source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, grid, grid_scale, psf_subgrid=False, subgrid_res=1): psf_type = self.psf_type if psf_type == 'NONE': return grid elif psf_type == 'GAUSSIAN': sigma = self._sigma_gaussian / grid_scale img_conv = ndimage.filters.gaussian_filter(grid, sigma, mode= 'nearest', truncate=self._truncation) return img_conv elif psf_type == 'PIXEL': if psf_subgrid: kernel = self.subgrid_pixel_kernel(subgrid_res) else: kernel = self._kernel_pixel img_conv1 = signal.fftconvolve(grid, kernel, mode='same') return img_conv1 else: raise ValueError('PSF type %s not valid!' % psf_type)
psf_convolution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, grid, grid_scale, psf_subgrid=False, subgrid_res=1):\n psf_type = self.psf_type\n if psf_type == 'NONE':\n return grid\n elif psf_type == 'GAUSSIAN':\n sigma = self._sigma_gaussian / grid_scale\n img_conv = ndimage.filters.gaussian_filter(grid, sigma, mode=\n 'nearest', truncate=self._truncation)\n return img_conv\n elif psf_type == 'PIXEL':\n if psf_subgrid:\n kernel = self.subgrid_pixel_kernel(subgrid_res)\n else:\n kernel = self._kernel_pixel\n img_conv1 = signal.fftconvolve(grid, kernel, mode='same')\n return img_conv1\n else:\n raise ValueError('PSF type %s not valid!' % psf_type)\n", "role": "user" }, { "content": "psf_convolution", "role": "assistant" } ]
def x(self, center1_x, center1_y, center2_x, center2_y, Fm): com_x = (Fm * center1_x + center2_x) / (Fm + 1.0) com_y = (Fm * center1_y + center2_y) / (Fm + 1.0) return com_x, com_y
com
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, center1_x, center1_y, center2_x, center2_y, Fm):\n com_x = (Fm * center1_x + center2_x) / (Fm + 1.0)\n com_y = (Fm * center1_y + center2_y) / (Fm + 1.0)\n return com_x, com_y\n", "role": "user" }, { "content": "com", "role": "assistant" } ]
def x(self, center1_x, center1_y, center2_x, center2_y): phi_G = np.arctan2(center2_y - center1_y, center2_x - center1_x) return phi_G
angle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, center1_x, center1_y, center2_x, center2_y):\n phi_G = np.arctan2(center2_y - center1_y, center2_x - center1_x)\n return phi_G\n", "role": "user" }, { "content": "angle", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo): x_pos, y_pos = self._pointSource.image_position(kwargs_ps=kwargs_ps, kwargs_lens=kwargs_lens) x_pos, y_pos = self._param.real_image_positions(x_pos[0], y_pos[0], kwargs_cosmo) x_source, y_source = self._lensModel.ray_shooting(x_pos, y_pos, kwargs_lens ) delay_arcsec = self._lensModel.fermat_potential(x_pos, y_pos, x_source, y_source, kwargs_lens) D_dt_model = kwargs_cosmo['D_dt'] delay_days = const.delay_arcsec2days(delay_arcsec, D_dt_model) logL = self._logL_delays(delay_days, self._delays_measured, self. _delays_errors) return logL
logL
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo):\n x_pos, y_pos = self._pointSource.image_position(kwargs_ps=kwargs_ps,\n kwargs_lens=kwargs_lens)\n x_pos, y_pos = self._param.real_image_positions(x_pos[0], y_pos[0],\n kwargs_cosmo)\n x_source, y_source = self._lensModel.ray_shooting(x_pos, y_pos, kwargs_lens\n )\n delay_arcsec = self._lensModel.fermat_potential(x_pos, y_pos, x_source,\n y_source, kwargs_lens)\n D_dt_model = kwargs_cosmo['D_dt']\n delay_days = const.delay_arcsec2days(delay_arcsec, D_dt_model)\n logL = self._logL_delays(delay_days, self._delays_measured, self.\n _delays_errors)\n return logL\n", "role": "user" }, { "content": "logL", "role": "assistant" } ]
def x(self, delays_model, delays_measured, delays_errors): delta_t_model = np.array(delays_model[1:]) - delays_model[0] logL = np.sum(-(delta_t_model - delays_measured) ** 2 / (2 * delays_errors ** 2)) return logL
logL_delays
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, delays_model, delays_measured, delays_errors):\n delta_t_model = np.array(delays_model[1:]) - delays_model[0]\n logL = np.sum(-(delta_t_model - delays_measured) ** 2 / (2 * \n delays_errors ** 2))\n return logL\n", "role": "user" }, { "content": "logL_delays", "role": "assistant" } ]
def x(self, x_shift, y_shift, pixel_unit=False): if pixel_unit is True: ra_shift, dec_shift = self.map_pix2coord(x_shift, y_shift) else: ra_shift, dec_shift = x_shift, y_shift self._ra_at_xy_0 += ra_shift self._dec_at_xy_0 += dec_shift self._x_at_radec_0, self._y_at_radec_0 = util.map_coord2pix(-self. _ra_at_xy_0, -self._dec_at_xy_0, 0, 0, self._Ma2pix)
shift_coordinate_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x_shift, y_shift, pixel_unit=False):\n if pixel_unit is True:\n ra_shift, dec_shift = self.map_pix2coord(x_shift, y_shift)\n else:\n ra_shift, dec_shift = x_shift, y_shift\n self._ra_at_xy_0 += ra_shift\n self._dec_at_xy_0 += dec_shift\n self._x_at_radec_0, self._y_at_radec_0 = util.map_coord2pix(-self.\n _ra_at_xy_0, -self._dec_at_xy_0, 0, 0, self._Ma2pix)\n", "role": "user" }, { "content": "shift_coordinate_grid", "role": "assistant" } ]
def x(self, kwargs_list): if self._solver_type == 'PROFILE_SHEAR': e1 = kwargs_list[1]['e1'] e2 = kwargs_list[1]['e2'] phi_ext, gamma_ext = param_util.ellipticity2phi_gamma(e1, e2) else: phi_ext = 0 lens_model = self._lens_mode_list[0] if lens_model in ['SPEP', 'SPEMD', 'SIE', 'NIE']: e1 = kwargs_list[0]['e1'] e2 = kwargs_list[0]['e2'] center_x = kwargs_list[0]['center_x'] center_y = kwargs_list[0]['center_y'] theta_E = kwargs_list[0]['theta_E'] x = [theta_E, e1, e2, center_x, center_y, phi_ext] elif lens_model in ['NFW_ELLIPSE']: e1 = kwargs_list[0]['e1'] e2 = kwargs_list[0]['e2'] center_x = kwargs_list[0]['center_x'] center_y = kwargs_list[0]['center_y'] theta_Rs = kwargs_list[0]['theta_Rs'] x = [theta_Rs, e1, e2, center_x, center_y, phi_ext] elif lens_model in ['SHAPELETS_CART']: coeffs = list(kwargs_list[0]['coeffs']) [c10, c01, c20, c11, c02] = coeffs[1:6] x = [c10, c01, c20, c11, c02, phi_ext] else: raise ValueError('Lens model %s not supported for 4-point solver!' % lens_model) return x
extract_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_list):\n if self._solver_type == 'PROFILE_SHEAR':\n e1 = kwargs_list[1]['e1']\n e2 = kwargs_list[1]['e2']\n phi_ext, gamma_ext = param_util.ellipticity2phi_gamma(e1, e2)\n else:\n phi_ext = 0\n lens_model = self._lens_mode_list[0]\n if lens_model in ['SPEP', 'SPEMD', 'SIE', 'NIE']:\n e1 = kwargs_list[0]['e1']\n e2 = kwargs_list[0]['e2']\n center_x = kwargs_list[0]['center_x']\n center_y = kwargs_list[0]['center_y']\n theta_E = kwargs_list[0]['theta_E']\n x = [theta_E, e1, e2, center_x, center_y, phi_ext]\n elif lens_model in ['NFW_ELLIPSE']:\n e1 = kwargs_list[0]['e1']\n e2 = kwargs_list[0]['e2']\n center_x = kwargs_list[0]['center_x']\n center_y = kwargs_list[0]['center_y']\n theta_Rs = kwargs_list[0]['theta_Rs']\n x = [theta_Rs, e1, e2, center_x, center_y, phi_ext]\n elif lens_model in ['SHAPELETS_CART']:\n coeffs = list(kwargs_list[0]['coeffs'])\n [c10, c01, c20, c11, c02] = coeffs[1:6]\n x = [c10, c01, c20, c11, c02, phi_ext]\n else:\n raise ValueError('Lens model %s not supported for 4-point solver!' %\n lens_model)\n return x\n", "role": "user" }, { "content": "extract_array", "role": "assistant" } ]
def x(self, x, y, grid_interp_x=None, grid_interp_y=None, f_=None, f_x=None, f_y=None, f_xx=None, f_yy=None, f_xy=None): n = len(np.atleast_1d(x)) if n <= 1 and np.shape(x) == (): f_x_out = self.f_x_interp(x, y, grid_interp_x, grid_interp_y, f_x) f_y_out = self.f_y_interp(x, y, grid_interp_x, grid_interp_y, f_y) return f_x_out[0][0], f_y_out[0][0] elif self._grid and n >= self._min_grid_number: x_, y_ = util.get_axes(x, y) f_x_out = self.f_x_interp(x_, y_, grid_interp_x, grid_interp_y, f_x) f_y_out = self.f_y_interp(x_, y_, grid_interp_x, grid_interp_y, f_y) f_x_out = util.image2array(f_x_out) f_y_out = util.image2array(f_y_out) else: f_x_out, f_y_out = np.zeros(n), np.zeros(n) for i in range(n): f_x_out[i] = self.f_x_interp(x[i], y[i], grid_interp_x, grid_interp_y, f_x) f_y_out[i] = self.f_y_interp(x[i], y[i], grid_interp_x, grid_interp_y, f_y) return f_x_out, f_y_out
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, grid_interp_x=None, grid_interp_y=None, f_=None, f_x=None,\n f_y=None, f_xx=None, f_yy=None, f_xy=None):\n n = len(np.atleast_1d(x))\n if n <= 1 and np.shape(x) == ():\n f_x_out = self.f_x_interp(x, y, grid_interp_x, grid_interp_y, f_x)\n f_y_out = self.f_y_interp(x, y, grid_interp_x, grid_interp_y, f_y)\n return f_x_out[0][0], f_y_out[0][0]\n elif self._grid and n >= self._min_grid_number:\n x_, y_ = util.get_axes(x, y)\n f_x_out = self.f_x_interp(x_, y_, grid_interp_x, grid_interp_y, f_x)\n f_y_out = self.f_y_interp(x_, y_, grid_interp_x, grid_interp_y, f_y)\n f_x_out = util.image2array(f_x_out)\n f_y_out = util.image2array(f_y_out)\n else:\n f_x_out, f_y_out = np.zeros(n), np.zeros(n)\n for i in range(n):\n f_x_out[i] = self.f_x_interp(x[i], y[i], grid_interp_x,\n grid_interp_y, f_x)\n f_y_out[i] = self.f_y_interp(x[i], y[i], grid_interp_x,\n grid_interp_y, f_y)\n return f_x_out, f_y_out\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, grid_interp_x=None, grid_interp_y=None, f_=None, f_x=None, f_y=None, f_xx=None, f_yy=None, f_xy=None): n = len(np.atleast_1d(x)) if n <= 1 and np.shape(x) == (): f_xx_out = self.f_xx_interp(x, y, grid_interp_x, grid_interp_y, f_xx) f_yy_out = self.f_yy_interp(x, y, grid_interp_x, grid_interp_y, f_yy) f_xy_out = self.f_xy_interp(x, y, grid_interp_x, grid_interp_y, f_xy) return f_xx_out[0][0], f_yy_out[0][0], f_xy_out[0][0] elif self._grid and n >= self._min_grid_number: x_, y_ = util.get_axes(x, y) f_xx_out = self.f_xx_interp(x_, y_, grid_interp_x, grid_interp_y, f_xx) f_yy_out = self.f_yy_interp(x_, y_, grid_interp_x, grid_interp_y, f_yy) f_xy_out = self.f_xy_interp(x_, y_, grid_interp_x, grid_interp_y, f_xy) f_xx_out = util.image2array(f_xx_out) f_yy_out = util.image2array(f_yy_out) f_xy_out = util.image2array(f_xy_out) else: f_xx_out, f_yy_out, f_xy_out = np.zeros(n), np.zeros(n), np.zeros(n) for i in range(n): f_xx_out[i] = self.f_xx_interp(x[i], y[i], grid_interp_x, grid_interp_y, f_xx) f_yy_out[i] = self.f_yy_interp(x[i], y[i], grid_interp_x, grid_interp_y, f_yy) f_xy_out[i] = self.f_xy_interp(x[i], y[i], grid_interp_x, grid_interp_y, f_xy) return f_xx_out, f_yy_out, f_xy_out
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, grid_interp_x=None, grid_interp_y=None, f_=None, f_x=None,\n f_y=None, f_xx=None, f_yy=None, f_xy=None):\n n = len(np.atleast_1d(x))\n if n <= 1 and np.shape(x) == ():\n f_xx_out = self.f_xx_interp(x, y, grid_interp_x, grid_interp_y, f_xx)\n f_yy_out = self.f_yy_interp(x, y, grid_interp_x, grid_interp_y, f_yy)\n f_xy_out = self.f_xy_interp(x, y, grid_interp_x, grid_interp_y, f_xy)\n return f_xx_out[0][0], f_yy_out[0][0], f_xy_out[0][0]\n elif self._grid and n >= self._min_grid_number:\n x_, y_ = util.get_axes(x, y)\n f_xx_out = self.f_xx_interp(x_, y_, grid_interp_x, grid_interp_y, f_xx)\n f_yy_out = self.f_yy_interp(x_, y_, grid_interp_x, grid_interp_y, f_yy)\n f_xy_out = self.f_xy_interp(x_, y_, grid_interp_x, grid_interp_y, f_xy)\n f_xx_out = util.image2array(f_xx_out)\n f_yy_out = util.image2array(f_yy_out)\n f_xy_out = util.image2array(f_xy_out)\n else:\n f_xx_out, f_yy_out, f_xy_out = np.zeros(n), np.zeros(n), np.zeros(n)\n for i in range(n):\n f_xx_out[i] = self.f_xx_interp(x[i], y[i], grid_interp_x,\n grid_interp_y, f_xx)\n f_yy_out[i] = self.f_yy_interp(x[i], y[i], grid_interp_x,\n grid_interp_y, f_yy)\n f_xy_out[i] = self.f_xy_interp(x[i], y[i], grid_interp_x,\n grid_interp_y, f_xy)\n return f_xx_out, f_yy_out, f_xy_out\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(ax, lensModel, kwargs_lens, numPix=500, deltaPix=0.01, sourcePos_x=0, sourcePos_y=0, point_source=False, with_caustics=False): kwargs_data = sim_util.data_configure_simple(numPix, deltaPix) data = Data(kwargs_data) _frame_size = numPix * deltaPix _coords = data._coords x_grid, y_grid = data.coordinates lensModelExt = LensModelExtensions(lensModel) x_grid1d = util.image2array(x_grid) y_grid1d = util.image2array(y_grid) kappa_result = lensModel.kappa(x_grid1d, y_grid1d, kwargs_lens) kappa_result = util.array2image(kappa_result) im = ax.matshow(np.log10(kappa_result), origin='lower', extent=[0, _frame_size, 0, _frame_size], cmap='Greys', vmin=-1, vmax=1) if with_caustics is True: ra_crit_list, dec_crit_list = lensModelExt.critical_curve_tiling( kwargs_lens, compute_window=_frame_size, start_scale=deltaPix, max_order=10) ra_caustic_list, dec_caustic_list = lensModel.ray_shooting(ra_crit_list , dec_crit_list, kwargs_lens) plot_line_set(ax, _coords, ra_caustic_list, dec_caustic_list, color='g' ) plot_line_set(ax, _coords, ra_crit_list, dec_crit_list, color='r') if point_source: from lenstronomy.LensModel.Solver.lens_equation_solver import LensEquationSolver solver = LensEquationSolver(lensModel) theta_x, theta_y = solver.image_position_from_source(sourcePos_x, sourcePos_y, kwargs_lens, min_distance=deltaPix, search_window= deltaPix * numPix) mag_images = lensModel.magnification(theta_x, theta_y, kwargs_lens) x_image, y_image = _coords.map_coord2pix(theta_x, theta_y) abc_list = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K'] for i in range(len(x_image)): x_ = (x_image[i] + 0.5) * deltaPix y_ = (y_image[i] + 0.5) * deltaPix ax.plot(x_, y_, 'dk', markersize=4 * (1 + np.log(np.abs( mag_images[i]))), alpha=0.5) ax.text(x_, y_, abc_list[i], fontsize=20, color='k') x_source, y_source = _coords.map_coord2pix(sourcePos_x, sourcePos_y) ax.plot((x_source + 0.5) * deltaPix, (y_source + 0.5) * deltaPix, '*k', markersize=10) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.autoscale(False) return ax
lens_model_plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ax, lensModel, kwargs_lens, numPix=500, deltaPix=0.01, sourcePos_x=0,\n sourcePos_y=0, point_source=False, with_caustics=False):\n kwargs_data = sim_util.data_configure_simple(numPix, deltaPix)\n data = Data(kwargs_data)\n _frame_size = numPix * deltaPix\n _coords = data._coords\n x_grid, y_grid = data.coordinates\n lensModelExt = LensModelExtensions(lensModel)\n x_grid1d = util.image2array(x_grid)\n y_grid1d = util.image2array(y_grid)\n kappa_result = lensModel.kappa(x_grid1d, y_grid1d, kwargs_lens)\n kappa_result = util.array2image(kappa_result)\n im = ax.matshow(np.log10(kappa_result), origin='lower', extent=[0,\n _frame_size, 0, _frame_size], cmap='Greys', vmin=-1, vmax=1)\n if with_caustics is True:\n ra_crit_list, dec_crit_list = lensModelExt.critical_curve_tiling(\n kwargs_lens, compute_window=_frame_size, start_scale=deltaPix,\n max_order=10)\n ra_caustic_list, dec_caustic_list = lensModel.ray_shooting(ra_crit_list\n , dec_crit_list, kwargs_lens)\n plot_line_set(ax, _coords, ra_caustic_list, dec_caustic_list, color='g'\n )\n plot_line_set(ax, _coords, ra_crit_list, dec_crit_list, color='r')\n if point_source:\n from lenstronomy.LensModel.Solver.lens_equation_solver import LensEquationSolver\n solver = LensEquationSolver(lensModel)\n theta_x, theta_y = solver.image_position_from_source(sourcePos_x,\n sourcePos_y, kwargs_lens, min_distance=deltaPix, search_window=\n deltaPix * numPix)\n mag_images = lensModel.magnification(theta_x, theta_y, kwargs_lens)\n x_image, y_image = _coords.map_coord2pix(theta_x, theta_y)\n abc_list = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']\n for i in range(len(x_image)):\n x_ = (x_image[i] + 0.5) * deltaPix\n y_ = (y_image[i] + 0.5) * deltaPix\n ax.plot(x_, y_, 'dk', markersize=4 * (1 + np.log(np.abs(\n mag_images[i]))), alpha=0.5)\n ax.text(x_, y_, abc_list[i], fontsize=20, color='k')\n x_source, y_source = _coords.map_coord2pix(sourcePos_x, sourcePos_y)\n ax.plot((x_source + 0.5) * deltaPix, (y_source + 0.5) * deltaPix,\n '*k', markersize=10)\n ax.get_xaxis().set_visible(False)\n ax.get_yaxis().set_visible(False)\n ax.autoscale(False)\n return ax\n", "role": "user" }, { "content": "lens_model_plot", "role": "assistant" } ]
def x(ax, samples_mcmc, param_mcmc, dist_mcmc, num_average=100): num_samples = len(samples_mcmc[:, 0]) num_average = int(num_average) n_points = int((num_samples - num_samples % num_average) / num_average) for i, param_name in enumerate(param_mcmc): samples = samples_mcmc[:, i] samples_averaged = np.average(samples[:int(n_points * num_average)] .reshape(n_points, num_average), axis=1) end_point = np.mean(samples_averaged) samples_renormed = (samples_averaged - end_point) / np.std( samples_averaged) ax.plot(samples_renormed, label=param_name) dist_averaged = -np.max(dist_mcmc[:int(n_points * num_average)].reshape (n_points, num_average), axis=1) dist_normed = (dist_averaged - np.max(dist_averaged)) / (np.max( dist_averaged) - np.min(dist_averaged)) ax.plot(dist_normed, label='logL', color='k', linewidth=2) ax.legend() return ax
plot_mcmc_behaviour
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ax, samples_mcmc, param_mcmc, dist_mcmc, num_average=100):\n num_samples = len(samples_mcmc[:, 0])\n num_average = int(num_average)\n n_points = int((num_samples - num_samples % num_average) / num_average)\n for i, param_name in enumerate(param_mcmc):\n samples = samples_mcmc[:, i]\n samples_averaged = np.average(samples[:int(n_points * num_average)]\n .reshape(n_points, num_average), axis=1)\n end_point = np.mean(samples_averaged)\n samples_renormed = (samples_averaged - end_point) / np.std(\n samples_averaged)\n ax.plot(samples_renormed, label=param_name)\n dist_averaged = -np.max(dist_mcmc[:int(n_points * num_average)].reshape\n (n_points, num_average), axis=1)\n dist_normed = (dist_averaged - np.max(dist_averaged)) / (np.max(\n dist_averaged) - np.min(dist_averaged))\n ax.plot(dist_normed, label='logL', color='k', linewidth=2)\n ax.legend()\n return ax\n", "role": "user" }, { "content": "plot_mcmc_behaviour", "role": "assistant" } ]
def x(self, with_caustics=False, image_names=False): f, axes = plt.subplots(2, 3, figsize=(16, 8)) self.data_plot(ax=axes[0, 0]) self.model_plot(ax=axes[0, 1], image_names=True) self.normalized_residual_plot(ax=axes[0, 2], v_min=-6, v_max=6) self.source_plot(ax=axes[1, 0], deltaPix_source=0.01, numPix=100, with_caustics=with_caustics) self.convergence_plot(ax=axes[1, 1], v_max=1) self.magnification_plot(ax=axes[1, 2]) f.tight_layout() f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace= 0.0, hspace=0.05) return f, axes
plot_main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, with_caustics=False, image_names=False):\n f, axes = plt.subplots(2, 3, figsize=(16, 8))\n self.data_plot(ax=axes[0, 0])\n self.model_plot(ax=axes[0, 1], image_names=True)\n self.normalized_residual_plot(ax=axes[0, 2], v_min=-6, v_max=6)\n self.source_plot(ax=axes[1, 0], deltaPix_source=0.01, numPix=100,\n with_caustics=with_caustics)\n self.convergence_plot(ax=axes[1, 1], v_max=1)\n self.magnification_plot(ax=axes[1, 2])\n f.tight_layout()\n f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=\n 0.0, hspace=0.05)\n return f, axes\n", "role": "user" }, { "content": "plot_main", "role": "assistant" } ]
def x(self): f, axes = plt.subplots(2, 3, figsize=(16, 8)) self.decomposition_plot(ax=axes[0, 0], text='Lens light', lens_light_add=True, unconvolved=True) self.decomposition_plot(ax=axes[1, 0], text='Lens light convolved', lens_light_add=True) self.decomposition_plot(ax=axes[0, 1], text='Source light', source_add= True, unconvolved=True) self.decomposition_plot(ax=axes[1, 1], text='Source light convolved', source_add=True) self.decomposition_plot(ax=axes[0, 2], text='All components', source_add=True, lens_light_add=True, unconvolved=True) self.decomposition_plot(ax=axes[1, 2], text='All components convolved', source_add=True, lens_light_add=True, point_source_add=True) f.tight_layout() f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace= 0.0, hspace=0.05) return f, axes
plot_separate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n f, axes = plt.subplots(2, 3, figsize=(16, 8))\n self.decomposition_plot(ax=axes[0, 0], text='Lens light',\n lens_light_add=True, unconvolved=True)\n self.decomposition_plot(ax=axes[1, 0], text='Lens light convolved',\n lens_light_add=True)\n self.decomposition_plot(ax=axes[0, 1], text='Source light', source_add=\n True, unconvolved=True)\n self.decomposition_plot(ax=axes[1, 1], text='Source light convolved',\n source_add=True)\n self.decomposition_plot(ax=axes[0, 2], text='All components',\n source_add=True, lens_light_add=True, unconvolved=True)\n self.decomposition_plot(ax=axes[1, 2], text='All components convolved',\n source_add=True, lens_light_add=True, point_source_add=True)\n f.tight_layout()\n f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=\n 0.0, hspace=0.05)\n return f, axes\n", "role": "user" }, { "content": "plot_separate", "role": "assistant" } ]
def x(self): f, axes = plt.subplots(2, 3, figsize=(16, 8)) self.subtract_from_data_plot(ax=axes[0, 0], text='Data') self.subtract_from_data_plot(ax=axes[0, 1], text='Data - Point Source', point_source_add=True) self.subtract_from_data_plot(ax=axes[0, 2], text='Data - Lens Light', lens_light_add=True) self.subtract_from_data_plot(ax=axes[1, 0], text='Data - Source Light', source_add=True) self.subtract_from_data_plot(ax=axes[1, 1], text= 'Data - Source Light - Point Source', source_add=True, point_source_add=True) self.subtract_from_data_plot(ax=axes[1, 2], text= 'Data - Lens Light - Point Source', lens_light_add=True, point_source_add=True) f.tight_layout() f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace= 0.0, hspace=0.05) return f, axes
plot_subtract_from_data_all
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n f, axes = plt.subplots(2, 3, figsize=(16, 8))\n self.subtract_from_data_plot(ax=axes[0, 0], text='Data')\n self.subtract_from_data_plot(ax=axes[0, 1], text='Data - Point Source',\n point_source_add=True)\n self.subtract_from_data_plot(ax=axes[0, 2], text='Data - Lens Light',\n lens_light_add=True)\n self.subtract_from_data_plot(ax=axes[1, 0], text='Data - Source Light',\n source_add=True)\n self.subtract_from_data_plot(ax=axes[1, 1], text=\n 'Data - Source Light - Point Source', source_add=True,\n point_source_add=True)\n self.subtract_from_data_plot(ax=axes[1, 2], text=\n 'Data - Lens Light - Point Source', lens_light_add=True,\n point_source_add=True)\n f.tight_layout()\n f.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=\n 0.0, hspace=0.05)\n return f, axes\n", "role": "user" }, { "content": "plot_subtract_from_data_all", "role": "assistant" } ]
def x(self, x, y, coeffs, beta, center_x=0, center_y=0): shapelets = self._createShapelet(coeffs) r, phi = param_util.cart2polar(x, y, center=np.array([center_x, center_y])) alpha1_shapelets, alpha2_shapelets = self._alphaShapelets(shapelets, beta) f_x = self._shapeletOutput(r, phi, beta, alpha1_shapelets) f_y = self._shapeletOutput(r, phi, beta, alpha2_shapelets) return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, coeffs, beta, center_x=0, center_y=0):\n shapelets = self._createShapelet(coeffs)\n r, phi = param_util.cart2polar(x, y, center=np.array([center_x, center_y]))\n alpha1_shapelets, alpha2_shapelets = self._alphaShapelets(shapelets, beta)\n f_x = self._shapeletOutput(r, phi, beta, alpha1_shapelets)\n f_y = self._shapeletOutput(r, phi, beta, alpha2_shapelets)\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, coeffs, beta, center_x=0, center_y=0): shapelets = self._createShapelet(coeffs) r, phi = param_util.cart2polar(x, y, center=np.array([center_x, center_y])) kappa_shapelets = self._kappaShapelets(shapelets, beta) gamma1_shapelets, gamma2_shapelets = self._gammaShapelets(shapelets, beta) kappa_value = self._shapeletOutput(r, phi, beta, kappa_shapelets) gamma1_value = self._shapeletOutput(r, phi, beta, gamma1_shapelets) gamma2_value = self._shapeletOutput(r, phi, beta, gamma2_shapelets) f_xx = kappa_value + gamma1_value f_xy = gamma2_value f_yy = kappa_value - gamma1_value return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, coeffs, beta, center_x=0, center_y=0):\n shapelets = self._createShapelet(coeffs)\n r, phi = param_util.cart2polar(x, y, center=np.array([center_x, center_y]))\n kappa_shapelets = self._kappaShapelets(shapelets, beta)\n gamma1_shapelets, gamma2_shapelets = self._gammaShapelets(shapelets, beta)\n kappa_value = self._shapeletOutput(r, phi, beta, kappa_shapelets)\n gamma1_value = self._shapeletOutput(r, phi, beta, gamma1_shapelets)\n gamma2_value = self._shapeletOutput(r, phi, beta, gamma2_shapelets)\n f_xx = kappa_value + gamma1_value\n f_xy = gamma2_value\n f_yy = kappa_value - gamma1_value\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, coeff): n_coeffs = len(coeff) num_l = self._get_num_l(n_coeffs) shapelets = np.zeros((num_l + 1, num_l + 1), 'complex') nl = 0 k = 0 i = 0 while i < len(coeff): if i % 2 == 0: shapelets[nl][k] += coeff[i] / 2.0 shapelets[k][nl] += coeff[i] / 2.0 if k == nl: nl += 1 k = 0 i += 1 continue else: k += 1 i += 1 continue else: shapelets[nl][k] += 1.0j * coeff[i] / 2.0 shapelets[k][nl] -= 1.0j * coeff[i] / 2.0 i += 1 return shapelets
createShapelet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coeff):\n n_coeffs = len(coeff)\n num_l = self._get_num_l(n_coeffs)\n shapelets = np.zeros((num_l + 1, num_l + 1), 'complex')\n nl = 0\n k = 0\n i = 0\n while i < len(coeff):\n if i % 2 == 0:\n shapelets[nl][k] += coeff[i] / 2.0\n shapelets[k][nl] += coeff[i] / 2.0\n if k == nl:\n nl += 1\n k = 0\n i += 1\n continue\n else:\n k += 1\n i += 1\n continue\n else:\n shapelets[nl][k] += 1.0j * coeff[i] / 2.0\n shapelets[k][nl] -= 1.0j * coeff[i] / 2.0\n i += 1\n return shapelets\n", "role": "user" }, { "content": "createShapelet", "role": "assistant" } ]
def x(self, r, phi, beta, shapelets): if type(r) == float or type(r) == int or type(r) == type(np.float64(1) ) or len(r) <= 1: values = 0.0 else: values = np.zeros(len(r), 'complex') for nl in range(0, len(shapelets)): for nr in range(0, len(shapelets)): value = shapelets[nl][nr] * self._chi_lr(r, phi, nl, nr, beta) values += value return values.real
shapeletOutput
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, phi, beta, shapelets):\n if type(r) == float or type(r) == int or type(r) == type(np.float64(1)\n ) or len(r) <= 1:\n values = 0.0\n else:\n values = np.zeros(len(r), 'complex')\n for nl in range(0, len(shapelets)):\n for nr in range(0, len(shapelets)):\n value = shapelets[nl][nr] * self._chi_lr(r, phi, nl, nr, beta)\n values += value\n return values.real\n", "role": "user" }, { "content": "shapeletOutput", "role": "assistant" } ]
def x(self, r, phi, nl, nr, beta): m = int((nr - nl).real) n = int((nr + nl).real) p = int((n - abs(m)) / 2) p2 = int((n + abs(m)) / 2) q = int(abs(m)) if p % 2 == 0: prefac = 1 else: prefac = -1 prefactor = prefac / beta ** (abs(m) + 1) * np.sqrt(math.factorial(p) / (np.pi * math.factorial(p2))) poly = self.poly[p][q] return prefactor * r ** q * poly((r / beta) ** 2) * np.exp(-(r / beta) ** 2 / 2) * np.exp(-1.0j * m * phi)
chi_lr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, phi, nl, nr, beta):\n m = int((nr - nl).real)\n n = int((nr + nl).real)\n p = int((n - abs(m)) / 2)\n p2 = int((n + abs(m)) / 2)\n q = int(abs(m))\n if p % 2 == 0:\n prefac = 1\n else:\n prefac = -1\n prefactor = prefac / beta ** (abs(m) + 1) * np.sqrt(math.factorial(p) /\n (np.pi * math.factorial(p2)))\n poly = self.poly[p][q]\n return prefactor * r ** q * poly((r / beta) ** 2) * np.exp(-(r / beta) **\n 2 / 2) * np.exp(-1.0j * m * phi)\n", "role": "user" }, { "content": "chi_lr", "role": "assistant" } ]
def x(self, shapelets, beta): output = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex') for nl in range(0, len(shapelets)): for nr in range(0, len(shapelets)): a_lr = shapelets[nl][nr] if nl > 0: output[nl - 1][nr + 1] += a_lr * np.sqrt(nl * (nr + 1)) / 2 if nr > 0: output[nl - 1][nr - 1] += a_lr * np.sqrt(nl * nr) / 2 output[nl + 1][nr + 1] += a_lr * np.sqrt((nl + 1) * (nr + 1)) / 2 if nr > 0: output[nl + 1][nr - 1] += a_lr * np.sqrt((nl + 1) * nr) / 2 return output / beta ** 2
kappaShapelets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shapelets, beta):\n output = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex')\n for nl in range(0, len(shapelets)):\n for nr in range(0, len(shapelets)):\n a_lr = shapelets[nl][nr]\n if nl > 0:\n output[nl - 1][nr + 1] += a_lr * np.sqrt(nl * (nr + 1)) / 2\n if nr > 0:\n output[nl - 1][nr - 1] += a_lr * np.sqrt(nl * nr) / 2\n output[nl + 1][nr + 1] += a_lr * np.sqrt((nl + 1) * (nr + 1)) / 2\n if nr > 0:\n output[nl + 1][nr - 1] += a_lr * np.sqrt((nl + 1) * nr) / 2\n return output / beta ** 2\n", "role": "user" }, { "content": "kappaShapelets", "role": "assistant" } ]
def x(self, shapelets, beta): output_x = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex') output_y = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex') for nl in range(0, len(shapelets)): for nr in range(0, len(shapelets)): a_lr = shapelets[nl][nr] output_x[nl][nr + 1] -= a_lr * np.sqrt(nr + 1) / 2 output_y[nl][nr + 1] -= a_lr * np.sqrt(nr + 1) / 2 * 1.0j output_x[nl + 1][nr] -= a_lr * np.sqrt(nl + 1) / 2 output_y[nl + 1][nr] += a_lr * np.sqrt(nl + 1) / 2 * 1.0j if nl > 0: output_x[nl - 1][nr] += a_lr * np.sqrt(nl) / 2 output_y[nl - 1][nr] -= a_lr * np.sqrt(nl) / 2 * 1.0j if nr > 0: output_x[nl][nr - 1] += a_lr * np.sqrt(nr) / 2 output_y[nl][nr - 1] += a_lr * np.sqrt(nr) / 2 * 1.0j return output_x / beta, output_y / beta
alphaShapelets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shapelets, beta):\n output_x = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex')\n output_y = np.zeros((len(shapelets) + 1, len(shapelets) + 1), 'complex')\n for nl in range(0, len(shapelets)):\n for nr in range(0, len(shapelets)):\n a_lr = shapelets[nl][nr]\n output_x[nl][nr + 1] -= a_lr * np.sqrt(nr + 1) / 2\n output_y[nl][nr + 1] -= a_lr * np.sqrt(nr + 1) / 2 * 1.0j\n output_x[nl + 1][nr] -= a_lr * np.sqrt(nl + 1) / 2\n output_y[nl + 1][nr] += a_lr * np.sqrt(nl + 1) / 2 * 1.0j\n if nl > 0:\n output_x[nl - 1][nr] += a_lr * np.sqrt(nl) / 2\n output_y[nl - 1][nr] -= a_lr * np.sqrt(nl) / 2 * 1.0j\n if nr > 0:\n output_x[nl][nr - 1] += a_lr * np.sqrt(nr) / 2\n output_y[nl][nr - 1] += a_lr * np.sqrt(nr) / 2 * 1.0j\n return output_x / beta, output_y / beta\n", "role": "user" }, { "content": "alphaShapelets", "role": "assistant" } ]
def x(self): const_SI = const.c ** 2 / (4 * np.pi * const.G) conversion = const.Mpc / const.M_sun pre_const = const_SI * conversion Epsilon_Crit = self.D_s / (self.D_d * self.D_ds) * pre_const return Epsilon_Crit
epsilon_crit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n const_SI = const.c ** 2 / (4 * np.pi * const.G)\n conversion = const.Mpc / const.M_sun\n pre_const = const_SI * conversion\n Epsilon_Crit = self.D_s / (self.D_d * self.D_ds) * pre_const\n return Epsilon_Crit\n", "role": "user" }, { "content": "epsilon_crit", "role": "assistant" } ]
def x(self, x, tau): return np.log(x * (tau + np.sqrt(tau ** 2 + x ** 2)) ** -1)
L
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, tau):\n return np.log(x * (tau + np.sqrt(tau ** 2 + x ** 2)) ** -1)\n", "role": "user" }, { "content": "L", "role": "assistant" } ]
def x(self, x): if isinstance(x, np.ndarray): nfwvals = np.ones_like(x) inds1 = np.where(x < 1) inds2 = np.where(x > 1) nfwvals[inds1] = (1 - x[inds1] ** 2) ** -0.5 * np.arctanh((1 - x[ inds1] ** 2) ** 0.5) nfwvals[inds2] = (x[inds2] ** 2 - 1) ** -0.5 * np.arctan((x[inds2] ** 2 - 1) ** 0.5) return nfwvals elif isinstance(x, float) or isinstance(x, int): if x == 1: return 1 if x < 1: return (1 - x ** 2) ** -0.5 * np.arctanh((1 - x ** 2) ** 0.5) else: return (x ** 2 - 1) ** -0.5 * np.arctan((x ** 2 - 1) ** 0.5)
F
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x):\n if isinstance(x, np.ndarray):\n nfwvals = np.ones_like(x)\n inds1 = np.where(x < 1)\n inds2 = np.where(x > 1)\n nfwvals[inds1] = (1 - x[inds1] ** 2) ** -0.5 * np.arctanh((1 - x[\n inds1] ** 2) ** 0.5)\n nfwvals[inds2] = (x[inds2] ** 2 - 1) ** -0.5 * np.arctan((x[inds2] **\n 2 - 1) ** 0.5)\n return nfwvals\n elif isinstance(x, float) or isinstance(x, int):\n if x == 1:\n return 1\n if x < 1:\n return (1 - x ** 2) ** -0.5 * np.arctanh((1 - x ** 2) ** 0.5)\n else:\n return (x ** 2 - 1) ** -0.5 * np.arctan((x ** 2 - 1) ** 0.5)\n", "role": "user" }, { "content": "F", "role": "assistant" } ]
def x(self, x, y, Rs, rho0, r_trunc, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) x = R * Rs ** -1 tau = float(r_trunc) * Rs ** -1 Fx = self._F(x, tau) return 2 * rho0 * Rs * Fx
density_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, Rs, rho0, r_trunc, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n x = R * Rs ** -1\n tau = float(r_trunc) * Rs ** -1\n Fx = self._F(x, tau)\n return 2 * rho0 * Rs * Fx\n", "role": "user" }, { "content": "density_2d", "role": "assistant" } ]
def x(self, R, Rs, rho0, r_trunc): x = R * Rs ** -1 func = r_trunc ** 2 * (-2 * x * (1 + r_trunc ** 2) + 4 * (1 + x) * r_trunc * np.arctan(x / r_trunc) - 2 * (1 + x) * (-1 + r_trunc ** 2 ) * np.log(Rs) + 2 * (1 + x) * (-1 + r_trunc ** 2) * np.log(Rs * (1 + x)) + 2 * (1 + x) * (-1 + r_trunc ** 2) * np.log(Rs * r_trunc) - (1 + x) * (-1 + r_trunc ** 2) * np.log(Rs ** 2 * (x ** 2 + r_trunc ** 2)) ) / (2.0 * (1 + x) * (1 + r_trunc ** 2) ** 2) m_3d = 4 * np.pi * Rs ** 3 * rho0 * func return m_3d
mass_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0, r_trunc):\n x = R * Rs ** -1\n func = r_trunc ** 2 * (-2 * x * (1 + r_trunc ** 2) + 4 * (1 + x) *\n r_trunc * np.arctan(x / r_trunc) - 2 * (1 + x) * (-1 + r_trunc ** 2\n ) * np.log(Rs) + 2 * (1 + x) * (-1 + r_trunc ** 2) * np.log(Rs * (1 +\n x)) + 2 * (1 + x) * (-1 + r_trunc ** 2) * np.log(Rs * r_trunc) - (1 +\n x) * (-1 + r_trunc ** 2) * np.log(Rs ** 2 * (x ** 2 + r_trunc ** 2))\n ) / (2.0 * (1 + x) * (1 + r_trunc ** 2) ** 2)\n m_3d = 4 * np.pi * Rs ** 3 * rho0 * func\n return m_3d\n", "role": "user" }, { "content": "mass_3d", "role": "assistant" } ]
def x(self, R, Rs, rho0, r_trunc): x = R / Rs tau = float(r_trunc) / Rs hx = self._h(x, tau) return 2 * rho0 * Rs ** 3 * hx
nfwPot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0, r_trunc):\n x = R / Rs\n tau = float(r_trunc) / Rs\n hx = self._h(x, tau)\n return 2 * rho0 * Rs ** 3 * hx\n", "role": "user" }, { "content": "nfwPot", "role": "assistant" } ]
def x(self, R, Rs, rho0, r_trunc, ax_x, ax_y): if isinstance(R, int) or isinstance(R, float): R = max(R, 1e-05) else: R[R <= 1e-05] = 1e-05 x = R / Rs tau = float(r_trunc) / Rs gx = self._g(x, tau) a = 4 * rho0 * Rs * gx / x ** 2 return a * ax_x, a * ax_y
nfwAlpha
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0, r_trunc, ax_x, ax_y):\n if isinstance(R, int) or isinstance(R, float):\n R = max(R, 1e-05)\n else:\n R[R <= 1e-05] = 1e-05\n x = R / Rs\n tau = float(r_trunc) / Rs\n gx = self._g(x, tau)\n a = 4 * rho0 * Rs * gx / x ** 2\n return a * ax_x, a * ax_y\n", "role": "user" }, { "content": "nfwAlpha", "role": "assistant" } ]
def x(self, R, Rs, rho0, r_trunc): x = R / Rs tau = r_trunc / Rs gx = self._g(x, tau) m_2d = 4 * rho0 * Rs * R ** 2 * gx / x ** 2 * np.pi return m_2d
mass_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0, r_trunc):\n x = R / Rs\n tau = r_trunc / Rs\n gx = self._g(x, tau)\n m_2d = 4 * rho0 * Rs * R ** 2 * gx / x ** 2 * np.pi\n return m_2d\n", "role": "user" }, { "content": "mass_2d", "role": "assistant" } ]
def x(self, X, tau): t2 = tau ** 2 _F = self.F(X) a = t2 * (t2 + 1) ** -2 if isinstance(X, np.ndarray): b = np.ones_like(X) b[X == 1] = (t2 + 1) * 1.0 / 3 b[X != 1] = (t2 + 1) * (X[X != 1] ** 2 - 1) ** -1 * (1 - _F[X != 1]) elif isinstance(X, float) or isinstance(X, int): if X == 1: b = (t2 + 1) * 1.0 / 3 else: b = (t2 + 1) * (X ** 2 - 1) ** -1 * (1 - _F) else: raise ValueError( "The variable type is not compatible with the function, please use float, int or ndarray's." ) c = 2 * _F d = -np.pi * (t2 + X ** 2) ** -0.5 e = (t2 - 1) * (tau * (t2 + X ** 2) ** 0.5) ** -1 * self.L(X, tau) result = a * (b + c + d + e) return result
F
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, tau):\n t2 = tau ** 2\n _F = self.F(X)\n a = t2 * (t2 + 1) ** -2\n if isinstance(X, np.ndarray):\n b = np.ones_like(X)\n b[X == 1] = (t2 + 1) * 1.0 / 3\n b[X != 1] = (t2 + 1) * (X[X != 1] ** 2 - 1) ** -1 * (1 - _F[X != 1])\n elif isinstance(X, float) or isinstance(X, int):\n if X == 1:\n b = (t2 + 1) * 1.0 / 3\n else:\n b = (t2 + 1) * (X ** 2 - 1) ** -1 * (1 - _F)\n else:\n raise ValueError(\n \"The variable type is not compatible with the function, please use float, int or ndarray's.\"\n )\n c = 2 * _F\n d = -np.pi * (t2 + X ** 2) ** -0.5\n e = (t2 - 1) * (tau * (t2 + X ** 2) ** 0.5) ** -1 * self.L(X, tau)\n result = a * (b + c + d + e)\n return result\n", "role": "user" }, { "content": "F", "role": "assistant" } ]
def x(self, x, tau): return tau ** 2 * (tau ** 2 + 1) ** -2 * ((tau ** 2 + 1 + 2 * (x ** 2 - 1)) * self.F(x) + tau * np.pi + (tau ** 2 - 1) * np.log(tau) + np. sqrt(tau ** 2 + x ** 2) * (-np.pi + self.L(x, tau) * (tau ** 2 - 1) * tau ** -1))
g
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, tau):\n return tau ** 2 * (tau ** 2 + 1) ** -2 * ((tau ** 2 + 1 + 2 * (x ** 2 -\n 1)) * self.F(x) + tau * np.pi + (tau ** 2 - 1) * np.log(tau) + np.\n sqrt(tau ** 2 + x ** 2) * (-np.pi + self.L(x, tau) * (tau ** 2 - 1) *\n tau ** -1))\n", "role": "user" }, { "content": "g", "role": "assistant" } ]
def x(self, X, tau): def x(y): if isinstance(y, float) or isinstance(y, int): if y > 1: return np.arccosh(y) else: return np.arccos(y) else: values = np.ones_like(y) inds1 = np.where(y < 1) inds2 = np.where(y > 1) values[inds1] = np.arccos(y[inds1]) values[inds2] = np.arccos((1 - y[inds2]) ** 0.5) return values def x(x): if isinstance(x, float) or isinstance(x, int): if x < 1: return np.log(x / 2.0) ** 2 - np.arccosh(1.0 / x) ** 2 else: return np.log(x / 2.0) ** 2 - np.arccos(1.0 / x) ** 2 else: inds1 = np.where(x < 1) inds2 = np.where(x >= 1) y = np.zeros_like(x) y[inds1] = np.log(x[inds1] / 2.0) ** 2 - np.arccosh(1.0 / x[inds1] ) ** 2 y[inds2] = np.log(x[inds2] / 2.0) ** 2 - np.arccosh(1.0 / x[inds2] ) ** 2 return y def x(x, tau): u = x ** 2 t2 = tau ** 2 Lx = self.L(u ** 0.5, tau) return (t2 + 1) ** -2 * (2 * t2 * np.pi * (tau - (t2 + u) ** 0.5 + tau * np.log(tau + (t2 + u) ** 0.5)) + 2 * (t2 - 1) * tau * (t2 + u) ** 0.5 * Lx + t2 * (t2 - 1) * Lx ** 2 + 4 * t2 * (u - 1) * self.F(u ** 0.5) + t2 * (t2 - 1) * cos_func(u ** -0.5) ** 2 + t2 * ((t2 - 1) * np.log(tau) - t2 - 1) * np.log(u) - t2 * ((t2 - 1) * np.log(tau) * np.log(4 * tau) + 2 * np.log(0.5 * tau) - 2 * tau * (tau - np.pi) * np.log(tau * 2))) c = 1e-09 rescale = 1 if np.any(X - c < 1): warnings.warn( 'Truncated NFW potential not yet implemented for x<1. Using the expression for the NFW potential in this regime isntead.' ) rescale = tnfw_func(1.00001, tau) * nfw_func(1) ** -1 if isinstance(X, float) or isinstance(X, int): if X < 1: X = min(X, 0.001) return nfw_func(X) * rescale else: return tnfw_func(X, tau) else: X[np.where(X < 0.001)] = 0.001 values = np.zeros_like(X) inds1, inds2 = np.where(X < 1), np.where(X >= 1) values[inds1] = nfw_func(X[inds1]) * rescale values[inds2] = tnfw_func(X[inds2], tau) return values
h
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, tau):\n\n def x(y):\n if isinstance(y, float) or isinstance(y, int):\n if y > 1:\n return np.arccosh(y)\n else:\n return np.arccos(y)\n else:\n values = np.ones_like(y)\n inds1 = np.where(y < 1)\n inds2 = np.where(y > 1)\n values[inds1] = np.arccos(y[inds1])\n values[inds2] = np.arccos((1 - y[inds2]) ** 0.5)\n return values\n\n def x(x):\n if isinstance(x, float) or isinstance(x, int):\n if x < 1:\n return np.log(x / 2.0) ** 2 - np.arccosh(1.0 / x) ** 2\n else:\n return np.log(x / 2.0) ** 2 - np.arccos(1.0 / x) ** 2\n else:\n inds1 = np.where(x < 1)\n inds2 = np.where(x >= 1)\n y = np.zeros_like(x)\n y[inds1] = np.log(x[inds1] / 2.0) ** 2 - np.arccosh(1.0 / x[inds1]\n ) ** 2\n y[inds2] = np.log(x[inds2] / 2.0) ** 2 - np.arccosh(1.0 / x[inds2]\n ) ** 2\n return y\n\n def x(x, tau):\n u = x ** 2\n t2 = tau ** 2\n Lx = self.L(u ** 0.5, tau)\n return (t2 + 1) ** -2 * (2 * t2 * np.pi * (tau - (t2 + u) ** 0.5 + \n tau * np.log(tau + (t2 + u) ** 0.5)) + 2 * (t2 - 1) * tau * (t2 +\n u) ** 0.5 * Lx + t2 * (t2 - 1) * Lx ** 2 + 4 * t2 * (u - 1) *\n self.F(u ** 0.5) + t2 * (t2 - 1) * cos_func(u ** -0.5) ** 2 + \n t2 * ((t2 - 1) * np.log(tau) - t2 - 1) * np.log(u) - t2 * ((t2 -\n 1) * np.log(tau) * np.log(4 * tau) + 2 * np.log(0.5 * tau) - 2 *\n tau * (tau - np.pi) * np.log(tau * 2)))\n c = 1e-09\n rescale = 1\n if np.any(X - c < 1):\n warnings.warn(\n 'Truncated NFW potential not yet implemented for x<1. Using the expression for the NFW potential in this regime isntead.'\n )\n rescale = tnfw_func(1.00001, tau) * nfw_func(1) ** -1\n if isinstance(X, float) or isinstance(X, int):\n if X < 1:\n X = min(X, 0.001)\n return nfw_func(X) * rescale\n else:\n return tnfw_func(X, tau)\n else:\n X[np.where(X < 0.001)] = 0.001\n values = np.zeros_like(X)\n inds1, inds2 = np.where(X < 1), np.where(X >= 1)\n values[inds1] = nfw_func(X[inds1]) * rescale\n values[inds2] = tnfw_func(X[inds2], tau)\n return values\n", "role": "user" }, { "content": "h", "role": "assistant" } ]
def x(x, y, center=np.array([0, 0])): coordShift_x = x - center[0] coordShift_y = y - center[1] r = np.sqrt(coordShift_x ** 2 + coordShift_y ** 2) phi = np.arctan2(coordShift_y, coordShift_x) return r, phi
cart2polar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, center=np.array([0, 0])):\n coordShift_x = x - center[0]\n coordShift_y = y - center[1]\n r = np.sqrt(coordShift_x ** 2 + coordShift_y ** 2)\n phi = np.arctan2(coordShift_y, coordShift_x)\n return r, phi\n", "role": "user" }, { "content": "cart2polar", "role": "assistant" } ]
def x(r, phi, center): x = r * np.cos(phi) y = r * np.sin(phi) return x - center[0], y - center[1]
polar2cart
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(r, phi, center):\n x = r * np.cos(phi)\n y = r * np.sin(phi)\n return x - center[0], y - center[1]\n", "role": "user" }, { "content": "polar2cart", "role": "assistant" } ]
def x(e1, e2): phi = np.arctan2(e2, e1) / 2 gamma = np.sqrt(e1 ** 2 + e2 ** 2) return phi, gamma
ellipticity2phi_gamma
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(e1, e2):\n phi = np.arctan2(e2, e1) / 2\n gamma = np.sqrt(e1 ** 2 + e2 ** 2)\n return phi, gamma\n", "role": "user" }, { "content": "ellipticity2phi_gamma", "role": "assistant" } ]
def x(x, y, e1, e2, center_x=0, center_y=0): x_shift = x - center_x y_shift = y - center_y x_ = (1 - e1) * x_shift - e2 * y_shift y_ = -e2 * x_shift + (1 + e1) * y_shift det = np.sqrt((1 - e1) * (1 + e1) + e2 ** 2) return x_ / det, y_ / det
transform_e1e2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, e1, e2, center_x=0, center_y=0):\n x_shift = x - center_x\n y_shift = y - center_y\n x_ = (1 - e1) * x_shift - e2 * y_shift\n y_ = -e2 * x_shift + (1 + e1) * y_shift\n det = np.sqrt((1 - e1) * (1 + e1) + e2 ** 2)\n return x_ / det, y_ / det\n", "role": "user" }, { "content": "transform_e1e2", "role": "assistant" } ]
def x(e1, e2): phi = np.arctan2(e2, e1) / 2 c = np.sqrt(e1 ** 2 + e2 ** 2) if c > 0.999: c = 0.999 q = (1 - c) / (1 + c) return phi, q
ellipticity2phi_q
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(e1, e2):\n phi = np.arctan2(e2, e1) / 2\n c = np.sqrt(e1 ** 2 + e2 ** 2)\n if c > 0.999:\n c = 0.999\n q = (1 - c) / (1 + c)\n return phi, q\n", "role": "user" }, { "content": "ellipticity2phi_q", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_ps, kappa_ext=0): fermat_pot = self.lens_analysis.fermat_potential(kwargs_lens, kwargs_ps) time_delay = self.lensCosmo.time_delay_units(fermat_pot, kappa_ext) return time_delay
time_delays
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_ps, kappa_ext=0):\n fermat_pot = self.lens_analysis.fermat_potential(kwargs_lens, kwargs_ps)\n time_delay = self.lensCosmo.time_delay_units(fermat_pot, kappa_ext)\n return time_delay\n", "role": "user" }, { "content": "time_delays", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_lens_light, lens_light_model_bool_list=None, aniso_param=1, r_eff=None, R_slit=0.81, dR_slit=0.1, psf_fwhm=0.7, num_evaluate=1000): gamma = kwargs_lens[0]['gamma'] if 'center_x' in kwargs_lens_light[0]: center_x, center_y = kwargs_lens_light[0]['center_x' ], kwargs_lens_light[0]['center_y'] else: center_x, center_y = 0, 0 if r_eff is None: r_eff = self.lens_analysis.half_light_radius_lens(kwargs_lens_light, center_x=center_x, center_y=center_y, model_bool_list= lens_light_model_bool_list) theta_E = kwargs_lens[0]['theta_E'] r_ani = aniso_param * r_eff sigma2 = self.analytic_kinematics.vel_disp(gamma, theta_E, r_eff, r_ani, R_slit, dR_slit, FWHM=psf_fwhm, rendering_number=num_evaluate) return sigma2
velocity_dispersion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_lens_light, lens_light_model_bool_list=None,\n aniso_param=1, r_eff=None, R_slit=0.81, dR_slit=0.1, psf_fwhm=0.7,\n num_evaluate=1000):\n gamma = kwargs_lens[0]['gamma']\n if 'center_x' in kwargs_lens_light[0]:\n center_x, center_y = kwargs_lens_light[0]['center_x'\n ], kwargs_lens_light[0]['center_y']\n else:\n center_x, center_y = 0, 0\n if r_eff is None:\n r_eff = self.lens_analysis.half_light_radius_lens(kwargs_lens_light,\n center_x=center_x, center_y=center_y, model_bool_list=\n lens_light_model_bool_list)\n theta_E = kwargs_lens[0]['theta_E']\n r_ani = aniso_param * r_eff\n sigma2 = self.analytic_kinematics.vel_disp(gamma, theta_E, r_eff, r_ani,\n R_slit, dR_slit, FWHM=psf_fwhm, rendering_number=num_evaluate)\n return sigma2\n", "role": "user" }, { "content": "velocity_dispersion", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_lens_light, kwargs_anisotropy, kwargs_aperture, psf_fwhm, aperture_type, anisotropy_model, r_eff=None, kwargs_numerics={}, MGE_light=False, MGE_mass=False, lens_model_kinematics_bool=None, light_model_kinematics_bool=None, Hernquist_approx=False): kwargs_cosmo = {'D_d': self.lensCosmo.D_d, 'D_s': self.lensCosmo.D_s, 'D_ds': self.lensCosmo.D_ds} mass_profile_list = [] kwargs_profile = [] if lens_model_kinematics_bool is None: lens_model_kinematics_bool = [True] * len(kwargs_lens) for i, lens_model in enumerate(self.kwargs_options['lens_model_list']): if lens_model_kinematics_bool[i] is True: mass_profile_list.append(lens_model) if lens_model in ['INTERPOL', 'INTERPOL_SCLAED']: center_x, center_y = self._lensModelExt.lens_center(kwargs_lens , k=i) kwargs_lens_i = copy.deepcopy(kwargs_lens[i]) kwargs_lens_i['grid_interp_x'] -= center_x kwargs_lens_i['grid_interp_y'] -= center_y else: kwargs_lens_i = {k: v for k, v in kwargs_lens[i].items() if not k in ['center_x', 'center_y']} kwargs_profile.append(kwargs_lens_i) if MGE_mass is True: lensModel = LensModel(lens_model_list=mass_profile_list) massModel = LensModelExtensions(lensModel) theta_E = massModel.effective_einstein_radius(kwargs_profile) r_array = np.logspace(-4, 2, 200) * theta_E mass_r = lensModel.kappa(r_array, np.zeros_like(r_array), kwargs_profile) amps, sigmas, norm = mge.mge_1d(r_array, mass_r, N=20) mass_profile_list = ['MULTI_GAUSSIAN_KAPPA'] kwargs_profile = [{'amp': amps, 'sigma': sigmas}] light_profile_list = [] kwargs_light = [] if light_model_kinematics_bool is None: light_model_kinematics_bool = [True] * len(kwargs_lens_light) for i, light_model in enumerate(self.kwargs_options[ 'lens_light_model_list']): if light_model_kinematics_bool[i]: light_profile_list.append(light_model) kwargs_lens_light_i = {k: v for k, v in kwargs_lens_light[i]. items() if not k in ['center_x', 'center_y']} if 'q' in kwargs_lens_light_i: kwargs_lens_light_i['q'] = 1 kwargs_light.append(kwargs_lens_light_i) if r_eff is None: lensAnalysis = LensAnalysis({'lens_light_model_list': light_profile_list}) r_eff = lensAnalysis.half_light_radius_lens(kwargs_light, model_bool_list=light_model_kinematics_bool) if Hernquist_approx is True: light_profile_list = ['HERNQUIST'] kwargs_light = [{'Rs': r_eff, 'amp': 1.0}] elif MGE_light is True: lightModel = LightModel(light_profile_list) r_array = np.logspace(-3, 2, 200) * r_eff * 2 flux_r = lightModel.surface_brightness(r_array, 0, kwargs_light) amps, sigmas, norm = mge.mge_1d(r_array, flux_r, N=20) light_profile_list = ['MULTI_GAUSSIAN'] kwargs_light = [{'amp': amps, 'sigma': sigmas}] galkin = Galkin(mass_profile_list, light_profile_list, aperture_type= aperture_type, anisotropy_model=anisotropy_model, fwhm=psf_fwhm, kwargs_cosmo=kwargs_cosmo, **kwargs_numerics) sigma2 = galkin.vel_disp(kwargs_profile, kwargs_light, kwargs_anisotropy, kwargs_aperture) return sigma2
velocity_dispersion_numerical
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_lens_light, kwargs_anisotropy,\n kwargs_aperture, psf_fwhm, aperture_type, anisotropy_model, r_eff=None,\n kwargs_numerics={}, MGE_light=False, MGE_mass=False,\n lens_model_kinematics_bool=None, light_model_kinematics_bool=None,\n Hernquist_approx=False):\n kwargs_cosmo = {'D_d': self.lensCosmo.D_d, 'D_s': self.lensCosmo.D_s,\n 'D_ds': self.lensCosmo.D_ds}\n mass_profile_list = []\n kwargs_profile = []\n if lens_model_kinematics_bool is None:\n lens_model_kinematics_bool = [True] * len(kwargs_lens)\n for i, lens_model in enumerate(self.kwargs_options['lens_model_list']):\n if lens_model_kinematics_bool[i] is True:\n mass_profile_list.append(lens_model)\n if lens_model in ['INTERPOL', 'INTERPOL_SCLAED']:\n center_x, center_y = self._lensModelExt.lens_center(kwargs_lens\n , k=i)\n kwargs_lens_i = copy.deepcopy(kwargs_lens[i])\n kwargs_lens_i['grid_interp_x'] -= center_x\n kwargs_lens_i['grid_interp_y'] -= center_y\n else:\n kwargs_lens_i = {k: v for k, v in kwargs_lens[i].items() if\n not k in ['center_x', 'center_y']}\n kwargs_profile.append(kwargs_lens_i)\n if MGE_mass is True:\n lensModel = LensModel(lens_model_list=mass_profile_list)\n massModel = LensModelExtensions(lensModel)\n theta_E = massModel.effective_einstein_radius(kwargs_profile)\n r_array = np.logspace(-4, 2, 200) * theta_E\n mass_r = lensModel.kappa(r_array, np.zeros_like(r_array),\n kwargs_profile)\n amps, sigmas, norm = mge.mge_1d(r_array, mass_r, N=20)\n mass_profile_list = ['MULTI_GAUSSIAN_KAPPA']\n kwargs_profile = [{'amp': amps, 'sigma': sigmas}]\n light_profile_list = []\n kwargs_light = []\n if light_model_kinematics_bool is None:\n light_model_kinematics_bool = [True] * len(kwargs_lens_light)\n for i, light_model in enumerate(self.kwargs_options[\n 'lens_light_model_list']):\n if light_model_kinematics_bool[i]:\n light_profile_list.append(light_model)\n kwargs_lens_light_i = {k: v for k, v in kwargs_lens_light[i].\n items() if not k in ['center_x', 'center_y']}\n if 'q' in kwargs_lens_light_i:\n kwargs_lens_light_i['q'] = 1\n kwargs_light.append(kwargs_lens_light_i)\n if r_eff is None:\n lensAnalysis = LensAnalysis({'lens_light_model_list':\n light_profile_list})\n r_eff = lensAnalysis.half_light_radius_lens(kwargs_light,\n model_bool_list=light_model_kinematics_bool)\n if Hernquist_approx is True:\n light_profile_list = ['HERNQUIST']\n kwargs_light = [{'Rs': r_eff, 'amp': 1.0}]\n elif MGE_light is True:\n lightModel = LightModel(light_profile_list)\n r_array = np.logspace(-3, 2, 200) * r_eff * 2\n flux_r = lightModel.surface_brightness(r_array, 0, kwargs_light)\n amps, sigmas, norm = mge.mge_1d(r_array, flux_r, N=20)\n light_profile_list = ['MULTI_GAUSSIAN']\n kwargs_light = [{'amp': amps, 'sigma': sigmas}]\n galkin = Galkin(mass_profile_list, light_profile_list, aperture_type=\n aperture_type, anisotropy_model=anisotropy_model, fwhm=psf_fwhm,\n kwargs_cosmo=kwargs_cosmo, **kwargs_numerics)\n sigma2 = galkin.vel_disp(kwargs_profile, kwargs_light,\n kwargs_anisotropy, kwargs_aperture)\n return sigma2\n", "role": "user" }, { "content": "velocity_dispersion_numerical", "role": "assistant" } ]
def x(self, x, y, amp, sigma, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) sigma_x, sigma_y = sigma, sigma c = 1.0 / (2 * sigma_x * sigma_y) num_int = self._num_integral(r, c) amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y) amp2d = amp_density / (np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2)) amp2d *= 2 * 1.0 / (2 * c) return num_int * amp2d
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, amp, sigma, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n sigma_x, sigma_y = sigma, sigma\n c = 1.0 / (2 * sigma_x * sigma_y)\n num_int = self._num_integral(r, c)\n amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y)\n amp2d = amp_density / (np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2))\n amp2d *= 2 * 1.0 / (2 * c)\n return num_int * amp2d\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, r, c): out = integrate.quad(lambda x: (1 - np.exp(-c * x ** 2)) / x, 0, r) return out[0]
num_integral
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, c):\n out = integrate.quad(lambda x: (1 - np.exp(-c * x ** 2)) / x, 0, r)\n return out[0]\n", "role": "user" }, { "content": "num_integral", "role": "assistant" } ]
def x(self, x, y, amp, sigma, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) sigma_x, sigma_y = sigma, sigma if isinstance(R, int) or isinstance(R, float): R = max(R, self.ds) else: R[R <= self.ds] = self.ds alpha = self.alpha_abs(R, amp, sigma) return alpha / R * x_, alpha / R * y_
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, amp, sigma, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n sigma_x, sigma_y = sigma, sigma\n if isinstance(R, int) or isinstance(R, float):\n R = max(R, self.ds)\n else:\n R[R <= self.ds] = self.ds\n alpha = self.alpha_abs(R, amp, sigma)\n return alpha / R * x_, alpha / R * y_\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, amp, sigma, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) sigma_x, sigma_y = sigma, sigma if isinstance(r, int) or isinstance(r, float): r = max(r, self.ds) else: r[r <= self.ds] = self.ds d_alpha_dr = -self.d_alpha_dr(r, amp, sigma_x, sigma_y) alpha = self.alpha_abs(r, amp, sigma) f_xx = -(d_alpha_dr / r + alpha / r ** 2) * x_ ** 2 / r + alpha / r f_yy = -(d_alpha_dr / r + alpha / r ** 2) * y_ ** 2 / r + alpha / r f_xy = -(d_alpha_dr / r + alpha / r ** 2) * x_ * y_ / r return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, amp, sigma, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n sigma_x, sigma_y = sigma, sigma\n if isinstance(r, int) or isinstance(r, float):\n r = max(r, self.ds)\n else:\n r[r <= self.ds] = self.ds\n d_alpha_dr = -self.d_alpha_dr(r, amp, sigma_x, sigma_y)\n alpha = self.alpha_abs(r, amp, sigma)\n f_xx = -(d_alpha_dr / r + alpha / r ** 2) * x_ ** 2 / r + alpha / r\n f_yy = -(d_alpha_dr / r + alpha / r ** 2) * y_ ** 2 / r + alpha / r\n f_xy = -(d_alpha_dr / r + alpha / r ** 2) * x_ * y_ / r\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, R, amp, sigma): sigma_x, sigma_y = sigma, sigma amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y) alpha = self.mass_2d(R, amp_density, sigma) / np.pi / R return alpha
alpha_abs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, amp, sigma):\n sigma_x, sigma_y = sigma, sigma\n amp_density = self._amp2d_to_3d(amp, sigma_x, sigma_y)\n alpha = self.mass_2d(R, amp_density, sigma) / np.pi / R\n return alpha\n", "role": "user" }, { "content": "alpha_abs", "role": "assistant" } ]
def x(self, amp, sigma_x, sigma_y): return amp * np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2)
amp3d_to_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, amp, sigma_x, sigma_y):\n return amp * np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2)\n", "role": "user" }, { "content": "amp3d_to_2d", "role": "assistant" } ]
def x(self, amp, sigma_x, sigma_y): return amp / (np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2))
amp2d_to_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, amp, sigma_x, sigma_y):\n return amp / (np.sqrt(np.pi) * np.sqrt(sigma_x * sigma_y * 2))\n", "role": "user" }, { "content": "amp2d_to_3d", "role": "assistant" } ]
def x(self, x, y, amp, alpha, beta, center_x, center_y): x_shift = x - center_x y_shift = y - center_y return amp * (1.0 + (x_shift ** 2 + y_shift ** 2) / alpha ** 2) ** -beta
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, amp, alpha, beta, center_x, center_y):\n x_shift = x - center_x\n y_shift = y - center_y\n return amp * (1.0 + (x_shift ** 2 + y_shift ** 2) / alpha ** 2) ** -beta\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, theta_E, gamma, q, phi_G, s_scale): if theta_E < 0: theta_E = 0 if s_scale < 1e-08: s_scale = 1e-08 if gamma < 1.2: gamma = 1.2 theta_E = 0 if gamma > 2.9: gamma = 2.9 theta_E = 0 if q < 0.01: q = 0.01 theta_E = 0 if q > 1: q = 1.0 theta_E = 0 return theta_E, gamma, q, phi_G, s_scale
parameter_constraints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, theta_E, gamma, q, phi_G, s_scale):\n if theta_E < 0:\n theta_E = 0\n if s_scale < 1e-08:\n s_scale = 1e-08\n if gamma < 1.2:\n gamma = 1.2\n theta_E = 0\n if gamma > 2.9:\n gamma = 2.9\n theta_E = 0\n if q < 0.01:\n q = 0.01\n theta_E = 0\n if q > 1:\n q = 1.0\n theta_E = 0\n return theta_E, gamma, q, phi_G, s_scale\n", "role": "user" }, { "content": "parameter_constraints", "role": "assistant" } ]
def x(sample, num_sigma=1): if num_sigma > 3: raise ValueError( 'Number of sigma-constraints restircted to three. %s not valid' % num_sigma) num = len(sample) num_threshold1 = int(round((num - 1) * 0.833)) num_threshold2 = int(round((num - 1) * 0.977249868)) num_threshold3 = int(round((num - 1) * 0.998650102)) median = np.median(sample) sorted_sample = np.sort(sample) if num_sigma > 0: upper_sigma1 = sorted_sample[num_threshold1 - 1] lower_sigma1 = sorted_sample[num - num_threshold1 - 1] else: return median, [[]] if num_sigma > 1: upper_sigma2 = sorted_sample[num_threshold2 - 1] lower_sigma2 = sorted_sample[num - num_threshold2 - 1] else: return median, [[median - lower_sigma1, upper_sigma1 - median]] if num_sigma > 2: upper_sigma3 = sorted_sample[num_threshold3 - 1] lower_sigma3 = sorted_sample[num - num_threshold3 - 1] return median, [[median - lower_sigma1, upper_sigma1 - median], [ median - lower_sigma2, upper_sigma2 - median], [median - lower_sigma3, upper_sigma3 - median]] else: return median, [[median - lower_sigma1, upper_sigma1 - median], [ median - lower_sigma2, upper_sigma2 - median]]
compute_lower_upper_errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sample, num_sigma=1):\n if num_sigma > 3:\n raise ValueError(\n 'Number of sigma-constraints restircted to three. %s not valid' %\n num_sigma)\n num = len(sample)\n num_threshold1 = int(round((num - 1) * 0.833))\n num_threshold2 = int(round((num - 1) * 0.977249868))\n num_threshold3 = int(round((num - 1) * 0.998650102))\n median = np.median(sample)\n sorted_sample = np.sort(sample)\n if num_sigma > 0:\n upper_sigma1 = sorted_sample[num_threshold1 - 1]\n lower_sigma1 = sorted_sample[num - num_threshold1 - 1]\n else:\n return median, [[]]\n if num_sigma > 1:\n upper_sigma2 = sorted_sample[num_threshold2 - 1]\n lower_sigma2 = sorted_sample[num - num_threshold2 - 1]\n else:\n return median, [[median - lower_sigma1, upper_sigma1 - median]]\n if num_sigma > 2:\n upper_sigma3 = sorted_sample[num_threshold3 - 1]\n lower_sigma3 = sorted_sample[num - num_threshold3 - 1]\n return median, [[median - lower_sigma1, upper_sigma1 - median], [\n median - lower_sigma2, upper_sigma2 - median], [median -\n lower_sigma3, upper_sigma3 - median]]\n else:\n return median, [[median - lower_sigma1, upper_sigma1 - median], [\n median - lower_sigma2, upper_sigma2 - median]]\n", "role": "user" }, { "content": "compute_lower_upper_errors", "role": "assistant" } ]
def x(self, x, e=0.0, w=1.0, a=0.0): t = (x - e) / w return 2.0 / w * stats.norm.pdf(t) * stats.norm.cdf(a * t)
pdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, e=0.0, w=1.0, a=0.0):\n t = (x - e) / w\n return 2.0 / w * stats.norm.pdf(t) * stats.norm.cdf(a * t)\n", "role": "user" }, { "content": "pdf", "role": "assistant" } ]
def x(self, x, mu, sigma, skw): if skw > 1 or skw < -1: print('skewness %s out of range' % skw) skw = 1.0 e, w, a = self.map_mu_sigma_skw(mu, sigma, skw) pdf = self.pdf(x, e, w, a) return pdf
pdf_new
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, mu, sigma, skw):\n if skw > 1 or skw < -1:\n print('skewness %s out of range' % skw)\n skw = 1.0\n e, w, a = self.map_mu_sigma_skw(mu, sigma, skw)\n pdf = self.pdf(x, e, w, a)\n return pdf\n", "role": "user" }, { "content": "pdf_new", "role": "assistant" } ]
def x(self, sigma, delta): sigma2 = sigma ** 2 w2 = sigma2 / (1 - 2 * delta ** 2 / np.pi) w = np.sqrt(w2) return w
w_sigma_delta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sigma, delta):\n sigma2 = sigma ** 2\n w2 = sigma2 / (1 - 2 * delta ** 2 / np.pi)\n w = np.sqrt(w2)\n return w\n", "role": "user" }, { "content": "w_sigma_delta", "role": "assistant" } ]
def x(self, mu, sigma, skw): delta = self._delta_skw(skw) a = self._alpha_delta(delta) w = self._w_sigma_delta(sigma, delta) e = self._e_mu_w_delta(mu, w, delta) return e, w, a
map_mu_sigma_skw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mu, sigma, skw):\n delta = self._delta_skw(skw)\n a = self._alpha_delta(delta)\n w = self._w_sigma_delta(sigma, delta)\n e = self._e_mu_w_delta(mu, w, delta)\n return e, w, a\n", "role": "user" }, { "content": "map_mu_sigma_skw", "role": "assistant" } ]
def x(self, n_particles, n_iterations, lower_start=None, upper_start=None, threadCount=1, init_pos=None, mpi=False, print_key='PSO'): if lower_start is None or upper_start is None: lower_start, upper_start = np.array(self.lower_limit), np.array(self .upper_limit) print('PSO initialises its particles with default values') else: lower_start = np.maximum(lower_start, self.lower_limit) upper_start = np.minimum(upper_start, self.upper_limit) if mpi is True: pso = MpiParticleSwarmOptimizer(self.chain, lower_start, upper_start, n_particles, threads=1) if pso.isMaster(): print('MPI option chosen') else: pso = ParticleSwarmOptimizer(self.chain, lower_start, upper_start, n_particles, threads=threadCount) if init_pos is None: init_pos = (upper_start - lower_start) / 2 + lower_start if not init_pos is None: pso.gbest.position = init_pos pso.gbest.velocity = [0] * len(init_pos) pso.gbest.fitness, _ = self.chain.likelihood(init_pos) X2_list = [] vel_list = [] pos_list = [] time_start = time.time() if pso.isMaster(): print('Computing the %s ...' % print_key) num_iter = 0 for swarm in pso.sample(n_iterations): X2_list.append(pso.gbest.fitness * 2) vel_list.append(pso.gbest.velocity) pos_list.append(pso.gbest.position) num_iter += 1 if pso.isMaster(): if num_iter % 10 == 0: print(num_iter) if not mpi: result = pso.gbest.position else: result = MpiUtil.mpiBCast(pso.gbest.position) if mpi is True and not pso.isMaster(): pass else: lens_dict, source_dict, lens_light_dict, ps_dict, kwargs_cosmo = (self .chain.param.args2kwargs(result)) print(pso.gbest.fitness * 2 / self.chain.effectiv_num_data_points( lens_dict, source_dict, lens_light_dict, ps_dict), 'reduced X^2 of best position') print(pso.gbest.fitness, 'logL') print(self.chain.effectiv_num_data_points(lens_dict, source_dict, lens_light_dict, ps_dict), 'effective number of data points') print(lens_dict, 'lens result') print(source_dict, 'source result') print(lens_light_dict, 'lens light result') print(ps_dict, 'point source result') print(kwargs_cosmo, 'cosmo result') time_end = time.time() print(time_end - time_start, 'time used for PSO', print_key) print('===================') return result, [X2_list, pos_list, vel_list, []]
pso
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_particles, n_iterations, lower_start=None, upper_start=None,\n threadCount=1, init_pos=None, mpi=False, print_key='PSO'):\n if lower_start is None or upper_start is None:\n lower_start, upper_start = np.array(self.lower_limit), np.array(self\n .upper_limit)\n print('PSO initialises its particles with default values')\n else:\n lower_start = np.maximum(lower_start, self.lower_limit)\n upper_start = np.minimum(upper_start, self.upper_limit)\n if mpi is True:\n pso = MpiParticleSwarmOptimizer(self.chain, lower_start,\n upper_start, n_particles, threads=1)\n if pso.isMaster():\n print('MPI option chosen')\n else:\n pso = ParticleSwarmOptimizer(self.chain, lower_start, upper_start,\n n_particles, threads=threadCount)\n if init_pos is None:\n init_pos = (upper_start - lower_start) / 2 + lower_start\n if not init_pos is None:\n pso.gbest.position = init_pos\n pso.gbest.velocity = [0] * len(init_pos)\n pso.gbest.fitness, _ = self.chain.likelihood(init_pos)\n X2_list = []\n vel_list = []\n pos_list = []\n time_start = time.time()\n if pso.isMaster():\n print('Computing the %s ...' % print_key)\n num_iter = 0\n for swarm in pso.sample(n_iterations):\n X2_list.append(pso.gbest.fitness * 2)\n vel_list.append(pso.gbest.velocity)\n pos_list.append(pso.gbest.position)\n num_iter += 1\n if pso.isMaster():\n if num_iter % 10 == 0:\n print(num_iter)\n if not mpi:\n result = pso.gbest.position\n else:\n result = MpiUtil.mpiBCast(pso.gbest.position)\n if mpi is True and not pso.isMaster():\n pass\n else:\n lens_dict, source_dict, lens_light_dict, ps_dict, kwargs_cosmo = (self\n .chain.param.args2kwargs(result))\n print(pso.gbest.fitness * 2 / self.chain.effectiv_num_data_points(\n lens_dict, source_dict, lens_light_dict, ps_dict),\n 'reduced X^2 of best position')\n print(pso.gbest.fitness, 'logL')\n print(self.chain.effectiv_num_data_points(lens_dict, source_dict,\n lens_light_dict, ps_dict), 'effective number of data points')\n print(lens_dict, 'lens result')\n print(source_dict, 'source result')\n print(lens_light_dict, 'lens light result')\n print(ps_dict, 'point source result')\n print(kwargs_cosmo, 'cosmo result')\n time_end = time.time()\n print(time_end - time_start, 'time used for PSO', print_key)\n print('===================')\n return result, [X2_list, pos_list, vel_list, []]\n", "role": "user" }, { "content": "pso", "role": "assistant" } ]
def x(self, walkerRatio, n_run, n_burn, mean_start, sigma_start, threadCount=1, init_pos=None, mpi=False): lowerLimit, upperLimit = self.lower_limit, self.upper_limit mean_start = np.maximum(lowerLimit, mean_start) mean_start = np.minimum(upperLimit, mean_start) low_start = mean_start - sigma_start high_start = mean_start + sigma_start low_start = np.maximum(lowerLimit, low_start) high_start = np.minimum(upperLimit, high_start) sigma_start = (high_start - low_start) / 2 mean_start = (high_start + low_start) / 2 params = np.array([mean_start, lowerLimit, upperLimit, sigma_start]).T chain = LikelihoodComputationChain(min=lowerLimit, max=upperLimit) temp_dir = tempfile.mkdtemp('Hammer') file_prefix = os.path.join(temp_dir, 'logs') chain.addLikelihoodModule(self.chain) chain.setup() store = InMemoryStorageUtil() if mpi is True: sampler = MpiCosmoHammerSampler(params=params, likelihoodComputationChain=chain, filePrefix=file_prefix, walkersRatio=walkerRatio, burninIterations=n_burn, sampleIterations=n_run, threadCount=1, initPositionGenerator= init_pos, storageUtil=store) else: sampler = CosmoHammerSampler(params=params, likelihoodComputationChain=chain, filePrefix=file_prefix, walkersRatio=walkerRatio, burninIterations=n_burn, sampleIterations=n_run, threadCount=threadCount, initPositionGenerator=init_pos, storageUtil=store) time_start = time.time() if sampler.isMaster(): print('Computing the MCMC...') print('Number of walkers = ', len(mean_start) * walkerRatio) print('Burn-in iterations: ', n_burn) print('Sampling iterations:', n_run) sampler.startSampling() if sampler.isMaster(): time_end = time.time() print(time_end - time_start, 'time taken for MCMC sampling') try: shutil.rmtree(temp_dir) except Exception as ex: print(ex, 'shutil.rmtree did not work') pass return store.samples, store.prob
mcmc_CH
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, walkerRatio, n_run, n_burn, mean_start, sigma_start,\n threadCount=1, init_pos=None, mpi=False):\n lowerLimit, upperLimit = self.lower_limit, self.upper_limit\n mean_start = np.maximum(lowerLimit, mean_start)\n mean_start = np.minimum(upperLimit, mean_start)\n low_start = mean_start - sigma_start\n high_start = mean_start + sigma_start\n low_start = np.maximum(lowerLimit, low_start)\n high_start = np.minimum(upperLimit, high_start)\n sigma_start = (high_start - low_start) / 2\n mean_start = (high_start + low_start) / 2\n params = np.array([mean_start, lowerLimit, upperLimit, sigma_start]).T\n chain = LikelihoodComputationChain(min=lowerLimit, max=upperLimit)\n temp_dir = tempfile.mkdtemp('Hammer')\n file_prefix = os.path.join(temp_dir, 'logs')\n chain.addLikelihoodModule(self.chain)\n chain.setup()\n store = InMemoryStorageUtil()\n if mpi is True:\n sampler = MpiCosmoHammerSampler(params=params,\n likelihoodComputationChain=chain, filePrefix=file_prefix,\n walkersRatio=walkerRatio, burninIterations=n_burn,\n sampleIterations=n_run, threadCount=1, initPositionGenerator=\n init_pos, storageUtil=store)\n else:\n sampler = CosmoHammerSampler(params=params,\n likelihoodComputationChain=chain, filePrefix=file_prefix,\n walkersRatio=walkerRatio, burninIterations=n_burn,\n sampleIterations=n_run, threadCount=threadCount,\n initPositionGenerator=init_pos, storageUtil=store)\n time_start = time.time()\n if sampler.isMaster():\n print('Computing the MCMC...')\n print('Number of walkers = ', len(mean_start) * walkerRatio)\n print('Burn-in iterations: ', n_burn)\n print('Sampling iterations:', n_run)\n sampler.startSampling()\n if sampler.isMaster():\n time_end = time.time()\n print(time_end - time_start, 'time taken for MCMC sampling')\n try:\n shutil.rmtree(temp_dir)\n except Exception as ex:\n print(ex, 'shutil.rmtree did not work')\n pass\n return store.samples, store.prob\n", "role": "user" }, { "content": "mcmc_CH", "role": "assistant" } ]
def x(readout_noise, exposure_time, sky_brightness, pixel_scael, num_exposures=1): exposure_time_tot = num_exposures * exposure_time readout_noise_tot = num_exposures * readout_noise ** 2 sky_per_pixel = sky_brightness * pixel_scael ** 2 sigma_bkg = np.sqrt(readout_noise_tot + exposure_time_tot * sky_per_pixel ** 2) / exposure_time_tot return sigma_bkg
bkg_noise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(readout_noise, exposure_time, sky_brightness, pixel_scael,\n num_exposures=1):\n exposure_time_tot = num_exposures * exposure_time\n readout_noise_tot = num_exposures * readout_noise ** 2\n sky_per_pixel = sky_brightness * pixel_scael ** 2\n sigma_bkg = np.sqrt(readout_noise_tot + exposure_time_tot * \n sky_per_pixel ** 2) / exposure_time_tot\n return sigma_bkg\n", "role": "user" }, { "content": "bkg_noise", "role": "assistant" } ]
def x(self, bool=True): if self.PointSource is not None: self.PointSource.delete_lens_model_cach() self.PointSource.set_save_cache(bool)
reset_point_source_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bool=True):\n if self.PointSource is not None:\n self.PointSource.delete_lens_model_cach()\n self.PointSource.set_save_cache(bool)\n", "role": "user" }, { "content": "reset_point_source_cache", "role": "assistant" } ]
def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None, kwargs_ps=None): A = self._response_matrix(self.ImageNumerics.ra_grid_ray_shooting, self .ImageNumerics.dec_grid_ray_shooting, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, self.ImageNumerics.mask) return A
linear_response_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None,\n kwargs_ps=None):\n A = self._response_matrix(self.ImageNumerics.ra_grid_ray_shooting, self\n .ImageNumerics.dec_grid_ray_shooting, kwargs_lens, kwargs_source,\n kwargs_lens_light, kwargs_ps, self.ImageNumerics.mask)\n return A\n", "role": "user" }, { "content": "linear_response_matrix", "role": "assistant" } ]
def x(self): d = self.ImageNumerics.image2array(self.Data.data * self.ImageNumerics.mask ) return d
data_response
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n d = self.ImageNumerics.image2array(self.Data.data * self.ImageNumerics.mask\n )\n return d\n", "role": "user" }, { "content": "data_response", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_ps): model_error = self.error_map(kwargs_lens, kwargs_ps) error_map_1d = self.ImageNumerics.image2array(model_error) C_D_response = self.ImageNumerics.C_D_response + error_map_1d return C_D_response, model_error
error_response
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_ps):\n model_error = self.error_map(kwargs_lens, kwargs_ps)\n error_map_1d = self.ImageNumerics.image2array(model_error)\n C_D_response = self.ImageNumerics.C_D_response + error_map_1d\n return C_D_response, model_error\n", "role": "user" }, { "content": "error_response", "role": "assistant" } ]
def x(self, model, error_map=0): chi2 = self.reduced_residuals(model, error_map) return np.sum(chi2 ** 2) / self.num_data_evaluate()
reduced_chi2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model, error_map=0):\n chi2 = self.reduced_residuals(model, error_map)\n return np.sum(chi2 ** 2) / self.num_data_evaluate()\n", "role": "user" }, { "content": "reduced_chi2", "role": "assistant" } ]
def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None, kwargs_ps=None, kwargs_cosmo=None): args = self.lensParams.setParams(kwargs_lens) args += self.souceParams.setParams(kwargs_source) args += self.lensLightParams.setParams(kwargs_lens_light) args += self.pointSourceParams.setParams(kwargs_ps) args += self.cosmoParams.setParams(kwargs_cosmo) return args
kwargs2args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None,\n kwargs_ps=None, kwargs_cosmo=None):\n args = self.lensParams.setParams(kwargs_lens)\n args += self.souceParams.setParams(kwargs_source)\n args += self.lensLightParams.setParams(kwargs_lens_light)\n args += self.pointSourceParams.setParams(kwargs_ps)\n args += self.cosmoParams.setParams(kwargs_cosmo)\n return args\n", "role": "user" }, { "content": "kwargs2args", "role": "assistant" } ]
def x(self, kwargs_source, kwargs_lens, image_plane=False): kwargs_source_copy = copy.deepcopy(kwargs_source) for i, kwargs in enumerate(kwargs_source_copy): if self._image_plane_source_list[i] is True and not image_plane: if 'center_x' in kwargs: x_mapped, y_mapped = self._image2SourceMapping.image2source( kwargs['center_x'], kwargs['center_y'], kwargs_lens, idex_source=i) kwargs['center_x'] = x_mapped kwargs['center_y'] = y_mapped return kwargs_source_copy
image2source_plane
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_source, kwargs_lens, image_plane=False):\n kwargs_source_copy = copy.deepcopy(kwargs_source)\n for i, kwargs in enumerate(kwargs_source_copy):\n if self._image_plane_source_list[i] is True and not image_plane:\n if 'center_x' in kwargs:\n x_mapped, y_mapped = self._image2SourceMapping.image2source(\n kwargs['center_x'], kwargs['center_y'], kwargs_lens,\n idex_source=i)\n kwargs['center_x'] = x_mapped\n kwargs['center_y'] = y_mapped\n return kwargs_source_copy\n", "role": "user" }, { "content": "image2source_plane", "role": "assistant" } ]
def x(self, kwargs_cosmo, kwargs_lens, inverse=False): kwargs_lens_updated = copy.deepcopy(kwargs_lens) if self._mass_scaling is False: return kwargs_lens_updated scale_factor_list = np.array(kwargs_cosmo['scale_factor']) if inverse is True: scale_factor_list = 1.0 / np.array(kwargs_cosmo['scale_factor']) for i, kwargs in enumerate(kwargs_lens_updated): if self._mass_scaling_list[i] is not False: scale_factor = scale_factor_list[self._mass_scaling_list[i] - 1] if 'theta_E' in kwargs: kwargs['theta_E'] *= scale_factor elif 'theta_Rs' in kwargs: kwargs['theta_Rs'] *= scale_factor elif 'sigma0' in kwargs: kwargs['sigma0'] *= scale_factor elif 'k_eff' in kwargs: kwargs['k_eff'] *= scale_factor return kwargs_lens_updated
update_lens_scaling
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_cosmo, kwargs_lens, inverse=False):\n kwargs_lens_updated = copy.deepcopy(kwargs_lens)\n if self._mass_scaling is False:\n return kwargs_lens_updated\n scale_factor_list = np.array(kwargs_cosmo['scale_factor'])\n if inverse is True:\n scale_factor_list = 1.0 / np.array(kwargs_cosmo['scale_factor'])\n for i, kwargs in enumerate(kwargs_lens_updated):\n if self._mass_scaling_list[i] is not False:\n scale_factor = scale_factor_list[self._mass_scaling_list[i] - 1]\n if 'theta_E' in kwargs:\n kwargs['theta_E'] *= scale_factor\n elif 'theta_Rs' in kwargs:\n kwargs['theta_Rs'] *= scale_factor\n elif 'sigma0' in kwargs:\n kwargs['sigma0'] *= scale_factor\n elif 'k_eff' in kwargs:\n kwargs['k_eff'] *= scale_factor\n return kwargs_lens_updated\n", "role": "user" }, { "content": "update_lens_scaling", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo={}): if self._solver is True: image_x, image_y = kwargs_ps[0]['ra_image'], kwargs_ps[0]['dec_image'] image_x, image_y = self.real_image_positions(image_x, image_y, kwargs_cosmo) dist = self._solver_module.check_solver(image_x, image_y, kwargs_lens) return np.max(dist) else: return 0
check_solver
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo={}):\n if self._solver is True:\n image_x, image_y = kwargs_ps[0]['ra_image'], kwargs_ps[0]['dec_image']\n image_x, image_y = self.real_image_positions(image_x, image_y,\n kwargs_cosmo)\n dist = self._solver_module.check_solver(image_x, image_y, kwargs_lens)\n return np.max(dist)\n else:\n return 0\n", "role": "user" }, { "content": "check_solver", "role": "assistant" } ]
def x(self): num, param_list = self.num_param() num_linear = self.num_param_linear() print('The following model options are chosen:') print('Lens models:', self._lens_model_list) print('Source models:', self._source_light_model_list) print('Lens light models:', self._lens_light_model_list) print('Point source models:', self._point_source_model_list) print('===================') print('The following parameters are being fixed:') print('Lens:', self.lensParams.kwargs_fixed) print('Source:', self.souceParams.kwargs_fixed) print('Lens light:', self.lensLightParams.kwargs_fixed) print('Point source:', self.pointSourceParams.kwargs_fixed) print('===================') print('Joint parameters for different models') print('Joint lens with lens:', self._joint_lens_with_lens) print('Joint lens with lens light:', self._joint_lens_light_with_lens_light ) print('Joint source with source:', self._joint_source_with_source) print('Joint lens with light:', self._joint_lens_with_light) print('Joint source with point source:', self. _joint_source_with_point_source) print('===================') print('Number of non-linear parameters being sampled: ', num) print('Parameters being sampled: ', param_list) print('Number of linear parameters being solved for: ', num_linear)
print_setting
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n num, param_list = self.num_param()\n num_linear = self.num_param_linear()\n print('The following model options are chosen:')\n print('Lens models:', self._lens_model_list)\n print('Source models:', self._source_light_model_list)\n print('Lens light models:', self._lens_light_model_list)\n print('Point source models:', self._point_source_model_list)\n print('===================')\n print('The following parameters are being fixed:')\n print('Lens:', self.lensParams.kwargs_fixed)\n print('Source:', self.souceParams.kwargs_fixed)\n print('Lens light:', self.lensLightParams.kwargs_fixed)\n print('Point source:', self.pointSourceParams.kwargs_fixed)\n print('===================')\n print('Joint parameters for different models')\n print('Joint lens with lens:', self._joint_lens_with_lens)\n print('Joint lens with lens light:', self._joint_lens_light_with_lens_light\n )\n print('Joint source with source:', self._joint_source_with_source)\n print('Joint lens with light:', self._joint_lens_with_light)\n print('Joint source with point source:', self.\n _joint_source_with_point_source)\n print('===================')\n print('Number of non-linear parameters being sampled: ', num)\n print('Parameters being sampled: ', param_list)\n print('Number of linear parameters being solved for: ', num_linear)\n", "role": "user" }, { "content": "print_setting", "role": "assistant" } ]
def x(self, x, y, Rs, theta_Rs, r_core, center_x=0, center_y=0): rho0 = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs, r_core=r_core) if Rs < 1e-07: Rs = 1e-07 x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) dx, dy = self.coreBurkAlpha(R, Rs, rho0, r_core, x_, y_) return dx, dy
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, Rs, theta_Rs, r_core, center_x=0, center_y=0):\n rho0 = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs, r_core=r_core)\n if Rs < 1e-07:\n Rs = 1e-07\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n dx, dy = self.coreBurkAlpha(R, Rs, rho0, r_core, x_, y_)\n return dx, dy\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, Rs, theta_Rs, r_core, center_x=0, center_y=0): if Rs < 0.0001: Rs = 0.0001 x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) rho0 = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs, r_core=r_core) kappa = self.density_2d(x_, y_, Rs, rho0, r_core) gamma1, gamma2 = self.cBurkGamma(R, Rs, rho0, r_core, x_, y_) f_xx = kappa + gamma1 f_yy = kappa - gamma1 f_xy = gamma2 return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, Rs, theta_Rs, r_core, center_x=0, center_y=0):\n if Rs < 0.0001:\n Rs = 0.0001\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n rho0 = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs, r_core=r_core)\n kappa = self.density_2d(x_, y_, Rs, rho0, r_core)\n gamma1, gamma2 = self.cBurkGamma(R, Rs, rho0, r_core, x_, y_)\n f_xx = kappa + gamma1\n f_yy = kappa - gamma1\n f_xy = gamma2\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, R, Rs, rho0, r_core): x = R * Rs ** -1 p = Rs * r_core ** -1 gx = self._G(x, p) m_2d = 2 * np.pi * rho0 * Rs ** 3 * gx return m_2d
mass_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0, r_core):\n x = R * Rs ** -1\n p = Rs * r_core ** -1\n gx = self._G(x, p)\n m_2d = 2 * np.pi * rho0 * Rs ** 3 * gx\n return m_2d\n", "role": "user" }, { "content": "mass_2d", "role": "assistant" } ]
def x(self, R, Rs, rho0, r_core, ax_x, ax_y): x = R * Rs ** -1 p = Rs * r_core ** -1 gx = self._G(x, p) a = 2 * rho0 * Rs ** 2 * gx / x return a * ax_x / R, a * ax_y / R
coreBurkAlpha
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0, r_core, ax_x, ax_y):\n x = R * Rs ** -1\n p = Rs * r_core ** -1\n gx = self._G(x, p)\n a = 2 * rho0 * Rs ** 2 * gx / x\n return a * ax_x / R, a * ax_y / R\n", "role": "user" }, { "content": "coreBurkAlpha", "role": "assistant" } ]
def x(self, R, Rs, rho0, r_core): Rs = float(Rs) b = r_core * Rs ** -1 c = R * Rs ** -1 M0 = 4 * np.pi * Rs ** 3 * rho0 return M0 * (1 + b ** 2) ** -1 * (0.5 * np.log(1 + c ** 2) + b ** 2 * np.log(c * b ** -1 + 1) - b * np.arctan(c))
mass_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0, r_core):\n Rs = float(Rs)\n b = r_core * Rs ** -1\n c = R * Rs ** -1\n M0 = 4 * np.pi * Rs ** 3 * rho0\n return M0 * (1 + b ** 2) ** -1 * (0.5 * np.log(1 + c ** 2) + b ** 2 *\n np.log(c * b ** -1 + 1) - b * np.arctan(c))\n", "role": "user" }, { "content": "mass_3d", "role": "assistant" } ]
def x(self, R, Rs, rho0, r_core): x = R * Rs ** -1 p = Rs * r_core ** -1 hx = self._H(x, p) return 2 * rho0 * Rs ** 3 * hx
cBurkPot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0, r_core):\n x = R * Rs ** -1\n p = Rs * r_core ** -1\n hx = self._H(x, p)\n return 2 * rho0 * Rs ** 3 * hx\n", "role": "user" }, { "content": "cBurkPot", "role": "assistant" } ]
def x(self, x, p): prefactor = 0.5 * (1 + p ** 2) ** -1 * p if isinstance(x, np.ndarray): inds0 = np.where(x * p == 1) inds1 = np.where(x * p < 1) inds2 = np.where(x * p > 1) func = np.ones_like(x) func[inds0] = self._u(x[inds0]) ** -1 * (np.pi + 2 * p * np.arctanh (self._u(x[inds0]) ** -1)) func[inds1] = self._u(x[inds1]) ** -1 * (np.pi + 2 * p * np.arctanh (self._u(x[inds1]) ** -1)) - 2 * p * self._g(x[inds1], p ) ** -1 * np.arctanh(self._g(x[inds1], p)) func[inds2] = self._u(x[inds2]) ** -1 * (np.pi + 2 * p * np.arctanh (self._u(x[inds2]) ** -1)) - 2 * p * self._f(x[inds2], p ) ** -1 * np.arctan(self._f(x[inds2], p)) return prefactor * func else: if x * p == 1: func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x ) ** -1)) elif x * p < 1: func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x ) ** -1)) - 2 * p * self._g(x, p) ** -1 * np.arctanh(self. _g(x, p)) else: func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x ) ** -1)) - 2 * p * self._f(x, p) ** -1 * np.arctan(self._f (x, p)) return prefactor * func
F
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, p):\n prefactor = 0.5 * (1 + p ** 2) ** -1 * p\n if isinstance(x, np.ndarray):\n inds0 = np.where(x * p == 1)\n inds1 = np.where(x * p < 1)\n inds2 = np.where(x * p > 1)\n func = np.ones_like(x)\n func[inds0] = self._u(x[inds0]) ** -1 * (np.pi + 2 * p * np.arctanh\n (self._u(x[inds0]) ** -1))\n func[inds1] = self._u(x[inds1]) ** -1 * (np.pi + 2 * p * np.arctanh\n (self._u(x[inds1]) ** -1)) - 2 * p * self._g(x[inds1], p\n ) ** -1 * np.arctanh(self._g(x[inds1], p))\n func[inds2] = self._u(x[inds2]) ** -1 * (np.pi + 2 * p * np.arctanh\n (self._u(x[inds2]) ** -1)) - 2 * p * self._f(x[inds2], p\n ) ** -1 * np.arctan(self._f(x[inds2], p))\n return prefactor * func\n else:\n if x * p == 1:\n func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x\n ) ** -1))\n elif x * p < 1:\n func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x\n ) ** -1)) - 2 * p * self._g(x, p) ** -1 * np.arctanh(self.\n _g(x, p))\n else:\n func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x\n ) ** -1)) - 2 * p * self._f(x, p) ** -1 * np.arctan(self._f\n (x, p))\n return prefactor * func\n", "role": "user" }, { "content": "F", "role": "assistant" } ]
def x(self, x, p): prefactor = (p + p ** 3) ** -1 * p if isinstance(x, np.ndarray): inds0 = np.where(x * p == 1) inds1 = np.where(x * p < 1) inds2 = np.where(x * p > 1) func = np.ones_like(x) func[inds0] = np.log(0.25 * x[inds0] ** 2 * p ** 2) + np.pi * p * (self ._u(x[inds0]) - 1) + 2 * p ** 2 * (self._u(x[inds0]) * np. arctanh(self._u(x[inds0]) ** -1) + np.log(0.5 * x[inds0])) func[inds1] = np.log(0.25 * x[inds1] ** 2 * p ** 2) + np.pi * p * (self ._u(x[inds1]) - 1) + 2 * p ** 2 * (self._u(x[inds1]) * np. arctanh(self._u(x[inds1]) ** -1) + np.log(0.5 * x[inds1]) ) + 2 * self._g(x[inds1], p) * np.arctanh(self._g(x[inds1], p)) func[inds2] = np.log(0.25 * x[inds2] ** 2 * p ** 2) + np.pi * p * (self ._u(x[inds2]) - 1) + 2 * p ** 2 * (self._u(x[inds2]) * np. arctanh(self._u(x[inds2]) ** -1) + np.log(0.5 * x[inds2]) ) - 2 * self._f(x[inds2], p) * np.arctan(self._f(x[inds2], p)) elif x * p == 1: func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1 ) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) + np.log(0.5 * x)) elif x * p < 1: func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1 ) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) + np.log(0.5 * x)) + 2 * self._g(x, p) * np.arctanh(self._g(x, p)) else: func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1 ) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) + np.log(0.5 * x)) - 2 * self._f(x, p) * np.arctan(self._f(x, p)) return func * prefactor
G
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, p):\n prefactor = (p + p ** 3) ** -1 * p\n if isinstance(x, np.ndarray):\n inds0 = np.where(x * p == 1)\n inds1 = np.where(x * p < 1)\n inds2 = np.where(x * p > 1)\n func = np.ones_like(x)\n func[inds0] = np.log(0.25 * x[inds0] ** 2 * p ** 2) + np.pi * p * (self\n ._u(x[inds0]) - 1) + 2 * p ** 2 * (self._u(x[inds0]) * np.\n arctanh(self._u(x[inds0]) ** -1) + np.log(0.5 * x[inds0]))\n func[inds1] = np.log(0.25 * x[inds1] ** 2 * p ** 2) + np.pi * p * (self\n ._u(x[inds1]) - 1) + 2 * p ** 2 * (self._u(x[inds1]) * np.\n arctanh(self._u(x[inds1]) ** -1) + np.log(0.5 * x[inds1])\n ) + 2 * self._g(x[inds1], p) * np.arctanh(self._g(x[inds1], p))\n func[inds2] = np.log(0.25 * x[inds2] ** 2 * p ** 2) + np.pi * p * (self\n ._u(x[inds2]) - 1) + 2 * p ** 2 * (self._u(x[inds2]) * np.\n arctanh(self._u(x[inds2]) ** -1) + np.log(0.5 * x[inds2])\n ) - 2 * self._f(x[inds2], p) * np.arctan(self._f(x[inds2], p))\n elif x * p == 1:\n func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1\n ) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) +\n np.log(0.5 * x))\n elif x * p < 1:\n func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1\n ) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) +\n np.log(0.5 * x)) + 2 * self._g(x, p) * np.arctanh(self._g(x, p))\n else:\n func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1\n ) + 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) +\n np.log(0.5 * x)) - 2 * self._f(x, p) * np.arctan(self._f(x, p))\n return func * prefactor\n", "role": "user" }, { "content": "G", "role": "assistant" } ]
def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None, kwargs_ps=None): A = [] for i in range(self._num_bands): if self._compute_bool[i] is True: A_i = self._imageModel_list[i].linear_response_matrix(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) if A == []: A = A_i else: A = np.append(A, A_i, axis=1) return A
linear_response_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None,\n kwargs_ps=None):\n A = []\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n A_i = self._imageModel_list[i].linear_response_matrix(kwargs_lens,\n kwargs_source, kwargs_lens_light, kwargs_ps)\n if A == []:\n A = A_i\n else:\n A = np.append(A, A_i, axis=1)\n return A\n", "role": "user" }, { "content": "linear_response_matrix", "role": "assistant" } ]
def x(self): d = [] for i in range(self._num_bands): if self._compute_bool[i] is True: d_i = self._imageModel_list[i].data_response if d == []: d = d_i else: d = np.append(d, d_i) return d
data_response
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n d = []\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n d_i = self._imageModel_list[i].data_response\n if d == []:\n d = d_i\n else:\n d = np.append(d, d_i)\n return d\n", "role": "user" }, { "content": "data_response", "role": "assistant" } ]
def x(self, array): image_list = [] k = 0 for i in range(self._num_bands): if self._compute_bool[i] is True: num_data = self.num_response_list[i] array_i = array[k:k + num_data] image_i = self._imageModel_list[i].ImageNumerics.array2image( array_i) image_list.append(image_i) k += num_data return image_list
array2image_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, array):\n image_list = []\n k = 0\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n num_data = self.num_response_list[i]\n array_i = array[k:k + num_data]\n image_i = self._imageModel_list[i].ImageNumerics.array2image(\n array_i)\n image_list.append(image_i)\n k += num_data\n return image_list\n", "role": "user" }, { "content": "array2image_list", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, source_marg=False): im_sim_list, model_error_list, cov_matrix, param = self.image_linear_solve( kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, inv_bool= source_marg) logL = 0 index = 0 for i in range(self._num_bands): if self._compute_bool[i] is True: logL += self._imageModel_list[i].Data.log_likelihood(im_sim_list [index], self._imageModel_list[i].ImageNumerics.mask, model_error_list[index]) index += 1 if cov_matrix is not None and source_marg: marg_const = de_lens.marginalisation_const(cov_matrix) logL += marg_const return logL
likelihood_data_given_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,\n source_marg=False):\n im_sim_list, model_error_list, cov_matrix, param = self.image_linear_solve(\n kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, inv_bool=\n source_marg)\n logL = 0\n index = 0\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n logL += self._imageModel_list[i].Data.log_likelihood(im_sim_list\n [index], self._imageModel_list[i].ImageNumerics.mask,\n model_error_list[index])\n index += 1\n if cov_matrix is not None and source_marg:\n marg_const = de_lens.marginalisation_const(cov_matrix)\n logL += marg_const\n return logL\n", "role": "user" }, { "content": "likelihood_data_given_model", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, inv_bool=False): wls_list, error_map_list, cov_param_list, param_list = [], [], [], [] for i in range(self._num_bands): if self._compute_bool[i] is True: kwargs_source_i = [kwargs_source[k] for k in self. _index_source_list[i]] kwargs_lens_light_i = [kwargs_lens_light[k] for k in self. _index_lens_light_list[i]] wls_model, error_map, cov_param, param = self._imageModel_list[i ].image_linear_solve(kwargs_lens, kwargs_source_i, kwargs_lens_light_i, kwargs_ps, inv_bool=inv_bool) wls_list.append(wls_model) error_map_list.append(error_map) cov_param_list.append(cov_param) param_list.append(param) return wls_list, error_map_list, cov_param_list, param_list
image_linear_solve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,\n inv_bool=False):\n wls_list, error_map_list, cov_param_list, param_list = [], [], [], []\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n kwargs_source_i = [kwargs_source[k] for k in self.\n _index_source_list[i]]\n kwargs_lens_light_i = [kwargs_lens_light[k] for k in self.\n _index_lens_light_list[i]]\n wls_model, error_map, cov_param, param = self._imageModel_list[i\n ].image_linear_solve(kwargs_lens, kwargs_source_i,\n kwargs_lens_light_i, kwargs_ps, inv_bool=inv_bool)\n wls_list.append(wls_model)\n error_map_list.append(error_map)\n cov_param_list.append(cov_param)\n param_list.append(param)\n return wls_list, error_map_list, cov_param_list, param_list\n", "role": "user" }, { "content": "image_linear_solve", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, source_marg=False): logL = 0 for i in range(self._num_bands): if self._compute_bool[i] is True: kwargs_source_i = [kwargs_source[k] for k in self. _index_source_list[i]] kwargs_lens_light_i = [kwargs_lens_light[k] for k in self. _index_lens_light_list[i]] logL += self._imageModel_list[i].likelihood_data_given_model( kwargs_lens, kwargs_source_i, kwargs_lens_light_i, kwargs_ps, source_marg=source_marg) return logL
likelihood_data_given_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,\n source_marg=False):\n logL = 0\n for i in range(self._num_bands):\n if self._compute_bool[i] is True:\n kwargs_source_i = [kwargs_source[k] for k in self.\n _index_source_list[i]]\n kwargs_lens_light_i = [kwargs_lens_light[k] for k in self.\n _index_lens_light_list[i]]\n logL += self._imageModel_list[i].likelihood_data_given_model(\n kwargs_lens, kwargs_source_i, kwargs_lens_light_i,\n kwargs_ps, source_marg=source_marg)\n return logL\n", "role": "user" }, { "content": "likelihood_data_given_model", "role": "assistant" } ]
def x(self, image_x, image_y, kwargs_lens): source_x, source_y = self._lensModel.ray_shooting(image_x, image_y, kwargs_lens) dist = np.sqrt((source_x - source_x[0]) ** 2 + (source_y - source_y[0]) ** 2) return dist
check_solver
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image_x, image_y, kwargs_lens):\n source_x, source_y = self._lensModel.ray_shooting(image_x, image_y,\n kwargs_lens)\n dist = np.sqrt((source_x - source_x[0]) ** 2 + (source_y - source_y[0]) **\n 2)\n return dist\n", "role": "user" }, { "content": "check_solver", "role": "assistant" } ]
def x(self, kwargs_fixed_lens, kwargs_lens_init): kwargs_fixed_lens = self._solver.add_fixed_lens(kwargs_fixed_lens, kwargs_lens_init) return kwargs_fixed_lens
add_fixed_lens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_fixed_lens, kwargs_lens_init):\n kwargs_fixed_lens = self._solver.add_fixed_lens(kwargs_fixed_lens,\n kwargs_lens_init)\n return kwargs_fixed_lens\n", "role": "user" }, { "content": "add_fixed_lens", "role": "assistant" } ]
def x(self): if not hasattr(self, '_Epsilon_Crit'): const_SI = const.c ** 2 / (4 * np.pi * const.G) conversion = const.Mpc / const.M_sun factor = const_SI * conversion self._Epsilon_Crit = self.D_s / (self.D_d * self.D_ds) * factor return self._Epsilon_Crit
epsilon_crit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not hasattr(self, '_Epsilon_Crit'):\n const_SI = const.c ** 2 / (4 * np.pi * const.G)\n conversion = const.Mpc / const.M_sun\n factor = const_SI * conversion\n self._Epsilon_Crit = self.D_s / (self.D_d * self.D_ds) * factor\n return self._Epsilon_Crit\n", "role": "user" }, { "content": "epsilon_crit", "role": "assistant" } ]
def x(self, theta_E): mass = self.arcsec2phys_lens(theta_E) ** 2 * np.pi * self.epsilon_crit return mass
mass_in_theta_E
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, theta_E):\n mass = self.arcsec2phys_lens(theta_E) ** 2 * np.pi * self.epsilon_crit\n return mass\n", "role": "user" }, { "content": "mass_in_theta_E", "role": "assistant" } ]
def x(self, Rs_angle, theta_Rs): Rs = Rs_angle * const.arcsec * self.D_d theta_scaled = theta_Rs * self.epsilon_crit * self.D_d * const.arcsec rho0 = theta_scaled / (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0))) rho0_com = rho0 / self.h ** 2 * self.a_z(self.z_lens) ** 3 c = self.nfw_param.c_rho0(rho0_com) r200 = c * Rs M200 = self.nfw_param.M_r200(r200 * self.h / self.a_z(self.z_lens) ) / self.h return rho0, Rs, c, r200, M200
nfw_angle2physical
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Rs_angle, theta_Rs):\n Rs = Rs_angle * const.arcsec * self.D_d\n theta_scaled = theta_Rs * self.epsilon_crit * self.D_d * const.arcsec\n rho0 = theta_scaled / (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0)))\n rho0_com = rho0 / self.h ** 2 * self.a_z(self.z_lens) ** 3\n c = self.nfw_param.c_rho0(rho0_com)\n r200 = c * Rs\n M200 = self.nfw_param.M_r200(r200 * self.h / self.a_z(self.z_lens)\n ) / self.h\n return rho0, Rs, c, r200, M200\n", "role": "user" }, { "content": "nfw_angle2physical", "role": "assistant" } ]
def x(self, M, c): rho0, Rs, r200 = self.nfwParam_physical(M, c) Rs_angle = Rs / self.D_d / const.arcsec theta_Rs = rho0 * (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0))) return Rs_angle, theta_Rs / self.epsilon_crit / self.D_d / const.arcsec
nfw_physical2angle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, M, c):\n rho0, Rs, r200 = self.nfwParam_physical(M, c)\n Rs_angle = Rs / self.D_d / const.arcsec\n theta_Rs = rho0 * (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0)))\n return Rs_angle, theta_Rs / self.epsilon_crit / self.D_d / const.arcsec\n", "role": "user" }, { "content": "nfw_physical2angle", "role": "assistant" } ]
def x(self, M, c): r200 = self.nfw_param.r200_M(M * self.h) / self.h * self.a_z(self.z_lens) rho0 = self.nfw_param.rho0_c(c) * self.h ** 2 / self.a_z(self.z_lens) ** 3 Rs = r200 / c return rho0, Rs, r200
nfwParam_physical
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, M, c):\n r200 = self.nfw_param.r200_M(M * self.h) / self.h * self.a_z(self.z_lens)\n rho0 = self.nfw_param.rho0_c(c) * self.h ** 2 / self.a_z(self.z_lens) ** 3\n Rs = r200 / c\n return rho0, Rs, r200\n", "role": "user" }, { "content": "nfwParam_physical", "role": "assistant" } ]
def x(self, theta_E): v_sigma_c2 = theta_E * const.arcsec / (4 * np.pi) * self.D_s / self.D_ds return np.sqrt(v_sigma_c2) * const.c / 1000
sis_theta_E2sigma_v
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, theta_E):\n v_sigma_c2 = theta_E * const.arcsec / (4 * np.pi) * self.D_s / self.D_ds\n return np.sqrt(v_sigma_c2) * const.c / 1000\n", "role": "user" }, { "content": "sis_theta_E2sigma_v", "role": "assistant" } ]
def x(self, v_sigma): theta_E = 4 * np.pi * (v_sigma * 1000.0 / const.c ) ** 2 * self.D_ds / self.D_s / const.arcsec return theta_E
sis_sigma_v2theta_E
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v_sigma):\n theta_E = 4 * np.pi * (v_sigma * 1000.0 / const.c\n ) ** 2 * self.D_ds / self.D_s / const.arcsec\n return theta_E\n", "role": "user" }, { "content": "sis_sigma_v2theta_E", "role": "assistant" } ]
def x(self, H_0, Om0, Ode0=None): lensCosmo = self._get_cosom(H_0, Om0, Ode0) return lensCosmo.D_d
D_d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, H_0, Om0, Ode0=None):\n lensCosmo = self._get_cosom(H_0, Om0, Ode0)\n return lensCosmo.D_d\n", "role": "user" }, { "content": "D_d", "role": "assistant" } ]
def x(self, H_0, Om0, Ode0=None): lensCosmo = self._get_cosom(H_0, Om0, Ode0) return lensCosmo.D_s
D_s
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, H_0, Om0, Ode0=None):\n lensCosmo = self._get_cosom(H_0, Om0, Ode0)\n return lensCosmo.D_s\n", "role": "user" }, { "content": "D_s", "role": "assistant" } ]
def x(self, H_0, Om0, Ode0=None): lensCosmo = self._get_cosom(H_0, Om0, Ode0) return lensCosmo.D_ds
D_ds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, H_0, Om0, Ode0=None):\n lensCosmo = self._get_cosom(H_0, Om0, Ode0)\n return lensCosmo.D_ds\n", "role": "user" }, { "content": "D_ds", "role": "assistant" } ]
def x(self, H_0, Om0, Ode0=None): lensCosmo = self._get_cosom(H_0, Om0, Ode0) return lensCosmo.D_dt
D_dt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, H_0, Om0, Ode0=None):\n lensCosmo = self._get_cosom(H_0, Om0, Ode0)\n return lensCosmo.D_dt\n", "role": "user" }, { "content": "D_dt", "role": "assistant" } ]
def x(self, x, y, coeffs, beta, center_x=0, center_y=0): shapelets = self._createShapelet(coeffs) n_order = self._get_num_n(len(coeffs)) dx_shapelets = self._dx_shapelets(shapelets, beta) dy_shapelets = self._dy_shapelets(shapelets, beta) n = len(np.atleast_1d(x)) if n <= 1: f_x = self._shapeletOutput(x, y, beta, dx_shapelets, precalc=False) f_y = self._shapeletOutput(x, y, beta, dy_shapelets, precalc=False) else: H_x, H_y = self.pre_calc(x, y, beta, n_order + 1, center_x, center_y) f_x = self._shapeletOutput(H_x, H_y, beta, dx_shapelets) f_y = self._shapeletOutput(H_x, H_y, beta, dy_shapelets) return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, coeffs, beta, center_x=0, center_y=0):\n shapelets = self._createShapelet(coeffs)\n n_order = self._get_num_n(len(coeffs))\n dx_shapelets = self._dx_shapelets(shapelets, beta)\n dy_shapelets = self._dy_shapelets(shapelets, beta)\n n = len(np.atleast_1d(x))\n if n <= 1:\n f_x = self._shapeletOutput(x, y, beta, dx_shapelets, precalc=False)\n f_y = self._shapeletOutput(x, y, beta, dy_shapelets, precalc=False)\n else:\n H_x, H_y = self.pre_calc(x, y, beta, n_order + 1, center_x, center_y)\n f_x = self._shapeletOutput(H_x, H_y, beta, dx_shapelets)\n f_y = self._shapeletOutput(H_x, H_y, beta, dy_shapelets)\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, coeffs, beta, center_x=0, center_y=0): shapelets = self._createShapelet(coeffs) n_order = self._get_num_n(len(coeffs)) dxx_shapelets = self._dxx_shapelets(shapelets, beta) dyy_shapelets = self._dyy_shapelets(shapelets, beta) dxy_shapelets = self._dxy_shapelets(shapelets, beta) n = len(np.atleast_1d(x)) if n <= 1: f_xx = self._shapeletOutput(x, y, beta, dxx_shapelets, precalc=False) f_yy = self._shapeletOutput(x, y, beta, dyy_shapelets, precalc=False) f_xy = self._shapeletOutput(x, y, beta, dxy_shapelets, precalc=False) else: H_x, H_y = self.pre_calc(x, y, beta, n_order + 2, center_x, center_y) f_xx = self._shapeletOutput(H_x, H_y, beta, dxx_shapelets) f_yy = self._shapeletOutput(H_x, H_y, beta, dyy_shapelets) f_xy = self._shapeletOutput(H_x, H_y, beta, dxy_shapelets) return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, coeffs, beta, center_x=0, center_y=0):\n shapelets = self._createShapelet(coeffs)\n n_order = self._get_num_n(len(coeffs))\n dxx_shapelets = self._dxx_shapelets(shapelets, beta)\n dyy_shapelets = self._dyy_shapelets(shapelets, beta)\n dxy_shapelets = self._dxy_shapelets(shapelets, beta)\n n = len(np.atleast_1d(x))\n if n <= 1:\n f_xx = self._shapeletOutput(x, y, beta, dxx_shapelets, precalc=False)\n f_yy = self._shapeletOutput(x, y, beta, dyy_shapelets, precalc=False)\n f_xy = self._shapeletOutput(x, y, beta, dxy_shapelets, precalc=False)\n else:\n H_x, H_y = self.pre_calc(x, y, beta, n_order + 2, center_x, center_y)\n f_xx = self._shapeletOutput(H_x, H_y, beta, dxx_shapelets)\n f_yy = self._shapeletOutput(H_x, H_y, beta, dyy_shapelets)\n f_xy = self._shapeletOutput(H_x, H_y, beta, dxy_shapelets)\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, coeffs): n_coeffs = len(coeffs) num_n = self._get_num_n(n_coeffs) shapelets = np.zeros((num_n + 1, num_n + 1)) n = 0 k = 0 for coeff in coeffs: shapelets[n - k][k] = coeff k += 1 if k == n + 1: n += 1 k = 0 return shapelets
createShapelet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coeffs):\n n_coeffs = len(coeffs)\n num_n = self._get_num_n(n_coeffs)\n shapelets = np.zeros((num_n + 1, num_n + 1))\n n = 0\n k = 0\n for coeff in coeffs:\n shapelets[n - k][k] = coeff\n k += 1\n if k == n + 1:\n n += 1\n k = 0\n return shapelets\n", "role": "user" }, { "content": "createShapelet", "role": "assistant" } ]
def x(self, x, y, beta, shapelets, precalc=True): n = len(np.atleast_1d(x)) if n <= 1: values = 0.0 else: values = np.zeros(len(x[0])) n = 0 k = 0 i = 0 num_n = len(shapelets) while i < num_n * (num_n + 1) / 2: values += self._function(x, y, shapelets[n - k][k], beta, n - k, k, precalc=precalc) k += 1 if k == n + 1: n += 1 k = 0 i += 1 return values
shapeletOutput
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, beta, shapelets, precalc=True):\n n = len(np.atleast_1d(x))\n if n <= 1:\n values = 0.0\n else:\n values = np.zeros(len(x[0]))\n n = 0\n k = 0\n i = 0\n num_n = len(shapelets)\n while i < num_n * (num_n + 1) / 2:\n values += self._function(x, y, shapelets[n - k][k], beta, n - k, k,\n precalc=precalc)\n k += 1\n if k == n + 1:\n n += 1\n k = 0\n i += 1\n return values\n", "role": "user" }, { "content": "shapeletOutput", "role": "assistant" } ]
def x(self, shapelets, beta): num_n = len(shapelets) dx = np.zeros((num_n + 1, num_n + 1)) for n1 in range(num_n): for n2 in range(num_n): amp = shapelets[n1][n2] dx[n1 + 1][n2] -= np.sqrt((n1 + 1) / 2.0) * amp if n1 > 0: dx[n1 - 1][n2] += np.sqrt(n1 / 2.0) * amp return dx / beta
dx_shapelets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shapelets, beta):\n num_n = len(shapelets)\n dx = np.zeros((num_n + 1, num_n + 1))\n for n1 in range(num_n):\n for n2 in range(num_n):\n amp = shapelets[n1][n2]\n dx[n1 + 1][n2] -= np.sqrt((n1 + 1) / 2.0) * amp\n if n1 > 0:\n dx[n1 - 1][n2] += np.sqrt(n1 / 2.0) * amp\n return dx / beta\n", "role": "user" }, { "content": "dx_shapelets", "role": "assistant" } ]
def x(self, shapelets, beta): num_n = len(shapelets) dy = np.zeros((num_n + 1, num_n + 1)) for n1 in range(num_n): for n2 in range(num_n): amp = shapelets[n1][n2] dy[n1][n2 + 1] -= np.sqrt((n2 + 1) / 2.0) * amp if n2 > 0: dy[n1][n2 - 1] += np.sqrt(n2 / 2.0) * amp return dy / beta
dy_shapelets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shapelets, beta):\n num_n = len(shapelets)\n dy = np.zeros((num_n + 1, num_n + 1))\n for n1 in range(num_n):\n for n2 in range(num_n):\n amp = shapelets[n1][n2]\n dy[n1][n2 + 1] -= np.sqrt((n2 + 1) / 2.0) * amp\n if n2 > 0:\n dy[n1][n2 - 1] += np.sqrt(n2 / 2.0) * amp\n return dy / beta\n", "role": "user" }, { "content": "dy_shapelets", "role": "assistant" } ]