source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, array, subgrid_res=1):
nx, ny = self._nx * subgrid_res, self._ny * subgrid_res
if self._idex_mask_bool is True:
idex_mask = self._idex_mask
grid1d = np.zeros(nx * ny)
if subgrid_res > 1:
idex_mask_subgrid = self._idex_mask_sub
else:
idex_mask_subgrid = idex_mask
grid1d[idex_mask_subgrid == 1] = array
else:
grid1d = array
grid2d = util.array2image(grid1d, nx, ny)
return grid2d
|
array2image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, array, subgrid_res=1):\n nx, ny = self._nx * subgrid_res, self._ny * subgrid_res\n if self._idex_mask_bool is True:\n idex_mask = self._idex_mask\n grid1d = np.zeros(nx * ny)\n if subgrid_res > 1:\n idex_mask_subgrid = self._idex_mask_sub\n else:\n idex_mask_subgrid = idex_mask\n grid1d[idex_mask_subgrid == 1] = array\n else:\n grid1d = array\n grid2d = util.array2image(grid1d, nx, ny)\n return grid2d\n",
"role": "user"
},
{
"content": "array2image",
"role": "assistant"
}
] |
def x(self, image):
idex_mask = self._idex_mask
array = util.image2array(image)
if self._idex_mask_bool is True:
return array[idex_mask == 1]
else:
return array
|
image2array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image):\n idex_mask = self._idex_mask\n array = util.image2array(image)\n if self._idex_mask_bool is True:\n return array[idex_mask == 1]\n else:\n return array\n",
"role": "user"
},
{
"content": "image2array",
"role": "assistant"
}
] |
def x(self):
if not hasattr(self, '_x_min_psf'):
idex_2d = self._idex_mask_2d
self._x_min_psf = np.min(np.where(idex_2d == 1)[0])
self._x_max_psf = np.max(np.where(idex_2d == 1)[0])
self._y_min_psf = np.min(np.where(idex_2d == 1)[1])
self._y_max_psf = np.max(np.where(idex_2d == 1)[1])
|
init_mask_psf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not hasattr(self, '_x_min_psf'):\n idex_2d = self._idex_mask_2d\n self._x_min_psf = np.min(np.where(idex_2d == 1)[0])\n self._x_max_psf = np.max(np.where(idex_2d == 1)[0])\n self._y_min_psf = np.min(np.where(idex_2d == 1)[1])\n self._y_max_psf = np.max(np.where(idex_2d == 1)[1])\n",
"role": "user"
},
{
"content": "init_mask_psf",
"role": "assistant"
}
] |
def x(self, image, subgrid_res):
self._init_mask_psf()
return image[self._x_min_psf * subgrid_res:(self._x_max_psf + 1) *
subgrid_res, self._y_min_psf * subgrid_res:(self._y_max_psf + 1) *
subgrid_res]
|
cutout_psf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, subgrid_res):\n self._init_mask_psf()\n return image[self._x_min_psf * subgrid_res:(self._x_max_psf + 1) *\n subgrid_res, self._y_min_psf * subgrid_res:(self._y_max_psf + 1) *\n subgrid_res]\n",
"role": "user"
},
{
"content": "cutout_psf",
"role": "assistant"
}
] |
def x(self, index):
n = self._index2n(index)
num_prev = n * (n + 1) / 2
num = index + 1
delta = int(num - num_prev - 1)
if n % 2 == 0:
if delta == 0:
m = delta
complex_bool = False
elif delta % 2 == 0:
complex_bool = True
m = delta
else:
complex_bool = False
m = delta + 1
elif delta % 2 == 0:
complex_bool = False
m = delta + 1
else:
complex_bool = True
m = delta
return n, m, complex_bool
|
index2poly
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index):\n n = self._index2n(index)\n num_prev = n * (n + 1) / 2\n num = index + 1\n delta = int(num - num_prev - 1)\n if n % 2 == 0:\n if delta == 0:\n m = delta\n complex_bool = False\n elif delta % 2 == 0:\n complex_bool = True\n m = delta\n else:\n complex_bool = False\n m = delta + 1\n elif delta % 2 == 0:\n complex_bool = False\n m = delta + 1\n else:\n complex_bool = True\n m = delta\n return n, m, complex_bool\n",
"role": "user"
},
{
"content": "index2poly",
"role": "assistant"
}
] |
def x(self, image, x, y, n_max, beta, deltaPix, center_x=0, center_y=0):
num_param = self.shapelets.num_param(n_max)
param_list = np.zeros(num_param)
amp_norm = 1.0 * deltaPix ** 2
L_list = self._pre_calc(x, y, beta, n_max, center_x, center_y)
for i in range(num_param):
base = self._pre_calc_function(L_list, i) * amp_norm
param = np.sum(image * base)
n, m, complex_bool = self.shapelets.index2poly(i)
if m != 0:
param *= 2
param_list[i] = param
return param_list
|
decomposition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, x, y, n_max, beta, deltaPix, center_x=0, center_y=0):\n num_param = self.shapelets.num_param(n_max)\n param_list = np.zeros(num_param)\n amp_norm = 1.0 * deltaPix ** 2\n L_list = self._pre_calc(x, y, beta, n_max, center_x, center_y)\n for i in range(num_param):\n base = self._pre_calc_function(L_list, i) * amp_norm\n param = np.sum(image * base)\n n, m, complex_bool = self.shapelets.index2poly(i)\n if m != 0:\n param *= 2\n param_list[i] = param\n return param_list\n",
"role": "user"
},
{
"content": "decomposition",
"role": "assistant"
}
] |
def x(kernel, shift_x, shift_y, iterations=20):
nx, ny = np.shape(kernel)
kernel_new = np.zeros((nx + 2, ny + 2)) + (kernel[0, 0] + kernel[0, -1] +
kernel[-1, 0] + kernel[-1, -1]) / 4.0
kernel_new[1:-1, 1:-1] = kernel
int_shift_x = int(round(shift_x))
frac_x_shift = shift_x - int_shift_x
int_shift_y = int(round(shift_y))
frac_y_shift = shift_y - int_shift_y
kernel_init = copy.deepcopy(kernel_new)
kernel_init_shifted = copy.deepcopy(interp.shift(kernel_init, [
int_shift_y, int_shift_x], order=1))
kernel_new = interp.shift(kernel_new, [int_shift_y, int_shift_x], order=1)
norm = np.sum(kernel_init_shifted)
for i in range(iterations):
kernel_shifted_inv = interp.shift(kernel_new, [-frac_y_shift, -
frac_x_shift], order=1)
delta = kernel_init_shifted - kernel_norm(kernel_shifted_inv) * norm
kernel_new += delta * 1.0
kernel_new = kernel_norm(kernel_new) * norm
return kernel_new[1:-1, 1:-1]
|
de_shift_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel, shift_x, shift_y, iterations=20):\n nx, ny = np.shape(kernel)\n kernel_new = np.zeros((nx + 2, ny + 2)) + (kernel[0, 0] + kernel[0, -1] +\n kernel[-1, 0] + kernel[-1, -1]) / 4.0\n kernel_new[1:-1, 1:-1] = kernel\n int_shift_x = int(round(shift_x))\n frac_x_shift = shift_x - int_shift_x\n int_shift_y = int(round(shift_y))\n frac_y_shift = shift_y - int_shift_y\n kernel_init = copy.deepcopy(kernel_new)\n kernel_init_shifted = copy.deepcopy(interp.shift(kernel_init, [\n int_shift_y, int_shift_x], order=1))\n kernel_new = interp.shift(kernel_new, [int_shift_y, int_shift_x], order=1)\n norm = np.sum(kernel_init_shifted)\n for i in range(iterations):\n kernel_shifted_inv = interp.shift(kernel_new, [-frac_y_shift, -\n frac_x_shift], order=1)\n delta = kernel_init_shifted - kernel_norm(kernel_shifted_inv) * norm\n kernel_new += delta * 1.0\n kernel_new = kernel_norm(kernel_new) * norm\n return kernel_new[1:-1, 1:-1]\n",
"role": "user"
},
{
"content": "de_shift_kernel",
"role": "assistant"
}
] |
def x(kernel, iterations=20):
kernel = kernel_norm(kernel)
nx, ny = np.shape(kernel)
if nx % 2 == 0:
raise ValueError('kernel needs odd number of pixels')
x_grid, y_grid = util.make_grid(nx, deltapix=1, left_lower=False)
x_w = np.sum(kernel * util.array2image(x_grid))
y_w = np.sum(kernel * util.array2image(y_grid))
kernel_centered = de_shift_kernel(kernel, shift_x=-x_w, shift_y=-y_w,
iterations=iterations)
return kernel_norm(kernel_centered)
|
center_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel, iterations=20):\n kernel = kernel_norm(kernel)\n nx, ny = np.shape(kernel)\n if nx % 2 == 0:\n raise ValueError('kernel needs odd number of pixels')\n x_grid, y_grid = util.make_grid(nx, deltapix=1, left_lower=False)\n x_w = np.sum(kernel * util.array2image(x_grid))\n y_w = np.sum(kernel * util.array2image(y_grid))\n kernel_centered = de_shift_kernel(kernel, shift_x=-x_w, shift_y=-y_w,\n iterations=iterations)\n return kernel_norm(kernel_centered)\n",
"role": "user"
},
{
"content": "center_kernel",
"role": "assistant"
}
] |
def x(kernel, subgrid_res, odd=False, num_iter=100):
subgrid_res = int(subgrid_res)
if subgrid_res == 1:
return kernel
nx, ny = np.shape(kernel)
d_x = 1.0 / nx
x_in = np.linspace(d_x / 2, 1 - d_x / 2, nx)
d_y = 1.0 / nx
y_in = np.linspace(d_y / 2, 1 - d_y / 2, ny)
nx_new = nx * subgrid_res
ny_new = ny * subgrid_res
if odd is True:
if nx_new % 2 == 0:
nx_new -= 1
if ny_new % 2 == 0:
ny_new -= 1
d_x_new = 1.0 / nx_new
d_y_new = 1.0 / ny_new
x_out = np.linspace(d_x_new / 2.0, 1 - d_x_new / 2.0, nx_new)
y_out = np.linspace(d_y_new / 2.0, 1 - d_y_new / 2.0, ny_new)
kernel_input = copy.deepcopy(kernel)
kernel_subgrid = image_util.re_size_array(x_in, y_in, kernel_input,
x_out, y_out)
kernel_subgrid = kernel_norm(kernel_subgrid)
for i in range(max(num_iter, 1)):
if subgrid_res % 2 == 0:
kernel_pixel = averaging_even_kernel(kernel_subgrid, subgrid_res)
else:
kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new,
numPix=nx)
delta = kernel - kernel_pixel
temp_kernel = kernel_input + delta
kernel_subgrid = image_util.re_size_array(x_in, y_in, temp_kernel,
x_out, y_out)
kernel_subgrid = kernel_norm(kernel_subgrid)
kernel_input = temp_kernel
if subgrid_res % 2 == 0:
return kernel_subgrid
kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx)
kernel_pixel = kernel_norm(kernel_pixel)
delta_kernel = kernel_pixel - kernel_norm(kernel)
id = np.ones((subgrid_res, subgrid_res))
delta_kernel_sub = np.kron(delta_kernel, id) / subgrid_res ** 2
return kernel_norm(kernel_subgrid - delta_kernel_sub)
|
subgrid_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel, subgrid_res, odd=False, num_iter=100):\n subgrid_res = int(subgrid_res)\n if subgrid_res == 1:\n return kernel\n nx, ny = np.shape(kernel)\n d_x = 1.0 / nx\n x_in = np.linspace(d_x / 2, 1 - d_x / 2, nx)\n d_y = 1.0 / nx\n y_in = np.linspace(d_y / 2, 1 - d_y / 2, ny)\n nx_new = nx * subgrid_res\n ny_new = ny * subgrid_res\n if odd is True:\n if nx_new % 2 == 0:\n nx_new -= 1\n if ny_new % 2 == 0:\n ny_new -= 1\n d_x_new = 1.0 / nx_new\n d_y_new = 1.0 / ny_new\n x_out = np.linspace(d_x_new / 2.0, 1 - d_x_new / 2.0, nx_new)\n y_out = np.linspace(d_y_new / 2.0, 1 - d_y_new / 2.0, ny_new)\n kernel_input = copy.deepcopy(kernel)\n kernel_subgrid = image_util.re_size_array(x_in, y_in, kernel_input,\n x_out, y_out)\n kernel_subgrid = kernel_norm(kernel_subgrid)\n for i in range(max(num_iter, 1)):\n if subgrid_res % 2 == 0:\n kernel_pixel = averaging_even_kernel(kernel_subgrid, subgrid_res)\n else:\n kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new,\n numPix=nx)\n delta = kernel - kernel_pixel\n temp_kernel = kernel_input + delta\n kernel_subgrid = image_util.re_size_array(x_in, y_in, temp_kernel,\n x_out, y_out)\n kernel_subgrid = kernel_norm(kernel_subgrid)\n kernel_input = temp_kernel\n if subgrid_res % 2 == 0:\n return kernel_subgrid\n kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx)\n kernel_pixel = kernel_norm(kernel_pixel)\n delta_kernel = kernel_pixel - kernel_norm(kernel)\n id = np.ones((subgrid_res, subgrid_res))\n delta_kernel_sub = np.kron(delta_kernel, id) / subgrid_res ** 2\n return kernel_norm(kernel_subgrid - delta_kernel_sub)\n",
"role": "user"
},
{
"content": "subgrid_kernel",
"role": "assistant"
}
] |
def x(kernel_high_res, subgrid_res):
n_high = len(kernel_high_res)
n_low = int((n_high + 1) / subgrid_res)
kernel_low_res = np.zeros((n_low, n_low))
for i in range(subgrid_res - 1):
for j in range(subgrid_res - 1):
kernel_low_res += kernel_high_res[i::subgrid_res, j::subgrid_res]
i = subgrid_res - 1
for j in range(subgrid_res - 1):
kernel_low_res[1:, :] += kernel_high_res[i::subgrid_res, j::subgrid_res
] / 2
kernel_low_res[:-1, :] += kernel_high_res[i::subgrid_res, j::
subgrid_res] / 2
j = subgrid_res - 1
for i in range(subgrid_res - 1):
kernel_low_res[:, 1:] += kernel_high_res[i::subgrid_res, j::subgrid_res
] / 2
kernel_low_res[:, :-1] += kernel_high_res[i::subgrid_res, j::
subgrid_res] / 2
i = subgrid_res - 1
j = subgrid_res - 1
kernel_edge = kernel_high_res[i::subgrid_res, j::subgrid_res]
kernel_low_res[1:, 1:] += kernel_edge / 4
kernel_low_res[:-1, 1:] += kernel_edge / 4
kernel_low_res[1:, :-1] += kernel_edge / 4
kernel_low_res[:-1, :-1] += kernel_edge / 4
return kernel_low_res
|
averaging_even_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel_high_res, subgrid_res):\n n_high = len(kernel_high_res)\n n_low = int((n_high + 1) / subgrid_res)\n kernel_low_res = np.zeros((n_low, n_low))\n for i in range(subgrid_res - 1):\n for j in range(subgrid_res - 1):\n kernel_low_res += kernel_high_res[i::subgrid_res, j::subgrid_res]\n i = subgrid_res - 1\n for j in range(subgrid_res - 1):\n kernel_low_res[1:, :] += kernel_high_res[i::subgrid_res, j::subgrid_res\n ] / 2\n kernel_low_res[:-1, :] += kernel_high_res[i::subgrid_res, j::\n subgrid_res] / 2\n j = subgrid_res - 1\n for i in range(subgrid_res - 1):\n kernel_low_res[:, 1:] += kernel_high_res[i::subgrid_res, j::subgrid_res\n ] / 2\n kernel_low_res[:, :-1] += kernel_high_res[i::subgrid_res, j::\n subgrid_res] / 2\n i = subgrid_res - 1\n j = subgrid_res - 1\n kernel_edge = kernel_high_res[i::subgrid_res, j::subgrid_res]\n kernel_low_res[1:, 1:] += kernel_edge / 4\n kernel_low_res[:-1, 1:] += kernel_edge / 4\n kernel_low_res[1:, :-1] += kernel_edge / 4\n kernel_low_res[:-1, :-1] += kernel_edge / 4\n return kernel_low_res\n",
"role": "user"
},
{
"content": "averaging_even_kernel",
"role": "assistant"
}
] |
def x(kernel, deltaPix_in, deltaPix_out):
numPix = len(kernel)
numPix_new = int(round(numPix * deltaPix_in / deltaPix_out))
if numPix_new % 2 == 0:
numPix_new -= 1
x_in = np.linspace(-(numPix - 1) / 2 * deltaPix_in, (numPix - 1) / 2 *
deltaPix_in, numPix)
x_out = np.linspace(-(numPix_new - 1) / 2 * deltaPix_out, (numPix_new -
1) / 2 * deltaPix_out, numPix_new)
kernel_out = image_util.re_size_array(x_in, x_in, kernel, x_out, x_out)
kernel_out = kernel_norm(kernel_out)
return kernel_out
|
kernel_pixelsize_change
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel, deltaPix_in, deltaPix_out):\n numPix = len(kernel)\n numPix_new = int(round(numPix * deltaPix_in / deltaPix_out))\n if numPix_new % 2 == 0:\n numPix_new -= 1\n x_in = np.linspace(-(numPix - 1) / 2 * deltaPix_in, (numPix - 1) / 2 *\n deltaPix_in, numPix)\n x_out = np.linspace(-(numPix_new - 1) / 2 * deltaPix_out, (numPix_new -\n 1) / 2 * deltaPix_out, numPix_new)\n kernel_out = image_util.re_size_array(x_in, x_in, kernel, x_out, x_out)\n kernel_out = kernel_norm(kernel_out)\n return kernel_out\n",
"role": "user"
},
{
"content": "kernel_pixelsize_change",
"role": "assistant"
}
] |
def x(psf_data, psf_size):
kernel = image_util.cut_edges(psf_data, psf_size)
kernel = kernel_norm(kernel)
return kernel
|
cut_psf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psf_data, psf_size):\n kernel = image_util.cut_edges(psf_data, psf_size)\n kernel = kernel_norm(kernel)\n return kernel\n",
"role": "user"
},
{
"content": "cut_psf",
"role": "assistant"
}
] |
def x(point_source_kernel, subgrid_res=7):
kernel_subgrid = subgrid_kernel(point_source_kernel, subgrid_res,
num_iter=10)
kernel_size = len(point_source_kernel)
kernel_pixel = np.zeros((kernel_size * subgrid_res, kernel_size *
subgrid_res))
for i in range(subgrid_res):
k_x = int((kernel_size - 1) / 2 * subgrid_res + i)
for j in range(subgrid_res):
k_y = int((kernel_size - 1) / 2 * subgrid_res + j)
kernel_pixel = image_util.add_layer2image(kernel_pixel, k_x,
k_y, kernel_subgrid)
kernel_pixel = util.averaging(kernel_pixel, numGrid=kernel_size *
subgrid_res, numPix=kernel_size)
return kernel_norm(kernel_pixel)
|
pixel_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(point_source_kernel, subgrid_res=7):\n kernel_subgrid = subgrid_kernel(point_source_kernel, subgrid_res,\n num_iter=10)\n kernel_size = len(point_source_kernel)\n kernel_pixel = np.zeros((kernel_size * subgrid_res, kernel_size *\n subgrid_res))\n for i in range(subgrid_res):\n k_x = int((kernel_size - 1) / 2 * subgrid_res + i)\n for j in range(subgrid_res):\n k_y = int((kernel_size - 1) / 2 * subgrid_res + j)\n kernel_pixel = image_util.add_layer2image(kernel_pixel, k_x,\n k_y, kernel_subgrid)\n kernel_pixel = util.averaging(kernel_pixel, numGrid=kernel_size *\n subgrid_res, numPix=kernel_size)\n return kernel_norm(kernel_pixel)\n",
"role": "user"
},
{
"content": "pixel_kernel",
"role": "assistant"
}
] |
def x(kernel, kernel_subgrid, subsampling_size, subgrid_res):
n = len(kernel)
n_sub = len(kernel_subgrid)
if subsampling_size % 2 == 0:
subsampling_size += 1
if subsampling_size > n:
subsampling_size = n
kernel_hole = copy.deepcopy(kernel)
n_min = int((n - 1) / 2 - (subsampling_size - 1) / 2)
n_max = int((n - 1) / 2 + (subsampling_size - 1) / 2 + 1)
kernel_hole[n_min:n_max, n_min:n_max] = 0
n_min_sub = int((n_sub - 1) / 2 - (subsampling_size * subgrid_res - 1) / 2)
n_max_sub = int((n_sub - 1) / 2 + (subsampling_size * subgrid_res - 1) /
2 + 1)
kernel_subgrid_cut = kernel_subgrid[n_min_sub:n_max_sub, n_min_sub:
n_max_sub]
flux_subsampled = np.sum(kernel_subgrid_cut)
flux_hole = np.sum(kernel_hole)
if flux_hole > 0:
kernel_hole *= (1.0 - flux_subsampled) / np.sum(kernel_hole)
else:
kernel_subgrid_cut /= np.sum(kernel_subgrid_cut)
return kernel_hole, kernel_subgrid_cut
|
split_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel, kernel_subgrid, subsampling_size, subgrid_res):\n n = len(kernel)\n n_sub = len(kernel_subgrid)\n if subsampling_size % 2 == 0:\n subsampling_size += 1\n if subsampling_size > n:\n subsampling_size = n\n kernel_hole = copy.deepcopy(kernel)\n n_min = int((n - 1) / 2 - (subsampling_size - 1) / 2)\n n_max = int((n - 1) / 2 + (subsampling_size - 1) / 2 + 1)\n kernel_hole[n_min:n_max, n_min:n_max] = 0\n n_min_sub = int((n_sub - 1) / 2 - (subsampling_size * subgrid_res - 1) / 2)\n n_max_sub = int((n_sub - 1) / 2 + (subsampling_size * subgrid_res - 1) /\n 2 + 1)\n kernel_subgrid_cut = kernel_subgrid[n_min_sub:n_max_sub, n_min_sub:\n n_max_sub]\n flux_subsampled = np.sum(kernel_subgrid_cut)\n flux_hole = np.sum(kernel_hole)\n if flux_hole > 0:\n kernel_hole *= (1.0 - flux_subsampled) / np.sum(kernel_hole)\n else:\n kernel_subgrid_cut /= np.sum(kernel_subgrid_cut)\n return kernel_hole, kernel_subgrid_cut\n",
"role": "user"
},
{
"content": "split_kernel",
"role": "assistant"
}
] |
def x(x_pos, y_pos, image, kernelsize, shift=True):
if kernelsize % 2 == 0:
raise ValueError('even pixel number kernel size not supported!')
x_int = int(round(x_pos))
y_int = int(round(y_pos))
n = len(image)
d = (kernelsize - 1) / 2
x_max = int(np.minimum(x_int + d + 1, n))
x_min = int(np.maximum(x_int - d, 0))
y_max = int(np.minimum(y_int + d + 1, n))
y_min = int(np.maximum(y_int - d, 0))
image_cut = copy.deepcopy(image[y_min:y_max, x_min:x_max])
shift_x = x_int - x_pos
shift_y = y_int - y_pos
if shift is True:
kernel_shift = de_shift_kernel(image_cut, shift_x, shift_y,
iterations=50)
else:
kernel_shift = image_cut
kernel_final = np.zeros((kernelsize, kernelsize))
k_l2_x = int((kernelsize - 1) / 2)
k_l2_y = int((kernelsize - 1) / 2)
xk_min = np.maximum(0, -x_int + k_l2_x)
yk_min = np.maximum(0, -y_int + k_l2_y)
xk_max = np.minimum(kernelsize, -x_int + k_l2_x + n)
yk_max = np.minimum(kernelsize, -y_int + k_l2_y + n)
kernel_final[yk_min:yk_max, xk_min:xk_max] = kernel_shift
return kernel_final
|
cutout_source
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x_pos, y_pos, image, kernelsize, shift=True):\n if kernelsize % 2 == 0:\n raise ValueError('even pixel number kernel size not supported!')\n x_int = int(round(x_pos))\n y_int = int(round(y_pos))\n n = len(image)\n d = (kernelsize - 1) / 2\n x_max = int(np.minimum(x_int + d + 1, n))\n x_min = int(np.maximum(x_int - d, 0))\n y_max = int(np.minimum(y_int + d + 1, n))\n y_min = int(np.maximum(y_int - d, 0))\n image_cut = copy.deepcopy(image[y_min:y_max, x_min:x_max])\n shift_x = x_int - x_pos\n shift_y = y_int - y_pos\n if shift is True:\n kernel_shift = de_shift_kernel(image_cut, shift_x, shift_y,\n iterations=50)\n else:\n kernel_shift = image_cut\n kernel_final = np.zeros((kernelsize, kernelsize))\n k_l2_x = int((kernelsize - 1) / 2)\n k_l2_y = int((kernelsize - 1) / 2)\n xk_min = np.maximum(0, -x_int + k_l2_x)\n yk_min = np.maximum(0, -y_int + k_l2_y)\n xk_max = np.minimum(kernelsize, -x_int + k_l2_x + n)\n yk_max = np.minimum(kernelsize, -y_int + k_l2_y + n)\n kernel_final[yk_min:yk_max, xk_min:xk_max] = kernel_shift\n return kernel_final\n",
"role": "user"
},
{
"content": "cutout_source",
"role": "assistant"
}
] |
def x(kernel):
n = len(kernel)
if n % 2 == 0:
raise ValueError('only works with odd number of pixels in kernel!')
max_flux = kernel[int((n - 1) / 2), int((n - 1) / 2)]
I_2 = max_flux / 2.0
I_r = kernel[int((n - 1) / 2), int((n - 1) / 2):]
r = np.linspace(0, (n - 1) / 2, int((n + 1) / 2))
for i in range(1, len(r)):
if I_r[i] < I_2:
fwhm_2 = (I_2 - I_r[i - 1]) / (I_r[i] - I_r[i - 1]) + r[i - 1]
return fwhm_2 * 2
raise ValueError(
'The kernel did not drop to half the max value - fwhm not determined!')
|
fwhm_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel):\n n = len(kernel)\n if n % 2 == 0:\n raise ValueError('only works with odd number of pixels in kernel!')\n max_flux = kernel[int((n - 1) / 2), int((n - 1) / 2)]\n I_2 = max_flux / 2.0\n I_r = kernel[int((n - 1) / 2), int((n - 1) / 2):]\n r = np.linspace(0, (n - 1) / 2, int((n + 1) / 2))\n for i in range(1, len(r)):\n if I_r[i] < I_2:\n fwhm_2 = (I_2 - I_r[i - 1]) / (I_r[i] - I_r[i - 1]) + r[i - 1]\n return fwhm_2 * 2\n raise ValueError(\n 'The kernel did not drop to half the max value - fwhm not determined!')\n",
"role": "user"
},
{
"content": "fwhm_kernel",
"role": "assistant"
}
] |
def x(data, x_pos, y_pos, psf_kernel):
numPix_x, numPix_y = np.shape(data)
x_int = int(round(x_pos - 0.49999))
y_int = int(round(y_pos - 0.49999))
if (x_int > 2 and x_int < numPix_x - 2 and y_int > 2 and y_int <
numPix_y - 2):
mean_image = max(np.sum(data[y_int - 2:y_int + 3, x_int - 2:x_int +
3]), 0)
num = len(psf_kernel)
center = int((num - 0.5) / 2)
mean_kernel = np.sum(psf_kernel[center - 2:center + 3, center - 2:
center + 3])
amp_estimated = mean_image / mean_kernel
else:
amp_estimated = 0
return amp_estimated
|
estimate_amp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, x_pos, y_pos, psf_kernel):\n numPix_x, numPix_y = np.shape(data)\n x_int = int(round(x_pos - 0.49999))\n y_int = int(round(y_pos - 0.49999))\n if (x_int > 2 and x_int < numPix_x - 2 and y_int > 2 and y_int < \n numPix_y - 2):\n mean_image = max(np.sum(data[y_int - 2:y_int + 3, x_int - 2:x_int +\n 3]), 0)\n num = len(psf_kernel)\n center = int((num - 0.5) / 2)\n mean_kernel = np.sum(psf_kernel[center - 2:center + 3, center - 2:\n center + 3])\n amp_estimated = mean_image / mean_kernel\n else:\n amp_estimated = 0\n return amp_estimated\n",
"role": "user"
},
{
"content": "estimate_amp",
"role": "assistant"
}
] |
def x(self, kwargs_list, n=1, new_compute=False, r_eff=1.0):
if not hasattr(self, '_light_cdf') or new_compute is True:
r_array = np.linspace(self._min_interpolate, self._max_interpolate,
self._interp_grid_num)
cum_sum = np.zeros_like(r_array)
sum = 0
for i, r in enumerate(r_array):
if i == 0:
cum_sum[i] = 0
else:
sum += self.light_2d(r, kwargs_list) * r
cum_sum[i] = copy.deepcopy(sum)
cum_sum_norm = cum_sum / cum_sum[-1]
f = interp1d(cum_sum_norm, r_array)
self._light_cdf = f
cdf_draw = np.random.uniform(0.0, 1, n)
r_draw = self._light_cdf(cdf_draw)
return r_draw
|
draw_light_2d_linear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_list, n=1, new_compute=False, r_eff=1.0):\n if not hasattr(self, '_light_cdf') or new_compute is True:\n r_array = np.linspace(self._min_interpolate, self._max_interpolate,\n self._interp_grid_num)\n cum_sum = np.zeros_like(r_array)\n sum = 0\n for i, r in enumerate(r_array):\n if i == 0:\n cum_sum[i] = 0\n else:\n sum += self.light_2d(r, kwargs_list) * r\n cum_sum[i] = copy.deepcopy(sum)\n cum_sum_norm = cum_sum / cum_sum[-1]\n f = interp1d(cum_sum_norm, r_array)\n self._light_cdf = f\n cdf_draw = np.random.uniform(0.0, 1, n)\n r_draw = self._light_cdf(cdf_draw)\n return r_draw\n",
"role": "user"
},
{
"content": "draw_light_2d_linear",
"role": "assistant"
}
] |
def x(self, kwargs_list, n=1, new_compute=False):
if not hasattr(self, '_light_cdf_log') or new_compute is True:
r_array = np.logspace(np.log10(self._min_interpolate), np.log10(
self._max_interpolate), self._interp_grid_num)
cum_sum = np.zeros_like(r_array)
sum = 0
for i, r in enumerate(r_array):
if i == 0:
cum_sum[i] = 0
else:
sum += self.light_2d(r, kwargs_list) * r * r
cum_sum[i] = copy.deepcopy(sum)
cum_sum_norm = cum_sum / cum_sum[-1]
f = interp1d(cum_sum_norm, np.log(r_array))
self._light_cdf_log = f
cdf_draw = np.random.uniform(0.0, 1, n)
r_log_draw = self._light_cdf_log(cdf_draw)
return np.exp(r_log_draw)
|
draw_light_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_list, n=1, new_compute=False):\n if not hasattr(self, '_light_cdf_log') or new_compute is True:\n r_array = np.logspace(np.log10(self._min_interpolate), np.log10(\n self._max_interpolate), self._interp_grid_num)\n cum_sum = np.zeros_like(r_array)\n sum = 0\n for i, r in enumerate(r_array):\n if i == 0:\n cum_sum[i] = 0\n else:\n sum += self.light_2d(r, kwargs_list) * r * r\n cum_sum[i] = copy.deepcopy(sum)\n cum_sum_norm = cum_sum / cum_sum[-1]\n f = interp1d(cum_sum_norm, np.log(r_array))\n self._light_cdf_log = f\n cdf_draw = np.random.uniform(0.0, 1, n)\n r_log_draw = self._light_cdf_log(cdf_draw)\n return np.exp(r_log_draw)\n",
"role": "user"
},
{
"content": "draw_light_2d",
"role": "assistant"
}
] |
def x(self, x, y, Rs, theta_Rs, center_x=0, center_y=0):
rho0_input = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs)
if Rs < 1e-07:
Rs = 1e-07
x_ = x - center_x
y_ = y - center_y
R = np.sqrt(x_ ** 2 + y_ ** 2)
f_x, f_y = self.nfwAlpha(R, Rs, rho0_input, x_, y_)
return f_x, f_y
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, Rs, theta_Rs, center_x=0, center_y=0):\n rho0_input = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs)\n if Rs < 1e-07:\n Rs = 1e-07\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n f_x, f_y = self.nfwAlpha(R, Rs, rho0_input, x_, y_)\n return f_x, f_y\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0):
return rho0 / (R / Rs * (1 + R / Rs) ** 2)
|
density
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0):\n return rho0 / (R / Rs * (1 + R / Rs) ** 2)\n",
"role": "user"
},
{
"content": "density",
"role": "assistant"
}
] |
def x(self, x, y, Rs, rho0, center_x=0, center_y=0):
x_ = x - center_x
y_ = y - center_y
R = np.sqrt(x_ ** 2 + y_ ** 2)
x = R / Rs
Fx = self.F_(x)
return 2 * rho0 * Rs * Fx
|
density_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, Rs, rho0, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n x = R / Rs\n Fx = self.F_(x)\n return 2 * rho0 * Rs * Fx\n",
"role": "user"
},
{
"content": "density_2d",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0):
Rs = float(Rs)
m_3d = 4.0 * np.pi * rho0 * Rs ** 3 * (np.log((Rs + R) / Rs) - R / (Rs + R)
)
return m_3d
|
mass_3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0):\n Rs = float(Rs)\n m_3d = 4.0 * np.pi * rho0 * Rs ** 3 * (np.log((Rs + R) / Rs) - R / (Rs + R)\n )\n return m_3d\n",
"role": "user"
},
{
"content": "mass_3d",
"role": "assistant"
}
] |
def x(self, R, Rs, theta_Rs):
rho0 = self._alpha2rho0(theta_Rs, Rs)
m_3d = self.mass_3d(R, Rs, rho0)
return m_3d
|
mass_3d_lens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, theta_Rs):\n rho0 = self._alpha2rho0(theta_Rs, Rs)\n m_3d = self.mass_3d(R, Rs, rho0)\n return m_3d\n",
"role": "user"
},
{
"content": "mass_3d_lens",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0):
x = R / Rs
gx = self.g_(x)
m_2d = 4 * rho0 * Rs * R ** 2 * gx / x ** 2 * np.pi
return m_2d
|
mass_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0):\n x = R / Rs\n gx = self.g_(x)\n m_2d = 4 * rho0 * Rs * R ** 2 * gx / x ** 2 * np.pi\n return m_2d\n",
"role": "user"
},
{
"content": "mass_2d",
"role": "assistant"
}
] |
def x(self, X):
if self._interpol:
if not hasattr(self, '_F_interp'):
if self._lookup:
x = self._x_lookup
F_x = self._f_lookup
else:
x = np.linspace(0, self._max_interp_X, self._num_interp_X)
F_x = self._F(x)
self._F_interp = interp.interp1d(x, F_x, kind='linear', axis=-1,
copy=False, bounds_error=False, fill_value=0, assume_sorted
=True)
return self._F_interp(X)
else:
return self._F(X)
|
F_
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n if self._interpol:\n if not hasattr(self, '_F_interp'):\n if self._lookup:\n x = self._x_lookup\n F_x = self._f_lookup\n else:\n x = np.linspace(0, self._max_interp_X, self._num_interp_X)\n F_x = self._F(x)\n self._F_interp = interp.interp1d(x, F_x, kind='linear', axis=-1,\n copy=False, bounds_error=False, fill_value=0, assume_sorted\n =True)\n return self._F_interp(X)\n else:\n return self._F(X)\n",
"role": "user"
},
{
"content": "F_",
"role": "assistant"
}
] |
def x(self, X):
if isinstance(X, int) or isinstance(X, float):
if X < 1 and X > 0:
a = 1 / (X ** 2 - 1) * (1 - 2 / np.sqrt(1 - X ** 2) * np.
arctanh(np.sqrt((1 - X) / (1 + X))))
elif X == 1:
a = 1.0 / 3
elif X > 1:
a = 1 / (X ** 2 - 1) * (1 - 2 / np.sqrt(X ** 2 - 1) * np.arctan
(np.sqrt((X - 1) / (1 + X))))
else:
c = 1e-07
a = 1 / -1 * (1 - 2 / np.sqrt(1) * np.arctanh(np.sqrt((1 - c) /
(1 + c))))
else:
a = np.empty_like(X)
x = X[(X < 1) & (X > 0)]
a[(X < 1) & (X > 0)] = 1 / (x ** 2 - 1) * (1 - 2 / np.sqrt(1 - x **
2) * np.arctanh(np.sqrt((1 - x) / (1 + x))))
a[X == 1] = 1.0 / 3.0
x = X[X > 1]
a[X > 1] = 1 / (x ** 2 - 1) * (1 - 2 / np.sqrt(x ** 2 - 1) * np.
arctan(np.sqrt((x - 1) / (1 + x))))
c = 1e-07
a[X == 0] = 1 / -1 * (1 - 2 / np.sqrt(1) * np.arctanh(np.sqrt((1 -
c) / (1 + c))))
return a
|
F
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n if isinstance(X, int) or isinstance(X, float):\n if X < 1 and X > 0:\n a = 1 / (X ** 2 - 1) * (1 - 2 / np.sqrt(1 - X ** 2) * np.\n arctanh(np.sqrt((1 - X) / (1 + X))))\n elif X == 1:\n a = 1.0 / 3\n elif X > 1:\n a = 1 / (X ** 2 - 1) * (1 - 2 / np.sqrt(X ** 2 - 1) * np.arctan\n (np.sqrt((X - 1) / (1 + X))))\n else:\n c = 1e-07\n a = 1 / -1 * (1 - 2 / np.sqrt(1) * np.arctanh(np.sqrt((1 - c) /\n (1 + c))))\n else:\n a = np.empty_like(X)\n x = X[(X < 1) & (X > 0)]\n a[(X < 1) & (X > 0)] = 1 / (x ** 2 - 1) * (1 - 2 / np.sqrt(1 - x **\n 2) * np.arctanh(np.sqrt((1 - x) / (1 + x))))\n a[X == 1] = 1.0 / 3.0\n x = X[X > 1]\n a[X > 1] = 1 / (x ** 2 - 1) * (1 - 2 / np.sqrt(x ** 2 - 1) * np.\n arctan(np.sqrt((x - 1) / (1 + x))))\n c = 1e-07\n a[X == 0] = 1 / -1 * (1 - 2 / np.sqrt(1) * np.arctanh(np.sqrt((1 -\n c) / (1 + c))))\n return a\n",
"role": "user"
},
{
"content": "F",
"role": "assistant"
}
] |
def x(self, X):
if self._interpol:
if not hasattr(self, '_g_interp'):
if self._lookup:
x = self._x_lookup
g_x = self._g_lookup
else:
x = np.linspace(0, self._max_interp_X, self._num_interp_X)
g_x = self._g(x)
self._g_interp = interp.interp1d(x, g_x, kind='linear', axis=-1,
copy=False, bounds_error=False, fill_value=0, assume_sorted
=True)
return self._g_interp(X)
else:
return self._g(X)
|
g_
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n if self._interpol:\n if not hasattr(self, '_g_interp'):\n if self._lookup:\n x = self._x_lookup\n g_x = self._g_lookup\n else:\n x = np.linspace(0, self._max_interp_X, self._num_interp_X)\n g_x = self._g(x)\n self._g_interp = interp.interp1d(x, g_x, kind='linear', axis=-1,\n copy=False, bounds_error=False, fill_value=0, assume_sorted\n =True)\n return self._g_interp(X)\n else:\n return self._g(X)\n",
"role": "user"
},
{
"content": "g_",
"role": "assistant"
}
] |
def x(self, X):
if self._interpol:
if not hasattr(self, '_h_interp'):
if self._lookup:
x = self._x_lookup
h_x = self._h_lookup
else:
x = np.linspace(0, self._max_interp_X, self._num_interp_X)
h_x = self._h(x)
self._h_interp = interp.interp1d(x, h_x, kind='linear', axis=-1,
copy=False, bounds_error=False, fill_value=0, assume_sorted
=True)
return self._h_interp(X)
else:
return self._h(X)
|
h_
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n if self._interpol:\n if not hasattr(self, '_h_interp'):\n if self._lookup:\n x = self._x_lookup\n h_x = self._h_lookup\n else:\n x = np.linspace(0, self._max_interp_X, self._num_interp_X)\n h_x = self._h(x)\n self._h_interp = interp.interp1d(x, h_x, kind='linear', axis=-1,\n copy=False, bounds_error=False, fill_value=0, assume_sorted\n =True)\n return self._h_interp(X)\n else:\n return self._h(X)\n",
"role": "user"
},
{
"content": "h_",
"role": "assistant"
}
] |
def x(self, theta_Rs, Rs):
rho0 = theta_Rs / (4.0 * Rs ** 2 * (1.0 + np.log(1.0 / 2.0)))
return rho0
|
alpha2rho0
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, theta_Rs, Rs):\n rho0 = theta_Rs / (4.0 * Rs ** 2 * (1.0 + np.log(1.0 / 2.0)))\n return rho0\n",
"role": "user"
},
{
"content": "alpha2rho0",
"role": "assistant"
}
] |
def x(self, rho0, Rs):
theta_Rs = rho0 * (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0)))
return theta_Rs
|
rho02alpha
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rho0, Rs):\n theta_Rs = rho0 * (4 * Rs ** 2 * (1 + np.log(1.0 / 2.0)))\n return theta_Rs\n",
"role": "user"
},
{
"content": "rho02alpha",
"role": "assistant"
}
] |
def x(self):
name_list = []
for func in self.func_list:
name_list.append(func.param_names)
return name_list
|
param_name_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n name_list = []\n for func in self.func_list:\n name_list.append(func.param_names)\n return name_list\n",
"role": "user"
},
{
"content": "param_name_list",
"role": "assistant"
}
] |
def x(self, x, y, kwargs_list, k=None):
x = np.array(x, dtype=float)
y = np.array(y, dtype=float)
flux = np.zeros_like(x)
for i, func in enumerate(self.func_list):
if k is None or k == i:
out = np.array(func.function(x, y, **kwargs_list[i]), dtype=float)
flux += out
return flux
|
surface_brightness
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kwargs_list, k=None):\n x = np.array(x, dtype=float)\n y = np.array(y, dtype=float)\n flux = np.zeros_like(x)\n for i, func in enumerate(self.func_list):\n if k is None or k == i:\n out = np.array(func.function(x, y, **kwargs_list[i]), dtype=float)\n flux += out\n return flux\n",
"role": "user"
},
{
"content": "surface_brightness",
"role": "assistant"
}
] |
def x(self, r, kwargs_list, k=None):
r = np.array(r, dtype=float)
flux = np.zeros_like(r)
for i, func in enumerate(self.func_list):
if k is None or k == i:
kwargs = {k: v for k, v in kwargs_list[i].items() if not k in [
'center_x', 'center_y']}
if self.profile_type_list[i] in ['HERNQUIST',
'HERNQUIST_ELLIPSE', 'PJAFFE', 'PJAFFE_ELLIPSE', 'GAUSSIAN',
'GAUSSIAN_ELLIPSE', 'MULTI_GAUSSIAN',
'MULTI_GAUSSIAN_ELLIPSE', 'POWER_LAW']:
flux += func.light_3d(r, **kwargs)
else:
raise ValueError(
'Light model %s does not support a 3d light distribution!'
% self.profile_type_list[i])
return flux
|
light_3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, kwargs_list, k=None):\n r = np.array(r, dtype=float)\n flux = np.zeros_like(r)\n for i, func in enumerate(self.func_list):\n if k is None or k == i:\n kwargs = {k: v for k, v in kwargs_list[i].items() if not k in [\n 'center_x', 'center_y']}\n if self.profile_type_list[i] in ['HERNQUIST',\n 'HERNQUIST_ELLIPSE', 'PJAFFE', 'PJAFFE_ELLIPSE', 'GAUSSIAN',\n 'GAUSSIAN_ELLIPSE', 'MULTI_GAUSSIAN',\n 'MULTI_GAUSSIAN_ELLIPSE', 'POWER_LAW']:\n flux += func.light_3d(r, **kwargs)\n else:\n raise ValueError(\n 'Light model %s does not support a 3d light distribution!'\n % self.profile_type_list[i])\n return flux\n",
"role": "user"
},
{
"content": "light_3d",
"role": "assistant"
}
] |
def x(self, kwargs_list, norm=False, k=None):
norm_flux_list = []
for i, model in enumerate(self.profile_type_list):
if k is None or k == i:
if model in ['SERSIC', 'SERSIC_ELLIPSE', 'INTERPOL', 'GAUSSIAN',
'GAUSSIAN_ELLIPSE', 'MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE'
]:
kwargs_new = kwargs_list[i].copy()
if norm is True:
if model in ['MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE']:
new = {'amp': np.array(kwargs_new['amp']) /
kwargs_new['amp'][0]}
else:
new = {'amp': 1}
kwargs_new.update(new)
norm_flux = self.func_list[i].total_flux(**kwargs_new)
norm_flux_list.append(norm_flux)
else:
raise ValueError(
'profile %s does not support flux normlization.' % model)
return norm_flux_list
|
total_flux
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_list, norm=False, k=None):\n norm_flux_list = []\n for i, model in enumerate(self.profile_type_list):\n if k is None or k == i:\n if model in ['SERSIC', 'SERSIC_ELLIPSE', 'INTERPOL', 'GAUSSIAN',\n 'GAUSSIAN_ELLIPSE', 'MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE'\n ]:\n kwargs_new = kwargs_list[i].copy()\n if norm is True:\n if model in ['MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE']:\n new = {'amp': np.array(kwargs_new['amp']) /\n kwargs_new['amp'][0]}\n else:\n new = {'amp': 1}\n kwargs_new.update(new)\n norm_flux = self.func_list[i].total_flux(**kwargs_new)\n norm_flux_list.append(norm_flux)\n else:\n raise ValueError(\n 'profile %s does not support flux normlization.' % model)\n return norm_flux_list\n",
"role": "user"
},
{
"content": "total_flux",
"role": "assistant"
}
] |
def x(self, n, Re):
bn = self.b_n(n)
k = bn * Re ** (-1.0 / n)
return k, bn
|
k_bn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, Re):\n bn = self.b_n(n)\n k = bn * Re ** (-1.0 / n)\n return k, bn\n",
"role": "user"
},
{
"content": "k_bn",
"role": "assistant"
}
] |
def x(self, x, y, n_sersic, r_eff, center_x, center_y):
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_ ** 2 + y_ ** 2)
if isinstance(r, int) or isinstance(r, float):
r = max(self._s, r)
else:
r[r < self._s] = self._s
x_reduced = (r / r_eff) ** (1.0 / n_sersic)
return x_reduced
|
x_reduced
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, n_sersic, r_eff, center_x, center_y):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n if isinstance(r, int) or isinstance(r, float):\n r = max(self._s, r)\n else:\n r[r < self._s] = self._s\n x_reduced = (r / r_eff) ** (1.0 / n_sersic)\n return x_reduced\n",
"role": "user"
},
{
"content": "x_reduced",
"role": "assistant"
}
] |
def x(self, r_eff, n_sersic, k_eff):
b = self.b_n(n_sersic)
alpha_eff = n_sersic * r_eff * k_eff * b ** (-2 * n_sersic) * np.exp(b
) * special.gamma(2 * n_sersic)
return -alpha_eff
|
alpha_eff
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r_eff, n_sersic, k_eff):\n b = self.b_n(n_sersic)\n alpha_eff = n_sersic * r_eff * k_eff * b ** (-2 * n_sersic) * np.exp(b\n ) * special.gamma(2 * n_sersic)\n return -alpha_eff\n",
"role": "user"
},
{
"content": "alpha_eff",
"role": "assistant"
}
] |
def x(self, x, y, n_sersic, r_eff, k_eff, center_x=0, center_y=0):
raise ValueError(
'not implemented! Use a Multi-Gaussian-component decomposition.')
|
density
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, n_sersic, r_eff, k_eff, center_x=0, center_y=0):\n raise ValueError(\n 'not implemented! Use a Multi-Gaussian-component decomposition.')\n",
"role": "user"
},
{
"content": "density",
"role": "assistant"
}
] |
def x(self, r_eff, I_eff, n_sersic):
bn = self.b_n(n_sersic)
return I_eff * r_eff ** 2 * 2 * np.pi * n_sersic * np.exp(bn) / bn ** (
2 * n_sersic) * scipy.special.gamma(2 * n_sersic)
|
total_flux
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r_eff, I_eff, n_sersic):\n bn = self.b_n(n_sersic)\n return I_eff * r_eff ** 2 * 2 * np.pi * n_sersic * np.exp(bn) / bn ** (\n 2 * n_sersic) * scipy.special.gamma(2 * n_sersic)\n",
"role": "user"
},
{
"content": "total_flux",
"role": "assistant"
}
] |
def x(self, x, y, theta_E, gamma, center_x=0, center_y=0):
gamma = self._gamma_limit(gamma)
x_ = x - center_x
y_ = y - center_y
E = theta_E / ((3.0 - gamma) / 2.0) ** (1.0 / (1.0 - gamma))
eta = -gamma + 3
p2 = x_ ** 2 + y_ ** 2
s2 = 0.0
return 2 * E ** 2 / eta ** 2 * ((p2 + s2) / E ** 2) ** (eta / 2)
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, theta_E, gamma, center_x=0, center_y=0):\n gamma = self._gamma_limit(gamma)\n x_ = x - center_x\n y_ = y - center_y\n E = theta_E / ((3.0 - gamma) / 2.0) ** (1.0 / (1.0 - gamma))\n eta = -gamma + 3\n p2 = x_ ** 2 + y_ ** 2\n s2 = 0.0\n return 2 * E ** 2 / eta ** 2 * ((p2 + s2) / E ** 2) ** (eta / 2)\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(self, rho0, gamma):
fac = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)
) / special.gamma(gamma / 2.0) * 2 / (3 - gamma) * rho0
theta_E = fac ** (1.0 / (gamma - 1))
return theta_E
|
rho2theta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rho0, gamma):\n fac = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)\n ) / special.gamma(gamma / 2.0) * 2 / (3 - gamma) * rho0\n theta_E = fac ** (1.0 / (gamma - 1))\n return theta_E\n",
"role": "user"
},
{
"content": "rho2theta",
"role": "assistant"
}
] |
def x(self, theta_E, gamma):
fac1 = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)
) / special.gamma(gamma / 2.0) * 2 / (3 - gamma)
fac2 = theta_E ** (gamma - 1)
rho0 = fac2 / fac1
return rho0
|
theta2rho
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, theta_E, gamma):\n fac1 = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)\n ) / special.gamma(gamma / 2.0) * 2 / (3 - gamma)\n fac2 = theta_E ** (gamma - 1)\n rho0 = fac2 / fac1\n return rho0\n",
"role": "user"
},
{
"content": "theta2rho",
"role": "assistant"
}
] |
def x(self, r, rho0, gamma):
mass_3d = 4 * np.pi * rho0 / (-gamma + 3) * r ** (-gamma + 3)
return mass_3d
|
mass_3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, rho0, gamma):\n mass_3d = 4 * np.pi * rho0 / (-gamma + 3) * r ** (-gamma + 3)\n return mass_3d\n",
"role": "user"
},
{
"content": "mass_3d",
"role": "assistant"
}
] |
def x(self, r, rho0, gamma):
alpha = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)
) / special.gamma(gamma / 2.0) * r ** (2 - gamma) / (3 - gamma
) * np.pi * 2 * rho0
mass_2d = alpha * r
return mass_2d
|
mass_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, rho0, gamma):\n alpha = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)\n ) / special.gamma(gamma / 2.0) * r ** (2 - gamma) / (3 - gamma\n ) * np.pi * 2 * rho0\n mass_2d = alpha * r\n return mass_2d\n",
"role": "user"
},
{
"content": "mass_2d",
"role": "assistant"
}
] |
def x(self, x, y, rho0, gamma, center_x=0, center_y=0):
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_ ** 2 + y_ ** 2)
mass_3d = self.mass_3d(r, rho0, gamma)
pot = mass_3d / r
return pot
|
grav_pot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, rho0, gamma, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n mass_3d = self.mass_3d(r, rho0, gamma)\n pot = mass_3d / r\n return pot\n",
"role": "user"
},
{
"content": "grav_pot",
"role": "assistant"
}
] |
def x(self, r, rho0, gamma):
rho = rho0 / r ** gamma
return rho
|
density
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, rho0, gamma):\n rho = rho0 / r ** gamma\n return rho\n",
"role": "user"
},
{
"content": "density",
"role": "assistant"
}
] |
def x(self, x, y, rho0, gamma, center_x=0, center_y=0):
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_ ** 2 + y_ ** 2)
sigma = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)
) / special.gamma(gamma / 2.0) * r ** (1 - gamma) * rho0
return sigma
|
density_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, rho0, gamma, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n sigma = np.sqrt(np.pi) * special.gamma(1.0 / 2 * (-1 + gamma)\n ) / special.gamma(gamma / 2.0) * r ** (1 - gamma) * rho0\n return sigma\n",
"role": "user"
},
{
"content": "density_2d",
"role": "assistant"
}
] |
def x(self, kwargs_mass, kwargs_light, kwargs_anisotropy, kwargs_apertur):
sigma2_R_sum = 0
for i in range(0, self._num_sampling):
sigma2_R = self.draw_one_sigma2(kwargs_mass, kwargs_light,
kwargs_anisotropy, kwargs_apertur)
sigma2_R_sum += sigma2_R
sigma_s2_average = sigma2_R_sum / self._num_sampling
sigma_s2_average *= 2 * const.G
return np.sqrt(sigma_s2_average / (const.arcsec ** 2 * self.cosmo.D_d **
2 * const.Mpc)) / 1000.0
|
vel_disp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_mass, kwargs_light, kwargs_anisotropy, kwargs_apertur):\n sigma2_R_sum = 0\n for i in range(0, self._num_sampling):\n sigma2_R = self.draw_one_sigma2(kwargs_mass, kwargs_light,\n kwargs_anisotropy, kwargs_apertur)\n sigma2_R_sum += sigma2_R\n sigma_s2_average = sigma2_R_sum / self._num_sampling\n sigma_s2_average *= 2 * const.G\n return np.sqrt(sigma_s2_average / (const.arcsec ** 2 * self.cosmo.D_d **\n 2 * const.Mpc)) / 1000.0\n",
"role": "user"
},
{
"content": "vel_disp",
"role": "assistant"
}
] |
def x(self, R, kwargs_mass, kwargs_light, kwargs_anisotropy):
I_R_sigma2 = self.I_R_simga2(R, kwargs_mass, kwargs_light,
kwargs_anisotropy)
I_R = self.lightProfile.light_2d(R, kwargs_light)
return I_R_sigma2 / I_R
|
sigma2_R
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, kwargs_mass, kwargs_light, kwargs_anisotropy):\n I_R_sigma2 = self.I_R_simga2(R, kwargs_mass, kwargs_light,\n kwargs_anisotropy)\n I_R = self.lightProfile.light_2d(R, kwargs_light)\n return I_R_sigma2 / I_R\n",
"role": "user"
},
{
"content": "sigma2_R",
"role": "assistant"
}
] |
def x(self, R, kwargs_mass, kwargs_light, kwargs_anisotropy):
R = max(R, self._min_integrate)
if self._log_int is True:
min_log = np.log10(R + 0.001)
max_log = np.log10(self._max_integrate)
r_array = np.logspace(min_log, max_log, self._interp_grid_num)
dlog_r = (np.log10(r_array[2]) - np.log10(r_array[1])) * np.log(10)
IR_sigma2_dr = self._integrand_A15(r_array, R, kwargs_mass,
kwargs_light, kwargs_anisotropy) * dlog_r * r_array
else:
r_array = np.linspace(R + 0.001, self._max_integrate, self.
_interp_grid_num)
dr = r_array[2] - r_array[1]
IR_sigma2_dr = self._integrand_A15(r_array, R, kwargs_mass,
kwargs_light, kwargs_anisotropy) * dr
IR_sigma2 = np.sum(IR_sigma2_dr)
return IR_sigma2
|
I_R_simga2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, kwargs_mass, kwargs_light, kwargs_anisotropy):\n R = max(R, self._min_integrate)\n if self._log_int is True:\n min_log = np.log10(R + 0.001)\n max_log = np.log10(self._max_integrate)\n r_array = np.logspace(min_log, max_log, self._interp_grid_num)\n dlog_r = (np.log10(r_array[2]) - np.log10(r_array[1])) * np.log(10)\n IR_sigma2_dr = self._integrand_A15(r_array, R, kwargs_mass,\n kwargs_light, kwargs_anisotropy) * dlog_r * r_array\n else:\n r_array = np.linspace(R + 0.001, self._max_integrate, self.\n _interp_grid_num)\n dr = r_array[2] - r_array[1]\n IR_sigma2_dr = self._integrand_A15(r_array, R, kwargs_mass,\n kwargs_light, kwargs_anisotropy) * dr\n IR_sigma2 = np.sum(IR_sigma2_dr)\n return IR_sigma2\n",
"role": "user"
},
{
"content": "I_R_simga2",
"role": "assistant"
}
] |
def x(self, r, R, kwargs_mass, kwargs_light, kwargs_anisotropy):
k_r = self.anisotropy.K(r, R, kwargs_anisotropy)
l_r = self.lightProfile.light_3d_interp(r, kwargs_light)
m_r = self.massProfile.mass_3d_interp(r, kwargs_mass)
out = k_r * l_r * m_r / r
return out
|
integrand_A15
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, R, kwargs_mass, kwargs_light, kwargs_anisotropy):\n k_r = self.anisotropy.K(r, R, kwargs_anisotropy)\n l_r = self.lightProfile.light_3d_interp(r, kwargs_light)\n m_r = self.massProfile.mass_3d_interp(r, kwargs_mass)\n out = k_r * l_r * m_r / r\n return out\n",
"role": "user"
},
{
"content": "integrand_A15",
"role": "assistant"
}
] |
def x(self, x, y, n_sersic, R_sersic, k_eff, center_x=0, center_y=0):
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_ ** 2 + y_ ** 2)
if isinstance(r, int) or isinstance(r, float):
r = max(self._s, r)
else:
r[r < self._s] = self._s
alpha = -self.alpha_abs(x, y, n_sersic, R_sersic, k_eff, center_x, center_y
)
f_x = alpha * x_ / r
f_y = alpha * y_ / r
return f_x, f_y
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, n_sersic, R_sersic, k_eff, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n if isinstance(r, int) or isinstance(r, float):\n r = max(self._s, r)\n else:\n r[r < self._s] = self._s\n alpha = -self.alpha_abs(x, y, n_sersic, R_sersic, k_eff, center_x, center_y\n )\n f_x = alpha * x_ / r\n f_y = alpha * y_ / r\n return f_x, f_y\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, x, y, n_sersic, R_sersic, k_eff, center_x=0, center_y=0):
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_ ** 2 + y_ ** 2)
if isinstance(r, int) or isinstance(r, float):
r = max(self._s, r)
else:
r[r < self._s] = self._s
d_alpha_dr = self.d_alpha_dr(x, y, n_sersic, R_sersic, k_eff, center_x,
center_y)
alpha = -self.alpha_abs(x, y, n_sersic, R_sersic, k_eff, center_x, center_y
)
f_xx = -(d_alpha_dr / r + alpha / r ** 2) * x_ ** 2 / r + alpha / r
f_yy = -(d_alpha_dr / r + alpha / r ** 2) * y_ ** 2 / r + alpha / r
f_xy = -(d_alpha_dr / r + alpha / r ** 2) * x_ * y_ / r
return f_xx, f_yy, f_xy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, n_sersic, R_sersic, k_eff, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n r = np.sqrt(x_ ** 2 + y_ ** 2)\n if isinstance(r, int) or isinstance(r, float):\n r = max(self._s, r)\n else:\n r[r < self._s] = self._s\n d_alpha_dr = self.d_alpha_dr(x, y, n_sersic, R_sersic, k_eff, center_x,\n center_y)\n alpha = -self.alpha_abs(x, y, n_sersic, R_sersic, k_eff, center_x, center_y\n )\n f_xx = -(d_alpha_dr / r + alpha / r ** 2) * x_ ** 2 / r + alpha / r\n f_yy = -(d_alpha_dr / r + alpha / r ** 2) * y_ ** 2 / r + alpha / r\n f_xy = -(d_alpha_dr / r + alpha / r ** 2) * x_ * y_ / r\n return f_xx, f_yy, f_xy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(self, x, y, theta_E, s, q):
if q >= 1:
q = 0.999999
psi = self._psi(x, y, q, s)
f_x = theta_E / np.sqrt(1.0 - q ** 2) * np.arctan(np.sqrt(1.0 - q ** 2) *
x / (psi + s))
f_y = theta_E / np.sqrt(1.0 - q ** 2) * np.arctanh(np.sqrt(1.0 - q ** 2
) * y / (psi + q ** 2 * s))
return f_x, f_y
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, theta_E, s, q):\n if q >= 1:\n q = 0.999999\n psi = self._psi(x, y, q, s)\n f_x = theta_E / np.sqrt(1.0 - q ** 2) * np.arctan(np.sqrt(1.0 - q ** 2) *\n x / (psi + s))\n f_y = theta_E / np.sqrt(1.0 - q ** 2) * np.arctanh(np.sqrt(1.0 - q ** 2\n ) * y / (psi + q ** 2 * s))\n return f_x, f_y\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, x, y, theta_E, s, q):
alpha_ra, alpha_dec = self.derivatives(x, y, theta_E, s, q)
diff = self._diff
alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, theta_E, s, q)
alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, theta_E, s, q)
f_xx = (alpha_ra_dx - alpha_ra) / diff
f_xy = (alpha_ra_dy - alpha_ra) / diff
f_yy = (alpha_dec_dy - alpha_dec) / diff
return f_xx, f_yy, f_xy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, theta_E, s, q):\n alpha_ra, alpha_dec = self.derivatives(x, y, theta_E, s, q)\n diff = self._diff\n alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, theta_E, s, q)\n alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, theta_E, s, q)\n f_xx = (alpha_ra_dx - alpha_ra) / diff\n f_xy = (alpha_ra_dy - alpha_ra) / diff\n f_yy = (alpha_dec_dy - alpha_dec) / diff\n return f_xx, f_yy, f_xy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(self, x, y, q, s):
return np.sqrt(q ** 2 * (s ** 2 + x ** 2) + y ** 2)
|
psi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, q, s):\n return np.sqrt(q ** 2 * (s ** 2 + x ** 2) + y ** 2)\n",
"role": "user"
},
{
"content": "psi",
"role": "assistant"
}
] |
def x(self, x, y, kappa_ext, ra_0=0, dec_0=0):
theta, phi = param_util.cart2polar(x - ra_0, y - dec_0)
f_ = 1.0 / 2 * kappa_ext * theta ** 2
return f_
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kappa_ext, ra_0=0, dec_0=0):\n theta, phi = param_util.cart2polar(x - ra_0, y - dec_0)\n f_ = 1.0 / 2 * kappa_ext * theta ** 2\n return f_\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(self, x, y, kappa_ext, ra_0=0, dec_0=0):
x_ = x - ra_0
y_ = y - dec_0
f_x = kappa_ext * x_
f_y = kappa_ext * y_
return f_x, f_y
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kappa_ext, ra_0=0, dec_0=0):\n x_ = x - ra_0\n y_ = y - dec_0\n f_x = kappa_ext * x_\n f_y = kappa_ext * y_\n return f_x, f_y\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, x, y, kappa_ext, ra_0=0, dec_0=0):
gamma1 = 0
gamma2 = 0
kappa = kappa_ext
f_xx = kappa + gamma1
f_yy = kappa - gamma1
f_xy = gamma2
return f_xx, f_yy, f_xy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kappa_ext, ra_0=0, dec_0=0):\n gamma1 = 0\n gamma2 = 0\n kappa = kappa_ext\n f_xx = kappa + gamma1\n f_yy = kappa - gamma1\n f_xy = gamma2\n return f_xx, f_yy, f_xy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(ra, dec, x_0, y_0, M):
x, y = M.dot(np.array([ra, dec]))
return x + x_0, y + y_0
|
map_coord2pix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ra, dec, x_0, y_0, M):\n x, y = M.dot(np.array([ra, dec]))\n return x + x_0, y + y_0\n",
"role": "user"
},
{
"content": "map_coord2pix",
"role": "assistant"
}
] |
def x(array, nx=0, ny=0):
if nx == 0 or ny == 0:
n = int(np.sqrt(len(array)))
if n ** 2 != len(array):
raise ValueError(
'lenght of input array given as %s is not square of integer number!'
% len(array))
nx, ny = n, n
image = array.reshape(int(nx), int(ny))
return image
|
array2image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(array, nx=0, ny=0):\n if nx == 0 or ny == 0:\n n = int(np.sqrt(len(array)))\n if n ** 2 != len(array):\n raise ValueError(\n 'lenght of input array given as %s is not square of integer number!'\n % len(array))\n nx, ny = n, n\n image = array.reshape(int(nx), int(ny))\n return image\n",
"role": "user"
},
{
"content": "array2image",
"role": "assistant"
}
] |
def x(image):
nx, ny = image.shape
imgh = np.reshape(image, nx * ny)
return imgh
|
image2array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image):\n nx, ny = image.shape\n imgh = np.reshape(image, nx * ny)\n return imgh\n",
"role": "user"
},
{
"content": "image2array",
"role": "assistant"
}
] |
def x(numPix, Mpix2Angle):
x_grid, y_grid = make_grid(numPix, deltapix=1)
ra_grid, dec_grid = map_coord2pix(x_grid, y_grid, 0, 0, Mpix2Angle)
return ra_grid, dec_grid
|
make_grid_transformed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(numPix, Mpix2Angle):\n x_grid, y_grid = make_grid(numPix, deltapix=1)\n ra_grid, dec_grid = map_coord2pix(x_grid, y_grid, 0, 0, Mpix2Angle)\n return ra_grid, dec_grid\n",
"role": "user"
},
{
"content": "make_grid_transformed",
"role": "assistant"
}
] |
def x(numPix, deltapix, subgrid_res=1, left_lower=False, inverse=True):
numPix_eff = numPix * subgrid_res
deltapix_eff = deltapix / float(subgrid_res)
a = np.arange(numPix_eff)
matrix = np.dstack(np.meshgrid(a, a)).reshape(-1, 2)
if inverse is True:
delta_x = -deltapix_eff
else:
delta_x = deltapix_eff
if left_lower is True:
x_grid = matrix[:, 0] * deltapix
y_grid = matrix[:, 1] * deltapix
else:
x_grid = (matrix[:, 0] - (numPix_eff - 1) / 2.0) * delta_x
y_grid = (matrix[:, 1] - (numPix_eff - 1) / 2.0) * deltapix_eff
shift = (subgrid_res - 1) / (2.0 * subgrid_res) * deltapix
x_grid -= shift
y_grid -= shift
ra_at_xy_0 = x_grid[0]
dec_at_xy_0 = y_grid[0]
x_at_radec_0 = (numPix_eff - 1) / 2.0
y_at_radec_0 = (numPix_eff - 1) / 2.0
Mpix2coord = np.array([[delta_x, 0], [0, deltapix_eff]])
Mcoord2pix = np.linalg.inv(Mpix2coord)
return (x_grid, y_grid, ra_at_xy_0, dec_at_xy_0, x_at_radec_0,
y_at_radec_0, Mpix2coord, Mcoord2pix)
|
make_grid_with_coordtransform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(numPix, deltapix, subgrid_res=1, left_lower=False, inverse=True):\n numPix_eff = numPix * subgrid_res\n deltapix_eff = deltapix / float(subgrid_res)\n a = np.arange(numPix_eff)\n matrix = np.dstack(np.meshgrid(a, a)).reshape(-1, 2)\n if inverse is True:\n delta_x = -deltapix_eff\n else:\n delta_x = deltapix_eff\n if left_lower is True:\n x_grid = matrix[:, 0] * deltapix\n y_grid = matrix[:, 1] * deltapix\n else:\n x_grid = (matrix[:, 0] - (numPix_eff - 1) / 2.0) * delta_x\n y_grid = (matrix[:, 1] - (numPix_eff - 1) / 2.0) * deltapix_eff\n shift = (subgrid_res - 1) / (2.0 * subgrid_res) * deltapix\n x_grid -= shift\n y_grid -= shift\n ra_at_xy_0 = x_grid[0]\n dec_at_xy_0 = y_grid[0]\n x_at_radec_0 = (numPix_eff - 1) / 2.0\n y_at_radec_0 = (numPix_eff - 1) / 2.0\n Mpix2coord = np.array([[delta_x, 0], [0, deltapix_eff]])\n Mcoord2pix = np.linalg.inv(Mpix2coord)\n return (x_grid, y_grid, ra_at_xy_0, dec_at_xy_0, x_at_radec_0,\n y_at_radec_0, Mpix2coord, Mcoord2pix)\n",
"role": "user"
},
{
"content": "make_grid_with_coordtransform",
"role": "assistant"
}
] |
def x(numPix, Mpix2coord, ra_at_xy_0, dec_at_xy_0):
a = np.arange(numPix)
matrix = np.dstack(np.meshgrid(a, a)).reshape(-1, 2)
x_grid = matrix[:, 0]
y_grid = matrix[:, 1]
ra_grid = x_grid * Mpix2coord[0, 0] + y_grid * Mpix2coord[0, 1
] + ra_at_xy_0
dec_grid = x_grid * Mpix2coord[1, 0] + y_grid * Mpix2coord[1, 1
] + dec_at_xy_0
return ra_grid, dec_grid
|
grid_from_coordinate_transform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(numPix, Mpix2coord, ra_at_xy_0, dec_at_xy_0):\n a = np.arange(numPix)\n matrix = np.dstack(np.meshgrid(a, a)).reshape(-1, 2)\n x_grid = matrix[:, 0]\n y_grid = matrix[:, 1]\n ra_grid = x_grid * Mpix2coord[0, 0] + y_grid * Mpix2coord[0, 1\n ] + ra_at_xy_0\n dec_grid = x_grid * Mpix2coord[1, 0] + y_grid * Mpix2coord[1, 1\n ] + dec_at_xy_0\n return ra_grid, dec_grid\n",
"role": "user"
},
{
"content": "grid_from_coordinate_transform",
"role": "assistant"
}
] |
def x(x, y):
n = int(np.sqrt(len(x)))
if n ** 2 != len(x):
raise ValueError(
'lenght of input array given as %s is not square of integer number!'
% len(x))
x_image = x.reshape(n, n)
y_image = y.reshape(n, n)
x_axes = x_image[0, :]
y_axes = y_image[:, 0]
return x_axes, y_axes
|
get_axes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y):\n n = int(np.sqrt(len(x)))\n if n ** 2 != len(x):\n raise ValueError(\n 'lenght of input array given as %s is not square of integer number!'\n % len(x))\n x_image = x.reshape(n, n)\n y_image = y.reshape(n, n)\n x_axes = x_image[0, :]\n y_axes = y_image[:, 0]\n return x_axes, y_axes\n",
"role": "user"
},
{
"content": "get_axes",
"role": "assistant"
}
] |
def x(grid, numGrid, numPix):
Nbig = numGrid
Nsmall = numPix
small = grid.reshape([int(Nsmall), int(Nbig / Nsmall), int(Nsmall), int
(Nbig / Nsmall)]).mean(3).mean(1)
return small
|
averaging
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, numGrid, numPix):\n Nbig = numGrid\n Nsmall = numPix\n small = grid.reshape([int(Nsmall), int(Nbig / Nsmall), int(Nsmall), int\n (Nbig / Nsmall)]).mean(3).mean(1)\n return small\n",
"role": "user"
},
{
"content": "averaging",
"role": "assistant"
}
] |
def x(x, y, sourcePos_x, sourcePos_y):
x_mapped = x - sourcePos_x
y_mapped = y - sourcePos_y
absmapped = np.sqrt(x_mapped ** 2 + y_mapped ** 2)
return absmapped
|
displaceAbs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, sourcePos_x, sourcePos_y):\n x_mapped = x - sourcePos_x\n y_mapped = y - sourcePos_y\n absmapped = np.sqrt(x_mapped ** 2 + y_mapped ** 2)\n return absmapped\n",
"role": "user"
},
{
"content": "displaceAbs",
"role": "assistant"
}
] |
def x(x_1, y_1, x_2, y_2):
dist = np.zeros_like(x_1)
for i in range(len(x_1)):
dist[i] = np.min((x_1[i] - x_2) ** 2 + (y_1[i] - y_2) ** 2)
return dist
|
min_square_dist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x_1, y_1, x_2, y_2):\n dist = np.zeros_like(x_1)\n for i in range(len(x_1)):\n dist[i] = np.min((x_1[i] - x_2) ** 2 + (y_1[i] - y_2) ** 2)\n return dist\n",
"role": "user"
},
{
"content": "min_square_dist",
"role": "assistant"
}
] |
def x(radius, points):
angle = np.linspace(0, 2 * np.pi, points)
x_coord = np.cos(angle) * radius
y_coord = np.sin(angle) * radius
return x_coord, y_coord
|
points_on_circle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(radius, points):\n angle = np.linspace(0, 2 * np.pi, points)\n x_coord = np.cos(angle) * radius\n y_coord = np.sin(angle) * radius\n return x_coord, y_coord\n",
"role": "user"
},
{
"content": "points_on_circle",
"role": "assistant"
}
] |
def x(a, x, y):
dim = int(np.sqrt(len(a)))
values = []
x_mins = []
y_mins = []
for i in range(dim + 1, len(a) - dim - 1):
if a[i] < a[i - 1] and a[i] < a[i + 1] and a[i] < a[i - dim] and a[i
] < a[i + dim] and a[i] < a[i - (dim - 1)] and a[i] < a[i - (
dim + 1)] and a[i] < a[i + (dim - 1)] and a[i] < a[i + (dim + 1)]:
if a[i] < a[(i - 2 * dim - 1) % dim ** 2] and a[i] < a[(i - 2 *
dim + 1) % dim ** 2] and a[i] < a[(i - dim - 2) % dim ** 2
] and a[i] < a[(i - dim + 2) % dim ** 2] and a[i] < a[(i +
dim - 2) % dim ** 2] and a[i] < a[(i + dim + 2) % dim ** 2
] and a[i] < a[(i + 2 * dim - 1) % dim ** 2] and a[i] < a[(
i + 2 * dim + 1) % dim ** 2]:
if a[i] < a[(i - 3 * dim - 1) % dim ** 2] and a[i] < a[(i -
3 * dim + 1) % dim ** 2] and a[i] < a[(i - dim - 3) %
dim ** 2] and a[i] < a[(i - dim + 3) % dim ** 2] and a[i
] < a[(i + dim - 3) % dim ** 2] and a[i] < a[(i + dim +
3) % dim ** 2] and a[i] < a[(i + 3 * dim - 1) % dim ** 2
] and a[i] < a[(i + 3 * dim + 1) % dim ** 2]:
x_mins.append(x[i])
y_mins.append(y[i])
values.append(a[i])
return np.array(x_mins), np.array(y_mins), np.array(values)
|
neighborSelect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, x, y):\n dim = int(np.sqrt(len(a)))\n values = []\n x_mins = []\n y_mins = []\n for i in range(dim + 1, len(a) - dim - 1):\n if a[i] < a[i - 1] and a[i] < a[i + 1] and a[i] < a[i - dim] and a[i\n ] < a[i + dim] and a[i] < a[i - (dim - 1)] and a[i] < a[i - (\n dim + 1)] and a[i] < a[i + (dim - 1)] and a[i] < a[i + (dim + 1)]:\n if a[i] < a[(i - 2 * dim - 1) % dim ** 2] and a[i] < a[(i - 2 *\n dim + 1) % dim ** 2] and a[i] < a[(i - dim - 2) % dim ** 2\n ] and a[i] < a[(i - dim + 2) % dim ** 2] and a[i] < a[(i +\n dim - 2) % dim ** 2] and a[i] < a[(i + dim + 2) % dim ** 2\n ] and a[i] < a[(i + 2 * dim - 1) % dim ** 2] and a[i] < a[(\n i + 2 * dim + 1) % dim ** 2]:\n if a[i] < a[(i - 3 * dim - 1) % dim ** 2] and a[i] < a[(i -\n 3 * dim + 1) % dim ** 2] and a[i] < a[(i - dim - 3) % \n dim ** 2] and a[i] < a[(i - dim + 3) % dim ** 2] and a[i\n ] < a[(i + dim - 3) % dim ** 2] and a[i] < a[(i + dim +\n 3) % dim ** 2] and a[i] < a[(i + 3 * dim - 1) % dim ** 2\n ] and a[i] < a[(i + 3 * dim + 1) % dim ** 2]:\n x_mins.append(x[i])\n y_mins.append(y[i])\n values.append(a[i])\n return np.array(x_mins), np.array(y_mins), np.array(values)\n",
"role": "user"
},
{
"content": "neighborSelect",
"role": "assistant"
}
] |
def x(ra_coord, dec_coord, subgrid_res=2):
ra_array = array2image(ra_coord)
dec_array = array2image(dec_coord)
n = len(ra_array)
d_ra_x = ra_array[0][1] - ra_array[0][0]
d_ra_y = ra_array[1][0] - ra_array[0][0]
d_dec_x = dec_array[0][1] - dec_array[0][0]
d_dec_y = dec_array[1][0] - dec_array[0][0]
ra_array_new = np.zeros((n * subgrid_res, n * subgrid_res))
dec_array_new = np.zeros((n * subgrid_res, n * subgrid_res))
for i in range(0, subgrid_res):
for j in range(0, subgrid_res):
ra_array_new[i::subgrid_res, j::subgrid_res
] = ra_array + d_ra_x * (-1 / 2.0 + 1 / (2.0 * subgrid_res) +
j / float(subgrid_res)) + d_ra_y * (-1 / 2.0 + 1 / (2.0 *
subgrid_res) + i / float(subgrid_res))
dec_array_new[i::subgrid_res, j::subgrid_res
] = dec_array + d_dec_x * (-1 / 2.0 + 1 / (2.0 *
subgrid_res) + j / float(subgrid_res)) + d_dec_y * (-1 /
2.0 + 1 / (2.0 * subgrid_res) + i / float(subgrid_res))
ra_coords_sub = image2array(ra_array_new)
dec_coords_sub = image2array(dec_array_new)
return ra_coords_sub, dec_coords_sub
|
make_subgrid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ra_coord, dec_coord, subgrid_res=2):\n ra_array = array2image(ra_coord)\n dec_array = array2image(dec_coord)\n n = len(ra_array)\n d_ra_x = ra_array[0][1] - ra_array[0][0]\n d_ra_y = ra_array[1][0] - ra_array[0][0]\n d_dec_x = dec_array[0][1] - dec_array[0][0]\n d_dec_y = dec_array[1][0] - dec_array[0][0]\n ra_array_new = np.zeros((n * subgrid_res, n * subgrid_res))\n dec_array_new = np.zeros((n * subgrid_res, n * subgrid_res))\n for i in range(0, subgrid_res):\n for j in range(0, subgrid_res):\n ra_array_new[i::subgrid_res, j::subgrid_res\n ] = ra_array + d_ra_x * (-1 / 2.0 + 1 / (2.0 * subgrid_res) +\n j / float(subgrid_res)) + d_ra_y * (-1 / 2.0 + 1 / (2.0 *\n subgrid_res) + i / float(subgrid_res))\n dec_array_new[i::subgrid_res, j::subgrid_res\n ] = dec_array + d_dec_x * (-1 / 2.0 + 1 / (2.0 *\n subgrid_res) + j / float(subgrid_res)) + d_dec_y * (-1 / \n 2.0 + 1 / (2.0 * subgrid_res) + i / float(subgrid_res))\n ra_coords_sub = image2array(ra_array_new)\n dec_coords_sub = image2array(dec_array_new)\n return ra_coords_sub, dec_coords_sub\n",
"role": "user"
},
{
"content": "make_subgrid",
"role": "assistant"
}
] |
def x(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0):
phi_G, q = param_util.ellipticity2phi_q(e1, e2)
gamma, q = self._param_bounds(gamma, q)
theta_E *= q
x_shift = x - center_x
y_shift = y - center_y
E = theta_E / (((3 - gamma) / 2.0) ** (1.0 / (1 - gamma)) * np.sqrt(q))
eta = -gamma + 3
xt1 = np.cos(phi_G) * x_shift + np.sin(phi_G) * y_shift
xt2 = -np.sin(phi_G) * x_shift + np.cos(phi_G) * y_shift
p2 = xt1 ** 2 + xt2 ** 2 / q ** 2
s2 = 0.0
return 2 * E ** 2 / eta ** 2 * ((p2 + s2) / E ** 2) ** (eta / 2)
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n gamma, q = self._param_bounds(gamma, q)\n theta_E *= q\n x_shift = x - center_x\n y_shift = y - center_y\n E = theta_E / (((3 - gamma) / 2.0) ** (1.0 / (1 - gamma)) * np.sqrt(q))\n eta = -gamma + 3\n xt1 = np.cos(phi_G) * x_shift + np.sin(phi_G) * y_shift\n xt2 = -np.sin(phi_G) * x_shift + np.cos(phi_G) * y_shift\n p2 = xt1 ** 2 + xt2 ** 2 / q ** 2\n s2 = 0.0\n return 2 * E ** 2 / eta ** 2 * ((p2 + s2) / E ** 2) ** (eta / 2)\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(self, r, theta_E, gamma, e1, e2):
return self.spp.mass_3d_lens(r, theta_E, gamma)
|
mass_3d_lens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, theta_E, gamma, e1, e2):\n return self.spp.mass_3d_lens(r, theta_E, gamma)\n",
"role": "user"
},
{
"content": "mass_3d_lens",
"role": "assistant"
}
] |
def x(self, gamma, q):
if gamma < 1.4:
gamma = 1.4
if gamma > 2.9:
gamma = 2.9
if q < 0.01:
q = 0.01
return float(gamma), q
|
param_bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, gamma, q):\n if gamma < 1.4:\n gamma = 1.4\n if gamma > 2.9:\n gamma = 2.9\n if q < 0.01:\n q = 0.01\n return float(gamma), q\n",
"role": "user"
},
{
"content": "param_bounds",
"role": "assistant"
}
] |
def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo, tolerance):
dist = self._param.check_solver(kwargs_lens, kwargs_ps, kwargs_cosmo)
if dist > tolerance:
return dist * 10 ** 10
return 0
|
solver_penalty
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, kwargs_ps, kwargs_cosmo, tolerance):\n dist = self._param.check_solver(kwargs_lens, kwargs_ps, kwargs_cosmo)\n if dist > tolerance:\n return dist * 10 ** 10\n return 0\n",
"role": "user"
},
{
"content": "solver_penalty",
"role": "assistant"
}
] |
def x(self, kwargs_ps, kwargs_lens):
ra_image_list, dec_image_list = self._pointSource.image_position(kwargs_ps
=kwargs_ps, kwargs_lens=kwargs_lens)
if len(ra_image_list) > 0:
if len(ra_image_list[0]) > self._param.num_point_source_images:
return True
return False
|
check_additional_images
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_ps, kwargs_lens):\n ra_image_list, dec_image_list = self._pointSource.image_position(kwargs_ps\n =kwargs_ps, kwargs_lens=kwargs_lens)\n if len(ra_image_list) > 0:\n if len(ra_image_list[0]) > self._param.num_point_source_images:\n return True\n return False\n",
"role": "user"
},
{
"content": "check_additional_images",
"role": "assistant"
}
] |
def x(self, x, y, amp, R_sersic, n_sersic, center_x=0, center_y=0):
R_sersic = np.maximum(0, R_sersic)
x_shift = x - center_x
y_shift = y - center_y
R = np.sqrt(x_shift * x_shift + y_shift * y_shift)
if isinstance(R, int) or isinstance(R, float):
R = max(self._smoothing, R)
else:
R[R < self._smoothing] = self._smoothing
_, bn = self.k_bn(n_sersic, R_sersic)
R_frac = R / R_sersic
if isinstance(R, int) or isinstance(R, float):
if R_frac > 100:
result = 0
else:
exponent = -bn * (R_frac ** (1.0 / n_sersic) - 1.0)
result = amp * np.exp(exponent)
else:
R_frac_real = R_frac[R_frac <= 100]
exponent = -bn * (R_frac_real ** (1.0 / n_sersic) - 1.0)
result = np.zeros_like(R)
result[R_frac <= 100] = amp * np.exp(exponent)
return np.nan_to_num(result)
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, amp, R_sersic, n_sersic, center_x=0, center_y=0):\n R_sersic = np.maximum(0, R_sersic)\n x_shift = x - center_x\n y_shift = y - center_y\n R = np.sqrt(x_shift * x_shift + y_shift * y_shift)\n if isinstance(R, int) or isinstance(R, float):\n R = max(self._smoothing, R)\n else:\n R[R < self._smoothing] = self._smoothing\n _, bn = self.k_bn(n_sersic, R_sersic)\n R_frac = R / R_sersic\n if isinstance(R, int) or isinstance(R, float):\n if R_frac > 100:\n result = 0\n else:\n exponent = -bn * (R_frac ** (1.0 / n_sersic) - 1.0)\n result = amp * np.exp(exponent)\n else:\n R_frac_real = R_frac[R_frac <= 100]\n exponent = -bn * (R_frac_real ** (1.0 / n_sersic) - 1.0)\n result = np.zeros_like(R)\n result[R_frac <= 100] = amp * np.exp(exponent)\n return np.nan_to_num(result)\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(self, x, y, amp, R_sersic, n_sersic, e1, e2, center_x=0, center_y=0):
R_sersic = np.maximum(0, R_sersic)
phi_G, q = param_util.ellipticity2phi_q(e1, e2)
x_shift = x - center_x
y_shift = y - center_y
cos_phi = np.cos(phi_G)
sin_phi = np.sin(phi_G)
xt1 = cos_phi * x_shift + sin_phi * y_shift
xt2 = -sin_phi * x_shift + cos_phi * y_shift
xt2difq2 = xt2 / (q * q)
R_ = np.sqrt(xt1 * xt1 + xt2 * xt2difq2)
if isinstance(R_, int) or isinstance(R_, float):
R_ = max(self._smoothing, R_)
else:
R_[R_ < self._smoothing] = self._smoothing
k, bn = self.k_bn(n_sersic, R_sersic)
R_frac = R_ / R_sersic
R_frac = R_frac.astype(np.float32)
if isinstance(R_, int) or isinstance(R_, float):
if R_frac > 100:
result = 0
else:
exponent = -bn * (R_frac ** (1.0 / n_sersic) - 1.0)
result = amp * np.exp(exponent)
else:
R_frac_real = R_frac[R_frac <= 100]
exponent = -bn * (R_frac_real ** (1.0 / n_sersic) - 1.0)
result = np.zeros_like(R_)
result[R_frac <= 100] = amp * np.exp(exponent)
return np.nan_to_num(result)
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, amp, R_sersic, n_sersic, e1, e2, center_x=0, center_y=0):\n R_sersic = np.maximum(0, R_sersic)\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n xt1 = cos_phi * x_shift + sin_phi * y_shift\n xt2 = -sin_phi * x_shift + cos_phi * y_shift\n xt2difq2 = xt2 / (q * q)\n R_ = np.sqrt(xt1 * xt1 + xt2 * xt2difq2)\n if isinstance(R_, int) or isinstance(R_, float):\n R_ = max(self._smoothing, R_)\n else:\n R_[R_ < self._smoothing] = self._smoothing\n k, bn = self.k_bn(n_sersic, R_sersic)\n R_frac = R_ / R_sersic\n R_frac = R_frac.astype(np.float32)\n if isinstance(R_, int) or isinstance(R_, float):\n if R_frac > 100:\n result = 0\n else:\n exponent = -bn * (R_frac ** (1.0 / n_sersic) - 1.0)\n result = amp * np.exp(exponent)\n else:\n R_frac_real = R_frac[R_frac <= 100]\n exponent = -bn * (R_frac_real ** (1.0 / n_sersic) - 1.0)\n result = np.zeros_like(R_)\n result[R_frac <= 100] = amp * np.exp(exponent)\n return np.nan_to_num(result)\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(self, x, y, amp, R_sersic, Re, n_sersic, gamma, e1, e2, center_x=0,
center_y=0, alpha=3.0):
phi_G, q = param_util.ellipticity2phi_q(e1, e2)
Rb = R_sersic
x_shift = x - center_x
y_shift = y - center_y
cos_phi = np.cos(phi_G)
sin_phi = np.sin(phi_G)
xt1 = cos_phi * x_shift + sin_phi * y_shift
xt2 = -sin_phi * x_shift + cos_phi * y_shift
xt2difq2 = xt2 / (q * q)
R_ = np.sqrt(xt1 * xt1 + xt2 * xt2difq2)
if isinstance(R_, int) or isinstance(R_, float):
R_ = max(self._smoothing, R_)
else:
R_[R_ < self._smoothing] = self._smoothing
if isinstance(R_, int) or isinstance(R_, float):
R = max(self._smoothing, R_)
else:
R = np.empty_like(R_)
_R = R_[R_ > self._smoothing]
R[R_ <= self._smoothing] = self._smoothing
R[R_ > self._smoothing] = _R
k, bn = self.k_bn(n_sersic, Re)
result = amp * (1 + (Rb / R) ** alpha) ** (gamma / alpha) * np.exp(-bn *
(((R ** alpha + Rb ** alpha) / Re ** alpha) ** (1.0 / (alpha *
n_sersic)) - 1.0))
return np.nan_to_num(result)
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, amp, R_sersic, Re, n_sersic, gamma, e1, e2, center_x=0,\n center_y=0, alpha=3.0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n Rb = R_sersic\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n xt1 = cos_phi * x_shift + sin_phi * y_shift\n xt2 = -sin_phi * x_shift + cos_phi * y_shift\n xt2difq2 = xt2 / (q * q)\n R_ = np.sqrt(xt1 * xt1 + xt2 * xt2difq2)\n if isinstance(R_, int) or isinstance(R_, float):\n R_ = max(self._smoothing, R_)\n else:\n R_[R_ < self._smoothing] = self._smoothing\n if isinstance(R_, int) or isinstance(R_, float):\n R = max(self._smoothing, R_)\n else:\n R = np.empty_like(R_)\n _R = R_[R_ > self._smoothing]\n R[R_ <= self._smoothing] = self._smoothing\n R[R_ > self._smoothing] = _R\n k, bn = self.k_bn(n_sersic, Re)\n result = amp * (1 + (Rb / R) ** alpha) ** (gamma / alpha) * np.exp(-bn *\n (((R ** alpha + Rb ** alpha) / Re ** alpha) ** (1.0 / (alpha *\n n_sersic)) - 1.0))\n return np.nan_to_num(result)\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(self, x, y, theta_E, r_trunc, center_x=0, center_y=0):
x_shift = x - center_x
y_shift = y - center_y
dphi_dr = self._dphi_dr(x_shift, y_shift, theta_E, r_trunc)
dr_dx, dr_dy = self._dr_dx(x_shift, y_shift)
f_x = dphi_dr * dr_dx
f_y = dphi_dr * dr_dy
return f_x, f_y
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, theta_E, r_trunc, center_x=0, center_y=0):\n x_shift = x - center_x\n y_shift = y - center_y\n dphi_dr = self._dphi_dr(x_shift, y_shift, theta_E, r_trunc)\n dr_dx, dr_dy = self._dr_dx(x_shift, y_shift)\n f_x = dphi_dr * dr_dx\n f_y = dphi_dr * dr_dy\n return f_x, f_y\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, x, y, theta_E, r_trunc, center_x=0, center_y=0):
x_shift = x - center_x
y_shift = y - center_y
dphi_dr = self._dphi_dr(x_shift, y_shift, theta_E, r_trunc)
d2phi_dr2 = self._d2phi_dr2(x_shift, y_shift, theta_E, r_trunc)
dr_dx, dr_dy = self._dr_dx(x, y)
d2r_dx2, d2r_dy2, d2r_dxy = self._d2r_dx2(x_shift, y_shift)
f_xx = d2r_dx2 * dphi_dr + dr_dx ** 2 * d2phi_dr2
f_yy = d2r_dy2 * dphi_dr + dr_dy ** 2 * d2phi_dr2
f_xy = d2r_dxy * dphi_dr + dr_dx * dr_dy * d2phi_dr2
return f_xx, f_yy, f_xy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, theta_E, r_trunc, center_x=0, center_y=0):\n x_shift = x - center_x\n y_shift = y - center_y\n dphi_dr = self._dphi_dr(x_shift, y_shift, theta_E, r_trunc)\n d2phi_dr2 = self._d2phi_dr2(x_shift, y_shift, theta_E, r_trunc)\n dr_dx, dr_dy = self._dr_dx(x, y)\n d2r_dx2, d2r_dy2, d2r_dxy = self._d2r_dx2(x_shift, y_shift)\n f_xx = d2r_dx2 * dphi_dr + dr_dx ** 2 * d2phi_dr2\n f_yy = d2r_dy2 * dphi_dr + dr_dy ** 2 * d2phi_dr2\n f_xy = d2r_dxy * dphi_dr + dr_dx * dr_dy * d2phi_dr2\n return f_xx, f_yy, f_xy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(self, x, y):
r = np.sqrt(x ** 2 + y ** 2)
if isinstance(r, int) or isinstance(r, float):
if r == 0:
r = 1
else:
r[r == 0] = 1
return x / r, y / r
|
dr_dx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y):\n r = np.sqrt(x ** 2 + y ** 2)\n if isinstance(r, int) or isinstance(r, float):\n if r == 0:\n r = 1\n else:\n r[r == 0] = 1\n return x / r, y / r\n",
"role": "user"
},
{
"content": "dr_dx",
"role": "assistant"
}
] |
def x(self, x, y, sigma0, Rs, e1, e2, center_x=0, center_y=0):
phi_G, q = param_util.ellipticity2phi_q(e1, e2)
x_shift = x - center_x
y_shift = y - center_y
cos_phi = np.cos(phi_G)
sin_phi = np.sin(phi_G)
e = abs(1 - q)
x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)
y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)
f_ = self.spherical.function(x_, y_, sigma0, Rs)
return f_
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, sigma0, Rs, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n e = abs(1 - q)\n x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)\n y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)\n f_ = self.spherical.function(x_, y_, sigma0, Rs)\n return f_\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(self, x, y, sigma0, Rs, e1, e2, center_x=0, center_y=0):
phi_G, q = param_util.ellipticity2phi_q(e1, e2)
x_shift = x - center_x
y_shift = y - center_y
cos_phi = np.cos(phi_G)
sin_phi = np.sin(phi_G)
e = abs(1 - q)
x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)
y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)
f_x_prim, f_y_prim = self.spherical.derivatives(x_, y_, sigma0, Rs)
f_x_prim *= np.sqrt(1 - e)
f_y_prim *= np.sqrt(1 + e)
f_x = cos_phi * f_x_prim - sin_phi * f_y_prim
f_y = sin_phi * f_x_prim + cos_phi * f_y_prim
return f_x, f_y
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, sigma0, Rs, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n e = abs(1 - q)\n x_ = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)\n y_ = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)\n f_x_prim, f_y_prim = self.spherical.derivatives(x_, y_, sigma0, Rs)\n f_x_prim *= np.sqrt(1 - e)\n f_y_prim *= np.sqrt(1 + e)\n f_x = cos_phi * f_x_prim - sin_phi * f_y_prim\n f_y = sin_phi * f_x_prim + cos_phi * f_y_prim\n return f_x, f_y\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, x):
c = 1e-06
if isinstance(x, np.ndarray):
x[np.where(x < c)] = c
nfwvals = np.ones_like(x)
inds1 = np.where(x < 1)
inds2 = np.where(x > 1)
nfwvals[inds1] = (1 - x[inds1] ** 2) ** -0.5 * np.arctanh((1 - x[
inds1] ** 2) ** 0.5)
nfwvals[inds2] = (x[inds2] ** 2 - 1) ** -0.5 * np.arctan((x[inds2] **
2 - 1) ** 0.5)
return nfwvals
elif isinstance(x, float) or isinstance(x, int):
x = max(x, c)
if x == 1:
return 1
if x < 1:
return (1 - x ** 2) ** -0.5 * np.arctanh((1 - x ** 2) ** 0.5)
else:
return (x ** 2 - 1) ** -0.5 * np.arctan((x ** 2 - 1) ** 0.5)
|
nfw_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n c = 1e-06\n if isinstance(x, np.ndarray):\n x[np.where(x < c)] = c\n nfwvals = np.ones_like(x)\n inds1 = np.where(x < 1)\n inds2 = np.where(x > 1)\n nfwvals[inds1] = (1 - x[inds1] ** 2) ** -0.5 * np.arctanh((1 - x[\n inds1] ** 2) ** 0.5)\n nfwvals[inds2] = (x[inds2] ** 2 - 1) ** -0.5 * np.arctan((x[inds2] **\n 2 - 1) ** 0.5)\n return nfwvals\n elif isinstance(x, float) or isinstance(x, int):\n x = max(x, c)\n if x == 1:\n return 1\n if x < 1:\n return (1 - x ** 2) ** -0.5 * np.arctanh((1 - x ** 2) ** 0.5)\n else:\n return (x ** 2 - 1) ** -0.5 * np.arctan((x ** 2 - 1) ** 0.5)\n",
"role": "user"
},
{
"content": "nfw_func",
"role": "assistant"
}
] |
def x(self, X, b, c=0.001):
if b == 1:
b = 1 + c
prefac = (b - 1) ** -2
if isinstance(X, np.ndarray):
X[np.where(X == 1)] = 1 - c
output = np.empty_like(X)
inds1 = np.where(np.absolute(X - b) < c)
output[inds1] = prefac * (-2 - b + (1 + b + b ** 2) * self._nfw_func(b)
) * (1 + b) ** -1
inds2 = np.where(np.absolute(X - b) >= c)
output[inds2] = prefac * ((X[inds2] ** 2 - 1) ** -1 * (1 - b - (1 -
b * X[inds2] ** 2) * self._nfw_func(X[inds2])) - self._nfw_func
(X[inds2] * b ** -1))
else:
if X == 1:
X = 1 - c
if np.absolute(X - b) < c:
output = prefac * (-2 - b + (1 + b + b ** 2) * self._nfw_func(b)
) * (1 + b) ** -1
else:
output = prefac * ((X ** 2 - 1) ** -1 * (1 - b - (1 - b * X **
2) * self._nfw_func(X)) - self._nfw_func(X * b ** -1))
return output
|
F
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, b, c=0.001):\n if b == 1:\n b = 1 + c\n prefac = (b - 1) ** -2\n if isinstance(X, np.ndarray):\n X[np.where(X == 1)] = 1 - c\n output = np.empty_like(X)\n inds1 = np.where(np.absolute(X - b) < c)\n output[inds1] = prefac * (-2 - b + (1 + b + b ** 2) * self._nfw_func(b)\n ) * (1 + b) ** -1\n inds2 = np.where(np.absolute(X - b) >= c)\n output[inds2] = prefac * ((X[inds2] ** 2 - 1) ** -1 * (1 - b - (1 -\n b * X[inds2] ** 2) * self._nfw_func(X[inds2])) - self._nfw_func\n (X[inds2] * b ** -1))\n else:\n if X == 1:\n X = 1 - c\n if np.absolute(X - b) < c:\n output = prefac * (-2 - b + (1 + b + b ** 2) * self._nfw_func(b)\n ) * (1 + b) ** -1\n else:\n output = prefac * ((X ** 2 - 1) ** -1 * (1 - b - (1 - b * X ** \n 2) * self._nfw_func(X)) - self._nfw_func(X * b ** -1))\n return output\n",
"role": "user"
},
{
"content": "F",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0, r_core):
M0 = 4 * np.pi * rho0 * Rs ** 3
return M0 / 4 / np.pi * ((r_core + R) * (R + Rs) ** 2) ** -1
|
density
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0, r_core):\n M0 = 4 * np.pi * rho0 * Rs ** 3\n return M0 / 4 / np.pi * ((r_core + R) * (R + Rs) ** 2) ** -1\n",
"role": "user"
},
{
"content": "density",
"role": "assistant"
}
] |
def x(self, x, y, Rs, rho0, r_core, center_x=0, center_y=0):
x_ = x - center_x
y_ = y - center_y
R = np.sqrt(x_ ** 2 + y_ ** 2)
b = r_core * Rs ** -1
x = R * Rs ** -1
Fx = self._F(x, b)
return 2 * rho0 * Rs * Fx
|
density_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, Rs, rho0, r_core, center_x=0, center_y=0):\n x_ = x - center_x\n y_ = y - center_y\n R = np.sqrt(x_ ** 2 + y_ ** 2)\n b = r_core * Rs ** -1\n x = R * Rs ** -1\n Fx = self._F(x, b)\n return 2 * rho0 * Rs * Fx\n",
"role": "user"
},
{
"content": "density_2d",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0, r_core):
b = r_core * Rs ** -1
x = R * Rs ** -1
M_0 = 4 * np.pi * Rs ** 3 * rho0
return M_0 * (x * (1 + x) ** -1 * (-1 + b) ** -1 + (-1 + b) ** -2 * ((2 *
b - 1) * np.log(1 / (1 + x)) + b ** 2 * np.log(x / b + 1)))
|
mass_3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0, r_core):\n b = r_core * Rs ** -1\n x = R * Rs ** -1\n M_0 = 4 * np.pi * Rs ** 3 * rho0\n return M_0 * (x * (1 + x) ** -1 * (-1 + b) ** -1 + (-1 + b) ** -2 * ((2 *\n b - 1) * np.log(1 / (1 + x)) + b ** 2 * np.log(x / b + 1)))\n",
"role": "user"
},
{
"content": "mass_3d",
"role": "assistant"
}
] |
def x(self, R, Rs, rho0, r_core, ax_x, ax_y):
if isinstance(R, int) or isinstance(R, float):
R = max(R, 1e-05)
else:
R[R <= 1e-05] = 1e-05
x = R / Rs
b = r_core * Rs ** -1
b = max(b, 1e-06)
gx = self._G(x, b)
a = 4 * rho0 * Rs * gx / x ** 2
return a * ax_x, a * ax_y
|
cnfwAlpha
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, R, Rs, rho0, r_core, ax_x, ax_y):\n if isinstance(R, int) or isinstance(R, float):\n R = max(R, 1e-05)\n else:\n R[R <= 1e-05] = 1e-05\n x = R / Rs\n b = r_core * Rs ** -1\n b = max(b, 1e-06)\n gx = self._G(x, b)\n a = 4 * rho0 * Rs * gx / x ** 2\n return a * ax_x, a * ax_y\n",
"role": "user"
},
{
"content": "cnfwAlpha",
"role": "assistant"
}
] |
def x(self, x, y, Rs, theta_Rs, e1, e2, center_x=0, center_y=0):
phi_G, q = param_util.ellipticity2phi_q(e1, e2)
x_shift = x - center_x
y_shift = y - center_y
cos_phi = np.cos(phi_G)
sin_phi = np.sin(phi_G)
e = min(abs(1.0 - q), 0.99)
xt1 = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)
xt2 = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)
R_ = np.sqrt(xt1 ** 2 + xt2 ** 2)
rho0_input = self.nfw._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs)
if Rs < 1e-07:
Rs = 1e-07
f_ = self.nfw.nfwPot(R_, Rs, rho0_input)
return f_
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, Rs, theta_Rs, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n e = min(abs(1.0 - q), 0.99)\n xt1 = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)\n xt2 = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)\n R_ = np.sqrt(xt1 ** 2 + xt2 ** 2)\n rho0_input = self.nfw._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs)\n if Rs < 1e-07:\n Rs = 1e-07\n f_ = self.nfw.nfwPot(R_, Rs, rho0_input)\n return f_\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(self, x, y, Rs, theta_Rs, e1, e2, center_x=0, center_y=0):
phi_G, q = param_util.ellipticity2phi_q(e1, e2)
x_shift = x - center_x
y_shift = y - center_y
cos_phi = np.cos(phi_G)
sin_phi = np.sin(phi_G)
e = min(abs(1.0 - q), 0.99)
xt1 = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)
xt2 = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)
R_ = np.sqrt(xt1 ** 2 + xt2 ** 2)
rho0_input = self.nfw._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs)
if Rs < 1e-07:
Rs = 1e-07
f_x_prim, f_y_prim = self.nfw.nfwAlpha(R_, Rs, rho0_input, xt1, xt2)
f_x_prim *= np.sqrt(1 - e)
f_y_prim *= np.sqrt(1 + e)
f_x = cos_phi * f_x_prim - sin_phi * f_y_prim
f_y = sin_phi * f_x_prim + cos_phi * f_y_prim
return f_x, f_y
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, Rs, theta_Rs, e1, e2, center_x=0, center_y=0):\n phi_G, q = param_util.ellipticity2phi_q(e1, e2)\n x_shift = x - center_x\n y_shift = y - center_y\n cos_phi = np.cos(phi_G)\n sin_phi = np.sin(phi_G)\n e = min(abs(1.0 - q), 0.99)\n xt1 = (cos_phi * x_shift + sin_phi * y_shift) * np.sqrt(1 - e)\n xt2 = (-sin_phi * x_shift + cos_phi * y_shift) * np.sqrt(1 + e)\n R_ = np.sqrt(xt1 ** 2 + xt2 ** 2)\n rho0_input = self.nfw._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs)\n if Rs < 1e-07:\n Rs = 1e-07\n f_x_prim, f_y_prim = self.nfw.nfwAlpha(R_, Rs, rho0_input, xt1, xt2)\n f_x_prim *= np.sqrt(1 - e)\n f_y_prim *= np.sqrt(1 + e)\n f_x = cos_phi * f_x_prim - sin_phi * f_y_prim\n f_y = sin_phi * f_x_prim + cos_phi * f_y_prim\n return f_x, f_y\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, n_particles=10, n_iterations=10, lowerLimit=-0.2, upperLimit=
0.2, threadCount=1, mpi=False, print_key='default'):
init_pos = self.chain.get_args(self.chain.kwargs_data_init)
num_param = self.chain.num_param
lowerLimit = [lowerLimit] * num_param
upperLimit = [upperLimit] * num_param
if mpi is True:
pso = MpiParticleSwarmOptimizer(self.chain, lowerLimit, upperLimit,
n_particles, threads=1)
else:
pso = ParticleSwarmOptimizer(self.chain, lowerLimit, upperLimit,
n_particles, threads=threadCount)
if not init_pos is None:
pso.gbest.position = init_pos
pso.gbest.velocity = [0] * len(init_pos)
pso.gbest.fitness, _ = self.chain.likelihood(init_pos)
X2_list = []
vel_list = []
pos_list = []
time_start = time.time()
if pso.isMaster():
print('Computing the %s ...' % print_key)
num_iter = 0
for swarm in pso.sample(n_iterations):
X2_list.append(pso.gbest.fitness * 2)
vel_list.append(pso.gbest.velocity)
pos_list.append(pso.gbest.position)
num_iter += 1
if pso.isMaster():
if num_iter % 10 == 0:
print(num_iter)
if not mpi:
result = pso.gbest.position
else:
result = MpiUtil.mpiBCast(pso.gbest.position)
kwargs_data = self.chain.update_data(result)
if mpi is True and not pso.isMaster():
pass
else:
time_end = time.time()
print('Shifts found: ', result)
print(time_end - time_start, 'time used for PSO', print_key)
return kwargs_data, [X2_list, pos_list, vel_list, []]
|
pso
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n_particles=10, n_iterations=10, lowerLimit=-0.2, upperLimit=\n 0.2, threadCount=1, mpi=False, print_key='default'):\n init_pos = self.chain.get_args(self.chain.kwargs_data_init)\n num_param = self.chain.num_param\n lowerLimit = [lowerLimit] * num_param\n upperLimit = [upperLimit] * num_param\n if mpi is True:\n pso = MpiParticleSwarmOptimizer(self.chain, lowerLimit, upperLimit,\n n_particles, threads=1)\n else:\n pso = ParticleSwarmOptimizer(self.chain, lowerLimit, upperLimit,\n n_particles, threads=threadCount)\n if not init_pos is None:\n pso.gbest.position = init_pos\n pso.gbest.velocity = [0] * len(init_pos)\n pso.gbest.fitness, _ = self.chain.likelihood(init_pos)\n X2_list = []\n vel_list = []\n pos_list = []\n time_start = time.time()\n if pso.isMaster():\n print('Computing the %s ...' % print_key)\n num_iter = 0\n for swarm in pso.sample(n_iterations):\n X2_list.append(pso.gbest.fitness * 2)\n vel_list.append(pso.gbest.velocity)\n pos_list.append(pso.gbest.position)\n num_iter += 1\n if pso.isMaster():\n if num_iter % 10 == 0:\n print(num_iter)\n if not mpi:\n result = pso.gbest.position\n else:\n result = MpiUtil.mpiBCast(pso.gbest.position)\n kwargs_data = self.chain.update_data(result)\n if mpi is True and not pso.isMaster():\n pass\n else:\n time_end = time.time()\n print('Shifts found: ', result)\n print(time_end - time_start, 'time used for PSO', print_key)\n return kwargs_data, [X2_list, pos_list, vel_list, []]\n",
"role": "user"
},
{
"content": "pso",
"role": "assistant"
}
] |
def x(self, args):
kwargs_data = self.update_data(args)
imageModel = class_creator.create_image_model(kwargs_data, self.
_kwargs_psf, self._kwargs_numerics, self._kwargs_model)
logL = imageModel.likelihood_data_given_model(self._kwargs_lens, self.
_kwargs_source, self._kwargs_lens_light, self._kwargs_else,
source_marg=self._source_marg)
return logL, None
|
likelihood
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, args):\n kwargs_data = self.update_data(args)\n imageModel = class_creator.create_image_model(kwargs_data, self.\n _kwargs_psf, self._kwargs_numerics, self._kwargs_model)\n logL = imageModel.likelihood_data_given_model(self._kwargs_lens, self.\n _kwargs_source, self._kwargs_lens_light, self._kwargs_else,\n source_marg=self._source_marg)\n return logL, None\n",
"role": "user"
},
{
"content": "likelihood",
"role": "assistant"
}
] |
def x(self, n_particles=50, n_iterations=250, restart=1):
if restart < 0:
raise ValueError("parameter 'restart' must be integer of value > 0")
penalties, parameters, src_pen_best = [], [], []
for run in range(0, restart):
penalty, params = self._single_optimization(n_particles, n_iterations)
penalties.append(penalty)
parameters.append(params)
src_pen_best.append(self._optimizer.src_pen_best)
best_index = np.argmin(penalties)
kwargs_varied = self._params.argstovary_todictionary(parameters[best_index]
)
kwargs_lens_final = kwargs_varied + self._params.argsfixed_todictionary()
srcx, srcy = self._optimizer.lensing._ray_shooting_fast(kwargs_varied)
source_x, source_y = np.mean(srcx), np.mean(srcy)
if src_pen_best[best_index] < self._tol_src_penalty:
x_image, y_image = self.x_pos, self.y_pos
else:
print('Warning: possibly a bad fit.')
x_image, y_image = self.solver.findBrightImage(source_x, source_y,
kwargs_lens_final, arrival_time_sort=False)
if self._verbose:
print('optimization done.')
print('Recovered source position: ', (srcx, srcy))
return kwargs_lens_final, [source_x, source_y], [x_image, y_image]
|
optimize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n_particles=50, n_iterations=250, restart=1):\n if restart < 0:\n raise ValueError(\"parameter 'restart' must be integer of value > 0\")\n penalties, parameters, src_pen_best = [], [], []\n for run in range(0, restart):\n penalty, params = self._single_optimization(n_particles, n_iterations)\n penalties.append(penalty)\n parameters.append(params)\n src_pen_best.append(self._optimizer.src_pen_best)\n best_index = np.argmin(penalties)\n kwargs_varied = self._params.argstovary_todictionary(parameters[best_index]\n )\n kwargs_lens_final = kwargs_varied + self._params.argsfixed_todictionary()\n srcx, srcy = self._optimizer.lensing._ray_shooting_fast(kwargs_varied)\n source_x, source_y = np.mean(srcx), np.mean(srcy)\n if src_pen_best[best_index] < self._tol_src_penalty:\n x_image, y_image = self.x_pos, self.y_pos\n else:\n print('Warning: possibly a bad fit.')\n x_image, y_image = self.solver.findBrightImage(source_x, source_y,\n kwargs_lens_final, arrival_time_sort=False)\n if self._verbose:\n print('optimization done.')\n print('Recovered source position: ', (srcx, srcy))\n return kwargs_lens_final, [source_x, source_y], [x_image, y_image]\n",
"role": "user"
},
{
"content": "optimize",
"role": "assistant"
}
] |
def x(self, n_particles, n_iterations, optimizer):
pso = ParticleSwarmOptimizer(optimizer, low=self._lower_limit, high=
self._upper_limit, particleCount=n_particles)
gBests = pso._optimize(maxIter=n_iterations, standard_dev=self.
_pso_convergence_standardDEV)
likelihoods = [particle.fitness for particle in gBests]
ind = np.argmax(likelihoods)
return gBests[ind].position
|
pso
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n_particles, n_iterations, optimizer):\n pso = ParticleSwarmOptimizer(optimizer, low=self._lower_limit, high=\n self._upper_limit, particleCount=n_particles)\n gBests = pso._optimize(maxIter=n_iterations, standard_dev=self.\n _pso_convergence_standardDEV)\n likelihoods = [particle.fitness for particle in gBests]\n ind = np.argmax(likelihoods)\n return gBests[ind].position\n",
"role": "user"
},
{
"content": "pso",
"role": "assistant"
}
] |
def x(amplitudes, sigmas):
amplitudes_3d = amplitudes / sigmas / np.sqrt(2 * np.pi)
return amplitudes_3d, sigmas
|
de_projection_3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(amplitudes, sigmas):\n amplitudes_3d = amplitudes / sigmas / np.sqrt(2 * np.pi)\n return amplitudes_3d, sigmas\n",
"role": "user"
},
{
"content": "de_projection_3d",
"role": "assistant"
}
] |
def x(self, deltaPix):
self._pixel_size = deltaPix
if self.psf_type == 'GAUSSIAN':
try:
del self._kernel_point_source
except:
pass
|
set_pixel_size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, deltaPix):\n self._pixel_size = deltaPix\n if self.psf_type == 'GAUSSIAN':\n try:\n del self._kernel_point_source\n except:\n pass\n",
"role": "user"
},
{
"content": "set_pixel_size",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.