source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(data, orig_initial, mask=None, maxiter=0, epsfcn=0.001, dmin=0, dmax=
np.inf, sector_width=np.pi / 9.0, extent=10, callback=None):
if mask is None:
mask = np.ones(data.shape)
data = data.astype(np.double)
def x(orig, data, mask, orig_orig, callback):
I = [None] * 4
p, Ints, A = radint_nsector(data, None, -1, -1, -1, orig[0] +
orig_orig[0], orig[1] + orig_orig[1], mask=mask, phi0=np.pi / 4 -
0.5 * sector_width, dphi=sector_width, Nsector=4)
minpix = max(max(p.min(0).tolist()), dmin)
maxpix = min(min(p.max(0).tolist()), dmax)
if maxpix < minpix:
raise ValueError(
'The four slices do not overlap! Please give a better approximation for the origin or use another centering method.'
)
for i in range(4):
I[i] = Ints[:, i][(p[:, i] >= minpix) & (p[:, i] <= maxpix)]
ret = ((I[0] - I[2]) ** 2 + (I[1] - I[3]) ** 2) / (maxpix - minpix)
if callback is not None:
callback()
return ret
orig = scipy.optimize.leastsq(targetfunc, np.array([extent, extent]),
args=(data, 1 - mask.astype(np.uint8), np.array(orig_initial) -
extent, callback), maxfev=maxiter, epsfcn=0.01)
return orig[0] + np.array(orig_initial) - extent
|
findbeam_slices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, orig_initial, mask=None, maxiter=0, epsfcn=0.001, dmin=0, dmax=\n np.inf, sector_width=np.pi / 9.0, extent=10, callback=None):\n if mask is None:\n mask = np.ones(data.shape)\n data = data.astype(np.double)\n\n def x(orig, data, mask, orig_orig, callback):\n I = [None] * 4\n p, Ints, A = radint_nsector(data, None, -1, -1, -1, orig[0] +\n orig_orig[0], orig[1] + orig_orig[1], mask=mask, phi0=np.pi / 4 -\n 0.5 * sector_width, dphi=sector_width, Nsector=4)\n minpix = max(max(p.min(0).tolist()), dmin)\n maxpix = min(min(p.max(0).tolist()), dmax)\n if maxpix < minpix:\n raise ValueError(\n 'The four slices do not overlap! Please give a better approximation for the origin or use another centering method.'\n )\n for i in range(4):\n I[i] = Ints[:, i][(p[:, i] >= minpix) & (p[:, i] <= maxpix)]\n ret = ((I[0] - I[2]) ** 2 + (I[1] - I[3]) ** 2) / (maxpix - minpix)\n if callback is not None:\n callback()\n return ret\n orig = scipy.optimize.leastsq(targetfunc, np.array([extent, extent]),\n args=(data, 1 - mask.astype(np.uint8), np.array(orig_initial) -\n extent, callback), maxfev=maxiter, epsfcn=0.01)\n return orig[0] + np.array(orig_initial) - extent\n",
"role": "user"
},
{
"content": "findbeam_slices",
"role": "assistant"
}
] |
def x(data, orig_initial, mask=None, maxiter=100, Ntheta=50, dmin=0, dmax=
np.inf, extent=10, callback=None):
if mask is None:
mask = np.ones(data.shape)
data = data.astype(np.double)
def x(orig, data, mask, orig_orig, callback):
def x(p, x, y):
return (y - np.sin(x + p[1]) * p[0] - p[2]) / np.sqrt(len(x))
t, I, a = azimintpix(data, None, orig[0] + orig_orig[0], orig[1] +
orig_orig[1], mask.astype('uint8'), Ntheta, dmin, dmax)
if len(a) > (a > 0).sum():
raise ValueError(
'findbeam_azimuthal: non-complete azimuthal average, please consider changing dmin, dmax and/or orig_initial!'
)
p = (I.max() - I.min()) / 2.0, t[I == I.max()][0], I.mean()
p = scipy.optimize.leastsq(sinfun, p, (t, I))[0]
if callback is not None:
callback()
return abs(p[0])
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(data, 1 - mask, np.array(orig_initial) - extent, callback),
maxiter=maxiter, disp=0)
return orig1 + np.array(orig_initial) - extent
|
findbeam_azimuthal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, orig_initial, mask=None, maxiter=100, Ntheta=50, dmin=0, dmax=\n np.inf, extent=10, callback=None):\n if mask is None:\n mask = np.ones(data.shape)\n data = data.astype(np.double)\n\n def x(orig, data, mask, orig_orig, callback):\n\n def x(p, x, y):\n return (y - np.sin(x + p[1]) * p[0] - p[2]) / np.sqrt(len(x))\n t, I, a = azimintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask.astype('uint8'), Ntheta, dmin, dmax)\n if len(a) > (a > 0).sum():\n raise ValueError(\n 'findbeam_azimuthal: non-complete azimuthal average, please consider changing dmin, dmax and/or orig_initial!'\n )\n p = (I.max() - I.min()) / 2.0, t[I == I.max()][0], I.mean()\n p = scipy.optimize.leastsq(sinfun, p, (t, I))[0]\n if callback is not None:\n callback()\n return abs(p[0])\n orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),\n args=(data, 1 - mask, np.array(orig_initial) - extent, callback),\n maxiter=maxiter, disp=0)\n return orig1 + np.array(orig_initial) - extent\n",
"role": "user"
},
{
"content": "findbeam_azimuthal",
"role": "assistant"
}
] |
def x(data, orig_initial, mask=None, maxiter=100, Ntheta=50, dmin=0, dmax=
np.inf, extent=10, callback=None):
if Ntheta % 2:
raise ValueError('Ntheta should be even!')
if mask is None:
mask = np.ones_like(data).astype(np.uint8)
data = data.astype(np.double)
def x(orig, data, mask, orig_orig, callback):
I = azimintpix(data, None, orig[0] + orig_orig[0], orig[1] +
orig_orig[1], mask, Ntheta, dmin, dmax)[1]
if callback is not None:
callback()
return np.sum((I[:Ntheta / 2] - I[Ntheta / 2:]) ** 2) / Ntheta
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(data, 1 - mask, np.array(orig_initial) - extent, callback),
maxiter=maxiter, disp=0)
return orig1 + np.array(orig_initial) - extent
|
findbeam_azimuthal_fold
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, orig_initial, mask=None, maxiter=100, Ntheta=50, dmin=0, dmax=\n np.inf, extent=10, callback=None):\n if Ntheta % 2:\n raise ValueError('Ntheta should be even!')\n if mask is None:\n mask = np.ones_like(data).astype(np.uint8)\n data = data.astype(np.double)\n\n def x(orig, data, mask, orig_orig, callback):\n I = azimintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask, Ntheta, dmin, dmax)[1]\n if callback is not None:\n callback()\n return np.sum((I[:Ntheta / 2] - I[Ntheta / 2:]) ** 2) / Ntheta\n orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),\n args=(data, 1 - mask, np.array(orig_initial) - extent, callback),\n maxiter=maxiter, disp=0)\n return orig1 + np.array(orig_initial) - extent\n",
"role": "user"
},
{
"content": "findbeam_azimuthal_fold",
"role": "assistant"
}
] |
def x(data, pri, threshold=0.05):
rowmin = np.floor(min(pri[2:]))
rowmax = np.ceil(max(pri[2:]))
colmin = np.floor(min(pri[:2]))
colmax = np.ceil(max(pri[:2]))
if threshold is not None:
B = data[rowmin:rowmax, colmin:colmax]
Ri = np.arange(rowmin, rowmax)
Ci = np.arange(colmin, colmax)
Ravg = B.mean(1)
Cavg = B.mean(0)
maxR = Ravg.max()
maxRpos = Ravg.argmax()
maxC = Cavg.max()
maxCpos = Cavg.argmax()
Rmin = Ri[(Ravg - Ravg[0] >= (maxR - Ravg[0]) * threshold) & (Ri <
maxRpos)][0]
Rmax = Ri[(Ravg - Ravg[-1] >= (maxR - Ravg[-1]) * threshold) & (Ri >
maxRpos)][-1]
Cmin = Ci[(Cavg - Cavg[0] >= (maxC - Cavg[0]) * threshold) & (Ci <
maxCpos)][0]
Cmax = Ci[(Cavg - Cavg[-1] >= (maxC - Cavg[-1]) * threshold) & (Ci >
maxCpos)][-1]
else:
Rmin = rowmin
Rmax = rowmax
Cmin = colmin
Cmax = colmax
d = data[Rmin:Rmax + 1, Cmin:Cmax + 1]
x = np.arange(Rmin, Rmax + 1)
y = np.arange(Cmin, Cmax + 1)
bcx = (d.sum(1) * x).sum() / d.sum()
bcy = (d.sum(0) * y).sum() / d.sum()
return bcx, bcy
|
findbeam_semitransparent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, pri, threshold=0.05):\n rowmin = np.floor(min(pri[2:]))\n rowmax = np.ceil(max(pri[2:]))\n colmin = np.floor(min(pri[:2]))\n colmax = np.ceil(max(pri[:2]))\n if threshold is not None:\n B = data[rowmin:rowmax, colmin:colmax]\n Ri = np.arange(rowmin, rowmax)\n Ci = np.arange(colmin, colmax)\n Ravg = B.mean(1)\n Cavg = B.mean(0)\n maxR = Ravg.max()\n maxRpos = Ravg.argmax()\n maxC = Cavg.max()\n maxCpos = Cavg.argmax()\n Rmin = Ri[(Ravg - Ravg[0] >= (maxR - Ravg[0]) * threshold) & (Ri <\n maxRpos)][0]\n Rmax = Ri[(Ravg - Ravg[-1] >= (maxR - Ravg[-1]) * threshold) & (Ri >\n maxRpos)][-1]\n Cmin = Ci[(Cavg - Cavg[0] >= (maxC - Cavg[0]) * threshold) & (Ci <\n maxCpos)][0]\n Cmax = Ci[(Cavg - Cavg[-1] >= (maxC - Cavg[-1]) * threshold) & (Ci >\n maxCpos)][-1]\n else:\n Rmin = rowmin\n Rmax = rowmax\n Cmin = colmin\n Cmax = colmax\n d = data[Rmin:Rmax + 1, Cmin:Cmax + 1]\n x = np.arange(Rmin, Rmax + 1)\n y = np.arange(Cmin, Cmax + 1)\n bcx = (d.sum(1) * x).sum() / d.sum()\n bcy = (d.sum(0) * y).sum() / d.sum()\n return bcx, bcy\n",
"role": "user"
},
{
"content": "findbeam_semitransparent",
"role": "assistant"
}
] |
def x(data, orig_initial, mask, rmin, rmax, maxiter=100, drive_by=
'amplitude', extent=10, callback=None):
orig_initial = np.array(orig_initial)
mask = 1 - mask.astype(np.uint8)
data = data.astype(np.double)
pix = np.arange(rmin * 1.0, rmax * 1.0, 1)
if drive_by.lower() == 'hwhm':
def x(orig, data, mask, orig_orig, callback):
I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +
orig_orig[1], mask, pix)[1]
hwhm = float(misc.findpeak_single(pix, I)[1])
if callback is not None:
callback()
return abs(hwhm)
elif drive_by.lower() == 'amplitude':
def x(orig, data, mask, orig_orig, callback):
I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +
orig_orig[1], mask, pix)[1]
fp = misc.findpeak_single(pix, I)
height = -float(fp[2] + fp[3])
if callback is not None:
callback()
return height
else:
raise ValueError('Invalid argument for drive_by %s' % drive_by)
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(data, mask, orig_initial - extent, callback), maxiter=maxiter,
disp=0)
return np.array(orig_initial) - extent + orig1
|
findbeam_radialpeak
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, orig_initial, mask, rmin, rmax, maxiter=100, drive_by=\n 'amplitude', extent=10, callback=None):\n orig_initial = np.array(orig_initial)\n mask = 1 - mask.astype(np.uint8)\n data = data.astype(np.double)\n pix = np.arange(rmin * 1.0, rmax * 1.0, 1)\n if drive_by.lower() == 'hwhm':\n\n def x(orig, data, mask, orig_orig, callback):\n I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask, pix)[1]\n hwhm = float(misc.findpeak_single(pix, I)[1])\n if callback is not None:\n callback()\n return abs(hwhm)\n elif drive_by.lower() == 'amplitude':\n\n def x(orig, data, mask, orig_orig, callback):\n I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask, pix)[1]\n fp = misc.findpeak_single(pix, I)\n height = -float(fp[2] + fp[3])\n if callback is not None:\n callback()\n return height\n else:\n raise ValueError('Invalid argument for drive_by %s' % drive_by)\n orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),\n args=(data, mask, orig_initial - extent, callback), maxiter=maxiter,\n disp=0)\n return np.array(orig_initial) - extent + orig1\n",
"role": "user"
},
{
"content": "findbeam_radialpeak",
"role": "assistant"
}
] |
def x(data, orig_initial, mask, rmin, rmax, maxiter=100, extent=10,
callback=None):
orig_initial = np.array(orig_initial)
mask = 1 - mask.astype(np.uint8)
data = data.astype(np.double)
pix = np.arange(rmin * 1.0, rmax * 1.0, 1)
pix2 = pix ** 2
def x(orig, data, mask, orig_orig, callback):
I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +
orig_orig[1], mask, pix)[1]
p = np.polyfit(pix2, np.log(I), 1)[0]
if callback is not None:
callback()
return p
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(data, mask, orig_initial - extent, callback), maxiter=maxiter,
disp=0)
return np.array(orig_initial) - extent + orig1
|
findbeam_Guinier
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, orig_initial, mask, rmin, rmax, maxiter=100, extent=10,\n callback=None):\n orig_initial = np.array(orig_initial)\n mask = 1 - mask.astype(np.uint8)\n data = data.astype(np.double)\n pix = np.arange(rmin * 1.0, rmax * 1.0, 1)\n pix2 = pix ** 2\n\n def x(orig, data, mask, orig_orig, callback):\n I = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask, pix)[1]\n p = np.polyfit(pix2, np.log(I), 1)[0]\n if callback is not None:\n callback()\n return p\n orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),\n args=(data, mask, orig_initial - extent, callback), maxiter=maxiter,\n disp=0)\n return np.array(orig_initial) - extent + orig1\n",
"role": "user"
},
{
"content": "findbeam_Guinier",
"role": "assistant"
}
] |
def x(data, orig_initial, mask, rmin, rmax, maxiter=100, drive_by='R2',
extent=10, callback=None):
orig_initial = np.array(orig_initial)
mask = 1 - mask.astype(np.uint8)
data = data.astype(np.double)
pix = np.arange(rmin * 1.0, rmax * 1.0, 1)
def x(orig, data, mask, orig_orig, callback):
I, E = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +
orig_orig[1], mask, pix)[1:3]
p, dp, stat = misc.easylsq.nlsq_fit(pix, I, E, lambda q, A, alpha:
A * q ** alpha, [1.0, -3.0])
if callback is not None:
callback()
if drive_by == 'R2':
return 1 - stat['R2']
elif drive_by.startswith('Chi2'):
return stat[drive_by]
orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),
args=(data, mask, orig_initial - extent, callback), maxiter=maxiter,
disp=False)
return np.array(orig_initial) - extent + orig1
|
findbeam_powerlaw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, orig_initial, mask, rmin, rmax, maxiter=100, drive_by='R2',\n extent=10, callback=None):\n orig_initial = np.array(orig_initial)\n mask = 1 - mask.astype(np.uint8)\n data = data.astype(np.double)\n pix = np.arange(rmin * 1.0, rmax * 1.0, 1)\n\n def x(orig, data, mask, orig_orig, callback):\n I, E = radintpix(data, None, orig[0] + orig_orig[0], orig[1] +\n orig_orig[1], mask, pix)[1:3]\n p, dp, stat = misc.easylsq.nlsq_fit(pix, I, E, lambda q, A, alpha: \n A * q ** alpha, [1.0, -3.0])\n if callback is not None:\n callback()\n if drive_by == 'R2':\n return 1 - stat['R2']\n elif drive_by.startswith('Chi2'):\n return stat[drive_by]\n orig1 = scipy.optimize.fmin(targetfunc, np.array([extent, extent]),\n args=(data, mask, orig_initial - extent, callback), maxiter=maxiter,\n disp=False)\n return np.array(orig_initial) - extent + orig1\n",
"role": "user"
},
{
"content": "findbeam_powerlaw",
"role": "assistant"
}
] |
def x(self) ->ErrorValue:
try:
return ErrorValue(self._data['geometry']['beamposy'], self._data[
'geometry']['beamposy.err'])
except KeyError:
return ErrorValue(self._data['geometry']['beamposy'], 0.0)
|
beamcenterx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->ErrorValue:\n try:\n return ErrorValue(self._data['geometry']['beamposy'], self._data[\n 'geometry']['beamposy.err'])\n except KeyError:\n return ErrorValue(self._data['geometry']['beamposy'], 0.0)\n",
"role": "user"
},
{
"content": "beamcenterx",
"role": "assistant"
}
] |
def x(self) ->ErrorValue:
try:
return ErrorValue(self._data['geometry']['beamposx'], self._data[
'geometry']['beamposx.err'])
except KeyError:
return ErrorValue(self._data['geometry']['beamposx'], 0.0)
|
beamcentery
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->ErrorValue:\n try:\n return ErrorValue(self._data['geometry']['beamposx'], self._data[\n 'geometry']['beamposx.err'])\n except KeyError:\n return ErrorValue(self._data['geometry']['beamposx'], 0.0)\n",
"role": "user"
},
{
"content": "beamcentery",
"role": "assistant"
}
] |
def x(self) ->Optional[str]:
mask = self._data['geometry']['mask']
if os.path.abspath(mask):
mask = os.path.split(mask)[-1]
return mask
|
maskname
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Optional[str]:\n mask = self._data['geometry']['mask']\n if os.path.abspath(mask):\n mask = os.path.split(mask)[-1]\n return mask\n",
"role": "user"
},
{
"content": "maskname",
"role": "assistant"
}
] |
def x(x, yerr):
x = np.array(x)
assert isinstance(x, np.ndarray)
yerr = np.array(yerr)
return 0.5 * np.sqrt((x[1] - x[0]) ** 2 * yerr[0] ** 2 + np.sum((x[2:] -
x[:-2]) ** 2 * yerr[1:-1] ** 2) + (x[-1] - x[-2]) ** 2 * yerr[-1] ** 2)
|
errtrapz
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, yerr):\n x = np.array(x)\n assert isinstance(x, np.ndarray)\n yerr = np.array(yerr)\n return 0.5 * np.sqrt((x[1] - x[0]) ** 2 * yerr[0] ** 2 + np.sum((x[2:] -\n x[:-2]) ** 2 * yerr[1:-1] ** 2) + (x[-1] - x[-2]) ** 2 * yerr[-1] ** 2)\n",
"role": "user"
},
{
"content": "errtrapz",
"role": "assistant"
}
] |
def x(self, fitfunction, parinit, unfittableparameters=(), *args, **kwargs):
kwargs['otherparameters'] = unfittableparameters
fitter = Fitter(fitfunction, parinit, self.q, self.Intensity, self.
qError, self.Error, *args, **kwargs)
fixedvalues = [[None, p][isinstance(p, FixedParameter)] for p in parinit]
fitter.fixparameters(fixedvalues)
fitter.fit()
pars = fitter.parameters()
uncs = fitter.uncertainties()
stats = fitter.stats()
results = [ErrorValue(p, u) for p, u in zip(pars, uncs)] + [stats, type
(self)(self.q, stats['func_value'])]
return results
|
fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fitfunction, parinit, unfittableparameters=(), *args, **kwargs):\n kwargs['otherparameters'] = unfittableparameters\n fitter = Fitter(fitfunction, parinit, self.q, self.Intensity, self.\n qError, self.Error, *args, **kwargs)\n fixedvalues = [[None, p][isinstance(p, FixedParameter)] for p in parinit]\n fitter.fixparameters(fixedvalues)\n fitter.fit()\n pars = fitter.parameters()\n uncs = fitter.uncertainties()\n stats = fitter.stats()\n results = [ErrorValue(p, u) for p, u in zip(pars, uncs)] + [stats, type\n (self)(self.q, stats['func_value'])]\n return results\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
] |
def x(self, exponent=1, errorrequested=True):
y = self.Intensity * self.q ** exponent
m = np.trapz(y, self.q)
if errorrequested:
err = self.Error * self.q ** exponent
dm = errtrapz(self.q, err)
return ErrorValue(m, dm)
else:
return m
|
momentum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, exponent=1, errorrequested=True):\n y = self.Intensity * self.q ** exponent\n m = np.trapz(y, self.q)\n if errorrequested:\n err = self.Error * self.q ** exponent\n dm = errtrapz(self.q, err)\n return ErrorValue(m, dm)\n else:\n return m\n",
"role": "user"
},
{
"content": "momentum",
"role": "assistant"
}
] |
def x(self, other, qmin=None, qmax=None, Npoints=None):
if qmin is None:
qmin = max(self.q.min(), other.q.min())
if qmax is None:
xmax = min(self.q.max(), other.q.max())
data1 = self.trim(qmin, qmax)
data2 = other.trim(qmin, qmax)
if Npoints is None:
Npoints = min(len(data1), len(data2))
commonx = np.linspace(max(data1.q.min(), data2.q.min()), min(data2.q.
max(), data1.q.max()), Npoints)
data1 = data1.interpolate(commonx)
data2 = data2.interpolate(commonx)
return nonlinear_odr(data1.Intensity, data2.Intensity, data1.Error,
data2.Error, lambda x, a: a * x, [1])[0]
|
scalefactor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other, qmin=None, qmax=None, Npoints=None):\n if qmin is None:\n qmin = max(self.q.min(), other.q.min())\n if qmax is None:\n xmax = min(self.q.max(), other.q.max())\n data1 = self.trim(qmin, qmax)\n data2 = other.trim(qmin, qmax)\n if Npoints is None:\n Npoints = min(len(data1), len(data2))\n commonx = np.linspace(max(data1.q.min(), data2.q.min()), min(data2.q.\n max(), data1.q.max()), Npoints)\n data1 = data1.interpolate(commonx)\n data2 = data2.interpolate(commonx)\n return nonlinear_odr(data1.Intensity, data2.Intensity, data1.Error,\n data2.Error, lambda x, a: a * x, [1])[0]\n",
"role": "user"
},
{
"content": "scalefactor",
"role": "assistant"
}
] |
def x(self, covar):
covar_resolved = np.empty((len(self._fixed_parameters), len(self.
_fixed_parameters)))
indices_of_fixed_parameters = [i for i in range(len(self.parameters())) if
self._fixed_parameters[i] is not None]
indices_of_free_parameters = [i for i in range(len(self.parameters())) if
self._fixed_parameters[i] is None]
for i in range(covar_resolved.shape[0]):
if i in indices_of_fixed_parameters:
covar_resolved[i, :] = 0
continue
for j in range(covar_resolved.shape[1]):
if j in indices_of_fixed_parameters:
covar_resolved[:, j] = 0
continue
covar_resolved[i, j] = covar[indices_of_free_parameters.index(i
), indices_of_free_parameters.index(j)]
return covar_resolved
|
substitute_fixed_parameters_covar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, covar):\n covar_resolved = np.empty((len(self._fixed_parameters), len(self.\n _fixed_parameters)))\n indices_of_fixed_parameters = [i for i in range(len(self.parameters())) if\n self._fixed_parameters[i] is not None]\n indices_of_free_parameters = [i for i in range(len(self.parameters())) if\n self._fixed_parameters[i] is None]\n for i in range(covar_resolved.shape[0]):\n if i in indices_of_fixed_parameters:\n covar_resolved[i, :] = 0\n continue\n for j in range(covar_resolved.shape[1]):\n if j in indices_of_fixed_parameters:\n covar_resolved[:, j] = 0\n continue\n covar_resolved[i, j] = covar[indices_of_free_parameters.index(i\n ), indices_of_free_parameters.index(j)]\n return covar_resolved\n",
"role": "user"
},
{
"content": "substitute_fixed_parameters_covar",
"role": "assistant"
}
] |
def x(self, filename: str) ->np.ndarray:
mask = scipy.io.loadmat(self.find_file(filename, what='mask'))
maskkey = [k for k in mask.keys() if not (k.startswith('_') or k.
endswith('_'))][0]
return mask[maskkey].astype(np.bool)
|
loadmask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename: str) ->np.ndarray:\n mask = scipy.io.loadmat(self.find_file(filename, what='mask'))\n maskkey = [k for k in mask.keys() if not (k.startswith('_') or k.\n endswith('_'))][0]\n return mask[maskkey].astype(np.bool)\n",
"role": "user"
},
{
"content": "loadmask",
"role": "assistant"
}
] |
def x(self, fsn: int) ->classes2.Curve:
return classes2.Curve.new_from_file(self.find_file(self._exposureclass +
'_%05d.txt' % fsn))
|
loadcurve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fsn: int) ->classes2.Curve:\n return classes2.Curve.new_from_file(self.find_file(self._exposureclass +\n '_%05d.txt' % fsn))\n",
"role": "user"
},
{
"content": "loadcurve",
"role": "assistant"
}
] |
def x(name, load_header=False, load_data=True, for_nexus=False):
with open(name, 'rb') as f:
cbfbin = f.read()
datastart = cbfbin.find(b'\x0c\x1a\x04\xd5') + 4
hed = [x.strip() for x in cbfbin[:datastart].split(b'\n')]
header = {}
readingmode = None
for i in range(len(hed)):
if not hed[i]:
continue
elif hed[i] == b';':
continue
elif hed[i].startswith(b'_array_data.header_convention'):
header['CBF_header_convention'] = str(hed[i][len(
b'_array_data.header_convention'):].strip().replace(b'"',
b''), encoding='utf-8')
elif hed[i].startswith(b'_array_data.header_contents'):
readingmode = 'PilatusHeader'
elif hed[i].startswith(b'_array_data.data'):
readingmode = 'CIFHeader'
elif readingmode == 'PilatusHeader':
if not hed[i].startswith(b'#'):
continue
line = hed[i].strip()[1:].strip()
try:
header['CBF_Date'] = dateutil.parser.parse(line)
header['Date'] = header['CBF_Date']
continue
except (ValueError, TypeError):
pass
treated = False
for sep in (b':', b'='):
if treated:
continue
if line.count(sep) == 1:
name, value = tuple(x.strip() for x in line.split(sep, 1))
try:
m = re.match(
b'^(?P<number>-?(\\d+(.\\d+)?(e-?\\d+)?))\\s+(?P<unit>m|s|counts|eV)$'
, value).groupdict()
value = float(m['number'])
m['unit'] = str(m['unit'], encoding='utf-8')
except AttributeError:
pass
header[str(name, 'utf-8')] = value
treated = True
if treated:
continue
if line.startswith(b'Pixel_size'):
header['XPixel'], header['YPixel'] = tuple([(float(a.strip(
).split(b' ')[0]) * 1000) for a in line[len(
b'Pixel_size'):].split(b'x')])
else:
try:
m = re.match(
b'^(?P<label>[a-zA-Z0-9,_\\.\\-!\\?\\ ]*?)\\s+(?P<number>-?(\\d+(.\\d+)?(e-?\\d+)?))\\s+(?P<unit>m|s|counts|eV)$'
, line).groupdict()
except AttributeError:
pass
else:
m['label'] = str(m['label'], 'utf-8')
m['unit'] = str(m['unit'], encoding='utf-8')
if m['unit'] == b'counts':
header[m['label']] = int(m['number'])
else:
header[m['label']] = float(m['number'])
if 'sensor' in m['label'] and 'thickness' in m['label']:
header[m['label']] *= 1000000.0
elif readingmode == 'CIFHeader':
line = hed[i]
for sep in (b':', b'='):
if line.count(sep) == 1:
label, content = tuple(x.strip() for x in line.split(
sep, 1))
if b'"' in content:
content = content.replace(b'"', b'')
try:
content = int(content)
except ValueError:
content = str(content, encoding='utf-8')
header['CBF_' + str(label, encoding='utf-8')] = content
else:
pass
ret = []
if load_data:
if header['CBF_X-Binary-Element-Type'] != 'signed 32-bit integer':
raise NotImplementedError(
'element type is not "signed 32-bit integer" in CBF, but %s.' %
header['CBF_X-Binary-Element-Type'])
if header['CBF_conversions'] != 'x-CBF_BYTE_OFFSET':
raise NotImplementedError(
'compression is not "x-CBF_BYTE_OFFSET" in CBF!')
dim1 = header['CBF_X-Binary-Size-Fastest-Dimension']
dim2 = header['CBF_X-Binary-Size-Second-Dimension']
nbytes = header['CBF_X-Binary-Size']
cbfdata = cbfdecompress(bytearray(cbfbin[datastart:datastart +
nbytes]), dim1, dim2, for_nexus)
ret.append(cbfdata)
if load_header:
ret.append(header)
return tuple(ret)
|
readcbf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, load_header=False, load_data=True, for_nexus=False):\n with open(name, 'rb') as f:\n cbfbin = f.read()\n datastart = cbfbin.find(b'\\x0c\\x1a\\x04\\xd5') + 4\n hed = [x.strip() for x in cbfbin[:datastart].split(b'\\n')]\n header = {}\n readingmode = None\n for i in range(len(hed)):\n if not hed[i]:\n continue\n elif hed[i] == b';':\n continue\n elif hed[i].startswith(b'_array_data.header_convention'):\n header['CBF_header_convention'] = str(hed[i][len(\n b'_array_data.header_convention'):].strip().replace(b'\"',\n b''), encoding='utf-8')\n elif hed[i].startswith(b'_array_data.header_contents'):\n readingmode = 'PilatusHeader'\n elif hed[i].startswith(b'_array_data.data'):\n readingmode = 'CIFHeader'\n elif readingmode == 'PilatusHeader':\n if not hed[i].startswith(b'#'):\n continue\n line = hed[i].strip()[1:].strip()\n try:\n header['CBF_Date'] = dateutil.parser.parse(line)\n header['Date'] = header['CBF_Date']\n continue\n except (ValueError, TypeError):\n pass\n treated = False\n for sep in (b':', b'='):\n if treated:\n continue\n if line.count(sep) == 1:\n name, value = tuple(x.strip() for x in line.split(sep, 1))\n try:\n m = re.match(\n b'^(?P<number>-?(\\\\d+(.\\\\d+)?(e-?\\\\d+)?))\\\\s+(?P<unit>m|s|counts|eV)$'\n , value).groupdict()\n value = float(m['number'])\n m['unit'] = str(m['unit'], encoding='utf-8')\n except AttributeError:\n pass\n header[str(name, 'utf-8')] = value\n treated = True\n if treated:\n continue\n if line.startswith(b'Pixel_size'):\n header['XPixel'], header['YPixel'] = tuple([(float(a.strip(\n ).split(b' ')[0]) * 1000) for a in line[len(\n b'Pixel_size'):].split(b'x')])\n else:\n try:\n m = re.match(\n b'^(?P<label>[a-zA-Z0-9,_\\\\.\\\\-!\\\\?\\\\ ]*?)\\\\s+(?P<number>-?(\\\\d+(.\\\\d+)?(e-?\\\\d+)?))\\\\s+(?P<unit>m|s|counts|eV)$'\n , line).groupdict()\n except AttributeError:\n pass\n else:\n m['label'] = str(m['label'], 'utf-8')\n m['unit'] = str(m['unit'], encoding='utf-8')\n if m['unit'] == b'counts':\n header[m['label']] = int(m['number'])\n else:\n header[m['label']] = float(m['number'])\n if 'sensor' in m['label'] and 'thickness' in m['label']:\n header[m['label']] *= 1000000.0\n elif readingmode == 'CIFHeader':\n line = hed[i]\n for sep in (b':', b'='):\n if line.count(sep) == 1:\n label, content = tuple(x.strip() for x in line.split(\n sep, 1))\n if b'\"' in content:\n content = content.replace(b'\"', b'')\n try:\n content = int(content)\n except ValueError:\n content = str(content, encoding='utf-8')\n header['CBF_' + str(label, encoding='utf-8')] = content\n else:\n pass\n ret = []\n if load_data:\n if header['CBF_X-Binary-Element-Type'] != 'signed 32-bit integer':\n raise NotImplementedError(\n 'element type is not \"signed 32-bit integer\" in CBF, but %s.' %\n header['CBF_X-Binary-Element-Type'])\n if header['CBF_conversions'] != 'x-CBF_BYTE_OFFSET':\n raise NotImplementedError(\n 'compression is not \"x-CBF_BYTE_OFFSET\" in CBF!')\n dim1 = header['CBF_X-Binary-Size-Fastest-Dimension']\n dim2 = header['CBF_X-Binary-Size-Second-Dimension']\n nbytes = header['CBF_X-Binary-Size']\n cbfdata = cbfdecompress(bytearray(cbfbin[datastart:datastart +\n nbytes]), dim1, dim2, for_nexus)\n ret.append(cbfdata)\n if load_header:\n ret.append(header)\n return tuple(ret)\n",
"role": "user"
},
{
"content": "readcbf",
"role": "assistant"
}
] |
def x(filename, bdfext='.bdf', bhfext='.bhf'):
return header.readbhfv1(filename, True, bdfext, bhfext)
|
readbdfv1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, bdfext='.bdf', bhfext='.bhf'):\n return header.readbhfv1(filename, True, bdfext, bhfext)\n",
"role": "user"
},
{
"content": "readbdfv1",
"role": "assistant"
}
] |
def x(filename):
if filename.upper().endswith('.MAT'):
m = scipy.io.loadmat(filename)
elif filename.upper().endswith('.NPZ'):
m = np.load(filename)
else:
m = {'Intensity': np.loadtxt(filename)}
name, ext = os.path.splitext(filename)
errorfilename = name + '_error' + ext
if os.path.exists(errorfilename):
m['Error'] = np.loadtxt(errorfilename)
Intensity = m['Intensity']
try:
Error = m['Error']
return Intensity, Error
except:
return Intensity, None
|
readint2dnorm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n if filename.upper().endswith('.MAT'):\n m = scipy.io.loadmat(filename)\n elif filename.upper().endswith('.NPZ'):\n m = np.load(filename)\n else:\n m = {'Intensity': np.loadtxt(filename)}\n name, ext = os.path.splitext(filename)\n errorfilename = name + '_error' + ext\n if os.path.exists(errorfilename):\n m['Error'] = np.loadtxt(errorfilename)\n Intensity = m['Intensity']\n try:\n Error = m['Error']\n return Intensity, Error\n except:\n return Intensity, None\n",
"role": "user"
},
{
"content": "readint2dnorm",
"role": "assistant"
}
] |
def x(filename, Intensity, Error=None):
whattosave = {'Intensity': Intensity}
if Error is not None:
whattosave['Error'] = Error
if filename.upper().endswith('.NPZ'):
np.savez(filename, **whattosave)
elif filename.upper().endswith('.MAT'):
scipy.io.savemat(filename, whattosave)
else:
np.savetxt(filename, Intensity)
if Error is not None:
name, ext = os.path.splitext(filename)
np.savetxt(name + '_error' + ext, Error)
|
writeint2dnorm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, Intensity, Error=None):\n whattosave = {'Intensity': Intensity}\n if Error is not None:\n whattosave['Error'] = Error\n if filename.upper().endswith('.NPZ'):\n np.savez(filename, **whattosave)\n elif filename.upper().endswith('.MAT'):\n scipy.io.savemat(filename, whattosave)\n else:\n np.savetxt(filename, Intensity)\n if Error is not None:\n name, ext = os.path.splitext(filename)\n np.savetxt(name + '_error' + ext, Error)\n",
"role": "user"
},
{
"content": "writeint2dnorm",
"role": "assistant"
}
] |
def x(filename, fieldname=None):
f = scipy.io.loadmat(filename)
if fieldname is not None:
return f[fieldname].astype(np.uint8)
else:
validkeys = [k for k in list(f.keys()) if not (k.startswith('_') and
k.endswith('_'))]
if len(validkeys) < 1:
raise ValueError('mask file contains no masks!')
if len(validkeys) > 1:
raise ValueError('mask file contains multiple masks!')
return f[validkeys[0]].astype(np.uint8)
|
readmask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, fieldname=None):\n f = scipy.io.loadmat(filename)\n if fieldname is not None:\n return f[fieldname].astype(np.uint8)\n else:\n validkeys = [k for k in list(f.keys()) if not (k.startswith('_') and\n k.endswith('_'))]\n if len(validkeys) < 1:\n raise ValueError('mask file contains no masks!')\n if len(validkeys) > 1:\n raise ValueError('mask file contains multiple masks!')\n return f[validkeys[0]].astype(np.uint8)\n",
"role": "user"
},
{
"content": "readmask",
"role": "assistant"
}
] |
def x(filename):
edf = header.readehf(filename)
f = open(filename, 'rb')
f.read(edf['EDF_HeaderSize'])
if edf['DataType'] == 'FloatValue':
dtype = np.float32
else:
raise NotImplementedError('Not supported data type: %s' % edf[
'DataType'])
edf['data'] = np.fromstring(f.read(edf['EDF_BinarySize']), dtype).reshape(
edf['Dim_1'], edf['Dim_2'])
return edf
|
readedf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n edf = header.readehf(filename)\n f = open(filename, 'rb')\n f.read(edf['EDF_HeaderSize'])\n if edf['DataType'] == 'FloatValue':\n dtype = np.float32\n else:\n raise NotImplementedError('Not supported data type: %s' % edf[\n 'DataType'])\n edf['data'] = np.fromstring(f.read(edf['EDF_BinarySize']), dtype).reshape(\n edf['Dim_1'], edf['Dim_2'])\n return edf\n",
"role": "user"
},
{
"content": "readedf",
"role": "assistant"
}
] |
def x(filename, bdfext='.bdf', bhfext='.bhf'):
datas = header.readbhfv2(filename, True, bdfext, bhfext)
return datas
|
readbdfv2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, bdfext='.bdf', bhfext='.bhf'):\n datas = header.readbhfv2(filename, True, bdfext, bhfext)\n return datas\n",
"role": "user"
},
{
"content": "readbdfv2",
"role": "assistant"
}
] |
def x(filename):
hed = header.readmarheader(filename)
with open(filename, 'rb') as f:
h = f.read(hed['recordlength'])
data = np.fromstring(f.read(2 * hed['Xsize'] * hed['Ysize']), '<u2'
).astype(np.float64)
if hed['highintensitypixels'] > 0:
raise NotImplementedError(
'Intensities over 65535 are not yet supported!')
data = data.reshape(hed['Xsize'], hed['Ysize'])
return data, hed
|
readmar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n hed = header.readmarheader(filename)\n with open(filename, 'rb') as f:\n h = f.read(hed['recordlength'])\n data = np.fromstring(f.read(2 * hed['Xsize'] * hed['Ysize']), '<u2'\n ).astype(np.float64)\n if hed['highintensitypixels'] > 0:\n raise NotImplementedError(\n 'Intensities over 65535 are not yet supported!')\n data = data.reshape(hed['Xsize'], hed['Ysize'])\n return data, hed\n",
"role": "user"
},
{
"content": "readmar",
"role": "assistant"
}
] |
def x(filename, bdf, bdfext='.bdf', bhfext='.bhf'):
if filename.endswith(bdfext):
basename = filename[:-len(bdfext)]
elif filename.endswith(bhfext):
basename = filename[:-len(bhfext)]
else:
basename = filename
header.writebhfv2(basename + '.bhf', bdf)
f = open(basename + '.bdf', 'wb')
keys = ['RAWDATA', 'RAWERROR', 'CORRDATA', 'CORRERROR', 'NANDATA']
keys.extend([x for x in list(bdf.keys()) if isinstance(bdf[x], np.
ndarray) and x not in keys])
for k in keys:
if k not in list(bdf.keys()):
continue
f.write('#%s[%d:%d]\n' % (k, bdf['xdim'], bdf['ydim']))
f.write(np.rot90(bdf[k], 3).astype('float32').tostring(order='F'))
f.close()
|
writebdfv2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, bdf, bdfext='.bdf', bhfext='.bhf'):\n if filename.endswith(bdfext):\n basename = filename[:-len(bdfext)]\n elif filename.endswith(bhfext):\n basename = filename[:-len(bhfext)]\n else:\n basename = filename\n header.writebhfv2(basename + '.bhf', bdf)\n f = open(basename + '.bdf', 'wb')\n keys = ['RAWDATA', 'RAWERROR', 'CORRDATA', 'CORRERROR', 'NANDATA']\n keys.extend([x for x in list(bdf.keys()) if isinstance(bdf[x], np.\n ndarray) and x not in keys])\n for k in keys:\n if k not in list(bdf.keys()):\n continue\n f.write('#%s[%d:%d]\\n' % (k, bdf['xdim'], bdf['ydim']))\n f.write(np.rot90(bdf[k], 3).astype('float32').tostring(order='F'))\n f.close()\n",
"role": "user"
},
{
"content": "writebdfv2",
"role": "assistant"
}
] |
def x(mask, binx, biny, enlarge=False):
if not enlarge and (mask.shape[0] % binx or mask.shape[1] % biny):
raise ValueError(
'The number of pixels of the mask matrix should be divisible by the binning in each direction!'
)
if enlarge:
return mask.repeat(binx, axis=0).repeat(biny, axis=1)
else:
return mask[::binx, ::biny]
|
rebinmask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mask, binx, biny, enlarge=False):\n if not enlarge and (mask.shape[0] % binx or mask.shape[1] % biny):\n raise ValueError(\n 'The number of pixels of the mask matrix should be divisible by the binning in each direction!'\n )\n if enlarge:\n return mask.repeat(binx, axis=0).repeat(biny, axis=1)\n else:\n return mask[::binx, ::biny]\n",
"role": "user"
},
{
"content": "rebinmask",
"role": "assistant"
}
] |
def x(padded_string):
length = len(padded_string)
reminder = len(padded_string) % 4
if reminder:
return padded_string.ljust(length + 4 - reminder, b'.')
return padded_string
|
fill_padding
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(padded_string):\n length = len(padded_string)\n reminder = len(padded_string) % 4\n if reminder:\n return padded_string.ljust(length + 4 - reminder, b'.')\n return padded_string\n",
"role": "user"
},
{
"content": "fill_padding",
"role": "assistant"
}
] |
def x(encoded):
padded_string = fill_padding(encoded)
return urlsafe_b64decode(padded_string.replace(b'.', b'='))
|
decode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(encoded):\n padded_string = fill_padding(encoded)\n return urlsafe_b64decode(padded_string.replace(b'.', b'='))\n",
"role": "user"
},
{
"content": "decode",
"role": "assistant"
}
] |
def x(arg):
if isinstance(arg, np.ndarray):
return arg.flatten()
if isinstance(arg, str):
return [arg]
if isinstance(arg, list) or isinstance(arg, tuple) or isinstance(arg, dict
) or isinstance(arg, set):
return list(arg)
return [arg]
|
normalize_listargument
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arg):\n if isinstance(arg, np.ndarray):\n return arg.flatten()\n if isinstance(arg, str):\n return [arg]\n if isinstance(arg, list) or isinstance(arg, tuple) or isinstance(arg, dict\n ) or isinstance(arg, set):\n return list(arg)\n return [arg]\n",
"role": "user"
},
{
"content": "normalize_listargument",
"role": "assistant"
}
] |
def x(val, use_dateutilparser=False):
if use_dateutilparser:
funcs = [int, float, parse_list_from_string, dateutil.parser.parse, str
]
else:
funcs = [int, float, parse_list_from_string, str]
if val.strip().startswith("'") and val.strip().endswith("'") or val.strip(
).startswith('"') and val.strip().endswith('"'):
return val[1:-1]
for f in funcs:
try:
return f(val)
except (ValueError, UnicodeEncodeError, UnicodeDecodeError) as ve:
pass
raise ValueError('Cannot parse number:', val)
|
parse_number
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(val, use_dateutilparser=False):\n if use_dateutilparser:\n funcs = [int, float, parse_list_from_string, dateutil.parser.parse, str\n ]\n else:\n funcs = [int, float, parse_list_from_string, str]\n if val.strip().startswith(\"'\") and val.strip().endswith(\"'\") or val.strip(\n ).startswith('\"') and val.strip().endswith('\"'):\n return val[1:-1]\n for f in funcs:\n try:\n return f(val)\n except (ValueError, UnicodeEncodeError, UnicodeDecodeError) as ve:\n pass\n raise ValueError('Cannot parse number:', val)\n",
"role": "user"
},
{
"content": "parse_number",
"role": "assistant"
}
] |
def x(original_dict, separator='.', max_recursion_depth=None):
if max_recursion_depth is not None and max_recursion_depth <= 0:
return original_dict
if max_recursion_depth is None:
next_recursion_depth = None
else:
next_recursion_depth = max_recursion_depth - 1
dict1 = {}
for k in original_dict:
if not isinstance(original_dict[k], dict):
dict1[k] = original_dict[k]
else:
dict_recursed = flatten_hierarchical_dict(original_dict[k],
separator, next_recursion_depth)
dict1.update(dict([(k + separator + x, dict_recursed[x]) for x in
dict_recursed]))
return dict1
|
flatten_hierarchical_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(original_dict, separator='.', max_recursion_depth=None):\n if max_recursion_depth is not None and max_recursion_depth <= 0:\n return original_dict\n if max_recursion_depth is None:\n next_recursion_depth = None\n else:\n next_recursion_depth = max_recursion_depth - 1\n dict1 = {}\n for k in original_dict:\n if not isinstance(original_dict[k], dict):\n dict1[k] = original_dict[k]\n else:\n dict_recursed = flatten_hierarchical_dict(original_dict[k],\n separator, next_recursion_depth)\n dict1.update(dict([(k + separator + x, dict_recursed[x]) for x in\n dict_recursed]))\n return dict1\n",
"role": "user"
},
{
"content": "flatten_hierarchical_dict",
"role": "assistant"
}
] |
def x(Nchars=6, randstrbase=
'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'):
return ''.join([randstrbase[random.randint(0, len(randstrbase) - 1)] for
i in range(Nchars)])
|
random_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Nchars=6, randstrbase=\n '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'):\n return ''.join([randstrbase[random.randint(0, len(randstrbase) - 1)] for\n i in range(Nchars)])\n",
"role": "user"
},
{
"content": "random_str",
"role": "assistant"
}
] |
def x(fsns, xlsname, dirs, whattolist=None, headerformat='org_%05d.header'):
if whattolist is None:
whattolist = [('FSN', 'FSN'), ('Time', 'MeasTime'), ('Energy',
'Energy'), ('Distance', 'Dist'), ('Position', 'PosSample'), (
'Transmission', 'Transm'), ('Temperature', 'Temperature'), (
'Title', 'Title'), ('Date', ('Day', 'Month', 'Year', 'Hour',
'Minutes'), '%02d.%02d.%04d %02d:%02d')]
wb = xlwt.Workbook(encoding='utf8')
ws = wb.add_sheet('Measurements')
for i in range(len(whattolist)):
ws.write(0, i, whattolist[i][0])
i = 1
for fsn in fsns:
try:
hed = readB1header(findfileindirs(headerformat % fsn, dirs))
except IOError:
continue
for j in range(len(whattolist)):
if np.isscalar(whattolist[j][1]):
fields = tuple([whattolist[j][1]])
else:
fields = whattolist[j][1]
if len(whattolist[j]) == 2:
if len(fields) >= 2:
strtowrite = ''.join([str(hed[f]) for f in fields])
else:
strtowrite = hed[fields[0]]
elif len(whattolist[j]) >= 3:
strtowrite = whattolist[j][2] % tuple([hed[f] for f in fields])
else:
assert False
ws.write(i, j, strtowrite)
i += 1
wb.save(xlsname)
|
listB1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fsns, xlsname, dirs, whattolist=None, headerformat='org_%05d.header'):\n if whattolist is None:\n whattolist = [('FSN', 'FSN'), ('Time', 'MeasTime'), ('Energy',\n 'Energy'), ('Distance', 'Dist'), ('Position', 'PosSample'), (\n 'Transmission', 'Transm'), ('Temperature', 'Temperature'), (\n 'Title', 'Title'), ('Date', ('Day', 'Month', 'Year', 'Hour',\n 'Minutes'), '%02d.%02d.%04d %02d:%02d')]\n wb = xlwt.Workbook(encoding='utf8')\n ws = wb.add_sheet('Measurements')\n for i in range(len(whattolist)):\n ws.write(0, i, whattolist[i][0])\n i = 1\n for fsn in fsns:\n try:\n hed = readB1header(findfileindirs(headerformat % fsn, dirs))\n except IOError:\n continue\n for j in range(len(whattolist)):\n if np.isscalar(whattolist[j][1]):\n fields = tuple([whattolist[j][1]])\n else:\n fields = whattolist[j][1]\n if len(whattolist[j]) == 2:\n if len(fields) >= 2:\n strtowrite = ''.join([str(hed[f]) for f in fields])\n else:\n strtowrite = hed[fields[0]]\n elif len(whattolist[j]) >= 3:\n strtowrite = whattolist[j][2] % tuple([hed[f] for f in fields])\n else:\n assert False\n ws.write(i, j, strtowrite)\n i += 1\n wb.save(xlsname)\n",
"role": "user"
},
{
"content": "listB1",
"role": "assistant"
}
] |
def x(q, Intensity, Error, R0=None, r=None):
q = np.array(q)
Intensity = np.array(Intensity)
Error = np.array(Error)
if R0 is None:
r0s = np.linspace(1, 2 * np.pi / q.min(), 1000)
def x(q, Intensity, r0):
p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1)
return ((np.polyval(p, q) - Intensity) ** 2).sum() / (len(q) - 3)
chi2 = np.array([naive_fit_chi2(q, Intensity, r0) for r0 in r0s.
tolist()])
R0 = r0s[chi2 == chi2.min()][0]
def x(q, Intensity, r0):
p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1)
return np.exp(p[1]), -2 * p[0] - 4
K, n = naive_fit(q, Intensity, R0)
def x(q, A, r0, n):
return A * (q ** 2 + 3 / r0 ** 2) ** (-(n + 4.0) * 0.5)
p, dp, statdict = easylsq.nlsq_fit(q, Intensity, Error, SR_function, (K,
R0, n))
n = ErrorValue(p[2], dp[2])
r0 = ErrorValue(p[1], dp[1])
A = ErrorValue(p[0], dp[0])
if r is None:
r = np.linspace(np.pi / q.max(), np.pi / q.min(), 1000)
return A, r0, n, r, maxwellian(r, r0, n), statdict
|
fit_shullroess
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, Intensity, Error, R0=None, r=None):\n q = np.array(q)\n Intensity = np.array(Intensity)\n Error = np.array(Error)\n if R0 is None:\n r0s = np.linspace(1, 2 * np.pi / q.min(), 1000)\n\n def x(q, Intensity, r0):\n p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1)\n return ((np.polyval(p, q) - Intensity) ** 2).sum() / (len(q) - 3)\n chi2 = np.array([naive_fit_chi2(q, Intensity, r0) for r0 in r0s.\n tolist()])\n R0 = r0s[chi2 == chi2.min()][0]\n\n def x(q, Intensity, r0):\n p = np.polyfit(np.log(q ** 2 + 3 / r0 ** 2), np.log(Intensity), 1)\n return np.exp(p[1]), -2 * p[0] - 4\n K, n = naive_fit(q, Intensity, R0)\n\n def x(q, A, r0, n):\n return A * (q ** 2 + 3 / r0 ** 2) ** (-(n + 4.0) * 0.5)\n p, dp, statdict = easylsq.nlsq_fit(q, Intensity, Error, SR_function, (K,\n R0, n))\n n = ErrorValue(p[2], dp[2])\n r0 = ErrorValue(p[1], dp[1])\n A = ErrorValue(p[0], dp[0])\n if r is None:\n r = np.linspace(np.pi / q.max(), np.pi / q.min(), 1000)\n return A, r0, n, r, maxwellian(r, r0, n), statdict\n",
"role": "user"
},
{
"content": "fit_shullroess",
"role": "assistant"
}
] |
def x(r, r0, n):
r0 = ErrorValue(r0)
n = ErrorValue(n)
expterm = np.exp(-r ** 2 / r0.val ** 2)
dmaxdr0 = -2 * r ** n.val * r0.val ** (-n.val - 4) * ((n.val + 1) * r0.
val ** 2 - 2 * r ** 2) * expterm / gamma((n.val + 1) * 0.5)
dmaxdn = -r ** n.val * r0.val ** (-n.val - 1) * expterm * (2 * np.log(
r0.val) - 2 * np.log(r) + psi((n.val + 1) * 0.5)) / gamma((n.val +
1) * 0.5)
maxwellian = 2 * r ** n.val * r0.val ** (-n.val - 1) * expterm / gamma(
(n.val + 1) * 0.5)
dmaxwellian = (dmaxdn ** 2 * n.err ** 2 + dmaxdr0 ** 2 * r0.err ** 2
) ** 0.5
return ErrorValue(maxwellian, dmaxwellian)
|
maxwellian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(r, r0, n):\n r0 = ErrorValue(r0)\n n = ErrorValue(n)\n expterm = np.exp(-r ** 2 / r0.val ** 2)\n dmaxdr0 = -2 * r ** n.val * r0.val ** (-n.val - 4) * ((n.val + 1) * r0.\n val ** 2 - 2 * r ** 2) * expterm / gamma((n.val + 1) * 0.5)\n dmaxdn = -r ** n.val * r0.val ** (-n.val - 1) * expterm * (2 * np.log(\n r0.val) - 2 * np.log(r) + psi((n.val + 1) * 0.5)) / gamma((n.val + \n 1) * 0.5)\n maxwellian = 2 * r ** n.val * r0.val ** (-n.val - 1) * expterm / gamma(\n (n.val + 1) * 0.5)\n dmaxwellian = (dmaxdn ** 2 * n.err ** 2 + dmaxdr0 ** 2 * r0.err ** 2\n ) ** 0.5\n return ErrorValue(maxwellian, dmaxwellian)\n",
"role": "user"
},
{
"content": "maxwellian",
"role": "assistant"
}
] |
def x(filename, dirs=None, use_pythonpath=True, use_searchpath=True,
notfound_is_fatal=True, notfound_val=None):
if os.path.isabs(filename):
if os.path.exists(filename):
return filename
elif notfound_is_fatal:
raise IOError('File ' + filename + ' not found.')
else:
return notfound_val
if dirs is None:
dirs = []
dirs = normalize_listargument(dirs)
if not dirs:
dirs = ['.']
if use_pythonpath:
dirs.extend(sys.path)
if use_searchpath:
dirs.extend(sastool_search_path)
dirs = [os.path.expanduser(d) for d in dirs]
logger.debug('Searching for file %s in several folders: %s' % (filename,
', '.join(dirs)))
for d in dirs:
if os.path.exists(os.path.join(d, filename)):
logger.debug('Found file %s in folder %s.' % (filename, d))
return os.path.join(d, filename)
logger.debug('Not found file %s in any folders.' % filename)
if notfound_is_fatal:
raise IOError('File %s not found in any of the directories.' % filename
)
else:
return notfound_val
|
findfileindirs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, dirs=None, use_pythonpath=True, use_searchpath=True,\n notfound_is_fatal=True, notfound_val=None):\n if os.path.isabs(filename):\n if os.path.exists(filename):\n return filename\n elif notfound_is_fatal:\n raise IOError('File ' + filename + ' not found.')\n else:\n return notfound_val\n if dirs is None:\n dirs = []\n dirs = normalize_listargument(dirs)\n if not dirs:\n dirs = ['.']\n if use_pythonpath:\n dirs.extend(sys.path)\n if use_searchpath:\n dirs.extend(sastool_search_path)\n dirs = [os.path.expanduser(d) for d in dirs]\n logger.debug('Searching for file %s in several folders: %s' % (filename,\n ', '.join(dirs)))\n for d in dirs:\n if os.path.exists(os.path.join(d, filename)):\n logger.debug('Found file %s in folder %s.' % (filename, d))\n return os.path.join(d, filename)\n logger.debug('Not found file %s in any folders.' % filename)\n if notfound_is_fatal:\n raise IOError('File %s not found in any of the directories.' % filename\n )\n else:\n return notfound_val\n",
"role": "user"
},
{
"content": "findfileindirs",
"role": "assistant"
}
] |
def x(matrix, bcx, bcy, pixsizeperdist):
col, row = np.meshgrid(list(range(matrix.shape[1])), list(range(matrix.
shape[0])))
return np.arctan(np.sqrt((row - bcx) ** 2 + (col - bcy) ** 2) *
pixsizeperdist)
|
twotheta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(matrix, bcx, bcy, pixsizeperdist):\n col, row = np.meshgrid(list(range(matrix.shape[1])), list(range(matrix.\n shape[0])))\n return np.arctan(np.sqrt((row - bcx) ** 2 + (col - bcy) ** 2) *\n pixsizeperdist)\n",
"role": "user"
},
{
"content": "twotheta",
"role": "assistant"
}
] |
def x(twotheta, sampletodetectordistance, pixelsize=None):
if pixelsize is None:
pixelsize = 1
return sampletodetectordistance ** 2 / np.cos(twotheta
) ** 3 / pixelsize ** 2
|
solidangle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(twotheta, sampletodetectordistance, pixelsize=None):\n if pixelsize is None:\n pixelsize = 1\n return sampletodetectordistance ** 2 / np.cos(twotheta\n ) ** 3 / pixelsize ** 2\n",
"role": "user"
},
{
"content": "solidangle",
"role": "assistant"
}
] |
def x(twotheta, dtwotheta, sampletodetectordistance,
dsampletodetectordistance, pixelsize=None):
SAC = solidangle(twotheta, sampletodetectordistance, pixelsize)
if pixelsize is None:
pixelsize = 1
return SAC, sampletodetectordistance * (4 * dsampletodetectordistance **
2 * np.cos(twotheta) ** 2 + 9 * dtwotheta ** 2 *
sampletodetectordistance ** 2 * np.sin(twotheta) ** 2) ** 0.5 / np.cos(
twotheta) ** 4 / pixelsize ** 2
|
solidangle_errorprop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(twotheta, dtwotheta, sampletodetectordistance,\n dsampletodetectordistance, pixelsize=None):\n SAC = solidangle(twotheta, sampletodetectordistance, pixelsize)\n if pixelsize is None:\n pixelsize = 1\n return SAC, sampletodetectordistance * (4 * dsampletodetectordistance **\n 2 * np.cos(twotheta) ** 2 + 9 * dtwotheta ** 2 * \n sampletodetectordistance ** 2 * np.sin(twotheta) ** 2) ** 0.5 / np.cos(\n twotheta) ** 4 / pixelsize ** 2\n",
"role": "user"
},
{
"content": "solidangle_errorprop",
"role": "assistant"
}
] |
def x(twotheta, transmission):
cor = np.ones(twotheta.shape)
if transmission == 1:
return cor
mud = -np.log(transmission)
cor[twotheta > 0] = transmission * mud * (1 - 1 / np.cos(twotheta[
twotheta > 0])) / (np.exp(-mud / np.cos(twotheta[twotheta > 0])) -
np.exp(-mud))
return cor
|
angledependentabsorption
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(twotheta, transmission):\n cor = np.ones(twotheta.shape)\n if transmission == 1:\n return cor\n mud = -np.log(transmission)\n cor[twotheta > 0] = transmission * mud * (1 - 1 / np.cos(twotheta[\n twotheta > 0])) / (np.exp(-mud / np.cos(twotheta[twotheta > 0])) -\n np.exp(-mud))\n return cor\n",
"role": "user"
},
{
"content": "angledependentabsorption",
"role": "assistant"
}
] |
def x(twotheta, dtwotheta, transmission, dtransmission):
return angledependentabsorption(twotheta, transmission
), _calc_angledependentabsorption_error(twotheta, dtwotheta,
transmission, dtransmission)
|
angledependentabsorption_errorprop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(twotheta, dtwotheta, transmission, dtransmission):\n return angledependentabsorption(twotheta, transmission\n ), _calc_angledependentabsorption_error(twotheta, dtwotheta,\n transmission, dtransmission)\n",
"role": "user"
},
{
"content": "angledependentabsorption_errorprop",
"role": "assistant"
}
] |
def x(twotheta, mu_air, sampletodetectordistance):
return np.exp(mu_air * sampletodetectordistance / np.cos(twotheta))
|
angledependentairtransmission
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(twotheta, mu_air, sampletodetectordistance):\n return np.exp(mu_air * sampletodetectordistance / np.cos(twotheta))\n",
"role": "user"
},
{
"content": "angledependentairtransmission",
"role": "assistant"
}
] |
def x(twotheta, dtwotheta, mu_air, dmu_air, sampletodetectordistance,
dsampletodetectordistance):
return np.exp(mu_air * sampletodetectordistance / np.cos(twotheta)
), np.sqrt(dmu_air ** 2 * sampletodetectordistance ** 2 * np.exp(2 *
mu_air * sampletodetectordistance / np.cos(twotheta)) / np.cos(
twotheta) ** 2 + dsampletodetectordistance ** 2 * mu_air ** 2 * np.
exp(2 * mu_air * sampletodetectordistance / np.cos(twotheta)) / np.
cos(twotheta) ** 2 + dtwotheta ** 2 * mu_air ** 2 *
sampletodetectordistance ** 2 * np.exp(2 * mu_air *
sampletodetectordistance / np.cos(twotheta)) * np.sin(twotheta) **
2 / np.cos(twotheta) ** 4)
|
angledependentairtransmission_errorprop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(twotheta, dtwotheta, mu_air, dmu_air, sampletodetectordistance,\n dsampletodetectordistance):\n return np.exp(mu_air * sampletodetectordistance / np.cos(twotheta)\n ), np.sqrt(dmu_air ** 2 * sampletodetectordistance ** 2 * np.exp(2 *\n mu_air * sampletodetectordistance / np.cos(twotheta)) / np.cos(\n twotheta) ** 2 + dsampletodetectordistance ** 2 * mu_air ** 2 * np.\n exp(2 * mu_air * sampletodetectordistance / np.cos(twotheta)) / np.\n cos(twotheta) ** 2 + dtwotheta ** 2 * mu_air ** 2 * \n sampletodetectordistance ** 2 * np.exp(2 * mu_air *\n sampletodetectordistance / np.cos(twotheta)) * np.sin(twotheta) ** \n 2 / np.cos(twotheta) ** 4)\n",
"role": "user"
},
{
"content": "angledependentairtransmission_errorprop",
"role": "assistant"
}
] |
def x(self, filename: str, strip_path: bool=True, what='exposure') ->str:
if what == 'exposure':
path = self._path
elif what == 'header':
path = self._headerpath
elif what == 'mask':
path = self._maskpath
else:
path = self._path
tried = []
if strip_path:
filename = os.path.split(filename)[-1]
for d in path:
if os.path.exists(os.path.join(d, filename)):
tried.append(os.path.join(d, filename))
return os.path.join(d, filename)
raise FileNotFoundError('Not found: {}. Tried: {}'.format(filename,
', '.join(tried)))
|
find_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename: str, strip_path: bool=True, what='exposure') ->str:\n if what == 'exposure':\n path = self._path\n elif what == 'header':\n path = self._headerpath\n elif what == 'mask':\n path = self._maskpath\n else:\n path = self._path\n tried = []\n if strip_path:\n filename = os.path.split(filename)[-1]\n for d in path:\n if os.path.exists(os.path.join(d, filename)):\n tried.append(os.path.join(d, filename))\n return os.path.join(d, filename)\n raise FileNotFoundError('Not found: {}. Tried: {}'.format(filename,\n ', '.join(tried)))\n",
"role": "user"
},
{
"content": "find_file",
"role": "assistant"
}
] |
def x(self, subpath: str):
for d in self._path:
if os.path.exists(os.path.join(d, subpath)):
return os.path.join(d, subpath)
raise FileNotFoundError
|
get_subpath
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subpath: str):\n for d in self._path:\n if os.path.exists(os.path.join(d, subpath)):\n return os.path.join(d, subpath)\n raise FileNotFoundError\n",
"role": "user"
},
{
"content": "get_subpath",
"role": "assistant"
}
] |
def x(self, filename: str, header_data: Optional[Header]=None, mask_data:
Optional[np.ndarray]=None):
|
new_from_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename: str, header_data: Optional[Header]=None, mask_data:\n Optional[np.ndarray]=None):\n",
"role": "user"
},
{
"content": "new_from_file",
"role": "assistant"
}
] |
def x(self, only_valid=True) ->ErrorValue:
if not only_valid:
mask = 1
else:
mask = self.mask
return ErrorValue((self.intensity * mask).sum(), ((self.error * mask) **
2).sum() ** 0.5)
|
sum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, only_valid=True) ->ErrorValue:\n if not only_valid:\n mask = 1\n else:\n mask = self.mask\n return ErrorValue((self.intensity * mask).sum(), ((self.error * mask) **\n 2).sum() ** 0.5)\n",
"role": "user"
},
{
"content": "sum",
"role": "assistant"
}
] |
def x(self, only_valid=True) ->ErrorValue:
if not only_valid:
intensity = self.intensity
error = self.error
else:
intensity = self.intensity[self.mask]
error = self.error[self.mask]
return ErrorValue(intensity.mean(), (error ** 2).mean() ** 0.5)
|
mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, only_valid=True) ->ErrorValue:\n if not only_valid:\n intensity = self.intensity\n error = self.error\n else:\n intensity = self.intensity[self.mask]\n error = self.error[self.mask]\n return ErrorValue(intensity.mean(), (error ** 2).mean() ** 0.5)\n",
"role": "user"
},
{
"content": "mean",
"role": "assistant"
}
] |
def x(self) ->ErrorValue:
row, column = np.ogrid[0:self.shape[0], 0:self.shape[1]]
rho = (((self.header.beamcentery - row) * self.header.pixelsizey) ** 2 +
((self.header.beamcenterx - column) * self.header.pixelsizex) ** 2
) ** 0.5
assert isinstance(self.header.pixelsizex, ErrorValue)
assert isinstance(self.header.pixelsizey, ErrorValue)
assert isinstance(rho, ErrorValue)
return (rho / self.header.distance).arctan()
|
twotheta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->ErrorValue:\n row, column = np.ogrid[0:self.shape[0], 0:self.shape[1]]\n rho = (((self.header.beamcentery - row) * self.header.pixelsizey) ** 2 +\n ((self.header.beamcenterx - column) * self.header.pixelsizex) ** 2\n ) ** 0.5\n assert isinstance(self.header.pixelsizex, ErrorValue)\n assert isinstance(self.header.pixelsizey, ErrorValue)\n assert isinstance(rho, ErrorValue)\n return (rho / self.header.distance).arctan()\n",
"role": "user"
},
{
"content": "twotheta",
"role": "assistant"
}
] |
def x(self, row: float, column: float):
qrow = 4 * np.pi * np.sin(0.5 * np.arctan((row - float(self.header.
beamcentery)) * float(self.header.pixelsizey) / float(self.header.
distance))) / float(self.header.wavelength)
qcol = 4 * np.pi * np.sin(0.5 * np.arctan((column - float(self.header.
beamcenterx)) * float(self.header.pixelsizex) / float(self.header.
distance))) / float(self.header.wavelength)
return qrow, qcol
|
pixel_to_q
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row: float, column: float):\n qrow = 4 * np.pi * np.sin(0.5 * np.arctan((row - float(self.header.\n beamcentery)) * float(self.header.pixelsizey) / float(self.header.\n distance))) / float(self.header.wavelength)\n qcol = 4 * np.pi * np.sin(0.5 * np.arctan((column - float(self.header.\n beamcenterx)) * float(self.header.pixelsizex) / float(self.header.\n distance))) / float(self.header.wavelength)\n return qrow, qcol\n",
"role": "user"
},
{
"content": "pixel_to_q",
"role": "assistant"
}
] |
def x(self, *args, show_crosshair=True, show_mask=True, show_qscale=True,
axes=None, invalid_color='black', mask_opacity=0.8, show_colorbar=True,
**kwargs):
if 'aspect' not in kwargs:
kwargs['aspect'] = 'equal'
if 'interpolation' not in kwargs:
kwargs['interpolation'] = 'nearest'
if 'origin' not in kwargs:
kwargs['origin'] = 'upper'
if show_qscale:
ymin, xmin = self.pixel_to_q(0, 0)
ymax, xmax = self.pixel_to_q(*self.shape)
if kwargs['origin'].upper() == 'UPPER':
kwargs['extent'] = [xmin, xmax, -ymax, -ymin]
else:
kwargs['extent'] = [xmin, xmax, ymin, ymax]
bcx = 0
bcy = 0
else:
bcx = self.header.beamcenterx
bcy = self.header.beamcentery
xmin = 0
xmax = self.shape[1]
ymin = 0
ymax = self.shape[0]
if kwargs['origin'].upper() == 'UPPER':
kwargs['extent'] = [0, self.shape[1], self.shape[0], 0]
else:
kwargs['extent'] = [0, self.shape[1], 0, self.shape[0]]
if axes is None:
axes = plt.gca()
ret = axes.imshow(self.intensity, **kwargs)
if show_mask:
if (self.mask == 0).sum():
mf = np.ones(self.mask.shape, np.float)
mf[self.mask != 0] = np.nan
kwargs['cmap'] = matplotlib.cm.gray_r
kwargs['alpha'] = mask_opacity
kwargs['norm'] = matplotlib.colors.Normalize()
axes.imshow(mf, **kwargs)
if show_crosshair:
ax = axes.axis()
axes.plot([xmin, xmax], [bcy] * 2, 'w-')
axes.plot([bcx] * 2, [ymin, ymax], 'w-')
axes.axis(ax)
axes.set_facecolor(invalid_color)
if show_colorbar:
if isinstance(show_colorbar, matplotlib.axes.Axes):
axes.figure.colorbar(ret, cax=show_colorbar)
else:
cax = [i.colorbar[1] for i in axes.images if i.colorbar is not None
]
cax = [c for c in cax if c in c.figure.axes]
if cax:
cax = cax[0]
else:
cax = None
axes.figure.colorbar(ret, cax=cax, ax=axes)
axes.figure.canvas.draw()
return ret
|
imshow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, show_crosshair=True, show_mask=True, show_qscale=True,\n axes=None, invalid_color='black', mask_opacity=0.8, show_colorbar=True,\n **kwargs):\n if 'aspect' not in kwargs:\n kwargs['aspect'] = 'equal'\n if 'interpolation' not in kwargs:\n kwargs['interpolation'] = 'nearest'\n if 'origin' not in kwargs:\n kwargs['origin'] = 'upper'\n if show_qscale:\n ymin, xmin = self.pixel_to_q(0, 0)\n ymax, xmax = self.pixel_to_q(*self.shape)\n if kwargs['origin'].upper() == 'UPPER':\n kwargs['extent'] = [xmin, xmax, -ymax, -ymin]\n else:\n kwargs['extent'] = [xmin, xmax, ymin, ymax]\n bcx = 0\n bcy = 0\n else:\n bcx = self.header.beamcenterx\n bcy = self.header.beamcentery\n xmin = 0\n xmax = self.shape[1]\n ymin = 0\n ymax = self.shape[0]\n if kwargs['origin'].upper() == 'UPPER':\n kwargs['extent'] = [0, self.shape[1], self.shape[0], 0]\n else:\n kwargs['extent'] = [0, self.shape[1], 0, self.shape[0]]\n if axes is None:\n axes = plt.gca()\n ret = axes.imshow(self.intensity, **kwargs)\n if show_mask:\n if (self.mask == 0).sum():\n mf = np.ones(self.mask.shape, np.float)\n mf[self.mask != 0] = np.nan\n kwargs['cmap'] = matplotlib.cm.gray_r\n kwargs['alpha'] = mask_opacity\n kwargs['norm'] = matplotlib.colors.Normalize()\n axes.imshow(mf, **kwargs)\n if show_crosshair:\n ax = axes.axis()\n axes.plot([xmin, xmax], [bcy] * 2, 'w-')\n axes.plot([bcx] * 2, [ymin, ymax], 'w-')\n axes.axis(ax)\n axes.set_facecolor(invalid_color)\n if show_colorbar:\n if isinstance(show_colorbar, matplotlib.axes.Axes):\n axes.figure.colorbar(ret, cax=show_colorbar)\n else:\n cax = [i.colorbar[1] for i in axes.images if i.colorbar is not None\n ]\n cax = [c for c in cax if c in c.figure.axes]\n if cax:\n cax = cax[0]\n else:\n cax = None\n axes.figure.colorbar(ret, cax=cax, ax=axes)\n axes.figure.canvas.draw()\n return ret\n",
"role": "user"
},
{
"content": "imshow",
"role": "assistant"
}
] |
def x(self, qrange=None, pixel=False, returnmask=False, errorpropagation=3,
abscissa_errorpropagation=3, raw_result=False) ->Curve:
retmask = None
if isinstance(qrange, str):
if qrange == 'linear':
qrange = None
autoqrange_linear = True
elif qrange == 'log':
qrange = None
autoqrange_linear = False
else:
raise ValueError('Value given for qrange (%s) not understood.' %
qrange)
else:
autoqrange_linear = True
if pixel:
abscissa_kind = 3
else:
abscissa_kind = 0
res = radint_fullq_errorprop(self.intensity, self.error, self.header.
wavelength.val, self.header.wavelength.err, self.header.distance.
val, self.header.distance.err, self.header.pixelsizey.val, self.
header.pixelsizex.val, self.header.beamcentery.val, self.header.
beamcentery.err, self.header.beamcenterx.val, self.header.
beamcenterx.err, (self.mask == 0).astype(np.uint8), qrange,
returnmask=returnmask, errorpropagation=errorpropagation,
autoqrange_linear=autoqrange_linear, abscissa_kind=abscissa_kind,
abscissa_errorpropagation=abscissa_errorpropagation)
q, dq, I, E, area = res[:5]
if not raw_result:
c = Curve(q, I, E, dq)
if returnmask:
return c, res[5]
else:
return c
elif returnmask:
return q, dq, I, E, area, res[5]
else:
return q, dq, I, E, area
|
radial_average
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, qrange=None, pixel=False, returnmask=False, errorpropagation=3,\n abscissa_errorpropagation=3, raw_result=False) ->Curve:\n retmask = None\n if isinstance(qrange, str):\n if qrange == 'linear':\n qrange = None\n autoqrange_linear = True\n elif qrange == 'log':\n qrange = None\n autoqrange_linear = False\n else:\n raise ValueError('Value given for qrange (%s) not understood.' %\n qrange)\n else:\n autoqrange_linear = True\n if pixel:\n abscissa_kind = 3\n else:\n abscissa_kind = 0\n res = radint_fullq_errorprop(self.intensity, self.error, self.header.\n wavelength.val, self.header.wavelength.err, self.header.distance.\n val, self.header.distance.err, self.header.pixelsizey.val, self.\n header.pixelsizex.val, self.header.beamcentery.val, self.header.\n beamcentery.err, self.header.beamcenterx.val, self.header.\n beamcenterx.err, (self.mask == 0).astype(np.uint8), qrange,\n returnmask=returnmask, errorpropagation=errorpropagation,\n autoqrange_linear=autoqrange_linear, abscissa_kind=abscissa_kind,\n abscissa_errorpropagation=abscissa_errorpropagation)\n q, dq, I, E, area = res[:5]\n if not raw_result:\n c = Curve(q, I, E, dq)\n if returnmask:\n return c, res[5]\n else:\n return c\n elif returnmask:\n return q, dq, I, E, area, res[5]\n else:\n return q, dq, I, E, area\n",
"role": "user"
},
{
"content": "radial_average",
"role": "assistant"
}
] |
def x(self):
self.mask = np.logical_and(self.mask, ~(self.intensity < 0))
|
mask_negative
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.mask = np.logical_and(self.mask, ~(self.intensity < 0))\n",
"role": "user"
},
{
"content": "mask_negative",
"role": "assistant"
}
] |
def x(self):
self.mask = np.logical_and(self.mask, ~np.isnan(self.intensity))
|
mask_nan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.mask = np.logical_and(self.mask, ~np.isnan(self.intensity))\n",
"role": "user"
},
{
"content": "mask_nan",
"role": "assistant"
}
] |
def x(self):
self.mask = np.logical_and(self.mask, np.isfinite(self.intensity))
|
mask_nonfinite
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.mask = np.logical_and(self.mask, np.isfinite(self.intensity))\n",
"role": "user"
},
{
"content": "mask_nonfinite",
"role": "assistant"
}
] |
def x(self) ->ErrorValue:
if 'DistCalibrated' in self._data:
dist = self._data['DistCalibrated']
else:
dist = self._data['Dist']
if 'DistCalibratedError' in self._data:
disterr = self._data['DistCalibratedError']
elif 'DistError' in self._data:
disterr = self._data['DistError']
else:
disterr = 0.0
return ErrorValue(dist, disterr)
|
distance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->ErrorValue:\n if 'DistCalibrated' in self._data:\n dist = self._data['DistCalibrated']\n else:\n dist = self._data['Dist']\n if 'DistCalibratedError' in self._data:\n disterr = self._data['DistCalibratedError']\n elif 'DistError' in self._data:\n disterr = self._data['DistError']\n else:\n disterr = 0.0\n return ErrorValue(dist, disterr)\n",
"role": "user"
},
{
"content": "distance",
"role": "assistant"
}
] |
def x(self) ->Optional[ErrorValue]:
try:
return ErrorValue(self._data['Temperature'], self._data.setdefault(
'TemperatureError', 0.0))
except KeyError:
return None
|
temperature
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Optional[ErrorValue]:\n try:\n return ErrorValue(self._data['Temperature'], self._data.setdefault(\n 'TemperatureError', 0.0))\n except KeyError:\n return None\n",
"role": "user"
},
{
"content": "temperature",
"role": "assistant"
}
] |
def x(self) ->datetime.datetime:
return self._data['Date'] - datetime.timedelta(0, float(self.
exposuretime), 0)
|
date
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->datetime.datetime:\n return self._data['Date'] - datetime.timedelta(0, float(self.\n exposuretime), 0)\n",
"role": "user"
},
{
"content": "date",
"role": "assistant"
}
] |
def x(self) ->ErrorValue:
try:
return ErrorValue(self._data['Flux'], self._data.setdefault(
'FluxError', 0.0))
except KeyError:
return 1 / self.pixelsizex / self.pixelsizey / ErrorValue(self.
_data['NormFactor'], self._data.setdefault('NormFactorError', 0.0))
|
flux
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->ErrorValue:\n try:\n return ErrorValue(self._data['Flux'], self._data.setdefault(\n 'FluxError', 0.0))\n except KeyError:\n return 1 / self.pixelsizex / self.pixelsizey / ErrorValue(self.\n _data['NormFactor'], self._data.setdefault('NormFactorError', 0.0))\n",
"role": "user"
},
{
"content": "flux",
"role": "assistant"
}
] |
def x(x: np.ndarray, y: np.ndarray, dy: np.ndarray, func: Callable,
params_init: np.ndarray, verbose: bool=False, **kwargs):
newfunc, newparinit = hide_fixedparams(func, params_init)
p, dp, statdict = nlsq_fit(x, y, dy, newfunc, newparinit, verbose, **kwargs
)
p, statdict['Covariance'] = resubstitute_fixedparams(p, params_init,
statdict['Covariance'])
dp, statdict['Correlation_coeffs'] = resubstitute_fixedparams(dp, [type
(p_)(0) for p_ in params_init], statdict['Correlation_coeffs'])
def x(p_, dp_):
if isinstance(p_, FixedParameter) or isinstance(dp_, FixedParameter):
return p_
else:
return ErrorValue(p_, dp_)
return tuple([convert(p_, dp_) for p_, dp_ in zip(p, dp)] + [statdict])
|
nonlinear_leastsquares
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x: np.ndarray, y: np.ndarray, dy: np.ndarray, func: Callable,\n params_init: np.ndarray, verbose: bool=False, **kwargs):\n newfunc, newparinit = hide_fixedparams(func, params_init)\n p, dp, statdict = nlsq_fit(x, y, dy, newfunc, newparinit, verbose, **kwargs\n )\n p, statdict['Covariance'] = resubstitute_fixedparams(p, params_init,\n statdict['Covariance'])\n dp, statdict['Correlation_coeffs'] = resubstitute_fixedparams(dp, [type\n (p_)(0) for p_ in params_init], statdict['Correlation_coeffs'])\n\n def x(p_, dp_):\n if isinstance(p_, FixedParameter) or isinstance(dp_, FixedParameter):\n return p_\n else:\n return ErrorValue(p_, dp_)\n return tuple([convert(p_, dp_) for p_, dp_ in zip(p, dp)] + [statdict])\n",
"role": "user"
},
{
"content": "nonlinear_leastsquares",
"role": "assistant"
}
] |
def x(x, y, dx, dy, func, params_init, **kwargs):
odrmodel = odr.Model(lambda pars, x: func(x, *pars))
if dx is not None:
xfixed = np.isfinite(dx)
else:
xfixed = None
odrdata = odr.RealData(x, y, sx=dx, sy=dy, fix=xfixed)
odrodr = odr.ODR(odrdata, odrmodel, params_init, ifixb=[(not isinstance
(p, FixedParameter)) for p in params_init], **kwargs)
odroutput = odrodr.run()
statdict = odroutput.__dict__.copy()
statdict['Covariance'] = odroutput.cov_beta
statdict['Correlation_coeffs'] = odroutput.cov_beta / np.outer(odroutput
.sd_beta, odroutput.sd_beta)
statdict['DoF'] = len(x) - len(odroutput.beta)
statdict['Chi2_reduced'] = statdict['res_var']
statdict['func_value'] = statdict['y']
statdict['Chi2'] = statdict['sum_square']
def x(p_, dp_, pi):
if isinstance(pi, FixedParameter):
return FixedParameter(p_)
else:
return ErrorValue(p_, dp_)
return tuple([convert(p_, dp_, pi) for p_, dp_, pi in zip(odroutput.
beta, odroutput.sd_beta, params_init)] + [statdict])
|
nonlinear_odr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, dx, dy, func, params_init, **kwargs):\n odrmodel = odr.Model(lambda pars, x: func(x, *pars))\n if dx is not None:\n xfixed = np.isfinite(dx)\n else:\n xfixed = None\n odrdata = odr.RealData(x, y, sx=dx, sy=dy, fix=xfixed)\n odrodr = odr.ODR(odrdata, odrmodel, params_init, ifixb=[(not isinstance\n (p, FixedParameter)) for p in params_init], **kwargs)\n odroutput = odrodr.run()\n statdict = odroutput.__dict__.copy()\n statdict['Covariance'] = odroutput.cov_beta\n statdict['Correlation_coeffs'] = odroutput.cov_beta / np.outer(odroutput\n .sd_beta, odroutput.sd_beta)\n statdict['DoF'] = len(x) - len(odroutput.beta)\n statdict['Chi2_reduced'] = statdict['res_var']\n statdict['func_value'] = statdict['y']\n statdict['Chi2'] = statdict['sum_square']\n\n def x(p_, dp_, pi):\n if isinstance(pi, FixedParameter):\n return FixedParameter(p_)\n else:\n return ErrorValue(p_, dp_)\n return tuple([convert(p_, dp_, pi) for p_, dp_, pi in zip(odroutput.\n beta, odroutput.sd_beta, params_init)] + [statdict])\n",
"role": "user"
},
{
"content": "nonlinear_odr",
"role": "assistant"
}
] |
def x(xs, ys, dys, func, params_inits, verbose=False, **kwargs):
p, dp, statdict = simultaneous_nlsq_fit(xs, ys, dys, func, params_inits,
verbose, **kwargs)
params = [[ErrorValue(p_, dp_) for p_, dp_ in zip(pcurrent, dpcurrent)] for
pcurrent, dpcurrent in zip(p, dp)]
return tuple(params + [statdict])
|
simultaneous_nonlinear_leastsquares
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xs, ys, dys, func, params_inits, verbose=False, **kwargs):\n p, dp, statdict = simultaneous_nlsq_fit(xs, ys, dys, func, params_inits,\n verbose, **kwargs)\n params = [[ErrorValue(p_, dp_) for p_, dp_ in zip(pcurrent, dpcurrent)] for\n pcurrent, dpcurrent in zip(p, dp)]\n return tuple(params + [statdict])\n",
"role": "user"
},
{
"content": "simultaneous_nonlinear_leastsquares",
"role": "assistant"
}
] |
def x(x, y, dy, func, params_init, verbose=False, **kwargs):
if verbose:
t0 = time.monotonic()
print('nlsq_fit starting.')
else:
t0 = 0
func_orig = func
params_init_orig = params_init
func, params_init = hide_fixedparams(func_orig, params_init_orig)
if dy is None or (dy == np.nan).sum() > 0 or (dy <= 0).sum() > 0:
if verbose:
print('nlsq_fit: no weighting')
dy = None
def x(params, x, y, dy):
if dy is None:
return func(x, *params.tolist()) - y
else:
return (func(x, *params.tolist()) - y) / dy
if verbose:
print('nlsq_fit: now doing the fitting...')
t1 = time.monotonic()
else:
t1 = 0
par, cov, infodict, mesg, ier = leastsq(objectivefunc, np.array(
params_init), (x, y, dy), full_output=True, **kwargs)
if verbose:
print('nlsq_fit: fitting done in %.2f seconds.' % (time.monotonic() -
t1))
print('nlsq_fit: status from scipy.optimize.leastsq(): %d (%s)' % (
ier, mesg))
print('nlsq_fit: extracting statistics.')
if cov is None:
cov = np.ones((len(par), len(par))) * np.nan
if dy is None:
sserr = np.sum((func(x, *par.tolist()) - y) ** 2)
sstot = np.sum((y - np.mean(y)) ** 2)
else:
sserr = np.sum(((func(x, *par.tolist()) - y) / dy) ** 2)
sstot = np.sum((y - np.mean(y)) ** 2 / dy ** 2)
r2 = 1 - sserr / sstot
statdict = {'DoF': len(x) - len(par), 'Chi2': (infodict['fvec'] ** 2).
sum(), 'R2': r2, 'num_func_eval': infodict['nfev'], 'func_value':
func(x, *par.tolist()), 'message': mesg, 'error_flag': ier}
statdict['Chi2_reduced'] = statdict['Chi2'] / statdict['DoF']
statdict['Covariance'] = cov * statdict['Chi2_reduced']
par, statdict['Covariance'] = resubstitute_fixedparams(par,
params_init_orig, statdict['Covariance'])
dpar = np.sqrt(statdict['Covariance'].diagonal())
statdict['Correlation_coeffs'] = statdict['Covariance'] / np.outer(dpar,
dpar)
if verbose:
print('nlsq_fit: returning with results.')
print('nlsq_fit: total time: %.2f sec.' % (time.monotonic() - t0))
return par, dpar, statdict
|
nlsq_fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, dy, func, params_init, verbose=False, **kwargs):\n if verbose:\n t0 = time.monotonic()\n print('nlsq_fit starting.')\n else:\n t0 = 0\n func_orig = func\n params_init_orig = params_init\n func, params_init = hide_fixedparams(func_orig, params_init_orig)\n if dy is None or (dy == np.nan).sum() > 0 or (dy <= 0).sum() > 0:\n if verbose:\n print('nlsq_fit: no weighting')\n dy = None\n\n def x(params, x, y, dy):\n if dy is None:\n return func(x, *params.tolist()) - y\n else:\n return (func(x, *params.tolist()) - y) / dy\n if verbose:\n print('nlsq_fit: now doing the fitting...')\n t1 = time.monotonic()\n else:\n t1 = 0\n par, cov, infodict, mesg, ier = leastsq(objectivefunc, np.array(\n params_init), (x, y, dy), full_output=True, **kwargs)\n if verbose:\n print('nlsq_fit: fitting done in %.2f seconds.' % (time.monotonic() -\n t1))\n print('nlsq_fit: status from scipy.optimize.leastsq(): %d (%s)' % (\n ier, mesg))\n print('nlsq_fit: extracting statistics.')\n if cov is None:\n cov = np.ones((len(par), len(par))) * np.nan\n if dy is None:\n sserr = np.sum((func(x, *par.tolist()) - y) ** 2)\n sstot = np.sum((y - np.mean(y)) ** 2)\n else:\n sserr = np.sum(((func(x, *par.tolist()) - y) / dy) ** 2)\n sstot = np.sum((y - np.mean(y)) ** 2 / dy ** 2)\n r2 = 1 - sserr / sstot\n statdict = {'DoF': len(x) - len(par), 'Chi2': (infodict['fvec'] ** 2).\n sum(), 'R2': r2, 'num_func_eval': infodict['nfev'], 'func_value':\n func(x, *par.tolist()), 'message': mesg, 'error_flag': ier}\n statdict['Chi2_reduced'] = statdict['Chi2'] / statdict['DoF']\n statdict['Covariance'] = cov * statdict['Chi2_reduced']\n par, statdict['Covariance'] = resubstitute_fixedparams(par,\n params_init_orig, statdict['Covariance'])\n dpar = np.sqrt(statdict['Covariance'].diagonal())\n statdict['Correlation_coeffs'] = statdict['Covariance'] / np.outer(dpar,\n dpar)\n if verbose:\n print('nlsq_fit: returning with results.')\n print('nlsq_fit: total time: %.2f sec.' % (time.monotonic() - t0))\n return par, dpar, statdict\n",
"role": "user"
},
{
"content": "nlsq_fit",
"role": "assistant"
}
] |
def x(xs, ys, dys, func, params_inits, verbose=False, **kwargs):
if not isinstance(xs, collections.Sequence) or not isinstance(ys,
collections.Sequence) or not isinstance(dys, collections.Sequence
) or not isinstance(params_inits, collections.Sequence):
raise ValueError(
'Parameters `xs`, `ys`, `dys` and `params_inits` should be tuples or lists.'
)
Ndata = len(xs)
if len(ys) != Ndata or len(dys) != Ndata or len(params_inits) != Ndata:
raise ValueError(
'Parameters `xs`, `ys`, `dys` and `params_inits` should have the same length.'
)
if not all([isinstance(x, collections.Sequence) for x in params_inits]):
raise ValueError(
'Elements of `params_inits` should be tuples or Python lists.')
Ns = set([len(x) for x in params_inits])
if len(Ns) != 1:
raise ValueError(
'Elements of `params_inits` should have the same length.')
Npar = Ns.pop()
for i in range(Ndata):
if dys[i] is None:
dys[i] = np.ones(len(xs[i]), np.double) * np.nan
xcat = np.concatenate(xs)
ycat = np.concatenate(ys)
dycat = np.concatenate(dys)
lens = [len(x) for x in xs]
starts = [int(sum(lens[:i])) for i in range(len(lens))]
ends = [int(sum(lens[:i + 1])) for i in range(len(lens))]
paramcat = []
param_indices = []
for j in range(Ndata):
param_indices.append([])
jorig = j
for i in range(Npar):
j = jorig
while params_inits[j][i] is None and j >= 0:
j = j - 1
if j < 0:
raise ValueError(
'None of the parameters in the very first dataset should be `None`.'
)
if jorig == j:
paramcat.append(params_inits[j][i])
param_indices[jorig].append(len(paramcat) - 1)
else:
param_indices[jorig].append(param_indices[j][i])
if verbose:
print('Number of datasets for simultaneous fitting:', Ndata)
print('Total number of data points:', len(xcat))
print('Number of parameters in each dataset:', Npar)
print('Total number of parameters:', Ndata * Npar)
print('Number of independent parameters:', len(paramcat))
def x(x, *params):
y = []
for j in range(Ndata):
if verbose > 1:
print('Simultaneous fitting: evaluating function for dataset #'
, j, '/', Ndata)
pars = [params[i] for i in param_indices[j]]
y.append(func(x[starts[j]:ends[j]], *pars))
return np.concatenate(tuple(y))
pflat, dpflat, statdictflat = nlsq_fit(xcat, ycat, dycat, func_flat,
paramcat, verbose, **kwargs)
for n in ['func_value', 'R2', 'Chi2', 'Chi2_reduced', 'DoF',
'Covariance', 'Correlation_coeffs']:
statdictflat[n + '_global'] = statdictflat[n]
statdictflat[n] = []
p = []
dp = []
for j in range(Ndata):
p.append([pflat[i] for i in param_indices[j]])
dp.append([dpflat[i] for i in param_indices[j]])
statdictflat['func_value'].append(statdictflat['func_value_global']
[starts[j]:ends[j]])
if np.isfinite(dys[j]).all():
statdictflat['Chi2'].append((((statdictflat['func_value'][-1] -
ys[j]) / dys[j]) ** 2).sum())
sstot = np.sum((ys[j] - np.mean(ys[j])) ** 2 / dys[j] ** 2)
else:
statdictflat['Chi2'].append(((statdictflat['func_value'][-1] -
ys[j]) ** 2).sum())
sstot = np.sum((ys[j] - np.mean(ys[j])) ** 2)
sserr = statdictflat['Chi2'][-1]
statdictflat['R2'].append(1 - sserr / sstot)
statdictflat['DoF'].append(len(xs[j] - len(p[-1])))
statdictflat['Covariance'].append(slice_covarmatrix(statdictflat[
'Covariance_global'], param_indices[j]))
statdictflat['Correlation_coeffs'].append(slice_covarmatrix(
statdictflat['Correlation_coeffs_global'], param_indices[j]))
statdictflat['Chi2_reduced'].append(statdictflat['Chi2'][-1] /
statdictflat['DoF'][-1])
return p, dp, statdictflat
|
simultaneous_nlsq_fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xs, ys, dys, func, params_inits, verbose=False, **kwargs):\n if not isinstance(xs, collections.Sequence) or not isinstance(ys,\n collections.Sequence) or not isinstance(dys, collections.Sequence\n ) or not isinstance(params_inits, collections.Sequence):\n raise ValueError(\n 'Parameters `xs`, `ys`, `dys` and `params_inits` should be tuples or lists.'\n )\n Ndata = len(xs)\n if len(ys) != Ndata or len(dys) != Ndata or len(params_inits) != Ndata:\n raise ValueError(\n 'Parameters `xs`, `ys`, `dys` and `params_inits` should have the same length.'\n )\n if not all([isinstance(x, collections.Sequence) for x in params_inits]):\n raise ValueError(\n 'Elements of `params_inits` should be tuples or Python lists.')\n Ns = set([len(x) for x in params_inits])\n if len(Ns) != 1:\n raise ValueError(\n 'Elements of `params_inits` should have the same length.')\n Npar = Ns.pop()\n for i in range(Ndata):\n if dys[i] is None:\n dys[i] = np.ones(len(xs[i]), np.double) * np.nan\n xcat = np.concatenate(xs)\n ycat = np.concatenate(ys)\n dycat = np.concatenate(dys)\n lens = [len(x) for x in xs]\n starts = [int(sum(lens[:i])) for i in range(len(lens))]\n ends = [int(sum(lens[:i + 1])) for i in range(len(lens))]\n paramcat = []\n param_indices = []\n for j in range(Ndata):\n param_indices.append([])\n jorig = j\n for i in range(Npar):\n j = jorig\n while params_inits[j][i] is None and j >= 0:\n j = j - 1\n if j < 0:\n raise ValueError(\n 'None of the parameters in the very first dataset should be `None`.'\n )\n if jorig == j:\n paramcat.append(params_inits[j][i])\n param_indices[jorig].append(len(paramcat) - 1)\n else:\n param_indices[jorig].append(param_indices[j][i])\n if verbose:\n print('Number of datasets for simultaneous fitting:', Ndata)\n print('Total number of data points:', len(xcat))\n print('Number of parameters in each dataset:', Npar)\n print('Total number of parameters:', Ndata * Npar)\n print('Number of independent parameters:', len(paramcat))\n\n def x(x, *params):\n y = []\n for j in range(Ndata):\n if verbose > 1:\n print('Simultaneous fitting: evaluating function for dataset #'\n , j, '/', Ndata)\n pars = [params[i] for i in param_indices[j]]\n y.append(func(x[starts[j]:ends[j]], *pars))\n return np.concatenate(tuple(y))\n pflat, dpflat, statdictflat = nlsq_fit(xcat, ycat, dycat, func_flat,\n paramcat, verbose, **kwargs)\n for n in ['func_value', 'R2', 'Chi2', 'Chi2_reduced', 'DoF',\n 'Covariance', 'Correlation_coeffs']:\n statdictflat[n + '_global'] = statdictflat[n]\n statdictflat[n] = []\n p = []\n dp = []\n for j in range(Ndata):\n p.append([pflat[i] for i in param_indices[j]])\n dp.append([dpflat[i] for i in param_indices[j]])\n statdictflat['func_value'].append(statdictflat['func_value_global']\n [starts[j]:ends[j]])\n if np.isfinite(dys[j]).all():\n statdictflat['Chi2'].append((((statdictflat['func_value'][-1] -\n ys[j]) / dys[j]) ** 2).sum())\n sstot = np.sum((ys[j] - np.mean(ys[j])) ** 2 / dys[j] ** 2)\n else:\n statdictflat['Chi2'].append(((statdictflat['func_value'][-1] -\n ys[j]) ** 2).sum())\n sstot = np.sum((ys[j] - np.mean(ys[j])) ** 2)\n sserr = statdictflat['Chi2'][-1]\n statdictflat['R2'].append(1 - sserr / sstot)\n statdictflat['DoF'].append(len(xs[j] - len(p[-1])))\n statdictflat['Covariance'].append(slice_covarmatrix(statdictflat[\n 'Covariance_global'], param_indices[j]))\n statdictflat['Correlation_coeffs'].append(slice_covarmatrix(\n statdictflat['Correlation_coeffs_global'], param_indices[j]))\n statdictflat['Chi2_reduced'].append(statdictflat['Chi2'][-1] /\n statdictflat['DoF'][-1])\n return p, dp, statdictflat\n",
"role": "user"
},
{
"content": "simultaneous_nlsq_fit",
"role": "assistant"
}
] |
def x(self: 'ErrorValue', extra_digits: int=0, plusminus: str=' +/- ', fmt:
str=None) ->str:
if isinstance(fmt, str) and fmt.lower().endswith('tex'):
return re.subn('(\\d*)(\\.(\\d)*)?[eE]([+-]?\\d+)', lambda m: (
'$%s%s\\cdot 10^{%s}$' % (m.group(1), m.group(2), m.group(4))).
replace('None', ''), self.tostring(extra_digits=extra_digits,
plusminus=plusminus, fmt=None))[0]
if isinstance(self.val, numbers.Real):
try:
Ndigits = -int(math.floor(math.log10(self.err))) + extra_digits
except (OverflowError, ValueError):
return str(self.val) + plusminus + str(self.err)
else:
return str(round(self.val, Ndigits)) + plusminus + str(round(
self.err, Ndigits))
return str(self.val) + ' +/- ' + str(self.err)
|
tostring
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self: 'ErrorValue', extra_digits: int=0, plusminus: str=' +/- ', fmt:\n str=None) ->str:\n if isinstance(fmt, str) and fmt.lower().endswith('tex'):\n return re.subn('(\\\\d*)(\\\\.(\\\\d)*)?[eE]([+-]?\\\\d+)', lambda m: (\n '$%s%s\\\\cdot 10^{%s}$' % (m.group(1), m.group(2), m.group(4))).\n replace('None', ''), self.tostring(extra_digits=extra_digits,\n plusminus=plusminus, fmt=None))[0]\n if isinstance(self.val, numbers.Real):\n try:\n Ndigits = -int(math.floor(math.log10(self.err))) + extra_digits\n except (OverflowError, ValueError):\n return str(self.val) + plusminus + str(self.err)\n else:\n return str(round(self.val, Ndigits)) + plusminus + str(round(\n self.err, Ndigits))\n return str(self.val) + ' +/- ' + str(self.err)\n",
"role": "user"
},
{
"content": "tostring",
"role": "assistant"
}
] |
def x(self: 'ErrorValue') ->np.ndarray:
if isinstance(self.val, np.ndarray):
return np.random.randn(self.val.shape) * self.err + self.val
else:
return np.random.randn() * self.err + self.val
|
random
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self: 'ErrorValue') ->np.ndarray:\n if isinstance(self.val, np.ndarray):\n return np.random.randn(self.val.shape) * self.err + self.val\n else:\n return np.random.randn() * self.err + self.val\n",
"role": "user"
},
{
"content": "random",
"role": "assistant"
}
] |
def x(cls, func, *args, **kwargs):
def x(x):
if isinstance(x, cls):
return x.random()
else:
return x
if 'NMC' not in kwargs:
kwargs['NMC'] = 1000
if 'exceptions_to_skip' not in kwargs:
kwargs['exceptions_to_skip'] = []
if 'exceptions_to_repeat' not in kwargs:
kwargs['exceptions_to_repeat'] = []
meanvalue = func(*args)
stdcollector = meanvalue * 0
mciters = 0
while mciters < kwargs['NMC']:
try:
stdcollector += (func(*[do_random(a) for a in args]) - meanvalue
) ** 2
mciters += 1
except Exception as e:
if any(isinstance(e, etype) for etype in kwargs[
'exceptions_to_skip']):
kwargs['NMC'] -= 1
elif any(isinstance(e, etype) for etype in kwargs[
'exceptions_to_repeat']):
pass
else:
raise
return cls(meanvalue, stdcollector ** 0.5 / (kwargs['NMC'] - 1))
|
evalfunc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, func, *args, **kwargs):\n\n def x(x):\n if isinstance(x, cls):\n return x.random()\n else:\n return x\n if 'NMC' not in kwargs:\n kwargs['NMC'] = 1000\n if 'exceptions_to_skip' not in kwargs:\n kwargs['exceptions_to_skip'] = []\n if 'exceptions_to_repeat' not in kwargs:\n kwargs['exceptions_to_repeat'] = []\n meanvalue = func(*args)\n stdcollector = meanvalue * 0\n mciters = 0\n while mciters < kwargs['NMC']:\n try:\n stdcollector += (func(*[do_random(a) for a in args]) - meanvalue\n ) ** 2\n mciters += 1\n except Exception as e:\n if any(isinstance(e, etype) for etype in kwargs[\n 'exceptions_to_skip']):\n kwargs['NMC'] -= 1\n elif any(isinstance(e, etype) for etype in kwargs[\n 'exceptions_to_repeat']):\n pass\n else:\n raise\n return cls(meanvalue, stdcollector ** 0.5 / (kwargs['NMC'] - 1))\n",
"role": "user"
},
{
"content": "evalfunc",
"role": "assistant"
}
] |
def x(q, R):
return 4 * np.pi / q ** 3 * (np.sin(q * R) - q * R * np.cos(q * R))
|
Fsphere
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, R):\n return 4 * np.pi / q ** 3 * (np.sin(q * R) - q * R * np.cos(q * R))\n",
"role": "user"
},
{
"content": "Fsphere",
"role": "assistant"
}
] |
def x(q, G, Rg, s):
return G / q ** (3 - s) * np.exp(-(q * Rg) ** 2 / s)
|
GeneralGuinier
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, G, Rg, s):\n return G / q ** (3 - s) * np.exp(-(q * Rg) ** 2 / s)\n",
"role": "user"
},
{
"content": "GeneralGuinier",
"role": "assistant"
}
] |
def x(q, G, Rg, alpha):
return GuinierPorodMulti(q, G, Rg, alpha)
|
GuinierPorod
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, G, Rg, alpha):\n return GuinierPorodMulti(q, G, Rg, alpha)\n",
"role": "user"
},
{
"content": "GuinierPorod",
"role": "assistant"
}
] |
def x(q, a, alpha, Rg):
return PorodGuinierMulti(q, a, alpha, Rg)
|
PorodGuinier
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, a, alpha, Rg):\n return PorodGuinierMulti(q, a, alpha, Rg)\n",
"role": "user"
},
{
"content": "PorodGuinier",
"role": "assistant"
}
] |
def x(q, a, alpha, Rg, beta):
return PorodGuinierMulti(q, a, alpha, Rg, beta)
|
PorodGuinierPorod
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, a, alpha, Rg, beta):\n return PorodGuinierMulti(q, a, alpha, Rg, beta)\n",
"role": "user"
},
{
"content": "PorodGuinierPorod",
"role": "assistant"
}
] |
def x(q, G, Rg1, alpha, Rg2):
return GuinierPorodMulti(q, G, Rg1, alpha, Rg2)
|
GuinierPorodGuinier
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, G, Rg1, alpha, Rg2):\n return GuinierPorodMulti(q, G, Rg1, alpha, Rg2)\n",
"role": "user"
},
{
"content": "GuinierPorodGuinier",
"role": "assistant"
}
] |
def x(q, a, alpha, sigma):
return a * q ** alpha * np.exp(-q ** 2 / (2 * sigma ** 2))
|
DampedPowerlaw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, a, alpha, sigma):\n return a * q ** alpha * np.exp(-q ** 2 / (2 * sigma ** 2))\n",
"role": "user"
},
{
"content": "DampedPowerlaw",
"role": "assistant"
}
] |
def x(q, A, mu, sigma, N=1000):
Rmin = 0
Rmax = np.exp(mu + 3 * sigma)
R = np.linspace(Rmin, Rmax, N + 1)[1:]
P = 1 / np.sqrt(2 * np.pi * sigma ** 2 * R ** 2) * np.exp(-(np.log(R) -
mu) ** 2 / (2 * sigma ** 2))
def x(q, R):
qR = np.outer(q, R)
q1 = np.outer(q, np.ones_like(R))
return 4 * np.pi / q1 ** 3 * (np.sin(qR) - qR * np.cos(qR))
I = Fsphere_outer(q, R) ** 2 * np.outer(np.ones_like(q), P)
return A * I.sum(1) / P.sum()
|
LogNormSpheres
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, A, mu, sigma, N=1000):\n Rmin = 0\n Rmax = np.exp(mu + 3 * sigma)\n R = np.linspace(Rmin, Rmax, N + 1)[1:]\n P = 1 / np.sqrt(2 * np.pi * sigma ** 2 * R ** 2) * np.exp(-(np.log(R) -\n mu) ** 2 / (2 * sigma ** 2))\n\n def x(q, R):\n qR = np.outer(q, R)\n q1 = np.outer(q, np.ones_like(R))\n return 4 * np.pi / q1 ** 3 * (np.sin(qR) - qR * np.cos(qR))\n I = Fsphere_outer(q, R) ** 2 * np.outer(np.ones_like(q), P)\n return A * I.sum(1) / P.sum()\n",
"role": "user"
},
{
"content": "LogNormSpheres",
"role": "assistant"
}
] |
def x(q, A, R0, sigma, N=1000, weighting='intensity'):
Rmin = max(0, R0 - 3 * sigma)
Rmax = R0 + 3 * sigma
R = np.linspace(Rmin, Rmax, N + 1)[1:]
P = 1 / np.sqrt(2 * np.pi * sigma ** 2) * np.exp(-(R - R0) ** 2 / (2 *
sigma ** 2))
def x(q, R):
qR = np.outer(q, R)
return 3 / qR ** 3 * (np.sin(qR) - qR * np.cos(qR))
V = R ** 3 * 4 * np.pi / 3.0
if weighting == 'intensity':
P = P * V * V
elif weighting == 'volume':
P = P * V
elif weighting == 'number':
pass
else:
raise ValueError('Invalid weighting: ' + str(weighting))
I = Fsphere_outer(q, R) ** 2 * np.outer(np.ones_like(q), P)
return A * I.sum(1) / P.sum()
|
GaussSpheres
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, A, R0, sigma, N=1000, weighting='intensity'):\n Rmin = max(0, R0 - 3 * sigma)\n Rmax = R0 + 3 * sigma\n R = np.linspace(Rmin, Rmax, N + 1)[1:]\n P = 1 / np.sqrt(2 * np.pi * sigma ** 2) * np.exp(-(R - R0) ** 2 / (2 * \n sigma ** 2))\n\n def x(q, R):\n qR = np.outer(q, R)\n return 3 / qR ** 3 * (np.sin(qR) - qR * np.cos(qR))\n V = R ** 3 * 4 * np.pi / 3.0\n if weighting == 'intensity':\n P = P * V * V\n elif weighting == 'volume':\n P = P * V\n elif weighting == 'number':\n pass\n else:\n raise ValueError('Invalid weighting: ' + str(weighting))\n I = Fsphere_outer(q, R) ** 2 * np.outer(np.ones_like(q), P)\n return A * I.sum(1) / P.sum()\n",
"role": "user"
},
{
"content": "GaussSpheres",
"role": "assistant"
}
] |
def x(q, A, alpha, G, Rg, beta, C):
return PowerlawPlusConstant(q, A, alpha, C) + GuinierPorod(q, G, Rg, beta)
|
PowerlawGuinierPorodConst
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, A, alpha, G, Rg, beta, C):\n return PowerlawPlusConstant(q, A, alpha, C) + GuinierPorod(q, G, Rg, beta)\n",
"role": "user"
},
{
"content": "PowerlawGuinierPorodConst",
"role": "assistant"
}
] |
def x(q, G, *Rgsalphas):
scalefactor = G
funcs = [lambda q: Guinier(q, G, Rgsalphas[0])]
indices = np.ones_like(q, dtype=np.bool)
constraints = []
for i in range(1, len(Rgsalphas)):
if i % 2:
qsep = _PGgen_qsep(Rgsalphas[i], Rgsalphas[i - 1], 3)
scalefactor = _PGgen_A(Rgsalphas[i], Rgsalphas[i - 1], 3,
scalefactor)
funcs.append(lambda q, a=scalefactor, alpha=Rgsalphas[i]:
Powerlaw(q, a, alpha))
else:
qsep = _PGgen_qsep(Rgsalphas[i - 1], Rgsalphas[i], 3)
scalefactor = _PGgen_G(Rgsalphas[i - 1], Rgsalphas[i], 3,
scalefactor)
funcs.append(lambda q, G=scalefactor, Rg=Rgsalphas[i]: Guinier(
q, G, Rg))
constraints.append(indices & (q < qsep))
indices[q < qsep] = False
constraints.append(indices)
return np.piecewise(q, constraints, funcs)
|
GuinierPorodMulti
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, G, *Rgsalphas):\n scalefactor = G\n funcs = [lambda q: Guinier(q, G, Rgsalphas[0])]\n indices = np.ones_like(q, dtype=np.bool)\n constraints = []\n for i in range(1, len(Rgsalphas)):\n if i % 2:\n qsep = _PGgen_qsep(Rgsalphas[i], Rgsalphas[i - 1], 3)\n scalefactor = _PGgen_A(Rgsalphas[i], Rgsalphas[i - 1], 3,\n scalefactor)\n funcs.append(lambda q, a=scalefactor, alpha=Rgsalphas[i]:\n Powerlaw(q, a, alpha))\n else:\n qsep = _PGgen_qsep(Rgsalphas[i - 1], Rgsalphas[i], 3)\n scalefactor = _PGgen_G(Rgsalphas[i - 1], Rgsalphas[i], 3,\n scalefactor)\n funcs.append(lambda q, G=scalefactor, Rg=Rgsalphas[i]: Guinier(\n q, G, Rg))\n constraints.append(indices & (q < qsep))\n indices[q < qsep] = False\n constraints.append(indices)\n return np.piecewise(q, constraints, funcs)\n",
"role": "user"
},
{
"content": "GuinierPorodMulti",
"role": "assistant"
}
] |
def x(q, A, *alphasRgs):
scalefactor = A
funcs = [lambda q: Powerlaw(q, A, alphasRgs[0])]
indices = np.ones_like(q, dtype=np.bool)
constraints = []
for i in range(1, len(alphasRgs)):
if i % 2:
qsep = _PGgen_qsep(alphasRgs[i - 1], alphasRgs[i], 3)
scalefactor = _PGgen_G(alphasRgs[i - 1], alphasRgs[i], 3,
scalefactor)
funcs.append(lambda q, G=scalefactor, Rg=alphasRgs[i]: Guinier(
q, G, Rg))
else:
qsep = _PGgen_qsep(alphasRgs[i], alphasRgs[i - 1], 3)
scalefactor = _PGgen_A(alphasRgs[i], alphasRgs[i - 1], 3,
scalefactor)
funcs.append(lambda q, a=scalefactor, alpha=alphasRgs[i]: a * q **
alpha)
constraints.append(indices & (q < qsep))
indices[q < qsep] = False
constraints.append(indices)
return np.piecewise(q, constraints, funcs)
|
PorodGuinierMulti
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, A, *alphasRgs):\n scalefactor = A\n funcs = [lambda q: Powerlaw(q, A, alphasRgs[0])]\n indices = np.ones_like(q, dtype=np.bool)\n constraints = []\n for i in range(1, len(alphasRgs)):\n if i % 2:\n qsep = _PGgen_qsep(alphasRgs[i - 1], alphasRgs[i], 3)\n scalefactor = _PGgen_G(alphasRgs[i - 1], alphasRgs[i], 3,\n scalefactor)\n funcs.append(lambda q, G=scalefactor, Rg=alphasRgs[i]: Guinier(\n q, G, Rg))\n else:\n qsep = _PGgen_qsep(alphasRgs[i], alphasRgs[i - 1], 3)\n scalefactor = _PGgen_A(alphasRgs[i], alphasRgs[i - 1], 3,\n scalefactor)\n funcs.append(lambda q, a=scalefactor, alpha=alphasRgs[i]: a * q **\n alpha)\n constraints.append(indices & (q < qsep))\n indices[q < qsep] = False\n constraints.append(indices)\n return np.piecewise(q, constraints, funcs)\n",
"role": "user"
},
{
"content": "PorodGuinierMulti",
"role": "assistant"
}
] |
def x(q, factor, *args, **kwargs):
if kwargs.get('startswithguinier', True):
funcs = [lambda q, A=factor: GeneralGuinier(q, A, args[0], args[1])]
i = 2
guiniernext = False
else:
funcs = [lambda q, A=factor: Powerlaw(q, A, args[0])]
i = 1
guiniernext = True
indices = np.ones_like(q, dtype=np.bool)
constraints = []
while i < len(args):
if guiniernext:
qsep = _PGgen_qsep(args[i - 1], args[i], args[i + 1])
factor = _PGgen_G(args[i - 1], args[i], args[i + 1], factor)
funcs.append(lambda q, G=factor, Rg=args[i], s=args[i + 1]:
GeneralGuinier(q, G, Rg, s))
guiniernext = False
i += 2
else:
qsep = _PGgen_qsep(args[i], args[i - 2], args[i - 1])
factor = _PGgen_A(args[i], args[i - 2], args[i - 1], factor)
funcs.append(lambda q, a=factor, alpha=args[i]: a * q ** alpha)
guiniernext = True
i += 1
constraints.append(indices & (q < qsep))
indices[q < qsep] = False
constraints.append(indices)
return np.piecewise(q, constraints, funcs)
|
GeneralGuinierPorod
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, factor, *args, **kwargs):\n if kwargs.get('startswithguinier', True):\n funcs = [lambda q, A=factor: GeneralGuinier(q, A, args[0], args[1])]\n i = 2\n guiniernext = False\n else:\n funcs = [lambda q, A=factor: Powerlaw(q, A, args[0])]\n i = 1\n guiniernext = True\n indices = np.ones_like(q, dtype=np.bool)\n constraints = []\n while i < len(args):\n if guiniernext:\n qsep = _PGgen_qsep(args[i - 1], args[i], args[i + 1])\n factor = _PGgen_G(args[i - 1], args[i], args[i + 1], factor)\n funcs.append(lambda q, G=factor, Rg=args[i], s=args[i + 1]:\n GeneralGuinier(q, G, Rg, s))\n guiniernext = False\n i += 2\n else:\n qsep = _PGgen_qsep(args[i], args[i - 2], args[i - 1])\n factor = _PGgen_A(args[i], args[i - 2], args[i - 1], factor)\n funcs.append(lambda q, a=factor, alpha=args[i]: a * q ** alpha)\n guiniernext = True\n i += 1\n constraints.append(indices & (q < qsep))\n indices[q < qsep] = False\n constraints.append(indices)\n return np.piecewise(q, constraints, funcs)\n",
"role": "user"
},
{
"content": "GeneralGuinierPorod",
"role": "assistant"
}
] |
def x(q, Rg):
a = (q * Rg) ** 2
return 2 * (np.exp(-a) - 1 + a) / a ** 2
|
DebyeChain
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, Rg):\n a = (q * Rg) ** 2\n return 2 * (np.exp(-a) - 1 + a) / a ** 2\n",
"role": "user"
},
{
"content": "DebyeChain",
"role": "assistant"
}
] |
def x(q, Rg, nu):
u = (q * Rg) ** 2 * (2 * nu + 1) * (2 * nu + 2) / 6.0
return (u ** (0.5 / nu) * gamma(0.5 / nu) * gammainc(0.5 / nu, u) -
gamma(1.0 / nu) * gammainc(1.0 / nu, u)) / (nu * u ** (1.0 / nu))
|
ExcludedVolumeChain
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, Rg, nu):\n u = (q * Rg) ** 2 * (2 * nu + 1) * (2 * nu + 2) / 6.0\n return (u ** (0.5 / nu) * gamma(0.5 / nu) * gammainc(0.5 / nu, u) - \n gamma(1.0 / nu) * gammainc(1.0 / nu, u)) / (nu * u ** (1.0 / nu))\n",
"role": "user"
},
{
"content": "ExcludedVolumeChain",
"role": "assistant"
}
] |
def x(q, C, r0, s, t):
x = q * r0
return C * (x ** 2 + s) / ((x ** 2 + s) * (x ** 2 + t) + 1)
|
BorueErukhimovich
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, C, r0, s, t):\n x = q * r0\n return C * (x ** 2 + s) / ((x ** 2 + s) * (x ** 2 + t) + 1)\n",
"role": "user"
},
{
"content": "BorueErukhimovich",
"role": "assistant"
}
] |
def x(q, C, r0, s, t, nu):
def x(alpha, s, t):
A = alpha + 2
B = 2 * s * alpha + t * alpha + 4 * s
C = (s * t * alpha + alpha + alpha * s ** 2 + alpha * s * t - 2 + 2 *
s ** 2)
D = alpha * s ** 2 * t + alpha * s
r = np.roots([A, B, C, D])
return r[r > 0][0] ** 0.5
get_B = lambda C, xsep, s, t, nu: C * (xsep ** 2 + s) / ((xsep ** 2 + s
) * (xsep ** 2 + t) + 1) * xsep ** (1.0 / nu)
x = q * r0
xsep = np.real_if_close(get_xsep(-1.0 / nu, s, t))
A = get_B(C, xsep, s, t, nu)
return np.piecewise(q, (x < xsep, x >= xsep), (lambda a:
BorueErukhimovich(a, C, r0, s, t), lambda a: A * (a * r0) ** (-1.0 /
nu)))
|
BorueErukhimovich_Powerlaw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, C, r0, s, t, nu):\n\n def x(alpha, s, t):\n A = alpha + 2\n B = 2 * s * alpha + t * alpha + 4 * s\n C = (s * t * alpha + alpha + alpha * s ** 2 + alpha * s * t - 2 + 2 *\n s ** 2)\n D = alpha * s ** 2 * t + alpha * s\n r = np.roots([A, B, C, D])\n return r[r > 0][0] ** 0.5\n get_B = lambda C, xsep, s, t, nu: C * (xsep ** 2 + s) / ((xsep ** 2 + s\n ) * (xsep ** 2 + t) + 1) * xsep ** (1.0 / nu)\n x = q * r0\n xsep = np.real_if_close(get_xsep(-1.0 / nu, s, t))\n A = get_B(C, xsep, s, t, nu)\n return np.piecewise(q, (x < xsep, x >= xsep), (lambda a:\n BorueErukhimovich(a, C, r0, s, t), lambda a: A * (a * r0) ** (-1.0 /\n nu)))\n",
"role": "user"
},
{
"content": "BorueErukhimovich_Powerlaw",
"role": "assistant"
}
] |
def x(self, data, interval):
data_slice = dict()
for key in data:
if '_valid' in key:
continue
index = [slice(None)] * data[key].ndim
index[0] = self.rng.randint(0, data[key].shape[0])
index[0] = slice(index[0], index[0] + 1)
for tdim in self._time[key]:
index[tdim] = interval
data_slice[key] = data[key][tuple(index)]
return data_slice
|
sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, interval):\n data_slice = dict()\n for key in data:\n if '_valid' in key:\n continue\n index = [slice(None)] * data[key].ndim\n index[0] = self.rng.randint(0, data[key].shape[0])\n index[0] = slice(index[0], index[0] + 1)\n for tdim in self._time[key]:\n index[tdim] = interval\n data_slice[key] = data[key][tuple(index)]\n return data_slice\n",
"role": "user"
},
{
"content": "sample",
"role": "assistant"
}
] |
def x(self, data):
duration = self.data_duration(data)
if self.duration > duration:
raise DataError('Data duration={} is less than sample duration={}'.
format(duration, self.duration))
while True:
yield self.rng.randint(0, duration - self.duration + 1)
|
indices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n duration = self.data_duration(data)\n if self.duration > duration:\n raise DataError('Data duration={} is less than sample duration={}'.\n format(duration, self.duration))\n while True:\n yield self.rng.randint(0, duration - self.duration + 1)\n",
"role": "user"
},
{
"content": "indices",
"role": "assistant"
}
] |
def x(self, data):
duration = self.data_duration(data)
for start in range(0, duration - self.duration, self.stride):
yield start
|
indices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n duration = self.data_duration(data)\n for start in range(0, duration - self.duration, self.stride):\n yield start\n",
"role": "user"
},
{
"content": "indices",
"role": "assistant"
}
] |
def x(self, data):
duration = self.data_duration(data)
while True:
yield self.rng.randint(0, duration - self.min_duration + 1)
|
indices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n duration = self.data_duration(data)\n while True:\n yield self.rng.randint(0, duration - self.min_duration + 1)\n",
"role": "user"
},
{
"content": "indices",
"role": "assistant"
}
] |
def x(self, key):
if self.name is None:
return key
return '{:s}/{:s}'.format(self.name, key)
|
scope
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key):\n if self.name is None:\n return key\n return '{:s}/{:s}'.format(self.name, key)\n",
"role": "user"
},
{
"content": "scope",
"role": "assistant"
}
] |
def x(self, field, shape, dtype):
if not isinstance(dtype, type):
raise ParameterError('dtype={} must be a type'.format(dtype))
if not (isinstance(shape, Iterable) and all([(s is None or isinstance(s,
int)) for s in shape])):
raise ParameterError('shape={} must be an iterable of integers'.
format(shape))
self.fields[self.scope(field)] = Tensor(tuple(shape), dtype)
|
register
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, field, shape, dtype):\n if not isinstance(dtype, type):\n raise ParameterError('dtype={} must be a type'.format(dtype))\n if not (isinstance(shape, Iterable) and all([(s is None or isinstance(s,\n int)) for s in shape])):\n raise ParameterError('shape={} must be an iterable of integers'.\n format(shape))\n self.fields[self.scope(field)] = Tensor(tuple(shape), dtype)\n",
"role": "user"
},
{
"content": "register",
"role": "assistant"
}
] |
def x(self, data):
data_out = dict()
for key in set().union(*data):
data_out[self.scope(key)] = np.stack([np.asarray(d[key]) for d in
data], axis=0)
return data_out
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n data_out = dict()\n for key in set().union(*data):\n data_out[self.scope(key)] = np.stack([np.asarray(d[key]) for d in\n data], axis=0)\n return data_out\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(self, operator):
if not isinstance(operator, Scope):
raise ParameterError(
'Operator {} must be a TaskTransformer or FeatureExtractor'.
format(operator))
for key in operator.fields:
self._time[key] = []
for tdim, idx in enumerate(operator.fields[key].shape, 1):
if idx is None:
self._time[key].append(tdim)
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, operator):\n if not isinstance(operator, Scope):\n raise ParameterError(\n 'Operator {} must be a TaskTransformer or FeatureExtractor'.\n format(operator))\n for key in operator.fields:\n self._time[key] = []\n for tdim, idx in enumerate(operator.fields[key].shape, 1):\n if idx is None:\n self._time[key].append(tdim)\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self, data):
lengths = []
for key in self._time:
for idx in self._time.get(key, []):
lengths.append(data[key].shape[idx])
return min(lengths)
|
data_duration
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n lengths = []\n for key in self._time:\n for idx in self._time.get(key, []):\n lengths.append(data[key].shape[idx])\n return min(lengths)\n",
"role": "user"
},
{
"content": "data_duration",
"role": "assistant"
}
] |
def x(self, data):
duration = self.data_duration(data)
data_out = dict()
for key in data:
idx = [slice(None)] * data[key].ndim
for tdim in self._time.get(key, []):
idx[tdim] = slice(duration)
data_out[key] = data[key][tuple(idx)]
return data_out
|
crop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n duration = self.data_duration(data)\n data_out = dict()\n for key in data:\n idx = [slice(None)] * data[key].ndim\n for tdim in self._time.get(key, []):\n idx[tdim] = slice(duration)\n data_out[key] = data[key][tuple(idx)]\n return data_out\n",
"role": "user"
},
{
"content": "crop",
"role": "assistant"
}
] |
def x(self, y):
n_frames = self.n_frames(get_duration(y=y, sr=self.sr))
mel = np.sqrt(melspectrogram(y=y, sr=self.sr, n_fft=self.n_fft,
hop_length=self.hop_length, n_mels=self.n_mels, fmax=self.fmax)
).astype(np.float32)
mel = fix_length(mel, n_frames)
if self.log:
mel = amplitude_to_db(mel, ref=np.max)
return {'mag': mel.T[self.idx]}
|
transform_audio
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, y):\n n_frames = self.n_frames(get_duration(y=y, sr=self.sr))\n mel = np.sqrt(melspectrogram(y=y, sr=self.sr, n_fft=self.n_fft,\n hop_length=self.hop_length, n_mels=self.n_mels, fmax=self.fmax)\n ).astype(np.float32)\n mel = fix_length(mel, n_frames)\n if self.log:\n mel = amplitude_to_db(mel, ref=np.max)\n return {'mag': mel.T[self.idx]}\n",
"role": "user"
},
{
"content": "transform_audio",
"role": "assistant"
}
] |
def x(self, duration):
ann = super(VectorTransformer, self).empty(duration)
ann.append(time=0, duration=duration, confidence=0, value=np.zeros(self
.dimension, dtype=np.float32))
return ann
|
empty
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, duration):\n ann = super(VectorTransformer, self).empty(duration)\n ann.append(time=0, duration=duration, confidence=0, value=np.zeros(self\n .dimension, dtype=np.float32))\n return ann\n",
"role": "user"
},
{
"content": "empty",
"role": "assistant"
}
] |
def x(self, ann, duration):
_, values = ann.to_interval_values()
vector = np.asarray(values[0], dtype=self.dtype)
if len(vector) != self.dimension:
raise DataError('vector dimension({:0}) != self.dimension({:1})'.
format(len(vector), self.dimension))
return {'vector': vector}
|
transform_annotation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ann, duration):\n _, values = ann.to_interval_values()\n vector = np.asarray(values[0], dtype=self.dtype)\n if len(vector) != self.dimension:\n raise DataError('vector dimension({:0}) != self.dimension({:1})'.\n format(len(vector), self.dimension))\n return {'vector': vector}\n",
"role": "user"
},
{
"content": "transform_annotation",
"role": "assistant"
}
] |
def x(self, vector, duration=None):
ann = jams.Annotation(namespace=self.namespace, duration=duration)
if duration is None:
duration = 0
ann.append(time=0, duration=duration, value=vector)
return ann
|
inverse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vector, duration=None):\n ann = jams.Annotation(namespace=self.namespace, duration=duration)\n if duration is None:\n duration = 0\n ann.append(time=0, duration=duration, value=vector)\n return ann\n",
"role": "user"
},
{
"content": "inverse",
"role": "assistant"
}
] |
def x(self, p_self):
if p_self is None:
self.transition = None
else:
self.transition = np.empty((len(self._classes), 2, 2))
if np.isscalar(p_self):
self.transition = transition_loop(2, p_self)
elif len(p_self) != len(self._classes):
raise ParameterError(
'Invalid p_self.shape={} for vocabulary size={}'.format(
p_self.shape, len(self._classes)))
else:
for i in range(len(self._classes)):
self.transition[i] = transition_loop(2, p_self[i])
|
set_transition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, p_self):\n if p_self is None:\n self.transition = None\n else:\n self.transition = np.empty((len(self._classes), 2, 2))\n if np.isscalar(p_self):\n self.transition = transition_loop(2, p_self)\n elif len(p_self) != len(self._classes):\n raise ParameterError(\n 'Invalid p_self.shape={} for vocabulary size={}'.format(\n p_self.shape, len(self._classes)))\n else:\n for i in range(len(self._classes)):\n self.transition[i] = transition_loop(2, p_self[i])\n",
"role": "user"
},
{
"content": "set_transition",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.