source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(queries, user=None, pwd=None, email=None, pred_type='and'): user = _check_environ('GBIF_USER', user) pwd = _check_environ('GBIF_PWD', pwd) email = _check_environ('GBIF_EMAIL', email) if isinstance(queries, str): queries = [queries] keyval = [_parse_args(z) for z in queries] req = GbifDownload(user, email) req.main_pred_type = pred_type for predicate in keyval: req.add_predicate(predicate['key'], predicate['value'], predicate[ 'type']) out = req.post_download(user, pwd) return out, req.payload
download
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(queries, user=None, pwd=None, email=None, pred_type='and'):\n user = _check_environ('GBIF_USER', user)\n pwd = _check_environ('GBIF_PWD', pwd)\n email = _check_environ('GBIF_EMAIL', email)\n if isinstance(queries, str):\n queries = [queries]\n keyval = [_parse_args(z) for z in queries]\n req = GbifDownload(user, email)\n req.main_pred_type = pred_type\n for predicate in keyval:\n req.add_predicate(predicate['key'], predicate['value'], predicate[\n 'type'])\n out = req.post_download(user, pwd)\n return out, req.payload\n", "role": "user" }, { "content": "download", "role": "assistant" } ]
def x(user=None, pwd=None, limit=20, offset=0): user = _check_environ('GBIF_USER', user) pwd = _check_environ('GBIF_PWD', pwd) url = 'http://api.gbif.org/v1/occurrence/download/user/' + user args = {'limit': limit, 'offset': offset} res = gbif_GET(url, args, auth=(user, pwd)) return {'meta': {'offset': res['offset'], 'limit': res['limit'], 'endofrecords': res['endOfRecords'], 'count': res['count']}, 'results': res['results']}
download_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(user=None, pwd=None, limit=20, offset=0):\n user = _check_environ('GBIF_USER', user)\n pwd = _check_environ('GBIF_PWD', pwd)\n url = 'http://api.gbif.org/v1/occurrence/download/user/' + user\n args = {'limit': limit, 'offset': offset}\n res = gbif_GET(url, args, auth=(user, pwd))\n return {'meta': {'offset': res['offset'], 'limit': res['limit'],\n 'endofrecords': res['endOfRecords'], 'count': res['count']},\n 'results': res['results']}\n", "role": "user" }, { "content": "download_list", "role": "assistant" } ]
def x(key, path='.', **kwargs): meta = pygbif.occurrences.download_meta(key) if meta['status'] != 'SUCCEEDED': raise Exception('download "%s" not of status SUCCEEDED' % key) else: print('Download file size: %s bytes' % meta['size']) url = 'http://api.gbif.org/v1/occurrence/download/request/' + key path = '%s/%s.zip' % (path, key) gbif_GET_write(url, path, **kwargs) print('On disk at ' + path) return {'path': path, 'size': meta['size'], 'key': key}
download_get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key, path='.', **kwargs):\n meta = pygbif.occurrences.download_meta(key)\n if meta['status'] != 'SUCCEEDED':\n raise Exception('download \"%s\" not of status SUCCEEDED' % key)\n else:\n print('Download file size: %s bytes' % meta['size'])\n url = 'http://api.gbif.org/v1/occurrence/download/request/' + key\n path = '%s/%s.zip' % (path, key)\n gbif_GET_write(url, path, **kwargs)\n print('On disk at ' + path)\n return {'path': path, 'size': meta['size'], 'key': key}\n", "role": "user" }, { "content": "download_get", "role": "assistant" } ]
def x(self, value): if value not in operators: value = operator_lkup.get(value) if value: self._main_pred_type = value self.payload['predicate']['type'] = self._main_pred_type else: raise Exception('main predicate combiner not a valid operator')
main_pred_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if value not in operators:\n value = operator_lkup.get(value)\n if value:\n self._main_pred_type = value\n self.payload['predicate']['type'] = self._main_pred_type\n else:\n raise Exception('main predicate combiner not a valid operator')\n", "role": "user" }, { "content": "main_pred_type", "role": "assistant" } ]
def x(self, key, value, predicate_type='equals'): if predicate_type not in operators: predicate_type = operator_lkup.get(predicate_type) if predicate_type: self.predicates.append({'type': predicate_type, 'key': key, 'value': value}) else: raise Exception('predicate type not a valid operator')
add_predicate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, value, predicate_type='equals'):\n if predicate_type not in operators:\n predicate_type = operator_lkup.get(predicate_type)\n if predicate_type:\n self.predicates.append({'type': predicate_type, 'key': key, 'value':\n value})\n else:\n raise Exception('predicate type not a valid operator')\n", "role": "user" }, { "content": "add_predicate", "role": "assistant" } ]
def x(values_list): values = [] if isinstance(values_list, str): with open(values_list) as ff: reading = csv.reader(ff) for j in reading: values.append(j[0]) elif isinstance(values_list, list): values = values_list else: raise Exception('input datatype not supported.') return values
extract_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(values_list):\n values = []\n if isinstance(values_list, str):\n with open(values_list) as ff:\n reading = csv.reader(ff)\n for j in reading:\n values.append(j[0])\n elif isinstance(values_list, list):\n values = values_list\n else:\n raise Exception('input datatype not supported.')\n return values\n", "role": "user" }, { "content": "extract_values", "role": "assistant" } ]
def x(self, key, values_list): values = self._extract_values(values_list) predicate = {'type': 'equals', 'key': key, 'value': None} predicates = [] while values: predicate['value'] = values.pop() predicates.append(predicate.copy()) self.predicates.append({'type': 'or', 'predicates': predicates})
add_iterative_predicate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, values_list):\n values = self._extract_values(values_list)\n predicate = {'type': 'equals', 'key': key, 'value': None}\n predicates = []\n while values:\n predicate['value'] = values.pop()\n predicates.append(predicate.copy())\n self.predicates.append({'type': 'or', 'predicates': predicates})\n", "role": "user" }, { "content": "add_iterative_predicate", "role": "assistant" } ]
def x(key, **kwargs): url = gbif_baseurl + 'occurrence/' + str(key) out = gbif_GET(url, {}, **kwargs) return out
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key, **kwargs):\n url = gbif_baseurl + 'occurrence/' + str(key)\n out = gbif_GET(url, {}, **kwargs)\n return out\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(key, **kwargs): url = gbif_baseurl + 'occurrence/' + str(key) + '/verbatim' out = gbif_GET(url, {}, **kwargs) return out
get_verbatim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key, **kwargs):\n url = gbif_baseurl + 'occurrence/' + str(key) + '/verbatim'\n out = gbif_GET(url, {}, **kwargs)\n return out\n", "role": "user" }, { "content": "get_verbatim", "role": "assistant" } ]
def x(key, **kwargs): url = gbif_baseurl + 'occurrence/' + str(key) + '/fragment' out = gbif_GET(url, {}, **kwargs) return out
get_fragment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key, **kwargs):\n url = gbif_baseurl + 'occurrence/' + str(key) + '/fragment'\n out = gbif_GET(url, {}, **kwargs)\n return out\n", "role": "user" }, { "content": "get_fragment", "role": "assistant" } ]
def x(name, rank=None, kingdom=None, phylum=None, clazz=None, order=None, family=None, genus=None, strict=False, verbose=False, offset=None, limit=100, **kwargs): url = gbif_baseurl + 'species/match' args = {'name': name, 'rank': rank, 'kingdom': kingdom, 'phylum': phylum, 'class': clazz, 'order': order, 'family': family, 'genus': genus, 'strict': strict, 'verbose': verbose, 'offset': offset, 'limit': limit} tt = gbif_GET(url, args, **kwargs) return tt
name_backbone
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, rank=None, kingdom=None, phylum=None, clazz=None, order=None,\n family=None, genus=None, strict=False, verbose=False, offset=None,\n limit=100, **kwargs):\n url = gbif_baseurl + 'species/match'\n args = {'name': name, 'rank': rank, 'kingdom': kingdom, 'phylum':\n phylum, 'class': clazz, 'order': order, 'family': family, 'genus':\n genus, 'strict': strict, 'verbose': verbose, 'offset': offset,\n 'limit': limit}\n tt = gbif_GET(url, args, **kwargs)\n return tt\n", "role": "user" }, { "content": "name_backbone", "role": "assistant" } ]
def x(name, **kwargs): url = gbif_baseurl + 'parser/name' if name.__class__ == str: name = [name] return gbif_POST(url, name, **kwargs)
name_parser
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, **kwargs):\n url = gbif_baseurl + 'parser/name'\n if name.__class__ == str:\n name = [name]\n return gbif_POST(url, name, **kwargs)\n", "role": "user" }, { "content": "name_parser", "role": "assistant" } ]
def x(q=None, rank=None, higherTaxonKey=None, status=None, isExtinct=None, habitat=None, nameType=None, datasetKey=None, nomenclaturalStatus=None, limit=100, offset=None, facet=False, facetMincount=None, facetMultiselect=None, type=None, hl=False, verbose=False, **kwargs): args = {'q': q, 'rank': rank, 'higherTaxonKey': higherTaxonKey, 'status': status, 'isExtinct': isExtinct, 'habitat': habitat, 'nameType': nameType, 'datasetKey': datasetKey, 'nomenclaturalStatus': nomenclaturalStatus, 'limit': limit, 'offset': offset, 'facet': bn(facet), 'facetMincount': facetMincount, 'facetMultiselect': facetMultiselect, 'hl': bn(hl), 'verbose': bn(verbose), 'type': type} gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in requests_argset} if gbif_kwargs is not None: xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()], gbif_kwargs.values())) args.update(xx) kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset} return gbif_GET(gbif_baseurl + 'species/search', args, **kwargs)
name_lookup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q=None, rank=None, higherTaxonKey=None, status=None, isExtinct=None,\n habitat=None, nameType=None, datasetKey=None, nomenclaturalStatus=None,\n limit=100, offset=None, facet=False, facetMincount=None,\n facetMultiselect=None, type=None, hl=False, verbose=False, **kwargs):\n args = {'q': q, 'rank': rank, 'higherTaxonKey': higherTaxonKey,\n 'status': status, 'isExtinct': isExtinct, 'habitat': habitat,\n 'nameType': nameType, 'datasetKey': datasetKey,\n 'nomenclaturalStatus': nomenclaturalStatus, 'limit': limit,\n 'offset': offset, 'facet': bn(facet), 'facetMincount':\n facetMincount, 'facetMultiselect': facetMultiselect, 'hl': bn(hl),\n 'verbose': bn(verbose), 'type': type}\n gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in\n requests_argset}\n if gbif_kwargs is not None:\n xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()],\n gbif_kwargs.values()))\n args.update(xx)\n kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}\n return gbif_GET(gbif_baseurl + 'species/search', args, **kwargs)\n", "role": "user" }, { "content": "name_lookup", "role": "assistant" } ]
def x(taxonKey=None, basisOfRecord=None, country=None, isGeoreferenced=None, datasetKey=None, publishingCountry=None, typeStatus=None, issue=None, year=None, **kwargs): url = gbif_baseurl + 'occurrence/count' out = gbif_GET(url, {'taxonKey': taxonKey, 'basisOfRecord': basisOfRecord, 'country': country, 'isGeoreferenced': isGeoreferenced, 'datasetKey': datasetKey, 'publishingCountry': publishingCountry, 'typeStatus': typeStatus, 'issue': issue, 'year': year}, **kwargs) return out
count
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(taxonKey=None, basisOfRecord=None, country=None, isGeoreferenced=None,\n datasetKey=None, publishingCountry=None, typeStatus=None, issue=None,\n year=None, **kwargs):\n url = gbif_baseurl + 'occurrence/count'\n out = gbif_GET(url, {'taxonKey': taxonKey, 'basisOfRecord':\n basisOfRecord, 'country': country, 'isGeoreferenced':\n isGeoreferenced, 'datasetKey': datasetKey, 'publishingCountry':\n publishingCountry, 'typeStatus': typeStatus, 'issue': issue, 'year':\n year}, **kwargs)\n return out\n", "role": "user" }, { "content": "count", "role": "assistant" } ]
def x(year, **kwargs): url = gbif_baseurl + 'occurrence/counts/year' out = gbif_GET(url, {'year': year}, **kwargs) return out
count_year
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(year, **kwargs):\n url = gbif_baseurl + 'occurrence/counts/year'\n out = gbif_GET(url, {'year': year}, **kwargs)\n return out\n", "role": "user" }, { "content": "count_year", "role": "assistant" } ]
def x(taxonKey=None, country=None, **kwargs): url = gbif_baseurl + 'occurrence/counts/datasets' out = gbif_GET(url, {'taxonKey': taxonKey, 'country': country}, **kwargs) return out
count_datasets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(taxonKey=None, country=None, **kwargs):\n url = gbif_baseurl + 'occurrence/counts/datasets'\n out = gbif_GET(url, {'taxonKey': taxonKey, 'country': country}, **kwargs)\n return out\n", "role": "user" }, { "content": "count_datasets", "role": "assistant" } ]
def x(publishingCountry, **kwargs): url = gbif_baseurl + 'occurrence/counts/countries' out = gbif_GET(url, {'publishingCountry': publishingCountry}, **kwargs) return out
count_countries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(publishingCountry, **kwargs):\n url = gbif_baseurl + 'occurrence/counts/countries'\n out = gbif_GET(url, {'publishingCountry': publishingCountry}, **kwargs)\n return out\n", "role": "user" }, { "content": "count_countries", "role": "assistant" } ]
def x(country, **kwargs): url = gbif_baseurl + 'occurrence/counts/publishingCountries' out = gbif_GET(url, {'country': country}, **kwargs) return out
count_publishingcountries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(country, **kwargs):\n url = gbif_baseurl + 'occurrence/counts/publishingCountries'\n out = gbif_GET(url, {'country': country}, **kwargs)\n return out\n", "role": "user" }, { "content": "count_publishingcountries", "role": "assistant" } ]
def x() ->bool: try: from IPython import get_ipython from ipykernel import zmqshell except ImportError: return False kernel = get_ipython() try: from spyder.utils.ipython.spyder_kernel import SpyderKernel if isinstance(kernel.kernel, SpyderKernel): return False except (ImportError, AttributeError): pass return isinstance(kernel, zmqshell.ZMQInteractiveShell)
detect_notebook
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x() ->bool:\n try:\n from IPython import get_ipython\n from ipykernel import zmqshell\n except ImportError:\n return False\n kernel = get_ipython()\n try:\n from spyder.utils.ipython.spyder_kernel import SpyderKernel\n if isinstance(kernel.kernel, SpyderKernel):\n return False\n except (ImportError, AttributeError):\n pass\n return isinstance(kernel, zmqshell.ZMQInteractiveShell)\n", "role": "user" }, { "content": "detect_notebook", "role": "assistant" } ]
def x(x: go.Layout, y: go.Layout) ->go.Layout: xjson = x.to_plotly_json() yjson = y.to_plotly_json() if 'shapes' in yjson and 'shapes' in xjson: xjson['shapes'] += yjson['shapes'] yjson.update(xjson) return go.Layout(yjson)
merge_layout
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x: go.Layout, y: go.Layout) ->go.Layout:\n xjson = x.to_plotly_json()\n yjson = y.to_plotly_json()\n if 'shapes' in yjson and 'shapes' in xjson:\n xjson['shapes'] += yjson['shapes']\n yjson.update(xjson)\n return go.Layout(yjson)\n", "role": "user" }, { "content": "merge_layout", "role": "assistant" } ]
def x(x): try: x = [y.isoformat() for y in x.to_pydatetime()] except AttributeError: pass try: x = [y.isoformat() for y in x.dt.to_pydatetime()] except AttributeError: pass return x
try_pydatetime
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n try:\n x = [y.isoformat() for y in x.to_pydatetime()]\n except AttributeError:\n pass\n try:\n x = [y.isoformat() for y in x.dt.to_pydatetime()]\n except AttributeError:\n pass\n return x\n", "role": "user" }, { "content": "try_pydatetime", "role": "assistant" } ]
def x(points, shapes, fill=None, color='blue', width=5, yindex=0, heights=None ): assert len(points) == len(shapes) + 1 data = [{'marker': {'color': 'white'}, 'x': [points[0], points[-1]], 'y': [yindex, yindex]}] if fill is None: fill = [False] * len(shapes) if heights is None: heights = [0.4] * len(shapes) lays = [] for i, (shape, height) in enumerate(zip(shapes, heights)): if shape is None: continue if fill[i]: fillcolor = color else: fillcolor = 'white' lays.append(dict(type=shape, x0=points[i], x1=points[i + 1], y0= yindex - height, y1=yindex + height, xref='x', yref='y', fillcolor=fillcolor, line=dict(color=color, width=width))) layout = dict(shapes=lays) return Chart(data=data, layout=layout)
spark_shape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, shapes, fill=None, color='blue', width=5, yindex=0, heights=None\n ):\n assert len(points) == len(shapes) + 1\n data = [{'marker': {'color': 'white'}, 'x': [points[0], points[-1]],\n 'y': [yindex, yindex]}]\n if fill is None:\n fill = [False] * len(shapes)\n if heights is None:\n heights = [0.4] * len(shapes)\n lays = []\n for i, (shape, height) in enumerate(zip(shapes, heights)):\n if shape is None:\n continue\n if fill[i]:\n fillcolor = color\n else:\n fillcolor = 'white'\n lays.append(dict(type=shape, x0=points[i], x1=points[i + 1], y0=\n yindex - height, y1=yindex + height, xref='x', yref='y',\n fillcolor=fillcolor, line=dict(color=color, width=width)))\n layout = dict(shapes=lays)\n return Chart(data=data, layout=layout)\n", "role": "user" }, { "content": "spark_shape", "role": "assistant" } ]
def x(x, ymin=0, ymax=1, color=None, width=None, dash=None, opacity=None): lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash layout = dict(shapes=[dict(type='line', x0=x, x1=x, y0=ymin, y1=ymax, opacity=opacity, line=lineattr)]) return Chart(layout=layout)
vertical
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, ymin=0, ymax=1, color=None, width=None, dash=None, opacity=None):\n lineattr = {}\n if color:\n lineattr['color'] = color\n if width:\n lineattr['width'] = width\n if dash:\n lineattr['dash'] = dash\n layout = dict(shapes=[dict(type='line', x0=x, x1=x, y0=ymin, y1=ymax,\n opacity=opacity, line=lineattr)])\n return Chart(layout=layout)\n", "role": "user" }, { "content": "vertical", "role": "assistant" } ]
def x(y, xmin=0, xmax=1, color=None, width=None, dash=None, opacity=None): lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash layout = dict(shapes=[dict(type='line', x0=xmin, x1=xmax, y0=y, y1=y, opacity=opacity, line=lineattr)]) return Chart(layout=layout)
horizontal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, xmin=0, xmax=1, color=None, width=None, dash=None, opacity=None):\n lineattr = {}\n if color:\n lineattr['color'] = color\n if width:\n lineattr['width'] = width\n if dash:\n lineattr['dash'] = dash\n layout = dict(shapes=[dict(type='line', x0=xmin, x1=xmax, y0=y, y1=y,\n opacity=opacity, line=lineattr)])\n return Chart(layout=layout)\n", "role": "user" }, { "content": "horizontal", "role": "assistant" } ]
def x(x=None, y=None, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers', yaxis=1, fill=None, text='', markersize=6): assert x is not None or y is not None, 'x or y must be something' yn = 'y' + str(yaxis) lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash if y is None: y = x x = None if x is None: x = np.arange(len(y)) else: x = _try_pydatetime(x) x = np.atleast_1d(x) y = np.atleast_1d(y) assert x.shape[0] == y.shape[0] if y.ndim == 2: if not hasattr(label, '__iter__'): if label is None: label = _labels() else: label = _labels(label) data = [go.Scatter(x=x, y=yy, name=ll, line=lineattr, mode=mode, text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict( size=markersize, opacity=opacity)) for ll, yy in zip(label, y.T)] else: data = [go.Scatter(x=x, y=y, name=label, line=lineattr, mode=mode, text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict( size=markersize, opacity=opacity))] if yaxis == 1: return Chart(data=data) return Chart(data=data, layout={('yaxis' + str(yaxis)): dict(overlaying ='y')})
line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x=None, y=None, label=None, color=None, width=None, dash=None,\n opacity=None, mode='lines+markers', yaxis=1, fill=None, text='',\n markersize=6):\n assert x is not None or y is not None, 'x or y must be something'\n yn = 'y' + str(yaxis)\n lineattr = {}\n if color:\n lineattr['color'] = color\n if width:\n lineattr['width'] = width\n if dash:\n lineattr['dash'] = dash\n if y is None:\n y = x\n x = None\n if x is None:\n x = np.arange(len(y))\n else:\n x = _try_pydatetime(x)\n x = np.atleast_1d(x)\n y = np.atleast_1d(y)\n assert x.shape[0] == y.shape[0]\n if y.ndim == 2:\n if not hasattr(label, '__iter__'):\n if label is None:\n label = _labels()\n else:\n label = _labels(label)\n data = [go.Scatter(x=x, y=yy, name=ll, line=lineattr, mode=mode,\n text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict(\n size=markersize, opacity=opacity)) for ll, yy in zip(label, y.T)]\n else:\n data = [go.Scatter(x=x, y=y, name=label, line=lineattr, mode=mode,\n text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict(\n size=markersize, opacity=opacity))]\n if yaxis == 1:\n return Chart(data=data)\n return Chart(data=data, layout={('yaxis' + str(yaxis)): dict(overlaying\n ='y')})\n", "role": "user" }, { "content": "line", "role": "assistant" } ]
def x(x, y, z, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers'): x = np.atleast_1d(x) y = np.atleast_1d(y) z = np.atleast_1d(z) assert x.shape == y.shape assert y.shape == z.shape lineattr = {} if color: lineattr['color'] = color if width: lineattr['width'] = width if dash: lineattr['dash'] = dash if y.ndim == 2: if not hasattr(label, '__iter__'): if label is None: label = _labels() else: label = _labels(label) data = [go.Scatter3d(x=xx, y=yy, z=zz, name=ll, line=lineattr, mode =mode, opacity=opacity) for ll, xx, yy, zz in zip(label, x.T, y .T, z.T)] else: data = [go.Scatter3d(x=x, y=y, z=z, name=label, line=lineattr, mode =mode, opacity=opacity)] return Chart(data=data)
line3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, z, label=None, color=None, width=None, dash=None, opacity=None,\n mode='lines+markers'):\n x = np.atleast_1d(x)\n y = np.atleast_1d(y)\n z = np.atleast_1d(z)\n assert x.shape == y.shape\n assert y.shape == z.shape\n lineattr = {}\n if color:\n lineattr['color'] = color\n if width:\n lineattr['width'] = width\n if dash:\n lineattr['dash'] = dash\n if y.ndim == 2:\n if not hasattr(label, '__iter__'):\n if label is None:\n label = _labels()\n else:\n label = _labels(label)\n data = [go.Scatter3d(x=xx, y=yy, z=zz, name=ll, line=lineattr, mode\n =mode, opacity=opacity) for ll, xx, yy, zz in zip(label, x.T, y\n .T, z.T)]\n else:\n data = [go.Scatter3d(x=x, y=y, z=z, name=label, line=lineattr, mode\n =mode, opacity=opacity)]\n return Chart(data=data)\n", "role": "user" }, { "content": "line3d", "role": "assistant" } ]
def x(x=None, y=None, label=None, color=None, width=None, dash=None, opacity=None, markersize=6, yaxis=1, fill=None, text='', mode='markers'): return line(x=x, y=y, label=label, color=color, width=width, dash=dash, opacity=opacity, mode=mode, yaxis=yaxis, fill=fill, text=text, markersize=markersize)
scatter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x=None, y=None, label=None, color=None, width=None, dash=None,\n opacity=None, markersize=6, yaxis=1, fill=None, text='', mode='markers'):\n return line(x=x, y=y, label=label, color=color, width=width, dash=dash,\n opacity=opacity, mode=mode, yaxis=yaxis, fill=fill, text=text,\n markersize=markersize)\n", "role": "user" }, { "content": "scatter", "role": "assistant" } ]
def x(x=None, y=None, label=None, mode='group', yaxis=1, opacity=None): assert x is not None or y is not None, 'x or y must be something' yn = 'y' + str(yaxis) if y is None: y = x x = None if x is None: x = np.arange(len(y)) else: x = _try_pydatetime(x) x = np.atleast_1d(x) y = np.atleast_1d(y) if y.ndim == 2: if not hasattr(label, '__iter__'): if label is None: label = _labels() else: label = _labels(label) data = [go.Bar(x=x, y=yy, name=ll, yaxis=yn, opacity=opacity) for ll, yy in zip(label, y.T)] else: data = [go.Bar(x=x, y=y, name=label, yaxis=yn, opacity=opacity)] if yaxis == 1: return Chart(data=data, layout={'barmode': mode}) return Chart(data=data, layout={'barmode': mode, ('yaxis' + str(yaxis)): dict(overlaying='y')})
bar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x=None, y=None, label=None, mode='group', yaxis=1, opacity=None):\n assert x is not None or y is not None, 'x or y must be something'\n yn = 'y' + str(yaxis)\n if y is None:\n y = x\n x = None\n if x is None:\n x = np.arange(len(y))\n else:\n x = _try_pydatetime(x)\n x = np.atleast_1d(x)\n y = np.atleast_1d(y)\n if y.ndim == 2:\n if not hasattr(label, '__iter__'):\n if label is None:\n label = _labels()\n else:\n label = _labels(label)\n data = [go.Bar(x=x, y=yy, name=ll, yaxis=yn, opacity=opacity) for \n ll, yy in zip(label, y.T)]\n else:\n data = [go.Bar(x=x, y=y, name=label, yaxis=yn, opacity=opacity)]\n if yaxis == 1:\n return Chart(data=data, layout={'barmode': mode})\n return Chart(data=data, layout={'barmode': mode, ('yaxis' + str(yaxis)):\n dict(overlaying='y')})\n", "role": "user" }, { "content": "bar", "role": "assistant" } ]
def x(z, x=None, y=None, colorscale='Viridis'): z = np.atleast_1d(z) data = [go.Heatmap(z=z, x=x, y=y, colorscale=colorscale)] return Chart(data=data)
heatmap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(z, x=None, y=None, colorscale='Viridis'):\n z = np.atleast_1d(z)\n data = [go.Heatmap(z=z, x=x, y=y, colorscale=colorscale)]\n return Chart(data=data)\n", "role": "user" }, { "content": "heatmap", "role": "assistant" } ]
def x(x=None, y=None, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers', **kargs): return line(x=x, y=y, label=label, color=color, width=width, dash=dash, opacity=opacity, mode=mode, fill='tozeroy', **kargs)
fill_zero
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x=None, y=None, label=None, color=None, width=None, dash=None,\n opacity=None, mode='lines+markers', **kargs):\n return line(x=x, y=y, label=label, color=color, width=width, dash=dash,\n opacity=opacity, mode=mode, fill='tozeroy', **kargs)\n", "role": "user" }, { "content": "fill_zero", "role": "assistant" } ]
def x(x=None, ylow=None, yhigh=None, label=None, color=None, width=None, dash=None, opacity=None, mode='lines+markers', **kargs): plot = line(x=x, y=ylow, label=label, color=color, width=width, dash= dash, opacity=opacity, mode=mode, fill=None, **kargs) plot += line(x=x, y=yhigh, label=label, color=color, width=width, dash= dash, opacity=opacity, mode=mode, fill='tonexty', **kargs) return plot
fill_between
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x=None, ylow=None, yhigh=None, label=None, color=None, width=None,\n dash=None, opacity=None, mode='lines+markers', **kargs):\n plot = line(x=x, y=ylow, label=label, color=color, width=width, dash=\n dash, opacity=opacity, mode=mode, fill=None, **kargs)\n plot += line(x=x, y=yhigh, label=label, color=color, width=width, dash=\n dash, opacity=opacity, mode=mode, fill='tonexty', **kargs)\n return plot\n", "role": "user" }, { "content": "fill_between", "role": "assistant" } ]
def x(x, label=None, opacity=None): x = _try_pydatetime(x) x = np.atleast_1d(x) data = [go.Scatter(x=x, y=np.ones_like(x), name=label, opacity=opacity, mode='markers', marker=dict(symbol='line-ns-open'))] layout = dict(barmode='overlay', hovermode='closest', legend=dict( traceorder='reversed'), xaxis1=dict(zeroline=False), yaxis1=dict( domain=[0.85, 1], showline=False, showgrid=False, zeroline=False, anchor='free', position=0.0, showticklabels=False)) return Chart(data=data, layout=layout)
rug
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, label=None, opacity=None):\n x = _try_pydatetime(x)\n x = np.atleast_1d(x)\n data = [go.Scatter(x=x, y=np.ones_like(x), name=label, opacity=opacity,\n mode='markers', marker=dict(symbol='line-ns-open'))]\n layout = dict(barmode='overlay', hovermode='closest', legend=dict(\n traceorder='reversed'), xaxis1=dict(zeroline=False), yaxis1=dict(\n domain=[0.85, 1], showline=False, showgrid=False, zeroline=False,\n anchor='free', position=0.0, showticklabels=False))\n return Chart(data=data, layout=layout)\n", "role": "user" }, { "content": "rug", "role": "assistant" } ]
def x(x, y, z): data = [go.Surface(x=x, y=y, z=z)] return Chart(data=data)
surface
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, z):\n data = [go.Surface(x=x, y=y, z=z)]\n return Chart(data=data)\n", "role": "user" }, { "content": "surface", "role": "assistant" } ]
def x(x, mode='overlay', label=None, opacity=None, horz=False, histnorm=None): x = np.atleast_1d(x) if horz: kargs = dict(y=x) else: kargs = dict(x=x) layout = dict(barmode=mode) data = [go.Histogram(opacity=opacity, name=label, histnorm=histnorm, ** kargs)] return Chart(data=data, layout=layout)
hist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, mode='overlay', label=None, opacity=None, horz=False, histnorm=None):\n x = np.atleast_1d(x)\n if horz:\n kargs = dict(y=x)\n else:\n kargs = dict(x=x)\n layout = dict(barmode=mode)\n data = [go.Histogram(opacity=opacity, name=label, histnorm=histnorm, **\n kargs)]\n return Chart(data=data, layout=layout)\n", "role": "user" }, { "content": "hist", "role": "assistant" } ]
def x(x, y, label=None, opacity=None): x = np.atleast_1d(x) y = np.atleast_1d(y) data = [go.Histogram2d(x=x, y=y, opacity=opacity, name=label)] return Chart(data=data)
hist2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, label=None, opacity=None):\n x = np.atleast_1d(x)\n y = np.atleast_1d(y)\n data = [go.Histogram2d(x=x, y=y, opacity=opacity, name=label)]\n return Chart(data=data)\n", "role": "user" }, { "content": "hist2d", "role": "assistant" } ]
def x(self, angle, index=1): self.layout['yaxis' + str(index)]['tickangle'] = angle return self
ytickangle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, angle, index=1):\n self.layout['yaxis' + str(index)]['tickangle'] = angle\n return self\n", "role": "user" }, { "content": "ytickangle", "role": "assistant" } ]
def x(self, size, index=1): self.layout['yaxis' + str(index)]['titlefont']['size'] = size return self
ylabelsize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size, index=1):\n self.layout['yaxis' + str(index)]['titlefont']['size'] = size\n return self\n", "role": "user" }, { "content": "ylabelsize", "role": "assistant" } ]
def x(self, size, index=1): self.layout['yaxis' + str(index)]['tickfont']['size'] = size return self
yticksize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size, index=1):\n self.layout['yaxis' + str(index)]['tickfont']['size'] = size\n return self\n", "role": "user" }, { "content": "yticksize", "role": "assistant" } ]
def x(self, values, index=1): self.layout['yaxis' + str(index)]['tickvals'] = values return self
ytickvals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, values, index=1):\n self.layout['yaxis' + str(index)]['tickvals'] = values\n return self\n", "role": "user" }, { "content": "ytickvals", "role": "assistant" } ]
def x(self, labels, index=1): self.layout['yaxis' + str(index)]['ticktext'] = labels return self
yticktext
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, labels, index=1):\n self.layout['yaxis' + str(index)]['ticktext'] = labels\n return self\n", "role": "user" }, { "content": "yticktext", "role": "assistant" } ]
def x(self, low, high, index=1): self.layout['yaxis' + str(index)]['range'] = [low, high] return self
ylim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, low, high, index=1):\n self.layout['yaxis' + str(index)]['range'] = [low, high]\n return self\n", "role": "user" }, { "content": "ylim", "role": "assistant" } ]
def x(self, dtick, index=1): self.layout['yaxis' + str(index)]['dtick'] = dtick return self
ydtick
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dtick, index=1):\n self.layout['yaxis' + str(index)]['dtick'] = dtick\n return self\n", "role": "user" }, { "content": "ydtick", "role": "assistant" } ]
def x(self, nticks, index=1): self.layout['yaxis' + str(index)]['nticks'] = nticks return self
ynticks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nticks, index=1):\n self.layout['yaxis' + str(index)]['nticks'] = nticks\n return self\n", "role": "user" }, { "content": "ynticks", "role": "assistant" } ]
def x(self, filename: Optional[str]=None, show_link: bool=True, auto_open: bool=True, detect_notebook: bool=True) ->None: kargs = {} if detect_notebook and _detect_notebook(): py.init_notebook_mode() plot = py.iplot else: plot = py.plot if filename is None: filename = NamedTemporaryFile(prefix='plotly', suffix='.html', delete=False).name kargs['filename'] = filename kargs['auto_open'] = auto_open plot(self, show_link=show_link, **kargs)
show
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename: Optional[str]=None, show_link: bool=True, auto_open:\n bool=True, detect_notebook: bool=True) ->None:\n kargs = {}\n if detect_notebook and _detect_notebook():\n py.init_notebook_mode()\n plot = py.iplot\n else:\n plot = py.plot\n if filename is None:\n filename = NamedTemporaryFile(prefix='plotly', suffix='.html',\n delete=False).name\n kargs['filename'] = filename\n kargs['auto_open'] = auto_open\n plot(self, show_link=show_link, **kargs)\n", "role": "user" }, { "content": "show", "role": "assistant" } ]
def x(self, filename: Optional[str]=None, show_link: bool=True, auto_open: bool=False, output: str='file', plotlyjs: bool=True) ->str: if filename is None: filename = NamedTemporaryFile(prefix='plotly', suffix='.html', delete=False).name py.plot(self, show_link=show_link, filename=filename, auto_open= auto_open, output_type=output, include_plotlyjs=plotlyjs) return filename
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename: Optional[str]=None, show_link: bool=True, auto_open:\n bool=False, output: str='file', plotlyjs: bool=True) ->str:\n if filename is None:\n filename = NamedTemporaryFile(prefix='plotly', suffix='.html',\n delete=False).name\n py.plot(self, show_link=show_link, filename=filename, auto_open=\n auto_open, output_type=output, include_plotlyjs=plotlyjs)\n return filename\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(cls, *args, **kwargs): unpack_error = True try: f, library_path = args unpack_error = False cls._RegisterMethod(f, library_path, **kwargs) except: if not unpack_error: raise def x(f): library_path, = args cls._RegisterMethod(f, library_path, **kwargs) return f return register_decorator
RegisterMethod
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, *args, **kwargs):\n unpack_error = True\n try:\n f, library_path = args\n unpack_error = False\n cls._RegisterMethod(f, library_path, **kwargs)\n except:\n if not unpack_error:\n raise\n\n def x(f):\n library_path, = args\n cls._RegisterMethod(f, library_path, **kwargs)\n return f\n return register_decorator\n", "role": "user" }, { "content": "RegisterMethod", "role": "assistant" } ]
def x(cls, *args, **kwargs): unpack_error = True try: n, f, library_path = args unpack_error = False cls._RegisterAt(n, f, library_path, **kwargs) except: if not unpack_error: raise def x(f): n, library_path = args cls._RegisterAt(n, f, library_path, **kwargs) return f return register_decorator
RegisterAt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, *args, **kwargs):\n unpack_error = True\n try:\n n, f, library_path = args\n unpack_error = False\n cls._RegisterAt(n, f, library_path, **kwargs)\n except:\n if not unpack_error:\n raise\n\n def x(f):\n n, library_path = args\n cls._RegisterAt(n, f, library_path, **kwargs)\n return f\n return register_decorator\n", "role": "user" }, { "content": "RegisterAt", "role": "assistant" } ]
def x(cls, n, module, method_wrapper=None, module_alias=None, method_name_modifier=utils.identity, blacklist_predicate=_False, whitelist_predicate=_True, return_type_predicate=_None, getmembers_predicate=inspect.isfunction, admit_private=False, explanation=''): _rtp = return_type_predicate return_type_predicate = (lambda x: _rtp) if inspect.isclass(_rtp ) and issubclass(_rtp, Builder) else _rtp module_name = module_alias if module_alias else module.__name__ + '.' patch_members = _get_patch_members(module, blacklist_predicate= blacklist_predicate, whitelist_predicate=whitelist_predicate, getmembers_predicate=getmembers_predicate, admit_private=admit_private) for name, f in patch_members: wrapped = None if method_wrapper: g = method_wrapper(f) wrapped = f else: g = f cls.RegisterAt(n, g, module_name, wrapped=wrapped, _return_type= return_type_predicate(name), alias=method_name_modifier(name), explanation=explanation)
PatchAt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, n, module, method_wrapper=None, module_alias=None,\n method_name_modifier=utils.identity, blacklist_predicate=_False,\n whitelist_predicate=_True, return_type_predicate=_None,\n getmembers_predicate=inspect.isfunction, admit_private=False,\n explanation=''):\n _rtp = return_type_predicate\n return_type_predicate = (lambda x: _rtp) if inspect.isclass(_rtp\n ) and issubclass(_rtp, Builder) else _rtp\n module_name = module_alias if module_alias else module.__name__ + '.'\n patch_members = _get_patch_members(module, blacklist_predicate=\n blacklist_predicate, whitelist_predicate=whitelist_predicate,\n getmembers_predicate=getmembers_predicate, admit_private=admit_private)\n for name, f in patch_members:\n wrapped = None\n if method_wrapper:\n g = method_wrapper(f)\n wrapped = f\n else:\n g = f\n cls.RegisterAt(n, g, module_name, wrapped=wrapped, _return_type=\n return_type_predicate(name), alias=method_name_modifier(name),\n explanation=explanation)\n", "role": "user" }, { "content": "PatchAt", "role": "assistant" } ]
def x(method): argspec = inspect.getargspec(method) arg_index = 0 args = [] for arg in argspec.args: default_arg = _get_default_arg(argspec.args, argspec.defaults, arg_index) if default_arg.has_default: args.append('%s=%s' % (arg, default_arg.default_value)) else: args.append(arg) arg_index += 1 return '%s(%s)' % (method.__name__, ', '.join(args))
get_method_sig
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method):\n argspec = inspect.getargspec(method)\n arg_index = 0\n args = []\n for arg in argspec.args:\n default_arg = _get_default_arg(argspec.args, argspec.defaults,\n arg_index)\n if default_arg.has_default:\n args.append('%s=%s' % (arg, default_arg.default_value))\n else:\n args.append(arg)\n arg_index += 1\n return '%s(%s)' % (method.__name__, ', '.join(args))\n", "role": "user" }, { "content": "get_method_sig", "role": "assistant" } ]
def x(self, *sequence, **kwargs): state = kwargs.pop('refs', {}) return self.Seq(*sequence, **kwargs)(None, **state)
Pipe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *sequence, **kwargs):\n state = kwargs.pop('refs', {})\n return self.Seq(*sequence, **kwargs)(None, **state)\n", "role": "user" }, { "content": "Pipe", "role": "assistant" } ]
def x(self, n, f, *_args, **kwargs): _return_type = None n_args = n - 1 if '_return_type' in kwargs: _return_type = kwargs['_return_type'] del kwargs['_return_type'] @utils.lift def x(x): new_args = _args[0:n_args] + (x,) + _args[n_args: ] if n_args >= 0 else _args return f(*new_args, **kwargs) return self.__then__(g, _return_type=_return_type)
ThenAt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, f, *_args, **kwargs):\n _return_type = None\n n_args = n - 1\n if '_return_type' in kwargs:\n _return_type = kwargs['_return_type']\n del kwargs['_return_type']\n\n @utils.lift\n def x(x):\n new_args = _args[0:n_args] + (x,) + _args[n_args:\n ] if n_args >= 0 else _args\n return f(*new_args, **kwargs)\n return self.__then__(g, _return_type=_return_type)\n", "role": "user" }, { "content": "ThenAt", "role": "assistant" } ]
def x(self, f, *args, **kwargs): return self.ThenAt(0, f, *args, **kwargs)
Then0
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, *args, **kwargs):\n return self.ThenAt(0, f, *args, **kwargs)\n", "role": "user" }, { "content": "Then0", "role": "assistant" } ]
def x(self, f, *args, **kwargs): return self.ThenAt(1, f, *args, **kwargs)
Then
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, *args, **kwargs):\n return self.ThenAt(1, f, *args, **kwargs)\n", "role": "user" }, { "content": "Then", "role": "assistant" } ]
def x(self, f, arg1, *args, **kwargs): args = (arg1,) + args return self.ThenAt(2, f, *args, **kwargs)
Then2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, arg1, *args, **kwargs):\n args = (arg1,) + args\n return self.ThenAt(2, f, *args, **kwargs)\n", "role": "user" }, { "content": "Then2", "role": "assistant" } ]
def x(self, f, arg1, arg2, *args, **kwargs): args = (arg1, arg2) + args return self.ThenAt(3, f, *args, **kwargs)
Then3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, arg1, arg2, *args, **kwargs):\n args = (arg1, arg2) + args\n return self.ThenAt(3, f, *args, **kwargs)\n", "role": "user" }, { "content": "Then3", "role": "assistant" } ]
def x(self, f, arg1, arg2, arg3, *args, **kwargs): args = (arg1, arg2, arg3) + args return self.ThenAt(4, f, *args, **kwargs)
Then4
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, arg1, arg2, arg3, *args, **kwargs):\n args = (arg1, arg2, arg3) + args\n return self.ThenAt(4, f, *args, **kwargs)\n", "role": "user" }, { "content": "Then4", "role": "assistant" } ]
def x(self, f, arg1, arg2, arg3, arg4, *args, **kwargs): args = (arg1, arg2, arg3, arg4) + args return self.ThenAt(5, f, *args, **kwargs)
Then5
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, arg1, arg2, arg3, arg4, *args, **kwargs):\n args = (arg1, arg2, arg3, arg4) + args\n return self.ThenAt(5, f, *args, **kwargs)\n", "role": "user" }, { "content": "Then5", "role": "assistant" } ]
def x(self, *branches, **kwargs): gs = [_parse(code)._f for code in branches] def x(x, state): ys = [] for g in gs: y, state = g(x, state) ys.append(y) return ys, state return self.__then__(h, **kwargs)
List
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *branches, **kwargs):\n gs = [_parse(code)._f for code in branches]\n\n def x(x, state):\n ys = []\n for g in gs:\n y, state = g(x, state)\n ys.append(y)\n return ys, state\n return self.__then__(h, **kwargs)\n", "role": "user" }, { "content": "List", "role": "assistant" } ]
def x(self, *sequence, **kwargs): fs = [_parse(elem)._f for elem in sequence] def x(x, state): return functools.reduce(lambda args, f: f(*args), fs, (x, state)) return self.__then__(g, **kwargs)
Seq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *sequence, **kwargs):\n fs = [_parse(elem)._f for elem in sequence]\n\n def x(x, state):\n return functools.reduce(lambda args, f: f(*args), fs, (x, state))\n return self.__then__(g, **kwargs)\n", "role": "user" }, { "content": "Seq", "role": "assistant" } ]
def x(self, context_manager, *body, **kwargs): context_f = _parse(context_manager)._f body_f = E.Seq(*body)._f def x(x, state): context, state = context_f(x, state) with context as scope: with _WithContextManager(scope): return body_f(x, state) return self.__then__(g, **kwargs)
With
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context_manager, *body, **kwargs):\n context_f = _parse(context_manager)._f\n body_f = E.Seq(*body)._f\n\n def x(x, state):\n context, state = context_f(x, state)\n with context as scope:\n with _WithContextManager(scope):\n return body_f(x, state)\n return self.__then__(g, **kwargs)\n", "role": "user" }, { "content": "With", "role": "assistant" } ]
def x(self, *branches, **kwargs): branches = map(lambda x: E.Read(x) if isinstance(x, str) else x, branches) return self.List(*branches, **kwargs)
ReadList
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *branches, **kwargs):\n branches = map(lambda x: E.Read(x) if isinstance(x, str) else x, branches)\n return self.List(*branches, **kwargs)\n", "role": "user" }, { "content": "ReadList", "role": "assistant" } ]
def x(self, *state_args, **state_dict): if len(state_dict) + len(state_args) < 1: raise Exception( 'Please include at-least 1 state variable, got {0} and {1}'. format(state_args, state_dict)) if len(state_dict) > 1: raise Exception( 'Please include at-most 1 keyword argument expression, got {0}' .format(state_dict)) if len(state_dict) > 0: state_key = next(iter(state_dict.keys())) write_expr = state_dict[state_key] state_args += state_key, expr = self >> write_expr else: expr = self def x(x, state): update = {key: x for key in state_args} state = utils.merge(state, update) _StateContextManager.REFS.update(state) return x, state return expr.__then__(g)
Write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *state_args, **state_dict):\n if len(state_dict) + len(state_args) < 1:\n raise Exception(\n 'Please include at-least 1 state variable, got {0} and {1}'.\n format(state_args, state_dict))\n if len(state_dict) > 1:\n raise Exception(\n 'Please include at-most 1 keyword argument expression, got {0}'\n .format(state_dict))\n if len(state_dict) > 0:\n state_key = next(iter(state_dict.keys()))\n write_expr = state_dict[state_key]\n state_args += state_key,\n expr = self >> write_expr\n else:\n expr = self\n\n def x(x, state):\n update = {key: x for key in state_args}\n state = utils.merge(state, update)\n _StateContextManager.REFS.update(state)\n return x, state\n return expr.__then__(g)\n", "role": "user" }, { "content": "Write", "role": "assistant" } ]
def x(self, val, **kwargs): f = utils.lift(lambda z: val) return self.__then__(f, **kwargs)
Val
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, val, **kwargs):\n f = utils.lift(lambda z: val)\n return self.__then__(f, **kwargs)\n", "role": "user" }, { "content": "Val", "role": "assistant" } ]
def x(self, condition, *then, **kwargs): cond_f = _parse(condition)._f then_f = E.Seq(*then)._f else_f = utils.state_identity ast = cond_f, then_f, else_f g = _compile_if(ast) expr = self.__then__(g, **kwargs) expr._ast = ast expr._root = self return expr
If
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, condition, *then, **kwargs):\n cond_f = _parse(condition)._f\n then_f = E.Seq(*then)._f\n else_f = utils.state_identity\n ast = cond_f, then_f, else_f\n g = _compile_if(ast)\n expr = self.__then__(g, **kwargs)\n expr._ast = ast\n expr._root = self\n return expr\n", "role": "user" }, { "content": "If", "role": "assistant" } ]
def x(self, *Else, **kwargs): root = self._root ast = self._ast next_else = E.Seq(*Else)._f ast = _add_else(ast, next_else) g = _compile_if(ast) return root.__then__(g, **kwargs)
Else
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *Else, **kwargs):\n root = self._root\n ast = self._ast\n next_else = E.Seq(*Else)._f\n ast = _add_else(ast, next_else)\n g = _compile_if(ast)\n return root.__then__(g, **kwargs)\n", "role": "user" }, { "content": "Else", "role": "assistant" } ]
def x(string, until=None): if until is None: return sum(1 for _ in GraphemeIterator(string)) iterator = graphemes(string) count = 0 while True: try: if count >= until: break next(iterator) except StopIteration: break else: count += 1 return count
length
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, until=None):\n if until is None:\n return sum(1 for _ in GraphemeIterator(string))\n iterator = graphemes(string)\n count = 0\n while True:\n try:\n if count >= until:\n break\n next(iterator)\n except StopIteration:\n break\n else:\n count += 1\n return count\n", "role": "user" }, { "content": "length", "role": "assistant" } ]
def x(string, start=None, end=None): if start is None: start = 0 if end is not None and start >= end: return '' if start < 0: raise NotImplementedError( 'Negative indexing is currently not supported.') sum_ = 0 start_index = None for grapheme_index, grapheme_length in enumerate(grapheme_lengths(string)): if grapheme_index == start: start_index = sum_ elif grapheme_index == end: return string[start_index:sum_] sum_ += grapheme_length if start_index is not None: return string[start_index:] return ''
slice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, start=None, end=None):\n if start is None:\n start = 0\n if end is not None and start >= end:\n return ''\n if start < 0:\n raise NotImplementedError(\n 'Negative indexing is currently not supported.')\n sum_ = 0\n start_index = None\n for grapheme_index, grapheme_length in enumerate(grapheme_lengths(string)):\n if grapheme_index == start:\n start_index = sum_\n elif grapheme_index == end:\n return string[start_index:sum_]\n sum_ += grapheme_length\n if start_index is not None:\n return string[start_index:]\n return ''\n", "role": "user" }, { "content": "slice", "role": "assistant" } ]
def x(string, substring): if substring not in string: return False substr_graphemes = list(graphemes(substring)) if len(substr_graphemes) == 0: return True elif len(substr_graphemes) == 1: return substr_graphemes[0] in graphemes(string) else: str_iter = graphemes(string) str_sub_part = [] for _ in range(len(substr_graphemes)): try: str_sub_part.append(next(str_iter)) except StopIteration: return False for g in str_iter: if str_sub_part == substr_graphemes: return True str_sub_part.append(g) str_sub_part.pop(0) return str_sub_part == substr_graphemes
contains
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, substring):\n if substring not in string:\n return False\n substr_graphemes = list(graphemes(substring))\n if len(substr_graphemes) == 0:\n return True\n elif len(substr_graphemes) == 1:\n return substr_graphemes[0] in graphemes(string)\n else:\n str_iter = graphemes(string)\n str_sub_part = []\n for _ in range(len(substr_graphemes)):\n try:\n str_sub_part.append(next(str_iter))\n except StopIteration:\n return False\n for g in str_iter:\n if str_sub_part == substr_graphemes:\n return True\n str_sub_part.append(g)\n str_sub_part.pop(0)\n return str_sub_part == substr_graphemes\n", "role": "user" }, { "content": "contains", "role": "assistant" } ]
def x(string, prefix): return string.startswith(prefix) and safe_split_index(string, len(prefix) ) == len(prefix)
startswith
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, prefix):\n return string.startswith(prefix) and safe_split_index(string, len(prefix)\n ) == len(prefix)\n", "role": "user" }, { "content": "startswith", "role": "assistant" } ]
def x(string, suffix): expected_index = len(string) - len(suffix) return string.endswith(suffix) and safe_split_index(string, expected_index ) == expected_index
endswith
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, suffix):\n expected_index = len(string) - len(suffix)\n return string.endswith(suffix) and safe_split_index(string, expected_index\n ) == expected_index\n", "role": "user" }, { "content": "endswith", "role": "assistant" } ]
def x(string, max_len): last_index = get_last_certain_break_index(string, max_len) for l in grapheme_lengths(string[last_index:]): if last_index + l > max_len: break last_index += l return last_index
safe_split_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, max_len):\n last_index = get_last_certain_break_index(string, max_len)\n for l in grapheme_lengths(string[last_index:]):\n if last_index + l > max_len:\n break\n last_index += l\n return last_index\n", "role": "user" }, { "content": "safe_split_index", "role": "assistant" } ]
def x(filename): dic = dict() with open(filename, 'rt', encoding='utf-8') as f: for l in f: l = l.strip() if l[0] in "#!%'": continue try: ld = [ld_ for ld_ in _logfile_data if l.split(':', 1)[0]. strip() == ld_[0]][0] except IndexError: if ':' in l: key, val = [x.strip() for x in l.split(':', 1)] val = misc.parse_number(val) dic[key] = val try: dic[key] = dic[key].encode('latin2').decode('utf-8') except (UnicodeDecodeError, UnicodeEncodeError, AttributeError): pass else: dic[l.strip()] = True continue try: reader = ld[3] except IndexError: reader = str rhs = l.split(':', 1)[1].strip() try: vals = reader(rhs) except ValueError: if rhs.lower() == 'none': vals = None else: raise if isinstance(ld[1], tuple): if len(vals) != len(ld[1]): raise ValueError( 'Cannot read %d values from line %s in file!' % ( len(ld[1]), l)) dic.update(dict(list(zip(ld[1], vals)))) else: dic[ld[1]] = vals dic['__Origin__'] = 'B1 log' dic['__particle__'] = 'photon' return dic
readB1logfile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n dic = dict()\n with open(filename, 'rt', encoding='utf-8') as f:\n for l in f:\n l = l.strip()\n if l[0] in \"#!%'\":\n continue\n try:\n ld = [ld_ for ld_ in _logfile_data if l.split(':', 1)[0].\n strip() == ld_[0]][0]\n except IndexError:\n if ':' in l:\n key, val = [x.strip() for x in l.split(':', 1)]\n val = misc.parse_number(val)\n dic[key] = val\n try:\n dic[key] = dic[key].encode('latin2').decode('utf-8')\n except (UnicodeDecodeError, UnicodeEncodeError,\n AttributeError):\n pass\n else:\n dic[l.strip()] = True\n continue\n try:\n reader = ld[3]\n except IndexError:\n reader = str\n rhs = l.split(':', 1)[1].strip()\n try:\n vals = reader(rhs)\n except ValueError:\n if rhs.lower() == 'none':\n vals = None\n else:\n raise\n if isinstance(ld[1], tuple):\n if len(vals) != len(ld[1]):\n raise ValueError(\n 'Cannot read %d values from line %s in file!' % (\n len(ld[1]), l))\n dic.update(dict(list(zip(ld[1], vals))))\n else:\n dic[ld[1]] = vals\n dic['__Origin__'] = 'B1 log'\n dic['__particle__'] = 'photon'\n return dic\n", "role": "user" }, { "content": "readB1logfile", "role": "assistant" } ]
def x(filename, data): allkeys = list(data.keys()) f = open(filename, 'wt', encoding='utf-8') for ld in _logfile_data: linebegin = ld[0] fieldnames = ld[1] if len(ld) < 3: formatter = str elif ld[2] is None: formatter = str else: formatter = ld[2] formatted = '' if isinstance(fieldnames, str): if fieldnames not in allkeys: continue try: formatted = formatter(data[fieldnames]) except KeyError: continue elif isinstance(fieldnames, tuple): if all([(fn not in allkeys) for fn in fieldnames]): continue if isinstance(formatter, tuple) and len(formatter) == len( fieldnames): formatted = ' '.join([ft(data[fn]) for ft, fn in zip( formatter, fieldnames)]) elif not isinstance(formatter, tuple): formatted = formatter([data[fn] for fn in fieldnames]) else: raise SyntaxError( 'Programming error: formatter should be a scalar or a tupleof the same length as the field names in logfile_data.' ) else: raise SyntaxError( 'Invalid syntax (programming error) in logfile_data in writeparamfile().' ) linetowrite = linebegin + ':\t' + formatted + '\n' f.write(linetowrite) if isinstance(fieldnames, tuple): for fn in fieldnames: if fn in allkeys: allkeys.remove(fn) elif fieldnames in allkeys: allkeys.remove(fieldnames) for k in allkeys: linetowrite = k + ':\t' + str(data[k]) + '\n' f.write(linetowrite) f.close()
writeB1logfile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, data):\n allkeys = list(data.keys())\n f = open(filename, 'wt', encoding='utf-8')\n for ld in _logfile_data:\n linebegin = ld[0]\n fieldnames = ld[1]\n if len(ld) < 3:\n formatter = str\n elif ld[2] is None:\n formatter = str\n else:\n formatter = ld[2]\n formatted = ''\n if isinstance(fieldnames, str):\n if fieldnames not in allkeys:\n continue\n try:\n formatted = formatter(data[fieldnames])\n except KeyError:\n continue\n elif isinstance(fieldnames, tuple):\n if all([(fn not in allkeys) for fn in fieldnames]):\n continue\n if isinstance(formatter, tuple) and len(formatter) == len(\n fieldnames):\n formatted = ' '.join([ft(data[fn]) for ft, fn in zip(\n formatter, fieldnames)])\n elif not isinstance(formatter, tuple):\n formatted = formatter([data[fn] for fn in fieldnames])\n else:\n raise SyntaxError(\n 'Programming error: formatter should be a scalar or a tupleof the same length as the field names in logfile_data.'\n )\n else:\n raise SyntaxError(\n 'Invalid syntax (programming error) in logfile_data in writeparamfile().'\n )\n linetowrite = linebegin + ':\\t' + formatted + '\\n'\n f.write(linetowrite)\n if isinstance(fieldnames, tuple):\n for fn in fieldnames:\n if fn in allkeys:\n allkeys.remove(fn)\n elif fieldnames in allkeys:\n allkeys.remove(fieldnames)\n for k in allkeys:\n linetowrite = k + ':\\t' + str(data[k]) + '\\n'\n f.write(linetowrite)\n f.close()\n", "role": "user" }, { "content": "writeB1logfile", "role": "assistant" } ]
def x(filename): hed = {} if libconfig.LENGTH_UNIT == 'A': jusifaHC = 12396.4 elif libconfig.LENGTH_UNIT == 'nm': jusifaHC = 1239.64 else: raise NotImplementedError('Invalid length unit: ' + str(libconfig. LENGTH_UNIT)) if filename.upper().endswith('.GZ'): fid = gzip.GzipFile(filename, 'r') else: fid = open(filename, 'rt') lines = fid.readlines() fid.close() hed['FSN'] = int(lines[0].strip()) hed['Hour'] = int(lines[17].strip()) hed['Minutes'] = int(lines[18].strip()) hed['Month'] = int(lines[19].strip()) hed['Day'] = int(lines[20].strip()) hed['Year'] = int(lines[21].strip()) + 2000 hed['FSNref1'] = int(lines[23].strip()) hed['FSNdc'] = int(lines[24].strip()) hed['FSNsensitivity'] = int(lines[25].strip()) hed['FSNempty'] = int(lines[26].strip()) hed['FSNref2'] = int(lines[27].strip()) hed['Monitor'] = float(lines[31].strip()) hed['Anode'] = float(lines[32].strip()) hed['MeasTime'] = float(lines[33].strip()) hed['Temperature'] = float(lines[34].strip()) hed['BeamPosX'] = float(lines[36].strip()) hed['BeamPosY'] = float(lines[37].strip()) hed['Transm'] = float(lines[41].strip()) hed['Wavelength'] = float(lines[43].strip()) hed['Energy'] = jusifaHC / hed['Wavelength'] hed['Dist'] = float(lines[46].strip()) hed['XPixel'] = 1 / float(lines[49].strip()) hed['YPixel'] = 1 / float(lines[50].strip()) hed['Title'] = lines[53].strip().replace(' ', '_').replace('-', '_') hed['MonitorDORIS'] = float(lines[56].strip()) hed['Owner'] = lines[57].strip() hed['RotXSample'] = float(lines[59].strip()) hed['RotYSample'] = float(lines[60].strip()) hed['PosSample'] = float(lines[61].strip()) hed['DetPosX'] = float(lines[62].strip()) hed['DetPosY'] = float(lines[63].strip()) hed['MonitorPIEZO'] = float(lines[64].strip()) hed['BeamsizeX'] = float(lines[66].strip()) hed['BeamsizeY'] = float(lines[67].strip()) hed['PosRef'] = float(lines[70].strip()) hed['Monochromator1Rot'] = float(lines[77].strip()) hed['Monochromator2Rot'] = float(lines[78].strip()) hed['Heidenhain1'] = float(lines[79].strip()) hed['Heidenhain2'] = float(lines[80].strip()) hed['Current1'] = float(lines[81].strip()) hed['Current2'] = float(lines[82].strip()) hed['Detector'] = 'Unknown' hed['PixelSize'] = (hed['XPixel'] + hed['YPixel']) / 2.0 hed['AnodeError'] = math.sqrt(hed['Anode']) hed['TransmError'] = 0 hed['MonitorError'] = math.sqrt(hed['Monitor']) hed['MonitorPIEZOError'] = math.sqrt(hed['MonitorPIEZO']) hed['MonitorDORISError'] = math.sqrt(hed['MonitorDORIS']) hed['Date'] = datetime.datetime(hed['Year'], hed['Month'], hed['Day'], hed['Hour'], hed['Minutes']) hed['__Origin__'] = 'B1 original' hed['__particle__'] = 'photon' return hed
readB1header
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n hed = {}\n if libconfig.LENGTH_UNIT == 'A':\n jusifaHC = 12396.4\n elif libconfig.LENGTH_UNIT == 'nm':\n jusifaHC = 1239.64\n else:\n raise NotImplementedError('Invalid length unit: ' + str(libconfig.\n LENGTH_UNIT))\n if filename.upper().endswith('.GZ'):\n fid = gzip.GzipFile(filename, 'r')\n else:\n fid = open(filename, 'rt')\n lines = fid.readlines()\n fid.close()\n hed['FSN'] = int(lines[0].strip())\n hed['Hour'] = int(lines[17].strip())\n hed['Minutes'] = int(lines[18].strip())\n hed['Month'] = int(lines[19].strip())\n hed['Day'] = int(lines[20].strip())\n hed['Year'] = int(lines[21].strip()) + 2000\n hed['FSNref1'] = int(lines[23].strip())\n hed['FSNdc'] = int(lines[24].strip())\n hed['FSNsensitivity'] = int(lines[25].strip())\n hed['FSNempty'] = int(lines[26].strip())\n hed['FSNref2'] = int(lines[27].strip())\n hed['Monitor'] = float(lines[31].strip())\n hed['Anode'] = float(lines[32].strip())\n hed['MeasTime'] = float(lines[33].strip())\n hed['Temperature'] = float(lines[34].strip())\n hed['BeamPosX'] = float(lines[36].strip())\n hed['BeamPosY'] = float(lines[37].strip())\n hed['Transm'] = float(lines[41].strip())\n hed['Wavelength'] = float(lines[43].strip())\n hed['Energy'] = jusifaHC / hed['Wavelength']\n hed['Dist'] = float(lines[46].strip())\n hed['XPixel'] = 1 / float(lines[49].strip())\n hed['YPixel'] = 1 / float(lines[50].strip())\n hed['Title'] = lines[53].strip().replace(' ', '_').replace('-', '_')\n hed['MonitorDORIS'] = float(lines[56].strip())\n hed['Owner'] = lines[57].strip()\n hed['RotXSample'] = float(lines[59].strip())\n hed['RotYSample'] = float(lines[60].strip())\n hed['PosSample'] = float(lines[61].strip())\n hed['DetPosX'] = float(lines[62].strip())\n hed['DetPosY'] = float(lines[63].strip())\n hed['MonitorPIEZO'] = float(lines[64].strip())\n hed['BeamsizeX'] = float(lines[66].strip())\n hed['BeamsizeY'] = float(lines[67].strip())\n hed['PosRef'] = float(lines[70].strip())\n hed['Monochromator1Rot'] = float(lines[77].strip())\n hed['Monochromator2Rot'] = float(lines[78].strip())\n hed['Heidenhain1'] = float(lines[79].strip())\n hed['Heidenhain2'] = float(lines[80].strip())\n hed['Current1'] = float(lines[81].strip())\n hed['Current2'] = float(lines[82].strip())\n hed['Detector'] = 'Unknown'\n hed['PixelSize'] = (hed['XPixel'] + hed['YPixel']) / 2.0\n hed['AnodeError'] = math.sqrt(hed['Anode'])\n hed['TransmError'] = 0\n hed['MonitorError'] = math.sqrt(hed['Monitor'])\n hed['MonitorPIEZOError'] = math.sqrt(hed['MonitorPIEZO'])\n hed['MonitorDORISError'] = math.sqrt(hed['MonitorDORIS'])\n hed['Date'] = datetime.datetime(hed['Year'], hed['Month'], hed['Day'],\n hed['Hour'], hed['Minutes'])\n hed['__Origin__'] = 'B1 original'\n hed['__particle__'] = 'photon'\n return hed\n", "role": "user" }, { "content": "readB1header", "role": "assistant" } ]
def x(left, right): functions = [int, float, lambda l: float(l.split(None, 1)[0]), lambda l: int(l.split(None, 1)[0]), dateutil.parser.parse, lambda x: str(x)] for f in functions: try: right = f(right) break except ValueError: continue return right
readedf_extractline
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(left, right):\n functions = [int, float, lambda l: float(l.split(None, 1)[0]), lambda l:\n int(l.split(None, 1)[0]), dateutil.parser.parse, lambda x: str(x)]\n for f in functions:\n try:\n right = f(right)\n break\n except ValueError:\n continue\n return right\n", "role": "user" }, { "content": "readedf_extractline", "role": "assistant" } ]
def x(filename): f = open(filename, 'r') edf = {} if not f.readline().strip().startswith('{'): raise ValueError('Invalid file format.') for l in f: l = l.strip() if not l: continue if l.endswith('}'): break try: left, right = l.split('=', 1) except ValueError: raise ValueError('Invalid line: ' + l) left = left.strip() right = right.strip() if not right.endswith(';'): raise ValueError( 'Invalid line (does not end with a semicolon): ' + l) right = right[:-1].strip() m = re.match('^(?P<left>.*)~(?P<continuation>\\d+)$', left) if m is not None: edf[m.group('left')] = edf[m.group('left')] + right else: edf[left] = _readedf_extractline(left, right) f.close() edf['FileName'] = filename edf['__Origin__'] = 'EDF ID02' edf['__particle__'] = 'photon' return edf
readehf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n f = open(filename, 'r')\n edf = {}\n if not f.readline().strip().startswith('{'):\n raise ValueError('Invalid file format.')\n for l in f:\n l = l.strip()\n if not l:\n continue\n if l.endswith('}'):\n break\n try:\n left, right = l.split('=', 1)\n except ValueError:\n raise ValueError('Invalid line: ' + l)\n left = left.strip()\n right = right.strip()\n if not right.endswith(';'):\n raise ValueError(\n 'Invalid line (does not end with a semicolon): ' + l)\n right = right[:-1].strip()\n m = re.match('^(?P<left>.*)~(?P<continuation>\\\\d+)$', left)\n if m is not None:\n edf[m.group('left')] = edf[m.group('left')] + right\n else:\n edf[left] = _readedf_extractline(left, right)\n f.close()\n edf['FileName'] = filename\n edf['__Origin__'] = 'EDF ID02'\n edf['__particle__'] = 'photon'\n return edf\n", "role": "user" }, { "content": "readehf", "role": "assistant" } ]
def x(filename, load_data=False, bdfext='.bdf', bhfext='.bhf'): if filename.endswith(bdfext): basename = filename[:-len(bdfext)] elif filename.endswith(bhfext): basename = filename[:-len(bhfext)] else: basename, bhfext = os.path.splitext(filename) bdfext = bhfext headername = basename + bhfext dataname = basename + bdfext bdf = {} bdf['his'] = [] bdf['C'] = {} namelists = {} valuelists = {} with open(headername, 'rb') as fid: for line in fid: if not line.strip(): continue mat = line.split(None, 1) prefix = mat[0] if prefix == '#C': left, right = mat[1].split('=', 1) left = left.strip() right = right.strip() if left in ['xdim', 'ydim']: bdf[left] = int(right) elif left in ['type', 'bdf']: bdf[left] = right if left in ['Sendtime']: bdf['C'][left] = float(right) elif left in ['xdim', 'ydim']: bdf['C'][left] = int(right) else: bdf['C'][left] = misc.parse_number(right) elif prefix.startswith('#H'): bdf['his'].append(mat[1]) else: for prf in ['M', 'G', 'S', 'T']: if prefix.startswith('#C%sL' % prf): if prf not in namelists: namelists[prf] = [] namelists[prf].extend(mat[1].split()) elif prefix.startswith('#C%sV' % prf): if prf not in valuelists: valuelists[prf] = [] valuelists[prf].extend([float(x) for x in mat[1]. split()]) else: continue for dictname, prfname in zip(['M', 'CG', 'CS', 'CT'], ['M', 'G', 'S', 'T'] ): bdf[dictname] = dict(list(zip(namelists[prfname], valuelists[prfname])) ) bdf['__Origin__'] = 'BDFv1' bdf['__particle__'] = 'photon' if load_data: f = open(dataname, 'r') try: s = f.read() except IOError as ioe: if ioe.errno == 22: f.close() try: f = open(dataname, 'r+b') s = f.read() except IOError: f.close() raise IOError(22, """ You were probably trying to open a read-only file from a network drive on Windows, weren't you? There is a bug in Windows causing this error (see http://support.microsoft.com/default.aspx?scid=kb;en-us;899149). To work around this, please either obtain write permission for that file (I won't write anything to it, I promise!!!) or copy it to a local drive. Sorry for the inconvenience.""" , ioe.filename) datasets = re.findall( '#\\s*(?P<name>\\w+)\\[(?P<xsize>\\d+):(?P<ysize>\\d+)\\]', s) names = [d[0] for d in datasets] xsize = [int(d[1]) for d in datasets] ysize = [int(d[2]) for d in datasets] dt = np.dtype(bdf['type']) for i in range(len(datasets)): start = s.find('#%s' % names[i]) if i < len(datasets) - 1: end = s.find('#%s' % names[i + 1]) else: end = len(s) s1 = s[start:end] datasize = xsize[i] * ysize[i] * dt.itemsize if datasize > len(s1): bdf[names[i]] = np.fromstring(s1[-xsize[i] * ysize[i]:], dtype=np.uint8) else: bdf[names[i]] = np.fromstring(s1[-xsize[i] * ysize[i] * dt. itemsize:], dtype=dt) bdf[names[i]] = np.rot90(bdf[names[i]].reshape((ysize[i], xsize [i]), order='F'), 1) return bdf
readbhfv1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, load_data=False, bdfext='.bdf', bhfext='.bhf'):\n if filename.endswith(bdfext):\n basename = filename[:-len(bdfext)]\n elif filename.endswith(bhfext):\n basename = filename[:-len(bhfext)]\n else:\n basename, bhfext = os.path.splitext(filename)\n bdfext = bhfext\n headername = basename + bhfext\n dataname = basename + bdfext\n bdf = {}\n bdf['his'] = []\n bdf['C'] = {}\n namelists = {}\n valuelists = {}\n with open(headername, 'rb') as fid:\n for line in fid:\n if not line.strip():\n continue\n mat = line.split(None, 1)\n prefix = mat[0]\n if prefix == '#C':\n left, right = mat[1].split('=', 1)\n left = left.strip()\n right = right.strip()\n if left in ['xdim', 'ydim']:\n bdf[left] = int(right)\n elif left in ['type', 'bdf']:\n bdf[left] = right\n if left in ['Sendtime']:\n bdf['C'][left] = float(right)\n elif left in ['xdim', 'ydim']:\n bdf['C'][left] = int(right)\n else:\n bdf['C'][left] = misc.parse_number(right)\n elif prefix.startswith('#H'):\n bdf['his'].append(mat[1])\n else:\n for prf in ['M', 'G', 'S', 'T']:\n if prefix.startswith('#C%sL' % prf):\n if prf not in namelists:\n namelists[prf] = []\n namelists[prf].extend(mat[1].split())\n elif prefix.startswith('#C%sV' % prf):\n if prf not in valuelists:\n valuelists[prf] = []\n valuelists[prf].extend([float(x) for x in mat[1].\n split()])\n else:\n continue\n for dictname, prfname in zip(['M', 'CG', 'CS', 'CT'], ['M', 'G', 'S', 'T']\n ):\n bdf[dictname] = dict(list(zip(namelists[prfname], valuelists[prfname]))\n )\n bdf['__Origin__'] = 'BDFv1'\n bdf['__particle__'] = 'photon'\n if load_data:\n f = open(dataname, 'r')\n try:\n s = f.read()\n except IOError as ioe:\n if ioe.errno == 22:\n f.close()\n try:\n f = open(dataname, 'r+b')\n s = f.read()\n except IOError:\n f.close()\n raise IOError(22,\n \"\"\"\nYou were probably trying to open a read-only file from a network drive on\nWindows, weren't you? There is a bug in Windows causing this error\n(see http://support.microsoft.com/default.aspx?scid=kb;en-us;899149).\nTo work around this, please either obtain write permission for that file\n(I won't write anything to it, I promise!!!) or copy it to a local drive.\nSorry for the inconvenience.\"\"\"\n , ioe.filename)\n datasets = re.findall(\n '#\\\\s*(?P<name>\\\\w+)\\\\[(?P<xsize>\\\\d+):(?P<ysize>\\\\d+)\\\\]', s)\n names = [d[0] for d in datasets]\n xsize = [int(d[1]) for d in datasets]\n ysize = [int(d[2]) for d in datasets]\n dt = np.dtype(bdf['type'])\n for i in range(len(datasets)):\n start = s.find('#%s' % names[i])\n if i < len(datasets) - 1:\n end = s.find('#%s' % names[i + 1])\n else:\n end = len(s)\n s1 = s[start:end]\n datasize = xsize[i] * ysize[i] * dt.itemsize\n if datasize > len(s1):\n bdf[names[i]] = np.fromstring(s1[-xsize[i] * ysize[i]:],\n dtype=np.uint8)\n else:\n bdf[names[i]] = np.fromstring(s1[-xsize[i] * ysize[i] * dt.\n itemsize:], dtype=dt)\n bdf[names[i]] = np.rot90(bdf[names[i]].reshape((ysize[i], xsize\n [i]), order='F'), 1)\n return bdf\n", "role": "user" }, { "content": "readbhfv1", "role": "assistant" } ]
def x(filename): with open(filename, 'rb') as f: intheader = np.fromstring(f.read(10 * 4), np.int32) floatheader = np.fromstring(f.read(15 * 4), '<f4') strheader = f.read(24) f.read(4) otherstrings = [f.read(16) for i in range(29)] return {'Xsize': intheader[0], 'Ysize': intheader[1], 'MeasTime': intheader[8], 'BeamPosX': floatheader[7], 'BeamPosY': floatheader[8 ], 'Wavelength': floatheader[9], 'Dist': floatheader[10], '__Origin__': 'MarResearch .image', 'recordlength': intheader[2], 'highintensitypixels': intheader[4], 'highintensityrecords': intheader[5], 'Date': dateutil.parser.parse(strheader), 'Detector': 'MARCCD', '__particle__': 'photon'}
readmarheader
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n with open(filename, 'rb') as f:\n intheader = np.fromstring(f.read(10 * 4), np.int32)\n floatheader = np.fromstring(f.read(15 * 4), '<f4')\n strheader = f.read(24)\n f.read(4)\n otherstrings = [f.read(16) for i in range(29)]\n return {'Xsize': intheader[0], 'Ysize': intheader[1], 'MeasTime':\n intheader[8], 'BeamPosX': floatheader[7], 'BeamPosY': floatheader[8\n ], 'Wavelength': floatheader[9], 'Dist': floatheader[10],\n '__Origin__': 'MarResearch .image', 'recordlength': intheader[2],\n 'highintensitypixels': intheader[4], 'highintensityrecords':\n intheader[5], 'Date': dateutil.parser.parse(strheader), 'Detector':\n 'MARCCD', '__particle__': 'photon'}\n", "role": "user" }, { "content": "readmarheader", "role": "assistant" } ]
def x(filename): hed = {'Comment': ''} translate = {'Lambda': 'Wavelength', 'Title': 'Owner', 'SampleName': 'Title', 'BeamcenterX': 'BeamPosY', 'BeamcenterY': 'BeamPosX', 'Time': 'MeasTime', 'TotalTime': 'MeasTime', 'Moni1': 'Monitor', 'Moni2': 'Monitor', 'Moni': 'Monitor', 'Transmission': 'Transm'} with open(filename, 'rt') as f: comment_next = False for l in f: l = l.strip() if comment_next: hed['Comment'] = hed['Comment'] + '\n' + l comment_next = False elif l.startswith('%Counts'): break elif l.startswith('%Comment'): comment_next = True elif l.startswith('%'): continue elif l.split('=', 1)[0] in translate: hed[translate[l.split('=', 1)[0]]] = misc.parse_number(l. split('=', 1)[1]) else: try: hed[l.split('=', 1)[0]] = misc.parse_number(l.split('=', 1)[1]) except IndexError: print(l.split('=', 1)) if 'FileName' in hed: m = re.match('D(\\d+)\\.(\\d+)', hed['FileName']) if m is not None: hed['FSN'] = int(m.groups()[0]) hed['suffix'] = int(m.groups()[1]) if 'FileDate' in hed: hed['Date'] = dateutil.parser.parse(hed['FileDate']) if 'FileTime' in hed: hed['Date'] = datetime.datetime.combine(hed['Date'].date(), dateutil.parser.parse(hed['FileTime']).time()) hed['__Origin__'] = 'BerSANS' if 'SD' in hed: hed['Dist'] = hed['SD'] * 1000 if hed['Comment'].startswith('\n'): hed['Comment'] = hed['Comment'][1:] hed['__particle__'] = 'neutron' hed['Wavelength'] *= 10 return hed
readBerSANS
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n hed = {'Comment': ''}\n translate = {'Lambda': 'Wavelength', 'Title': 'Owner', 'SampleName':\n 'Title', 'BeamcenterX': 'BeamPosY', 'BeamcenterY': 'BeamPosX',\n 'Time': 'MeasTime', 'TotalTime': 'MeasTime', 'Moni1': 'Monitor',\n 'Moni2': 'Monitor', 'Moni': 'Monitor', 'Transmission': 'Transm'}\n with open(filename, 'rt') as f:\n comment_next = False\n for l in f:\n l = l.strip()\n if comment_next:\n hed['Comment'] = hed['Comment'] + '\\n' + l\n comment_next = False\n elif l.startswith('%Counts'):\n break\n elif l.startswith('%Comment'):\n comment_next = True\n elif l.startswith('%'):\n continue\n elif l.split('=', 1)[0] in translate:\n hed[translate[l.split('=', 1)[0]]] = misc.parse_number(l.\n split('=', 1)[1])\n else:\n try:\n hed[l.split('=', 1)[0]] = misc.parse_number(l.split('=',\n 1)[1])\n except IndexError:\n print(l.split('=', 1))\n if 'FileName' in hed:\n m = re.match('D(\\\\d+)\\\\.(\\\\d+)', hed['FileName'])\n if m is not None:\n hed['FSN'] = int(m.groups()[0])\n hed['suffix'] = int(m.groups()[1])\n if 'FileDate' in hed:\n hed['Date'] = dateutil.parser.parse(hed['FileDate'])\n if 'FileTime' in hed:\n hed['Date'] = datetime.datetime.combine(hed['Date'].date(),\n dateutil.parser.parse(hed['FileTime']).time())\n hed['__Origin__'] = 'BerSANS'\n if 'SD' in hed:\n hed['Dist'] = hed['SD'] * 1000\n if hed['Comment'].startswith('\\n'):\n hed['Comment'] = hed['Comment'][1:]\n hed['__particle__'] = 'neutron'\n hed['Wavelength'] *= 10\n return hed\n", "role": "user" }, { "content": "readBerSANS", "role": "assistant" } ]
def x(x, a, omega, phi, y0): return a * np.sin(x * omega + phi) + y0
Sine
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, omega, phi, y0):\n return a * np.sin(x * omega + phi) + y0\n", "role": "user" }, { "content": "Sine", "role": "assistant" } ]
def x(x, a, omega, phi, y0): return a * np.cos(x * omega + phi) + y0
Cosine
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, omega, phi, y0):\n return a * np.cos(x * omega + phi) + y0\n", "role": "user" }, { "content": "Cosine", "role": "assistant" } ]
def x(x, a, b, c): return a * x ** 2 + b * x + c
Square
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, b, c):\n return a * x ** 2 + b * x + c\n", "role": "user" }, { "content": "Square", "role": "assistant" } ]
def x(x, a, b, c, d): return a * x ** 3 + b * x ** 2 + c * x + d
Cube
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, b, c, d):\n return a * x ** 3 + b * x ** 2 + c * x + d\n", "role": "user" }, { "content": "Cube", "role": "assistant" } ]
def x(x, a, tau, y0): return np.exp(x / tau) * a + y0
Exponential
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, tau, y0):\n return np.exp(x / tau) * a + y0\n", "role": "user" }, { "content": "Exponential", "role": "assistant" } ]
def x(x, a, x0, sigma, y0): return a / (1 + ((x - x0) / sigma) ** 2) + y0
Lorentzian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, x0, sigma, y0):\n return a / (1 + ((x - x0) / sigma) ** 2) + y0\n", "role": "user" }, { "content": "Lorentzian", "role": "assistant" } ]
def x(x, a, x0, sigma, y0): return a * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2)) + y0
Gaussian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, x0, sigma, y0):\n return a * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2)) + y0\n", "role": "user" }, { "content": "Gaussian", "role": "assistant" } ]
def x(x, a, mu, sigma): return a / np.sqrt(2 * np.pi * sigma ** 2 * x ** 2) * np.exp(-(np.log(x ) - mu) ** 2 / (2 * sigma ** 2))
LogNormal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, mu, sigma):\n return a / np.sqrt(2 * np.pi * sigma ** 2 * x ** 2) * np.exp(-(np.log(x\n ) - mu) ** 2 / (2 * sigma ** 2))\n", "role": "user" }, { "content": "LogNormal", "role": "assistant" } ]
def x(data, dataerr, bcx, bcy, mask=None, pix=None, returnavgpix=False, phi0=0, dphi=0, returnmask=False, symmetric_sector=False, doslice=False, errorpropagation=2, autoqrange_linear=True): if isinstance(data, np.ndarray): data = data.astype(np.double) if isinstance(dataerr, np.ndarray): dataerr = dataerr.astype(np.double) if isinstance(mask, np.ndarray): mask = mask.astype(np.uint8) return radint(data, dataerr, -1, -1, -1, 1.0 * bcx, 1.0 * bcy, mask, pix, returnavgpix, phi0, dphi, returnmask, symmetric_sector, doslice, False, errorpropagation, autoqrange_linear)
radintpix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, dataerr, bcx, bcy, mask=None, pix=None, returnavgpix=False,\n phi0=0, dphi=0, returnmask=False, symmetric_sector=False, doslice=False,\n errorpropagation=2, autoqrange_linear=True):\n if isinstance(data, np.ndarray):\n data = data.astype(np.double)\n if isinstance(dataerr, np.ndarray):\n dataerr = dataerr.astype(np.double)\n if isinstance(mask, np.ndarray):\n mask = mask.astype(np.uint8)\n return radint(data, dataerr, -1, -1, -1, 1.0 * bcx, 1.0 * bcy, mask,\n pix, returnavgpix, phi0, dphi, returnmask, symmetric_sector,\n doslice, False, errorpropagation, autoqrange_linear)\n", "role": "user" }, { "content": "radintpix", "role": "assistant" } ]
def x(data, dataerr, bcx, bcy, mask=None, Ntheta=100, pixmin=0, pixmax=np. inf, returnmask=False, errorpropagation=2): if isinstance(data, np.ndarray): data = data.astype(np.double) if isinstance(dataerr, np.ndarray): dataerr = dataerr.astype(np.double) if isinstance(mask, np.ndarray): mask = mask.astype(np.uint8) return azimint(data, dataerr, -1, -1, -1, bcx, bcy, mask, Ntheta, pixmin, pixmax, returnmask, errorpropagation)
azimintpix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, dataerr, bcx, bcy, mask=None, Ntheta=100, pixmin=0, pixmax=np.\n inf, returnmask=False, errorpropagation=2):\n if isinstance(data, np.ndarray):\n data = data.astype(np.double)\n if isinstance(dataerr, np.ndarray):\n dataerr = dataerr.astype(np.double)\n if isinstance(mask, np.ndarray):\n mask = mask.astype(np.uint8)\n return azimint(data, dataerr, -1, -1, -1, bcx, bcy, mask, Ntheta,\n pixmin, pixmax, returnmask, errorpropagation)\n", "role": "user" }, { "content": "azimintpix", "role": "assistant" } ]
def x(startdir='.', recursion_depth=None): startdir = os.path.expanduser(startdir) direct_subdirs = [os.path.join(startdir, x) for x in os.listdir( startdir) if os.path.isdir(os.path.join(startdir, x))] if recursion_depth is None: next_recursion_depth = None else: next_recursion_depth = recursion_depth - 1 if recursion_depth is not None and recursion_depth <= 1: return [startdir] + direct_subdirs else: subdirs = [] for d in direct_subdirs: subdirs.extend(find_subdirs(d, next_recursion_depth)) return [startdir] + subdirs
find_subdirs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(startdir='.', recursion_depth=None):\n startdir = os.path.expanduser(startdir)\n direct_subdirs = [os.path.join(startdir, x) for x in os.listdir(\n startdir) if os.path.isdir(os.path.join(startdir, x))]\n if recursion_depth is None:\n next_recursion_depth = None\n else:\n next_recursion_depth = recursion_depth - 1\n if recursion_depth is not None and recursion_depth <= 1:\n return [startdir] + direct_subdirs\n else:\n subdirs = []\n for d in direct_subdirs:\n subdirs.extend(find_subdirs(d, next_recursion_depth))\n return [startdir] + subdirs\n", "role": "user" }, { "content": "find_subdirs", "role": "assistant" } ]
def x(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude= None, curve='Lorentz'): warnings.warn( 'Function findpeak() is deprecated, please use findpeak_single() instead.' , DeprecationWarning) pos, hwhm, baseline, ampl = findpeak_single(x, y, dy, position, hwhm, baseline, amplitude, curve) return (pos.val, pos.err, hwhm.val, hwhm.err, baseline.val, baseline. err, ampl.val, ampl.err)
findpeak
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude=\n None, curve='Lorentz'):\n warnings.warn(\n 'Function findpeak() is deprecated, please use findpeak_single() instead.'\n , DeprecationWarning)\n pos, hwhm, baseline, ampl = findpeak_single(x, y, dy, position, hwhm,\n baseline, amplitude, curve)\n return (pos.val, pos.err, hwhm.val, hwhm.err, baseline.val, baseline.\n err, ampl.val, ampl.err)\n", "role": "user" }, { "content": "findpeak", "role": "assistant" } ]
def x(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude= None, curve='Lorentz', return_stat=False, signs=(-1, 1), return_x=None): y_orig = y if dy is None: dy = np.ones_like(x) if curve.upper().startswith('GAUSS'): def x(x_, amplitude_, position_, hwhm_, baseline_): return amplitude_ * np.exp(-0.5 * (x_ - position_) ** 2 / hwhm_ ** 2) + baseline_ elif curve.upper().startswith('LORENTZ'): def x(x_, amplitude_, position_, hwhm_, baseline_): return amplitude_ * hwhm_ ** 2 / (hwhm_ ** 2 + (position_ - x_) ** 2) + baseline_ else: raise ValueError('Invalid curve type: {}'.format(curve)) results = [] for sign in signs: init_params = {'position': position, 'hwhm': hwhm, 'baseline': baseline, 'amplitude': amplitude} y = y_orig * sign if init_params['position'] is None: init_params['position'] = x[y == y.max()][0] if init_params['hwhm'] is None: init_params['hwhm'] = 0.5 * (x.max() - x.min()) if init_params['baseline'] is None: init_params['baseline'] = y.min() if init_params['amplitude'] is None: init_params['amplitude'] = y.max() - init_params['baseline'] results.append(nlsq_fit(x, y, dy, fitfunc, (init_params['amplitude' ], init_params['position'], init_params['hwhm'], init_params[ 'baseline'])) + (sign,)) max_R2 = max([r[2]['R2'] for r in results]) p, dp, stat, sign = [r for r in results if r[2]['R2'] == max_R2][0] retval = [ErrorValue(p[1], dp[1]), ErrorValue(abs(p[2]), dp[2]), sign * ErrorValue(p[3], dp[3]), sign * ErrorValue(p[0], dp[0])] if return_stat: stat['func_value'] = stat['func_value'] * sign retval.append(stat) if return_x is not None: retval.append(sign * fitfunc(return_x, p[0], p[1], p[2], p[3])) return tuple(retval)
findpeak_single
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude=\n None, curve='Lorentz', return_stat=False, signs=(-1, 1), return_x=None):\n y_orig = y\n if dy is None:\n dy = np.ones_like(x)\n if curve.upper().startswith('GAUSS'):\n\n def x(x_, amplitude_, position_, hwhm_, baseline_):\n return amplitude_ * np.exp(-0.5 * (x_ - position_) ** 2 / hwhm_ **\n 2) + baseline_\n elif curve.upper().startswith('LORENTZ'):\n\n def x(x_, amplitude_, position_, hwhm_, baseline_):\n return amplitude_ * hwhm_ ** 2 / (hwhm_ ** 2 + (position_ - x_) **\n 2) + baseline_\n else:\n raise ValueError('Invalid curve type: {}'.format(curve))\n results = []\n for sign in signs:\n init_params = {'position': position, 'hwhm': hwhm, 'baseline':\n baseline, 'amplitude': amplitude}\n y = y_orig * sign\n if init_params['position'] is None:\n init_params['position'] = x[y == y.max()][0]\n if init_params['hwhm'] is None:\n init_params['hwhm'] = 0.5 * (x.max() - x.min())\n if init_params['baseline'] is None:\n init_params['baseline'] = y.min()\n if init_params['amplitude'] is None:\n init_params['amplitude'] = y.max() - init_params['baseline']\n results.append(nlsq_fit(x, y, dy, fitfunc, (init_params['amplitude'\n ], init_params['position'], init_params['hwhm'], init_params[\n 'baseline'])) + (sign,))\n max_R2 = max([r[2]['R2'] for r in results])\n p, dp, stat, sign = [r for r in results if r[2]['R2'] == max_R2][0]\n retval = [ErrorValue(p[1], dp[1]), ErrorValue(abs(p[2]), dp[2]), sign *\n ErrorValue(p[3], dp[3]), sign * ErrorValue(p[0], dp[0])]\n if return_stat:\n stat['func_value'] = stat['func_value'] * sign\n retval.append(stat)\n if return_x is not None:\n retval.append(sign * fitfunc(return_x, p[0], p[1], p[2], p[3]))\n return tuple(retval)\n", "role": "user" }, { "content": "findpeak_single", "role": "assistant" } ]
def x(x, y, dy, N, Ntolerance, Nfit=None, curve='Lorentz', return_xfit= False, return_stat=False): if Nfit is None: Nfit = N sgndiff = np.sign(np.diff(y)) xdiff = x[:-1] pix = np.arange(len(x) - 1) indicator = np.zeros(len(sgndiff) - 2 * N) for i in range(2 * N): indicator += np.sign(N - i) * sgndiff[i:-2 * N + i] indicator += -sgndiff[2 * N:] peakpospix = pix[N:-N][indicator >= 2 * N - 2 * Ntolerance] ypeak = y[peakpospix] pos = [] ampl = [] hwhm = [] baseline = [] xfit = [] stat = [] dy1 = None for i in range(len(ypeak)): if not [j for j in list(range(i + 1, len(ypeak))) + list(range(0, i )) if abs(peakpospix[j] - peakpospix[i]) <= N and ypeak[i] < ypeak[j]]: idx = peakpospix[i] if dy is not None: dy1 = dy[idx - Nfit:idx + Nfit + 1] xfit_ = x[idx - Nfit:idx + Nfit + 1] pos_, hwhm_, baseline_, ampl_, stat_ = findpeak_single(xfit_, y [idx - Nfit:idx + Nfit + 1], dy1, position=x[idx], return_stat=True) stat.append(stat_) xfit.append(xfit_) pos.append(pos_) ampl.append(ampl_) hwhm.append(hwhm_) baseline.append(baseline_) results = [pos, hwhm, baseline, ampl] if return_xfit: results.append(xfit) if return_stat: results.append(stat) return tuple(results)
findpeak_multi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, dy, N, Ntolerance, Nfit=None, curve='Lorentz', return_xfit=\n False, return_stat=False):\n if Nfit is None:\n Nfit = N\n sgndiff = np.sign(np.diff(y))\n xdiff = x[:-1]\n pix = np.arange(len(x) - 1)\n indicator = np.zeros(len(sgndiff) - 2 * N)\n for i in range(2 * N):\n indicator += np.sign(N - i) * sgndiff[i:-2 * N + i]\n indicator += -sgndiff[2 * N:]\n peakpospix = pix[N:-N][indicator >= 2 * N - 2 * Ntolerance]\n ypeak = y[peakpospix]\n pos = []\n ampl = []\n hwhm = []\n baseline = []\n xfit = []\n stat = []\n dy1 = None\n for i in range(len(ypeak)):\n if not [j for j in list(range(i + 1, len(ypeak))) + list(range(0, i\n )) if abs(peakpospix[j] - peakpospix[i]) <= N and ypeak[i] <\n ypeak[j]]:\n idx = peakpospix[i]\n if dy is not None:\n dy1 = dy[idx - Nfit:idx + Nfit + 1]\n xfit_ = x[idx - Nfit:idx + Nfit + 1]\n pos_, hwhm_, baseline_, ampl_, stat_ = findpeak_single(xfit_, y\n [idx - Nfit:idx + Nfit + 1], dy1, position=x[idx],\n return_stat=True)\n stat.append(stat_)\n xfit.append(xfit_)\n pos.append(pos_)\n ampl.append(ampl_)\n hwhm.append(hwhm_)\n baseline.append(baseline_)\n results = [pos, hwhm, baseline, ampl]\n if return_xfit:\n results.append(xfit)\n if return_stat:\n results.append(stat)\n return tuple(results)\n", "role": "user" }, { "content": "findpeak_multi", "role": "assistant" } ]
def x(x, y, dy=None, curve='Lorentz', return_x=None, init_parameters=None): idx = np.logical_and(np.isfinite(x), np.isfinite(y)) if dy is not None: idx = np.logical_and(idx, np.isfinite(dy)) x = x[idx] y = y[idx] if dy is not None: dy = dy[idx] if curve.lower().startswith('loren'): lorentzian = True elif curve.lower().startswith('gauss'): lorentzian = False else: raise ValueError('Unknown peak type {}'.format(curve)) def x(pars, x, lorentzian=True): x0, sigma1, sigma2, C, A = pars result = np.empty_like(x) if lorentzian: result[x < x0] = A * sigma1 ** 2 / (sigma1 ** 2 + (x0 - x[x < x0]) ** 2) + C result[x >= x0] = A * sigma2 ** 2 / (sigma2 ** 2 + (x0 - x[x >= x0]) ** 2) + C else: result[x < x0] = A * np.exp(-(x[x < x0] - x0) ** 2 / (2 * sigma1 ** 2)) result[x >= x0] = A * np.exp(-(x[x >= x0] - x0) ** 2 / (2 * sigma1 ** 2)) return result def x(pars, x, y, dy, lorentzian=True): yfit = peakfunc(pars, x, lorentzian) if dy is None: return yfit - y else: return (yfit - y) / dy if init_parameters is not None: pos, hwhmleft, hwhmright, baseline, amplitude = [float(x) for x in init_parameters] else: baseline = y.min() amplitude = y.max() - baseline hwhmleft = hwhmright = (x.max() - x.min()) * 0.5 pos = x[np.argmax(y)] result = scipy.optimize.least_squares(fitfunc, [pos, hwhmleft, hwhmright, baseline, amplitude], args=(x, y, dy, lorentzian), bounds=([x.min(), 0, 0, -np.inf, 0], [x.max(), np.inf, np.inf, np. inf, np.inf])) if not result.success: raise RuntimeError('Error while peak fitting: {}'.format(result. message)) if dy is None: ret = result.x[0], result.x[1], result.x[2], result.x[3], result.x[4] else: _, s, VT = svd(result.jac, full_matrices=False) threshold = np.finfo(float).eps * max(result.jac.shape) * s[0] s = s[s > threshold] VT = VT[:s.size] pcov = np.dot(VT.T / s ** 2, VT) ret = tuple([ErrorValue(result.x[i], pcov[i, i] ** 0.5) for i in range(5)]) if return_x is not None: ret = ret + (peakfunc([float(x) for x in ret], return_x, lorentzian),) return ret
findpeak_asymmetric
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, dy=None, curve='Lorentz', return_x=None, init_parameters=None):\n idx = np.logical_and(np.isfinite(x), np.isfinite(y))\n if dy is not None:\n idx = np.logical_and(idx, np.isfinite(dy))\n x = x[idx]\n y = y[idx]\n if dy is not None:\n dy = dy[idx]\n if curve.lower().startswith('loren'):\n lorentzian = True\n elif curve.lower().startswith('gauss'):\n lorentzian = False\n else:\n raise ValueError('Unknown peak type {}'.format(curve))\n\n def x(pars, x, lorentzian=True):\n x0, sigma1, sigma2, C, A = pars\n result = np.empty_like(x)\n if lorentzian:\n result[x < x0] = A * sigma1 ** 2 / (sigma1 ** 2 + (x0 - x[x <\n x0]) ** 2) + C\n result[x >= x0] = A * sigma2 ** 2 / (sigma2 ** 2 + (x0 - x[x >=\n x0]) ** 2) + C\n else:\n result[x < x0] = A * np.exp(-(x[x < x0] - x0) ** 2 / (2 * \n sigma1 ** 2))\n result[x >= x0] = A * np.exp(-(x[x >= x0] - x0) ** 2 / (2 * \n sigma1 ** 2))\n return result\n\n def x(pars, x, y, dy, lorentzian=True):\n yfit = peakfunc(pars, x, lorentzian)\n if dy is None:\n return yfit - y\n else:\n return (yfit - y) / dy\n if init_parameters is not None:\n pos, hwhmleft, hwhmright, baseline, amplitude = [float(x) for x in\n init_parameters]\n else:\n baseline = y.min()\n amplitude = y.max() - baseline\n hwhmleft = hwhmright = (x.max() - x.min()) * 0.5\n pos = x[np.argmax(y)]\n result = scipy.optimize.least_squares(fitfunc, [pos, hwhmleft,\n hwhmright, baseline, amplitude], args=(x, y, dy, lorentzian),\n bounds=([x.min(), 0, 0, -np.inf, 0], [x.max(), np.inf, np.inf, np.\n inf, np.inf]))\n if not result.success:\n raise RuntimeError('Error while peak fitting: {}'.format(result.\n message))\n if dy is None:\n ret = result.x[0], result.x[1], result.x[2], result.x[3], result.x[4]\n else:\n _, s, VT = svd(result.jac, full_matrices=False)\n threshold = np.finfo(float).eps * max(result.jac.shape) * s[0]\n s = s[s > threshold]\n VT = VT[:s.size]\n pcov = np.dot(VT.T / s ** 2, VT)\n ret = tuple([ErrorValue(result.x[i], pcov[i, i] ** 0.5) for i in\n range(5)])\n if return_x is not None:\n ret = ret + (peakfunc([float(x) for x in ret], return_x, lorentzian),)\n return ret\n", "role": "user" }, { "content": "findpeak_asymmetric", "role": "assistant" } ]
def x(f, number=None): scan = None scannumber = None while True: l = f.readline() if l.startswith('#S'): scannumber = int(l[2:].split()[0]) if not (number is None or number == scannumber): break if scan is None: scan = {} scan['number'] = scannumber scan['command'] = l[2:].split(None, 1)[1].strip() scan['data'] = [] elif l.startswith('#C'): scan['comment'] = l[2:].strip() elif l.startswith('#D'): scan['datestring'] = l[2:].strip() elif l.startswith('#T'): scan['countingtime'] = float(l[2:].split()[0]) scan['scantimeunits'] = l[2:].split()[1].strip() elif l.startswith('#M'): scan['countingcounts'] = float(l[2:].split()[0]) elif l.startswith('#G'): if 'G' not in scan: scan['G'] = [] scan['G'].extend([float(x) for x in l.split()[1:]]) elif l.startswith('#P'): if 'positions' not in scan: scan['positions'] = [] scan['positions'].extend([float(x) for x in l.split()[1:]]) elif l.startswith('#Q'): pass elif l.startswith('#N'): n = [float(x) for x in l[2:].strip().split()] if len(n) == 1: scan['N'] = n[0] else: scan['N'] = n elif l.startswith('#L'): scan['Columns'] = [x.strip() for x in l[3:].split(' ')] elif not l: if scan is None: raise SpecFileEOF else: break elif not l.strip(): break elif l.startswith('#'): continue else: scan['data'].append(tuple(float(x) for x in l.split())) while l.strip(): l = f.readline() if scan is not None: scan['data'] = np.array(scan['data'], dtype=list(zip(scan['Columns' ], itertools.repeat(np.float)))) return scan else: return scannumber
readspecscan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, number=None):\n scan = None\n scannumber = None\n while True:\n l = f.readline()\n if l.startswith('#S'):\n scannumber = int(l[2:].split()[0])\n if not (number is None or number == scannumber):\n break\n if scan is None:\n scan = {}\n scan['number'] = scannumber\n scan['command'] = l[2:].split(None, 1)[1].strip()\n scan['data'] = []\n elif l.startswith('#C'):\n scan['comment'] = l[2:].strip()\n elif l.startswith('#D'):\n scan['datestring'] = l[2:].strip()\n elif l.startswith('#T'):\n scan['countingtime'] = float(l[2:].split()[0])\n scan['scantimeunits'] = l[2:].split()[1].strip()\n elif l.startswith('#M'):\n scan['countingcounts'] = float(l[2:].split()[0])\n elif l.startswith('#G'):\n if 'G' not in scan:\n scan['G'] = []\n scan['G'].extend([float(x) for x in l.split()[1:]])\n elif l.startswith('#P'):\n if 'positions' not in scan:\n scan['positions'] = []\n scan['positions'].extend([float(x) for x in l.split()[1:]])\n elif l.startswith('#Q'):\n pass\n elif l.startswith('#N'):\n n = [float(x) for x in l[2:].strip().split()]\n if len(n) == 1:\n scan['N'] = n[0]\n else:\n scan['N'] = n\n elif l.startswith('#L'):\n scan['Columns'] = [x.strip() for x in l[3:].split(' ')]\n elif not l:\n if scan is None:\n raise SpecFileEOF\n else:\n break\n elif not l.strip():\n break\n elif l.startswith('#'):\n continue\n else:\n scan['data'].append(tuple(float(x) for x in l.split()))\n while l.strip():\n l = f.readline()\n if scan is not None:\n scan['data'] = np.array(scan['data'], dtype=list(zip(scan['Columns'\n ], itertools.repeat(np.float))))\n return scan\n else:\n return scannumber\n", "role": "user" }, { "content": "readspecscan", "role": "assistant" } ]
def x(filename, read_scan=None): with open(filename, 'rt') as f: sf = {'motors': [], 'maxscannumber': 0} sf['originalfilename'] = filename lastscannumber = None while True: l = f.readline() if l.startswith('#F'): sf['filename'] = l[2:].strip() elif l.startswith('#E'): sf['epoch'] = int(l[2:].strip()) sf['datetime'] = datetime.datetime.fromtimestamp(sf['epoch']) elif l.startswith('#D'): sf['datestring'] = l[2:].strip() elif l.startswith('#C'): sf['comment'] = l[2:].strip() elif l.startswith('#O'): try: l = l.split(None, 1)[1] except IndexError: continue if 'motors' not in list(sf.keys()): sf['motors'] = [] sf['motors'].extend([x.strip() for x in l.split(' ')]) elif not l.strip(): break sf['scans'] = {} if read_scan is not None: if read_scan == 'all': nr = None else: nr = read_scan try: while True: s = readspecscan(f, nr) if isinstance(s, dict): sf['scans'][s['number']] = s if nr is not None: break sf['maxscannumber'] = max(sf['maxscannumber'], s[ 'number']) elif s is not None: sf['maxscannumber'] = max(sf['maxscannumber'], s) except SpecFileEOF: pass else: while True: l = f.readline() if not l: break if l.startswith('#S'): n = int(l[2:].split()[0]) sf['maxscannumber'] = max(sf['maxscannumber'], n) for n in sf['scans']: s = sf['scans'][n] s['motors'] = sf['motors'] if 'comment' not in s: s['comment'] = sf['comment'] if 'positions' not in s: s['positions'] = [None] * len(sf['motors']) return sf
readspec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, read_scan=None):\n with open(filename, 'rt') as f:\n sf = {'motors': [], 'maxscannumber': 0}\n sf['originalfilename'] = filename\n lastscannumber = None\n while True:\n l = f.readline()\n if l.startswith('#F'):\n sf['filename'] = l[2:].strip()\n elif l.startswith('#E'):\n sf['epoch'] = int(l[2:].strip())\n sf['datetime'] = datetime.datetime.fromtimestamp(sf['epoch'])\n elif l.startswith('#D'):\n sf['datestring'] = l[2:].strip()\n elif l.startswith('#C'):\n sf['comment'] = l[2:].strip()\n elif l.startswith('#O'):\n try:\n l = l.split(None, 1)[1]\n except IndexError:\n continue\n if 'motors' not in list(sf.keys()):\n sf['motors'] = []\n sf['motors'].extend([x.strip() for x in l.split(' ')])\n elif not l.strip():\n break\n sf['scans'] = {}\n if read_scan is not None:\n if read_scan == 'all':\n nr = None\n else:\n nr = read_scan\n try:\n while True:\n s = readspecscan(f, nr)\n if isinstance(s, dict):\n sf['scans'][s['number']] = s\n if nr is not None:\n break\n sf['maxscannumber'] = max(sf['maxscannumber'], s[\n 'number'])\n elif s is not None:\n sf['maxscannumber'] = max(sf['maxscannumber'], s)\n except SpecFileEOF:\n pass\n else:\n while True:\n l = f.readline()\n if not l:\n break\n if l.startswith('#S'):\n n = int(l[2:].split()[0])\n sf['maxscannumber'] = max(sf['maxscannumber'], n)\n for n in sf['scans']:\n s = sf['scans'][n]\n s['motors'] = sf['motors']\n if 'comment' not in s:\n s['comment'] = sf['comment']\n if 'positions' not in s:\n s['positions'] = [None] * len(sf['motors'])\n return sf\n", "role": "user" }, { "content": "readspec", "role": "assistant" } ]
def x(filename, dirs='.'): filename = misc.findfileindirs(filename, dirs) f = open(filename, 'rt') abt = {'offsetcorrected': False, 'params': {}, 'columns': [], 'data': [ ], 'title': '<no_title>', 'offsets': {}, 'filename': filename} readingmode = '' for l in f: l = l.strip() if l.startswith('!') or len(l) == 0: continue elif l.startswith('%c'): readingmode = 'comments' elif l.startswith('%p'): readingmode = 'params' elif l.startswith('%d'): readingmode = 'data' elif readingmode == 'comments': m = re.match( '(?P<scantype>\\w+)-Scan started at (?P<startdate>\\d+-\\w+-\\d+) (?P<starttime>\\d+:\\d+:\\d+), ended (?P<endtime>\\d+:\\d+:\\d+)' , l) if m: abt.update(m.groupdict()) continue else: m = re.match('Name: (?P<name>\\w+)', l) if m: abt.update(m.groupdict()) m1 = re.search('from (?P<from>\\d+(?:.\\d+)?)', l) if m1: abt.update(m1.groupdict()) m1 = re.search('to (?P<to>\\d+(?:.\\d+)?)', l) if m1: abt.update(m1.groupdict()) m1 = re.search('by (?P<by>\\d+(?:.\\d+)?)', l) if m1: abt.update(m1.groupdict()) m1 = re.search('sampling (?P<sampling>\\d+(?:.\\d+)?)', l) if m1: abt.update(m1.groupdict()) continue if l.find('Counter readings are offset corrected') >= 0: abt['offsetcorrected'] = True readingmode = 'offsets' continue abt['title'] = l continue elif readingmode == 'offsets': m = re.findall('(\\w+)\\s(\\d+(?:.\\d+)?)', l) if m: abt['offsets'].update(dict(m)) for k in abt['offsets']: abt['offsets'][k] = float(abt['offsets'][k]) elif readingmode == 'params': abt['params'][l.split('=')[0].strip()] = float(l.split('=')[1]. strip()) elif readingmode == 'data': if l.startswith('Col'): abt['columns'].append(l.split()[2]) else: abt['data'].append([float(x) for x in l.split()]) f.close() maxcolnamelen = max(len(c) for c in abt['columns']) l = 1 for l in range(1, maxcolnamelen): if len(set([c[:l] for c in abt['columns']])) > 1: break abt['columns'] = [c[l - 1:] for c in abt['columns']] dt = np.dtype(list(zip(abt['columns'], itertools.repeat(np.double)))) abt['data'] = np.array(abt['data'], dtype=np.double).view(dt) monthnames = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] for m, i in zip(monthnames, itertools.count(1)): abt['startdate'] = abt['startdate'].replace(m, str(i)) abt['startdate'] = datetime.date(*reversed([int(x) for x in abt[ 'startdate'].split('-')])) abt['starttime'] = datetime.time(*[int(x) for x in abt['starttime']. split(':')]) abt['endtime'] = datetime.time(*[int(x) for x in abt['endtime'].split(':')] ) abt['start'] = datetime.datetime.combine(abt['startdate'], abt['starttime'] ) if abt['endtime'] <= abt['starttime']: abt['end'] = datetime.datetime.combine(abt['startdate'] + datetime. timedelta(1), abt['endtime']) else: abt['end'] = datetime.datetime.combine(abt['startdate'], abt['endtime'] ) del abt['starttime'] del abt['startdate'] del abt['endtime'] for k in ['from', 'to', 'by', 'sampling']: if k in abt: abt[k] = float(abt[k]) abt['title'] = abt['title'].replace('-', '_').replace(' ', '_') return abt
readabt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, dirs='.'):\n filename = misc.findfileindirs(filename, dirs)\n f = open(filename, 'rt')\n abt = {'offsetcorrected': False, 'params': {}, 'columns': [], 'data': [\n ], 'title': '<no_title>', 'offsets': {}, 'filename': filename}\n readingmode = ''\n for l in f:\n l = l.strip()\n if l.startswith('!') or len(l) == 0:\n continue\n elif l.startswith('%c'):\n readingmode = 'comments'\n elif l.startswith('%p'):\n readingmode = 'params'\n elif l.startswith('%d'):\n readingmode = 'data'\n elif readingmode == 'comments':\n m = re.match(\n '(?P<scantype>\\\\w+)-Scan started at (?P<startdate>\\\\d+-\\\\w+-\\\\d+) (?P<starttime>\\\\d+:\\\\d+:\\\\d+), ended (?P<endtime>\\\\d+:\\\\d+:\\\\d+)'\n , l)\n if m:\n abt.update(m.groupdict())\n continue\n else:\n m = re.match('Name: (?P<name>\\\\w+)', l)\n if m:\n abt.update(m.groupdict())\n m1 = re.search('from (?P<from>\\\\d+(?:.\\\\d+)?)', l)\n if m1:\n abt.update(m1.groupdict())\n m1 = re.search('to (?P<to>\\\\d+(?:.\\\\d+)?)', l)\n if m1:\n abt.update(m1.groupdict())\n m1 = re.search('by (?P<by>\\\\d+(?:.\\\\d+)?)', l)\n if m1:\n abt.update(m1.groupdict())\n m1 = re.search('sampling (?P<sampling>\\\\d+(?:.\\\\d+)?)', l)\n if m1:\n abt.update(m1.groupdict())\n continue\n if l.find('Counter readings are offset corrected') >= 0:\n abt['offsetcorrected'] = True\n readingmode = 'offsets'\n continue\n abt['title'] = l\n continue\n elif readingmode == 'offsets':\n m = re.findall('(\\\\w+)\\\\s(\\\\d+(?:.\\\\d+)?)', l)\n if m:\n abt['offsets'].update(dict(m))\n for k in abt['offsets']:\n abt['offsets'][k] = float(abt['offsets'][k])\n elif readingmode == 'params':\n abt['params'][l.split('=')[0].strip()] = float(l.split('=')[1].\n strip())\n elif readingmode == 'data':\n if l.startswith('Col'):\n abt['columns'].append(l.split()[2])\n else:\n abt['data'].append([float(x) for x in l.split()])\n f.close()\n maxcolnamelen = max(len(c) for c in abt['columns'])\n l = 1\n for l in range(1, maxcolnamelen):\n if len(set([c[:l] for c in abt['columns']])) > 1:\n break\n abt['columns'] = [c[l - 1:] for c in abt['columns']]\n dt = np.dtype(list(zip(abt['columns'], itertools.repeat(np.double))))\n abt['data'] = np.array(abt['data'], dtype=np.double).view(dt)\n monthnames = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug',\n 'Sep', 'Oct', 'Nov', 'Dec']\n for m, i in zip(monthnames, itertools.count(1)):\n abt['startdate'] = abt['startdate'].replace(m, str(i))\n abt['startdate'] = datetime.date(*reversed([int(x) for x in abt[\n 'startdate'].split('-')]))\n abt['starttime'] = datetime.time(*[int(x) for x in abt['starttime'].\n split(':')])\n abt['endtime'] = datetime.time(*[int(x) for x in abt['endtime'].split(':')]\n )\n abt['start'] = datetime.datetime.combine(abt['startdate'], abt['starttime']\n )\n if abt['endtime'] <= abt['starttime']:\n abt['end'] = datetime.datetime.combine(abt['startdate'] + datetime.\n timedelta(1), abt['endtime'])\n else:\n abt['end'] = datetime.datetime.combine(abt['startdate'], abt['endtime']\n )\n del abt['starttime']\n del abt['startdate']\n del abt['endtime']\n for k in ['from', 'to', 'by', 'sampling']:\n if k in abt:\n abt[k] = float(abt[k])\n abt['title'] = abt['title'].replace('-', '_').replace(' ', '_')\n return abt\n", "role": "user" }, { "content": "readabt", "role": "assistant" } ]
def x(self) ->ErrorValue: return ErrorValue(*scipy.constants.physical_constants[ 'speed of light in vacuum'][0::2]) * ErrorValue(*scipy.constants. physical_constants['Planck constant in eV s'][0::2] ) / scipy.constants.nano / self.wavelength
energy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->ErrorValue:\n return ErrorValue(*scipy.constants.physical_constants[\n 'speed of light in vacuum'][0::2]) * ErrorValue(*scipy.constants.\n physical_constants['Planck constant in eV s'][0::2]\n ) / scipy.constants.nano / self.wavelength\n", "role": "user" }, { "content": "energy", "role": "assistant" } ]
def x(self) ->Optional[str]: try: maskid = self._data['maskname'] if not maskid.endswith('.mat'): maskid = maskid + '.mat' return maskid except KeyError: return None
maskname
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Optional[str]:\n try:\n maskid = self._data['maskname']\n if not maskid.endswith('.mat'):\n maskid = maskid + '.mat'\n return maskid\n except KeyError:\n return None\n", "role": "user" }, { "content": "maskname", "role": "assistant" } ]
def x(data, mask): data1 = data.copy() data1[mask == 0] = 0 x = np.arange(data1.shape[0]) y = np.arange(data1.shape[1]) onex = np.ones_like(x) oney = np.ones_like(y) nix = np.dot(x, data1) spamx = np.dot(onex, data1) goodx = (nix != 0) & (spamx != 0) nix = nix[goodx] spamx = spamx[goodx] niy = np.dot(data1, y) spamy = np.dot(data1, oney) goody = (niy != 0) & (spamy != 0) niy = niy[goody] spamy = spamy[goody] ycent = nix / spamx xcent = niy / spamy return [xcent.mean(), ycent.mean()]
findbeam_gravity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, mask):\n data1 = data.copy()\n data1[mask == 0] = 0\n x = np.arange(data1.shape[0])\n y = np.arange(data1.shape[1])\n onex = np.ones_like(x)\n oney = np.ones_like(y)\n nix = np.dot(x, data1)\n spamx = np.dot(onex, data1)\n goodx = (nix != 0) & (spamx != 0)\n nix = nix[goodx]\n spamx = spamx[goodx]\n niy = np.dot(data1, y)\n spamy = np.dot(data1, oney)\n goody = (niy != 0) & (spamy != 0)\n niy = niy[goody]\n spamy = spamy[goody]\n ycent = nix / spamx\n xcent = niy / spamy\n return [xcent.mean(), ycent.mean()]\n", "role": "user" }, { "content": "findbeam_gravity", "role": "assistant" } ]