source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, duration): ann = super(DynamicLabelTransformer, self).empty(duration) ann.append(time=0, duration=duration, value=None) return ann
empty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, duration):\n ann = super(DynamicLabelTransformer, self).empty(duration)\n ann.append(time=0, duration=duration, value=None)\n return ann\n", "role": "user" }, { "content": "empty", "role": "assistant" } ]
def x(self, ann, duration): intervals, values = ann.to_interval_values() tags = [] for v in values: if v in self._classes: tags.extend(self.encoder.transform([[v]])) else: tags.extend(self.encoder.transform([[]])) tags = np.asarray(tags) target = self.encode_intervals(duration, intervals, tags) return {'tags': target}
transform_annotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ann, duration):\n intervals, values = ann.to_interval_values()\n tags = []\n for v in values:\n if v in self._classes:\n tags.extend(self.encoder.transform([[v]]))\n else:\n tags.extend(self.encoder.transform([[]]))\n tags = np.asarray(tags)\n target = self.encode_intervals(duration, intervals, tags)\n return {'tags': target}\n", "role": "user" }, { "content": "transform_annotation", "role": "assistant" } ]
def x(self, encoded, duration=None): ann = jams.Annotation(namespace=self.namespace, duration=duration) for start, end, value in self.decode_intervals(encoded, duration= duration, transition=self.transition, p_init=self.p_init, p_state= self.p_state): f_start, f_end = time_to_frames([start, end], sr=self.sr, hop_length=self.hop_length) confidence = np.mean(encoded[f_start:f_end + 1, value]) value_dec = self.encoder.inverse_transform(np.atleast_2d(value))[0] for vd in value_dec: ann.append(time=start, duration=end - start, value=vd, confidence=confidence) return ann
inverse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, encoded, duration=None):\n ann = jams.Annotation(namespace=self.namespace, duration=duration)\n for start, end, value in self.decode_intervals(encoded, duration=\n duration, transition=self.transition, p_init=self.p_init, p_state=\n self.p_state):\n f_start, f_end = time_to_frames([start, end], sr=self.sr,\n hop_length=self.hop_length)\n confidence = np.mean(encoded[f_start:f_end + 1, value])\n value_dec = self.encoder.inverse_transform(np.atleast_2d(value))[0]\n for vd in value_dec:\n ann.append(time=start, duration=end - start, value=vd,\n confidence=confidence)\n return ann\n", "role": "user" }, { "content": "inverse", "role": "assistant" } ]
def x(self, ann, duration): intervals = np.asarray([[0, 1]]) values = list([obs.value for obs in ann]) intervals = np.tile(intervals, [len(values), 1]) tags = [v for v in values if v in self._classes] if len(tags): target = self.encoder.transform([tags]).astype(np.bool).max(axis=0) else: target = np.zeros(len(self._classes), dtype=np.bool) return {'tags': target}
transform_annotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ann, duration):\n intervals = np.asarray([[0, 1]])\n values = list([obs.value for obs in ann])\n intervals = np.tile(intervals, [len(values), 1])\n tags = [v for v in values if v in self._classes]\n if len(tags):\n target = self.encoder.transform([tags]).astype(np.bool).max(axis=0)\n else:\n target = np.zeros(len(self._classes), dtype=np.bool)\n return {'tags': target}\n", "role": "user" }, { "content": "transform_annotation", "role": "assistant" } ]
def x(self, encoded, duration=None): ann = jams.Annotation(namespace=self.namespace, duration=duration) if np.isrealobj(encoded): detected = encoded >= 0.5 else: detected = encoded for vd in self.encoder.inverse_transform(np.atleast_2d(detected))[0]: vid = np.flatnonzero(self.encoder.transform(np.atleast_2d(vd))) ann.append(time=0, duration=duration, value=vd, confidence=encoded[vid] ) return ann
inverse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, encoded, duration=None):\n ann = jams.Annotation(namespace=self.namespace, duration=duration)\n if np.isrealobj(encoded):\n detected = encoded >= 0.5\n else:\n detected = encoded\n for vd in self.encoder.inverse_transform(np.atleast_2d(detected))[0]:\n vid = np.flatnonzero(self.encoder.transform(np.atleast_2d(vd)))\n ann.append(time=0, duration=duration, value=vd, confidence=encoded[vid]\n )\n return ann\n", "role": "user" }, { "content": "inverse", "role": "assistant" } ]
def x(self, y): duration = get_duration(y=y, sr=self.sr) n_frames = self.n_frames(duration) relative = np.zeros((n_frames, 2), dtype=np.float32) relative[:, 0] = np.cos(np.pi * np.linspace(0, 1, num=n_frames)) relative[:, 1] = np.sin(np.pi * np.linspace(0, 1, num=n_frames)) absolute = relative * np.sqrt(duration) return {'relative': relative[self.idx], 'absolute': absolute[self.idx]}
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n duration = get_duration(y=y, sr=self.sr)\n n_frames = self.n_frames(duration)\n relative = np.zeros((n_frames, 2), dtype=np.float32)\n relative[:, 0] = np.cos(np.pi * np.linspace(0, 1, num=n_frames))\n relative[:, 1] = np.sin(np.pi * np.linspace(0, 1, num=n_frames))\n absolute = relative * np.sqrt(duration)\n return {'relative': relative[self.idx], 'absolute': absolute[self.idx]}\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(self, operator): if not isinstance(operator, (BaseTaskTransformer, FeatureExtractor)): raise ParameterError( 'operator={} must be one of (BaseTaskTransformer, FeatureExtractor)' .format(operator)) if operator.name in self.opmap: raise ParameterError('Duplicate operator name detected: {}'.format( operator)) super(Pump, self).add(operator) self.opmap[operator.name] = operator self.ops.append(operator)
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, operator):\n if not isinstance(operator, (BaseTaskTransformer, FeatureExtractor)):\n raise ParameterError(\n 'operator={} must be one of (BaseTaskTransformer, FeatureExtractor)'\n .format(operator))\n if operator.name in self.opmap:\n raise ParameterError('Duplicate operator name detected: {}'.format(\n operator))\n super(Pump, self).add(operator)\n self.opmap[operator.name] = operator\n self.ops.append(operator)\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, audio_f=None, jam=None, y=None, sr=None, crop=False): if y is None: if audio_f is None: raise ParameterError( 'At least one of `y` or `audio_f` must be provided') y, sr = librosa.load(audio_f, sr=sr, mono=True) if sr is None: raise ParameterError( 'If audio is provided as `y`, you must specify the sampling rate as sr=' ) if jam is None: jam = jams.JAMS() jam.file_metadata.duration = librosa.get_duration(y=y, sr=sr) if not isinstance(jam, jams.JAMS): jam = jams.load(jam) data = dict() for operator in self.ops: if isinstance(operator, BaseTaskTransformer): data.update(operator.transform(jam)) elif isinstance(operator, FeatureExtractor): data.update(operator.transform(y, sr)) if crop: data = self.crop(data) return data
transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, audio_f=None, jam=None, y=None, sr=None, crop=False):\n if y is None:\n if audio_f is None:\n raise ParameterError(\n 'At least one of `y` or `audio_f` must be provided')\n y, sr = librosa.load(audio_f, sr=sr, mono=True)\n if sr is None:\n raise ParameterError(\n 'If audio is provided as `y`, you must specify the sampling rate as sr='\n )\n if jam is None:\n jam = jams.JAMS()\n jam.file_metadata.duration = librosa.get_duration(y=y, sr=sr)\n if not isinstance(jam, jams.JAMS):\n jam = jams.load(jam)\n data = dict()\n for operator in self.ops:\n if isinstance(operator, BaseTaskTransformer):\n data.update(operator.transform(jam))\n elif isinstance(operator, FeatureExtractor):\n data.update(operator.transform(y, sr))\n if crop:\n data = self.crop(data)\n return data\n", "role": "user" }, { "content": "transform", "role": "assistant" } ]
def x(self, n_samples, duration, random_state=None): return Sampler(n_samples, duration, *self.ops, random_state=random_state)
sampler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_samples, duration, random_state=None):\n return Sampler(n_samples, duration, *self.ops, random_state=random_state)\n", "role": "user" }, { "content": "sampler", "role": "assistant" } ]
def x(self): out = dict() for operator in self.ops: out.update(**operator.fields) return out
fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n out = dict()\n for operator in self.ops:\n out.update(**operator.fields)\n return out\n", "role": "user" }, { "content": "fields", "role": "assistant" } ]
def x(self): layermap = dict() for operator in self.ops: if hasattr(operator, 'layers'): layermap.update(operator.layers()) return layermap
layers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n layermap = dict()\n for operator in self.ops:\n if hasattr(operator, 'layers'):\n layermap.update(operator.layers())\n return layermap\n", "role": "user" }, { "content": "layers", "role": "assistant" } ]
def x(self, p_self): if p_self is None: self.beat_transition = None else: self.beat_transition = transition_loop(2, p_self)
set_transition_beat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p_self):\n if p_self is None:\n self.beat_transition = None\n else:\n self.beat_transition = transition_loop(2, p_self)\n", "role": "user" }, { "content": "set_transition_beat", "role": "assistant" } ]
def x(self, p_self): if p_self is None: self.down_transition = None else: self.down_transition = transition_loop(2, p_self)
set_transition_down
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p_self):\n if p_self is None:\n self.down_transition = None\n else:\n self.down_transition = transition_loop(2, p_self)\n", "role": "user" }, { "content": "set_transition_down", "role": "assistant" } ]
def x(self, ann, duration): mask_downbeat = False intervals, values = ann.to_interval_values() values = np.asarray(values) beat_events = intervals[:, 0] beat_labels = np.ones((len(beat_events), 1)) idx = values == 1 if np.any(idx): downbeat_events = beat_events[idx] downbeat_labels = np.ones((len(downbeat_events), 1)) mask_downbeat = True else: downbeat_events = np.zeros(0) downbeat_labels = np.zeros((0, 1)) target_beat = self.encode_events(duration, beat_events, beat_labels) target_downbeat = self.encode_events(duration, downbeat_events, downbeat_labels) return {'beat': target_beat, 'downbeat': target_downbeat, 'mask_downbeat': mask_downbeat}
transform_annotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ann, duration):\n mask_downbeat = False\n intervals, values = ann.to_interval_values()\n values = np.asarray(values)\n beat_events = intervals[:, 0]\n beat_labels = np.ones((len(beat_events), 1))\n idx = values == 1\n if np.any(idx):\n downbeat_events = beat_events[idx]\n downbeat_labels = np.ones((len(downbeat_events), 1))\n mask_downbeat = True\n else:\n downbeat_events = np.zeros(0)\n downbeat_labels = np.zeros((0, 1))\n target_beat = self.encode_events(duration, beat_events, beat_labels)\n target_downbeat = self.encode_events(duration, downbeat_events,\n downbeat_labels)\n return {'beat': target_beat, 'downbeat': target_downbeat,\n 'mask_downbeat': mask_downbeat}\n", "role": "user" }, { "content": "transform_annotation", "role": "assistant" } ]
def x(self, encoded, downbeat=None, duration=None): ann = jams.Annotation(namespace=self.namespace, duration=duration) beat_times = np.asarray([t for t, _ in self.decode_events(encoded, transition=self.beat_transition, p_init=self.beat_p_init, p_state= self.beat_p_state) if _]) beat_frames = time_to_frames(beat_times, sr=self.sr, hop_length=self. hop_length) if downbeat is not None: downbeat_times = set([t for t, _ in self.decode_events(downbeat, transition=self.down_transition, p_init=self.down_p_init, p_state=self.down_p_state) if _]) pickup_beats = len([t for t in beat_times if t < min(downbeat_times)]) else: downbeat_times = set() pickup_beats = 0 value = -pickup_beats - 1 for beat_t, beat_f in zip(beat_times, beat_frames): if beat_t in downbeat_times: value = 1 else: value += 1 confidence = encoded[beat_f] ann.append(time=beat_t, duration=0, value=value, confidence=confidence) return ann
inverse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, encoded, downbeat=None, duration=None):\n ann = jams.Annotation(namespace=self.namespace, duration=duration)\n beat_times = np.asarray([t for t, _ in self.decode_events(encoded,\n transition=self.beat_transition, p_init=self.beat_p_init, p_state=\n self.beat_p_state) if _])\n beat_frames = time_to_frames(beat_times, sr=self.sr, hop_length=self.\n hop_length)\n if downbeat is not None:\n downbeat_times = set([t for t, _ in self.decode_events(downbeat,\n transition=self.down_transition, p_init=self.down_p_init,\n p_state=self.down_p_state) if _])\n pickup_beats = len([t for t in beat_times if t < min(downbeat_times)])\n else:\n downbeat_times = set()\n pickup_beats = 0\n value = -pickup_beats - 1\n for beat_t, beat_f in zip(beat_times, beat_frames):\n if beat_t in downbeat_times:\n value = 1\n else:\n value += 1\n confidence = encoded[beat_f]\n ann.append(time=beat_t, duration=0, value=value, confidence=confidence)\n return ann\n", "role": "user" }, { "content": "inverse", "role": "assistant" } ]
def x(self, ann, duration): boundaries, values = ann.to_interval_values() boundaries = list(boundaries[:, 0]) if boundaries and boundaries[-1] < duration: boundaries.append(duration) intervals = boundaries_to_intervals(boundaries) intervals, values = adjust_intervals(intervals, values, t_min=0, t_max= duration, start_label=0, end_label=0) values = np.asarray(values, dtype=int) downbeats = np.flatnonzero(values == 1) position = [] for i, v in enumerate(values): if v == 0: position.extend(self.encoder.transform(['X'])) continue prev_idx = np.searchsorted(downbeats, i, side='right') - 1 next_idx = 1 + prev_idx if prev_idx >= 0 and next_idx < len(downbeats): subdivision = downbeats[next_idx] - downbeats[prev_idx] elif prev_idx < 0 and next_idx < len(downbeats): subdivision = np.max(values[:downbeats[0] + 1]) elif next_idx >= len(downbeats): subdivision = len(values) - downbeats[prev_idx] if subdivision > self.max_divisions or subdivision < 1: position.extend(self.encoder.transform(['X'])) else: position.extend(self.encoder.transform(['{:02d}/{:02d}'.format( subdivision, v)])) dtype = self.fields[self.scope('position')].dtype position = np.asarray(position) if self.sparse: position = position[:, np.newaxis] target = self.encode_intervals(duration, intervals, position, multi= False, dtype=dtype) return {'position': target}
transform_annotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ann, duration):\n boundaries, values = ann.to_interval_values()\n boundaries = list(boundaries[:, 0])\n if boundaries and boundaries[-1] < duration:\n boundaries.append(duration)\n intervals = boundaries_to_intervals(boundaries)\n intervals, values = adjust_intervals(intervals, values, t_min=0, t_max=\n duration, start_label=0, end_label=0)\n values = np.asarray(values, dtype=int)\n downbeats = np.flatnonzero(values == 1)\n position = []\n for i, v in enumerate(values):\n if v == 0:\n position.extend(self.encoder.transform(['X']))\n continue\n prev_idx = np.searchsorted(downbeats, i, side='right') - 1\n next_idx = 1 + prev_idx\n if prev_idx >= 0 and next_idx < len(downbeats):\n subdivision = downbeats[next_idx] - downbeats[prev_idx]\n elif prev_idx < 0 and next_idx < len(downbeats):\n subdivision = np.max(values[:downbeats[0] + 1])\n elif next_idx >= len(downbeats):\n subdivision = len(values) - downbeats[prev_idx]\n if subdivision > self.max_divisions or subdivision < 1:\n position.extend(self.encoder.transform(['X']))\n else:\n position.extend(self.encoder.transform(['{:02d}/{:02d}'.format(\n subdivision, v)]))\n dtype = self.fields[self.scope('position')].dtype\n position = np.asarray(position)\n if self.sparse:\n position = position[:, np.newaxis]\n target = self.encode_intervals(duration, intervals, position, multi=\n False, dtype=dtype)\n return {'position': target}\n", "role": "user" }, { "content": "transform_annotation", "role": "assistant" } ]
def x(self, y): n_frames = self.n_frames(get_duration(y=y, sr=self.sr)) tgram = tempogram(y=y, sr=self.sr, hop_length=self.hop_length, win_length=self.win_length).astype(np.float32) tgram = fix_length(tgram, n_frames) return {'tempogram': tgram.T[self.idx]}
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n n_frames = self.n_frames(get_duration(y=y, sr=self.sr))\n tgram = tempogram(y=y, sr=self.sr, hop_length=self.hop_length,\n win_length=self.win_length).astype(np.float32)\n tgram = fix_length(tgram, n_frames)\n return {'tempogram': tgram.T[self.idx]}\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(self, y): data = super(TempoScale, self).transform_audio(y) data['temposcale'] = np.abs(fmt(data.pop('tempogram'), axis=1, n_fmt= self.n_fmt)).astype(np.float32)[self.idx] return data
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n data = super(TempoScale, self).transform_audio(y)\n data['temposcale'] = np.abs(fmt(data.pop('tempogram'), axis=1, n_fmt=\n self.n_fmt)).astype(np.float32)[self.idx]\n return data\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(self, ann, duration): intervals, values = ann.to_interval_values() intervals, values = adjust_intervals(intervals, values, t_min=0, t_max= duration) ids, _ = index_labels(values) rate = float(self.hop_length) / self.sr _, labels = intervals_to_samples(intervals, ids, sample_size=rate) return {'agree': np.equal.outer(labels, labels)}
transform_annotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ann, duration):\n intervals, values = ann.to_interval_values()\n intervals, values = adjust_intervals(intervals, values, t_min=0, t_max=\n duration)\n ids, _ = index_labels(values)\n rate = float(self.hop_length) / self.sr\n _, labels = intervals_to_samples(intervals, ids, sample_size=rate)\n return {'agree': np.equal.outer(labels, labels)}\n", "role": "user" }, { "content": "transform_annotation", "role": "assistant" } ]
def x(self, y): n_frames = self.n_frames(get_duration(y=y, sr=self.sr)) D = stft(y, hop_length=self.hop_length, n_fft=self.n_fft) D = fix_length(D, n_frames) mag, phase = magphase(D) if self.log: mag = amplitude_to_db(mag, ref=np.max) return {'mag': mag.T[self.idx].astype(np.float32), 'phase': np.angle( phase.T)[self.idx].astype(np.float32)}
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n n_frames = self.n_frames(get_duration(y=y, sr=self.sr))\n D = stft(y, hop_length=self.hop_length, n_fft=self.n_fft)\n D = fix_length(D, n_frames)\n mag, phase = magphase(D)\n if self.log:\n mag = amplitude_to_db(mag, ref=np.max)\n return {'mag': mag.T[self.idx].astype(np.float32), 'phase': np.angle(\n phase.T)[self.idx].astype(np.float32)}\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(self, y): data = super(STFTPhaseDiff, self).transform_audio(y) data['dphase'] = self.phase_diff(data.pop('phase')) return data
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n data = super(STFTPhaseDiff, self).transform_audio(y)\n data['dphase'] = self.phase_diff(data.pop('phase'))\n return data\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(self, y): data = super(STFTMag, self).transform_audio(y) data.pop('phase') return data
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n data = super(STFTMag, self).transform_audio(y)\n data.pop('phase')\n return data\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(target, axis=-1): ncmask = ~np.max(target, axis=axis, keepdims=True) return np.concatenate([target, ncmask], axis=axis)
pad_nochord
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(target, axis=-1):\n ncmask = ~np.max(target, axis=axis, keepdims=True)\n return np.concatenate([target, ncmask], axis=axis)\n", "role": "user" }, { "content": "pad_nochord", "role": "assistant" } ]
def x(self, duration): ann = super(ChordTransformer, self).empty(duration) ann.append(time=0, duration=duration, value='N', confidence=0) return ann
empty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, duration):\n ann = super(ChordTransformer, self).empty(duration)\n ann.append(time=0, duration=duration, value='N', confidence=0)\n return ann\n", "role": "user" }, { "content": "empty", "role": "assistant" } ]
def x(self, ann, duration): intervals, chords = ann.to_interval_values() if self.sparse: dtype = np.int else: dtype = np.bool if not chords: intervals = np.asarray([[0, duration]]) chords = ['N'] pitches = [] roots = [] basses = [] if self.sparse: fill = 12 else: fill = False for chord in chords: root, semi, bass = mir_eval.chord.encode(chord) pitches.append(np.roll(semi, root)) if self.sparse: if root in self._classes: roots.append([root]) basses.append([(root + bass) % 12]) else: roots.append([fill]) basses.append([fill]) elif root in self._classes: roots.extend(self.encoder.transform([[root]])) basses.extend(self.encoder.transform([[(root + bass) % 12]])) else: roots.extend(self.encoder.transform([[]])) basses.extend(self.encoder.transform([[]])) pitches = np.asarray(pitches, dtype=np.bool) roots = np.asarray(roots, dtype=dtype) basses = np.asarray(basses, dtype=dtype) target_pitch = self.encode_intervals(duration, intervals, pitches) target_root = self.encode_intervals(duration, intervals, roots, multi= False, dtype=dtype, fill=fill) target_bass = self.encode_intervals(duration, intervals, basses, multi= False, dtype=dtype, fill=fill) if not self.sparse: target_root = _pad_nochord(target_root) target_bass = _pad_nochord(target_bass) return {'pitch': target_pitch, 'root': target_root, 'bass': target_bass}
transform_annotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ann, duration):\n intervals, chords = ann.to_interval_values()\n if self.sparse:\n dtype = np.int\n else:\n dtype = np.bool\n if not chords:\n intervals = np.asarray([[0, duration]])\n chords = ['N']\n pitches = []\n roots = []\n basses = []\n if self.sparse:\n fill = 12\n else:\n fill = False\n for chord in chords:\n root, semi, bass = mir_eval.chord.encode(chord)\n pitches.append(np.roll(semi, root))\n if self.sparse:\n if root in self._classes:\n roots.append([root])\n basses.append([(root + bass) % 12])\n else:\n roots.append([fill])\n basses.append([fill])\n elif root in self._classes:\n roots.extend(self.encoder.transform([[root]]))\n basses.extend(self.encoder.transform([[(root + bass) % 12]]))\n else:\n roots.extend(self.encoder.transform([[]]))\n basses.extend(self.encoder.transform([[]]))\n pitches = np.asarray(pitches, dtype=np.bool)\n roots = np.asarray(roots, dtype=dtype)\n basses = np.asarray(basses, dtype=dtype)\n target_pitch = self.encode_intervals(duration, intervals, pitches)\n target_root = self.encode_intervals(duration, intervals, roots, multi=\n False, dtype=dtype, fill=fill)\n target_bass = self.encode_intervals(duration, intervals, basses, multi=\n False, dtype=dtype, fill=fill)\n if not self.sparse:\n target_root = _pad_nochord(target_root)\n target_bass = _pad_nochord(target_bass)\n return {'pitch': target_pitch, 'root': target_root, 'bass': target_bass}\n", "role": "user" }, { "content": "transform_annotation", "role": "assistant" } ]
def x(self, ann, duration): data = super(SimpleChordTransformer, self).transform_annotation(ann, duration) data.pop('root', None) data.pop('bass', None) return data
transform_annotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ann, duration):\n data = super(SimpleChordTransformer, self).transform_annotation(ann,\n duration)\n data.pop('root', None)\n data.pop('bass', None)\n return data\n", "role": "user" }, { "content": "transform_annotation", "role": "assistant" } ]
def x(self, p_self): if p_self is None: self.transition = None else: self.transition = transition_loop(len(self._classes), p_self)
set_transition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p_self):\n if p_self is None:\n self.transition = None\n else:\n self.transition = transition_loop(len(self._classes), p_self)\n", "role": "user" }, { "content": "set_transition", "role": "assistant" } ]
def x(self, chord): chord = re.sub('/.*$', '', chord) chord = re.sub('\\(.*?\\)', '', chord) chord = re.sub(':$', '', chord) root, pitches, _ = mir_eval.chord.encode(chord) P = 2 ** np.arange(12, dtype=int) query = self.mask_ & pitches[::-1].dot(P) if root < 0 and chord[0].upper() == 'N': return 'N' if query not in QUALITIES: return 'X' return '{}:{}'.format(PITCHES[root], QUALITIES[query])
simplify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chord):\n chord = re.sub('/.*$', '', chord)\n chord = re.sub('\\\\(.*?\\\\)', '', chord)\n chord = re.sub(':$', '', chord)\n root, pitches, _ = mir_eval.chord.encode(chord)\n P = 2 ** np.arange(12, dtype=int)\n query = self.mask_ & pitches[::-1].dot(P)\n if root < 0 and chord[0].upper() == 'N':\n return 'N'\n if query not in QUALITIES:\n return 'X'\n return '{}:{}'.format(PITCHES[root], QUALITIES[query])\n", "role": "user" }, { "content": "simplify", "role": "assistant" } ]
def x(self, ann, duration): intervals, values = ann.to_interval_values() chords = [] for v in values: chords.extend(self.encoder.transform([self.simplify(v)])) dtype = self.fields[self.scope('chord')].dtype chords = np.asarray(chords) if self.sparse: chords = chords[:, np.newaxis] target = self.encode_intervals(duration, intervals, chords, multi=False, dtype=dtype) return {'chord': target}
transform_annotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ann, duration):\n intervals, values = ann.to_interval_values()\n chords = []\n for v in values:\n chords.extend(self.encoder.transform([self.simplify(v)]))\n dtype = self.fields[self.scope('chord')].dtype\n chords = np.asarray(chords)\n if self.sparse:\n chords = chords[:, np.newaxis]\n target = self.encode_intervals(duration, intervals, chords, multi=False,\n dtype=dtype)\n return {'chord': target}\n", "role": "user" }, { "content": "transform_annotation", "role": "assistant" } ]
def x(self, y): n_frames = self.n_frames(get_duration(y=y, sr=self.sr)) C = cqt(y=y, sr=self.sr, hop_length=self.hop_length, fmin=self.fmin, n_bins=self.n_octaves * self.over_sample * 12, bins_per_octave=self .over_sample * 12) C = fix_length(C, n_frames) cqtm, phase = magphase(C) if self.log: cqtm = amplitude_to_db(cqtm, ref=np.max) return {'mag': cqtm.T.astype(np.float32)[self.idx], 'phase': np.angle( phase).T.astype(np.float32)[self.idx]}
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n n_frames = self.n_frames(get_duration(y=y, sr=self.sr))\n C = cqt(y=y, sr=self.sr, hop_length=self.hop_length, fmin=self.fmin,\n n_bins=self.n_octaves * self.over_sample * 12, bins_per_octave=self\n .over_sample * 12)\n C = fix_length(C, n_frames)\n cqtm, phase = magphase(C)\n if self.log:\n cqtm = amplitude_to_db(cqtm, ref=np.max)\n return {'mag': cqtm.T.astype(np.float32)[self.idx], 'phase': np.angle(\n phase).T.astype(np.float32)[self.idx]}\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(self, y): data = super(CQTMag, self).transform_audio(y) data.pop('phase') return data
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n data = super(CQTMag, self).transform_audio(y)\n data.pop('phase')\n return data\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(self, y): data = super(CQTPhaseDiff, self).transform_audio(y) data['dphase'] = self.phase_diff(data.pop('phase')) return data
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n data = super(CQTPhaseDiff, self).transform_audio(y)\n data['dphase'] = self.phase_diff(data.pop('phase'))\n return data\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(self, y): cqtm, phase = [], [] n_frames = self.n_frames(get_duration(y=y, sr=self.sr)) for h in self.harmonics: C = cqt(y=y, sr=self.sr, hop_length=self.hop_length, fmin=self.fmin * h, n_bins=self.n_octaves * self.over_sample * 12, bins_per_octave=self.over_sample * 12) C = fix_length(C, n_frames) C, P = magphase(C) if self.log: C = amplitude_to_db(C, ref=np.max) cqtm.append(C) phase.append(P) cqtm = np.asarray(cqtm).astype(np.float32) phase = np.angle(np.asarray(phase)).astype(np.float32) return {'mag': self._index(cqtm), 'phase': self._index(phase)}
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n cqtm, phase = [], []\n n_frames = self.n_frames(get_duration(y=y, sr=self.sr))\n for h in self.harmonics:\n C = cqt(y=y, sr=self.sr, hop_length=self.hop_length, fmin=self.fmin *\n h, n_bins=self.n_octaves * self.over_sample * 12,\n bins_per_octave=self.over_sample * 12)\n C = fix_length(C, n_frames)\n C, P = magphase(C)\n if self.log:\n C = amplitude_to_db(C, ref=np.max)\n cqtm.append(C)\n phase.append(P)\n cqtm = np.asarray(cqtm).astype(np.float32)\n phase = np.angle(np.asarray(phase)).astype(np.float32)\n return {'mag': self._index(cqtm), 'phase': self._index(phase)}\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(self, value): if self.conv in ('channels_last', 'tf'): return np.transpose(value, (2, 1, 0)) else: return np.transpose(value, (0, 2, 1))
index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if self.conv in ('channels_last', 'tf'):\n return np.transpose(value, (2, 1, 0))\n else:\n return np.transpose(value, (0, 2, 1))\n", "role": "user" }, { "content": "index", "role": "assistant" } ]
def x(self, y): data = super(HCQTMag, self).transform_audio(y) data.pop('phase') return data
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n data = super(HCQTMag, self).transform_audio(y)\n data.pop('phase')\n return data\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(self, y): data = super(HCQTPhaseDiff, self).transform_audio(y) data['dphase'] = self.phase_diff(data.pop('phase')) return data
transform_audio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y):\n data = super(HCQTPhaseDiff, self).transform_audio(y)\n data['dphase'] = self.phase_diff(data.pop('phase'))\n return data\n", "role": "user" }, { "content": "transform_audio", "role": "assistant" } ]
def x(dtype): if np.issubdtype(dtype, np.floating) or np.issubdtype(dtype, np. complexfloating): return dtype(np.nan) return dtype(0)
fill_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dtype):\n if np.issubdtype(dtype, np.floating) or np.issubdtype(dtype, np.\n complexfloating):\n return dtype(np.nan)\n return dtype(0)\n", "role": "user" }, { "content": "fill_value", "role": "assistant" } ]
def x(self, duration): return jams.Annotation(namespace=self.namespace, time=0, duration=0)
empty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, duration):\n return jams.Annotation(namespace=self.namespace, time=0, duration=0)\n", "role": "user" }, { "content": "empty", "role": "assistant" } ]
def x(self, jam, query=None): anns = [] if query: results = jam.search(**query) else: results = jam.annotations for ann in results: try: anns.append(jams.nsconvert.convert(ann, self.namespace)) except jams.NamespaceError: pass duration = jam.file_metadata.duration if not anns: anns = [self.empty(duration)] results = [] for ann in anns: results.append(self.transform_annotation(ann, duration)) if ann.time is None or ann.duration is None: valid = [0, duration] else: valid = [ann.time, ann.time + ann.duration] results[-1]['_valid'] = time_to_frames(valid, sr=self.sr, hop_length=self.hop_length) return self.merge(results)
transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, jam, query=None):\n anns = []\n if query:\n results = jam.search(**query)\n else:\n results = jam.annotations\n for ann in results:\n try:\n anns.append(jams.nsconvert.convert(ann, self.namespace))\n except jams.NamespaceError:\n pass\n duration = jam.file_metadata.duration\n if not anns:\n anns = [self.empty(duration)]\n results = []\n for ann in anns:\n results.append(self.transform_annotation(ann, duration))\n if ann.time is None or ann.duration is None:\n valid = [0, duration]\n else:\n valid = [ann.time, ann.time + ann.duration]\n results[-1]['_valid'] = time_to_frames(valid, sr=self.sr,\n hop_length=self.hop_length)\n return self.merge(results)\n", "role": "user" }, { "content": "transform", "role": "assistant" } ]
def x(self, duration, events, values, dtype=np.bool): frames = time_to_frames(events, sr=self.sr, hop_length=self.hop_length) n_total = int(time_to_frames(duration, sr=self.sr, hop_length=self. hop_length)) n_alloc = n_total if np.any(frames): n_alloc = max(n_total, 1 + int(frames.max())) target = np.empty((n_alloc, values.shape[1]), dtype=dtype) target.fill(fill_value(dtype)) values = values.astype(dtype) for column, event in zip(values, frames): target[event] += column return target[:n_total]
encode_events
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, duration, events, values, dtype=np.bool):\n frames = time_to_frames(events, sr=self.sr, hop_length=self.hop_length)\n n_total = int(time_to_frames(duration, sr=self.sr, hop_length=self.\n hop_length))\n n_alloc = n_total\n if np.any(frames):\n n_alloc = max(n_total, 1 + int(frames.max()))\n target = np.empty((n_alloc, values.shape[1]), dtype=dtype)\n target.fill(fill_value(dtype))\n values = values.astype(dtype)\n for column, event in zip(values, frames):\n target[event] += column\n return target[:n_total]\n", "role": "user" }, { "content": "encode_events", "role": "assistant" } ]
def x(self, duration, intervals, values, dtype=np.bool, multi=True, fill=None): if fill is None: fill = fill_value(dtype) frames = time_to_frames(intervals, sr=self.sr, hop_length=self.hop_length) n_total = int(time_to_frames(duration, sr=self.sr, hop_length=self. hop_length)) values = values.astype(dtype) n_alloc = n_total if np.any(frames): n_alloc = max(n_total, 1 + int(frames.max())) target = np.empty((n_alloc, values.shape[1]), dtype=dtype) target.fill(fill) for column, interval in zip(values, frames): if multi: target[interval[0]:interval[1]] += column else: target[interval[0]:interval[1]] = column return target[:n_total]
encode_intervals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, duration, intervals, values, dtype=np.bool, multi=True, fill=None):\n if fill is None:\n fill = fill_value(dtype)\n frames = time_to_frames(intervals, sr=self.sr, hop_length=self.hop_length)\n n_total = int(time_to_frames(duration, sr=self.sr, hop_length=self.\n hop_length))\n values = values.astype(dtype)\n n_alloc = n_total\n if np.any(frames):\n n_alloc = max(n_total, 1 + int(frames.max()))\n target = np.empty((n_alloc, values.shape[1]), dtype=dtype)\n target.fill(fill)\n for column, interval in zip(values, frames):\n if multi:\n target[interval[0]:interval[1]] += column\n else:\n target[interval[0]:interval[1]] = column\n return target[:n_total]\n", "role": "user" }, { "content": "encode_intervals", "role": "assistant" } ]
def x(self, encoded, transition=None, p_state=None, p_init=None): if np.isrealobj(encoded): if transition is None: encoded = encoded >= 0.5 else: encoded = viterbi_binary(encoded.T, transition, p_state=p_state, p_init=p_init).T times = times_like(encoded, sr=self.sr, hop_length=self.hop_length, axis=0) return zip(times, encoded)
decode_events
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, encoded, transition=None, p_state=None, p_init=None):\n if np.isrealobj(encoded):\n if transition is None:\n encoded = encoded >= 0.5\n else:\n encoded = viterbi_binary(encoded.T, transition, p_state=p_state,\n p_init=p_init).T\n times = times_like(encoded, sr=self.sr, hop_length=self.hop_length, axis=0)\n return zip(times, encoded)\n", "role": "user" }, { "content": "decode_events", "role": "assistant" } ]
def x(self, encoded, duration=None, multi=True, sparse=False, transition= None, p_state=None, p_init=None): if np.isrealobj(encoded): if multi: if transition is None: encoded = encoded >= 0.5 else: encoded = viterbi_binary(encoded.T, transition, p_init= p_init, p_state=p_state).T elif sparse and encoded.shape[1] > 1: if transition is None: encoded = np.argmax(encoded, axis=1)[:, np.newaxis] else: encoded = viterbi_discriminative(encoded.T, transition, p_init=p_init, p_state=p_state)[:, np.newaxis] elif not sparse: if transition is None: encoded = encoded == np.max(encoded, axis=1, keepdims=True) else: encoded_ = viterbi_discriminative(encoded.T, transition, p_init=p_init, p_state=p_state) encoded = np.zeros(encoded.shape, dtype=bool) encoded[np.arange(len(encoded_)), encoded_] = True if duration is None: duration = 1 + encoded.shape[0] else: duration = 1 + time_to_frames(duration, sr=self.sr, hop_length=self .hop_length) times = times_like(duration + 1, sr=self.sr, hop_length=self.hop_length) if sparse: idx = np.where(encoded[1:] != encoded[:-1])[0] else: idx = np.where(np.max(encoded[1:] != encoded[:-1], axis=-1))[0] idx = np.unique(np.append(idx, encoded.shape[0])) delta = np.diff(np.append(-1, idx)) position = np.cumsum(np.append(0, delta)) return [(times[p], times[p + d], encoded[p]) for p, d in zip(position, delta)]
decode_intervals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, encoded, duration=None, multi=True, sparse=False, transition=\n None, p_state=None, p_init=None):\n if np.isrealobj(encoded):\n if multi:\n if transition is None:\n encoded = encoded >= 0.5\n else:\n encoded = viterbi_binary(encoded.T, transition, p_init=\n p_init, p_state=p_state).T\n elif sparse and encoded.shape[1] > 1:\n if transition is None:\n encoded = np.argmax(encoded, axis=1)[:, np.newaxis]\n else:\n encoded = viterbi_discriminative(encoded.T, transition,\n p_init=p_init, p_state=p_state)[:, np.newaxis]\n elif not sparse:\n if transition is None:\n encoded = encoded == np.max(encoded, axis=1, keepdims=True)\n else:\n encoded_ = viterbi_discriminative(encoded.T, transition,\n p_init=p_init, p_state=p_state)\n encoded = np.zeros(encoded.shape, dtype=bool)\n encoded[np.arange(len(encoded_)), encoded_] = True\n if duration is None:\n duration = 1 + encoded.shape[0]\n else:\n duration = 1 + time_to_frames(duration, sr=self.sr, hop_length=self\n .hop_length)\n times = times_like(duration + 1, sr=self.sr, hop_length=self.hop_length)\n if sparse:\n idx = np.where(encoded[1:] != encoded[:-1])[0]\n else:\n idx = np.where(np.max(encoded[1:] != encoded[:-1], axis=-1))[0]\n idx = np.unique(np.append(idx, encoded.shape[0]))\n delta = np.diff(np.append(-1, idx))\n position = np.cumsum(np.append(0, delta))\n return [(times[p], times[p + d], encoded[p]) for p, d in zip(position,\n delta)]\n", "role": "user" }, { "content": "decode_intervals", "role": "assistant" } ]
def x(self, y, sr): if sr != self.sr: y = resample(y, sr, self.sr) return self.merge([self.transform_audio(y)])
transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y, sr):\n if sr != self.sr:\n y = resample(y, sr, self.sr)\n return self.merge([self.transform_audio(y)])\n", "role": "user" }, { "content": "transform", "role": "assistant" } ]
def x(self, phase): if self.conv is None: axis = 0 elif self.conv in ('channels_last', 'tf'): axis = 0 elif self.conv in ('channels_first', 'th'): axis = 1 dphase = np.empty(phase.shape, dtype=phase.dtype) zero_idx = [slice(None)] * phase.ndim zero_idx[axis] = slice(1) else_idx = [slice(None)] * phase.ndim else_idx[axis] = slice(1, None) zero_idx = tuple(zero_idx) else_idx = tuple(else_idx) dphase[zero_idx] = phase[zero_idx] dphase[else_idx] = np.diff(np.unwrap(phase, axis=axis), axis=axis) return dphase
phase_diff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, phase):\n if self.conv is None:\n axis = 0\n elif self.conv in ('channels_last', 'tf'):\n axis = 0\n elif self.conv in ('channels_first', 'th'):\n axis = 1\n dphase = np.empty(phase.shape, dtype=phase.dtype)\n zero_idx = [slice(None)] * phase.ndim\n zero_idx[axis] = slice(1)\n else_idx = [slice(None)] * phase.ndim\n else_idx[axis] = slice(1, None)\n zero_idx = tuple(zero_idx)\n else_idx = tuple(else_idx)\n dphase[zero_idx] = phase[zero_idx]\n dphase[else_idx] = np.diff(np.unwrap(phase, axis=axis), axis=axis)\n return dphase\n", "role": "user" }, { "content": "phase_diff", "role": "assistant" } ]
def x(self): from keras.layers import Input L = dict() for key in self.fields: L[key] = Input(name=key, shape=self.fields[key].shape, dtype=self. fields[key].dtype) return L
layers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from keras.layers import Input\n L = dict()\n for key in self.fields:\n L[key] = Input(name=key, shape=self.fields[key].shape, dtype=self.\n fields[key].dtype)\n return L\n", "role": "user" }, { "content": "layers", "role": "assistant" } ]
def x(self, duration): return int(time_to_frames(duration, sr=self.sr, hop_length=self.hop_length) )
n_frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, duration):\n return int(time_to_frames(duration, sr=self.sr, hop_length=self.hop_length)\n )\n", "role": "user" }, { "content": "n_frames", "role": "assistant" } ]
def x(component, exact): version_file = conf.get_path('version_file', 'VERSION') develop = conf.get('git.devel_branch', 'develop') common.assert_on_branch(develop) with conf.within_proj_dir(): out = shell.run('git status --porcelain', capture=True).stdout lines = out.split(os.linesep) has_changes = any(not l.startswith('??') for l in lines if l.strip()) if has_changes: log.info('Cannot release: there are uncommitted changes') exit(1) old_ver, new_ver = versioning.bump(component, exact) log.info('Bumping package version') log.info(' old version: <35>{}'.format(old_ver)) log.info(' new version: <35>{}'.format(new_ver)) with conf.within_proj_dir(): branch = 'release/' + new_ver common.git_checkout(branch, create=True) log.info('Creating commit for the release') shell.run('git add {ver_file} && git commit -m "{msg}"'.format( ver_file=version_file, msg='Releasing v{}'.format(new_ver)))
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(component, exact):\n version_file = conf.get_path('version_file', 'VERSION')\n develop = conf.get('git.devel_branch', 'develop')\n common.assert_on_branch(develop)\n with conf.within_proj_dir():\n out = shell.run('git status --porcelain', capture=True).stdout\n lines = out.split(os.linesep)\n has_changes = any(not l.startswith('??') for l in lines if l.strip())\n if has_changes:\n log.info('Cannot release: there are uncommitted changes')\n exit(1)\n old_ver, new_ver = versioning.bump(component, exact)\n log.info('Bumping package version')\n log.info(' old version: <35>{}'.format(old_ver))\n log.info(' new version: <35>{}'.format(new_ver))\n with conf.within_proj_dir():\n branch = 'release/' + new_ver\n common.git_checkout(branch, create=True)\n log.info('Creating commit for the release')\n shell.run('git add {ver_file} && git commit -m \"{msg}\"'.format(\n ver_file=version_file, msg='Releasing v{}'.format(new_ver)))\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(message): release_ver = versioning.current() message = message or 'v{} release'.format(release_ver) with conf.within_proj_dir(): log.info('Creating release tag') git.tag(author=git.latest_commit().author, name='v{}'.format( release_ver), message=message)
tag
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(message):\n release_ver = versioning.current()\n message = message or 'v{} release'.format(release_ver)\n with conf.within_proj_dir():\n log.info('Creating release tag')\n git.tag(author=git.latest_commit().author, name='v{}'.format(\n release_ver), message=message)\n", "role": "user" }, { "content": "tag", "role": "assistant" } ]
def x(exclude, skip_untracked, commit_only): exclude = list(exclude) + conf.get('lint.exclude', []) runner = LintRunner(exclude, skip_untracked, commit_only) if not runner.run(): exit(1)
lint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(exclude, skip_untracked, commit_only):\n exclude = list(exclude) + conf.get('lint.exclude', [])\n runner = LintRunner(exclude, skip_untracked, commit_only)\n if not runner.run():\n exit(1)\n", "role": "user" }, { "content": "lint", "role": "assistant" } ]
def x(name): global g_tools def x(fn): g_tools[name] = fn return fn return decorator
tool
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name):\n global g_tools\n\n def x(fn):\n g_tools[name] = fn\n return fn\n return decorator\n", "role": "user" }, { "content": "tool", "role": "assistant" } ]
def x(files): files = fs.wrap_paths(files) cfg_path = conf.get_path('lint.pep8_cfg', 'ops/tools/pep8.ini') pep8_cmd = 'pep8 --config {} {}'.format(cfg_path, files) return shell.run(pep8_cmd, exit_on_error=False).return_code
pep8_check
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(files):\n files = fs.wrap_paths(files)\n cfg_path = conf.get_path('lint.pep8_cfg', 'ops/tools/pep8.ini')\n pep8_cmd = 'pep8 --config {} {}'.format(cfg_path, files)\n return shell.run(pep8_cmd, exit_on_error=False).return_code\n", "role": "user" }, { "content": "pep8_check", "role": "assistant" } ]
def x(files): files = fs.wrap_paths(files) cfg_path = conf.get_path('lint.pylint_cfg', 'ops/tools/pylint.ini') pylint_cmd = 'pylint --rcfile {} {}'.format(cfg_path, files) return shell.run(pylint_cmd, exit_on_error=False).return_code
pylint_check
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(files):\n files = fs.wrap_paths(files)\n cfg_path = conf.get_path('lint.pylint_cfg', 'ops/tools/pylint.ini')\n pylint_cmd = 'pylint --rcfile {} {}'.format(cfg_path, files)\n return shell.run(pylint_cmd, exit_on_error=False).return_code\n", "role": "user" }, { "content": "pylint_check", "role": "assistant" } ]
def x(self): with util.timed_block() as t: files = self._collect_files() log.info('Collected <33>{} <32>files in <33>{}s'.format(len(files), t. elapsed_s)) if self.verbose: for p in files: log.info(' <0>{}', p) if not files: return self.allow_empty with util.timed_block() as t: results = self._run_checks(files) log.info('Code checked in <33>{}s', t.elapsed_s) success = True for name, retcodes in results.items(): if any(x != 0 for x in retcodes): success = False log.err('<35>{} <31>failed with: <33>{}'.format(name, retcodes)) return success
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with util.timed_block() as t:\n files = self._collect_files()\n log.info('Collected <33>{} <32>files in <33>{}s'.format(len(files), t.\n elapsed_s))\n if self.verbose:\n for p in files:\n log.info(' <0>{}', p)\n if not files:\n return self.allow_empty\n with util.timed_block() as t:\n results = self._run_checks(files)\n log.info('Code checked in <33>{}s', t.elapsed_s)\n success = True\n for name, retcodes in results.items():\n if any(x != 0 for x in retcodes):\n success = False\n log.err('<35>{} <31>failed with: <33>{}'.format(name, retcodes))\n return success\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(instance, data, replace=True, types=None, primary_key=(), sub_commit=True ): start = datetime.datetime.now() rows = data['rows'] if not rows: return 0 table_name = data['table_name'] columns_name = data['columns_name'] total_len_data = len(rows) if not existing_test(instance, table_name ) or types is not None or primary_key != (): create.create_table(instance, data, primary_key, types) if replace: cleaning_function(instance, table_name) connection_kwargs = credential(instance) ssh_host = os.environ.get('SSH_%s_HOST' % instance) ssh_user = os.environ.get('SSH_%s_USER' % instance) ssh_path_private_key = os.environ.get('SSH_%s_PATH_PRIVATE_KEY' % instance) if ssh_host: tunnel = SSHTunnelForwarder((ssh_host, 22), ssh_username=ssh_user, ssh_private_key=ssh_path_private_key, remote_bind_address=(os. environ.get('AZURE_%s_HOST' % instance), int(os.environ.get( 'AZURE_%s_PORT' % instance))), local_bind_address=('localhost', 1433)) try: tunnel.start() print('Tunnel opened!') except sshtunnel.HandlerSSHTunnelForwarderError: pass connection_kwargs['host'] = 'localhost,1433' connection_kwargs['port'] = 1433 cnxn = pyodbc.connect(**connection_kwargs) cursor = cnxn.cursor() small_batch_size = int(2099 / len(columns_name)) print('Initiate send_to_azure...') boolean = True question_mark_pattern = '(%s)' % ','.join(['?' for i in range(len(rows[ 0]))]) counter = 0 while boolean: temp_row = [] question_mark_list = [] for i in range(small_batch_size): if rows: temp_row.append(rows.pop()) question_mark_list.append(question_mark_pattern) else: boolean = False continue counter = counter + len(temp_row) if sub_commit: suffix = '%% rows sent' print_progress_bar(counter, total_len_data, suffix=suffix) else: suffix = '% rows prepared to be sent' print_progress_bar(counter, total_len_data, suffix=suffix) data_values_str = ','.join(question_mark_list) columns_name_str = ', '.join(columns_name) inserting_request = 'INSERT INTO %s (%s) VALUES %s ;' % (table_name, columns_name_str, data_values_str) final_data = [y for x in temp_row for y in x] if final_data: cursor.execute(inserting_request, final_data) if sub_commit: commit_function(cnxn) if not sub_commit: commit_function(cnxn) cursor.close() cnxn.close() if ssh_host: tunnel.close() print('Tunnel closed!') print('data sent to azure') print('Total rows: %s' % str(total_len_data)) print(C.BOLD + 'Total time in seconds : %s' % str((datetime.datetime. now() - start).seconds) + C.ENDC) return 0
send_to_azure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(instance, data, replace=True, types=None, primary_key=(), sub_commit=True\n ):\n start = datetime.datetime.now()\n rows = data['rows']\n if not rows:\n return 0\n table_name = data['table_name']\n columns_name = data['columns_name']\n total_len_data = len(rows)\n if not existing_test(instance, table_name\n ) or types is not None or primary_key != ():\n create.create_table(instance, data, primary_key, types)\n if replace:\n cleaning_function(instance, table_name)\n connection_kwargs = credential(instance)\n ssh_host = os.environ.get('SSH_%s_HOST' % instance)\n ssh_user = os.environ.get('SSH_%s_USER' % instance)\n ssh_path_private_key = os.environ.get('SSH_%s_PATH_PRIVATE_KEY' % instance)\n if ssh_host:\n tunnel = SSHTunnelForwarder((ssh_host, 22), ssh_username=ssh_user,\n ssh_private_key=ssh_path_private_key, remote_bind_address=(os.\n environ.get('AZURE_%s_HOST' % instance), int(os.environ.get(\n 'AZURE_%s_PORT' % instance))), local_bind_address=('localhost',\n 1433))\n try:\n tunnel.start()\n print('Tunnel opened!')\n except sshtunnel.HandlerSSHTunnelForwarderError:\n pass\n connection_kwargs['host'] = 'localhost,1433'\n connection_kwargs['port'] = 1433\n cnxn = pyodbc.connect(**connection_kwargs)\n cursor = cnxn.cursor()\n small_batch_size = int(2099 / len(columns_name))\n print('Initiate send_to_azure...')\n boolean = True\n question_mark_pattern = '(%s)' % ','.join(['?' for i in range(len(rows[\n 0]))])\n counter = 0\n while boolean:\n temp_row = []\n question_mark_list = []\n for i in range(small_batch_size):\n if rows:\n temp_row.append(rows.pop())\n question_mark_list.append(question_mark_pattern)\n else:\n boolean = False\n continue\n counter = counter + len(temp_row)\n if sub_commit:\n suffix = '%% rows sent'\n print_progress_bar(counter, total_len_data, suffix=suffix)\n else:\n suffix = '% rows prepared to be sent'\n print_progress_bar(counter, total_len_data, suffix=suffix)\n data_values_str = ','.join(question_mark_list)\n columns_name_str = ', '.join(columns_name)\n inserting_request = 'INSERT INTO %s (%s) VALUES %s ;' % (table_name,\n columns_name_str, data_values_str)\n final_data = [y for x in temp_row for y in x]\n if final_data:\n cursor.execute(inserting_request, final_data)\n if sub_commit:\n commit_function(cnxn)\n if not sub_commit:\n commit_function(cnxn)\n cursor.close()\n cnxn.close()\n if ssh_host:\n tunnel.close()\n print('Tunnel closed!')\n print('data sent to azure')\n print('Total rows: %s' % str(total_len_data))\n print(C.BOLD + 'Total time in seconds : %s' % str((datetime.datetime.\n now() - start).seconds) + C.ENDC)\n return 0\n", "role": "user" }, { "content": "send_to_azure", "role": "assistant" } ]
def x(source): std_dict = {} for var, val in source.iteritems(): std_dict[var] = source[var] return std_dict
getdict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source):\n std_dict = {}\n for var, val in source.iteritems():\n std_dict[var] = source[var]\n return std_dict\n", "role": "user" }, { "content": "getdict", "role": "assistant" } ]
def x(self, name, value): if type(value) == type(self.enrich_app): raise ValueError("enrich_app can't add method") setattr(self.app, name, value)
enrich_app
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, value):\n if type(value) == type(self.enrich_app):\n raise ValueError(\"enrich_app can't add method\")\n setattr(self.app, name, value)\n", "role": "user" }, { "content": "enrich_app", "role": "assistant" } ]
def x(x_true, y, sigmay=None, relsigma=True, cov=False, chisq=False, residuals=False): x_true = asarray(x_true) y = asarray(y) if x_true.size != y.size: raise TypeError('Expected x_true and y to have same length') if x_true.size <= 2: raise TypeError('Expected x_true and y length > 2') if sigmay is None: sigmay = 1.0 sigmay = asarray(sigmay) if sigmay.size == 1: sigy = float(sigmay) wt = 1.0 / (sigy * sigy) s = wt * y.size sx = wt * x_true.sum() sy = wt * y.sum() t = x_true - sx / s stt = wt * (t * t).sum() slope = wt * (t * y).sum() / stt yint = (sy - sx * slope) / s else: if sigmay.size != y.size: raise TypeError('Expected sigmay size to be 1 or same as y') wt = 1.0 / (sigmay * sigmay) s = wt.sum() sx = (x_true * wt).sum() sy = (y * wt).sum() t = (x_true - sx / s) / sigmay stt = (t * t).sum() slope = (t * y / sigmay).sum() / stt yint = (sy - sx * slope) / s returns = array([slope, yint]) if cov is True: cvm00 = 1.0 / stt cvm01 = -sx / (s * stt) cvm11 = (1.0 - sx * cvm01) / s if relsigma is True: redchisq, resids = _resids(x_true, y, sigmay, slope, yint) cvm00 *= redchisq cvm01 *= redchisq cvm11 *= redchisq returns = [returns] + [array([[cvm00, cvm01], [cvm01, cvm11]])] if residuals or chisq is True: if relsigma is False: redchisq, resids = _resids(x_true, y, sigmay, slope, yint) if type(returns) is not list: returns = [returns] if chisq is True: returns += [redchisq] if residuals is True: returns += [resids] return returns
linfit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_true, y, sigmay=None, relsigma=True, cov=False, chisq=False,\n residuals=False):\n x_true = asarray(x_true)\n y = asarray(y)\n if x_true.size != y.size:\n raise TypeError('Expected x_true and y to have same length')\n if x_true.size <= 2:\n raise TypeError('Expected x_true and y length > 2')\n if sigmay is None:\n sigmay = 1.0\n sigmay = asarray(sigmay)\n if sigmay.size == 1:\n sigy = float(sigmay)\n wt = 1.0 / (sigy * sigy)\n s = wt * y.size\n sx = wt * x_true.sum()\n sy = wt * y.sum()\n t = x_true - sx / s\n stt = wt * (t * t).sum()\n slope = wt * (t * y).sum() / stt\n yint = (sy - sx * slope) / s\n else:\n if sigmay.size != y.size:\n raise TypeError('Expected sigmay size to be 1 or same as y')\n wt = 1.0 / (sigmay * sigmay)\n s = wt.sum()\n sx = (x_true * wt).sum()\n sy = (y * wt).sum()\n t = (x_true - sx / s) / sigmay\n stt = (t * t).sum()\n slope = (t * y / sigmay).sum() / stt\n yint = (sy - sx * slope) / s\n returns = array([slope, yint])\n if cov is True:\n cvm00 = 1.0 / stt\n cvm01 = -sx / (s * stt)\n cvm11 = (1.0 - sx * cvm01) / s\n if relsigma is True:\n redchisq, resids = _resids(x_true, y, sigmay, slope, yint)\n cvm00 *= redchisq\n cvm01 *= redchisq\n cvm11 *= redchisq\n returns = [returns] + [array([[cvm00, cvm01], [cvm01, cvm11]])]\n if residuals or chisq is True:\n if relsigma is False:\n redchisq, resids = _resids(x_true, y, sigmay, slope, yint)\n if type(returns) is not list:\n returns = [returns]\n if chisq is True:\n returns += [redchisq]\n if residuals is True:\n returns += [resids]\n return returns\n", "role": "user" }, { "content": "linfit", "role": "assistant" } ]
def x(self, platform: str='prod'): platform = platform.lower() self.platform = platform if platform == 'prod': ssl = True logging.debug('Using production platform.') elif platform == 'qa': ssl = False logging.debug('Using Quality Assurance platform (reduced perfs).') else: logging.error('Platform must be one of: {}'.format(' | '.join(self. API_URLS.keys()))) raise ValueError(3, 'Platform must be one of: {}'.format(' | '.join (self.API_URLS.keys()))) return platform.lower(), self.API_URLS.get(platform), self.APP_URLS.get( platform), self.CSW_URLS.get(platform), self.MNG_URLS.get(platform ), self.OC_URLS.get(platform), ssl
set_base_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, platform: str='prod'):\n platform = platform.lower()\n self.platform = platform\n if platform == 'prod':\n ssl = True\n logging.debug('Using production platform.')\n elif platform == 'qa':\n ssl = False\n logging.debug('Using Quality Assurance platform (reduced perfs).')\n else:\n logging.error('Platform must be one of: {}'.format(' | '.join(self.\n API_URLS.keys())))\n raise ValueError(3, 'Platform must be one of: {}'.format(' | '.join\n (self.API_URLS.keys())))\n return platform.lower(), self.API_URLS.get(platform), self.APP_URLS.get(\n platform), self.CSW_URLS.get(platform), self.MNG_URLS.get(platform\n ), self.OC_URLS.get(platform), ssl\n", "role": "user" }, { "content": "set_base_url", "role": "assistant" } ]
def x(self, in_uuid: str=str, mode: bool=0): if not isinstance(in_uuid, str): raise TypeError("'in_uuid' expected a str value.") else: pass if not checker.check_is_uuid(in_uuid): raise ValueError('{} is not a correct UUID'.format(in_uuid)) else: pass if not isinstance(mode, int): raise TypeError("'mode' expects an integer value") else: pass if 'isogeo:metadata' in in_uuid: in_uuid = 'urn:uuid:{}'.format(in_uuid.split(':')[-1]) logging.debug('Isogeo UUUID URN spotted: {}'.format(in_uuid)) else: pass if mode == 0: return uuid.UUID(in_uuid).hex elif mode == 1: return uuid.UUID(in_uuid).urn elif mode == 2: urn = uuid.UUID(in_uuid).urn return 'urn:isogeo:metadata:uuid:{}'.format(urn.split(':')[2]) else: raise ValueError("'mode' must be one of: 0 | 1 | 2")
convert_uuid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, in_uuid: str=str, mode: bool=0):\n if not isinstance(in_uuid, str):\n raise TypeError(\"'in_uuid' expected a str value.\")\n else:\n pass\n if not checker.check_is_uuid(in_uuid):\n raise ValueError('{} is not a correct UUID'.format(in_uuid))\n else:\n pass\n if not isinstance(mode, int):\n raise TypeError(\"'mode' expects an integer value\")\n else:\n pass\n if 'isogeo:metadata' in in_uuid:\n in_uuid = 'urn:uuid:{}'.format(in_uuid.split(':')[-1])\n logging.debug('Isogeo UUUID URN spotted: {}'.format(in_uuid))\n else:\n pass\n if mode == 0:\n return uuid.UUID(in_uuid).hex\n elif mode == 1:\n return uuid.UUID(in_uuid).urn\n elif mode == 2:\n urn = uuid.UUID(in_uuid).urn\n return 'urn:isogeo:metadata:uuid:{}'.format(urn.split(':')[2])\n else:\n raise ValueError(\"'mode' must be one of: 0 | 1 | 2\")\n", "role": "user" }, { "content": "convert_uuid", "role": "assistant" } ]
def x(self, in_encoded_words: str): if '"' in in_encoded_words: in_encoded_words = in_encoded_words.strip('"') encoded_word_regex = '=\\?{1}(.+)\\?{1}([B|Q])\\?{1}(.+)\\?{1}=' try: charset, encoding, encoded_text = re.match(encoded_word_regex, in_encoded_words).groups() except AttributeError: logging.debug('Input text was not encoded into base64 or quori') return in_encoded_words if encoding == 'B': byte_string = base64.b64decode(encoded_text) elif encoding == 'Q': byte_string = quopri.decodestring(encoded_text) return byte_string.decode(charset)
encoded_words_to_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, in_encoded_words: str):\n if '\"' in in_encoded_words:\n in_encoded_words = in_encoded_words.strip('\"')\n encoded_word_regex = '=\\\\?{1}(.+)\\\\?{1}([B|Q])\\\\?{1}(.+)\\\\?{1}='\n try:\n charset, encoding, encoded_text = re.match(encoded_word_regex,\n in_encoded_words).groups()\n except AttributeError:\n logging.debug('Input text was not encoded into base64 or quori')\n return in_encoded_words\n if encoding == 'B':\n byte_string = base64.b64decode(encoded_text)\n elif encoding == 'Q':\n byte_string = quopri.decodestring(encoded_text)\n return byte_string.decode(charset)\n", "role": "user" }, { "content": "encoded_words_to_text", "role": "assistant" } ]
def x(self, component: str='api', prot: str='https'): if component == 'api': version_url = '{}://v1.{}.isogeo.com/about'.format(prot, self.api_url) elif component == 'db': version_url = '{}://v1.{}.isogeo.com/about/database'.format(prot, self.api_url) elif component == 'app' and self.platform == 'prod': version_url = 'https://app.isogeo.com/about' elif component == 'app' and self.platform == 'qa': version_url = 'https://qa-isogeo-app.azurewebsites.net/about' else: raise ValueError( 'Component value must be one of: api [default], db, app.') version_req = requests.get(version_url, proxies=self.proxies, verify= self.ssl) checker.check_api_response(version_req) return version_req.json().get('version')
get_isogeo_version
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, component: str='api', prot: str='https'):\n if component == 'api':\n version_url = '{}://v1.{}.isogeo.com/about'.format(prot, self.api_url)\n elif component == 'db':\n version_url = '{}://v1.{}.isogeo.com/about/database'.format(prot,\n self.api_url)\n elif component == 'app' and self.platform == 'prod':\n version_url = 'https://app.isogeo.com/about'\n elif component == 'app' and self.platform == 'qa':\n version_url = 'https://qa-isogeo-app.azurewebsites.net/about'\n else:\n raise ValueError(\n 'Component value must be one of: api [default], db, app.')\n version_req = requests.get(version_url, proxies=self.proxies, verify=\n self.ssl)\n checker.check_api_response(version_req)\n return version_req.json().get('version')\n", "role": "user" }, { "content": "get_isogeo_version", "role": "assistant" } ]
def x(self, md_id: str=None, md_type: str=None, owner_id: str=None, tab: str='identification'): if not checker.check_is_uuid(md_id) or not checker.check_is_uuid(owner_id): raise ValueError('One of md_id or owner_id is not a correct UUID.') else: pass if checker.check_edit_tab(tab, md_type=md_type): pass return '{}/groups/{}/resources/{}/{}'.format(self.APP_URLS.get(self. platform), owner_id, md_id, tab)
get_edit_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, md_id: str=None, md_type: str=None, owner_id: str=None, tab:\n str='identification'):\n if not checker.check_is_uuid(md_id) or not checker.check_is_uuid(owner_id):\n raise ValueError('One of md_id or owner_id is not a correct UUID.')\n else:\n pass\n if checker.check_edit_tab(tab, md_type=md_type):\n pass\n return '{}/groups/{}/resources/{}/{}'.format(self.APP_URLS.get(self.\n platform), owner_id, md_id, tab)\n", "role": "user" }, { "content": "get_edit_url", "role": "assistant" } ]
def x(self, webapp: str='oc', **kwargs): if webapp in self.WEBAPPS: webapp_args = self.WEBAPPS.get(webapp).get('args') if set(webapp_args) <= set(kwargs): url = self.WEBAPPS.get(webapp).get('url') return url.format(**kwargs) else: raise TypeError( "'{}' webapp expects {} argument(s): {}. Args passed: {}". format(webapp, len(webapp_args), webapp_args, kwargs)) else: raise ValueError( "'{}' is not a recognized webapp among: {}. Try to register it." .format(self.WEBAPPS.keys(), webapp))
get_view_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, webapp: str='oc', **kwargs):\n if webapp in self.WEBAPPS:\n webapp_args = self.WEBAPPS.get(webapp).get('args')\n if set(webapp_args) <= set(kwargs):\n url = self.WEBAPPS.get(webapp).get('url')\n return url.format(**kwargs)\n else:\n raise TypeError(\n \"'{}' webapp expects {} argument(s): {}. Args passed: {}\".\n format(webapp, len(webapp_args), webapp_args, kwargs))\n else:\n raise ValueError(\n \"'{}' is not a recognized webapp among: {}. Try to register it.\"\n .format(self.WEBAPPS.keys(), webapp))\n", "role": "user" }, { "content": "get_view_url", "role": "assistant" } ]
def x(self, webapp_name: str, webapp_args: list, webapp_url: str): for arg in webapp_args: if arg not in webapp_url: raise ValueError( "Inconsistent web app arguments and URL. It should contain arguments to replace dynamically. Example: 'http://webapp.com/isogeo?metadata={md_id}'" ) self.WEBAPPS[webapp_name] = {'args': webapp_args, 'url': webapp_url}
register_webapp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, webapp_name: str, webapp_args: list, webapp_url: str):\n for arg in webapp_args:\n if arg not in webapp_url:\n raise ValueError(\n \"Inconsistent web app arguments and URL. It should contain arguments to replace dynamically. Example: 'http://webapp.com/isogeo?metadata={md_id}'\"\n )\n self.WEBAPPS[webapp_name] = {'args': webapp_args, 'url': webapp_url}\n", "role": "user" }, { "content": "register_webapp", "role": "assistant" } ]
def x(self, url_api_token: str='https://id.api.isogeo.com/oauth/token'): in_parsed = urlparse(url_api_token) api_url_base = in_parsed._replace(path='', netloc=in_parsed.netloc. replace('id.', '')) return api_url_base.geturl()
get_url_base_from_url_token
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, url_api_token: str='https://id.api.isogeo.com/oauth/token'):\n in_parsed = urlparse(url_api_token)\n api_url_base = in_parsed._replace(path='', netloc=in_parsed.netloc.\n replace('id.', ''))\n return api_url_base.geturl()\n", "role": "user" }, { "content": "get_url_base_from_url_token", "role": "assistant" } ]
def x(self, total: int, page_size: int=100) ->int: if total <= page_size: count_pages = 1 elif total % page_size == 0: count_pages = total / page_size else: count_pages = total / page_size + 1 return int(count_pages)
pages_counter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, total: int, page_size: int=100) ->int:\n if total <= page_size:\n count_pages = 1\n elif total % page_size == 0:\n count_pages = total / page_size\n else:\n count_pages = total / page_size + 1\n return int(count_pages)\n", "role": "user" }, { "content": "pages_counter", "role": "assistant" } ]
def x(self, share: dict, results_filtered: dict): creator_id = share.get('_creator').get('_tag')[6:] share['admin_url'] = '{}/groups/{}/admin/shares/{}'.format(self.app_url, creator_id, share.get('_id')) opencat_url = '{}/s/{}/{}'.format(self.oc_url, share.get('_id'), share. get('urlToken')) if requests.head(opencat_url): share['oc_url'] = opencat_url else: pass share['mds_ids'] = (i.get('_id') for i in results_filtered) return share
share_extender
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, share: dict, results_filtered: dict):\n creator_id = share.get('_creator').get('_tag')[6:]\n share['admin_url'] = '{}/groups/{}/admin/shares/{}'.format(self.app_url,\n creator_id, share.get('_id'))\n opencat_url = '{}/s/{}/{}'.format(self.oc_url, share.get('_id'), share.\n get('urlToken'))\n if requests.head(opencat_url):\n share['oc_url'] = opencat_url\n else:\n pass\n share['mds_ids'] = (i.get('_id') for i in results_filtered)\n return share\n", "role": "user" }, { "content": "share_extender", "role": "assistant" } ]
def x(self, in_credentials: str='client_secrets.json') ->dict: accepted_extensions = '.ini', '.json' if not path.isfile(in_credentials): raise IOError("Credentials file doesn't exist: {}".format( in_credentials)) else: in_credentials = path.normpath(in_credentials) if path.splitext(in_credentials)[1] not in accepted_extensions: raise ValueError('Extension of credentials file must be one of {}'. format(accepted_extensions)) else: kind = path.splitext(in_credentials)[1] if kind == '.json': with open(in_credentials, 'r') as f: in_auth = json.loads(f.read()) heads = 'installed', 'web' if not set(in_auth).intersection(set(heads)): raise ValueError( 'Input JSON structure is not as expected. First key must be one of: {}' .format(heads)) if 'web' in in_auth: auth_settings = in_auth.get('web') out_auth = {'auth_mode': 'group', 'client_id': auth_settings. get('client_id'), 'client_secret': auth_settings.get( 'client_secret'), 'scopes': auth_settings.get('scopes', [ 'resources:read']), 'uri_auth': auth_settings.get( 'auth_uri'), 'uri_token': auth_settings.get('token_uri'), 'uri_base': self.get_url_base_from_url_token(auth_settings. get('token_uri')), 'uri_redirect': None} else: auth_settings = in_auth.get('installed') out_auth = {'auth_mode': 'user', 'client_id': auth_settings.get ('client_id'), 'client_secret': auth_settings.get( 'client_secret'), 'scopes': auth_settings.get('scopes', [ 'resources:read']), 'uri_auth': auth_settings.get( 'auth_uri'), 'uri_token': auth_settings.get('token_uri'), 'uri_base': self.get_url_base_from_url_token(auth_settings. get('token_uri')), 'uri_redirect': auth_settings.get( 'redirect_uris', None)} else: ini_parser = ConfigParser() ini_parser.read(in_credentials) if 'auth' in ini_parser._sections: auth_settings = ini_parser['auth'] else: raise ValueError( 'Input INI structure is not as expected. Section of credentials must be named: auth' ) out_auth = {'auth_mode': auth_settings.get('CLIENT_TYPE'), 'client_id': auth_settings.get('CLIENT_ID'), 'client_secret': auth_settings.get('CLIENT_SECRET'), 'uri_auth': auth_settings. get('URI_AUTH'), 'uri_token': auth_settings.get('URI_TOKEN'), 'uri_base': self.get_url_base_from_url_token(auth_settings.get( 'URI_TOKEN')), 'uri_redirect': auth_settings.get('URI_REDIRECT')} return out_auth
credentials_loader
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, in_credentials: str='client_secrets.json') ->dict:\n accepted_extensions = '.ini', '.json'\n if not path.isfile(in_credentials):\n raise IOError(\"Credentials file doesn't exist: {}\".format(\n in_credentials))\n else:\n in_credentials = path.normpath(in_credentials)\n if path.splitext(in_credentials)[1] not in accepted_extensions:\n raise ValueError('Extension of credentials file must be one of {}'.\n format(accepted_extensions))\n else:\n kind = path.splitext(in_credentials)[1]\n if kind == '.json':\n with open(in_credentials, 'r') as f:\n in_auth = json.loads(f.read())\n heads = 'installed', 'web'\n if not set(in_auth).intersection(set(heads)):\n raise ValueError(\n 'Input JSON structure is not as expected. First key must be one of: {}'\n .format(heads))\n if 'web' in in_auth:\n auth_settings = in_auth.get('web')\n out_auth = {'auth_mode': 'group', 'client_id': auth_settings.\n get('client_id'), 'client_secret': auth_settings.get(\n 'client_secret'), 'scopes': auth_settings.get('scopes', [\n 'resources:read']), 'uri_auth': auth_settings.get(\n 'auth_uri'), 'uri_token': auth_settings.get('token_uri'),\n 'uri_base': self.get_url_base_from_url_token(auth_settings.\n get('token_uri')), 'uri_redirect': None}\n else:\n auth_settings = in_auth.get('installed')\n out_auth = {'auth_mode': 'user', 'client_id': auth_settings.get\n ('client_id'), 'client_secret': auth_settings.get(\n 'client_secret'), 'scopes': auth_settings.get('scopes', [\n 'resources:read']), 'uri_auth': auth_settings.get(\n 'auth_uri'), 'uri_token': auth_settings.get('token_uri'),\n 'uri_base': self.get_url_base_from_url_token(auth_settings.\n get('token_uri')), 'uri_redirect': auth_settings.get(\n 'redirect_uris', None)}\n else:\n ini_parser = ConfigParser()\n ini_parser.read(in_credentials)\n if 'auth' in ini_parser._sections:\n auth_settings = ini_parser['auth']\n else:\n raise ValueError(\n 'Input INI structure is not as expected. Section of credentials must be named: auth'\n )\n out_auth = {'auth_mode': auth_settings.get('CLIENT_TYPE'),\n 'client_id': auth_settings.get('CLIENT_ID'), 'client_secret':\n auth_settings.get('CLIENT_SECRET'), 'uri_auth': auth_settings.\n get('URI_AUTH'), 'uri_token': auth_settings.get('URI_TOKEN'),\n 'uri_base': self.get_url_base_from_url_token(auth_settings.get(\n 'URI_TOKEN')), 'uri_redirect': auth_settings.get('URI_REDIRECT')}\n return out_auth\n", "role": "user" }, { "content": "credentials_loader", "role": "assistant" } ]
def x(username, password): from peltak.extra.pypi import logic logic.gen_pypirc(username, password)
configure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(username, password):\n from peltak.extra.pypi import logic\n logic.gen_pypirc(username, password)\n", "role": "user" }, { "content": "configure", "role": "assistant" } ]
def x(self, subdomain: str, string_to_translate: str='') ->str: if subdomain not in self.translations.keys(): raise ValueError("'{}' is not a correct subdomain. Must be one of {}" .format(subdomain, self.translations.keys())) else: pass str_translated = self.translations.get(subdomain, {'error': 'Subdomain not found: {}'.format(subdomain)}).get(string_to_translate, 'String not found') return str_translated
tr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subdomain: str, string_to_translate: str='') ->str:\n if subdomain not in self.translations.keys():\n raise ValueError(\"'{}' is not a correct subdomain. Must be one of {}\"\n .format(subdomain, self.translations.keys()))\n else:\n pass\n str_translated = self.translations.get(subdomain, {'error':\n 'Subdomain not found: {}'.format(subdomain)}).get(string_to_translate,\n 'String not found')\n return str_translated\n", "role": "user" }, { "content": "tr", "role": "assistant" } ]
def x(sender, instance, **kwargs): if instance.identity is None: identities = Identity.objects.filter_by_addr(instance.address_type, instance.address) if identities.count() == 1: instance.identity = identities[0]
optout_saved
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender, instance, **kwargs):\n if instance.identity is None:\n identities = Identity.objects.filter_by_addr(instance.address_type,\n instance.address)\n if identities.count() == 1:\n instance.identity = identities[0]\n", "role": "user" }, { "content": "optout_saved", "role": "assistant" } ]
def x(self): log = logging.getLogger(self.cls_logger + '.get_vpc_id') if not self.is_aws: log.info('This machine is not running in AWS, exiting...') return if self.instance_id is None: log.error('Unable to get the Instance ID for this machine') return log.info('Found Instance ID: {i}'.format(i=self.instance_id)) log.info('Querying AWS to get the VPC ID...') try: response = self.client.describe_instances(DryRun=False, InstanceIds =[self.instance_id]) except ClientError as ex: log.error('Unable to query AWS to get info for instance {i}\n{e}'. format(i=self.instance_id, e=ex)) return try: vpc_id = response['Reservations'][0]['Instances'][0]['VpcId'] except KeyError as ex: log.error('Unable to get VPC ID from response: {r}\n{e}'.format(r= response, e=ex)) return log.info('Found VPC ID: {v}'.format(v=vpc_id)) return vpc_id
get_vpc_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n log = logging.getLogger(self.cls_logger + '.get_vpc_id')\n if not self.is_aws:\n log.info('This machine is not running in AWS, exiting...')\n return\n if self.instance_id is None:\n log.error('Unable to get the Instance ID for this machine')\n return\n log.info('Found Instance ID: {i}'.format(i=self.instance_id))\n log.info('Querying AWS to get the VPC ID...')\n try:\n response = self.client.describe_instances(DryRun=False, InstanceIds\n =[self.instance_id])\n except ClientError as ex:\n log.error('Unable to query AWS to get info for instance {i}\\n{e}'.\n format(i=self.instance_id, e=ex))\n return\n try:\n vpc_id = response['Reservations'][0]['Instances'][0]['VpcId']\n except KeyError as ex:\n log.error('Unable to get VPC ID from response: {r}\\n{e}'.format(r=\n response, e=ex))\n return\n log.info('Found VPC ID: {v}'.format(v=vpc_id))\n return vpc_id\n", "role": "user" }, { "content": "get_vpc_id", "role": "assistant" } ]
def x(ctx, recreate, gen_index, run_doctests): if ctx.invoked_subcommand: return from peltak.logic import docs docs.docs(recreate, gen_index, run_doctests)
docs_cli
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, recreate, gen_index, run_doctests):\n if ctx.invoked_subcommand:\n return\n from peltak.logic import docs\n docs.docs(recreate, gen_index, run_doctests)\n", "role": "user" }, { "content": "docs_cli", "role": "assistant" } ]
def x(value): if six.PY2: buffer_types = buffer, memoryview else: buffer_types = memoryview if value is None: return u'' elif isinstance(value, buffer_types): return bytes(value).decode('utf8', 'ignore') elif isinstance(value, bytes): return value.decode('utf8', 'ignore') else: return six.text_type(value)
as_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value):\n if six.PY2:\n buffer_types = buffer, memoryview\n else:\n buffer_types = memoryview\n if value is None:\n return u''\n elif isinstance(value, buffer_types):\n return bytes(value).decode('utf8', 'ignore')\n elif isinstance(value, bytes):\n return value.decode('utf8', 'ignore')\n else:\n return six.text_type(value)\n", "role": "user" }, { "content": "as_string", "role": "assistant" } ]
def x(path, separator=u'; '): if isinstance(path, (list, tuple)): return separator.join(displayable_path(p) for p in path) elif isinstance(path, six.text_type): return path elif not isinstance(path, bytes): return six.text_type(path) try: return path.decode(_fsencoding(), 'ignore') except (UnicodeError, LookupError): return path.decode('utf8', 'ignore')
displayable_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, separator=u'; '):\n if isinstance(path, (list, tuple)):\n return separator.join(displayable_path(p) for p in path)\n elif isinstance(path, six.text_type):\n return path\n elif not isinstance(path, bytes):\n return six.text_type(path)\n try:\n return path.decode(_fsencoding(), 'ignore')\n except (UnicodeError, LookupError):\n return path.decode('utf8', 'ignore')\n", "role": "user" }, { "content": "displayable_path", "role": "assistant" } ]
def x(path, prefix=True): if os.path.__name__ != 'ntpath': return path if not isinstance(path, six.text_type): try: path = path.decode('utf8') except UnicodeError: encoding = sys.getfilesystemencoding() or sys.getdefaultencoding() path = path.decode(encoding, 'replace') if prefix and not path.startswith(WINDOWS_MAGIC_PREFIX): if path.startswith(u'\\\\'): path = u'UNC' + path[1:] path = WINDOWS_MAGIC_PREFIX + path return path
syspath
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, prefix=True):\n if os.path.__name__ != 'ntpath':\n return path\n if not isinstance(path, six.text_type):\n try:\n path = path.decode('utf8')\n except UnicodeError:\n encoding = sys.getfilesystemencoding() or sys.getdefaultencoding()\n path = path.decode(encoding, 'replace')\n if prefix and not path.startswith(WINDOWS_MAGIC_PREFIX):\n if path.startswith(u'\\\\\\\\'):\n path = u'UNC' + path[1:]\n path = WINDOWS_MAGIC_PREFIX + path\n return path\n", "role": "user" }, { "content": "syspath", "role": "assistant" } ]
def x(self, button): buttons = (Gtk.STOCK_CANCEL, Gtk.ResponseType.CANCEL, Gtk.STOCK_OPEN, Gtk.ResponseType.OK) dialog = Gtk.FileChooserDialog('Select notebook template', self.parent, Gtk.FileChooserAction.OPEN, buttons) add_filters(dialog, [{'name': 'IPython notebook (*.ipynb)', 'pattern': '*.ipynb'}]) response = dialog.run() if response == Gtk.ResponseType.OK: selected_path = path(dialog.get_filename()) output_path = self.notebook_dir.joinpath(selected_path.name) overwrite = False if output_path.isfile(): response = yesno('%s already exists. Overwrite?' % output_path. name, 'Overwrite?') if response == Gtk.ResponseType.YES: overwrite = True else: counter = 1 renamed_path = output_path while renamed_path.isfile(): new_name = '%s (%d)%s' % (output_path.namebase, counter, output_path.ext) renamed_path = output_path.parent.joinpath(new_name) counter += 1 output_path = renamed_path self.notebook_manager.launch_from_template(selected_path, overwrite =overwrite, output_name=output_path.name, notebook_dir=self. notebook_dir) dialog.destroy()
on_new
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, button):\n buttons = (Gtk.STOCK_CANCEL, Gtk.ResponseType.CANCEL, Gtk.STOCK_OPEN,\n Gtk.ResponseType.OK)\n dialog = Gtk.FileChooserDialog('Select notebook template', self.parent,\n Gtk.FileChooserAction.OPEN, buttons)\n add_filters(dialog, [{'name': 'IPython notebook (*.ipynb)', 'pattern':\n '*.ipynb'}])\n response = dialog.run()\n if response == Gtk.ResponseType.OK:\n selected_path = path(dialog.get_filename())\n output_path = self.notebook_dir.joinpath(selected_path.name)\n overwrite = False\n if output_path.isfile():\n response = yesno('%s already exists. Overwrite?' % output_path.\n name, 'Overwrite?')\n if response == Gtk.ResponseType.YES:\n overwrite = True\n else:\n counter = 1\n renamed_path = output_path\n while renamed_path.isfile():\n new_name = '%s (%d)%s' % (output_path.namebase, counter,\n output_path.ext)\n renamed_path = output_path.parent.joinpath(new_name)\n counter += 1\n output_path = renamed_path\n self.notebook_manager.launch_from_template(selected_path, overwrite\n =overwrite, output_name=output_path.name, notebook_dir=self.\n notebook_dir)\n dialog.destroy()\n", "role": "user" }, { "content": "on_new", "role": "assistant" } ]
def x(filename: str) ->list: out = [] name_repl = {'BNP Paribas Fortis SA/NV, Bankfilial Sverige': 'BNP Paribas Fortis SA/NV', 'Citibank International Plc, Sweden Branch': 'Citibank International Plc', 'Santander Consumer Bank AS (deltar endast i Dataclearingen)': 'Santander Consumer Bank AS', 'Nordax Bank AB (deltar endast i Dataclearingen)': 'Nordax Bank AB', 'Swedbank och fristående Sparbanker, t ex Leksands Sparbank och Roslagsbanken.' : 'Swedbank', 'Ålandsbanken Abp (Finland),svensk filial': 'Ålandsbanken Abp', 'SBAB deltar endast i Dataclearingen': 'SBAB'} with open(filename) as fp: for row in csv.reader(fp): if len(row) == 3: name, series, acc_digits = row name = re.sub('\\n.*', '', name) if name in name_repl: name = name_repl[name] ml_acc_digits = acc_digits.split('\n') for i, ser in enumerate(series.split('\n')): begin, end = None, None res = re.match('^(\\d+)-(\\d+).*$', ser) if res: begin, end = res.group(1), res.group(2) if begin is None: res = re.match('^(\\d{4}).*$', ser) if res: begin = res.group(1) end = begin if begin and end: digits = None try: digits = int(acc_digits) except ValueError: pass if digits is None: try: digits = int(ml_acc_digits[i]) except ValueError: digits = '?' except IndexError: digits = '?' out.append([name, begin, end, digits]) return out
se_iban_load_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename: str) ->list:\n out = []\n name_repl = {'BNP Paribas Fortis SA/NV, Bankfilial Sverige':\n 'BNP Paribas Fortis SA/NV',\n 'Citibank International Plc, Sweden Branch':\n 'Citibank International Plc',\n 'Santander Consumer Bank AS (deltar endast i Dataclearingen)':\n 'Santander Consumer Bank AS',\n 'Nordax Bank AB (deltar endast i Dataclearingen)': 'Nordax Bank AB',\n 'Swedbank och fristående Sparbanker, t ex Leksands Sparbank och Roslagsbanken.'\n : 'Swedbank', 'Ålandsbanken Abp (Finland),svensk filial':\n 'Ålandsbanken Abp', 'SBAB deltar endast i Dataclearingen': 'SBAB'}\n with open(filename) as fp:\n for row in csv.reader(fp):\n if len(row) == 3:\n name, series, acc_digits = row\n name = re.sub('\\\\n.*', '', name)\n if name in name_repl:\n name = name_repl[name]\n ml_acc_digits = acc_digits.split('\\n')\n for i, ser in enumerate(series.split('\\n')):\n begin, end = None, None\n res = re.match('^(\\\\d+)-(\\\\d+).*$', ser)\n if res:\n begin, end = res.group(1), res.group(2)\n if begin is None:\n res = re.match('^(\\\\d{4}).*$', ser)\n if res:\n begin = res.group(1)\n end = begin\n if begin and end:\n digits = None\n try:\n digits = int(acc_digits)\n except ValueError:\n pass\n if digits is None:\n try:\n digits = int(ml_acc_digits[i])\n except ValueError:\n digits = '?'\n except IndexError:\n digits = '?'\n out.append([name, begin, end, digits])\n return out\n", "role": "user" }, { "content": "se_iban_load_map", "role": "assistant" } ]
def x(instances, msg: str, who: User=None, **kw): from django.contrib.admin.models import LogEntry, CHANGE from django.contrib.admin.options import get_content_type_for_model from django.utils.encoding import force_text if not who: username = settings.DJANGO_SYSTEM_USER if hasattr(settings, 'DJANGO_SYSTEM_USER') else 'system' who, created = User.objects.get_or_create(username=username) att_str = '' for k, v in kw.items(): if hasattr(v, 'pk'): v = v.pk att_str += '{}={}'.format(k, v) if not att_str else ', {}={}'.format(k, v) if att_str: att_str = ' [{}]'.format(att_str) msg = str(msg) + att_str if not isinstance(instances, list) and not isinstance(instances, tuple): instances = [instances] for instance in instances: if instance: LogEntry.objects.log_action(user_id=who.pk, content_type_id= get_content_type_for_model(instance).pk, object_id=instance .pk, object_repr=force_text(instance), action_flag=CHANGE, change_message=msg)
admin_log
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(instances, msg: str, who: User=None, **kw):\n from django.contrib.admin.models import LogEntry, CHANGE\n from django.contrib.admin.options import get_content_type_for_model\n from django.utils.encoding import force_text\n if not who:\n username = settings.DJANGO_SYSTEM_USER if hasattr(settings,\n 'DJANGO_SYSTEM_USER') else 'system'\n who, created = User.objects.get_or_create(username=username)\n att_str = ''\n for k, v in kw.items():\n if hasattr(v, 'pk'):\n v = v.pk\n att_str += '{}={}'.format(k, v) if not att_str else ', {}={}'.format(k,\n v)\n if att_str:\n att_str = ' [{}]'.format(att_str)\n msg = str(msg) + att_str\n if not isinstance(instances, list) and not isinstance(instances, tuple):\n instances = [instances]\n for instance in instances:\n if instance:\n LogEntry.objects.log_action(user_id=who.pk, content_type_id=\n get_content_type_for_model(instance).pk, object_id=instance\n .pk, object_repr=force_text(instance), action_flag=CHANGE,\n change_message=msg)\n", "role": "user" }, { "content": "admin_log", "role": "assistant" } ]
def x(self, request: HttpRequest, extra_context=None, **kw): return self.changelist_view(request, extra_context)
kw_changelist_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request: HttpRequest, extra_context=None, **kw):\n return self.changelist_view(request, extra_context)\n", "role": "user" }, { "content": "kw_changelist_view", "role": "assistant" } ]
def x(self, request, object_id, extra_context=None): from django.template.response import TemplateResponse from django.contrib.admin.options import get_content_type_for_model from django.contrib.admin.utils import unquote from django.core.exceptions import PermissionDenied from django.utils.text import capfirst from django.utils.encoding import force_text from django.utils.translation import ugettext as _ """The 'history' admin view for this model.""" from django.contrib.admin.models import LogEntry model = self.model obj = self.get_object(request, unquote(object_id)) if obj is None: return self._get_obj_does_not_exist_redirect(request, model._meta, object_id) if not self.has_change_permission(request, obj): raise PermissionDenied opts = model._meta app_label = opts.app_label action_list = LogEntry.objects.filter(object_id=unquote(object_id), content_type=get_content_type_for_model(model)).select_related( ).order_by('-action_time')[:self.max_history_length] context = dict(self.admin_site.each_context(request), title=_( 'Change history: %s') % force_text(obj), action_list=action_list, module_name=capfirst(force_text(opts.verbose_name_plural)), object= obj, opts=opts, preserved_filters=self.get_preserved_filters(request)) context.update(extra_context or {}) request.current_app = self.admin_site.name return TemplateResponse(request, self.object_history_template or [ 'admin/%s/%s/object_history.html' % (app_label, opts.model_name), 'admin/%s/object_history.html' % app_label, 'admin/object_history.html'], context)
history_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, object_id, extra_context=None):\n from django.template.response import TemplateResponse\n from django.contrib.admin.options import get_content_type_for_model\n from django.contrib.admin.utils import unquote\n from django.core.exceptions import PermissionDenied\n from django.utils.text import capfirst\n from django.utils.encoding import force_text\n from django.utils.translation import ugettext as _\n \"\"\"The 'history' admin view for this model.\"\"\"\n from django.contrib.admin.models import LogEntry\n model = self.model\n obj = self.get_object(request, unquote(object_id))\n if obj is None:\n return self._get_obj_does_not_exist_redirect(request, model._meta,\n object_id)\n if not self.has_change_permission(request, obj):\n raise PermissionDenied\n opts = model._meta\n app_label = opts.app_label\n action_list = LogEntry.objects.filter(object_id=unquote(object_id),\n content_type=get_content_type_for_model(model)).select_related(\n ).order_by('-action_time')[:self.max_history_length]\n context = dict(self.admin_site.each_context(request), title=_(\n 'Change history: %s') % force_text(obj), action_list=action_list,\n module_name=capfirst(force_text(opts.verbose_name_plural)), object=\n obj, opts=opts, preserved_filters=self.get_preserved_filters(request))\n context.update(extra_context or {})\n request.current_app = self.admin_site.name\n return TemplateResponse(request, self.object_history_template or [\n 'admin/%s/%s/object_history.html' % (app_label, opts.model_name), \n 'admin/%s/object_history.html' % app_label,\n 'admin/object_history.html'], context)\n", "role": "user" }, { "content": "history_view", "role": "assistant" } ]
def x(self, request, filename): kw = dict() kw[self.file_field] = filename obj = self.get_queryset(request).filter(**kw).first() if not obj: raise Http404(_('File {} not found').format(filename)) return self.get_object(request, obj.id)
get_object_by_filename
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, filename):\n kw = dict()\n kw[self.file_field] = filename\n obj = self.get_queryset(request).filter(**kw).first()\n if not obj:\n raise Http404(_('File {} not found').format(filename))\n return self.get_object(request, obj.id)\n", "role": "user" }, { "content": "get_object_by_filename", "role": "assistant" } ]
def x(self): info = self.model._meta.app_label, self.model._meta.model_name return [url('^.+(' + self.upload_to + '/.+)/$', self.file_download_view, name='%s_%s_file_download' % info)]
get_download_urls
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n info = self.model._meta.app_label, self.model._meta.model_name\n return [url('^.+(' + self.upload_to + '/.+)/$', self.file_download_view,\n name='%s_%s_file_download' % info)]\n", "role": "user" }, { "content": "get_download_urls", "role": "assistant" } ]
def x(version): if not is_valid(version): raise ValueError('Invalid version: '.format(version)) storage = get_version_storage() storage.write(version)
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(version):\n if not is_valid(version):\n raise ValueError('Invalid version: '.format(version))\n storage = get_version_storage()\n storage.write(version)\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(component='patch', exact=None): old_ver = current() if exact is None: new_ver = _bump_version(old_ver, component) else: new_ver = exact write(new_ver) return old_ver, new_ver
bump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(component='patch', exact=None):\n old_ver = current()\n if exact is None:\n new_ver = _bump_version(old_ver, component)\n else:\n new_ver = exact\n write(new_ver)\n return old_ver, new_ver\n", "role": "user" }, { "content": "bump", "role": "assistant" } ]
def x(version, component='patch'): if component not in ('major', 'minor', 'patch'): raise ValueError('Invalid version component: {}'.format(component)) m = RE_VERSION.match(version) if m is None: raise ValueError('Version must be in MAJOR.MINOR[.PATCH] format') major = m.group('major') minor = m.group('minor') or '0' patch = m.group('patch') or None if patch == '0': patch = None if component == 'major': major = str(int(major) + 1) minor = '0' patch = None elif component == 'minor': minor = str(int(minor) + 1) patch = None else: patch = patch or 0 patch = str(int(patch) + 1) new_ver = '{}.{}'.format(major, minor) if patch is not None: new_ver += '.' + patch return new_ver
bump_version
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(version, component='patch'):\n if component not in ('major', 'minor', 'patch'):\n raise ValueError('Invalid version component: {}'.format(component))\n m = RE_VERSION.match(version)\n if m is None:\n raise ValueError('Version must be in MAJOR.MINOR[.PATCH] format')\n major = m.group('major')\n minor = m.group('minor') or '0'\n patch = m.group('patch') or None\n if patch == '0':\n patch = None\n if component == 'major':\n major = str(int(major) + 1)\n minor = '0'\n patch = None\n elif component == 'minor':\n minor = str(int(minor) + 1)\n patch = None\n else:\n patch = patch or 0\n patch = str(int(patch) + 1)\n new_ver = '{}.{}'.format(major, minor)\n if patch is not None:\n new_ver += '.' + patch\n return new_ver\n", "role": "user" }, { "content": "bump_version", "role": "assistant" } ]
def x(): version_file = conf.get_path('version_file', 'VERSION') if version_file.endswith('.py'): return PyVersionStorage(version_file) elif version_file.endswith('package.json'): return NodeVersionStorage(version_file) else: return RawVersionStorage(version_file)
get_version_storage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n version_file = conf.get_path('version_file', 'VERSION')\n if version_file.endswith('.py'):\n return PyVersionStorage(version_file)\n elif version_file.endswith('package.json'):\n return NodeVersionStorage(version_file)\n else:\n return RawVersionStorage(version_file)\n", "role": "user" }, { "content": "get_version_storage", "role": "assistant" } ]
def x(self): with open(self.version_file) as fp: content = fp.read() m = RE_PY_VERSION.search(content) if not m: return None else: return m.group('version')
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with open(self.version_file) as fp:\n content = fp.read()\n m = RE_PY_VERSION.search(content)\n if not m:\n return None\n else:\n return m.group('version')\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self, version): with open(self.version_file) as fp: content = fp.read() ver_statement = "__version__ = '{}'".format(version) new_content = RE_PY_VERSION.sub(ver_statement, content) fs.write_file(self.version_file, new_content)
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, version):\n with open(self.version_file) as fp:\n content = fp.read()\n ver_statement = \"__version__ = '{}'\".format(version)\n new_content = RE_PY_VERSION.sub(ver_statement, content)\n fs.write_file(self.version_file, new_content)\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self): with open(self.version_file) as fp: version = fp.read().strip() if is_valid(version): return version return None
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with open(self.version_file) as fp:\n version = fp.read().strip()\n if is_valid(version):\n return version\n return None\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(x, a, b): linval = 10.0 + 990.0 * (x - float(a)) / (b - a) return (np.log10(linval) - 1.0) * 0.5 * 255.0
loggray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, b):\n linval = 10.0 + 990.0 * (x - float(a)) / (b - a)\n return (np.log10(linval) - 1.0) * 0.5 * 255.0\n", "role": "user" }, { "content": "loggray", "role": "assistant" } ]
def x(a, newshape): shape = a.shape lenShape = len(shape) factor = np.asarray(shape) / np.asarray(newshape) evList = ['a.reshape('] + [('newshape[%d],factor[%d],' % (i, i)) for i in xrange(lenShape)] + [')'] + [('.sum(%d)' % (i + 1)) for i in xrange (lenShape)] + [('/factor[%d]' % i) for i in xrange(lenShape)] return eval(''.join(evList))
rebin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, newshape):\n shape = a.shape\n lenShape = len(shape)\n factor = np.asarray(shape) / np.asarray(newshape)\n evList = ['a.reshape('] + [('newshape[%d],factor[%d],' % (i, i)) for i in\n xrange(lenShape)] + [')'] + [('.sum(%d)' % (i + 1)) for i in xrange\n (lenShape)] + [('/factor[%d]' % i) for i in xrange(lenShape)]\n return eval(''.join(evList))\n", "role": "user" }, { "content": "rebin", "role": "assistant" } ]
def x(self, irafcropstring): irafcropstring = irafcropstring[1:-1] ranges = irafcropstring.split(',') xr = ranges[0].split(':') yr = ranges[1].split(':') xmin = int(xr[0]) xmax = int(xr[1]) + 1 ymin = int(yr[0]) ymax = int(yr[1]) + 1 self.crop(xmin, xmax, ymin, ymax)
irafcrop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, irafcropstring):\n irafcropstring = irafcropstring[1:-1]\n ranges = irafcropstring.split(',')\n xr = ranges[0].split(':')\n yr = ranges[1].split(':')\n xmin = int(xr[0])\n xmax = int(xr[1]) + 1\n ymin = int(yr[0])\n ymax = int(yr[1]) + 1\n self.crop(xmin, xmax, ymin, ymax)\n", "role": "user" }, { "content": "irafcrop", "role": "assistant" } ]
def x(self, redblue=False): highmask = self.numpyarray > self.z2 lowmask = self.numpyarray < self.z1 if redblue == False: if self.negative: self.drawmask(highmask, colour=255) self.drawmask(lowmask, colour=0) else: self.drawmask(highmask, colour=0) self.drawmask(lowmask, colour=255) else: self.drawmask(highmask, colour=(255, 0, 0)) self.drawmask(lowmask, colour=(0, 0, 255))
showcutoffs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, redblue=False):\n highmask = self.numpyarray > self.z2\n lowmask = self.numpyarray < self.z1\n if redblue == False:\n if self.negative:\n self.drawmask(highmask, colour=255)\n self.drawmask(lowmask, colour=0)\n else:\n self.drawmask(highmask, colour=0)\n self.drawmask(lowmask, colour=255)\n else:\n self.drawmask(highmask, colour=(255, 0, 0))\n self.drawmask(lowmask, colour=(0, 0, 255))\n", "role": "user" }, { "content": "showcutoffs", "role": "assistant" } ]
def x(self): if self.draw == None: self.draw = imdw.Draw(self.pilimage)
makedraw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.draw == None:\n self.draw = imdw.Draw(self.pilimage)\n", "role": "user" }, { "content": "makedraw", "role": "assistant" } ]
def x(self, colour): if colour == None: if self.negative == True: if self.pilimage.mode == 'L': return 0 else: return 0, 0, 0 elif self.pilimage.mode == 'L': return 255 else: return 255, 255, 255 elif self.pilimage.mode == 'RGB' and type(colour) == type(0): return colour, colour, colour else: return colour
defaultcolour
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, colour):\n if colour == None:\n if self.negative == True:\n if self.pilimage.mode == 'L':\n return 0\n else:\n return 0, 0, 0\n elif self.pilimage.mode == 'L':\n return 255\n else:\n return 255, 255, 255\n elif self.pilimage.mode == 'RGB' and type(colour) == type(0):\n return colour, colour, colour\n else:\n return colour\n", "role": "user" }, { "content": "defaultcolour", "role": "assistant" } ]
def x(self): if self.titlefont == None: self.titlefont = imft.load_path(os.path.join(fontsdir, 'courR18.pil'))
loadtitlefont
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.titlefont == None:\n self.titlefont = imft.load_path(os.path.join(fontsdir, 'courR18.pil'))\n", "role": "user" }, { "content": "loadtitlefont", "role": "assistant" } ]
def x(self): if self.infofont == None: self.infofont = imft.load_path(os.path.join(fontsdir, 'courR10.pil'))
loadinfofont
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.infofont == None:\n self.infofont = imft.load_path(os.path.join(fontsdir, 'courR10.pil'))\n", "role": "user" }, { "content": "loadinfofont", "role": "assistant" } ]
def x(self): if self.labelfont == None: self.labelfont = imft.load_path(os.path.join(fontsdir, 'courR10.pil'))
loadlabelfont
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.labelfont == None:\n self.labelfont = imft.load_path(os.path.join(fontsdir, 'courR10.pil'))\n", "role": "user" }, { "content": "loadlabelfont", "role": "assistant" } ]