source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, message, color=None): output_to = stderr if color == 'red' else stdout secho(self.indent(message), fg=color, file=output_to)
output
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message, color=None):\n output_to = stderr if color == 'red' else stdout\n secho(self.indent(message), fg=color, file=output_to)\n", "role": "user" }, { "content": "output", "role": "assistant" } ]
def x(self, url, params=None, **kwargs): return requests.get(url, params=params, headers=self.add_headers(**kwargs))
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, url, params=None, **kwargs):\n return requests.get(url, params=params, headers=self.add_headers(**kwargs))\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, url, data=None, **kwargs): return requests.patch(url, data=data, headers=self.add_headers(**kwargs))
patch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, url, data=None, **kwargs):\n return requests.patch(url, data=data, headers=self.add_headers(**kwargs))\n", "role": "user" }, { "content": "patch", "role": "assistant" } ]
def x(self, url, data=None, **kwargs): return requests.post(url, data=data, headers=self.add_headers(**kwargs))
post
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, url, data=None, **kwargs):\n return requests.post(url, data=data, headers=self.add_headers(**kwargs))\n", "role": "user" }, { "content": "post", "role": "assistant" } ]
def x(self, content): if os.path.exists(self.file_path) and not self.assume_yes: message = 'Overwrite existing {}? (y/n) ' if not confirm(message.format(self.filename)): self.backup() self.output('Saving ' + self.filename) with open(self.file_path, 'wb') as handler: if not isinstance(content, bytes): content = bytes(content, 'utf-8') handler.write(content) self.yeah('Done!')
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, content):\n if os.path.exists(self.file_path) and not self.assume_yes:\n message = 'Overwrite existing {}? (y/n) '\n if not confirm(message.format(self.filename)):\n self.backup()\n self.output('Saving ' + self.filename)\n with open(self.file_path, 'wb') as handler:\n if not isinstance(content, bytes):\n content = bytes(content, 'utf-8')\n handler.write(content)\n self.yeah('Done!')\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(self): count = 0 name = '{}.bkp'.format(self.filename) backup = os.path.join(self.cwd, name) while os.path.exists(backup): count += 1 name = '{}.bkp{}'.format(self.filename, count) backup = os.path.join(self.cwd, name) self.hey('Moving existing {} to {}'.format(self.filename, name)) os.rename(os.path.join(self.cwd, self.filename), backup)
backup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n count = 0\n name = '{}.bkp'.format(self.filename)\n backup = os.path.join(self.cwd, name)\n while os.path.exists(backup):\n count += 1\n name = '{}.bkp{}'.format(self.filename, count)\n backup = os.path.join(self.cwd, name)\n self.hey('Moving existing {} to {}'.format(self.filename, name))\n os.rename(os.path.join(self.cwd, self.filename), backup)\n", "role": "user" }, { "content": "backup", "role": "assistant" } ]
def x(self, file_path=None): if not file_path: file_path = self.file_path if not os.path.exists(file_path): self.oops('Sorry, but {} does not exist'.format(file_path)) return False if not os.path.isfile(file_path): self.oops('Sorry, but {} is not a file'.format(file_path)) return False with open(file_path) as handler: return handler.read()
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, file_path=None):\n if not file_path:\n file_path = self.file_path\n if not os.path.exists(file_path):\n self.oops('Sorry, but {} does not exist'.format(file_path))\n return False\n if not os.path.isfile(file_path):\n self.oops('Sorry, but {} is not a file'.format(file_path))\n return False\n with open(file_path) as handler:\n return handler.read()\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(mode): def x(inp_str, pos): return mode if inp_str[pos] is mode else None def x(inp_str, pos): ch = inp_str[pos] for each in mode: if ch is each: return ch return None if isinstance(mode, str): return f_raw if len(mode) is 1: mode = mode[0] return f_raw return f_collection
char_matcher
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mode):\n\n def x(inp_str, pos):\n return mode if inp_str[pos] is mode else None\n\n def x(inp_str, pos):\n ch = inp_str[pos]\n for each in mode:\n if ch is each:\n return ch\n return None\n if isinstance(mode, str):\n return f_raw\n if len(mode) is 1:\n mode = mode[0]\n return f_raw\n return f_collection\n", "role": "user" }, { "content": "char_matcher", "role": "assistant" } ]
def x(mode): def x(inp_str, pos): return unique_literal_cache_pool[mode] if inp_str.startswith(mode, pos ) else None def x(inp_str, pos): for each in mode: if inp_str.startswith(each, pos): return unique_literal_cache_pool[each] return None if isinstance(mode, str): return f_raw if len(mode) is 1: mode = mode[0] return f_raw return f_collection
str_matcher
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mode):\n\n def x(inp_str, pos):\n return unique_literal_cache_pool[mode] if inp_str.startswith(mode, pos\n ) else None\n\n def x(inp_str, pos):\n for each in mode:\n if inp_str.startswith(each, pos):\n return unique_literal_cache_pool[each]\n return None\n if isinstance(mode, str):\n return f_raw\n if len(mode) is 1:\n mode = mode[0]\n return f_raw\n return f_collection\n", "role": "user" }, { "content": "str_matcher", "role": "assistant" } ]
def x(regex_pat): if isinstance(regex_pat, str): regex_pat = re.compile(regex_pat) def x(inp_str, pos): m = regex_pat.match(inp_str, pos) return m.group() if m else None return f
regex_matcher
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(regex_pat):\n if isinstance(regex_pat, str):\n regex_pat = re.compile(regex_pat)\n\n def x(inp_str, pos):\n m = regex_pat.match(inp_str, pos)\n return m.group() if m else None\n return f\n", "role": "user" }, { "content": "regex_matcher", "role": "assistant" } ]
def x(self, stmts: T) ->None: if not stmts: raise ValueError('no ast found!') head, *equals = stmts if head.name is NameEnum.TokenDef: self.ast_for_token_def(head) elif head.name is NameEnum.TokenIgnore: self.ast_for_token_ignore(head) else: self.ast_for_equals(head) for each in equals: self.ast_for_equals(each) if not self.compile_helper.alone and self._current__combined_parser_name: self.compile_helper.alone.add(self._current__combined_parser_name)
ast_for_stmts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, stmts: T) ->None:\n if not stmts:\n raise ValueError('no ast found!')\n head, *equals = stmts\n if head.name is NameEnum.TokenDef:\n self.ast_for_token_def(head)\n elif head.name is NameEnum.TokenIgnore:\n self.ast_for_token_ignore(head)\n else:\n self.ast_for_equals(head)\n for each in equals:\n self.ast_for_equals(each)\n if not self.compile_helper.alone and self._current__combined_parser_name:\n self.compile_helper.alone.add(self._current__combined_parser_name)\n", "role": "user" }, { "content": "ast_for_stmts", "role": "assistant" } ]
def x(self, method, resource_uri, **kwargs): data = kwargs.get('data') response = method(self.API_BASE_URL + resource_uri, json=data, headers= self.headers) response.raise_for_status() return response.json()
request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method, resource_uri, **kwargs):\n data = kwargs.get('data')\n response = method(self.API_BASE_URL + resource_uri, json=data, headers=\n self.headers)\n response.raise_for_status()\n return response.json()\n", "role": "user" }, { "content": "request", "role": "assistant" } ]
def x(self, endpoint, **kwargs): return self._request(requests.get, endpoint, **kwargs)
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, endpoint, **kwargs):\n return self._request(requests.get, endpoint, **kwargs)\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, endpoint, **kwargs): return self._request(requests.post, endpoint, **kwargs)
post
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, endpoint, **kwargs):\n return self._request(requests.post, endpoint, **kwargs)\n", "role": "user" }, { "content": "post", "role": "assistant" } ]
def x(self, endpoint, **kwargs): return self._request(requests.put, endpoint, **kwargs)
put
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, endpoint, **kwargs):\n return self._request(requests.put, endpoint, **kwargs)\n", "role": "user" }, { "content": "put", "role": "assistant" } ]
def x(cls, customer_id, **kwargs): return cls().requests.put('customer/{customer_id}'.format(**locals()), data=kwargs)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, customer_id, **kwargs):\n return cls().requests.put('customer/{customer_id}'.format(**locals()),\n data=kwargs)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(txt): txt = re.sub('<#[^\\|]*\\|(.*)>', '#\\g<1>', txt) txt = re.sub('<(@.*)>', '\\g<1>', txt) txt = re.sub('<([^\\|]*)\\|([^\\|]*)>', '<a href="\\g<1>" target="blank">\\g<2></a>', txt) txt = re.sub('<([^a|/a].*)>', '<a href="\\g<1>" target="blank">\\g<1></a>', txt) for delimeter in LIST_DELIMITERS: slack_tag = delimeter class_name = LIST_DELIMITERS[delimeter] list_regex = u'(?:^|\n){}\\s?(.*)'.format(slack_tag) list_repl = '<li class="list-item-{}">\\g<1></li>'.format(class_name) txt = re.sub(list_regex, list_repl, txt) txt = re.sub(u'(^|\n)(?:&gt;){3}\\s?(.*)$', '\\g<1><blockquote>\\g<2></blockquote>', txt, flags=re.DOTALL) txt = re.sub(u'(?:^|\n)&gt;\\s?(.*)\n?', '<blockquote>\\g<1></blockquote>', txt) txt = re.sub('```\\n?(.*)```', '<pre>\\g<1></pre>', txt, flags=re.DOTALL) txt = re.sub('\\n(</pre>)', '\\g<1>', txt) for wrapper in FORMATTERS: slack_tag = wrapper html_tag = FORMATTERS[wrapper] regex = '(?<!\\\\)\\{t}([^\\{t}|\\n]*)\\{t}'.format(t=slack_tag) repl = '<{t}>\\g<1></{t}>'.format(t=html_tag) txt = re.sub(regex, repl, txt) txt = txt.replace('\n', '<br />') parser = CustomSlackdownHTMLParser(txt) txt = parser.clean() txt = txt.replace(' ', ' &nbsp') return txt
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(txt):\n txt = re.sub('<#[^\\\\|]*\\\\|(.*)>', '#\\\\g<1>', txt)\n txt = re.sub('<(@.*)>', '\\\\g<1>', txt)\n txt = re.sub('<([^\\\\|]*)\\\\|([^\\\\|]*)>',\n '<a href=\"\\\\g<1>\" target=\"blank\">\\\\g<2></a>', txt)\n txt = re.sub('<([^a|/a].*)>',\n '<a href=\"\\\\g<1>\" target=\"blank\">\\\\g<1></a>', txt)\n for delimeter in LIST_DELIMITERS:\n slack_tag = delimeter\n class_name = LIST_DELIMITERS[delimeter]\n list_regex = u'(?:^|\\n){}\\\\s?(.*)'.format(slack_tag)\n list_repl = '<li class=\"list-item-{}\">\\\\g<1></li>'.format(class_name)\n txt = re.sub(list_regex, list_repl, txt)\n txt = re.sub(u'(^|\\n)(?:&gt;){3}\\\\s?(.*)$',\n '\\\\g<1><blockquote>\\\\g<2></blockquote>', txt, flags=re.DOTALL)\n txt = re.sub(u'(?:^|\\n)&gt;\\\\s?(.*)\\n?',\n '<blockquote>\\\\g<1></blockquote>', txt)\n txt = re.sub('```\\\\n?(.*)```', '<pre>\\\\g<1></pre>', txt, flags=re.DOTALL)\n txt = re.sub('\\\\n(</pre>)', '\\\\g<1>', txt)\n for wrapper in FORMATTERS:\n slack_tag = wrapper\n html_tag = FORMATTERS[wrapper]\n regex = '(?<!\\\\\\\\)\\\\{t}([^\\\\{t}|\\\\n]*)\\\\{t}'.format(t=slack_tag)\n repl = '<{t}>\\\\g<1></{t}>'.format(t=html_tag)\n txt = re.sub(regex, repl, txt)\n txt = txt.replace('\\n', '<br />')\n parser = CustomSlackdownHTMLParser(txt)\n txt = parser.clean()\n txt = txt.replace(' ', ' &nbsp')\n return txt\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(self, list_type): if list_type in LIST_TYPES.keys(): tag = LIST_TYPES[list_type] else: raise Exception( 'CustomSlackdownHTMLParser:_open_list: Not a valid list type.') html = '<{t} class="list-container-{c}">'.format(t=tag, c=list_type) self.cleaned_html += html self.current_parent_element['tag'] = LIST_TYPES[list_type] self.current_parent_element['attrs'] = {'class': list_type}
open_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, list_type):\n if list_type in LIST_TYPES.keys():\n tag = LIST_TYPES[list_type]\n else:\n raise Exception(\n 'CustomSlackdownHTMLParser:_open_list: Not a valid list type.')\n html = '<{t} class=\"list-container-{c}\">'.format(t=tag, c=list_type)\n self.cleaned_html += html\n self.current_parent_element['tag'] = LIST_TYPES[list_type]\n self.current_parent_element['attrs'] = {'class': list_type}\n", "role": "user" }, { "content": "open_list", "role": "assistant" } ]
def x(self): list_type = self.current_parent_element['attrs']['class'] tag = LIST_TYPES[list_type] html = '</{t}>'.format(t=tag) self.cleaned_html += html self.current_parent_element['tag'] = '' self.current_parent_element['attrs'] = {}
close_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n list_type = self.current_parent_element['attrs']['class']\n tag = LIST_TYPES[list_type]\n html = '</{t}>'.format(t=tag)\n self.cleaned_html += html\n self.current_parent_element['tag'] = ''\n self.current_parent_element['attrs'] = {}\n", "role": "user" }, { "content": "close_list", "role": "assistant" } ]
def x(self, tag, attrs): attrs_dict = dict(t for t in attrs) if tag in PARENT_ELEMENTS: if self.current_parent_element['tag'] != '': self.cleaned_html += '</{}>'.format(self.current_parent_element ['tag']) self.current_parent_element['tag'] = tag self.current_parent_element['attrs'] = {} self.cleaned_html += '<{}>'.format(tag) elif tag == 'li': self.parsing_li = True class_name = attrs_dict['class'] list_type = class_name[10:] if self.current_parent_element['tag' ] == 'ul' or self.current_parent_element['tag'] == 'ol': cur_list_type = self.current_parent_element['attrs']['class'] if cur_list_type != list_type: self._close_list() self._open_list(list_type) else: if self.current_parent_element['tag'] != '': self.cleaned_html += '</{}>'.format(self. current_parent_element['tag']) self._open_list(list_type) self.cleaned_html += '<{}>'.format(tag) elif tag == 'br': if self.current_parent_element['tag'] == 'p': self.cleaned_html += '</p>' self.current_parent_element['tag'] = '' self.current_parent_element['attrs'] = {} elif self.current_parent_element['tag' ] == 'ul' or self.current_parent_element['tag'] == 'ol': self._close_list() elif self.current_parent_element['tag'] in PARENT_ELEMENTS: self.cleaned_html += '<br />' else: self.cleaned_html += '<p></p>' else: if self.current_parent_element['tag'] == '': self.cleaned_html += '<p>' self.current_parent_element['tag'] = 'p' self.cleaned_html += '<{}'.format(tag) for attr in sorted(attrs_dict.keys()): self.cleaned_html += ' {k}="{v}"'.format(k=attr, v=attrs_dict[attr] ) self.cleaned_html += '>'
handle_starttag
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tag, attrs):\n attrs_dict = dict(t for t in attrs)\n if tag in PARENT_ELEMENTS:\n if self.current_parent_element['tag'] != '':\n self.cleaned_html += '</{}>'.format(self.current_parent_element\n ['tag'])\n self.current_parent_element['tag'] = tag\n self.current_parent_element['attrs'] = {}\n self.cleaned_html += '<{}>'.format(tag)\n elif tag == 'li':\n self.parsing_li = True\n class_name = attrs_dict['class']\n list_type = class_name[10:]\n if self.current_parent_element['tag'\n ] == 'ul' or self.current_parent_element['tag'] == 'ol':\n cur_list_type = self.current_parent_element['attrs']['class']\n if cur_list_type != list_type:\n self._close_list()\n self._open_list(list_type)\n else:\n if self.current_parent_element['tag'] != '':\n self.cleaned_html += '</{}>'.format(self.\n current_parent_element['tag'])\n self._open_list(list_type)\n self.cleaned_html += '<{}>'.format(tag)\n elif tag == 'br':\n if self.current_parent_element['tag'] == 'p':\n self.cleaned_html += '</p>'\n self.current_parent_element['tag'] = ''\n self.current_parent_element['attrs'] = {}\n elif self.current_parent_element['tag'\n ] == 'ul' or self.current_parent_element['tag'] == 'ol':\n self._close_list()\n elif self.current_parent_element['tag'] in PARENT_ELEMENTS:\n self.cleaned_html += '<br />'\n else:\n self.cleaned_html += '<p></p>'\n else:\n if self.current_parent_element['tag'] == '':\n self.cleaned_html += '<p>'\n self.current_parent_element['tag'] = 'p'\n self.cleaned_html += '<{}'.format(tag)\n for attr in sorted(attrs_dict.keys()):\n self.cleaned_html += ' {k}=\"{v}\"'.format(k=attr, v=attrs_dict[attr]\n )\n self.cleaned_html += '>'\n", "role": "user" }, { "content": "handle_starttag", "role": "assistant" } ]
def x(self, tag): if tag in PARENT_ELEMENTS: self.current_parent_element['tag'] = '' self.current_parent_element['attrs'] = '' if tag == 'li': self.parsing_li = True if tag != 'br': self.cleaned_html += '</{}>'.format(tag)
handle_endtag
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tag):\n if tag in PARENT_ELEMENTS:\n self.current_parent_element['tag'] = ''\n self.current_parent_element['attrs'] = ''\n if tag == 'li':\n self.parsing_li = True\n if tag != 'br':\n self.cleaned_html += '</{}>'.format(tag)\n", "role": "user" }, { "content": "handle_endtag", "role": "assistant" } ]
def x(self, data): if self.current_parent_element['tag'] == '': self.cleaned_html += '<p>' self.current_parent_element['tag'] = 'p' self.cleaned_html += data
handle_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n if self.current_parent_element['tag'] == '':\n self.cleaned_html += '<p>'\n self.current_parent_element['tag'] = 'p'\n self.cleaned_html += data\n", "role": "user" }, { "content": "handle_data", "role": "assistant" } ]
def x(self): preformatted_wrappers = ['pre', 'code'] for wrapper in preformatted_wrappers: for formatter in FORMATTERS: tag = FORMATTERS[formatter] character = formatter regex = '(<{w}>.*)<{t}>(.*)</{t}>(.*</{w}>)'.format(t=tag, w= wrapper) repl = '\\g<1>{c}\\g<2>{c}\\g<3>'.format(c=character) self.cleaned_html = re.sub(regex, repl, self.cleaned_html)
remove_pre_formatting
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n preformatted_wrappers = ['pre', 'code']\n for wrapper in preformatted_wrappers:\n for formatter in FORMATTERS:\n tag = FORMATTERS[formatter]\n character = formatter\n regex = '(<{w}>.*)<{t}>(.*)</{t}>(.*</{w}>)'.format(t=tag, w=\n wrapper)\n repl = '\\\\g<1>{c}\\\\g<2>{c}\\\\g<3>'.format(c=character)\n self.cleaned_html = re.sub(regex, repl, self.cleaned_html)\n", "role": "user" }, { "content": "remove_pre_formatting", "role": "assistant" } ]
def x(self): self.feed() if self.current_parent_element['tag'] != '': self.cleaned_html += '</{}>'.format(self.current_parent_element['tag']) self.cleaned_html = re.sub('(</[u|o]l>)<p></p>', '\\g<1>', self. cleaned_html) self._remove_pre_formatting() return self.cleaned_html
clean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.feed()\n if self.current_parent_element['tag'] != '':\n self.cleaned_html += '</{}>'.format(self.current_parent_element['tag'])\n self.cleaned_html = re.sub('(</[u|o]l>)<p></p>', '\\\\g<1>', self.\n cleaned_html)\n self._remove_pre_formatting()\n return self.cleaned_html\n", "role": "user" }, { "content": "clean", "role": "assistant" } ]
def x(**kwargs): html = '<div class="user">' author_avatar = kwargs.get('author_avatar', None) if author_avatar: html += '<img class="user-avatar" src="{}">'.format(author_avatar) author_name = kwargs.get('author_name', None) if author_name: html += '<p class="user-name">' author_link = kwargs.get('author_link', None) if author_link: html += '<a href="{author_link}">{author_name}</a>'.format( author_link=author_link, author_name=author_name) else: html += author_name html += '</p>' author_handle = kwargs.get('author_handle', None) if author_handle: html += '<p class="user-handle">{}</p>'.format(author_handle) html += '</div>'
render_author
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(**kwargs):\n html = '<div class=\"user\">'\n author_avatar = kwargs.get('author_avatar', None)\n if author_avatar:\n html += '<img class=\"user-avatar\" src=\"{}\">'.format(author_avatar)\n author_name = kwargs.get('author_name', None)\n if author_name:\n html += '<p class=\"user-name\">'\n author_link = kwargs.get('author_link', None)\n if author_link:\n html += '<a href=\"{author_link}\">{author_name}</a>'.format(\n author_link=author_link, author_name=author_name)\n else:\n html += author_name\n html += '</p>'\n author_handle = kwargs.get('author_handle', None)\n if author_handle:\n html += '<p class=\"user-handle\">{}</p>'.format(author_handle)\n html += '</div>'\n", "role": "user" }, { "content": "render_author", "role": "assistant" } ]
def x(**kwargs): html = '<div class="metadata">' service_logo = kwargs.get('service_logo', None) if service_logo: html += '<img class="metadata-logo" src="{}">'.format(service_logo) service_name = kwargs.get('service_name', None) if service_name: html += '<p class="metadata-name">{}</p>'.format(service_name) timestamp = kwargs.get('timestamp', None) if timestamp: html += '<p class="user-name">' timestamp_link = kwargs.get('timestamp_link', None) if timestamp_link: html += '<a href="{timestamp_link}">{timestamp}</a>'.format( timestamp_link=timestamp_link, timestamp=timestamp) else: html += timestamp html += '</p>' html += '</div>'
render_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(**kwargs):\n html = '<div class=\"metadata\">'\n service_logo = kwargs.get('service_logo', None)\n if service_logo:\n html += '<img class=\"metadata-logo\" src=\"{}\">'.format(service_logo)\n service_name = kwargs.get('service_name', None)\n if service_name:\n html += '<p class=\"metadata-name\">{}</p>'.format(service_name)\n timestamp = kwargs.get('timestamp', None)\n if timestamp:\n html += '<p class=\"user-name\">'\n timestamp_link = kwargs.get('timestamp_link', None)\n if timestamp_link:\n html += '<a href=\"{timestamp_link}\">{timestamp}</a>'.format(\n timestamp_link=timestamp_link, timestamp=timestamp)\n else:\n html += timestamp\n html += '</p>'\n html += '</div>'\n", "role": "user" }, { "content": "render_metadata", "role": "assistant" } ]
def x(**kwargs): html = '' url = kwargs.get('url', None) if url: html = '<img' alt_text = kwargs.get('alt_text', None) if alt_text: html += ' alt="{}"'.format(alt_text) title = kwargs.get('title', None) if title: html += ' title="{}"'.format(title) html += ' src="{}">'.format(url) return html
render_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(**kwargs):\n html = ''\n url = kwargs.get('url', None)\n if url:\n html = '<img'\n alt_text = kwargs.get('alt_text', None)\n if alt_text:\n html += ' alt=\"{}\"'.format(alt_text)\n title = kwargs.get('title', None)\n if title:\n html += ' title=\"{}\"'.format(title)\n html += ' src=\"{}\">'.format(url)\n return html\n", "role": "user" }, { "content": "render_image", "role": "assistant" } ]
def x(text, **kwargs): author = render_author(**kwargs['author']) metadata = render_metadata(**kwargs['metadata']) image = render_image(**kwargs['image']) html = ( """ <div class="attachment attachment-twitter"> {author} <p class="twitter-content">{text}</p> {metadata} {image} </div> """ .format(author=author, text=text, metadata=metadata, image=image). strip()) return html
render_twitter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, **kwargs):\n author = render_author(**kwargs['author'])\n metadata = render_metadata(**kwargs['metadata'])\n image = render_image(**kwargs['image'])\n html = (\n \"\"\"\n <div class=\"attachment attachment-twitter\">\n {author}\n <p class=\"twitter-content\">{text}</p>\n {metadata}\n {image}\n </div>\n \"\"\"\n .format(author=author, text=text, metadata=metadata, image=image).\n strip())\n return html\n", "role": "user" }, { "content": "render_twitter", "role": "assistant" } ]
def x(LAB_DIR): coeffs = np.load('%s/coeffs.npz' % LAB_DIR)['arr_0'] scatters = np.load('%s/scatters.npz' % LAB_DIR)['arr_0'] chisqs = np.load('%s/chisqs.npz' % LAB_DIR)['arr_0'] pivots = np.load('%s/pivots.npz' % LAB_DIR)['arr_0'] return coeffs, scatters, chisqs, pivots
get_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(LAB_DIR):\n coeffs = np.load('%s/coeffs.npz' % LAB_DIR)['arr_0']\n scatters = np.load('%s/scatters.npz' % LAB_DIR)['arr_0']\n chisqs = np.load('%s/chisqs.npz' % LAB_DIR)['arr_0']\n pivots = np.load('%s/pivots.npz' % LAB_DIR)['arr_0']\n return coeffs, scatters, chisqs, pivots\n", "role": "user" }, { "content": "get_model", "role": "assistant" } ]
def x(ids_find): a = pyfits.open('%s/lamost_catalog_full.fits' % LAB_DIR) data = a[1].data a.close() id_all = data['lamost_id'] id_all = np.array(id_all) id_all = np.array([val.strip() for val in id_all]) snr_all = data['cannon_snrg'] chisq_all = data['cannon_chisq'] teff = data['cannon_teff'] logg = data['cannon_logg'] feh = data['cannon_m_h'] afe = data['cannon_alpha_m'] ak = data['cannon_a_k'] labels = np.vstack((teff, logg, feh, afe, ak)) choose = np.in1d(id_all, ids_find) id_choose = id_all[choose] label_choose = labels[:, choose] snr_choose = snr_all[choose] chisq_choose = chisq_all[choose] inds = np.array([np.where(id_choose == val)[0][0] for val in ids_find]) print(id_choose[inds][100]) print(ids_find[100]) return label_choose[:, inds], snr_choose[inds], chisq_choose[inds]
get_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ids_find):\n a = pyfits.open('%s/lamost_catalog_full.fits' % LAB_DIR)\n data = a[1].data\n a.close()\n id_all = data['lamost_id']\n id_all = np.array(id_all)\n id_all = np.array([val.strip() for val in id_all])\n snr_all = data['cannon_snrg']\n chisq_all = data['cannon_chisq']\n teff = data['cannon_teff']\n logg = data['cannon_logg']\n feh = data['cannon_m_h']\n afe = data['cannon_alpha_m']\n ak = data['cannon_a_k']\n labels = np.vstack((teff, logg, feh, afe, ak))\n choose = np.in1d(id_all, ids_find)\n id_choose = id_all[choose]\n label_choose = labels[:, choose]\n snr_choose = snr_all[choose]\n chisq_choose = chisq_all[choose]\n inds = np.array([np.where(id_choose == val)[0][0] for val in ids_find])\n print(id_choose[inds][100])\n print(ids_find[100])\n return label_choose[:, inds], snr_choose[inds], chisq_choose[inds]\n", "role": "user" }, { "content": "get_labels", "role": "assistant" } ]
def x(): wl = np.load('%s/wl.npz' % LAB_DIR)['arr_0'] filenames = np.array([(SPEC_DIR + '/Spectra' + '/' + val) for val in lamost_id]) grid, fluxes, ivars, npix, SNRs = lamost.load_spectra(lamost_id, input_grid=wl) ds = dataset.Dataset(wl, lamost_id, fluxes, ivars, [1], lamost_id[0:2], fluxes[0:2], ivars[0:2]) ds.continuum_normalize_gaussian_smoothing(L=50) np.savez(SPEC_DIR + '/' + 'norm_flux.npz', ds.tr_flux) np.savez(SPEC_DIR + '/' + 'norm_ivar.npz', ds.tr_ivar) return ds.tr_flux, ds.tr_ivar
get_normed_spectra
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n wl = np.load('%s/wl.npz' % LAB_DIR)['arr_0']\n filenames = np.array([(SPEC_DIR + '/Spectra' + '/' + val) for val in\n lamost_id])\n grid, fluxes, ivars, npix, SNRs = lamost.load_spectra(lamost_id,\n input_grid=wl)\n ds = dataset.Dataset(wl, lamost_id, fluxes, ivars, [1], lamost_id[0:2],\n fluxes[0:2], ivars[0:2])\n ds.continuum_normalize_gaussian_smoothing(L=50)\n np.savez(SPEC_DIR + '/' + 'norm_flux.npz', ds.tr_flux)\n np.savez(SPEC_DIR + '/' + 'norm_ivar.npz', ds.tr_ivar)\n return ds.tr_flux, ds.tr_ivar\n", "role": "user" }, { "content": "get_normed_spectra", "role": "assistant" } ]
def x(): for f in lamost_id: short = f.split('-')[2].split('_')[0] filename = '%s/%s.gz' % (short, f) DIR = '/Users/annaho/Data/Li_Giants/Spectra_APOKASC' searchfor = '%s/%s.gz' % (DIR, f) if glob.glob(searchfor): print('done') else: os.system('wget http://dr2.lamost.org/sas/fits/%s' % filename) new_filename = filename.split('_')[0] + '_' + filename.split('_')[2 ] os.system('wget http://dr2.lamost.org/sas/fits/%s' % new_filename)
wget_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n for f in lamost_id:\n short = f.split('-')[2].split('_')[0]\n filename = '%s/%s.gz' % (short, f)\n DIR = '/Users/annaho/Data/Li_Giants/Spectra_APOKASC'\n searchfor = '%s/%s.gz' % (DIR, f)\n if glob.glob(searchfor):\n print('done')\n else:\n os.system('wget http://dr2.lamost.org/sas/fits/%s' % filename)\n new_filename = filename.split('_')[0] + '_' + filename.split('_')[2\n ]\n os.system('wget http://dr2.lamost.org/sas/fits/%s' % new_filename)\n", "role": "user" }, { "content": "wget_files", "role": "assistant" } ]
def x(): cannon_teff = data['cannon_teff_2'] cannon_logg = data['cannon_logg_2'] cannon_m_h = data['cannon_m_h'] cannon_alpha_m = data['cannon_alpha_m'] cannon_a_k = data['cannon_a_k'] labels = np.vstack((cannon_teff, cannon_logg, cannon_m_h, cannon_alpha_m, cannon_a_k)) cannon_chisq = data['cannon_chisq'] np.savez(DATA_DIR + 'chisq.npz', labels) np.savez(DATA_DIR + 'labels.npz', labels) snrg = data['cannon_snrg'] np.savez('snr.npz', snrg) return labels.T
get_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n cannon_teff = data['cannon_teff_2']\n cannon_logg = data['cannon_logg_2']\n cannon_m_h = data['cannon_m_h']\n cannon_alpha_m = data['cannon_alpha_m']\n cannon_a_k = data['cannon_a_k']\n labels = np.vstack((cannon_teff, cannon_logg, cannon_m_h,\n cannon_alpha_m, cannon_a_k))\n cannon_chisq = data['cannon_chisq']\n np.savez(DATA_DIR + 'chisq.npz', labels)\n np.savez(DATA_DIR + 'labels.npz', labels)\n snrg = data['cannon_snrg']\n np.savez('snr.npz', snrg)\n return labels.T\n", "role": "user" }, { "content": "get_labels", "role": "assistant" } ]
def x(spec_raw): spec = np.array([spec_raw]) wl = np.arange(0, spec.shape[1]) w = continuum_normalization.gaussian_weight_matrix(wl, L=50) ivar = np.ones(spec.shape) * 0.5 cont = continuum_normalization._find_cont_gaussian_smooth(wl, spec, ivar, w ) norm_flux, norm_ivar = continuum_normalization._cont_norm(spec, ivar, cont) return norm_flux[0]
cannon_normalize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(spec_raw):\n spec = np.array([spec_raw])\n wl = np.arange(0, spec.shape[1])\n w = continuum_normalization.gaussian_weight_matrix(wl, L=50)\n ivar = np.ones(spec.shape) * 0.5\n cont = continuum_normalization._find_cont_gaussian_smooth(wl, spec, ivar, w\n )\n norm_flux, norm_ivar = continuum_normalization._cont_norm(spec, ivar, cont)\n return norm_flux[0]\n", "role": "user" }, { "content": "cannon_normalize", "role": "assistant" } ]
def x(grid, wl, flux): flux_rs = interpolate.interp1d(wl, flux)(grid) return flux_rs
resample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, wl, flux):\n flux_rs = interpolate.interp1d(wl, flux)(grid)\n return flux_rs\n", "role": "user" }, { "content": "resample", "role": "assistant" } ]
def x(choose, coeffs, pivots): base_labels = [4800, 2.5, 0.03, 0.1, -0.17, -0.17, 0, -0.16, -0.13, - 0.15, 0.13, 0.08, 0.17, -0.062] label_names = np.array(['TEFF', 'LOGG', 'AK', 'Al', 'Ca', 'C', 'Fe', 'Mg', 'Mn', 'Ni', 'N', 'O', 'Si', 'Ti']) label_atnum = np.array([0, 1, -1, 13, 20, 6, 26, 12, 25, 28, 7, 8, 14, 22]) ind = np.where(label_atnum == choose)[0][0] low_lab = copy.copy(base_labels) high = base_labels[ind] if choose > 0: low = base_labels[ind] - 0.2 else: if choose != 0: print('warning...') low = base_labels[ind] - 200 low_lab[ind] = low lvec = train_model._get_lvec(np.array([low_lab]), pivots)[0] model_low = np.dot(coeffs, lvec) lvec = train_model._get_lvec(np.array([base_labels]), pivots)[0] model_high = np.dot(coeffs, lvec) grad_spec = (model_high - model_low) / (high - low) return grad_spec
gen_cannon_grad_spec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(choose, coeffs, pivots):\n base_labels = [4800, 2.5, 0.03, 0.1, -0.17, -0.17, 0, -0.16, -0.13, -\n 0.15, 0.13, 0.08, 0.17, -0.062]\n label_names = np.array(['TEFF', 'LOGG', 'AK', 'Al', 'Ca', 'C', 'Fe',\n 'Mg', 'Mn', 'Ni', 'N', 'O', 'Si', 'Ti'])\n label_atnum = np.array([0, 1, -1, 13, 20, 6, 26, 12, 25, 28, 7, 8, 14, 22])\n ind = np.where(label_atnum == choose)[0][0]\n low_lab = copy.copy(base_labels)\n high = base_labels[ind]\n if choose > 0:\n low = base_labels[ind] - 0.2\n else:\n if choose != 0:\n print('warning...')\n low = base_labels[ind] - 200\n low_lab[ind] = low\n lvec = train_model._get_lvec(np.array([low_lab]), pivots)[0]\n model_low = np.dot(coeffs, lvec)\n lvec = train_model._get_lvec(np.array([base_labels]), pivots)[0]\n model_high = np.dot(coeffs, lvec)\n grad_spec = (model_high - model_low) / (high - low)\n return grad_spec\n", "role": "user" }, { "content": "gen_cannon_grad_spec", "role": "assistant" } ]
def x(atomic_number): DATA_DIR = '/Users/annaho/Data/LAMOST/Mass_And_Age' temp = np.load('%s/X_u_template_KGh_res=1800.npz' % DATA_DIR) X_u_template = temp['X_u_template'] wl = temp['wavelength'] grad_spec = X_u_template[:, atomic_number] return wl, grad_spec
get_model_spec_ting
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(atomic_number):\n DATA_DIR = '/Users/annaho/Data/LAMOST/Mass_And_Age'\n temp = np.load('%s/X_u_template_KGh_res=1800.npz' % DATA_DIR)\n X_u_template = temp['X_u_template']\n wl = temp['wavelength']\n grad_spec = X_u_template[:, atomic_number]\n return wl, grad_spec\n", "role": "user" }, { "content": "get_model_spec_ting", "role": "assistant" } ]
def x(ds, m): model_spectra = get_model_spectra(ds, m) resid = ds.test_flux - model_spectra return resid
get_residuals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ds, m):\n model_spectra = get_model_spectra(ds, m)\n resid = ds.test_flux - model_spectra\n return resid\n", "role": "user" }, { "content": "get_residuals", "role": "assistant" } ]
def x(): direc = '/home/annaho/TheCannon/code/lamost/mass_age/cn' m = model.CannonModel(2) m.coeffs = np.load(direc + '/coeffs.npz')['arr_0'][0:3626, :] m.scatters = np.load(direc + '/scatters.npz')['arr_0'][0:3626] m.chisqs = np.load(direc + '/chisqs.npz')['arr_0'][0:3626] m.pivots = np.load(direc + '/pivots.npz')['arr_0'] return m
load_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n direc = '/home/annaho/TheCannon/code/lamost/mass_age/cn'\n m = model.CannonModel(2)\n m.coeffs = np.load(direc + '/coeffs.npz')['arr_0'][0:3626, :]\n m.scatters = np.load(direc + '/scatters.npz')['arr_0'][0:3626]\n m.chisqs = np.load(direc + '/chisqs.npz')['arr_0'][0:3626]\n m.pivots = np.load(direc + '/pivots.npz')['arr_0']\n return m\n", "role": "user" }, { "content": "load_model", "role": "assistant" } ]
def x(date): LAB_DIR = '/home/annaho/TheCannon/data/lamost' WL_DIR = '/home/annaho/TheCannon/code/lamost/mass_age/cn' SPEC_DIR = ( '/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels/output') wl = np.load(WL_DIR + '/wl_cols.npz')['arr_0'][0:3626] ds = dataset.Dataset(wl, [], [], [], [], [], [], []) test_label = np.load('%s/%s_all_cannon_labels.npz' % (LAB_DIR, date))[ 'arr_0'] ds.test_label_vals = test_label a = np.load('%s/%s_norm.npz' % (SPEC_DIR, date)) ds.test_flux = a['arr_0'] ds.test_ivar = a['arr_1'] ds.test_ID = np.load('%s/%s_ids.npz' % (SPEC_DIR, date))['arr_0'] return ds
load_dataset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date):\n LAB_DIR = '/home/annaho/TheCannon/data/lamost'\n WL_DIR = '/home/annaho/TheCannon/code/lamost/mass_age/cn'\n SPEC_DIR = (\n '/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels/output')\n wl = np.load(WL_DIR + '/wl_cols.npz')['arr_0'][0:3626]\n ds = dataset.Dataset(wl, [], [], [], [], [], [], [])\n test_label = np.load('%s/%s_all_cannon_labels.npz' % (LAB_DIR, date))[\n 'arr_0']\n ds.test_label_vals = test_label\n a = np.load('%s/%s_norm.npz' % (SPEC_DIR, date))\n ds.test_flux = a['arr_0']\n ds.test_ivar = a['arr_1']\n ds.test_ID = np.load('%s/%s_ids.npz' % (SPEC_DIR, date))['arr_0']\n return ds\n", "role": "user" }, { "content": "load_dataset", "role": "assistant" } ]
def x(x, y, yerr, p0): try: popt, pcov = curve_fit(gaussian, x, y, sigma=yerr, p0=p0, absolute_sigma=True) except RuntimeError: return [0], [0] return popt, pcov
fit_gaussian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, yerr, p0):\n try:\n popt, pcov = curve_fit(gaussian, x, y, sigma=yerr, p0=p0,\n absolute_sigma=True)\n except RuntimeError:\n return [0], [0]\n return popt, pcov\n", "role": "user" }, { "content": "fit_gaussian", "role": "assistant" } ]
def x(yerrs, amps, amp_errs, widths): keep_1 = np.logical_and(amps < 0, widths > 1) keep_2 = np.logical_and(np.abs(amps) > 3 * yerrs, amp_errs < 3 * np.abs (amps)) keep = np.logical_and(keep_1, keep_2) return keep
select
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(yerrs, amps, amp_errs, widths):\n keep_1 = np.logical_and(amps < 0, widths > 1)\n keep_2 = np.logical_and(np.abs(amps) > 3 * yerrs, amp_errs < 3 * np.abs\n (amps))\n keep = np.logical_and(keep_1, keep_2)\n return keep\n", "role": "user" }, { "content": "select", "role": "assistant" } ]
def x(): DATA_DIR = '/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels' dates = os.listdir('/home/share/LAMOST/DR2/DR2_release') dates = np.array(dates) dates = np.delete(dates, np.where(dates == '.directory')[0][0]) dates = np.delete(dates, np.where(dates == 'all_folders.list')[0][0]) dates = np.delete(dates, np.where(dates == 'dr2.lis')[0][0]) for date in dates: if glob.glob('*%s*.txt' % date): print('%s done' % date) else: print('running %s' % date) run_one_date(date)
run_all
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n DATA_DIR = '/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels'\n dates = os.listdir('/home/share/LAMOST/DR2/DR2_release')\n dates = np.array(dates)\n dates = np.delete(dates, np.where(dates == '.directory')[0][0])\n dates = np.delete(dates, np.where(dates == 'all_folders.list')[0][0])\n dates = np.delete(dates, np.where(dates == 'dr2.lis')[0][0])\n for date in dates:\n if glob.glob('*%s*.txt' % date):\n print('%s done' % date)\n else:\n print('running %s' % date)\n run_one_date(date)\n", "role": "user" }, { "content": "run_all", "role": "assistant" } ]
def x(base_labels, choose, low, high, coeffs, pivots): low_lab = copy.copy(base_labels) low_lab[choose] = low lvec = train_model._get_lvec(np.array([low_lab]), pivots)[0] model_low = np.dot(coeffs, lvec) high_lab = copy.copy(base_labels) high_lab[choose] = high lvec = train_model._get_lvec(np.array([high_lab]), pivots)[0] model_high = np.dot(coeffs, lvec) grad_spec = (model_high - model_low) / (high - low) return grad_spec
gen_cannon_grad_spec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(base_labels, choose, low, high, coeffs, pivots):\n low_lab = copy.copy(base_labels)\n low_lab[choose] = low\n lvec = train_model._get_lvec(np.array([low_lab]), pivots)[0]\n model_low = np.dot(coeffs, lvec)\n high_lab = copy.copy(base_labels)\n high_lab[choose] = high\n lvec = train_model._get_lvec(np.array([high_lab]), pivots)[0]\n model_high = np.dot(coeffs, lvec)\n grad_spec = (model_high - model_low) / (high - low)\n return grad_spec\n", "role": "user" }, { "content": "gen_cannon_grad_spec", "role": "assistant" } ]
def x(snr): quad_terms = np.array([0.00311, 1.1e-05, 6.95e-06, 5.05e-06, 4.65e-06, 4.1e-06]) lin_terms = np.array([-0.869, -0.00207, -0.0014, -0.00103, -0.00113, - 0.000729]) consts = np.array([104, 0.2, 0.117, 0.114, 0.156, 0.0624]) err = quad_terms[:, None] * snr ** 2 + lin_terms[:, None] * snr + consts[ :, None] min_snr = -lin_terms / (2 * quad_terms) min_err = quad_terms * min_snr ** 2 + lin_terms * min_snr + consts mask = (snr[:, None] > min_snr).T for i in range(0, len(min_err)): err[i][mask[i]] = min_err[i] return err
get_err
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(snr):\n quad_terms = np.array([0.00311, 1.1e-05, 6.95e-06, 5.05e-06, 4.65e-06, \n 4.1e-06])\n lin_terms = np.array([-0.869, -0.00207, -0.0014, -0.00103, -0.00113, -\n 0.000729])\n consts = np.array([104, 0.2, 0.117, 0.114, 0.156, 0.0624])\n err = quad_terms[:, None] * snr ** 2 + lin_terms[:, None] * snr + consts[\n :, None]\n min_snr = -lin_terms / (2 * quad_terms)\n min_err = quad_terms * min_snr ** 2 + lin_terms * min_snr + consts\n mask = (snr[:, None] > min_snr).T\n for i in range(0, len(min_err)):\n err[i][mask[i]] = min_err[i]\n return err\n", "role": "user" }, { "content": "get_err", "role": "assistant" } ]
def x(catalog): print('Get Colors') a = pyfits.open(catalog) data = a[1].data a.close() all_ids = data['LAMOST_ID_1'] all_ids = np.array([val.strip() for val in all_ids]) gmag = data['gpmag'] gmag_err = data['e_gpmag'] rmag = data['rpmag'] rmag_err = data['e_rpmag'] imag = data['ipmag'] imag_err = data['e_ipmag'] W1 = data['W1mag'] W1_err = data['e_W1mag'] W2 = data['W2mag'] W2_err = data['e_W2mag'] Jmag = data['Jmag'] Jmag_err = data['e_Jmag'] Hmag = data['Hmag'] Hmag_err = data['e_Hmag'] Kmag = data['Kmag'] Kmag_err = data['e_Kmag'] mag = np.vstack((gmag, rmag, imag, Jmag, Hmag, Kmag, W2, W1)) mag_err = np.vstack((gmag_err, rmag_err, imag_err, Jmag_err, Hmag_err, Kmag_err, W2_err, W1_err)) col = mag[:-1] - mag[1:] col_ivar = 1 / (mag_err[:-1] ** 2 + mag_err[1:] ** 2) return all_ids, col, col_ivar
get_colors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog):\n print('Get Colors')\n a = pyfits.open(catalog)\n data = a[1].data\n a.close()\n all_ids = data['LAMOST_ID_1']\n all_ids = np.array([val.strip() for val in all_ids])\n gmag = data['gpmag']\n gmag_err = data['e_gpmag']\n rmag = data['rpmag']\n rmag_err = data['e_rpmag']\n imag = data['ipmag']\n imag_err = data['e_ipmag']\n W1 = data['W1mag']\n W1_err = data['e_W1mag']\n W2 = data['W2mag']\n W2_err = data['e_W2mag']\n Jmag = data['Jmag']\n Jmag_err = data['e_Jmag']\n Hmag = data['Hmag']\n Hmag_err = data['e_Hmag']\n Kmag = data['Kmag']\n Kmag_err = data['e_Kmag']\n mag = np.vstack((gmag, rmag, imag, Jmag, Hmag, Kmag, W2, W1))\n mag_err = np.vstack((gmag_err, rmag_err, imag_err, Jmag_err, Hmag_err,\n Kmag_err, W2_err, W1_err))\n col = mag[:-1] - mag[1:]\n col_ivar = 1 / (mag_err[:-1] ** 2 + mag_err[1:] ** 2)\n return all_ids, col, col_ivar\n", "role": "user" }, { "content": "get_colors", "role": "assistant" } ]
def x(md, ds): coeffs_all, covs, scatters, red_chisqs, pivots, label_vector = model.model nstars = len(dataset.test_SNR) cannon_flux = np.zeros(dataset.test_flux.shape) cannon_ivar = np.zeros(dataset.test_ivar.shape) for i in range(nstars): x = label_vector[:, i, :] spec_fit = np.einsum('ij, ij->i', x, coeffs_all) cannon_flux[i, :] = spec_fit bad = dataset.test_ivar[i, :] == SMALL ** 2 cannon_ivar[i, :][~bad] = 1.0 / scatters[~bad] ** 2 return cannon_flux, cannon_ivar
draw_spectra
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(md, ds):\n coeffs_all, covs, scatters, red_chisqs, pivots, label_vector = model.model\n nstars = len(dataset.test_SNR)\n cannon_flux = np.zeros(dataset.test_flux.shape)\n cannon_ivar = np.zeros(dataset.test_ivar.shape)\n for i in range(nstars):\n x = label_vector[:, i, :]\n spec_fit = np.einsum('ij, ij->i', x, coeffs_all)\n cannon_flux[i, :] = spec_fit\n bad = dataset.test_ivar[i, :] == SMALL ** 2\n cannon_ivar[i, :][~bad] = 1.0 / scatters[~bad] ** 2\n return cannon_flux, cannon_ivar\n", "role": "user" }, { "content": "draw_spectra", "role": "assistant" } ]
def x(model, dataset): best_flux, best_ivar = draw_spectra(model, dataset) coeffs_all, covs, scatters, all_chisqs, pivots, label_vector = model.model print('Overplotting spectra for ten random stars') res = dataset.test_flux - best_flux lambdas = dataset.wl npix = len(lambdas) nstars = best_flux.shape[0] pickstars = [] for i in range(10): pickstars.append(random.randrange(0, nstars - 1)) for i in pickstars: print('Star %s' % i) ID = dataset.test_ID[i] spec_orig = dataset.test_flux[i, :] bad = dataset.test_flux[i, :] == 0 lambdas = np.ma.array(lambdas, mask=bad, dtype=float) npix = len(lambdas.compressed()) spec_orig = np.ma.array(dataset.test_flux[i, :], mask=bad) spec_fit = np.ma.array(best_flux[i, :], mask=bad) ivars_orig = np.ma.array(dataset.test_ivar[i, :], mask=bad) ivars_fit = np.ma.array(best_ivar[i, :], mask=bad) red_chisq = np.sum(all_chisqs[:, i], axis=0) / (npix - coeffs_all. shape[1]) red_chisq = np.round(red_chisq, 2) fig, axarr = plt.subplots(2) ax1 = axarr[0] im = ax1.scatter(lambdas, spec_orig, label='Orig Spec', c=1 / np. sqrt(ivars_orig), s=10) ax1.scatter(lambdas, spec_fit, label='Cannon Spec', c='r', s=10) ax1.errorbar(lambdas, spec_fit, yerr=1 / np.sqrt(ivars_fit), fmt= 'ro', ms=1, alpha=0.7) ax1.set_xlabel('Wavelength $\\lambda (\\AA)$') ax1.set_ylabel('Normalized flux') ax1.set_title('Spectrum Fit: %s' % ID) ax1.set_title('Spectrum Fit') ax1.set_xlim(min(lambdas.compressed()) - 10, max(lambdas.compressed ()) + 10) ax1.legend(loc='lower center', fancybox=True, shadow=True) ax2 = axarr[1] ax2.scatter(spec_orig, spec_fit, c=1 / np.sqrt(ivars_orig), alpha=0.7) ax2.errorbar(spec_orig, spec_fit, yerr=1 / np.sqrt(ivars_fit), ecolor='k', fmt='none', ms=1, alpha=0.7) fig.colorbar() xlims = ax2.get_xlim() ylims = ax2.get_ylim() lims = [np.min([xlims, ylims]), np.max([xlims, ylims])] ax2.plot(lims, lims, 'k-', alpha=0.75) textstr = 'Red Chi Sq: %s' % red_chisq props = dict(boxstyle='round', facecolor='palevioletred', alpha=0.5) ax2.text(0.05, 0.95, textstr, transform=ax2.transAxes, fontsize=14, verticalalignment='top', bbox=props) ax2.set_xlim(xlims) ax2.set_ylim(ylims) ax2.set_xlabel('Orig Fluxes') ax2.set_ylabel('Fitted Fluxes') plt.tight_layout() filename = 'best_fit_spec_Star%s.png' % i print('Saved as %s' % filename) fig.savefig(filename) plt.close(fig)
overlay_spectra
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model, dataset):\n best_flux, best_ivar = draw_spectra(model, dataset)\n coeffs_all, covs, scatters, all_chisqs, pivots, label_vector = model.model\n print('Overplotting spectra for ten random stars')\n res = dataset.test_flux - best_flux\n lambdas = dataset.wl\n npix = len(lambdas)\n nstars = best_flux.shape[0]\n pickstars = []\n for i in range(10):\n pickstars.append(random.randrange(0, nstars - 1))\n for i in pickstars:\n print('Star %s' % i)\n ID = dataset.test_ID[i]\n spec_orig = dataset.test_flux[i, :]\n bad = dataset.test_flux[i, :] == 0\n lambdas = np.ma.array(lambdas, mask=bad, dtype=float)\n npix = len(lambdas.compressed())\n spec_orig = np.ma.array(dataset.test_flux[i, :], mask=bad)\n spec_fit = np.ma.array(best_flux[i, :], mask=bad)\n ivars_orig = np.ma.array(dataset.test_ivar[i, :], mask=bad)\n ivars_fit = np.ma.array(best_ivar[i, :], mask=bad)\n red_chisq = np.sum(all_chisqs[:, i], axis=0) / (npix - coeffs_all.\n shape[1])\n red_chisq = np.round(red_chisq, 2)\n fig, axarr = plt.subplots(2)\n ax1 = axarr[0]\n im = ax1.scatter(lambdas, spec_orig, label='Orig Spec', c=1 / np.\n sqrt(ivars_orig), s=10)\n ax1.scatter(lambdas, spec_fit, label='Cannon Spec', c='r', s=10)\n ax1.errorbar(lambdas, spec_fit, yerr=1 / np.sqrt(ivars_fit), fmt=\n 'ro', ms=1, alpha=0.7)\n ax1.set_xlabel('Wavelength $\\\\lambda (\\\\AA)$')\n ax1.set_ylabel('Normalized flux')\n ax1.set_title('Spectrum Fit: %s' % ID)\n ax1.set_title('Spectrum Fit')\n ax1.set_xlim(min(lambdas.compressed()) - 10, max(lambdas.compressed\n ()) + 10)\n ax1.legend(loc='lower center', fancybox=True, shadow=True)\n ax2 = axarr[1]\n ax2.scatter(spec_orig, spec_fit, c=1 / np.sqrt(ivars_orig), alpha=0.7)\n ax2.errorbar(spec_orig, spec_fit, yerr=1 / np.sqrt(ivars_fit),\n ecolor='k', fmt='none', ms=1, alpha=0.7)\n fig.colorbar()\n xlims = ax2.get_xlim()\n ylims = ax2.get_ylim()\n lims = [np.min([xlims, ylims]), np.max([xlims, ylims])]\n ax2.plot(lims, lims, 'k-', alpha=0.75)\n textstr = 'Red Chi Sq: %s' % red_chisq\n props = dict(boxstyle='round', facecolor='palevioletred', alpha=0.5)\n ax2.text(0.05, 0.95, textstr, transform=ax2.transAxes, fontsize=14,\n verticalalignment='top', bbox=props)\n ax2.set_xlim(xlims)\n ax2.set_ylim(ylims)\n ax2.set_xlabel('Orig Fluxes')\n ax2.set_ylabel('Fitted Fluxes')\n plt.tight_layout()\n filename = 'best_fit_spec_Star%s.png' % i\n print('Saved as %s' % filename)\n fig.savefig(filename)\n plt.close(fig)\n", "role": "user" }, { "content": "overlay_spectra", "role": "assistant" } ]
def x(cannon_set, dataset): print('Stacking spectrum fit residuals') res = dataset.test_fluxes - cannon_set.test_fluxes bad = dataset.test_ivars == SMALL ** 2 err = np.zeros(len(dataset.test_ivars)) err = np.sqrt(1.0 / dataset.test_ivars + 1.0 / cannon_set.test_ivars) res_norm = res / err res_norm = np.ma.array(res_norm, mask=np.ones_like(res_norm) * (np.std( res_norm, axis=0) == 0)) res_norm = np.ma.compress_cols(res_norm) for i in range(len(cannon_set.get_plotting_labels())): label_name = cannon_set.get_plotting_labels()[i] print('Plotting residuals sorted by %s' % label_name) label_vals = cannon_set.tr_label_vals[:, i] sorted_res = res_norm[np.argsort(label_vals)] mu = np.mean(sorted_res.flatten()) sigma = np.std(sorted_res.flatten()) left, width = 0.1, 0.65 bottom, height = 0.1, 0.65 bottom_h = left_h = left + width + 0.1 rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom_h, width, 0.1] rect_histy = [left_h, bottom, 0.1, height] plt.figure() axScatter = plt.axes(rect_scatter) axHistx = plt.axes(rect_histx) axHisty = plt.axes(rect_histy) im = axScatter.imshow(sorted_res, cmap=plt.cm.bwr_r, interpolation= 'nearest', vmin=mu - 3.0 * sigma, vmax=mu + 3.0 * sigma, aspect ='auto', origin='lower', extent=[0, len(dataset.wl), min( label_vals), max(label_vals)]) cax, kw = colorbar.make_axes(axScatter.axes, location='bottom') plt.colorbar(im, cax=cax, orientation='horizontal') axScatter.set_title('Spectral Residuals Sorted by ${0:s}$'.format( label_name)) axScatter.set_xlabel('Pixels') axScatter.set_ylabel('$%s$' % label_name) axHisty.hist(np.std(res_norm, axis=1)[~np.isnan(np.std(res_norm, axis=1))], orientation='horizontal', range=[0, 2]) axHisty.axhline(y=1, c='k', linewidth=3, label='y=1') axHisty.legend(bbox_to_anchor=(0.0, 0.8, 1.0, 0.102), prop={ 'family': 'serif', 'size': 'small'}) axHisty.text(1.0, 0.5, 'Distribution of Stdev of Star Residuals', verticalalignment='center', transform=axHisty.transAxes, rotation=270) axHisty.set_ylabel('Standard Deviation') start, end = axHisty.get_xlim() axHisty.xaxis.set_ticks(np.linspace(start, end, 3)) axHisty.set_xlabel('Number of Stars') axHisty.xaxis.set_label_position('top') axHistx.hist(np.std(res_norm, axis=0)[~np.isnan(np.std(res_norm, axis=0))], range=[0.8, 1.1]) axHistx.axvline(x=1, c='k', linewidth=3, label='x=1') axHistx.set_title('Distribution of Stdev of Pixel Residuals') axHistx.set_xlabel('Standard Deviation') axHistx.set_ylabel('Number of Pixels') start, end = axHistx.get_ylim() axHistx.yaxis.set_ticks(np.linspace(start, end, 3)) axHistx.legend() filename = 'residuals_sorted_by_label_%s.png' % i plt.savefig(filename) print('File saved as %s' % filename) plt.close() print('Plotting Auto-Correlation of Mean Residuals') mean_res = res_norm.mean(axis=0) autocorr = np.correlate(mean_res, mean_res, mode='full') pkwidth = int(len(autocorr) / 2 - np.argmin(autocorr)) xmin = int(len(autocorr) / 2) - pkwidth xmax = int(len(autocorr) / 2) + pkwidth zoom_x = np.linspace(xmin, xmax, len(autocorr[xmin:xmax])) fig, axarr = plt.subplots(2) axarr[0].plot(autocorr) axarr[0].set_title('Autocorrelation of Mean Spectral Residual') axarr[0].set_xlabel('Lag (# Pixels)') axarr[0].set_ylabel('Autocorrelation') axarr[1].plot(zoom_x, autocorr[xmin:xmax]) axarr[1].set_title('Central Peak, Zoomed') axarr[1].set_xlabel('Lag (# Pixels)') axarr[1].set_ylabel('Autocorrelation') filename = 'residuals_autocorr.png' plt.savefig(filename) print('saved %s' % filename) plt.close()
residuals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cannon_set, dataset):\n print('Stacking spectrum fit residuals')\n res = dataset.test_fluxes - cannon_set.test_fluxes\n bad = dataset.test_ivars == SMALL ** 2\n err = np.zeros(len(dataset.test_ivars))\n err = np.sqrt(1.0 / dataset.test_ivars + 1.0 / cannon_set.test_ivars)\n res_norm = res / err\n res_norm = np.ma.array(res_norm, mask=np.ones_like(res_norm) * (np.std(\n res_norm, axis=0) == 0))\n res_norm = np.ma.compress_cols(res_norm)\n for i in range(len(cannon_set.get_plotting_labels())):\n label_name = cannon_set.get_plotting_labels()[i]\n print('Plotting residuals sorted by %s' % label_name)\n label_vals = cannon_set.tr_label_vals[:, i]\n sorted_res = res_norm[np.argsort(label_vals)]\n mu = np.mean(sorted_res.flatten())\n sigma = np.std(sorted_res.flatten())\n left, width = 0.1, 0.65\n bottom, height = 0.1, 0.65\n bottom_h = left_h = left + width + 0.1\n rect_scatter = [left, bottom, width, height]\n rect_histx = [left, bottom_h, width, 0.1]\n rect_histy = [left_h, bottom, 0.1, height]\n plt.figure()\n axScatter = plt.axes(rect_scatter)\n axHistx = plt.axes(rect_histx)\n axHisty = plt.axes(rect_histy)\n im = axScatter.imshow(sorted_res, cmap=plt.cm.bwr_r, interpolation=\n 'nearest', vmin=mu - 3.0 * sigma, vmax=mu + 3.0 * sigma, aspect\n ='auto', origin='lower', extent=[0, len(dataset.wl), min(\n label_vals), max(label_vals)])\n cax, kw = colorbar.make_axes(axScatter.axes, location='bottom')\n plt.colorbar(im, cax=cax, orientation='horizontal')\n axScatter.set_title('Spectral Residuals Sorted by ${0:s}$'.format(\n label_name))\n axScatter.set_xlabel('Pixels')\n axScatter.set_ylabel('$%s$' % label_name)\n axHisty.hist(np.std(res_norm, axis=1)[~np.isnan(np.std(res_norm,\n axis=1))], orientation='horizontal', range=[0, 2])\n axHisty.axhline(y=1, c='k', linewidth=3, label='y=1')\n axHisty.legend(bbox_to_anchor=(0.0, 0.8, 1.0, 0.102), prop={\n 'family': 'serif', 'size': 'small'})\n axHisty.text(1.0, 0.5, 'Distribution of Stdev of Star Residuals',\n verticalalignment='center', transform=axHisty.transAxes,\n rotation=270)\n axHisty.set_ylabel('Standard Deviation')\n start, end = axHisty.get_xlim()\n axHisty.xaxis.set_ticks(np.linspace(start, end, 3))\n axHisty.set_xlabel('Number of Stars')\n axHisty.xaxis.set_label_position('top')\n axHistx.hist(np.std(res_norm, axis=0)[~np.isnan(np.std(res_norm,\n axis=0))], range=[0.8, 1.1])\n axHistx.axvline(x=1, c='k', linewidth=3, label='x=1')\n axHistx.set_title('Distribution of Stdev of Pixel Residuals')\n axHistx.set_xlabel('Standard Deviation')\n axHistx.set_ylabel('Number of Pixels')\n start, end = axHistx.get_ylim()\n axHistx.yaxis.set_ticks(np.linspace(start, end, 3))\n axHistx.legend()\n filename = 'residuals_sorted_by_label_%s.png' % i\n plt.savefig(filename)\n print('File saved as %s' % filename)\n plt.close()\n print('Plotting Auto-Correlation of Mean Residuals')\n mean_res = res_norm.mean(axis=0)\n autocorr = np.correlate(mean_res, mean_res, mode='full')\n pkwidth = int(len(autocorr) / 2 - np.argmin(autocorr))\n xmin = int(len(autocorr) / 2) - pkwidth\n xmax = int(len(autocorr) / 2) + pkwidth\n zoom_x = np.linspace(xmin, xmax, len(autocorr[xmin:xmax]))\n fig, axarr = plt.subplots(2)\n axarr[0].plot(autocorr)\n axarr[0].set_title('Autocorrelation of Mean Spectral Residual')\n axarr[0].set_xlabel('Lag (# Pixels)')\n axarr[0].set_ylabel('Autocorrelation')\n axarr[1].plot(zoom_x, autocorr[xmin:xmax])\n axarr[1].set_title('Central Peak, Zoomed')\n axarr[1].set_xlabel('Lag (# Pixels)')\n axarr[1].set_ylabel('Autocorrelation')\n filename = 'residuals_autocorr.png'\n plt.savefig(filename)\n print('saved %s' % filename)\n plt.close()\n", "role": "user" }, { "content": "residuals", "role": "assistant" } ]
def x(f_cut, sig_cut, wl, fluxes, ivars): f_bar = np.median(fluxes, axis=0) sigma_f = np.var(fluxes, axis=0) bad = np.logical_and(f_bar == 0, sigma_f == 0) cont1 = np.abs(f_bar - 1) <= f_cut cont2 = sigma_f <= sig_cut contmask = np.logical_and(cont1, cont2) contmask[bad] = False return contmask
find_contpix_given_cuts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f_cut, sig_cut, wl, fluxes, ivars):\n f_bar = np.median(fluxes, axis=0)\n sigma_f = np.var(fluxes, axis=0)\n bad = np.logical_and(f_bar == 0, sigma_f == 0)\n cont1 = np.abs(f_bar - 1) <= f_cut\n cont2 = sigma_f <= sig_cut\n contmask = np.logical_and(cont1, cont2)\n contmask[bad] = False\n return contmask\n", "role": "user" }, { "content": "find_contpix_given_cuts", "role": "assistant" } ]
def x(wl, fluxes, ivars, target_frac): print('Target frac: %s' % target_frac) bad1 = np.median(ivars, axis=0) == SMALL bad2 = np.var(ivars, axis=0) == 0 bad = np.logical_and(bad1, bad2) npixels = len(wl) - sum(bad) f_cut = 0.0001 stepsize = 0.0001 sig_cut = 0.0001 contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars) if npixels > 0: frac = sum(contmask) / float(npixels) else: frac = 0 while frac < target_frac: f_cut += stepsize sig_cut += stepsize contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars) if npixels > 0: frac = sum(contmask) / float(npixels) else: frac = 0 if frac > 0.1 * npixels: print('Warning: Over 10% of pixels identified as continuum.') print('%s out of %s pixels identified as continuum' % (sum(contmask), npixels)) print('Cuts: f_cut %s, sig_cut %s' % (f_cut, sig_cut)) return contmask
find_contpix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wl, fluxes, ivars, target_frac):\n print('Target frac: %s' % target_frac)\n bad1 = np.median(ivars, axis=0) == SMALL\n bad2 = np.var(ivars, axis=0) == 0\n bad = np.logical_and(bad1, bad2)\n npixels = len(wl) - sum(bad)\n f_cut = 0.0001\n stepsize = 0.0001\n sig_cut = 0.0001\n contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars)\n if npixels > 0:\n frac = sum(contmask) / float(npixels)\n else:\n frac = 0\n while frac < target_frac:\n f_cut += stepsize\n sig_cut += stepsize\n contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars)\n if npixels > 0:\n frac = sum(contmask) / float(npixels)\n else:\n frac = 0\n if frac > 0.1 * npixels:\n print('Warning: Over 10% of pixels identified as continuum.')\n print('%s out of %s pixels identified as continuum' % (sum(contmask),\n npixels))\n print('Cuts: f_cut %s, sig_cut %s' % (f_cut, sig_cut))\n return contmask\n", "role": "user" }, { "content": "find_contpix", "role": "assistant" } ]
def x(wl, fluxes, ivars, frac, ranges): contmask = np.zeros(len(wl), dtype=bool) for chunk in ranges: start = chunk[0] stop = chunk[1] contmask[start:stop] = _find_contpix(wl[start:stop], fluxes[:, start:stop], ivars[:, start:stop], frac) return contmask
find_contpix_regions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wl, fluxes, ivars, frac, ranges):\n contmask = np.zeros(len(wl), dtype=bool)\n for chunk in ranges:\n start = chunk[0]\n stop = chunk[1]\n contmask[start:stop] = _find_contpix(wl[start:stop], fluxes[:,\n start:stop], ivars[:, start:stop], frac)\n return contmask\n", "role": "user" }, { "content": "find_contpix_regions", "role": "assistant" } ]
def x(): tr_obj = np.load('%s/ref_id.npz' % direc_ref)['arr_0'] groups = np.random.randint(0, 8, size=len(tr_obj)) np.savez('ref_groups.npz', groups)
group_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n tr_obj = np.load('%s/ref_id.npz' % direc_ref)['arr_0']\n groups = np.random.randint(0, 8, size=len(tr_obj))\n np.savez('ref_groups.npz', groups)\n", "role": "user" }, { "content": "group_data", "role": "assistant" } ]
def x(ds, ii): print('Loading model') m = model.CannonModel(2) print('Training...') m.fit(ds) np.savez('./ex%s_coeffs.npz' % ii, m.coeffs) np.savez('./ex%s_scatters.npz' % ii, m.scatters) np.savez('./ex%s_chisqs.npz' % ii, m.chisqs) np.savez('./ex%s_pivots.npz' % ii, m.pivots) fig = m.diagnostics_leading_coeffs(ds) plt.savefig('ex%s_leading_coeffs.png' % ii) return m
train
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ds, ii):\n print('Loading model')\n m = model.CannonModel(2)\n print('Training...')\n m.fit(ds)\n np.savez('./ex%s_coeffs.npz' % ii, m.coeffs)\n np.savez('./ex%s_scatters.npz' % ii, m.scatters)\n np.savez('./ex%s_chisqs.npz' % ii, m.chisqs)\n np.savez('./ex%s_pivots.npz' % ii, m.pivots)\n fig = m.diagnostics_leading_coeffs(ds)\n plt.savefig('ex%s_leading_coeffs.png' % ii)\n return m\n", "role": "user" }, { "content": "train", "role": "assistant" } ]
def x(): print('Loading data') groups = np.load('ref_groups.npz')['arr_0'] ref_label = np.load('%s/ref_label.npz' % direc_ref)['arr_0'] ref_id = np.load('%s/ref_id.npz' % direc_ref)['arr_0'] ref_flux = np.load('%s/ref_flux.npz' % direc_ref)['arr_0'] ref_ivar = np.load('%s/ref_ivar.npz' % direc_ref)['arr_0'] wl = np.load('%s/wl.npz' % direc_ref)['arr_0'] num_models = 8 for ii in np.arange(num_models): print('Leaving out group %s' % ii) train_on = groups != ii test_on = groups == ii tr_label = ref_label[train_on] tr_id = ref_id[train_on] tr_flux = ref_flux[train_on] tr_ivar = ref_ivar[train_on] print('Training on %s objects' % len(tr_id)) test_label = ref_label[test_on] test_id = ref_id[test_on] test_flux = ref_flux[test_on] test_ivar = ref_ivar[test_on] print('Testing on %s objects' % len(test_id)) print('Loading dataset...') ds = dataset.Dataset(wl, tr_id, tr_flux, tr_ivar, tr_label, test_id, test_flux, test_ivar) ds.set_label_names(['T_{eff}', '\\log g', '[M/H]', '[\\alpha/Fe]', 'AKWISE']) fig = ds.diagnostics_SNR() plt.savefig('ex%s_SNR.png' % ii) fig = ds.diagnostics_ref_labels() plt.savefig('ex%s_ref_label_triangle.png' % ii) np.savez('ex%s_tr_snr.npz' % ii, ds.tr_SNR) m = train(ds, ii) ds.tr_label = test_label test(ds, m, ii)
xvalidate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n print('Loading data')\n groups = np.load('ref_groups.npz')['arr_0']\n ref_label = np.load('%s/ref_label.npz' % direc_ref)['arr_0']\n ref_id = np.load('%s/ref_id.npz' % direc_ref)['arr_0']\n ref_flux = np.load('%s/ref_flux.npz' % direc_ref)['arr_0']\n ref_ivar = np.load('%s/ref_ivar.npz' % direc_ref)['arr_0']\n wl = np.load('%s/wl.npz' % direc_ref)['arr_0']\n num_models = 8\n for ii in np.arange(num_models):\n print('Leaving out group %s' % ii)\n train_on = groups != ii\n test_on = groups == ii\n tr_label = ref_label[train_on]\n tr_id = ref_id[train_on]\n tr_flux = ref_flux[train_on]\n tr_ivar = ref_ivar[train_on]\n print('Training on %s objects' % len(tr_id))\n test_label = ref_label[test_on]\n test_id = ref_id[test_on]\n test_flux = ref_flux[test_on]\n test_ivar = ref_ivar[test_on]\n print('Testing on %s objects' % len(test_id))\n print('Loading dataset...')\n ds = dataset.Dataset(wl, tr_id, tr_flux, tr_ivar, tr_label, test_id,\n test_flux, test_ivar)\n ds.set_label_names(['T_{eff}', '\\\\log g', '[M/H]', '[\\\\alpha/Fe]',\n 'AKWISE'])\n fig = ds.diagnostics_SNR()\n plt.savefig('ex%s_SNR.png' % ii)\n fig = ds.diagnostics_ref_labels()\n plt.savefig('ex%s_ref_label_triangle.png' % ii)\n np.savez('ex%s_tr_snr.npz' % ii, ds.tr_SNR)\n m = train(ds, ii)\n ds.tr_label = test_label\n test(ds, m, ii)\n", "role": "user" }, { "content": "xvalidate", "role": "assistant" } ]
def x(values, weights): average = np.average(values, weights=weights) variance = np.average((values - average) ** 2, weights=weights) return np.sqrt(variance)
weighted_std
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(values, weights):\n average = np.average(values, weights=weights)\n variance = np.average((values - average) ** 2, weights=weights)\n return np.sqrt(variance)\n", "role": "user" }, { "content": "weighted_std", "role": "assistant" } ]
def x(fluxes, contmask): nstars = fluxes.shape[0] scatter = np.zeros(nstars) for i, spec in enumerate(fluxes): cont = spec[contmask] scatter[i] = stats.funcs.mad_std(cont) return scatter
estimate_noise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fluxes, contmask):\n nstars = fluxes.shape[0]\n scatter = np.zeros(nstars)\n for i, spec in enumerate(fluxes):\n cont = spec[contmask]\n scatter[i] = stats.funcs.mad_std(cont)\n return scatter\n", "role": "user" }, { "content": "estimate_noise", "role": "assistant" } ]
def x(): data_dir = '/Users/annaho/Data/AAOmega/ref_spectra' ff = glob.glob('%s/*.txt' % data_dir) nstars = len(ff) print('We have %s training objects' % nstars) f = ff[0] data = Table.read(f, format='ascii.fast_no_header') wl = data['col1'] npix = len(wl) print('We have %s pixels' % npix) tr_flux = np.zeros((nstars, npix)) tr_ivar = np.zeros(tr_flux.shape) for i, f in enumerate(ff): data = Table.read(f, format='ascii.fast_no_header') flux = data['col2'] tr_flux[i, :] = flux sigma = data['col3'] tr_ivar[i, :] = 1.0 / sigma ** 2 return np.array(ff), wl, tr_flux, tr_ivar
load_ref_spectra
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n data_dir = '/Users/annaho/Data/AAOmega/ref_spectra'\n ff = glob.glob('%s/*.txt' % data_dir)\n nstars = len(ff)\n print('We have %s training objects' % nstars)\n f = ff[0]\n data = Table.read(f, format='ascii.fast_no_header')\n wl = data['col1']\n npix = len(wl)\n print('We have %s pixels' % npix)\n tr_flux = np.zeros((nstars, npix))\n tr_ivar = np.zeros(tr_flux.shape)\n for i, f in enumerate(ff):\n data = Table.read(f, format='ascii.fast_no_header')\n flux = data['col2']\n tr_flux[i, :] = flux\n sigma = data['col3']\n tr_ivar[i, :] = 1.0 / sigma ** 2\n return np.array(ff), wl, tr_flux, tr_ivar\n", "role": "user" }, { "content": "load_ref_spectra", "role": "assistant" } ]
def x(): data_dir = '/Users/annaho/Data/AAOmega' out_dir = '%s/%s' % (data_dir, 'Run_13_July') """ Use all the above functions to set data up for The Cannon """ ff, wl, tr_flux, tr_ivar = load_ref_spectra() """ pick one that doesn't have extra dead pixels """ skylines = tr_ivar[4, :] np.savez('%s/skylines.npz' % out_dir, skylines) contmask = np.load('%s/contmask_regions.npz' % data_dir)['arr_0'] scatter = estimate_noise(tr_flux, contmask) ids, labels = load_labels() inds = [] ff_short = [] for fname in ff: val = fname.split('/')[-1] short = val.split('.')[0] + '.' + val.split('.')[1] ff_short.append(short) if short in ids: ind = np.where(ids == short)[0][0] inds.append(ind) tr_id = ids[inds] tr_label = labels[inds] ff_short = np.array(ff_short) inds = np.array([np.where(ff_short == val)[0][0] for val in tr_id]) tr_flux_choose = tr_flux[inds] tr_ivar_choose = tr_ivar[inds] scatter_choose = scatter[inds] np.savez('%s/wl.npz' % out_dir, wl) np.savez('%s/ref_id_all.npz' % out_dir, tr_id) np.savez('%s/ref_flux_all.npz' % out_dir, tr_flux_choose) np.savez('%s/ref_ivar_all.npz' % out_dir, tr_ivar_choose) np.savez('%s/ref_label_all.npz' % out_dir, tr_label) np.savez('%s/ref_spec_scat_all.npz' % out_dir, scatter_choose) test_id, test_flux = load_test_spectra() scatter = estimate_noise(test_flux, contmask) np.savez('%s/test_id.npz' % out_dir, test_id) np.savez('%s/test_flux.npz' % out_dir, test_flux) np.savez('%s/test_spec_scat.npz' % out_dir, scatter)
load_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n data_dir = '/Users/annaho/Data/AAOmega'\n out_dir = '%s/%s' % (data_dir, 'Run_13_July')\n \"\"\" Use all the above functions to set data up for The Cannon \"\"\"\n ff, wl, tr_flux, tr_ivar = load_ref_spectra()\n \"\"\" pick one that doesn't have extra dead pixels \"\"\"\n skylines = tr_ivar[4, :]\n np.savez('%s/skylines.npz' % out_dir, skylines)\n contmask = np.load('%s/contmask_regions.npz' % data_dir)['arr_0']\n scatter = estimate_noise(tr_flux, contmask)\n ids, labels = load_labels()\n inds = []\n ff_short = []\n for fname in ff:\n val = fname.split('/')[-1]\n short = val.split('.')[0] + '.' + val.split('.')[1]\n ff_short.append(short)\n if short in ids:\n ind = np.where(ids == short)[0][0]\n inds.append(ind)\n tr_id = ids[inds]\n tr_label = labels[inds]\n ff_short = np.array(ff_short)\n inds = np.array([np.where(ff_short == val)[0][0] for val in tr_id])\n tr_flux_choose = tr_flux[inds]\n tr_ivar_choose = tr_ivar[inds]\n scatter_choose = scatter[inds]\n np.savez('%s/wl.npz' % out_dir, wl)\n np.savez('%s/ref_id_all.npz' % out_dir, tr_id)\n np.savez('%s/ref_flux_all.npz' % out_dir, tr_flux_choose)\n np.savez('%s/ref_ivar_all.npz' % out_dir, tr_ivar_choose)\n np.savez('%s/ref_label_all.npz' % out_dir, tr_label)\n np.savez('%s/ref_spec_scat_all.npz' % out_dir, scatter_choose)\n test_id, test_flux = load_test_spectra()\n scatter = estimate_noise(test_flux, contmask)\n np.savez('%s/test_id.npz' % out_dir, test_id)\n np.savez('%s/test_flux.npz' % out_dir, test_flux)\n np.savez('%s/test_spec_scat.npz' % out_dir, scatter)\n", "role": "user" }, { "content": "load_data", "role": "assistant" } ]
def x(): ref_flux = np.load('%s/ref_flux_all.npz' % DATA_DIR)['arr_0'] ref_scat = np.load('%s/ref_spec_scat_all.npz' % DATA_DIR)['arr_0'] test_flux = np.load('%s/test_flux.npz' % DATA_DIR)['arr_0'] test_scat = np.load('%s/test_spec_scat.npz' % DATA_DIR)['arr_0'] ref_ivar = np.ones(ref_flux.shape) / ref_scat[:, None] ** 2 test_ivar = np.ones(test_flux.shape) / test_scat[:, None] ** 2 ref_bad = np.logical_or(ref_flux <= 0, ref_flux > 1.1) test_bad = np.logical_or(test_flux <= 0, test_flux > 1.1) SMALL = 1.0 / 1000000000.0 ref_ivar[ref_bad] = SMALL test_ivar[test_bad] = SMALL np.savez('%s/ref_ivar_corr.npz' % DATA_DIR, ref_ivar) np.savez('%s/test_ivar_corr.npz' % DATA_DIR, test_ivar)
make_full_ivar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n ref_flux = np.load('%s/ref_flux_all.npz' % DATA_DIR)['arr_0']\n ref_scat = np.load('%s/ref_spec_scat_all.npz' % DATA_DIR)['arr_0']\n test_flux = np.load('%s/test_flux.npz' % DATA_DIR)['arr_0']\n test_scat = np.load('%s/test_spec_scat.npz' % DATA_DIR)['arr_0']\n ref_ivar = np.ones(ref_flux.shape) / ref_scat[:, None] ** 2\n test_ivar = np.ones(test_flux.shape) / test_scat[:, None] ** 2\n ref_bad = np.logical_or(ref_flux <= 0, ref_flux > 1.1)\n test_bad = np.logical_or(test_flux <= 0, test_flux > 1.1)\n SMALL = 1.0 / 1000000000.0\n ref_ivar[ref_bad] = SMALL\n test_ivar[test_bad] = SMALL\n np.savez('%s/ref_ivar_corr.npz' % DATA_DIR, ref_ivar)\n np.savez('%s/test_ivar_corr.npz' % DATA_DIR, test_ivar)\n", "role": "user" }, { "content": "make_full_ivar", "role": "assistant" } ]
def x(x, p, L, y): N = int(len(p) / 2) n = np.linspace(0, N, N + 1) k = n * np.pi / L func = 0 for n in range(0, N): func += p[2 * n] * np.sin(k[n] * x) + p[2 * n + 1] * np.cos(k[n] * x) return func
sinusoid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, p, L, y):\n N = int(len(p) / 2)\n n = np.linspace(0, N, N + 1)\n k = n * np.pi / L\n func = 0\n for n in range(0, N):\n func += p[2 * n] * np.sin(k[n] * x) + p[2 * n + 1] * np.cos(k[n] * x)\n return func\n", "role": "user" }, { "content": "sinusoid", "role": "assistant" } ]
def x(values, weights, quantile): sindx = np.argsort(values) cvalues = 1.0 * np.cumsum(weights[sindx]) if cvalues[-1] == 0: return values[0] cvalues = cvalues / cvalues[-1] foo = sindx[cvalues > quantile] if len(foo) == 0: return values[0] indx = foo[0] return values[indx]
weighted_median
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(values, weights, quantile):\n sindx = np.argsort(values)\n cvalues = 1.0 * np.cumsum(weights[sindx])\n if cvalues[-1] == 0:\n return values[0]\n cvalues = cvalues / cvalues[-1]\n foo = sindx[cvalues > quantile]\n if len(foo) == 0:\n return values[0]\n indx = foo[0]\n return values[indx]\n", "role": "user" }, { "content": "weighted_median", "role": "assistant" } ]
def x(wl, fluxes, ivars, w): print('Finding the continuum') bot = np.dot(ivars, w.T) top = np.dot(fluxes * ivars, w.T) bad = bot == 0 cont = np.zeros(top.shape) cont[~bad] = top[~bad] / bot[~bad] return cont
find_cont_gaussian_smooth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wl, fluxes, ivars, w):\n print('Finding the continuum')\n bot = np.dot(ivars, w.T)\n top = np.dot(fluxes * ivars, w.T)\n bad = bot == 0\n cont = np.zeros(top.shape)\n cont[~bad] = top[~bad] / bot[~bad]\n return cont\n", "role": "user" }, { "content": "find_cont_gaussian_smooth", "role": "assistant" } ]
def x(dataset, L): print('Gaussian smoothing the entire dataset...') w = gaussian_weight_matrix(dataset.wl, L) print('Gaussian smoothing the training set') cont = _find_cont_gaussian_smooth(dataset.wl, dataset.tr_flux, dataset. tr_ivar, w) norm_tr_flux, norm_tr_ivar = _cont_norm(dataset.tr_flux, dataset. tr_ivar, cont) print('Gaussian smoothing the test set') cont = _find_cont_gaussian_smooth(dataset.wl, dataset.test_flux, dataset.test_ivar, w) norm_test_flux, norm_test_ivar = _cont_norm(dataset.test_flux, dataset. test_ivar, cont) return norm_tr_flux, norm_tr_ivar, norm_test_flux, norm_test_ivar
cont_norm_gaussian_smooth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dataset, L):\n print('Gaussian smoothing the entire dataset...')\n w = gaussian_weight_matrix(dataset.wl, L)\n print('Gaussian smoothing the training set')\n cont = _find_cont_gaussian_smooth(dataset.wl, dataset.tr_flux, dataset.\n tr_ivar, w)\n norm_tr_flux, norm_tr_ivar = _cont_norm(dataset.tr_flux, dataset.\n tr_ivar, cont)\n print('Gaussian smoothing the test set')\n cont = _find_cont_gaussian_smooth(dataset.wl, dataset.test_flux,\n dataset.test_ivar, w)\n norm_test_flux, norm_test_ivar = _cont_norm(dataset.test_flux, dataset.\n test_ivar, cont)\n return norm_tr_flux, norm_tr_ivar, norm_test_flux, norm_test_ivar\n", "role": "user" }, { "content": "cont_norm_gaussian_smooth", "role": "assistant" } ]
def x(fluxes, ivars, contmask, deg, ffunc, n_proc=1): nstars = fluxes.shape[0] npixels = fluxes.shape[1] cont = np.zeros(fluxes.shape) if n_proc == 1: for jj in range(nstars): flux = fluxes[jj, :] ivar = ivars[jj, :] pix = np.arange(0, npixels) y = flux[contmask] x = pix[contmask] yivar = ivar[contmask] yivar[yivar == 0] = SMALL ** 2 if ffunc == 'sinusoid': p0 = np.ones(deg * 2) L = max(x) - min(x) pcont_func = _partial_func(_sinusoid, L=L, y=flux) popt, pcov = opt.curve_fit(pcont_func, x, y, p0=p0, sigma= 1.0 / np.sqrt(yivar)) elif ffunc == 'chebyshev': fit = np.polynomial.chebyshev.Chebyshev.fit(x=x, y=y, w= yivar, deg=deg) for element in pix: if ffunc == 'sinusoid': cont[jj, element] = _sinusoid(element, popt, L=L, y=flux) elif ffunc == 'chebyshev': cont[jj, element] = fit(element) else: pool = mp.Pool(processes=n_proc) mp_results = [] for i in xrange(nstars): mp_results.append(pool.apply_async(_find_cont_fitfunc, (fluxes[ i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)), contmask[:]), {'deg': deg, 'ffunc': ffunc})) pool.close() pool.join() cont = np.array([mp_results[i].get().flatten() for i in xrange(nstars)] ) return cont
find_cont_fitfunc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fluxes, ivars, contmask, deg, ffunc, n_proc=1):\n nstars = fluxes.shape[0]\n npixels = fluxes.shape[1]\n cont = np.zeros(fluxes.shape)\n if n_proc == 1:\n for jj in range(nstars):\n flux = fluxes[jj, :]\n ivar = ivars[jj, :]\n pix = np.arange(0, npixels)\n y = flux[contmask]\n x = pix[contmask]\n yivar = ivar[contmask]\n yivar[yivar == 0] = SMALL ** 2\n if ffunc == 'sinusoid':\n p0 = np.ones(deg * 2)\n L = max(x) - min(x)\n pcont_func = _partial_func(_sinusoid, L=L, y=flux)\n popt, pcov = opt.curve_fit(pcont_func, x, y, p0=p0, sigma=\n 1.0 / np.sqrt(yivar))\n elif ffunc == 'chebyshev':\n fit = np.polynomial.chebyshev.Chebyshev.fit(x=x, y=y, w=\n yivar, deg=deg)\n for element in pix:\n if ffunc == 'sinusoid':\n cont[jj, element] = _sinusoid(element, popt, L=L, y=flux)\n elif ffunc == 'chebyshev':\n cont[jj, element] = fit(element)\n else:\n pool = mp.Pool(processes=n_proc)\n mp_results = []\n for i in xrange(nstars):\n mp_results.append(pool.apply_async(_find_cont_fitfunc, (fluxes[\n i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)),\n contmask[:]), {'deg': deg, 'ffunc': ffunc}))\n pool.close()\n pool.join()\n cont = np.array([mp_results[i].get().flatten() for i in xrange(nstars)]\n )\n return cont\n", "role": "user" }, { "content": "find_cont_fitfunc", "role": "assistant" } ]
def x(fluxes, ivars, contmask, deg, ranges, ffunc, n_proc=1): nstars = fluxes.shape[0] npixels = fluxes.shape[1] cont = np.zeros(fluxes.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] if ffunc == 'chebyshev': output = _find_cont_fitfunc(fluxes[:, start:stop], ivars[:, start:stop], contmask[start:stop], deg=deg, ffunc= 'chebyshev', n_proc=n_proc) elif ffunc == 'sinusoid': output = _find_cont_fitfunc(fluxes[:, start:stop], ivars[:, start:stop], contmask[start:stop], deg=deg, ffunc= 'sinusoid', n_proc=n_proc) cont[:, start:stop] = output return cont
find_cont_fitfunc_regions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fluxes, ivars, contmask, deg, ranges, ffunc, n_proc=1):\n nstars = fluxes.shape[0]\n npixels = fluxes.shape[1]\n cont = np.zeros(fluxes.shape)\n for chunk in ranges:\n start = chunk[0]\n stop = chunk[1]\n if ffunc == 'chebyshev':\n output = _find_cont_fitfunc(fluxes[:, start:stop], ivars[:,\n start:stop], contmask[start:stop], deg=deg, ffunc=\n 'chebyshev', n_proc=n_proc)\n elif ffunc == 'sinusoid':\n output = _find_cont_fitfunc(fluxes[:, start:stop], ivars[:,\n start:stop], contmask[start:stop], deg=deg, ffunc=\n 'sinusoid', n_proc=n_proc)\n cont[:, start:stop] = output\n return cont\n", "role": "user" }, { "content": "find_cont_fitfunc_regions", "role": "assistant" } ]
def x(wl, fluxes, ivars, q, delta_lambda, verbose=False): cont = np.zeros(fluxes.shape) nstars = fluxes.shape[0] for jj in range(nstars): if verbose: print('cont_norm_q(): working on star [%s/%s]...' % (jj + 1, nstars)) flux = fluxes[jj, :] ivar = ivars[jj, :] for ll, lam in enumerate(wl): indx = np.where(abs(wl - lam) < delta_lambda)[0] flux_cut = flux[indx] ivar_cut = ivar[indx] cont[jj, ll] = _weighted_median(flux_cut, ivar_cut, q) return cont
find_cont_running_quantile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wl, fluxes, ivars, q, delta_lambda, verbose=False):\n cont = np.zeros(fluxes.shape)\n nstars = fluxes.shape[0]\n for jj in range(nstars):\n if verbose:\n print('cont_norm_q(): working on star [%s/%s]...' % (jj + 1,\n nstars))\n flux = fluxes[jj, :]\n ivar = ivars[jj, :]\n for ll, lam in enumerate(wl):\n indx = np.where(abs(wl - lam) < delta_lambda)[0]\n flux_cut = flux[indx]\n ivar_cut = ivar[indx]\n cont[jj, ll] = _weighted_median(flux_cut, ivar_cut, q)\n return cont\n", "role": "user" }, { "content": "find_cont_running_quantile", "role": "assistant" } ]
def x(wl, fluxes, ivars, q, delta_lambda, n_proc=2, verbose=False): nStar = fluxes.shape[0] mp_results = [] pool = mp.Pool(processes=n_proc) for i in xrange(nStar): mp_results.append(pool.apply_async(_find_cont_running_quantile, (wl, fluxes[i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)), q, delta_lambda), {'verbose': False})) if verbose: print('@Bo Zhang: continuum normalizing star [%d/%d] ...' % (i + 1, nStar)) pool.close() pool.join() cont = np.zeros_like(fluxes) for i in xrange(nStar): cont[i, :] = mp_results[i].get() norm_fluxes = np.ones(fluxes.shape) norm_fluxes[cont != 0] = fluxes[cont != 0] / cont[cont != 0] norm_ivars = cont ** 2 * ivars print('@Bo Zhang: continuum normalization finished!') return norm_fluxes, norm_ivars
cont_norm_running_quantile_mp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wl, fluxes, ivars, q, delta_lambda, n_proc=2, verbose=False):\n nStar = fluxes.shape[0]\n mp_results = []\n pool = mp.Pool(processes=n_proc)\n for i in xrange(nStar):\n mp_results.append(pool.apply_async(_find_cont_running_quantile, (wl,\n fluxes[i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)), q,\n delta_lambda), {'verbose': False}))\n if verbose:\n print('@Bo Zhang: continuum normalizing star [%d/%d] ...' % (i +\n 1, nStar))\n pool.close()\n pool.join()\n cont = np.zeros_like(fluxes)\n for i in xrange(nStar):\n cont[i, :] = mp_results[i].get()\n norm_fluxes = np.ones(fluxes.shape)\n norm_fluxes[cont != 0] = fluxes[cont != 0] / cont[cont != 0]\n norm_ivars = cont ** 2 * ivars\n print('@Bo Zhang: continuum normalization finished!')\n return norm_fluxes, norm_ivars\n", "role": "user" }, { "content": "cont_norm_running_quantile_mp", "role": "assistant" } ]
def x(wl, fluxes, ivars, q, delta_lambda, ranges, verbose=True): print('contnorm.py: continuum norm using running quantile') print('Taking spectra in %s chunks' % len(ranges)) nstars = fluxes.shape[0] norm_fluxes = np.zeros(fluxes.shape) norm_ivars = np.zeros(ivars.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] output = _cont_norm_running_quantile(wl[start:stop], fluxes[:, start:stop], ivars[:, start:stop], q, delta_lambda) norm_fluxes[:, start:stop] = output[0] norm_ivars[:, start:stop] = output[1] return norm_fluxes, norm_ivars
cont_norm_running_quantile_regions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wl, fluxes, ivars, q, delta_lambda, ranges, verbose=True):\n print('contnorm.py: continuum norm using running quantile')\n print('Taking spectra in %s chunks' % len(ranges))\n nstars = fluxes.shape[0]\n norm_fluxes = np.zeros(fluxes.shape)\n norm_ivars = np.zeros(ivars.shape)\n for chunk in ranges:\n start = chunk[0]\n stop = chunk[1]\n output = _cont_norm_running_quantile(wl[start:stop], fluxes[:,\n start:stop], ivars[:, start:stop], q, delta_lambda)\n norm_fluxes[:, start:stop] = output[0]\n norm_ivars[:, start:stop] = output[1]\n return norm_fluxes, norm_ivars\n", "role": "user" }, { "content": "cont_norm_running_quantile_regions", "role": "assistant" } ]
def x(wl, fluxes, ivars, q, delta_lambda, ranges, n_proc=2, verbose=False): print('contnorm.py: continuum norm using running quantile') print('Taking spectra in %s chunks' % len(ranges)) nchunks = len(ranges) norm_fluxes = np.zeros(fluxes.shape) norm_ivars = np.zeros(ivars.shape) for i in xrange(nchunks): chunk = ranges[i, :] start = chunk[0] stop = chunk[1] if verbose: print( '@Bo Zhang: Going to normalize Chunk [%d/%d], pixel:[%d, %d] ...' % (i + 1, nchunks, start, stop)) output = _cont_norm_running_quantile_mp(wl[start:stop], fluxes[:, start:stop], ivars[:, start:stop], q, delta_lambda, n_proc= n_proc, verbose=verbose) norm_fluxes[:, start:stop] = output[0] norm_ivars[:, start:stop] = output[1] return norm_fluxes, norm_ivars
cont_norm_running_quantile_regions_mp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wl, fluxes, ivars, q, delta_lambda, ranges, n_proc=2, verbose=False):\n print('contnorm.py: continuum norm using running quantile')\n print('Taking spectra in %s chunks' % len(ranges))\n nchunks = len(ranges)\n norm_fluxes = np.zeros(fluxes.shape)\n norm_ivars = np.zeros(ivars.shape)\n for i in xrange(nchunks):\n chunk = ranges[i, :]\n start = chunk[0]\n stop = chunk[1]\n if verbose:\n print(\n '@Bo Zhang: Going to normalize Chunk [%d/%d], pixel:[%d, %d] ...'\n % (i + 1, nchunks, start, stop))\n output = _cont_norm_running_quantile_mp(wl[start:stop], fluxes[:,\n start:stop], ivars[:, start:stop], q, delta_lambda, n_proc=\n n_proc, verbose=verbose)\n norm_fluxes[:, start:stop] = output[0]\n norm_ivars[:, start:stop] = output[1]\n return norm_fluxes, norm_ivars\n", "role": "user" }, { "content": "cont_norm_running_quantile_regions_mp", "role": "assistant" } ]
def x(fluxes, ivars, cont): nstars = fluxes.shape[0] npixels = fluxes.shape[1] norm_fluxes = np.ones(fluxes.shape) norm_ivars = np.zeros(ivars.shape) bad = cont == 0.0 norm_fluxes = np.ones(fluxes.shape) norm_fluxes[~bad] = fluxes[~bad] / cont[~bad] norm_ivars = cont ** 2 * ivars return norm_fluxes, norm_ivars
cont_norm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fluxes, ivars, cont):\n nstars = fluxes.shape[0]\n npixels = fluxes.shape[1]\n norm_fluxes = np.ones(fluxes.shape)\n norm_ivars = np.zeros(ivars.shape)\n bad = cont == 0.0\n norm_fluxes = np.ones(fluxes.shape)\n norm_fluxes[~bad] = fluxes[~bad] / cont[~bad]\n norm_ivars = cont ** 2 * ivars\n return norm_fluxes, norm_ivars\n", "role": "user" }, { "content": "cont_norm", "role": "assistant" } ]
def x(fluxes, ivars, cont, ranges): nstars = fluxes.shape[0] norm_fluxes = np.zeros(fluxes.shape) norm_ivars = np.zeros(ivars.shape) for chunk in ranges: start = chunk[0] stop = chunk[1] output = _cont_norm(fluxes[:, start:stop], ivars[:, start:stop], cont[:, start:stop]) norm_fluxes[:, start:stop] = output[0] norm_ivars[:, start:stop] = output[1] for jj in range(nstars): bad = norm_ivars[jj, :] == 0.0 norm_fluxes[jj, :][bad] = 1.0 return norm_fluxes, norm_ivars
cont_norm_regions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fluxes, ivars, cont, ranges):\n nstars = fluxes.shape[0]\n norm_fluxes = np.zeros(fluxes.shape)\n norm_ivars = np.zeros(ivars.shape)\n for chunk in ranges:\n start = chunk[0]\n stop = chunk[1]\n output = _cont_norm(fluxes[:, start:stop], ivars[:, start:stop],\n cont[:, start:stop])\n norm_fluxes[:, start:stop] = output[0]\n norm_ivars[:, start:stop] = output[1]\n for jj in range(nstars):\n bad = norm_ivars[jj, :] == 0.0\n norm_fluxes[jj, :][bad] = 1.0\n return norm_fluxes, norm_ivars\n", "role": "user" }, { "content": "cont_norm_regions", "role": "assistant" } ]
def x(self, ds): if self.useErrors: (self.coeffs, self.scatters, self.new_tr_labels, self.chisqs, self. pivots, self.scales) = _train_model_new(ds) else: (self.coeffs, self.scatters, self.chisqs, self.pivots, self.scales ) = _train_model(ds)
train
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ds):\n if self.useErrors:\n (self.coeffs, self.scatters, self.new_tr_labels, self.chisqs, self.\n pivots, self.scales) = _train_model_new(ds)\n else:\n (self.coeffs, self.scatters, self.chisqs, self.pivots, self.scales\n ) = _train_model(ds)\n", "role": "user" }, { "content": "train", "role": "assistant" } ]
def x(self, ds): lvec_all = _get_lvec(ds.test_label_vals, self.pivots, self.scales, derivs=False) self.model_spectra = np.dot(lvec_all, self.coeffs.T)
infer_spectra
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ds):\n lvec_all = _get_lvec(ds.test_label_vals, self.pivots, self.scales,\n derivs=False)\n self.model_spectra = np.dot(lvec_all, self.coeffs.T)\n", "role": "user" }, { "content": "infer_spectra", "role": "assistant" } ]
def x(self, x, y, contpix_x, contpix_y, figname): fig, axarr = plt.subplots(2, sharex=True) plt.xlabel('Wavelength $\\lambda (\\AA)$') plt.xlim(min(x), max(x)) ax = axarr[0] ax.step(x, y, where='mid', c='k', linewidth=0.3, label='$\\theta_0$' + '= the leading fit coefficient') ax.scatter(contpix_x, contpix_y, s=1, color='r', label='continuum pixels') ax.legend(loc='lower right', prop={'family': 'serif', 'size': 'small'}) ax.set_title('Baseline Spectrum with Continuum Pixels') ax.set_ylabel('$\\theta_0$') ax = axarr[1] ax.step(x, y, where='mid', c='k', linewidth=0.3, label='$\\theta_0$' + '= the leading fit coefficient') ax.scatter(contpix_x, contpix_y, s=1, color='r', label='continuum pixels') ax.set_title('Baseline Spectrum with Continuum Pixels, Zoomed') ax.legend(loc='upper right', prop={'family': 'serif', 'size': 'small'}) ax.set_ylabel('$\\theta_0$') ax.set_ylim(0.95, 1.05) print('Diagnostic plot: fitted 0th order spec w/ cont pix') print('Saved as %s.png' % figname) plt.savefig(figname) plt.close()
plot_contpix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, contpix_x, contpix_y, figname):\n fig, axarr = plt.subplots(2, sharex=True)\n plt.xlabel('Wavelength $\\\\lambda (\\\\AA)$')\n plt.xlim(min(x), max(x))\n ax = axarr[0]\n ax.step(x, y, where='mid', c='k', linewidth=0.3, label='$\\\\theta_0$' +\n '= the leading fit coefficient')\n ax.scatter(contpix_x, contpix_y, s=1, color='r', label='continuum pixels')\n ax.legend(loc='lower right', prop={'family': 'serif', 'size': 'small'})\n ax.set_title('Baseline Spectrum with Continuum Pixels')\n ax.set_ylabel('$\\\\theta_0$')\n ax = axarr[1]\n ax.step(x, y, where='mid', c='k', linewidth=0.3, label='$\\\\theta_0$' +\n '= the leading fit coefficient')\n ax.scatter(contpix_x, contpix_y, s=1, color='r', label='continuum pixels')\n ax.set_title('Baseline Spectrum with Continuum Pixels, Zoomed')\n ax.legend(loc='upper right', prop={'family': 'serif', 'size': 'small'})\n ax.set_ylabel('$\\\\theta_0$')\n ax.set_ylim(0.95, 1.05)\n print('Diagnostic plot: fitted 0th order spec w/ cont pix')\n print('Saved as %s.png' % figname)\n plt.savefig(figname)\n plt.close()\n", "role": "user" }, { "content": "plot_contpix", "role": "assistant" } ]
def x(self, data, nchunks=10, fig='baseline_spec_with_cont_pix'): if data.contmask is None: print('No contmask set') else: coeffs_all = self.coeffs wl = data.wl baseline_spec = coeffs_all[:, 0] contmask = data.contmask contpix_x = wl[contmask] contpix_y = baseline_spec[contmask] rem = len(wl) % nchunks wl_split = np.array(np.split(wl[0:len(wl) - rem], nchunks)) baseline_spec_split = np.array(np.split(baseline_spec[0:len(wl) - rem], nchunks)) nchunks = wl_split.shape[0] for i in range(nchunks): fig_chunk = fig + '_%s' % str(i) wl_chunk = wl_split[i, :] baseline_spec_chunk = baseline_spec_split[i, :] take = np.logical_and(contpix_x > wl_chunk[0], contpix_x < wl_chunk[-1]) self.plot_contpix(wl_chunk, baseline_spec_chunk, contpix_x[take ], contpix_y[take], fig_chunk)
diagnostics_contpix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, nchunks=10, fig='baseline_spec_with_cont_pix'):\n if data.contmask is None:\n print('No contmask set')\n else:\n coeffs_all = self.coeffs\n wl = data.wl\n baseline_spec = coeffs_all[:, 0]\n contmask = data.contmask\n contpix_x = wl[contmask]\n contpix_y = baseline_spec[contmask]\n rem = len(wl) % nchunks\n wl_split = np.array(np.split(wl[0:len(wl) - rem], nchunks))\n baseline_spec_split = np.array(np.split(baseline_spec[0:len(wl) -\n rem], nchunks))\n nchunks = wl_split.shape[0]\n for i in range(nchunks):\n fig_chunk = fig + '_%s' % str(i)\n wl_chunk = wl_split[i, :]\n baseline_spec_chunk = baseline_spec_split[i, :]\n take = np.logical_and(contpix_x > wl_chunk[0], contpix_x <\n wl_chunk[-1])\n self.plot_contpix(wl_chunk, baseline_spec_chunk, contpix_x[take\n ], contpix_y[take], fig_chunk)\n", "role": "user" }, { "content": "diagnostics_contpix", "role": "assistant" } ]
def x(self, ds, figname='modelfit_chisqs.png'): label_names = ds.get_plotting_labels() lams = ds.wl pivots = self.pivots npixels = len(lams) nlabels = len(pivots) chisqs = self.chisqs coeffs = self.coeffs scatters = self.scatters plt.hist(np.sum(chisqs, axis=0), color='lightblue', alpha=0.7, bins=int (np.sqrt(len(chisqs)))) dof = len(lams) - coeffs.shape[1] plt.axvline(x=dof, c='k', linewidth=2, label='DOF') plt.legend() plt.title('Distribution of ' + '$\\chi^2$' + ' of the Model Fit') plt.ylabel('Count') plt.xlabel('$\\chi^2$' + ' of Individual Star') print('Diagnostic plot: histogram of the red chi squareds of the fit') print('Saved as %s' % figname) plt.savefig(figname) plt.close()
diagnostics_plot_chisq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ds, figname='modelfit_chisqs.png'):\n label_names = ds.get_plotting_labels()\n lams = ds.wl\n pivots = self.pivots\n npixels = len(lams)\n nlabels = len(pivots)\n chisqs = self.chisqs\n coeffs = self.coeffs\n scatters = self.scatters\n plt.hist(np.sum(chisqs, axis=0), color='lightblue', alpha=0.7, bins=int\n (np.sqrt(len(chisqs))))\n dof = len(lams) - coeffs.shape[1]\n plt.axvline(x=dof, c='k', linewidth=2, label='DOF')\n plt.legend()\n plt.title('Distribution of ' + '$\\\\chi^2$' + ' of the Model Fit')\n plt.ylabel('Count')\n plt.xlabel('$\\\\chi^2$' + ' of Individual Star')\n print('Diagnostic plot: histogram of the red chi squareds of the fit')\n print('Saved as %s' % figname)\n plt.savefig(figname)\n plt.close()\n", "role": "user" }, { "content": "diagnostics_plot_chisq", "role": "assistant" } ]
def x(nu_max, delta_nu, teff): NU_MAX = 3140.0 DELTA_NU = 135.03 TEFF = 5777.0 return (nu_max / NU_MAX) ** 3 * (delta_nu / DELTA_NU) ** -4 * (teff / TEFF ) ** 1.5
calc_mass
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nu_max, delta_nu, teff):\n NU_MAX = 3140.0\n DELTA_NU = 135.03\n TEFF = 5777.0\n return (nu_max / NU_MAX) ** 3 * (delta_nu / DELTA_NU) ** -4 * (teff / TEFF\n ) ** 1.5\n", "role": "user" }, { "content": "calc_mass", "role": "assistant" } ]
def x(mh, cm, nm, teff, logg): CplusN = calc_sum(mh, cm, nm) t = teff / 4000.0 return (95.8689 - 10.4042 * mh - 0.7266 * mh ** 2 + 41.3642 * cm - 5.3242 * cm * mh - 46.7792 * cm ** 2 + 15.0508 * nm - 0.9342 * nm * mh - 30.5159 * nm * cm - 1.6083 * nm ** 2 - 67.6093 * CplusN + 7.0486 * CplusN * mh + 133.5775 * CplusN * cm + 38.9439 * CplusN * nm - 88.9948 * CplusN ** 2 - 144.1765 * t + 5.118 * t * mh - 73.769 * t * cm - 15.2927 * t * nm + 101.7482 * t * CplusN + 27.769 * t ** 2 - 9.4246 * logg + 1.5159 * logg * mh + 16.0412 * logg * cm + 1.3549 * logg * nm - 18.6527 * logg * CplusN + 28.8015 * logg * t - 4.0982 * logg ** 2)
calc_mass_2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mh, cm, nm, teff, logg):\n CplusN = calc_sum(mh, cm, nm)\n t = teff / 4000.0\n return (95.8689 - 10.4042 * mh - 0.7266 * mh ** 2 + 41.3642 * cm - \n 5.3242 * cm * mh - 46.7792 * cm ** 2 + 15.0508 * nm - 0.9342 * nm *\n mh - 30.5159 * nm * cm - 1.6083 * nm ** 2 - 67.6093 * CplusN + \n 7.0486 * CplusN * mh + 133.5775 * CplusN * cm + 38.9439 * CplusN *\n nm - 88.9948 * CplusN ** 2 - 144.1765 * t + 5.118 * t * mh - 73.769 *\n t * cm - 15.2927 * t * nm + 101.7482 * t * CplusN + 27.769 * t ** 2 -\n 9.4246 * logg + 1.5159 * logg * mh + 16.0412 * logg * cm + 1.3549 *\n logg * nm - 18.6527 * logg * CplusN + 28.8015 * logg * t - 4.0982 *\n logg ** 2)\n", "role": "user" }, { "content": "calc_mass_2", "role": "assistant" } ]
def x(x, q, weights=None): if weights is None: return np.percentile(x, [(100.0 * qi) for qi in q]) else: idx = np.argsort(x) xsorted = x[idx] cdf = np.add.accumulate(weights[idx]) cdf /= cdf[-1] return np.interp(q, cdf, xsorted).tolist()
quantile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, q, weights=None):\n if weights is None:\n return np.percentile(x, [(100.0 * qi) for qi in q])\n else:\n idx = np.argsort(x)\n xsorted = x[idx]\n cdf = np.add.accumulate(weights[idx])\n cdf /= cdf[-1]\n return np.interp(q, cdf, xsorted).tolist()\n", "role": "user" }, { "content": "quantile", "role": "assistant" } ]
def x(x, y, bins=20, range=None, weights=None, levels=None, smooth=None, ax =None, color=None, plot_datapoints=True, plot_density=True, plot_contours=True, no_fill_contours=False, fill_contours=False, contour_kwargs=None, contourf_kwargs=None, data_kwargs=None, **kwargs): if ax is None: ax = pl.gca() if range is None: if 'extent' in kwargs: logging.warn( "Deprecated keyword argument 'extent'. Use 'range' instead.") range = kwargs['extent'] else: range = [[x.min(), x.max()], [y.min(), y.max()]] if color is None: color = 'k' if levels is None: levels = 1.0 - np.exp(-0.5 * np.arange(0.5, 2.1, 0.5) ** 2) density_cmap = LinearSegmentedColormap.from_list('density_cmap', [color, (1, 1, 1, 0)]) white_cmap = LinearSegmentedColormap.from_list('white_cmap', [(1, 1, 1), (1, 1, 1)], N=2) rgba_color = colorConverter.to_rgba(color) contour_cmap = [list(rgba_color) for l in levels] + [rgba_color] for i, l in enumerate(levels): contour_cmap[i][-1] *= float(i) / (len(levels) + 1) try: H, X, Y = np.histogram2d(x.flatten(), y.flatten(), bins=bins, range =range, weights=weights) except ValueError: raise ValueError( "It looks like at least one of your sample columns have no dynamic range. You could try using the 'range' argument." ) if smooth is not None: if gaussian_filter is None: raise ImportError('Please install scipy for smoothing') H = gaussian_filter(H, smooth) Hflat = H.flatten() inds = np.argsort(Hflat)[::-1] Hflat = Hflat[inds] sm = np.cumsum(Hflat) sm /= sm[-1] V = np.empty(len(levels)) for i, v0 in enumerate(levels): try: V[i] = Hflat[sm <= v0][-1] except: V[i] = Hflat[0] V.sort() m = np.diff(V) == 0 if np.any(m): logging.warning('Too few points to create valid contours') while np.any(m): V[np.where(m)[0][0]] *= 1.0 - 0.0001 m = np.diff(V) == 0 V.sort() X1, Y1 = 0.5 * (X[1:] + X[:-1]), 0.5 * (Y[1:] + Y[:-1]) H2 = H.min() + np.zeros((H.shape[0] + 4, H.shape[1] + 4)) H2[2:-2, 2:-2] = H H2[2:-2, 1] = H[:, 0] H2[2:-2, -2] = H[:, -1] H2[1, 2:-2] = H[0] H2[-2, 2:-2] = H[-1] H2[1, 1] = H[0, 0] H2[1, -2] = H[0, -1] H2[-2, 1] = H[-1, 0] H2[-2, -2] = H[-1, -1] X2 = np.concatenate([X1[0] + np.array([-2, -1]) * np.diff(X1[:2]), X1, X1[-1] + np.array([1, 2]) * np.diff(X1[-2:])]) Y2 = np.concatenate([Y1[0] + np.array([-2, -1]) * np.diff(Y1[:2]), Y1, Y1[-1] + np.array([1, 2]) * np.diff(Y1[-2:])]) if plot_datapoints: if data_kwargs is None: data_kwargs = dict() data_kwargs['color'] = data_kwargs.get('color', color) data_kwargs['ms'] = data_kwargs.get('ms', 2.0) data_kwargs['mec'] = data_kwargs.get('mec', 'none') data_kwargs['alpha'] = data_kwargs.get('alpha', 0.1) ax.plot(x, y, 'o', zorder=-1, rasterized=True, **data_kwargs) if (plot_contours or plot_density) and not no_fill_contours: ax.contourf(X2, Y2, H2.T, [V.min(), H.max()], cmap=white_cmap, antialiased=False) if plot_contours and fill_contours: if contourf_kwargs is None: contourf_kwargs = dict() contourf_kwargs['colors'] = contourf_kwargs.get('colors', contour_cmap) contourf_kwargs['antialiased'] = contourf_kwargs.get('antialiased', False) ax.contourf(X2, Y2, H2.T, np.concatenate([[0], V, [H.max() * (1 + 0.0001)]]), **contourf_kwargs) elif plot_density: ax.pcolor(X, Y, H.max() - H.T, cmap=density_cmap) if plot_contours: if contour_kwargs is None: contour_kwargs = dict() contour_kwargs['colors'] = contour_kwargs.get('colors', color) ax.contour(X2, Y2, H2.T, V, **contour_kwargs) ax.set_xlim(range[0]) ax.set_ylim(range[1])
hist2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, bins=20, range=None, weights=None, levels=None, smooth=None, ax\n =None, color=None, plot_datapoints=True, plot_density=True,\n plot_contours=True, no_fill_contours=False, fill_contours=False,\n contour_kwargs=None, contourf_kwargs=None, data_kwargs=None, **kwargs):\n if ax is None:\n ax = pl.gca()\n if range is None:\n if 'extent' in kwargs:\n logging.warn(\n \"Deprecated keyword argument 'extent'. Use 'range' instead.\")\n range = kwargs['extent']\n else:\n range = [[x.min(), x.max()], [y.min(), y.max()]]\n if color is None:\n color = 'k'\n if levels is None:\n levels = 1.0 - np.exp(-0.5 * np.arange(0.5, 2.1, 0.5) ** 2)\n density_cmap = LinearSegmentedColormap.from_list('density_cmap', [color,\n (1, 1, 1, 0)])\n white_cmap = LinearSegmentedColormap.from_list('white_cmap', [(1, 1, 1),\n (1, 1, 1)], N=2)\n rgba_color = colorConverter.to_rgba(color)\n contour_cmap = [list(rgba_color) for l in levels] + [rgba_color]\n for i, l in enumerate(levels):\n contour_cmap[i][-1] *= float(i) / (len(levels) + 1)\n try:\n H, X, Y = np.histogram2d(x.flatten(), y.flatten(), bins=bins, range\n =range, weights=weights)\n except ValueError:\n raise ValueError(\n \"It looks like at least one of your sample columns have no dynamic range. You could try using the 'range' argument.\"\n )\n if smooth is not None:\n if gaussian_filter is None:\n raise ImportError('Please install scipy for smoothing')\n H = gaussian_filter(H, smooth)\n Hflat = H.flatten()\n inds = np.argsort(Hflat)[::-1]\n Hflat = Hflat[inds]\n sm = np.cumsum(Hflat)\n sm /= sm[-1]\n V = np.empty(len(levels))\n for i, v0 in enumerate(levels):\n try:\n V[i] = Hflat[sm <= v0][-1]\n except:\n V[i] = Hflat[0]\n V.sort()\n m = np.diff(V) == 0\n if np.any(m):\n logging.warning('Too few points to create valid contours')\n while np.any(m):\n V[np.where(m)[0][0]] *= 1.0 - 0.0001\n m = np.diff(V) == 0\n V.sort()\n X1, Y1 = 0.5 * (X[1:] + X[:-1]), 0.5 * (Y[1:] + Y[:-1])\n H2 = H.min() + np.zeros((H.shape[0] + 4, H.shape[1] + 4))\n H2[2:-2, 2:-2] = H\n H2[2:-2, 1] = H[:, 0]\n H2[2:-2, -2] = H[:, -1]\n H2[1, 2:-2] = H[0]\n H2[-2, 2:-2] = H[-1]\n H2[1, 1] = H[0, 0]\n H2[1, -2] = H[0, -1]\n H2[-2, 1] = H[-1, 0]\n H2[-2, -2] = H[-1, -1]\n X2 = np.concatenate([X1[0] + np.array([-2, -1]) * np.diff(X1[:2]), X1, \n X1[-1] + np.array([1, 2]) * np.diff(X1[-2:])])\n Y2 = np.concatenate([Y1[0] + np.array([-2, -1]) * np.diff(Y1[:2]), Y1, \n Y1[-1] + np.array([1, 2]) * np.diff(Y1[-2:])])\n if plot_datapoints:\n if data_kwargs is None:\n data_kwargs = dict()\n data_kwargs['color'] = data_kwargs.get('color', color)\n data_kwargs['ms'] = data_kwargs.get('ms', 2.0)\n data_kwargs['mec'] = data_kwargs.get('mec', 'none')\n data_kwargs['alpha'] = data_kwargs.get('alpha', 0.1)\n ax.plot(x, y, 'o', zorder=-1, rasterized=True, **data_kwargs)\n if (plot_contours or plot_density) and not no_fill_contours:\n ax.contourf(X2, Y2, H2.T, [V.min(), H.max()], cmap=white_cmap,\n antialiased=False)\n if plot_contours and fill_contours:\n if contourf_kwargs is None:\n contourf_kwargs = dict()\n contourf_kwargs['colors'] = contourf_kwargs.get('colors', contour_cmap)\n contourf_kwargs['antialiased'] = contourf_kwargs.get('antialiased',\n False)\n ax.contourf(X2, Y2, H2.T, np.concatenate([[0], V, [H.max() * (1 + \n 0.0001)]]), **contourf_kwargs)\n elif plot_density:\n ax.pcolor(X, Y, H.max() - H.T, cmap=density_cmap)\n if plot_contours:\n if contour_kwargs is None:\n contour_kwargs = dict()\n contour_kwargs['colors'] = contour_kwargs.get('colors', color)\n ax.contour(X2, Y2, H2.T, V, **contour_kwargs)\n ax.set_xlim(range[0])\n ax.set_ylim(range[1])\n", "role": "user" }, { "content": "hist2d", "role": "assistant" } ]
def x(lamost_point, training_points, coeffs): diff2 = (training_points - lamost_point) ** 2 dist = np.sqrt(np.sum(diff2 * coeffs, axis=1)) return np.mean(dist[dist.argsort()][0:10])
calc_dist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lamost_point, training_points, coeffs):\n diff2 = (training_points - lamost_point) ** 2\n dist = np.sqrt(np.sum(diff2 * coeffs, axis=1))\n return np.mean(dist[dist.argsort()][0:10])\n", "role": "user" }, { "content": "calc_dist", "role": "assistant" } ]
def x(self, name, ids, labels): if not all(np.in1d(ids, self.ids)): raise ValueError( 'Hay ids de textos que no se encuentran almacenados.' ) setattr(self, name, SGDClassifier()) classifier = getattr(self, name) indices = np.searchsorted(self.ids, ids) classifier.fit(self.tfidf_mat[indices, :], labels)
make_classifier
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, ids, labels):\n if not all(np.in1d(ids, self.ids)):\n raise ValueError(\n 'Hay ids de textos que no se encuentran almacenados.'\n )\n setattr(self, name, SGDClassifier())\n classifier = getattr(self, name)\n indices = np.searchsorted(self.ids, ids)\n classifier.fit(self.tfidf_mat[indices, :], labels)\n", "role": "user" }, { "content": "make_classifier", "role": "assistant" } ]
def x(self, name, ids, labels): if not all(np.in1d(ids, self.ids)): raise ValueError( 'Hay ids de textos que no se encuentran almacenados.' ) try: classifier = getattr(self, name) except AttributeError: raise AttributeError('No hay ningun clasificador con ese nombre.') indices = np.in1d(self.ids, ids) if isinstance(labels, str): labels = [labels] classifier.partial_fit(self.tfidf_mat[indices, :], labels)
retrain
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, ids, labels):\n if not all(np.in1d(ids, self.ids)):\n raise ValueError(\n 'Hay ids de textos que no se encuentran almacenados.'\n )\n try:\n classifier = getattr(self, name)\n except AttributeError:\n raise AttributeError('No hay ningun clasificador con ese nombre.')\n indices = np.in1d(self.ids, ids)\n if isinstance(labels, str):\n labels = [labels]\n classifier.partial_fit(self.tfidf_mat[indices, :], labels)\n", "role": "user" }, { "content": "retrain", "role": "assistant" } ]
def x(self, classifier_name, examples, max_labels=None, goodness_of_fit=False): classifier = getattr(self, classifier_name) texts_vectors = self._make_text_vectors(examples) return classifier.classes_, classifier.decision_function(texts_vectors)
classify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, classifier_name, examples, max_labels=None, goodness_of_fit=False):\n classifier = getattr(self, classifier_name)\n texts_vectors = self._make_text_vectors(examples)\n return classifier.classes_, classifier.decision_function(texts_vectors)\n", "role": "user" }, { "content": "classify", "role": "assistant" } ]
def x(self, examples): if isinstance(examples, str): if examples in self.ids: textvec = self.tfidf_mat[self.ids == examples, :] else: textvec = self.vectorizer.transform([examples]) textvec = self.transformer.transform(textvec) elif type(examples) is list: if all(np.in1d(examples, self.ids)): textvec = self.tfidf_mat[np.in1d(self.ids, examples)] elif not any(np.in1d(examples, self.ids)): textvec = self.vectorizer.transform(examples) textvec = self.transformer.transform(textvec) else: raise ValueError( 'Las listas de ejemplos deben ser todos ids de textos almacenados o todos textos planos' ) else: raise TypeError('Los ejemplos no son del tipo de dato adecuado.') return textvec
make_text_vectors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, examples):\n if isinstance(examples, str):\n if examples in self.ids:\n textvec = self.tfidf_mat[self.ids == examples, :]\n else:\n textvec = self.vectorizer.transform([examples])\n textvec = self.transformer.transform(textvec)\n elif type(examples) is list:\n if all(np.in1d(examples, self.ids)):\n textvec = self.tfidf_mat[np.in1d(self.ids, examples)]\n elif not any(np.in1d(examples, self.ids)):\n textvec = self.vectorizer.transform(examples)\n textvec = self.transformer.transform(textvec)\n else:\n raise ValueError(\n 'Las listas de ejemplos deben ser todos ids de textos almacenados o todos textos planos'\n )\n else:\n raise TypeError('Los ejemplos no son del tipo de dato adecuado.')\n return textvec\n", "role": "user" }, { "content": "make_text_vectors", "role": "assistant" } ]
def x(self, example, max_similars=3, similarity_cutoff=None, term_diff_max_rank=10, filter_list=None, term_diff_cutoff=None): if term_diff_cutoff: warnings.warn('Deprecado. Quedo sin uso. Se quitara en el futuro.', DeprecationWarning) if filter_list: if max_similars > len(filter_list): raise ValueError( 'No se pueden pedir mas sugerencias que la cantidad de textos en `filter_list`.' ) else: filt_idx = np.in1d(self.ids, filter_list) elif max_similars > self.term_mat.shape[0]: raise ValueError( 'No se pueden pedir mas sugerencias que la cantidad de textos que hay almacenados.' ) else: filt_idx = np.ones(len(self.ids), dtype=bool) good_ids = np.array(np.sum(self.term_mat, 1) > 0).squeeze() filt_idx = filt_idx & good_ids filt_idx_to_general_idx = np.flatnonzero(filt_idx) if example in self.ids: index = self.ids == example exmpl_vec = self.tfidf_mat[index, :] distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx], exmpl_vec)) if filter_list and example in filter_list: distances[filter_list.index(example)] = np.inf elif not filter_list: idx_example = np.searchsorted(self.ids, example) filt_idx_example = np.searchsorted(np.flatnonzero(filt_idx), idx_example) distances[filt_idx_example] = np.inf else: exmpl_vec = self.vectorizer.transform([example]) exmpl_vec = self.transformer.transform(exmpl_vec) distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx], exmpl_vec)) if np.sum(exmpl_vec) == 0: return [], [], [] sorted_indices = np.argsort(distances) closest_n = sorted_indices[:max_similars] sorted_dist = distances[closest_n] if similarity_cutoff: closest_n = closest_n[sorted_dist < similarity_cutoff] sorted_dist = sorted_dist[sorted_dist < similarity_cutoff] best_words = [] best_example = np.squeeze(exmpl_vec.toarray()) sorted_example_weights = np.flipud(np.argsort(best_example)) truncated_max_rank = min(term_diff_max_rank, np.sum(best_example > 0)) best_example_words = sorted_example_weights[:truncated_max_rank] for suggested in closest_n: suggested_idx = filt_idx_to_general_idx[suggested] test_vec = np.squeeze(self.tfidf_mat[suggested_idx, :].toarray()) sorted_test_weights = np.flipud(np.argsort(test_vec)) truncated_max_rank = min(term_diff_max_rank, np.sum(test_vec > 0)) best_test = sorted_test_weights[:truncated_max_rank] best_words_ids = np.intersect1d(best_example_words, best_test) best_words.append([k for k, v in self.vectorizer.vocabulary_.items( ) if v in best_words_ids]) if filter_list: text_ids = self.ids[filt_idx_to_general_idx[closest_n]] else: text_ids = self.ids[closest_n] return list(text_ids), list(sorted_dist), best_words
get_similar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, example, max_similars=3, similarity_cutoff=None,\n term_diff_max_rank=10, filter_list=None, term_diff_cutoff=None):\n if term_diff_cutoff:\n warnings.warn('Deprecado. Quedo sin uso. Se quitara en el futuro.',\n DeprecationWarning)\n if filter_list:\n if max_similars > len(filter_list):\n raise ValueError(\n 'No se pueden pedir mas sugerencias que la cantidad de textos en `filter_list`.'\n )\n else:\n filt_idx = np.in1d(self.ids, filter_list)\n elif max_similars > self.term_mat.shape[0]:\n raise ValueError(\n 'No se pueden pedir mas sugerencias que la cantidad de textos que hay almacenados.'\n )\n else:\n filt_idx = np.ones(len(self.ids), dtype=bool)\n good_ids = np.array(np.sum(self.term_mat, 1) > 0).squeeze()\n filt_idx = filt_idx & good_ids\n filt_idx_to_general_idx = np.flatnonzero(filt_idx)\n if example in self.ids:\n index = self.ids == example\n exmpl_vec = self.tfidf_mat[index, :]\n distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx],\n exmpl_vec))\n if filter_list and example in filter_list:\n distances[filter_list.index(example)] = np.inf\n elif not filter_list:\n idx_example = np.searchsorted(self.ids, example)\n filt_idx_example = np.searchsorted(np.flatnonzero(filt_idx),\n idx_example)\n distances[filt_idx_example] = np.inf\n else:\n exmpl_vec = self.vectorizer.transform([example])\n exmpl_vec = self.transformer.transform(exmpl_vec)\n distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx],\n exmpl_vec))\n if np.sum(exmpl_vec) == 0:\n return [], [], []\n sorted_indices = np.argsort(distances)\n closest_n = sorted_indices[:max_similars]\n sorted_dist = distances[closest_n]\n if similarity_cutoff:\n closest_n = closest_n[sorted_dist < similarity_cutoff]\n sorted_dist = sorted_dist[sorted_dist < similarity_cutoff]\n best_words = []\n best_example = np.squeeze(exmpl_vec.toarray())\n sorted_example_weights = np.flipud(np.argsort(best_example))\n truncated_max_rank = min(term_diff_max_rank, np.sum(best_example > 0))\n best_example_words = sorted_example_weights[:truncated_max_rank]\n for suggested in closest_n:\n suggested_idx = filt_idx_to_general_idx[suggested]\n test_vec = np.squeeze(self.tfidf_mat[suggested_idx, :].toarray())\n sorted_test_weights = np.flipud(np.argsort(test_vec))\n truncated_max_rank = min(term_diff_max_rank, np.sum(test_vec > 0))\n best_test = sorted_test_weights[:truncated_max_rank]\n best_words_ids = np.intersect1d(best_example_words, best_test)\n best_words.append([k for k, v in self.vectorizer.vocabulary_.items(\n ) if v in best_words_ids])\n if filter_list:\n text_ids = self.ids[filt_idx_to_general_idx[closest_n]]\n else:\n text_ids = self.ids[closest_n]\n return list(text_ids), list(sorted_dist), best_words\n", "role": "user" }, { "content": "get_similar", "role": "assistant" } ]
def x(self, texts, ids, vocabulary=None): self._check_id_length(ids) self.ids = np.array(sorted(ids)) if vocabulary: self.vectorizer.vocabulary = vocabulary sorted_texts = [x for y, x in sorted(zip(ids, texts))] self.term_mat = self.vectorizer.fit_transform(sorted_texts) self._update_tfidf()
reload_texts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, texts, ids, vocabulary=None):\n self._check_id_length(ids)\n self.ids = np.array(sorted(ids))\n if vocabulary:\n self.vectorizer.vocabulary = vocabulary\n sorted_texts = [x for y, x in sorted(zip(ids, texts))]\n self.term_mat = self.vectorizer.fit_transform(sorted_texts)\n self._update_tfidf()\n", "role": "user" }, { "content": "reload_texts", "role": "assistant" } ]
def x(q=None, datasetKey=None, rank=None, limit=100, offset=None, **kwargs): url = gbif_baseurl + 'species/suggest' args = {'q': q, 'rank': rank, 'offset': offset, 'limit': limit} return gbif_GET(url, args, **kwargs)
name_suggest
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q=None, datasetKey=None, rank=None, limit=100, offset=None, **kwargs):\n url = gbif_baseurl + 'species/suggest'\n args = {'q': q, 'rank': rank, 'offset': offset, 'limit': limit}\n return gbif_GET(url, args, **kwargs)\n", "role": "user" }, { "content": "name_suggest", "role": "assistant" } ]
def x(uuid, **kwargs): def x(x, **kwargs): url = gbif_baseurl + 'dataset/' + x + '/metrics' return gbif_GET(url, {}, **kwargs) if len2(uuid) == 1: return getdata(uuid) else: return [getdata(x) for x in uuid]
dataset_metrics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uuid, **kwargs):\n\n def x(x, **kwargs):\n url = gbif_baseurl + 'dataset/' + x + '/metrics'\n return gbif_GET(url, {}, **kwargs)\n if len2(uuid) == 1:\n return getdata(uuid)\n else:\n return [getdata(x) for x in uuid]\n", "role": "user" }, { "content": "dataset_metrics", "role": "assistant" } ]
def x(data='all', type=None, uuid=None, query=None, id=None, limit=100, offset=None, **kwargs): args = {'q': query, 'type': type, 'limit': limit, 'offset': offset} data_choices = ['all', 'organization', 'contact', 'endpoint', 'identifier', 'tag', 'machinetag', 'comment', 'constituents', 'document', 'metadata', 'deleted', 'duplicate', 'subDataset', 'withNoEndpoint'] check_data(data, data_choices) if len2(data) == 1: return datasets_fetch(data, uuid, args, **kwargs) else: return [datasets_fetch(x, uuid, args, **kwargs) for x in data]
datasets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data='all', type=None, uuid=None, query=None, id=None, limit=100,\n offset=None, **kwargs):\n args = {'q': query, 'type': type, 'limit': limit, 'offset': offset}\n data_choices = ['all', 'organization', 'contact', 'endpoint',\n 'identifier', 'tag', 'machinetag', 'comment', 'constituents',\n 'document', 'metadata', 'deleted', 'duplicate', 'subDataset',\n 'withNoEndpoint']\n check_data(data, data_choices)\n if len2(data) == 1:\n return datasets_fetch(data, uuid, args, **kwargs)\n else:\n return [datasets_fetch(x, uuid, args, **kwargs) for x in data]\n", "role": "user" }, { "content": "datasets", "role": "assistant" } ]
def x(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None, hostingOrg=None, publishingCountry=None, decade=None, limit=100, offset =None, **kwargs): url = gbif_baseurl + 'dataset/suggest' args = {'q': q, 'type': type, 'keyword': keyword, 'publishingOrg': publishingOrg, 'hostingOrg': hostingOrg, 'owningOrg': owningOrg, 'decade': decade, 'publishingCountry': publishingCountry, 'limit': limit, 'offset': offset} out = gbif_GET(url, args, **kwargs) return out
dataset_suggest
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None,\n hostingOrg=None, publishingCountry=None, decade=None, limit=100, offset\n =None, **kwargs):\n url = gbif_baseurl + 'dataset/suggest'\n args = {'q': q, 'type': type, 'keyword': keyword, 'publishingOrg':\n publishingOrg, 'hostingOrg': hostingOrg, 'owningOrg': owningOrg,\n 'decade': decade, 'publishingCountry': publishingCountry, 'limit':\n limit, 'offset': offset}\n out = gbif_GET(url, args, **kwargs)\n return out\n", "role": "user" }, { "content": "dataset_suggest", "role": "assistant" } ]
def x(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None, hostingOrg=None, decade=None, publishingCountry=None, facet=None, facetMincount=None, facetMultiselect=None, hl=False, limit=100, offset= None, **kwargs): url = gbif_baseurl + 'dataset/search' args = {'q': q, 'type': type, 'keyword': keyword, 'owningOrg': owningOrg, 'publishingOrg': publishingOrg, 'hostingOrg': hostingOrg, 'decade': decade, 'publishingCountry': publishingCountry, 'facet': facet, 'facetMincount': facetMincount, 'facetMultiselect': facetMultiselect, 'hl': hl, 'limit': limit, 'offset': offset} gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in requests_argset} if gbif_kwargs is not None: xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()], gbif_kwargs.values())) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} out = gbif_GET(url, args, **kwargs) return out
dataset_search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None,\n hostingOrg=None, decade=None, publishingCountry=None, facet=None,\n facetMincount=None, facetMultiselect=None, hl=False, limit=100, offset=\n None, **kwargs):\n url = gbif_baseurl + 'dataset/search'\n args = {'q': q, 'type': type, 'keyword': keyword, 'owningOrg':\n owningOrg, 'publishingOrg': publishingOrg, 'hostingOrg': hostingOrg,\n 'decade': decade, 'publishingCountry': publishingCountry, 'facet':\n facet, 'facetMincount': facetMincount, 'facetMultiselect':\n facetMultiselect, 'hl': hl, 'limit': limit, 'offset': offset}\n gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in\n requests_argset}\n if gbif_kwargs is not None:\n xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()],\n gbif_kwargs.values()))\n args.update(xx)\n kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}\n out = gbif_GET(url, args, **kwargs)\n return out\n", "role": "user" }, { "content": "dataset_search", "role": "assistant" } ]
def x(x, digits=None): z = wkt.loads(x) if digits is None: coords = z['coordinates'] nums = __flatten(coords) dec_n = [decimal.Decimal(str(w)).as_tuple().exponent for w in nums] digits = abs(statistics.mean(dec_n)) elif not isinstance(digits, int): raise TypeError("'digits' must be an int") wound = rewind(z) back_to_wkt = wkt.dumps(wound, decimals=digits) return back_to_wkt
wkt_rewind
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, digits=None):\n z = wkt.loads(x)\n if digits is None:\n coords = z['coordinates']\n nums = __flatten(coords)\n dec_n = [decimal.Decimal(str(w)).as_tuple().exponent for w in nums]\n digits = abs(statistics.mean(dec_n))\n elif not isinstance(digits, int):\n raise TypeError(\"'digits' must be an int\")\n wound = rewind(z)\n back_to_wkt = wkt.dumps(wound, decimals=digits)\n return back_to_wkt\n", "role": "user" }, { "content": "wkt_rewind", "role": "assistant" } ]
def x(issue=None, code=None): if code is None: bb = [trymatch(issue, x) for x in gbifissues['issue']] tmp = filter(None, bb) else: bb = [trymatch(code, x) for x in gbifissues['code']] tmp = filter(None, bb) return tmp
occ_issues_lookup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(issue=None, code=None):\n if code is None:\n bb = [trymatch(issue, x) for x in gbifissues['issue']]\n tmp = filter(None, bb)\n else:\n bb = [trymatch(code, x) for x in gbifissues['code']]\n tmp = filter(None, bb)\n return tmp\n", "role": "user" }, { "content": "occ_issues_lookup", "role": "assistant" } ]
def x(taxonKey=None, repatriated=None, kingdomKey=None, phylumKey=None, classKey=None, orderKey=None, familyKey=None, genusKey=None, subgenusKey=None, scientificName=None, country=None, publishingCountry= None, hasCoordinate=None, typeStatus=None, recordNumber=None, lastInterpreted=None, continent=None, geometry=None, recordedBy=None, basisOfRecord=None, datasetKey=None, eventDate=None, catalogNumber=None, year=None, month=None, decimalLatitude=None, decimalLongitude=None, elevation=None, depth=None, institutionCode=None, collectionCode=None, hasGeospatialIssue=None, issue=None, q=None, spellCheck=None, mediatype =None, limit=300, offset=0, establishmentMeans=None, facet=None, facetMincount=None, facetMultiselect=None, **kwargs): url = gbif_baseurl + 'occurrence/search' args = {'taxonKey': taxonKey, 'repatriated': repatriated, 'kingdomKey': kingdomKey, 'phylumKey': phylumKey, 'classKey': classKey, 'orderKey': orderKey, 'familyKey': familyKey, 'genusKey': genusKey, 'subgenusKey': subgenusKey, 'scientificName': scientificName, 'country': country, 'publishingCountry': publishingCountry, 'hasCoordinate': hasCoordinate, 'typeStatus': typeStatus, 'recordNumber': recordNumber, 'lastInterpreted': lastInterpreted, 'continent': continent, 'geometry': geometry, 'recordedBy': recordedBy, 'basisOfRecord': basisOfRecord, 'datasetKey': datasetKey, 'eventDate': eventDate, 'catalogNumber': catalogNumber, 'year': year, 'month': month, 'decimalLatitude': decimalLatitude, 'decimalLongitude': decimalLongitude, 'elevation': elevation, 'depth': depth, 'institutionCode': institutionCode, 'collectionCode': collectionCode, 'hasGeospatialIssue': hasGeospatialIssue, 'issue': issue, 'q': q, 'spellCheck': spellCheck, 'mediatype': mediatype, 'limit': limit, 'offset': offset, 'establishmentMeans': establishmentMeans, 'facetMincount': facetMincount, 'facet': facet, 'facetMultiselect': facetMultiselect} gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in requests_argset} if gbif_kwargs is not None: xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()], gbif_kwargs.values())) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} out = gbif_GET(url, args, **kwargs) return out
search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(taxonKey=None, repatriated=None, kingdomKey=None, phylumKey=None,\n classKey=None, orderKey=None, familyKey=None, genusKey=None,\n subgenusKey=None, scientificName=None, country=None, publishingCountry=\n None, hasCoordinate=None, typeStatus=None, recordNumber=None,\n lastInterpreted=None, continent=None, geometry=None, recordedBy=None,\n basisOfRecord=None, datasetKey=None, eventDate=None, catalogNumber=None,\n year=None, month=None, decimalLatitude=None, decimalLongitude=None,\n elevation=None, depth=None, institutionCode=None, collectionCode=None,\n hasGeospatialIssue=None, issue=None, q=None, spellCheck=None, mediatype\n =None, limit=300, offset=0, establishmentMeans=None, facet=None,\n facetMincount=None, facetMultiselect=None, **kwargs):\n url = gbif_baseurl + 'occurrence/search'\n args = {'taxonKey': taxonKey, 'repatriated': repatriated, 'kingdomKey':\n kingdomKey, 'phylumKey': phylumKey, 'classKey': classKey,\n 'orderKey': orderKey, 'familyKey': familyKey, 'genusKey': genusKey,\n 'subgenusKey': subgenusKey, 'scientificName': scientificName,\n 'country': country, 'publishingCountry': publishingCountry,\n 'hasCoordinate': hasCoordinate, 'typeStatus': typeStatus,\n 'recordNumber': recordNumber, 'lastInterpreted': lastInterpreted,\n 'continent': continent, 'geometry': geometry, 'recordedBy':\n recordedBy, 'basisOfRecord': basisOfRecord, 'datasetKey':\n datasetKey, 'eventDate': eventDate, 'catalogNumber': catalogNumber,\n 'year': year, 'month': month, 'decimalLatitude': decimalLatitude,\n 'decimalLongitude': decimalLongitude, 'elevation': elevation,\n 'depth': depth, 'institutionCode': institutionCode,\n 'collectionCode': collectionCode, 'hasGeospatialIssue':\n hasGeospatialIssue, 'issue': issue, 'q': q, 'spellCheck':\n spellCheck, 'mediatype': mediatype, 'limit': limit, 'offset':\n offset, 'establishmentMeans': establishmentMeans, 'facetMincount':\n facetMincount, 'facet': facet, 'facetMultiselect': facetMultiselect}\n gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in\n requests_argset}\n if gbif_kwargs is not None:\n xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()],\n gbif_kwargs.values()))\n args.update(xx)\n kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}\n out = gbif_GET(url, args, **kwargs)\n return out\n", "role": "user" }, { "content": "search", "role": "assistant" } ]
def x(data='all', uuid=None, q=None, identifier=None, identifierType=None, limit=100, offset=None, **kwargs): args = {'q': q, 'limit': limit, 'offset': offset, 'identifier': identifier, 'identifierType': identifierType} data_choices = ['all', 'contact', 'endpoint', 'identifier', 'tag', 'machineTag', 'comment', 'constituents'] check_data(data, data_choices) def x(x, uuid, args, **kwargs): if x is not 'all' and uuid is None: stop('You must specify a uuid if data does not equal "all"') if uuid is None: url = gbif_baseurl + 'network' elif x is 'all': url = gbif_baseurl + 'network/' + uuid else: url = gbif_baseurl + 'network/' + uuid + '/' + x res = gbif_GET(url, args, **kwargs) return {'meta': get_meta(res), 'data': parse_results(res, uuid)} if len2(data) == 1: return getdata(data, uuid, args, **kwargs) else: return [getdata(x, uuid, args, **kwargs) for x in data]
networks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data='all', uuid=None, q=None, identifier=None, identifierType=None,\n limit=100, offset=None, **kwargs):\n args = {'q': q, 'limit': limit, 'offset': offset, 'identifier':\n identifier, 'identifierType': identifierType}\n data_choices = ['all', 'contact', 'endpoint', 'identifier', 'tag',\n 'machineTag', 'comment', 'constituents']\n check_data(data, data_choices)\n\n def x(x, uuid, args, **kwargs):\n if x is not 'all' and uuid is None:\n stop('You must specify a uuid if data does not equal \"all\"')\n if uuid is None:\n url = gbif_baseurl + 'network'\n elif x is 'all':\n url = gbif_baseurl + 'network/' + uuid\n else:\n url = gbif_baseurl + 'network/' + uuid + '/' + x\n res = gbif_GET(url, args, **kwargs)\n return {'meta': get_meta(res), 'data': parse_results(res, uuid)}\n if len2(data) == 1:\n return getdata(data, uuid, args, **kwargs)\n else:\n return [getdata(x, uuid, args, **kwargs) for x in data]\n", "role": "user" }, { "content": "networks", "role": "assistant" } ]
def x(source='density', z=0, x=0, y=0, format='@1x.png', srs='EPSG:4326', bin=None, hexPerTile=None, style='classic.point', taxonKey=None, country=None, publishingCountry=None, publisher=None, datasetKey=None, year=None, basisOfRecord=None, **kwargs): if format not in ['.mvt', '@Hx.png', '@1x.png', '@2x.png', '@3x.png', '@4x.png']: raise ValueError("'format' not in allowed set, see docs") if source not in ['density', 'adhoc']: raise ValueError("'source' not in allowed set, see docs") if srs not in ['EPSG:3857', 'EPSG:4326', 'EPSG:3575', 'EPSG:3031']: raise ValueError("'srs' not in allowed set, see docs") if bin is not None: if bin not in ['square', 'hex']: raise ValueError("'bin' not in allowed set, see docs") if style is not None: if style not in map_styles: raise ValueError("'style' not in allowed set, see docs") maps_baseurl = 'https://api.gbif.org' url = maps_baseurl + '/v2/map/occurrence/%s/%s/%s/%s%s' url = url % (source, z, x, y, format) year = __handle_year(year) basisOfRecord = __handle_bor(basisOfRecord) args = {'srs': srs, 'bin': bin, 'hexPerTile': hexPerTile, 'style': style, 'taxonKey': taxonKey, 'country': country, 'publishingCountry': publishingCountry, 'publisher': publisher, 'datasetKey': datasetKey, 'year': year, 'basisOfRecord': basisOfRecord} kw = {key: kwargs[key] for key in kwargs if key not in requests_argset} if kw is not None: xx = dict(zip([re.sub('_', '.', x) for x in kw.keys()], kw.values())) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} ctype = 'image/png' if has(format, 'png') else 'application/x-protobuf' out = gbif_GET_map(url, args, ctype, **kwargs) return GbifMap(out)
map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source='density', z=0, x=0, y=0, format='@1x.png', srs='EPSG:4326',\n bin=None, hexPerTile=None, style='classic.point', taxonKey=None,\n country=None, publishingCountry=None, publisher=None, datasetKey=None,\n year=None, basisOfRecord=None, **kwargs):\n if format not in ['.mvt', '@Hx.png', '@1x.png', '@2x.png', '@3x.png',\n '@4x.png']:\n raise ValueError(\"'format' not in allowed set, see docs\")\n if source not in ['density', 'adhoc']:\n raise ValueError(\"'source' not in allowed set, see docs\")\n if srs not in ['EPSG:3857', 'EPSG:4326', 'EPSG:3575', 'EPSG:3031']:\n raise ValueError(\"'srs' not in allowed set, see docs\")\n if bin is not None:\n if bin not in ['square', 'hex']:\n raise ValueError(\"'bin' not in allowed set, see docs\")\n if style is not None:\n if style not in map_styles:\n raise ValueError(\"'style' not in allowed set, see docs\")\n maps_baseurl = 'https://api.gbif.org'\n url = maps_baseurl + '/v2/map/occurrence/%s/%s/%s/%s%s'\n url = url % (source, z, x, y, format)\n year = __handle_year(year)\n basisOfRecord = __handle_bor(basisOfRecord)\n args = {'srs': srs, 'bin': bin, 'hexPerTile': hexPerTile, 'style':\n style, 'taxonKey': taxonKey, 'country': country,\n 'publishingCountry': publishingCountry, 'publisher': publisher,\n 'datasetKey': datasetKey, 'year': year, 'basisOfRecord': basisOfRecord}\n kw = {key: kwargs[key] for key in kwargs if key not in requests_argset}\n if kw is not None:\n xx = dict(zip([re.sub('_', '.', x) for x in kw.keys()], kw.values()))\n args.update(xx)\n kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}\n ctype = 'image/png' if has(format, 'png') else 'application/x-protobuf'\n out = gbif_GET_map(url, args, ctype, **kwargs)\n return GbifMap(out)\n", "role": "user" }, { "content": "map", "role": "assistant" } ]
def x(key=None, name=None, data='all', language=None, datasetKey=None, uuid =None, sourceId=None, rank=None, shortname=None, limit=100, offset=None, **kwargs): args = {'language': language, 'name': name, 'datasetKey': datasetKey, 'rank': rank, 'sourceId': sourceId, 'limit': limit, 'offset': offset} data_choices = ['all', 'verbatim', 'name', 'parents', 'children', 'related', 'synonyms', 'descriptions', 'distributions', 'media', 'references', 'speciesProfiles', 'vernacularNames', 'typeSpecimens', 'root'] check_data(data, data_choices) if len2(data) == 1: return name_usage_fetch(data, key, shortname, uuid, args, **kwargs) else: return [name_usage_fetch(x, key, shortname, uuid, args, **kwargs) for x in data]
name_usage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key=None, name=None, data='all', language=None, datasetKey=None, uuid\n =None, sourceId=None, rank=None, shortname=None, limit=100, offset=None,\n **kwargs):\n args = {'language': language, 'name': name, 'datasetKey': datasetKey,\n 'rank': rank, 'sourceId': sourceId, 'limit': limit, 'offset': offset}\n data_choices = ['all', 'verbatim', 'name', 'parents', 'children',\n 'related', 'synonyms', 'descriptions', 'distributions', 'media',\n 'references', 'speciesProfiles', 'vernacularNames', 'typeSpecimens',\n 'root']\n check_data(data, data_choices)\n if len2(data) == 1:\n return name_usage_fetch(data, key, shortname, uuid, args, **kwargs)\n else:\n return [name_usage_fetch(x, key, shortname, uuid, args, **kwargs) for\n x in data]\n", "role": "user" }, { "content": "name_usage", "role": "assistant" } ]
def x(variable, value): if is_not_none(value): return value else: value = os.environ.get(variable) if is_none(value): stop(''.join([variable, """ not supplied and no entry in environmental variables""" ])) else: return value
check_environ
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variable, value):\n if is_not_none(value):\n return value\n else:\n value = os.environ.get(variable)\n if is_none(value):\n stop(''.join([variable,\n \"\"\" not supplied and no entry in environmental\n variables\"\"\"\n ]))\n else:\n return value\n", "role": "user" }, { "content": "check_environ", "role": "assistant" } ]