source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, grid, grid_scale, psf_subgrid=False, subgrid_res=1):
psf_type = self.psf_type
if psf_type == 'NONE':
return grid
elif psf_type == 'GAUSSIAN':
sigma = self._sigma_gaussian / grid_scale
img_conv = ndimage.filters.gaussian_filter(grid, sigma, mode=
'nearest', truncate=self._truncation)
return img_conv
elif psf_type == 'PIXEL':
if psf_subgrid:
kernel = self.subgrid_pixel_kernel(subgrid_res)
else:
kernel = self._kernel_pixel
img_conv1 = signal.fftconvolve(grid, kernel, mode='same')
return img_conv1
else:
raise ValueError('PSF type %s not valid!' % psf_type)
|
psf_convolution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, grid, grid_scale, psf_subgrid=False, subgrid_res=1):\n psf_type = self.psf_type\n if psf_type == 'NONE':\n return grid\n elif psf_type == 'GAUSSIAN':\n sigma = self._sigma_gaussian / grid_scale\n img_conv = ndimage.filters.gaussian_filter(grid, sigma, mode=\n 'nearest', truncate=self._truncation)\n return img_conv\n elif psf_type == 'PIXEL':\n if psf_subgrid:\n kernel = self.subgrid_pixel_kernel(subgrid_res)\n else:\n kernel = self._kernel_pixel\n img_conv1 = signal.fftconvolve(grid, kernel, mode='same')\n return img_conv1\n else:\n raise ValueError('PSF type %s not valid!' % psf_type)\n",
"role": "user"
},
{
"content": "psf_convolution",
"role": "assistant"
}
] |
def x(self, center1_x, center1_y, center2_x, center2_y, Fm):
com_x = (Fm * center1_x + center2_x) / (Fm + 1.0)
com_y = (Fm * center1_y + center2_y) / (Fm + 1.0)
return com_x, com_y
|
com
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, center1_x, center1_y, center2_x, center2_y, Fm):\n com_x = (Fm * center1_x + center2_x) / (Fm + 1.0)\n com_y = (Fm * center1_y + center2_y) / (Fm + 1.0)\n return com_x, com_y\n",
"role": "user"
},
{
"content": "com",
"role": "assistant"
}
] |
def x(self, center1_x, center1_y, center2_x, center2_y):
phi_G = np.arctan2(center2_y - center1_y, center2_x - center1_x)
return phi_G
|
angle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, center1_x, center1_y, center2_x, center2_y):\n phi_G = np.arctan2(center2_y - center1_y, center2_x - center1_x)\n return phi_G\n",
"role": "user"
},
{
"content": "angle",
"role": "assistant"
}
] |
def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo):
x_pos, y_pos = self._pointSource.image_position(kwargs_ps=kwargs_ps,
kwargs_lens=kwargs_lens)
x_pos, y_pos = self._param.real_image_positions(x_pos[0], y_pos[0],
kwargs_cosmo)
x_source, y_source = self._lensModel.ray_shooting(x_pos, y_pos, kwargs_lens
)
delay_arcsec = self._lensModel.fermat_potential(x_pos, y_pos, x_source,
y_source, kwargs_lens)
D_dt_model = kwargs_cosmo['D_dt']
delay_days = const.delay_arcsec2days(delay_arcsec, D_dt_model)
logL = self._logL_delays(delay_days, self._delays_measured, self.
_delays_errors)
return logL
|
logL
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo):\n x_pos, y_pos = self._pointSource.image_position(kwargs_ps=kwargs_ps,\n kwargs_lens=kwargs_lens)\n x_pos, y_pos = self._param.real_image_positions(x_pos[0], y_pos[0],\n kwargs_cosmo)\n x_source, y_source = self._lensModel.ray_shooting(x_pos, y_pos, kwargs_lens\n )\n delay_arcsec = self._lensModel.fermat_potential(x_pos, y_pos, x_source,\n y_source, kwargs_lens)\n D_dt_model = kwargs_cosmo['D_dt']\n delay_days = const.delay_arcsec2days(delay_arcsec, D_dt_model)\n logL = self._logL_delays(delay_days, self._delays_measured, self.\n _delays_errors)\n return logL\n",
"role": "user"
},
{
"content": "logL",
"role": "assistant"
}
] |
def x(self, delays_model, delays_measured, delays_errors):
delta_t_model = np.array(delays_model[1:]) - delays_model[0]
logL = np.sum(-(delta_t_model - delays_measured) ** 2 / (2 *
delays_errors ** 2))
return logL
|
logL_delays
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, delays_model, delays_measured, delays_errors):\n delta_t_model = np.array(delays_model[1:]) - delays_model[0]\n logL = np.sum(-(delta_t_model - delays_measured) ** 2 / (2 * \n delays_errors ** 2))\n return logL\n",
"role": "user"
},
{
"content": "logL_delays",
"role": "assistant"
}
] |
def x(self, x_shift, y_shift, pixel_unit=False):
if pixel_unit is True:
ra_shift, dec_shift = self.map_pix2coord(x_shift, y_shift)
else:
ra_shift, dec_shift = x_shift, y_shift
self._ra_at_xy_0 += ra_shift
self._dec_at_xy_0 += dec_shift
self._x_at_radec_0, self._y_at_radec_0 = util.map_coord2pix(-self.
_ra_at_xy_0, -self._dec_at_xy_0, 0, 0, self._Ma2pix)
|
shift_coordinate_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x_shift, y_shift, pixel_unit=False):\n if pixel_unit is True:\n ra_shift, dec_shift = self.map_pix2coord(x_shift, y_shift)\n else:\n ra_shift, dec_shift = x_shift, y_shift\n self._ra_at_xy_0 += ra_shift\n self._dec_at_xy_0 += dec_shift\n self._x_at_radec_0, self._y_at_radec_0 = util.map_coord2pix(-self.\n _ra_at_xy_0, -self._dec_at_xy_0, 0, 0, self._Ma2pix)\n",
"role": "user"
},
{
"content": "shift_coordinate_grid",
"role": "assistant"
}
] |
def x(self, kwargs_list):
if self._solver_type == 'PROFILE_SHEAR':
e1 = kwargs_list[1]['e1']
e2 = kwargs_list[1]['e2']
phi_ext, gamma_ext = param_util.ellipticity2phi_gamma(e1, e2)
else:
phi_ext = 0
lens_model = self._lens_mode_list[0]
if lens_model in ['SPEP', 'SPEMD', 'SIE', 'NIE']:
e1 = kwargs_list[0]['e1']
e2 = kwargs_list[0]['e2']
center_x = kwargs_list[0]['center_x']
center_y = kwargs_list[0]['center_y']
theta_E = kwargs_list[0]['theta_E']
x = [theta_E, e1, e2, center_x, center_y, phi_ext]
elif lens_model in ['NFW_ELLIPSE']:
e1 = kwargs_list[0]['e1']
e2 = kwargs_list[0]['e2']
center_x = kwargs_list[0]['center_x']
center_y = kwargs_list[0]['center_y']
theta_Rs = kwargs_list[0]['theta_Rs']
x = [theta_Rs, e1, e2, center_x, center_y, phi_ext]
elif lens_model in ['SHAPELETS_CART']:
coeffs = list(kwargs_list[0]['coeffs'])
[c10, c01, c20, c11, c02] = coeffs[1:6]
x = [c10, c01, c20, c11, c02, phi_ext]
else:
raise ValueError('Lens model %s not supported for 4-point solver!' %
lens_model)
return x
|
extract_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_list):\n if self._solver_type == 'PROFILE_SHEAR':\n e1 = kwargs_list[1]['e1']\n e2 = kwargs_list[1]['e2']\n phi_ext, gamma_ext = param_util.ellipticity2phi_gamma(e1, e2)\n else:\n phi_ext = 0\n lens_model = self._lens_mode_list[0]\n if lens_model in ['SPEP', 'SPEMD', 'SIE', 'NIE']:\n e1 = kwargs_list[0]['e1']\n e2 = kwargs_list[0]['e2']\n center_x = kwargs_list[0]['center_x']\n center_y = kwargs_list[0]['center_y']\n theta_E = kwargs_list[0]['theta_E']\n x = [theta_E, e1, e2, center_x, center_y, phi_ext]\n elif lens_model in ['NFW_ELLIPSE']:\n e1 = kwargs_list[0]['e1']\n e2 = kwargs_list[0]['e2']\n center_x = kwargs_list[0]['center_x']\n center_y = kwargs_list[0]['center_y']\n theta_Rs = kwargs_list[0]['theta_Rs']\n x = [theta_Rs, e1, e2, center_x, center_y, phi_ext]\n elif lens_model in ['SHAPELETS_CART']:\n coeffs = list(kwargs_list[0]['coeffs'])\n [c10, c01, c20, c11, c02] = coeffs[1:6]\n x = [c10, c01, c20, c11, c02, phi_ext]\n else:\n raise ValueError('Lens model %s not supported for 4-point solver!' %\n lens_model)\n return x\n",
"role": "user"
},
{
"content": "extract_array",
"role": "assistant"
}
] |
def x(self, x, y, grid_interp_x=None, grid_interp_y=None, f_=None, f_x=None,
f_y=None, f_xx=None, f_yy=None, f_xy=None):
n = len(np.atleast_1d(x))
if n <= 1 and np.shape(x) == ():
f_x_out = self.f_x_interp(x, y, grid_interp_x, grid_interp_y, f_x)
f_y_out = self.f_y_interp(x, y, grid_interp_x, grid_interp_y, f_y)
return f_x_out[0][0], f_y_out[0][0]
elif self._grid and n >= self._min_grid_number:
x_, y_ = util.get_axes(x, y)
f_x_out = self.f_x_interp(x_, y_, grid_interp_x, grid_interp_y, f_x)
f_y_out = self.f_y_interp(x_, y_, grid_interp_x, grid_interp_y, f_y)
f_x_out = util.image2array(f_x_out)
f_y_out = util.image2array(f_y_out)
else:
f_x_out, f_y_out = np.zeros(n), np.zeros(n)
for i in range(n):
f_x_out[i] = self.f_x_interp(x[i], y[i], grid_interp_x,
grid_interp_y, f_x)
f_y_out[i] = self.f_y_interp(x[i], y[i], grid_interp_x,
grid_interp_y, f_y)
return f_x_out, f_y_out
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, grid_interp_x=None, grid_interp_y=None, f_=None, f_x=None,\n f_y=None, f_xx=None, f_yy=None, f_xy=None):\n n = len(np.atleast_1d(x))\n if n <= 1 and np.shape(x) == ():\n f_x_out = self.f_x_interp(x, y, grid_interp_x, grid_interp_y, f_x)\n f_y_out = self.f_y_interp(x, y, grid_interp_x, grid_interp_y, f_y)\n return f_x_out[0][0], f_y_out[0][0]\n elif self._grid and n >= self._min_grid_number:\n x_, y_ = util.get_axes(x, y)\n f_x_out = self.f_x_interp(x_, y_, grid_interp_x, grid_interp_y, f_x)\n f_y_out = self.f_y_interp(x_, y_, grid_interp_x, grid_interp_y, f_y)\n f_x_out = util.image2array(f_x_out)\n f_y_out = util.image2array(f_y_out)\n else:\n f_x_out, f_y_out = np.zeros(n), np.zeros(n)\n for i in range(n):\n f_x_out[i] = self.f_x_interp(x[i], y[i], grid_interp_x,\n grid_interp_y, f_x)\n f_y_out[i] = self.f_y_interp(x[i], y[i], grid_interp_x,\n grid_interp_y, f_y)\n return f_x_out, f_y_out\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, x, y, grid_interp_x=None, grid_interp_y=None, f_=None, f_x=None,
f_y=None, f_xx=None, f_yy=None, f_xy=None):
n = len(np.atleast_1d(x))
if n <= 1 and np.shape(x) == ():
f_xx_out = self.f_xx_interp(x, y, grid_interp_x, grid_interp_y, f_xx)
f_yy_out = self.f_yy_interp(x, y, grid_interp_x, grid_interp_y, f_yy)
f_xy_out = self.f_xy_interp(x, y, grid_interp_x, grid_interp_y, f_xy)
return f_xx_out[0][0], f_yy_out[0][0], f_xy_out[0][0]
elif self._grid and n >= self._min_grid_number:
x_, y_ = util.get_axes(x, y)
f_xx_out = self.f_xx_interp(x_, y_, grid_interp_x, grid_interp_y, f_xx)
f_yy_out = self.f_yy_interp(x_, y_, grid_interp_x, grid_interp_y, f_yy)
f_xy_out = self.f_xy_interp(x_, y_, grid_interp_x, grid_interp_y, f_xy)
f_xx_out = util.image2array(f_xx_out)
f_yy_out = util.image2array(f_yy_out)
f_xy_out = util.image2array(f_xy_out)
else:
f_xx_out, f_yy_out, f_xy_out = np.zeros(n), np.zeros(n), np.zeros(n)
for i in range(n):
f_xx_out[i] = self.f_xx_interp(x[i], y[i], grid_interp_x,
grid_interp_y, f_xx)
f_yy_out[i] = self.f_yy_interp(x[i], y[i], grid_interp_x,
grid_interp_y, f_yy)
f_xy_out[i] = self.f_xy_interp(x[i], y[i], grid_interp_x,
grid_interp_y, f_xy)
return f_xx_out, f_yy_out, f_xy_out
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, grid_interp_x=None, grid_interp_y=None, f_=None, f_x=None,\n f_y=None, f_xx=None, f_yy=None, f_xy=None):\n n = len(np.atleast_1d(x))\n if n <= 1 and np.shape(x) == ():\n f_xx_out = self.f_xx_interp(x, y, grid_interp_x, grid_interp_y, f_xx)\n f_yy_out = self.f_yy_interp(x, y, grid_interp_x, grid_interp_y, f_yy)\n f_xy_out = self.f_xy_interp(x, y, grid_interp_x, grid_interp_y, f_xy)\n return f_xx_out[0][0], f_yy_out[0][0], f_xy_out[0][0]\n elif self._grid and n >= self._min_grid_number:\n x_, y_ = util.get_axes(x, y)\n f_xx_out = self.f_xx_interp(x_, y_, grid_interp_x, grid_interp_y, f_xx)\n f_yy_out = self.f_yy_interp(x_, y_, grid_interp_x, grid_interp_y, f_yy)\n f_xy_out = self.f_xy_interp(x_, y_, grid_interp_x, grid_interp_y, f_xy)\n f_xx_out = util.image2array(f_xx_out)\n f_yy_out = util.image2array(f_yy_out)\n f_xy_out = util.image2array(f_xy_out)\n else:\n f_xx_out, f_yy_out, f_xy_out = np.zeros(n), np.zeros(n), np.zeros(n)\n for i in range(n):\n f_xx_out[i] = self.f_xx_interp(x[i], y[i], grid_interp_x,\n grid_interp_y, f_xx)\n f_yy_out[i] = self.f_yy_interp(x[i], y[i], grid_interp_x,\n grid_interp_y, f_yy)\n f_xy_out[i] = self.f_xy_interp(x[i], y[i], grid_interp_x,\n grid_interp_y, f_xy)\n return f_xx_out, f_yy_out, f_xy_out\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(ax, lensModel, kwargs_lens, numPix=500, deltaPix=0.01, sourcePos_x=0,
sourcePos_y=0, point_source=False, with_caustics=False):
kwargs_data = sim_util.data_configure_simple(numPix, deltaPix)
data = Data(kwargs_data)
_frame_size = numPix * deltaPix
_coords = data._coords
x_grid, y_grid = data.coordinates
lensModelExt = LensModelExtensions(lensModel)
x_grid1d = util.image2array(x_grid)
y_grid1d = util.image2array(y_grid)
kappa_result = lensModel.kappa(x_grid1d, y_grid1d, kwargs_lens)
kappa_result = util.array2image(kappa_result)
im = ax.matshow(np.log10(kappa_result), origin='lower', extent=[0,
_frame_size, 0, _frame_size], cmap='Greys', vmin=-1, vmax=1)
if with_caustics is True:
ra_crit_list, dec_crit_list = lensModelExt.critical_curve_tiling(
kwargs_lens, compute_window=_frame_size, start_scale=deltaPix,
max_order=10)
ra_caustic_list, dec_caustic_list = lensModel.ray_shooting(ra_crit_list
, dec_crit_list, kwargs_lens)
plot_line_set(ax, _coords, ra_caustic_list, dec_caustic_list, color='g'
)
plot_line_set(ax, _coords, ra_crit_list, dec_crit_list, color='r')
if point_source:
from lenstronomy.LensModel.Solver.lens_equation_solver import LensEquationSolver
solver = LensEquationSolver(lensModel)
theta_x, theta_y = solver.image_position_from_source(sourcePos_x,
sourcePos_y, kwargs_lens, min_distance=deltaPix, search_window=
deltaPix * numPix)
mag_images = lensModel.magnification(theta_x, theta_y, kwargs_lens)
x_image, y_image = _coords.map_coord2pix(theta_x, theta_y)
abc_list = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']
for i in range(len(x_image)):
x_ = (x_image[i] + 0.5) * deltaPix
y_ = (y_image[i] + 0.5) * deltaPix
ax.plot(x_, y_, 'dk', markersize=4 * (1 + np.log(np.abs(
mag_images[i]))), alpha=0.5)
ax.text(x_, y_, abc_list[i], fontsize=20, color='k')
x_source, y_source = _coords.map_coord2pix(sourcePos_x, sourcePos_y)
ax.plot((x_source + 0.5) * deltaPix, (y_source + 0.5) * deltaPix,
'*k', markersize=10)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.autoscale(False)
return ax
|
lens_model_plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ax, lensModel, kwargs_lens, numPix=500, deltaPix=0.01, sourcePos_x=0,\n sourcePos_y=0, point_source=False, with_caustics=False):\n kwargs_data = sim_util.data_configure_simple(numPix, deltaPix)\n data = Data(kwargs_data)\n _frame_size = numPix * deltaPix\n _coords = data._coords\n x_grid, y_grid = data.coordinates\n lensModelExt = LensModelExtensions(lensModel)\n x_grid1d = util.image2array(x_grid)\n y_grid1d = util.image2array(y_grid)\n kappa_result = lensModel.kappa(x_grid1d, y_grid1d, kwargs_lens)\n kappa_result = util.array2image(kappa_result)\n im = ax.matshow(np.log10(kappa_result), origin='lower', extent=[0,\n _frame_size, 0, _frame_size], cmap='Greys', vmin=-1, vmax=1)\n if with_caustics is True:\n ra_crit_list, dec_crit_list = lensModelExt.critical_curve_tiling(\n kwargs_lens, compute_window=_frame_size, start_scale=deltaPix,\n max_order=10)\n ra_caustic_list, dec_caustic_list = lensModel.ray_shooting(ra_crit_list\n , dec_crit_list, kwargs_lens)\n plot_line_set(ax, _coords, ra_caustic_list, dec_caustic_list, color='g'\n )\n plot_line_set(ax, _coords, ra_crit_list, dec_crit_list, color='r')\n if point_source:\n from lenstronomy.LensModel.Solver.lens_equation_solver import LensEquationSolver\n solver = LensEquationSolver(lensModel)\n theta_x, theta_y = solver.image_position_from_source(sourcePos_x,\n sourcePos_y, kwargs_lens, min_distance=deltaPix, search_window=\n deltaPix * numPix)\n mag_images = lensModel.magnification(theta_x, theta_y, kwargs_lens)\n x_image, y_image = _coords.map_coord2pix(theta_x, theta_y)\n abc_list = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']\n for i in range(len(x_image)):\n x_ = (x_image[i] + 0.5) * deltaPix\n y_ = (y_image[i] + 0.5) * deltaPix\n ax.plot(x_, y_, 'dk', markersize=4 * (1 + np.log(np.abs(\n mag_images[i]))), alpha=0.5)\n ax.text(x_, y_, abc_list[i], fontsize=20, color='k')\n x_source, y_source = _coords.map_coord2pix(sourcePos_x, sourcePos_y)\n ax.plot((x_source + 0.5) * deltaPix, (y_source + 0.5) * deltaPix,\n '*k', markersize=10)\n ax.get_xaxis().set_visible(False)\n ax.get_yaxis().set_visible(False)\n ax.autoscale(False)\n return ax\n",
"role": "user"
},
{
"content": "lens_model_plot",
"role": "assistant"
}
] |
def x(ax, samples_mcmc, param_mcmc, dist_mcmc, num_average=100):
num_samples = len(samples_mcmc[:, 0])
num_average = int(num_average)
n_points = int((num_samples - num_samples % num_average) / num_average)
for i, param_name in enumerate(param_mcmc):
samples = samples_mcmc[:, i]
samples_averaged = np.average(samples[:int(n_points * num_average)]
.reshape(n_points, num_average), axis=1)
end_point = np.mean(samples_averaged)
samples_renormed = (samples_averaged - end_point) / np.std(
samples_averaged)
ax.plot(samples_renormed, label=param_name)
dist_averaged = -np.max(dist_mcmc[:int(n_points * num_average)].reshape
(n_points, num_average), axis=1)
dist_normed = (dist_averaged - np.max(dist_averaged)) / (np.max(
dist_averaged) - np.min(dist_averaged))
ax.plot(dist_normed, label='logL', color='k', linewidth=2)
ax.legend()
return ax
|
plot_mcmc_behaviour
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ax, samples_mcmc, param_mcmc, dist_mcmc, num_average=100):\n num_samples = len(samples_mcmc[:, 0])\n num_average = int(num_average)\n n_points = int((num_samples - num_samples % num_average) / num_average)\n for i, param_name in enumerate(param_mcmc):\n samples = samples_mcmc[:, i]\n samples_averaged = np.average(samples[:int(n_points * num_average)]\n .reshape(n_points, num_average), axis=1)\n end_point = np.mean(samples_averaged)\n samples_renormed = (samples_averaged - end_point) / np.std(\n samples_averaged)\n ax.plot(samples_renormed, label=param_name)\n dist_averaged = -np.max(dist_mcmc[:int(n_points * num_average)].reshape\n (n_points, num_average), axis=1)\n dist_normed = (dist_averaged - np.max(dist_averaged)) / (np.max(\n dist_averaged) - np.min(dist_averaged))\n ax.plot(dist_normed, label='logL', color='k', linewidth=2)\n ax.legend()\n return ax\n",
"role": "user"
},
{
"content": "plot_mcmc_behaviour",
"role": "assistant"
}
] |
def x(self, with_caustics=False, image_names=False):
f, axes = plt.subplots(2, 3, figsize=(16, 8))
self.data_plot(ax=axes[0, 0])
self.model_plot(ax=axes[0, 1], image_names=True)
self.normalized_residual_plot(ax=axes[0, 2], v_min=-6, v_max=6)
self.source_plot(ax=axes[1, 0], deltaPix_source=0.01, numPix=100,
with_caustics=with_caustics)
self.convergence_plot(ax=axes[1, 1], v_max=1)
self.magnification_plot(ax=axes[1, 2])
f.tight_layout()
f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=
0.0, hspace=0.05)
return f, axes
|
plot_main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, with_caustics=False, image_names=False):\n f, axes = plt.subplots(2, 3, figsize=(16, 8))\n self.data_plot(ax=axes[0, 0])\n self.model_plot(ax=axes[0, 1], image_names=True)\n self.normalized_residual_plot(ax=axes[0, 2], v_min=-6, v_max=6)\n self.source_plot(ax=axes[1, 0], deltaPix_source=0.01, numPix=100,\n with_caustics=with_caustics)\n self.convergence_plot(ax=axes[1, 1], v_max=1)\n self.magnification_plot(ax=axes[1, 2])\n f.tight_layout()\n f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=\n 0.0, hspace=0.05)\n return f, axes\n",
"role": "user"
},
{
"content": "plot_main",
"role": "assistant"
}
] |
def x(self):
f, axes = plt.subplots(2, 3, figsize=(16, 8))
self.decomposition_plot(ax=axes[0, 0], text='Lens light',
lens_light_add=True, unconvolved=True)
self.decomposition_plot(ax=axes[1, 0], text='Lens light convolved',
lens_light_add=True)
self.decomposition_plot(ax=axes[0, 1], text='Source light', source_add=
True, unconvolved=True)
self.decomposition_plot(ax=axes[1, 1], text='Source light convolved',
source_add=True)
self.decomposition_plot(ax=axes[0, 2], text='All components',
source_add=True, lens_light_add=True, unconvolved=True)
self.decomposition_plot(ax=axes[1, 2], text='All components convolved',
source_add=True, lens_light_add=True, point_source_add=True)
f.tight_layout()
f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=
0.0, hspace=0.05)
return f, axes
|
plot_separate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n f, axes = plt.subplots(2, 3, figsize=(16, 8))\n self.decomposition_plot(ax=axes[0, 0], text='Lens light',\n lens_light_add=True, unconvolved=True)\n self.decomposition_plot(ax=axes[1, 0], text='Lens light convolved',\n lens_light_add=True)\n self.decomposition_plot(ax=axes[0, 1], text='Source light', source_add=\n True, unconvolved=True)\n self.decomposition_plot(ax=axes[1, 1], text='Source light convolved',\n source_add=True)\n self.decomposition_plot(ax=axes[0, 2], text='All components',\n source_add=True, lens_light_add=True, unconvolved=True)\n self.decomposition_plot(ax=axes[1, 2], text='All components convolved',\n source_add=True, lens_light_add=True, point_source_add=True)\n f.tight_layout()\n f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=\n 0.0, hspace=0.05)\n return f, axes\n",
"role": "user"
},
{
"content": "plot_separate",
"role": "assistant"
}
] |
def x(self):
f, axes = plt.subplots(2, 3, figsize=(16, 8))
self.subtract_from_data_plot(ax=axes[0, 0], text='Data')
self.subtract_from_data_plot(ax=axes[0, 1], text='Data - Point Source',
point_source_add=True)
self.subtract_from_data_plot(ax=axes[0, 2], text='Data - Lens Light',
lens_light_add=True)
self.subtract_from_data_plot(ax=axes[1, 0], text='Data - Source Light',
source_add=True)
self.subtract_from_data_plot(ax=axes[1, 1], text=
'Data - Source Light - Point Source', source_add=True,
point_source_add=True)
self.subtract_from_data_plot(ax=axes[1, 2], text=
'Data - Lens Light - Point Source', lens_light_add=True,
point_source_add=True)
f.tight_layout()
f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=
0.0, hspace=0.05)
return f, axes
|
plot_subtract_from_data_all
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n f, axes = plt.subplots(2, 3, figsize=(16, 8))\n self.subtract_from_data_plot(ax=axes[0, 0], text='Data')\n self.subtract_from_data_plot(ax=axes[0, 1], text='Data - Point Source',\n point_source_add=True)\n self.subtract_from_data_plot(ax=axes[0, 2], text='Data - Lens Light',\n lens_light_add=True)\n self.subtract_from_data_plot(ax=axes[1, 0], text='Data - Source Light',\n source_add=True)\n self.subtract_from_data_plot(ax=axes[1, 1], text=\n 'Data - Source Light - Point Source', source_add=True,\n point_source_add=True)\n self.subtract_from_data_plot(ax=axes[1, 2], text=\n 'Data - Lens Light - Point Source', lens_light_add=True,\n point_source_add=True)\n f.tight_layout()\n f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=\n 0.0, hspace=0.05)\n return f, axes\n",
"role": "user"
},
{
"content": "plot_subtract_from_data_all",
"role": "assistant"
}
] |
def x(self, x, y, coeffs, beta, center_x=0, center_y=0):
shapelets = self._createShapelet(coeffs)
r, phi = param_util.cart2polar(x, y, center=np.array([center_x, center_y]))
alpha1_shapelets, alpha2_shapelets = self._alphaShapelets(shapelets, beta)
f_x = self._shapeletOutput(r, phi, beta, alpha1_shapelets)
f_y = self._shapeletOutput(r, phi, beta, alpha2_shapelets)
return f_x, f_y
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, coeffs, beta, center_x=0, center_y=0):\n shapelets = self._createShapelet(coeffs)\n r, phi = param_util.cart2polar(x, y, center=np.array([center_x, center_y]))\n alpha1_shapelets, alpha2_shapelets = self._alphaShapelets(shapelets, beta)\n f_x = self._shapeletOutput(r, phi, beta, alpha1_shapelets)\n f_y = self._shapeletOutput(r, phi, beta, alpha2_shapelets)\n return f_x, f_y\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, x, y, coeffs, beta, center_x=0, center_y=0):
shapelets = self._createShapelet(coeffs)
r, phi = param_util.cart2polar(x, y, center=np.array([center_x, center_y]))
kappa_shapelets = self._kappaShapelets(shapelets, beta)
gamma1_shapelets, gamma2_shapelets = self._gammaShapelets(shapelets, beta)
kappa_value = self._shapeletOutput(r, phi, beta, kappa_shapelets)
gamma1_value = self._shapeletOutput(r, phi, beta, gamma1_shapelets)
gamma2_value = self._shapeletOutput(r, phi, beta, gamma2_shapelets)
f_xx = kappa_value + gamma1_value
f_xy = gamma2_value
f_yy = kappa_value - gamma1_value
return f_xx, f_yy, f_xy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, coeffs, beta, center_x=0, center_y=0):\n shapelets = self._createShapelet(coeffs)\n r, phi = param_util.cart2polar(x, y, center=np.array([center_x, center_y]))\n kappa_shapelets = self._kappaShapelets(shapelets, beta)\n gamma1_shapelets, gamma2_shapelets = self._gammaShapelets(shapelets, beta)\n kappa_value = self._shapeletOutput(r, phi, beta, kappa_shapelets)\n gamma1_value = self._shapeletOutput(r, phi, beta, gamma1_shapelets)\n gamma2_value = self._shapeletOutput(r, phi, beta, gamma2_shapelets)\n f_xx = kappa_value + gamma1_value\n f_xy = gamma2_value\n f_yy = kappa_value - gamma1_value\n return f_xx, f_yy, f_xy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(self, coeff):
n_coeffs = len(coeff)
num_l = self._get_num_l(n_coeffs)
shapelets = np.zeros((num_l + 1, num_l + 1), 'complex')
nl = 0
k = 0
i = 0
while i < len(coeff):
if i % 2 == 0:
shapelets[nl][k] += coeff[i] / 2.0
shapelets[k][nl] += coeff[i] / 2.0
if k == nl:
nl += 1
k = 0
i += 1
continue
else:
k += 1
i += 1
continue
else:
shapelets[nl][k] += 1.0j * coeff[i] / 2.0
shapelets[k][nl] -= 1.0j * coeff[i] / 2.0
i += 1
return shapelets
|
createShapelet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, coeff):\n n_coeffs = len(coeff)\n num_l = self._get_num_l(n_coeffs)\n shapelets = np.zeros((num_l + 1, num_l + 1), 'complex')\n nl = 0\n k = 0\n i = 0\n while i < len(coeff):\n if i % 2 == 0:\n shapelets[nl][k] += coeff[i] / 2.0\n shapelets[k][nl] += coeff[i] / 2.0\n if k == nl:\n nl += 1\n k = 0\n i += 1\n continue\n else:\n k += 1\n i += 1\n continue\n else:\n shapelets[nl][k] += 1.0j * coeff[i] / 2.0\n shapelets[k][nl] -= 1.0j * coeff[i] / 2.0\n i += 1\n return shapelets\n",
"role": "user"
},
{
"content": "createShapelet",
"role": "assistant"
}
] |
def x(self, r, phi, beta, shapelets):
if type(r) == float or type(r) == int or type(r) == type(np.float64(1)
) or len(r) <= 1:
values = 0.0
else:
values = np.zeros(len(r), 'complex')
for nl in range(0, len(shapelets)):
for nr in range(0, len(shapelets)):
value = shapelets[nl][nr] * self._chi_lr(r, phi, nl, nr, beta)
values += value
return values.real
|
shapeletOutput
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, phi, beta, shapelets):\n if type(r) == float or type(r) == int or type(r) == type(np.float64(1)\n ) or len(r) <= 1:\n values = 0.0\n else:\n values = np.zeros(len(r), 'complex')\n for nl in range(0, len(shapelets)):\n for nr in range(0, len(shapelets)):\n value = shapelets[nl][nr] * self._chi_lr(r, phi, nl, nr, beta)\n values += value\n return values.real\n",
"role": "user"
},
{
"content": "shapeletOutput",
"role": "assistant"
}
] |
def x(self, r, phi, nl, nr, beta):
m = int((nr - nl).real)
n = int((nr + nl).real)
p = int((n - abs(m)) / 2)
p2 = int((n + abs(m)) / 2)
q = int(abs(m))
if p % 2 == 0:
prefac = 1
else:
prefac = -1
prefactor = prefac / beta ** (abs(m) + 1) * np.sqrt(math.factorial(p) /
(np.pi * math.factorial(p2)))
poly = self.poly[p][q]
return prefactor * r ** q * poly((r / beta) ** 2) * np.exp(-(r / beta) **
2 / 2) * np.exp(-1.0j * m * phi)
|
chi_lr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, phi, nl, nr, beta):\n m = int((nr - nl).real)\n n = int((nr + nl).real)\n p = int((n - abs(m)) / 2)\n p2 = int((n + abs(m)) / 2)\n q = int(abs(m))\n if p % 2 == 0:\n prefac = 1\n else:\n prefac = -1\n prefactor = prefac / beta ** (abs(m) + 1) * np.sqrt(math.factorial(p) /\n (np.pi * math.factorial(p2)))\n poly = self.poly[p][q]\n return prefactor * r ** q * poly((r / beta) ** 2) * np.exp(-(r / beta) **\n 2 / 2) * np.exp(-1.0j * m * phi)\n",
"role": "user"
},
{
"content": "chi_lr",
"role": "assistant"
}
] |
def x(self, shapelets, beta):
output = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex')
for nl in range(0, len(shapelets)):
for nr in range(0, len(shapelets)):
a_lr = shapelets[nl][nr]
if nl > 0:
output[nl - 1][nr + 1] += a_lr * np.sqrt(nl * (nr + 1)) / 2
if nr > 0:
output[nl - 1][nr - 1] += a_lr * np.sqrt(nl * nr) / 2
output[nl + 1][nr + 1] += a_lr * np.sqrt((nl + 1) * (nr + 1)) / 2
if nr > 0:
output[nl + 1][nr - 1] += a_lr * np.sqrt((nl + 1) * nr) / 2
return output / beta ** 2
|
kappaShapelets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shapelets, beta):\n output = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex')\n for nl in range(0, len(shapelets)):\n for nr in range(0, len(shapelets)):\n a_lr = shapelets[nl][nr]\n if nl > 0:\n output[nl - 1][nr + 1] += a_lr * np.sqrt(nl * (nr + 1)) / 2\n if nr > 0:\n output[nl - 1][nr - 1] += a_lr * np.sqrt(nl * nr) / 2\n output[nl + 1][nr + 1] += a_lr * np.sqrt((nl + 1) * (nr + 1)) / 2\n if nr > 0:\n output[nl + 1][nr - 1] += a_lr * np.sqrt((nl + 1) * nr) / 2\n return output / beta ** 2\n",
"role": "user"
},
{
"content": "kappaShapelets",
"role": "assistant"
}
] |
def x(self, shapelets, beta):
output_x = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex')
output_y = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex')
for nl in range(0, len(shapelets)):
for nr in range(0, len(shapelets)):
a_lr = shapelets[nl][nr]
output_x[nl][nr + 1] -= a_lr * np.sqrt(nr + 1) / 2
output_y[nl][nr + 1] -= a_lr * np.sqrt(nr + 1) / 2 * 1.0j
output_x[nl + 1][nr] -= a_lr * np.sqrt(nl + 1) / 2
output_y[nl + 1][nr] += a_lr * np.sqrt(nl + 1) / 2 * 1.0j
if nl > 0:
output_x[nl - 1][nr] += a_lr * np.sqrt(nl) / 2
output_y[nl - 1][nr] -= a_lr * np.sqrt(nl) / 2 * 1.0j
if nr > 0:
output_x[nl][nr - 1] += a_lr * np.sqrt(nr) / 2
output_y[nl][nr - 1] += a_lr * np.sqrt(nr) / 2 * 1.0j
return output_x / beta, output_y / beta
|
alphaShapelets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shapelets, beta):\n output_x = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex')\n output_y = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex')\n for nl in range(0, len(shapelets)):\n for nr in range(0, len(shapelets)):\n a_lr = shapelets[nl][nr]\n output_x[nl][nr + 1] -= a_lr * np.sqrt(nr + 1) / 2\n output_y[nl][nr + 1] -= a_lr * np.sqrt(nr + 1) / 2 * 1.0j\n output_x[nl + 1][nr] -= a_lr * np.sqrt(nl + 1) / 2\n output_y[nl + 1][nr] += a_lr * np.sqrt(nl + 1) / 2 * 1.0j\n if nl > 0:\n output_x[nl - 1][nr] += a_lr * np.sqrt(nl) / 2\n output_y[nl - 1][nr] -= a_lr * np.sqrt(nl) / 2 * 1.0j\n if nr > 0:\n output_x[nl][nr - 1] += a_lr * np.sqrt(nr) / 2\n output_y[nl][nr - 1] += a_lr * np.sqrt(nr) / 2 * 1.0j\n return output_x / beta, output_y / beta\n",
"role": "user"
},
{
"content": "alphaShapelets",
"role": "assistant"
}
] |
def x(self):
const_SI = const.c ** 2 / (4 * np.pi * const.G)
conversion = const.Mpc / const.M_sun
pre_const = const_SI * conversion
Epsilon_Crit = self.D_s / (self.D_d * self.D_ds) * pre_const
return Epsilon_Crit
|
epsilon_crit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n const_SI = const.c ** 2 / (4 * np.pi * const.G)\n conversion = const.Mpc / const.M_sun\n pre_const = const_SI * conversion\n Epsilon_Crit = self.D_s / (self.D_d * self.D_ds) * pre_const\n return Epsilon_Crit\n",
"role": "user"
},
{
"content": "epsilon_crit",
"role": "assistant"
}
] |
def x(self, x, tau):
return np.log(x * (tau + np.sqrt(tau ** 2 + x ** 2)) ** -1)
|
L
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, tau):\n return np.log(x * (tau + np.sqrt(tau ** 2 + x ** 2)) ** -1)\n",
"role": "user"
},
{
"content": "L",
"role": "assistant"
}
] |
def x(self, x):
if isinstance(x, np.ndarray):
nfwvals = np.ones_like(x)
inds1 = np.where(x < 1)
inds2 = np.where(x > 1)
nfwvals[inds1] = (1 - x[inds1] ** 2) ** -0.5 * np.arctanh((1 - x[
inds1] ** 2) ** 0.5)
nfwvals[inds2] = (x[inds2] ** 2 - 1) ** -0.5 * np.arctan((x[inds2] **
2 - 1) ** 0.5)
return nfwvals
elif isinstance(x, float) or isinstance(x, int):
if x == 1:
return 1
if x < 1:
return (1 - x ** 2) ** -0.5 * np.arctanh((1 - x ** 2) ** 0.5)
else:
return (x ** 2 - 1) ** -0.5 * np.arctan((x ** 2 - 1) ** 0.5)
|
F
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n if isinstance(x, np.ndarray):\n nfwvals = np.ones_like(x)\n inds1 = np.where(x < 1)\n inds2 = np.where(x > 1)\n nfwvals[inds1] = (1 - x[inds1] ** 2) ** -0.5 * np.arctanh((1 - x[\n inds1] ** 2) ** 0.5)\n nfwvals[inds2] = (x[inds2] ** 2 - 1) ** -0.5 * np.arctan((x[inds2] **\n 2 - 1) ** 0.5)\n return nfwvals\n elif isinstance(x, float) or isinstance(x, int):\n if x == 1:\n return 1\n if x < 1:\n return (1 - x ** 2) ** -0.5 * np.arctanh((1 - x ** 2) ** 0.5)\n else:\n return (x ** 2 - 1) ** -0.5 * np.arctan((x ** 2 - 1) ** 0.5)\n",
"role": "user"
},
{
"content": "F",
"role": "assistant"
}
] |
def x(self, x, y, Rs, rho0, r_trunc, center_x=0, center_y=0):
x_ = x - center_x
y_ = y - center_y
R = np.sqrt(x_ ** 2 + y_ ** 2)
x = R * Rs ** -1
tau = float(r_trunc) * Rs ** -1
Fx = self._F(x, tau)
return 2 * rho0 * Rs * Fx
|
density_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, Rs, rho0, r_trunc, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n x = R * Rs ** -1\n tau = float(r_trunc) * Rs ** -1\n Fx = self._F(x, tau)\n return 2 * rho0 * Rs * Fx\n",
"role": "user"
},
{
"content": "density_2d",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0, r_trunc):
x = R * Rs ** -1
func = r_trunc ** 2 * (-2 * x * (1 + r_trunc ** 2) + 4 * (1 + x) *
r_trunc * np.arctan(x / r_trunc) - 2 * (1 + x) * (-1 + r_trunc ** 2
) * np.log(Rs) + 2 * (1 + x) * (-1 + r_trunc ** 2) * np.log(Rs * (1 +
x)) + 2 * (1 + x) * (-1 + r_trunc ** 2) * np.log(Rs * r_trunc) - (1 +
x) * (-1 + r_trunc ** 2) * np.log(Rs ** 2 * (x ** 2 + r_trunc ** 2))
) / (2.0 * (1 + x) * (1 + r_trunc ** 2) ** 2)
m_3d = 4 * np.pi * Rs ** 3 * rho0 * func
return m_3d
|
mass_3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0, r_trunc):\n x = R * Rs ** -1\n func = r_trunc ** 2 * (-2 * x * (1 + r_trunc ** 2) + 4 * (1 + x) *\n r_trunc * np.arctan(x / r_trunc) - 2 * (1 + x) * (-1 + r_trunc ** 2\n ) * np.log(Rs) + 2 * (1 + x) * (-1 + r_trunc ** 2) * np.log(Rs * (1 +\n x)) + 2 * (1 + x) * (-1 + r_trunc ** 2) * np.log(Rs * r_trunc) - (1 +\n x) * (-1 + r_trunc ** 2) * np.log(Rs ** 2 * (x ** 2 + r_trunc ** 2))\n ) / (2.0 * (1 + x) * (1 + r_trunc ** 2) ** 2)\n m_3d = 4 * np.pi * Rs ** 3 * rho0 * func\n return m_3d\n",
"role": "user"
},
{
"content": "mass_3d",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0, r_trunc):
x = R / Rs
tau = float(r_trunc) / Rs
hx = self._h(x, tau)
return 2 * rho0 * Rs ** 3 * hx
|
nfwPot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0, r_trunc):\n x = R / Rs\n tau = float(r_trunc) / Rs\n hx = self._h(x, tau)\n return 2 * rho0 * Rs ** 3 * hx\n",
"role": "user"
},
{
"content": "nfwPot",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0, r_trunc, ax_x, ax_y):
if isinstance(R, int) or isinstance(R, float):
R = max(R, 1e-05)
else:
R[R <= 1e-05] = 1e-05
x = R / Rs
tau = float(r_trunc) / Rs
gx = self._g(x, tau)
a = 4 * rho0 * Rs * gx / x ** 2
return a * ax_x, a * ax_y
|
nfwAlpha
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0, r_trunc, ax_x, ax_y):\n if isinstance(R, int) or isinstance(R, float):\n R = max(R, 1e-05)\n else:\n R[R <= 1e-05] = 1e-05\n x = R / Rs\n tau = float(r_trunc) / Rs\n gx = self._g(x, tau)\n a = 4 * rho0 * Rs * gx / x ** 2\n return a * ax_x, a * ax_y\n",
"role": "user"
},
{
"content": "nfwAlpha",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0, r_trunc):
x = R / Rs
tau = r_trunc / Rs
gx = self._g(x, tau)
m_2d = 4 * rho0 * Rs * R ** 2 * gx / x ** 2 * np.pi
return m_2d
|
mass_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0, r_trunc):\n x = R / Rs\n tau = r_trunc / Rs\n gx = self._g(x, tau)\n m_2d = 4 * rho0 * Rs * R ** 2 * gx / x ** 2 * np.pi\n return m_2d\n",
"role": "user"
},
{
"content": "mass_2d",
"role": "assistant"
}
] |
def x(self, X, tau):
t2 = tau ** 2
_F = self.F(X)
a = t2 * (t2 + 1) ** -2
if isinstance(X, np.ndarray):
b = np.ones_like(X)
b[X == 1] = (t2 + 1) * 1.0 / 3
b[X != 1] = (t2 + 1) * (X[X != 1] ** 2 - 1) ** -1 * (1 - _F[X != 1])
elif isinstance(X, float) or isinstance(X, int):
if X == 1:
b = (t2 + 1) * 1.0 / 3
else:
b = (t2 + 1) * (X ** 2 - 1) ** -1 * (1 - _F)
else:
raise ValueError(
"The variable type is not compatible with the function, please use float, int or ndarray's."
)
c = 2 * _F
d = -np.pi * (t2 + X ** 2) ** -0.5
e = (t2 - 1) * (tau * (t2 + X ** 2) ** 0.5) ** -1 * self.L(X, tau)
result = a * (b + c + d + e)
return result
|
F
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, tau):\n t2 = tau ** 2\n _F = self.F(X)\n a = t2 * (t2 + 1) ** -2\n if isinstance(X, np.ndarray):\n b = np.ones_like(X)\n b[X == 1] = (t2 + 1) * 1.0 / 3\n b[X != 1] = (t2 + 1) * (X[X != 1] ** 2 - 1) ** -1 * (1 - _F[X != 1])\n elif isinstance(X, float) or isinstance(X, int):\n if X == 1:\n b = (t2 + 1) * 1.0 / 3\n else:\n b = (t2 + 1) * (X ** 2 - 1) ** -1 * (1 - _F)\n else:\n raise ValueError(\n \"The variable type is not compatible with the function, please use float, int or ndarray's.\"\n )\n c = 2 * _F\n d = -np.pi * (t2 + X ** 2) ** -0.5\n e = (t2 - 1) * (tau * (t2 + X ** 2) ** 0.5) ** -1 * self.L(X, tau)\n result = a * (b + c + d + e)\n return result\n",
"role": "user"
},
{
"content": "F",
"role": "assistant"
}
] |
def x(self, x, tau):
return tau ** 2 * (tau ** 2 + 1) ** -2 * ((tau ** 2 + 1 + 2 * (x ** 2 -
1)) * self.F(x) + tau * np.pi + (tau ** 2 - 1) * np.log(tau) + np.
sqrt(tau ** 2 + x ** 2) * (-np.pi + self.L(x, tau) * (tau ** 2 - 1) *
tau ** -1))
|
g
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, tau):\n return tau ** 2 * (tau ** 2 + 1) ** -2 * ((tau ** 2 + 1 + 2 * (x ** 2 -\n 1)) * self.F(x) + tau * np.pi + (tau ** 2 - 1) * np.log(tau) + np.\n sqrt(tau ** 2 + x ** 2) * (-np.pi + self.L(x, tau) * (tau ** 2 - 1) *\n tau ** -1))\n",
"role": "user"
},
{
"content": "g",
"role": "assistant"
}
] |
def x(self, X, tau):
def x(y):
if isinstance(y, float) or isinstance(y, int):
if y > 1:
return np.arccosh(y)
else:
return np.arccos(y)
else:
values = np.ones_like(y)
inds1 = np.where(y < 1)
inds2 = np.where(y > 1)
values[inds1] = np.arccos(y[inds1])
values[inds2] = np.arccos((1 - y[inds2]) ** 0.5)
return values
def x(x):
if isinstance(x, float) or isinstance(x, int):
if x < 1:
return np.log(x / 2.0) ** 2 - np.arccosh(1.0 / x) ** 2
else:
return np.log(x / 2.0) ** 2 - np.arccos(1.0 / x) ** 2
else:
inds1 = np.where(x < 1)
inds2 = np.where(x >= 1)
y = np.zeros_like(x)
y[inds1] = np.log(x[inds1] / 2.0) ** 2 - np.arccosh(1.0 / x[inds1]
) ** 2
y[inds2] = np.log(x[inds2] / 2.0) ** 2 - np.arccosh(1.0 / x[inds2]
) ** 2
return y
def x(x, tau):
u = x ** 2
t2 = tau ** 2
Lx = self.L(u ** 0.5, tau)
return (t2 + 1) ** -2 * (2 * t2 * np.pi * (tau - (t2 + u) ** 0.5 +
tau * np.log(tau + (t2 + u) ** 0.5)) + 2 * (t2 - 1) * tau * (t2 +
u) ** 0.5 * Lx + t2 * (t2 - 1) * Lx ** 2 + 4 * t2 * (u - 1) *
self.F(u ** 0.5) + t2 * (t2 - 1) * cos_func(u ** -0.5) ** 2 +
t2 * ((t2 - 1) * np.log(tau) - t2 - 1) * np.log(u) - t2 * ((t2 -
1) * np.log(tau) * np.log(4 * tau) + 2 * np.log(0.5 * tau) - 2 *
tau * (tau - np.pi) * np.log(tau * 2)))
c = 1e-09
rescale = 1
if np.any(X - c < 1):
warnings.warn(
'Truncated NFW potential not yet implemented for x<1. Using the expression for the NFW potential in this regime isntead.'
)
rescale = tnfw_func(1.00001, tau) * nfw_func(1) ** -1
if isinstance(X, float) or isinstance(X, int):
if X < 1:
X = min(X, 0.001)
return nfw_func(X) * rescale
else:
return tnfw_func(X, tau)
else:
X[np.where(X < 0.001)] = 0.001
values = np.zeros_like(X)
inds1, inds2 = np.where(X < 1), np.where(X >= 1)
values[inds1] = nfw_func(X[inds1]) * rescale
values[inds2] = tnfw_func(X[inds2], tau)
return values
|
h
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, tau):\n\n def x(y):\n if isinstance(y, float) or isinstance(y, int):\n if y > 1:\n return np.arccosh(y)\n else:\n return np.arccos(y)\n else:\n values = np.ones_like(y)\n inds1 = np.where(y < 1)\n inds2 = np.where(y > 1)\n values[inds1] = np.arccos(y[inds1])\n values[inds2] = np.arccos((1 - y[inds2]) ** 0.5)\n return values\n\n def x(x):\n if isinstance(x, float) or isinstance(x, int):\n if x < 1:\n return np.log(x / 2.0) ** 2 - np.arccosh(1.0 / x) ** 2\n else:\n return np.log(x / 2.0) ** 2 - np.arccos(1.0 / x) ** 2\n else:\n inds1 = np.where(x < 1)\n inds2 = np.where(x >= 1)\n y = np.zeros_like(x)\n y[inds1] = np.log(x[inds1] / 2.0) ** 2 - np.arccosh(1.0 / x[inds1]\n ) ** 2\n y[inds2] = np.log(x[inds2] / 2.0) ** 2 - np.arccosh(1.0 / x[inds2]\n ) ** 2\n return y\n\n def x(x, tau):\n u = x ** 2\n t2 = tau ** 2\n Lx = self.L(u ** 0.5, tau)\n return (t2 + 1) ** -2 * (2 * t2 * np.pi * (tau - (t2 + u) ** 0.5 + \n tau * np.log(tau + (t2 + u) ** 0.5)) + 2 * (t2 - 1) * tau * (t2 +\n u) ** 0.5 * Lx + t2 * (t2 - 1) * Lx ** 2 + 4 * t2 * (u - 1) *\n self.F(u ** 0.5) + t2 * (t2 - 1) * cos_func(u ** -0.5) ** 2 + \n t2 * ((t2 - 1) * np.log(tau) - t2 - 1) * np.log(u) - t2 * ((t2 -\n 1) * np.log(tau) * np.log(4 * tau) + 2 * np.log(0.5 * tau) - 2 *\n tau * (tau - np.pi) * np.log(tau * 2)))\n c = 1e-09\n rescale = 1\n if np.any(X - c < 1):\n warnings.warn(\n 'Truncated NFW potential not yet implemented for x<1. Using the expression for the NFW potential in this regime isntead.'\n )\n rescale = tnfw_func(1.00001, tau) * nfw_func(1) ** -1\n if isinstance(X, float) or isinstance(X, int):\n if X < 1:\n X = min(X, 0.001)\n return nfw_func(X) * rescale\n else:\n return tnfw_func(X, tau)\n else:\n X[np.where(X < 0.001)] = 0.001\n values = np.zeros_like(X)\n inds1, inds2 = np.where(X < 1), np.where(X >= 1)\n values[inds1] = nfw_func(X[inds1]) * rescale\n values[inds2] = tnfw_func(X[inds2], tau)\n return values\n",
"role": "user"
},
{
"content": "h",
"role": "assistant"
}
] |
def x(x, y, center=np.array([0, 0])):
coordShift_x = x - center[0]
coordShift_y = y - center[1]
r = np.sqrt(coordShift_x ** 2 + coordShift_y ** 2)
phi = np.arctan2(coordShift_y, coordShift_x)
return r, phi
|
cart2polar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, center=np.array([0, 0])):\n coordShift_x = x - center[0]\n coordShift_y = y - center[1]\n r = np.sqrt(coordShift_x ** 2 + coordShift_y ** 2)\n phi = np.arctan2(coordShift_y, coordShift_x)\n return r, phi\n",
"role": "user"
},
{
"content": "cart2polar",
"role": "assistant"
}
] |
def x(r, phi, center):
x = r * np.cos(phi)
y = r * np.sin(phi)
return x - center[0], y - center[1]
|
polar2cart
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(r, phi, center):\n x = r * np.cos(phi)\n y = r * np.sin(phi)\n return x - center[0], y - center[1]\n",
"role": "user"
},
{
"content": "polar2cart",
"role": "assistant"
}
] |
def x(e1, e2):
phi = np.arctan2(e2, e1) / 2
gamma = np.sqrt(e1 ** 2 + e2 ** 2)
return phi, gamma
|
ellipticity2phi_gamma
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(e1, e2):\n phi = np.arctan2(e2, e1) / 2\n gamma = np.sqrt(e1 ** 2 + e2 ** 2)\n return phi, gamma\n",
"role": "user"
},
{
"content": "ellipticity2phi_gamma",
"role": "assistant"
}
] |
def x(x, y, e1, e2, center_x=0, center_y=0):
x_shift = x - center_x
y_shift = y - center_y
x_ = (1 - e1) * x_shift - e2 * y_shift
y_ = -e2 * x_shift + (1 + e1) * y_shift
det = np.sqrt((1 - e1) * (1 + e1) + e2 ** 2)
return x_ / det, y_ / det
|
transform_e1e2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, e1, e2, center_x=0, center_y=0):\n x_shift = x - center_x\n y_shift = y - center_y\n x_ = (1 - e1) * x_shift - e2 * y_shift\n y_ = -e2 * x_shift + (1 + e1) * y_shift\n det = np.sqrt((1 - e1) * (1 + e1) + e2 ** 2)\n return x_ / det, y_ / det\n",
"role": "user"
},
{
"content": "transform_e1e2",
"role": "assistant"
}
] |
def x(e1, e2):
phi = np.arctan2(e2, e1) / 2
c = np.sqrt(e1 ** 2 + e2 ** 2)
if c > 0.999:
c = 0.999
q = (1 - c) / (1 + c)
return phi, q
|
ellipticity2phi_q
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(e1, e2):\n phi = np.arctan2(e2, e1) / 2\n c = np.sqrt(e1 ** 2 + e2 ** 2)\n if c > 0.999:\n c = 0.999\n q = (1 - c) / (1 + c)\n return phi, q\n",
"role": "user"
},
{
"content": "ellipticity2phi_q",
"role": "assistant"
}
] |
def x(self, kwargs_lens, kwargs_ps, kappa_ext=0):
fermat_pot = self.lens_analysis.fermat_potential(kwargs_lens, kwargs_ps)
time_delay = self.lensCosmo.time_delay_units(fermat_pot, kappa_ext)
return time_delay
|
time_delays
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, kwargs_ps, kappa_ext=0):\n fermat_pot = self.lens_analysis.fermat_potential(kwargs_lens, kwargs_ps)\n time_delay = self.lensCosmo.time_delay_units(fermat_pot, kappa_ext)\n return time_delay\n",
"role": "user"
},
{
"content": "time_delays",
"role": "assistant"
}
] |
def x(self, kwargs_lens, kwargs_lens_light, lens_light_model_bool_list=None,
aniso_param=1, r_eff=None, R_slit=0.81, dR_slit=0.1, psf_fwhm=0.7,
num_evaluate=1000):
gamma = kwargs_lens[0]['gamma']
if 'center_x' in kwargs_lens_light[0]:
center_x, center_y = kwargs_lens_light[0]['center_x'
], kwargs_lens_light[0]['center_y']
else:
center_x, center_y = 0, 0
if r_eff is None:
r_eff = self.lens_analysis.half_light_radius_lens(kwargs_lens_light,
center_x=center_x, center_y=center_y, model_bool_list=
lens_light_model_bool_list)
theta_E = kwargs_lens[0]['theta_E']
r_ani = aniso_param * r_eff
sigma2 = self.analytic_kinematics.vel_disp(gamma, theta_E, r_eff, r_ani,
R_slit, dR_slit, FWHM=psf_fwhm, rendering_number=num_evaluate)
return sigma2
|
velocity_dispersion
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, kwargs_lens_light, lens_light_model_bool_list=None,\n aniso_param=1, r_eff=None, R_slit=0.81, dR_slit=0.1, psf_fwhm=0.7,\n num_evaluate=1000):\n gamma = kwargs_lens[0]['gamma']\n if 'center_x' in kwargs_lens_light[0]:\n center_x, center_y = kwargs_lens_light[0]['center_x'\n ], kwargs_lens_light[0]['center_y']\n else:\n center_x, center_y = 0, 0\n if r_eff is None:\n r_eff = self.lens_analysis.half_light_radius_lens(kwargs_lens_light,\n center_x=center_x, center_y=center_y, model_bool_list=\n lens_light_model_bool_list)\n theta_E = kwargs_lens[0]['theta_E']\n r_ani = aniso_param * r_eff\n sigma2 = self.analytic_kinematics.vel_disp(gamma, theta_E, r_eff, r_ani,\n R_slit, dR_slit, FWHM=psf_fwhm, rendering_number=num_evaluate)\n return sigma2\n",
"role": "user"
},
{
"content": "velocity_dispersion",
"role": "assistant"
}
] |
def x(self, kwargs_lens, kwargs_lens_light, kwargs_anisotropy,
kwargs_aperture, psf_fwhm, aperture_type, anisotropy_model, r_eff=None,
kwargs_numerics={}, MGE_light=False, MGE_mass=False,
lens_model_kinematics_bool=None, light_model_kinematics_bool=None,
Hernquist_approx=False):
kwargs_cosmo = {'D_d': self.lensCosmo.D_d, 'D_s': self.lensCosmo.D_s,
'D_ds': self.lensCosmo.D_ds}
mass_profile_list = []
kwargs_profile = []
if lens_model_kinematics_bool is None:
lens_model_kinematics_bool = [True] * len(kwargs_lens)
for i, lens_model in enumerate(self.kwargs_options['lens_model_list']):
if lens_model_kinematics_bool[i] is True:
mass_profile_list.append(lens_model)
if lens_model in ['INTERPOL', 'INTERPOL_SCLAED']:
center_x, center_y = self._lensModelExt.lens_center(kwargs_lens
, k=i)
kwargs_lens_i = copy.deepcopy(kwargs_lens[i])
kwargs_lens_i['grid_interp_x'] -= center_x
kwargs_lens_i['grid_interp_y'] -= center_y
else:
kwargs_lens_i = {k: v for k, v in kwargs_lens[i].items() if
not k in ['center_x', 'center_y']}
kwargs_profile.append(kwargs_lens_i)
if MGE_mass is True:
lensModel = LensModel(lens_model_list=mass_profile_list)
massModel = LensModelExtensions(lensModel)
theta_E = massModel.effective_einstein_radius(kwargs_profile)
r_array = np.logspace(-4, 2, 200) * theta_E
mass_r = lensModel.kappa(r_array, np.zeros_like(r_array),
kwargs_profile)
amps, sigmas, norm = mge.mge_1d(r_array, mass_r, N=20)
mass_profile_list = ['MULTI_GAUSSIAN_KAPPA']
kwargs_profile = [{'amp': amps, 'sigma': sigmas}]
light_profile_list = []
kwargs_light = []
if light_model_kinematics_bool is None:
light_model_kinematics_bool = [True] * len(kwargs_lens_light)
for i, light_model in enumerate(self.kwargs_options[
'lens_light_model_list']):
if light_model_kinematics_bool[i]:
light_profile_list.append(light_model)
kwargs_lens_light_i = {k: v for k, v in kwargs_lens_light[i].
items() if not k in ['center_x', 'center_y']}
if 'q' in kwargs_lens_light_i:
kwargs_lens_light_i['q'] = 1
kwargs_light.append(kwargs_lens_light_i)
if r_eff is None:
lensAnalysis = LensAnalysis({'lens_light_model_list':
light_profile_list})
r_eff = lensAnalysis.half_light_radius_lens(kwargs_light,
model_bool_list=light_model_kinematics_bool)
if Hernquist_approx is True:
light_profile_list = ['HERNQUIST']
kwargs_light = [{'Rs': r_eff, 'amp': 1.0}]
elif MGE_light is True:
lightModel = LightModel(light_profile_list)
r_array = np.logspace(-3, 2, 200) * r_eff * 2
flux_r = lightModel.surface_brightness(r_array, 0, kwargs_light)
amps, sigmas, norm = mge.mge_1d(r_array, flux_r, N=20)
light_profile_list = ['MULTI_GAUSSIAN']
kwargs_light = [{'amp': amps, 'sigma': sigmas}]
galkin = Galkin(mass_profile_list, light_profile_list, aperture_type=
aperture_type, anisotropy_model=anisotropy_model, fwhm=psf_fwhm,
kwargs_cosmo=kwargs_cosmo, **kwargs_numerics)
sigma2 = galkin.vel_disp(kwargs_profile, kwargs_light,
kwargs_anisotropy, kwargs_aperture)
return sigma2
|
velocity_dispersion_numerical
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, kwargs_lens_light, kwargs_anisotropy,\n kwargs_aperture, psf_fwhm, aperture_type, anisotropy_model, r_eff=None,\n kwargs_numerics={}, MGE_light=False, MGE_mass=False,\n lens_model_kinematics_bool=None, light_model_kinematics_bool=None,\n Hernquist_approx=False):\n kwargs_cosmo = {'D_d': self.lensCosmo.D_d, 'D_s': self.lensCosmo.D_s,\n 'D_ds': self.lensCosmo.D_ds}\n mass_profile_list = []\n kwargs_profile = []\n if lens_model_kinematics_bool is None:\n lens_model_kinematics_bool = [True] * len(kwargs_lens)\n for i, lens_model in enumerate(self.kwargs_options['lens_model_list']):\n if lens_model_kinematics_bool[i] is True:\n mass_profile_list.append(lens_model)\n if lens_model in ['INTERPOL', 'INTERPOL_SCLAED']:\n center_x, center_y = self._lensModelExt.lens_center(kwargs_lens\n , k=i)\n kwargs_lens_i = copy.deepcopy(kwargs_lens[i])\n kwargs_lens_i['grid_interp_x'] -= center_x\n kwargs_lens_i['grid_interp_y'] -= center_y\n else:\n kwargs_lens_i = {k: v for k, v in kwargs_lens[i].items() if\n not k in ['center_x', 'center_y']}\n kwargs_profile.append(kwargs_lens_i)\n if MGE_mass is True:\n lensModel = LensModel(lens_model_list=mass_profile_list)\n massModel = LensModelExtensions(lensModel)\n theta_E = massModel.effective_einstein_radius(kwargs_profile)\n r_array = np.logspace(-4, 2, 200) * theta_E\n mass_r = lensModel.kappa(r_array, np.zeros_like(r_array),\n kwargs_profile)\n amps, sigmas, norm = mge.mge_1d(r_array, mass_r, N=20)\n mass_profile_list = ['MULTI_GAUSSIAN_KAPPA']\n kwargs_profile = [{'amp': amps, 'sigma': sigmas}]\n light_profile_list = []\n kwargs_light = []\n if light_model_kinematics_bool is None:\n light_model_kinematics_bool = [True] * len(kwargs_lens_light)\n for i, light_model in enumerate(self.kwargs_options[\n 'lens_light_model_list']):\n if light_model_kinematics_bool[i]:\n light_profile_list.append(light_model)\n kwargs_lens_light_i = {k: v for k, v in kwargs_lens_light[i].\n items() if not k in ['center_x', 'center_y']}\n if 'q' in kwargs_lens_light_i:\n kwargs_lens_light_i['q'] = 1\n kwargs_light.append(kwargs_lens_light_i)\n if r_eff is None:\n lensAnalysis = LensAnalysis({'lens_light_model_list':\n light_profile_list})\n r_eff = lensAnalysis.half_light_radius_lens(kwargs_light,\n model_bool_list=light_model_kinematics_bool)\n if Hernquist_approx is True:\n light_profile_list = ['HERNQUIST']\n kwargs_light = [{'Rs': r_eff, 'amp': 1.0}]\n elif MGE_light is True:\n lightModel = LightModel(light_profile_list)\n r_array = np.logspace(-3, 2, 200) * r_eff * 2\n flux_r = lightModel.surface_brightness(r_array, 0, kwargs_light)\n amps, sigmas, norm = mge.mge_1d(r_array, flux_r, N=20)\n light_profile_list = ['MULTI_GAUSSIAN']\n kwargs_light = [{'amp': amps, 'sigma': sigmas}]\n galkin = Galkin(mass_profile_list, light_profile_list, aperture_type=\n aperture_type, anisotropy_model=anisotropy_model, fwhm=psf_fwhm,\n kwargs_cosmo=kwargs_cosmo, **kwargs_numerics)\n sigma2 = galkin.vel_disp(kwargs_profile, kwargs_light,\n kwargs_anisotropy, kwargs_aperture)\n return sigma2\n",
"role": "user"
},
{
"content": "velocity_dispersion_numerical",
"role": "assistant"
}
] |
def x(self, x, y, amp, sigma, center_x=0, center_y=0):
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_ ** 2 + y_ ** 2)
sigma_x, sigma_y = sigma, sigma
c = 1.0 / (2 * sigma_x * sigma_y)
num_int = self._num_integral(r, c)
amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y)
amp2d = amp_density / (np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2))
amp2d *= 2 * 1.0 / (2 * c)
return num_int * amp2d
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, amp, sigma, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n sigma_x, sigma_y = sigma, sigma\n c = 1.0 / (2 * sigma_x * sigma_y)\n num_int = self._num_integral(r, c)\n amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y)\n amp2d = amp_density / (np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2))\n amp2d *= 2 * 1.0 / (2 * c)\n return num_int * amp2d\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(self, r, c):
out = integrate.quad(lambda x: (1 - np.exp(-c * x ** 2)) / x, 0, r)
return out[0]
|
num_integral
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, c):\n out = integrate.quad(lambda x: (1 - np.exp(-c * x ** 2)) / x, 0, r)\n return out[0]\n",
"role": "user"
},
{
"content": "num_integral",
"role": "assistant"
}
] |
def x(self, x, y, amp, sigma, center_x=0, center_y=0):
x_ = x - center_x
y_ = y - center_y
R = np.sqrt(x_ ** 2 + y_ ** 2)
sigma_x, sigma_y = sigma, sigma
if isinstance(R, int) or isinstance(R, float):
R = max(R, self.ds)
else:
R[R <= self.ds] = self.ds
alpha = self.alpha_abs(R, amp, sigma)
return alpha / R * x_, alpha / R * y_
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, amp, sigma, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n sigma_x, sigma_y = sigma, sigma\n if isinstance(R, int) or isinstance(R, float):\n R = max(R, self.ds)\n else:\n R[R <= self.ds] = self.ds\n alpha = self.alpha_abs(R, amp, sigma)\n return alpha / R * x_, alpha / R * y_\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, x, y, amp, sigma, center_x=0, center_y=0):
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_ ** 2 + y_ ** 2)
sigma_x, sigma_y = sigma, sigma
if isinstance(r, int) or isinstance(r, float):
r = max(r, self.ds)
else:
r[r <= self.ds] = self.ds
d_alpha_dr = -self.d_alpha_dr(r, amp, sigma_x, sigma_y)
alpha = self.alpha_abs(r, amp, sigma)
f_xx = -(d_alpha_dr / r + alpha / r ** 2) * x_ ** 2 / r + alpha / r
f_yy = -(d_alpha_dr / r + alpha / r ** 2) * y_ ** 2 / r + alpha / r
f_xy = -(d_alpha_dr / r + alpha / r ** 2) * x_ * y_ / r
return f_xx, f_yy, f_xy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, amp, sigma, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n sigma_x, sigma_y = sigma, sigma\n if isinstance(r, int) or isinstance(r, float):\n r = max(r, self.ds)\n else:\n r[r <= self.ds] = self.ds\n d_alpha_dr = -self.d_alpha_dr(r, amp, sigma_x, sigma_y)\n alpha = self.alpha_abs(r, amp, sigma)\n f_xx = -(d_alpha_dr / r + alpha / r ** 2) * x_ ** 2 / r + alpha / r\n f_yy = -(d_alpha_dr / r + alpha / r ** 2) * y_ ** 2 / r + alpha / r\n f_xy = -(d_alpha_dr / r + alpha / r ** 2) * x_ * y_ / r\n return f_xx, f_yy, f_xy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(self, R, amp, sigma):
sigma_x, sigma_y = sigma, sigma
amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y)
alpha = self.mass_2d(R, amp_density, sigma) / np.pi / R
return alpha
|
alpha_abs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, amp, sigma):\n sigma_x, sigma_y = sigma, sigma\n amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y)\n alpha = self.mass_2d(R, amp_density, sigma) / np.pi / R\n return alpha\n",
"role": "user"
},
{
"content": "alpha_abs",
"role": "assistant"
}
] |
def x(self, amp, sigma_x, sigma_y):
return amp * np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2)
|
amp3d_to_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, amp, sigma_x, sigma_y):\n return amp * np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2)\n",
"role": "user"
},
{
"content": "amp3d_to_2d",
"role": "assistant"
}
] |
def x(self, amp, sigma_x, sigma_y):
return amp / (np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2))
|
amp2d_to_3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, amp, sigma_x, sigma_y):\n return amp / (np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2))\n",
"role": "user"
},
{
"content": "amp2d_to_3d",
"role": "assistant"
}
] |
def x(self, x, y, amp, alpha, beta, center_x, center_y):
x_shift = x - center_x
y_shift = y - center_y
return amp * (1.0 + (x_shift ** 2 + y_shift ** 2) / alpha ** 2) ** -beta
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, amp, alpha, beta, center_x, center_y):\n x_shift = x - center_x\n y_shift = y - center_y\n return amp * (1.0 + (x_shift ** 2 + y_shift ** 2) / alpha ** 2) ** -beta\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(self, theta_E, gamma, q, phi_G, s_scale):
if theta_E < 0:
theta_E = 0
if s_scale < 1e-08:
s_scale = 1e-08
if gamma < 1.2:
gamma = 1.2
theta_E = 0
if gamma > 2.9:
gamma = 2.9
theta_E = 0
if q < 0.01:
q = 0.01
theta_E = 0
if q > 1:
q = 1.0
theta_E = 0
return theta_E, gamma, q, phi_G, s_scale
|
parameter_constraints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, theta_E, gamma, q, phi_G, s_scale):\n if theta_E < 0:\n theta_E = 0\n if s_scale < 1e-08:\n s_scale = 1e-08\n if gamma < 1.2:\n gamma = 1.2\n theta_E = 0\n if gamma > 2.9:\n gamma = 2.9\n theta_E = 0\n if q < 0.01:\n q = 0.01\n theta_E = 0\n if q > 1:\n q = 1.0\n theta_E = 0\n return theta_E, gamma, q, phi_G, s_scale\n",
"role": "user"
},
{
"content": "parameter_constraints",
"role": "assistant"
}
] |
def x(sample, num_sigma=1):
if num_sigma > 3:
raise ValueError(
'Number of sigma-constraints restircted to three. %s not valid' %
num_sigma)
num = len(sample)
num_threshold1 = int(round((num - 1) * 0.833))
num_threshold2 = int(round((num - 1) * 0.977249868))
num_threshold3 = int(round((num - 1) * 0.998650102))
median = np.median(sample)
sorted_sample = np.sort(sample)
if num_sigma > 0:
upper_sigma1 = sorted_sample[num_threshold1 - 1]
lower_sigma1 = sorted_sample[num - num_threshold1 - 1]
else:
return median, [[]]
if num_sigma > 1:
upper_sigma2 = sorted_sample[num_threshold2 - 1]
lower_sigma2 = sorted_sample[num - num_threshold2 - 1]
else:
return median, [[median - lower_sigma1, upper_sigma1 - median]]
if num_sigma > 2:
upper_sigma3 = sorted_sample[num_threshold3 - 1]
lower_sigma3 = sorted_sample[num - num_threshold3 - 1]
return median, [[median - lower_sigma1, upper_sigma1 - median], [
median - lower_sigma2, upper_sigma2 - median], [median -
lower_sigma3, upper_sigma3 - median]]
else:
return median, [[median - lower_sigma1, upper_sigma1 - median], [
median - lower_sigma2, upper_sigma2 - median]]
|
compute_lower_upper_errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sample, num_sigma=1):\n if num_sigma > 3:\n raise ValueError(\n 'Number of sigma-constraints restircted to three. %s not valid' %\n num_sigma)\n num = len(sample)\n num_threshold1 = int(round((num - 1) * 0.833))\n num_threshold2 = int(round((num - 1) * 0.977249868))\n num_threshold3 = int(round((num - 1) * 0.998650102))\n median = np.median(sample)\n sorted_sample = np.sort(sample)\n if num_sigma > 0:\n upper_sigma1 = sorted_sample[num_threshold1 - 1]\n lower_sigma1 = sorted_sample[num - num_threshold1 - 1]\n else:\n return median, [[]]\n if num_sigma > 1:\n upper_sigma2 = sorted_sample[num_threshold2 - 1]\n lower_sigma2 = sorted_sample[num - num_threshold2 - 1]\n else:\n return median, [[median - lower_sigma1, upper_sigma1 - median]]\n if num_sigma > 2:\n upper_sigma3 = sorted_sample[num_threshold3 - 1]\n lower_sigma3 = sorted_sample[num - num_threshold3 - 1]\n return median, [[median - lower_sigma1, upper_sigma1 - median], [\n median - lower_sigma2, upper_sigma2 - median], [median -\n lower_sigma3, upper_sigma3 - median]]\n else:\n return median, [[median - lower_sigma1, upper_sigma1 - median], [\n median - lower_sigma2, upper_sigma2 - median]]\n",
"role": "user"
},
{
"content": "compute_lower_upper_errors",
"role": "assistant"
}
] |
def x(self, x, e=0.0, w=1.0, a=0.0):
t = (x - e) / w
return 2.0 / w * stats.norm.pdf(t) * stats.norm.cdf(a * t)
|
pdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, e=0.0, w=1.0, a=0.0):\n t = (x - e) / w\n return 2.0 / w * stats.norm.pdf(t) * stats.norm.cdf(a * t)\n",
"role": "user"
},
{
"content": "pdf",
"role": "assistant"
}
] |
def x(self, x, mu, sigma, skw):
if skw > 1 or skw < -1:
print('skewness %s out of range' % skw)
skw = 1.0
e, w, a = self.map_mu_sigma_skw(mu, sigma, skw)
pdf = self.pdf(x, e, w, a)
return pdf
|
pdf_new
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, mu, sigma, skw):\n if skw > 1 or skw < -1:\n print('skewness %s out of range' % skw)\n skw = 1.0\n e, w, a = self.map_mu_sigma_skw(mu, sigma, skw)\n pdf = self.pdf(x, e, w, a)\n return pdf\n",
"role": "user"
},
{
"content": "pdf_new",
"role": "assistant"
}
] |
def x(self, sigma, delta):
sigma2 = sigma ** 2
w2 = sigma2 / (1 - 2 * delta ** 2 / np.pi)
w = np.sqrt(w2)
return w
|
w_sigma_delta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sigma, delta):\n sigma2 = sigma ** 2\n w2 = sigma2 / (1 - 2 * delta ** 2 / np.pi)\n w = np.sqrt(w2)\n return w\n",
"role": "user"
},
{
"content": "w_sigma_delta",
"role": "assistant"
}
] |
def x(self, mu, sigma, skw):
delta = self._delta_skw(skw)
a = self._alpha_delta(delta)
w = self._w_sigma_delta(sigma, delta)
e = self._e_mu_w_delta(mu, w, delta)
return e, w, a
|
map_mu_sigma_skw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mu, sigma, skw):\n delta = self._delta_skw(skw)\n a = self._alpha_delta(delta)\n w = self._w_sigma_delta(sigma, delta)\n e = self._e_mu_w_delta(mu, w, delta)\n return e, w, a\n",
"role": "user"
},
{
"content": "map_mu_sigma_skw",
"role": "assistant"
}
] |
def x(self, n_particles, n_iterations, lower_start=None, upper_start=None,
threadCount=1, init_pos=None, mpi=False, print_key='PSO'):
if lower_start is None or upper_start is None:
lower_start, upper_start = np.array(self.lower_limit), np.array(self
.upper_limit)
print('PSO initialises its particles with default values')
else:
lower_start = np.maximum(lower_start, self.lower_limit)
upper_start = np.minimum(upper_start, self.upper_limit)
if mpi is True:
pso = MpiParticleSwarmOptimizer(self.chain, lower_start,
upper_start, n_particles, threads=1)
if pso.isMaster():
print('MPI option chosen')
else:
pso = ParticleSwarmOptimizer(self.chain, lower_start, upper_start,
n_particles, threads=threadCount)
if init_pos is None:
init_pos = (upper_start - lower_start) / 2 + lower_start
if not init_pos is None:
pso.gbest.position = init_pos
pso.gbest.velocity = [0] * len(init_pos)
pso.gbest.fitness, _ = self.chain.likelihood(init_pos)
X2_list = []
vel_list = []
pos_list = []
time_start = time.time()
if pso.isMaster():
print('Computing the %s ...' % print_key)
num_iter = 0
for swarm in pso.sample(n_iterations):
X2_list.append(pso.gbest.fitness * 2)
vel_list.append(pso.gbest.velocity)
pos_list.append(pso.gbest.position)
num_iter += 1
if pso.isMaster():
if num_iter % 10 == 0:
print(num_iter)
if not mpi:
result = pso.gbest.position
else:
result = MpiUtil.mpiBCast(pso.gbest.position)
if mpi is True and not pso.isMaster():
pass
else:
lens_dict, source_dict, lens_light_dict, ps_dict, kwargs_cosmo = (self
.chain.param.args2kwargs(result))
print(pso.gbest.fitness * 2 / self.chain.effectiv_num_data_points(
lens_dict, source_dict, lens_light_dict, ps_dict),
'reduced X^2 of best position')
print(pso.gbest.fitness, 'logL')
print(self.chain.effectiv_num_data_points(lens_dict, source_dict,
lens_light_dict, ps_dict), 'effective number of data points')
print(lens_dict, 'lens result')
print(source_dict, 'source result')
print(lens_light_dict, 'lens light result')
print(ps_dict, 'point source result')
print(kwargs_cosmo, 'cosmo result')
time_end = time.time()
print(time_end - time_start, 'time used for PSO', print_key)
print('===================')
return result, [X2_list, pos_list, vel_list, []]
|
pso
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n_particles, n_iterations, lower_start=None, upper_start=None,\n threadCount=1, init_pos=None, mpi=False, print_key='PSO'):\n if lower_start is None or upper_start is None:\n lower_start, upper_start = np.array(self.lower_limit), np.array(self\n .upper_limit)\n print('PSO initialises its particles with default values')\n else:\n lower_start = np.maximum(lower_start, self.lower_limit)\n upper_start = np.minimum(upper_start, self.upper_limit)\n if mpi is True:\n pso = MpiParticleSwarmOptimizer(self.chain, lower_start,\n upper_start, n_particles, threads=1)\n if pso.isMaster():\n print('MPI option chosen')\n else:\n pso = ParticleSwarmOptimizer(self.chain, lower_start, upper_start,\n n_particles, threads=threadCount)\n if init_pos is None:\n init_pos = (upper_start - lower_start) / 2 + lower_start\n if not init_pos is None:\n pso.gbest.position = init_pos\n pso.gbest.velocity = [0] * len(init_pos)\n pso.gbest.fitness, _ = self.chain.likelihood(init_pos)\n X2_list = []\n vel_list = []\n pos_list = []\n time_start = time.time()\n if pso.isMaster():\n print('Computing the %s ...' % print_key)\n num_iter = 0\n for swarm in pso.sample(n_iterations):\n X2_list.append(pso.gbest.fitness * 2)\n vel_list.append(pso.gbest.velocity)\n pos_list.append(pso.gbest.position)\n num_iter += 1\n if pso.isMaster():\n if num_iter % 10 == 0:\n print(num_iter)\n if not mpi:\n result = pso.gbest.position\n else:\n result = MpiUtil.mpiBCast(pso.gbest.position)\n if mpi is True and not pso.isMaster():\n pass\n else:\n lens_dict, source_dict, lens_light_dict, ps_dict, kwargs_cosmo = (self\n .chain.param.args2kwargs(result))\n print(pso.gbest.fitness * 2 / self.chain.effectiv_num_data_points(\n lens_dict, source_dict, lens_light_dict, ps_dict),\n 'reduced X^2 of best position')\n print(pso.gbest.fitness, 'logL')\n print(self.chain.effectiv_num_data_points(lens_dict, source_dict,\n lens_light_dict, ps_dict), 'effective number of data points')\n print(lens_dict, 'lens result')\n print(source_dict, 'source result')\n print(lens_light_dict, 'lens light result')\n print(ps_dict, 'point source result')\n print(kwargs_cosmo, 'cosmo result')\n time_end = time.time()\n print(time_end - time_start, 'time used for PSO', print_key)\n print('===================')\n return result, [X2_list, pos_list, vel_list, []]\n",
"role": "user"
},
{
"content": "pso",
"role": "assistant"
}
] |
def x(self, walkerRatio, n_run, n_burn, mean_start, sigma_start,
threadCount=1, init_pos=None, mpi=False):
lowerLimit, upperLimit = self.lower_limit, self.upper_limit
mean_start = np.maximum(lowerLimit, mean_start)
mean_start = np.minimum(upperLimit, mean_start)
low_start = mean_start - sigma_start
high_start = mean_start + sigma_start
low_start = np.maximum(lowerLimit, low_start)
high_start = np.minimum(upperLimit, high_start)
sigma_start = (high_start - low_start) / 2
mean_start = (high_start + low_start) / 2
params = np.array([mean_start, lowerLimit, upperLimit, sigma_start]).T
chain = LikelihoodComputationChain(min=lowerLimit, max=upperLimit)
temp_dir = tempfile.mkdtemp('Hammer')
file_prefix = os.path.join(temp_dir, 'logs')
chain.addLikelihoodModule(self.chain)
chain.setup()
store = InMemoryStorageUtil()
if mpi is True:
sampler = MpiCosmoHammerSampler(params=params,
likelihoodComputationChain=chain, filePrefix=file_prefix,
walkersRatio=walkerRatio, burninIterations=n_burn,
sampleIterations=n_run, threadCount=1, initPositionGenerator=
init_pos, storageUtil=store)
else:
sampler = CosmoHammerSampler(params=params,
likelihoodComputationChain=chain, filePrefix=file_prefix,
walkersRatio=walkerRatio, burninIterations=n_burn,
sampleIterations=n_run, threadCount=threadCount,
initPositionGenerator=init_pos, storageUtil=store)
time_start = time.time()
if sampler.isMaster():
print('Computing the MCMC...')
print('Number of walkers = ', len(mean_start) * walkerRatio)
print('Burn-in iterations: ', n_burn)
print('Sampling iterations:', n_run)
sampler.startSampling()
if sampler.isMaster():
time_end = time.time()
print(time_end - time_start, 'time taken for MCMC sampling')
try:
shutil.rmtree(temp_dir)
except Exception as ex:
print(ex, 'shutil.rmtree did not work')
pass
return store.samples, store.prob
|
mcmc_CH
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, walkerRatio, n_run, n_burn, mean_start, sigma_start,\n threadCount=1, init_pos=None, mpi=False):\n lowerLimit, upperLimit = self.lower_limit, self.upper_limit\n mean_start = np.maximum(lowerLimit, mean_start)\n mean_start = np.minimum(upperLimit, mean_start)\n low_start = mean_start - sigma_start\n high_start = mean_start + sigma_start\n low_start = np.maximum(lowerLimit, low_start)\n high_start = np.minimum(upperLimit, high_start)\n sigma_start = (high_start - low_start) / 2\n mean_start = (high_start + low_start) / 2\n params = np.array([mean_start, lowerLimit, upperLimit, sigma_start]).T\n chain = LikelihoodComputationChain(min=lowerLimit, max=upperLimit)\n temp_dir = tempfile.mkdtemp('Hammer')\n file_prefix = os.path.join(temp_dir, 'logs')\n chain.addLikelihoodModule(self.chain)\n chain.setup()\n store = InMemoryStorageUtil()\n if mpi is True:\n sampler = MpiCosmoHammerSampler(params=params,\n likelihoodComputationChain=chain, filePrefix=file_prefix,\n walkersRatio=walkerRatio, burninIterations=n_burn,\n sampleIterations=n_run, threadCount=1, initPositionGenerator=\n init_pos, storageUtil=store)\n else:\n sampler = CosmoHammerSampler(params=params,\n likelihoodComputationChain=chain, filePrefix=file_prefix,\n walkersRatio=walkerRatio, burninIterations=n_burn,\n sampleIterations=n_run, threadCount=threadCount,\n initPositionGenerator=init_pos, storageUtil=store)\n time_start = time.time()\n if sampler.isMaster():\n print('Computing the MCMC...')\n print('Number of walkers = ', len(mean_start) * walkerRatio)\n print('Burn-in iterations: ', n_burn)\n print('Sampling iterations:', n_run)\n sampler.startSampling()\n if sampler.isMaster():\n time_end = time.time()\n print(time_end - time_start, 'time taken for MCMC sampling')\n try:\n shutil.rmtree(temp_dir)\n except Exception as ex:\n print(ex, 'shutil.rmtree did not work')\n pass\n return store.samples, store.prob\n",
"role": "user"
},
{
"content": "mcmc_CH",
"role": "assistant"
}
] |
def x(readout_noise, exposure_time, sky_brightness, pixel_scael,
num_exposures=1):
exposure_time_tot = num_exposures * exposure_time
readout_noise_tot = num_exposures * readout_noise ** 2
sky_per_pixel = sky_brightness * pixel_scael ** 2
sigma_bkg = np.sqrt(readout_noise_tot + exposure_time_tot *
sky_per_pixel ** 2) / exposure_time_tot
return sigma_bkg
|
bkg_noise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(readout_noise, exposure_time, sky_brightness, pixel_scael,\n num_exposures=1):\n exposure_time_tot = num_exposures * exposure_time\n readout_noise_tot = num_exposures * readout_noise ** 2\n sky_per_pixel = sky_brightness * pixel_scael ** 2\n sigma_bkg = np.sqrt(readout_noise_tot + exposure_time_tot * \n sky_per_pixel ** 2) / exposure_time_tot\n return sigma_bkg\n",
"role": "user"
},
{
"content": "bkg_noise",
"role": "assistant"
}
] |
def x(self, bool=True):
if self.PointSource is not None:
self.PointSource.delete_lens_model_cach()
self.PointSource.set_save_cache(bool)
|
reset_point_source_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bool=True):\n if self.PointSource is not None:\n self.PointSource.delete_lens_model_cach()\n self.PointSource.set_save_cache(bool)\n",
"role": "user"
},
{
"content": "reset_point_source_cache",
"role": "assistant"
}
] |
def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None,
kwargs_ps=None):
A = self._response_matrix(self.ImageNumerics.ra_grid_ray_shooting, self
.ImageNumerics.dec_grid_ray_shooting, kwargs_lens, kwargs_source,
kwargs_lens_light, kwargs_ps, self.ImageNumerics.mask)
return A
|
linear_response_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None,\n kwargs_ps=None):\n A = self._response_matrix(self.ImageNumerics.ra_grid_ray_shooting, self\n .ImageNumerics.dec_grid_ray_shooting, kwargs_lens, kwargs_source,\n kwargs_lens_light, kwargs_ps, self.ImageNumerics.mask)\n return A\n",
"role": "user"
},
{
"content": "linear_response_matrix",
"role": "assistant"
}
] |
def x(self):
d = self.ImageNumerics.image2array(self.Data.data * self.ImageNumerics.mask
)
return d
|
data_response
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n d = self.ImageNumerics.image2array(self.Data.data * self.ImageNumerics.mask\n )\n return d\n",
"role": "user"
},
{
"content": "data_response",
"role": "assistant"
}
] |
def x(self, kwargs_lens, kwargs_ps):
model_error = self.error_map(kwargs_lens, kwargs_ps)
error_map_1d = self.ImageNumerics.image2array(model_error)
C_D_response = self.ImageNumerics.C_D_response + error_map_1d
return C_D_response, model_error
|
error_response
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, kwargs_ps):\n model_error = self.error_map(kwargs_lens, kwargs_ps)\n error_map_1d = self.ImageNumerics.image2array(model_error)\n C_D_response = self.ImageNumerics.C_D_response + error_map_1d\n return C_D_response, model_error\n",
"role": "user"
},
{
"content": "error_response",
"role": "assistant"
}
] |
def x(self, model, error_map=0):
chi2 = self.reduced_residuals(model, error_map)
return np.sum(chi2 ** 2) / self.num_data_evaluate()
|
reduced_chi2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model, error_map=0):\n chi2 = self.reduced_residuals(model, error_map)\n return np.sum(chi2 ** 2) / self.num_data_evaluate()\n",
"role": "user"
},
{
"content": "reduced_chi2",
"role": "assistant"
}
] |
def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None,
kwargs_ps=None, kwargs_cosmo=None):
args = self.lensParams.setParams(kwargs_lens)
args += self.souceParams.setParams(kwargs_source)
args += self.lensLightParams.setParams(kwargs_lens_light)
args += self.pointSourceParams.setParams(kwargs_ps)
args += self.cosmoParams.setParams(kwargs_cosmo)
return args
|
kwargs2args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None,\n kwargs_ps=None, kwargs_cosmo=None):\n args = self.lensParams.setParams(kwargs_lens)\n args += self.souceParams.setParams(kwargs_source)\n args += self.lensLightParams.setParams(kwargs_lens_light)\n args += self.pointSourceParams.setParams(kwargs_ps)\n args += self.cosmoParams.setParams(kwargs_cosmo)\n return args\n",
"role": "user"
},
{
"content": "kwargs2args",
"role": "assistant"
}
] |
def x(self, kwargs_source, kwargs_lens, image_plane=False):
kwargs_source_copy = copy.deepcopy(kwargs_source)
for i, kwargs in enumerate(kwargs_source_copy):
if self._image_plane_source_list[i] is True and not image_plane:
if 'center_x' in kwargs:
x_mapped, y_mapped = self._image2SourceMapping.image2source(
kwargs['center_x'], kwargs['center_y'], kwargs_lens,
idex_source=i)
kwargs['center_x'] = x_mapped
kwargs['center_y'] = y_mapped
return kwargs_source_copy
|
image2source_plane
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_source, kwargs_lens, image_plane=False):\n kwargs_source_copy = copy.deepcopy(kwargs_source)\n for i, kwargs in enumerate(kwargs_source_copy):\n if self._image_plane_source_list[i] is True and not image_plane:\n if 'center_x' in kwargs:\n x_mapped, y_mapped = self._image2SourceMapping.image2source(\n kwargs['center_x'], kwargs['center_y'], kwargs_lens,\n idex_source=i)\n kwargs['center_x'] = x_mapped\n kwargs['center_y'] = y_mapped\n return kwargs_source_copy\n",
"role": "user"
},
{
"content": "image2source_plane",
"role": "assistant"
}
] |
def x(self, kwargs_cosmo, kwargs_lens, inverse=False):
kwargs_lens_updated = copy.deepcopy(kwargs_lens)
if self._mass_scaling is False:
return kwargs_lens_updated
scale_factor_list = np.array(kwargs_cosmo['scale_factor'])
if inverse is True:
scale_factor_list = 1.0 / np.array(kwargs_cosmo['scale_factor'])
for i, kwargs in enumerate(kwargs_lens_updated):
if self._mass_scaling_list[i] is not False:
scale_factor = scale_factor_list[self._mass_scaling_list[i] - 1]
if 'theta_E' in kwargs:
kwargs['theta_E'] *= scale_factor
elif 'theta_Rs' in kwargs:
kwargs['theta_Rs'] *= scale_factor
elif 'sigma0' in kwargs:
kwargs['sigma0'] *= scale_factor
elif 'k_eff' in kwargs:
kwargs['k_eff'] *= scale_factor
return kwargs_lens_updated
|
update_lens_scaling
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_cosmo, kwargs_lens, inverse=False):\n kwargs_lens_updated = copy.deepcopy(kwargs_lens)\n if self._mass_scaling is False:\n return kwargs_lens_updated\n scale_factor_list = np.array(kwargs_cosmo['scale_factor'])\n if inverse is True:\n scale_factor_list = 1.0 / np.array(kwargs_cosmo['scale_factor'])\n for i, kwargs in enumerate(kwargs_lens_updated):\n if self._mass_scaling_list[i] is not False:\n scale_factor = scale_factor_list[self._mass_scaling_list[i] - 1]\n if 'theta_E' in kwargs:\n kwargs['theta_E'] *= scale_factor\n elif 'theta_Rs' in kwargs:\n kwargs['theta_Rs'] *= scale_factor\n elif 'sigma0' in kwargs:\n kwargs['sigma0'] *= scale_factor\n elif 'k_eff' in kwargs:\n kwargs['k_eff'] *= scale_factor\n return kwargs_lens_updated\n",
"role": "user"
},
{
"content": "update_lens_scaling",
"role": "assistant"
}
] |
def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo={}):
if self._solver is True:
image_x, image_y = kwargs_ps[0]['ra_image'], kwargs_ps[0]['dec_image']
image_x, image_y = self.real_image_positions(image_x, image_y,
kwargs_cosmo)
dist = self._solver_module.check_solver(image_x, image_y, kwargs_lens)
return np.max(dist)
else:
return 0
|
check_solver
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo={}):\n if self._solver is True:\n image_x, image_y = kwargs_ps[0]['ra_image'], kwargs_ps[0]['dec_image']\n image_x, image_y = self.real_image_positions(image_x, image_y,\n kwargs_cosmo)\n dist = self._solver_module.check_solver(image_x, image_y, kwargs_lens)\n return np.max(dist)\n else:\n return 0\n",
"role": "user"
},
{
"content": "check_solver",
"role": "assistant"
}
] |
def x(self):
num, param_list = self.num_param()
num_linear = self.num_param_linear()
print('The following model options are chosen:')
print('Lens models:', self._lens_model_list)
print('Source models:', self._source_light_model_list)
print('Lens light models:', self._lens_light_model_list)
print('Point source models:', self._point_source_model_list)
print('===================')
print('The following parameters are being fixed:')
print('Lens:', self.lensParams.kwargs_fixed)
print('Source:', self.souceParams.kwargs_fixed)
print('Lens light:', self.lensLightParams.kwargs_fixed)
print('Point source:', self.pointSourceParams.kwargs_fixed)
print('===================')
print('Joint parameters for different models')
print('Joint lens with lens:', self._joint_lens_with_lens)
print('Joint lens with lens light:', self._joint_lens_light_with_lens_light
)
print('Joint source with source:', self._joint_source_with_source)
print('Joint lens with light:', self._joint_lens_with_light)
print('Joint source with point source:', self.
_joint_source_with_point_source)
print('===================')
print('Number of non-linear parameters being sampled: ', num)
print('Parameters being sampled: ', param_list)
print('Number of linear parameters being solved for: ', num_linear)
|
print_setting
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n num, param_list = self.num_param()\n num_linear = self.num_param_linear()\n print('The following model options are chosen:')\n print('Lens models:', self._lens_model_list)\n print('Source models:', self._source_light_model_list)\n print('Lens light models:', self._lens_light_model_list)\n print('Point source models:', self._point_source_model_list)\n print('===================')\n print('The following parameters are being fixed:')\n print('Lens:', self.lensParams.kwargs_fixed)\n print('Source:', self.souceParams.kwargs_fixed)\n print('Lens light:', self.lensLightParams.kwargs_fixed)\n print('Point source:', self.pointSourceParams.kwargs_fixed)\n print('===================')\n print('Joint parameters for different models')\n print('Joint lens with lens:', self._joint_lens_with_lens)\n print('Joint lens with lens light:', self._joint_lens_light_with_lens_light\n )\n print('Joint source with source:', self._joint_source_with_source)\n print('Joint lens with light:', self._joint_lens_with_light)\n print('Joint source with point source:', self.\n _joint_source_with_point_source)\n print('===================')\n print('Number of non-linear parameters being sampled: ', num)\n print('Parameters being sampled: ', param_list)\n print('Number of linear parameters being solved for: ', num_linear)\n",
"role": "user"
},
{
"content": "print_setting",
"role": "assistant"
}
] |
def x(self, x, y, Rs, theta_Rs, r_core, center_x=0, center_y=0):
rho0 = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs, r_core=r_core)
if Rs < 1e-07:
Rs = 1e-07
x_ = x - center_x
y_ = y - center_y
R = np.sqrt(x_ ** 2 + y_ ** 2)
dx, dy = self.coreBurkAlpha(R, Rs, rho0, r_core, x_, y_)
return dx, dy
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, Rs, theta_Rs, r_core, center_x=0, center_y=0):\n rho0 = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs, r_core=r_core)\n if Rs < 1e-07:\n Rs = 1e-07\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n dx, dy = self.coreBurkAlpha(R, Rs, rho0, r_core, x_, y_)\n return dx, dy\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, x, y, Rs, theta_Rs, r_core, center_x=0, center_y=0):
if Rs < 0.0001:
Rs = 0.0001
x_ = x - center_x
y_ = y - center_y
R = np.sqrt(x_ ** 2 + y_ ** 2)
rho0 = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs, r_core=r_core)
kappa = self.density_2d(x_, y_, Rs, rho0, r_core)
gamma1, gamma2 = self.cBurkGamma(R, Rs, rho0, r_core, x_, y_)
f_xx = kappa + gamma1
f_yy = kappa - gamma1
f_xy = gamma2
return f_xx, f_yy, f_xy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, Rs, theta_Rs, r_core, center_x=0, center_y=0):\n if Rs < 0.0001:\n Rs = 0.0001\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n rho0 = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs, r_core=r_core)\n kappa = self.density_2d(x_, y_, Rs, rho0, r_core)\n gamma1, gamma2 = self.cBurkGamma(R, Rs, rho0, r_core, x_, y_)\n f_xx = kappa + gamma1\n f_yy = kappa - gamma1\n f_xy = gamma2\n return f_xx, f_yy, f_xy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0, r_core):
x = R * Rs ** -1
p = Rs * r_core ** -1
gx = self._G(x, p)
m_2d = 2 * np.pi * rho0 * Rs ** 3 * gx
return m_2d
|
mass_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0, r_core):\n x = R * Rs ** -1\n p = Rs * r_core ** -1\n gx = self._G(x, p)\n m_2d = 2 * np.pi * rho0 * Rs ** 3 * gx\n return m_2d\n",
"role": "user"
},
{
"content": "mass_2d",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0, r_core, ax_x, ax_y):
x = R * Rs ** -1
p = Rs * r_core ** -1
gx = self._G(x, p)
a = 2 * rho0 * Rs ** 2 * gx / x
return a * ax_x / R, a * ax_y / R
|
coreBurkAlpha
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0, r_core, ax_x, ax_y):\n x = R * Rs ** -1\n p = Rs * r_core ** -1\n gx = self._G(x, p)\n a = 2 * rho0 * Rs ** 2 * gx / x\n return a * ax_x / R, a * ax_y / R\n",
"role": "user"
},
{
"content": "coreBurkAlpha",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0, r_core):
Rs = float(Rs)
b = r_core * Rs ** -1
c = R * Rs ** -1
M0 = 4 * np.pi * Rs ** 3 * rho0
return M0 * (1 + b ** 2) ** -1 * (0.5 * np.log(1 + c ** 2) + b ** 2 *
np.log(c * b ** -1 + 1) - b * np.arctan(c))
|
mass_3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0, r_core):\n Rs = float(Rs)\n b = r_core * Rs ** -1\n c = R * Rs ** -1\n M0 = 4 * np.pi * Rs ** 3 * rho0\n return M0 * (1 + b ** 2) ** -1 * (0.5 * np.log(1 + c ** 2) + b ** 2 *\n np.log(c * b ** -1 + 1) - b * np.arctan(c))\n",
"role": "user"
},
{
"content": "mass_3d",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0, r_core):
x = R * Rs ** -1
p = Rs * r_core ** -1
hx = self._H(x, p)
return 2 * rho0 * Rs ** 3 * hx
|
cBurkPot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0, r_core):\n x = R * Rs ** -1\n p = Rs * r_core ** -1\n hx = self._H(x, p)\n return 2 * rho0 * Rs ** 3 * hx\n",
"role": "user"
},
{
"content": "cBurkPot",
"role": "assistant"
}
] |
def x(self, x, p):
prefactor = 0.5 * (1 + p ** 2) ** -1 * p
if isinstance(x, np.ndarray):
inds0 = np.where(x * p == 1)
inds1 = np.where(x * p < 1)
inds2 = np.where(x * p > 1)
func = np.ones_like(x)
func[inds0] = self._u(x[inds0]) ** -1 * (np.pi + 2 * p * np.arctanh
(self._u(x[inds0]) ** -1))
func[inds1] = self._u(x[inds1]) ** -1 * (np.pi + 2 * p * np.arctanh
(self._u(x[inds1]) ** -1)) - 2 * p * self._g(x[inds1], p
) ** -1 * np.arctanh(self._g(x[inds1], p))
func[inds2] = self._u(x[inds2]) ** -1 * (np.pi + 2 * p * np.arctanh
(self._u(x[inds2]) ** -1)) - 2 * p * self._f(x[inds2], p
) ** -1 * np.arctan(self._f(x[inds2], p))
return prefactor * func
else:
if x * p == 1:
func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x
) ** -1))
elif x * p < 1:
func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x
) ** -1)) - 2 * p * self._g(x, p) ** -1 * np.arctanh(self.
_g(x, p))
else:
func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x
) ** -1)) - 2 * p * self._f(x, p) ** -1 * np.arctan(self._f
(x, p))
return prefactor * func
|
F
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, p):\n prefactor = 0.5 * (1 + p ** 2) ** -1 * p\n if isinstance(x, np.ndarray):\n inds0 = np.where(x * p == 1)\n inds1 = np.where(x * p < 1)\n inds2 = np.where(x * p > 1)\n func = np.ones_like(x)\n func[inds0] = self._u(x[inds0]) ** -1 * (np.pi + 2 * p * np.arctanh\n (self._u(x[inds0]) ** -1))\n func[inds1] = self._u(x[inds1]) ** -1 * (np.pi + 2 * p * np.arctanh\n (self._u(x[inds1]) ** -1)) - 2 * p * self._g(x[inds1], p\n ) ** -1 * np.arctanh(self._g(x[inds1], p))\n func[inds2] = self._u(x[inds2]) ** -1 * (np.pi + 2 * p * np.arctanh\n (self._u(x[inds2]) ** -1)) - 2 * p * self._f(x[inds2], p\n ) ** -1 * np.arctan(self._f(x[inds2], p))\n return prefactor * func\n else:\n if x * p == 1:\n func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x\n ) ** -1))\n elif x * p < 1:\n func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x\n ) ** -1)) - 2 * p * self._g(x, p) ** -1 * np.arctanh(self.\n _g(x, p))\n else:\n func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x\n ) ** -1)) - 2 * p * self._f(x, p) ** -1 * np.arctan(self._f\n (x, p))\n return prefactor * func\n",
"role": "user"
},
{
"content": "F",
"role": "assistant"
}
] |
def x(self, x, p):
prefactor = (p + p ** 3) ** -1 * p
if isinstance(x, np.ndarray):
inds0 = np.where(x * p == 1)
inds1 = np.where(x * p < 1)
inds2 = np.where(x * p > 1)
func = np.ones_like(x)
func[inds0] = np.log(0.25 * x[inds0] ** 2 * p ** 2) + np.pi * p * (self
._u(x[inds0]) - 1) + 2 * p ** 2 * (self._u(x[inds0]) * np.
arctanh(self._u(x[inds0]) ** -1) + np.log(0.5 * x[inds0]))
func[inds1] = np.log(0.25 * x[inds1] ** 2 * p ** 2) + np.pi * p * (self
._u(x[inds1]) - 1) + 2 * p ** 2 * (self._u(x[inds1]) * np.
arctanh(self._u(x[inds1]) ** -1) + np.log(0.5 * x[inds1])
) + 2 * self._g(x[inds1], p) * np.arctanh(self._g(x[inds1], p))
func[inds2] = np.log(0.25 * x[inds2] ** 2 * p ** 2) + np.pi * p * (self
._u(x[inds2]) - 1) + 2 * p ** 2 * (self._u(x[inds2]) * np.
arctanh(self._u(x[inds2]) ** -1) + np.log(0.5 * x[inds2])
) - 2 * self._f(x[inds2], p) * np.arctan(self._f(x[inds2], p))
elif x * p == 1:
func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1
) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) +
np.log(0.5 * x))
elif x * p < 1:
func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1
) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) +
np.log(0.5 * x)) + 2 * self._g(x, p) * np.arctanh(self._g(x, p))
else:
func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1
) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) +
np.log(0.5 * x)) - 2 * self._f(x, p) * np.arctan(self._f(x, p))
return func * prefactor
|
G
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, p):\n prefactor = (p + p ** 3) ** -1 * p\n if isinstance(x, np.ndarray):\n inds0 = np.where(x * p == 1)\n inds1 = np.where(x * p < 1)\n inds2 = np.where(x * p > 1)\n func = np.ones_like(x)\n func[inds0] = np.log(0.25 * x[inds0] ** 2 * p ** 2) + np.pi * p * (self\n ._u(x[inds0]) - 1) + 2 * p ** 2 * (self._u(x[inds0]) * np.\n arctanh(self._u(x[inds0]) ** -1) + np.log(0.5 * x[inds0]))\n func[inds1] = np.log(0.25 * x[inds1] ** 2 * p ** 2) + np.pi * p * (self\n ._u(x[inds1]) - 1) + 2 * p ** 2 * (self._u(x[inds1]) * np.\n arctanh(self._u(x[inds1]) ** -1) + np.log(0.5 * x[inds1])\n ) + 2 * self._g(x[inds1], p) * np.arctanh(self._g(x[inds1], p))\n func[inds2] = np.log(0.25 * x[inds2] ** 2 * p ** 2) + np.pi * p * (self\n ._u(x[inds2]) - 1) + 2 * p ** 2 * (self._u(x[inds2]) * np.\n arctanh(self._u(x[inds2]) ** -1) + np.log(0.5 * x[inds2])\n ) - 2 * self._f(x[inds2], p) * np.arctan(self._f(x[inds2], p))\n elif x * p == 1:\n func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1\n ) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) +\n np.log(0.5 * x))\n elif x * p < 1:\n func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1\n ) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) +\n np.log(0.5 * x)) + 2 * self._g(x, p) * np.arctanh(self._g(x, p))\n else:\n func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1\n ) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) +\n np.log(0.5 * x)) - 2 * self._f(x, p) * np.arctan(self._f(x, p))\n return func * prefactor\n",
"role": "user"
},
{
"content": "G",
"role": "assistant"
}
] |
def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None,
kwargs_ps=None):
A = []
for i in range(self._num_bands):
if self._compute_bool[i] is True:
A_i = self._imageModel_list[i].linear_response_matrix(kwargs_lens,
kwargs_source, kwargs_lens_light, kwargs_ps)
if A == []:
A = A_i
else:
A = np.append(A, A_i, axis=1)
return A
|
linear_response_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None,\n kwargs_ps=None):\n A = []\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n A_i = self._imageModel_list[i].linear_response_matrix(kwargs_lens,\n kwargs_source, kwargs_lens_light, kwargs_ps)\n if A == []:\n A = A_i\n else:\n A = np.append(A, A_i, axis=1)\n return A\n",
"role": "user"
},
{
"content": "linear_response_matrix",
"role": "assistant"
}
] |
def x(self):
d = []
for i in range(self._num_bands):
if self._compute_bool[i] is True:
d_i = self._imageModel_list[i].data_response
if d == []:
d = d_i
else:
d = np.append(d, d_i)
return d
|
data_response
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n d = []\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n d_i = self._imageModel_list[i].data_response\n if d == []:\n d = d_i\n else:\n d = np.append(d, d_i)\n return d\n",
"role": "user"
},
{
"content": "data_response",
"role": "assistant"
}
] |
def x(self, array):
image_list = []
k = 0
for i in range(self._num_bands):
if self._compute_bool[i] is True:
num_data = self.num_response_list[i]
array_i = array[k:k + num_data]
image_i = self._imageModel_list[i].ImageNumerics.array2image(
array_i)
image_list.append(image_i)
k += num_data
return image_list
|
array2image_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, array):\n image_list = []\n k = 0\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n num_data = self.num_response_list[i]\n array_i = array[k:k + num_data]\n image_i = self._imageModel_list[i].ImageNumerics.array2image(\n array_i)\n image_list.append(image_i)\n k += num_data\n return image_list\n",
"role": "user"
},
{
"content": "array2image_list",
"role": "assistant"
}
] |
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,
source_marg=False):
im_sim_list, model_error_list, cov_matrix, param = self.image_linear_solve(
kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, inv_bool=
source_marg)
logL = 0
index = 0
for i in range(self._num_bands):
if self._compute_bool[i] is True:
logL += self._imageModel_list[i].Data.log_likelihood(im_sim_list
[index], self._imageModel_list[i].ImageNumerics.mask,
model_error_list[index])
index += 1
if cov_matrix is not None and source_marg:
marg_const = de_lens.marginalisation_const(cov_matrix)
logL += marg_const
return logL
|
likelihood_data_given_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,\n source_marg=False):\n im_sim_list, model_error_list, cov_matrix, param = self.image_linear_solve(\n kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, inv_bool=\n source_marg)\n logL = 0\n index = 0\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n logL += self._imageModel_list[i].Data.log_likelihood(im_sim_list\n [index], self._imageModel_list[i].ImageNumerics.mask,\n model_error_list[index])\n index += 1\n if cov_matrix is not None and source_marg:\n marg_const = de_lens.marginalisation_const(cov_matrix)\n logL += marg_const\n return logL\n",
"role": "user"
},
{
"content": "likelihood_data_given_model",
"role": "assistant"
}
] |
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,
inv_bool=False):
wls_list, error_map_list, cov_param_list, param_list = [], [], [], []
for i in range(self._num_bands):
if self._compute_bool[i] is True:
kwargs_source_i = [kwargs_source[k] for k in self.
_index_source_list[i]]
kwargs_lens_light_i = [kwargs_lens_light[k] for k in self.
_index_lens_light_list[i]]
wls_model, error_map, cov_param, param = self._imageModel_list[i
].image_linear_solve(kwargs_lens, kwargs_source_i,
kwargs_lens_light_i, kwargs_ps, inv_bool=inv_bool)
wls_list.append(wls_model)
error_map_list.append(error_map)
cov_param_list.append(cov_param)
param_list.append(param)
return wls_list, error_map_list, cov_param_list, param_list
|
image_linear_solve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,\n inv_bool=False):\n wls_list, error_map_list, cov_param_list, param_list = [], [], [], []\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n kwargs_source_i = [kwargs_source[k] for k in self.\n _index_source_list[i]]\n kwargs_lens_light_i = [kwargs_lens_light[k] for k in self.\n _index_lens_light_list[i]]\n wls_model, error_map, cov_param, param = self._imageModel_list[i\n ].image_linear_solve(kwargs_lens, kwargs_source_i,\n kwargs_lens_light_i, kwargs_ps, inv_bool=inv_bool)\n wls_list.append(wls_model)\n error_map_list.append(error_map)\n cov_param_list.append(cov_param)\n param_list.append(param)\n return wls_list, error_map_list, cov_param_list, param_list\n",
"role": "user"
},
{
"content": "image_linear_solve",
"role": "assistant"
}
] |
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,
source_marg=False):
logL = 0
for i in range(self._num_bands):
if self._compute_bool[i] is True:
kwargs_source_i = [kwargs_source[k] for k in self.
_index_source_list[i]]
kwargs_lens_light_i = [kwargs_lens_light[k] for k in self.
_index_lens_light_list[i]]
logL += self._imageModel_list[i].likelihood_data_given_model(
kwargs_lens, kwargs_source_i, kwargs_lens_light_i,
kwargs_ps, source_marg=source_marg)
return logL
|
likelihood_data_given_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,\n source_marg=False):\n logL = 0\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n kwargs_source_i = [kwargs_source[k] for k in self.\n _index_source_list[i]]\n kwargs_lens_light_i = [kwargs_lens_light[k] for k in self.\n _index_lens_light_list[i]]\n logL += self._imageModel_list[i].likelihood_data_given_model(\n kwargs_lens, kwargs_source_i, kwargs_lens_light_i,\n kwargs_ps, source_marg=source_marg)\n return logL\n",
"role": "user"
},
{
"content": "likelihood_data_given_model",
"role": "assistant"
}
] |
def x(self, image_x, image_y, kwargs_lens):
source_x, source_y = self._lensModel.ray_shooting(image_x, image_y,
kwargs_lens)
dist = np.sqrt((source_x - source_x[0]) ** 2 + (source_y - source_y[0]) **
2)
return dist
|
check_solver
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image_x, image_y, kwargs_lens):\n source_x, source_y = self._lensModel.ray_shooting(image_x, image_y,\n kwargs_lens)\n dist = np.sqrt((source_x - source_x[0]) ** 2 + (source_y - source_y[0]) **\n 2)\n return dist\n",
"role": "user"
},
{
"content": "check_solver",
"role": "assistant"
}
] |
def x(self, kwargs_fixed_lens, kwargs_lens_init):
kwargs_fixed_lens = self._solver.add_fixed_lens(kwargs_fixed_lens,
kwargs_lens_init)
return kwargs_fixed_lens
|
add_fixed_lens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_fixed_lens, kwargs_lens_init):\n kwargs_fixed_lens = self._solver.add_fixed_lens(kwargs_fixed_lens,\n kwargs_lens_init)\n return kwargs_fixed_lens\n",
"role": "user"
},
{
"content": "add_fixed_lens",
"role": "assistant"
}
] |
def x(self):
if not hasattr(self, '_Epsilon_Crit'):
const_SI = const.c ** 2 / (4 * np.pi * const.G)
conversion = const.Mpc / const.M_sun
factor = const_SI * conversion
self._Epsilon_Crit = self.D_s / (self.D_d * self.D_ds) * factor
return self._Epsilon_Crit
|
epsilon_crit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not hasattr(self, '_Epsilon_Crit'):\n const_SI = const.c ** 2 / (4 * np.pi * const.G)\n conversion = const.Mpc / const.M_sun\n factor = const_SI * conversion\n self._Epsilon_Crit = self.D_s / (self.D_d * self.D_ds) * factor\n return self._Epsilon_Crit\n",
"role": "user"
},
{
"content": "epsilon_crit",
"role": "assistant"
}
] |
def x(self, theta_E):
mass = self.arcsec2phys_lens(theta_E) ** 2 * np.pi * self.epsilon_crit
return mass
|
mass_in_theta_E
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, theta_E):\n mass = self.arcsec2phys_lens(theta_E) ** 2 * np.pi * self.epsilon_crit\n return mass\n",
"role": "user"
},
{
"content": "mass_in_theta_E",
"role": "assistant"
}
] |
def x(self, Rs_angle, theta_Rs):
Rs = Rs_angle * const.arcsec * self.D_d
theta_scaled = theta_Rs * self.epsilon_crit * self.D_d * const.arcsec
rho0 = theta_scaled / (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0)))
rho0_com = rho0 / self.h ** 2 * self.a_z(self.z_lens) ** 3
c = self.nfw_param.c_rho0(rho0_com)
r200 = c * Rs
M200 = self.nfw_param.M_r200(r200 * self.h / self.a_z(self.z_lens)
) / self.h
return rho0, Rs, c, r200, M200
|
nfw_angle2physical
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, Rs_angle, theta_Rs):\n Rs = Rs_angle * const.arcsec * self.D_d\n theta_scaled = theta_Rs * self.epsilon_crit * self.D_d * const.arcsec\n rho0 = theta_scaled / (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0)))\n rho0_com = rho0 / self.h ** 2 * self.a_z(self.z_lens) ** 3\n c = self.nfw_param.c_rho0(rho0_com)\n r200 = c * Rs\n M200 = self.nfw_param.M_r200(r200 * self.h / self.a_z(self.z_lens)\n ) / self.h\n return rho0, Rs, c, r200, M200\n",
"role": "user"
},
{
"content": "nfw_angle2physical",
"role": "assistant"
}
] |
def x(self, M, c):
rho0, Rs, r200 = self.nfwParam_physical(M, c)
Rs_angle = Rs / self.D_d / const.arcsec
theta_Rs = rho0 * (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0)))
return Rs_angle, theta_Rs / self.epsilon_crit / self.D_d / const.arcsec
|
nfw_physical2angle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, M, c):\n rho0, Rs, r200 = self.nfwParam_physical(M, c)\n Rs_angle = Rs / self.D_d / const.arcsec\n theta_Rs = rho0 * (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0)))\n return Rs_angle, theta_Rs / self.epsilon_crit / self.D_d / const.arcsec\n",
"role": "user"
},
{
"content": "nfw_physical2angle",
"role": "assistant"
}
] |
def x(self, M, c):
r200 = self.nfw_param.r200_M(M * self.h) / self.h * self.a_z(self.z_lens)
rho0 = self.nfw_param.rho0_c(c) * self.h ** 2 / self.a_z(self.z_lens) ** 3
Rs = r200 / c
return rho0, Rs, r200
|
nfwParam_physical
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, M, c):\n r200 = self.nfw_param.r200_M(M * self.h) / self.h * self.a_z(self.z_lens)\n rho0 = self.nfw_param.rho0_c(c) * self.h ** 2 / self.a_z(self.z_lens) ** 3\n Rs = r200 / c\n return rho0, Rs, r200\n",
"role": "user"
},
{
"content": "nfwParam_physical",
"role": "assistant"
}
] |
def x(self, theta_E):
v_sigma_c2 = theta_E * const.arcsec / (4 * np.pi) * self.D_s / self.D_ds
return np.sqrt(v_sigma_c2) * const.c / 1000
|
sis_theta_E2sigma_v
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, theta_E):\n v_sigma_c2 = theta_E * const.arcsec / (4 * np.pi) * self.D_s / self.D_ds\n return np.sqrt(v_sigma_c2) * const.c / 1000\n",
"role": "user"
},
{
"content": "sis_theta_E2sigma_v",
"role": "assistant"
}
] |
def x(self, v_sigma):
theta_E = 4 * np.pi * (v_sigma * 1000.0 / const.c
) ** 2 * self.D_ds / self.D_s / const.arcsec
return theta_E
|
sis_sigma_v2theta_E
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v_sigma):\n theta_E = 4 * np.pi * (v_sigma * 1000.0 / const.c\n ) ** 2 * self.D_ds / self.D_s / const.arcsec\n return theta_E\n",
"role": "user"
},
{
"content": "sis_sigma_v2theta_E",
"role": "assistant"
}
] |
def x(self, H_0, Om0, Ode0=None):
lensCosmo = self._get_cosom(H_0, Om0, Ode0)
return lensCosmo.D_d
|
D_d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, H_0, Om0, Ode0=None):\n lensCosmo = self._get_cosom(H_0, Om0, Ode0)\n return lensCosmo.D_d\n",
"role": "user"
},
{
"content": "D_d",
"role": "assistant"
}
] |
def x(self, H_0, Om0, Ode0=None):
lensCosmo = self._get_cosom(H_0, Om0, Ode0)
return lensCosmo.D_s
|
D_s
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, H_0, Om0, Ode0=None):\n lensCosmo = self._get_cosom(H_0, Om0, Ode0)\n return lensCosmo.D_s\n",
"role": "user"
},
{
"content": "D_s",
"role": "assistant"
}
] |
def x(self, H_0, Om0, Ode0=None):
lensCosmo = self._get_cosom(H_0, Om0, Ode0)
return lensCosmo.D_ds
|
D_ds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, H_0, Om0, Ode0=None):\n lensCosmo = self._get_cosom(H_0, Om0, Ode0)\n return lensCosmo.D_ds\n",
"role": "user"
},
{
"content": "D_ds",
"role": "assistant"
}
] |
def x(self, H_0, Om0, Ode0=None):
lensCosmo = self._get_cosom(H_0, Om0, Ode0)
return lensCosmo.D_dt
|
D_dt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, H_0, Om0, Ode0=None):\n lensCosmo = self._get_cosom(H_0, Om0, Ode0)\n return lensCosmo.D_dt\n",
"role": "user"
},
{
"content": "D_dt",
"role": "assistant"
}
] |
def x(self, x, y, coeffs, beta, center_x=0, center_y=0):
shapelets = self._createShapelet(coeffs)
n_order = self._get_num_n(len(coeffs))
dx_shapelets = self._dx_shapelets(shapelets, beta)
dy_shapelets = self._dy_shapelets(shapelets, beta)
n = len(np.atleast_1d(x))
if n <= 1:
f_x = self._shapeletOutput(x, y, beta, dx_shapelets, precalc=False)
f_y = self._shapeletOutput(x, y, beta, dy_shapelets, precalc=False)
else:
H_x, H_y = self.pre_calc(x, y, beta, n_order + 1, center_x, center_y)
f_x = self._shapeletOutput(H_x, H_y, beta, dx_shapelets)
f_y = self._shapeletOutput(H_x, H_y, beta, dy_shapelets)
return f_x, f_y
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, coeffs, beta, center_x=0, center_y=0):\n shapelets = self._createShapelet(coeffs)\n n_order = self._get_num_n(len(coeffs))\n dx_shapelets = self._dx_shapelets(shapelets, beta)\n dy_shapelets = self._dy_shapelets(shapelets, beta)\n n = len(np.atleast_1d(x))\n if n <= 1:\n f_x = self._shapeletOutput(x, y, beta, dx_shapelets, precalc=False)\n f_y = self._shapeletOutput(x, y, beta, dy_shapelets, precalc=False)\n else:\n H_x, H_y = self.pre_calc(x, y, beta, n_order + 1, center_x, center_y)\n f_x = self._shapeletOutput(H_x, H_y, beta, dx_shapelets)\n f_y = self._shapeletOutput(H_x, H_y, beta, dy_shapelets)\n return f_x, f_y\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, x, y, coeffs, beta, center_x=0, center_y=0):
shapelets = self._createShapelet(coeffs)
n_order = self._get_num_n(len(coeffs))
dxx_shapelets = self._dxx_shapelets(shapelets, beta)
dyy_shapelets = self._dyy_shapelets(shapelets, beta)
dxy_shapelets = self._dxy_shapelets(shapelets, beta)
n = len(np.atleast_1d(x))
if n <= 1:
f_xx = self._shapeletOutput(x, y, beta, dxx_shapelets, precalc=False)
f_yy = self._shapeletOutput(x, y, beta, dyy_shapelets, precalc=False)
f_xy = self._shapeletOutput(x, y, beta, dxy_shapelets, precalc=False)
else:
H_x, H_y = self.pre_calc(x, y, beta, n_order + 2, center_x, center_y)
f_xx = self._shapeletOutput(H_x, H_y, beta, dxx_shapelets)
f_yy = self._shapeletOutput(H_x, H_y, beta, dyy_shapelets)
f_xy = self._shapeletOutput(H_x, H_y, beta, dxy_shapelets)
return f_xx, f_yy, f_xy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, coeffs, beta, center_x=0, center_y=0):\n shapelets = self._createShapelet(coeffs)\n n_order = self._get_num_n(len(coeffs))\n dxx_shapelets = self._dxx_shapelets(shapelets, beta)\n dyy_shapelets = self._dyy_shapelets(shapelets, beta)\n dxy_shapelets = self._dxy_shapelets(shapelets, beta)\n n = len(np.atleast_1d(x))\n if n <= 1:\n f_xx = self._shapeletOutput(x, y, beta, dxx_shapelets, precalc=False)\n f_yy = self._shapeletOutput(x, y, beta, dyy_shapelets, precalc=False)\n f_xy = self._shapeletOutput(x, y, beta, dxy_shapelets, precalc=False)\n else:\n H_x, H_y = self.pre_calc(x, y, beta, n_order + 2, center_x, center_y)\n f_xx = self._shapeletOutput(H_x, H_y, beta, dxx_shapelets)\n f_yy = self._shapeletOutput(H_x, H_y, beta, dyy_shapelets)\n f_xy = self._shapeletOutput(H_x, H_y, beta, dxy_shapelets)\n return f_xx, f_yy, f_xy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(self, coeffs):
n_coeffs = len(coeffs)
num_n = self._get_num_n(n_coeffs)
shapelets = np.zeros((num_n + 1, num_n + 1))
n = 0
k = 0
for coeff in coeffs:
shapelets[n - k][k] = coeff
k += 1
if k == n + 1:
n += 1
k = 0
return shapelets
|
createShapelet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, coeffs):\n n_coeffs = len(coeffs)\n num_n = self._get_num_n(n_coeffs)\n shapelets = np.zeros((num_n + 1, num_n + 1))\n n = 0\n k = 0\n for coeff in coeffs:\n shapelets[n - k][k] = coeff\n k += 1\n if k == n + 1:\n n += 1\n k = 0\n return shapelets\n",
"role": "user"
},
{
"content": "createShapelet",
"role": "assistant"
}
] |
def x(self, x, y, beta, shapelets, precalc=True):
n = len(np.atleast_1d(x))
if n <= 1:
values = 0.0
else:
values = np.zeros(len(x[0]))
n = 0
k = 0
i = 0
num_n = len(shapelets)
while i < num_n * (num_n + 1) / 2:
values += self._function(x, y, shapelets[n - k][k], beta, n - k, k,
precalc=precalc)
k += 1
if k == n + 1:
n += 1
k = 0
i += 1
return values
|
shapeletOutput
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, beta, shapelets, precalc=True):\n n = len(np.atleast_1d(x))\n if n <= 1:\n values = 0.0\n else:\n values = np.zeros(len(x[0]))\n n = 0\n k = 0\n i = 0\n num_n = len(shapelets)\n while i < num_n * (num_n + 1) / 2:\n values += self._function(x, y, shapelets[n - k][k], beta, n - k, k,\n precalc=precalc)\n k += 1\n if k == n + 1:\n n += 1\n k = 0\n i += 1\n return values\n",
"role": "user"
},
{
"content": "shapeletOutput",
"role": "assistant"
}
] |
def x(self, shapelets, beta):
num_n = len(shapelets)
dx = np.zeros((num_n + 1, num_n + 1))
for n1 in range(num_n):
for n2 in range(num_n):
amp = shapelets[n1][n2]
dx[n1 + 1][n2] -= np.sqrt((n1 + 1) / 2.0) * amp
if n1 > 0:
dx[n1 - 1][n2] += np.sqrt(n1 / 2.0) * amp
return dx / beta
|
dx_shapelets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shapelets, beta):\n num_n = len(shapelets)\n dx = np.zeros((num_n + 1, num_n + 1))\n for n1 in range(num_n):\n for n2 in range(num_n):\n amp = shapelets[n1][n2]\n dx[n1 + 1][n2] -= np.sqrt((n1 + 1) / 2.0) * amp\n if n1 > 0:\n dx[n1 - 1][n2] += np.sqrt(n1 / 2.0) * amp\n return dx / beta\n",
"role": "user"
},
{
"content": "dx_shapelets",
"role": "assistant"
}
] |
def x(self, shapelets, beta):
num_n = len(shapelets)
dy = np.zeros((num_n + 1, num_n + 1))
for n1 in range(num_n):
for n2 in range(num_n):
amp = shapelets[n1][n2]
dy[n1][n2 + 1] -= np.sqrt((n2 + 1) / 2.0) * amp
if n2 > 0:
dy[n1][n2 - 1] += np.sqrt(n2 / 2.0) * amp
return dy / beta
|
dy_shapelets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shapelets, beta):\n num_n = len(shapelets)\n dy = np.zeros((num_n + 1, num_n + 1))\n for n1 in range(num_n):\n for n2 in range(num_n):\n amp = shapelets[n1][n2]\n dy[n1][n2 + 1] -= np.sqrt((n2 + 1) / 2.0) * amp\n if n2 > 0:\n dy[n1][n2 - 1] += np.sqrt(n2 / 2.0) * amp\n return dy / beta\n",
"role": "user"
},
{
"content": "dy_shapelets",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.