source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, message, color=None):
output_to = stderr if color == 'red' else stdout
secho(self.indent(message), fg=color, file=output_to)
|
output
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message, color=None):\n output_to = stderr if color == 'red' else stdout\n secho(self.indent(message), fg=color, file=output_to)\n",
"role": "user"
},
{
"content": "output",
"role": "assistant"
}
] |
def x(self, url, params=None, **kwargs):
return requests.get(url, params=params, headers=self.add_headers(**kwargs))
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, url, params=None, **kwargs):\n return requests.get(url, params=params, headers=self.add_headers(**kwargs))\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, url, data=None, **kwargs):
return requests.patch(url, data=data, headers=self.add_headers(**kwargs))
|
patch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, url, data=None, **kwargs):\n return requests.patch(url, data=data, headers=self.add_headers(**kwargs))\n",
"role": "user"
},
{
"content": "patch",
"role": "assistant"
}
] |
def x(self, url, data=None, **kwargs):
return requests.post(url, data=data, headers=self.add_headers(**kwargs))
|
post
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, url, data=None, **kwargs):\n return requests.post(url, data=data, headers=self.add_headers(**kwargs))\n",
"role": "user"
},
{
"content": "post",
"role": "assistant"
}
] |
def x(self, content):
if os.path.exists(self.file_path) and not self.assume_yes:
message = 'Overwrite existing {}? (y/n) '
if not confirm(message.format(self.filename)):
self.backup()
self.output('Saving ' + self.filename)
with open(self.file_path, 'wb') as handler:
if not isinstance(content, bytes):
content = bytes(content, 'utf-8')
handler.write(content)
self.yeah('Done!')
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, content):\n if os.path.exists(self.file_path) and not self.assume_yes:\n message = 'Overwrite existing {}? (y/n) '\n if not confirm(message.format(self.filename)):\n self.backup()\n self.output('Saving ' + self.filename)\n with open(self.file_path, 'wb') as handler:\n if not isinstance(content, bytes):\n content = bytes(content, 'utf-8')\n handler.write(content)\n self.yeah('Done!')\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(self):
count = 0
name = '{}.bkp'.format(self.filename)
backup = os.path.join(self.cwd, name)
while os.path.exists(backup):
count += 1
name = '{}.bkp{}'.format(self.filename, count)
backup = os.path.join(self.cwd, name)
self.hey('Moving existing {} to {}'.format(self.filename, name))
os.rename(os.path.join(self.cwd, self.filename), backup)
|
backup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n count = 0\n name = '{}.bkp'.format(self.filename)\n backup = os.path.join(self.cwd, name)\n while os.path.exists(backup):\n count += 1\n name = '{}.bkp{}'.format(self.filename, count)\n backup = os.path.join(self.cwd, name)\n self.hey('Moving existing {} to {}'.format(self.filename, name))\n os.rename(os.path.join(self.cwd, self.filename), backup)\n",
"role": "user"
},
{
"content": "backup",
"role": "assistant"
}
] |
def x(self, file_path=None):
if not file_path:
file_path = self.file_path
if not os.path.exists(file_path):
self.oops('Sorry, but {} does not exist'.format(file_path))
return False
if not os.path.isfile(file_path):
self.oops('Sorry, but {} is not a file'.format(file_path))
return False
with open(file_path) as handler:
return handler.read()
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, file_path=None):\n if not file_path:\n file_path = self.file_path\n if not os.path.exists(file_path):\n self.oops('Sorry, but {} does not exist'.format(file_path))\n return False\n if not os.path.isfile(file_path):\n self.oops('Sorry, but {} is not a file'.format(file_path))\n return False\n with open(file_path) as handler:\n return handler.read()\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(mode):
def x(inp_str, pos):
return mode if inp_str[pos] is mode else None
def x(inp_str, pos):
ch = inp_str[pos]
for each in mode:
if ch is each:
return ch
return None
if isinstance(mode, str):
return f_raw
if len(mode) is 1:
mode = mode[0]
return f_raw
return f_collection
|
char_matcher
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mode):\n\n def x(inp_str, pos):\n return mode if inp_str[pos] is mode else None\n\n def x(inp_str, pos):\n ch = inp_str[pos]\n for each in mode:\n if ch is each:\n return ch\n return None\n if isinstance(mode, str):\n return f_raw\n if len(mode) is 1:\n mode = mode[0]\n return f_raw\n return f_collection\n",
"role": "user"
},
{
"content": "char_matcher",
"role": "assistant"
}
] |
def x(mode):
def x(inp_str, pos):
return unique_literal_cache_pool[mode] if inp_str.startswith(mode, pos
) else None
def x(inp_str, pos):
for each in mode:
if inp_str.startswith(each, pos):
return unique_literal_cache_pool[each]
return None
if isinstance(mode, str):
return f_raw
if len(mode) is 1:
mode = mode[0]
return f_raw
return f_collection
|
str_matcher
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mode):\n\n def x(inp_str, pos):\n return unique_literal_cache_pool[mode] if inp_str.startswith(mode, pos\n ) else None\n\n def x(inp_str, pos):\n for each in mode:\n if inp_str.startswith(each, pos):\n return unique_literal_cache_pool[each]\n return None\n if isinstance(mode, str):\n return f_raw\n if len(mode) is 1:\n mode = mode[0]\n return f_raw\n return f_collection\n",
"role": "user"
},
{
"content": "str_matcher",
"role": "assistant"
}
] |
def x(regex_pat):
if isinstance(regex_pat, str):
regex_pat = re.compile(regex_pat)
def x(inp_str, pos):
m = regex_pat.match(inp_str, pos)
return m.group() if m else None
return f
|
regex_matcher
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(regex_pat):\n if isinstance(regex_pat, str):\n regex_pat = re.compile(regex_pat)\n\n def x(inp_str, pos):\n m = regex_pat.match(inp_str, pos)\n return m.group() if m else None\n return f\n",
"role": "user"
},
{
"content": "regex_matcher",
"role": "assistant"
}
] |
def x(self, stmts: T) ->None:
if not stmts:
raise ValueError('no ast found!')
head, *equals = stmts
if head.name is NameEnum.TokenDef:
self.ast_for_token_def(head)
elif head.name is NameEnum.TokenIgnore:
self.ast_for_token_ignore(head)
else:
self.ast_for_equals(head)
for each in equals:
self.ast_for_equals(each)
if not self.compile_helper.alone and self._current__combined_parser_name:
self.compile_helper.alone.add(self._current__combined_parser_name)
|
ast_for_stmts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, stmts: T) ->None:\n if not stmts:\n raise ValueError('no ast found!')\n head, *equals = stmts\n if head.name is NameEnum.TokenDef:\n self.ast_for_token_def(head)\n elif head.name is NameEnum.TokenIgnore:\n self.ast_for_token_ignore(head)\n else:\n self.ast_for_equals(head)\n for each in equals:\n self.ast_for_equals(each)\n if not self.compile_helper.alone and self._current__combined_parser_name:\n self.compile_helper.alone.add(self._current__combined_parser_name)\n",
"role": "user"
},
{
"content": "ast_for_stmts",
"role": "assistant"
}
] |
def x(self, method, resource_uri, **kwargs):
data = kwargs.get('data')
response = method(self.API_BASE_URL + resource_uri, json=data, headers=
self.headers)
response.raise_for_status()
return response.json()
|
request
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method, resource_uri, **kwargs):\n data = kwargs.get('data')\n response = method(self.API_BASE_URL + resource_uri, json=data, headers=\n self.headers)\n response.raise_for_status()\n return response.json()\n",
"role": "user"
},
{
"content": "request",
"role": "assistant"
}
] |
def x(self, endpoint, **kwargs):
return self._request(requests.get, endpoint, **kwargs)
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, endpoint, **kwargs):\n return self._request(requests.get, endpoint, **kwargs)\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, endpoint, **kwargs):
return self._request(requests.post, endpoint, **kwargs)
|
post
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, endpoint, **kwargs):\n return self._request(requests.post, endpoint, **kwargs)\n",
"role": "user"
},
{
"content": "post",
"role": "assistant"
}
] |
def x(self, endpoint, **kwargs):
return self._request(requests.put, endpoint, **kwargs)
|
put
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, endpoint, **kwargs):\n return self._request(requests.put, endpoint, **kwargs)\n",
"role": "user"
},
{
"content": "put",
"role": "assistant"
}
] |
def x(cls, customer_id, **kwargs):
return cls().requests.put('customer/{customer_id}'.format(**locals()),
data=kwargs)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, customer_id, **kwargs):\n return cls().requests.put('customer/{customer_id}'.format(**locals()),\n data=kwargs)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(txt):
txt = re.sub('<#[^\\|]*\\|(.*)>', '#\\g<1>', txt)
txt = re.sub('<(@.*)>', '\\g<1>', txt)
txt = re.sub('<([^\\|]*)\\|([^\\|]*)>',
'<a href="\\g<1>" target="blank">\\g<2></a>', txt)
txt = re.sub('<([^a|/a].*)>',
'<a href="\\g<1>" target="blank">\\g<1></a>', txt)
for delimeter in LIST_DELIMITERS:
slack_tag = delimeter
class_name = LIST_DELIMITERS[delimeter]
list_regex = u'(?:^|\n){}\\s?(.*)'.format(slack_tag)
list_repl = '<li class="list-item-{}">\\g<1></li>'.format(class_name)
txt = re.sub(list_regex, list_repl, txt)
txt = re.sub(u'(^|\n)(?:>){3}\\s?(.*)$',
'\\g<1><blockquote>\\g<2></blockquote>', txt, flags=re.DOTALL)
txt = re.sub(u'(?:^|\n)>\\s?(.*)\n?',
'<blockquote>\\g<1></blockquote>', txt)
txt = re.sub('```\\n?(.*)```', '<pre>\\g<1></pre>', txt, flags=re.DOTALL)
txt = re.sub('\\n(</pre>)', '\\g<1>', txt)
for wrapper in FORMATTERS:
slack_tag = wrapper
html_tag = FORMATTERS[wrapper]
regex = '(?<!\\\\)\\{t}([^\\{t}|\\n]*)\\{t}'.format(t=slack_tag)
repl = '<{t}>\\g<1></{t}>'.format(t=html_tag)
txt = re.sub(regex, repl, txt)
txt = txt.replace('\n', '<br />')
parser = CustomSlackdownHTMLParser(txt)
txt = parser.clean()
txt = txt.replace(' ', '  ')
return txt
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(txt):\n txt = re.sub('<#[^\\\\|]*\\\\|(.*)>', '#\\\\g<1>', txt)\n txt = re.sub('<(@.*)>', '\\\\g<1>', txt)\n txt = re.sub('<([^\\\\|]*)\\\\|([^\\\\|]*)>',\n '<a href=\"\\\\g<1>\" target=\"blank\">\\\\g<2></a>', txt)\n txt = re.sub('<([^a|/a].*)>',\n '<a href=\"\\\\g<1>\" target=\"blank\">\\\\g<1></a>', txt)\n for delimeter in LIST_DELIMITERS:\n slack_tag = delimeter\n class_name = LIST_DELIMITERS[delimeter]\n list_regex = u'(?:^|\\n){}\\\\s?(.*)'.format(slack_tag)\n list_repl = '<li class=\"list-item-{}\">\\\\g<1></li>'.format(class_name)\n txt = re.sub(list_regex, list_repl, txt)\n txt = re.sub(u'(^|\\n)(?:>){3}\\\\s?(.*)$',\n '\\\\g<1><blockquote>\\\\g<2></blockquote>', txt, flags=re.DOTALL)\n txt = re.sub(u'(?:^|\\n)>\\\\s?(.*)\\n?',\n '<blockquote>\\\\g<1></blockquote>', txt)\n txt = re.sub('```\\\\n?(.*)```', '<pre>\\\\g<1></pre>', txt, flags=re.DOTALL)\n txt = re.sub('\\\\n(</pre>)', '\\\\g<1>', txt)\n for wrapper in FORMATTERS:\n slack_tag = wrapper\n html_tag = FORMATTERS[wrapper]\n regex = '(?<!\\\\\\\\)\\\\{t}([^\\\\{t}|\\\\n]*)\\\\{t}'.format(t=slack_tag)\n repl = '<{t}>\\\\g<1></{t}>'.format(t=html_tag)\n txt = re.sub(regex, repl, txt)\n txt = txt.replace('\\n', '<br />')\n parser = CustomSlackdownHTMLParser(txt)\n txt = parser.clean()\n txt = txt.replace(' ', '  ')\n return txt\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x(self, list_type):
if list_type in LIST_TYPES.keys():
tag = LIST_TYPES[list_type]
else:
raise Exception(
'CustomSlackdownHTMLParser:_open_list: Not a valid list type.')
html = '<{t} class="list-container-{c}">'.format(t=tag, c=list_type)
self.cleaned_html += html
self.current_parent_element['tag'] = LIST_TYPES[list_type]
self.current_parent_element['attrs'] = {'class': list_type}
|
open_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, list_type):\n if list_type in LIST_TYPES.keys():\n tag = LIST_TYPES[list_type]\n else:\n raise Exception(\n 'CustomSlackdownHTMLParser:_open_list: Not a valid list type.')\n html = '<{t} class=\"list-container-{c}\">'.format(t=tag, c=list_type)\n self.cleaned_html += html\n self.current_parent_element['tag'] = LIST_TYPES[list_type]\n self.current_parent_element['attrs'] = {'class': list_type}\n",
"role": "user"
},
{
"content": "open_list",
"role": "assistant"
}
] |
def x(self):
list_type = self.current_parent_element['attrs']['class']
tag = LIST_TYPES[list_type]
html = '</{t}>'.format(t=tag)
self.cleaned_html += html
self.current_parent_element['tag'] = ''
self.current_parent_element['attrs'] = {}
|
close_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n list_type = self.current_parent_element['attrs']['class']\n tag = LIST_TYPES[list_type]\n html = '</{t}>'.format(t=tag)\n self.cleaned_html += html\n self.current_parent_element['tag'] = ''\n self.current_parent_element['attrs'] = {}\n",
"role": "user"
},
{
"content": "close_list",
"role": "assistant"
}
] |
def x(self, tag, attrs):
attrs_dict = dict(t for t in attrs)
if tag in PARENT_ELEMENTS:
if self.current_parent_element['tag'] != '':
self.cleaned_html += '</{}>'.format(self.current_parent_element
['tag'])
self.current_parent_element['tag'] = tag
self.current_parent_element['attrs'] = {}
self.cleaned_html += '<{}>'.format(tag)
elif tag == 'li':
self.parsing_li = True
class_name = attrs_dict['class']
list_type = class_name[10:]
if self.current_parent_element['tag'
] == 'ul' or self.current_parent_element['tag'] == 'ol':
cur_list_type = self.current_parent_element['attrs']['class']
if cur_list_type != list_type:
self._close_list()
self._open_list(list_type)
else:
if self.current_parent_element['tag'] != '':
self.cleaned_html += '</{}>'.format(self.
current_parent_element['tag'])
self._open_list(list_type)
self.cleaned_html += '<{}>'.format(tag)
elif tag == 'br':
if self.current_parent_element['tag'] == 'p':
self.cleaned_html += '</p>'
self.current_parent_element['tag'] = ''
self.current_parent_element['attrs'] = {}
elif self.current_parent_element['tag'
] == 'ul' or self.current_parent_element['tag'] == 'ol':
self._close_list()
elif self.current_parent_element['tag'] in PARENT_ELEMENTS:
self.cleaned_html += '<br />'
else:
self.cleaned_html += '<p></p>'
else:
if self.current_parent_element['tag'] == '':
self.cleaned_html += '<p>'
self.current_parent_element['tag'] = 'p'
self.cleaned_html += '<{}'.format(tag)
for attr in sorted(attrs_dict.keys()):
self.cleaned_html += ' {k}="{v}"'.format(k=attr, v=attrs_dict[attr]
)
self.cleaned_html += '>'
|
handle_starttag
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tag, attrs):\n attrs_dict = dict(t for t in attrs)\n if tag in PARENT_ELEMENTS:\n if self.current_parent_element['tag'] != '':\n self.cleaned_html += '</{}>'.format(self.current_parent_element\n ['tag'])\n self.current_parent_element['tag'] = tag\n self.current_parent_element['attrs'] = {}\n self.cleaned_html += '<{}>'.format(tag)\n elif tag == 'li':\n self.parsing_li = True\n class_name = attrs_dict['class']\n list_type = class_name[10:]\n if self.current_parent_element['tag'\n ] == 'ul' or self.current_parent_element['tag'] == 'ol':\n cur_list_type = self.current_parent_element['attrs']['class']\n if cur_list_type != list_type:\n self._close_list()\n self._open_list(list_type)\n else:\n if self.current_parent_element['tag'] != '':\n self.cleaned_html += '</{}>'.format(self.\n current_parent_element['tag'])\n self._open_list(list_type)\n self.cleaned_html += '<{}>'.format(tag)\n elif tag == 'br':\n if self.current_parent_element['tag'] == 'p':\n self.cleaned_html += '</p>'\n self.current_parent_element['tag'] = ''\n self.current_parent_element['attrs'] = {}\n elif self.current_parent_element['tag'\n ] == 'ul' or self.current_parent_element['tag'] == 'ol':\n self._close_list()\n elif self.current_parent_element['tag'] in PARENT_ELEMENTS:\n self.cleaned_html += '<br />'\n else:\n self.cleaned_html += '<p></p>'\n else:\n if self.current_parent_element['tag'] == '':\n self.cleaned_html += '<p>'\n self.current_parent_element['tag'] = 'p'\n self.cleaned_html += '<{}'.format(tag)\n for attr in sorted(attrs_dict.keys()):\n self.cleaned_html += ' {k}=\"{v}\"'.format(k=attr, v=attrs_dict[attr]\n )\n self.cleaned_html += '>'\n",
"role": "user"
},
{
"content": "handle_starttag",
"role": "assistant"
}
] |
def x(self, tag):
if tag in PARENT_ELEMENTS:
self.current_parent_element['tag'] = ''
self.current_parent_element['attrs'] = ''
if tag == 'li':
self.parsing_li = True
if tag != 'br':
self.cleaned_html += '</{}>'.format(tag)
|
handle_endtag
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tag):\n if tag in PARENT_ELEMENTS:\n self.current_parent_element['tag'] = ''\n self.current_parent_element['attrs'] = ''\n if tag == 'li':\n self.parsing_li = True\n if tag != 'br':\n self.cleaned_html += '</{}>'.format(tag)\n",
"role": "user"
},
{
"content": "handle_endtag",
"role": "assistant"
}
] |
def x(self, data):
if self.current_parent_element['tag'] == '':
self.cleaned_html += '<p>'
self.current_parent_element['tag'] = 'p'
self.cleaned_html += data
|
handle_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n if self.current_parent_element['tag'] == '':\n self.cleaned_html += '<p>'\n self.current_parent_element['tag'] = 'p'\n self.cleaned_html += data\n",
"role": "user"
},
{
"content": "handle_data",
"role": "assistant"
}
] |
def x(self):
preformatted_wrappers = ['pre', 'code']
for wrapper in preformatted_wrappers:
for formatter in FORMATTERS:
tag = FORMATTERS[formatter]
character = formatter
regex = '(<{w}>.*)<{t}>(.*)</{t}>(.*</{w}>)'.format(t=tag, w=
wrapper)
repl = '\\g<1>{c}\\g<2>{c}\\g<3>'.format(c=character)
self.cleaned_html = re.sub(regex, repl, self.cleaned_html)
|
remove_pre_formatting
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n preformatted_wrappers = ['pre', 'code']\n for wrapper in preformatted_wrappers:\n for formatter in FORMATTERS:\n tag = FORMATTERS[formatter]\n character = formatter\n regex = '(<{w}>.*)<{t}>(.*)</{t}>(.*</{w}>)'.format(t=tag, w=\n wrapper)\n repl = '\\\\g<1>{c}\\\\g<2>{c}\\\\g<3>'.format(c=character)\n self.cleaned_html = re.sub(regex, repl, self.cleaned_html)\n",
"role": "user"
},
{
"content": "remove_pre_formatting",
"role": "assistant"
}
] |
def x(self):
self.feed()
if self.current_parent_element['tag'] != '':
self.cleaned_html += '</{}>'.format(self.current_parent_element['tag'])
self.cleaned_html = re.sub('(</[u|o]l>)<p></p>', '\\g<1>', self.
cleaned_html)
self._remove_pre_formatting()
return self.cleaned_html
|
clean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.feed()\n if self.current_parent_element['tag'] != '':\n self.cleaned_html += '</{}>'.format(self.current_parent_element['tag'])\n self.cleaned_html = re.sub('(</[u|o]l>)<p></p>', '\\\\g<1>', self.\n cleaned_html)\n self._remove_pre_formatting()\n return self.cleaned_html\n",
"role": "user"
},
{
"content": "clean",
"role": "assistant"
}
] |
def x(**kwargs):
html = '<div class="user">'
author_avatar = kwargs.get('author_avatar', None)
if author_avatar:
html += '<img class="user-avatar" src="{}">'.format(author_avatar)
author_name = kwargs.get('author_name', None)
if author_name:
html += '<p class="user-name">'
author_link = kwargs.get('author_link', None)
if author_link:
html += '<a href="{author_link}">{author_name}</a>'.format(
author_link=author_link, author_name=author_name)
else:
html += author_name
html += '</p>'
author_handle = kwargs.get('author_handle', None)
if author_handle:
html += '<p class="user-handle">{}</p>'.format(author_handle)
html += '</div>'
|
render_author
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(**kwargs):\n html = '<div class=\"user\">'\n author_avatar = kwargs.get('author_avatar', None)\n if author_avatar:\n html += '<img class=\"user-avatar\" src=\"{}\">'.format(author_avatar)\n author_name = kwargs.get('author_name', None)\n if author_name:\n html += '<p class=\"user-name\">'\n author_link = kwargs.get('author_link', None)\n if author_link:\n html += '<a href=\"{author_link}\">{author_name}</a>'.format(\n author_link=author_link, author_name=author_name)\n else:\n html += author_name\n html += '</p>'\n author_handle = kwargs.get('author_handle', None)\n if author_handle:\n html += '<p class=\"user-handle\">{}</p>'.format(author_handle)\n html += '</div>'\n",
"role": "user"
},
{
"content": "render_author",
"role": "assistant"
}
] |
def x(**kwargs):
html = '<div class="metadata">'
service_logo = kwargs.get('service_logo', None)
if service_logo:
html += '<img class="metadata-logo" src="{}">'.format(service_logo)
service_name = kwargs.get('service_name', None)
if service_name:
html += '<p class="metadata-name">{}</p>'.format(service_name)
timestamp = kwargs.get('timestamp', None)
if timestamp:
html += '<p class="user-name">'
timestamp_link = kwargs.get('timestamp_link', None)
if timestamp_link:
html += '<a href="{timestamp_link}">{timestamp}</a>'.format(
timestamp_link=timestamp_link, timestamp=timestamp)
else:
html += timestamp
html += '</p>'
html += '</div>'
|
render_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(**kwargs):\n html = '<div class=\"metadata\">'\n service_logo = kwargs.get('service_logo', None)\n if service_logo:\n html += '<img class=\"metadata-logo\" src=\"{}\">'.format(service_logo)\n service_name = kwargs.get('service_name', None)\n if service_name:\n html += '<p class=\"metadata-name\">{}</p>'.format(service_name)\n timestamp = kwargs.get('timestamp', None)\n if timestamp:\n html += '<p class=\"user-name\">'\n timestamp_link = kwargs.get('timestamp_link', None)\n if timestamp_link:\n html += '<a href=\"{timestamp_link}\">{timestamp}</a>'.format(\n timestamp_link=timestamp_link, timestamp=timestamp)\n else:\n html += timestamp\n html += '</p>'\n html += '</div>'\n",
"role": "user"
},
{
"content": "render_metadata",
"role": "assistant"
}
] |
def x(**kwargs):
html = ''
url = kwargs.get('url', None)
if url:
html = '<img'
alt_text = kwargs.get('alt_text', None)
if alt_text:
html += ' alt="{}"'.format(alt_text)
title = kwargs.get('title', None)
if title:
html += ' title="{}"'.format(title)
html += ' src="{}">'.format(url)
return html
|
render_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(**kwargs):\n html = ''\n url = kwargs.get('url', None)\n if url:\n html = '<img'\n alt_text = kwargs.get('alt_text', None)\n if alt_text:\n html += ' alt=\"{}\"'.format(alt_text)\n title = kwargs.get('title', None)\n if title:\n html += ' title=\"{}\"'.format(title)\n html += ' src=\"{}\">'.format(url)\n return html\n",
"role": "user"
},
{
"content": "render_image",
"role": "assistant"
}
] |
def x(text, **kwargs):
author = render_author(**kwargs['author'])
metadata = render_metadata(**kwargs['metadata'])
image = render_image(**kwargs['image'])
html = (
"""
<div class="attachment attachment-twitter">
{author}
<p class="twitter-content">{text}</p>
{metadata}
{image}
</div>
"""
.format(author=author, text=text, metadata=metadata, image=image).
strip())
return html
|
render_twitter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, **kwargs):\n author = render_author(**kwargs['author'])\n metadata = render_metadata(**kwargs['metadata'])\n image = render_image(**kwargs['image'])\n html = (\n \"\"\"\n <div class=\"attachment attachment-twitter\">\n {author}\n <p class=\"twitter-content\">{text}</p>\n {metadata}\n {image}\n </div>\n \"\"\"\n .format(author=author, text=text, metadata=metadata, image=image).\n strip())\n return html\n",
"role": "user"
},
{
"content": "render_twitter",
"role": "assistant"
}
] |
def x(LAB_DIR):
coeffs = np.load('%s/coeffs.npz' % LAB_DIR)['arr_0']
scatters = np.load('%s/scatters.npz' % LAB_DIR)['arr_0']
chisqs = np.load('%s/chisqs.npz' % LAB_DIR)['arr_0']
pivots = np.load('%s/pivots.npz' % LAB_DIR)['arr_0']
return coeffs, scatters, chisqs, pivots
|
get_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(LAB_DIR):\n coeffs = np.load('%s/coeffs.npz' % LAB_DIR)['arr_0']\n scatters = np.load('%s/scatters.npz' % LAB_DIR)['arr_0']\n chisqs = np.load('%s/chisqs.npz' % LAB_DIR)['arr_0']\n pivots = np.load('%s/pivots.npz' % LAB_DIR)['arr_0']\n return coeffs, scatters, chisqs, pivots\n",
"role": "user"
},
{
"content": "get_model",
"role": "assistant"
}
] |
def x(ids_find):
a = pyfits.open('%s/lamost_catalog_full.fits' % LAB_DIR)
data = a[1].data
a.close()
id_all = data['lamost_id']
id_all = np.array(id_all)
id_all = np.array([val.strip() for val in id_all])
snr_all = data['cannon_snrg']
chisq_all = data['cannon_chisq']
teff = data['cannon_teff']
logg = data['cannon_logg']
feh = data['cannon_m_h']
afe = data['cannon_alpha_m']
ak = data['cannon_a_k']
labels = np.vstack((teff, logg, feh, afe, ak))
choose = np.in1d(id_all, ids_find)
id_choose = id_all[choose]
label_choose = labels[:, choose]
snr_choose = snr_all[choose]
chisq_choose = chisq_all[choose]
inds = np.array([np.where(id_choose == val)[0][0] for val in ids_find])
print(id_choose[inds][100])
print(ids_find[100])
return label_choose[:, inds], snr_choose[inds], chisq_choose[inds]
|
get_labels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ids_find):\n a = pyfits.open('%s/lamost_catalog_full.fits' % LAB_DIR)\n data = a[1].data\n a.close()\n id_all = data['lamost_id']\n id_all = np.array(id_all)\n id_all = np.array([val.strip() for val in id_all])\n snr_all = data['cannon_snrg']\n chisq_all = data['cannon_chisq']\n teff = data['cannon_teff']\n logg = data['cannon_logg']\n feh = data['cannon_m_h']\n afe = data['cannon_alpha_m']\n ak = data['cannon_a_k']\n labels = np.vstack((teff, logg, feh, afe, ak))\n choose = np.in1d(id_all, ids_find)\n id_choose = id_all[choose]\n label_choose = labels[:, choose]\n snr_choose = snr_all[choose]\n chisq_choose = chisq_all[choose]\n inds = np.array([np.where(id_choose == val)[0][0] for val in ids_find])\n print(id_choose[inds][100])\n print(ids_find[100])\n return label_choose[:, inds], snr_choose[inds], chisq_choose[inds]\n",
"role": "user"
},
{
"content": "get_labels",
"role": "assistant"
}
] |
def x():
wl = np.load('%s/wl.npz' % LAB_DIR)['arr_0']
filenames = np.array([(SPEC_DIR + '/Spectra' + '/' + val) for val in
lamost_id])
grid, fluxes, ivars, npix, SNRs = lamost.load_spectra(lamost_id,
input_grid=wl)
ds = dataset.Dataset(wl, lamost_id, fluxes, ivars, [1], lamost_id[0:2],
fluxes[0:2], ivars[0:2])
ds.continuum_normalize_gaussian_smoothing(L=50)
np.savez(SPEC_DIR + '/' + 'norm_flux.npz', ds.tr_flux)
np.savez(SPEC_DIR + '/' + 'norm_ivar.npz', ds.tr_ivar)
return ds.tr_flux, ds.tr_ivar
|
get_normed_spectra
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n wl = np.load('%s/wl.npz' % LAB_DIR)['arr_0']\n filenames = np.array([(SPEC_DIR + '/Spectra' + '/' + val) for val in\n lamost_id])\n grid, fluxes, ivars, npix, SNRs = lamost.load_spectra(lamost_id,\n input_grid=wl)\n ds = dataset.Dataset(wl, lamost_id, fluxes, ivars, [1], lamost_id[0:2],\n fluxes[0:2], ivars[0:2])\n ds.continuum_normalize_gaussian_smoothing(L=50)\n np.savez(SPEC_DIR + '/' + 'norm_flux.npz', ds.tr_flux)\n np.savez(SPEC_DIR + '/' + 'norm_ivar.npz', ds.tr_ivar)\n return ds.tr_flux, ds.tr_ivar\n",
"role": "user"
},
{
"content": "get_normed_spectra",
"role": "assistant"
}
] |
def x():
for f in lamost_id:
short = f.split('-')[2].split('_')[0]
filename = '%s/%s.gz' % (short, f)
DIR = '/Users/annaho/Data/Li_Giants/Spectra_APOKASC'
searchfor = '%s/%s.gz' % (DIR, f)
if glob.glob(searchfor):
print('done')
else:
os.system('wget http://dr2.lamost.org/sas/fits/%s' % filename)
new_filename = filename.split('_')[0] + '_' + filename.split('_')[2
]
os.system('wget http://dr2.lamost.org/sas/fits/%s' % new_filename)
|
wget_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n for f in lamost_id:\n short = f.split('-')[2].split('_')[0]\n filename = '%s/%s.gz' % (short, f)\n DIR = '/Users/annaho/Data/Li_Giants/Spectra_APOKASC'\n searchfor = '%s/%s.gz' % (DIR, f)\n if glob.glob(searchfor):\n print('done')\n else:\n os.system('wget http://dr2.lamost.org/sas/fits/%s' % filename)\n new_filename = filename.split('_')[0] + '_' + filename.split('_')[2\n ]\n os.system('wget http://dr2.lamost.org/sas/fits/%s' % new_filename)\n",
"role": "user"
},
{
"content": "wget_files",
"role": "assistant"
}
] |
def x():
cannon_teff = data['cannon_teff_2']
cannon_logg = data['cannon_logg_2']
cannon_m_h = data['cannon_m_h']
cannon_alpha_m = data['cannon_alpha_m']
cannon_a_k = data['cannon_a_k']
labels = np.vstack((cannon_teff, cannon_logg, cannon_m_h,
cannon_alpha_m, cannon_a_k))
cannon_chisq = data['cannon_chisq']
np.savez(DATA_DIR + 'chisq.npz', labels)
np.savez(DATA_DIR + 'labels.npz', labels)
snrg = data['cannon_snrg']
np.savez('snr.npz', snrg)
return labels.T
|
get_labels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n cannon_teff = data['cannon_teff_2']\n cannon_logg = data['cannon_logg_2']\n cannon_m_h = data['cannon_m_h']\n cannon_alpha_m = data['cannon_alpha_m']\n cannon_a_k = data['cannon_a_k']\n labels = np.vstack((cannon_teff, cannon_logg, cannon_m_h,\n cannon_alpha_m, cannon_a_k))\n cannon_chisq = data['cannon_chisq']\n np.savez(DATA_DIR + 'chisq.npz', labels)\n np.savez(DATA_DIR + 'labels.npz', labels)\n snrg = data['cannon_snrg']\n np.savez('snr.npz', snrg)\n return labels.T\n",
"role": "user"
},
{
"content": "get_labels",
"role": "assistant"
}
] |
def x(spec_raw):
spec = np.array([spec_raw])
wl = np.arange(0, spec.shape[1])
w = continuum_normalization.gaussian_weight_matrix(wl, L=50)
ivar = np.ones(spec.shape) * 0.5
cont = continuum_normalization._find_cont_gaussian_smooth(wl, spec, ivar, w
)
norm_flux, norm_ivar = continuum_normalization._cont_norm(spec, ivar, cont)
return norm_flux[0]
|
cannon_normalize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(spec_raw):\n spec = np.array([spec_raw])\n wl = np.arange(0, spec.shape[1])\n w = continuum_normalization.gaussian_weight_matrix(wl, L=50)\n ivar = np.ones(spec.shape) * 0.5\n cont = continuum_normalization._find_cont_gaussian_smooth(wl, spec, ivar, w\n )\n norm_flux, norm_ivar = continuum_normalization._cont_norm(spec, ivar, cont)\n return norm_flux[0]\n",
"role": "user"
},
{
"content": "cannon_normalize",
"role": "assistant"
}
] |
def x(grid, wl, flux):
flux_rs = interpolate.interp1d(wl, flux)(grid)
return flux_rs
|
resample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, wl, flux):\n flux_rs = interpolate.interp1d(wl, flux)(grid)\n return flux_rs\n",
"role": "user"
},
{
"content": "resample",
"role": "assistant"
}
] |
def x(choose, coeffs, pivots):
base_labels = [4800, 2.5, 0.03, 0.1, -0.17, -0.17, 0, -0.16, -0.13, -
0.15, 0.13, 0.08, 0.17, -0.062]
label_names = np.array(['TEFF', 'LOGG', 'AK', 'Al', 'Ca', 'C', 'Fe',
'Mg', 'Mn', 'Ni', 'N', 'O', 'Si', 'Ti'])
label_atnum = np.array([0, 1, -1, 13, 20, 6, 26, 12, 25, 28, 7, 8, 14, 22])
ind = np.where(label_atnum == choose)[0][0]
low_lab = copy.copy(base_labels)
high = base_labels[ind]
if choose > 0:
low = base_labels[ind] - 0.2
else:
if choose != 0:
print('warning...')
low = base_labels[ind] - 200
low_lab[ind] = low
lvec = train_model._get_lvec(np.array([low_lab]), pivots)[0]
model_low = np.dot(coeffs, lvec)
lvec = train_model._get_lvec(np.array([base_labels]), pivots)[0]
model_high = np.dot(coeffs, lvec)
grad_spec = (model_high - model_low) / (high - low)
return grad_spec
|
gen_cannon_grad_spec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(choose, coeffs, pivots):\n base_labels = [4800, 2.5, 0.03, 0.1, -0.17, -0.17, 0, -0.16, -0.13, -\n 0.15, 0.13, 0.08, 0.17, -0.062]\n label_names = np.array(['TEFF', 'LOGG', 'AK', 'Al', 'Ca', 'C', 'Fe',\n 'Mg', 'Mn', 'Ni', 'N', 'O', 'Si', 'Ti'])\n label_atnum = np.array([0, 1, -1, 13, 20, 6, 26, 12, 25, 28, 7, 8, 14, 22])\n ind = np.where(label_atnum == choose)[0][0]\n low_lab = copy.copy(base_labels)\n high = base_labels[ind]\n if choose > 0:\n low = base_labels[ind] - 0.2\n else:\n if choose != 0:\n print('warning...')\n low = base_labels[ind] - 200\n low_lab[ind] = low\n lvec = train_model._get_lvec(np.array([low_lab]), pivots)[0]\n model_low = np.dot(coeffs, lvec)\n lvec = train_model._get_lvec(np.array([base_labels]), pivots)[0]\n model_high = np.dot(coeffs, lvec)\n grad_spec = (model_high - model_low) / (high - low)\n return grad_spec\n",
"role": "user"
},
{
"content": "gen_cannon_grad_spec",
"role": "assistant"
}
] |
def x(atomic_number):
DATA_DIR = '/Users/annaho/Data/LAMOST/Mass_And_Age'
temp = np.load('%s/X_u_template_KGh_res=1800.npz' % DATA_DIR)
X_u_template = temp['X_u_template']
wl = temp['wavelength']
grad_spec = X_u_template[:, atomic_number]
return wl, grad_spec
|
get_model_spec_ting
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(atomic_number):\n DATA_DIR = '/Users/annaho/Data/LAMOST/Mass_And_Age'\n temp = np.load('%s/X_u_template_KGh_res=1800.npz' % DATA_DIR)\n X_u_template = temp['X_u_template']\n wl = temp['wavelength']\n grad_spec = X_u_template[:, atomic_number]\n return wl, grad_spec\n",
"role": "user"
},
{
"content": "get_model_spec_ting",
"role": "assistant"
}
] |
def x(ds, m):
model_spectra = get_model_spectra(ds, m)
resid = ds.test_flux - model_spectra
return resid
|
get_residuals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ds, m):\n model_spectra = get_model_spectra(ds, m)\n resid = ds.test_flux - model_spectra\n return resid\n",
"role": "user"
},
{
"content": "get_residuals",
"role": "assistant"
}
] |
def x():
direc = '/home/annaho/TheCannon/code/lamost/mass_age/cn'
m = model.CannonModel(2)
m.coeffs = np.load(direc + '/coeffs.npz')['arr_0'][0:3626, :]
m.scatters = np.load(direc + '/scatters.npz')['arr_0'][0:3626]
m.chisqs = np.load(direc + '/chisqs.npz')['arr_0'][0:3626]
m.pivots = np.load(direc + '/pivots.npz')['arr_0']
return m
|
load_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n direc = '/home/annaho/TheCannon/code/lamost/mass_age/cn'\n m = model.CannonModel(2)\n m.coeffs = np.load(direc + '/coeffs.npz')['arr_0'][0:3626, :]\n m.scatters = np.load(direc + '/scatters.npz')['arr_0'][0:3626]\n m.chisqs = np.load(direc + '/chisqs.npz')['arr_0'][0:3626]\n m.pivots = np.load(direc + '/pivots.npz')['arr_0']\n return m\n",
"role": "user"
},
{
"content": "load_model",
"role": "assistant"
}
] |
def x(date):
LAB_DIR = '/home/annaho/TheCannon/data/lamost'
WL_DIR = '/home/annaho/TheCannon/code/lamost/mass_age/cn'
SPEC_DIR = (
'/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels/output')
wl = np.load(WL_DIR + '/wl_cols.npz')['arr_0'][0:3626]
ds = dataset.Dataset(wl, [], [], [], [], [], [], [])
test_label = np.load('%s/%s_all_cannon_labels.npz' % (LAB_DIR, date))[
'arr_0']
ds.test_label_vals = test_label
a = np.load('%s/%s_norm.npz' % (SPEC_DIR, date))
ds.test_flux = a['arr_0']
ds.test_ivar = a['arr_1']
ds.test_ID = np.load('%s/%s_ids.npz' % (SPEC_DIR, date))['arr_0']
return ds
|
load_dataset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(date):\n LAB_DIR = '/home/annaho/TheCannon/data/lamost'\n WL_DIR = '/home/annaho/TheCannon/code/lamost/mass_age/cn'\n SPEC_DIR = (\n '/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels/output')\n wl = np.load(WL_DIR + '/wl_cols.npz')['arr_0'][0:3626]\n ds = dataset.Dataset(wl, [], [], [], [], [], [], [])\n test_label = np.load('%s/%s_all_cannon_labels.npz' % (LAB_DIR, date))[\n 'arr_0']\n ds.test_label_vals = test_label\n a = np.load('%s/%s_norm.npz' % (SPEC_DIR, date))\n ds.test_flux = a['arr_0']\n ds.test_ivar = a['arr_1']\n ds.test_ID = np.load('%s/%s_ids.npz' % (SPEC_DIR, date))['arr_0']\n return ds\n",
"role": "user"
},
{
"content": "load_dataset",
"role": "assistant"
}
] |
def x(x, y, yerr, p0):
try:
popt, pcov = curve_fit(gaussian, x, y, sigma=yerr, p0=p0,
absolute_sigma=True)
except RuntimeError:
return [0], [0]
return popt, pcov
|
fit_gaussian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, yerr, p0):\n try:\n popt, pcov = curve_fit(gaussian, x, y, sigma=yerr, p0=p0,\n absolute_sigma=True)\n except RuntimeError:\n return [0], [0]\n return popt, pcov\n",
"role": "user"
},
{
"content": "fit_gaussian",
"role": "assistant"
}
] |
def x(yerrs, amps, amp_errs, widths):
keep_1 = np.logical_and(amps < 0, widths > 1)
keep_2 = np.logical_and(np.abs(amps) > 3 * yerrs, amp_errs < 3 * np.abs
(amps))
keep = np.logical_and(keep_1, keep_2)
return keep
|
select
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(yerrs, amps, amp_errs, widths):\n keep_1 = np.logical_and(amps < 0, widths > 1)\n keep_2 = np.logical_and(np.abs(amps) > 3 * yerrs, amp_errs < 3 * np.abs\n (amps))\n keep = np.logical_and(keep_1, keep_2)\n return keep\n",
"role": "user"
},
{
"content": "select",
"role": "assistant"
}
] |
def x():
DATA_DIR = '/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels'
dates = os.listdir('/home/share/LAMOST/DR2/DR2_release')
dates = np.array(dates)
dates = np.delete(dates, np.where(dates == '.directory')[0][0])
dates = np.delete(dates, np.where(dates == 'all_folders.list')[0][0])
dates = np.delete(dates, np.where(dates == 'dr2.lis')[0][0])
for date in dates:
if glob.glob('*%s*.txt' % date):
print('%s done' % date)
else:
print('running %s' % date)
run_one_date(date)
|
run_all
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n DATA_DIR = '/home/annaho/TheCannon/code/apogee_lamost/xcalib_4labels'\n dates = os.listdir('/home/share/LAMOST/DR2/DR2_release')\n dates = np.array(dates)\n dates = np.delete(dates, np.where(dates == '.directory')[0][0])\n dates = np.delete(dates, np.where(dates == 'all_folders.list')[0][0])\n dates = np.delete(dates, np.where(dates == 'dr2.lis')[0][0])\n for date in dates:\n if glob.glob('*%s*.txt' % date):\n print('%s done' % date)\n else:\n print('running %s' % date)\n run_one_date(date)\n",
"role": "user"
},
{
"content": "run_all",
"role": "assistant"
}
] |
def x(base_labels, choose, low, high, coeffs, pivots):
low_lab = copy.copy(base_labels)
low_lab[choose] = low
lvec = train_model._get_lvec(np.array([low_lab]), pivots)[0]
model_low = np.dot(coeffs, lvec)
high_lab = copy.copy(base_labels)
high_lab[choose] = high
lvec = train_model._get_lvec(np.array([high_lab]), pivots)[0]
model_high = np.dot(coeffs, lvec)
grad_spec = (model_high - model_low) / (high - low)
return grad_spec
|
gen_cannon_grad_spec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(base_labels, choose, low, high, coeffs, pivots):\n low_lab = copy.copy(base_labels)\n low_lab[choose] = low\n lvec = train_model._get_lvec(np.array([low_lab]), pivots)[0]\n model_low = np.dot(coeffs, lvec)\n high_lab = copy.copy(base_labels)\n high_lab[choose] = high\n lvec = train_model._get_lvec(np.array([high_lab]), pivots)[0]\n model_high = np.dot(coeffs, lvec)\n grad_spec = (model_high - model_low) / (high - low)\n return grad_spec\n",
"role": "user"
},
{
"content": "gen_cannon_grad_spec",
"role": "assistant"
}
] |
def x(snr):
quad_terms = np.array([0.00311, 1.1e-05, 6.95e-06, 5.05e-06, 4.65e-06,
4.1e-06])
lin_terms = np.array([-0.869, -0.00207, -0.0014, -0.00103, -0.00113, -
0.000729])
consts = np.array([104, 0.2, 0.117, 0.114, 0.156, 0.0624])
err = quad_terms[:, None] * snr ** 2 + lin_terms[:, None] * snr + consts[
:, None]
min_snr = -lin_terms / (2 * quad_terms)
min_err = quad_terms * min_snr ** 2 + lin_terms * min_snr + consts
mask = (snr[:, None] > min_snr).T
for i in range(0, len(min_err)):
err[i][mask[i]] = min_err[i]
return err
|
get_err
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(snr):\n quad_terms = np.array([0.00311, 1.1e-05, 6.95e-06, 5.05e-06, 4.65e-06, \n 4.1e-06])\n lin_terms = np.array([-0.869, -0.00207, -0.0014, -0.00103, -0.00113, -\n 0.000729])\n consts = np.array([104, 0.2, 0.117, 0.114, 0.156, 0.0624])\n err = quad_terms[:, None] * snr ** 2 + lin_terms[:, None] * snr + consts[\n :, None]\n min_snr = -lin_terms / (2 * quad_terms)\n min_err = quad_terms * min_snr ** 2 + lin_terms * min_snr + consts\n mask = (snr[:, None] > min_snr).T\n for i in range(0, len(min_err)):\n err[i][mask[i]] = min_err[i]\n return err\n",
"role": "user"
},
{
"content": "get_err",
"role": "assistant"
}
] |
def x(catalog):
print('Get Colors')
a = pyfits.open(catalog)
data = a[1].data
a.close()
all_ids = data['LAMOST_ID_1']
all_ids = np.array([val.strip() for val in all_ids])
gmag = data['gpmag']
gmag_err = data['e_gpmag']
rmag = data['rpmag']
rmag_err = data['e_rpmag']
imag = data['ipmag']
imag_err = data['e_ipmag']
W1 = data['W1mag']
W1_err = data['e_W1mag']
W2 = data['W2mag']
W2_err = data['e_W2mag']
Jmag = data['Jmag']
Jmag_err = data['e_Jmag']
Hmag = data['Hmag']
Hmag_err = data['e_Hmag']
Kmag = data['Kmag']
Kmag_err = data['e_Kmag']
mag = np.vstack((gmag, rmag, imag, Jmag, Hmag, Kmag, W2, W1))
mag_err = np.vstack((gmag_err, rmag_err, imag_err, Jmag_err, Hmag_err,
Kmag_err, W2_err, W1_err))
col = mag[:-1] - mag[1:]
col_ivar = 1 / (mag_err[:-1] ** 2 + mag_err[1:] ** 2)
return all_ids, col, col_ivar
|
get_colors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog):\n print('Get Colors')\n a = pyfits.open(catalog)\n data = a[1].data\n a.close()\n all_ids = data['LAMOST_ID_1']\n all_ids = np.array([val.strip() for val in all_ids])\n gmag = data['gpmag']\n gmag_err = data['e_gpmag']\n rmag = data['rpmag']\n rmag_err = data['e_rpmag']\n imag = data['ipmag']\n imag_err = data['e_ipmag']\n W1 = data['W1mag']\n W1_err = data['e_W1mag']\n W2 = data['W2mag']\n W2_err = data['e_W2mag']\n Jmag = data['Jmag']\n Jmag_err = data['e_Jmag']\n Hmag = data['Hmag']\n Hmag_err = data['e_Hmag']\n Kmag = data['Kmag']\n Kmag_err = data['e_Kmag']\n mag = np.vstack((gmag, rmag, imag, Jmag, Hmag, Kmag, W2, W1))\n mag_err = np.vstack((gmag_err, rmag_err, imag_err, Jmag_err, Hmag_err,\n Kmag_err, W2_err, W1_err))\n col = mag[:-1] - mag[1:]\n col_ivar = 1 / (mag_err[:-1] ** 2 + mag_err[1:] ** 2)\n return all_ids, col, col_ivar\n",
"role": "user"
},
{
"content": "get_colors",
"role": "assistant"
}
] |
def x(md, ds):
coeffs_all, covs, scatters, red_chisqs, pivots, label_vector = model.model
nstars = len(dataset.test_SNR)
cannon_flux = np.zeros(dataset.test_flux.shape)
cannon_ivar = np.zeros(dataset.test_ivar.shape)
for i in range(nstars):
x = label_vector[:, i, :]
spec_fit = np.einsum('ij, ij->i', x, coeffs_all)
cannon_flux[i, :] = spec_fit
bad = dataset.test_ivar[i, :] == SMALL ** 2
cannon_ivar[i, :][~bad] = 1.0 / scatters[~bad] ** 2
return cannon_flux, cannon_ivar
|
draw_spectra
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(md, ds):\n coeffs_all, covs, scatters, red_chisqs, pivots, label_vector = model.model\n nstars = len(dataset.test_SNR)\n cannon_flux = np.zeros(dataset.test_flux.shape)\n cannon_ivar = np.zeros(dataset.test_ivar.shape)\n for i in range(nstars):\n x = label_vector[:, i, :]\n spec_fit = np.einsum('ij, ij->i', x, coeffs_all)\n cannon_flux[i, :] = spec_fit\n bad = dataset.test_ivar[i, :] == SMALL ** 2\n cannon_ivar[i, :][~bad] = 1.0 / scatters[~bad] ** 2\n return cannon_flux, cannon_ivar\n",
"role": "user"
},
{
"content": "draw_spectra",
"role": "assistant"
}
] |
def x(model, dataset):
best_flux, best_ivar = draw_spectra(model, dataset)
coeffs_all, covs, scatters, all_chisqs, pivots, label_vector = model.model
print('Overplotting spectra for ten random stars')
res = dataset.test_flux - best_flux
lambdas = dataset.wl
npix = len(lambdas)
nstars = best_flux.shape[0]
pickstars = []
for i in range(10):
pickstars.append(random.randrange(0, nstars - 1))
for i in pickstars:
print('Star %s' % i)
ID = dataset.test_ID[i]
spec_orig = dataset.test_flux[i, :]
bad = dataset.test_flux[i, :] == 0
lambdas = np.ma.array(lambdas, mask=bad, dtype=float)
npix = len(lambdas.compressed())
spec_orig = np.ma.array(dataset.test_flux[i, :], mask=bad)
spec_fit = np.ma.array(best_flux[i, :], mask=bad)
ivars_orig = np.ma.array(dataset.test_ivar[i, :], mask=bad)
ivars_fit = np.ma.array(best_ivar[i, :], mask=bad)
red_chisq = np.sum(all_chisqs[:, i], axis=0) / (npix - coeffs_all.
shape[1])
red_chisq = np.round(red_chisq, 2)
fig, axarr = plt.subplots(2)
ax1 = axarr[0]
im = ax1.scatter(lambdas, spec_orig, label='Orig Spec', c=1 / np.
sqrt(ivars_orig), s=10)
ax1.scatter(lambdas, spec_fit, label='Cannon Spec', c='r', s=10)
ax1.errorbar(lambdas, spec_fit, yerr=1 / np.sqrt(ivars_fit), fmt=
'ro', ms=1, alpha=0.7)
ax1.set_xlabel('Wavelength $\\lambda (\\AA)$')
ax1.set_ylabel('Normalized flux')
ax1.set_title('Spectrum Fit: %s' % ID)
ax1.set_title('Spectrum Fit')
ax1.set_xlim(min(lambdas.compressed()) - 10, max(lambdas.compressed
()) + 10)
ax1.legend(loc='lower center', fancybox=True, shadow=True)
ax2 = axarr[1]
ax2.scatter(spec_orig, spec_fit, c=1 / np.sqrt(ivars_orig), alpha=0.7)
ax2.errorbar(spec_orig, spec_fit, yerr=1 / np.sqrt(ivars_fit),
ecolor='k', fmt='none', ms=1, alpha=0.7)
fig.colorbar()
xlims = ax2.get_xlim()
ylims = ax2.get_ylim()
lims = [np.min([xlims, ylims]), np.max([xlims, ylims])]
ax2.plot(lims, lims, 'k-', alpha=0.75)
textstr = 'Red Chi Sq: %s' % red_chisq
props = dict(boxstyle='round', facecolor='palevioletred', alpha=0.5)
ax2.text(0.05, 0.95, textstr, transform=ax2.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
ax2.set_xlim(xlims)
ax2.set_ylim(ylims)
ax2.set_xlabel('Orig Fluxes')
ax2.set_ylabel('Fitted Fluxes')
plt.tight_layout()
filename = 'best_fit_spec_Star%s.png' % i
print('Saved as %s' % filename)
fig.savefig(filename)
plt.close(fig)
|
overlay_spectra
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model, dataset):\n best_flux, best_ivar = draw_spectra(model, dataset)\n coeffs_all, covs, scatters, all_chisqs, pivots, label_vector = model.model\n print('Overplotting spectra for ten random stars')\n res = dataset.test_flux - best_flux\n lambdas = dataset.wl\n npix = len(lambdas)\n nstars = best_flux.shape[0]\n pickstars = []\n for i in range(10):\n pickstars.append(random.randrange(0, nstars - 1))\n for i in pickstars:\n print('Star %s' % i)\n ID = dataset.test_ID[i]\n spec_orig = dataset.test_flux[i, :]\n bad = dataset.test_flux[i, :] == 0\n lambdas = np.ma.array(lambdas, mask=bad, dtype=float)\n npix = len(lambdas.compressed())\n spec_orig = np.ma.array(dataset.test_flux[i, :], mask=bad)\n spec_fit = np.ma.array(best_flux[i, :], mask=bad)\n ivars_orig = np.ma.array(dataset.test_ivar[i, :], mask=bad)\n ivars_fit = np.ma.array(best_ivar[i, :], mask=bad)\n red_chisq = np.sum(all_chisqs[:, i], axis=0) / (npix - coeffs_all.\n shape[1])\n red_chisq = np.round(red_chisq, 2)\n fig, axarr = plt.subplots(2)\n ax1 = axarr[0]\n im = ax1.scatter(lambdas, spec_orig, label='Orig Spec', c=1 / np.\n sqrt(ivars_orig), s=10)\n ax1.scatter(lambdas, spec_fit, label='Cannon Spec', c='r', s=10)\n ax1.errorbar(lambdas, spec_fit, yerr=1 / np.sqrt(ivars_fit), fmt=\n 'ro', ms=1, alpha=0.7)\n ax1.set_xlabel('Wavelength $\\\\lambda (\\\\AA)$')\n ax1.set_ylabel('Normalized flux')\n ax1.set_title('Spectrum Fit: %s' % ID)\n ax1.set_title('Spectrum Fit')\n ax1.set_xlim(min(lambdas.compressed()) - 10, max(lambdas.compressed\n ()) + 10)\n ax1.legend(loc='lower center', fancybox=True, shadow=True)\n ax2 = axarr[1]\n ax2.scatter(spec_orig, spec_fit, c=1 / np.sqrt(ivars_orig), alpha=0.7)\n ax2.errorbar(spec_orig, spec_fit, yerr=1 / np.sqrt(ivars_fit),\n ecolor='k', fmt='none', ms=1, alpha=0.7)\n fig.colorbar()\n xlims = ax2.get_xlim()\n ylims = ax2.get_ylim()\n lims = [np.min([xlims, ylims]), np.max([xlims, ylims])]\n ax2.plot(lims, lims, 'k-', alpha=0.75)\n textstr = 'Red Chi Sq: %s' % red_chisq\n props = dict(boxstyle='round', facecolor='palevioletred', alpha=0.5)\n ax2.text(0.05, 0.95, textstr, transform=ax2.transAxes, fontsize=14,\n verticalalignment='top', bbox=props)\n ax2.set_xlim(xlims)\n ax2.set_ylim(ylims)\n ax2.set_xlabel('Orig Fluxes')\n ax2.set_ylabel('Fitted Fluxes')\n plt.tight_layout()\n filename = 'best_fit_spec_Star%s.png' % i\n print('Saved as %s' % filename)\n fig.savefig(filename)\n plt.close(fig)\n",
"role": "user"
},
{
"content": "overlay_spectra",
"role": "assistant"
}
] |
def x(cannon_set, dataset):
print('Stacking spectrum fit residuals')
res = dataset.test_fluxes - cannon_set.test_fluxes
bad = dataset.test_ivars == SMALL ** 2
err = np.zeros(len(dataset.test_ivars))
err = np.sqrt(1.0 / dataset.test_ivars + 1.0 / cannon_set.test_ivars)
res_norm = res / err
res_norm = np.ma.array(res_norm, mask=np.ones_like(res_norm) * (np.std(
res_norm, axis=0) == 0))
res_norm = np.ma.compress_cols(res_norm)
for i in range(len(cannon_set.get_plotting_labels())):
label_name = cannon_set.get_plotting_labels()[i]
print('Plotting residuals sorted by %s' % label_name)
label_vals = cannon_set.tr_label_vals[:, i]
sorted_res = res_norm[np.argsort(label_vals)]
mu = np.mean(sorted_res.flatten())
sigma = np.std(sorted_res.flatten())
left, width = 0.1, 0.65
bottom, height = 0.1, 0.65
bottom_h = left_h = left + width + 0.1
rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom_h, width, 0.1]
rect_histy = [left_h, bottom, 0.1, height]
plt.figure()
axScatter = plt.axes(rect_scatter)
axHistx = plt.axes(rect_histx)
axHisty = plt.axes(rect_histy)
im = axScatter.imshow(sorted_res, cmap=plt.cm.bwr_r, interpolation=
'nearest', vmin=mu - 3.0 * sigma, vmax=mu + 3.0 * sigma, aspect
='auto', origin='lower', extent=[0, len(dataset.wl), min(
label_vals), max(label_vals)])
cax, kw = colorbar.make_axes(axScatter.axes, location='bottom')
plt.colorbar(im, cax=cax, orientation='horizontal')
axScatter.set_title('Spectral Residuals Sorted by ${0:s}$'.format(
label_name))
axScatter.set_xlabel('Pixels')
axScatter.set_ylabel('$%s$' % label_name)
axHisty.hist(np.std(res_norm, axis=1)[~np.isnan(np.std(res_norm,
axis=1))], orientation='horizontal', range=[0, 2])
axHisty.axhline(y=1, c='k', linewidth=3, label='y=1')
axHisty.legend(bbox_to_anchor=(0.0, 0.8, 1.0, 0.102), prop={
'family': 'serif', 'size': 'small'})
axHisty.text(1.0, 0.5, 'Distribution of Stdev of Star Residuals',
verticalalignment='center', transform=axHisty.transAxes,
rotation=270)
axHisty.set_ylabel('Standard Deviation')
start, end = axHisty.get_xlim()
axHisty.xaxis.set_ticks(np.linspace(start, end, 3))
axHisty.set_xlabel('Number of Stars')
axHisty.xaxis.set_label_position('top')
axHistx.hist(np.std(res_norm, axis=0)[~np.isnan(np.std(res_norm,
axis=0))], range=[0.8, 1.1])
axHistx.axvline(x=1, c='k', linewidth=3, label='x=1')
axHistx.set_title('Distribution of Stdev of Pixel Residuals')
axHistx.set_xlabel('Standard Deviation')
axHistx.set_ylabel('Number of Pixels')
start, end = axHistx.get_ylim()
axHistx.yaxis.set_ticks(np.linspace(start, end, 3))
axHistx.legend()
filename = 'residuals_sorted_by_label_%s.png' % i
plt.savefig(filename)
print('File saved as %s' % filename)
plt.close()
print('Plotting Auto-Correlation of Mean Residuals')
mean_res = res_norm.mean(axis=0)
autocorr = np.correlate(mean_res, mean_res, mode='full')
pkwidth = int(len(autocorr) / 2 - np.argmin(autocorr))
xmin = int(len(autocorr) / 2) - pkwidth
xmax = int(len(autocorr) / 2) + pkwidth
zoom_x = np.linspace(xmin, xmax, len(autocorr[xmin:xmax]))
fig, axarr = plt.subplots(2)
axarr[0].plot(autocorr)
axarr[0].set_title('Autocorrelation of Mean Spectral Residual')
axarr[0].set_xlabel('Lag (# Pixels)')
axarr[0].set_ylabel('Autocorrelation')
axarr[1].plot(zoom_x, autocorr[xmin:xmax])
axarr[1].set_title('Central Peak, Zoomed')
axarr[1].set_xlabel('Lag (# Pixels)')
axarr[1].set_ylabel('Autocorrelation')
filename = 'residuals_autocorr.png'
plt.savefig(filename)
print('saved %s' % filename)
plt.close()
|
residuals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cannon_set, dataset):\n print('Stacking spectrum fit residuals')\n res = dataset.test_fluxes - cannon_set.test_fluxes\n bad = dataset.test_ivars == SMALL ** 2\n err = np.zeros(len(dataset.test_ivars))\n err = np.sqrt(1.0 / dataset.test_ivars + 1.0 / cannon_set.test_ivars)\n res_norm = res / err\n res_norm = np.ma.array(res_norm, mask=np.ones_like(res_norm) * (np.std(\n res_norm, axis=0) == 0))\n res_norm = np.ma.compress_cols(res_norm)\n for i in range(len(cannon_set.get_plotting_labels())):\n label_name = cannon_set.get_plotting_labels()[i]\n print('Plotting residuals sorted by %s' % label_name)\n label_vals = cannon_set.tr_label_vals[:, i]\n sorted_res = res_norm[np.argsort(label_vals)]\n mu = np.mean(sorted_res.flatten())\n sigma = np.std(sorted_res.flatten())\n left, width = 0.1, 0.65\n bottom, height = 0.1, 0.65\n bottom_h = left_h = left + width + 0.1\n rect_scatter = [left, bottom, width, height]\n rect_histx = [left, bottom_h, width, 0.1]\n rect_histy = [left_h, bottom, 0.1, height]\n plt.figure()\n axScatter = plt.axes(rect_scatter)\n axHistx = plt.axes(rect_histx)\n axHisty = plt.axes(rect_histy)\n im = axScatter.imshow(sorted_res, cmap=plt.cm.bwr_r, interpolation=\n 'nearest', vmin=mu - 3.0 * sigma, vmax=mu + 3.0 * sigma, aspect\n ='auto', origin='lower', extent=[0, len(dataset.wl), min(\n label_vals), max(label_vals)])\n cax, kw = colorbar.make_axes(axScatter.axes, location='bottom')\n plt.colorbar(im, cax=cax, orientation='horizontal')\n axScatter.set_title('Spectral Residuals Sorted by ${0:s}$'.format(\n label_name))\n axScatter.set_xlabel('Pixels')\n axScatter.set_ylabel('$%s$' % label_name)\n axHisty.hist(np.std(res_norm, axis=1)[~np.isnan(np.std(res_norm,\n axis=1))], orientation='horizontal', range=[0, 2])\n axHisty.axhline(y=1, c='k', linewidth=3, label='y=1')\n axHisty.legend(bbox_to_anchor=(0.0, 0.8, 1.0, 0.102), prop={\n 'family': 'serif', 'size': 'small'})\n axHisty.text(1.0, 0.5, 'Distribution of Stdev of Star Residuals',\n verticalalignment='center', transform=axHisty.transAxes,\n rotation=270)\n axHisty.set_ylabel('Standard Deviation')\n start, end = axHisty.get_xlim()\n axHisty.xaxis.set_ticks(np.linspace(start, end, 3))\n axHisty.set_xlabel('Number of Stars')\n axHisty.xaxis.set_label_position('top')\n axHistx.hist(np.std(res_norm, axis=0)[~np.isnan(np.std(res_norm,\n axis=0))], range=[0.8, 1.1])\n axHistx.axvline(x=1, c='k', linewidth=3, label='x=1')\n axHistx.set_title('Distribution of Stdev of Pixel Residuals')\n axHistx.set_xlabel('Standard Deviation')\n axHistx.set_ylabel('Number of Pixels')\n start, end = axHistx.get_ylim()\n axHistx.yaxis.set_ticks(np.linspace(start, end, 3))\n axHistx.legend()\n filename = 'residuals_sorted_by_label_%s.png' % i\n plt.savefig(filename)\n print('File saved as %s' % filename)\n plt.close()\n print('Plotting Auto-Correlation of Mean Residuals')\n mean_res = res_norm.mean(axis=0)\n autocorr = np.correlate(mean_res, mean_res, mode='full')\n pkwidth = int(len(autocorr) / 2 - np.argmin(autocorr))\n xmin = int(len(autocorr) / 2) - pkwidth\n xmax = int(len(autocorr) / 2) + pkwidth\n zoom_x = np.linspace(xmin, xmax, len(autocorr[xmin:xmax]))\n fig, axarr = plt.subplots(2)\n axarr[0].plot(autocorr)\n axarr[0].set_title('Autocorrelation of Mean Spectral Residual')\n axarr[0].set_xlabel('Lag (# Pixels)')\n axarr[0].set_ylabel('Autocorrelation')\n axarr[1].plot(zoom_x, autocorr[xmin:xmax])\n axarr[1].set_title('Central Peak, Zoomed')\n axarr[1].set_xlabel('Lag (# Pixels)')\n axarr[1].set_ylabel('Autocorrelation')\n filename = 'residuals_autocorr.png'\n plt.savefig(filename)\n print('saved %s' % filename)\n plt.close()\n",
"role": "user"
},
{
"content": "residuals",
"role": "assistant"
}
] |
def x(f_cut, sig_cut, wl, fluxes, ivars):
f_bar = np.median(fluxes, axis=0)
sigma_f = np.var(fluxes, axis=0)
bad = np.logical_and(f_bar == 0, sigma_f == 0)
cont1 = np.abs(f_bar - 1) <= f_cut
cont2 = sigma_f <= sig_cut
contmask = np.logical_and(cont1, cont2)
contmask[bad] = False
return contmask
|
find_contpix_given_cuts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f_cut, sig_cut, wl, fluxes, ivars):\n f_bar = np.median(fluxes, axis=0)\n sigma_f = np.var(fluxes, axis=0)\n bad = np.logical_and(f_bar == 0, sigma_f == 0)\n cont1 = np.abs(f_bar - 1) <= f_cut\n cont2 = sigma_f <= sig_cut\n contmask = np.logical_and(cont1, cont2)\n contmask[bad] = False\n return contmask\n",
"role": "user"
},
{
"content": "find_contpix_given_cuts",
"role": "assistant"
}
] |
def x(wl, fluxes, ivars, target_frac):
print('Target frac: %s' % target_frac)
bad1 = np.median(ivars, axis=0) == SMALL
bad2 = np.var(ivars, axis=0) == 0
bad = np.logical_and(bad1, bad2)
npixels = len(wl) - sum(bad)
f_cut = 0.0001
stepsize = 0.0001
sig_cut = 0.0001
contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars)
if npixels > 0:
frac = sum(contmask) / float(npixels)
else:
frac = 0
while frac < target_frac:
f_cut += stepsize
sig_cut += stepsize
contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars)
if npixels > 0:
frac = sum(contmask) / float(npixels)
else:
frac = 0
if frac > 0.1 * npixels:
print('Warning: Over 10% of pixels identified as continuum.')
print('%s out of %s pixels identified as continuum' % (sum(contmask),
npixels))
print('Cuts: f_cut %s, sig_cut %s' % (f_cut, sig_cut))
return contmask
|
find_contpix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wl, fluxes, ivars, target_frac):\n print('Target frac: %s' % target_frac)\n bad1 = np.median(ivars, axis=0) == SMALL\n bad2 = np.var(ivars, axis=0) == 0\n bad = np.logical_and(bad1, bad2)\n npixels = len(wl) - sum(bad)\n f_cut = 0.0001\n stepsize = 0.0001\n sig_cut = 0.0001\n contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars)\n if npixels > 0:\n frac = sum(contmask) / float(npixels)\n else:\n frac = 0\n while frac < target_frac:\n f_cut += stepsize\n sig_cut += stepsize\n contmask = _find_contpix_given_cuts(f_cut, sig_cut, wl, fluxes, ivars)\n if npixels > 0:\n frac = sum(contmask) / float(npixels)\n else:\n frac = 0\n if frac > 0.1 * npixels:\n print('Warning: Over 10% of pixels identified as continuum.')\n print('%s out of %s pixels identified as continuum' % (sum(contmask),\n npixels))\n print('Cuts: f_cut %s, sig_cut %s' % (f_cut, sig_cut))\n return contmask\n",
"role": "user"
},
{
"content": "find_contpix",
"role": "assistant"
}
] |
def x(wl, fluxes, ivars, frac, ranges):
contmask = np.zeros(len(wl), dtype=bool)
for chunk in ranges:
start = chunk[0]
stop = chunk[1]
contmask[start:stop] = _find_contpix(wl[start:stop], fluxes[:,
start:stop], ivars[:, start:stop], frac)
return contmask
|
find_contpix_regions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wl, fluxes, ivars, frac, ranges):\n contmask = np.zeros(len(wl), dtype=bool)\n for chunk in ranges:\n start = chunk[0]\n stop = chunk[1]\n contmask[start:stop] = _find_contpix(wl[start:stop], fluxes[:,\n start:stop], ivars[:, start:stop], frac)\n return contmask\n",
"role": "user"
},
{
"content": "find_contpix_regions",
"role": "assistant"
}
] |
def x():
tr_obj = np.load('%s/ref_id.npz' % direc_ref)['arr_0']
groups = np.random.randint(0, 8, size=len(tr_obj))
np.savez('ref_groups.npz', groups)
|
group_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n tr_obj = np.load('%s/ref_id.npz' % direc_ref)['arr_0']\n groups = np.random.randint(0, 8, size=len(tr_obj))\n np.savez('ref_groups.npz', groups)\n",
"role": "user"
},
{
"content": "group_data",
"role": "assistant"
}
] |
def x(ds, ii):
print('Loading model')
m = model.CannonModel(2)
print('Training...')
m.fit(ds)
np.savez('./ex%s_coeffs.npz' % ii, m.coeffs)
np.savez('./ex%s_scatters.npz' % ii, m.scatters)
np.savez('./ex%s_chisqs.npz' % ii, m.chisqs)
np.savez('./ex%s_pivots.npz' % ii, m.pivots)
fig = m.diagnostics_leading_coeffs(ds)
plt.savefig('ex%s_leading_coeffs.png' % ii)
return m
|
train
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ds, ii):\n print('Loading model')\n m = model.CannonModel(2)\n print('Training...')\n m.fit(ds)\n np.savez('./ex%s_coeffs.npz' % ii, m.coeffs)\n np.savez('./ex%s_scatters.npz' % ii, m.scatters)\n np.savez('./ex%s_chisqs.npz' % ii, m.chisqs)\n np.savez('./ex%s_pivots.npz' % ii, m.pivots)\n fig = m.diagnostics_leading_coeffs(ds)\n plt.savefig('ex%s_leading_coeffs.png' % ii)\n return m\n",
"role": "user"
},
{
"content": "train",
"role": "assistant"
}
] |
def x():
print('Loading data')
groups = np.load('ref_groups.npz')['arr_0']
ref_label = np.load('%s/ref_label.npz' % direc_ref)['arr_0']
ref_id = np.load('%s/ref_id.npz' % direc_ref)['arr_0']
ref_flux = np.load('%s/ref_flux.npz' % direc_ref)['arr_0']
ref_ivar = np.load('%s/ref_ivar.npz' % direc_ref)['arr_0']
wl = np.load('%s/wl.npz' % direc_ref)['arr_0']
num_models = 8
for ii in np.arange(num_models):
print('Leaving out group %s' % ii)
train_on = groups != ii
test_on = groups == ii
tr_label = ref_label[train_on]
tr_id = ref_id[train_on]
tr_flux = ref_flux[train_on]
tr_ivar = ref_ivar[train_on]
print('Training on %s objects' % len(tr_id))
test_label = ref_label[test_on]
test_id = ref_id[test_on]
test_flux = ref_flux[test_on]
test_ivar = ref_ivar[test_on]
print('Testing on %s objects' % len(test_id))
print('Loading dataset...')
ds = dataset.Dataset(wl, tr_id, tr_flux, tr_ivar, tr_label, test_id,
test_flux, test_ivar)
ds.set_label_names(['T_{eff}', '\\log g', '[M/H]', '[\\alpha/Fe]',
'AKWISE'])
fig = ds.diagnostics_SNR()
plt.savefig('ex%s_SNR.png' % ii)
fig = ds.diagnostics_ref_labels()
plt.savefig('ex%s_ref_label_triangle.png' % ii)
np.savez('ex%s_tr_snr.npz' % ii, ds.tr_SNR)
m = train(ds, ii)
ds.tr_label = test_label
test(ds, m, ii)
|
xvalidate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n print('Loading data')\n groups = np.load('ref_groups.npz')['arr_0']\n ref_label = np.load('%s/ref_label.npz' % direc_ref)['arr_0']\n ref_id = np.load('%s/ref_id.npz' % direc_ref)['arr_0']\n ref_flux = np.load('%s/ref_flux.npz' % direc_ref)['arr_0']\n ref_ivar = np.load('%s/ref_ivar.npz' % direc_ref)['arr_0']\n wl = np.load('%s/wl.npz' % direc_ref)['arr_0']\n num_models = 8\n for ii in np.arange(num_models):\n print('Leaving out group %s' % ii)\n train_on = groups != ii\n test_on = groups == ii\n tr_label = ref_label[train_on]\n tr_id = ref_id[train_on]\n tr_flux = ref_flux[train_on]\n tr_ivar = ref_ivar[train_on]\n print('Training on %s objects' % len(tr_id))\n test_label = ref_label[test_on]\n test_id = ref_id[test_on]\n test_flux = ref_flux[test_on]\n test_ivar = ref_ivar[test_on]\n print('Testing on %s objects' % len(test_id))\n print('Loading dataset...')\n ds = dataset.Dataset(wl, tr_id, tr_flux, tr_ivar, tr_label, test_id,\n test_flux, test_ivar)\n ds.set_label_names(['T_{eff}', '\\\\log g', '[M/H]', '[\\\\alpha/Fe]',\n 'AKWISE'])\n fig = ds.diagnostics_SNR()\n plt.savefig('ex%s_SNR.png' % ii)\n fig = ds.diagnostics_ref_labels()\n plt.savefig('ex%s_ref_label_triangle.png' % ii)\n np.savez('ex%s_tr_snr.npz' % ii, ds.tr_SNR)\n m = train(ds, ii)\n ds.tr_label = test_label\n test(ds, m, ii)\n",
"role": "user"
},
{
"content": "xvalidate",
"role": "assistant"
}
] |
def x(values, weights):
average = np.average(values, weights=weights)
variance = np.average((values - average) ** 2, weights=weights)
return np.sqrt(variance)
|
weighted_std
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(values, weights):\n average = np.average(values, weights=weights)\n variance = np.average((values - average) ** 2, weights=weights)\n return np.sqrt(variance)\n",
"role": "user"
},
{
"content": "weighted_std",
"role": "assistant"
}
] |
def x(fluxes, contmask):
nstars = fluxes.shape[0]
scatter = np.zeros(nstars)
for i, spec in enumerate(fluxes):
cont = spec[contmask]
scatter[i] = stats.funcs.mad_std(cont)
return scatter
|
estimate_noise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fluxes, contmask):\n nstars = fluxes.shape[0]\n scatter = np.zeros(nstars)\n for i, spec in enumerate(fluxes):\n cont = spec[contmask]\n scatter[i] = stats.funcs.mad_std(cont)\n return scatter\n",
"role": "user"
},
{
"content": "estimate_noise",
"role": "assistant"
}
] |
def x():
data_dir = '/Users/annaho/Data/AAOmega/ref_spectra'
ff = glob.glob('%s/*.txt' % data_dir)
nstars = len(ff)
print('We have %s training objects' % nstars)
f = ff[0]
data = Table.read(f, format='ascii.fast_no_header')
wl = data['col1']
npix = len(wl)
print('We have %s pixels' % npix)
tr_flux = np.zeros((nstars, npix))
tr_ivar = np.zeros(tr_flux.shape)
for i, f in enumerate(ff):
data = Table.read(f, format='ascii.fast_no_header')
flux = data['col2']
tr_flux[i, :] = flux
sigma = data['col3']
tr_ivar[i, :] = 1.0 / sigma ** 2
return np.array(ff), wl, tr_flux, tr_ivar
|
load_ref_spectra
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n data_dir = '/Users/annaho/Data/AAOmega/ref_spectra'\n ff = glob.glob('%s/*.txt' % data_dir)\n nstars = len(ff)\n print('We have %s training objects' % nstars)\n f = ff[0]\n data = Table.read(f, format='ascii.fast_no_header')\n wl = data['col1']\n npix = len(wl)\n print('We have %s pixels' % npix)\n tr_flux = np.zeros((nstars, npix))\n tr_ivar = np.zeros(tr_flux.shape)\n for i, f in enumerate(ff):\n data = Table.read(f, format='ascii.fast_no_header')\n flux = data['col2']\n tr_flux[i, :] = flux\n sigma = data['col3']\n tr_ivar[i, :] = 1.0 / sigma ** 2\n return np.array(ff), wl, tr_flux, tr_ivar\n",
"role": "user"
},
{
"content": "load_ref_spectra",
"role": "assistant"
}
] |
def x():
data_dir = '/Users/annaho/Data/AAOmega'
out_dir = '%s/%s' % (data_dir, 'Run_13_July')
""" Use all the above functions to set data up for The Cannon """
ff, wl, tr_flux, tr_ivar = load_ref_spectra()
""" pick one that doesn't have extra dead pixels """
skylines = tr_ivar[4, :]
np.savez('%s/skylines.npz' % out_dir, skylines)
contmask = np.load('%s/contmask_regions.npz' % data_dir)['arr_0']
scatter = estimate_noise(tr_flux, contmask)
ids, labels = load_labels()
inds = []
ff_short = []
for fname in ff:
val = fname.split('/')[-1]
short = val.split('.')[0] + '.' + val.split('.')[1]
ff_short.append(short)
if short in ids:
ind = np.where(ids == short)[0][0]
inds.append(ind)
tr_id = ids[inds]
tr_label = labels[inds]
ff_short = np.array(ff_short)
inds = np.array([np.where(ff_short == val)[0][0] for val in tr_id])
tr_flux_choose = tr_flux[inds]
tr_ivar_choose = tr_ivar[inds]
scatter_choose = scatter[inds]
np.savez('%s/wl.npz' % out_dir, wl)
np.savez('%s/ref_id_all.npz' % out_dir, tr_id)
np.savez('%s/ref_flux_all.npz' % out_dir, tr_flux_choose)
np.savez('%s/ref_ivar_all.npz' % out_dir, tr_ivar_choose)
np.savez('%s/ref_label_all.npz' % out_dir, tr_label)
np.savez('%s/ref_spec_scat_all.npz' % out_dir, scatter_choose)
test_id, test_flux = load_test_spectra()
scatter = estimate_noise(test_flux, contmask)
np.savez('%s/test_id.npz' % out_dir, test_id)
np.savez('%s/test_flux.npz' % out_dir, test_flux)
np.savez('%s/test_spec_scat.npz' % out_dir, scatter)
|
load_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n data_dir = '/Users/annaho/Data/AAOmega'\n out_dir = '%s/%s' % (data_dir, 'Run_13_July')\n \"\"\" Use all the above functions to set data up for The Cannon \"\"\"\n ff, wl, tr_flux, tr_ivar = load_ref_spectra()\n \"\"\" pick one that doesn't have extra dead pixels \"\"\"\n skylines = tr_ivar[4, :]\n np.savez('%s/skylines.npz' % out_dir, skylines)\n contmask = np.load('%s/contmask_regions.npz' % data_dir)['arr_0']\n scatter = estimate_noise(tr_flux, contmask)\n ids, labels = load_labels()\n inds = []\n ff_short = []\n for fname in ff:\n val = fname.split('/')[-1]\n short = val.split('.')[0] + '.' + val.split('.')[1]\n ff_short.append(short)\n if short in ids:\n ind = np.where(ids == short)[0][0]\n inds.append(ind)\n tr_id = ids[inds]\n tr_label = labels[inds]\n ff_short = np.array(ff_short)\n inds = np.array([np.where(ff_short == val)[0][0] for val in tr_id])\n tr_flux_choose = tr_flux[inds]\n tr_ivar_choose = tr_ivar[inds]\n scatter_choose = scatter[inds]\n np.savez('%s/wl.npz' % out_dir, wl)\n np.savez('%s/ref_id_all.npz' % out_dir, tr_id)\n np.savez('%s/ref_flux_all.npz' % out_dir, tr_flux_choose)\n np.savez('%s/ref_ivar_all.npz' % out_dir, tr_ivar_choose)\n np.savez('%s/ref_label_all.npz' % out_dir, tr_label)\n np.savez('%s/ref_spec_scat_all.npz' % out_dir, scatter_choose)\n test_id, test_flux = load_test_spectra()\n scatter = estimate_noise(test_flux, contmask)\n np.savez('%s/test_id.npz' % out_dir, test_id)\n np.savez('%s/test_flux.npz' % out_dir, test_flux)\n np.savez('%s/test_spec_scat.npz' % out_dir, scatter)\n",
"role": "user"
},
{
"content": "load_data",
"role": "assistant"
}
] |
def x():
ref_flux = np.load('%s/ref_flux_all.npz' % DATA_DIR)['arr_0']
ref_scat = np.load('%s/ref_spec_scat_all.npz' % DATA_DIR)['arr_0']
test_flux = np.load('%s/test_flux.npz' % DATA_DIR)['arr_0']
test_scat = np.load('%s/test_spec_scat.npz' % DATA_DIR)['arr_0']
ref_ivar = np.ones(ref_flux.shape) / ref_scat[:, None] ** 2
test_ivar = np.ones(test_flux.shape) / test_scat[:, None] ** 2
ref_bad = np.logical_or(ref_flux <= 0, ref_flux > 1.1)
test_bad = np.logical_or(test_flux <= 0, test_flux > 1.1)
SMALL = 1.0 / 1000000000.0
ref_ivar[ref_bad] = SMALL
test_ivar[test_bad] = SMALL
np.savez('%s/ref_ivar_corr.npz' % DATA_DIR, ref_ivar)
np.savez('%s/test_ivar_corr.npz' % DATA_DIR, test_ivar)
|
make_full_ivar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n ref_flux = np.load('%s/ref_flux_all.npz' % DATA_DIR)['arr_0']\n ref_scat = np.load('%s/ref_spec_scat_all.npz' % DATA_DIR)['arr_0']\n test_flux = np.load('%s/test_flux.npz' % DATA_DIR)['arr_0']\n test_scat = np.load('%s/test_spec_scat.npz' % DATA_DIR)['arr_0']\n ref_ivar = np.ones(ref_flux.shape) / ref_scat[:, None] ** 2\n test_ivar = np.ones(test_flux.shape) / test_scat[:, None] ** 2\n ref_bad = np.logical_or(ref_flux <= 0, ref_flux > 1.1)\n test_bad = np.logical_or(test_flux <= 0, test_flux > 1.1)\n SMALL = 1.0 / 1000000000.0\n ref_ivar[ref_bad] = SMALL\n test_ivar[test_bad] = SMALL\n np.savez('%s/ref_ivar_corr.npz' % DATA_DIR, ref_ivar)\n np.savez('%s/test_ivar_corr.npz' % DATA_DIR, test_ivar)\n",
"role": "user"
},
{
"content": "make_full_ivar",
"role": "assistant"
}
] |
def x(x, p, L, y):
N = int(len(p) / 2)
n = np.linspace(0, N, N + 1)
k = n * np.pi / L
func = 0
for n in range(0, N):
func += p[2 * n] * np.sin(k[n] * x) + p[2 * n + 1] * np.cos(k[n] * x)
return func
|
sinusoid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, p, L, y):\n N = int(len(p) / 2)\n n = np.linspace(0, N, N + 1)\n k = n * np.pi / L\n func = 0\n for n in range(0, N):\n func += p[2 * n] * np.sin(k[n] * x) + p[2 * n + 1] * np.cos(k[n] * x)\n return func\n",
"role": "user"
},
{
"content": "sinusoid",
"role": "assistant"
}
] |
def x(values, weights, quantile):
sindx = np.argsort(values)
cvalues = 1.0 * np.cumsum(weights[sindx])
if cvalues[-1] == 0:
return values[0]
cvalues = cvalues / cvalues[-1]
foo = sindx[cvalues > quantile]
if len(foo) == 0:
return values[0]
indx = foo[0]
return values[indx]
|
weighted_median
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(values, weights, quantile):\n sindx = np.argsort(values)\n cvalues = 1.0 * np.cumsum(weights[sindx])\n if cvalues[-1] == 0:\n return values[0]\n cvalues = cvalues / cvalues[-1]\n foo = sindx[cvalues > quantile]\n if len(foo) == 0:\n return values[0]\n indx = foo[0]\n return values[indx]\n",
"role": "user"
},
{
"content": "weighted_median",
"role": "assistant"
}
] |
def x(wl, fluxes, ivars, w):
print('Finding the continuum')
bot = np.dot(ivars, w.T)
top = np.dot(fluxes * ivars, w.T)
bad = bot == 0
cont = np.zeros(top.shape)
cont[~bad] = top[~bad] / bot[~bad]
return cont
|
find_cont_gaussian_smooth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wl, fluxes, ivars, w):\n print('Finding the continuum')\n bot = np.dot(ivars, w.T)\n top = np.dot(fluxes * ivars, w.T)\n bad = bot == 0\n cont = np.zeros(top.shape)\n cont[~bad] = top[~bad] / bot[~bad]\n return cont\n",
"role": "user"
},
{
"content": "find_cont_gaussian_smooth",
"role": "assistant"
}
] |
def x(dataset, L):
print('Gaussian smoothing the entire dataset...')
w = gaussian_weight_matrix(dataset.wl, L)
print('Gaussian smoothing the training set')
cont = _find_cont_gaussian_smooth(dataset.wl, dataset.tr_flux, dataset.
tr_ivar, w)
norm_tr_flux, norm_tr_ivar = _cont_norm(dataset.tr_flux, dataset.
tr_ivar, cont)
print('Gaussian smoothing the test set')
cont = _find_cont_gaussian_smooth(dataset.wl, dataset.test_flux,
dataset.test_ivar, w)
norm_test_flux, norm_test_ivar = _cont_norm(dataset.test_flux, dataset.
test_ivar, cont)
return norm_tr_flux, norm_tr_ivar, norm_test_flux, norm_test_ivar
|
cont_norm_gaussian_smooth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dataset, L):\n print('Gaussian smoothing the entire dataset...')\n w = gaussian_weight_matrix(dataset.wl, L)\n print('Gaussian smoothing the training set')\n cont = _find_cont_gaussian_smooth(dataset.wl, dataset.tr_flux, dataset.\n tr_ivar, w)\n norm_tr_flux, norm_tr_ivar = _cont_norm(dataset.tr_flux, dataset.\n tr_ivar, cont)\n print('Gaussian smoothing the test set')\n cont = _find_cont_gaussian_smooth(dataset.wl, dataset.test_flux,\n dataset.test_ivar, w)\n norm_test_flux, norm_test_ivar = _cont_norm(dataset.test_flux, dataset.\n test_ivar, cont)\n return norm_tr_flux, norm_tr_ivar, norm_test_flux, norm_test_ivar\n",
"role": "user"
},
{
"content": "cont_norm_gaussian_smooth",
"role": "assistant"
}
] |
def x(fluxes, ivars, contmask, deg, ffunc, n_proc=1):
nstars = fluxes.shape[0]
npixels = fluxes.shape[1]
cont = np.zeros(fluxes.shape)
if n_proc == 1:
for jj in range(nstars):
flux = fluxes[jj, :]
ivar = ivars[jj, :]
pix = np.arange(0, npixels)
y = flux[contmask]
x = pix[contmask]
yivar = ivar[contmask]
yivar[yivar == 0] = SMALL ** 2
if ffunc == 'sinusoid':
p0 = np.ones(deg * 2)
L = max(x) - min(x)
pcont_func = _partial_func(_sinusoid, L=L, y=flux)
popt, pcov = opt.curve_fit(pcont_func, x, y, p0=p0, sigma=
1.0 / np.sqrt(yivar))
elif ffunc == 'chebyshev':
fit = np.polynomial.chebyshev.Chebyshev.fit(x=x, y=y, w=
yivar, deg=deg)
for element in pix:
if ffunc == 'sinusoid':
cont[jj, element] = _sinusoid(element, popt, L=L, y=flux)
elif ffunc == 'chebyshev':
cont[jj, element] = fit(element)
else:
pool = mp.Pool(processes=n_proc)
mp_results = []
for i in xrange(nstars):
mp_results.append(pool.apply_async(_find_cont_fitfunc, (fluxes[
i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)),
contmask[:]), {'deg': deg, 'ffunc': ffunc}))
pool.close()
pool.join()
cont = np.array([mp_results[i].get().flatten() for i in xrange(nstars)]
)
return cont
|
find_cont_fitfunc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fluxes, ivars, contmask, deg, ffunc, n_proc=1):\n nstars = fluxes.shape[0]\n npixels = fluxes.shape[1]\n cont = np.zeros(fluxes.shape)\n if n_proc == 1:\n for jj in range(nstars):\n flux = fluxes[jj, :]\n ivar = ivars[jj, :]\n pix = np.arange(0, npixels)\n y = flux[contmask]\n x = pix[contmask]\n yivar = ivar[contmask]\n yivar[yivar == 0] = SMALL ** 2\n if ffunc == 'sinusoid':\n p0 = np.ones(deg * 2)\n L = max(x) - min(x)\n pcont_func = _partial_func(_sinusoid, L=L, y=flux)\n popt, pcov = opt.curve_fit(pcont_func, x, y, p0=p0, sigma=\n 1.0 / np.sqrt(yivar))\n elif ffunc == 'chebyshev':\n fit = np.polynomial.chebyshev.Chebyshev.fit(x=x, y=y, w=\n yivar, deg=deg)\n for element in pix:\n if ffunc == 'sinusoid':\n cont[jj, element] = _sinusoid(element, popt, L=L, y=flux)\n elif ffunc == 'chebyshev':\n cont[jj, element] = fit(element)\n else:\n pool = mp.Pool(processes=n_proc)\n mp_results = []\n for i in xrange(nstars):\n mp_results.append(pool.apply_async(_find_cont_fitfunc, (fluxes[\n i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)),\n contmask[:]), {'deg': deg, 'ffunc': ffunc}))\n pool.close()\n pool.join()\n cont = np.array([mp_results[i].get().flatten() for i in xrange(nstars)]\n )\n return cont\n",
"role": "user"
},
{
"content": "find_cont_fitfunc",
"role": "assistant"
}
] |
def x(fluxes, ivars, contmask, deg, ranges, ffunc, n_proc=1):
nstars = fluxes.shape[0]
npixels = fluxes.shape[1]
cont = np.zeros(fluxes.shape)
for chunk in ranges:
start = chunk[0]
stop = chunk[1]
if ffunc == 'chebyshev':
output = _find_cont_fitfunc(fluxes[:, start:stop], ivars[:,
start:stop], contmask[start:stop], deg=deg, ffunc=
'chebyshev', n_proc=n_proc)
elif ffunc == 'sinusoid':
output = _find_cont_fitfunc(fluxes[:, start:stop], ivars[:,
start:stop], contmask[start:stop], deg=deg, ffunc=
'sinusoid', n_proc=n_proc)
cont[:, start:stop] = output
return cont
|
find_cont_fitfunc_regions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fluxes, ivars, contmask, deg, ranges, ffunc, n_proc=1):\n nstars = fluxes.shape[0]\n npixels = fluxes.shape[1]\n cont = np.zeros(fluxes.shape)\n for chunk in ranges:\n start = chunk[0]\n stop = chunk[1]\n if ffunc == 'chebyshev':\n output = _find_cont_fitfunc(fluxes[:, start:stop], ivars[:,\n start:stop], contmask[start:stop], deg=deg, ffunc=\n 'chebyshev', n_proc=n_proc)\n elif ffunc == 'sinusoid':\n output = _find_cont_fitfunc(fluxes[:, start:stop], ivars[:,\n start:stop], contmask[start:stop], deg=deg, ffunc=\n 'sinusoid', n_proc=n_proc)\n cont[:, start:stop] = output\n return cont\n",
"role": "user"
},
{
"content": "find_cont_fitfunc_regions",
"role": "assistant"
}
] |
def x(wl, fluxes, ivars, q, delta_lambda, verbose=False):
cont = np.zeros(fluxes.shape)
nstars = fluxes.shape[0]
for jj in range(nstars):
if verbose:
print('cont_norm_q(): working on star [%s/%s]...' % (jj + 1,
nstars))
flux = fluxes[jj, :]
ivar = ivars[jj, :]
for ll, lam in enumerate(wl):
indx = np.where(abs(wl - lam) < delta_lambda)[0]
flux_cut = flux[indx]
ivar_cut = ivar[indx]
cont[jj, ll] = _weighted_median(flux_cut, ivar_cut, q)
return cont
|
find_cont_running_quantile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wl, fluxes, ivars, q, delta_lambda, verbose=False):\n cont = np.zeros(fluxes.shape)\n nstars = fluxes.shape[0]\n for jj in range(nstars):\n if verbose:\n print('cont_norm_q(): working on star [%s/%s]...' % (jj + 1,\n nstars))\n flux = fluxes[jj, :]\n ivar = ivars[jj, :]\n for ll, lam in enumerate(wl):\n indx = np.where(abs(wl - lam) < delta_lambda)[0]\n flux_cut = flux[indx]\n ivar_cut = ivar[indx]\n cont[jj, ll] = _weighted_median(flux_cut, ivar_cut, q)\n return cont\n",
"role": "user"
},
{
"content": "find_cont_running_quantile",
"role": "assistant"
}
] |
def x(wl, fluxes, ivars, q, delta_lambda, n_proc=2, verbose=False):
nStar = fluxes.shape[0]
mp_results = []
pool = mp.Pool(processes=n_proc)
for i in xrange(nStar):
mp_results.append(pool.apply_async(_find_cont_running_quantile, (wl,
fluxes[i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)), q,
delta_lambda), {'verbose': False}))
if verbose:
print('@Bo Zhang: continuum normalizing star [%d/%d] ...' % (i +
1, nStar))
pool.close()
pool.join()
cont = np.zeros_like(fluxes)
for i in xrange(nStar):
cont[i, :] = mp_results[i].get()
norm_fluxes = np.ones(fluxes.shape)
norm_fluxes[cont != 0] = fluxes[cont != 0] / cont[cont != 0]
norm_ivars = cont ** 2 * ivars
print('@Bo Zhang: continuum normalization finished!')
return norm_fluxes, norm_ivars
|
cont_norm_running_quantile_mp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wl, fluxes, ivars, q, delta_lambda, n_proc=2, verbose=False):\n nStar = fluxes.shape[0]\n mp_results = []\n pool = mp.Pool(processes=n_proc)\n for i in xrange(nStar):\n mp_results.append(pool.apply_async(_find_cont_running_quantile, (wl,\n fluxes[i, :].reshape((1, -1)), ivars[i, :].reshape((1, -1)), q,\n delta_lambda), {'verbose': False}))\n if verbose:\n print('@Bo Zhang: continuum normalizing star [%d/%d] ...' % (i +\n 1, nStar))\n pool.close()\n pool.join()\n cont = np.zeros_like(fluxes)\n for i in xrange(nStar):\n cont[i, :] = mp_results[i].get()\n norm_fluxes = np.ones(fluxes.shape)\n norm_fluxes[cont != 0] = fluxes[cont != 0] / cont[cont != 0]\n norm_ivars = cont ** 2 * ivars\n print('@Bo Zhang: continuum normalization finished!')\n return norm_fluxes, norm_ivars\n",
"role": "user"
},
{
"content": "cont_norm_running_quantile_mp",
"role": "assistant"
}
] |
def x(wl, fluxes, ivars, q, delta_lambda, ranges, verbose=True):
print('contnorm.py: continuum norm using running quantile')
print('Taking spectra in %s chunks' % len(ranges))
nstars = fluxes.shape[0]
norm_fluxes = np.zeros(fluxes.shape)
norm_ivars = np.zeros(ivars.shape)
for chunk in ranges:
start = chunk[0]
stop = chunk[1]
output = _cont_norm_running_quantile(wl[start:stop], fluxes[:,
start:stop], ivars[:, start:stop], q, delta_lambda)
norm_fluxes[:, start:stop] = output[0]
norm_ivars[:, start:stop] = output[1]
return norm_fluxes, norm_ivars
|
cont_norm_running_quantile_regions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wl, fluxes, ivars, q, delta_lambda, ranges, verbose=True):\n print('contnorm.py: continuum norm using running quantile')\n print('Taking spectra in %s chunks' % len(ranges))\n nstars = fluxes.shape[0]\n norm_fluxes = np.zeros(fluxes.shape)\n norm_ivars = np.zeros(ivars.shape)\n for chunk in ranges:\n start = chunk[0]\n stop = chunk[1]\n output = _cont_norm_running_quantile(wl[start:stop], fluxes[:,\n start:stop], ivars[:, start:stop], q, delta_lambda)\n norm_fluxes[:, start:stop] = output[0]\n norm_ivars[:, start:stop] = output[1]\n return norm_fluxes, norm_ivars\n",
"role": "user"
},
{
"content": "cont_norm_running_quantile_regions",
"role": "assistant"
}
] |
def x(wl, fluxes, ivars, q, delta_lambda, ranges, n_proc=2, verbose=False):
print('contnorm.py: continuum norm using running quantile')
print('Taking spectra in %s chunks' % len(ranges))
nchunks = len(ranges)
norm_fluxes = np.zeros(fluxes.shape)
norm_ivars = np.zeros(ivars.shape)
for i in xrange(nchunks):
chunk = ranges[i, :]
start = chunk[0]
stop = chunk[1]
if verbose:
print(
'@Bo Zhang: Going to normalize Chunk [%d/%d], pixel:[%d, %d] ...'
% (i + 1, nchunks, start, stop))
output = _cont_norm_running_quantile_mp(wl[start:stop], fluxes[:,
start:stop], ivars[:, start:stop], q, delta_lambda, n_proc=
n_proc, verbose=verbose)
norm_fluxes[:, start:stop] = output[0]
norm_ivars[:, start:stop] = output[1]
return norm_fluxes, norm_ivars
|
cont_norm_running_quantile_regions_mp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wl, fluxes, ivars, q, delta_lambda, ranges, n_proc=2, verbose=False):\n print('contnorm.py: continuum norm using running quantile')\n print('Taking spectra in %s chunks' % len(ranges))\n nchunks = len(ranges)\n norm_fluxes = np.zeros(fluxes.shape)\n norm_ivars = np.zeros(ivars.shape)\n for i in xrange(nchunks):\n chunk = ranges[i, :]\n start = chunk[0]\n stop = chunk[1]\n if verbose:\n print(\n '@Bo Zhang: Going to normalize Chunk [%d/%d], pixel:[%d, %d] ...'\n % (i + 1, nchunks, start, stop))\n output = _cont_norm_running_quantile_mp(wl[start:stop], fluxes[:,\n start:stop], ivars[:, start:stop], q, delta_lambda, n_proc=\n n_proc, verbose=verbose)\n norm_fluxes[:, start:stop] = output[0]\n norm_ivars[:, start:stop] = output[1]\n return norm_fluxes, norm_ivars\n",
"role": "user"
},
{
"content": "cont_norm_running_quantile_regions_mp",
"role": "assistant"
}
] |
def x(fluxes, ivars, cont):
nstars = fluxes.shape[0]
npixels = fluxes.shape[1]
norm_fluxes = np.ones(fluxes.shape)
norm_ivars = np.zeros(ivars.shape)
bad = cont == 0.0
norm_fluxes = np.ones(fluxes.shape)
norm_fluxes[~bad] = fluxes[~bad] / cont[~bad]
norm_ivars = cont ** 2 * ivars
return norm_fluxes, norm_ivars
|
cont_norm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fluxes, ivars, cont):\n nstars = fluxes.shape[0]\n npixels = fluxes.shape[1]\n norm_fluxes = np.ones(fluxes.shape)\n norm_ivars = np.zeros(ivars.shape)\n bad = cont == 0.0\n norm_fluxes = np.ones(fluxes.shape)\n norm_fluxes[~bad] = fluxes[~bad] / cont[~bad]\n norm_ivars = cont ** 2 * ivars\n return norm_fluxes, norm_ivars\n",
"role": "user"
},
{
"content": "cont_norm",
"role": "assistant"
}
] |
def x(fluxes, ivars, cont, ranges):
nstars = fluxes.shape[0]
norm_fluxes = np.zeros(fluxes.shape)
norm_ivars = np.zeros(ivars.shape)
for chunk in ranges:
start = chunk[0]
stop = chunk[1]
output = _cont_norm(fluxes[:, start:stop], ivars[:, start:stop],
cont[:, start:stop])
norm_fluxes[:, start:stop] = output[0]
norm_ivars[:, start:stop] = output[1]
for jj in range(nstars):
bad = norm_ivars[jj, :] == 0.0
norm_fluxes[jj, :][bad] = 1.0
return norm_fluxes, norm_ivars
|
cont_norm_regions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fluxes, ivars, cont, ranges):\n nstars = fluxes.shape[0]\n norm_fluxes = np.zeros(fluxes.shape)\n norm_ivars = np.zeros(ivars.shape)\n for chunk in ranges:\n start = chunk[0]\n stop = chunk[1]\n output = _cont_norm(fluxes[:, start:stop], ivars[:, start:stop],\n cont[:, start:stop])\n norm_fluxes[:, start:stop] = output[0]\n norm_ivars[:, start:stop] = output[1]\n for jj in range(nstars):\n bad = norm_ivars[jj, :] == 0.0\n norm_fluxes[jj, :][bad] = 1.0\n return norm_fluxes, norm_ivars\n",
"role": "user"
},
{
"content": "cont_norm_regions",
"role": "assistant"
}
] |
def x(self, ds):
if self.useErrors:
(self.coeffs, self.scatters, self.new_tr_labels, self.chisqs, self.
pivots, self.scales) = _train_model_new(ds)
else:
(self.coeffs, self.scatters, self.chisqs, self.pivots, self.scales
) = _train_model(ds)
|
train
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ds):\n if self.useErrors:\n (self.coeffs, self.scatters, self.new_tr_labels, self.chisqs, self.\n pivots, self.scales) = _train_model_new(ds)\n else:\n (self.coeffs, self.scatters, self.chisqs, self.pivots, self.scales\n ) = _train_model(ds)\n",
"role": "user"
},
{
"content": "train",
"role": "assistant"
}
] |
def x(self, ds):
lvec_all = _get_lvec(ds.test_label_vals, self.pivots, self.scales,
derivs=False)
self.model_spectra = np.dot(lvec_all, self.coeffs.T)
|
infer_spectra
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ds):\n lvec_all = _get_lvec(ds.test_label_vals, self.pivots, self.scales,\n derivs=False)\n self.model_spectra = np.dot(lvec_all, self.coeffs.T)\n",
"role": "user"
},
{
"content": "infer_spectra",
"role": "assistant"
}
] |
def x(self, x, y, contpix_x, contpix_y, figname):
fig, axarr = plt.subplots(2, sharex=True)
plt.xlabel('Wavelength $\\lambda (\\AA)$')
plt.xlim(min(x), max(x))
ax = axarr[0]
ax.step(x, y, where='mid', c='k', linewidth=0.3, label='$\\theta_0$' +
'= the leading fit coefficient')
ax.scatter(contpix_x, contpix_y, s=1, color='r', label='continuum pixels')
ax.legend(loc='lower right', prop={'family': 'serif', 'size': 'small'})
ax.set_title('Baseline Spectrum with Continuum Pixels')
ax.set_ylabel('$\\theta_0$')
ax = axarr[1]
ax.step(x, y, where='mid', c='k', linewidth=0.3, label='$\\theta_0$' +
'= the leading fit coefficient')
ax.scatter(contpix_x, contpix_y, s=1, color='r', label='continuum pixels')
ax.set_title('Baseline Spectrum with Continuum Pixels, Zoomed')
ax.legend(loc='upper right', prop={'family': 'serif', 'size': 'small'})
ax.set_ylabel('$\\theta_0$')
ax.set_ylim(0.95, 1.05)
print('Diagnostic plot: fitted 0th order spec w/ cont pix')
print('Saved as %s.png' % figname)
plt.savefig(figname)
plt.close()
|
plot_contpix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, contpix_x, contpix_y, figname):\n fig, axarr = plt.subplots(2, sharex=True)\n plt.xlabel('Wavelength $\\\\lambda (\\\\AA)$')\n plt.xlim(min(x), max(x))\n ax = axarr[0]\n ax.step(x, y, where='mid', c='k', linewidth=0.3, label='$\\\\theta_0$' +\n '= the leading fit coefficient')\n ax.scatter(contpix_x, contpix_y, s=1, color='r', label='continuum pixels')\n ax.legend(loc='lower right', prop={'family': 'serif', 'size': 'small'})\n ax.set_title('Baseline Spectrum with Continuum Pixels')\n ax.set_ylabel('$\\\\theta_0$')\n ax = axarr[1]\n ax.step(x, y, where='mid', c='k', linewidth=0.3, label='$\\\\theta_0$' +\n '= the leading fit coefficient')\n ax.scatter(contpix_x, contpix_y, s=1, color='r', label='continuum pixels')\n ax.set_title('Baseline Spectrum with Continuum Pixels, Zoomed')\n ax.legend(loc='upper right', prop={'family': 'serif', 'size': 'small'})\n ax.set_ylabel('$\\\\theta_0$')\n ax.set_ylim(0.95, 1.05)\n print('Diagnostic plot: fitted 0th order spec w/ cont pix')\n print('Saved as %s.png' % figname)\n plt.savefig(figname)\n plt.close()\n",
"role": "user"
},
{
"content": "plot_contpix",
"role": "assistant"
}
] |
def x(self, data, nchunks=10, fig='baseline_spec_with_cont_pix'):
if data.contmask is None:
print('No contmask set')
else:
coeffs_all = self.coeffs
wl = data.wl
baseline_spec = coeffs_all[:, 0]
contmask = data.contmask
contpix_x = wl[contmask]
contpix_y = baseline_spec[contmask]
rem = len(wl) % nchunks
wl_split = np.array(np.split(wl[0:len(wl) - rem], nchunks))
baseline_spec_split = np.array(np.split(baseline_spec[0:len(wl) -
rem], nchunks))
nchunks = wl_split.shape[0]
for i in range(nchunks):
fig_chunk = fig + '_%s' % str(i)
wl_chunk = wl_split[i, :]
baseline_spec_chunk = baseline_spec_split[i, :]
take = np.logical_and(contpix_x > wl_chunk[0], contpix_x <
wl_chunk[-1])
self.plot_contpix(wl_chunk, baseline_spec_chunk, contpix_x[take
], contpix_y[take], fig_chunk)
|
diagnostics_contpix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, nchunks=10, fig='baseline_spec_with_cont_pix'):\n if data.contmask is None:\n print('No contmask set')\n else:\n coeffs_all = self.coeffs\n wl = data.wl\n baseline_spec = coeffs_all[:, 0]\n contmask = data.contmask\n contpix_x = wl[contmask]\n contpix_y = baseline_spec[contmask]\n rem = len(wl) % nchunks\n wl_split = np.array(np.split(wl[0:len(wl) - rem], nchunks))\n baseline_spec_split = np.array(np.split(baseline_spec[0:len(wl) -\n rem], nchunks))\n nchunks = wl_split.shape[0]\n for i in range(nchunks):\n fig_chunk = fig + '_%s' % str(i)\n wl_chunk = wl_split[i, :]\n baseline_spec_chunk = baseline_spec_split[i, :]\n take = np.logical_and(contpix_x > wl_chunk[0], contpix_x <\n wl_chunk[-1])\n self.plot_contpix(wl_chunk, baseline_spec_chunk, contpix_x[take\n ], contpix_y[take], fig_chunk)\n",
"role": "user"
},
{
"content": "diagnostics_contpix",
"role": "assistant"
}
] |
def x(self, ds, figname='modelfit_chisqs.png'):
label_names = ds.get_plotting_labels()
lams = ds.wl
pivots = self.pivots
npixels = len(lams)
nlabels = len(pivots)
chisqs = self.chisqs
coeffs = self.coeffs
scatters = self.scatters
plt.hist(np.sum(chisqs, axis=0), color='lightblue', alpha=0.7, bins=int
(np.sqrt(len(chisqs))))
dof = len(lams) - coeffs.shape[1]
plt.axvline(x=dof, c='k', linewidth=2, label='DOF')
plt.legend()
plt.title('Distribution of ' + '$\\chi^2$' + ' of the Model Fit')
plt.ylabel('Count')
plt.xlabel('$\\chi^2$' + ' of Individual Star')
print('Diagnostic plot: histogram of the red chi squareds of the fit')
print('Saved as %s' % figname)
plt.savefig(figname)
plt.close()
|
diagnostics_plot_chisq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ds, figname='modelfit_chisqs.png'):\n label_names = ds.get_plotting_labels()\n lams = ds.wl\n pivots = self.pivots\n npixels = len(lams)\n nlabels = len(pivots)\n chisqs = self.chisqs\n coeffs = self.coeffs\n scatters = self.scatters\n plt.hist(np.sum(chisqs, axis=0), color='lightblue', alpha=0.7, bins=int\n (np.sqrt(len(chisqs))))\n dof = len(lams) - coeffs.shape[1]\n plt.axvline(x=dof, c='k', linewidth=2, label='DOF')\n plt.legend()\n plt.title('Distribution of ' + '$\\\\chi^2$' + ' of the Model Fit')\n plt.ylabel('Count')\n plt.xlabel('$\\\\chi^2$' + ' of Individual Star')\n print('Diagnostic plot: histogram of the red chi squareds of the fit')\n print('Saved as %s' % figname)\n plt.savefig(figname)\n plt.close()\n",
"role": "user"
},
{
"content": "diagnostics_plot_chisq",
"role": "assistant"
}
] |
def x(nu_max, delta_nu, teff):
NU_MAX = 3140.0
DELTA_NU = 135.03
TEFF = 5777.0
return (nu_max / NU_MAX) ** 3 * (delta_nu / DELTA_NU) ** -4 * (teff / TEFF
) ** 1.5
|
calc_mass
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nu_max, delta_nu, teff):\n NU_MAX = 3140.0\n DELTA_NU = 135.03\n TEFF = 5777.0\n return (nu_max / NU_MAX) ** 3 * (delta_nu / DELTA_NU) ** -4 * (teff / TEFF\n ) ** 1.5\n",
"role": "user"
},
{
"content": "calc_mass",
"role": "assistant"
}
] |
def x(mh, cm, nm, teff, logg):
CplusN = calc_sum(mh, cm, nm)
t = teff / 4000.0
return (95.8689 - 10.4042 * mh - 0.7266 * mh ** 2 + 41.3642 * cm -
5.3242 * cm * mh - 46.7792 * cm ** 2 + 15.0508 * nm - 0.9342 * nm *
mh - 30.5159 * nm * cm - 1.6083 * nm ** 2 - 67.6093 * CplusN +
7.0486 * CplusN * mh + 133.5775 * CplusN * cm + 38.9439 * CplusN *
nm - 88.9948 * CplusN ** 2 - 144.1765 * t + 5.118 * t * mh - 73.769 *
t * cm - 15.2927 * t * nm + 101.7482 * t * CplusN + 27.769 * t ** 2 -
9.4246 * logg + 1.5159 * logg * mh + 16.0412 * logg * cm + 1.3549 *
logg * nm - 18.6527 * logg * CplusN + 28.8015 * logg * t - 4.0982 *
logg ** 2)
|
calc_mass_2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mh, cm, nm, teff, logg):\n CplusN = calc_sum(mh, cm, nm)\n t = teff / 4000.0\n return (95.8689 - 10.4042 * mh - 0.7266 * mh ** 2 + 41.3642 * cm - \n 5.3242 * cm * mh - 46.7792 * cm ** 2 + 15.0508 * nm - 0.9342 * nm *\n mh - 30.5159 * nm * cm - 1.6083 * nm ** 2 - 67.6093 * CplusN + \n 7.0486 * CplusN * mh + 133.5775 * CplusN * cm + 38.9439 * CplusN *\n nm - 88.9948 * CplusN ** 2 - 144.1765 * t + 5.118 * t * mh - 73.769 *\n t * cm - 15.2927 * t * nm + 101.7482 * t * CplusN + 27.769 * t ** 2 -\n 9.4246 * logg + 1.5159 * logg * mh + 16.0412 * logg * cm + 1.3549 *\n logg * nm - 18.6527 * logg * CplusN + 28.8015 * logg * t - 4.0982 *\n logg ** 2)\n",
"role": "user"
},
{
"content": "calc_mass_2",
"role": "assistant"
}
] |
def x(x, q, weights=None):
if weights is None:
return np.percentile(x, [(100.0 * qi) for qi in q])
else:
idx = np.argsort(x)
xsorted = x[idx]
cdf = np.add.accumulate(weights[idx])
cdf /= cdf[-1]
return np.interp(q, cdf, xsorted).tolist()
|
quantile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, q, weights=None):\n if weights is None:\n return np.percentile(x, [(100.0 * qi) for qi in q])\n else:\n idx = np.argsort(x)\n xsorted = x[idx]\n cdf = np.add.accumulate(weights[idx])\n cdf /= cdf[-1]\n return np.interp(q, cdf, xsorted).tolist()\n",
"role": "user"
},
{
"content": "quantile",
"role": "assistant"
}
] |
def x(x, y, bins=20, range=None, weights=None, levels=None, smooth=None, ax
=None, color=None, plot_datapoints=True, plot_density=True,
plot_contours=True, no_fill_contours=False, fill_contours=False,
contour_kwargs=None, contourf_kwargs=None, data_kwargs=None, **kwargs):
if ax is None:
ax = pl.gca()
if range is None:
if 'extent' in kwargs:
logging.warn(
"Deprecated keyword argument 'extent'. Use 'range' instead.")
range = kwargs['extent']
else:
range = [[x.min(), x.max()], [y.min(), y.max()]]
if color is None:
color = 'k'
if levels is None:
levels = 1.0 - np.exp(-0.5 * np.arange(0.5, 2.1, 0.5) ** 2)
density_cmap = LinearSegmentedColormap.from_list('density_cmap', [color,
(1, 1, 1, 0)])
white_cmap = LinearSegmentedColormap.from_list('white_cmap', [(1, 1, 1),
(1, 1, 1)], N=2)
rgba_color = colorConverter.to_rgba(color)
contour_cmap = [list(rgba_color) for l in levels] + [rgba_color]
for i, l in enumerate(levels):
contour_cmap[i][-1] *= float(i) / (len(levels) + 1)
try:
H, X, Y = np.histogram2d(x.flatten(), y.flatten(), bins=bins, range
=range, weights=weights)
except ValueError:
raise ValueError(
"It looks like at least one of your sample columns have no dynamic range. You could try using the 'range' argument."
)
if smooth is not None:
if gaussian_filter is None:
raise ImportError('Please install scipy for smoothing')
H = gaussian_filter(H, smooth)
Hflat = H.flatten()
inds = np.argsort(Hflat)[::-1]
Hflat = Hflat[inds]
sm = np.cumsum(Hflat)
sm /= sm[-1]
V = np.empty(len(levels))
for i, v0 in enumerate(levels):
try:
V[i] = Hflat[sm <= v0][-1]
except:
V[i] = Hflat[0]
V.sort()
m = np.diff(V) == 0
if np.any(m):
logging.warning('Too few points to create valid contours')
while np.any(m):
V[np.where(m)[0][0]] *= 1.0 - 0.0001
m = np.diff(V) == 0
V.sort()
X1, Y1 = 0.5 * (X[1:] + X[:-1]), 0.5 * (Y[1:] + Y[:-1])
H2 = H.min() + np.zeros((H.shape[0] + 4, H.shape[1] + 4))
H2[2:-2, 2:-2] = H
H2[2:-2, 1] = H[:, 0]
H2[2:-2, -2] = H[:, -1]
H2[1, 2:-2] = H[0]
H2[-2, 2:-2] = H[-1]
H2[1, 1] = H[0, 0]
H2[1, -2] = H[0, -1]
H2[-2, 1] = H[-1, 0]
H2[-2, -2] = H[-1, -1]
X2 = np.concatenate([X1[0] + np.array([-2, -1]) * np.diff(X1[:2]), X1,
X1[-1] + np.array([1, 2]) * np.diff(X1[-2:])])
Y2 = np.concatenate([Y1[0] + np.array([-2, -1]) * np.diff(Y1[:2]), Y1,
Y1[-1] + np.array([1, 2]) * np.diff(Y1[-2:])])
if plot_datapoints:
if data_kwargs is None:
data_kwargs = dict()
data_kwargs['color'] = data_kwargs.get('color', color)
data_kwargs['ms'] = data_kwargs.get('ms', 2.0)
data_kwargs['mec'] = data_kwargs.get('mec', 'none')
data_kwargs['alpha'] = data_kwargs.get('alpha', 0.1)
ax.plot(x, y, 'o', zorder=-1, rasterized=True, **data_kwargs)
if (plot_contours or plot_density) and not no_fill_contours:
ax.contourf(X2, Y2, H2.T, [V.min(), H.max()], cmap=white_cmap,
antialiased=False)
if plot_contours and fill_contours:
if contourf_kwargs is None:
contourf_kwargs = dict()
contourf_kwargs['colors'] = contourf_kwargs.get('colors', contour_cmap)
contourf_kwargs['antialiased'] = contourf_kwargs.get('antialiased',
False)
ax.contourf(X2, Y2, H2.T, np.concatenate([[0], V, [H.max() * (1 +
0.0001)]]), **contourf_kwargs)
elif plot_density:
ax.pcolor(X, Y, H.max() - H.T, cmap=density_cmap)
if plot_contours:
if contour_kwargs is None:
contour_kwargs = dict()
contour_kwargs['colors'] = contour_kwargs.get('colors', color)
ax.contour(X2, Y2, H2.T, V, **contour_kwargs)
ax.set_xlim(range[0])
ax.set_ylim(range[1])
|
hist2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, bins=20, range=None, weights=None, levels=None, smooth=None, ax\n =None, color=None, plot_datapoints=True, plot_density=True,\n plot_contours=True, no_fill_contours=False, fill_contours=False,\n contour_kwargs=None, contourf_kwargs=None, data_kwargs=None, **kwargs):\n if ax is None:\n ax = pl.gca()\n if range is None:\n if 'extent' in kwargs:\n logging.warn(\n \"Deprecated keyword argument 'extent'. Use 'range' instead.\")\n range = kwargs['extent']\n else:\n range = [[x.min(), x.max()], [y.min(), y.max()]]\n if color is None:\n color = 'k'\n if levels is None:\n levels = 1.0 - np.exp(-0.5 * np.arange(0.5, 2.1, 0.5) ** 2)\n density_cmap = LinearSegmentedColormap.from_list('density_cmap', [color,\n (1, 1, 1, 0)])\n white_cmap = LinearSegmentedColormap.from_list('white_cmap', [(1, 1, 1),\n (1, 1, 1)], N=2)\n rgba_color = colorConverter.to_rgba(color)\n contour_cmap = [list(rgba_color) for l in levels] + [rgba_color]\n for i, l in enumerate(levels):\n contour_cmap[i][-1] *= float(i) / (len(levels) + 1)\n try:\n H, X, Y = np.histogram2d(x.flatten(), y.flatten(), bins=bins, range\n =range, weights=weights)\n except ValueError:\n raise ValueError(\n \"It looks like at least one of your sample columns have no dynamic range. You could try using the 'range' argument.\"\n )\n if smooth is not None:\n if gaussian_filter is None:\n raise ImportError('Please install scipy for smoothing')\n H = gaussian_filter(H, smooth)\n Hflat = H.flatten()\n inds = np.argsort(Hflat)[::-1]\n Hflat = Hflat[inds]\n sm = np.cumsum(Hflat)\n sm /= sm[-1]\n V = np.empty(len(levels))\n for i, v0 in enumerate(levels):\n try:\n V[i] = Hflat[sm <= v0][-1]\n except:\n V[i] = Hflat[0]\n V.sort()\n m = np.diff(V) == 0\n if np.any(m):\n logging.warning('Too few points to create valid contours')\n while np.any(m):\n V[np.where(m)[0][0]] *= 1.0 - 0.0001\n m = np.diff(V) == 0\n V.sort()\n X1, Y1 = 0.5 * (X[1:] + X[:-1]), 0.5 * (Y[1:] + Y[:-1])\n H2 = H.min() + np.zeros((H.shape[0] + 4, H.shape[1] + 4))\n H2[2:-2, 2:-2] = H\n H2[2:-2, 1] = H[:, 0]\n H2[2:-2, -2] = H[:, -1]\n H2[1, 2:-2] = H[0]\n H2[-2, 2:-2] = H[-1]\n H2[1, 1] = H[0, 0]\n H2[1, -2] = H[0, -1]\n H2[-2, 1] = H[-1, 0]\n H2[-2, -2] = H[-1, -1]\n X2 = np.concatenate([X1[0] + np.array([-2, -1]) * np.diff(X1[:2]), X1, \n X1[-1] + np.array([1, 2]) * np.diff(X1[-2:])])\n Y2 = np.concatenate([Y1[0] + np.array([-2, -1]) * np.diff(Y1[:2]), Y1, \n Y1[-1] + np.array([1, 2]) * np.diff(Y1[-2:])])\n if plot_datapoints:\n if data_kwargs is None:\n data_kwargs = dict()\n data_kwargs['color'] = data_kwargs.get('color', color)\n data_kwargs['ms'] = data_kwargs.get('ms', 2.0)\n data_kwargs['mec'] = data_kwargs.get('mec', 'none')\n data_kwargs['alpha'] = data_kwargs.get('alpha', 0.1)\n ax.plot(x, y, 'o', zorder=-1, rasterized=True, **data_kwargs)\n if (plot_contours or plot_density) and not no_fill_contours:\n ax.contourf(X2, Y2, H2.T, [V.min(), H.max()], cmap=white_cmap,\n antialiased=False)\n if plot_contours and fill_contours:\n if contourf_kwargs is None:\n contourf_kwargs = dict()\n contourf_kwargs['colors'] = contourf_kwargs.get('colors', contour_cmap)\n contourf_kwargs['antialiased'] = contourf_kwargs.get('antialiased',\n False)\n ax.contourf(X2, Y2, H2.T, np.concatenate([[0], V, [H.max() * (1 + \n 0.0001)]]), **contourf_kwargs)\n elif plot_density:\n ax.pcolor(X, Y, H.max() - H.T, cmap=density_cmap)\n if plot_contours:\n if contour_kwargs is None:\n contour_kwargs = dict()\n contour_kwargs['colors'] = contour_kwargs.get('colors', color)\n ax.contour(X2, Y2, H2.T, V, **contour_kwargs)\n ax.set_xlim(range[0])\n ax.set_ylim(range[1])\n",
"role": "user"
},
{
"content": "hist2d",
"role": "assistant"
}
] |
def x(lamost_point, training_points, coeffs):
diff2 = (training_points - lamost_point) ** 2
dist = np.sqrt(np.sum(diff2 * coeffs, axis=1))
return np.mean(dist[dist.argsort()][0:10])
|
calc_dist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lamost_point, training_points, coeffs):\n diff2 = (training_points - lamost_point) ** 2\n dist = np.sqrt(np.sum(diff2 * coeffs, axis=1))\n return np.mean(dist[dist.argsort()][0:10])\n",
"role": "user"
},
{
"content": "calc_dist",
"role": "assistant"
}
] |
def x(self, name, ids, labels):
if not all(np.in1d(ids, self.ids)):
raise ValueError(
'Hay ids de textos que no se encuentran almacenados.'
)
setattr(self, name, SGDClassifier())
classifier = getattr(self, name)
indices = np.searchsorted(self.ids, ids)
classifier.fit(self.tfidf_mat[indices, :], labels)
|
make_classifier
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, ids, labels):\n if not all(np.in1d(ids, self.ids)):\n raise ValueError(\n 'Hay ids de textos que no se encuentran almacenados.'\n )\n setattr(self, name, SGDClassifier())\n classifier = getattr(self, name)\n indices = np.searchsorted(self.ids, ids)\n classifier.fit(self.tfidf_mat[indices, :], labels)\n",
"role": "user"
},
{
"content": "make_classifier",
"role": "assistant"
}
] |
def x(self, name, ids, labels):
if not all(np.in1d(ids, self.ids)):
raise ValueError(
'Hay ids de textos que no se encuentran almacenados.'
)
try:
classifier = getattr(self, name)
except AttributeError:
raise AttributeError('No hay ningun clasificador con ese nombre.')
indices = np.in1d(self.ids, ids)
if isinstance(labels, str):
labels = [labels]
classifier.partial_fit(self.tfidf_mat[indices, :], labels)
|
retrain
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, ids, labels):\n if not all(np.in1d(ids, self.ids)):\n raise ValueError(\n 'Hay ids de textos que no se encuentran almacenados.'\n )\n try:\n classifier = getattr(self, name)\n except AttributeError:\n raise AttributeError('No hay ningun clasificador con ese nombre.')\n indices = np.in1d(self.ids, ids)\n if isinstance(labels, str):\n labels = [labels]\n classifier.partial_fit(self.tfidf_mat[indices, :], labels)\n",
"role": "user"
},
{
"content": "retrain",
"role": "assistant"
}
] |
def x(self, classifier_name, examples, max_labels=None, goodness_of_fit=False):
classifier = getattr(self, classifier_name)
texts_vectors = self._make_text_vectors(examples)
return classifier.classes_, classifier.decision_function(texts_vectors)
|
classify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, classifier_name, examples, max_labels=None, goodness_of_fit=False):\n classifier = getattr(self, classifier_name)\n texts_vectors = self._make_text_vectors(examples)\n return classifier.classes_, classifier.decision_function(texts_vectors)\n",
"role": "user"
},
{
"content": "classify",
"role": "assistant"
}
] |
def x(self, examples):
if isinstance(examples, str):
if examples in self.ids:
textvec = self.tfidf_mat[self.ids == examples, :]
else:
textvec = self.vectorizer.transform([examples])
textvec = self.transformer.transform(textvec)
elif type(examples) is list:
if all(np.in1d(examples, self.ids)):
textvec = self.tfidf_mat[np.in1d(self.ids, examples)]
elif not any(np.in1d(examples, self.ids)):
textvec = self.vectorizer.transform(examples)
textvec = self.transformer.transform(textvec)
else:
raise ValueError(
'Las listas de ejemplos deben ser todos ids de textos almacenados o todos textos planos'
)
else:
raise TypeError('Los ejemplos no son del tipo de dato adecuado.')
return textvec
|
make_text_vectors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, examples):\n if isinstance(examples, str):\n if examples in self.ids:\n textvec = self.tfidf_mat[self.ids == examples, :]\n else:\n textvec = self.vectorizer.transform([examples])\n textvec = self.transformer.transform(textvec)\n elif type(examples) is list:\n if all(np.in1d(examples, self.ids)):\n textvec = self.tfidf_mat[np.in1d(self.ids, examples)]\n elif not any(np.in1d(examples, self.ids)):\n textvec = self.vectorizer.transform(examples)\n textvec = self.transformer.transform(textvec)\n else:\n raise ValueError(\n 'Las listas de ejemplos deben ser todos ids de textos almacenados o todos textos planos'\n )\n else:\n raise TypeError('Los ejemplos no son del tipo de dato adecuado.')\n return textvec\n",
"role": "user"
},
{
"content": "make_text_vectors",
"role": "assistant"
}
] |
def x(self, example, max_similars=3, similarity_cutoff=None,
term_diff_max_rank=10, filter_list=None, term_diff_cutoff=None):
if term_diff_cutoff:
warnings.warn('Deprecado. Quedo sin uso. Se quitara en el futuro.',
DeprecationWarning)
if filter_list:
if max_similars > len(filter_list):
raise ValueError(
'No se pueden pedir mas sugerencias que la cantidad de textos en `filter_list`.'
)
else:
filt_idx = np.in1d(self.ids, filter_list)
elif max_similars > self.term_mat.shape[0]:
raise ValueError(
'No se pueden pedir mas sugerencias que la cantidad de textos que hay almacenados.'
)
else:
filt_idx = np.ones(len(self.ids), dtype=bool)
good_ids = np.array(np.sum(self.term_mat, 1) > 0).squeeze()
filt_idx = filt_idx & good_ids
filt_idx_to_general_idx = np.flatnonzero(filt_idx)
if example in self.ids:
index = self.ids == example
exmpl_vec = self.tfidf_mat[index, :]
distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx],
exmpl_vec))
if filter_list and example in filter_list:
distances[filter_list.index(example)] = np.inf
elif not filter_list:
idx_example = np.searchsorted(self.ids, example)
filt_idx_example = np.searchsorted(np.flatnonzero(filt_idx),
idx_example)
distances[filt_idx_example] = np.inf
else:
exmpl_vec = self.vectorizer.transform([example])
exmpl_vec = self.transformer.transform(exmpl_vec)
distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx],
exmpl_vec))
if np.sum(exmpl_vec) == 0:
return [], [], []
sorted_indices = np.argsort(distances)
closest_n = sorted_indices[:max_similars]
sorted_dist = distances[closest_n]
if similarity_cutoff:
closest_n = closest_n[sorted_dist < similarity_cutoff]
sorted_dist = sorted_dist[sorted_dist < similarity_cutoff]
best_words = []
best_example = np.squeeze(exmpl_vec.toarray())
sorted_example_weights = np.flipud(np.argsort(best_example))
truncated_max_rank = min(term_diff_max_rank, np.sum(best_example > 0))
best_example_words = sorted_example_weights[:truncated_max_rank]
for suggested in closest_n:
suggested_idx = filt_idx_to_general_idx[suggested]
test_vec = np.squeeze(self.tfidf_mat[suggested_idx, :].toarray())
sorted_test_weights = np.flipud(np.argsort(test_vec))
truncated_max_rank = min(term_diff_max_rank, np.sum(test_vec > 0))
best_test = sorted_test_weights[:truncated_max_rank]
best_words_ids = np.intersect1d(best_example_words, best_test)
best_words.append([k for k, v in self.vectorizer.vocabulary_.items(
) if v in best_words_ids])
if filter_list:
text_ids = self.ids[filt_idx_to_general_idx[closest_n]]
else:
text_ids = self.ids[closest_n]
return list(text_ids), list(sorted_dist), best_words
|
get_similar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, example, max_similars=3, similarity_cutoff=None,\n term_diff_max_rank=10, filter_list=None, term_diff_cutoff=None):\n if term_diff_cutoff:\n warnings.warn('Deprecado. Quedo sin uso. Se quitara en el futuro.',\n DeprecationWarning)\n if filter_list:\n if max_similars > len(filter_list):\n raise ValueError(\n 'No se pueden pedir mas sugerencias que la cantidad de textos en `filter_list`.'\n )\n else:\n filt_idx = np.in1d(self.ids, filter_list)\n elif max_similars > self.term_mat.shape[0]:\n raise ValueError(\n 'No se pueden pedir mas sugerencias que la cantidad de textos que hay almacenados.'\n )\n else:\n filt_idx = np.ones(len(self.ids), dtype=bool)\n good_ids = np.array(np.sum(self.term_mat, 1) > 0).squeeze()\n filt_idx = filt_idx & good_ids\n filt_idx_to_general_idx = np.flatnonzero(filt_idx)\n if example in self.ids:\n index = self.ids == example\n exmpl_vec = self.tfidf_mat[index, :]\n distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx],\n exmpl_vec))\n if filter_list and example in filter_list:\n distances[filter_list.index(example)] = np.inf\n elif not filter_list:\n idx_example = np.searchsorted(self.ids, example)\n filt_idx_example = np.searchsorted(np.flatnonzero(filt_idx),\n idx_example)\n distances[filt_idx_example] = np.inf\n else:\n exmpl_vec = self.vectorizer.transform([example])\n exmpl_vec = self.transformer.transform(exmpl_vec)\n distances = np.squeeze(pairwise_distances(self.tfidf_mat[filt_idx],\n exmpl_vec))\n if np.sum(exmpl_vec) == 0:\n return [], [], []\n sorted_indices = np.argsort(distances)\n closest_n = sorted_indices[:max_similars]\n sorted_dist = distances[closest_n]\n if similarity_cutoff:\n closest_n = closest_n[sorted_dist < similarity_cutoff]\n sorted_dist = sorted_dist[sorted_dist < similarity_cutoff]\n best_words = []\n best_example = np.squeeze(exmpl_vec.toarray())\n sorted_example_weights = np.flipud(np.argsort(best_example))\n truncated_max_rank = min(term_diff_max_rank, np.sum(best_example > 0))\n best_example_words = sorted_example_weights[:truncated_max_rank]\n for suggested in closest_n:\n suggested_idx = filt_idx_to_general_idx[suggested]\n test_vec = np.squeeze(self.tfidf_mat[suggested_idx, :].toarray())\n sorted_test_weights = np.flipud(np.argsort(test_vec))\n truncated_max_rank = min(term_diff_max_rank, np.sum(test_vec > 0))\n best_test = sorted_test_weights[:truncated_max_rank]\n best_words_ids = np.intersect1d(best_example_words, best_test)\n best_words.append([k for k, v in self.vectorizer.vocabulary_.items(\n ) if v in best_words_ids])\n if filter_list:\n text_ids = self.ids[filt_idx_to_general_idx[closest_n]]\n else:\n text_ids = self.ids[closest_n]\n return list(text_ids), list(sorted_dist), best_words\n",
"role": "user"
},
{
"content": "get_similar",
"role": "assistant"
}
] |
def x(self, texts, ids, vocabulary=None):
self._check_id_length(ids)
self.ids = np.array(sorted(ids))
if vocabulary:
self.vectorizer.vocabulary = vocabulary
sorted_texts = [x for y, x in sorted(zip(ids, texts))]
self.term_mat = self.vectorizer.fit_transform(sorted_texts)
self._update_tfidf()
|
reload_texts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, texts, ids, vocabulary=None):\n self._check_id_length(ids)\n self.ids = np.array(sorted(ids))\n if vocabulary:\n self.vectorizer.vocabulary = vocabulary\n sorted_texts = [x for y, x in sorted(zip(ids, texts))]\n self.term_mat = self.vectorizer.fit_transform(sorted_texts)\n self._update_tfidf()\n",
"role": "user"
},
{
"content": "reload_texts",
"role": "assistant"
}
] |
def x(q=None, datasetKey=None, rank=None, limit=100, offset=None, **kwargs):
url = gbif_baseurl + 'species/suggest'
args = {'q': q, 'rank': rank, 'offset': offset, 'limit': limit}
return gbif_GET(url, args, **kwargs)
|
name_suggest
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q=None, datasetKey=None, rank=None, limit=100, offset=None, **kwargs):\n url = gbif_baseurl + 'species/suggest'\n args = {'q': q, 'rank': rank, 'offset': offset, 'limit': limit}\n return gbif_GET(url, args, **kwargs)\n",
"role": "user"
},
{
"content": "name_suggest",
"role": "assistant"
}
] |
def x(uuid, **kwargs):
def x(x, **kwargs):
url = gbif_baseurl + 'dataset/' + x + '/metrics'
return gbif_GET(url, {}, **kwargs)
if len2(uuid) == 1:
return getdata(uuid)
else:
return [getdata(x) for x in uuid]
|
dataset_metrics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uuid, **kwargs):\n\n def x(x, **kwargs):\n url = gbif_baseurl + 'dataset/' + x + '/metrics'\n return gbif_GET(url, {}, **kwargs)\n if len2(uuid) == 1:\n return getdata(uuid)\n else:\n return [getdata(x) for x in uuid]\n",
"role": "user"
},
{
"content": "dataset_metrics",
"role": "assistant"
}
] |
def x(data='all', type=None, uuid=None, query=None, id=None, limit=100,
offset=None, **kwargs):
args = {'q': query, 'type': type, 'limit': limit, 'offset': offset}
data_choices = ['all', 'organization', 'contact', 'endpoint',
'identifier', 'tag', 'machinetag', 'comment', 'constituents',
'document', 'metadata', 'deleted', 'duplicate', 'subDataset',
'withNoEndpoint']
check_data(data, data_choices)
if len2(data) == 1:
return datasets_fetch(data, uuid, args, **kwargs)
else:
return [datasets_fetch(x, uuid, args, **kwargs) for x in data]
|
datasets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data='all', type=None, uuid=None, query=None, id=None, limit=100,\n offset=None, **kwargs):\n args = {'q': query, 'type': type, 'limit': limit, 'offset': offset}\n data_choices = ['all', 'organization', 'contact', 'endpoint',\n 'identifier', 'tag', 'machinetag', 'comment', 'constituents',\n 'document', 'metadata', 'deleted', 'duplicate', 'subDataset',\n 'withNoEndpoint']\n check_data(data, data_choices)\n if len2(data) == 1:\n return datasets_fetch(data, uuid, args, **kwargs)\n else:\n return [datasets_fetch(x, uuid, args, **kwargs) for x in data]\n",
"role": "user"
},
{
"content": "datasets",
"role": "assistant"
}
] |
def x(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None,
hostingOrg=None, publishingCountry=None, decade=None, limit=100, offset
=None, **kwargs):
url = gbif_baseurl + 'dataset/suggest'
args = {'q': q, 'type': type, 'keyword': keyword, 'publishingOrg':
publishingOrg, 'hostingOrg': hostingOrg, 'owningOrg': owningOrg,
'decade': decade, 'publishingCountry': publishingCountry, 'limit':
limit, 'offset': offset}
out = gbif_GET(url, args, **kwargs)
return out
|
dataset_suggest
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None,\n hostingOrg=None, publishingCountry=None, decade=None, limit=100, offset\n =None, **kwargs):\n url = gbif_baseurl + 'dataset/suggest'\n args = {'q': q, 'type': type, 'keyword': keyword, 'publishingOrg':\n publishingOrg, 'hostingOrg': hostingOrg, 'owningOrg': owningOrg,\n 'decade': decade, 'publishingCountry': publishingCountry, 'limit':\n limit, 'offset': offset}\n out = gbif_GET(url, args, **kwargs)\n return out\n",
"role": "user"
},
{
"content": "dataset_suggest",
"role": "assistant"
}
] |
def x(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None,
hostingOrg=None, decade=None, publishingCountry=None, facet=None,
facetMincount=None, facetMultiselect=None, hl=False, limit=100, offset=
None, **kwargs):
url = gbif_baseurl + 'dataset/search'
args = {'q': q, 'type': type, 'keyword': keyword, 'owningOrg':
owningOrg, 'publishingOrg': publishingOrg, 'hostingOrg': hostingOrg,
'decade': decade, 'publishingCountry': publishingCountry, 'facet':
facet, 'facetMincount': facetMincount, 'facetMultiselect':
facetMultiselect, 'hl': hl, 'limit': limit, 'offset': offset}
gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in
requests_argset}
if gbif_kwargs is not None:
xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()],
gbif_kwargs.values()))
args.update(xx)
kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}
out = gbif_GET(url, args, **kwargs)
return out
|
dataset_search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q=None, type=None, keyword=None, owningOrg=None, publishingOrg=None,\n hostingOrg=None, decade=None, publishingCountry=None, facet=None,\n facetMincount=None, facetMultiselect=None, hl=False, limit=100, offset=\n None, **kwargs):\n url = gbif_baseurl + 'dataset/search'\n args = {'q': q, 'type': type, 'keyword': keyword, 'owningOrg':\n owningOrg, 'publishingOrg': publishingOrg, 'hostingOrg': hostingOrg,\n 'decade': decade, 'publishingCountry': publishingCountry, 'facet':\n facet, 'facetMincount': facetMincount, 'facetMultiselect':\n facetMultiselect, 'hl': hl, 'limit': limit, 'offset': offset}\n gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in\n requests_argset}\n if gbif_kwargs is not None:\n xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()],\n gbif_kwargs.values()))\n args.update(xx)\n kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}\n out = gbif_GET(url, args, **kwargs)\n return out\n",
"role": "user"
},
{
"content": "dataset_search",
"role": "assistant"
}
] |
def x(x, digits=None):
z = wkt.loads(x)
if digits is None:
coords = z['coordinates']
nums = __flatten(coords)
dec_n = [decimal.Decimal(str(w)).as_tuple().exponent for w in nums]
digits = abs(statistics.mean(dec_n))
elif not isinstance(digits, int):
raise TypeError("'digits' must be an int")
wound = rewind(z)
back_to_wkt = wkt.dumps(wound, decimals=digits)
return back_to_wkt
|
wkt_rewind
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, digits=None):\n z = wkt.loads(x)\n if digits is None:\n coords = z['coordinates']\n nums = __flatten(coords)\n dec_n = [decimal.Decimal(str(w)).as_tuple().exponent for w in nums]\n digits = abs(statistics.mean(dec_n))\n elif not isinstance(digits, int):\n raise TypeError(\"'digits' must be an int\")\n wound = rewind(z)\n back_to_wkt = wkt.dumps(wound, decimals=digits)\n return back_to_wkt\n",
"role": "user"
},
{
"content": "wkt_rewind",
"role": "assistant"
}
] |
def x(issue=None, code=None):
if code is None:
bb = [trymatch(issue, x) for x in gbifissues['issue']]
tmp = filter(None, bb)
else:
bb = [trymatch(code, x) for x in gbifissues['code']]
tmp = filter(None, bb)
return tmp
|
occ_issues_lookup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(issue=None, code=None):\n if code is None:\n bb = [trymatch(issue, x) for x in gbifissues['issue']]\n tmp = filter(None, bb)\n else:\n bb = [trymatch(code, x) for x in gbifissues['code']]\n tmp = filter(None, bb)\n return tmp\n",
"role": "user"
},
{
"content": "occ_issues_lookup",
"role": "assistant"
}
] |
def x(taxonKey=None, repatriated=None, kingdomKey=None, phylumKey=None,
classKey=None, orderKey=None, familyKey=None, genusKey=None,
subgenusKey=None, scientificName=None, country=None, publishingCountry=
None, hasCoordinate=None, typeStatus=None, recordNumber=None,
lastInterpreted=None, continent=None, geometry=None, recordedBy=None,
basisOfRecord=None, datasetKey=None, eventDate=None, catalogNumber=None,
year=None, month=None, decimalLatitude=None, decimalLongitude=None,
elevation=None, depth=None, institutionCode=None, collectionCode=None,
hasGeospatialIssue=None, issue=None, q=None, spellCheck=None, mediatype
=None, limit=300, offset=0, establishmentMeans=None, facet=None,
facetMincount=None, facetMultiselect=None, **kwargs):
url = gbif_baseurl + 'occurrence/search'
args = {'taxonKey': taxonKey, 'repatriated': repatriated, 'kingdomKey':
kingdomKey, 'phylumKey': phylumKey, 'classKey': classKey,
'orderKey': orderKey, 'familyKey': familyKey, 'genusKey': genusKey,
'subgenusKey': subgenusKey, 'scientificName': scientificName,
'country': country, 'publishingCountry': publishingCountry,
'hasCoordinate': hasCoordinate, 'typeStatus': typeStatus,
'recordNumber': recordNumber, 'lastInterpreted': lastInterpreted,
'continent': continent, 'geometry': geometry, 'recordedBy':
recordedBy, 'basisOfRecord': basisOfRecord, 'datasetKey':
datasetKey, 'eventDate': eventDate, 'catalogNumber': catalogNumber,
'year': year, 'month': month, 'decimalLatitude': decimalLatitude,
'decimalLongitude': decimalLongitude, 'elevation': elevation,
'depth': depth, 'institutionCode': institutionCode,
'collectionCode': collectionCode, 'hasGeospatialIssue':
hasGeospatialIssue, 'issue': issue, 'q': q, 'spellCheck':
spellCheck, 'mediatype': mediatype, 'limit': limit, 'offset':
offset, 'establishmentMeans': establishmentMeans, 'facetMincount':
facetMincount, 'facet': facet, 'facetMultiselect': facetMultiselect}
gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in
requests_argset}
if gbif_kwargs is not None:
xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()],
gbif_kwargs.values()))
args.update(xx)
kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}
out = gbif_GET(url, args, **kwargs)
return out
|
search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(taxonKey=None, repatriated=None, kingdomKey=None, phylumKey=None,\n classKey=None, orderKey=None, familyKey=None, genusKey=None,\n subgenusKey=None, scientificName=None, country=None, publishingCountry=\n None, hasCoordinate=None, typeStatus=None, recordNumber=None,\n lastInterpreted=None, continent=None, geometry=None, recordedBy=None,\n basisOfRecord=None, datasetKey=None, eventDate=None, catalogNumber=None,\n year=None, month=None, decimalLatitude=None, decimalLongitude=None,\n elevation=None, depth=None, institutionCode=None, collectionCode=None,\n hasGeospatialIssue=None, issue=None, q=None, spellCheck=None, mediatype\n =None, limit=300, offset=0, establishmentMeans=None, facet=None,\n facetMincount=None, facetMultiselect=None, **kwargs):\n url = gbif_baseurl + 'occurrence/search'\n args = {'taxonKey': taxonKey, 'repatriated': repatriated, 'kingdomKey':\n kingdomKey, 'phylumKey': phylumKey, 'classKey': classKey,\n 'orderKey': orderKey, 'familyKey': familyKey, 'genusKey': genusKey,\n 'subgenusKey': subgenusKey, 'scientificName': scientificName,\n 'country': country, 'publishingCountry': publishingCountry,\n 'hasCoordinate': hasCoordinate, 'typeStatus': typeStatus,\n 'recordNumber': recordNumber, 'lastInterpreted': lastInterpreted,\n 'continent': continent, 'geometry': geometry, 'recordedBy':\n recordedBy, 'basisOfRecord': basisOfRecord, 'datasetKey':\n datasetKey, 'eventDate': eventDate, 'catalogNumber': catalogNumber,\n 'year': year, 'month': month, 'decimalLatitude': decimalLatitude,\n 'decimalLongitude': decimalLongitude, 'elevation': elevation,\n 'depth': depth, 'institutionCode': institutionCode,\n 'collectionCode': collectionCode, 'hasGeospatialIssue':\n hasGeospatialIssue, 'issue': issue, 'q': q, 'spellCheck':\n spellCheck, 'mediatype': mediatype, 'limit': limit, 'offset':\n offset, 'establishmentMeans': establishmentMeans, 'facetMincount':\n facetMincount, 'facet': facet, 'facetMultiselect': facetMultiselect}\n gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in\n requests_argset}\n if gbif_kwargs is not None:\n xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()],\n gbif_kwargs.values()))\n args.update(xx)\n kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}\n out = gbif_GET(url, args, **kwargs)\n return out\n",
"role": "user"
},
{
"content": "search",
"role": "assistant"
}
] |
def x(data='all', uuid=None, q=None, identifier=None, identifierType=None,
limit=100, offset=None, **kwargs):
args = {'q': q, 'limit': limit, 'offset': offset, 'identifier':
identifier, 'identifierType': identifierType}
data_choices = ['all', 'contact', 'endpoint', 'identifier', 'tag',
'machineTag', 'comment', 'constituents']
check_data(data, data_choices)
def x(x, uuid, args, **kwargs):
if x is not 'all' and uuid is None:
stop('You must specify a uuid if data does not equal "all"')
if uuid is None:
url = gbif_baseurl + 'network'
elif x is 'all':
url = gbif_baseurl + 'network/' + uuid
else:
url = gbif_baseurl + 'network/' + uuid + '/' + x
res = gbif_GET(url, args, **kwargs)
return {'meta': get_meta(res), 'data': parse_results(res, uuid)}
if len2(data) == 1:
return getdata(data, uuid, args, **kwargs)
else:
return [getdata(x, uuid, args, **kwargs) for x in data]
|
networks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data='all', uuid=None, q=None, identifier=None, identifierType=None,\n limit=100, offset=None, **kwargs):\n args = {'q': q, 'limit': limit, 'offset': offset, 'identifier':\n identifier, 'identifierType': identifierType}\n data_choices = ['all', 'contact', 'endpoint', 'identifier', 'tag',\n 'machineTag', 'comment', 'constituents']\n check_data(data, data_choices)\n\n def x(x, uuid, args, **kwargs):\n if x is not 'all' and uuid is None:\n stop('You must specify a uuid if data does not equal \"all\"')\n if uuid is None:\n url = gbif_baseurl + 'network'\n elif x is 'all':\n url = gbif_baseurl + 'network/' + uuid\n else:\n url = gbif_baseurl + 'network/' + uuid + '/' + x\n res = gbif_GET(url, args, **kwargs)\n return {'meta': get_meta(res), 'data': parse_results(res, uuid)}\n if len2(data) == 1:\n return getdata(data, uuid, args, **kwargs)\n else:\n return [getdata(x, uuid, args, **kwargs) for x in data]\n",
"role": "user"
},
{
"content": "networks",
"role": "assistant"
}
] |
def x(source='density', z=0, x=0, y=0, format='@1x.png', srs='EPSG:4326',
bin=None, hexPerTile=None, style='classic.point', taxonKey=None,
country=None, publishingCountry=None, publisher=None, datasetKey=None,
year=None, basisOfRecord=None, **kwargs):
if format not in ['.mvt', '@Hx.png', '@1x.png', '@2x.png', '@3x.png',
'@4x.png']:
raise ValueError("'format' not in allowed set, see docs")
if source not in ['density', 'adhoc']:
raise ValueError("'source' not in allowed set, see docs")
if srs not in ['EPSG:3857', 'EPSG:4326', 'EPSG:3575', 'EPSG:3031']:
raise ValueError("'srs' not in allowed set, see docs")
if bin is not None:
if bin not in ['square', 'hex']:
raise ValueError("'bin' not in allowed set, see docs")
if style is not None:
if style not in map_styles:
raise ValueError("'style' not in allowed set, see docs")
maps_baseurl = 'https://api.gbif.org'
url = maps_baseurl + '/v2/map/occurrence/%s/%s/%s/%s%s'
url = url % (source, z, x, y, format)
year = __handle_year(year)
basisOfRecord = __handle_bor(basisOfRecord)
args = {'srs': srs, 'bin': bin, 'hexPerTile': hexPerTile, 'style':
style, 'taxonKey': taxonKey, 'country': country,
'publishingCountry': publishingCountry, 'publisher': publisher,
'datasetKey': datasetKey, 'year': year, 'basisOfRecord': basisOfRecord}
kw = {key: kwargs[key] for key in kwargs if key not in requests_argset}
if kw is not None:
xx = dict(zip([re.sub('_', '.', x) for x in kw.keys()], kw.values()))
args.update(xx)
kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}
ctype = 'image/png' if has(format, 'png') else 'application/x-protobuf'
out = gbif_GET_map(url, args, ctype, **kwargs)
return GbifMap(out)
|
map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source='density', z=0, x=0, y=0, format='@1x.png', srs='EPSG:4326',\n bin=None, hexPerTile=None, style='classic.point', taxonKey=None,\n country=None, publishingCountry=None, publisher=None, datasetKey=None,\n year=None, basisOfRecord=None, **kwargs):\n if format not in ['.mvt', '@Hx.png', '@1x.png', '@2x.png', '@3x.png',\n '@4x.png']:\n raise ValueError(\"'format' not in allowed set, see docs\")\n if source not in ['density', 'adhoc']:\n raise ValueError(\"'source' not in allowed set, see docs\")\n if srs not in ['EPSG:3857', 'EPSG:4326', 'EPSG:3575', 'EPSG:3031']:\n raise ValueError(\"'srs' not in allowed set, see docs\")\n if bin is not None:\n if bin not in ['square', 'hex']:\n raise ValueError(\"'bin' not in allowed set, see docs\")\n if style is not None:\n if style not in map_styles:\n raise ValueError(\"'style' not in allowed set, see docs\")\n maps_baseurl = 'https://api.gbif.org'\n url = maps_baseurl + '/v2/map/occurrence/%s/%s/%s/%s%s'\n url = url % (source, z, x, y, format)\n year = __handle_year(year)\n basisOfRecord = __handle_bor(basisOfRecord)\n args = {'srs': srs, 'bin': bin, 'hexPerTile': hexPerTile, 'style':\n style, 'taxonKey': taxonKey, 'country': country,\n 'publishingCountry': publishingCountry, 'publisher': publisher,\n 'datasetKey': datasetKey, 'year': year, 'basisOfRecord': basisOfRecord}\n kw = {key: kwargs[key] for key in kwargs if key not in requests_argset}\n if kw is not None:\n xx = dict(zip([re.sub('_', '.', x) for x in kw.keys()], kw.values()))\n args.update(xx)\n kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}\n ctype = 'image/png' if has(format, 'png') else 'application/x-protobuf'\n out = gbif_GET_map(url, args, ctype, **kwargs)\n return GbifMap(out)\n",
"role": "user"
},
{
"content": "map",
"role": "assistant"
}
] |
def x(key=None, name=None, data='all', language=None, datasetKey=None, uuid
=None, sourceId=None, rank=None, shortname=None, limit=100, offset=None,
**kwargs):
args = {'language': language, 'name': name, 'datasetKey': datasetKey,
'rank': rank, 'sourceId': sourceId, 'limit': limit, 'offset': offset}
data_choices = ['all', 'verbatim', 'name', 'parents', 'children',
'related', 'synonyms', 'descriptions', 'distributions', 'media',
'references', 'speciesProfiles', 'vernacularNames', 'typeSpecimens',
'root']
check_data(data, data_choices)
if len2(data) == 1:
return name_usage_fetch(data, key, shortname, uuid, args, **kwargs)
else:
return [name_usage_fetch(x, key, shortname, uuid, args, **kwargs) for
x in data]
|
name_usage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key=None, name=None, data='all', language=None, datasetKey=None, uuid\n =None, sourceId=None, rank=None, shortname=None, limit=100, offset=None,\n **kwargs):\n args = {'language': language, 'name': name, 'datasetKey': datasetKey,\n 'rank': rank, 'sourceId': sourceId, 'limit': limit, 'offset': offset}\n data_choices = ['all', 'verbatim', 'name', 'parents', 'children',\n 'related', 'synonyms', 'descriptions', 'distributions', 'media',\n 'references', 'speciesProfiles', 'vernacularNames', 'typeSpecimens',\n 'root']\n check_data(data, data_choices)\n if len2(data) == 1:\n return name_usage_fetch(data, key, shortname, uuid, args, **kwargs)\n else:\n return [name_usage_fetch(x, key, shortname, uuid, args, **kwargs) for\n x in data]\n",
"role": "user"
},
{
"content": "name_usage",
"role": "assistant"
}
] |
def x(variable, value):
if is_not_none(value):
return value
else:
value = os.environ.get(variable)
if is_none(value):
stop(''.join([variable,
""" not supplied and no entry in environmental
variables"""
]))
else:
return value
|
check_environ
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variable, value):\n if is_not_none(value):\n return value\n else:\n value = os.environ.get(variable)\n if is_none(value):\n stop(''.join([variable,\n \"\"\" not supplied and no entry in environmental\n variables\"\"\"\n ]))\n else:\n return value\n",
"role": "user"
},
{
"content": "check_environ",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.