source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, n, x): n_array = np.zeros(n + 1) n_array[n] = 1 return hermite.hermval(x, n_array, tensor=False)
H_n
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, x):\n n_array = np.zeros(n + 1)\n n_array[n] = 1\n return hermite.hermval(x, n_array, tensor=False)\n", "role": "user" }, { "content": "H_n", "role": "assistant" } ]
def x(self, n, x): prefactor = 1.0 / np.sqrt(2 ** n * np.sqrt(np.pi) * math.factorial(n)) return prefactor * self.H_n(n, x) * np.exp(-x ** 2 / 2.0)
phi_n
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, x):\n prefactor = 1.0 / np.sqrt(2 ** n * np.sqrt(np.pi) * math.factorial(n))\n return prefactor * self.H_n(n, x) * np.exp(-x ** 2 / 2.0)\n", "role": "user" }, { "content": "phi_n", "role": "assistant" } ]
def x(self, kwargs_list): lens_model = self._lens_mode_list[0] if self._solver_type == 'CENTER': center_x = kwargs_list[0]['center_x'] center_y = kwargs_list[0]['center_y'] x = [center_x, center_y] elif self._solver_type == 'ELLIPSE': e1 = kwargs_list[0]['e1'] e2 = kwargs_list[0]['e2'] x = [e1, e2] elif self._solver_type == 'SHAPELETS': coeffs = list(kwargs_list[0]['coeffs']) [c10, c01] = coeffs[1:3] x = [c10, c01] elif self._solver_type == 'THETA_E_PHI': theta_E = kwargs_list[0]['theta_E'] e1 = kwargs_list[1]['e1'] e2 = kwargs_list[1]['e2'] phi_ext, gamma_ext = param_util.ellipticity2phi_gamma(e1, e2) x = [theta_E, phi_ext] else: raise ValueError('Solver type %s not supported for 2-point solver!' % self._solver_type) return x
extract_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_list):\n lens_model = self._lens_mode_list[0]\n if self._solver_type == 'CENTER':\n center_x = kwargs_list[0]['center_x']\n center_y = kwargs_list[0]['center_y']\n x = [center_x, center_y]\n elif self._solver_type == 'ELLIPSE':\n e1 = kwargs_list[0]['e1']\n e2 = kwargs_list[0]['e2']\n x = [e1, e2]\n elif self._solver_type == 'SHAPELETS':\n coeffs = list(kwargs_list[0]['coeffs'])\n [c10, c01] = coeffs[1:3]\n x = [c10, c01]\n elif self._solver_type == 'THETA_E_PHI':\n theta_E = kwargs_list[0]['theta_E']\n e1 = kwargs_list[1]['e1']\n e2 = kwargs_list[1]['e2']\n phi_ext, gamma_ext = param_util.ellipticity2phi_gamma(e1, e2)\n x = [theta_E, phi_ext]\n else:\n raise ValueError('Solver type %s not supported for 2-point solver!' %\n self._solver_type)\n return x\n", "role": "user" }, { "content": "extract_array", "role": "assistant" } ]
def x(self): if self._background_noise is None: return data_util.bkg_noise(self.read_noise, self._exposure_time, self.sky_brightness, self.pixel_scale, num_exposures=self. _num_exposures) else: return self._background_noise
background_noise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._background_noise is None:\n return data_util.bkg_noise(self.read_noise, self._exposure_time,\n self.sky_brightness, self.pixel_scale, num_exposures=self.\n _num_exposures)\n else:\n return self._background_noise\n", "role": "user" }, { "content": "background_noise", "role": "assistant" } ]
def x(self): if self._data_count_unit == 'ADU': exp_time = self.ccd_gain * self.exposure_time else: exp_time = self.exposure_time return exp_time
scaled_exposure_time
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._data_count_unit == 'ADU':\n exp_time = self.ccd_gain * self.exposure_time\n else:\n exp_time = self.exposure_time\n return exp_time\n", "role": "user" }, { "content": "scaled_exposure_time", "role": "assistant" } ]
def x(self, magnitude): cps = data_util.magnitude2cps(magnitude, magnitude_zero_point=self. _magnitude_zero_point) if self._data_count_unit == 'e-': cps *= self.ccd_gain return cps
magnitude2cps
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, magnitude):\n cps = data_util.magnitude2cps(magnitude, magnitude_zero_point=self.\n _magnitude_zero_point)\n if self._data_count_unit == 'e-':\n cps *= self.ccd_gain\n return cps\n", "role": "user" }, { "content": "magnitude2cps", "role": "assistant" } ]
def x(self, r, rho0, Ra, Rs): Ra, Rs = self._sort_ra_rs(Ra, Rs) rho = rho0 / ((1 + (r / Ra) ** 2) * (1 + (r / Rs) ** 2)) return rho
density
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, rho0, Ra, Rs):\n Ra, Rs = self._sort_ra_rs(Ra, Rs)\n rho = rho0 / ((1 + (r / Ra) ** 2) * (1 + (r / Rs) ** 2))\n return rho\n", "role": "user" }, { "content": "density", "role": "assistant" } ]
def x(self, x, y, rho0, Ra, Rs, center_x=0, center_y=0): Ra, Rs = self._sort_ra_rs(Ra, Rs) x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) sigma0 = self.rho2sigma(rho0, Ra, Rs) sigma = sigma0 * Ra * Rs / (Rs - Ra) * (1 / np.sqrt(Ra ** 2 + r ** 2) - 1 / np.sqrt(Rs ** 2 + r ** 2)) return sigma
density_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, rho0, Ra, Rs, center_x=0, center_y=0):\n Ra, Rs = self._sort_ra_rs(Ra, Rs)\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n sigma0 = self.rho2sigma(rho0, Ra, Rs)\n sigma = sigma0 * Ra * Rs / (Rs - Ra) * (1 / np.sqrt(Ra ** 2 + r ** 2) -\n 1 / np.sqrt(Rs ** 2 + r ** 2))\n return sigma\n", "role": "user" }, { "content": "density_2d", "role": "assistant" } ]
def x(self, r, rho0, Ra, Rs): m_3d = 4 * np.pi * rho0 * Ra ** 2 * Rs ** 2 / (Rs ** 2 - Ra ** 2) * (Rs * np.arctan(r / Rs) - Ra * np.arctan(r / Ra)) return m_3d
mass_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, rho0, Ra, Rs):\n m_3d = 4 * np.pi * rho0 * Ra ** 2 * Rs ** 2 / (Rs ** 2 - Ra ** 2) * (Rs *\n np.arctan(r / Rs) - Ra * np.arctan(r / Ra))\n return m_3d\n", "role": "user" }, { "content": "mass_3d", "role": "assistant" } ]
def x(self, r, rho0, Ra, Rs): Ra, Rs = self._sort_ra_rs(Ra, Rs) sigma0 = self.rho2sigma(rho0, Ra, Rs) m_2d = 2 * np.pi * sigma0 * Ra * Rs / (Rs - Ra) * (np.sqrt(Ra ** 2 + r ** 2) - Ra - np.sqrt(Rs ** 2 + r ** 2) + Rs) return m_2d
mass_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, rho0, Ra, Rs):\n Ra, Rs = self._sort_ra_rs(Ra, Rs)\n sigma0 = self.rho2sigma(rho0, Ra, Rs)\n m_2d = 2 * np.pi * sigma0 * Ra * Rs / (Rs - Ra) * (np.sqrt(Ra ** 2 + r **\n 2) - Ra - np.sqrt(Rs ** 2 + r ** 2) + Rs)\n return m_2d\n", "role": "user" }, { "content": "mass_2d", "role": "assistant" } ]
def x(self, rho0, Ra, Rs): Ra, Rs = self._sort_ra_rs(Ra, Rs) sigma0 = self.rho2sigma(rho0, Ra, Rs) m_tot = 2 * np.pi * sigma0 * Ra * Rs return m_tot
mass_tot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rho0, Ra, Rs):\n Ra, Rs = self._sort_ra_rs(Ra, Rs)\n sigma0 = self.rho2sigma(rho0, Ra, Rs)\n m_tot = 2 * np.pi * sigma0 * Ra * Rs\n return m_tot\n", "role": "user" }, { "content": "mass_tot", "role": "assistant" } ]
def x(self, x, y, rho0, Ra, Rs, center_x=0, center_y=0): Ra, Rs = self._sort_ra_rs(Ra, Rs) x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) pot = 4 * np.pi * rho0 * Ra ** 2 * Rs ** 2 / (Rs ** 2 - Ra ** 2) * (Rs / r * np.arctan(r / Rs) - Ra / r * np.arctan(r / Ra) + 1.0 / 2 * np. log((Rs ** 2 + r ** 2) / (Ra ** 2 + r ** 2))) return pot
grav_pot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, rho0, Ra, Rs, center_x=0, center_y=0):\n Ra, Rs = self._sort_ra_rs(Ra, Rs)\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n pot = 4 * np.pi * rho0 * Ra ** 2 * Rs ** 2 / (Rs ** 2 - Ra ** 2) * (Rs /\n r * np.arctan(r / Rs) - Ra / r * np.arctan(r / Ra) + 1.0 / 2 * np.\n log((Rs ** 2 + r ** 2) / (Ra ** 2 + r ** 2)))\n return pot\n", "role": "user" }, { "content": "grav_pot", "role": "assistant" } ]
def x(self, r_a, r_s): return r_a / (1 + np.sqrt(1 + r_a ** 2)) - r_s / (1 + np.sqrt(1 + r_s ** 2) )
f_A20
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r_a, r_s):\n return r_a / (1 + np.sqrt(1 + r_a ** 2)) - r_s / (1 + np.sqrt(1 + r_s ** 2)\n )\n", "role": "user" }, { "content": "f_A20", "role": "assistant" } ]
def x(self, rho0, Ra, Rs): return np.pi * rho0 * Ra * Rs / (Rs + Ra)
rho2sigma
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rho0, Ra, Rs):\n return np.pi * rho0 * Ra * Rs / (Rs + Ra)\n", "role": "user" }, { "content": "rho2sigma", "role": "assistant" } ]
def x(inputArray, scale_min=None, scale_max=None): imageData = np.array(inputArray, copy=True) if scale_min is None: scale_min = imageData.min() if scale_max is None: scale_max = imageData.max() imageData = imageData.clip(min=scale_min, max=scale_max) imageData = imageData - scale_min indices = np.where(imageData < 0) imageData[indices] = 0.0 imageData = np.sqrt(imageData) imageData = imageData / math.sqrt(scale_max - scale_min) return imageData
sqrt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputArray, scale_min=None, scale_max=None):\n imageData = np.array(inputArray, copy=True)\n if scale_min is None:\n scale_min = imageData.min()\n if scale_max is None:\n scale_max = imageData.max()\n imageData = imageData.clip(min=scale_min, max=scale_max)\n imageData = imageData - scale_min\n indices = np.where(imageData < 0)\n imageData[indices] = 0.0\n imageData = np.sqrt(imageData)\n imageData = imageData / math.sqrt(scale_max - scale_min)\n return imageData\n", "role": "user" }, { "content": "sqrt", "role": "assistant" } ]
def x(self, args): (kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo ) = self.param.args2kwargs(args) self._reset_point_source_cache(bool=True) logL = 0 if self._check_bounds is True: penalty, bound_hit = self.check_bounds(args, self._lower_limit, self._upper_limit) logL -= penalty if bound_hit: return logL, None if self._image_likelihood is True: logL += self.image_likelihood.logL(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) if self._time_delay_likelihood is True: logL += self.time_delay_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo) if self._check_positive_flux is True: bool = self.param.check_positive_flux(kwargs_source, kwargs_lens_light, kwargs_ps) if bool is False: logL -= 10 ** 10 if self._flux_ratio_likelihood is True: logL += self.flux_ratio_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo) logL += self._position_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo ) logL += self._prior_likelihood.logL(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo) self._reset_point_source_cache(bool=False) return logL, None
logL
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, args):\n (kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo\n ) = self.param.args2kwargs(args)\n self._reset_point_source_cache(bool=True)\n logL = 0\n if self._check_bounds is True:\n penalty, bound_hit = self.check_bounds(args, self._lower_limit,\n self._upper_limit)\n logL -= penalty\n if bound_hit:\n return logL, None\n if self._image_likelihood is True:\n logL += self.image_likelihood.logL(kwargs_lens, kwargs_source,\n kwargs_lens_light, kwargs_ps)\n if self._time_delay_likelihood is True:\n logL += self.time_delay_likelihood.logL(kwargs_lens, kwargs_ps,\n kwargs_cosmo)\n if self._check_positive_flux is True:\n bool = self.param.check_positive_flux(kwargs_source,\n kwargs_lens_light, kwargs_ps)\n if bool is False:\n logL -= 10 ** 10\n if self._flux_ratio_likelihood is True:\n logL += self.flux_ratio_likelihood.logL(kwargs_lens, kwargs_ps,\n kwargs_cosmo)\n logL += self._position_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo\n )\n logL += self._prior_likelihood.logL(kwargs_lens, kwargs_source,\n kwargs_lens_light, kwargs_ps, kwargs_cosmo)\n self._reset_point_source_cache(bool=False)\n return logL, None\n", "role": "user" }, { "content": "logL", "role": "assistant" } ]
def x(args, lowerLimit, upperLimit): penalty = 0 bound_hit = False for i in range(0, len(args)): if args[i] < lowerLimit[i] or args[i] > upperLimit[i]: penalty = 10 ** 15 bound_hit = True return penalty, bound_hit
check_bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args, lowerLimit, upperLimit):\n penalty = 0\n bound_hit = False\n for i in range(0, len(args)):\n if args[i] < lowerLimit[i] or args[i] > upperLimit[i]:\n penalty = 10 ** 15\n bound_hit = True\n return penalty, bound_hit\n", "role": "user" }, { "content": "check_bounds", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps): num_linear = 0 if self._image_likelihood is True: num_linear = self.image_likelihood.num_param_linear(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) num_param, _ = self.param.num_param() return self.num_data - num_param - num_linear
effectiv_num_data_points
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps):\n num_linear = 0\n if self._image_likelihood is True:\n num_linear = self.image_likelihood.num_param_linear(kwargs_lens,\n kwargs_source, kwargs_lens_light, kwargs_ps)\n num_param, _ = self.param.num_param()\n return self.num_data - num_param - num_linear\n", "role": "user" }, { "content": "effectiv_num_data_points", "role": "assistant" } ]
def x(self, x, y, kwargs_lens, idex_source): if self._multi_source_plane is False: x_source, y_source = self._lensModel.ray_shooting(x, y, kwargs_lens) elif self._multi_lens_plane is False: x_alpha, y_alpha = self._lensModel.alpha(x, y, kwargs_lens) scale_factor = self._deflection_scaling_list[idex_source] x_source = x - x_alpha * scale_factor y_source = y - y_alpha * scale_factor else: z_stop = self._source_redshift_list[idex_source] x_comov, y_comov, alpha_x, alpha_y = (self._lensModel.lens_model. ray_shooting_partial(0, 0, x, y, 0, z_stop, kwargs_lens, keep_range=False, include_z_start=False)) T_z = self._bkg_cosmo.T_xy(0, z_stop) x_source = x_comov / T_z y_source = y_comov / T_z return x_source, y_source
image2source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs_lens, idex_source):\n if self._multi_source_plane is False:\n x_source, y_source = self._lensModel.ray_shooting(x, y, kwargs_lens)\n elif self._multi_lens_plane is False:\n x_alpha, y_alpha = self._lensModel.alpha(x, y, kwargs_lens)\n scale_factor = self._deflection_scaling_list[idex_source]\n x_source = x - x_alpha * scale_factor\n y_source = y - y_alpha * scale_factor\n else:\n z_stop = self._source_redshift_list[idex_source]\n x_comov, y_comov, alpha_x, alpha_y = (self._lensModel.lens_model.\n ray_shooting_partial(0, 0, x, y, 0, z_stop, kwargs_lens,\n keep_range=False, include_z_start=False))\n T_z = self._bkg_cosmo.T_xy(0, z_stop)\n x_source = x_comov / T_z\n y_source = y_comov / T_z\n return x_source, y_source\n", "role": "user" }, { "content": "image2source", "role": "assistant" } ]
def x(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0): alpha_ra, alpha_dec = self.derivatives(x, y, amp, sigma, e1, e2, center_x, center_y) diff = self._diff alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, amp, sigma, e1, e2, center_x, center_y) alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, amp, sigma, e1, e2, center_x, center_y) f_xx = (alpha_ra_dx - alpha_ra) / diff f_xy = (alpha_ra_dy - alpha_ra) / diff f_yy = (alpha_dec_dy - alpha_dec) / diff return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0):\n alpha_ra, alpha_dec = self.derivatives(x, y, amp, sigma, e1, e2,\n center_x, center_y)\n diff = self._diff\n alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, amp, sigma,\n e1, e2, center_x, center_y)\n alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, amp, sigma,\n e1, e2, center_x, center_y)\n f_xx = (alpha_ra_dx - alpha_ra) / diff\n f_xy = (alpha_ra_dy - alpha_ra) / diff\n f_yy = (alpha_dec_dy - alpha_dec) / diff\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, kwargs_profile, kwargs_aperture, kwargs_light, kwargs_anisotropy, num=1000): sigma_s2_sum = 0 for i in range(0, num): sigma_s2_draw = self._vel_disp_one(kwargs_profile, kwargs_aperture, kwargs_light, kwargs_anisotropy) sigma_s2_sum += sigma_s2_draw sigma_s2_average = sigma_s2_sum / num return np.sqrt(sigma_s2_average)
vel_disp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_profile, kwargs_aperture, kwargs_light,\n kwargs_anisotropy, num=1000):\n sigma_s2_sum = 0\n for i in range(0, num):\n sigma_s2_draw = self._vel_disp_one(kwargs_profile, kwargs_aperture,\n kwargs_light, kwargs_anisotropy)\n sigma_s2_sum += sigma_s2_draw\n sigma_s2_average = sigma_s2_sum / num\n return np.sqrt(sigma_s2_average)\n", "role": "user" }, { "content": "vel_disp", "role": "assistant" } ]
def x(self, kwargs_profile, kwargs_aperture, kwargs_light, kwargs_anisotropy): while True: r = self.lightProfile.draw_light(kwargs_light) R, x, y = util.R_r(r) x_, y_ = util.displace_PSF(x, y, self.FWHM) bool = self.aperture.aperture_select(x_, y_, kwargs_aperture) if bool is True: break sigma_s2 = self.sigma_s2(r, R, kwargs_profile, kwargs_anisotropy, kwargs_light) return sigma_s2
vel_disp_one
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_profile, kwargs_aperture, kwargs_light, kwargs_anisotropy):\n while True:\n r = self.lightProfile.draw_light(kwargs_light)\n R, x, y = util.R_r(r)\n x_, y_ = util.displace_PSF(x, y, self.FWHM)\n bool = self.aperture.aperture_select(x_, y_, kwargs_aperture)\n if bool is True:\n break\n sigma_s2 = self.sigma_s2(r, R, kwargs_profile, kwargs_anisotropy,\n kwargs_light)\n return sigma_s2\n", "role": "user" }, { "content": "vel_disp_one", "role": "assistant" } ]
def x(self, r, R, kwargs_profile, kwargs_anisotropy, kwargs_light): beta = self.anisotropy.beta_r(r, kwargs_anisotropy) return (1 - beta * R ** 2 / r ** 2) * self.sigma_r2(r, kwargs_profile, kwargs_anisotropy, kwargs_light)
sigma_s2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, R, kwargs_profile, kwargs_anisotropy, kwargs_light):\n beta = self.anisotropy.beta_r(r, kwargs_anisotropy)\n return (1 - beta * R ** 2 / r ** 2) * self.sigma_r2(r, kwargs_profile,\n kwargs_anisotropy, kwargs_light)\n", "role": "user" }, { "content": "sigma_s2", "role": "assistant" } ]
def x(self, r, kwargs_profile, kwargs_anisotropy, kwargs_light): return self.jeans_solver.sigma_r2(r, kwargs_profile, kwargs_anisotropy, kwargs_light)
sigma_r2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, kwargs_profile, kwargs_anisotropy, kwargs_light):\n return self.jeans_solver.sigma_r2(r, kwargs_profile, kwargs_anisotropy,\n kwargs_light)\n", "role": "user" }, { "content": "sigma_r2", "role": "assistant" } ]
def x(self, r, kwargs_profile, kwargs_anisotropy, kwargs_light): theta_E = kwargs_profile['theta_E'] gamma = kwargs_profile['gamma'] r_ani = kwargs_anisotropy['r_ani'] a = 0.551 * kwargs_light['r_eff'] rho0_r0_gamma = self._rho0_r0_gamma(theta_E, gamma) prefac1 = 4 * np.pi * const.G * a ** -gamma * rho0_r0_gamma / (3 - gamma) prefac2 = r * (r + a) ** 3 / (r ** 2 + r_ani ** 2) hyp1 = vel_util.hyp_2F1(a=2 + gamma, b=gamma, c=3 + gamma, z=1.0 / (1 + r / a)) hyp2 = vel_util.hyp_2F1(a=3, b=gamma, c=1 + gamma, z=-a / r) fac = r_ani ** 2 / a ** 2 * hyp1 / ((2 + gamma) * (r / a + 1) ** (2 + gamma)) + hyp2 / (gamma * (r / a) ** gamma) sigma2_dim_less = prefac1 * prefac2 * fac return sigma2_dim_less * (self.cosmo.arcsec2phys_lens(1.0) * const.Mpc / 1000) ** 2
power_law_anisotropy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, kwargs_profile, kwargs_anisotropy, kwargs_light):\n theta_E = kwargs_profile['theta_E']\n gamma = kwargs_profile['gamma']\n r_ani = kwargs_anisotropy['r_ani']\n a = 0.551 * kwargs_light['r_eff']\n rho0_r0_gamma = self._rho0_r0_gamma(theta_E, gamma)\n prefac1 = 4 * np.pi * const.G * a ** -gamma * rho0_r0_gamma / (3 - gamma)\n prefac2 = r * (r + a) ** 3 / (r ** 2 + r_ani ** 2)\n hyp1 = vel_util.hyp_2F1(a=2 + gamma, b=gamma, c=3 + gamma, z=1.0 / (1 +\n r / a))\n hyp2 = vel_util.hyp_2F1(a=3, b=gamma, c=1 + gamma, z=-a / r)\n fac = r_ani ** 2 / a ** 2 * hyp1 / ((2 + gamma) * (r / a + 1) ** (2 +\n gamma)) + hyp2 / (gamma * (r / a) ** gamma)\n sigma2_dim_less = prefac1 * prefac2 * fac\n return sigma2_dim_less * (self.cosmo.arcsec2phys_lens(1.0) * const.Mpc /\n 1000) ** 2\n", "role": "user" }, { "content": "power_law_anisotropy", "role": "assistant" } ]
def x(self, r, kwargs_profile, kwargs_anisotropy, kwargs_light): if self._mass_profile == 'power_law': if self._anisotropy_type == 'r_ani': if self._light_profile == 'Hernquist': sigma_r = self.power_law_anisotropy(r, kwargs_profile, kwargs_anisotropy, kwargs_light) else: raise ValueError( 'light profile %s not supported for Jeans solver' % self._light_profile) else: raise ValueError( 'anisotropy type %s not implemented in Jeans equation modelling' % self._anisotropy_type) else: raise ValueError( 'mass profile type %s not implemented in Jeans solver' % self. _mass_profile) return sigma_r
sigma_r2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, kwargs_profile, kwargs_anisotropy, kwargs_light):\n if self._mass_profile == 'power_law':\n if self._anisotropy_type == 'r_ani':\n if self._light_profile == 'Hernquist':\n sigma_r = self.power_law_anisotropy(r, kwargs_profile,\n kwargs_anisotropy, kwargs_light)\n else:\n raise ValueError(\n 'light profile %s not supported for Jeans solver' %\n self._light_profile)\n else:\n raise ValueError(\n 'anisotropy type %s not implemented in Jeans equation modelling'\n % self._anisotropy_type)\n else:\n raise ValueError(\n 'mass profile type %s not implemented in Jeans solver' % self.\n _mass_profile)\n return sigma_r\n", "role": "user" }, { "content": "sigma_r2", "role": "assistant" } ]
def x(self, ra, dec, kwargs_aperture): if self._aperture_type == 'shell': bool_list = self.shell_select(ra, dec, **kwargs_aperture) elif self._aperture_type == 'slit': bool_list = self.slit_select(ra, dec, **kwargs_aperture) else: raise ValueError('aperture type %s not implemented!' % self. _aperture_type) return bool_list
aperture_select
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec, kwargs_aperture):\n if self._aperture_type == 'shell':\n bool_list = self.shell_select(ra, dec, **kwargs_aperture)\n elif self._aperture_type == 'slit':\n bool_list = self.slit_select(ra, dec, **kwargs_aperture)\n else:\n raise ValueError('aperture type %s not implemented!' % self.\n _aperture_type)\n return bool_list\n", "role": "user" }, { "content": "aperture_select", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_else, inv_bool=False): wls_list, error_map_list, cov_param_list, param_list = [], [], [], [] for i in range(self._num_bands): wls_model, error_map, cov_param, param = self._imageModel_list[i ].image_linear_solve(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_else, inv_bool=inv_bool) wls_list.append(wls_model) error_map_list.append(error_map) cov_param_list.append(cov_param) param_list.append(param) return wls_list, error_map_list, cov_param_list, param_list
image_linear_solve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_else,\n inv_bool=False):\n wls_list, error_map_list, cov_param_list, param_list = [], [], [], []\n for i in range(self._num_bands):\n wls_model, error_map, cov_param, param = self._imageModel_list[i\n ].image_linear_solve(kwargs_lens, kwargs_source,\n kwargs_lens_light, kwargs_else, inv_bool=inv_bool)\n wls_list.append(wls_model)\n error_map_list.append(error_map)\n cov_param_list.append(cov_param)\n param_list.append(param)\n return wls_list, error_map_list, cov_param_list, param_list\n", "role": "user" }, { "content": "image_linear_solve", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, source_marg=False): logL = 0 for i in range(self._num_bands): if self._compute_bool[i] is True: logL += self._imageModel_list[i].likelihood_data_given_model( kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, source_marg=source_marg) return logL
likelihood_data_given_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,\n source_marg=False):\n logL = 0\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n logL += self._imageModel_list[i].likelihood_data_given_model(\n kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,\n source_marg=source_marg)\n return logL\n", "role": "user" }, { "content": "likelihood_data_given_model", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, inv_bool=False): A = self.linear_response_matrix(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) C_D_response, model_error_list = self.error_response(kwargs_lens, kwargs_ps ) d = self.data_response param, cov_param, wls_model = de_lens.get_param_WLS(A.T, 1 / C_D_response, d, inv_bool=inv_bool) kwargs_lens_0 = [kwargs_lens[k] for k in self._idex_lens_list[0]] _, _, _, _ = self._imageModel_list[0]._update_linear_kwargs(param, kwargs_lens_0, kwargs_source, kwargs_lens_light, kwargs_ps) wls_list = self._array2image_list(wls_model) return wls_list, model_error_list, cov_param, param
image_linear_solve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,\n inv_bool=False):\n A = self.linear_response_matrix(kwargs_lens, kwargs_source,\n kwargs_lens_light, kwargs_ps)\n C_D_response, model_error_list = self.error_response(kwargs_lens, kwargs_ps\n )\n d = self.data_response\n param, cov_param, wls_model = de_lens.get_param_WLS(A.T, 1 /\n C_D_response, d, inv_bool=inv_bool)\n kwargs_lens_0 = [kwargs_lens[k] for k in self._idex_lens_list[0]]\n _, _, _, _ = self._imageModel_list[0]._update_linear_kwargs(param,\n kwargs_lens_0, kwargs_source, kwargs_lens_light, kwargs_ps)\n wls_list = self._array2image_list(wls_model)\n return wls_list, model_error_list, cov_param, param\n", "role": "user" }, { "content": "image_linear_solve", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_ps): C_D_response, model_error = [], [] for i in range(self._num_bands): if self._compute_bool[i] is True: kwargs_lens_i = [kwargs_lens[k] for k in self._idex_lens_list[i]] C_D_response_i, model_error_i = self._imageModel_list[i ].error_response(kwargs_lens_i, kwargs_ps) model_error.append(model_error_i) if C_D_response == []: C_D_response = C_D_response_i else: C_D_response = np.append(C_D_response, C_D_response_i) return C_D_response, model_error
error_response
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_ps):\n C_D_response, model_error = [], []\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n kwargs_lens_i = [kwargs_lens[k] for k in self._idex_lens_list[i]]\n C_D_response_i, model_error_i = self._imageModel_list[i\n ].error_response(kwargs_lens_i, kwargs_ps)\n model_error.append(model_error_i)\n if C_D_response == []:\n C_D_response = C_D_response_i\n else:\n C_D_response = np.append(C_D_response, C_D_response_i)\n return C_D_response, model_error\n", "role": "user" }, { "content": "error_response", "role": "assistant" } ]
def x(self, x, y, amp, sigma_x, sigma_y, center_x=0, center_y=0): c = amp / (2 * np.pi * sigma_x * sigma_y) delta_x = x - center_x delta_y = y - center_y exponent = -((delta_x / sigma_x) ** 2 + (delta_y / sigma_y) ** 2) / 2.0 return c * np.exp(exponent)
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, amp, sigma_x, sigma_y, center_x=0, center_y=0):\n c = amp / (2 * np.pi * sigma_x * sigma_y)\n delta_x = x - center_x\n delta_y = y - center_y\n exponent = -((delta_x / sigma_x) ** 2 + (delta_y / sigma_y) ** 2) / 2.0\n return c * np.exp(exponent)\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, x, y, amp, sigma_x, sigma_y, center_x=0, center_y=0): f_ = self.function(x, y, amp, sigma_x, sigma_y, center_x, center_y) return f_ * (center_x - x) / sigma_x ** 2, f_ * (center_y - y ) / sigma_y ** 2
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, amp, sigma_x, sigma_y, center_x=0, center_y=0):\n f_ = self.function(x, y, amp, sigma_x, sigma_y, center_x, center_y)\n return f_ * (center_x - x) / sigma_x ** 2, f_ * (center_y - y\n ) / sigma_y ** 2\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, amp, sigma_x, sigma_y, center_x=0, center_y=0): f_ = self.function(x, y, amp, sigma_x, sigma_y, center_x, center_y) f_xx = f_ * (-1.0 / sigma_x ** 2 + (center_x - x) ** 2 / sigma_x ** 4) f_yy = f_ * (-1.0 / sigma_y ** 2 + (center_y - y) ** 2 / sigma_y ** 4) f_xy = f_ * (center_x - x) / sigma_x ** 2 * (center_y - y) / sigma_y ** 2 return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, amp, sigma_x, sigma_y, center_x=0, center_y=0):\n f_ = self.function(x, y, amp, sigma_x, sigma_y, center_x, center_y)\n f_xx = f_ * (-1.0 / sigma_x ** 2 + (center_x - x) ** 2 / sigma_x ** 4)\n f_yy = f_ * (-1.0 / sigma_y ** 2 + (center_y - y) ** 2 / sigma_y ** 4)\n f_xy = f_ * (center_x - x) / sigma_x ** 2 * (center_y - y) / sigma_y ** 2\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, Rs, rho0, c): return 4 * np.pi * rho0 * Rs ** 3 * (np.log(1.0 + c) - c / (1.0 + c))
M200
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Rs, rho0, c):\n return 4 * np.pi * rho0 * Rs ** 3 * (np.log(1.0 + c) - c / (1.0 + c))\n", "role": "user" }, { "content": "M200", "role": "assistant" } ]
def x(self, c): return 200.0 / 3 * self.rhoc * c ** 3 / (np.log(1.0 + c) - c / (1.0 + c))
rho0_c
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, c):\n return 200.0 / 3 * self.rhoc * c ** 3 / (np.log(1.0 + c) - c / (1.0 + c))\n", "role": "user" }, { "content": "rho0_c", "role": "assistant" } ]
def x(self, rho0): if not hasattr(self, '_c_rho0_interp'): c_array = np.linspace(0.1, 10, 100) rho0_array = self.rho0_c(c_array) from scipy import interpolate self._c_rho0_interp = interpolate.InterpolatedUnivariateSpline( rho0_array, c_array, w=None, bbox=[None, None], k=3) return self._c_rho0_interp(rho0)
c_rho0
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rho0):\n if not hasattr(self, '_c_rho0_interp'):\n c_array = np.linspace(0.1, 10, 100)\n rho0_array = self.rho0_c(c_array)\n from scipy import interpolate\n self._c_rho0_interp = interpolate.InterpolatedUnivariateSpline(\n rho0_array, c_array, w=None, bbox=[None, None], k=3)\n return self._c_rho0_interp(rho0)\n", "role": "user" }, { "content": "c_rho0", "role": "assistant" } ]
def x(self, M, z): A = 5.22 B = -0.072 C = -0.42 M_pivot = 2.0 * 10 ** 12 return A * (M / M_pivot) ** B * (1 + z) ** C
c_M_z
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, M, z):\n A = 5.22\n B = -0.072\n C = -0.42\n M_pivot = 2.0 * 10 ** 12\n return A * (M / M_pivot) ** B * (1 + z) ** C\n", "role": "user" }, { "content": "c_M_z", "role": "assistant" } ]
def x(self, M, z): c = self.c_M_z(M, z) r200 = self.r200_M(M) rho0 = self.rho0_c(c) Rs = r200 / c return r200, rho0, c, Rs
profileMain
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, M, z):\n c = self.c_M_z(M, z)\n r200 = self.r200_M(M)\n rho0 = self.rho0_c(c)\n Rs = r200 / c\n return r200, rho0, c, Rs\n", "role": "user" }, { "content": "profileMain", "role": "assistant" } ]
def x(self, image_model_class, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps): model, error_map, cov_param, param = image_model_class.image_linear_solve( kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) data = image_model_class.Data.data mask = image_model_class.ImageNumerics.mask point_source_list = image_model_class.point_sources_list(kwargs_ps, kwargs_lens) n = len(point_source_list) model_single_source_list = [] for i in range(n): model_single_source = (data - model + point_source_list[i]) * mask model_single_source_list.append(model_single_source) return model_single_source_list
image_single_point_source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image_model_class, kwargs_lens, kwargs_source,\n kwargs_lens_light, kwargs_ps):\n model, error_map, cov_param, param = image_model_class.image_linear_solve(\n kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps)\n data = image_model_class.Data.data\n mask = image_model_class.ImageNumerics.mask\n point_source_list = image_model_class.point_sources_list(kwargs_ps,\n kwargs_lens)\n n = len(point_source_list)\n model_single_source_list = []\n for i in range(n):\n model_single_source = (data - model + point_source_list[i]) * mask\n model_single_source_list.append(model_single_source)\n return model_single_source_list\n", "role": "user" }, { "content": "image_single_point_source", "role": "assistant" } ]
def x(kernel_list_new, kernel_old, sigma_bkg, factor=1, stacking_option= 'median', symmetry=1): n = int(len(kernel_list_new) * symmetry) angle = 360.0 / symmetry kernelsize = len(kernel_old) kernel_list = np.zeros((n, kernelsize, kernelsize)) i = 0 for kernel_new in kernel_list_new: for k in range(symmetry): kernel_rotated = image_util.rotateImage(kernel_new, angle * k) kernel_norm = kernel_util.kernel_norm(kernel_rotated) kernel_list[i, :, :] = kernel_norm i += 1 kernel_old_rotated = np.zeros((symmetry, kernelsize, kernelsize)) for i in range(symmetry): kernel_old_rotated[i, :, :] = kernel_old kernel_list_new = np.append(kernel_list, kernel_old_rotated, axis=0) if stacking_option == 'median': kernel_new = np.median(kernel_list_new, axis=0) elif stacking_option == 'mean': kernel_new = np.mean(kernel_list_new, axis=0) else: raise ValueError( " stack_option must be 'median' or 'mean', %s is not supported." % stacking_option) kernel_new[kernel_new < 0] = 0 kernel_new = kernel_util.kernel_norm(kernel_new) kernel_return = factor * kernel_new + (1.0 - factor) * kernel_old kernel_bkg = copy.deepcopy(kernel_return) kernel_bkg[kernel_bkg < sigma_bkg] = sigma_bkg error_map = np.var(kernel_list_new, axis=0) / kernel_bkg ** 2 / 2.0 return kernel_return, error_map
combine_psf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel_list_new, kernel_old, sigma_bkg, factor=1, stacking_option=\n 'median', symmetry=1):\n n = int(len(kernel_list_new) * symmetry)\n angle = 360.0 / symmetry\n kernelsize = len(kernel_old)\n kernel_list = np.zeros((n, kernelsize, kernelsize))\n i = 0\n for kernel_new in kernel_list_new:\n for k in range(symmetry):\n kernel_rotated = image_util.rotateImage(kernel_new, angle * k)\n kernel_norm = kernel_util.kernel_norm(kernel_rotated)\n kernel_list[i, :, :] = kernel_norm\n i += 1\n kernel_old_rotated = np.zeros((symmetry, kernelsize, kernelsize))\n for i in range(symmetry):\n kernel_old_rotated[i, :, :] = kernel_old\n kernel_list_new = np.append(kernel_list, kernel_old_rotated, axis=0)\n if stacking_option == 'median':\n kernel_new = np.median(kernel_list_new, axis=0)\n elif stacking_option == 'mean':\n kernel_new = np.mean(kernel_list_new, axis=0)\n else:\n raise ValueError(\n \" stack_option must be 'median' or 'mean', %s is not supported.\" %\n stacking_option)\n kernel_new[kernel_new < 0] = 0\n kernel_new = kernel_util.kernel_norm(kernel_new)\n kernel_return = factor * kernel_new + (1.0 - factor) * kernel_old\n kernel_bkg = copy.deepcopy(kernel_return)\n kernel_bkg[kernel_bkg < sigma_bkg] = sigma_bkg\n error_map = np.var(kernel_list_new, axis=0) / kernel_bkg ** 2 / 2.0\n return kernel_return, error_map\n", "role": "user" }, { "content": "combine_psf", "role": "assistant" } ]
def x(self, D_d, D_delta_t): if self._kde_type == 'scipy_gaussian': density = self._PDF_kernel([D_d, D_delta_t]) logL = np.log(density) else: x = np.array([[D_d], [D_delta_t]]) logL = self._kde.score_samples(x.T) return logL
logLikelihood
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, D_d, D_delta_t):\n if self._kde_type == 'scipy_gaussian':\n density = self._PDF_kernel([D_d, D_delta_t])\n logL = np.log(density)\n else:\n x = np.array([[D_d], [D_delta_t]])\n logL = self._kde.score_samples(x.T)\n return logL\n", "role": "user" }, { "content": "logLikelihood", "role": "assistant" } ]
def x(self, r, rho0, Rs): rho = rho0 / (r / Rs * (1 + r / Rs) ** 3) return rho
density
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, rho0, Rs):\n rho = rho0 / (r / Rs * (1 + r / Rs) ** 3)\n return rho\n", "role": "user" }, { "content": "density", "role": "assistant" } ]
def x(self, x, y, rho0, Rs, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) X = r / Rs sigma0 = self.rho2sigma(rho0, Rs) if isinstance(X, int) or isinstance(X, float): if X == 1: X = 1.000001 else: X[X == 1] = 1.000001 sigma = sigma0 / (X ** 2 - 1) ** 2 * (-3 + (2 + X ** 2) * self._F(X)) return sigma
density_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, rho0, Rs, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n X = r / Rs\n sigma0 = self.rho2sigma(rho0, Rs)\n if isinstance(X, int) or isinstance(X, float):\n if X == 1:\n X = 1.000001\n else:\n X[X == 1] = 1.000001\n sigma = sigma0 / (X ** 2 - 1) ** 2 * (-3 + (2 + X ** 2) * self._F(X))\n return sigma\n", "role": "user" }, { "content": "density_2d", "role": "assistant" } ]
def x(self, r, rho0, Rs): mass_3d = 2 * np.pi * Rs ** 3 * rho0 * r ** 2 / (r + Rs) ** 2 return mass_3d
mass_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, rho0, Rs):\n mass_3d = 2 * np.pi * Rs ** 3 * rho0 * r ** 2 / (r + Rs) ** 2\n return mass_3d\n", "role": "user" }, { "content": "mass_3d", "role": "assistant" } ]
def x(self, r, sigma0, Rs): rho0 = self.sigma2rho(sigma0, Rs) return self.mass_3d(r, rho0, Rs)
mass_3d_lens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, sigma0, Rs):\n rho0 = self.sigma2rho(sigma0, Rs)\n return self.mass_3d(r, rho0, Rs)\n", "role": "user" }, { "content": "mass_3d_lens", "role": "assistant" } ]
def x(self, r, rho0, Rs): sigma0 = self.rho2sigma(rho0, Rs) return self.mass_2d_lens(r, sigma0, Rs)
mass_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, rho0, Rs):\n sigma0 = self.rho2sigma(rho0, Rs)\n return self.mass_2d_lens(r, sigma0, Rs)\n", "role": "user" }, { "content": "mass_2d", "role": "assistant" } ]
def x(self, r, sigma0, Rs): X = r / Rs alpha_r = 2 * sigma0 * Rs * X * (1 - self._F(X)) / (X ** 2 - 1) mass_2d = alpha_r * r * np.pi return mass_2d
mass_2d_lens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, sigma0, Rs):\n X = r / Rs\n alpha_r = 2 * sigma0 * Rs * X * (1 - self._F(X)) / (X ** 2 - 1)\n mass_2d = alpha_r * r * np.pi\n return mass_2d\n", "role": "user" }, { "content": "mass_2d_lens", "role": "assistant" } ]
def x(self, rho0, Rs): m_tot = 2 * np.pi * rho0 * Rs ** 3 return m_tot
mass_tot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rho0, Rs):\n m_tot = 2 * np.pi * rho0 * Rs ** 3\n return m_tot\n", "role": "user" }, { "content": "mass_tot", "role": "assistant" } ]
def x(self, x, y, rho0, Rs, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) M = self.mass_tot(rho0, Rs) pot = M / (r + Rs) return pot
grav_pot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, rho0, Rs, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n M = self.mass_tot(rho0, Rs)\n pot = M / (r + Rs)\n return pot\n", "role": "user" }, { "content": "grav_pot", "role": "assistant" } ]
def x(self, x, y, sigma0, Rs, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) if isinstance(r, int) or isinstance(r, float): r = max(self._s, r) else: r[r < self._s] = self._s X = r / Rs f_ = sigma0 * Rs ** 2 * (np.log(X ** 2 / 4.0) + 2 * self._F(X)) return f_
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, sigma0, Rs, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n if isinstance(r, int) or isinstance(r, float):\n r = max(self._s, r)\n else:\n r[r < self._s] = self._s\n X = r / Rs\n f_ = sigma0 * Rs ** 2 * (np.log(X ** 2 / 4.0) + 2 * self._F(X))\n return f_\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, x, y, kwargs, k=None): return self.lens_model.ray_shooting(x, y, kwargs, k=k)
ray_shooting
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, k=None):\n return self.lens_model.ray_shooting(x, y, kwargs, k=k)\n", "role": "user" }, { "content": "ray_shooting", "role": "assistant" } ]
def x(self, x_image, y_image, x_source, y_source, kwargs_lens): if hasattr(self.lens_model, 'fermat_potential'): return self.lens_model.fermat_potential(x_image, y_image, x_source, y_source, kwargs_lens) else: raise ValueError( 'Fermat potential is not defined in multi-plane lensing. Please use single plane lens models.' )
fermat_potential
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x_image, y_image, x_source, y_source, kwargs_lens):\n if hasattr(self.lens_model, 'fermat_potential'):\n return self.lens_model.fermat_potential(x_image, y_image, x_source,\n y_source, kwargs_lens)\n else:\n raise ValueError(\n 'Fermat potential is not defined in multi-plane lensing. Please use single plane lens models.'\n )\n", "role": "user" }, { "content": "fermat_potential", "role": "assistant" } ]
def x(self, x, y, kwargs, k=None): return self.lens_model.potential(x, y, kwargs, k=k)
potential
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, k=None):\n return self.lens_model.potential(x, y, kwargs, k=k)\n", "role": "user" }, { "content": "potential", "role": "assistant" } ]
def x(self, x, y, kwargs, k=None): return self.lens_model.alpha(x, y, kwargs, k=k)
alpha
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, k=None):\n return self.lens_model.alpha(x, y, kwargs, k=k)\n", "role": "user" }, { "content": "alpha", "role": "assistant" } ]
def x(self, x, y, kwargs, k=None): return self.lens_model.hessian(x, y, kwargs, k=k)
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, k=None):\n return self.lens_model.hessian(x, y, kwargs, k=k)\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, x, y, kwargs, diff=1e-06): f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs) f_xx_dx, f_xy_dx, f_yx_dx, f_yy_dx = self.hessian(x + diff, y, kwargs) f_xx_dy, f_xy_dy, f_yx_dy, f_yy_dy = self.hessian(x, y + diff, kwargs) f_xxx = (f_xx_dx - f_xx) / diff f_xxy = (f_xx_dy - f_xx) / diff f_xyy = (f_xy_dy - f_xy) / diff f_yyy = (f_yy_dy - f_yy) / diff return f_xxx, f_xxy, f_xyy, f_yyy
flexion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, diff=1e-06):\n f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs)\n f_xx_dx, f_xy_dx, f_yx_dx, f_yy_dx = self.hessian(x + diff, y, kwargs)\n f_xx_dy, f_xy_dy, f_yx_dy, f_yy_dy = self.hessian(x, y + diff, kwargs)\n f_xxx = (f_xx_dx - f_xx) / diff\n f_xxy = (f_xx_dy - f_xx) / diff\n f_xyy = (f_xy_dy - f_xy) / diff\n f_yyy = (f_yy_dy - f_yy) / diff\n return f_xxx, f_xxy, f_xyy, f_yyy\n", "role": "user" }, { "content": "flexion", "role": "assistant" } ]
def x(self, args): H0 = args[0] omega_m = self.omega_m_fixed Ode0 = self._omega_lambda_fixed logL, bool = self.prior_H0(H0) if bool is True: logL += self.LCDM_lensLikelihood(H0, omega_m, Ode0) return logL, None
X2_chain_H0
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, args):\n H0 = args[0]\n omega_m = self.omega_m_fixed\n Ode0 = self._omega_lambda_fixed\n logL, bool = self.prior_H0(H0)\n if bool is True:\n logL += self.LCDM_lensLikelihood(H0, omega_m, Ode0)\n return logL, None\n", "role": "user" }, { "content": "X2_chain_H0", "role": "assistant" } ]
def x(self, args): H0 = args[0] h = H0 / 100.0 omega_m = self.omega_mh2_fixed / h ** 2 Ode0 = self._omega_lambda_fixed logL, bool = self.prior_omega_mh2(h, omega_m) if bool is True: logL += self.LCDM_lensLikelihood(H0, omega_m, Ode0) return logL, None
X2_chain_omega_mh2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, args):\n H0 = args[0]\n h = H0 / 100.0\n omega_m = self.omega_mh2_fixed / h ** 2\n Ode0 = self._omega_lambda_fixed\n logL, bool = self.prior_omega_mh2(h, omega_m)\n if bool is True:\n logL += self.LCDM_lensLikelihood(H0, omega_m, Ode0)\n return logL, None\n", "role": "user" }, { "content": "X2_chain_omega_mh2", "role": "assistant" } ]
def x(self, args): [H0, omega_m] = args Ode0 = self._omega_lambda_fixed logL_H0, bool_H0 = self.prior_H0(H0) logL_omega_m, bool_omega_m = self.prior_omega_m(omega_m) logL = logL_H0 + logL_omega_m if bool_H0 is True and bool_omega_m is True: logL += self.LCDM_lensLikelihood(H0, omega_m, Ode0) return logL + logL_H0 + logL_omega_m, None
X2_chain_H0_omgega_m
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, args):\n [H0, omega_m] = args\n Ode0 = self._omega_lambda_fixed\n logL_H0, bool_H0 = self.prior_H0(H0)\n logL_omega_m, bool_omega_m = self.prior_omega_m(omega_m)\n logL = logL_H0 + logL_omega_m\n if bool_H0 is True and bool_omega_m is True:\n logL += self.LCDM_lensLikelihood(H0, omega_m, Ode0)\n return logL + logL_H0 + logL_omega_m, None\n", "role": "user" }, { "content": "X2_chain_H0_omgega_m", "role": "assistant" } ]
def x(self, H0, H0_min=0, H0_max=200): if H0 < H0_min or H0 > H0_max: penalty = -10 ** 15 return penalty, False else: return 0, True
prior_H0
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, H0, H0_min=0, H0_max=200):\n if H0 < H0_min or H0 > H0_max:\n penalty = -10 ** 15\n return penalty, False\n else:\n return 0, True\n", "role": "user" }, { "content": "prior_H0", "role": "assistant" } ]
def x(self, omega_m, omega_m_min=0, omega_m_max=1): if omega_m < omega_m_min or omega_m > omega_m_max: penalty = -10 ** 15 return penalty, False else: return 0, True
prior_omega_m
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, omega_m, omega_m_min=0, omega_m_max=1):\n if omega_m < omega_m_min or omega_m > omega_m_max:\n penalty = -10 ** 15\n return penalty, False\n else:\n return 0, True\n", "role": "user" }, { "content": "prior_omega_m", "role": "assistant" } ]
def x(self, n_walkers, n_run, n_burn, mean_start, sigma_start): sampler = emcee.EnsembleSampler(n_walkers, self.cosmoParam.numParam, self.chain.likelihood) p0 = emcee.utils.sample_ball(mean_start, sigma_start, n_walkers) new_pos, _, _, _ = sampler.run_mcmc(p0, n_burn) sampler.reset() store = InMemoryStorageUtil() for pos, prob, _, _ in sampler.sample(new_pos, iterations=n_run): store.persistSamplingValues(pos, prob, None) return store.samples
mcmc_emcee
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_walkers, n_run, n_burn, mean_start, sigma_start):\n sampler = emcee.EnsembleSampler(n_walkers, self.cosmoParam.numParam,\n self.chain.likelihood)\n p0 = emcee.utils.sample_ball(mean_start, sigma_start, n_walkers)\n new_pos, _, _, _ = sampler.run_mcmc(p0, n_burn)\n sampler.reset()\n store = InMemoryStorageUtil()\n for pos, prob, _, _ in sampler.sample(new_pos, iterations=n_run):\n store.persistSamplingValues(pos, prob, None)\n return store.samples\n", "role": "user" }, { "content": "mcmc_emcee", "role": "assistant" } ]
def x(numPix, deltaPix, exposure_time=1, sigma_bkg=1, inverse=False): mean = 0.0 (x_grid, y_grid, ra_at_xy_0, dec_at_xy_0, x_at_radec_0, y_at_radec_0, Mpix2coord, Mcoord2pix) = (util.make_grid_with_coordtransform( numPix=numPix, deltapix=deltaPix, subgrid_res=1, inverse=inverse)) exposure_map = np.ones((numPix, numPix)) * exposure_time kwargs_data = {'background_rms': sigma_bkg, 'exposure_map': exposure_map, 'ra_at_xy_0': ra_at_xy_0, 'dec_at_xy_0': dec_at_xy_0, 'transform_pix2angle': Mpix2coord, 'image_data': np.zeros((numPix, numPix))} return kwargs_data
data_configure_simple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(numPix, deltaPix, exposure_time=1, sigma_bkg=1, inverse=False):\n mean = 0.0\n (x_grid, y_grid, ra_at_xy_0, dec_at_xy_0, x_at_radec_0, y_at_radec_0,\n Mpix2coord, Mcoord2pix) = (util.make_grid_with_coordtransform(\n numPix=numPix, deltapix=deltaPix, subgrid_res=1, inverse=inverse))\n exposure_map = np.ones((numPix, numPix)) * exposure_time\n kwargs_data = {'background_rms': sigma_bkg, 'exposure_map':\n exposure_map, 'ra_at_xy_0': ra_at_xy_0, 'dec_at_xy_0': dec_at_xy_0,\n 'transform_pix2angle': Mpix2coord, 'image_data': np.zeros((numPix,\n numPix))}\n return kwargs_data\n", "role": "user" }, { "content": "data_configure_simple", "role": "assistant" } ]
def x(psf_type='GAUSSIAN', fwhm=1, kernelsize=11, deltaPix=1, truncate=6, kernel=None): if psf_type == 'GAUSSIAN': sigma = util.fwhm2sigma(fwhm) sigma_axis = sigma gaussian = Gaussian() x_grid, y_grid = util.make_grid(kernelsize, deltaPix) kernel_large = gaussian.function(x_grid, y_grid, amp=1.0, sigma_x= sigma_axis, sigma_y=sigma_axis, center_x=0, center_y=0) kernel_large /= np.sum(kernel_large) kernel_large = util.array2image(kernel_large) kernel_pixel = kernel_util.pixel_kernel(kernel_large) kwargs_psf = {'psf_type': psf_type, 'fwhm': fwhm, 'truncation': truncate * fwhm, 'kernel_point_source': kernel_large, 'kernel_pixel': kernel_pixel, 'pixel_size': deltaPix} elif psf_type == 'PIXEL': kernel_large = copy.deepcopy(kernel) kernel_large = kernel_util.cut_psf(kernel_large, psf_size=kernelsize) kwargs_psf = {'psf_type': 'PIXEL', 'kernel_point_source': kernel_large} elif psf_type == 'NONE': kwargs_psf = {'psf_type': 'NONE'} else: raise ValueError('psf type %s not supported!' % psf_type) return kwargs_psf
psf_configure_simple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psf_type='GAUSSIAN', fwhm=1, kernelsize=11, deltaPix=1, truncate=6,\n kernel=None):\n if psf_type == 'GAUSSIAN':\n sigma = util.fwhm2sigma(fwhm)\n sigma_axis = sigma\n gaussian = Gaussian()\n x_grid, y_grid = util.make_grid(kernelsize, deltaPix)\n kernel_large = gaussian.function(x_grid, y_grid, amp=1.0, sigma_x=\n sigma_axis, sigma_y=sigma_axis, center_x=0, center_y=0)\n kernel_large /= np.sum(kernel_large)\n kernel_large = util.array2image(kernel_large)\n kernel_pixel = kernel_util.pixel_kernel(kernel_large)\n kwargs_psf = {'psf_type': psf_type, 'fwhm': fwhm, 'truncation': \n truncate * fwhm, 'kernel_point_source': kernel_large,\n 'kernel_pixel': kernel_pixel, 'pixel_size': deltaPix}\n elif psf_type == 'PIXEL':\n kernel_large = copy.deepcopy(kernel)\n kernel_large = kernel_util.cut_psf(kernel_large, psf_size=kernelsize)\n kwargs_psf = {'psf_type': 'PIXEL', 'kernel_point_source': kernel_large}\n elif psf_type == 'NONE':\n kwargs_psf = {'psf_type': 'NONE'}\n else:\n raise ValueError('psf type %s not supported!' % psf_type)\n return kwargs_psf\n", "role": "user" }, { "content": "psf_configure_simple", "role": "assistant" } ]
def x(self, theta_E, w_c, w_t): if not w_t > w_c: w_t, w_c = w_c, w_t s_scale_1 = w_c s_scale_2 = w_t f_x_1, f_y_1 = self.nie.derivatives(1, 0, theta_E=1, e1=0, e2=0, s_scale=s_scale_1) f_x_2, f_y_2 = self.nie.derivatives(1, 0, theta_E=1, e1=0, e2=0, s_scale=s_scale_2) f_x = f_x_1 - f_x_2 theta_E_convert = theta_E / f_x return theta_E_convert, w_c, w_t
theta_E_convert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, theta_E, w_c, w_t):\n if not w_t > w_c:\n w_t, w_c = w_c, w_t\n s_scale_1 = w_c\n s_scale_2 = w_t\n f_x_1, f_y_1 = self.nie.derivatives(1, 0, theta_E=1, e1=0, e2=0,\n s_scale=s_scale_1)\n f_x_2, f_y_2 = self.nie.derivatives(1, 0, theta_E=1, e1=0, e2=0,\n s_scale=s_scale_2)\n f_x = f_x_1 - f_x_2\n theta_E_convert = theta_E / f_x\n return theta_E_convert, w_c, w_t\n", "role": "user" }, { "content": "theta_E_convert", "role": "assistant" } ]
def x(self, x, y, center_x=0, center_y=0, **kwargs): assert 'norm' in kwargs.keys( ), "key word arguments must contain 'norm', the normalization of deflection angle in units of arcsec." x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) alpha = self._interp(x_, y_, **kwargs) cos_theta = x_ * R ** -1 sin_theta = y_ * R ** -1 f_x, f_y = alpha * cos_theta, alpha * sin_theta return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, center_x=0, center_y=0, **kwargs):\n assert 'norm' in kwargs.keys(\n ), \"key word arguments must contain 'norm', the normalization of deflection angle in units of arcsec.\"\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n alpha = self._interp(x_, y_, **kwargs)\n cos_theta = x_ * R ** -1\n sin_theta = y_ * R ** -1\n f_x, f_y = alpha * cos_theta, alpha * sin_theta\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, center_x=0, center_y=0, **kwargs): diff = 1e-06 alpha_ra, alpha_dec = self.derivatives(x, y, center_x=center_x, center_y=center_y, **kwargs) alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, center_x= center_x, center_y=center_y, **kwargs) alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, center_x= center_x, center_y=center_y, **kwargs) dalpha_rara = (alpha_ra_dx - alpha_ra) / diff dalpha_radec = (alpha_ra_dy - alpha_ra) / diff dalpha_decdec = (alpha_dec_dy - alpha_dec) / diff f_xx = dalpha_rara f_yy = dalpha_decdec f_xy = dalpha_radec return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, center_x=0, center_y=0, **kwargs):\n diff = 1e-06\n alpha_ra, alpha_dec = self.derivatives(x, y, center_x=center_x,\n center_y=center_y, **kwargs)\n alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, center_x=\n center_x, center_y=center_y, **kwargs)\n alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, center_x=\n center_x, center_y=center_y, **kwargs)\n dalpha_rara = (alpha_ra_dx - alpha_ra) / diff\n dalpha_radec = (alpha_ra_dy - alpha_ra) / diff\n dalpha_decdec = (alpha_dec_dy - alpha_dec) / diff\n f_xx = dalpha_rara\n f_yy = dalpha_decdec\n f_xy = dalpha_radec\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, x, y, n_sersic, R_sersic, k_eff, e1, e2, center_x=0, center_y=0): phi_G, q = param_util.ellipticity2phi_q(e1, e2) x_, y_ = self._coord_transf(x, y, q, phi_G, center_x, center_y) f_ = self.sersic.function(x_, y_, n_sersic, R_sersic, k_eff) return f_
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, n_sersic, R_sersic, k_eff, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n x_, y_ = self._coord_transf(x, y, q, phi_G, center_x, center_y)\n f_ = self.sersic.function(x_, y_, n_sersic, R_sersic, k_eff)\n return f_\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, x, y, n_sersic, R_sersic, k_eff, e1, e2, center_x=0, center_y=0): phi_G, q = param_util.ellipticity2phi_q(e1, e2) e = abs(1.0 - q) cos_phi = np.cos(phi_G) sin_phi = np.sin(phi_G) x_, y_ = self._coord_transf(x, y, q, phi_G, center_x, center_y) f_x_prim, f_y_prim = self.sersic.derivatives(x_, y_, n_sersic, R_sersic, k_eff) f_x_prim *= np.sqrt(1 - e) f_y_prim *= np.sqrt(1 + e) f_x = cos_phi * f_x_prim - sin_phi * f_y_prim f_y = sin_phi * f_x_prim + cos_phi * f_y_prim return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, n_sersic, R_sersic, k_eff, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n e = abs(1.0 - q)\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n x_, y_ = self._coord_transf(x, y, q, phi_G, center_x, center_y)\n f_x_prim, f_y_prim = self.sersic.derivatives(x_, y_, n_sersic, R_sersic,\n k_eff)\n f_x_prim *= np.sqrt(1 - e)\n f_y_prim *= np.sqrt(1 + e)\n f_x = cos_phi * f_x_prim - sin_phi * f_y_prim\n f_y = sin_phi * f_x_prim + cos_phi * f_y_prim\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(grid2d, x_pos, y_pos, kernel, order=1): x_int = int(round(x_pos)) y_int = int(round(y_pos)) shift_x = x_int - x_pos shift_y = y_int - y_pos kernel_shifted = interp.shift(kernel, [-shift_y, -shift_x], order=order) return add_layer2image_int(grid2d, x_int, y_int, kernel_shifted)
add_layer2image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid2d, x_pos, y_pos, kernel, order=1):\n x_int = int(round(x_pos))\n y_int = int(round(y_pos))\n shift_x = x_int - x_pos\n shift_y = y_int - y_pos\n kernel_shifted = interp.shift(kernel, [-shift_y, -shift_x], order=order)\n return add_layer2image_int(grid2d, x_int, y_int, kernel_shifted)\n", "role": "user" }, { "content": "add_layer2image", "role": "assistant" } ]
def x(grid2d, x_pos, y_pos, kernel): nx, ny = np.shape(kernel) if nx % 2 == 0: raise ValueError('kernel needs odd numbers of pixels') num_x, num_y = np.shape(grid2d) x_int = int(round(x_pos)) y_int = int(round(y_pos)) k_x, k_y = np.shape(kernel) k_l2_x = int((k_x - 1) / 2) k_l2_y = int((k_y - 1) / 2) min_x = np.maximum(0, x_int - k_l2_x) min_y = np.maximum(0, y_int - k_l2_y) max_x = np.minimum(num_x, x_int + k_l2_x + 1) max_y = np.minimum(num_y, y_int + k_l2_y + 1) min_xk = np.maximum(0, -x_int + k_l2_x) min_yk = np.maximum(0, -y_int + k_l2_y) max_xk = np.minimum(k_x, -x_int + k_l2_x + num_x) max_yk = np.minimum(k_y, -y_int + k_l2_y + num_y) if (min_x >= max_x or min_y >= max_y or min_xk >= max_xk or min_yk >= max_yk or max_x - min_x != max_xk - min_xk or max_y - min_y != max_yk - min_yk): return grid2d kernel_re_sized = kernel[min_yk:max_yk, min_xk:max_xk] new = grid2d.copy() new[min_y:max_y, min_x:max_x] += kernel_re_sized return new
add_layer2image_int
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid2d, x_pos, y_pos, kernel):\n nx, ny = np.shape(kernel)\n if nx % 2 == 0:\n raise ValueError('kernel needs odd numbers of pixels')\n num_x, num_y = np.shape(grid2d)\n x_int = int(round(x_pos))\n y_int = int(round(y_pos))\n k_x, k_y = np.shape(kernel)\n k_l2_x = int((k_x - 1) / 2)\n k_l2_y = int((k_y - 1) / 2)\n min_x = np.maximum(0, x_int - k_l2_x)\n min_y = np.maximum(0, y_int - k_l2_y)\n max_x = np.minimum(num_x, x_int + k_l2_x + 1)\n max_y = np.minimum(num_y, y_int + k_l2_y + 1)\n min_xk = np.maximum(0, -x_int + k_l2_x)\n min_yk = np.maximum(0, -y_int + k_l2_y)\n max_xk = np.minimum(k_x, -x_int + k_l2_x + num_x)\n max_yk = np.minimum(k_y, -y_int + k_l2_y + num_y)\n if (min_x >= max_x or min_y >= max_y or min_xk >= max_xk or min_yk >=\n max_yk or max_x - min_x != max_xk - min_xk or max_y - min_y != \n max_yk - min_yk):\n return grid2d\n kernel_re_sized = kernel[min_yk:max_yk, min_xk:max_xk]\n new = grid2d.copy()\n new[min_y:max_y, min_x:max_x] += kernel_re_sized\n return new\n", "role": "user" }, { "content": "add_layer2image_int", "role": "assistant" } ]
def x(image, sigma_bkd): if sigma_bkd < 0: raise ValueError( 'Sigma background is smaller than zero! Please use positive values.' ) nx, ny = np.shape(image) background = np.random.randn(nx, ny) * sigma_bkd return background
add_background
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, sigma_bkd):\n if sigma_bkd < 0:\n raise ValueError(\n 'Sigma background is smaller than zero! Please use positive values.'\n )\n nx, ny = np.shape(image)\n background = np.random.randn(nx, ny) * sigma_bkd\n return background\n", "role": "user" }, { "content": "add_background", "role": "assistant" } ]
def x(image, exp_time): """ adds a poison (or Gaussian) distributed noise with mean given by surface brightness """ if isinstance(exp_time, int) or isinstance(exp_time, float): if exp_time <= 0: exp_time = 1 else: mean_exp_time = np.mean(exp_time) exp_time[exp_time < mean_exp_time / 10] = mean_exp_time / 10 sigma = np.sqrt(np.abs(image) / exp_time) nx, ny = np.shape(image) poisson = np.random.randn(nx, ny) * sigma return poisson
add_poisson
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, exp_time):\n \"\"\"\n adds a poison (or Gaussian) distributed noise with mean given by surface brightness\n \"\"\"\n if isinstance(exp_time, int) or isinstance(exp_time, float):\n if exp_time <= 0:\n exp_time = 1\n else:\n mean_exp_time = np.mean(exp_time)\n exp_time[exp_time < mean_exp_time / 10] = mean_exp_time / 10\n sigma = np.sqrt(np.abs(image) / exp_time)\n nx, ny = np.shape(image)\n poisson = np.random.randn(nx, ny) * sigma\n return poisson\n", "role": "user" }, { "content": "add_poisson", "role": "assistant" } ]
def x(x_in, y_in, input_values, x_out, y_out): interp_2d = scipy.interpolate.interp2d(x_in, y_in, input_values, kind= 'linear') out_values = interp_2d.__call__(x_out, y_out) return out_values
re_size_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_in, y_in, input_values, x_out, y_out):\n interp_2d = scipy.interpolate.interp2d(x_in, y_in, input_values, kind=\n 'linear')\n out_values = interp_2d.__call__(x_out, y_out)\n return out_values\n", "role": "user" }, { "content": "re_size_array", "role": "assistant" } ]
def x(image, symmetry): img_sym = np.zeros_like(image) angle = 360.0 / symmetry for i in range(symmetry): img_sym += rotateImage(image, angle * i) img_sym /= symmetry return img_sym
symmetry_average
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, symmetry):\n img_sym = np.zeros_like(image)\n angle = 360.0 / symmetry\n for i in range(symmetry):\n img_sym += rotateImage(image, angle * i)\n img_sym /= symmetry\n return img_sym\n", "role": "user" }, { "content": "symmetry_average", "role": "assistant" } ]
def x(x_mins, y_mins, min_distance): n = len(x_mins) idex = [] for i in range(n): if i == 0: pass else: for j in range(0, i): if abs(x_mins[i] - x_mins[j]) < min_distance and abs(y_mins [i] - y_mins[j]) < min_distance: idex.append(i) break x_mins = np.delete(x_mins, idex, axis=0) y_mins = np.delete(y_mins, idex, axis=0) return x_mins, y_mins
findOverlap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_mins, y_mins, min_distance):\n n = len(x_mins)\n idex = []\n for i in range(n):\n if i == 0:\n pass\n else:\n for j in range(0, i):\n if abs(x_mins[i] - x_mins[j]) < min_distance and abs(y_mins\n [i] - y_mins[j]) < min_distance:\n idex.append(i)\n break\n x_mins = np.delete(x_mins, idex, axis=0)\n y_mins = np.delete(y_mins, idex, axis=0)\n return x_mins, y_mins\n", "role": "user" }, { "content": "findOverlap", "role": "assistant" } ]
def x(x_coord, y_coord, numPix, deltapix): idex = [] min = -deltapix * numPix / 2 max = deltapix * numPix / 2 for i in range(len(x_coord)): if x_coord[i] < min or x_coord[i] > max or y_coord[i] < min or y_coord[ i] > max: idex.append(i) x_coord = np.delete(x_coord, idex, axis=0) y_coord = np.delete(y_coord, idex, axis=0) return x_coord, y_coord
coordInImage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_coord, y_coord, numPix, deltapix):\n idex = []\n min = -deltapix * numPix / 2\n max = deltapix * numPix / 2\n for i in range(len(x_coord)):\n if x_coord[i] < min or x_coord[i] > max or y_coord[i] < min or y_coord[\n i] > max:\n idex.append(i)\n x_coord = np.delete(x_coord, idex, axis=0)\n y_coord = np.delete(y_coord, idex, axis=0)\n return x_coord, y_coord\n", "role": "user" }, { "content": "coordInImage", "role": "assistant" } ]
def x(image, factor=1): if factor < 1: raise ValueError('scaling factor in re-sizing %s < 1' % factor) f = int(factor) nx, ny = np.shape(image) if int(nx / f) == nx / f and int(ny / f) == ny / f: small = image.reshape([int(nx / f), f, int(ny / f), f]).mean(3).mean(1) return small else: raise ValueError( 'scaling with factor %s is not possible with grid size %s, %s' % (f, nx, ny))
re_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, factor=1):\n if factor < 1:\n raise ValueError('scaling factor in re-sizing %s < 1' % factor)\n f = int(factor)\n nx, ny = np.shape(image)\n if int(nx / f) == nx / f and int(ny / f) == ny / f:\n small = image.reshape([int(nx / f), f, int(ny / f), f]).mean(3).mean(1)\n return small\n else:\n raise ValueError(\n 'scaling with factor %s is not possible with grid size %s, %s' %\n (f, nx, ny))\n", "role": "user" }, { "content": "re_size", "role": "assistant" } ]
def x(bin_size, image, wht_map, sigma_bkg, ra_coords, dec_coords, idex_mask): numPix = int(len(image) / bin_size) numPix_precut = numPix * bin_size factor = int(len(image) / numPix) if not numPix * bin_size == len(image): image_precut = image[0:numPix_precut, 0:numPix_precut] else: image_precut = image image_resized = re_size(image_precut, factor) image_resized *= bin_size ** 2 wht_map_resized = re_size(wht_map[0:numPix_precut, 0:numPix_precut], factor ) sigma_bkg_resized = bin_size * sigma_bkg ra_coords_resized = re_size(ra_coords[0:numPix_precut, 0:numPix_precut], factor) dec_coords_resized = re_size(dec_coords[0:numPix_precut, 0: numPix_precut], factor) idex_mask_resized = re_size(idex_mask[0:numPix_precut, 0:numPix_precut], factor) idex_mask_resized[idex_mask_resized > 0] = 1 return (image_resized, wht_map_resized, sigma_bkg_resized, ra_coords_resized, dec_coords_resized, idex_mask_resized)
rebin_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bin_size, image, wht_map, sigma_bkg, ra_coords, dec_coords, idex_mask):\n numPix = int(len(image) / bin_size)\n numPix_precut = numPix * bin_size\n factor = int(len(image) / numPix)\n if not numPix * bin_size == len(image):\n image_precut = image[0:numPix_precut, 0:numPix_precut]\n else:\n image_precut = image\n image_resized = re_size(image_precut, factor)\n image_resized *= bin_size ** 2\n wht_map_resized = re_size(wht_map[0:numPix_precut, 0:numPix_precut], factor\n )\n sigma_bkg_resized = bin_size * sigma_bkg\n ra_coords_resized = re_size(ra_coords[0:numPix_precut, 0:numPix_precut],\n factor)\n dec_coords_resized = re_size(dec_coords[0:numPix_precut, 0:\n numPix_precut], factor)\n idex_mask_resized = re_size(idex_mask[0:numPix_precut, 0:numPix_precut],\n factor)\n idex_mask_resized[idex_mask_resized > 0] = 1\n return (image_resized, wht_map_resized, sigma_bkg_resized,\n ra_coords_resized, dec_coords_resized, idex_mask_resized)\n", "role": "user" }, { "content": "rebin_image", "role": "assistant" } ]
def x(factor, x_at_radec_0, y_at_radec_0, Mpix2coord, Mcoord2pix): factor = int(factor) Mcoord2pix_resized = Mcoord2pix / factor Mpix2coord_resized = Mpix2coord * factor x_at_radec_0_resized = (x_at_radec_0 + 0.5) / factor - 0.5 y_at_radec_0_resized = (y_at_radec_0 + 0.5) / factor - 0.5 ra_at_xy_0_resized, dec_at_xy_0_resized = util.map_coord2pix(- x_at_radec_0_resized, -y_at_radec_0_resized, 0, 0, Mpix2coord_resized) return (ra_at_xy_0_resized, dec_at_xy_0_resized, x_at_radec_0_resized, y_at_radec_0_resized, Mpix2coord_resized, Mcoord2pix_resized)
rebin_coord_transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(factor, x_at_radec_0, y_at_radec_0, Mpix2coord, Mcoord2pix):\n factor = int(factor)\n Mcoord2pix_resized = Mcoord2pix / factor\n Mpix2coord_resized = Mpix2coord * factor\n x_at_radec_0_resized = (x_at_radec_0 + 0.5) / factor - 0.5\n y_at_radec_0_resized = (y_at_radec_0 + 0.5) / factor - 0.5\n ra_at_xy_0_resized, dec_at_xy_0_resized = util.map_coord2pix(-\n x_at_radec_0_resized, -y_at_radec_0_resized, 0, 0, Mpix2coord_resized)\n return (ra_at_xy_0_resized, dec_at_xy_0_resized, x_at_radec_0_resized,\n y_at_radec_0_resized, Mpix2coord_resized, Mcoord2pix_resized)\n", "role": "user" }, { "content": "rebin_coord_transform", "role": "assistant" } ]
def x(image_list, wht_list, sigma_list): image_stacked = np.zeros_like(image_list[0]) wht_stacked = np.zeros_like(image_stacked) sigma_stacked = 0.0 for i in range(len(image_list)): image_stacked += image_list[i] * wht_list[i] sigma_stacked += sigma_list[i] ** 2 * np.median(wht_list[i]) wht_stacked += wht_list[i] image_stacked /= wht_stacked sigma_stacked /= np.median(wht_stacked) wht_stacked /= len(wht_list) return image_stacked, wht_stacked, np.sqrt(sigma_stacked)
stack_images
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image_list, wht_list, sigma_list):\n image_stacked = np.zeros_like(image_list[0])\n wht_stacked = np.zeros_like(image_stacked)\n sigma_stacked = 0.0\n for i in range(len(image_list)):\n image_stacked += image_list[i] * wht_list[i]\n sigma_stacked += sigma_list[i] ** 2 * np.median(wht_list[i])\n wht_stacked += wht_list[i]\n image_stacked /= wht_stacked\n sigma_stacked /= np.median(wht_stacked)\n wht_stacked /= len(wht_list)\n return image_stacked, wht_stacked, np.sqrt(sigma_stacked)\n", "role": "user" }, { "content": "stack_images", "role": "assistant" } ]
def x(image, numPix): nx, ny = image.shape if nx < numPix or ny < numPix: print('WARNING: image can not be resized, in routine cut_edges.') return image if nx % 2 == 0 or ny % 2 == 0 or numPix % 2 == 0: print( 'WARNING: image or cutout side are even number. This routine only works for odd numbers %s %s %s' % (nx, ny, numPix)) cx = int((nx - 1) / 2) cy = int((ny - 1) / 2) d = int((numPix - 1) / 2) if nx % 2 == 0: cx += 1 if ny % 2 == 0: cy += 1 resized = image[cx - d:cx + d + 1, cy - d:cy + d + 1] return copy.deepcopy(resized)
cut_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, numPix):\n nx, ny = image.shape\n if nx < numPix or ny < numPix:\n print('WARNING: image can not be resized, in routine cut_edges.')\n return image\n if nx % 2 == 0 or ny % 2 == 0 or numPix % 2 == 0:\n print(\n 'WARNING: image or cutout side are even number. This routine only works for odd numbers %s %s %s'\n % (nx, ny, numPix))\n cx = int((nx - 1) / 2)\n cy = int((ny - 1) / 2)\n d = int((numPix - 1) / 2)\n if nx % 2 == 0:\n cx += 1\n if ny % 2 == 0:\n cy += 1\n resized = image[cx - d:cx + d + 1, cy - d:cy + d + 1]\n return copy.deepcopy(resized)\n", "role": "user" }, { "content": "cut_edges", "role": "assistant" } ]
def x(self): H0_range = np.linspace(10, 100, 90) omega_m_range = np.linspace(0.05, 1, 95) grid2d = np.dstack(np.meshgrid(H0_range, omega_m_range)).reshape(-1, 2) H0_grid = grid2d[:, 0] omega_m_grid = grid2d[:, 1] Dd_grid = np.zeros_like(H0_grid) Ds_Dds_grid = np.zeros_like(H0_grid) for i in range(len(H0_grid)): Dd, Ds_Dds = self.cosmo2Dd_Ds_Dds(H0_grid[i], omega_m_grid[i]) Dd_grid[i] = Dd Ds_Dds_grid[i] = Ds_Dds self._f_H0 = interpolate.interp2d(Dd_grid, Ds_Dds_grid, H0_grid, kind= 'linear', copy=False, bounds_error=False, fill_value=-1) print('H0 interpolation done') self._f_omega_m = interpolate.interp2d(Dd_grid, Ds_Dds_grid, omega_m_grid, kind='linear', copy=False, bounds_error=False, fill_value=-1) print('omega_m interpolation done')
make_interpolation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n H0_range = np.linspace(10, 100, 90)\n omega_m_range = np.linspace(0.05, 1, 95)\n grid2d = np.dstack(np.meshgrid(H0_range, omega_m_range)).reshape(-1, 2)\n H0_grid = grid2d[:, 0]\n omega_m_grid = grid2d[:, 1]\n Dd_grid = np.zeros_like(H0_grid)\n Ds_Dds_grid = np.zeros_like(H0_grid)\n for i in range(len(H0_grid)):\n Dd, Ds_Dds = self.cosmo2Dd_Ds_Dds(H0_grid[i], omega_m_grid[i])\n Dd_grid[i] = Dd\n Ds_Dds_grid[i] = Ds_Dds\n self._f_H0 = interpolate.interp2d(Dd_grid, Ds_Dds_grid, H0_grid, kind=\n 'linear', copy=False, bounds_error=False, fill_value=-1)\n print('H0 interpolation done')\n self._f_omega_m = interpolate.interp2d(Dd_grid, Ds_Dds_grid,\n omega_m_grid, kind='linear', copy=False, bounds_error=False,\n fill_value=-1)\n print('omega_m interpolation done')\n", "role": "user" }, { "content": "make_interpolation", "role": "assistant" } ]
def x(self, Dd, Ds_Dds): if not hasattr(self, '_f_H0') or not hasattr(self, '_f_omega_m'): self._make_interpolation() H0 = self._f_H0(Dd, Ds_Dds) print(H0, 'H0') omega_m = self._f_omega_m(Dd, Ds_Dds) Dd_new, Ds_Dds_new = self.cosmo2Dd_Ds_Dds(H0[0], omega_m[0]) if abs(Dd - Dd_new) / Dd > 0.01 or abs(Ds_Dds - Ds_Dds_new ) / Ds_Dds > 0.01: return [-1], [-1] else: return H0[0], omega_m[0]
get_cosmo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Dd, Ds_Dds):\n if not hasattr(self, '_f_H0') or not hasattr(self, '_f_omega_m'):\n self._make_interpolation()\n H0 = self._f_H0(Dd, Ds_Dds)\n print(H0, 'H0')\n omega_m = self._f_omega_m(Dd, Ds_Dds)\n Dd_new, Ds_Dds_new = self.cosmo2Dd_Ds_Dds(H0[0], omega_m[0])\n if abs(Dd - Dd_new) / Dd > 0.01 or abs(Ds_Dds - Ds_Dds_new\n ) / Ds_Dds > 0.01:\n return [-1], [-1]\n else:\n return H0[0], omega_m[0]\n", "role": "user" }, { "content": "get_cosmo", "role": "assistant" } ]
def x(self, r, kwargs_profile): kwargs = copy.deepcopy(kwargs_profile) try: del kwargs['center_x'] del kwargs['center_y'] except: pass out = integrate.quad(lambda x: self._profile.density(x, **kwargs) * 4 * np.pi * x ** 2, 0, r) return out[0]
mass_enclosed_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, kwargs_profile):\n kwargs = copy.deepcopy(kwargs_profile)\n try:\n del kwargs['center_x']\n del kwargs['center_y']\n except:\n pass\n out = integrate.quad(lambda x: self._profile.density(x, **kwargs) * 4 *\n np.pi * x ** 2, 0, r)\n return out[0]\n", "role": "user" }, { "content": "mass_enclosed_3d", "role": "assistant" } ]
def x(self, r, kwargs_profile): kwargs = copy.deepcopy(kwargs_profile) try: del kwargs['center_x'] del kwargs['center_y'] except: pass out = integrate.quad(lambda x: 2 * self._profile.density(np.sqrt(x ** 2 + r ** 2), **kwargs), 0, 100) return out[0]
density_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, kwargs_profile):\n kwargs = copy.deepcopy(kwargs_profile)\n try:\n del kwargs['center_x']\n del kwargs['center_y']\n except:\n pass\n out = integrate.quad(lambda x: 2 * self._profile.density(np.sqrt(x ** 2 +\n r ** 2), **kwargs), 0, 100)\n return out[0]\n", "role": "user" }, { "content": "density_2d", "role": "assistant" } ]
def x(self, r, kwargs_profile): kwargs = copy.deepcopy(kwargs_profile) try: del kwargs['center_x'] del kwargs['center_y'] except: pass out = integrate.quad(lambda x: self.density_2d(x, kwargs) * 2 * np.pi * x, 0, r) return out[0]
mass_enclosed_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, kwargs_profile):\n kwargs = copy.deepcopy(kwargs_profile)\n try:\n del kwargs['center_x']\n del kwargs['center_y']\n except:\n pass\n out = integrate.quad(lambda x: self.density_2d(x, kwargs) * 2 * np.pi *\n x, 0, r)\n return out[0]\n", "role": "user" }, { "content": "mass_enclosed_2d", "role": "assistant" } ]
def x(self, x_shift, y_shift, pixel_unit=False): self._coords.shift_coordinate_grid(x_shift, y_shift, pixel_unit=pixel_unit) self._x_grid, self._y_grid = self._coords.coordinate_grid(self.nx)
shift_coordinate_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x_shift, y_shift, pixel_unit=False):\n self._coords.shift_coordinate_grid(x_shift, y_shift, pixel_unit=pixel_unit)\n self._x_grid, self._y_grid = self._coords.coordinate_grid(self.nx)\n", "role": "user" }, { "content": "shift_coordinate_grid", "role": "assistant" } ]
def x(self): if not hasattr(self, '_C_D'): if self._noise_map is not None: self._C_D = self._noise_map ** 2 else: self._C_D = self.covariance_matrix(self.data, self. background_rms, self.exposure_map) return self._C_D
C_D
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not hasattr(self, '_C_D'):\n if self._noise_map is not None:\n self._C_D = self._noise_map ** 2\n else:\n self._C_D = self.covariance_matrix(self.data, self.\n background_rms, self.exposure_map)\n return self._C_D\n", "role": "user" }, { "content": "C_D", "role": "assistant" } ]
def x(self, data, background_rms=1, exposure_map=1, noise_map=None, verbose =False): if noise_map is not None: return noise_map ** 2 if isinstance(exposure_map, int) or isinstance(exposure_map, float): if exposure_map <= 0: exposure_map = 1 else: mean_exp_time = np.mean(exposure_map) exposure_map[exposure_map < mean_exp_time / 10] = mean_exp_time / 10 if verbose: if background_rms * np.max(exposure_map) < 1: print( 'WARNING! sigma_b*f %s < 1 count may introduce unstable error estimates' % (background_rms * np.max(exposure_map))) d_pos = np.zeros_like(data) d_pos[data >= 0] = data[data >= 0] sigma = d_pos / exposure_map + background_rms ** 2 return sigma
covariance_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, background_rms=1, exposure_map=1, noise_map=None, verbose\n =False):\n if noise_map is not None:\n return noise_map ** 2\n if isinstance(exposure_map, int) or isinstance(exposure_map, float):\n if exposure_map <= 0:\n exposure_map = 1\n else:\n mean_exp_time = np.mean(exposure_map)\n exposure_map[exposure_map < mean_exp_time / 10] = mean_exp_time / 10\n if verbose:\n if background_rms * np.max(exposure_map) < 1:\n print(\n 'WARNING! sigma_b*f %s < 1 count may introduce unstable error estimates'\n % (background_rms * np.max(exposure_map)))\n d_pos = np.zeros_like(data)\n d_pos[data >= 0] = data[data >= 0]\n sigma = d_pos / exposure_map + background_rms ** 2\n return sigma\n", "role": "user" }, { "content": "covariance_matrix", "role": "assistant" } ]
def x(self, source_x, source_y, kwargs_lens, search_window=10, precision_limit=10 ** -10, arrival_time_sort=True, x_center=0, y_center =0, num_random=1000, verbose=False): x_solve, y_solve = [], [] for i in range(num_random): x_init = np.random.uniform(-search_window / 2.0, search_window / 2 ) + x_center y_init = np.random.uniform(-search_window / 2.0, search_window / 2 ) + y_center xinitial = np.array([x_init, y_init]) result = minimize(self._root, xinitial, args=(kwargs_lens, source_x, source_y), tol=precision_limit ** 2, method='Nelder-Mead') if self._root(result.x, kwargs_lens, source_x, source_y ) < precision_limit ** 2: x_solve.append(result.x[0]) y_solve.append(result.x[1]) x_mins, y_mins = image_util.findOverlap(x_solve, y_solve, precision_limit) if arrival_time_sort is True: x_mins, y_mins = self.sort_arrival_times(x_mins, y_mins, kwargs_lens) return x_mins, y_mins
image_position_stochastic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source_x, source_y, kwargs_lens, search_window=10,\n precision_limit=10 ** -10, arrival_time_sort=True, x_center=0, y_center\n =0, num_random=1000, verbose=False):\n x_solve, y_solve = [], []\n for i in range(num_random):\n x_init = np.random.uniform(-search_window / 2.0, search_window / 2\n ) + x_center\n y_init = np.random.uniform(-search_window / 2.0, search_window / 2\n ) + y_center\n xinitial = np.array([x_init, y_init])\n result = minimize(self._root, xinitial, args=(kwargs_lens, source_x,\n source_y), tol=precision_limit ** 2, method='Nelder-Mead')\n if self._root(result.x, kwargs_lens, source_x, source_y\n ) < precision_limit ** 2:\n x_solve.append(result.x[0])\n y_solve.append(result.x[1])\n x_mins, y_mins = image_util.findOverlap(x_solve, y_solve, precision_limit)\n if arrival_time_sort is True:\n x_mins, y_mins = self.sort_arrival_times(x_mins, y_mins, kwargs_lens)\n return x_mins, y_mins\n", "role": "user" }, { "content": "image_position_stochastic", "role": "assistant" } ]
def x(self, sourcePos_x, sourcePos_y, kwargs_lens, min_distance=0.1, search_window=10, precision_limit=10 ** -10, num_iter_max=100, arrival_time_sort=True, initial_guess_cut=True, verbose=False, x_center =0, y_center=0, num_random=0): numPix = int(round(search_window / min_distance) + 0.5) x_grid, y_grid = util.make_grid(numPix, min_distance) x_grid += x_center y_grid += y_center x_mapped, y_mapped = self.lensModel.ray_shooting(x_grid, y_grid, kwargs_lens) absmapped = util.displaceAbs(x_mapped, y_mapped, sourcePos_x, sourcePos_y) x_mins, y_mins, delta_map = util.neighborSelect(absmapped, x_grid, y_grid) if verbose is True: print( 'There are %s regions identified that could contain a solution of the lens equation' % len(x_mins)) if initial_guess_cut is True: mag = np.abs(self.lensModel.magnification(x_mins, y_mins, kwargs_lens)) mag[mag < 1] = 1 x_mins = x_mins[delta_map <= min_distance * mag * 5] y_mins = y_mins[delta_map <= min_distance * mag * 5] if verbose is True: print( 'The number of regions that meet the plausibility criteria are %s' % len(x_mins)) x_mins = np.append(x_mins, np.random.uniform(low=-search_window / 2 + x_center, high=search_window / 2 + x_center, size=num_random)) y_mins = np.append(y_mins, np.random.uniform(low=-search_window / 2 + y_center, high=search_window / 2 + y_center, size=num_random)) x_mins, y_mins, solver_precision = self._findIterative(x_mins, y_mins, sourcePos_x, sourcePos_y, kwargs_lens, precision_limit, num_iter_max, verbose=verbose, min_distance=min_distance) x_mins = x_mins[solver_precision <= precision_limit] y_mins = y_mins[solver_precision <= precision_limit] x_mins, y_mins = image_util.findOverlap(x_mins, y_mins, min_distance) if arrival_time_sort is True: x_mins, y_mins = self.sort_arrival_times(x_mins, y_mins, kwargs_lens) return x_mins, y_mins
image_position_from_source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sourcePos_x, sourcePos_y, kwargs_lens, min_distance=0.1,\n search_window=10, precision_limit=10 ** -10, num_iter_max=100,\n arrival_time_sort=True, initial_guess_cut=True, verbose=False, x_center\n =0, y_center=0, num_random=0):\n numPix = int(round(search_window / min_distance) + 0.5)\n x_grid, y_grid = util.make_grid(numPix, min_distance)\n x_grid += x_center\n y_grid += y_center\n x_mapped, y_mapped = self.lensModel.ray_shooting(x_grid, y_grid,\n kwargs_lens)\n absmapped = util.displaceAbs(x_mapped, y_mapped, sourcePos_x, sourcePos_y)\n x_mins, y_mins, delta_map = util.neighborSelect(absmapped, x_grid, y_grid)\n if verbose is True:\n print(\n 'There are %s regions identified that could contain a solution of the lens equation'\n % len(x_mins))\n if initial_guess_cut is True:\n mag = np.abs(self.lensModel.magnification(x_mins, y_mins, kwargs_lens))\n mag[mag < 1] = 1\n x_mins = x_mins[delta_map <= min_distance * mag * 5]\n y_mins = y_mins[delta_map <= min_distance * mag * 5]\n if verbose is True:\n print(\n 'The number of regions that meet the plausibility criteria are %s'\n % len(x_mins))\n x_mins = np.append(x_mins, np.random.uniform(low=-search_window / 2 +\n x_center, high=search_window / 2 + x_center, size=num_random))\n y_mins = np.append(y_mins, np.random.uniform(low=-search_window / 2 +\n y_center, high=search_window / 2 + y_center, size=num_random))\n x_mins, y_mins, solver_precision = self._findIterative(x_mins, y_mins,\n sourcePos_x, sourcePos_y, kwargs_lens, precision_limit,\n num_iter_max, verbose=verbose, min_distance=min_distance)\n x_mins = x_mins[solver_precision <= precision_limit]\n y_mins = y_mins[solver_precision <= precision_limit]\n x_mins, y_mins = image_util.findOverlap(x_mins, y_mins, min_distance)\n if arrival_time_sort is True:\n x_mins, y_mins = self.sort_arrival_times(x_mins, y_mins, kwargs_lens)\n return x_mins, y_mins\n", "role": "user" }, { "content": "image_position_from_source", "role": "assistant" } ]
def x(self, x_mins, y_mins, kwargs_lens): if hasattr(self.lensModel, '_no_potential'): raise Exception( 'Instance of lensModel passed to this class does not compute the lensing potential, and therefore cannot compute time delays.' ) if len(x_mins) <= 1: return x_mins, y_mins x_source, y_source = self.lensModel.ray_shooting(x_mins, y_mins, kwargs_lens) x_source = np.mean(x_source) y_source = np.mean(y_source) if self.lensModel.multi_plane is True: arrival_time = self.lensModel.arrival_time(x_mins, y_mins, kwargs_lens) else: fermat_pot = self.lensModel.fermat_potential(x_mins, y_mins, x_source, y_source, kwargs_lens) arrival_time = fermat_pot idx = np.argsort(arrival_time) x_mins = np.array(x_mins)[idx] y_mins = np.array(y_mins)[idx] return x_mins, y_mins
sort_arrival_times
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x_mins, y_mins, kwargs_lens):\n if hasattr(self.lensModel, '_no_potential'):\n raise Exception(\n 'Instance of lensModel passed to this class does not compute the lensing potential, and therefore cannot compute time delays.'\n )\n if len(x_mins) <= 1:\n return x_mins, y_mins\n x_source, y_source = self.lensModel.ray_shooting(x_mins, y_mins,\n kwargs_lens)\n x_source = np.mean(x_source)\n y_source = np.mean(y_source)\n if self.lensModel.multi_plane is True:\n arrival_time = self.lensModel.arrival_time(x_mins, y_mins, kwargs_lens)\n else:\n fermat_pot = self.lensModel.fermat_potential(x_mins, y_mins,\n x_source, y_source, kwargs_lens)\n arrival_time = fermat_pot\n idx = np.argsort(arrival_time)\n x_mins = np.array(x_mins)[idx]\n y_mins = np.array(y_mins)[idx]\n return x_mins, y_mins\n", "role": "user" }, { "content": "sort_arrival_times", "role": "assistant" } ]
def x(cls, kwargs_ps): pos_bool = True for kwargs in kwargs_ps: point_amp = kwargs['point_amp'] for amp in point_amp: if amp < 0: pos_bool = False break return pos_bool
check_positive_flux
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, kwargs_ps):\n pos_bool = True\n for kwargs in kwargs_ps:\n point_amp = kwargs['point_amp']\n for amp in point_amp:\n if amp < 0:\n pos_bool = False\n break\n return pos_bool\n", "role": "user" }, { "content": "check_positive_flux", "role": "assistant" } ]
def x(self): (kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo ) = self.best_fit(bijective=False) param_class = self._param_class likelihoodModule = self.likelihoodModule logL, _ = likelihoodModule.logL(param_class.kwargs2args(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo)) return logL
best_fit_likelihood
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n (kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo\n ) = self.best_fit(bijective=False)\n param_class = self._param_class\n likelihoodModule = self.likelihoodModule\n logL, _ = likelihoodModule.logL(param_class.kwargs2args(kwargs_lens,\n kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo))\n return logL\n", "role": "user" }, { "content": "best_fit_likelihood", "role": "assistant" } ]
def x(self, n_burn, n_run, walkerRatio, sigma_scale=1, threadCount=1, init_samples=None, re_use_samples=True): param_class = self._param_class mcmc_class = Sampler(likelihoodModule=self.likelihoodModule) mean_start = param_class.kwargs2args(self._lens_temp, self._source_temp, self._lens_light_temp, self._ps_temp, self._cosmo_temp) lens_sigma, source_sigma, lens_light_sigma, ps_sigma, cosmo_sigma = (self ._updateManager.sigma_kwargs) sigma_start = param_class.kwargs2args(lens_sigma, source_sigma, lens_light_sigma, ps_sigma, cosmo_sigma) num_param, param_list = param_class.num_param() if not init_samples is None and re_use_samples is True: print('test that you are here!') num_samples, num_param_prev = np.shape(init_samples) print(num_samples, num_param_prev, num_param, 'shape of init_sample') if num_param_prev == num_param: print('re-using previous samples to initialize the next MCMC run.') initpos = ReusePositionGenerator(init_samples) else: print( 'Can not re-use previous MCMC samples due to change in option') initpos = None else: initpos = None samples, dist = mcmc_class.mcmc_CH(walkerRatio, n_run, n_burn, mean_start, np.array(sigma_start) * sigma_scale, threadCount= threadCount, mpi=self._mpi, init_pos=initpos) return samples, param_list, dist
mcmc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_burn, n_run, walkerRatio, sigma_scale=1, threadCount=1,\n init_samples=None, re_use_samples=True):\n param_class = self._param_class\n mcmc_class = Sampler(likelihoodModule=self.likelihoodModule)\n mean_start = param_class.kwargs2args(self._lens_temp, self._source_temp,\n self._lens_light_temp, self._ps_temp, self._cosmo_temp)\n lens_sigma, source_sigma, lens_light_sigma, ps_sigma, cosmo_sigma = (self\n ._updateManager.sigma_kwargs)\n sigma_start = param_class.kwargs2args(lens_sigma, source_sigma,\n lens_light_sigma, ps_sigma, cosmo_sigma)\n num_param, param_list = param_class.num_param()\n if not init_samples is None and re_use_samples is True:\n print('test that you are here!')\n num_samples, num_param_prev = np.shape(init_samples)\n print(num_samples, num_param_prev, num_param, 'shape of init_sample')\n if num_param_prev == num_param:\n print('re-using previous samples to initialize the next MCMC run.')\n initpos = ReusePositionGenerator(init_samples)\n else:\n print(\n 'Can not re-use previous MCMC samples due to change in option')\n initpos = None\n else:\n initpos = None\n samples, dist = mcmc_class.mcmc_CH(walkerRatio, n_run, n_burn,\n mean_start, np.array(sigma_start) * sigma_scale, threadCount=\n threadCount, mpi=self._mpi, init_pos=initpos)\n return samples, param_list, dist\n", "role": "user" }, { "content": "mcmc", "role": "assistant" } ]
def x(self, n_particles, n_iterations, sigma_scale=1, print_key='PSO', threadCount=1): param_class = self._param_class init_pos = param_class.kwargs2args(self._lens_temp, self._source_temp, self._lens_light_temp, self._ps_temp, self._cosmo_temp) lens_sigma, source_sigma, lens_light_sigma, ps_sigma, cosmo_sigma = (self ._updateManager.sigma_kwargs) sigma_start = param_class.kwargs2args(lens_sigma, source_sigma, lens_light_sigma, ps_sigma, cosmo_sigma) lowerLimit = np.array(init_pos) - np.array(sigma_start) * sigma_scale upperLimit = np.array(init_pos) + np.array(sigma_start) * sigma_scale num_param, param_list = param_class.num_param() sampler = Sampler(likelihoodModule=self.likelihoodModule) result, chain = sampler.pso(n_particles, n_iterations, lowerLimit, upperLimit, init_pos=init_pos, threadCount=threadCount, mpi=self. _mpi, print_key=print_key) (lens_result, source_result, lens_light_result, ps_result, cosmo_result ) = param_class.args2kwargs(result, bijective=True) return (lens_result, source_result, lens_light_result, ps_result, cosmo_result, chain, param_list)
pso
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_particles, n_iterations, sigma_scale=1, print_key='PSO',\n threadCount=1):\n param_class = self._param_class\n init_pos = param_class.kwargs2args(self._lens_temp, self._source_temp,\n self._lens_light_temp, self._ps_temp, self._cosmo_temp)\n lens_sigma, source_sigma, lens_light_sigma, ps_sigma, cosmo_sigma = (self\n ._updateManager.sigma_kwargs)\n sigma_start = param_class.kwargs2args(lens_sigma, source_sigma,\n lens_light_sigma, ps_sigma, cosmo_sigma)\n lowerLimit = np.array(init_pos) - np.array(sigma_start) * sigma_scale\n upperLimit = np.array(init_pos) + np.array(sigma_start) * sigma_scale\n num_param, param_list = param_class.num_param()\n sampler = Sampler(likelihoodModule=self.likelihoodModule)\n result, chain = sampler.pso(n_particles, n_iterations, lowerLimit,\n upperLimit, init_pos=init_pos, threadCount=threadCount, mpi=self.\n _mpi, print_key=print_key)\n (lens_result, source_result, lens_light_result, ps_result, cosmo_result\n ) = param_class.args2kwargs(result, bijective=True)\n return (lens_result, source_result, lens_light_result, ps_result,\n cosmo_result, chain, param_list)\n", "role": "user" }, { "content": "pso", "role": "assistant" } ]
def x(self, num_iter=10, no_break=True, stacking_method='median', block_center_neighbour=0, keep_psf_error_map=True, psf_symmetry=1, psf_iter_factor=1, verbose=True, compute_bands=None): kwargs_model = self._updateManager.kwargs_model param_class = self._param_class lens_updated = param_class.update_lens_scaling(self._cosmo_temp, self. _lens_temp) source_updated = param_class.image2source_plane(self._source_temp, lens_updated) if compute_bands is None: compute_bands = [True] * len(self.multi_band_list) for i in range(len(self.multi_band_list)): if compute_bands[i] is True: kwargs_data = self.multi_band_list[i][0] kwargs_psf = self.multi_band_list[i][1] kwargs_numerics = self.multi_band_list[i][2] image_model = class_creator.create_image_model(kwargs_data= kwargs_data, kwargs_psf=kwargs_psf, kwargs_numerics= kwargs_numerics, kwargs_model=kwargs_model) psf_iter = PsfFitting(image_model_class=image_model) kwargs_psf = psf_iter.update_iterative(kwargs_psf, lens_updated, source_updated, self._lens_light_temp, self._ps_temp, num_iter=num_iter, no_break=no_break, stacking_method= stacking_method, block_center_neighbour= block_center_neighbour, keep_psf_error_map= keep_psf_error_map, psf_symmetry=psf_symmetry, psf_iter_factor=psf_iter_factor, verbose=verbose) self.multi_band_list[i][1] = kwargs_psf return 0
psf_iteration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num_iter=10, no_break=True, stacking_method='median',\n block_center_neighbour=0, keep_psf_error_map=True, psf_symmetry=1,\n psf_iter_factor=1, verbose=True, compute_bands=None):\n kwargs_model = self._updateManager.kwargs_model\n param_class = self._param_class\n lens_updated = param_class.update_lens_scaling(self._cosmo_temp, self.\n _lens_temp)\n source_updated = param_class.image2source_plane(self._source_temp,\n lens_updated)\n if compute_bands is None:\n compute_bands = [True] * len(self.multi_band_list)\n for i in range(len(self.multi_band_list)):\n if compute_bands[i] is True:\n kwargs_data = self.multi_band_list[i][0]\n kwargs_psf = self.multi_band_list[i][1]\n kwargs_numerics = self.multi_band_list[i][2]\n image_model = class_creator.create_image_model(kwargs_data=\n kwargs_data, kwargs_psf=kwargs_psf, kwargs_numerics=\n kwargs_numerics, kwargs_model=kwargs_model)\n psf_iter = PsfFitting(image_model_class=image_model)\n kwargs_psf = psf_iter.update_iterative(kwargs_psf, lens_updated,\n source_updated, self._lens_light_temp, self._ps_temp,\n num_iter=num_iter, no_break=no_break, stacking_method=\n stacking_method, block_center_neighbour=\n block_center_neighbour, keep_psf_error_map=\n keep_psf_error_map, psf_symmetry=psf_symmetry,\n psf_iter_factor=psf_iter_factor, verbose=verbose)\n self.multi_band_list[i][1] = kwargs_psf\n return 0\n", "role": "user" }, { "content": "psf_iteration", "role": "assistant" } ]
def x(self, n_particles=10, n_iterations=10, lowerLimit=-0.2, upperLimit= 0.2, threadCount=1, compute_bands=None): kwargs_model = self._updateManager.kwargs_model param_class = self._updateManager.param_class(self._lens_temp) lens_updated = param_class.update_lens_scaling(self._cosmo_temp, self. _lens_temp) source_updated = param_class.image2source_plane(self._source_temp, lens_updated) if compute_bands is None: compute_bands = [True] * len(self.multi_band_list) for i in range(len(self.multi_band_list)): if compute_bands[i] is True: kwargs_data = self.multi_band_list[i][0] kwargs_psf = self.multi_band_list[i][1] kwargs_numerics = self.multi_band_list[i][2] alignmentFitting = AlignmentFitting(kwargs_data, kwargs_psf, kwargs_numerics, kwargs_model, lens_updated, source_updated, self._lens_light_temp, self._ps_temp) kwargs_data, chain = alignmentFitting.pso(n_particles= n_particles, n_iterations=n_iterations, lowerLimit= lowerLimit, upperLimit=upperLimit, threadCount=threadCount, mpi=self._mpi, print_key= 'Alignment fitting for band %s ...' % i) print('Align completed for band %s.' % i) print('ra_shift: %s, dec_shift: %s' % (kwargs_data['ra_shift'], kwargs_data['dec_shift'])) self.multi_band_list[i][0] = kwargs_data return 0
align_images
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_particles=10, n_iterations=10, lowerLimit=-0.2, upperLimit=\n 0.2, threadCount=1, compute_bands=None):\n kwargs_model = self._updateManager.kwargs_model\n param_class = self._updateManager.param_class(self._lens_temp)\n lens_updated = param_class.update_lens_scaling(self._cosmo_temp, self.\n _lens_temp)\n source_updated = param_class.image2source_plane(self._source_temp,\n lens_updated)\n if compute_bands is None:\n compute_bands = [True] * len(self.multi_band_list)\n for i in range(len(self.multi_band_list)):\n if compute_bands[i] is True:\n kwargs_data = self.multi_band_list[i][0]\n kwargs_psf = self.multi_band_list[i][1]\n kwargs_numerics = self.multi_band_list[i][2]\n alignmentFitting = AlignmentFitting(kwargs_data, kwargs_psf,\n kwargs_numerics, kwargs_model, lens_updated, source_updated,\n self._lens_light_temp, self._ps_temp)\n kwargs_data, chain = alignmentFitting.pso(n_particles=\n n_particles, n_iterations=n_iterations, lowerLimit=\n lowerLimit, upperLimit=upperLimit, threadCount=threadCount,\n mpi=self._mpi, print_key=\n 'Alignment fitting for band %s ...' % i)\n print('Align completed for band %s.' % i)\n print('ra_shift: %s, dec_shift: %s' % (kwargs_data['ra_shift'],\n kwargs_data['dec_shift']))\n self.multi_band_list[i][0] = kwargs_data\n return 0\n", "role": "user" }, { "content": "align_images", "role": "assistant" } ]