source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, kwargs_model={}, kwargs_constraints={}, kwargs_likelihood={}, lens_add_fixed=[], source_add_fixed=[], lens_light_add_fixed=[], ps_add_fixed=[], cosmo_add_fixed=[], lens_remove_fixed=[], source_remove_fixed=[], lens_light_remove_fixed=[], ps_remove_fixed=[], cosmo_remove_fixed=[], change_source_lower_limit=None, change_source_upper_limit=None): self._updateManager.update_options(kwargs_model, kwargs_constraints, kwargs_likelihood) self._updateManager.update_fixed(self._lens_temp, self._source_temp, self._lens_light_temp, self._ps_temp, self._cosmo_temp, lens_add_fixed, source_add_fixed, lens_light_add_fixed, ps_add_fixed, cosmo_add_fixed, lens_remove_fixed, source_remove_fixed, lens_light_remove_fixed, ps_remove_fixed, cosmo_remove_fixed) self._updateManager.update_limits(change_source_lower_limit, change_source_upper_limit) return 0
update_settings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_model={}, kwargs_constraints={}, kwargs_likelihood={},\n lens_add_fixed=[], source_add_fixed=[], lens_light_add_fixed=[],\n ps_add_fixed=[], cosmo_add_fixed=[], lens_remove_fixed=[],\n source_remove_fixed=[], lens_light_remove_fixed=[], ps_remove_fixed=[],\n cosmo_remove_fixed=[], change_source_lower_limit=None,\n change_source_upper_limit=None):\n self._updateManager.update_options(kwargs_model, kwargs_constraints,\n kwargs_likelihood)\n self._updateManager.update_fixed(self._lens_temp, self._source_temp,\n self._lens_light_temp, self._ps_temp, self._cosmo_temp,\n lens_add_fixed, source_add_fixed, lens_light_add_fixed,\n ps_add_fixed, cosmo_add_fixed, lens_remove_fixed,\n source_remove_fixed, lens_light_remove_fixed, ps_remove_fixed,\n cosmo_remove_fixed)\n self._updateManager.update_limits(change_source_lower_limit,\n change_source_upper_limit)\n return 0\n", "role": "user" }, { "content": "update_settings", "role": "assistant" } ]
def x(A, C_D_inv, d, inv_bool=True): M = A.T.dot(np.multiply(C_D_inv, A.T).T) if inv_bool: if np.linalg.cond(M) < 5 / sys.float_info.epsilon: try: M_inv = np.linalg.inv(M) except: M_inv = np.zeros_like(M) else: M_inv = np.zeros_like(M) R = A.T.dot(np.multiply(C_D_inv, d)) B = M_inv.dot(R) else: if np.linalg.cond(M) < 5 / sys.float_info.epsilon: R = A.T.dot(np.multiply(C_D_inv, d)) try: B = np.linalg.solve(M, R).T except: B = np.zeros(len(A.T)) else: B = np.zeros(len(A.T)) M_inv = None image = A.dot(B) return B, M_inv, image
get_param_WLS
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(A, C_D_inv, d, inv_bool=True):\n M = A.T.dot(np.multiply(C_D_inv, A.T).T)\n if inv_bool:\n if np.linalg.cond(M) < 5 / sys.float_info.epsilon:\n try:\n M_inv = np.linalg.inv(M)\n except:\n M_inv = np.zeros_like(M)\n else:\n M_inv = np.zeros_like(M)\n R = A.T.dot(np.multiply(C_D_inv, d))\n B = M_inv.dot(R)\n else:\n if np.linalg.cond(M) < 5 / sys.float_info.epsilon:\n R = A.T.dot(np.multiply(C_D_inv, d))\n try:\n B = np.linalg.solve(M, R).T\n except:\n B = np.zeros(len(A.T))\n else:\n B = np.zeros(len(A.T))\n M_inv = None\n image = A.dot(B)\n return B, M_inv, image\n", "role": "user" }, { "content": "get_param_WLS", "role": "assistant" } ]
def x(self, r, R, kwargs): u = r / R if np.min(u) < 1: raise ValueError( '3d radius is smaller than projected radius! Does not make sense.') if self._type == 'const_wrong': beta = kwargs['beta'] k = 1.0 / 2.0 * u ** (2 * beta - 1.0) * ((3.0 / 2 - beta) * np.sqrt (np.pi) * special.gamma(beta - 1.0 / 2) / special.gamma(beta) + beta * self._B(x=1.0 / u ** 2, a=beta + 1.0 / 2, b=1.0 / 2) - self._B(x=1.0 / u ** 2, a=beta - 1.0 / 2, b=1.0 / 2)) elif self._type == 'const': beta = kwargs['beta'] k = np.sqrt(1 - 1.0 / u ** 2) / (1.0 - 2 * beta) + np.sqrt(np.pi ) / 2 * special.gamma(beta - 1.0 / 2) / special.gamma(beta) * ( 3.0 / 2 - beta) * u ** (2 * beta - 1.0) * (1 - special.betainc( beta + 1.0 / 2, 1.0 / 2, 1.0 / u ** 2)) elif self._type == 'isotropic': k = np.sqrt(1 - 1.0 / u ** 2) elif self._type == 'radial': k = np.pi / 4 * u - 1.0 / 2 * np.sqrt(1 - 1.0 / u ** 2 ) - u / 2.0 * np.arcsin(1.0 / u) elif self._type == 'OsipkovMerritt': r_ani = kwargs['r_ani'] ua = r_ani / R k = (ua ** 2 + 1.0 / 2) / (ua ** 2 + 1) ** (3.0 / 2) * (u ** 2 + ua ** 2) / u * np.arctan(np.sqrt((u ** 2 - 1) / (ua ** 2 + 1)) ) - 1.0 / 2 / (ua ** 2 + 1) * np.sqrt(1 - 1.0 / u ** 2) elif self._type == 'Colin': r_ani = kwargs['r_ani'] ua = r_ani / R if ua == 1: k = (1 + 1.0 / u) * np.arccosh(u) - 1.0 / 6 * (8.0 / u + 7 ) * np.sqrt((u - 1.0) / (u + 1.0)) else: k = 0.5 / (ua ** 2 - 1) * np.sqrt(1 - 1.0 / u ** 2) + (1.0 + ua / u ) * np.cosh(u) - np.sign(ua - 1) * ua * (ua ** 2 - 0.5 ) / np.abs(ua ** 2 - 1) ** (3.0 / 2) * (1.0 + ua / u ) * np.arccosh((ua * u + 1) / (u + ua)) else: raise ValueError('anisotropy type %s not supported!' % self._type) return k
K
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, R, kwargs):\n u = r / R\n if np.min(u) < 1:\n raise ValueError(\n '3d radius is smaller than projected radius! Does not make sense.')\n if self._type == 'const_wrong':\n beta = kwargs['beta']\n k = 1.0 / 2.0 * u ** (2 * beta - 1.0) * ((3.0 / 2 - beta) * np.sqrt\n (np.pi) * special.gamma(beta - 1.0 / 2) / special.gamma(beta) +\n beta * self._B(x=1.0 / u ** 2, a=beta + 1.0 / 2, b=1.0 / 2) -\n self._B(x=1.0 / u ** 2, a=beta - 1.0 / 2, b=1.0 / 2))\n elif self._type == 'const':\n beta = kwargs['beta']\n k = np.sqrt(1 - 1.0 / u ** 2) / (1.0 - 2 * beta) + np.sqrt(np.pi\n ) / 2 * special.gamma(beta - 1.0 / 2) / special.gamma(beta) * (\n 3.0 / 2 - beta) * u ** (2 * beta - 1.0) * (1 - special.betainc(\n beta + 1.0 / 2, 1.0 / 2, 1.0 / u ** 2))\n elif self._type == 'isotropic':\n k = np.sqrt(1 - 1.0 / u ** 2)\n elif self._type == 'radial':\n k = np.pi / 4 * u - 1.0 / 2 * np.sqrt(1 - 1.0 / u ** 2\n ) - u / 2.0 * np.arcsin(1.0 / u)\n elif self._type == 'OsipkovMerritt':\n r_ani = kwargs['r_ani']\n ua = r_ani / R\n k = (ua ** 2 + 1.0 / 2) / (ua ** 2 + 1) ** (3.0 / 2) * (u ** 2 + ua **\n 2) / u * np.arctan(np.sqrt((u ** 2 - 1) / (ua ** 2 + 1))\n ) - 1.0 / 2 / (ua ** 2 + 1) * np.sqrt(1 - 1.0 / u ** 2)\n elif self._type == 'Colin':\n r_ani = kwargs['r_ani']\n ua = r_ani / R\n if ua == 1:\n k = (1 + 1.0 / u) * np.arccosh(u) - 1.0 / 6 * (8.0 / u + 7\n ) * np.sqrt((u - 1.0) / (u + 1.0))\n else:\n k = 0.5 / (ua ** 2 - 1) * np.sqrt(1 - 1.0 / u ** 2) + (1.0 + ua / u\n ) * np.cosh(u) - np.sign(ua - 1) * ua * (ua ** 2 - 0.5\n ) / np.abs(ua ** 2 - 1) ** (3.0 / 2) * (1.0 + ua / u\n ) * np.arccosh((ua * u + 1) / (u + ua))\n else:\n raise ValueError('anisotropy type %s not supported!' % self._type)\n return k\n", "role": "user" }, { "content": "K", "role": "assistant" } ]
def x(self, r, kwargs): if self._type == 'const': return self.const_beta(kwargs) elif self._type == 'OsipkovMerritt': return self.ospikov_meritt(r, kwargs) elif self._type == 'Colin': return self.colin(r, kwargs) elif self._type == 'isotropic': return self.isotropic() elif self._type == 'radial': return self.radial() else: raise ValueError('anisotropy type %s not supported!' % self._type)
beta_r
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, kwargs):\n if self._type == 'const':\n return self.const_beta(kwargs)\n elif self._type == 'OsipkovMerritt':\n return self.ospikov_meritt(r, kwargs)\n elif self._type == 'Colin':\n return self.colin(r, kwargs)\n elif self._type == 'isotropic':\n return self.isotropic()\n elif self._type == 'radial':\n return self.radial()\n else:\n raise ValueError('anisotropy type %s not supported!' % self._type)\n", "role": "user" }, { "content": "beta_r", "role": "assistant" } ]
def x(self, x, a, b): return special.betainc(a, b, x) * special.beta(a, b)
B
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, a, b):\n return special.betainc(a, b, x) * special.beta(a, b)\n", "role": "user" }, { "content": "B", "role": "assistant" } ]
def x(self, r, kwargs): if self._type == 'const': return self.const_beta(kwargs) elif self._type == 'r_ani': return self.beta_r_ani(r, kwargs) else: raise ValueError('anisotropy type %s not supported!' % self._type)
beta_r
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, kwargs):\n if self._type == 'const':\n return self.const_beta(kwargs)\n elif self._type == 'r_ani':\n return self.beta_r_ani(r, kwargs)\n else:\n raise ValueError('anisotropy type %s not supported!' % self._type)\n", "role": "user" }, { "content": "beta_r", "role": "assistant" } ]
def x(self): (x_grid, y_grid, ra_at_xy_0, dec_at_xy_0, x_at_radec_0, y_at_radec_0, Mpix2coord, Mcoord2pix) = (util.make_grid_with_coordtransform( numPix=self.numpix, deltapix=self.pixel_scale, subgrid_res=1, left_lower=False, inverse=False)) kwargs_data = {'numPix': self.numpix, 'ra_at_xy_0': ra_at_xy_0, 'dec_at_xy_0': dec_at_xy_0, 'transform_pix2angle': Mpix2coord, 'background_rms': self.background_noise, 'exp_time': self. scaled_exposure_time} data_class = Data(kwargs_data) return data_class
data_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n (x_grid, y_grid, ra_at_xy_0, dec_at_xy_0, x_at_radec_0, y_at_radec_0,\n Mpix2coord, Mcoord2pix) = (util.make_grid_with_coordtransform(\n numPix=self.numpix, deltapix=self.pixel_scale, subgrid_res=1,\n left_lower=False, inverse=False))\n kwargs_data = {'numPix': self.numpix, 'ra_at_xy_0': ra_at_xy_0,\n 'dec_at_xy_0': dec_at_xy_0, 'transform_pix2angle': Mpix2coord,\n 'background_rms': self.background_noise, 'exp_time': self.\n scaled_exposure_time}\n data_class = Data(kwargs_data)\n return data_class\n", "role": "user" }, { "content": "data_class", "role": "assistant" } ]
def x(self): if self._psf_type == 'GAUSSIAN': psf_type = 'GAUSSIAN' fwhm = self._seeing kwargs_psf = {'psf_type': psf_type, 'fwhm': fwhm} elif self._psf_type == 'PIXEL': if self._psf_model is not None: kwargs_psf = {'psf_type': 'PIXEL', 'kernel_point_source': self. _psf_model} else: raise ValueError( 'You need to create the class instance with a psf_model!') else: raise ValueError('psf_type %s not supported!' % self._psf_type) psf_class = PSF(kwargs_psf) return psf_class
psf_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._psf_type == 'GAUSSIAN':\n psf_type = 'GAUSSIAN'\n fwhm = self._seeing\n kwargs_psf = {'psf_type': psf_type, 'fwhm': fwhm}\n elif self._psf_type == 'PIXEL':\n if self._psf_model is not None:\n kwargs_psf = {'psf_type': 'PIXEL', 'kernel_point_source': self.\n _psf_model}\n else:\n raise ValueError(\n 'You need to create the class instance with a psf_model!')\n else:\n raise ValueError('psf_type %s not supported!' % self._psf_type)\n psf_class = PSF(kwargs_psf)\n return psf_class\n", "role": "user" }, { "content": "psf_class", "role": "assistant" } ]
def x(self, kwargs_model, kwargs_constraints, kwargs_likelihood): kwargs_model_updated = self.kwargs_model.update(kwargs_model) kwargs_constraints_updated = self.kwargs_constraints.update( kwargs_constraints) kwargs_likelihood_updated = self.kwargs_likelihood.update(kwargs_likelihood ) return (kwargs_model_updated, kwargs_constraints_updated, kwargs_likelihood_updated)
update_options
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_model, kwargs_constraints, kwargs_likelihood):\n kwargs_model_updated = self.kwargs_model.update(kwargs_model)\n kwargs_constraints_updated = self.kwargs_constraints.update(\n kwargs_constraints)\n kwargs_likelihood_updated = self.kwargs_likelihood.update(kwargs_likelihood\n )\n return (kwargs_model_updated, kwargs_constraints_updated,\n kwargs_likelihood_updated)\n", "role": "user" }, { "content": "update_options", "role": "assistant" } ]
def x(self, change_source_lower_limit=None, change_source_upper_limit=None): if not change_source_lower_limit is None: self._source_lower = self._update_limit(change_source_lower_limit, self._source_lower) if not change_source_upper_limit is None: self._source_upper = self._update_limit(change_source_upper_limit, self._source_upper)
update_limits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, change_source_lower_limit=None, change_source_upper_limit=None):\n if not change_source_lower_limit is None:\n self._source_lower = self._update_limit(change_source_lower_limit,\n self._source_lower)\n if not change_source_upper_limit is None:\n self._source_upper = self._update_limit(change_source_upper_limit,\n self._source_upper)\n", "role": "user" }, { "content": "update_limits", "role": "assistant" } ]
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo, lens_add_fixed=[], source_add_fixed=[], lens_light_add_fixed=[], ps_add_fixed=[], cosmo_add_fixed=[], lens_remove_fixed=[], source_remove_fixed=[], lens_light_remove_fixed=[ ], ps_remove_fixed=[], cosmo_remove_fixed=[]): lens_fixed = self._add_fixed(kwargs_lens, self._lens_fixed, lens_add_fixed) lens_fixed = self._remove_fixed(lens_fixed, lens_remove_fixed) source_fixed = self._add_fixed(kwargs_source, self._source_fixed, source_add_fixed) source_fixed = self._remove_fixed(source_fixed, source_remove_fixed) lens_light_fixed = self._add_fixed(kwargs_lens_light, self. _lens_light_fixed, lens_light_add_fixed) lens_light_fixed = self._remove_fixed(lens_light_fixed, lens_light_remove_fixed) ps_fixed = self._add_fixed(kwargs_ps, self._ps_fixed, ps_add_fixed) ps_fixed = self._remove_fixed(ps_fixed, ps_remove_fixed) cosmo_fixed = copy.deepcopy(self._cosmo_fixed) for param_name in cosmo_add_fixed: if param_name in cosmo_fixed: pass else: cosmo_fixed[param_name] = kwargs_cosmo[param_name] for param_name in cosmo_remove_fixed: if param_name in cosmo_fixed: del cosmo_fixed[param_name] (self._lens_fixed, self._source_fixed, self._lens_light_fixed, self._ps_fixed, self._cosmo_fixed) = (lens_fixed, source_fixed, lens_light_fixed, ps_fixed, cosmo_fixed)
update_fixed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,\n kwargs_cosmo, lens_add_fixed=[], source_add_fixed=[],\n lens_light_add_fixed=[], ps_add_fixed=[], cosmo_add_fixed=[],\n lens_remove_fixed=[], source_remove_fixed=[], lens_light_remove_fixed=[\n ], ps_remove_fixed=[], cosmo_remove_fixed=[]):\n lens_fixed = self._add_fixed(kwargs_lens, self._lens_fixed, lens_add_fixed)\n lens_fixed = self._remove_fixed(lens_fixed, lens_remove_fixed)\n source_fixed = self._add_fixed(kwargs_source, self._source_fixed,\n source_add_fixed)\n source_fixed = self._remove_fixed(source_fixed, source_remove_fixed)\n lens_light_fixed = self._add_fixed(kwargs_lens_light, self.\n _lens_light_fixed, lens_light_add_fixed)\n lens_light_fixed = self._remove_fixed(lens_light_fixed,\n lens_light_remove_fixed)\n ps_fixed = self._add_fixed(kwargs_ps, self._ps_fixed, ps_add_fixed)\n ps_fixed = self._remove_fixed(ps_fixed, ps_remove_fixed)\n cosmo_fixed = copy.deepcopy(self._cosmo_fixed)\n for param_name in cosmo_add_fixed:\n if param_name in cosmo_fixed:\n pass\n else:\n cosmo_fixed[param_name] = kwargs_cosmo[param_name]\n for param_name in cosmo_remove_fixed:\n if param_name in cosmo_fixed:\n del cosmo_fixed[param_name]\n (self._lens_fixed, self._source_fixed, self._lens_light_fixed,\n self._ps_fixed, self._cosmo_fixed) = (lens_fixed,\n source_fixed, lens_light_fixed, ps_fixed, cosmo_fixed)\n", "role": "user" }, { "content": "update_fixed", "role": "assistant" } ]
def x(self, gamma, theta_E, r_eff, r_ani, R_slit, dR_slit, FWHM, rendering_number=1000): sigma_s2_sum = 0 rho0_r0_gamma = self._rho0_r0_gamma(theta_E, gamma) for i in range(0, rendering_number): sigma_s2_draw = self.vel_disp_one(gamma, rho0_r0_gamma, r_eff, r_ani, R_slit, dR_slit, FWHM) sigma_s2_sum += sigma_s2_draw sigma_s2_average = sigma_s2_sum / rendering_number return np.sqrt(sigma_s2_average)
vel_disp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, gamma, theta_E, r_eff, r_ani, R_slit, dR_slit, FWHM,\n rendering_number=1000):\n sigma_s2_sum = 0\n rho0_r0_gamma = self._rho0_r0_gamma(theta_E, gamma)\n for i in range(0, rendering_number):\n sigma_s2_draw = self.vel_disp_one(gamma, rho0_r0_gamma, r_eff,\n r_ani, R_slit, dR_slit, FWHM)\n sigma_s2_sum += sigma_s2_draw\n sigma_s2_average = sigma_s2_sum / rendering_number\n return np.sqrt(sigma_s2_average)\n", "role": "user" }, { "content": "vel_disp", "role": "assistant" } ]
def x(self, gamma, rho0_r0_gamma, r_eff, r_ani, R_slit, dR_slit, FWHM): a = 0.551 * r_eff while True: r = self.P_r(a) R, x, y = self.R_r(r) x_, y_ = self.displace_PSF(x, y, FWHM) bool = self.check_in_slit(x_, y_, R_slit, dR_slit) if bool is True: break sigma_s2 = self.sigma_s2(r, R, r_ani, a, gamma, rho0_r0_gamma) return sigma_s2
vel_disp_one
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, gamma, rho0_r0_gamma, r_eff, r_ani, R_slit, dR_slit, FWHM):\n a = 0.551 * r_eff\n while True:\n r = self.P_r(a)\n R, x, y = self.R_r(r)\n x_, y_ = self.displace_PSF(x, y, FWHM)\n bool = self.check_in_slit(x_, y_, R_slit, dR_slit)\n if bool is True:\n break\n sigma_s2 = self.sigma_s2(r, R, r_ani, a, gamma, rho0_r0_gamma)\n return sigma_s2\n", "role": "user" }, { "content": "vel_disp_one", "role": "assistant" } ]
def x(self, r): phi = np.random.uniform(0, 2 * np.pi) theta = np.random.uniform(0, np.pi) x = r * np.sin(theta) * np.cos(phi) y = r * np.sin(theta) * np.sin(phi) R = np.sqrt(x ** 2 + y ** 2) return R, x, y
R_r
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r):\n phi = np.random.uniform(0, 2 * np.pi)\n theta = np.random.uniform(0, np.pi)\n x = r * np.sin(theta) * np.cos(phi)\n y = r * np.sin(theta) * np.sin(phi)\n R = np.sqrt(x ** 2 + y ** 2)\n return R, x, y\n", "role": "user" }, { "content": "R_r", "role": "assistant" } ]
def x(self, r, R, r_ani, a, gamma, rho0_r0_gamma): beta = self._beta_ani(r, r_ani) return (1 - beta * R ** 2 / r ** 2) * self.sigma_r2(r, a, gamma, rho0_r0_gamma, r_ani)
sigma_s2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, R, r_ani, a, gamma, rho0_r0_gamma):\n beta = self._beta_ani(r, r_ani)\n return (1 - beta * R ** 2 / r ** 2) * self.sigma_r2(r, a, gamma,\n rho0_r0_gamma, r_ani)\n", "role": "user" }, { "content": "sigma_s2", "role": "assistant" } ]
def x(self, r, a, gamma, rho0_r0_gamma, r_ani): prefac1 = 4 * np.pi * const.G * a ** -gamma * rho0_r0_gamma / (3 - gamma) prefac2 = r * (r + a) ** 3 / (r ** 2 + r_ani ** 2) hyp1 = vel_util.hyp_2F1(a=2 + gamma, b=gamma, c=3 + gamma, z=1.0 / (1 + r / a)) hyp2 = vel_util.hyp_2F1(a=3, b=gamma, c=1 + gamma, z=-a / r) fac = r_ani ** 2 / a ** 2 * hyp1 / ((2 + gamma) * (r / a + 1) ** (2 + gamma)) + hyp2 / (gamma * (r / a) ** gamma) return prefac1 * prefac2 * fac * (self._cosmo.arcsec2phys_lens(1.0) * const.Mpc / 1000) ** 2
sigma_r2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, a, gamma, rho0_r0_gamma, r_ani):\n prefac1 = 4 * np.pi * const.G * a ** -gamma * rho0_r0_gamma / (3 - gamma)\n prefac2 = r * (r + a) ** 3 / (r ** 2 + r_ani ** 2)\n hyp1 = vel_util.hyp_2F1(a=2 + gamma, b=gamma, c=3 + gamma, z=1.0 / (1 +\n r / a))\n hyp2 = vel_util.hyp_2F1(a=3, b=gamma, c=1 + gamma, z=-a / r)\n fac = r_ani ** 2 / a ** 2 * hyp1 / ((2 + gamma) * (r / a + 1) ** (2 +\n gamma)) + hyp2 / (gamma * (r / a) ** gamma)\n return prefac1 * prefac2 * fac * (self._cosmo.arcsec2phys_lens(1.0) *\n const.Mpc / 1000) ** 2\n", "role": "user" }, { "content": "sigma_r2", "role": "assistant" } ]
def x(self, kwargs_lens_light, center_x=0, center_y=0, model_bool_list=None, deltaPix=None, numPix=None): if model_bool_list is None: model_bool_list = [True] * len(kwargs_lens_light) if numPix is None: numPix = 100 if deltaPix is None: deltaPix = 0.05 x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix) x_grid += center_x y_grid += center_y I_xy = self._lens_light_internal(x_grid, y_grid, kwargs_lens_light, model_bool_list=model_bool_list) e1, e2 = analysis_util.ellipticities(I_xy, x_grid, y_grid) return e1, e2
ellipticity_lens_light
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens_light, center_x=0, center_y=0, model_bool_list=None,\n deltaPix=None, numPix=None):\n if model_bool_list is None:\n model_bool_list = [True] * len(kwargs_lens_light)\n if numPix is None:\n numPix = 100\n if deltaPix is None:\n deltaPix = 0.05\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n x_grid += center_x\n y_grid += center_y\n I_xy = self._lens_light_internal(x_grid, y_grid, kwargs_lens_light,\n model_bool_list=model_bool_list)\n e1, e2 = analysis_util.ellipticities(I_xy, x_grid, y_grid)\n return e1, e2\n", "role": "user" }, { "content": "ellipticity_lens_light", "role": "assistant" } ]
def x(self, kwargs_lens_light, center_x=0, center_y=0, model_bool_list=None, deltaPix=None, numPix=None): if model_bool_list is None: model_bool_list = [True] * len(kwargs_lens_light) if numPix is None: numPix = 1000 if deltaPix is None: deltaPix = 0.05 x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix) x_grid += center_x y_grid += center_y lens_light = self._lens_light_internal(x_grid, y_grid, kwargs_lens_light, model_bool_list=model_bool_list) R_h = analysis_util.half_light_radius(lens_light, x_grid, y_grid, center_x, center_y) return R_h
half_light_radius_lens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens_light, center_x=0, center_y=0, model_bool_list=None,\n deltaPix=None, numPix=None):\n if model_bool_list is None:\n model_bool_list = [True] * len(kwargs_lens_light)\n if numPix is None:\n numPix = 1000\n if deltaPix is None:\n deltaPix = 0.05\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n x_grid += center_x\n y_grid += center_y\n lens_light = self._lens_light_internal(x_grid, y_grid,\n kwargs_lens_light, model_bool_list=model_bool_list)\n R_h = analysis_util.half_light_radius(lens_light, x_grid, y_grid,\n center_x, center_y)\n return R_h\n", "role": "user" }, { "content": "half_light_radius_lens", "role": "assistant" } ]
def x(self, kwargs_source, center_x=0, center_y=0, deltaPix=None, numPix=None): if numPix is None: numPix = 1000 if deltaPix is None: deltaPix = 0.005 x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix) x_grid += center_x y_grid += center_y source_light = self.SourceModel.surface_brightness(x_grid, y_grid, kwargs_source) R_h = analysis_util.half_light_radius(source_light, x_grid, y_grid, center_x=center_x, center_y=center_y) return R_h
half_light_radius_source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_source, center_x=0, center_y=0, deltaPix=None, numPix=None):\n if numPix is None:\n numPix = 1000\n if deltaPix is None:\n deltaPix = 0.005\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n x_grid += center_x\n y_grid += center_y\n source_light = self.SourceModel.surface_brightness(x_grid, y_grid,\n kwargs_source)\n R_h = analysis_util.half_light_radius(source_light, x_grid, y_grid,\n center_x=center_x, center_y=center_y)\n return R_h\n", "role": "user" }, { "content": "half_light_radius_source", "role": "assistant" } ]
def x(self, x_grid, y_grid, kwargs_lens_light, model_bool_list=None): if model_bool_list is None: model_bool_list = [True] * len(kwargs_lens_light) lens_light = np.zeros_like(x_grid) for i, bool in enumerate(model_bool_list): if bool is True: lens_light_i = self.LensLightModel.surface_brightness(x_grid, y_grid, kwargs_lens_light, k=i) lens_light += lens_light_i return lens_light
lens_light_internal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x_grid, y_grid, kwargs_lens_light, model_bool_list=None):\n if model_bool_list is None:\n model_bool_list = [True] * len(kwargs_lens_light)\n lens_light = np.zeros_like(x_grid)\n for i, bool in enumerate(model_bool_list):\n if bool is True:\n lens_light_i = self.LensLightModel.surface_brightness(x_grid,\n y_grid, kwargs_lens_light, k=i)\n lens_light += lens_light_i\n return lens_light\n", "role": "user" }, { "content": "lens_light_internal", "role": "assistant" } ]
def x(self, kwargs_lens_light, model_bool_list=None, e1=0, e2=0, n_comp=20, deltaPix=None, numPix=None): if 'center_x' in kwargs_lens_light[0]: center_x = kwargs_lens_light[0]['center_x'] center_y = kwargs_lens_light[0]['center_y'] else: center_x, center_y = 0, 0 r_h = self.half_light_radius_lens(kwargs_lens_light, center_x=center_x, center_y=center_y, model_bool_list=model_bool_list, deltaPix= deltaPix, numPix=numPix) r_array = np.logspace(-3, 2, 200) * r_h * 2 x_coords, y_coords = param_util.transform_e1e2(r_array, np.zeros_like( r_array), e1=-e1, e2=-e2) x_coords += center_x y_coords += center_y flux_r = self._lens_light_internal(x_coords, y_coords, kwargs_lens_light, model_bool_list=model_bool_list) amplitudes, sigmas, norm = mge.mge_1d(r_array, flux_r, N=n_comp) return amplitudes, sigmas, center_x, center_y
multi_gaussian_lens_light
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens_light, model_bool_list=None, e1=0, e2=0, n_comp=20,\n deltaPix=None, numPix=None):\n if 'center_x' in kwargs_lens_light[0]:\n center_x = kwargs_lens_light[0]['center_x']\n center_y = kwargs_lens_light[0]['center_y']\n else:\n center_x, center_y = 0, 0\n r_h = self.half_light_radius_lens(kwargs_lens_light, center_x=center_x,\n center_y=center_y, model_bool_list=model_bool_list, deltaPix=\n deltaPix, numPix=numPix)\n r_array = np.logspace(-3, 2, 200) * r_h * 2\n x_coords, y_coords = param_util.transform_e1e2(r_array, np.zeros_like(\n r_array), e1=-e1, e2=-e2)\n x_coords += center_x\n y_coords += center_y\n flux_r = self._lens_light_internal(x_coords, y_coords,\n kwargs_lens_light, model_bool_list=model_bool_list)\n amplitudes, sigmas, norm = mge.mge_1d(r_array, flux_r, N=n_comp)\n return amplitudes, sigmas, center_x, center_y\n", "role": "user" }, { "content": "multi_gaussian_lens_light", "role": "assistant" } ]
def x(self, kwargs_lens, model_bool_list=None, e1=0, e2=0, n_comp=20): if 'center_x' in kwargs_lens[0]: center_x = kwargs_lens[0]['center_x'] center_y = kwargs_lens[0]['center_y'] else: raise ValueError('no keyword center_x defined!') theta_E = self._lensModelExtensions.effective_einstein_radius(kwargs_lens) r_array = np.logspace(-4, 2, 200) * theta_E x_coords, y_coords = param_util.transform_e1e2(r_array, np.zeros_like( r_array), e1=-e1, e2=-e2) x_coords += center_x y_coords += center_y if model_bool_list is None: model_bool_list = [True] * len(kwargs_lens) kappa_s = np.zeros_like(r_array) for i in range(len(kwargs_lens)): if model_bool_list[i] is True: kappa_s += self.LensModel.kappa(x_coords, y_coords, kwargs_lens, k=i) amplitudes, sigmas, norm = mge.mge_1d(r_array, kappa_s, N=n_comp) return amplitudes, sigmas, center_x, center_y
multi_gaussian_lens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, model_bool_list=None, e1=0, e2=0, n_comp=20):\n if 'center_x' in kwargs_lens[0]:\n center_x = kwargs_lens[0]['center_x']\n center_y = kwargs_lens[0]['center_y']\n else:\n raise ValueError('no keyword center_x defined!')\n theta_E = self._lensModelExtensions.effective_einstein_radius(kwargs_lens)\n r_array = np.logspace(-4, 2, 200) * theta_E\n x_coords, y_coords = param_util.transform_e1e2(r_array, np.zeros_like(\n r_array), e1=-e1, e2=-e2)\n x_coords += center_x\n y_coords += center_y\n if model_bool_list is None:\n model_bool_list = [True] * len(kwargs_lens)\n kappa_s = np.zeros_like(r_array)\n for i in range(len(kwargs_lens)):\n if model_bool_list[i] is True:\n kappa_s += self.LensModel.kappa(x_coords, y_coords, kwargs_lens,\n k=i)\n amplitudes, sigmas, norm = mge.mge_1d(r_array, kappa_s, N=n_comp)\n return amplitudes, sigmas, center_x, center_y\n", "role": "user" }, { "content": "multi_gaussian_lens", "role": "assistant" } ]
def x(self, kwargs_light, n_grid=400, delta_grid=0.01, deltaPix=0.05, type= 'lens'): flux_list = [] R_h_list = [] x_grid, y_grid = util.make_grid(numPix=n_grid, deltapix=delta_grid) kwargs_copy = copy.deepcopy(kwargs_light) for k, kwargs in enumerate(kwargs_light): if 'center_x' in kwargs_copy[k]: kwargs_copy[k]['center_x'] = 0 kwargs_copy[k]['center_y'] = 0 if type == 'lens': light = self.LensLightModel.surface_brightness(x_grid, y_grid, kwargs_copy, k=k) elif type == 'source': light = self.SourceModel.surface_brightness(x_grid, y_grid, kwargs_copy, k=k) else: raise ValueError('type %s not supported!' % type) flux = np.sum(light) * delta_grid ** 2 / deltaPix ** 2 R_h = analysis_util.half_light_radius(light, x_grid, y_grid) flux_list.append(flux) R_h_list.append(R_h) return flux_list, R_h_list
flux_components
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_light, n_grid=400, delta_grid=0.01, deltaPix=0.05, type=\n 'lens'):\n flux_list = []\n R_h_list = []\n x_grid, y_grid = util.make_grid(numPix=n_grid, deltapix=delta_grid)\n kwargs_copy = copy.deepcopy(kwargs_light)\n for k, kwargs in enumerate(kwargs_light):\n if 'center_x' in kwargs_copy[k]:\n kwargs_copy[k]['center_x'] = 0\n kwargs_copy[k]['center_y'] = 0\n if type == 'lens':\n light = self.LensLightModel.surface_brightness(x_grid, y_grid,\n kwargs_copy, k=k)\n elif type == 'source':\n light = self.SourceModel.surface_brightness(x_grid, y_grid,\n kwargs_copy, k=k)\n else:\n raise ValueError('type %s not supported!' % type)\n flux = np.sum(light) * delta_grid ** 2 / deltaPix ** 2\n R_h = analysis_util.half_light_radius(light, x_grid, y_grid)\n flux_list.append(flux)\n R_h_list.append(R_h)\n return flux_list, R_h_list\n", "role": "user" }, { "content": "flux_components", "role": "assistant" } ]
def x(self, kwargs_source, x_grid, y_grid, cov_param): error_map = np.zeros_like(x_grid) basis_functions, n_source = self.SourceModel.functions_split(x_grid, y_grid, kwargs_source) basis_functions = np.array(basis_functions) if cov_param is not None: for i in range(len(error_map)): error_map[i] = basis_functions[:, i].T.dot(cov_param[:n_source, :n_source]).dot(basis_functions[:, i]) return error_map
error_map_source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_source, x_grid, y_grid, cov_param):\n error_map = np.zeros_like(x_grid)\n basis_functions, n_source = self.SourceModel.functions_split(x_grid,\n y_grid, kwargs_source)\n basis_functions = np.array(basis_functions)\n if cov_param is not None:\n for i in range(len(error_map)):\n error_map[i] = basis_functions[:, i].T.dot(cov_param[:n_source,\n :n_source]).dot(basis_functions[:, i])\n return error_map\n", "role": "user" }, { "content": "error_map_source", "role": "assistant" } ]
def x(lens_light_model_list, kwargs_lens_light, numPix=100, deltaPix=0.05, subgrid_res=5, center_x=0, center_y=0): x_grid_sub, y_grid_sub = util.make_grid(numPix=numPix * 5, deltapix= deltaPix, subgrid_res=subgrid_res) import lenstronomy.Util.mask as mask_util mask = mask_util.mask_sphere(x_grid_sub, y_grid_sub, center_x, center_y, r=1) x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix) lightModel = LightModel(light_model_list=lens_light_model_list) flux = lightModel.surface_brightness(x_grid_sub, y_grid_sub, kwargs_lens_light) flux_norm = np.sum(flux[mask == 1]) / np.sum(mask) flux /= flux_norm from lenstronomy.LensModel.numerical_profile_integrals import ConvergenceIntegrals integral = ConvergenceIntegrals() convergence_sub = flux f_x_sub, f_y_sub = integral.deflection_from_kappa(convergence_sub, x_grid_sub, y_grid_sub, deltaPix=deltaPix / float(subgrid_res)) f_sub = integral.potential_from_kappa(convergence_sub, x_grid_sub, y_grid_sub, deltaPix=deltaPix / float(subgrid_res)) x_axes_sub, y_axes_sub = util.get_axes(x_grid_sub, y_grid_sub) from lenstronomy.LensModel.Profiles.interpol import Interpol interp_func = Interpol() interp_func.do_interp(x_axes_sub, y_axes_sub, f_sub, f_x_sub, f_y_sub) x_axes, y_axes = util.get_axes(x_grid, y_grid) f_ = interp_func.function(x_grid, y_grid) f_x, f_y = interp_func.derivatives(x_grid, y_grid) from lenstronomy.LensModel.numeric_lens_differentials import NumericLens lens_differential = NumericLens(lens_model_list=['INTERPOL']) kwargs = [{'grid_interp_x': x_axes_sub, 'grid_interp_y': y_axes_sub, 'f_': f_sub, 'f_x': f_x_sub, 'f_y': f_y_sub}] f_xx, f_xy, f_yx, f_yy = lens_differential.hessian(x_grid, y_grid, kwargs) kwargs_interpol = {'grid_interp_x': x_axes, 'grid_interp_y': y_axes, 'f_': util.array2image(f_), 'f_x': util.array2image(f_x), 'f_y': util.array2image(f_y), 'f_xx': util.array2image(f_xx), 'f_xy': util .array2image(f_xy), 'f_yy': util.array2image(f_yy)} return kwargs_interpol
light2mass_interpol
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lens_light_model_list, kwargs_lens_light, numPix=100, deltaPix=0.05,\n subgrid_res=5, center_x=0, center_y=0):\n x_grid_sub, y_grid_sub = util.make_grid(numPix=numPix * 5, deltapix=\n deltaPix, subgrid_res=subgrid_res)\n import lenstronomy.Util.mask as mask_util\n mask = mask_util.mask_sphere(x_grid_sub, y_grid_sub, center_x, center_y,\n r=1)\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n lightModel = LightModel(light_model_list=lens_light_model_list)\n flux = lightModel.surface_brightness(x_grid_sub, y_grid_sub,\n kwargs_lens_light)\n flux_norm = np.sum(flux[mask == 1]) / np.sum(mask)\n flux /= flux_norm\n from lenstronomy.LensModel.numerical_profile_integrals import ConvergenceIntegrals\n integral = ConvergenceIntegrals()\n convergence_sub = flux\n f_x_sub, f_y_sub = integral.deflection_from_kappa(convergence_sub,\n x_grid_sub, y_grid_sub, deltaPix=deltaPix / float(subgrid_res))\n f_sub = integral.potential_from_kappa(convergence_sub, x_grid_sub,\n y_grid_sub, deltaPix=deltaPix / float(subgrid_res))\n x_axes_sub, y_axes_sub = util.get_axes(x_grid_sub, y_grid_sub)\n from lenstronomy.LensModel.Profiles.interpol import Interpol\n interp_func = Interpol()\n interp_func.do_interp(x_axes_sub, y_axes_sub, f_sub, f_x_sub, f_y_sub)\n x_axes, y_axes = util.get_axes(x_grid, y_grid)\n f_ = interp_func.function(x_grid, y_grid)\n f_x, f_y = interp_func.derivatives(x_grid, y_grid)\n from lenstronomy.LensModel.numeric_lens_differentials import NumericLens\n lens_differential = NumericLens(lens_model_list=['INTERPOL'])\n kwargs = [{'grid_interp_x': x_axes_sub, 'grid_interp_y': y_axes_sub,\n 'f_': f_sub, 'f_x': f_x_sub, 'f_y': f_y_sub}]\n f_xx, f_xy, f_yx, f_yy = lens_differential.hessian(x_grid, y_grid, kwargs)\n kwargs_interpol = {'grid_interp_x': x_axes, 'grid_interp_y': y_axes,\n 'f_': util.array2image(f_), 'f_x': util.array2image(f_x), 'f_y':\n util.array2image(f_y), 'f_xx': util.array2image(f_xx), 'f_xy': util\n .array2image(f_xy), 'f_yy': util.array2image(f_yy)}\n return kwargs_interpol\n", "role": "user" }, { "content": "light2mass_interpol", "role": "assistant" } ]
def x(self, kwargs_lens, center_x, center_y, theta_E, numPix=100): x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=2.0 * theta_E / numPix) x_grid += center_x y_grid += center_y mask = mask_util.mask_sphere(x_grid, y_grid, center_x, center_y, theta_E) kappa_list = [] for i in range(len(kwargs_lens)): kappa = self.LensModel.kappa(x_grid, y_grid, kwargs_lens, k=i) kappa_mean = np.sum(kappa * mask) / np.sum(mask) kappa_list.append(kappa_mean) return kappa_list
mass_fraction_within_radius
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, center_x, center_y, theta_E, numPix=100):\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=2.0 * theta_E /\n numPix)\n x_grid += center_x\n y_grid += center_y\n mask = mask_util.mask_sphere(x_grid, y_grid, center_x, center_y, theta_E)\n kappa_list = []\n for i in range(len(kwargs_lens)):\n kappa = self.LensModel.kappa(x_grid, y_grid, kwargs_lens, k=i)\n kappa_mean = np.sum(kappa * mask) / np.sum(mask)\n kappa_list.append(kappa_mean)\n return kappa_list\n", "role": "user" }, { "content": "mass_fraction_within_radius", "role": "assistant" } ]
def x(self, search_window, x_center, y_center): self._search_window, self._x_center, self._y_center = (search_window, x_center, y_center)
update_search_window
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, search_window, x_center, y_center):\n self._search_window, self._x_center, self._y_center = (search_window,\n x_center, y_center)\n", "role": "user" }, { "content": "update_search_window", "role": "assistant" } ]
def x(self, kwargs_ps, kwargs_lens, k=None): ra_list, dec_list = self.image_position(kwargs_ps, kwargs_lens, k=k) amp_list = self.image_amplitude(kwargs_ps, kwargs_lens) ra_array, dec_array, amp_array = [], [], [] for i, ra in enumerate(ra_list): for j in range(len(ra)): ra_array.append(ra_list[i][j]) dec_array.append(dec_list[i][j]) amp_array.append(amp_list[i][j]) return ra_array, dec_array, amp_array
point_source_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_ps, kwargs_lens, k=None):\n ra_list, dec_list = self.image_position(kwargs_ps, kwargs_lens, k=k)\n amp_list = self.image_amplitude(kwargs_ps, kwargs_lens)\n ra_array, dec_array, amp_array = [], [], []\n for i, ra in enumerate(ra_list):\n for j in range(len(ra)):\n ra_array.append(ra_list[i][j])\n dec_array.append(dec_list[i][j])\n amp_array.append(amp_list[i][j])\n return ra_array, dec_array, amp_array\n", "role": "user" }, { "content": "point_source_list", "role": "assistant" } ]
def x(self, kwargs_ps, kwargs_lens, k=None): amp_list = [] for i, model in enumerate(self._point_source_list): if k is None or k == i: amp_list.append(model.image_amplitude(kwargs_ps=kwargs_ps[i], kwargs_lens=kwargs_lens, min_distance=self._min_distance, search_window=self._search_window, precision_limit=self. _precision_limit, num_iter_max=self._num_iter_max, x_center =self._x_center, y_center=self._y_center)) return amp_list
image_amplitude
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_ps, kwargs_lens, k=None):\n amp_list = []\n for i, model in enumerate(self._point_source_list):\n if k is None or k == i:\n amp_list.append(model.image_amplitude(kwargs_ps=kwargs_ps[i],\n kwargs_lens=kwargs_lens, min_distance=self._min_distance,\n search_window=self._search_window, precision_limit=self.\n _precision_limit, num_iter_max=self._num_iter_max, x_center\n =self._x_center, y_center=self._y_center))\n return amp_list\n", "role": "user" }, { "content": "image_amplitude", "role": "assistant" } ]
def x(self, kwargs_ps, kwargs_lens): amp_list = [] for i, model in enumerate(self._point_source_list): amp_list.append(model.source_amplitude(kwargs_ps=kwargs_ps[i], kwargs_lens=kwargs_lens)) return amp_list
source_amplitude
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_ps, kwargs_lens):\n amp_list = []\n for i, model in enumerate(self._point_source_list):\n amp_list.append(model.source_amplitude(kwargs_ps=kwargs_ps[i],\n kwargs_lens=kwargs_lens))\n return amp_list\n", "role": "user" }, { "content": "source_amplitude", "role": "assistant" } ]
def x(self, kwargs_ps, kwargs_lens, tolerance=0.001): x_image_list, y_image_list = self.image_position(kwargs_ps, kwargs_lens) for i, model in enumerate(self._point_source_list): if model in ['LENSED_POSITION', 'SOURCE_POSITION']: x_pos = x_image_list[i] y_pos = y_image_list[i] x_source, y_source = self._lensModel.ray_shooting(x_pos, y_pos, kwargs_lens) dist = np.sqrt((x_source - x_source[0]) ** 2 + (y_source - y_source[0]) ** 2) if np.max(dist) > tolerance: return False return True
check_image_positions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_ps, kwargs_lens, tolerance=0.001):\n x_image_list, y_image_list = self.image_position(kwargs_ps, kwargs_lens)\n for i, model in enumerate(self._point_source_list):\n if model in ['LENSED_POSITION', 'SOURCE_POSITION']:\n x_pos = x_image_list[i]\n y_pos = y_image_list[i]\n x_source, y_source = self._lensModel.ray_shooting(x_pos, y_pos,\n kwargs_lens)\n dist = np.sqrt((x_source - x_source[0]) ** 2 + (y_source -\n y_source[0]) ** 2)\n if np.max(dist) > tolerance:\n return False\n return True\n", "role": "user" }, { "content": "check_image_positions", "role": "assistant" } ]
def x(self, kwargs_ps, norm_factor): for i, model in enumerate(self.point_source_type_list): if model == 'UNLENSED': kwargs_ps[i]['point_amp'] *= norm_factor elif model in ['LENSED_POSITION', 'SOURCE_POSITION']: if self._fixed_magnification_list[i] is True: kwargs_ps[i]['source_amp'] *= norm_factor else: kwargs_ps[i]['point_amp'] *= norm_factor return kwargs_ps
re_normalize_flux
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_ps, norm_factor):\n for i, model in enumerate(self.point_source_type_list):\n if model == 'UNLENSED':\n kwargs_ps[i]['point_amp'] *= norm_factor\n elif model in ['LENSED_POSITION', 'SOURCE_POSITION']:\n if self._fixed_magnification_list[i] is True:\n kwargs_ps[i]['source_amp'] *= norm_factor\n else:\n kwargs_ps[i]['point_amp'] *= norm_factor\n return kwargs_ps\n", "role": "user" }, { "content": "re_normalize_flux", "role": "assistant" } ]
def x(self, x_pos, y_pos, kwargs_lens, source_sigma=0.003, window_size=0.1, grid_number=100, shape='GAUSSIAN', polar_grid=False, aspect_ratio=0.5): mag_finite = np.zeros_like(x_pos) deltaPix = float(window_size) / grid_number if shape == 'GAUSSIAN': from lenstronomy.LightModel.Profiles.gaussian import Gaussian quasar = Gaussian() elif shape == 'TORUS': import lenstronomy.LightModel.Profiles.torus as quasar else: raise ValueError( 'shape %s not valid for finite magnification computation!' % shape) x_grid, y_grid = util.make_grid(numPix=grid_number, deltapix=deltaPix, subgrid_res=1) if polar_grid: a = window_size * 0.5 b = window_size * 0.5 * aspect_ratio ellipse_inds = (x_grid * a ** -1) ** 2 + (y_grid * b ** -1) ** 2 <= 1 x_grid, y_grid = x_grid[ellipse_inds], y_grid[ellipse_inds] for i in range(len(x_pos)): ra, dec = x_pos[i], y_pos[i] center_x, center_y = self._lensModel.ray_shooting(ra, dec, kwargs_lens) if polar_grid: theta = np.arctan2(dec, ra) xcoord, ycoord = util.rotate(x_grid, y_grid, theta) else: xcoord, ycoord = x_grid, y_grid betax, betay = self._lensModel.ray_shooting(xcoord + ra, ycoord + dec, kwargs_lens) I_image = quasar.function(betax, betay, 1.0, source_sigma, source_sigma, center_x, center_y) mag_finite[i] = np.sum(I_image) * deltaPix ** 2 return mag_finite
magnification_finite
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x_pos, y_pos, kwargs_lens, source_sigma=0.003, window_size=0.1,\n grid_number=100, shape='GAUSSIAN', polar_grid=False, aspect_ratio=0.5):\n mag_finite = np.zeros_like(x_pos)\n deltaPix = float(window_size) / grid_number\n if shape == 'GAUSSIAN':\n from lenstronomy.LightModel.Profiles.gaussian import Gaussian\n quasar = Gaussian()\n elif shape == 'TORUS':\n import lenstronomy.LightModel.Profiles.torus as quasar\n else:\n raise ValueError(\n 'shape %s not valid for finite magnification computation!' % shape)\n x_grid, y_grid = util.make_grid(numPix=grid_number, deltapix=deltaPix,\n subgrid_res=1)\n if polar_grid:\n a = window_size * 0.5\n b = window_size * 0.5 * aspect_ratio\n ellipse_inds = (x_grid * a ** -1) ** 2 + (y_grid * b ** -1) ** 2 <= 1\n x_grid, y_grid = x_grid[ellipse_inds], y_grid[ellipse_inds]\n for i in range(len(x_pos)):\n ra, dec = x_pos[i], y_pos[i]\n center_x, center_y = self._lensModel.ray_shooting(ra, dec, kwargs_lens)\n if polar_grid:\n theta = np.arctan2(dec, ra)\n xcoord, ycoord = util.rotate(x_grid, y_grid, theta)\n else:\n xcoord, ycoord = x_grid, y_grid\n betax, betay = self._lensModel.ray_shooting(xcoord + ra, ycoord +\n dec, kwargs_lens)\n I_image = quasar.function(betax, betay, 1.0, source_sigma,\n source_sigma, center_x, center_y)\n mag_finite[i] = np.sum(I_image) * deltaPix ** 2\n return mag_finite\n", "role": "user" }, { "content": "magnification_finite", "role": "assistant" } ]
def x(self, edge1, edge2, edge_90, max_order, kwargs_lens): ra_1, dec_1, mag_1 = edge1 ra_2, dec_2, mag_2 = edge2 ra_3, dec_3, mag_3 = edge_90 sign_list = np.sign([mag_1, mag_2, mag_3]) if sign_list[0] == sign_list[1] and sign_list[0] == sign_list[2]: return [], [] else: max_order -= 1 if max_order <= 0: return [(ra_1 + ra_2 + ra_3) / 3], [(dec_1 + dec_2 + dec_3) / 3] else: ra_90_ = (ra_1 + ra_2) / 2 dec_90_ = (dec_1 + dec_2) / 2 mag_90_ = self._lensModel.magnification(ra_90_, dec_90_, kwargs_lens) edge_90_ = [ra_90_, dec_90_, mag_90_] ra_crit, dec_crit = self._tiling_crit(edge1=edge_90, edge2= edge1, edge_90=edge_90_, max_order=max_order, kwargs_lens= kwargs_lens) ra_crit_2, dec_crit_2 = self._tiling_crit(edge1=edge_90, edge2= edge2, edge_90=edge_90_, max_order=max_order, kwargs_lens= kwargs_lens) ra_crit += ra_crit_2 dec_crit += dec_crit_2 return ra_crit, dec_crit
tiling_crit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, edge1, edge2, edge_90, max_order, kwargs_lens):\n ra_1, dec_1, mag_1 = edge1\n ra_2, dec_2, mag_2 = edge2\n ra_3, dec_3, mag_3 = edge_90\n sign_list = np.sign([mag_1, mag_2, mag_3])\n if sign_list[0] == sign_list[1] and sign_list[0] == sign_list[2]:\n return [], []\n else:\n max_order -= 1\n if max_order <= 0:\n return [(ra_1 + ra_2 + ra_3) / 3], [(dec_1 + dec_2 + dec_3) / 3]\n else:\n ra_90_ = (ra_1 + ra_2) / 2\n dec_90_ = (dec_1 + dec_2) / 2\n mag_90_ = self._lensModel.magnification(ra_90_, dec_90_,\n kwargs_lens)\n edge_90_ = [ra_90_, dec_90_, mag_90_]\n ra_crit, dec_crit = self._tiling_crit(edge1=edge_90, edge2=\n edge1, edge_90=edge_90_, max_order=max_order, kwargs_lens=\n kwargs_lens)\n ra_crit_2, dec_crit_2 = self._tiling_crit(edge1=edge_90, edge2=\n edge2, edge_90=edge_90_, max_order=max_order, kwargs_lens=\n kwargs_lens)\n ra_crit += ra_crit_2\n dec_crit += dec_crit_2\n return ra_crit, dec_crit\n", "role": "user" }, { "content": "tiling_crit", "role": "assistant" } ]
def x(self, kwargs_lens_list, k=None, spacing=1000): if 'center_x' in kwargs_lens_list[0]: center_x = kwargs_lens_list[0]['center_x'] center_y = kwargs_lens_list[0]['center_y'] elif self._lensModel.lens_model_list[0] in ['INTERPOL', 'INTERPOL_SCALED']: center_x, center_y = 0, 0 else: center_x, center_y = 0, 0 numPix = 200 deltaPix = 0.05 x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix) x_grid += center_x y_grid += center_y kappa = self._lensModel.kappa(x_grid, y_grid, kwargs_lens_list, k=k) if self._lensModel.lens_model_list[0] in ['INTERPOL', 'INTERPOL_SCALED']: center_x = x_grid[kappa == np.max(kappa)] center_y = y_grid[kappa == np.max(kappa)] kappa = util.array2image(kappa) r_array = np.linspace(0.0001, numPix * deltaPix / 2.0, spacing) for r in r_array: mask = np.array(1 - mask_util.mask_center_2d(center_x, center_y, r, x_grid, y_grid)) sum_mask = np.sum(mask) if sum_mask > 0: kappa_mean = np.sum(kappa * mask) / np.sum(mask) if kappa_mean < 1: return r print(kwargs_lens_list, 'Warning, no Einstein radius computed!') return r_array[-1]
effective_einstein_radius
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens_list, k=None, spacing=1000):\n if 'center_x' in kwargs_lens_list[0]:\n center_x = kwargs_lens_list[0]['center_x']\n center_y = kwargs_lens_list[0]['center_y']\n elif self._lensModel.lens_model_list[0] in ['INTERPOL', 'INTERPOL_SCALED']:\n center_x, center_y = 0, 0\n else:\n center_x, center_y = 0, 0\n numPix = 200\n deltaPix = 0.05\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n x_grid += center_x\n y_grid += center_y\n kappa = self._lensModel.kappa(x_grid, y_grid, kwargs_lens_list, k=k)\n if self._lensModel.lens_model_list[0] in ['INTERPOL', 'INTERPOL_SCALED']:\n center_x = x_grid[kappa == np.max(kappa)]\n center_y = y_grid[kappa == np.max(kappa)]\n kappa = util.array2image(kappa)\n r_array = np.linspace(0.0001, numPix * deltaPix / 2.0, spacing)\n for r in r_array:\n mask = np.array(1 - mask_util.mask_center_2d(center_x, center_y, r,\n x_grid, y_grid))\n sum_mask = np.sum(mask)\n if sum_mask > 0:\n kappa_mean = np.sum(kappa * mask) / np.sum(mask)\n if kappa_mean < 1:\n return r\n print(kwargs_lens_list, 'Warning, no Einstein radius computed!')\n return r_array[-1]\n", "role": "user" }, { "content": "effective_einstein_radius", "role": "assistant" } ]
def x(self, kwargs_lens, lens_model_internal_bool=None): alpha0_x, alpha0_y = 0, 0 kappa_ext = 0 shear1, shear2 = 0, 0 if lens_model_internal_bool is None: lens_model_internal_bool = [True] * len(kwargs_lens) for i, kwargs in enumerate(kwargs_lens): if not lens_model_internal_bool[i] is True: f_x, f_y = self._lensModel.alpha(0, 0, kwargs_lens, k=i) f_xx, f_xy, f_yx, f_yy = self._lensModel.hessian(0, 0, kwargs_lens, k=i) alpha0_x += f_x alpha0_y += f_y kappa_ext += (f_xx + f_yy) / 2.0 shear1 += 1.0 / 2 * (f_xx - f_yy) shear2 += f_xy return alpha0_x, alpha0_y, kappa_ext, shear1, shear2
external_lensing_effect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, lens_model_internal_bool=None):\n alpha0_x, alpha0_y = 0, 0\n kappa_ext = 0\n shear1, shear2 = 0, 0\n if lens_model_internal_bool is None:\n lens_model_internal_bool = [True] * len(kwargs_lens)\n for i, kwargs in enumerate(kwargs_lens):\n if not lens_model_internal_bool[i] is True:\n f_x, f_y = self._lensModel.alpha(0, 0, kwargs_lens, k=i)\n f_xx, f_xy, f_yx, f_yy = self._lensModel.hessian(0, 0,\n kwargs_lens, k=i)\n alpha0_x += f_x\n alpha0_y += f_y\n kappa_ext += (f_xx + f_yy) / 2.0\n shear1 += 1.0 / 2 * (f_xx - f_yy)\n shear2 += f_xy\n return alpha0_x, alpha0_y, kappa_ext, shear1, shear2\n", "role": "user" }, { "content": "external_lensing_effect", "role": "assistant" } ]
def x(self, kwargs_lens, k=None, bool_list=None, numPix=200, deltaPix=0.01, center_x_init=0, center_y_init=0): x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix) x_grid += center_x_init y_grid += center_y_init if bool_list is None: kappa = self._lensModel.kappa(x_grid, y_grid, kwargs_lens, k=k) else: kappa = np.zeros_like(x_grid) for k in range(len(kwargs_lens)): if bool_list[k] is True: kappa += self._lensModel.kappa(x_grid, y_grid, kwargs_lens, k=k ) center_x = x_grid[kappa == np.max(kappa)] center_y = y_grid[kappa == np.max(kappa)] return center_x, center_y
lens_center
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens, k=None, bool_list=None, numPix=200, deltaPix=0.01,\n center_x_init=0, center_y_init=0):\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n x_grid += center_x_init\n y_grid += center_y_init\n if bool_list is None:\n kappa = self._lensModel.kappa(x_grid, y_grid, kwargs_lens, k=k)\n else:\n kappa = np.zeros_like(x_grid)\n for k in range(len(kwargs_lens)):\n if bool_list[k] is True:\n kappa += self._lensModel.kappa(x_grid, y_grid, kwargs_lens, k=k\n )\n center_x = x_grid[kappa == np.max(kappa)]\n center_y = y_grid[kappa == np.max(kappa)]\n return center_x, center_y\n", "role": "user" }, { "content": "lens_center", "role": "assistant" } ]
def x(self, kwargs_lens_list, lens_model_internal_bool=None, num_points=10): theta_E = self.effective_einstein_radius(kwargs_lens_list) x0 = kwargs_lens_list[0]['center_x'] y0 = kwargs_lens_list[0]['center_y'] x, y = util.points_on_circle(theta_E, num_points) dr = 0.01 x_dr, y_dr = util.points_on_circle(theta_E + dr, num_points) if lens_model_internal_bool is None: lens_model_internal_bool = [True] * len(kwargs_lens_list) alpha_E_x_i, alpha_E_y_i = self._lensModel.alpha(x0 + x, y0 + y, kwargs_lens_list, k=lens_model_internal_bool) alpha_E_r = np.sqrt(alpha_E_x_i ** 2 + alpha_E_y_i ** 2) alpha_E_dr_x_i, alpha_E_dr_y_i = self._lensModel.alpha(x0 + x_dr, y0 + y_dr, kwargs_lens_list, k=lens_model_internal_bool) alpha_E_dr = np.sqrt(alpha_E_dr_x_i ** 2 + alpha_E_dr_y_i ** 2) slope = np.mean(np.log(alpha_E_dr / alpha_E_r) / np.log((theta_E + dr) / theta_E)) gamma = -slope + 2 return gamma
profile_slope
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kwargs_lens_list, lens_model_internal_bool=None, num_points=10):\n theta_E = self.effective_einstein_radius(kwargs_lens_list)\n x0 = kwargs_lens_list[0]['center_x']\n y0 = kwargs_lens_list[0]['center_y']\n x, y = util.points_on_circle(theta_E, num_points)\n dr = 0.01\n x_dr, y_dr = util.points_on_circle(theta_E + dr, num_points)\n if lens_model_internal_bool is None:\n lens_model_internal_bool = [True] * len(kwargs_lens_list)\n alpha_E_x_i, alpha_E_y_i = self._lensModel.alpha(x0 + x, y0 + y,\n kwargs_lens_list, k=lens_model_internal_bool)\n alpha_E_r = np.sqrt(alpha_E_x_i ** 2 + alpha_E_y_i ** 2)\n alpha_E_dr_x_i, alpha_E_dr_y_i = self._lensModel.alpha(x0 + x_dr, y0 +\n y_dr, kwargs_lens_list, k=lens_model_internal_bool)\n alpha_E_dr = np.sqrt(alpha_E_dr_x_i ** 2 + alpha_E_dr_y_i ** 2)\n slope = np.mean(np.log(alpha_E_dr / alpha_E_r) / np.log((theta_E + dr) /\n theta_E))\n gamma = -slope + 2\n return gamma\n", "role": "user" }, { "content": "profile_slope", "role": "assistant" } ]
def x(self, x, y, kwargs, diff=diff): f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff) kappa = 1.0 / 2 * (f_xx + f_yy) return kappa
kappa
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, diff=diff):\n f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff)\n kappa = 1.0 / 2 * (f_xx + f_yy)\n return kappa\n", "role": "user" }, { "content": "kappa", "role": "assistant" } ]
def x(self, x, y, kwargs, diff=diff): f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff) gamma1 = 1.0 / 2 * (f_xx - f_yy) gamma2 = f_xy return gamma1, gamma2
gamma
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, diff=diff):\n f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff)\n gamma1 = 1.0 / 2 * (f_xx - f_yy)\n gamma2 = f_xy\n return gamma1, gamma2\n", "role": "user" }, { "content": "gamma", "role": "assistant" } ]
def x(self, x, y, kwargs, diff=diff): f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff) det_A = (1 - f_xx) * (1 - f_yy) - f_xy * f_yx return 1 / det_A
magnification
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, diff=diff):\n f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff)\n det_A = (1 - f_xx) * (1 - f_yy) - f_xy * f_yx\n return 1 / det_A\n", "role": "user" }, { "content": "magnification", "role": "assistant" } ]
def x(self, x, y, kwargs, diff=diff): alpha_ra, alpha_dec = self.alpha(x, y, kwargs) alpha_ra_dx, alpha_dec_dx = self.alpha(x + diff, y, kwargs) alpha_ra_dy, alpha_dec_dy = self.alpha(x, y + diff, kwargs) dalpha_rara = (alpha_ra_dx - alpha_ra) / diff dalpha_radec = (alpha_ra_dy - alpha_ra) / diff dalpha_decra = (alpha_dec_dx - alpha_dec) / diff dalpha_decdec = (alpha_dec_dy - alpha_dec) / diff f_xx = dalpha_rara f_yy = dalpha_decdec f_xy = dalpha_radec f_yx = dalpha_decra return f_xx, f_xy, f_yx, f_yy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, diff=diff):\n alpha_ra, alpha_dec = self.alpha(x, y, kwargs)\n alpha_ra_dx, alpha_dec_dx = self.alpha(x + diff, y, kwargs)\n alpha_ra_dy, alpha_dec_dy = self.alpha(x, y + diff, kwargs)\n dalpha_rara = (alpha_ra_dx - alpha_ra) / diff\n dalpha_radec = (alpha_ra_dy - alpha_ra) / diff\n dalpha_decra = (alpha_dec_dx - alpha_dec) / diff\n dalpha_decdec = (alpha_dec_dy - alpha_dec) / diff\n f_xx = dalpha_rara\n f_yy = dalpha_decdec\n f_xy = dalpha_radec\n f_yx = dalpha_decra\n return f_xx, f_xy, f_yx, f_yy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, z_lens, z_source): return self.D_xy(0, z_lens) * self.D_xy(0, z_source) / self.D_xy(z_lens, z_source) * (1 + z_lens)
D_dt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, z_lens, z_source):\n return self.D_xy(0, z_lens) * self.D_xy(0, z_source) / self.D_xy(z_lens,\n z_source) * (1 + z_lens)\n", "role": "user" }, { "content": "D_dt", "role": "assistant" } ]
def x(self): h = self.cosmo.H(0).value / 100.0 return 3 * h ** 2 / (8 * np.pi * const.G ) * 10 ** 10 * const.Mpc / const.M_sun
rho_crit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n h = self.cosmo.H(0).value / 100.0\n return 3 * h ** 2 / (8 * np.pi * const.G\n ) * 10 ** 10 * const.Mpc / const.M_sun\n", "role": "user" }, { "content": "rho_crit", "role": "assistant" } ]
def x(self, x, n_array, tensor=True): if not self._stable_cut: return hermite.hermval(x, n_array) else: n_max = len(n_array) x_cut = np.sqrt(n_max + 1) * self._cut_scale if isinstance(x, int) or isinstance(x, float): if x >= x_cut: return 0 else: return hermite.hermval(x, n_array) else: out = np.zeros_like(x) out[x < x_cut] = hermite.hermval(x[x < x_cut], n_array, tensor= tensor) return out
hermval
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, n_array, tensor=True):\n if not self._stable_cut:\n return hermite.hermval(x, n_array)\n else:\n n_max = len(n_array)\n x_cut = np.sqrt(n_max + 1) * self._cut_scale\n if isinstance(x, int) or isinstance(x, float):\n if x >= x_cut:\n return 0\n else:\n return hermite.hermval(x, n_array)\n else:\n out = np.zeros_like(x)\n out[x < x_cut] = hermite.hermval(x[x < x_cut], n_array, tensor=\n tensor)\n return out\n", "role": "user" }, { "content": "hermval", "role": "assistant" } ]
def x(self, n, x): if not self._interpolation: n_array = np.zeros(n + 1) n_array[n] = 1 return self.hermval(x, n_array, tensor=False) else: return np.interp(x, self.x_grid, self.H_interp[n])
H_n
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, x):\n if not self._interpolation:\n n_array = np.zeros(n + 1)\n n_array[n] = 1\n return self.hermval(x, n_array, tensor=False)\n else:\n return np.interp(x, self.x_grid, self.H_interp[n])\n", "role": "user" }, { "content": "H_n", "role": "assistant" } ]
def x(self, x, y, beta, n_order, center_x, center_y): x_ = x - center_x y_ = y - center_y n = len(np.atleast_1d(x)) H_x = np.empty((n_order + 1, n)) H_y = np.empty((n_order + 1, n)) if n_order > 170: raise ValueError('polynomial order to large', n_order) for n in range(0, n_order + 1): prefactor = 1.0 / np.sqrt(2 ** n * np.sqrt(np.pi) * math.factorial(n)) n_array = np.zeros(n + 1) n_array[n] = 1 H_x[n] = self.hermval(x_ / beta, n_array, tensor=False ) * prefactor * np.exp(-(x_ / beta) ** 2 / 2.0) H_y[n] = self.hermval(y_ / beta, n_array, tensor=False ) * prefactor * np.exp(-(y_ / beta) ** 2 / 2.0) return H_x, H_y
pre_calc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, beta, n_order, center_x, center_y):\n x_ = x - center_x\n y_ = y - center_y\n n = len(np.atleast_1d(x))\n H_x = np.empty((n_order + 1, n))\n H_y = np.empty((n_order + 1, n))\n if n_order > 170:\n raise ValueError('polynomial order to large', n_order)\n for n in range(0, n_order + 1):\n prefactor = 1.0 / np.sqrt(2 ** n * np.sqrt(np.pi) * math.factorial(n))\n n_array = np.zeros(n + 1)\n n_array[n] = 1\n H_x[n] = self.hermval(x_ / beta, n_array, tensor=False\n ) * prefactor * np.exp(-(x_ / beta) ** 2 / 2.0)\n H_y[n] = self.hermval(y_ / beta, n_array, tensor=False\n ) * prefactor * np.exp(-(y_ / beta) ** 2 / 2.0)\n return H_x, H_y\n", "role": "user" }, { "content": "pre_calc", "role": "assistant" } ]
def x(self, image, x, y, n_max, beta, deltaPix, center_x=0, center_y=0): num_param = int((n_max + 1) * (n_max + 2) / 2) param_list = np.zeros(num_param) amp_norm = 1.0 / beta ** 2 * deltaPix ** 2 n1 = 0 n2 = 0 H_x, H_y = self.shapelets.pre_calc(x, y, beta, n_max, center_x, center_y) for i in range(num_param): kwargs_source_shapelet = {'center_x': center_x, 'center_y': center_y, 'n1': n1, 'n2': n2, 'beta': beta, 'amp': amp_norm} base = self.shapelets.function(H_x, H_y, **kwargs_source_shapelet) param = np.sum(image * base) param_list[i] = param if n1 == 0: n1 = n2 + 1 n2 = 0 else: n1 -= 1 n2 += 1 return param_list
decomposition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, x, y, n_max, beta, deltaPix, center_x=0, center_y=0):\n num_param = int((n_max + 1) * (n_max + 2) / 2)\n param_list = np.zeros(num_param)\n amp_norm = 1.0 / beta ** 2 * deltaPix ** 2\n n1 = 0\n n2 = 0\n H_x, H_y = self.shapelets.pre_calc(x, y, beta, n_max, center_x, center_y)\n for i in range(num_param):\n kwargs_source_shapelet = {'center_x': center_x, 'center_y':\n center_y, 'n1': n1, 'n2': n2, 'beta': beta, 'amp': amp_norm}\n base = self.shapelets.function(H_x, H_y, **kwargs_source_shapelet)\n param = np.sum(image * base)\n param_list[i] = param\n if n1 == 0:\n n1 = n2 + 1\n n2 = 0\n else:\n n1 -= 1\n n2 += 1\n return param_list\n", "role": "user" }, { "content": "decomposition", "role": "assistant" } ]
def x(self, maxIter=1000, c1=1.193, c2=1.193, lookback=0.25, standard_dev=None ): self._get_fitness(self.swarm) i = 0 self.i = i while True: for particle in self.swarm: if self._gbest.fitness < particle.fitness: self._gbest = particle.copy() if particle.fitness > particle.pbest.fitness: particle.updatePBest() if i >= maxIter: if self._verbose: print('max iteration reached! stoping') return if self._func.is_converged: return if self._converged_likelihood(maxIter * lookback, self. _particleCount, standard_dev): return for particle in self.swarm: w = 0.5 + numpy.random.uniform(0, 1, size=self._paramCount) / 2 part_vel = w * particle.velocity cog_vel = c1 * numpy.random.uniform(0, 1, size=self._paramCount ) * (particle.pbest.position - particle.position) soc_vel = c2 * numpy.random.uniform(0, 1, size=self._paramCount ) * (self._gbest.position - particle.position) particle.velocity = part_vel + cog_vel + soc_vel particle.position = particle.position + particle.velocity self._get_fitness(self.swarm) swarm = [] for particle in self.swarm: swarm.append(particle.copy()) yield swarm i += 1 self.i = i
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, maxIter=1000, c1=1.193, c2=1.193, lookback=0.25, standard_dev=None\n ):\n self._get_fitness(self.swarm)\n i = 0\n self.i = i\n while True:\n for particle in self.swarm:\n if self._gbest.fitness < particle.fitness:\n self._gbest = particle.copy()\n if particle.fitness > particle.pbest.fitness:\n particle.updatePBest()\n if i >= maxIter:\n if self._verbose:\n print('max iteration reached! stoping')\n return\n if self._func.is_converged:\n return\n if self._converged_likelihood(maxIter * lookback, self.\n _particleCount, standard_dev):\n return\n for particle in self.swarm:\n w = 0.5 + numpy.random.uniform(0, 1, size=self._paramCount) / 2\n part_vel = w * particle.velocity\n cog_vel = c1 * numpy.random.uniform(0, 1, size=self._paramCount\n ) * (particle.pbest.position - particle.position)\n soc_vel = c2 * numpy.random.uniform(0, 1, size=self._paramCount\n ) * (self._gbest.position - particle.position)\n particle.velocity = part_vel + cog_vel + soc_vel\n particle.position = particle.position + particle.velocity\n self._get_fitness(self.swarm)\n swarm = []\n for particle in self.swarm:\n swarm.append(particle.copy())\n yield swarm\n i += 1\n self.i = i\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(self, maxIter=1000, c1=1.193, c2=1.193, lookback=0.25, standard_dev=None ): gBests = [] for swarm in self._sample(maxIter, c1, c2, lookback, standard_dev): gBests.append(self._gbest.copy()) return gBests
optimize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, maxIter=1000, c1=1.193, c2=1.193, lookback=0.25, standard_dev=None\n ):\n gBests = []\n for swarm in self._sample(maxIter, c1, c2, lookback, standard_dev):\n gBests.append(self._gbest.copy())\n return gBests\n", "role": "user" }, { "content": "optimize", "role": "assistant" } ]
def x(cls, paramCount): return Particle(numpy.array([[]] * paramCount), numpy.array([[]] * paramCount), -numpy.Inf)
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, paramCount):\n return Particle(numpy.array([[]] * paramCount), numpy.array([[]] *\n paramCount), -numpy.Inf)\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(self): return Particle(copy(self.position), copy(self.velocity), self.fitness)
copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return Particle(copy(self.position), copy(self.velocity), self.fitness)\n", "role": "user" }, { "content": "copy", "role": "assistant" } ]
def x(self, bool=True): for imageModel in self._imageModel_list: imageModel.reset_point_source_cache(bool=bool)
reset_point_source_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bool=True):\n for imageModel in self._imageModel_list:\n imageModel.reset_point_source_cache(bool=bool)\n", "role": "user" }, { "content": "reset_point_source_cache", "role": "assistant" } ]
def x(I_xy_input, x, y): I_xy = copy.deepcopy(I_xy_input) background = np.minimum(0, np.min(I_xy)) I_xy -= background x_ = np.sum(I_xy * x) y_ = np.sum(I_xy * y) r = (np.max(x) - np.min(x)) / 3.0 mask = mask_util.mask_sphere(x, y, center_x=x_, center_y=y_, r=r) Q_xx = np.sum(I_xy * mask * (x - x_) ** 2) Q_xy = np.sum(I_xy * mask * (x - x_) * (y - y_)) Q_yy = np.sum(I_xy * mask * (y - y_) ** 2) return Q_xx, Q_xy, Q_yy, background / np.mean(I_xy)
moments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(I_xy_input, x, y):\n I_xy = copy.deepcopy(I_xy_input)\n background = np.minimum(0, np.min(I_xy))\n I_xy -= background\n x_ = np.sum(I_xy * x)\n y_ = np.sum(I_xy * y)\n r = (np.max(x) - np.min(x)) / 3.0\n mask = mask_util.mask_sphere(x, y, center_x=x_, center_y=y_, r=r)\n Q_xx = np.sum(I_xy * mask * (x - x_) ** 2)\n Q_xy = np.sum(I_xy * mask * (x - x_) * (y - y_))\n Q_yy = np.sum(I_xy * mask * (y - y_) ** 2)\n return Q_xx, Q_xy, Q_yy, background / np.mean(I_xy)\n", "role": "user" }, { "content": "moments", "role": "assistant" } ]
def x(I_xy, x, y): Q_xx, Q_xy, Q_yy, bkg = moments(I_xy, x, y) norm = Q_xx + Q_yy + 2 * np.sqrt(Q_xx * Q_yy - Q_xy ** 2) e1 = (Q_xx - Q_yy) / norm e2 = 2 * Q_xy / norm return e1 / (1 + bkg), e2 / (1 + bkg)
ellipticities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(I_xy, x, y):\n Q_xx, Q_xy, Q_yy, bkg = moments(I_xy, x, y)\n norm = Q_xx + Q_yy + 2 * np.sqrt(Q_xx * Q_yy - Q_xy ** 2)\n e1 = (Q_xx - Q_yy) / norm\n e2 = 2 * Q_xy / norm\n return e1 / (1 + bkg), e2 / (1 + bkg)\n", "role": "user" }, { "content": "ellipticities", "role": "assistant" } ]
def x(self, theta_x, theta_y, kwargs_lens, k=None): x = np.zeros_like(theta_x) y = np.zeros_like(theta_y) alpha_x = theta_x alpha_y = theta_y i = -1 for i, idex in enumerate(self._sorted_redshift_index): delta_T = self._T_ij_list[i] x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T) alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y, kwargs_lens, i) delta_T = self._T_ij_list[i + 1] x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T) beta_x, beta_y = self._co_moving2angle_source(x, y) return beta_x, beta_y
ray_shooting
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, theta_x, theta_y, kwargs_lens, k=None):\n x = np.zeros_like(theta_x)\n y = np.zeros_like(theta_y)\n alpha_x = theta_x\n alpha_y = theta_y\n i = -1\n for i, idex in enumerate(self._sorted_redshift_index):\n delta_T = self._T_ij_list[i]\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,\n kwargs_lens, i)\n delta_T = self._T_ij_list[i + 1]\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n beta_x, beta_y = self._co_moving2angle_source(x, y)\n return beta_x, beta_y\n", "role": "user" }, { "content": "ray_shooting", "role": "assistant" } ]
def x(self, x, y, alpha_x, alpha_y, z_start, z_stop, kwargs_lens, keep_range=False, include_z_start=False): z_lens_last = z_start first_deflector = True for i, idex in enumerate(self._sorted_redshift_index): z_lens = self._redshift_list[idex] if self._start_condition(include_z_start, z_lens, z_start ) and z_lens <= z_stop: if first_deflector is True: if keep_range is True: if not hasattr(self, '_cosmo_bkg_T_start'): self._cosmo_bkg_T_start = self._cosmo_bkg.T_xy(z_start, z_lens) delta_T = self._cosmo_bkg_T_start else: delta_T = self._cosmo_bkg.T_xy(z_start, z_lens) first_deflector = False else: delta_T = self._T_ij_list[i] x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T) alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y, kwargs_lens, i) z_lens_last = z_lens if keep_range is True: if not hasattr(self, '_cosmo_bkg_T_stop'): self._cosmo_bkg_T_stop = self._cosmo_bkg.T_xy(z_lens_last, z_stop) delta_T = self._cosmo_bkg_T_stop else: delta_T = self._cosmo_bkg.T_xy(z_lens_last, z_stop) x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T) return x, y, alpha_x, alpha_y
ray_shooting_partial
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, alpha_x, alpha_y, z_start, z_stop, kwargs_lens,\n keep_range=False, include_z_start=False):\n z_lens_last = z_start\n first_deflector = True\n for i, idex in enumerate(self._sorted_redshift_index):\n z_lens = self._redshift_list[idex]\n if self._start_condition(include_z_start, z_lens, z_start\n ) and z_lens <= z_stop:\n if first_deflector is True:\n if keep_range is True:\n if not hasattr(self, '_cosmo_bkg_T_start'):\n self._cosmo_bkg_T_start = self._cosmo_bkg.T_xy(z_start,\n z_lens)\n delta_T = self._cosmo_bkg_T_start\n else:\n delta_T = self._cosmo_bkg.T_xy(z_start, z_lens)\n first_deflector = False\n else:\n delta_T = self._T_ij_list[i]\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,\n kwargs_lens, i)\n z_lens_last = z_lens\n if keep_range is True:\n if not hasattr(self, '_cosmo_bkg_T_stop'):\n self._cosmo_bkg_T_stop = self._cosmo_bkg.T_xy(z_lens_last, z_stop)\n delta_T = self._cosmo_bkg_T_stop\n else:\n delta_T = self._cosmo_bkg.T_xy(z_lens_last, z_stop)\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n return x, y, alpha_x, alpha_y\n", "role": "user" }, { "content": "ray_shooting_partial", "role": "assistant" } ]
def x(self, x, y, alpha_x, alpha_y, z_start, z_stop, kwargs_lens, include_z_start=False): z_lens_last = z_start first_deflector = True pos_x, pos_y, redshifts, Tz_list = [], [], [], [] pos_x.append(x) pos_y.append(y) redshifts.append(z_start) Tz_list.append(self._cosmo_bkg.T_xy(0, z_start)) current_z = z_lens_last for i, idex in enumerate(self._sorted_redshift_index): z_lens = self._redshift_list[idex] if self._start_condition(include_z_start, z_lens, z_start ) and z_lens <= z_stop: if z_lens != current_z: new_plane = True current_z = z_lens else: new_plane = False if first_deflector is True: delta_T = self._cosmo_bkg.T_xy(z_start, z_lens) first_deflector = False else: delta_T = self._T_ij_list[i] x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T) alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y, kwargs_lens, i) z_lens_last = z_lens if new_plane: pos_x.append(x) pos_y.append(y) redshifts.append(z_lens) Tz_list.append(self._T_z_list[i]) delta_T = self._cosmo_bkg.T_xy(z_lens_last, z_stop) x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T) pos_x.append(x) pos_y.append(y) redshifts.append(self._z_source) Tz_list.append(self._T_z_source) return pos_x, pos_y, redshifts, Tz_list
ray_shooting_partial_steps
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, alpha_x, alpha_y, z_start, z_stop, kwargs_lens,\n include_z_start=False):\n z_lens_last = z_start\n first_deflector = True\n pos_x, pos_y, redshifts, Tz_list = [], [], [], []\n pos_x.append(x)\n pos_y.append(y)\n redshifts.append(z_start)\n Tz_list.append(self._cosmo_bkg.T_xy(0, z_start))\n current_z = z_lens_last\n for i, idex in enumerate(self._sorted_redshift_index):\n z_lens = self._redshift_list[idex]\n if self._start_condition(include_z_start, z_lens, z_start\n ) and z_lens <= z_stop:\n if z_lens != current_z:\n new_plane = True\n current_z = z_lens\n else:\n new_plane = False\n if first_deflector is True:\n delta_T = self._cosmo_bkg.T_xy(z_start, z_lens)\n first_deflector = False\n else:\n delta_T = self._T_ij_list[i]\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,\n kwargs_lens, i)\n z_lens_last = z_lens\n if new_plane:\n pos_x.append(x)\n pos_y.append(y)\n redshifts.append(z_lens)\n Tz_list.append(self._T_z_list[i])\n delta_T = self._cosmo_bkg.T_xy(z_lens_last, z_stop)\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n pos_x.append(x)\n pos_y.append(y)\n redshifts.append(self._z_source)\n Tz_list.append(self._T_z_source)\n return pos_x, pos_y, redshifts, Tz_list\n", "role": "user" }, { "content": "ray_shooting_partial_steps", "role": "assistant" } ]
def x(self, theta_x, theta_y, kwargs_lens, k=None): dt_grav = np.zeros_like(theta_x) dt_geo = np.zeros_like(theta_x) x = np.zeros_like(theta_x) y = np.zeros_like(theta_y) alpha_x = theta_x alpha_y = theta_y i = 0 for i, idex in enumerate(self._sorted_redshift_index): z_lens = self._redshift_list[idex] delta_T = self._T_ij_list[i] dt_geo_new = self._geometrical_delay(alpha_x, alpha_y, delta_T) x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T) dt_grav_new = self._gravitational_delay(x, y, kwargs_lens, i, z_lens) alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y, kwargs_lens, i) dt_geo = dt_geo + dt_geo_new dt_grav = dt_grav + dt_grav_new delta_T = self._T_ij_list[i + 1] dt_geo += self._geometrical_delay(alpha_x, alpha_y, delta_T) x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T) beta_x, beta_y = self._co_moving2angle_source(x, y) dt_geo -= self._geometrical_delay(beta_x, beta_y, self._T_z_source) return dt_grav + dt_geo
arrival_time
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, theta_x, theta_y, kwargs_lens, k=None):\n dt_grav = np.zeros_like(theta_x)\n dt_geo = np.zeros_like(theta_x)\n x = np.zeros_like(theta_x)\n y = np.zeros_like(theta_y)\n alpha_x = theta_x\n alpha_y = theta_y\n i = 0\n for i, idex in enumerate(self._sorted_redshift_index):\n z_lens = self._redshift_list[idex]\n delta_T = self._T_ij_list[i]\n dt_geo_new = self._geometrical_delay(alpha_x, alpha_y, delta_T)\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n dt_grav_new = self._gravitational_delay(x, y, kwargs_lens, i, z_lens)\n alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,\n kwargs_lens, i)\n dt_geo = dt_geo + dt_geo_new\n dt_grav = dt_grav + dt_grav_new\n delta_T = self._T_ij_list[i + 1]\n dt_geo += self._geometrical_delay(alpha_x, alpha_y, delta_T)\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n beta_x, beta_y = self._co_moving2angle_source(x, y)\n dt_geo -= self._geometrical_delay(beta_x, beta_y, self._T_z_source)\n return dt_grav + dt_geo\n", "role": "user" }, { "content": "arrival_time", "role": "assistant" } ]
def x(self, theta_x, theta_y, kwargs_lens, k=None): beta_x, beta_y = self.ray_shooting(theta_x, theta_y, kwargs_lens) alpha_x = theta_x - beta_x alpha_y = theta_y - beta_y return alpha_x, alpha_y
alpha
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, theta_x, theta_y, kwargs_lens, k=None):\n beta_x, beta_y = self.ray_shooting(theta_x, theta_y, kwargs_lens)\n alpha_x = theta_x - beta_x\n alpha_y = theta_y - beta_y\n return alpha_x, alpha_y\n", "role": "user" }, { "content": "alpha", "role": "assistant" } ]
def x(self, theta_x, theta_y, kwargs_lens, k=None, diff=1e-08): alpha_ra, alpha_dec = self.alpha(theta_x, theta_y, kwargs_lens) alpha_ra_dx, alpha_dec_dx = self.alpha(theta_x + diff, theta_y, kwargs_lens ) alpha_ra_dy, alpha_dec_dy = self.alpha(theta_x, theta_y + diff, kwargs_lens ) dalpha_rara = (alpha_ra_dx - alpha_ra) / diff dalpha_radec = (alpha_ra_dy - alpha_ra) / diff dalpha_decra = (alpha_dec_dx - alpha_dec) / diff dalpha_decdec = (alpha_dec_dy - alpha_dec) / diff f_xx = dalpha_rara f_yy = dalpha_decdec f_xy = dalpha_radec f_yx = dalpha_decra return f_xx, f_xy, f_yx, f_yy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, theta_x, theta_y, kwargs_lens, k=None, diff=1e-08):\n alpha_ra, alpha_dec = self.alpha(theta_x, theta_y, kwargs_lens)\n alpha_ra_dx, alpha_dec_dx = self.alpha(theta_x + diff, theta_y, kwargs_lens\n )\n alpha_ra_dy, alpha_dec_dy = self.alpha(theta_x, theta_y + diff, kwargs_lens\n )\n dalpha_rara = (alpha_ra_dx - alpha_ra) / diff\n dalpha_radec = (alpha_ra_dy - alpha_ra) / diff\n dalpha_decra = (alpha_dec_dx - alpha_dec) / diff\n dalpha_decdec = (alpha_dec_dy - alpha_dec) / diff\n f_xx = dalpha_rara\n f_yy = dalpha_decdec\n f_xy = dalpha_radec\n f_yx = dalpha_decra\n return f_xx, f_xy, f_yx, f_yy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, alpha_reduced, idex_lens): factor = self._reduced2physical_factor[idex_lens] return alpha_reduced * factor
reduced2physical_deflection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, alpha_reduced, idex_lens):\n factor = self._reduced2physical_factor[idex_lens]\n return alpha_reduced * factor\n", "role": "user" }, { "content": "reduced2physical_deflection", "role": "assistant" } ]
def x(self, alpha_x, alpha_y, delta_T): dt_days = (alpha_x ** 2 + alpha_y ** 2 ) / 2.0 * delta_T * const.Mpc / const.c / const.day_s * const.arcsec ** 2 return dt_days
geometrical_delay
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, alpha_x, alpha_y, delta_T):\n dt_days = (alpha_x ** 2 + alpha_y ** 2\n ) / 2.0 * delta_T * const.Mpc / const.c / const.day_s * const.arcsec ** 2\n return dt_days\n", "role": "user" }, { "content": "geometrical_delay", "role": "assistant" } ]
def x(self, potential, z_lens, z_source): D_dt = self._cosmo_bkg.D_dt(z_lens, z_source) delay_days = const.delay_arcsec2days(potential, D_dt) return delay_days
lensing_potential2time_delay
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, potential, z_lens, z_source):\n D_dt = self._cosmo_bkg.D_dt(z_lens, z_source)\n delay_days = const.delay_arcsec2days(potential, D_dt)\n return delay_days\n", "role": "user" }, { "content": "lensing_potential2time_delay", "role": "assistant" } ]
def x(self, x, y, idex): T_z = self._T_z_list[idex] theta_x = x / T_z theta_y = y / T_z return theta_x, theta_y
co_moving2angle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, idex):\n T_z = self._T_z_list[idex]\n theta_x = x / T_z\n theta_y = y / T_z\n return theta_x, theta_y\n", "role": "user" }, { "content": "co_moving2angle", "role": "assistant" } ]
def x(self, x, y): T_z = self._T_z_source theta_x = x / T_z theta_y = y / T_z return theta_x, theta_y
co_moving2angle_source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y):\n T_z = self._T_z_source\n theta_x = x / T_z\n theta_y = y / T_z\n return theta_x, theta_y\n", "role": "user" }, { "content": "co_moving2angle_source", "role": "assistant" } ]
def x(self, x, y, alpha_x, alpha_y, delta_T): x_ = x + alpha_x * delta_T y_ = y + alpha_y * delta_T return x_, y_
ray_step
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, alpha_x, alpha_y, delta_T):\n x_ = x + alpha_x * delta_T\n y_ = y + alpha_y * delta_T\n return x_, y_\n", "role": "user" }, { "content": "ray_step", "role": "assistant" } ]
def x(self, x, y, alpha_x, alpha_y, kwargs_lens, idex): theta_x, theta_y = self._co_moving2angle(x, y, idex) alpha_x_red, alpha_y_red = self._lens_model.alpha(theta_x, theta_y, kwargs_lens, k=self._sorted_redshift_index[idex]) alpha_x_phys = self._reduced2physical_deflection(alpha_x_red, idex) alpha_y_phys = self._reduced2physical_deflection(alpha_y_red, idex) alpha_x_new = alpha_x - alpha_x_phys alpha_y_new = alpha_y - alpha_y_phys return alpha_x_new, alpha_y_new
add_deflection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, alpha_x, alpha_y, kwargs_lens, idex):\n theta_x, theta_y = self._co_moving2angle(x, y, idex)\n alpha_x_red, alpha_y_red = self._lens_model.alpha(theta_x, theta_y,\n kwargs_lens, k=self._sorted_redshift_index[idex])\n alpha_x_phys = self._reduced2physical_deflection(alpha_x_red, idex)\n alpha_y_phys = self._reduced2physical_deflection(alpha_y_red, idex)\n alpha_x_new = alpha_x - alpha_x_phys\n alpha_y_new = alpha_y - alpha_y_phys\n return alpha_x_new, alpha_y_new\n", "role": "user" }, { "content": "add_deflection", "role": "assistant" } ]
def x(self, x, y, theta_E, center_x=0, center_y=0): x_shift = x - center_x y_shift = y - center_y R = np.sqrt(x_shift * x_shift + y_shift * y_shift) if isinstance(R, int) or isinstance(R, float): a = theta_E / max(1e-06, R) else: a = np.empty_like(R) r = R[R > 0] a[R == 0] = 0 a[R > 0] = theta_E / r f_x = a * x_shift f_y = a * y_shift return f_x, f_y
derivatives
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, theta_E, center_x=0, center_y=0):\n x_shift = x - center_x\n y_shift = y - center_y\n R = np.sqrt(x_shift * x_shift + y_shift * y_shift)\n if isinstance(R, int) or isinstance(R, float):\n a = theta_E / max(1e-06, R)\n else:\n a = np.empty_like(R)\n r = R[R > 0]\n a[R == 0] = 0\n a[R > 0] = theta_E / r\n f_x = a * x_shift\n f_y = a * y_shift\n return f_x, f_y\n", "role": "user" }, { "content": "derivatives", "role": "assistant" } ]
def x(self, x, y, theta_E, center_x=0, center_y=0): x_shift = x - center_x y_shift = y - center_y R = (x_shift * x_shift + y_shift * y_shift) ** (3.0 / 2) if isinstance(R, int) or isinstance(R, float): prefac = theta_E / max(1e-06, R) else: prefac = np.empty_like(R) r = R[R > 0] prefac[R == 0] = 0.0 prefac[R > 0] = theta_E / r f_xx = y_shift * y_shift * prefac f_yy = x_shift * x_shift * prefac f_xy = -x_shift * y_shift * prefac return f_xx, f_yy, f_xy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, theta_E, center_x=0, center_y=0):\n x_shift = x - center_x\n y_shift = y - center_y\n R = (x_shift * x_shift + y_shift * y_shift) ** (3.0 / 2)\n if isinstance(R, int) or isinstance(R, float):\n prefac = theta_E / max(1e-06, R)\n else:\n prefac = np.empty_like(R)\n r = R[R > 0]\n prefac[R == 0] = 0.0\n prefac[R > 0] = theta_E / r\n f_xx = y_shift * y_shift * prefac\n f_yy = x_shift * x_shift * prefac\n f_xy = -x_shift * y_shift * prefac\n return f_xx, f_yy, f_xy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(x, y, amp, a_x, a_y, center_x, center_y): x_shift = x - center_x y_shift = y - center_y A = np.pi * a_x * a_y dist = (x_shift / a_x) ** 2 + (y_shift / a_y) ** 2 torus = np.zeros_like(x) torus[dist <= 1] = 1 return amp / A * torus
function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, amp, a_x, a_y, center_x, center_y):\n x_shift = x - center_x\n y_shift = y - center_y\n A = np.pi * a_x * a_y\n dist = (x_shift / a_x) ** 2 + (y_shift / a_y) ** 2\n torus = np.zeros_like(x)\n torus[dist <= 1] = 1\n return amp / A * torus\n", "role": "user" }, { "content": "function", "role": "assistant" } ]
def x(a, b, c, z): return mp.hyp2f1(a, b, c, z)
hyp_2F1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, c, z):\n return mp.hyp2f1(a, b, c, z)\n", "role": "user" }, { "content": "hyp_2F1", "role": "assistant" } ]
def x(self, x, y, kwargs, k=None): dx, dy = self.alpha(x, y, kwargs, k=k) return x - dx, y - dy
ray_shooting
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, k=None):\n dx, dy = self.alpha(x, y, kwargs, k=k)\n return x - dx, y - dy\n", "role": "user" }, { "content": "ray_shooting", "role": "assistant" } ]
def x(self, x_image, y_image, x_source, y_source, kwargs_lens, k=None): potential = self.potential(x_image, y_image, kwargs_lens, k=k) geometry = ((x_image - x_source) ** 2 + (y_image - y_source) ** 2) / 2.0 return geometry - potential
fermat_potential
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x_image, y_image, x_source, y_source, kwargs_lens, k=None):\n potential = self.potential(x_image, y_image, kwargs_lens, k=k)\n geometry = ((x_image - x_source) ** 2 + (y_image - y_source) ** 2) / 2.0\n return geometry - potential\n", "role": "user" }, { "content": "fermat_potential", "role": "assistant" } ]
def x(self, x, y, kwargs, k=None): x = np.array(x, dtype=float) y = np.array(y, dtype=float) bool_list = self._bool_list(k) x_, y_, kwargs_copy = self._update_foreground(x, y, kwargs) potential = np.zeros_like(x) for i, func in enumerate(self.func_list): if bool_list[i] is True: if self._model_list[i] == 'SHEAR': potential += func.function(x, y, **kwargs[i]) else: potential += func.function(x_, y_, **kwargs_copy[i]) return potential
potential
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, k=None):\n x = np.array(x, dtype=float)\n y = np.array(y, dtype=float)\n bool_list = self._bool_list(k)\n x_, y_, kwargs_copy = self._update_foreground(x, y, kwargs)\n potential = np.zeros_like(x)\n for i, func in enumerate(self.func_list):\n if bool_list[i] is True:\n if self._model_list[i] == 'SHEAR':\n potential += func.function(x, y, **kwargs[i])\n else:\n potential += func.function(x_, y_, **kwargs_copy[i])\n return potential\n", "role": "user" }, { "content": "potential", "role": "assistant" } ]
def x(self, x, y, kwargs, k=None): x = np.array(x, dtype=float) y = np.array(y, dtype=float) bool_list = self._bool_list(k) x_, y_, kwargs_copy = self._update_foreground(x, y, kwargs) f_x, f_y = np.zeros_like(x_), np.zeros_like(x_) for i, func in enumerate(self.func_list): if bool_list[i] is True: if self._model_list[i] == 'SHEAR': f_x_i, f_y_i = func.derivatives(x, y, **kwargs[i]) else: f_x_i, f_y_i = func.derivatives(x_, y_, **kwargs_copy[i]) f_x += f_x_i f_y += f_y_i return f_x, f_y
alpha
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, k=None):\n x = np.array(x, dtype=float)\n y = np.array(y, dtype=float)\n bool_list = self._bool_list(k)\n x_, y_, kwargs_copy = self._update_foreground(x, y, kwargs)\n f_x, f_y = np.zeros_like(x_), np.zeros_like(x_)\n for i, func in enumerate(self.func_list):\n if bool_list[i] is True:\n if self._model_list[i] == 'SHEAR':\n f_x_i, f_y_i = func.derivatives(x, y, **kwargs[i])\n else:\n f_x_i, f_y_i = func.derivatives(x_, y_, **kwargs_copy[i])\n f_x += f_x_i\n f_y += f_y_i\n return f_x, f_y\n", "role": "user" }, { "content": "alpha", "role": "assistant" } ]
def x(self, x, y, kwargs, k=None): x = np.array(x, dtype=float) y = np.array(y, dtype=float) if self._foreground_shear: f_xx, f_xy, f_yx, f_yy = self.hessian_differential(x, y, kwargs, k=k) else: bool_list = self._bool_list(k) x_ = x y_ = y f_xx, f_yy, f_xy = np.zeros_like(x_), np.zeros_like(x_), np.zeros_like( x_) for i, func in enumerate(self.func_list): if bool_list[i] is True: f_xx_i, f_yy_i, f_xy_i = func.hessian(x_, y_, **kwargs[i]) f_xx += f_xx_i f_yy += f_yy_i f_xy += f_xy_i f_yx = f_xy return f_xx, f_xy, f_yx, f_yy
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, kwargs, k=None):\n x = np.array(x, dtype=float)\n y = np.array(y, dtype=float)\n if self._foreground_shear:\n f_xx, f_xy, f_yx, f_yy = self.hessian_differential(x, y, kwargs, k=k)\n else:\n bool_list = self._bool_list(k)\n x_ = x\n y_ = y\n f_xx, f_yy, f_xy = np.zeros_like(x_), np.zeros_like(x_), np.zeros_like(\n x_)\n for i, func in enumerate(self.func_list):\n if bool_list[i] is True:\n f_xx_i, f_yy_i, f_xy_i = func.hessian(x_, y_, **kwargs[i])\n f_xx += f_xx_i\n f_yy += f_yy_i\n f_xy += f_xy_i\n f_yx = f_xy\n return f_xx, f_xy, f_yx, f_yy\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(self, r, kwargs, bool_list=None): bool_list = self._bool_list(bool_list) mass_3d = 0 for i, func in enumerate(self.func_list): if bool_list[i] is True: kwargs_i = {k: v for k, v in kwargs[i].items() if not k in [ 'center_x', 'center_y']} mass_3d_i = func.mass_3d_lens(r, **kwargs_i) mass_3d += mass_3d_i return mass_3d
mass_3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, kwargs, bool_list=None):\n bool_list = self._bool_list(bool_list)\n mass_3d = 0\n for i, func in enumerate(self.func_list):\n if bool_list[i] is True:\n kwargs_i = {k: v for k, v in kwargs[i].items() if not k in [\n 'center_x', 'center_y']}\n mass_3d_i = func.mass_3d_lens(r, **kwargs_i)\n mass_3d += mass_3d_i\n return mass_3d\n", "role": "user" }, { "content": "mass_3d", "role": "assistant" } ]
def x(self, r, kwargs, bool_list=None): bool_list = self._bool_list(bool_list) mass_2d = 0 for i, func in enumerate(self.func_list): if bool_list[i] is True: kwargs_i = {k: v for k, v in kwargs[i].items() if not k in [ 'center_x', 'center_y']} mass_2d_i = func.mass_2d_lens(r, **kwargs_i) mass_2d += mass_2d_i return mass_2d
mass_2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, kwargs, bool_list=None):\n bool_list = self._bool_list(bool_list)\n mass_2d = 0\n for i, func in enumerate(self.func_list):\n if bool_list[i] is True:\n kwargs_i = {k: v for k, v in kwargs[i].items() if not k in [\n 'center_x', 'center_y']}\n mass_2d_i = func.mass_2d_lens(r, **kwargs_i)\n mass_2d += mass_2d_i\n return mass_2d\n", "role": "user" }, { "content": "mass_2d", "role": "assistant" } ]
def x(self, k=None): n = len(self.func_list) if k is None: bool_list = [True] * n elif isinstance(k, (int, np.integer)): bool_list = [False] * n bool_list[k] = True else: bool_list = [False] * n for i, k_i in enumerate(k): if k_i is not False: if k_i is True: bool_list[i] = True elif k_i < n: bool_list[k_i] = True else: raise ValueError( 'k as set by %s is not convertable in a bool string!' % k) if self._foreground_shear is True: bool_list[self._foreground_shear_idex] = False return bool_list
bool_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, k=None):\n n = len(self.func_list)\n if k is None:\n bool_list = [True] * n\n elif isinstance(k, (int, np.integer)):\n bool_list = [False] * n\n bool_list[k] = True\n else:\n bool_list = [False] * n\n for i, k_i in enumerate(k):\n if k_i is not False:\n if k_i is True:\n bool_list[i] = True\n elif k_i < n:\n bool_list[k_i] = True\n else:\n raise ValueError(\n 'k as set by %s is not convertable in a bool string!' %\n k)\n if self._foreground_shear is True:\n bool_list[self._foreground_shear_idex] = False\n return bool_list\n", "role": "user" }, { "content": "bool_list", "role": "assistant" } ]
def x(symbol): blocks = ['namespace {0} {{'.format(x) for x in symbol.module.name_parts] return ' '.join(blocks)
open_ns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(symbol):\n blocks = ['namespace {0} {{'.format(x) for x in symbol.module.name_parts]\n return ' '.join(blocks)\n", "role": "user" }, { "content": "open_ns", "role": "assistant" } ]
def x(symbol): closing = ' '.join(['}' for x in symbol.module.name_parts]) name = '::'.join(symbol.module.name_parts) return '{0} // namespace {1}'.format(closing, name)
close_ns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(symbol):\n closing = ' '.join(['}' for x in symbol.module.name_parts])\n name = '::'.join(symbol.module.name_parts)\n return '{0} // namespace {1}'.format(closing, name)\n", "role": "user" }, { "content": "close_ns", "role": "assistant" } ]
def x(symbol): if symbol.type and symbol.type.is_primitive: return '' return '{0}::'.format('::'.join(symbol.module.name_parts))
ns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(symbol):\n if symbol.type and symbol.type.is_primitive:\n return ''\n return '{0}::'.format('::'.join(symbol.module.name_parts))\n", "role": "user" }, { "content": "ns", "role": "assistant" } ]
def x(config, src, dst, features, reload, force): config = Path(config) if reload: argv = sys.argv.copy() argv.remove('--reload') monitor(config.dirname(), src, dst, argv) else: run(config, src, dst, force)
app
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config, src, dst, features, reload, force):\n config = Path(config)\n if reload:\n argv = sys.argv.copy()\n argv.remove('--reload')\n monitor(config.dirname(), src, dst, argv)\n else:\n run(config, src, dst, force)\n", "role": "user" }, { "content": "app", "role": "assistant" } ]
def x(script, input, output): script = Path(script).expand().abspath() output = Path(output).expand().abspath() input = input if isinstance(input, (list, tuple)) else [input] output.makedirs_p() _script_reload(script, input, output)
reload
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(script, input, output):\n script = Path(script).expand().abspath()\n output = Path(output).expand().abspath()\n input = input if isinstance(input, (list, tuple)) else [input]\n output.makedirs_p()\n _script_reload(script, input, output)\n", "role": "user" }, { "content": "reload", "role": "assistant" } ]
def x(script, input, output): input = [Path(entry).expand().abspath() for entry in input] output = Path(output).expand().abspath() cmd = 'python3 {0} {1} {2}'.format(script, ' '.join(input), output) event_handler = RunScriptChangeHandler(cmd) event_handler.run() observer = Observer() path = script.dirname().expand().abspath() click.secho('watch: {0}'.format(path), fg='blue') observer.schedule(event_handler, path, recursive=True) for entry in input: entry = entry.dirname().expand().abspath() click.secho('watch: {0}'.format(entry), fg='blue') observer.schedule(event_handler, entry, recursive=True) path = Path(__file__).parent / 'qface' click.secho('watch: {0}'.format(path), fg='blue') observer.schedule(event_handler, path, recursive=True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
script_reload
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(script, input, output):\n input = [Path(entry).expand().abspath() for entry in input]\n output = Path(output).expand().abspath()\n cmd = 'python3 {0} {1} {2}'.format(script, ' '.join(input), output)\n event_handler = RunScriptChangeHandler(cmd)\n event_handler.run()\n observer = Observer()\n path = script.dirname().expand().abspath()\n click.secho('watch: {0}'.format(path), fg='blue')\n observer.schedule(event_handler, path, recursive=True)\n for entry in input:\n entry = entry.dirname().expand().abspath()\n click.secho('watch: {0}'.format(entry), fg='blue')\n observer.schedule(event_handler, entry, recursive=True)\n path = Path(__file__).parent / 'qface'\n click.secho('watch: {0}'.format(path), fg='blue')\n observer.schedule(event_handler, path, recursive=True)\n observer.start()\n try:\n while True:\n time.sleep(1)\n except KeyboardInterrupt:\n observer.stop()\n observer.join()\n", "role": "user" }, { "content": "script_reload", "role": "assistant" } ]
def x(editable): script_dir = str(Path(__file__).parent.abspath()) click.secho(script_dir, fg='blue') if editable: sh('pip3 install --editable {0} --upgrade'.format(script_dir)) else: sh('pip3 install {0} --upgrade'.format(script_dir))
install
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(editable):\n script_dir = str(Path(__file__).parent.abspath())\n click.secho(script_dir, fg='blue')\n if editable:\n sh('pip3 install --editable {0} --upgrade'.format(script_dir))\n else:\n sh('pip3 install {0} --upgrade'.format(script_dir))\n", "role": "user" }, { "content": "install", "role": "assistant" } ]
def x(a, b): for key in b: if isinstance(a.get(key), dict) and isinstance(b.get(key), dict): merge(a[key], b[key]) else: a[key] = b[key] return a
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b):\n for key in b:\n if isinstance(a.get(key), dict) and isinstance(b.get(key), dict):\n merge(a[key], b[key])\n else:\n a[key] = b[key]\n return a\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(self, name): source = name if name and name[0] is '/': source = name[1:] elif self.source is not None: source = '/'.join((self.source, name)) return self.env.get_template(source)
get_template
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n source = name\n if name and name[0] is '/':\n source = name[1:]\n elif self.source is not None:\n source = '/'.join((self.source, name))\n return self.env.get_template(source)\n", "role": "user" }, { "content": "get_template", "role": "assistant" } ]
def x(self, name, context): if Generator.strict: self.env.undefined = TestableUndefined else: self.env.undefined = Undefined template = self.get_template(name) return template.render(context)
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, context):\n if Generator.strict:\n self.env.undefined = TestableUndefined\n else:\n self.env.undefined = Undefined\n template = self.get_template(name)\n return template.render(context)\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(self, template, context={}): context.update(self.context) """Return the rendered text of a template instance""" return self.env.from_string(template).render(context)
apply
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, template, context={}):\n context.update(self.context)\n \"\"\"Return the rendered text of a template instance\"\"\"\n return self.env.from_string(template).render(context)\n", "role": "user" }, { "content": "apply", "role": "assistant" } ]
def x(self, file_path, template, context={}, preserve=False, force=False): if not file_path or not template: click.secho('source or target missing for document') return if not context: context = self.context error = False try: self._write(file_path, template, context, preserve, force) except TemplateSyntaxError as exc: message = '{0}:{1}: error: {2}'.format(exc.filename, exc.lineno, exc.message) click.secho(message, fg='red', err=True) error = True except TemplateNotFound as exc: message = '{0}: error: Template not found'.format(exc.name) click.secho(message, fg='red', err=True) error = True except TemplateError as exc: error = True if error and Generator.strict: sys.exit(1)
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, file_path, template, context={}, preserve=False, force=False):\n if not file_path or not template:\n click.secho('source or target missing for document')\n return\n if not context:\n context = self.context\n error = False\n try:\n self._write(file_path, template, context, preserve, force)\n except TemplateSyntaxError as exc:\n message = '{0}:{1}: error: {2}'.format(exc.filename, exc.lineno,\n exc.message)\n click.secho(message, fg='red', err=True)\n error = True\n except TemplateNotFound as exc:\n message = '{0}: error: Template not found'.format(exc.name)\n click.secho(message, fg='red', err=True)\n error = True\n except TemplateError as exc:\n error = True\n if error and Generator.strict:\n sys.exit(1)\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self, path: Path, system: System): self.context.update({'system': system}) document = FileSystem.load_yaml(path, required=True) for module, rules in document.items(): click.secho('process: {0}'.format(module), fg='green') self._process_rules(rules, system)
process_rules
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path: Path, system: System):\n self.context.update({'system': system})\n document = FileSystem.load_yaml(path, required=True)\n for module, rules in document.items():\n click.secho('process: {0}'.format(module), fg='green')\n self._process_rules(rules, system)\n", "role": "user" }, { "content": "process_rules", "role": "assistant" } ]
def x(self, rules: dict, system: System): self._source = None if not self._shall_proceed(rules): return self.context.update(rules.get('context', {})) self.path = rules.get('path', '') self.source = rules.get('source', None) self._process_rule(rules.get('system', None), {'system': system}) for module in system.modules: self._process_rule(rules.get('module', None), {'module': module}) for interface in module.interfaces: self._process_rule(rules.get('interface', None), {'interface': interface}) for struct in module.structs: self._process_rule(rules.get('struct', None), {'struct': struct}) for enum in module.enums: self._process_rule(rules.get('enum', None), {'enum': enum})
process_rules
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rules: dict, system: System):\n self._source = None\n if not self._shall_proceed(rules):\n return\n self.context.update(rules.get('context', {}))\n self.path = rules.get('path', '')\n self.source = rules.get('source', None)\n self._process_rule(rules.get('system', None), {'system': system})\n for module in system.modules:\n self._process_rule(rules.get('module', None), {'module': module})\n for interface in module.interfaces:\n self._process_rule(rules.get('interface', None), {'interface':\n interface})\n for struct in module.structs:\n self._process_rule(rules.get('struct', None), {'struct': struct})\n for enum in module.enums:\n self._process_rule(rules.get('enum', None), {'enum': enum})\n", "role": "user" }, { "content": "process_rules", "role": "assistant" } ]
def x(self, rule: dict, context: dict): if not rule or not self._shall_proceed(rule): return self.context.update(context) self.context.update(rule.get('context', {})) self.path = rule.get('path', None) self.source = rule.get('source', None) for entry in rule.get('documents', []): target, source = self._resolve_rule_document(entry) self.write(target, source) for entry in rule.get('preserve', []): target, source = self._resolve_rule_document(entry) self.write(target, source, preserve=True)
process_rule
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rule: dict, context: dict):\n if not rule or not self._shall_proceed(rule):\n return\n self.context.update(context)\n self.context.update(rule.get('context', {}))\n self.path = rule.get('path', None)\n self.source = rule.get('source', None)\n for entry in rule.get('documents', []):\n target, source = self._resolve_rule_document(entry)\n self.write(target, source)\n for entry in rule.get('preserve', []):\n target, source = self._resolve_rule_document(entry)\n self.write(target, source, preserve=True)\n", "role": "user" }, { "content": "process_rule", "role": "assistant" } ]
def x(document: Path, system: System=None, profile=EProfile.FULL): logger.debug('parse document: {0}'.format(document)) stream = FileStream(str(document), encoding='utf-8') system = FileSystem._parse_stream(stream, system, document, profile) FileSystem.merge_annotations(system, document.stripext() + '.yaml') return system
parse_document
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(document: Path, system: System=None, profile=EProfile.FULL):\n logger.debug('parse document: {0}'.format(document))\n stream = FileStream(str(document), encoding='utf-8')\n system = FileSystem._parse_stream(stream, system, document, profile)\n FileSystem.merge_annotations(system, document.stripext() + '.yaml')\n return system\n", "role": "user" }, { "content": "parse_document", "role": "assistant" } ]
def x(system, document): if not Path(document).exists(): return meta = FileSystem.load_yaml(document) click.secho('merge: {0}'.format(document.name), fg='blue') for identifier, data in meta.items(): symbol = system.lookup(identifier) if symbol: merge(symbol.tags, data)
merge_annotations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(system, document):\n if not Path(document).exists():\n return\n meta = FileSystem.load_yaml(document)\n click.secho('merge: {0}'.format(document.name), fg='blue')\n for identifier, data in meta.items():\n symbol = system.lookup(identifier)\n if symbol:\n merge(symbol.tags, data)\n", "role": "user" }, { "content": "merge_annotations", "role": "assistant" } ]
def x(input, identifier: str=None, use_cache=False, clear_cache=True, pattern='*.qface', profile=EProfile.FULL): inputs = input if isinstance(input, (list, tuple)) else [input] logger.debug('parse input={0}'.format(inputs)) identifier = 'system' if not identifier else identifier system = System() cache = None if use_cache: cache = shelve.open('qface.cache') if identifier in cache and clear_cache: del cache[identifier] if identifier in cache: system = cache[identifier] for input in inputs: path = Path.getcwd() / str(input) if path.isfile(): FileSystem.parse_document(path, system) else: for document in path.walkfiles(pattern): FileSystem.parse_document(document, system) if use_cache: cache[identifier] = system return system
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input, identifier: str=None, use_cache=False, clear_cache=True,\n pattern='*.qface', profile=EProfile.FULL):\n inputs = input if isinstance(input, (list, tuple)) else [input]\n logger.debug('parse input={0}'.format(inputs))\n identifier = 'system' if not identifier else identifier\n system = System()\n cache = None\n if use_cache:\n cache = shelve.open('qface.cache')\n if identifier in cache and clear_cache:\n del cache[identifier]\n if identifier in cache:\n system = cache[identifier]\n for input in inputs:\n path = Path.getcwd() / str(input)\n if path.isfile():\n FileSystem.parse_document(path, system)\n else:\n for document in path.walkfiles(pattern):\n FileSystem.parse_document(document, system)\n if use_cache:\n cache[identifier] = system\n return system\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(args, watch): watch = watch if isinstance(watch, (list, tuple)) else [watch] watch = [Path(entry).expand().abspath() for entry in watch] event_handler = RunScriptChangeHandler(args) observer = Observer() for entry in watch: if entry.isfile(): entry = entry.parent click.secho('watch recursive: {0}'.format(entry), fg='blue') observer.schedule(event_handler, entry, recursive=True) event_handler.run() observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
monitor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args, watch):\n watch = watch if isinstance(watch, (list, tuple)) else [watch]\n watch = [Path(entry).expand().abspath() for entry in watch]\n event_handler = RunScriptChangeHandler(args)\n observer = Observer()\n for entry in watch:\n if entry.isfile():\n entry = entry.parent\n click.secho('watch recursive: {0}'.format(entry), fg='blue')\n observer.schedule(event_handler, entry, recursive=True)\n event_handler.run()\n observer.start()\n try:\n while True:\n time.sleep(1)\n except KeyboardInterrupt:\n observer.stop()\n observer.join()\n", "role": "user" }, { "content": "monitor", "role": "assistant" } ]
def x(self, name: str): if name in self._moduleMap: return self._moduleMap[name] module_name, type_name, fragment_name = self.split_typename(name) if not module_name and type_name: click.secho('not able to lookup symbol: {0}'.format(name), fg='red') return None module = self._moduleMap[module_name] return module.lookup(type_name, fragment_name)
lookup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name: str):\n if name in self._moduleMap:\n return self._moduleMap[name]\n module_name, type_name, fragment_name = self.split_typename(name)\n if not module_name and type_name:\n click.secho('not able to lookup symbol: {0}'.format(name), fg='red')\n return None\n module = self._moduleMap[module_name]\n return module.lookup(type_name, fragment_name)\n", "role": "user" }, { "content": "lookup", "role": "assistant" } ]