source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, array, subgrid_res=1): nx, ny = self._nx * subgrid_res, self._ny * subgrid_res if self._idex_mask_bool is True: idex_mask = self._idex_mask grid1d = np.zeros(nx * ny) if subgrid_res > 1: idex_mask_subgrid = self._idex_mask_sub else: idex_mask_subgrid = idex_mask grid1d[idex_mask_subgrid == 1] = array else: grid1d = array grid2d = util.array2image(grid1d, nx, ny) return grid2d
array2image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, array, subgrid_res=1):\n nx, ny = self._nx * subgrid_res, self._ny * subgrid_res\n if self._idex_mask_bool is True:\n idex_mask = self._idex_mask\n grid1d = np.zeros(nx * ny)\n if subgrid_res > 1:\n idex_mask_subgrid = self._idex_mask_sub\n else:\n idex_mask_subgrid = idex_mask\n grid1d[idex_mask_subgrid == 1] = array\n else:\n grid1d = array\n grid2d = util.array2image(grid1d, nx, ny)\n return grid2d\n", "role": "user" }, { "content": "array2image", "role": "assistant" } ]
def x(self, image): idex_mask = self._idex_mask array = util.image2array(image) if self._idex_mask_bool is True: return array[idex_mask == 1] else: return array
image2array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image):\n idex_mask = self._idex_mask\n array = util.image2array(image)\n if self._idex_mask_bool is True:\n return array[idex_mask == 1]\n else:\n return array\n", "role": "user" }, { "content": "image2array", "role": "assistant" } ]
def x(self): if not hasattr(self, '_x_min_psf'): idex_2d = self._idex_mask_2d self._x_min_psf = np.min(np.where(idex_2d == 1)[0]) self._x_max_psf = np.max(np.where(idex_2d == 1)[0]) self._y_min_psf = np.min(np.where(idex_2d == 1)[1]) self._y_max_psf = np.max(np.where(idex_2d == 1)[1])
init_mask_psf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not hasattr(self, '_x_min_psf'):\n idex_2d = self._idex_mask_2d\n self._x_min_psf = np.min(np.where(idex_2d == 1)[0])\n self._x_max_psf = np.max(np.where(idex_2d == 1)[0])\n self._y_min_psf = np.min(np.where(idex_2d == 1)[1])\n self._y_max_psf = np.max(np.where(idex_2d == 1)[1])\n", "role": "user" }, { "content": "init_mask_psf", "role": "assistant" } ]
def x(self, image, subgrid_res): self._init_mask_psf() return image[self._x_min_psf * subgrid_res:(self._x_max_psf + 1) * subgrid_res, self._y_min_psf * subgrid_res:(self._y_max_psf + 1) * subgrid_res]
cutout_psf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, subgrid_res):\n self._init_mask_psf()\n return image[self._x_min_psf * subgrid_res:(self._x_max_psf + 1) *\n subgrid_res, self._y_min_psf * subgrid_res:(self._y_max_psf + 1) *\n subgrid_res]\n", "role": "user" }, { "content": "cutout_psf", "role": "assistant" } ]
def x(self, index): n = self._index2n(index) num_prev = n * (n + 1) / 2 num = index + 1 delta = int(num - num_prev - 1) if n % 2 == 0: if delta == 0: m = delta complex_bool = False elif delta % 2 == 0: complex_bool = True m = delta else: complex_bool = False m = delta + 1 elif delta % 2 == 0: complex_bool = False m = delta + 1 else: complex_bool = True m = delta return n, m, complex_bool
index2poly
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index):\n n = self._index2n(index)\n num_prev = n * (n + 1) / 2\n num = index + 1\n delta = int(num - num_prev - 1)\n if n % 2 == 0:\n if delta == 0:\n m = delta\n complex_bool = False\n elif delta % 2 == 0:\n complex_bool = True\n m = delta\n else:\n complex_bool = False\n m = delta + 1\n elif delta % 2 == 0:\n complex_bool = False\n m = delta + 1\n else:\n complex_bool = True\n m = delta\n return n, m, complex_bool\n", "role": "user" }, { "content": "index2poly", "role": "assistant" } ]
def x(self, image, x, y, n_max, beta, deltaPix, center_x=0, center_y=0): num_param = self.shapelets.num_param(n_max) param_list = np.zeros(num_param) amp_norm = 1.0 * deltaPix ** 2 L_list = self._pre_calc(x, y, beta, n_max, center_x, center_y) for i in range(num_param): base = self._pre_calc_function(L_list, i) * amp_norm param = np.sum(image * base) n, m, complex_bool = self.shapelets.index2poly(i) if m != 0: param *= 2 param_list[i] = param return param_list
decomposition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, x, y, n_max, beta, deltaPix, center_x=0, center_y=0):\n num_param = self.shapelets.num_param(n_max)\n param_list = np.zeros(num_param)\n amp_norm = 1.0 * deltaPix ** 2\n L_list = self._pre_calc(x, y, beta, n_max, center_x, center_y)\n for i in range(num_param):\n base = self._pre_calc_function(L_list, i) * amp_norm\n param = np.sum(image * base)\n n, m, complex_bool = self.shapelets.index2poly(i)\n if m != 0:\n param *= 2\n param_list[i] = param\n return param_list\n", "role": "user" }, { "content": "decomposition", "role": "assistant" } ]
def x(kernel, shift_x, shift_y, iterations=20): nx, ny = np.shape(kernel) kernel_new = np.zeros((nx + 2, ny + 2)) + (kernel[0, 0] + kernel[0, -1] + kernel[-1, 0] + kernel[-1, -1]) / 4.0 kernel_new[1:-1, 1:-1] = kernel int_shift_x = int(round(shift_x)) frac_x_shift = shift_x - int_shift_x int_shift_y = int(round(shift_y)) frac_y_shift = shift_y - int_shift_y kernel_init = copy.deepcopy(kernel_new) kernel_init_shifted = copy.deepcopy(interp.shift(kernel_init, [ int_shift_y, int_shift_x], order=1)) kernel_new = interp.shift(kernel_new, [int_shift_y, int_shift_x], order=1) norm = np.sum(kernel_init_shifted) for i in range(iterations): kernel_shifted_inv = interp.shift(kernel_new, [-frac_y_shift, - frac_x_shift], order=1) delta = kernel_init_shifted - kernel_norm(kernel_shifted_inv) * norm kernel_new += delta * 1.0 kernel_new = kernel_norm(kernel_new) * norm return kernel_new[1:-1, 1:-1]
de_shift_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel, shift_x, shift_y, iterations=20):\n nx, ny = np.shape(kernel)\n kernel_new = np.zeros((nx + 2, ny + 2)) + (kernel[0, 0] + kernel[0, -1] +\n kernel[-1, 0] + kernel[-1, -1]) / 4.0\n kernel_new[1:-1, 1:-1] = kernel\n int_shift_x = int(round(shift_x))\n frac_x_shift = shift_x - int_shift_x\n int_shift_y = int(round(shift_y))\n frac_y_shift = shift_y - int_shift_y\n kernel_init = copy.deepcopy(kernel_new)\n kernel_init_shifted = copy.deepcopy(interp.shift(kernel_init, [\n int_shift_y, int_shift_x], order=1))\n kernel_new = interp.shift(kernel_new, [int_shift_y, int_shift_x], order=1)\n norm = np.sum(kernel_init_shifted)\n for i in range(iterations):\n kernel_shifted_inv = interp.shift(kernel_new, [-frac_y_shift, -\n frac_x_shift], order=1)\n delta = kernel_init_shifted - kernel_norm(kernel_shifted_inv) * norm\n kernel_new += delta * 1.0\n kernel_new = kernel_norm(kernel_new) * norm\n return kernel_new[1:-1, 1:-1]\n", "role": "user" }, { "content": "de_shift_kernel", "role": "assistant" } ]
def x(kernel, iterations=20): kernel = kernel_norm(kernel) nx, ny = np.shape(kernel) if nx % 2 == 0: raise ValueError('kernel needs odd number of pixels') x_grid, y_grid = util.make_grid(nx, deltapix=1, left_lower=False) x_w = np.sum(kernel * util.array2image(x_grid)) y_w = np.sum(kernel * util.array2image(y_grid)) kernel_centered = de_shift_kernel(kernel, shift_x=-x_w, shift_y=-y_w, iterations=iterations) return kernel_norm(kernel_centered)
center_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel, iterations=20):\n kernel = kernel_norm(kernel)\n nx, ny = np.shape(kernel)\n if nx % 2 == 0:\n raise ValueError('kernel needs odd number of pixels')\n x_grid, y_grid = util.make_grid(nx, deltapix=1, left_lower=False)\n x_w = np.sum(kernel * util.array2image(x_grid))\n y_w = np.sum(kernel * util.array2image(y_grid))\n kernel_centered = de_shift_kernel(kernel, shift_x=-x_w, shift_y=-y_w,\n iterations=iterations)\n return kernel_norm(kernel_centered)\n", "role": "user" }, { "content": "center_kernel", "role": "assistant" } ]
def x(kernel, subgrid_res, odd=False, num_iter=100): subgrid_res = int(subgrid_res) if subgrid_res == 1: return kernel nx, ny = np.shape(kernel) d_x = 1.0 / nx x_in = np.linspace(d_x / 2, 1 - d_x / 2, nx) d_y = 1.0 / nx y_in = np.linspace(d_y / 2, 1 - d_y / 2, ny) nx_new = nx * subgrid_res ny_new = ny * subgrid_res if odd is True: if nx_new % 2 == 0: nx_new -= 1 if ny_new % 2 == 0: ny_new -= 1 d_x_new = 1.0 / nx_new d_y_new = 1.0 / ny_new x_out = np.linspace(d_x_new / 2.0, 1 - d_x_new / 2.0, nx_new) y_out = np.linspace(d_y_new / 2.0, 1 - d_y_new / 2.0, ny_new) kernel_input = copy.deepcopy(kernel) kernel_subgrid = image_util.re_size_array(x_in, y_in, kernel_input, x_out, y_out) kernel_subgrid = kernel_norm(kernel_subgrid) for i in range(max(num_iter, 1)): if subgrid_res % 2 == 0: kernel_pixel = averaging_even_kernel(kernel_subgrid, subgrid_res) else: kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx) delta = kernel - kernel_pixel temp_kernel = kernel_input + delta kernel_subgrid = image_util.re_size_array(x_in, y_in, temp_kernel, x_out, y_out) kernel_subgrid = kernel_norm(kernel_subgrid) kernel_input = temp_kernel if subgrid_res % 2 == 0: return kernel_subgrid kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx) kernel_pixel = kernel_norm(kernel_pixel) delta_kernel = kernel_pixel - kernel_norm(kernel) id = np.ones((subgrid_res, subgrid_res)) delta_kernel_sub = np.kron(delta_kernel, id) / subgrid_res ** 2 return kernel_norm(kernel_subgrid - delta_kernel_sub)
subgrid_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel, subgrid_res, odd=False, num_iter=100):\n subgrid_res = int(subgrid_res)\n if subgrid_res == 1:\n return kernel\n nx, ny = np.shape(kernel)\n d_x = 1.0 / nx\n x_in = np.linspace(d_x / 2, 1 - d_x / 2, nx)\n d_y = 1.0 / nx\n y_in = np.linspace(d_y / 2, 1 - d_y / 2, ny)\n nx_new = nx * subgrid_res\n ny_new = ny * subgrid_res\n if odd is True:\n if nx_new % 2 == 0:\n nx_new -= 1\n if ny_new % 2 == 0:\n ny_new -= 1\n d_x_new = 1.0 / nx_new\n d_y_new = 1.0 / ny_new\n x_out = np.linspace(d_x_new / 2.0, 1 - d_x_new / 2.0, nx_new)\n y_out = np.linspace(d_y_new / 2.0, 1 - d_y_new / 2.0, ny_new)\n kernel_input = copy.deepcopy(kernel)\n kernel_subgrid = image_util.re_size_array(x_in, y_in, kernel_input,\n x_out, y_out)\n kernel_subgrid = kernel_norm(kernel_subgrid)\n for i in range(max(num_iter, 1)):\n if subgrid_res % 2 == 0:\n kernel_pixel = averaging_even_kernel(kernel_subgrid, subgrid_res)\n else:\n kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new,\n numPix=nx)\n delta = kernel - kernel_pixel\n temp_kernel = kernel_input + delta\n kernel_subgrid = image_util.re_size_array(x_in, y_in, temp_kernel,\n x_out, y_out)\n kernel_subgrid = kernel_norm(kernel_subgrid)\n kernel_input = temp_kernel\n if subgrid_res % 2 == 0:\n return kernel_subgrid\n kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx)\n kernel_pixel = kernel_norm(kernel_pixel)\n delta_kernel = kernel_pixel - kernel_norm(kernel)\n id = np.ones((subgrid_res, subgrid_res))\n delta_kernel_sub = np.kron(delta_kernel, id) / subgrid_res ** 2\n return kernel_norm(kernel_subgrid - delta_kernel_sub)\n", "role": "user" }, { "content": "subgrid_kernel", "role": "assistant" } ]
def x(kernel_high_res, subgrid_res): n_high = len(kernel_high_res) n_low = int((n_high + 1) / subgrid_res) kernel_low_res = np.zeros((n_low, n_low)) for i in range(subgrid_res - 1): for j in range(subgrid_res - 1): kernel_low_res += kernel_high_res[i::subgrid_res, j::subgrid_res] i = subgrid_res - 1 for j in range(subgrid_res - 1): kernel_low_res[1:, :] += kernel_high_res[i::subgrid_res, j::subgrid_res ] / 2 kernel_low_res[:-1, :] += kernel_high_res[i::subgrid_res, j:: subgrid_res] / 2 j = subgrid_res - 1 for i in range(subgrid_res - 1): kernel_low_res[:, 1:] += kernel_high_res[i::subgrid_res, j::subgrid_res ] / 2 kernel_low_res[:, :-1] += kernel_high_res[i::subgrid_res, j:: subgrid_res] / 2 i = subgrid_res - 1 j = subgrid_res - 1 kernel_edge = kernel_high_res[i::subgrid_res, j::subgrid_res] kernel_low_res[1:, 1:] += kernel_edge / 4 kernel_low_res[:-1, 1:] += kernel_edge / 4 kernel_low_res[1:, :-1] += kernel_edge / 4 kernel_low_res[:-1, :-1] += kernel_edge / 4 return kernel_low_res
averaging_even_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel_high_res, subgrid_res):\n n_high = len(kernel_high_res)\n n_low = int((n_high + 1) / subgrid_res)\n kernel_low_res = np.zeros((n_low, n_low))\n for i in range(subgrid_res - 1):\n for j in range(subgrid_res - 1):\n kernel_low_res += kernel_high_res[i::subgrid_res, j::subgrid_res]\n i = subgrid_res - 1\n for j in range(subgrid_res - 1):\n kernel_low_res[1:, :] += kernel_high_res[i::subgrid_res, j::subgrid_res\n ] / 2\n kernel_low_res[:-1, :] += kernel_high_res[i::subgrid_res, j::\n subgrid_res] / 2\n j = subgrid_res - 1\n for i in range(subgrid_res - 1):\n kernel_low_res[:, 1:] += kernel_high_res[i::subgrid_res, j::subgrid_res\n ] / 2\n kernel_low_res[:, :-1] += kernel_high_res[i::subgrid_res, j::\n subgrid_res] / 2\n i = subgrid_res - 1\n j = subgrid_res - 1\n kernel_edge = kernel_high_res[i::subgrid_res, j::subgrid_res]\n kernel_low_res[1:, 1:] += kernel_edge / 4\n kernel_low_res[:-1, 1:] += kernel_edge / 4\n kernel_low_res[1:, :-1] += kernel_edge / 4\n kernel_low_res[:-1, :-1] += kernel_edge / 4\n return kernel_low_res\n", "role": "user" }, { "content": "averaging_even_kernel", "role": "assistant" } ]
def x(kernel, deltaPix_in, deltaPix_out): numPix = len(kernel) numPix_new = int(round(numPix * deltaPix_in / deltaPix_out)) if numPix_new % 2 == 0: numPix_new -= 1 x_in = np.linspace(-(numPix - 1) / 2 * deltaPix_in, (numPix - 1) / 2 * deltaPix_in, numPix) x_out = np.linspace(-(numPix_new - 1) / 2 * deltaPix_out, (numPix_new - 1) / 2 * deltaPix_out, numPix_new) kernel_out = image_util.re_size_array(x_in, x_in, kernel, x_out, x_out) kernel_out = kernel_norm(kernel_out) return kernel_out
kernel_pixelsize_change
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel, deltaPix_in, deltaPix_out):\n numPix = len(kernel)\n numPix_new = int(round(numPix * deltaPix_in / deltaPix_out))\n if numPix_new % 2 == 0:\n numPix_new -= 1\n x_in = np.linspace(-(numPix - 1) / 2 * deltaPix_in, (numPix - 1) / 2 *\n deltaPix_in, numPix)\n x_out = np.linspace(-(numPix_new - 1) / 2 * deltaPix_out, (numPix_new -\n 1) / 2 * deltaPix_out, numPix_new)\n kernel_out = image_util.re_size_array(x_in, x_in, kernel, x_out, x_out)\n kernel_out = kernel_norm(kernel_out)\n return kernel_out\n", "role": "user" }, { "content": "kernel_pixelsize_change", "role": "assistant" } ]
def x(psf_data, psf_size): kernel = image_util.cut_edges(psf_data, psf_size) kernel = kernel_norm(kernel) return kernel
cut_psf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psf_data, psf_size):\n kernel = image_util.cut_edges(psf_data, psf_size)\n kernel = kernel_norm(kernel)\n return kernel\n", "role": "user" }, { "content": "cut_psf", "role": "assistant" } ]
def x(point_source_kernel, subgrid_res=7): kernel_subgrid = subgrid_kernel(point_source_kernel, subgrid_res, num_iter=10) kernel_size = len(point_source_kernel) kernel_pixel = np.zeros((kernel_size * subgrid_res, kernel_size * subgrid_res)) for i in range(subgrid_res): k_x = int((kernel_size - 1) / 2 * subgrid_res + i) for j in range(subgrid_res): k_y = int((kernel_size - 1) / 2 * subgrid_res + j) kernel_pixel = image_util.add_layer2image(kernel_pixel, k_x, k_y, kernel_subgrid) kernel_pixel = util.averaging(kernel_pixel, numGrid=kernel_size * subgrid_res, numPix=kernel_size) return kernel_norm(kernel_pixel)
pixel_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(point_source_kernel, subgrid_res=7):\n kernel_subgrid = subgrid_kernel(point_source_kernel, subgrid_res,\n num_iter=10)\n kernel_size = len(point_source_kernel)\n kernel_pixel = np.zeros((kernel_size * subgrid_res, kernel_size *\n subgrid_res))\n for i in range(subgrid_res):\n k_x = int((kernel_size - 1) / 2 * subgrid_res + i)\n for j in range(subgrid_res):\n k_y = int((kernel_size - 1) / 2 * subgrid_res + j)\n kernel_pixel = image_util.add_layer2image(kernel_pixel, k_x,\n k_y, kernel_subgrid)\n kernel_pixel = util.averaging(kernel_pixel, numGrid=kernel_size *\n subgrid_res, numPix=kernel_size)\n return kernel_norm(kernel_pixel)\n", "role": "user" }, { "content": "pixel_kernel", "role": "assistant" } ]
def x(kernel, kernel_subgrid, subsampling_size, subgrid_res): n = len(kernel) n_sub = len(kernel_subgrid) if subsampling_size % 2 == 0: subsampling_size += 1 if subsampling_size > n: subsampling_size = n kernel_hole = copy.deepcopy(kernel) n_min = int((n - 1) / 2 - (subsampling_size - 1) / 2) n_max = int((n - 1) / 2 + (subsampling_size - 1) / 2 + 1) kernel_hole[n_min:n_max, n_min:n_max] = 0 n_min_sub = int((n_sub - 1) / 2 - (subsampling_size * subgrid_res - 1) / 2) n_max_sub = int((n_sub - 1) / 2 + (subsampling_size * subgrid_res - 1) / 2 + 1) kernel_subgrid_cut = kernel_subgrid[n_min_sub:n_max_sub, n_min_sub: n_max_sub] flux_subsampled = np.sum(kernel_subgrid_cut) flux_hole = np.sum(kernel_hole) if flux_hole > 0: kernel_hole *= (1.0 - flux_subsampled) / np.sum(kernel_hole) else: kernel_subgrid_cut /= np.sum(kernel_subgrid_cut) return kernel_hole, kernel_subgrid_cut
split_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel, kernel_subgrid, subsampling_size, subgrid_res):\n n = len(kernel)\n n_sub = len(kernel_subgrid)\n if subsampling_size % 2 == 0:\n subsampling_size += 1\n if subsampling_size > n:\n subsampling_size = n\n kernel_hole = copy.deepcopy(kernel)\n n_min = int((n - 1) / 2 - (subsampling_size - 1) / 2)\n n_max = int((n - 1) / 2 + (subsampling_size - 1) / 2 + 1)\n kernel_hole[n_min:n_max, n_min:n_max] = 0\n n_min_sub = int((n_sub - 1) / 2 - (subsampling_size * subgrid_res - 1) / 2)\n n_max_sub = int((n_sub - 1) / 2 + (subsampling_size * subgrid_res - 1) /\n 2 + 1)\n kernel_subgrid_cut = kernel_subgrid[n_min_sub:n_max_sub, n_min_sub:\n n_max_sub]\n flux_subsampled = np.sum(kernel_subgrid_cut)\n flux_hole = np.sum(kernel_hole)\n if flux_hole > 0:\n kernel_hole *= (1.0 - flux_subsampled) / np.sum(kernel_hole)\n else:\n kernel_subgrid_cut /= np.sum(kernel_subgrid_cut)\n return kernel_hole, kernel_subgrid_cut\n", "role": "user" }, { "content": "split_kernel", "role": "assistant" } ]
def x(x_pos, y_pos, image, kernelsize, shift=True): if kernelsize % 2 == 0: raise ValueError('even pixel number kernel size not supported!') x_int = int(round(x_pos)) y_int = int(round(y_pos)) n = len(image) d = (kernelsize - 1) / 2 x_max = int(np.minimum(x_int + d + 1, n)) x_min = int(np.maximum(x_int - d, 0)) y_max = int(np.minimum(y_int + d + 1, n)) y_min = int(np.maximum(y_int - d, 0)) image_cut = copy.deepcopy(image[y_min:y_max, x_min:x_max]) shift_x = x_int - x_pos shift_y = y_int - y_pos if shift is True: kernel_shift = de_shift_kernel(image_cut, shift_x, shift_y, iterations=50) else: kernel_shift = image_cut kernel_final = np.zeros((kernelsize, kernelsize)) k_l2_x = int((kernelsize - 1) / 2) k_l2_y = int((kernelsize - 1) / 2) xk_min = np.maximum(0, -x_int + k_l2_x) yk_min = np.maximum(0, -y_int + k_l2_y) xk_max = np.minimum(kernelsize, -x_int + k_l2_x + n) yk_max = np.minimum(kernelsize, -y_int + k_l2_y + n) kernel_final[yk_min:yk_max, xk_min:xk_max] = kernel_shift return kernel_final
cutout_source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_pos, y_pos, image, kernelsize, shift=True):\n if kernelsize % 2 == 0:\n raise ValueError('even pixel number kernel size not supported!')\n x_int = int(round(x_pos))\n y_int = int(round(y_pos))\n n = len(image)\n d = (kernelsize - 1) / 2\n x_max = int(np.minimum(x_int + d + 1, n))\n x_min = int(np.maximum(x_int - d, 0))\n y_max = int(np.minimum(y_int + d + 1, n))\n y_min = int(np.maximum(y_int - d, 0))\n image_cut = copy.deepcopy(image[y_min:y_max, x_min:x_max])\n shift_x = x_int - x_pos\n shift_y = y_int - y_pos\n if shift is True:\n kernel_shift = de_shift_kernel(image_cut, shift_x, shift_y,\n iterations=50)\n else:\n kernel_shift = image_cut\n kernel_final = np.zeros((kernelsize, kernelsize))\n k_l2_x = int((kernelsize - 1) / 2)\n k_l2_y = int((kernelsize - 1) / 2)\n xk_min = np.maximum(0, -x_int + k_l2_x)\n yk_min = np.maximum(0, -y_int + k_l2_y)\n xk_max = np.minimum(kernelsize, -x_int + k_l2_x + n)\n yk_max = np.minimum(kernelsize, -y_int + k_l2_y + n)\n kernel_final[yk_min:yk_max, xk_min:xk_max] = kernel_shift\n return kernel_final\n", "role": "user" }, { "content": "cutout_source", "role": "assistant" } ]
def x(kernel): n = len(kernel) if n % 2 == 0: raise ValueError('only works with odd number of pixels in kernel!') max_flux = kernel[int((n - 1) / 2), int((n - 1) / 2)] I_2 = max_flux / 2.0 I_r = kernel[int((n - 1) / 2), int((n - 1) / 2):] r = np.linspace(0, (n - 1) / 2, int((n + 1) / 2)) for i in range(1, len(r)): if I_r[i] < I_2: fwhm_2 = (I_2 - I_r[i - 1]) / (I_r[i] - I_r[i - 1]) + r[i - 1] return fwhm_2 * 2 raise ValueError( 'The kernel did not drop to half the max value - fwhm not determined!')
fwhm_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel):\n n = len(kernel)\n if n % 2 == 0:\n raise ValueError('only works with odd number of pixels in kernel!')\n max_flux = kernel[int((n - 1) / 2), int((n - 1) / 2)]\n I_2 = max_flux / 2.0\n I_r = kernel[int((n - 1) / 2), int((n - 1) / 2):]\n r = np.linspace(0, (n - 1) / 2, int((n + 1) / 2))\n for i in range(1, len(r)):\n if I_r[i] < I_2:\n fwhm_2 = (I_2 - I_r[i - 1]) / (I_r[i] - I_r[i - 1]) + r[i - 1]\n return fwhm_2 * 2\n raise ValueError(\n 'The kernel did not drop to half the max value - fwhm not determined!')\n", "role": "user" }, { "content": "fwhm_kernel", "role": "assistant" } ]
def x(data, x_pos, y_pos, psf_kernel): numPix_x, numPix_y = np.shape(data) x_int = int(round(x_pos - 0.49999)) y_int = int(round(y_pos - 0.49999)) if (x_int > 2 and x_int < numPix_x - 2 and y_int > 2 and y_int < numPix_y - 2): mean_image = max(np.sum(data[y_int - 2:y_int + 3, x_int - 2:x_int + 3]), 0) num = len(psf_kernel) center = int((num - 0.5) / 2) mean_kernel = np.sum(psf_kernel[center - 2:center + 3, center - 2: center + 3]) amp_estimated = mean_image / mean_kernel else: amp_estimated = 0 return amp_estimated
estimate_amp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, x_pos, y_pos, psf_kernel):\n numPix_x, numPix_y = np.shape(data)\n x_int = int(round(x_pos - 0.49999))\n y_int = int(round(y_pos - 0.49999))\n if (x_int > 2 and x_int < numPix_x - 2 and y_int > 2 and y_int < \n numPix_y - 2):\n mean_image = max(np.sum(data[y_int - 2:y_int + 3, x_int - 2:x_int +\n 3]), 0)\n num = len(psf_kernel)\n center = int((num - 0.5) / 2)\n mean_kernel = np.sum(psf_kernel[center - 2:center + 3, center - 2:\n center + 3])\n amp_estimated = mean_image / mean_kernel\n else:\n amp_estimated = 0\n return amp_estimated\n", "role": "user" }, { "content": "estimate_amp", "role": "assistant" } ]
def x(self, kwargs_list, n=1, new_compute=False, r_eff=1.0): if not hasattr(self, '_light_cdf') or new_compute is True: r_array = np.linspace(self._min_interpolate, self._max_interpolate, self._interp_grid_num) cum_sum = np.zeros_like(r_array) sum = 0 for i, r in enumerate(r_array): if i == 0: cum_sum[i] = 0 else: sum += self.light_2d(r, kwargs_list) * r cum_sum[i] = copy.deepcopy(sum) cum_sum_norm = cum_sum / cum_sum[-1] f = interp1d(cum_sum_norm, r_array) self._light_cdf = f cdf_draw = np.random.uniform(0.0, 1, n) r_draw = self._light_cdf(cdf_draw) return r_draw
draw_light_2d_linear
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_list, n=1, new_compute=False, r_eff=1.0):\n if not hasattr(self, '_light_cdf') or new_compute is True:\n r_array = np.linspace(self._min_interpolate, self._max_interpolate,\n self._interp_grid_num)\n cum_sum = np.zeros_like(r_array)\n sum = 0\n for i, r in enumerate(r_array):\n if i == 0:\n cum_sum[i] = 0\n else:\n sum += self.light_2d(r, kwargs_list) * r\n cum_sum[i] = copy.deepcopy(sum)\n cum_sum_norm = cum_sum / cum_sum[-1]\n f = interp1d(cum_sum_norm, r_array)\n self._light_cdf = f\n cdf_draw = np.random.uniform(0.0, 1, n)\n r_draw = self._light_cdf(cdf_draw)\n return r_draw\n", "role": "user" }, { "content": "draw_light_2d_linear", "role": "assistant" } ]
def x(self, kwargs_list, n=1, new_compute=False): if not hasattr(self, '_light_cdf_log') or new_compute is True: r_array = np.logspace(np.log10(self._min_interpolate), np.log10( self._max_interpolate), self._interp_grid_num) cum_sum = np.zeros_like(r_array) sum = 0 for i, r in enumerate(r_array): if i == 0: cum_sum[i] = 0 else: sum += self.light_2d(r, kwargs_list) * r * r cum_sum[i] = copy.deepcopy(sum) cum_sum_norm = cum_sum / cum_sum[-1] f = interp1d(cum_sum_norm, np.log(r_array)) self._light_cdf_log = f cdf_draw = np.random.uniform(0.0, 1, n) r_log_draw = self._light_cdf_log(cdf_draw) return np.exp(r_log_draw)
draw_light_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_list, n=1, new_compute=False):\n if not hasattr(self, '_light_cdf_log') or new_compute is True:\n r_array = np.logspace(np.log10(self._min_interpolate), np.log10(\n self._max_interpolate), self._interp_grid_num)\n cum_sum = np.zeros_like(r_array)\n sum = 0\n for i, r in enumerate(r_array):\n if i == 0:\n cum_sum[i] = 0\n else:\n sum += self.light_2d(r, kwargs_list) * r * r\n cum_sum[i] = copy.deepcopy(sum)\n cum_sum_norm = cum_sum / cum_sum[-1]\n f = interp1d(cum_sum_norm, np.log(r_array))\n self._light_cdf_log = f\n cdf_draw = np.random.uniform(0.0, 1, n)\n r_log_draw = self._light_cdf_log(cdf_draw)\n return np.exp(r_log_draw)\n", "role": "user" }, { "content": "draw_light_2d", "role": "assistant" } ]
def x(self, x, y, Rs, theta_Rs, center_x=0, center_y=0): rho0_input = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs) if Rs < 1e-07: Rs = 1e-07 x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) f_x, f_y = self.nfwAlpha(R, Rs, rho0_input, x_, y_) return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, Rs, theta_Rs, center_x=0, center_y=0):\n rho0_input = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs)\n if Rs < 1e-07:\n Rs = 1e-07\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n f_x, f_y = self.nfwAlpha(R, Rs, rho0_input, x_, y_)\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, R, Rs, rho0): return rho0 / (R / Rs * (1 + R / Rs) ** 2)
density
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0):\n return rho0 / (R / Rs * (1 + R / Rs) ** 2)\n", "role": "user" }, { "content": "density", "role": "assistant" } ]
def x(self, x, y, Rs, rho0, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) x = R / Rs Fx = self.F_(x) return 2 * rho0 * Rs * Fx
density_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, Rs, rho0, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n x = R / Rs\n Fx = self.F_(x)\n return 2 * rho0 * Rs * Fx\n", "role": "user" }, { "content": "density_2d", "role": "assistant" } ]
def x(self, R, Rs, rho0): Rs = float(Rs) m_3d = 4.0 * np.pi * rho0 * Rs ** 3 * (np.log((Rs + R) / Rs) - R / (Rs + R) ) return m_3d
mass_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0):\n Rs = float(Rs)\n m_3d = 4.0 * np.pi * rho0 * Rs ** 3 * (np.log((Rs + R) / Rs) - R / (Rs + R)\n )\n return m_3d\n", "role": "user" }, { "content": "mass_3d", "role": "assistant" } ]
def x(self, R, Rs, theta_Rs): rho0 = self._alpha2rho0(theta_Rs, Rs) m_3d = self.mass_3d(R, Rs, rho0) return m_3d
mass_3d_lens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, theta_Rs):\n rho0 = self._alpha2rho0(theta_Rs, Rs)\n m_3d = self.mass_3d(R, Rs, rho0)\n return m_3d\n", "role": "user" }, { "content": "mass_3d_lens", "role": "assistant" } ]
def x(self, R, Rs, rho0): x = R / Rs gx = self.g_(x) m_2d = 4 * rho0 * Rs * R ** 2 * gx / x ** 2 * np.pi return m_2d
mass_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0):\n x = R / Rs\n gx = self.g_(x)\n m_2d = 4 * rho0 * Rs * R ** 2 * gx / x ** 2 * np.pi\n return m_2d\n", "role": "user" }, { "content": "mass_2d", "role": "assistant" } ]
def x(self, X): if self._interpol: if not hasattr(self, '_F_interp'): if self._lookup: x = self._x_lookup F_x = self._f_lookup else: x = np.linspace(0, self._max_interp_X, self._num_interp_X) F_x = self._F(x) self._F_interp = interp.interp1d(x, F_x, kind='linear', axis=-1, copy=False, bounds_error=False, fill_value=0, assume_sorted =True) return self._F_interp(X) else: return self._F(X)
F_
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X):\n if self._interpol:\n if not hasattr(self, '_F_interp'):\n if self._lookup:\n x = self._x_lookup\n F_x = self._f_lookup\n else:\n x = np.linspace(0, self._max_interp_X, self._num_interp_X)\n F_x = self._F(x)\n self._F_interp = interp.interp1d(x, F_x, kind='linear', axis=-1,\n copy=False, bounds_error=False, fill_value=0, assume_sorted\n =True)\n return self._F_interp(X)\n else:\n return self._F(X)\n", "role": "user" }, { "content": "F_", "role": "assistant" } ]
def x(self, X): if isinstance(X, int) or isinstance(X, float): if X < 1 and X > 0: a = 1 / (X ** 2 - 1) * (1 - 2 / np.sqrt(1 - X ** 2) * np. arctanh(np.sqrt((1 - X) / (1 + X)))) elif X == 1: a = 1.0 / 3 elif X > 1: a = 1 / (X ** 2 - 1) * (1 - 2 / np.sqrt(X ** 2 - 1) * np.arctan (np.sqrt((X - 1) / (1 + X)))) else: c = 1e-07 a = 1 / -1 * (1 - 2 / np.sqrt(1) * np.arctanh(np.sqrt((1 - c) / (1 + c)))) else: a = np.empty_like(X) x = X[(X < 1) & (X > 0)] a[(X < 1) & (X > 0)] = 1 / (x ** 2 - 1) * (1 - 2 / np.sqrt(1 - x ** 2) * np.arctanh(np.sqrt((1 - x) / (1 + x)))) a[X == 1] = 1.0 / 3.0 x = X[X > 1] a[X > 1] = 1 / (x ** 2 - 1) * (1 - 2 / np.sqrt(x ** 2 - 1) * np. arctan(np.sqrt((x - 1) / (1 + x)))) c = 1e-07 a[X == 0] = 1 / -1 * (1 - 2 / np.sqrt(1) * np.arctanh(np.sqrt((1 - c) / (1 + c)))) return a
F
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X):\n if isinstance(X, int) or isinstance(X, float):\n if X < 1 and X > 0:\n a = 1 / (X ** 2 - 1) * (1 - 2 / np.sqrt(1 - X ** 2) * np.\n arctanh(np.sqrt((1 - X) / (1 + X))))\n elif X == 1:\n a = 1.0 / 3\n elif X > 1:\n a = 1 / (X ** 2 - 1) * (1 - 2 / np.sqrt(X ** 2 - 1) * np.arctan\n (np.sqrt((X - 1) / (1 + X))))\n else:\n c = 1e-07\n a = 1 / -1 * (1 - 2 / np.sqrt(1) * np.arctanh(np.sqrt((1 - c) /\n (1 + c))))\n else:\n a = np.empty_like(X)\n x = X[(X < 1) & (X > 0)]\n a[(X < 1) & (X > 0)] = 1 / (x ** 2 - 1) * (1 - 2 / np.sqrt(1 - x **\n 2) * np.arctanh(np.sqrt((1 - x) / (1 + x))))\n a[X == 1] = 1.0 / 3.0\n x = X[X > 1]\n a[X > 1] = 1 / (x ** 2 - 1) * (1 - 2 / np.sqrt(x ** 2 - 1) * np.\n arctan(np.sqrt((x - 1) / (1 + x))))\n c = 1e-07\n a[X == 0] = 1 / -1 * (1 - 2 / np.sqrt(1) * np.arctanh(np.sqrt((1 -\n c) / (1 + c))))\n return a\n", "role": "user" }, { "content": "F", "role": "assistant" } ]
def x(self, X): if self._interpol: if not hasattr(self, '_g_interp'): if self._lookup: x = self._x_lookup g_x = self._g_lookup else: x = np.linspace(0, self._max_interp_X, self._num_interp_X) g_x = self._g(x) self._g_interp = interp.interp1d(x, g_x, kind='linear', axis=-1, copy=False, bounds_error=False, fill_value=0, assume_sorted =True) return self._g_interp(X) else: return self._g(X)
g_
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X):\n if self._interpol:\n if not hasattr(self, '_g_interp'):\n if self._lookup:\n x = self._x_lookup\n g_x = self._g_lookup\n else:\n x = np.linspace(0, self._max_interp_X, self._num_interp_X)\n g_x = self._g(x)\n self._g_interp = interp.interp1d(x, g_x, kind='linear', axis=-1,\n copy=False, bounds_error=False, fill_value=0, assume_sorted\n =True)\n return self._g_interp(X)\n else:\n return self._g(X)\n", "role": "user" }, { "content": "g_", "role": "assistant" } ]
def x(self, X): if self._interpol: if not hasattr(self, '_h_interp'): if self._lookup: x = self._x_lookup h_x = self._h_lookup else: x = np.linspace(0, self._max_interp_X, self._num_interp_X) h_x = self._h(x) self._h_interp = interp.interp1d(x, h_x, kind='linear', axis=-1, copy=False, bounds_error=False, fill_value=0, assume_sorted =True) return self._h_interp(X) else: return self._h(X)
h_
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X):\n if self._interpol:\n if not hasattr(self, '_h_interp'):\n if self._lookup:\n x = self._x_lookup\n h_x = self._h_lookup\n else:\n x = np.linspace(0, self._max_interp_X, self._num_interp_X)\n h_x = self._h(x)\n self._h_interp = interp.interp1d(x, h_x, kind='linear', axis=-1,\n copy=False, bounds_error=False, fill_value=0, assume_sorted\n =True)\n return self._h_interp(X)\n else:\n return self._h(X)\n", "role": "user" }, { "content": "h_", "role": "assistant" } ]
def x(self, theta_Rs, Rs): rho0 = theta_Rs / (4.0 * Rs ** 2 * (1.0 + np.log(1.0 / 2.0))) return rho0
alpha2rho0
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, theta_Rs, Rs):\n rho0 = theta_Rs / (4.0 * Rs ** 2 * (1.0 + np.log(1.0 / 2.0)))\n return rho0\n", "role": "user" }, { "content": "alpha2rho0", "role": "assistant" } ]
def x(self, rho0, Rs): theta_Rs = rho0 * (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0))) return theta_Rs
rho02alpha
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rho0, Rs):\n theta_Rs = rho0 * (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0)))\n return theta_Rs\n", "role": "user" }, { "content": "rho02alpha", "role": "assistant" } ]
def x(self): name_list = [] for func in self.func_list: name_list.append(func.param_names) return name_list
param_name_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n name_list = []\n for func in self.func_list:\n name_list.append(func.param_names)\n return name_list\n", "role": "user" }, { "content": "param_name_list", "role": "assistant" } ]
def x(self, x, y, kwargs_list, k=None): x = np.array(x, dtype=float) y = np.array(y, dtype=float) flux = np.zeros_like(x) for i, func in enumerate(self.func_list): if k is None or k == i: out = np.array(func.function(x, y, **kwargs_list[i]), dtype=float) flux += out return flux
surface_brightness
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs_list, k=None):\n x = np.array(x, dtype=float)\n y = np.array(y, dtype=float)\n flux = np.zeros_like(x)\n for i, func in enumerate(self.func_list):\n if k is None or k == i:\n out = np.array(func.function(x, y, **kwargs_list[i]), dtype=float)\n flux += out\n return flux\n", "role": "user" }, { "content": "surface_brightness", "role": "assistant" } ]
def x(self, r, kwargs_list, k=None): r = np.array(r, dtype=float) flux = np.zeros_like(r) for i, func in enumerate(self.func_list): if k is None or k == i: kwargs = {k: v for k, v in kwargs_list[i].items() if not k in [ 'center_x', 'center_y']} if self.profile_type_list[i] in ['HERNQUIST', 'HERNQUIST_ELLIPSE', 'PJAFFE', 'PJAFFE_ELLIPSE', 'GAUSSIAN', 'GAUSSIAN_ELLIPSE', 'MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE', 'POWER_LAW']: flux += func.light_3d(r, **kwargs) else: raise ValueError( 'Light model %s does not support a 3d light distribution!' % self.profile_type_list[i]) return flux
light_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, kwargs_list, k=None):\n r = np.array(r, dtype=float)\n flux = np.zeros_like(r)\n for i, func in enumerate(self.func_list):\n if k is None or k == i:\n kwargs = {k: v for k, v in kwargs_list[i].items() if not k in [\n 'center_x', 'center_y']}\n if self.profile_type_list[i] in ['HERNQUIST',\n 'HERNQUIST_ELLIPSE', 'PJAFFE', 'PJAFFE_ELLIPSE', 'GAUSSIAN',\n 'GAUSSIAN_ELLIPSE', 'MULTI_GAUSSIAN',\n 'MULTI_GAUSSIAN_ELLIPSE', 'POWER_LAW']:\n flux += func.light_3d(r, **kwargs)\n else:\n raise ValueError(\n 'Light model %s does not support a 3d light distribution!'\n % self.profile_type_list[i])\n return flux\n", "role": "user" }, { "content": "light_3d", "role": "assistant" } ]
def x(self, kwargs_list, norm=False, k=None): norm_flux_list = [] for i, model in enumerate(self.profile_type_list): if k is None or k == i: if model in ['SERSIC', 'SERSIC_ELLIPSE', 'INTERPOL', 'GAUSSIAN', 'GAUSSIAN_ELLIPSE', 'MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE' ]: kwargs_new = kwargs_list[i].copy() if norm is True: if model in ['MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE']: new = {'amp': np.array(kwargs_new['amp']) / kwargs_new['amp'][0]} else: new = {'amp': 1} kwargs_new.update(new) norm_flux = self.func_list[i].total_flux(**kwargs_new) norm_flux_list.append(norm_flux) else: raise ValueError( 'profile %s does not support flux normlization.' % model) return norm_flux_list
total_flux
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_list, norm=False, k=None):\n norm_flux_list = []\n for i, model in enumerate(self.profile_type_list):\n if k is None or k == i:\n if model in ['SERSIC', 'SERSIC_ELLIPSE', 'INTERPOL', 'GAUSSIAN',\n 'GAUSSIAN_ELLIPSE', 'MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE'\n ]:\n kwargs_new = kwargs_list[i].copy()\n if norm is True:\n if model in ['MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE']:\n new = {'amp': np.array(kwargs_new['amp']) /\n kwargs_new['amp'][0]}\n else:\n new = {'amp': 1}\n kwargs_new.update(new)\n norm_flux = self.func_list[i].total_flux(**kwargs_new)\n norm_flux_list.append(norm_flux)\n else:\n raise ValueError(\n 'profile %s does not support flux normlization.' % model)\n return norm_flux_list\n", "role": "user" }, { "content": "total_flux", "role": "assistant" } ]
def x(self, n, Re): bn = self.b_n(n) k = bn * Re ** (-1.0 / n) return k, bn
k_bn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, Re):\n bn = self.b_n(n)\n k = bn * Re ** (-1.0 / n)\n return k, bn\n", "role": "user" }, { "content": "k_bn", "role": "assistant" } ]
def x(self, x, y, n_sersic, r_eff, center_x, center_y): x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) if isinstance(r, int) or isinstance(r, float): r = max(self._s, r) else: r[r < self._s] = self._s x_reduced = (r / r_eff) ** (1.0 / n_sersic) return x_reduced
x_reduced
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, n_sersic, r_eff, center_x, center_y):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n if isinstance(r, int) or isinstance(r, float):\n r = max(self._s, r)\n else:\n r[r < self._s] = self._s\n x_reduced = (r / r_eff) ** (1.0 / n_sersic)\n return x_reduced\n", "role": "user" }, { "content": "x_reduced", "role": "assistant" } ]
def x(self, r_eff, n_sersic, k_eff): b = self.b_n(n_sersic) alpha_eff = n_sersic * r_eff * k_eff * b ** (-2 * n_sersic) * np.exp(b ) * special.gamma(2 * n_sersic) return -alpha_eff
alpha_eff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r_eff, n_sersic, k_eff):\n b = self.b_n(n_sersic)\n alpha_eff = n_sersic * r_eff * k_eff * b ** (-2 * n_sersic) * np.exp(b\n ) * special.gamma(2 * n_sersic)\n return -alpha_eff\n", "role": "user" }, { "content": "alpha_eff", "role": "assistant" } ]
def x(self, x, y, n_sersic, r_eff, k_eff, center_x=0, center_y=0): raise ValueError( 'not implemented! Use a Multi-Gaussian-component decomposition.')
density
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, n_sersic, r_eff, k_eff, center_x=0, center_y=0):\n raise ValueError(\n 'not implemented! Use a Multi-Gaussian-component decomposition.')\n", "role": "user" }, { "content": "density", "role": "assistant" } ]
def x(self, r_eff, I_eff, n_sersic): bn = self.b_n(n_sersic) return I_eff * r_eff ** 2 * 2 * np.pi * n_sersic * np.exp(bn) / bn ** ( 2 * n_sersic) * scipy.special.gamma(2 * n_sersic)
total_flux
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r_eff, I_eff, n_sersic):\n bn = self.b_n(n_sersic)\n return I_eff * r_eff ** 2 * 2 * np.pi * n_sersic * np.exp(bn) / bn ** (\n 2 * n_sersic) * scipy.special.gamma(2 * n_sersic)\n", "role": "user" }, { "content": "total_flux", "role": "assistant" } ]
def x(self, x, y, theta_E, gamma, center_x=0, center_y=0): gamma = self._gamma_limit(gamma) x_ = x - center_x y_ = y - center_y E = theta_E / ((3.0 - gamma) / 2.0) ** (1.0 / (1.0 - gamma)) eta = -gamma + 3 p2 = x_ ** 2 + y_ ** 2 s2 = 0.0 return 2 * E ** 2 / eta ** 2 * ((p2 + s2) / E ** 2) ** (eta / 2)
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, theta_E, gamma, center_x=0, center_y=0):\n gamma = self._gamma_limit(gamma)\n x_ = x - center_x\n y_ = y - center_y\n E = theta_E / ((3.0 - gamma) / 2.0) ** (1.0 / (1.0 - gamma))\n eta = -gamma + 3\n p2 = x_ ** 2 + y_ ** 2\n s2 = 0.0\n return 2 * E ** 2 / eta ** 2 * ((p2 + s2) / E ** 2) ** (eta / 2)\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, rho0, gamma): fac = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma) ) / special.gamma(gamma / 2.0) * 2 / (3 - gamma) * rho0 theta_E = fac ** (1.0 / (gamma - 1)) return theta_E
rho2theta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rho0, gamma):\n fac = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)\n ) / special.gamma(gamma / 2.0) * 2 / (3 - gamma) * rho0\n theta_E = fac ** (1.0 / (gamma - 1))\n return theta_E\n", "role": "user" }, { "content": "rho2theta", "role": "assistant" } ]
def x(self, theta_E, gamma): fac1 = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma) ) / special.gamma(gamma / 2.0) * 2 / (3 - gamma) fac2 = theta_E ** (gamma - 1) rho0 = fac2 / fac1 return rho0
theta2rho
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, theta_E, gamma):\n fac1 = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)\n ) / special.gamma(gamma / 2.0) * 2 / (3 - gamma)\n fac2 = theta_E ** (gamma - 1)\n rho0 = fac2 / fac1\n return rho0\n", "role": "user" }, { "content": "theta2rho", "role": "assistant" } ]
def x(self, r, rho0, gamma): mass_3d = 4 * np.pi * rho0 / (-gamma + 3) * r ** (-gamma + 3) return mass_3d
mass_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, rho0, gamma):\n mass_3d = 4 * np.pi * rho0 / (-gamma + 3) * r ** (-gamma + 3)\n return mass_3d\n", "role": "user" }, { "content": "mass_3d", "role": "assistant" } ]
def x(self, r, rho0, gamma): alpha = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma) ) / special.gamma(gamma / 2.0) * r ** (2 - gamma) / (3 - gamma ) * np.pi * 2 * rho0 mass_2d = alpha * r return mass_2d
mass_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, rho0, gamma):\n alpha = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)\n ) / special.gamma(gamma / 2.0) * r ** (2 - gamma) / (3 - gamma\n ) * np.pi * 2 * rho0\n mass_2d = alpha * r\n return mass_2d\n", "role": "user" }, { "content": "mass_2d", "role": "assistant" } ]
def x(self, x, y, rho0, gamma, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) mass_3d = self.mass_3d(r, rho0, gamma) pot = mass_3d / r return pot
grav_pot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, rho0, gamma, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n mass_3d = self.mass_3d(r, rho0, gamma)\n pot = mass_3d / r\n return pot\n", "role": "user" }, { "content": "grav_pot", "role": "assistant" } ]
def x(self, r, rho0, gamma): rho = rho0 / r ** gamma return rho
density
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, rho0, gamma):\n rho = rho0 / r ** gamma\n return rho\n", "role": "user" }, { "content": "density", "role": "assistant" } ]
def x(self, x, y, rho0, gamma, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) sigma = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma) ) / special.gamma(gamma / 2.0) * r ** (1 - gamma) * rho0 return sigma
density_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, rho0, gamma, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n sigma = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)\n ) / special.gamma(gamma / 2.0) * r ** (1 - gamma) * rho0\n return sigma\n", "role": "user" }, { "content": "density_2d", "role": "assistant" } ]
def x(self, kwargs_mass, kwargs_light, kwargs_anisotropy, kwargs_apertur): sigma2_R_sum = 0 for i in range(0, self._num_sampling): sigma2_R = self.draw_one_sigma2(kwargs_mass, kwargs_light, kwargs_anisotropy, kwargs_apertur) sigma2_R_sum += sigma2_R sigma_s2_average = sigma2_R_sum / self._num_sampling sigma_s2_average *= 2 * const.G return np.sqrt(sigma_s2_average / (const.arcsec ** 2 * self.cosmo.D_d ** 2 * const.Mpc)) / 1000.0
vel_disp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_mass, kwargs_light, kwargs_anisotropy, kwargs_apertur):\n sigma2_R_sum = 0\n for i in range(0, self._num_sampling):\n sigma2_R = self.draw_one_sigma2(kwargs_mass, kwargs_light,\n kwargs_anisotropy, kwargs_apertur)\n sigma2_R_sum += sigma2_R\n sigma_s2_average = sigma2_R_sum / self._num_sampling\n sigma_s2_average *= 2 * const.G\n return np.sqrt(sigma_s2_average / (const.arcsec ** 2 * self.cosmo.D_d **\n 2 * const.Mpc)) / 1000.0\n", "role": "user" }, { "content": "vel_disp", "role": "assistant" } ]
def x(self, R, kwargs_mass, kwargs_light, kwargs_anisotropy): I_R_sigma2 = self.I_R_simga2(R, kwargs_mass, kwargs_light, kwargs_anisotropy) I_R = self.lightProfile.light_2d(R, kwargs_light) return I_R_sigma2 / I_R
sigma2_R
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, kwargs_mass, kwargs_light, kwargs_anisotropy):\n I_R_sigma2 = self.I_R_simga2(R, kwargs_mass, kwargs_light,\n kwargs_anisotropy)\n I_R = self.lightProfile.light_2d(R, kwargs_light)\n return I_R_sigma2 / I_R\n", "role": "user" }, { "content": "sigma2_R", "role": "assistant" } ]
def x(self, R, kwargs_mass, kwargs_light, kwargs_anisotropy): R = max(R, self._min_integrate) if self._log_int is True: min_log = np.log10(R + 0.001) max_log = np.log10(self._max_integrate) r_array = np.logspace(min_log, max_log, self._interp_grid_num) dlog_r = (np.log10(r_array[2]) - np.log10(r_array[1])) * np.log(10) IR_sigma2_dr = self._integrand_A15(r_array, R, kwargs_mass, kwargs_light, kwargs_anisotropy) * dlog_r * r_array else: r_array = np.linspace(R + 0.001, self._max_integrate, self. _interp_grid_num) dr = r_array[2] - r_array[1] IR_sigma2_dr = self._integrand_A15(r_array, R, kwargs_mass, kwargs_light, kwargs_anisotropy) * dr IR_sigma2 = np.sum(IR_sigma2_dr) return IR_sigma2
I_R_simga2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, kwargs_mass, kwargs_light, kwargs_anisotropy):\n R = max(R, self._min_integrate)\n if self._log_int is True:\n min_log = np.log10(R + 0.001)\n max_log = np.log10(self._max_integrate)\n r_array = np.logspace(min_log, max_log, self._interp_grid_num)\n dlog_r = (np.log10(r_array[2]) - np.log10(r_array[1])) * np.log(10)\n IR_sigma2_dr = self._integrand_A15(r_array, R, kwargs_mass,\n kwargs_light, kwargs_anisotropy) * dlog_r * r_array\n else:\n r_array = np.linspace(R + 0.001, self._max_integrate, self.\n _interp_grid_num)\n dr = r_array[2] - r_array[1]\n IR_sigma2_dr = self._integrand_A15(r_array, R, kwargs_mass,\n kwargs_light, kwargs_anisotropy) * dr\n IR_sigma2 = np.sum(IR_sigma2_dr)\n return IR_sigma2\n", "role": "user" }, { "content": "I_R_simga2", "role": "assistant" } ]
def x(self, r, R, kwargs_mass, kwargs_light, kwargs_anisotropy): k_r = self.anisotropy.K(r, R, kwargs_anisotropy) l_r = self.lightProfile.light_3d_interp(r, kwargs_light) m_r = self.massProfile.mass_3d_interp(r, kwargs_mass) out = k_r * l_r * m_r / r return out
integrand_A15
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, R, kwargs_mass, kwargs_light, kwargs_anisotropy):\n k_r = self.anisotropy.K(r, R, kwargs_anisotropy)\n l_r = self.lightProfile.light_3d_interp(r, kwargs_light)\n m_r = self.massProfile.mass_3d_interp(r, kwargs_mass)\n out = k_r * l_r * m_r / r\n return out\n", "role": "user" }, { "content": "integrand_A15", "role": "assistant" } ]
def x(self, x, y, n_sersic, R_sersic, k_eff, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) if isinstance(r, int) or isinstance(r, float): r = max(self._s, r) else: r[r < self._s] = self._s alpha = -self.alpha_abs(x, y, n_sersic, R_sersic, k_eff, center_x, center_y ) f_x = alpha * x_ / r f_y = alpha * y_ / r return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, n_sersic, R_sersic, k_eff, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n if isinstance(r, int) or isinstance(r, float):\n r = max(self._s, r)\n else:\n r[r < self._s] = self._s\n alpha = -self.alpha_abs(x, y, n_sersic, R_sersic, k_eff, center_x, center_y\n )\n f_x = alpha * x_ / r\n f_y = alpha * y_ / r\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, n_sersic, R_sersic, k_eff, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y r = np.sqrt(x_ ** 2 + y_ ** 2) if isinstance(r, int) or isinstance(r, float): r = max(self._s, r) else: r[r < self._s] = self._s d_alpha_dr = self.d_alpha_dr(x, y, n_sersic, R_sersic, k_eff, center_x, center_y) alpha = -self.alpha_abs(x, y, n_sersic, R_sersic, k_eff, center_x, center_y ) f_xx = -(d_alpha_dr / r + alpha / r ** 2) * x_ ** 2 / r + alpha / r f_yy = -(d_alpha_dr / r + alpha / r ** 2) * y_ ** 2 / r + alpha / r f_xy = -(d_alpha_dr / r + alpha / r ** 2) * x_ * y_ / r return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, n_sersic, R_sersic, k_eff, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n if isinstance(r, int) or isinstance(r, float):\n r = max(self._s, r)\n else:\n r[r < self._s] = self._s\n d_alpha_dr = self.d_alpha_dr(x, y, n_sersic, R_sersic, k_eff, center_x,\n center_y)\n alpha = -self.alpha_abs(x, y, n_sersic, R_sersic, k_eff, center_x, center_y\n )\n f_xx = -(d_alpha_dr / r + alpha / r ** 2) * x_ ** 2 / r + alpha / r\n f_yy = -(d_alpha_dr / r + alpha / r ** 2) * y_ ** 2 / r + alpha / r\n f_xy = -(d_alpha_dr / r + alpha / r ** 2) * x_ * y_ / r\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, x, y, theta_E, s, q): if q >= 1: q = 0.999999 psi = self._psi(x, y, q, s) f_x = theta_E / np.sqrt(1.0 - q ** 2) * np.arctan(np.sqrt(1.0 - q ** 2) * x / (psi + s)) f_y = theta_E / np.sqrt(1.0 - q ** 2) * np.arctanh(np.sqrt(1.0 - q ** 2 ) * y / (psi + q ** 2 * s)) return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, theta_E, s, q):\n if q >= 1:\n q = 0.999999\n psi = self._psi(x, y, q, s)\n f_x = theta_E / np.sqrt(1.0 - q ** 2) * np.arctan(np.sqrt(1.0 - q ** 2) *\n x / (psi + s))\n f_y = theta_E / np.sqrt(1.0 - q ** 2) * np.arctanh(np.sqrt(1.0 - q ** 2\n ) * y / (psi + q ** 2 * s))\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, theta_E, s, q): alpha_ra, alpha_dec = self.derivatives(x, y, theta_E, s, q) diff = self._diff alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, theta_E, s, q) alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, theta_E, s, q) f_xx = (alpha_ra_dx - alpha_ra) / diff f_xy = (alpha_ra_dy - alpha_ra) / diff f_yy = (alpha_dec_dy - alpha_dec) / diff return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, theta_E, s, q):\n alpha_ra, alpha_dec = self.derivatives(x, y, theta_E, s, q)\n diff = self._diff\n alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, theta_E, s, q)\n alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, theta_E, s, q)\n f_xx = (alpha_ra_dx - alpha_ra) / diff\n f_xy = (alpha_ra_dy - alpha_ra) / diff\n f_yy = (alpha_dec_dy - alpha_dec) / diff\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, x, y, q, s): return np.sqrt(q ** 2 * (s ** 2 + x ** 2) + y ** 2)
psi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, q, s):\n return np.sqrt(q ** 2 * (s ** 2 + x ** 2) + y ** 2)\n", "role": "user" }, { "content": "psi", "role": "assistant" } ]
def x(self, x, y, kappa_ext, ra_0=0, dec_0=0): theta, phi = param_util.cart2polar(x - ra_0, y - dec_0) f_ = 1.0 / 2 * kappa_ext * theta ** 2 return f_
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kappa_ext, ra_0=0, dec_0=0):\n theta, phi = param_util.cart2polar(x - ra_0, y - dec_0)\n f_ = 1.0 / 2 * kappa_ext * theta ** 2\n return f_\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, x, y, kappa_ext, ra_0=0, dec_0=0): x_ = x - ra_0 y_ = y - dec_0 f_x = kappa_ext * x_ f_y = kappa_ext * y_ return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kappa_ext, ra_0=0, dec_0=0):\n x_ = x - ra_0\n y_ = y - dec_0\n f_x = kappa_ext * x_\n f_y = kappa_ext * y_\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, kappa_ext, ra_0=0, dec_0=0): gamma1 = 0 gamma2 = 0 kappa = kappa_ext f_xx = kappa + gamma1 f_yy = kappa - gamma1 f_xy = gamma2 return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kappa_ext, ra_0=0, dec_0=0):\n gamma1 = 0\n gamma2 = 0\n kappa = kappa_ext\n f_xx = kappa + gamma1\n f_yy = kappa - gamma1\n f_xy = gamma2\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(ra, dec, x_0, y_0, M): x, y = M.dot(np.array([ra, dec])) return x + x_0, y + y_0
map_coord2pix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ra, dec, x_0, y_0, M):\n x, y = M.dot(np.array([ra, dec]))\n return x + x_0, y + y_0\n", "role": "user" }, { "content": "map_coord2pix", "role": "assistant" } ]
def x(array, nx=0, ny=0): if nx == 0 or ny == 0: n = int(np.sqrt(len(array))) if n ** 2 != len(array): raise ValueError( 'lenght of input array given as %s is not square of integer number!' % len(array)) nx, ny = n, n image = array.reshape(int(nx), int(ny)) return image
array2image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(array, nx=0, ny=0):\n if nx == 0 or ny == 0:\n n = int(np.sqrt(len(array)))\n if n ** 2 != len(array):\n raise ValueError(\n 'lenght of input array given as %s is not square of integer number!'\n % len(array))\n nx, ny = n, n\n image = array.reshape(int(nx), int(ny))\n return image\n", "role": "user" }, { "content": "array2image", "role": "assistant" } ]
def x(image): nx, ny = image.shape imgh = np.reshape(image, nx * ny) return imgh
image2array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image):\n nx, ny = image.shape\n imgh = np.reshape(image, nx * ny)\n return imgh\n", "role": "user" }, { "content": "image2array", "role": "assistant" } ]
def x(numPix, Mpix2Angle): x_grid, y_grid = make_grid(numPix, deltapix=1) ra_grid, dec_grid = map_coord2pix(x_grid, y_grid, 0, 0, Mpix2Angle) return ra_grid, dec_grid
make_grid_transformed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(numPix, Mpix2Angle):\n x_grid, y_grid = make_grid(numPix, deltapix=1)\n ra_grid, dec_grid = map_coord2pix(x_grid, y_grid, 0, 0, Mpix2Angle)\n return ra_grid, dec_grid\n", "role": "user" }, { "content": "make_grid_transformed", "role": "assistant" } ]
def x(numPix, deltapix, subgrid_res=1, left_lower=False, inverse=True): numPix_eff = numPix * subgrid_res deltapix_eff = deltapix / float(subgrid_res) a = np.arange(numPix_eff) matrix = np.dstack(np.meshgrid(a, a)).reshape(-1, 2) if inverse is True: delta_x = -deltapix_eff else: delta_x = deltapix_eff if left_lower is True: x_grid = matrix[:, 0] * deltapix y_grid = matrix[:, 1] * deltapix else: x_grid = (matrix[:, 0] - (numPix_eff - 1) / 2.0) * delta_x y_grid = (matrix[:, 1] - (numPix_eff - 1) / 2.0) * deltapix_eff shift = (subgrid_res - 1) / (2.0 * subgrid_res) * deltapix x_grid -= shift y_grid -= shift ra_at_xy_0 = x_grid[0] dec_at_xy_0 = y_grid[0] x_at_radec_0 = (numPix_eff - 1) / 2.0 y_at_radec_0 = (numPix_eff - 1) / 2.0 Mpix2coord = np.array([[delta_x, 0], [0, deltapix_eff]]) Mcoord2pix = np.linalg.inv(Mpix2coord) return (x_grid, y_grid, ra_at_xy_0, dec_at_xy_0, x_at_radec_0, y_at_radec_0, Mpix2coord, Mcoord2pix)
make_grid_with_coordtransform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(numPix, deltapix, subgrid_res=1, left_lower=False, inverse=True):\n numPix_eff = numPix * subgrid_res\n deltapix_eff = deltapix / float(subgrid_res)\n a = np.arange(numPix_eff)\n matrix = np.dstack(np.meshgrid(a, a)).reshape(-1, 2)\n if inverse is True:\n delta_x = -deltapix_eff\n else:\n delta_x = deltapix_eff\n if left_lower is True:\n x_grid = matrix[:, 0] * deltapix\n y_grid = matrix[:, 1] * deltapix\n else:\n x_grid = (matrix[:, 0] - (numPix_eff - 1) / 2.0) * delta_x\n y_grid = (matrix[:, 1] - (numPix_eff - 1) / 2.0) * deltapix_eff\n shift = (subgrid_res - 1) / (2.0 * subgrid_res) * deltapix\n x_grid -= shift\n y_grid -= shift\n ra_at_xy_0 = x_grid[0]\n dec_at_xy_0 = y_grid[0]\n x_at_radec_0 = (numPix_eff - 1) / 2.0\n y_at_radec_0 = (numPix_eff - 1) / 2.0\n Mpix2coord = np.array([[delta_x, 0], [0, deltapix_eff]])\n Mcoord2pix = np.linalg.inv(Mpix2coord)\n return (x_grid, y_grid, ra_at_xy_0, dec_at_xy_0, x_at_radec_0,\n y_at_radec_0, Mpix2coord, Mcoord2pix)\n", "role": "user" }, { "content": "make_grid_with_coordtransform", "role": "assistant" } ]
def x(numPix, Mpix2coord, ra_at_xy_0, dec_at_xy_0): a = np.arange(numPix) matrix = np.dstack(np.meshgrid(a, a)).reshape(-1, 2) x_grid = matrix[:, 0] y_grid = matrix[:, 1] ra_grid = x_grid * Mpix2coord[0, 0] + y_grid * Mpix2coord[0, 1 ] + ra_at_xy_0 dec_grid = x_grid * Mpix2coord[1, 0] + y_grid * Mpix2coord[1, 1 ] + dec_at_xy_0 return ra_grid, dec_grid
grid_from_coordinate_transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(numPix, Mpix2coord, ra_at_xy_0, dec_at_xy_0):\n a = np.arange(numPix)\n matrix = np.dstack(np.meshgrid(a, a)).reshape(-1, 2)\n x_grid = matrix[:, 0]\n y_grid = matrix[:, 1]\n ra_grid = x_grid * Mpix2coord[0, 0] + y_grid * Mpix2coord[0, 1\n ] + ra_at_xy_0\n dec_grid = x_grid * Mpix2coord[1, 0] + y_grid * Mpix2coord[1, 1\n ] + dec_at_xy_0\n return ra_grid, dec_grid\n", "role": "user" }, { "content": "grid_from_coordinate_transform", "role": "assistant" } ]
def x(x, y): n = int(np.sqrt(len(x))) if n ** 2 != len(x): raise ValueError( 'lenght of input array given as %s is not square of integer number!' % len(x)) x_image = x.reshape(n, n) y_image = y.reshape(n, n) x_axes = x_image[0, :] y_axes = y_image[:, 0] return x_axes, y_axes
get_axes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y):\n n = int(np.sqrt(len(x)))\n if n ** 2 != len(x):\n raise ValueError(\n 'lenght of input array given as %s is not square of integer number!'\n % len(x))\n x_image = x.reshape(n, n)\n y_image = y.reshape(n, n)\n x_axes = x_image[0, :]\n y_axes = y_image[:, 0]\n return x_axes, y_axes\n", "role": "user" }, { "content": "get_axes", "role": "assistant" } ]
def x(grid, numGrid, numPix): Nbig = numGrid Nsmall = numPix small = grid.reshape([int(Nsmall), int(Nbig / Nsmall), int(Nsmall), int (Nbig / Nsmall)]).mean(3).mean(1) return small
averaging
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, numGrid, numPix):\n Nbig = numGrid\n Nsmall = numPix\n small = grid.reshape([int(Nsmall), int(Nbig / Nsmall), int(Nsmall), int\n (Nbig / Nsmall)]).mean(3).mean(1)\n return small\n", "role": "user" }, { "content": "averaging", "role": "assistant" } ]
def x(x, y, sourcePos_x, sourcePos_y): x_mapped = x - sourcePos_x y_mapped = y - sourcePos_y absmapped = np.sqrt(x_mapped ** 2 + y_mapped ** 2) return absmapped
displaceAbs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, sourcePos_x, sourcePos_y):\n x_mapped = x - sourcePos_x\n y_mapped = y - sourcePos_y\n absmapped = np.sqrt(x_mapped ** 2 + y_mapped ** 2)\n return absmapped\n", "role": "user" }, { "content": "displaceAbs", "role": "assistant" } ]
def x(x_1, y_1, x_2, y_2): dist = np.zeros_like(x_1) for i in range(len(x_1)): dist[i] = np.min((x_1[i] - x_2) ** 2 + (y_1[i] - y_2) ** 2) return dist
min_square_dist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_1, y_1, x_2, y_2):\n dist = np.zeros_like(x_1)\n for i in range(len(x_1)):\n dist[i] = np.min((x_1[i] - x_2) ** 2 + (y_1[i] - y_2) ** 2)\n return dist\n", "role": "user" }, { "content": "min_square_dist", "role": "assistant" } ]
def x(radius, points): angle = np.linspace(0, 2 * np.pi, points) x_coord = np.cos(angle) * radius y_coord = np.sin(angle) * radius return x_coord, y_coord
points_on_circle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(radius, points):\n angle = np.linspace(0, 2 * np.pi, points)\n x_coord = np.cos(angle) * radius\n y_coord = np.sin(angle) * radius\n return x_coord, y_coord\n", "role": "user" }, { "content": "points_on_circle", "role": "assistant" } ]
def x(a, x, y): dim = int(np.sqrt(len(a))) values = [] x_mins = [] y_mins = [] for i in range(dim + 1, len(a) - dim - 1): if a[i] < a[i - 1] and a[i] < a[i + 1] and a[i] < a[i - dim] and a[i ] < a[i + dim] and a[i] < a[i - (dim - 1)] and a[i] < a[i - ( dim + 1)] and a[i] < a[i + (dim - 1)] and a[i] < a[i + (dim + 1)]: if a[i] < a[(i - 2 * dim - 1) % dim ** 2] and a[i] < a[(i - 2 * dim + 1) % dim ** 2] and a[i] < a[(i - dim - 2) % dim ** 2 ] and a[i] < a[(i - dim + 2) % dim ** 2] and a[i] < a[(i + dim - 2) % dim ** 2] and a[i] < a[(i + dim + 2) % dim ** 2 ] and a[i] < a[(i + 2 * dim - 1) % dim ** 2] and a[i] < a[( i + 2 * dim + 1) % dim ** 2]: if a[i] < a[(i - 3 * dim - 1) % dim ** 2] and a[i] < a[(i - 3 * dim + 1) % dim ** 2] and a[i] < a[(i - dim - 3) % dim ** 2] and a[i] < a[(i - dim + 3) % dim ** 2] and a[i ] < a[(i + dim - 3) % dim ** 2] and a[i] < a[(i + dim + 3) % dim ** 2] and a[i] < a[(i + 3 * dim - 1) % dim ** 2 ] and a[i] < a[(i + 3 * dim + 1) % dim ** 2]: x_mins.append(x[i]) y_mins.append(y[i]) values.append(a[i]) return np.array(x_mins), np.array(y_mins), np.array(values)
neighborSelect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, x, y):\n dim = int(np.sqrt(len(a)))\n values = []\n x_mins = []\n y_mins = []\n for i in range(dim + 1, len(a) - dim - 1):\n if a[i] < a[i - 1] and a[i] < a[i + 1] and a[i] < a[i - dim] and a[i\n ] < a[i + dim] and a[i] < a[i - (dim - 1)] and a[i] < a[i - (\n dim + 1)] and a[i] < a[i + (dim - 1)] and a[i] < a[i + (dim + 1)]:\n if a[i] < a[(i - 2 * dim - 1) % dim ** 2] and a[i] < a[(i - 2 *\n dim + 1) % dim ** 2] and a[i] < a[(i - dim - 2) % dim ** 2\n ] and a[i] < a[(i - dim + 2) % dim ** 2] and a[i] < a[(i +\n dim - 2) % dim ** 2] and a[i] < a[(i + dim + 2) % dim ** 2\n ] and a[i] < a[(i + 2 * dim - 1) % dim ** 2] and a[i] < a[(\n i + 2 * dim + 1) % dim ** 2]:\n if a[i] < a[(i - 3 * dim - 1) % dim ** 2] and a[i] < a[(i -\n 3 * dim + 1) % dim ** 2] and a[i] < a[(i - dim - 3) % \n dim ** 2] and a[i] < a[(i - dim + 3) % dim ** 2] and a[i\n ] < a[(i + dim - 3) % dim ** 2] and a[i] < a[(i + dim +\n 3) % dim ** 2] and a[i] < a[(i + 3 * dim - 1) % dim ** 2\n ] and a[i] < a[(i + 3 * dim + 1) % dim ** 2]:\n x_mins.append(x[i])\n y_mins.append(y[i])\n values.append(a[i])\n return np.array(x_mins), np.array(y_mins), np.array(values)\n", "role": "user" }, { "content": "neighborSelect", "role": "assistant" } ]
def x(ra_coord, dec_coord, subgrid_res=2): ra_array = array2image(ra_coord) dec_array = array2image(dec_coord) n = len(ra_array) d_ra_x = ra_array[0][1] - ra_array[0][0] d_ra_y = ra_array[1][0] - ra_array[0][0] d_dec_x = dec_array[0][1] - dec_array[0][0] d_dec_y = dec_array[1][0] - dec_array[0][0] ra_array_new = np.zeros((n * subgrid_res, n * subgrid_res)) dec_array_new = np.zeros((n * subgrid_res, n * subgrid_res)) for i in range(0, subgrid_res): for j in range(0, subgrid_res): ra_array_new[i::subgrid_res, j::subgrid_res ] = ra_array + d_ra_x * (-1 / 2.0 + 1 / (2.0 * subgrid_res) + j / float(subgrid_res)) + d_ra_y * (-1 / 2.0 + 1 / (2.0 * subgrid_res) + i / float(subgrid_res)) dec_array_new[i::subgrid_res, j::subgrid_res ] = dec_array + d_dec_x * (-1 / 2.0 + 1 / (2.0 * subgrid_res) + j / float(subgrid_res)) + d_dec_y * (-1 / 2.0 + 1 / (2.0 * subgrid_res) + i / float(subgrid_res)) ra_coords_sub = image2array(ra_array_new) dec_coords_sub = image2array(dec_array_new) return ra_coords_sub, dec_coords_sub
make_subgrid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ra_coord, dec_coord, subgrid_res=2):\n ra_array = array2image(ra_coord)\n dec_array = array2image(dec_coord)\n n = len(ra_array)\n d_ra_x = ra_array[0][1] - ra_array[0][0]\n d_ra_y = ra_array[1][0] - ra_array[0][0]\n d_dec_x = dec_array[0][1] - dec_array[0][0]\n d_dec_y = dec_array[1][0] - dec_array[0][0]\n ra_array_new = np.zeros((n * subgrid_res, n * subgrid_res))\n dec_array_new = np.zeros((n * subgrid_res, n * subgrid_res))\n for i in range(0, subgrid_res):\n for j in range(0, subgrid_res):\n ra_array_new[i::subgrid_res, j::subgrid_res\n ] = ra_array + d_ra_x * (-1 / 2.0 + 1 / (2.0 * subgrid_res) +\n j / float(subgrid_res)) + d_ra_y * (-1 / 2.0 + 1 / (2.0 *\n subgrid_res) + i / float(subgrid_res))\n dec_array_new[i::subgrid_res, j::subgrid_res\n ] = dec_array + d_dec_x * (-1 / 2.0 + 1 / (2.0 *\n subgrid_res) + j / float(subgrid_res)) + d_dec_y * (-1 / \n 2.0 + 1 / (2.0 * subgrid_res) + i / float(subgrid_res))\n ra_coords_sub = image2array(ra_array_new)\n dec_coords_sub = image2array(dec_array_new)\n return ra_coords_sub, dec_coords_sub\n", "role": "user" }, { "content": "make_subgrid", "role": "assistant" } ]
def x(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0): phi_G, q = param_util.ellipticity2phi_q(e1, e2) gamma, q = self._param_bounds(gamma, q) theta_E *= q x_shift = x - center_x y_shift = y - center_y E = theta_E / (((3 - gamma) / 2.0) ** (1.0 / (1 - gamma)) * np.sqrt(q)) eta = -gamma + 3 xt1 = np.cos(phi_G) * x_shift + np.sin(phi_G) * y_shift xt2 = -np.sin(phi_G) * x_shift + np.cos(phi_G) * y_shift p2 = xt1 ** 2 + xt2 ** 2 / q ** 2 s2 = 0.0 return 2 * E ** 2 / eta ** 2 * ((p2 + s2) / E ** 2) ** (eta / 2)
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n gamma, q = self._param_bounds(gamma, q)\n theta_E *= q\n x_shift = x - center_x\n y_shift = y - center_y\n E = theta_E / (((3 - gamma) / 2.0) ** (1.0 / (1 - gamma)) * np.sqrt(q))\n eta = -gamma + 3\n xt1 = np.cos(phi_G) * x_shift + np.sin(phi_G) * y_shift\n xt2 = -np.sin(phi_G) * x_shift + np.cos(phi_G) * y_shift\n p2 = xt1 ** 2 + xt2 ** 2 / q ** 2\n s2 = 0.0\n return 2 * E ** 2 / eta ** 2 * ((p2 + s2) / E ** 2) ** (eta / 2)\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, r, theta_E, gamma, e1, e2): return self.spp.mass_3d_lens(r, theta_E, gamma)
mass_3d_lens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, theta_E, gamma, e1, e2):\n return self.spp.mass_3d_lens(r, theta_E, gamma)\n", "role": "user" }, { "content": "mass_3d_lens", "role": "assistant" } ]
def x(self, gamma, q): if gamma < 1.4: gamma = 1.4 if gamma > 2.9: gamma = 2.9 if q < 0.01: q = 0.01 return float(gamma), q
param_bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, gamma, q):\n if gamma < 1.4:\n gamma = 1.4\n if gamma > 2.9:\n gamma = 2.9\n if q < 0.01:\n q = 0.01\n return float(gamma), q\n", "role": "user" }, { "content": "param_bounds", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo, tolerance): dist = self._param.check_solver(kwargs_lens, kwargs_ps, kwargs_cosmo) if dist > tolerance: return dist * 10 ** 10 return 0
solver_penalty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo, tolerance):\n dist = self._param.check_solver(kwargs_lens, kwargs_ps, kwargs_cosmo)\n if dist > tolerance:\n return dist * 10 ** 10\n return 0\n", "role": "user" }, { "content": "solver_penalty", "role": "assistant" } ]
def x(self, kwargs_ps, kwargs_lens): ra_image_list, dec_image_list = self._pointSource.image_position(kwargs_ps =kwargs_ps, kwargs_lens=kwargs_lens) if len(ra_image_list) > 0: if len(ra_image_list[0]) > self._param.num_point_source_images: return True return False
check_additional_images
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_ps, kwargs_lens):\n ra_image_list, dec_image_list = self._pointSource.image_position(kwargs_ps\n =kwargs_ps, kwargs_lens=kwargs_lens)\n if len(ra_image_list) > 0:\n if len(ra_image_list[0]) > self._param.num_point_source_images:\n return True\n return False\n", "role": "user" }, { "content": "check_additional_images", "role": "assistant" } ]
def x(self, x, y, amp, R_sersic, n_sersic, center_x=0, center_y=0): R_sersic = np.maximum(0, R_sersic) x_shift = x - center_x y_shift = y - center_y R = np.sqrt(x_shift * x_shift + y_shift * y_shift) if isinstance(R, int) or isinstance(R, float): R = max(self._smoothing, R) else: R[R < self._smoothing] = self._smoothing _, bn = self.k_bn(n_sersic, R_sersic) R_frac = R / R_sersic if isinstance(R, int) or isinstance(R, float): if R_frac > 100: result = 0 else: exponent = -bn * (R_frac ** (1.0 / n_sersic) - 1.0) result = amp * np.exp(exponent) else: R_frac_real = R_frac[R_frac <= 100] exponent = -bn * (R_frac_real ** (1.0 / n_sersic) - 1.0) result = np.zeros_like(R) result[R_frac <= 100] = amp * np.exp(exponent) return np.nan_to_num(result)
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, amp, R_sersic, n_sersic, center_x=0, center_y=0):\n R_sersic = np.maximum(0, R_sersic)\n x_shift = x - center_x\n y_shift = y - center_y\n R = np.sqrt(x_shift * x_shift + y_shift * y_shift)\n if isinstance(R, int) or isinstance(R, float):\n R = max(self._smoothing, R)\n else:\n R[R < self._smoothing] = self._smoothing\n _, bn = self.k_bn(n_sersic, R_sersic)\n R_frac = R / R_sersic\n if isinstance(R, int) or isinstance(R, float):\n if R_frac > 100:\n result = 0\n else:\n exponent = -bn * (R_frac ** (1.0 / n_sersic) - 1.0)\n result = amp * np.exp(exponent)\n else:\n R_frac_real = R_frac[R_frac <= 100]\n exponent = -bn * (R_frac_real ** (1.0 / n_sersic) - 1.0)\n result = np.zeros_like(R)\n result[R_frac <= 100] = amp * np.exp(exponent)\n return np.nan_to_num(result)\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, x, y, amp, R_sersic, n_sersic, e1, e2, center_x=0, center_y=0): R_sersic = np.maximum(0, R_sersic) phi_G, q = param_util.ellipticity2phi_q(e1, e2) x_shift = x - center_x y_shift = y - center_y cos_phi = np.cos(phi_G) sin_phi = np.sin(phi_G) xt1 = cos_phi * x_shift + sin_phi * y_shift xt2 = -sin_phi * x_shift + cos_phi * y_shift xt2difq2 = xt2 / (q * q) R_ = np.sqrt(xt1 * xt1 + xt2 * xt2difq2) if isinstance(R_, int) or isinstance(R_, float): R_ = max(self._smoothing, R_) else: R_[R_ < self._smoothing] = self._smoothing k, bn = self.k_bn(n_sersic, R_sersic) R_frac = R_ / R_sersic R_frac = R_frac.astype(np.float32) if isinstance(R_, int) or isinstance(R_, float): if R_frac > 100: result = 0 else: exponent = -bn * (R_frac ** (1.0 / n_sersic) - 1.0) result = amp * np.exp(exponent) else: R_frac_real = R_frac[R_frac <= 100] exponent = -bn * (R_frac_real ** (1.0 / n_sersic) - 1.0) result = np.zeros_like(R_) result[R_frac <= 100] = amp * np.exp(exponent) return np.nan_to_num(result)
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, amp, R_sersic, n_sersic, e1, e2, center_x=0, center_y=0):\n R_sersic = np.maximum(0, R_sersic)\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n xt1 = cos_phi * x_shift + sin_phi * y_shift\n xt2 = -sin_phi * x_shift + cos_phi * y_shift\n xt2difq2 = xt2 / (q * q)\n R_ = np.sqrt(xt1 * xt1 + xt2 * xt2difq2)\n if isinstance(R_, int) or isinstance(R_, float):\n R_ = max(self._smoothing, R_)\n else:\n R_[R_ < self._smoothing] = self._smoothing\n k, bn = self.k_bn(n_sersic, R_sersic)\n R_frac = R_ / R_sersic\n R_frac = R_frac.astype(np.float32)\n if isinstance(R_, int) or isinstance(R_, float):\n if R_frac > 100:\n result = 0\n else:\n exponent = -bn * (R_frac ** (1.0 / n_sersic) - 1.0)\n result = amp * np.exp(exponent)\n else:\n R_frac_real = R_frac[R_frac <= 100]\n exponent = -bn * (R_frac_real ** (1.0 / n_sersic) - 1.0)\n result = np.zeros_like(R_)\n result[R_frac <= 100] = amp * np.exp(exponent)\n return np.nan_to_num(result)\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, x, y, amp, R_sersic, Re, n_sersic, gamma, e1, e2, center_x=0, center_y=0, alpha=3.0): phi_G, q = param_util.ellipticity2phi_q(e1, e2) Rb = R_sersic x_shift = x - center_x y_shift = y - center_y cos_phi = np.cos(phi_G) sin_phi = np.sin(phi_G) xt1 = cos_phi * x_shift + sin_phi * y_shift xt2 = -sin_phi * x_shift + cos_phi * y_shift xt2difq2 = xt2 / (q * q) R_ = np.sqrt(xt1 * xt1 + xt2 * xt2difq2) if isinstance(R_, int) or isinstance(R_, float): R_ = max(self._smoothing, R_) else: R_[R_ < self._smoothing] = self._smoothing if isinstance(R_, int) or isinstance(R_, float): R = max(self._smoothing, R_) else: R = np.empty_like(R_) _R = R_[R_ > self._smoothing] R[R_ <= self._smoothing] = self._smoothing R[R_ > self._smoothing] = _R k, bn = self.k_bn(n_sersic, Re) result = amp * (1 + (Rb / R) ** alpha) ** (gamma / alpha) * np.exp(-bn * (((R ** alpha + Rb ** alpha) / Re ** alpha) ** (1.0 / (alpha * n_sersic)) - 1.0)) return np.nan_to_num(result)
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, amp, R_sersic, Re, n_sersic, gamma, e1, e2, center_x=0,\n center_y=0, alpha=3.0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n Rb = R_sersic\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n xt1 = cos_phi * x_shift + sin_phi * y_shift\n xt2 = -sin_phi * x_shift + cos_phi * y_shift\n xt2difq2 = xt2 / (q * q)\n R_ = np.sqrt(xt1 * xt1 + xt2 * xt2difq2)\n if isinstance(R_, int) or isinstance(R_, float):\n R_ = max(self._smoothing, R_)\n else:\n R_[R_ < self._smoothing] = self._smoothing\n if isinstance(R_, int) or isinstance(R_, float):\n R = max(self._smoothing, R_)\n else:\n R = np.empty_like(R_)\n _R = R_[R_ > self._smoothing]\n R[R_ <= self._smoothing] = self._smoothing\n R[R_ > self._smoothing] = _R\n k, bn = self.k_bn(n_sersic, Re)\n result = amp * (1 + (Rb / R) ** alpha) ** (gamma / alpha) * np.exp(-bn *\n (((R ** alpha + Rb ** alpha) / Re ** alpha) ** (1.0 / (alpha *\n n_sersic)) - 1.0))\n return np.nan_to_num(result)\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, x, y, theta_E, r_trunc, center_x=0, center_y=0): x_shift = x - center_x y_shift = y - center_y dphi_dr = self._dphi_dr(x_shift, y_shift, theta_E, r_trunc) dr_dx, dr_dy = self._dr_dx(x_shift, y_shift) f_x = dphi_dr * dr_dx f_y = dphi_dr * dr_dy return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, theta_E, r_trunc, center_x=0, center_y=0):\n x_shift = x - center_x\n y_shift = y - center_y\n dphi_dr = self._dphi_dr(x_shift, y_shift, theta_E, r_trunc)\n dr_dx, dr_dy = self._dr_dx(x_shift, y_shift)\n f_x = dphi_dr * dr_dx\n f_y = dphi_dr * dr_dy\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, theta_E, r_trunc, center_x=0, center_y=0): x_shift = x - center_x y_shift = y - center_y dphi_dr = self._dphi_dr(x_shift, y_shift, theta_E, r_trunc) d2phi_dr2 = self._d2phi_dr2(x_shift, y_shift, theta_E, r_trunc) dr_dx, dr_dy = self._dr_dx(x, y) d2r_dx2, d2r_dy2, d2r_dxy = self._d2r_dx2(x_shift, y_shift) f_xx = d2r_dx2 * dphi_dr + dr_dx ** 2 * d2phi_dr2 f_yy = d2r_dy2 * dphi_dr + dr_dy ** 2 * d2phi_dr2 f_xy = d2r_dxy * dphi_dr + dr_dx * dr_dy * d2phi_dr2 return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, theta_E, r_trunc, center_x=0, center_y=0):\n x_shift = x - center_x\n y_shift = y - center_y\n dphi_dr = self._dphi_dr(x_shift, y_shift, theta_E, r_trunc)\n d2phi_dr2 = self._d2phi_dr2(x_shift, y_shift, theta_E, r_trunc)\n dr_dx, dr_dy = self._dr_dx(x, y)\n d2r_dx2, d2r_dy2, d2r_dxy = self._d2r_dx2(x_shift, y_shift)\n f_xx = d2r_dx2 * dphi_dr + dr_dx ** 2 * d2phi_dr2\n f_yy = d2r_dy2 * dphi_dr + dr_dy ** 2 * d2phi_dr2\n f_xy = d2r_dxy * dphi_dr + dr_dx * dr_dy * d2phi_dr2\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, x, y): r = np.sqrt(x ** 2 + y ** 2) if isinstance(r, int) or isinstance(r, float): if r == 0: r = 1 else: r[r == 0] = 1 return x / r, y / r
dr_dx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y):\n r = np.sqrt(x ** 2 + y ** 2)\n if isinstance(r, int) or isinstance(r, float):\n if r == 0:\n r = 1\n else:\n r[r == 0] = 1\n return x / r, y / r\n", "role": "user" }, { "content": "dr_dx", "role": "assistant" } ]
def x(self, x, y, sigma0, Rs, e1, e2, center_x=0, center_y=0): phi_G, q = param_util.ellipticity2phi_q(e1, e2) x_shift = x - center_x y_shift = y - center_y cos_phi = np.cos(phi_G) sin_phi = np.sin(phi_G) e = abs(1 - q) x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e) y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e) f_ = self.spherical.function(x_, y_, sigma0, Rs) return f_
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, sigma0, Rs, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n e = abs(1 - q)\n x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)\n y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)\n f_ = self.spherical.function(x_, y_, sigma0, Rs)\n return f_\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, x, y, sigma0, Rs, e1, e2, center_x=0, center_y=0): phi_G, q = param_util.ellipticity2phi_q(e1, e2) x_shift = x - center_x y_shift = y - center_y cos_phi = np.cos(phi_G) sin_phi = np.sin(phi_G) e = abs(1 - q) x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e) y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e) f_x_prim, f_y_prim = self.spherical.derivatives(x_, y_, sigma0, Rs) f_x_prim *= np.sqrt(1 - e) f_y_prim *= np.sqrt(1 + e) f_x = cos_phi * f_x_prim - sin_phi * f_y_prim f_y = sin_phi * f_x_prim + cos_phi * f_y_prim return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, sigma0, Rs, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n e = abs(1 - q)\n x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)\n y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)\n f_x_prim, f_y_prim = self.spherical.derivatives(x_, y_, sigma0, Rs)\n f_x_prim *= np.sqrt(1 - e)\n f_y_prim *= np.sqrt(1 + e)\n f_x = cos_phi * f_x_prim - sin_phi * f_y_prim\n f_y = sin_phi * f_x_prim + cos_phi * f_y_prim\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x): c = 1e-06 if isinstance(x, np.ndarray): x[np.where(x < c)] = c nfwvals = np.ones_like(x) inds1 = np.where(x < 1) inds2 = np.where(x > 1) nfwvals[inds1] = (1 - x[inds1] ** 2) ** -0.5 * np.arctanh((1 - x[ inds1] ** 2) ** 0.5) nfwvals[inds2] = (x[inds2] ** 2 - 1) ** -0.5 * np.arctan((x[inds2] ** 2 - 1) ** 0.5) return nfwvals elif isinstance(x, float) or isinstance(x, int): x = max(x, c) if x == 1: return 1 if x < 1: return (1 - x ** 2) ** -0.5 * np.arctanh((1 - x ** 2) ** 0.5) else: return (x ** 2 - 1) ** -0.5 * np.arctan((x ** 2 - 1) ** 0.5)
nfw_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x):\n c = 1e-06\n if isinstance(x, np.ndarray):\n x[np.where(x < c)] = c\n nfwvals = np.ones_like(x)\n inds1 = np.where(x < 1)\n inds2 = np.where(x > 1)\n nfwvals[inds1] = (1 - x[inds1] ** 2) ** -0.5 * np.arctanh((1 - x[\n inds1] ** 2) ** 0.5)\n nfwvals[inds2] = (x[inds2] ** 2 - 1) ** -0.5 * np.arctan((x[inds2] **\n 2 - 1) ** 0.5)\n return nfwvals\n elif isinstance(x, float) or isinstance(x, int):\n x = max(x, c)\n if x == 1:\n return 1\n if x < 1:\n return (1 - x ** 2) ** -0.5 * np.arctanh((1 - x ** 2) ** 0.5)\n else:\n return (x ** 2 - 1) ** -0.5 * np.arctan((x ** 2 - 1) ** 0.5)\n", "role": "user" }, { "content": "nfw_func", "role": "assistant" } ]
def x(self, X, b, c=0.001): if b == 1: b = 1 + c prefac = (b - 1) ** -2 if isinstance(X, np.ndarray): X[np.where(X == 1)] = 1 - c output = np.empty_like(X) inds1 = np.where(np.absolute(X - b) < c) output[inds1] = prefac * (-2 - b + (1 + b + b ** 2) * self._nfw_func(b) ) * (1 + b) ** -1 inds2 = np.where(np.absolute(X - b) >= c) output[inds2] = prefac * ((X[inds2] ** 2 - 1) ** -1 * (1 - b - (1 - b * X[inds2] ** 2) * self._nfw_func(X[inds2])) - self._nfw_func (X[inds2] * b ** -1)) else: if X == 1: X = 1 - c if np.absolute(X - b) < c: output = prefac * (-2 - b + (1 + b + b ** 2) * self._nfw_func(b) ) * (1 + b) ** -1 else: output = prefac * ((X ** 2 - 1) ** -1 * (1 - b - (1 - b * X ** 2) * self._nfw_func(X)) - self._nfw_func(X * b ** -1)) return output
F
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, b, c=0.001):\n if b == 1:\n b = 1 + c\n prefac = (b - 1) ** -2\n if isinstance(X, np.ndarray):\n X[np.where(X == 1)] = 1 - c\n output = np.empty_like(X)\n inds1 = np.where(np.absolute(X - b) < c)\n output[inds1] = prefac * (-2 - b + (1 + b + b ** 2) * self._nfw_func(b)\n ) * (1 + b) ** -1\n inds2 = np.where(np.absolute(X - b) >= c)\n output[inds2] = prefac * ((X[inds2] ** 2 - 1) ** -1 * (1 - b - (1 -\n b * X[inds2] ** 2) * self._nfw_func(X[inds2])) - self._nfw_func\n (X[inds2] * b ** -1))\n else:\n if X == 1:\n X = 1 - c\n if np.absolute(X - b) < c:\n output = prefac * (-2 - b + (1 + b + b ** 2) * self._nfw_func(b)\n ) * (1 + b) ** -1\n else:\n output = prefac * ((X ** 2 - 1) ** -1 * (1 - b - (1 - b * X ** \n 2) * self._nfw_func(X)) - self._nfw_func(X * b ** -1))\n return output\n", "role": "user" }, { "content": "F", "role": "assistant" } ]
def x(self, R, Rs, rho0, r_core): M0 = 4 * np.pi * rho0 * Rs ** 3 return M0 / 4 / np.pi * ((r_core + R) * (R + Rs) ** 2) ** -1
density
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0, r_core):\n M0 = 4 * np.pi * rho0 * Rs ** 3\n return M0 / 4 / np.pi * ((r_core + R) * (R + Rs) ** 2) ** -1\n", "role": "user" }, { "content": "density", "role": "assistant" } ]
def x(self, x, y, Rs, rho0, r_core, center_x=0, center_y=0): x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) b = r_core * Rs ** -1 x = R * Rs ** -1 Fx = self._F(x, b) return 2 * rho0 * Rs * Fx
density_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, Rs, rho0, r_core, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n b = r_core * Rs ** -1\n x = R * Rs ** -1\n Fx = self._F(x, b)\n return 2 * rho0 * Rs * Fx\n", "role": "user" }, { "content": "density_2d", "role": "assistant" } ]
def x(self, R, Rs, rho0, r_core): b = r_core * Rs ** -1 x = R * Rs ** -1 M_0 = 4 * np.pi * Rs ** 3 * rho0 return M_0 * (x * (1 + x) ** -1 * (-1 + b) ** -1 + (-1 + b) ** -2 * ((2 * b - 1) * np.log(1 / (1 + x)) + b ** 2 * np.log(x / b + 1)))
mass_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0, r_core):\n b = r_core * Rs ** -1\n x = R * Rs ** -1\n M_0 = 4 * np.pi * Rs ** 3 * rho0\n return M_0 * (x * (1 + x) ** -1 * (-1 + b) ** -1 + (-1 + b) ** -2 * ((2 *\n b - 1) * np.log(1 / (1 + x)) + b ** 2 * np.log(x / b + 1)))\n", "role": "user" }, { "content": "mass_3d", "role": "assistant" } ]
def x(self, R, Rs, rho0, r_core, ax_x, ax_y): if isinstance(R, int) or isinstance(R, float): R = max(R, 1e-05) else: R[R <= 1e-05] = 1e-05 x = R / Rs b = r_core * Rs ** -1 b = max(b, 1e-06) gx = self._G(x, b) a = 4 * rho0 * Rs * gx / x ** 2 return a * ax_x, a * ax_y
cnfwAlpha
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, R, Rs, rho0, r_core, ax_x, ax_y):\n if isinstance(R, int) or isinstance(R, float):\n R = max(R, 1e-05)\n else:\n R[R <= 1e-05] = 1e-05\n x = R / Rs\n b = r_core * Rs ** -1\n b = max(b, 1e-06)\n gx = self._G(x, b)\n a = 4 * rho0 * Rs * gx / x ** 2\n return a * ax_x, a * ax_y\n", "role": "user" }, { "content": "cnfwAlpha", "role": "assistant" } ]
def x(self, x, y, Rs, theta_Rs, e1, e2, center_x=0, center_y=0): phi_G, q = param_util.ellipticity2phi_q(e1, e2) x_shift = x - center_x y_shift = y - center_y cos_phi = np.cos(phi_G) sin_phi = np.sin(phi_G) e = min(abs(1.0 - q), 0.99) xt1 = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e) xt2 = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e) R_ = np.sqrt(xt1 ** 2 + xt2 ** 2) rho0_input = self.nfw._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs) if Rs < 1e-07: Rs = 1e-07 f_ = self.nfw.nfwPot(R_, Rs, rho0_input) return f_
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, Rs, theta_Rs, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n e = min(abs(1.0 - q), 0.99)\n xt1 = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)\n xt2 = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)\n R_ = np.sqrt(xt1 ** 2 + xt2 ** 2)\n rho0_input = self.nfw._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs)\n if Rs < 1e-07:\n Rs = 1e-07\n f_ = self.nfw.nfwPot(R_, Rs, rho0_input)\n return f_\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(self, x, y, Rs, theta_Rs, e1, e2, center_x=0, center_y=0): phi_G, q = param_util.ellipticity2phi_q(e1, e2) x_shift = x - center_x y_shift = y - center_y cos_phi = np.cos(phi_G) sin_phi = np.sin(phi_G) e = min(abs(1.0 - q), 0.99) xt1 = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e) xt2 = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e) R_ = np.sqrt(xt1 ** 2 + xt2 ** 2) rho0_input = self.nfw._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs) if Rs < 1e-07: Rs = 1e-07 f_x_prim, f_y_prim = self.nfw.nfwAlpha(R_, Rs, rho0_input, xt1, xt2) f_x_prim *= np.sqrt(1 - e) f_y_prim *= np.sqrt(1 + e) f_x = cos_phi * f_x_prim - sin_phi * f_y_prim f_y = sin_phi * f_x_prim + cos_phi * f_y_prim return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, Rs, theta_Rs, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n e = min(abs(1.0 - q), 0.99)\n xt1 = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)\n xt2 = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)\n R_ = np.sqrt(xt1 ** 2 + xt2 ** 2)\n rho0_input = self.nfw._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs)\n if Rs < 1e-07:\n Rs = 1e-07\n f_x_prim, f_y_prim = self.nfw.nfwAlpha(R_, Rs, rho0_input, xt1, xt2)\n f_x_prim *= np.sqrt(1 - e)\n f_y_prim *= np.sqrt(1 + e)\n f_x = cos_phi * f_x_prim - sin_phi * f_y_prim\n f_y = sin_phi * f_x_prim + cos_phi * f_y_prim\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, n_particles=10, n_iterations=10, lowerLimit=-0.2, upperLimit= 0.2, threadCount=1, mpi=False, print_key='default'): init_pos = self.chain.get_args(self.chain.kwargs_data_init) num_param = self.chain.num_param lowerLimit = [lowerLimit] * num_param upperLimit = [upperLimit] * num_param if mpi is True: pso = MpiParticleSwarmOptimizer(self.chain, lowerLimit, upperLimit, n_particles, threads=1) else: pso = ParticleSwarmOptimizer(self.chain, lowerLimit, upperLimit, n_particles, threads=threadCount) if not init_pos is None: pso.gbest.position = init_pos pso.gbest.velocity = [0] * len(init_pos) pso.gbest.fitness, _ = self.chain.likelihood(init_pos) X2_list = [] vel_list = [] pos_list = [] time_start = time.time() if pso.isMaster(): print('Computing the %s ...' % print_key) num_iter = 0 for swarm in pso.sample(n_iterations): X2_list.append(pso.gbest.fitness * 2) vel_list.append(pso.gbest.velocity) pos_list.append(pso.gbest.position) num_iter += 1 if pso.isMaster(): if num_iter % 10 == 0: print(num_iter) if not mpi: result = pso.gbest.position else: result = MpiUtil.mpiBCast(pso.gbest.position) kwargs_data = self.chain.update_data(result) if mpi is True and not pso.isMaster(): pass else: time_end = time.time() print('Shifts found: ', result) print(time_end - time_start, 'time used for PSO', print_key) return kwargs_data, [X2_list, pos_list, vel_list, []]
pso
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_particles=10, n_iterations=10, lowerLimit=-0.2, upperLimit=\n 0.2, threadCount=1, mpi=False, print_key='default'):\n init_pos = self.chain.get_args(self.chain.kwargs_data_init)\n num_param = self.chain.num_param\n lowerLimit = [lowerLimit] * num_param\n upperLimit = [upperLimit] * num_param\n if mpi is True:\n pso = MpiParticleSwarmOptimizer(self.chain, lowerLimit, upperLimit,\n n_particles, threads=1)\n else:\n pso = ParticleSwarmOptimizer(self.chain, lowerLimit, upperLimit,\n n_particles, threads=threadCount)\n if not init_pos is None:\n pso.gbest.position = init_pos\n pso.gbest.velocity = [0] * len(init_pos)\n pso.gbest.fitness, _ = self.chain.likelihood(init_pos)\n X2_list = []\n vel_list = []\n pos_list = []\n time_start = time.time()\n if pso.isMaster():\n print('Computing the %s ...' % print_key)\n num_iter = 0\n for swarm in pso.sample(n_iterations):\n X2_list.append(pso.gbest.fitness * 2)\n vel_list.append(pso.gbest.velocity)\n pos_list.append(pso.gbest.position)\n num_iter += 1\n if pso.isMaster():\n if num_iter % 10 == 0:\n print(num_iter)\n if not mpi:\n result = pso.gbest.position\n else:\n result = MpiUtil.mpiBCast(pso.gbest.position)\n kwargs_data = self.chain.update_data(result)\n if mpi is True and not pso.isMaster():\n pass\n else:\n time_end = time.time()\n print('Shifts found: ', result)\n print(time_end - time_start, 'time used for PSO', print_key)\n return kwargs_data, [X2_list, pos_list, vel_list, []]\n", "role": "user" }, { "content": "pso", "role": "assistant" } ]
def x(self, args): kwargs_data = self.update_data(args) imageModel = class_creator.create_image_model(kwargs_data, self. _kwargs_psf, self._kwargs_numerics, self._kwargs_model) logL = imageModel.likelihood_data_given_model(self._kwargs_lens, self. _kwargs_source, self._kwargs_lens_light, self._kwargs_else, source_marg=self._source_marg) return logL, None
likelihood
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, args):\n kwargs_data = self.update_data(args)\n imageModel = class_creator.create_image_model(kwargs_data, self.\n _kwargs_psf, self._kwargs_numerics, self._kwargs_model)\n logL = imageModel.likelihood_data_given_model(self._kwargs_lens, self.\n _kwargs_source, self._kwargs_lens_light, self._kwargs_else,\n source_marg=self._source_marg)\n return logL, None\n", "role": "user" }, { "content": "likelihood", "role": "assistant" } ]
def x(self, n_particles=50, n_iterations=250, restart=1): if restart < 0: raise ValueError("parameter 'restart' must be integer of value > 0") penalties, parameters, src_pen_best = [], [], [] for run in range(0, restart): penalty, params = self._single_optimization(n_particles, n_iterations) penalties.append(penalty) parameters.append(params) src_pen_best.append(self._optimizer.src_pen_best) best_index = np.argmin(penalties) kwargs_varied = self._params.argstovary_todictionary(parameters[best_index] ) kwargs_lens_final = kwargs_varied + self._params.argsfixed_todictionary() srcx, srcy = self._optimizer.lensing._ray_shooting_fast(kwargs_varied) source_x, source_y = np.mean(srcx), np.mean(srcy) if src_pen_best[best_index] < self._tol_src_penalty: x_image, y_image = self.x_pos, self.y_pos else: print('Warning: possibly a bad fit.') x_image, y_image = self.solver.findBrightImage(source_x, source_y, kwargs_lens_final, arrival_time_sort=False) if self._verbose: print('optimization done.') print('Recovered source position: ', (srcx, srcy)) return kwargs_lens_final, [source_x, source_y], [x_image, y_image]
optimize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_particles=50, n_iterations=250, restart=1):\n if restart < 0:\n raise ValueError(\"parameter 'restart' must be integer of value > 0\")\n penalties, parameters, src_pen_best = [], [], []\n for run in range(0, restart):\n penalty, params = self._single_optimization(n_particles, n_iterations)\n penalties.append(penalty)\n parameters.append(params)\n src_pen_best.append(self._optimizer.src_pen_best)\n best_index = np.argmin(penalties)\n kwargs_varied = self._params.argstovary_todictionary(parameters[best_index]\n )\n kwargs_lens_final = kwargs_varied + self._params.argsfixed_todictionary()\n srcx, srcy = self._optimizer.lensing._ray_shooting_fast(kwargs_varied)\n source_x, source_y = np.mean(srcx), np.mean(srcy)\n if src_pen_best[best_index] < self._tol_src_penalty:\n x_image, y_image = self.x_pos, self.y_pos\n else:\n print('Warning: possibly a bad fit.')\n x_image, y_image = self.solver.findBrightImage(source_x, source_y,\n kwargs_lens_final, arrival_time_sort=False)\n if self._verbose:\n print('optimization done.')\n print('Recovered source position: ', (srcx, srcy))\n return kwargs_lens_final, [source_x, source_y], [x_image, y_image]\n", "role": "user" }, { "content": "optimize", "role": "assistant" } ]
def x(self, n_particles, n_iterations, optimizer): pso = ParticleSwarmOptimizer(optimizer, low=self._lower_limit, high= self._upper_limit, particleCount=n_particles) gBests = pso._optimize(maxIter=n_iterations, standard_dev=self. _pso_convergence_standardDEV) likelihoods = [particle.fitness for particle in gBests] ind = np.argmax(likelihoods) return gBests[ind].position
pso
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_particles, n_iterations, optimizer):\n pso = ParticleSwarmOptimizer(optimizer, low=self._lower_limit, high=\n self._upper_limit, particleCount=n_particles)\n gBests = pso._optimize(maxIter=n_iterations, standard_dev=self.\n _pso_convergence_standardDEV)\n likelihoods = [particle.fitness for particle in gBests]\n ind = np.argmax(likelihoods)\n return gBests[ind].position\n", "role": "user" }, { "content": "pso", "role": "assistant" } ]
def x(amplitudes, sigmas): amplitudes_3d = amplitudes / sigmas / np.sqrt(2 * np.pi) return amplitudes_3d, sigmas
de_projection_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(amplitudes, sigmas):\n amplitudes_3d = amplitudes / sigmas / np.sqrt(2 * np.pi)\n return amplitudes_3d, sigmas\n", "role": "user" }, { "content": "de_projection_3d", "role": "assistant" } ]
def x(self, deltaPix): self._pixel_size = deltaPix if self.psf_type == 'GAUSSIAN': try: del self._kernel_point_source except: pass
set_pixel_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, deltaPix):\n self._pixel_size = deltaPix\n if self.psf_type == 'GAUSSIAN':\n try:\n del self._kernel_point_source\n except:\n pass\n", "role": "user" }, { "content": "set_pixel_size", "role": "assistant" } ]