factor)\n funcs.append(lambda q, a=factor, alpha=args[i]: a * q ** alpha)\n guiniernext = True\n i += 1\n constraints.append(indices & (q < qsep))\n indices[q < qsep] = False\n constraints.append(indices)\n return np.piecewise(q, constraints, funcs)\n", "role": "user" }, { "content": "GeneralGuinierPorod", "role": "assistant" } ]
def x(q, Rg): a = (q * Rg) ** 2 return 2 * (np.exp(-a) - 1 + a) / a ** 2
DebyeChain
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, Rg):\n a = (q * Rg) ** 2\n return 2 * (np.exp(-a) - 1 + a) / a ** 2\n", "role": "user" }, { "content": "DebyeChain", "role": "assistant" } ]
def x(q, Rg, nu): u = (q * Rg) ** 2 * (2 * nu + 1) * (2 * nu + 2) / 6.0 return (u ** (0.5 / nu) * gamma(0.5 / nu) * gammainc(0.5 / nu, u) - gamma(1.0 / nu) * gammainc(1.0 / nu, u)) / (nu * u ** (1.0 / nu))
ExcludedVolumeChain
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, Rg, nu):\n u = (q * Rg) ** 2 * (2 * nu + 1) * (2 * nu + 2) / 6.0\n return (u ** (0.5 / nu) * gamma(0.5 / nu) * gammainc(0.5 / nu, u) - \n gamma(1.0 / nu) * gammainc(1.0 / nu, u)) / (nu * u ** (1.0 / nu))\n", "role": "user" }, { "content": "ExcludedVolumeChain", "role": "assistant" } ]
def x(q, C, r0, s, t): x = q * r0 return C * (x ** 2 + s) / ((x ** 2 + s) * (x ** 2 + t) + 1)
BorueErukhimovich
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, C, r0, s, t):\n x = q * r0\n return C * (x ** 2 + s) / ((x ** 2 + s) * (x ** 2 + t) + 1)\n", "role": "user" }, { "content": "BorueErukhimovich", "role": "assistant" } ]
def x(q, C, r0, s, t, nu): def x(alpha, s, t): A = alpha + 2 B = 2 * s * alpha + t * alpha + 4 * s C = (s * t * alpha + alpha + alpha * s ** 2 + alpha * s * t - 2 + 2 * s ** 2) D = alpha * s ** 2 * t + alpha * s r = np.roots([A, B, C, D]) return r[r > 0][0] ** 0.5 get_B = lambda C, xsep, s, t, nu: C * (xsep ** 2 + s) / ((xsep ** 2 + s ) * (xsep ** 2 + t) + 1) * xsep ** (1.0 / nu) x = q * r0 xsep = np.real_if_close(get_xsep(-1.0 / nu, s, t)) A = get_B(C, xsep, s, t, nu) return np.piecewise(q, (x < xsep, x >= xsep), (lambda a: BorueErukhimovich(a, C, r0, s, t), lambda a: A * (a * r0) ** (-1.0 / nu)))
BorueErukhimovich_Powerlaw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, C, r0, s, t, nu):\n\n def x(alpha, s, t):\n A = alpha + 2\n B = 2 * s * alpha + t * alpha + 4 * s\n C = (s * t * alpha + alpha + alpha * s ** 2 + alpha * s * t - 2 + 2 *\n s ** 2)\n D = alpha * s ** 2 * t + alpha * s\n r = np.roots([A, B, C, D])\n return r[r > 0][0] ** 0.5\n get_B = lambda C, xsep, s, t, nu: C * (xsep ** 2 + s) / ((xsep ** 2 + s\n ) * (xsep ** 2 + t) + 1) * xsep ** (1.0 / nu)\n x = q * r0\n xsep = np.real_if_close(get_xsep(-1.0 / nu, s, t))\n A = get_B(C, xsep, s, t, nu)\n return np.piecewise(q, (x < xsep, x >= xsep), (lambda a:\n BorueErukhimovich(a, C, r0, s, t), lambda a: A * (a * r0) ** (-1.0 /\n nu)))\n", "role": "user" }, { "content": "BorueErukhimovich_Powerlaw", "role": "assistant" } ]
def x(self, data, interval): data_slice = dict() for key in data: if '_valid' in key: continue index = [slice(None)] * data[key].ndim index[0] = self.rng.randint(0, data[key].shape[0]) index[0] = slice(index[0], index[0] + 1) for tdim in self._time[key]: index[tdim] = interval data_slice[key] = data[key][tuple(index)] return data_slice
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, interval):\n data_slice = dict()\n for key in data:\n if '_valid' in key:\n continue\n index = [slice(None)] * data[key].ndim\n index[0] = self.rng.randint(0, data[key].shape[0])\n index[0] = slice(index[0], index[0] + 1)\n for tdim in self._time[key]:\n index[tdim] = interval\n data_slice[key] = data[key][tuple(index)]\n return data_slice\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(self, data): duration = self.data_duration(data) if self.duration > duration: raise DataError('Data duration={} is less than sample duration={}'. format(duration, self.duration)) while True: yield self.rng.randint(0, duration - self.duration + 1)
indices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n duration = self.data_duration(data)\n if self.duration > duration:\n raise DataError('Data duration={} is less than sample duration={}'.\n format(duration, self.duration))\n while True:\n yield self.rng.randint(0, duration - self.duration + 1)\n", "role": "user" }, { "content": "indices", "role": "assistant" } ]
def x(self, data): duration = self.data_duration(data) for start in range(0, duration - self.duration, self.stride): yield start
indices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n duration = self.data_duration(data)\n for start in range(0, duration - self.duration, self.stride):\n yield start\n", "role": "user" }, { "content": "indices", "role": "assistant" } ]
def x(self, data): duration = self.data_duration(data) while True: yield self.rng.randint(0, duration - self.min_duration + 1)
indices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n duration = self.data_duration(data)\n while True:\n yield self.rng.randint(0, duration - self.min_duration + 1)\n", "role": "user" }, { "content": "indices", "role": "assistant" } ]
def x(self, key): if self.name is None: return key return '{:s}/{:s}'.format(self.name, key)
scope
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key):\n if self.name is None:\n return key\n return '{:s}/{:s}'.format(self.name, key)\n", "role": "user" }, { "content": "scope", "role": "assistant" } ]
def x(self, field, shape, dtype): if not isinstance(dtype, type): raise ParameterError('dtype={} must be a type'.format(dtype)) if not (isinstance(shape, Iterable) and all([(s is None or isinstance(s, int)) for s in shape])): raise ParameterError('shape={} must be an iterable of integers'. format(shape)) self.fields[self.scope(field)] = Tensor(tuple(shape), dtype)
register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, field, shape, dtype):\n if not isinstance(dtype, type):\n raise ParameterError('dtype={} must be a type'.format(dtype))\n if not (isinstance(shape, Iterable) and all([(s is None or isinstance(s,\n int)) for s in shape])):\n raise ParameterError('shape={} must be an iterable of integers'.\n format(shape))\n self.fields[self.scope(field)] = Tensor(tuple(shape), dtype)\n", "role": "user" }, { "content": "register", "role": "assistant" } ]
def x(self, data): data_out = dict() for key in set().union(*data): data_out[self.scope(key)] = np.stack([np.asarray(d[key]) for d in data], axis=0) return data_out
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n data_out = dict()\n for key in set().union(*data):\n data_out[self.scope(key)] = np.stack([np.asarray(d[key]) for d in\n data], axis=0)\n return data_out\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(self, operator): if not isinstance(operator, Scope): raise ParameterError( 'Operator {} must be a TaskTransformer or FeatureExtractor'. format(operator)) for key in operator.fields: self._time[key] = [] for tdim, idx in enumerate(operator.fields[key].shape, 1): if idx is None: self._time[key].append(tdim)
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, operator):\n if not isinstance(operator, Scope):\n raise ParameterError(\n 'Operator {} must be a TaskTransformer or FeatureExtractor'.\n format(operator))\n for key in operator.fields:\n self._time[key] = []\n for tdim, idx in enumerate(operator.fields[key].shape, 1):\n if idx is None:\n self._time[key].append(tdim)\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, data): lengths = [] for key in self._time: for idx in self._time.get(key, []): lengths.append(data[key].shape[idx]) return min(lengths)
data_duration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n lengths = []\n for key in self._time:\n for idx in self._time.get(key, []):\n lengths.append(data[key].shape[idx])\n return min(lengths)\n", "role": "user" }, { "content": "data_duration", "role": "assistant" } ]
def x(self, data): duration = self.data_duration(data) data_out = dict() for key in data: idx = [slice(None)] * data[key].ndim for tdim in self._time.get(key, []): idx[tdim] = slice(duration) data_out[key] = data[key][tuple(idx)] return data_out
crop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n duration = self.data_duration(data)\n data_out = dict()\n for key in data:\n idx = [slice(None)] * data[key].ndim\n for tdim in self._time.get(key, []):\n idx[tdim] = slice(duration)\n data_out[key] = data[key][tuple(idx)]\n return data_out\n", "role": "user" }, { "content": "crop", "role": "assistant" } ]
def x(self, y): n_frames = self.n_frames(get_duration(y=y, sr=self.sr)) mel = np.sqrt(melspectrogram(y=y, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels, fmax=self.fmax) ).astype(np.float32) mel = fix_length(mel, n_frames) if self.log: mel = amplitude_to_db(mel, ref=np.max) return {'mag': mel.T[self.idx]}
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n n_frames = self.n_frames(get_duration(y=y, sr=self.sr))\n mel = np.sqrt(melspectrogram(y=y, sr=self.sr, n_fft=self.n_fft,\n hop_length=self.hop_length, n_mels=self.n_mels, fmax=self.fmax)\n ).astype(np.float32)\n mel = fix_length(mel, n_frames)\n if self.log:\n mel = amplitude_to_db(mel, ref=np.max)\n return {'mag': mel.T[self.idx]}\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(self, duration): ann = super(VectorTransformer, self).empty(duration) ann.append(time=0, duration=duration, confidence=0, value=np.zeros(self .dimension, dtype=np.float32)) return ann
empty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, duration):\n ann = super(VectorTransformer, self).empty(duration)\n ann.append(time=0, duration=duration, confidence=0, value=np.zeros(self\n .dimension, dtype=np.float32))\n return ann\n", "role": "user" }, { "content": "empty", "role": "assistant" } ]
def x(self, ann, duration): _, values = ann.to_interval_values() vector = np.asarray(values[0], dtype=self.dtype) if len(vector) != self.dimension: raise DataError('vector dimension({:0}) != self.dimension({:1})'. format(len(vector), self.dimension)) return {'vector': vector}
transform_annotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ann, duration):\n _, values = ann.to_interval_values()\n vector = np.asarray(values[0], dtype=self.dtype)\n if len(vector) != self.dimension:\n raise DataError('vector dimension({:0}) != self.dimension({:1})'.\n format(len(vector), self.dimension))\n return {'vector': vector}\n", "role": "user" }, { "content": "transform_annotation", "role": "assistant" } ]
def x(self, vector, duration=None): ann = jams.Annotation(namespace=self.namespace, duration=duration) if duration is None: duration = 0 ann.append(time=0, duration=duration, value=vector) return ann
inverse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vector, duration=None):\n ann = jams.Annotation(namespace=self.namespace, duration=duration)\n if duration is None:\n duration = 0\n ann.append(time=0, duration=duration, value=vector)\n return ann\n", "role": "user" }, { "content": "inverse", "role": "assistant" } ]
def x(self, p_self): if p_self is None: self.transition = None else: self.transition = np.empty((len(self._classes), 2, 2)) if np.isscalar(p_self): self.transition = transition_loop(2, p_self) elif len(p_self) != len(self._classes): raise ParameterError( 'Invalid p_self.shape={} for vocabulary size={}'.format( p_self.shape, len(self._classes))) else: for i in range(len(self._classes)): self.transition[i] = transition_loop(2, p_self[i])
set_transition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p_self):\n if p_self is None:\n self.transition = None\n else:\n self.transition = np.empty((len(self._classes), 2, 2))\n if np.isscalar(p_self):\n self.transition = transition_loop(2, p_self)\n elif len(p_self) != len(self._classes):\n raise ParameterError(\n 'Invalid p_self.shape={} for vocabulary size={}'.format(\n p_self.shape, len(self._classes)))\n else:\n for i in range(len(self._classes)):\n self.transition[i] = transition_loop(2, p_self[i])\n", "role": "user" }, { "content": "set_transition", "role": "assistant" } ]