source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(queries, user=None, pwd=None, email=None, pred_type='and'):
user = _check_environ('GBIF_USER', user)
pwd = _check_environ('GBIF_PWD', pwd)
email = _check_environ('GBIF_EMAIL', email)
if isinstance(queries, str):
queries = [queries]
keyval = [_parse_args(z) for z in queries]
req = GbifDownload(user, email)
req.main_pred_type = pred_type
for predicate in keyval:
req.add_predicate(predicate['key'], predicate['value'], predicate[
'type'])
out = req.post_download(user, pwd)
return out, req.payload
|
download
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(queries, user=None, pwd=None, email=None, pred_type='and'):\n user = _check_environ('GBIF_USER', user)\n pwd = _check_environ('GBIF_PWD', pwd)\n email = _check_environ('GBIF_EMAIL', email)\n if isinstance(queries, str):\n queries = [queries]\n keyval = [_parse_args(z) for z in queries]\n req = GbifDownload(user, email)\n req.main_pred_type = pred_type\n for predicate in keyval:\n req.add_predicate(predicate['key'], predicate['value'], predicate[\n 'type'])\n out = req.post_download(user, pwd)\n return out, req.payload\n",
"role": "user"
},
{
"content": "download",
"role": "assistant"
}
] |
def x(user=None, pwd=None, limit=20, offset=0):
user = _check_environ('GBIF_USER', user)
pwd = _check_environ('GBIF_PWD', pwd)
url = 'http://api.gbif.org/v1/occurrence/download/user/' + user
args = {'limit': limit, 'offset': offset}
res = gbif_GET(url, args, auth=(user, pwd))
return {'meta': {'offset': res['offset'], 'limit': res['limit'],
'endofrecords': res['endOfRecords'], 'count': res['count']},
'results': res['results']}
|
download_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(user=None, pwd=None, limit=20, offset=0):\n user = _check_environ('GBIF_USER', user)\n pwd = _check_environ('GBIF_PWD', pwd)\n url = 'http://api.gbif.org/v1/occurrence/download/user/' + user\n args = {'limit': limit, 'offset': offset}\n res = gbif_GET(url, args, auth=(user, pwd))\n return {'meta': {'offset': res['offset'], 'limit': res['limit'],\n 'endofrecords': res['endOfRecords'], 'count': res['count']},\n 'results': res['results']}\n",
"role": "user"
},
{
"content": "download_list",
"role": "assistant"
}
] |
def x(key, path='.', **kwargs):
meta = pygbif.occurrences.download_meta(key)
if meta['status'] != 'SUCCEEDED':
raise Exception('download "%s" not of status SUCCEEDED' % key)
else:
print('Download file size: %s bytes' % meta['size'])
url = 'http://api.gbif.org/v1/occurrence/download/request/' + key
path = '%s/%s.zip' % (path, key)
gbif_GET_write(url, path, **kwargs)
print('On disk at ' + path)
return {'path': path, 'size': meta['size'], 'key': key}
|
download_get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key, path='.', **kwargs):\n meta = pygbif.occurrences.download_meta(key)\n if meta['status'] != 'SUCCEEDED':\n raise Exception('download \"%s\" not of status SUCCEEDED' % key)\n else:\n print('Download file size: %s bytes' % meta['size'])\n url = 'http://api.gbif.org/v1/occurrence/download/request/' + key\n path = '%s/%s.zip' % (path, key)\n gbif_GET_write(url, path, **kwargs)\n print('On disk at ' + path)\n return {'path': path, 'size': meta['size'], 'key': key}\n",
"role": "user"
},
{
"content": "download_get",
"role": "assistant"
}
] |
def x(self, value):
if value not in operators:
value = operator_lkup.get(value)
if value:
self._main_pred_type = value
self.payload['predicate']['type'] = self._main_pred_type
else:
raise Exception('main predicate combiner not a valid operator')
|
main_pred_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if value not in operators:\n value = operator_lkup.get(value)\n if value:\n self._main_pred_type = value\n self.payload['predicate']['type'] = self._main_pred_type\n else:\n raise Exception('main predicate combiner not a valid operator')\n",
"role": "user"
},
{
"content": "main_pred_type",
"role": "assistant"
}
] |
def x(self, key, value, predicate_type='equals'):
if predicate_type not in operators:
predicate_type = operator_lkup.get(predicate_type)
if predicate_type:
self.predicates.append({'type': predicate_type, 'key': key, 'value':
value})
else:
raise Exception('predicate type not a valid operator')
|
add_predicate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, value, predicate_type='equals'):\n if predicate_type not in operators:\n predicate_type = operator_lkup.get(predicate_type)\n if predicate_type:\n self.predicates.append({'type': predicate_type, 'key': key, 'value':\n value})\n else:\n raise Exception('predicate type not a valid operator')\n",
"role": "user"
},
{
"content": "add_predicate",
"role": "assistant"
}
] |
def x(values_list):
values = []
if isinstance(values_list, str):
with open(values_list) as ff:
reading = csv.reader(ff)
for j in reading:
values.append(j[0])
elif isinstance(values_list, list):
values = values_list
else:
raise Exception('input datatype not supported.')
return values
|
extract_values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(values_list):\n values = []\n if isinstance(values_list, str):\n with open(values_list) as ff:\n reading = csv.reader(ff)\n for j in reading:\n values.append(j[0])\n elif isinstance(values_list, list):\n values = values_list\n else:\n raise Exception('input datatype not supported.')\n return values\n",
"role": "user"
},
{
"content": "extract_values",
"role": "assistant"
}
] |
def x(self, key, values_list):
values = self._extract_values(values_list)
predicate = {'type': 'equals', 'key': key, 'value': None}
predicates = []
while values:
predicate['value'] = values.pop()
predicates.append(predicate.copy())
self.predicates.append({'type': 'or', 'predicates': predicates})
|
add_iterative_predicate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, values_list):\n values = self._extract_values(values_list)\n predicate = {'type': 'equals', 'key': key, 'value': None}\n predicates = []\n while values:\n predicate['value'] = values.pop()\n predicates.append(predicate.copy())\n self.predicates.append({'type': 'or', 'predicates': predicates})\n",
"role": "user"
},
{
"content": "add_iterative_predicate",
"role": "assistant"
}
] |
def x(key, **kwargs):
url = gbif_baseurl + 'occurrence/' + str(key)
out = gbif_GET(url, {}, **kwargs)
return out
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key, **kwargs):\n url = gbif_baseurl + 'occurrence/' + str(key)\n out = gbif_GET(url, {}, **kwargs)\n return out\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(key, **kwargs):
url = gbif_baseurl + 'occurrence/' + str(key) + '/verbatim'
out = gbif_GET(url, {}, **kwargs)
return out
|
get_verbatim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key, **kwargs):\n url = gbif_baseurl + 'occurrence/' + str(key) + '/verbatim'\n out = gbif_GET(url, {}, **kwargs)\n return out\n",
"role": "user"
},
{
"content": "get_verbatim",
"role": "assistant"
}
] |
def x(key, **kwargs):
url = gbif_baseurl + 'occurrence/' + str(key) + '/fragment'
out = gbif_GET(url, {}, **kwargs)
return out
|
get_fragment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key, **kwargs):\n url = gbif_baseurl + 'occurrence/' + str(key) + '/fragment'\n out = gbif_GET(url, {}, **kwargs)\n return out\n",
"role": "user"
},
{
"content": "get_fragment",
"role": "assistant"
}
] |
def x(name, rank=None, kingdom=None, phylum=None, clazz=None, order=None,
family=None, genus=None, strict=False, verbose=False, offset=None,
limit=100, **kwargs):
url = gbif_baseurl + 'species/match'
args = {'name': name, 'rank': rank, 'kingdom': kingdom, 'phylum':
phylum, 'class': clazz, 'order': order, 'family': family, 'genus':
genus, 'strict': strict, 'verbose': verbose, 'offset': offset,
'limit': limit}
tt = gbif_GET(url, args, **kwargs)
return tt
|
name_backbone
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, rank=None, kingdom=None, phylum=None, clazz=None, order=None,\n family=None, genus=None, strict=False, verbose=False, offset=None,\n limit=100, **kwargs):\n url = gbif_baseurl + 'species/match'\n args = {'name': name, 'rank': rank, 'kingdom': kingdom, 'phylum':\n phylum, 'class': clazz, 'order': order, 'family': family, 'genus':\n genus, 'strict': strict, 'verbose': verbose, 'offset': offset,\n 'limit': limit}\n tt = gbif_GET(url, args, **kwargs)\n return tt\n",
"role": "user"
},
{
"content": "name_backbone",
"role": "assistant"
}
] |
def x(name, **kwargs):
url = gbif_baseurl + 'parser/name'
if name.__class__ == str:
name = [name]
return gbif_POST(url, name, **kwargs)
|
name_parser
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, **kwargs):\n url = gbif_baseurl + 'parser/name'\n if name.__class__ == str:\n name = [name]\n return gbif_POST(url, name, **kwargs)\n",
"role": "user"
},
{
"content": "name_parser",
"role": "assistant"
}
] |
def x(q=None, rank=None, higherTaxonKey=None, status=None, isExtinct=None,
habitat=None, nameType=None, datasetKey=None, nomenclaturalStatus=None,
limit=100, offset=None, facet=False, facetMincount=None,
facetMultiselect=None, type=None, hl=False, verbose=False, **kwargs):
args = {'q': q, 'rank': rank, 'higherTaxonKey': higherTaxonKey,
'status': status, 'isExtinct': isExtinct, 'habitat': habitat,
'nameType': nameType, 'datasetKey': datasetKey,
'nomenclaturalStatus': nomenclaturalStatus, 'limit': limit,
'offset': offset, 'facet': bn(facet), 'facetMincount':
facetMincount, 'facetMultiselect': facetMultiselect, 'hl': bn(hl),
'verbose': bn(verbose), 'type': type}
gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in
requests_argset}
if gbif_kwargs is not None:
xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()],
gbif_kwargs.values()))
args.update(xx)
kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}
return gbif_GET(gbif_baseurl + 'species/search', args, **kwargs)
|
name_lookup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q=None, rank=None, higherTaxonKey=None, status=None, isExtinct=None,\n habitat=None, nameType=None, datasetKey=None, nomenclaturalStatus=None,\n limit=100, offset=None, facet=False, facetMincount=None,\n facetMultiselect=None, type=None, hl=False, verbose=False, **kwargs):\n args = {'q': q, 'rank': rank, 'higherTaxonKey': higherTaxonKey,\n 'status': status, 'isExtinct': isExtinct, 'habitat': habitat,\n 'nameType': nameType, 'datasetKey': datasetKey,\n 'nomenclaturalStatus': nomenclaturalStatus, 'limit': limit,\n 'offset': offset, 'facet': bn(facet), 'facetMincount':\n facetMincount, 'facetMultiselect': facetMultiselect, 'hl': bn(hl),\n 'verbose': bn(verbose), 'type': type}\n gbif_kwargs = {key: kwargs[key] for key in kwargs if key not in\n requests_argset}\n if gbif_kwargs is not None:\n xx = dict(zip([re.sub('_', '.', x) for x in gbif_kwargs.keys()],\n gbif_kwargs.values()))\n args.update(xx)\n kwargs = {key: kwargs[key] for key in kwargs if key in requests_argset}\n return gbif_GET(gbif_baseurl + 'species/search', args, **kwargs)\n",
"role": "user"
},
{
"content": "name_lookup",
"role": "assistant"
}
] |
def x(taxonKey=None, basisOfRecord=None, country=None, isGeoreferenced=None,
datasetKey=None, publishingCountry=None, typeStatus=None, issue=None,
year=None, **kwargs):
url = gbif_baseurl + 'occurrence/count'
out = gbif_GET(url, {'taxonKey': taxonKey, 'basisOfRecord':
basisOfRecord, 'country': country, 'isGeoreferenced':
isGeoreferenced, 'datasetKey': datasetKey, 'publishingCountry':
publishingCountry, 'typeStatus': typeStatus, 'issue': issue, 'year':
year}, **kwargs)
return out
|
count
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(taxonKey=None, basisOfRecord=None, country=None, isGeoreferenced=None,\n datasetKey=None, publishingCountry=None, typeStatus=None, issue=None,\n year=None, **kwargs):\n url = gbif_baseurl + 'occurrence/count'\n out = gbif_GET(url, {'taxonKey': taxonKey, 'basisOfRecord':\n basisOfRecord, 'country': country, 'isGeoreferenced':\n isGeoreferenced, 'datasetKey': datasetKey, 'publishingCountry':\n publishingCountry, 'typeStatus': typeStatus, 'issue': issue, 'year':\n year}, **kwargs)\n return out\n",
"role": "user"
},
{
"content": "count",
"role": "assistant"
}
] |
def x(year, **kwargs):
url = gbif_baseurl + 'occurrence/counts/year'
out = gbif_GET(url, {'year': year}, **kwargs)
return out
|
count_year
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(year, **kwargs):\n url = gbif_baseurl + 'occurrence/counts/year'\n out = gbif_GET(url, {'year': year}, **kwargs)\n return out\n",
"role": "user"
},
{
"content": "count_year",
"role": "assistant"
}
] |
def x(taxonKey=None, country=None, **kwargs):
url = gbif_baseurl + 'occurrence/counts/datasets'
out = gbif_GET(url, {'taxonKey': taxonKey, 'country': country}, **kwargs)
return out
|
count_datasets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(taxonKey=None, country=None, **kwargs):\n url = gbif_baseurl + 'occurrence/counts/datasets'\n out = gbif_GET(url, {'taxonKey': taxonKey, 'country': country}, **kwargs)\n return out\n",
"role": "user"
},
{
"content": "count_datasets",
"role": "assistant"
}
] |
def x(publishingCountry, **kwargs):
url = gbif_baseurl + 'occurrence/counts/countries'
out = gbif_GET(url, {'publishingCountry': publishingCountry}, **kwargs)
return out
|
count_countries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(publishingCountry, **kwargs):\n url = gbif_baseurl + 'occurrence/counts/countries'\n out = gbif_GET(url, {'publishingCountry': publishingCountry}, **kwargs)\n return out\n",
"role": "user"
},
{
"content": "count_countries",
"role": "assistant"
}
] |
def x(country, **kwargs):
url = gbif_baseurl + 'occurrence/counts/publishingCountries'
out = gbif_GET(url, {'country': country}, **kwargs)
return out
|
count_publishingcountries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(country, **kwargs):\n url = gbif_baseurl + 'occurrence/counts/publishingCountries'\n out = gbif_GET(url, {'country': country}, **kwargs)\n return out\n",
"role": "user"
},
{
"content": "count_publishingcountries",
"role": "assistant"
}
] |
def x() ->bool:
try:
from IPython import get_ipython
from ipykernel import zmqshell
except ImportError:
return False
kernel = get_ipython()
try:
from spyder.utils.ipython.spyder_kernel import SpyderKernel
if isinstance(kernel.kernel, SpyderKernel):
return False
except (ImportError, AttributeError):
pass
return isinstance(kernel, zmqshell.ZMQInteractiveShell)
|
detect_notebook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x() ->bool:\n try:\n from IPython import get_ipython\n from ipykernel import zmqshell\n except ImportError:\n return False\n kernel = get_ipython()\n try:\n from spyder.utils.ipython.spyder_kernel import SpyderKernel\n if isinstance(kernel.kernel, SpyderKernel):\n return False\n except (ImportError, AttributeError):\n pass\n return isinstance(kernel, zmqshell.ZMQInteractiveShell)\n",
"role": "user"
},
{
"content": "detect_notebook",
"role": "assistant"
}
] |
def x(x: go.Layout, y: go.Layout) ->go.Layout:
xjson = x.to_plotly_json()
yjson = y.to_plotly_json()
if 'shapes' in yjson and 'shapes' in xjson:
xjson['shapes'] += yjson['shapes']
yjson.update(xjson)
return go.Layout(yjson)
|
merge_layout
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x: go.Layout, y: go.Layout) ->go.Layout:\n xjson = x.to_plotly_json()\n yjson = y.to_plotly_json()\n if 'shapes' in yjson and 'shapes' in xjson:\n xjson['shapes'] += yjson['shapes']\n yjson.update(xjson)\n return go.Layout(yjson)\n",
"role": "user"
},
{
"content": "merge_layout",
"role": "assistant"
}
] |
def x(x):
try:
x = [y.isoformat() for y in x.to_pydatetime()]
except AttributeError:
pass
try:
x = [y.isoformat() for y in x.dt.to_pydatetime()]
except AttributeError:
pass
return x
|
try_pydatetime
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n try:\n x = [y.isoformat() for y in x.to_pydatetime()]\n except AttributeError:\n pass\n try:\n x = [y.isoformat() for y in x.dt.to_pydatetime()]\n except AttributeError:\n pass\n return x\n",
"role": "user"
},
{
"content": "try_pydatetime",
"role": "assistant"
}
] |
def x(points, shapes, fill=None, color='blue', width=5, yindex=0, heights=None
):
assert len(points) == len(shapes) + 1
data = [{'marker': {'color': 'white'}, 'x': [points[0], points[-1]],
'y': [yindex, yindex]}]
if fill is None:
fill = [False] * len(shapes)
if heights is None:
heights = [0.4] * len(shapes)
lays = []
for i, (shape, height) in enumerate(zip(shapes, heights)):
if shape is None:
continue
if fill[i]:
fillcolor = color
else:
fillcolor = 'white'
lays.append(dict(type=shape, x0=points[i], x1=points[i + 1], y0=
yindex - height, y1=yindex + height, xref='x', yref='y',
fillcolor=fillcolor, line=dict(color=color, width=width)))
layout = dict(shapes=lays)
return Chart(data=data, layout=layout)
|
spark_shape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, shapes, fill=None, color='blue', width=5, yindex=0, heights=None\n ):\n assert len(points) == len(shapes) + 1\n data = [{'marker': {'color': 'white'}, 'x': [points[0], points[-1]],\n 'y': [yindex, yindex]}]\n if fill is None:\n fill = [False] * len(shapes)\n if heights is None:\n heights = [0.4] * len(shapes)\n lays = []\n for i, (shape, height) in enumerate(zip(shapes, heights)):\n if shape is None:\n continue\n if fill[i]:\n fillcolor = color\n else:\n fillcolor = 'white'\n lays.append(dict(type=shape, x0=points[i], x1=points[i + 1], y0=\n yindex - height, y1=yindex + height, xref='x', yref='y',\n fillcolor=fillcolor, line=dict(color=color, width=width)))\n layout = dict(shapes=lays)\n return Chart(data=data, layout=layout)\n",
"role": "user"
},
{
"content": "spark_shape",
"role": "assistant"
}
] |
def x(x, ymin=0, ymax=1, color=None, width=None, dash=None, opacity=None):
lineattr = {}
if color:
lineattr['color'] = color
if width:
lineattr['width'] = width
if dash:
lineattr['dash'] = dash
layout = dict(shapes=[dict(type='line', x0=x, x1=x, y0=ymin, y1=ymax,
opacity=opacity, line=lineattr)])
return Chart(layout=layout)
|
vertical
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, ymin=0, ymax=1, color=None, width=None, dash=None, opacity=None):\n lineattr = {}\n if color:\n lineattr['color'] = color\n if width:\n lineattr['width'] = width\n if dash:\n lineattr['dash'] = dash\n layout = dict(shapes=[dict(type='line', x0=x, x1=x, y0=ymin, y1=ymax,\n opacity=opacity, line=lineattr)])\n return Chart(layout=layout)\n",
"role": "user"
},
{
"content": "vertical",
"role": "assistant"
}
] |
def x(y, xmin=0, xmax=1, color=None, width=None, dash=None, opacity=None):
lineattr = {}
if color:
lineattr['color'] = color
if width:
lineattr['width'] = width
if dash:
lineattr['dash'] = dash
layout = dict(shapes=[dict(type='line', x0=xmin, x1=xmax, y0=y, y1=y,
opacity=opacity, line=lineattr)])
return Chart(layout=layout)
|
horizontal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, xmin=0, xmax=1, color=None, width=None, dash=None, opacity=None):\n lineattr = {}\n if color:\n lineattr['color'] = color\n if width:\n lineattr['width'] = width\n if dash:\n lineattr['dash'] = dash\n layout = dict(shapes=[dict(type='line', x0=xmin, x1=xmax, y0=y, y1=y,\n opacity=opacity, line=lineattr)])\n return Chart(layout=layout)\n",
"role": "user"
},
{
"content": "horizontal",
"role": "assistant"
}
] |
def x(x=None, y=None, label=None, color=None, width=None, dash=None,
opacity=None, mode='lines+markers', yaxis=1, fill=None, text='',
markersize=6):
assert x is not None or y is not None, 'x or y must be something'
yn = 'y' + str(yaxis)
lineattr = {}
if color:
lineattr['color'] = color
if width:
lineattr['width'] = width
if dash:
lineattr['dash'] = dash
if y is None:
y = x
x = None
if x is None:
x = np.arange(len(y))
else:
x = _try_pydatetime(x)
x = np.atleast_1d(x)
y = np.atleast_1d(y)
assert x.shape[0] == y.shape[0]
if y.ndim == 2:
if not hasattr(label, '__iter__'):
if label is None:
label = _labels()
else:
label = _labels(label)
data = [go.Scatter(x=x, y=yy, name=ll, line=lineattr, mode=mode,
text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict(
size=markersize, opacity=opacity)) for ll, yy in zip(label, y.T)]
else:
data = [go.Scatter(x=x, y=y, name=label, line=lineattr, mode=mode,
text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict(
size=markersize, opacity=opacity))]
if yaxis == 1:
return Chart(data=data)
return Chart(data=data, layout={('yaxis' + str(yaxis)): dict(overlaying
='y')})
|
line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x=None, y=None, label=None, color=None, width=None, dash=None,\n opacity=None, mode='lines+markers', yaxis=1, fill=None, text='',\n markersize=6):\n assert x is not None or y is not None, 'x or y must be something'\n yn = 'y' + str(yaxis)\n lineattr = {}\n if color:\n lineattr['color'] = color\n if width:\n lineattr['width'] = width\n if dash:\n lineattr['dash'] = dash\n if y is None:\n y = x\n x = None\n if x is None:\n x = np.arange(len(y))\n else:\n x = _try_pydatetime(x)\n x = np.atleast_1d(x)\n y = np.atleast_1d(y)\n assert x.shape[0] == y.shape[0]\n if y.ndim == 2:\n if not hasattr(label, '__iter__'):\n if label is None:\n label = _labels()\n else:\n label = _labels(label)\n data = [go.Scatter(x=x, y=yy, name=ll, line=lineattr, mode=mode,\n text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict(\n size=markersize, opacity=opacity)) for ll, yy in zip(label, y.T)]\n else:\n data = [go.Scatter(x=x, y=y, name=label, line=lineattr, mode=mode,\n text=text, fill=fill, opacity=opacity, yaxis=yn, marker=dict(\n size=markersize, opacity=opacity))]\n if yaxis == 1:\n return Chart(data=data)\n return Chart(data=data, layout={('yaxis' + str(yaxis)): dict(overlaying\n ='y')})\n",
"role": "user"
},
{
"content": "line",
"role": "assistant"
}
] |
def x(x, y, z, label=None, color=None, width=None, dash=None, opacity=None,
mode='lines+markers'):
x = np.atleast_1d(x)
y = np.atleast_1d(y)
z = np.atleast_1d(z)
assert x.shape == y.shape
assert y.shape == z.shape
lineattr = {}
if color:
lineattr['color'] = color
if width:
lineattr['width'] = width
if dash:
lineattr['dash'] = dash
if y.ndim == 2:
if not hasattr(label, '__iter__'):
if label is None:
label = _labels()
else:
label = _labels(label)
data = [go.Scatter3d(x=xx, y=yy, z=zz, name=ll, line=lineattr, mode
=mode, opacity=opacity) for ll, xx, yy, zz in zip(label, x.T, y
.T, z.T)]
else:
data = [go.Scatter3d(x=x, y=y, z=z, name=label, line=lineattr, mode
=mode, opacity=opacity)]
return Chart(data=data)
|
line3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, z, label=None, color=None, width=None, dash=None, opacity=None,\n mode='lines+markers'):\n x = np.atleast_1d(x)\n y = np.atleast_1d(y)\n z = np.atleast_1d(z)\n assert x.shape == y.shape\n assert y.shape == z.shape\n lineattr = {}\n if color:\n lineattr['color'] = color\n if width:\n lineattr['width'] = width\n if dash:\n lineattr['dash'] = dash\n if y.ndim == 2:\n if not hasattr(label, '__iter__'):\n if label is None:\n label = _labels()\n else:\n label = _labels(label)\n data = [go.Scatter3d(x=xx, y=yy, z=zz, name=ll, line=lineattr, mode\n =mode, opacity=opacity) for ll, xx, yy, zz in zip(label, x.T, y\n .T, z.T)]\n else:\n data = [go.Scatter3d(x=x, y=y, z=z, name=label, line=lineattr, mode\n =mode, opacity=opacity)]\n return Chart(data=data)\n",
"role": "user"
},
{
"content": "line3d",
"role": "assistant"
}
] |
def x(x=None, y=None, label=None, color=None, width=None, dash=None,
opacity=None, markersize=6, yaxis=1, fill=None, text='', mode='markers'):
return line(x=x, y=y, label=label, color=color, width=width, dash=dash,
opacity=opacity, mode=mode, yaxis=yaxis, fill=fill, text=text,
markersize=markersize)
|
scatter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x=None, y=None, label=None, color=None, width=None, dash=None,\n opacity=None, markersize=6, yaxis=1, fill=None, text='', mode='markers'):\n return line(x=x, y=y, label=label, color=color, width=width, dash=dash,\n opacity=opacity, mode=mode, yaxis=yaxis, fill=fill, text=text,\n markersize=markersize)\n",
"role": "user"
},
{
"content": "scatter",
"role": "assistant"
}
] |
def x(x=None, y=None, label=None, mode='group', yaxis=1, opacity=None):
assert x is not None or y is not None, 'x or y must be something'
yn = 'y' + str(yaxis)
if y is None:
y = x
x = None
if x is None:
x = np.arange(len(y))
else:
x = _try_pydatetime(x)
x = np.atleast_1d(x)
y = np.atleast_1d(y)
if y.ndim == 2:
if not hasattr(label, '__iter__'):
if label is None:
label = _labels()
else:
label = _labels(label)
data = [go.Bar(x=x, y=yy, name=ll, yaxis=yn, opacity=opacity) for
ll, yy in zip(label, y.T)]
else:
data = [go.Bar(x=x, y=y, name=label, yaxis=yn, opacity=opacity)]
if yaxis == 1:
return Chart(data=data, layout={'barmode': mode})
return Chart(data=data, layout={'barmode': mode, ('yaxis' + str(yaxis)):
dict(overlaying='y')})
|
bar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x=None, y=None, label=None, mode='group', yaxis=1, opacity=None):\n assert x is not None or y is not None, 'x or y must be something'\n yn = 'y' + str(yaxis)\n if y is None:\n y = x\n x = None\n if x is None:\n x = np.arange(len(y))\n else:\n x = _try_pydatetime(x)\n x = np.atleast_1d(x)\n y = np.atleast_1d(y)\n if y.ndim == 2:\n if not hasattr(label, '__iter__'):\n if label is None:\n label = _labels()\n else:\n label = _labels(label)\n data = [go.Bar(x=x, y=yy, name=ll, yaxis=yn, opacity=opacity) for \n ll, yy in zip(label, y.T)]\n else:\n data = [go.Bar(x=x, y=y, name=label, yaxis=yn, opacity=opacity)]\n if yaxis == 1:\n return Chart(data=data, layout={'barmode': mode})\n return Chart(data=data, layout={'barmode': mode, ('yaxis' + str(yaxis)):\n dict(overlaying='y')})\n",
"role": "user"
},
{
"content": "bar",
"role": "assistant"
}
] |
def x(z, x=None, y=None, colorscale='Viridis'):
z = np.atleast_1d(z)
data = [go.Heatmap(z=z, x=x, y=y, colorscale=colorscale)]
return Chart(data=data)
|
heatmap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(z, x=None, y=None, colorscale='Viridis'):\n z = np.atleast_1d(z)\n data = [go.Heatmap(z=z, x=x, y=y, colorscale=colorscale)]\n return Chart(data=data)\n",
"role": "user"
},
{
"content": "heatmap",
"role": "assistant"
}
] |
def x(x=None, y=None, label=None, color=None, width=None, dash=None,
opacity=None, mode='lines+markers', **kargs):
return line(x=x, y=y, label=label, color=color, width=width, dash=dash,
opacity=opacity, mode=mode, fill='tozeroy', **kargs)
|
fill_zero
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x=None, y=None, label=None, color=None, width=None, dash=None,\n opacity=None, mode='lines+markers', **kargs):\n return line(x=x, y=y, label=label, color=color, width=width, dash=dash,\n opacity=opacity, mode=mode, fill='tozeroy', **kargs)\n",
"role": "user"
},
{
"content": "fill_zero",
"role": "assistant"
}
] |
def x(x=None, ylow=None, yhigh=None, label=None, color=None, width=None,
dash=None, opacity=None, mode='lines+markers', **kargs):
plot = line(x=x, y=ylow, label=label, color=color, width=width, dash=
dash, opacity=opacity, mode=mode, fill=None, **kargs)
plot += line(x=x, y=yhigh, label=label, color=color, width=width, dash=
dash, opacity=opacity, mode=mode, fill='tonexty', **kargs)
return plot
|
fill_between
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x=None, ylow=None, yhigh=None, label=None, color=None, width=None,\n dash=None, opacity=None, mode='lines+markers', **kargs):\n plot = line(x=x, y=ylow, label=label, color=color, width=width, dash=\n dash, opacity=opacity, mode=mode, fill=None, **kargs)\n plot += line(x=x, y=yhigh, label=label, color=color, width=width, dash=\n dash, opacity=opacity, mode=mode, fill='tonexty', **kargs)\n return plot\n",
"role": "user"
},
{
"content": "fill_between",
"role": "assistant"
}
] |
def x(x, label=None, opacity=None):
x = _try_pydatetime(x)
x = np.atleast_1d(x)
data = [go.Scatter(x=x, y=np.ones_like(x), name=label, opacity=opacity,
mode='markers', marker=dict(symbol='line-ns-open'))]
layout = dict(barmode='overlay', hovermode='closest', legend=dict(
traceorder='reversed'), xaxis1=dict(zeroline=False), yaxis1=dict(
domain=[0.85, 1], showline=False, showgrid=False, zeroline=False,
anchor='free', position=0.0, showticklabels=False))
return Chart(data=data, layout=layout)
|
rug
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, label=None, opacity=None):\n x = _try_pydatetime(x)\n x = np.atleast_1d(x)\n data = [go.Scatter(x=x, y=np.ones_like(x), name=label, opacity=opacity,\n mode='markers', marker=dict(symbol='line-ns-open'))]\n layout = dict(barmode='overlay', hovermode='closest', legend=dict(\n traceorder='reversed'), xaxis1=dict(zeroline=False), yaxis1=dict(\n domain=[0.85, 1], showline=False, showgrid=False, zeroline=False,\n anchor='free', position=0.0, showticklabels=False))\n return Chart(data=data, layout=layout)\n",
"role": "user"
},
{
"content": "rug",
"role": "assistant"
}
] |
def x(x, y, z):
data = [go.Surface(x=x, y=y, z=z)]
return Chart(data=data)
|
surface
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, z):\n data = [go.Surface(x=x, y=y, z=z)]\n return Chart(data=data)\n",
"role": "user"
},
{
"content": "surface",
"role": "assistant"
}
] |
def x(x, mode='overlay', label=None, opacity=None, horz=False, histnorm=None):
x = np.atleast_1d(x)
if horz:
kargs = dict(y=x)
else:
kargs = dict(x=x)
layout = dict(barmode=mode)
data = [go.Histogram(opacity=opacity, name=label, histnorm=histnorm, **
kargs)]
return Chart(data=data, layout=layout)
|
hist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, mode='overlay', label=None, opacity=None, horz=False, histnorm=None):\n x = np.atleast_1d(x)\n if horz:\n kargs = dict(y=x)\n else:\n kargs = dict(x=x)\n layout = dict(barmode=mode)\n data = [go.Histogram(opacity=opacity, name=label, histnorm=histnorm, **\n kargs)]\n return Chart(data=data, layout=layout)\n",
"role": "user"
},
{
"content": "hist",
"role": "assistant"
}
] |
def x(x, y, label=None, opacity=None):
x = np.atleast_1d(x)
y = np.atleast_1d(y)
data = [go.Histogram2d(x=x, y=y, opacity=opacity, name=label)]
return Chart(data=data)
|
hist2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, label=None, opacity=None):\n x = np.atleast_1d(x)\n y = np.atleast_1d(y)\n data = [go.Histogram2d(x=x, y=y, opacity=opacity, name=label)]\n return Chart(data=data)\n",
"role": "user"
},
{
"content": "hist2d",
"role": "assistant"
}
] |
def x(self, angle, index=1):
self.layout['yaxis' + str(index)]['tickangle'] = angle
return self
|
ytickangle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, angle, index=1):\n self.layout['yaxis' + str(index)]['tickangle'] = angle\n return self\n",
"role": "user"
},
{
"content": "ytickangle",
"role": "assistant"
}
] |
def x(self, size, index=1):
self.layout['yaxis' + str(index)]['titlefont']['size'] = size
return self
|
ylabelsize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size, index=1):\n self.layout['yaxis' + str(index)]['titlefont']['size'] = size\n return self\n",
"role": "user"
},
{
"content": "ylabelsize",
"role": "assistant"
}
] |
def x(self, size, index=1):
self.layout['yaxis' + str(index)]['tickfont']['size'] = size
return self
|
yticksize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size, index=1):\n self.layout['yaxis' + str(index)]['tickfont']['size'] = size\n return self\n",
"role": "user"
},
{
"content": "yticksize",
"role": "assistant"
}
] |
def x(self, values, index=1):
self.layout['yaxis' + str(index)]['tickvals'] = values
return self
|
ytickvals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, values, index=1):\n self.layout['yaxis' + str(index)]['tickvals'] = values\n return self\n",
"role": "user"
},
{
"content": "ytickvals",
"role": "assistant"
}
] |
def x(self, labels, index=1):
self.layout['yaxis' + str(index)]['ticktext'] = labels
return self
|
yticktext
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, labels, index=1):\n self.layout['yaxis' + str(index)]['ticktext'] = labels\n return self\n",
"role": "user"
},
{
"content": "yticktext",
"role": "assistant"
}
] |
def x(self, low, high, index=1):
self.layout['yaxis' + str(index)]['range'] = [low, high]
return self
|
ylim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, low, high, index=1):\n self.layout['yaxis' + str(index)]['range'] = [low, high]\n return self\n",
"role": "user"
},
{
"content": "ylim",
"role": "assistant"
}
] |
def x(self, dtick, index=1):
self.layout['yaxis' + str(index)]['dtick'] = dtick
return self
|
ydtick
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dtick, index=1):\n self.layout['yaxis' + str(index)]['dtick'] = dtick\n return self\n",
"role": "user"
},
{
"content": "ydtick",
"role": "assistant"
}
] |
def x(self, nticks, index=1):
self.layout['yaxis' + str(index)]['nticks'] = nticks
return self
|
ynticks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nticks, index=1):\n self.layout['yaxis' + str(index)]['nticks'] = nticks\n return self\n",
"role": "user"
},
{
"content": "ynticks",
"role": "assistant"
}
] |
def x(self, filename: Optional[str]=None, show_link: bool=True, auto_open:
bool=True, detect_notebook: bool=True) ->None:
kargs = {}
if detect_notebook and _detect_notebook():
py.init_notebook_mode()
plot = py.iplot
else:
plot = py.plot
if filename is None:
filename = NamedTemporaryFile(prefix='plotly', suffix='.html',
delete=False).name
kargs['filename'] = filename
kargs['auto_open'] = auto_open
plot(self, show_link=show_link, **kargs)
|
show
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename: Optional[str]=None, show_link: bool=True, auto_open:\n bool=True, detect_notebook: bool=True) ->None:\n kargs = {}\n if detect_notebook and _detect_notebook():\n py.init_notebook_mode()\n plot = py.iplot\n else:\n plot = py.plot\n if filename is None:\n filename = NamedTemporaryFile(prefix='plotly', suffix='.html',\n delete=False).name\n kargs['filename'] = filename\n kargs['auto_open'] = auto_open\n plot(self, show_link=show_link, **kargs)\n",
"role": "user"
},
{
"content": "show",
"role": "assistant"
}
] |
def x(self, filename: Optional[str]=None, show_link: bool=True, auto_open:
bool=False, output: str='file', plotlyjs: bool=True) ->str:
if filename is None:
filename = NamedTemporaryFile(prefix='plotly', suffix='.html',
delete=False).name
py.plot(self, show_link=show_link, filename=filename, auto_open=
auto_open, output_type=output, include_plotlyjs=plotlyjs)
return filename
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename: Optional[str]=None, show_link: bool=True, auto_open:\n bool=False, output: str='file', plotlyjs: bool=True) ->str:\n if filename is None:\n filename = NamedTemporaryFile(prefix='plotly', suffix='.html',\n delete=False).name\n py.plot(self, show_link=show_link, filename=filename, auto_open=\n auto_open, output_type=output, include_plotlyjs=plotlyjs)\n return filename\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(cls, *args, **kwargs):
unpack_error = True
try:
f, library_path = args
unpack_error = False
cls._RegisterMethod(f, library_path, **kwargs)
except:
if not unpack_error:
raise
def x(f):
library_path, = args
cls._RegisterMethod(f, library_path, **kwargs)
return f
return register_decorator
|
RegisterMethod
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, *args, **kwargs):\n unpack_error = True\n try:\n f, library_path = args\n unpack_error = False\n cls._RegisterMethod(f, library_path, **kwargs)\n except:\n if not unpack_error:\n raise\n\n def x(f):\n library_path, = args\n cls._RegisterMethod(f, library_path, **kwargs)\n return f\n return register_decorator\n",
"role": "user"
},
{
"content": "RegisterMethod",
"role": "assistant"
}
] |
def x(cls, *args, **kwargs):
unpack_error = True
try:
n, f, library_path = args
unpack_error = False
cls._RegisterAt(n, f, library_path, **kwargs)
except:
if not unpack_error:
raise
def x(f):
n, library_path = args
cls._RegisterAt(n, f, library_path, **kwargs)
return f
return register_decorator
|
RegisterAt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, *args, **kwargs):\n unpack_error = True\n try:\n n, f, library_path = args\n unpack_error = False\n cls._RegisterAt(n, f, library_path, **kwargs)\n except:\n if not unpack_error:\n raise\n\n def x(f):\n n, library_path = args\n cls._RegisterAt(n, f, library_path, **kwargs)\n return f\n return register_decorator\n",
"role": "user"
},
{
"content": "RegisterAt",
"role": "assistant"
}
] |
def x(cls, n, module, method_wrapper=None, module_alias=None,
method_name_modifier=utils.identity, blacklist_predicate=_False,
whitelist_predicate=_True, return_type_predicate=_None,
getmembers_predicate=inspect.isfunction, admit_private=False,
explanation=''):
_rtp = return_type_predicate
return_type_predicate = (lambda x: _rtp) if inspect.isclass(_rtp
) and issubclass(_rtp, Builder) else _rtp
module_name = module_alias if module_alias else module.__name__ + '.'
patch_members = _get_patch_members(module, blacklist_predicate=
blacklist_predicate, whitelist_predicate=whitelist_predicate,
getmembers_predicate=getmembers_predicate, admit_private=admit_private)
for name, f in patch_members:
wrapped = None
if method_wrapper:
g = method_wrapper(f)
wrapped = f
else:
g = f
cls.RegisterAt(n, g, module_name, wrapped=wrapped, _return_type=
return_type_predicate(name), alias=method_name_modifier(name),
explanation=explanation)
|
PatchAt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, n, module, method_wrapper=None, module_alias=None,\n method_name_modifier=utils.identity, blacklist_predicate=_False,\n whitelist_predicate=_True, return_type_predicate=_None,\n getmembers_predicate=inspect.isfunction, admit_private=False,\n explanation=''):\n _rtp = return_type_predicate\n return_type_predicate = (lambda x: _rtp) if inspect.isclass(_rtp\n ) and issubclass(_rtp, Builder) else _rtp\n module_name = module_alias if module_alias else module.__name__ + '.'\n patch_members = _get_patch_members(module, blacklist_predicate=\n blacklist_predicate, whitelist_predicate=whitelist_predicate,\n getmembers_predicate=getmembers_predicate, admit_private=admit_private)\n for name, f in patch_members:\n wrapped = None\n if method_wrapper:\n g = method_wrapper(f)\n wrapped = f\n else:\n g = f\n cls.RegisterAt(n, g, module_name, wrapped=wrapped, _return_type=\n return_type_predicate(name), alias=method_name_modifier(name),\n explanation=explanation)\n",
"role": "user"
},
{
"content": "PatchAt",
"role": "assistant"
}
] |
def x(method):
argspec = inspect.getargspec(method)
arg_index = 0
args = []
for arg in argspec.args:
default_arg = _get_default_arg(argspec.args, argspec.defaults,
arg_index)
if default_arg.has_default:
args.append('%s=%s' % (arg, default_arg.default_value))
else:
args.append(arg)
arg_index += 1
return '%s(%s)' % (method.__name__, ', '.join(args))
|
get_method_sig
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(method):\n argspec = inspect.getargspec(method)\n arg_index = 0\n args = []\n for arg in argspec.args:\n default_arg = _get_default_arg(argspec.args, argspec.defaults,\n arg_index)\n if default_arg.has_default:\n args.append('%s=%s' % (arg, default_arg.default_value))\n else:\n args.append(arg)\n arg_index += 1\n return '%s(%s)' % (method.__name__, ', '.join(args))\n",
"role": "user"
},
{
"content": "get_method_sig",
"role": "assistant"
}
] |
def x(self, *sequence, **kwargs):
state = kwargs.pop('refs', {})
return self.Seq(*sequence, **kwargs)(None, **state)
|
Pipe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *sequence, **kwargs):\n state = kwargs.pop('refs', {})\n return self.Seq(*sequence, **kwargs)(None, **state)\n",
"role": "user"
},
{
"content": "Pipe",
"role": "assistant"
}
] |
def x(self, n, f, *_args, **kwargs):
_return_type = None
n_args = n - 1
if '_return_type' in kwargs:
_return_type = kwargs['_return_type']
del kwargs['_return_type']
@utils.lift
def x(x):
new_args = _args[0:n_args] + (x,) + _args[n_args:
] if n_args >= 0 else _args
return f(*new_args, **kwargs)
return self.__then__(g, _return_type=_return_type)
|
ThenAt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, f, *_args, **kwargs):\n _return_type = None\n n_args = n - 1\n if '_return_type' in kwargs:\n _return_type = kwargs['_return_type']\n del kwargs['_return_type']\n\n @utils.lift\n def x(x):\n new_args = _args[0:n_args] + (x,) + _args[n_args:\n ] if n_args >= 0 else _args\n return f(*new_args, **kwargs)\n return self.__then__(g, _return_type=_return_type)\n",
"role": "user"
},
{
"content": "ThenAt",
"role": "assistant"
}
] |
def x(self, f, *args, **kwargs):
return self.ThenAt(0, f, *args, **kwargs)
|
Then0
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f, *args, **kwargs):\n return self.ThenAt(0, f, *args, **kwargs)\n",
"role": "user"
},
{
"content": "Then0",
"role": "assistant"
}
] |
def x(self, f, *args, **kwargs):
return self.ThenAt(1, f, *args, **kwargs)
|
Then
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f, *args, **kwargs):\n return self.ThenAt(1, f, *args, **kwargs)\n",
"role": "user"
},
{
"content": "Then",
"role": "assistant"
}
] |
def x(self, f, arg1, *args, **kwargs):
args = (arg1,) + args
return self.ThenAt(2, f, *args, **kwargs)
|
Then2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f, arg1, *args, **kwargs):\n args = (arg1,) + args\n return self.ThenAt(2, f, *args, **kwargs)\n",
"role": "user"
},
{
"content": "Then2",
"role": "assistant"
}
] |
def x(self, f, arg1, arg2, *args, **kwargs):
args = (arg1, arg2) + args
return self.ThenAt(3, f, *args, **kwargs)
|
Then3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f, arg1, arg2, *args, **kwargs):\n args = (arg1, arg2) + args\n return self.ThenAt(3, f, *args, **kwargs)\n",
"role": "user"
},
{
"content": "Then3",
"role": "assistant"
}
] |
def x(self, f, arg1, arg2, arg3, *args, **kwargs):
args = (arg1, arg2, arg3) + args
return self.ThenAt(4, f, *args, **kwargs)
|
Then4
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f, arg1, arg2, arg3, *args, **kwargs):\n args = (arg1, arg2, arg3) + args\n return self.ThenAt(4, f, *args, **kwargs)\n",
"role": "user"
},
{
"content": "Then4",
"role": "assistant"
}
] |
def x(self, f, arg1, arg2, arg3, arg4, *args, **kwargs):
args = (arg1, arg2, arg3, arg4) + args
return self.ThenAt(5, f, *args, **kwargs)
|
Then5
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f, arg1, arg2, arg3, arg4, *args, **kwargs):\n args = (arg1, arg2, arg3, arg4) + args\n return self.ThenAt(5, f, *args, **kwargs)\n",
"role": "user"
},
{
"content": "Then5",
"role": "assistant"
}
] |
def x(self, *branches, **kwargs):
gs = [_parse(code)._f for code in branches]
def x(x, state):
ys = []
for g in gs:
y, state = g(x, state)
ys.append(y)
return ys, state
return self.__then__(h, **kwargs)
|
List
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *branches, **kwargs):\n gs = [_parse(code)._f for code in branches]\n\n def x(x, state):\n ys = []\n for g in gs:\n y, state = g(x, state)\n ys.append(y)\n return ys, state\n return self.__then__(h, **kwargs)\n",
"role": "user"
},
{
"content": "List",
"role": "assistant"
}
] |
def x(self, *sequence, **kwargs):
fs = [_parse(elem)._f for elem in sequence]
def x(x, state):
return functools.reduce(lambda args, f: f(*args), fs, (x, state))
return self.__then__(g, **kwargs)
|
Seq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *sequence, **kwargs):\n fs = [_parse(elem)._f for elem in sequence]\n\n def x(x, state):\n return functools.reduce(lambda args, f: f(*args), fs, (x, state))\n return self.__then__(g, **kwargs)\n",
"role": "user"
},
{
"content": "Seq",
"role": "assistant"
}
] |
def x(self, context_manager, *body, **kwargs):
context_f = _parse(context_manager)._f
body_f = E.Seq(*body)._f
def x(x, state):
context, state = context_f(x, state)
with context as scope:
with _WithContextManager(scope):
return body_f(x, state)
return self.__then__(g, **kwargs)
|
With
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context_manager, *body, **kwargs):\n context_f = _parse(context_manager)._f\n body_f = E.Seq(*body)._f\n\n def x(x, state):\n context, state = context_f(x, state)\n with context as scope:\n with _WithContextManager(scope):\n return body_f(x, state)\n return self.__then__(g, **kwargs)\n",
"role": "user"
},
{
"content": "With",
"role": "assistant"
}
] |
def x(self, *branches, **kwargs):
branches = map(lambda x: E.Read(x) if isinstance(x, str) else x, branches)
return self.List(*branches, **kwargs)
|
ReadList
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *branches, **kwargs):\n branches = map(lambda x: E.Read(x) if isinstance(x, str) else x, branches)\n return self.List(*branches, **kwargs)\n",
"role": "user"
},
{
"content": "ReadList",
"role": "assistant"
}
] |
def x(self, *state_args, **state_dict):
if len(state_dict) + len(state_args) < 1:
raise Exception(
'Please include at-least 1 state variable, got {0} and {1}'.
format(state_args, state_dict))
if len(state_dict) > 1:
raise Exception(
'Please include at-most 1 keyword argument expression, got {0}'
.format(state_dict))
if len(state_dict) > 0:
state_key = next(iter(state_dict.keys()))
write_expr = state_dict[state_key]
state_args += state_key,
expr = self >> write_expr
else:
expr = self
def x(x, state):
update = {key: x for key in state_args}
state = utils.merge(state, update)
_StateContextManager.REFS.update(state)
return x, state
return expr.__then__(g)
|
Write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *state_args, **state_dict):\n if len(state_dict) + len(state_args) < 1:\n raise Exception(\n 'Please include at-least 1 state variable, got {0} and {1}'.\n format(state_args, state_dict))\n if len(state_dict) > 1:\n raise Exception(\n 'Please include at-most 1 keyword argument expression, got {0}'\n .format(state_dict))\n if len(state_dict) > 0:\n state_key = next(iter(state_dict.keys()))\n write_expr = state_dict[state_key]\n state_args += state_key,\n expr = self >> write_expr\n else:\n expr = self\n\n def x(x, state):\n update = {key: x for key in state_args}\n state = utils.merge(state, update)\n _StateContextManager.REFS.update(state)\n return x, state\n return expr.__then__(g)\n",
"role": "user"
},
{
"content": "Write",
"role": "assistant"
}
] |
def x(self, val, **kwargs):
f = utils.lift(lambda z: val)
return self.__then__(f, **kwargs)
|
Val
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, val, **kwargs):\n f = utils.lift(lambda z: val)\n return self.__then__(f, **kwargs)\n",
"role": "user"
},
{
"content": "Val",
"role": "assistant"
}
] |
def x(self, condition, *then, **kwargs):
cond_f = _parse(condition)._f
then_f = E.Seq(*then)._f
else_f = utils.state_identity
ast = cond_f, then_f, else_f
g = _compile_if(ast)
expr = self.__then__(g, **kwargs)
expr._ast = ast
expr._root = self
return expr
|
If
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, condition, *then, **kwargs):\n cond_f = _parse(condition)._f\n then_f = E.Seq(*then)._f\n else_f = utils.state_identity\n ast = cond_f, then_f, else_f\n g = _compile_if(ast)\n expr = self.__then__(g, **kwargs)\n expr._ast = ast\n expr._root = self\n return expr\n",
"role": "user"
},
{
"content": "If",
"role": "assistant"
}
] |
def x(self, *Else, **kwargs):
root = self._root
ast = self._ast
next_else = E.Seq(*Else)._f
ast = _add_else(ast, next_else)
g = _compile_if(ast)
return root.__then__(g, **kwargs)
|
Else
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *Else, **kwargs):\n root = self._root\n ast = self._ast\n next_else = E.Seq(*Else)._f\n ast = _add_else(ast, next_else)\n g = _compile_if(ast)\n return root.__then__(g, **kwargs)\n",
"role": "user"
},
{
"content": "Else",
"role": "assistant"
}
] |
def x(string, until=None):
if until is None:
return sum(1 for _ in GraphemeIterator(string))
iterator = graphemes(string)
count = 0
while True:
try:
if count >= until:
break
next(iterator)
except StopIteration:
break
else:
count += 1
return count
|
length
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, until=None):\n if until is None:\n return sum(1 for _ in GraphemeIterator(string))\n iterator = graphemes(string)\n count = 0\n while True:\n try:\n if count >= until:\n break\n next(iterator)\n except StopIteration:\n break\n else:\n count += 1\n return count\n",
"role": "user"
},
{
"content": "length",
"role": "assistant"
}
] |
def x(string, start=None, end=None):
if start is None:
start = 0
if end is not None and start >= end:
return ''
if start < 0:
raise NotImplementedError(
'Negative indexing is currently not supported.')
sum_ = 0
start_index = None
for grapheme_index, grapheme_length in enumerate(grapheme_lengths(string)):
if grapheme_index == start:
start_index = sum_
elif grapheme_index == end:
return string[start_index:sum_]
sum_ += grapheme_length
if start_index is not None:
return string[start_index:]
return ''
|
slice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, start=None, end=None):\n if start is None:\n start = 0\n if end is not None and start >= end:\n return ''\n if start < 0:\n raise NotImplementedError(\n 'Negative indexing is currently not supported.')\n sum_ = 0\n start_index = None\n for grapheme_index, grapheme_length in enumerate(grapheme_lengths(string)):\n if grapheme_index == start:\n start_index = sum_\n elif grapheme_index == end:\n return string[start_index:sum_]\n sum_ += grapheme_length\n if start_index is not None:\n return string[start_index:]\n return ''\n",
"role": "user"
},
{
"content": "slice",
"role": "assistant"
}
] |
def x(string, substring):
if substring not in string:
return False
substr_graphemes = list(graphemes(substring))
if len(substr_graphemes) == 0:
return True
elif len(substr_graphemes) == 1:
return substr_graphemes[0] in graphemes(string)
else:
str_iter = graphemes(string)
str_sub_part = []
for _ in range(len(substr_graphemes)):
try:
str_sub_part.append(next(str_iter))
except StopIteration:
return False
for g in str_iter:
if str_sub_part == substr_graphemes:
return True
str_sub_part.append(g)
str_sub_part.pop(0)
return str_sub_part == substr_graphemes
|
contains
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, substring):\n if substring not in string:\n return False\n substr_graphemes = list(graphemes(substring))\n if len(substr_graphemes) == 0:\n return True\n elif len(substr_graphemes) == 1:\n return substr_graphemes[0] in graphemes(string)\n else:\n str_iter = graphemes(string)\n str_sub_part = []\n for _ in range(len(substr_graphemes)):\n try:\n str_sub_part.append(next(str_iter))\n except StopIteration:\n return False\n for g in str_iter:\n if str_sub_part == substr_graphemes:\n return True\n str_sub_part.append(g)\n str_sub_part.pop(0)\n return str_sub_part == substr_graphemes\n",
"role": "user"
},
{
"content": "contains",
"role": "assistant"
}
] |
def x(string, prefix):
return string.startswith(prefix) and safe_split_index(string, len(prefix)
) == len(prefix)
|
startswith
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, prefix):\n return string.startswith(prefix) and safe_split_index(string, len(prefix)\n ) == len(prefix)\n",
"role": "user"
},
{
"content": "startswith",
"role": "assistant"
}
] |
def x(string, suffix):
expected_index = len(string) - len(suffix)
return string.endswith(suffix) and safe_split_index(string, expected_index
) == expected_index
|
endswith
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, suffix):\n expected_index = len(string) - len(suffix)\n return string.endswith(suffix) and safe_split_index(string, expected_index\n ) == expected_index\n",
"role": "user"
},
{
"content": "endswith",
"role": "assistant"
}
] |
def x(string, max_len):
last_index = get_last_certain_break_index(string, max_len)
for l in grapheme_lengths(string[last_index:]):
if last_index + l > max_len:
break
last_index += l
return last_index
|
safe_split_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, max_len):\n last_index = get_last_certain_break_index(string, max_len)\n for l in grapheme_lengths(string[last_index:]):\n if last_index + l > max_len:\n break\n last_index += l\n return last_index\n",
"role": "user"
},
{
"content": "safe_split_index",
"role": "assistant"
}
] |
def x(filename):
dic = dict()
with open(filename, 'rt', encoding='utf-8') as f:
for l in f:
l = l.strip()
if l[0] in "#!%'":
continue
try:
ld = [ld_ for ld_ in _logfile_data if l.split(':', 1)[0].
strip() == ld_[0]][0]
except IndexError:
if ':' in l:
key, val = [x.strip() for x in l.split(':', 1)]
val = misc.parse_number(val)
dic[key] = val
try:
dic[key] = dic[key].encode('latin2').decode('utf-8')
except (UnicodeDecodeError, UnicodeEncodeError,
AttributeError):
pass
else:
dic[l.strip()] = True
continue
try:
reader = ld[3]
except IndexError:
reader = str
rhs = l.split(':', 1)[1].strip()
try:
vals = reader(rhs)
except ValueError:
if rhs.lower() == 'none':
vals = None
else:
raise
if isinstance(ld[1], tuple):
if len(vals) != len(ld[1]):
raise ValueError(
'Cannot read %d values from line %s in file!' % (
len(ld[1]), l))
dic.update(dict(list(zip(ld[1], vals))))
else:
dic[ld[1]] = vals
dic['__Origin__'] = 'B1 log'
dic['__particle__'] = 'photon'
return dic
|
readB1logfile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n dic = dict()\n with open(filename, 'rt', encoding='utf-8') as f:\n for l in f:\n l = l.strip()\n if l[0] in \"#!%'\":\n continue\n try:\n ld = [ld_ for ld_ in _logfile_data if l.split(':', 1)[0].\n strip() == ld_[0]][0]\n except IndexError:\n if ':' in l:\n key, val = [x.strip() for x in l.split(':', 1)]\n val = misc.parse_number(val)\n dic[key] = val\n try:\n dic[key] = dic[key].encode('latin2').decode('utf-8')\n except (UnicodeDecodeError, UnicodeEncodeError,\n AttributeError):\n pass\n else:\n dic[l.strip()] = True\n continue\n try:\n reader = ld[3]\n except IndexError:\n reader = str\n rhs = l.split(':', 1)[1].strip()\n try:\n vals = reader(rhs)\n except ValueError:\n if rhs.lower() == 'none':\n vals = None\n else:\n raise\n if isinstance(ld[1], tuple):\n if len(vals) != len(ld[1]):\n raise ValueError(\n 'Cannot read %d values from line %s in file!' % (\n len(ld[1]), l))\n dic.update(dict(list(zip(ld[1], vals))))\n else:\n dic[ld[1]] = vals\n dic['__Origin__'] = 'B1 log'\n dic['__particle__'] = 'photon'\n return dic\n",
"role": "user"
},
{
"content": "readB1logfile",
"role": "assistant"
}
] |
def x(filename, data):
allkeys = list(data.keys())
f = open(filename, 'wt', encoding='utf-8')
for ld in _logfile_data:
linebegin = ld[0]
fieldnames = ld[1]
if len(ld) < 3:
formatter = str
elif ld[2] is None:
formatter = str
else:
formatter = ld[2]
formatted = ''
if isinstance(fieldnames, str):
if fieldnames not in allkeys:
continue
try:
formatted = formatter(data[fieldnames])
except KeyError:
continue
elif isinstance(fieldnames, tuple):
if all([(fn not in allkeys) for fn in fieldnames]):
continue
if isinstance(formatter, tuple) and len(formatter) == len(
fieldnames):
formatted = ' '.join([ft(data[fn]) for ft, fn in zip(
formatter, fieldnames)])
elif not isinstance(formatter, tuple):
formatted = formatter([data[fn] for fn in fieldnames])
else:
raise SyntaxError(
'Programming error: formatter should be a scalar or a tupleof the same length as the field names in logfile_data.'
)
else:
raise SyntaxError(
'Invalid syntax (programming error) in logfile_data in writeparamfile().'
)
linetowrite = linebegin + ':\t' + formatted + '\n'
f.write(linetowrite)
if isinstance(fieldnames, tuple):
for fn in fieldnames:
if fn in allkeys:
allkeys.remove(fn)
elif fieldnames in allkeys:
allkeys.remove(fieldnames)
for k in allkeys:
linetowrite = k + ':\t' + str(data[k]) + '\n'
f.write(linetowrite)
f.close()
|
writeB1logfile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, data):\n allkeys = list(data.keys())\n f = open(filename, 'wt', encoding='utf-8')\n for ld in _logfile_data:\n linebegin = ld[0]\n fieldnames = ld[1]\n if len(ld) < 3:\n formatter = str\n elif ld[2] is None:\n formatter = str\n else:\n formatter = ld[2]\n formatted = ''\n if isinstance(fieldnames, str):\n if fieldnames not in allkeys:\n continue\n try:\n formatted = formatter(data[fieldnames])\n except KeyError:\n continue\n elif isinstance(fieldnames, tuple):\n if all([(fn not in allkeys) for fn in fieldnames]):\n continue\n if isinstance(formatter, tuple) and len(formatter) == len(\n fieldnames):\n formatted = ' '.join([ft(data[fn]) for ft, fn in zip(\n formatter, fieldnames)])\n elif not isinstance(formatter, tuple):\n formatted = formatter([data[fn] for fn in fieldnames])\n else:\n raise SyntaxError(\n 'Programming error: formatter should be a scalar or a tupleof the same length as the field names in logfile_data.'\n )\n else:\n raise SyntaxError(\n 'Invalid syntax (programming error) in logfile_data in writeparamfile().'\n )\n linetowrite = linebegin + ':\\t' + formatted + '\\n'\n f.write(linetowrite)\n if isinstance(fieldnames, tuple):\n for fn in fieldnames:\n if fn in allkeys:\n allkeys.remove(fn)\n elif fieldnames in allkeys:\n allkeys.remove(fieldnames)\n for k in allkeys:\n linetowrite = k + ':\\t' + str(data[k]) + '\\n'\n f.write(linetowrite)\n f.close()\n",
"role": "user"
},
{
"content": "writeB1logfile",
"role": "assistant"
}
] |
def x(filename):
hed = {}
if libconfig.LENGTH_UNIT == 'A':
jusifaHC = 12396.4
elif libconfig.LENGTH_UNIT == 'nm':
jusifaHC = 1239.64
else:
raise NotImplementedError('Invalid length unit: ' + str(libconfig.
LENGTH_UNIT))
if filename.upper().endswith('.GZ'):
fid = gzip.GzipFile(filename, 'r')
else:
fid = open(filename, 'rt')
lines = fid.readlines()
fid.close()
hed['FSN'] = int(lines[0].strip())
hed['Hour'] = int(lines[17].strip())
hed['Minutes'] = int(lines[18].strip())
hed['Month'] = int(lines[19].strip())
hed['Day'] = int(lines[20].strip())
hed['Year'] = int(lines[21].strip()) + 2000
hed['FSNref1'] = int(lines[23].strip())
hed['FSNdc'] = int(lines[24].strip())
hed['FSNsensitivity'] = int(lines[25].strip())
hed['FSNempty'] = int(lines[26].strip())
hed['FSNref2'] = int(lines[27].strip())
hed['Monitor'] = float(lines[31].strip())
hed['Anode'] = float(lines[32].strip())
hed['MeasTime'] = float(lines[33].strip())
hed['Temperature'] = float(lines[34].strip())
hed['BeamPosX'] = float(lines[36].strip())
hed['BeamPosY'] = float(lines[37].strip())
hed['Transm'] = float(lines[41].strip())
hed['Wavelength'] = float(lines[43].strip())
hed['Energy'] = jusifaHC / hed['Wavelength']
hed['Dist'] = float(lines[46].strip())
hed['XPixel'] = 1 / float(lines[49].strip())
hed['YPixel'] = 1 / float(lines[50].strip())
hed['Title'] = lines[53].strip().replace(' ', '_').replace('-', '_')
hed['MonitorDORIS'] = float(lines[56].strip())
hed['Owner'] = lines[57].strip()
hed['RotXSample'] = float(lines[59].strip())
hed['RotYSample'] = float(lines[60].strip())
hed['PosSample'] = float(lines[61].strip())
hed['DetPosX'] = float(lines[62].strip())
hed['DetPosY'] = float(lines[63].strip())
hed['MonitorPIEZO'] = float(lines[64].strip())
hed['BeamsizeX'] = float(lines[66].strip())
hed['BeamsizeY'] = float(lines[67].strip())
hed['PosRef'] = float(lines[70].strip())
hed['Monochromator1Rot'] = float(lines[77].strip())
hed['Monochromator2Rot'] = float(lines[78].strip())
hed['Heidenhain1'] = float(lines[79].strip())
hed['Heidenhain2'] = float(lines[80].strip())
hed['Current1'] = float(lines[81].strip())
hed['Current2'] = float(lines[82].strip())
hed['Detector'] = 'Unknown'
hed['PixelSize'] = (hed['XPixel'] + hed['YPixel']) / 2.0
hed['AnodeError'] = math.sqrt(hed['Anode'])
hed['TransmError'] = 0
hed['MonitorError'] = math.sqrt(hed['Monitor'])
hed['MonitorPIEZOError'] = math.sqrt(hed['MonitorPIEZO'])
hed['MonitorDORISError'] = math.sqrt(hed['MonitorDORIS'])
hed['Date'] = datetime.datetime(hed['Year'], hed['Month'], hed['Day'],
hed['Hour'], hed['Minutes'])
hed['__Origin__'] = 'B1 original'
hed['__particle__'] = 'photon'
return hed
|
readB1header
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n hed = {}\n if libconfig.LENGTH_UNIT == 'A':\n jusifaHC = 12396.4\n elif libconfig.LENGTH_UNIT == 'nm':\n jusifaHC = 1239.64\n else:\n raise NotImplementedError('Invalid length unit: ' + str(libconfig.\n LENGTH_UNIT))\n if filename.upper().endswith('.GZ'):\n fid = gzip.GzipFile(filename, 'r')\n else:\n fid = open(filename, 'rt')\n lines = fid.readlines()\n fid.close()\n hed['FSN'] = int(lines[0].strip())\n hed['Hour'] = int(lines[17].strip())\n hed['Minutes'] = int(lines[18].strip())\n hed['Month'] = int(lines[19].strip())\n hed['Day'] = int(lines[20].strip())\n hed['Year'] = int(lines[21].strip()) + 2000\n hed['FSNref1'] = int(lines[23].strip())\n hed['FSNdc'] = int(lines[24].strip())\n hed['FSNsensitivity'] = int(lines[25].strip())\n hed['FSNempty'] = int(lines[26].strip())\n hed['FSNref2'] = int(lines[27].strip())\n hed['Monitor'] = float(lines[31].strip())\n hed['Anode'] = float(lines[32].strip())\n hed['MeasTime'] = float(lines[33].strip())\n hed['Temperature'] = float(lines[34].strip())\n hed['BeamPosX'] = float(lines[36].strip())\n hed['BeamPosY'] = float(lines[37].strip())\n hed['Transm'] = float(lines[41].strip())\n hed['Wavelength'] = float(lines[43].strip())\n hed['Energy'] = jusifaHC / hed['Wavelength']\n hed['Dist'] = float(lines[46].strip())\n hed['XPixel'] = 1 / float(lines[49].strip())\n hed['YPixel'] = 1 / float(lines[50].strip())\n hed['Title'] = lines[53].strip().replace(' ', '_').replace('-', '_')\n hed['MonitorDORIS'] = float(lines[56].strip())\n hed['Owner'] = lines[57].strip()\n hed['RotXSample'] = float(lines[59].strip())\n hed['RotYSample'] = float(lines[60].strip())\n hed['PosSample'] = float(lines[61].strip())\n hed['DetPosX'] = float(lines[62].strip())\n hed['DetPosY'] = float(lines[63].strip())\n hed['MonitorPIEZO'] = float(lines[64].strip())\n hed['BeamsizeX'] = float(lines[66].strip())\n hed['BeamsizeY'] = float(lines[67].strip())\n hed['PosRef'] = float(lines[70].strip())\n hed['Monochromator1Rot'] = float(lines[77].strip())\n hed['Monochromator2Rot'] = float(lines[78].strip())\n hed['Heidenhain1'] = float(lines[79].strip())\n hed['Heidenhain2'] = float(lines[80].strip())\n hed['Current1'] = float(lines[81].strip())\n hed['Current2'] = float(lines[82].strip())\n hed['Detector'] = 'Unknown'\n hed['PixelSize'] = (hed['XPixel'] + hed['YPixel']) / 2.0\n hed['AnodeError'] = math.sqrt(hed['Anode'])\n hed['TransmError'] = 0\n hed['MonitorError'] = math.sqrt(hed['Monitor'])\n hed['MonitorPIEZOError'] = math.sqrt(hed['MonitorPIEZO'])\n hed['MonitorDORISError'] = math.sqrt(hed['MonitorDORIS'])\n hed['Date'] = datetime.datetime(hed['Year'], hed['Month'], hed['Day'],\n hed['Hour'], hed['Minutes'])\n hed['__Origin__'] = 'B1 original'\n hed['__particle__'] = 'photon'\n return hed\n",
"role": "user"
},
{
"content": "readB1header",
"role": "assistant"
}
] |
def x(left, right):
functions = [int, float, lambda l: float(l.split(None, 1)[0]), lambda l:
int(l.split(None, 1)[0]), dateutil.parser.parse, lambda x: str(x)]
for f in functions:
try:
right = f(right)
break
except ValueError:
continue
return right
|
readedf_extractline
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(left, right):\n functions = [int, float, lambda l: float(l.split(None, 1)[0]), lambda l:\n int(l.split(None, 1)[0]), dateutil.parser.parse, lambda x: str(x)]\n for f in functions:\n try:\n right = f(right)\n break\n except ValueError:\n continue\n return right\n",
"role": "user"
},
{
"content": "readedf_extractline",
"role": "assistant"
}
] |
def x(filename):
f = open(filename, 'r')
edf = {}
if not f.readline().strip().startswith('{'):
raise ValueError('Invalid file format.')
for l in f:
l = l.strip()
if not l:
continue
if l.endswith('}'):
break
try:
left, right = l.split('=', 1)
except ValueError:
raise ValueError('Invalid line: ' + l)
left = left.strip()
right = right.strip()
if not right.endswith(';'):
raise ValueError(
'Invalid line (does not end with a semicolon): ' + l)
right = right[:-1].strip()
m = re.match('^(?P<left>.*)~(?P<continuation>\\d+)$', left)
if m is not None:
edf[m.group('left')] = edf[m.group('left')] + right
else:
edf[left] = _readedf_extractline(left, right)
f.close()
edf['FileName'] = filename
edf['__Origin__'] = 'EDF ID02'
edf['__particle__'] = 'photon'
return edf
|
readehf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n f = open(filename, 'r')\n edf = {}\n if not f.readline().strip().startswith('{'):\n raise ValueError('Invalid file format.')\n for l in f:\n l = l.strip()\n if not l:\n continue\n if l.endswith('}'):\n break\n try:\n left, right = l.split('=', 1)\n except ValueError:\n raise ValueError('Invalid line: ' + l)\n left = left.strip()\n right = right.strip()\n if not right.endswith(';'):\n raise ValueError(\n 'Invalid line (does not end with a semicolon): ' + l)\n right = right[:-1].strip()\n m = re.match('^(?P<left>.*)~(?P<continuation>\\\\d+)$', left)\n if m is not None:\n edf[m.group('left')] = edf[m.group('left')] + right\n else:\n edf[left] = _readedf_extractline(left, right)\n f.close()\n edf['FileName'] = filename\n edf['__Origin__'] = 'EDF ID02'\n edf['__particle__'] = 'photon'\n return edf\n",
"role": "user"
},
{
"content": "readehf",
"role": "assistant"
}
] |
def x(filename, load_data=False, bdfext='.bdf', bhfext='.bhf'):
if filename.endswith(bdfext):
basename = filename[:-len(bdfext)]
elif filename.endswith(bhfext):
basename = filename[:-len(bhfext)]
else:
basename, bhfext = os.path.splitext(filename)
bdfext = bhfext
headername = basename + bhfext
dataname = basename + bdfext
bdf = {}
bdf['his'] = []
bdf['C'] = {}
namelists = {}
valuelists = {}
with open(headername, 'rb') as fid:
for line in fid:
if not line.strip():
continue
mat = line.split(None, 1)
prefix = mat[0]
if prefix == '#C':
left, right = mat[1].split('=', 1)
left = left.strip()
right = right.strip()
if left in ['xdim', 'ydim']:
bdf[left] = int(right)
elif left in ['type', 'bdf']:
bdf[left] = right
if left in ['Sendtime']:
bdf['C'][left] = float(right)
elif left in ['xdim', 'ydim']:
bdf['C'][left] = int(right)
else:
bdf['C'][left] = misc.parse_number(right)
elif prefix.startswith('#H'):
bdf['his'].append(mat[1])
else:
for prf in ['M', 'G', 'S', 'T']:
if prefix.startswith('#C%sL' % prf):
if prf not in namelists:
namelists[prf] = []
namelists[prf].extend(mat[1].split())
elif prefix.startswith('#C%sV' % prf):
if prf not in valuelists:
valuelists[prf] = []
valuelists[prf].extend([float(x) for x in mat[1].
split()])
else:
continue
for dictname, prfname in zip(['M', 'CG', 'CS', 'CT'], ['M', 'G', 'S', 'T']
):
bdf[dictname] = dict(list(zip(namelists[prfname], valuelists[prfname]))
)
bdf['__Origin__'] = 'BDFv1'
bdf['__particle__'] = 'photon'
if load_data:
f = open(dataname, 'r')
try:
s = f.read()
except IOError as ioe:
if ioe.errno == 22:
f.close()
try:
f = open(dataname, 'r+b')
s = f.read()
except IOError:
f.close()
raise IOError(22,
"""
You were probably trying to open a read-only file from a network drive on
Windows, weren't you? There is a bug in Windows causing this error
(see http://support.microsoft.com/default.aspx?scid=kb;en-us;899149).
To work around this, please either obtain write permission for that file
(I won't write anything to it, I promise!!!) or copy it to a local drive.
Sorry for the inconvenience."""
, ioe.filename)
datasets = re.findall(
'#\\s*(?P<name>\\w+)\\[(?P<xsize>\\d+):(?P<ysize>\\d+)\\]', s)
names = [d[0] for d in datasets]
xsize = [int(d[1]) for d in datasets]
ysize = [int(d[2]) for d in datasets]
dt = np.dtype(bdf['type'])
for i in range(len(datasets)):
start = s.find('#%s' % names[i])
if i < len(datasets) - 1:
end = s.find('#%s' % names[i + 1])
else:
end = len(s)
s1 = s[start:end]
datasize = xsize[i] * ysize[i] * dt.itemsize
if datasize > len(s1):
bdf[names[i]] = np.fromstring(s1[-xsize[i] * ysize[i]:],
dtype=np.uint8)
else:
bdf[names[i]] = np.fromstring(s1[-xsize[i] * ysize[i] * dt.
itemsize:], dtype=dt)
bdf[names[i]] = np.rot90(bdf[names[i]].reshape((ysize[i], xsize
[i]), order='F'), 1)
return bdf
|
readbhfv1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, load_data=False, bdfext='.bdf', bhfext='.bhf'):\n if filename.endswith(bdfext):\n basename = filename[:-len(bdfext)]\n elif filename.endswith(bhfext):\n basename = filename[:-len(bhfext)]\n else:\n basename, bhfext = os.path.splitext(filename)\n bdfext = bhfext\n headername = basename + bhfext\n dataname = basename + bdfext\n bdf = {}\n bdf['his'] = []\n bdf['C'] = {}\n namelists = {}\n valuelists = {}\n with open(headername, 'rb') as fid:\n for line in fid:\n if not line.strip():\n continue\n mat = line.split(None, 1)\n prefix = mat[0]\n if prefix == '#C':\n left, right = mat[1].split('=', 1)\n left = left.strip()\n right = right.strip()\n if left in ['xdim', 'ydim']:\n bdf[left] = int(right)\n elif left in ['type', 'bdf']:\n bdf[left] = right\n if left in ['Sendtime']:\n bdf['C'][left] = float(right)\n elif left in ['xdim', 'ydim']:\n bdf['C'][left] = int(right)\n else:\n bdf['C'][left] = misc.parse_number(right)\n elif prefix.startswith('#H'):\n bdf['his'].append(mat[1])\n else:\n for prf in ['M', 'G', 'S', 'T']:\n if prefix.startswith('#C%sL' % prf):\n if prf not in namelists:\n namelists[prf] = []\n namelists[prf].extend(mat[1].split())\n elif prefix.startswith('#C%sV' % prf):\n if prf not in valuelists:\n valuelists[prf] = []\n valuelists[prf].extend([float(x) for x in mat[1].\n split()])\n else:\n continue\n for dictname, prfname in zip(['M', 'CG', 'CS', 'CT'], ['M', 'G', 'S', 'T']\n ):\n bdf[dictname] = dict(list(zip(namelists[prfname], valuelists[prfname]))\n )\n bdf['__Origin__'] = 'BDFv1'\n bdf['__particle__'] = 'photon'\n if load_data:\n f = open(dataname, 'r')\n try:\n s = f.read()\n except IOError as ioe:\n if ioe.errno == 22:\n f.close()\n try:\n f = open(dataname, 'r+b')\n s = f.read()\n except IOError:\n f.close()\n raise IOError(22,\n \"\"\"\nYou were probably trying to open a read-only file from a network drive on\nWindows, weren't you? There is a bug in Windows causing this error\n(see http://support.microsoft.com/default.aspx?scid=kb;en-us;899149).\nTo work around this, please either obtain write permission for that file\n(I won't write anything to it, I promise!!!) or copy it to a local drive.\nSorry for the inconvenience.\"\"\"\n , ioe.filename)\n datasets = re.findall(\n '#\\\\s*(?P<name>\\\\w+)\\\\[(?P<xsize>\\\\d+):(?P<ysize>\\\\d+)\\\\]', s)\n names = [d[0] for d in datasets]\n xsize = [int(d[1]) for d in datasets]\n ysize = [int(d[2]) for d in datasets]\n dt = np.dtype(bdf['type'])\n for i in range(len(datasets)):\n start = s.find('#%s' % names[i])\n if i < len(datasets) - 1:\n end = s.find('#%s' % names[i + 1])\n else:\n end = len(s)\n s1 = s[start:end]\n datasize = xsize[i] * ysize[i] * dt.itemsize\n if datasize > len(s1):\n bdf[names[i]] = np.fromstring(s1[-xsize[i] * ysize[i]:],\n dtype=np.uint8)\n else:\n bdf[names[i]] = np.fromstring(s1[-xsize[i] * ysize[i] * dt.\n itemsize:], dtype=dt)\n bdf[names[i]] = np.rot90(bdf[names[i]].reshape((ysize[i], xsize\n [i]), order='F'), 1)\n return bdf\n",
"role": "user"
},
{
"content": "readbhfv1",
"role": "assistant"
}
] |
def x(filename):
with open(filename, 'rb') as f:
intheader = np.fromstring(f.read(10 * 4), np.int32)
floatheader = np.fromstring(f.read(15 * 4), '<f4')
strheader = f.read(24)
f.read(4)
otherstrings = [f.read(16) for i in range(29)]
return {'Xsize': intheader[0], 'Ysize': intheader[1], 'MeasTime':
intheader[8], 'BeamPosX': floatheader[7], 'BeamPosY': floatheader[8
], 'Wavelength': floatheader[9], 'Dist': floatheader[10],
'__Origin__': 'MarResearch .image', 'recordlength': intheader[2],
'highintensitypixels': intheader[4], 'highintensityrecords':
intheader[5], 'Date': dateutil.parser.parse(strheader), 'Detector':
'MARCCD', '__particle__': 'photon'}
|
readmarheader
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n with open(filename, 'rb') as f:\n intheader = np.fromstring(f.read(10 * 4), np.int32)\n floatheader = np.fromstring(f.read(15 * 4), '<f4')\n strheader = f.read(24)\n f.read(4)\n otherstrings = [f.read(16) for i in range(29)]\n return {'Xsize': intheader[0], 'Ysize': intheader[1], 'MeasTime':\n intheader[8], 'BeamPosX': floatheader[7], 'BeamPosY': floatheader[8\n ], 'Wavelength': floatheader[9], 'Dist': floatheader[10],\n '__Origin__': 'MarResearch .image', 'recordlength': intheader[2],\n 'highintensitypixels': intheader[4], 'highintensityrecords':\n intheader[5], 'Date': dateutil.parser.parse(strheader), 'Detector':\n 'MARCCD', '__particle__': 'photon'}\n",
"role": "user"
},
{
"content": "readmarheader",
"role": "assistant"
}
] |
def x(filename):
hed = {'Comment': ''}
translate = {'Lambda': 'Wavelength', 'Title': 'Owner', 'SampleName':
'Title', 'BeamcenterX': 'BeamPosY', 'BeamcenterY': 'BeamPosX',
'Time': 'MeasTime', 'TotalTime': 'MeasTime', 'Moni1': 'Monitor',
'Moni2': 'Monitor', 'Moni': 'Monitor', 'Transmission': 'Transm'}
with open(filename, 'rt') as f:
comment_next = False
for l in f:
l = l.strip()
if comment_next:
hed['Comment'] = hed['Comment'] + '\n' + l
comment_next = False
elif l.startswith('%Counts'):
break
elif l.startswith('%Comment'):
comment_next = True
elif l.startswith('%'):
continue
elif l.split('=', 1)[0] in translate:
hed[translate[l.split('=', 1)[0]]] = misc.parse_number(l.
split('=', 1)[1])
else:
try:
hed[l.split('=', 1)[0]] = misc.parse_number(l.split('=',
1)[1])
except IndexError:
print(l.split('=', 1))
if 'FileName' in hed:
m = re.match('D(\\d+)\\.(\\d+)', hed['FileName'])
if m is not None:
hed['FSN'] = int(m.groups()[0])
hed['suffix'] = int(m.groups()[1])
if 'FileDate' in hed:
hed['Date'] = dateutil.parser.parse(hed['FileDate'])
if 'FileTime' in hed:
hed['Date'] = datetime.datetime.combine(hed['Date'].date(),
dateutil.parser.parse(hed['FileTime']).time())
hed['__Origin__'] = 'BerSANS'
if 'SD' in hed:
hed['Dist'] = hed['SD'] * 1000
if hed['Comment'].startswith('\n'):
hed['Comment'] = hed['Comment'][1:]
hed['__particle__'] = 'neutron'
hed['Wavelength'] *= 10
return hed
|
readBerSANS
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n hed = {'Comment': ''}\n translate = {'Lambda': 'Wavelength', 'Title': 'Owner', 'SampleName':\n 'Title', 'BeamcenterX': 'BeamPosY', 'BeamcenterY': 'BeamPosX',\n 'Time': 'MeasTime', 'TotalTime': 'MeasTime', 'Moni1': 'Monitor',\n 'Moni2': 'Monitor', 'Moni': 'Monitor', 'Transmission': 'Transm'}\n with open(filename, 'rt') as f:\n comment_next = False\n for l in f:\n l = l.strip()\n if comment_next:\n hed['Comment'] = hed['Comment'] + '\\n' + l\n comment_next = False\n elif l.startswith('%Counts'):\n break\n elif l.startswith('%Comment'):\n comment_next = True\n elif l.startswith('%'):\n continue\n elif l.split('=', 1)[0] in translate:\n hed[translate[l.split('=', 1)[0]]] = misc.parse_number(l.\n split('=', 1)[1])\n else:\n try:\n hed[l.split('=', 1)[0]] = misc.parse_number(l.split('=',\n 1)[1])\n except IndexError:\n print(l.split('=', 1))\n if 'FileName' in hed:\n m = re.match('D(\\\\d+)\\\\.(\\\\d+)', hed['FileName'])\n if m is not None:\n hed['FSN'] = int(m.groups()[0])\n hed['suffix'] = int(m.groups()[1])\n if 'FileDate' in hed:\n hed['Date'] = dateutil.parser.parse(hed['FileDate'])\n if 'FileTime' in hed:\n hed['Date'] = datetime.datetime.combine(hed['Date'].date(),\n dateutil.parser.parse(hed['FileTime']).time())\n hed['__Origin__'] = 'BerSANS'\n if 'SD' in hed:\n hed['Dist'] = hed['SD'] * 1000\n if hed['Comment'].startswith('\\n'):\n hed['Comment'] = hed['Comment'][1:]\n hed['__particle__'] = 'neutron'\n hed['Wavelength'] *= 10\n return hed\n",
"role": "user"
},
{
"content": "readBerSANS",
"role": "assistant"
}
] |
def x(x, a, omega, phi, y0):
return a * np.sin(x * omega + phi) + y0
|
Sine
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, a, omega, phi, y0):\n return a * np.sin(x * omega + phi) + y0\n",
"role": "user"
},
{
"content": "Sine",
"role": "assistant"
}
] |
def x(x, a, omega, phi, y0):
return a * np.cos(x * omega + phi) + y0
|
Cosine
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, a, omega, phi, y0):\n return a * np.cos(x * omega + phi) + y0\n",
"role": "user"
},
{
"content": "Cosine",
"role": "assistant"
}
] |
def x(x, a, b, c):
return a * x ** 2 + b * x + c
|
Square
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, a, b, c):\n return a * x ** 2 + b * x + c\n",
"role": "user"
},
{
"content": "Square",
"role": "assistant"
}
] |
def x(x, a, b, c, d):
return a * x ** 3 + b * x ** 2 + c * x + d
|
Cube
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, a, b, c, d):\n return a * x ** 3 + b * x ** 2 + c * x + d\n",
"role": "user"
},
{
"content": "Cube",
"role": "assistant"
}
] |
def x(x, a, tau, y0):
return np.exp(x / tau) * a + y0
|
Exponential
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, a, tau, y0):\n return np.exp(x / tau) * a + y0\n",
"role": "user"
},
{
"content": "Exponential",
"role": "assistant"
}
] |
def x(x, a, x0, sigma, y0):
return a / (1 + ((x - x0) / sigma) ** 2) + y0
|
Lorentzian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, a, x0, sigma, y0):\n return a / (1 + ((x - x0) / sigma) ** 2) + y0\n",
"role": "user"
},
{
"content": "Lorentzian",
"role": "assistant"
}
] |
def x(x, a, x0, sigma, y0):
return a * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2)) + y0
|
Gaussian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, a, x0, sigma, y0):\n return a * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2)) + y0\n",
"role": "user"
},
{
"content": "Gaussian",
"role": "assistant"
}
] |
def x(x, a, mu, sigma):
return a / np.sqrt(2 * np.pi * sigma ** 2 * x ** 2) * np.exp(-(np.log(x
) - mu) ** 2 / (2 * sigma ** 2))
|
LogNormal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, a, mu, sigma):\n return a / np.sqrt(2 * np.pi * sigma ** 2 * x ** 2) * np.exp(-(np.log(x\n ) - mu) ** 2 / (2 * sigma ** 2))\n",
"role": "user"
},
{
"content": "LogNormal",
"role": "assistant"
}
] |
def x(data, dataerr, bcx, bcy, mask=None, pix=None, returnavgpix=False,
phi0=0, dphi=0, returnmask=False, symmetric_sector=False, doslice=False,
errorpropagation=2, autoqrange_linear=True):
if isinstance(data, np.ndarray):
data = data.astype(np.double)
if isinstance(dataerr, np.ndarray):
dataerr = dataerr.astype(np.double)
if isinstance(mask, np.ndarray):
mask = mask.astype(np.uint8)
return radint(data, dataerr, -1, -1, -1, 1.0 * bcx, 1.0 * bcy, mask,
pix, returnavgpix, phi0, dphi, returnmask, symmetric_sector,
doslice, False, errorpropagation, autoqrange_linear)
|
radintpix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, dataerr, bcx, bcy, mask=None, pix=None, returnavgpix=False,\n phi0=0, dphi=0, returnmask=False, symmetric_sector=False, doslice=False,\n errorpropagation=2, autoqrange_linear=True):\n if isinstance(data, np.ndarray):\n data = data.astype(np.double)\n if isinstance(dataerr, np.ndarray):\n dataerr = dataerr.astype(np.double)\n if isinstance(mask, np.ndarray):\n mask = mask.astype(np.uint8)\n return radint(data, dataerr, -1, -1, -1, 1.0 * bcx, 1.0 * bcy, mask,\n pix, returnavgpix, phi0, dphi, returnmask, symmetric_sector,\n doslice, False, errorpropagation, autoqrange_linear)\n",
"role": "user"
},
{
"content": "radintpix",
"role": "assistant"
}
] |
def x(data, dataerr, bcx, bcy, mask=None, Ntheta=100, pixmin=0, pixmax=np.
inf, returnmask=False, errorpropagation=2):
if isinstance(data, np.ndarray):
data = data.astype(np.double)
if isinstance(dataerr, np.ndarray):
dataerr = dataerr.astype(np.double)
if isinstance(mask, np.ndarray):
mask = mask.astype(np.uint8)
return azimint(data, dataerr, -1, -1, -1, bcx, bcy, mask, Ntheta,
pixmin, pixmax, returnmask, errorpropagation)
|
azimintpix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, dataerr, bcx, bcy, mask=None, Ntheta=100, pixmin=0, pixmax=np.\n inf, returnmask=False, errorpropagation=2):\n if isinstance(data, np.ndarray):\n data = data.astype(np.double)\n if isinstance(dataerr, np.ndarray):\n dataerr = dataerr.astype(np.double)\n if isinstance(mask, np.ndarray):\n mask = mask.astype(np.uint8)\n return azimint(data, dataerr, -1, -1, -1, bcx, bcy, mask, Ntheta,\n pixmin, pixmax, returnmask, errorpropagation)\n",
"role": "user"
},
{
"content": "azimintpix",
"role": "assistant"
}
] |
def x(startdir='.', recursion_depth=None):
startdir = os.path.expanduser(startdir)
direct_subdirs = [os.path.join(startdir, x) for x in os.listdir(
startdir) if os.path.isdir(os.path.join(startdir, x))]
if recursion_depth is None:
next_recursion_depth = None
else:
next_recursion_depth = recursion_depth - 1
if recursion_depth is not None and recursion_depth <= 1:
return [startdir] + direct_subdirs
else:
subdirs = []
for d in direct_subdirs:
subdirs.extend(find_subdirs(d, next_recursion_depth))
return [startdir] + subdirs
|
find_subdirs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(startdir='.', recursion_depth=None):\n startdir = os.path.expanduser(startdir)\n direct_subdirs = [os.path.join(startdir, x) for x in os.listdir(\n startdir) if os.path.isdir(os.path.join(startdir, x))]\n if recursion_depth is None:\n next_recursion_depth = None\n else:\n next_recursion_depth = recursion_depth - 1\n if recursion_depth is not None and recursion_depth <= 1:\n return [startdir] + direct_subdirs\n else:\n subdirs = []\n for d in direct_subdirs:\n subdirs.extend(find_subdirs(d, next_recursion_depth))\n return [startdir] + subdirs\n",
"role": "user"
},
{
"content": "find_subdirs",
"role": "assistant"
}
] |
def x(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude=
None, curve='Lorentz'):
warnings.warn(
'Function findpeak() is deprecated, please use findpeak_single() instead.'
, DeprecationWarning)
pos, hwhm, baseline, ampl = findpeak_single(x, y, dy, position, hwhm,
baseline, amplitude, curve)
return (pos.val, pos.err, hwhm.val, hwhm.err, baseline.val, baseline.
err, ampl.val, ampl.err)
|
findpeak
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude=\n None, curve='Lorentz'):\n warnings.warn(\n 'Function findpeak() is deprecated, please use findpeak_single() instead.'\n , DeprecationWarning)\n pos, hwhm, baseline, ampl = findpeak_single(x, y, dy, position, hwhm,\n baseline, amplitude, curve)\n return (pos.val, pos.err, hwhm.val, hwhm.err, baseline.val, baseline.\n err, ampl.val, ampl.err)\n",
"role": "user"
},
{
"content": "findpeak",
"role": "assistant"
}
] |
def x(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude=
None, curve='Lorentz', return_stat=False, signs=(-1, 1), return_x=None):
y_orig = y
if dy is None:
dy = np.ones_like(x)
if curve.upper().startswith('GAUSS'):
def x(x_, amplitude_, position_, hwhm_, baseline_):
return amplitude_ * np.exp(-0.5 * (x_ - position_) ** 2 / hwhm_ **
2) + baseline_
elif curve.upper().startswith('LORENTZ'):
def x(x_, amplitude_, position_, hwhm_, baseline_):
return amplitude_ * hwhm_ ** 2 / (hwhm_ ** 2 + (position_ - x_) **
2) + baseline_
else:
raise ValueError('Invalid curve type: {}'.format(curve))
results = []
for sign in signs:
init_params = {'position': position, 'hwhm': hwhm, 'baseline':
baseline, 'amplitude': amplitude}
y = y_orig * sign
if init_params['position'] is None:
init_params['position'] = x[y == y.max()][0]
if init_params['hwhm'] is None:
init_params['hwhm'] = 0.5 * (x.max() - x.min())
if init_params['baseline'] is None:
init_params['baseline'] = y.min()
if init_params['amplitude'] is None:
init_params['amplitude'] = y.max() - init_params['baseline']
results.append(nlsq_fit(x, y, dy, fitfunc, (init_params['amplitude'
], init_params['position'], init_params['hwhm'], init_params[
'baseline'])) + (sign,))
max_R2 = max([r[2]['R2'] for r in results])
p, dp, stat, sign = [r for r in results if r[2]['R2'] == max_R2][0]
retval = [ErrorValue(p[1], dp[1]), ErrorValue(abs(p[2]), dp[2]), sign *
ErrorValue(p[3], dp[3]), sign * ErrorValue(p[0], dp[0])]
if return_stat:
stat['func_value'] = stat['func_value'] * sign
retval.append(stat)
if return_x is not None:
retval.append(sign * fitfunc(return_x, p[0], p[1], p[2], p[3]))
return tuple(retval)
|
findpeak_single
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, dy=None, position=None, hwhm=None, baseline=None, amplitude=\n None, curve='Lorentz', return_stat=False, signs=(-1, 1), return_x=None):\n y_orig = y\n if dy is None:\n dy = np.ones_like(x)\n if curve.upper().startswith('GAUSS'):\n\n def x(x_, amplitude_, position_, hwhm_, baseline_):\n return amplitude_ * np.exp(-0.5 * (x_ - position_) ** 2 / hwhm_ **\n 2) + baseline_\n elif curve.upper().startswith('LORENTZ'):\n\n def x(x_, amplitude_, position_, hwhm_, baseline_):\n return amplitude_ * hwhm_ ** 2 / (hwhm_ ** 2 + (position_ - x_) **\n 2) + baseline_\n else:\n raise ValueError('Invalid curve type: {}'.format(curve))\n results = []\n for sign in signs:\n init_params = {'position': position, 'hwhm': hwhm, 'baseline':\n baseline, 'amplitude': amplitude}\n y = y_orig * sign\n if init_params['position'] is None:\n init_params['position'] = x[y == y.max()][0]\n if init_params['hwhm'] is None:\n init_params['hwhm'] = 0.5 * (x.max() - x.min())\n if init_params['baseline'] is None:\n init_params['baseline'] = y.min()\n if init_params['amplitude'] is None:\n init_params['amplitude'] = y.max() - init_params['baseline']\n results.append(nlsq_fit(x, y, dy, fitfunc, (init_params['amplitude'\n ], init_params['position'], init_params['hwhm'], init_params[\n 'baseline'])) + (sign,))\n max_R2 = max([r[2]['R2'] for r in results])\n p, dp, stat, sign = [r for r in results if r[2]['R2'] == max_R2][0]\n retval = [ErrorValue(p[1], dp[1]), ErrorValue(abs(p[2]), dp[2]), sign *\n ErrorValue(p[3], dp[3]), sign * ErrorValue(p[0], dp[0])]\n if return_stat:\n stat['func_value'] = stat['func_value'] * sign\n retval.append(stat)\n if return_x is not None:\n retval.append(sign * fitfunc(return_x, p[0], p[1], p[2], p[3]))\n return tuple(retval)\n",
"role": "user"
},
{
"content": "findpeak_single",
"role": "assistant"
}
] |
def x(x, y, dy, N, Ntolerance, Nfit=None, curve='Lorentz', return_xfit=
False, return_stat=False):
if Nfit is None:
Nfit = N
sgndiff = np.sign(np.diff(y))
xdiff = x[:-1]
pix = np.arange(len(x) - 1)
indicator = np.zeros(len(sgndiff) - 2 * N)
for i in range(2 * N):
indicator += np.sign(N - i) * sgndiff[i:-2 * N + i]
indicator += -sgndiff[2 * N:]
peakpospix = pix[N:-N][indicator >= 2 * N - 2 * Ntolerance]
ypeak = y[peakpospix]
pos = []
ampl = []
hwhm = []
baseline = []
xfit = []
stat = []
dy1 = None
for i in range(len(ypeak)):
if not [j for j in list(range(i + 1, len(ypeak))) + list(range(0, i
)) if abs(peakpospix[j] - peakpospix[i]) <= N and ypeak[i] <
ypeak[j]]:
idx = peakpospix[i]
if dy is not None:
dy1 = dy[idx - Nfit:idx + Nfit + 1]
xfit_ = x[idx - Nfit:idx + Nfit + 1]
pos_, hwhm_, baseline_, ampl_, stat_ = findpeak_single(xfit_, y
[idx - Nfit:idx + Nfit + 1], dy1, position=x[idx],
return_stat=True)
stat.append(stat_)
xfit.append(xfit_)
pos.append(pos_)
ampl.append(ampl_)
hwhm.append(hwhm_)
baseline.append(baseline_)
results = [pos, hwhm, baseline, ampl]
if return_xfit:
results.append(xfit)
if return_stat:
results.append(stat)
return tuple(results)
|
findpeak_multi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, dy, N, Ntolerance, Nfit=None, curve='Lorentz', return_xfit=\n False, return_stat=False):\n if Nfit is None:\n Nfit = N\n sgndiff = np.sign(np.diff(y))\n xdiff = x[:-1]\n pix = np.arange(len(x) - 1)\n indicator = np.zeros(len(sgndiff) - 2 * N)\n for i in range(2 * N):\n indicator += np.sign(N - i) * sgndiff[i:-2 * N + i]\n indicator += -sgndiff[2 * N:]\n peakpospix = pix[N:-N][indicator >= 2 * N - 2 * Ntolerance]\n ypeak = y[peakpospix]\n pos = []\n ampl = []\n hwhm = []\n baseline = []\n xfit = []\n stat = []\n dy1 = None\n for i in range(len(ypeak)):\n if not [j for j in list(range(i + 1, len(ypeak))) + list(range(0, i\n )) if abs(peakpospix[j] - peakpospix[i]) <= N and ypeak[i] <\n ypeak[j]]:\n idx = peakpospix[i]\n if dy is not None:\n dy1 = dy[idx - Nfit:idx + Nfit + 1]\n xfit_ = x[idx - Nfit:idx + Nfit + 1]\n pos_, hwhm_, baseline_, ampl_, stat_ = findpeak_single(xfit_, y\n [idx - Nfit:idx + Nfit + 1], dy1, position=x[idx],\n return_stat=True)\n stat.append(stat_)\n xfit.append(xfit_)\n pos.append(pos_)\n ampl.append(ampl_)\n hwhm.append(hwhm_)\n baseline.append(baseline_)\n results = [pos, hwhm, baseline, ampl]\n if return_xfit:\n results.append(xfit)\n if return_stat:\n results.append(stat)\n return tuple(results)\n",
"role": "user"
},
{
"content": "findpeak_multi",
"role": "assistant"
}
] |
def x(x, y, dy=None, curve='Lorentz', return_x=None, init_parameters=None):
idx = np.logical_and(np.isfinite(x), np.isfinite(y))
if dy is not None:
idx = np.logical_and(idx, np.isfinite(dy))
x = x[idx]
y = y[idx]
if dy is not None:
dy = dy[idx]
if curve.lower().startswith('loren'):
lorentzian = True
elif curve.lower().startswith('gauss'):
lorentzian = False
else:
raise ValueError('Unknown peak type {}'.format(curve))
def x(pars, x, lorentzian=True):
x0, sigma1, sigma2, C, A = pars
result = np.empty_like(x)
if lorentzian:
result[x < x0] = A * sigma1 ** 2 / (sigma1 ** 2 + (x0 - x[x <
x0]) ** 2) + C
result[x >= x0] = A * sigma2 ** 2 / (sigma2 ** 2 + (x0 - x[x >=
x0]) ** 2) + C
else:
result[x < x0] = A * np.exp(-(x[x < x0] - x0) ** 2 / (2 *
sigma1 ** 2))
result[x >= x0] = A * np.exp(-(x[x >= x0] - x0) ** 2 / (2 *
sigma1 ** 2))
return result
def x(pars, x, y, dy, lorentzian=True):
yfit = peakfunc(pars, x, lorentzian)
if dy is None:
return yfit - y
else:
return (yfit - y) / dy
if init_parameters is not None:
pos, hwhmleft, hwhmright, baseline, amplitude = [float(x) for x in
init_parameters]
else:
baseline = y.min()
amplitude = y.max() - baseline
hwhmleft = hwhmright = (x.max() - x.min()) * 0.5
pos = x[np.argmax(y)]
result = scipy.optimize.least_squares(fitfunc, [pos, hwhmleft,
hwhmright, baseline, amplitude], args=(x, y, dy, lorentzian),
bounds=([x.min(), 0, 0, -np.inf, 0], [x.max(), np.inf, np.inf, np.
inf, np.inf]))
if not result.success:
raise RuntimeError('Error while peak fitting: {}'.format(result.
message))
if dy is None:
ret = result.x[0], result.x[1], result.x[2], result.x[3], result.x[4]
else:
_, s, VT = svd(result.jac, full_matrices=False)
threshold = np.finfo(float).eps * max(result.jac.shape) * s[0]
s = s[s > threshold]
VT = VT[:s.size]
pcov = np.dot(VT.T / s ** 2, VT)
ret = tuple([ErrorValue(result.x[i], pcov[i, i] ** 0.5) for i in
range(5)])
if return_x is not None:
ret = ret + (peakfunc([float(x) for x in ret], return_x, lorentzian),)
return ret
|
findpeak_asymmetric
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, dy=None, curve='Lorentz', return_x=None, init_parameters=None):\n idx = np.logical_and(np.isfinite(x), np.isfinite(y))\n if dy is not None:\n idx = np.logical_and(idx, np.isfinite(dy))\n x = x[idx]\n y = y[idx]\n if dy is not None:\n dy = dy[idx]\n if curve.lower().startswith('loren'):\n lorentzian = True\n elif curve.lower().startswith('gauss'):\n lorentzian = False\n else:\n raise ValueError('Unknown peak type {}'.format(curve))\n\n def x(pars, x, lorentzian=True):\n x0, sigma1, sigma2, C, A = pars\n result = np.empty_like(x)\n if lorentzian:\n result[x < x0] = A * sigma1 ** 2 / (sigma1 ** 2 + (x0 - x[x <\n x0]) ** 2) + C\n result[x >= x0] = A * sigma2 ** 2 / (sigma2 ** 2 + (x0 - x[x >=\n x0]) ** 2) + C\n else:\n result[x < x0] = A * np.exp(-(x[x < x0] - x0) ** 2 / (2 * \n sigma1 ** 2))\n result[x >= x0] = A * np.exp(-(x[x >= x0] - x0) ** 2 / (2 * \n sigma1 ** 2))\n return result\n\n def x(pars, x, y, dy, lorentzian=True):\n yfit = peakfunc(pars, x, lorentzian)\n if dy is None:\n return yfit - y\n else:\n return (yfit - y) / dy\n if init_parameters is not None:\n pos, hwhmleft, hwhmright, baseline, amplitude = [float(x) for x in\n init_parameters]\n else:\n baseline = y.min()\n amplitude = y.max() - baseline\n hwhmleft = hwhmright = (x.max() - x.min()) * 0.5\n pos = x[np.argmax(y)]\n result = scipy.optimize.least_squares(fitfunc, [pos, hwhmleft,\n hwhmright, baseline, amplitude], args=(x, y, dy, lorentzian),\n bounds=([x.min(), 0, 0, -np.inf, 0], [x.max(), np.inf, np.inf, np.\n inf, np.inf]))\n if not result.success:\n raise RuntimeError('Error while peak fitting: {}'.format(result.\n message))\n if dy is None:\n ret = result.x[0], result.x[1], result.x[2], result.x[3], result.x[4]\n else:\n _, s, VT = svd(result.jac, full_matrices=False)\n threshold = np.finfo(float).eps * max(result.jac.shape) * s[0]\n s = s[s > threshold]\n VT = VT[:s.size]\n pcov = np.dot(VT.T / s ** 2, VT)\n ret = tuple([ErrorValue(result.x[i], pcov[i, i] ** 0.5) for i in\n range(5)])\n if return_x is not None:\n ret = ret + (peakfunc([float(x) for x in ret], return_x, lorentzian),)\n return ret\n",
"role": "user"
},
{
"content": "findpeak_asymmetric",
"role": "assistant"
}
] |
def x(f, number=None):
scan = None
scannumber = None
while True:
l = f.readline()
if l.startswith('#S'):
scannumber = int(l[2:].split()[0])
if not (number is None or number == scannumber):
break
if scan is None:
scan = {}
scan['number'] = scannumber
scan['command'] = l[2:].split(None, 1)[1].strip()
scan['data'] = []
elif l.startswith('#C'):
scan['comment'] = l[2:].strip()
elif l.startswith('#D'):
scan['datestring'] = l[2:].strip()
elif l.startswith('#T'):
scan['countingtime'] = float(l[2:].split()[0])
scan['scantimeunits'] = l[2:].split()[1].strip()
elif l.startswith('#M'):
scan['countingcounts'] = float(l[2:].split()[0])
elif l.startswith('#G'):
if 'G' not in scan:
scan['G'] = []
scan['G'].extend([float(x) for x in l.split()[1:]])
elif l.startswith('#P'):
if 'positions' not in scan:
scan['positions'] = []
scan['positions'].extend([float(x) for x in l.split()[1:]])
elif l.startswith('#Q'):
pass
elif l.startswith('#N'):
n = [float(x) for x in l[2:].strip().split()]
if len(n) == 1:
scan['N'] = n[0]
else:
scan['N'] = n
elif l.startswith('#L'):
scan['Columns'] = [x.strip() for x in l[3:].split(' ')]
elif not l:
if scan is None:
raise SpecFileEOF
else:
break
elif not l.strip():
break
elif l.startswith('#'):
continue
else:
scan['data'].append(tuple(float(x) for x in l.split()))
while l.strip():
l = f.readline()
if scan is not None:
scan['data'] = np.array(scan['data'], dtype=list(zip(scan['Columns'
], itertools.repeat(np.float))))
return scan
else:
return scannumber
|
readspecscan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, number=None):\n scan = None\n scannumber = None\n while True:\n l = f.readline()\n if l.startswith('#S'):\n scannumber = int(l[2:].split()[0])\n if not (number is None or number == scannumber):\n break\n if scan is None:\n scan = {}\n scan['number'] = scannumber\n scan['command'] = l[2:].split(None, 1)[1].strip()\n scan['data'] = []\n elif l.startswith('#C'):\n scan['comment'] = l[2:].strip()\n elif l.startswith('#D'):\n scan['datestring'] = l[2:].strip()\n elif l.startswith('#T'):\n scan['countingtime'] = float(l[2:].split()[0])\n scan['scantimeunits'] = l[2:].split()[1].strip()\n elif l.startswith('#M'):\n scan['countingcounts'] = float(l[2:].split()[0])\n elif l.startswith('#G'):\n if 'G' not in scan:\n scan['G'] = []\n scan['G'].extend([float(x) for x in l.split()[1:]])\n elif l.startswith('#P'):\n if 'positions' not in scan:\n scan['positions'] = []\n scan['positions'].extend([float(x) for x in l.split()[1:]])\n elif l.startswith('#Q'):\n pass\n elif l.startswith('#N'):\n n = [float(x) for x in l[2:].strip().split()]\n if len(n) == 1:\n scan['N'] = n[0]\n else:\n scan['N'] = n\n elif l.startswith('#L'):\n scan['Columns'] = [x.strip() for x in l[3:].split(' ')]\n elif not l:\n if scan is None:\n raise SpecFileEOF\n else:\n break\n elif not l.strip():\n break\n elif l.startswith('#'):\n continue\n else:\n scan['data'].append(tuple(float(x) for x in l.split()))\n while l.strip():\n l = f.readline()\n if scan is not None:\n scan['data'] = np.array(scan['data'], dtype=list(zip(scan['Columns'\n ], itertools.repeat(np.float))))\n return scan\n else:\n return scannumber\n",
"role": "user"
},
{
"content": "readspecscan",
"role": "assistant"
}
] |
def x(filename, read_scan=None):
with open(filename, 'rt') as f:
sf = {'motors': [], 'maxscannumber': 0}
sf['originalfilename'] = filename
lastscannumber = None
while True:
l = f.readline()
if l.startswith('#F'):
sf['filename'] = l[2:].strip()
elif l.startswith('#E'):
sf['epoch'] = int(l[2:].strip())
sf['datetime'] = datetime.datetime.fromtimestamp(sf['epoch'])
elif l.startswith('#D'):
sf['datestring'] = l[2:].strip()
elif l.startswith('#C'):
sf['comment'] = l[2:].strip()
elif l.startswith('#O'):
try:
l = l.split(None, 1)[1]
except IndexError:
continue
if 'motors' not in list(sf.keys()):
sf['motors'] = []
sf['motors'].extend([x.strip() for x in l.split(' ')])
elif not l.strip():
break
sf['scans'] = {}
if read_scan is not None:
if read_scan == 'all':
nr = None
else:
nr = read_scan
try:
while True:
s = readspecscan(f, nr)
if isinstance(s, dict):
sf['scans'][s['number']] = s
if nr is not None:
break
sf['maxscannumber'] = max(sf['maxscannumber'], s[
'number'])
elif s is not None:
sf['maxscannumber'] = max(sf['maxscannumber'], s)
except SpecFileEOF:
pass
else:
while True:
l = f.readline()
if not l:
break
if l.startswith('#S'):
n = int(l[2:].split()[0])
sf['maxscannumber'] = max(sf['maxscannumber'], n)
for n in sf['scans']:
s = sf['scans'][n]
s['motors'] = sf['motors']
if 'comment' not in s:
s['comment'] = sf['comment']
if 'positions' not in s:
s['positions'] = [None] * len(sf['motors'])
return sf
|
readspec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, read_scan=None):\n with open(filename, 'rt') as f:\n sf = {'motors': [], 'maxscannumber': 0}\n sf['originalfilename'] = filename\n lastscannumber = None\n while True:\n l = f.readline()\n if l.startswith('#F'):\n sf['filename'] = l[2:].strip()\n elif l.startswith('#E'):\n sf['epoch'] = int(l[2:].strip())\n sf['datetime'] = datetime.datetime.fromtimestamp(sf['epoch'])\n elif l.startswith('#D'):\n sf['datestring'] = l[2:].strip()\n elif l.startswith('#C'):\n sf['comment'] = l[2:].strip()\n elif l.startswith('#O'):\n try:\n l = l.split(None, 1)[1]\n except IndexError:\n continue\n if 'motors' not in list(sf.keys()):\n sf['motors'] = []\n sf['motors'].extend([x.strip() for x in l.split(' ')])\n elif not l.strip():\n break\n sf['scans'] = {}\n if read_scan is not None:\n if read_scan == 'all':\n nr = None\n else:\n nr = read_scan\n try:\n while True:\n s = readspecscan(f, nr)\n if isinstance(s, dict):\n sf['scans'][s['number']] = s\n if nr is not None:\n break\n sf['maxscannumber'] = max(sf['maxscannumber'], s[\n 'number'])\n elif s is not None:\n sf['maxscannumber'] = max(sf['maxscannumber'], s)\n except SpecFileEOF:\n pass\n else:\n while True:\n l = f.readline()\n if not l:\n break\n if l.startswith('#S'):\n n = int(l[2:].split()[0])\n sf['maxscannumber'] = max(sf['maxscannumber'], n)\n for n in sf['scans']:\n s = sf['scans'][n]\n s['motors'] = sf['motors']\n if 'comment' not in s:\n s['comment'] = sf['comment']\n if 'positions' not in s:\n s['positions'] = [None] * len(sf['motors'])\n return sf\n",
"role": "user"
},
{
"content": "readspec",
"role": "assistant"
}
] |
def x(filename, dirs='.'):
filename = misc.findfileindirs(filename, dirs)
f = open(filename, 'rt')
abt = {'offsetcorrected': False, 'params': {}, 'columns': [], 'data': [
], 'title': '<no_title>', 'offsets': {}, 'filename': filename}
readingmode = ''
for l in f:
l = l.strip()
if l.startswith('!') or len(l) == 0:
continue
elif l.startswith('%c'):
readingmode = 'comments'
elif l.startswith('%p'):
readingmode = 'params'
elif l.startswith('%d'):
readingmode = 'data'
elif readingmode == 'comments':
m = re.match(
'(?P<scantype>\\w+)-Scan started at (?P<startdate>\\d+-\\w+-\\d+) (?P<starttime>\\d+:\\d+:\\d+), ended (?P<endtime>\\d+:\\d+:\\d+)'
, l)
if m:
abt.update(m.groupdict())
continue
else:
m = re.match('Name: (?P<name>\\w+)', l)
if m:
abt.update(m.groupdict())
m1 = re.search('from (?P<from>\\d+(?:.\\d+)?)', l)
if m1:
abt.update(m1.groupdict())
m1 = re.search('to (?P<to>\\d+(?:.\\d+)?)', l)
if m1:
abt.update(m1.groupdict())
m1 = re.search('by (?P<by>\\d+(?:.\\d+)?)', l)
if m1:
abt.update(m1.groupdict())
m1 = re.search('sampling (?P<sampling>\\d+(?:.\\d+)?)', l)
if m1:
abt.update(m1.groupdict())
continue
if l.find('Counter readings are offset corrected') >= 0:
abt['offsetcorrected'] = True
readingmode = 'offsets'
continue
abt['title'] = l
continue
elif readingmode == 'offsets':
m = re.findall('(\\w+)\\s(\\d+(?:.\\d+)?)', l)
if m:
abt['offsets'].update(dict(m))
for k in abt['offsets']:
abt['offsets'][k] = float(abt['offsets'][k])
elif readingmode == 'params':
abt['params'][l.split('=')[0].strip()] = float(l.split('=')[1].
strip())
elif readingmode == 'data':
if l.startswith('Col'):
abt['columns'].append(l.split()[2])
else:
abt['data'].append([float(x) for x in l.split()])
f.close()
maxcolnamelen = max(len(c) for c in abt['columns'])
l = 1
for l in range(1, maxcolnamelen):
if len(set([c[:l] for c in abt['columns']])) > 1:
break
abt['columns'] = [c[l - 1:] for c in abt['columns']]
dt = np.dtype(list(zip(abt['columns'], itertools.repeat(np.double))))
abt['data'] = np.array(abt['data'], dtype=np.double).view(dt)
monthnames = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug',
'Sep', 'Oct', 'Nov', 'Dec']
for m, i in zip(monthnames, itertools.count(1)):
abt['startdate'] = abt['startdate'].replace(m, str(i))
abt['startdate'] = datetime.date(*reversed([int(x) for x in abt[
'startdate'].split('-')]))
abt['starttime'] = datetime.time(*[int(x) for x in abt['starttime'].
split(':')])
abt['endtime'] = datetime.time(*[int(x) for x in abt['endtime'].split(':')]
)
abt['start'] = datetime.datetime.combine(abt['startdate'], abt['starttime']
)
if abt['endtime'] <= abt['starttime']:
abt['end'] = datetime.datetime.combine(abt['startdate'] + datetime.
timedelta(1), abt['endtime'])
else:
abt['end'] = datetime.datetime.combine(abt['startdate'], abt['endtime']
)
del abt['starttime']
del abt['startdate']
del abt['endtime']
for k in ['from', 'to', 'by', 'sampling']:
if k in abt:
abt[k] = float(abt[k])
abt['title'] = abt['title'].replace('-', '_').replace(' ', '_')
return abt
|
readabt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, dirs='.'):\n filename = misc.findfileindirs(filename, dirs)\n f = open(filename, 'rt')\n abt = {'offsetcorrected': False, 'params': {}, 'columns': [], 'data': [\n ], 'title': '<no_title>', 'offsets': {}, 'filename': filename}\n readingmode = ''\n for l in f:\n l = l.strip()\n if l.startswith('!') or len(l) == 0:\n continue\n elif l.startswith('%c'):\n readingmode = 'comments'\n elif l.startswith('%p'):\n readingmode = 'params'\n elif l.startswith('%d'):\n readingmode = 'data'\n elif readingmode == 'comments':\n m = re.match(\n '(?P<scantype>\\\\w+)-Scan started at (?P<startdate>\\\\d+-\\\\w+-\\\\d+) (?P<starttime>\\\\d+:\\\\d+:\\\\d+), ended (?P<endtime>\\\\d+:\\\\d+:\\\\d+)'\n , l)\n if m:\n abt.update(m.groupdict())\n continue\n else:\n m = re.match('Name: (?P<name>\\\\w+)', l)\n if m:\n abt.update(m.groupdict())\n m1 = re.search('from (?P<from>\\\\d+(?:.\\\\d+)?)', l)\n if m1:\n abt.update(m1.groupdict())\n m1 = re.search('to (?P<to>\\\\d+(?:.\\\\d+)?)', l)\n if m1:\n abt.update(m1.groupdict())\n m1 = re.search('by (?P<by>\\\\d+(?:.\\\\d+)?)', l)\n if m1:\n abt.update(m1.groupdict())\n m1 = re.search('sampling (?P<sampling>\\\\d+(?:.\\\\d+)?)', l)\n if m1:\n abt.update(m1.groupdict())\n continue\n if l.find('Counter readings are offset corrected') >= 0:\n abt['offsetcorrected'] = True\n readingmode = 'offsets'\n continue\n abt['title'] = l\n continue\n elif readingmode == 'offsets':\n m = re.findall('(\\\\w+)\\\\s(\\\\d+(?:.\\\\d+)?)', l)\n if m:\n abt['offsets'].update(dict(m))\n for k in abt['offsets']:\n abt['offsets'][k] = float(abt['offsets'][k])\n elif readingmode == 'params':\n abt['params'][l.split('=')[0].strip()] = float(l.split('=')[1].\n strip())\n elif readingmode == 'data':\n if l.startswith('Col'):\n abt['columns'].append(l.split()[2])\n else:\n abt['data'].append([float(x) for x in l.split()])\n f.close()\n maxcolnamelen = max(len(c) for c in abt['columns'])\n l = 1\n for l in range(1, maxcolnamelen):\n if len(set([c[:l] for c in abt['columns']])) > 1:\n break\n abt['columns'] = [c[l - 1:] for c in abt['columns']]\n dt = np.dtype(list(zip(abt['columns'], itertools.repeat(np.double))))\n abt['data'] = np.array(abt['data'], dtype=np.double).view(dt)\n monthnames = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug',\n 'Sep', 'Oct', 'Nov', 'Dec']\n for m, i in zip(monthnames, itertools.count(1)):\n abt['startdate'] = abt['startdate'].replace(m, str(i))\n abt['startdate'] = datetime.date(*reversed([int(x) for x in abt[\n 'startdate'].split('-')]))\n abt['starttime'] = datetime.time(*[int(x) for x in abt['starttime'].\n split(':')])\n abt['endtime'] = datetime.time(*[int(x) for x in abt['endtime'].split(':')]\n )\n abt['start'] = datetime.datetime.combine(abt['startdate'], abt['starttime']\n )\n if abt['endtime'] <= abt['starttime']:\n abt['end'] = datetime.datetime.combine(abt['startdate'] + datetime.\n timedelta(1), abt['endtime'])\n else:\n abt['end'] = datetime.datetime.combine(abt['startdate'], abt['endtime']\n )\n del abt['starttime']\n del abt['startdate']\n del abt['endtime']\n for k in ['from', 'to', 'by', 'sampling']:\n if k in abt:\n abt[k] = float(abt[k])\n abt['title'] = abt['title'].replace('-', '_').replace(' ', '_')\n return abt\n",
"role": "user"
},
{
"content": "readabt",
"role": "assistant"
}
] |
def x(self) ->ErrorValue:
return ErrorValue(*scipy.constants.physical_constants[
'speed of light in vacuum'][0::2]) * ErrorValue(*scipy.constants.
physical_constants['Planck constant in eV s'][0::2]
) / scipy.constants.nano / self.wavelength
|
energy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->ErrorValue:\n return ErrorValue(*scipy.constants.physical_constants[\n 'speed of light in vacuum'][0::2]) * ErrorValue(*scipy.constants.\n physical_constants['Planck constant in eV s'][0::2]\n ) / scipy.constants.nano / self.wavelength\n",
"role": "user"
},
{
"content": "energy",
"role": "assistant"
}
] |
def x(self) ->Optional[str]:
try:
maskid = self._data['maskname']
if not maskid.endswith('.mat'):
maskid = maskid + '.mat'
return maskid
except KeyError:
return None
|
maskname
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Optional[str]:\n try:\n maskid = self._data['maskname']\n if not maskid.endswith('.mat'):\n maskid = maskid + '.mat'\n return maskid\n except KeyError:\n return None\n",
"role": "user"
},
{
"content": "maskname",
"role": "assistant"
}
] |
def x(data, mask):
data1 = data.copy()
data1[mask == 0] = 0
x = np.arange(data1.shape[0])
y = np.arange(data1.shape[1])
onex = np.ones_like(x)
oney = np.ones_like(y)
nix = np.dot(x, data1)
spamx = np.dot(onex, data1)
goodx = (nix != 0) & (spamx != 0)
nix = nix[goodx]
spamx = spamx[goodx]
niy = np.dot(data1, y)
spamy = np.dot(data1, oney)
goody = (niy != 0) & (spamy != 0)
niy = niy[goody]
spamy = spamy[goody]
ycent = nix / spamx
xcent = niy / spamy
return [xcent.mean(), ycent.mean()]
|
findbeam_gravity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, mask):\n data1 = data.copy()\n data1[mask == 0] = 0\n x = np.arange(data1.shape[0])\n y = np.arange(data1.shape[1])\n onex = np.ones_like(x)\n oney = np.ones_like(y)\n nix = np.dot(x, data1)\n spamx = np.dot(onex, data1)\n goodx = (nix != 0) & (spamx != 0)\n nix = nix[goodx]\n spamx = spamx[goodx]\n niy = np.dot(data1, y)\n spamy = np.dot(data1, oney)\n goody = (niy != 0) & (spamy != 0)\n niy = niy[goody]\n spamy = spamy[goody]\n ycent = nix / spamx\n xcent = niy / spamy\n return [xcent.mean(), ycent.mean()]\n",
"role": "user"
},
{
"content": "findbeam_gravity",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.