source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, kwargs_model={}, kwargs_constraints={}, kwargs_likelihood={},
lens_add_fixed=[], source_add_fixed=[], lens_light_add_fixed=[],
ps_add_fixed=[], cosmo_add_fixed=[], lens_remove_fixed=[],
source_remove_fixed=[], lens_light_remove_fixed=[], ps_remove_fixed=[],
cosmo_remove_fixed=[], change_source_lower_limit=None,
change_source_upper_limit=None):
self._updateManager.update_options(kwargs_model, kwargs_constraints,
kwargs_likelihood)
self._updateManager.update_fixed(self._lens_temp, self._source_temp,
self._lens_light_temp, self._ps_temp, self._cosmo_temp,
lens_add_fixed, source_add_fixed, lens_light_add_fixed,
ps_add_fixed, cosmo_add_fixed, lens_remove_fixed,
source_remove_fixed, lens_light_remove_fixed, ps_remove_fixed,
cosmo_remove_fixed)
self._updateManager.update_limits(change_source_lower_limit,
change_source_upper_limit)
return 0
|
update_settings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_model={}, kwargs_constraints={}, kwargs_likelihood={},\n lens_add_fixed=[], source_add_fixed=[], lens_light_add_fixed=[],\n ps_add_fixed=[], cosmo_add_fixed=[], lens_remove_fixed=[],\n source_remove_fixed=[], lens_light_remove_fixed=[], ps_remove_fixed=[],\n cosmo_remove_fixed=[], change_source_lower_limit=None,\n change_source_upper_limit=None):\n self._updateManager.update_options(kwargs_model, kwargs_constraints,\n kwargs_likelihood)\n self._updateManager.update_fixed(self._lens_temp, self._source_temp,\n self._lens_light_temp, self._ps_temp, self._cosmo_temp,\n lens_add_fixed, source_add_fixed, lens_light_add_fixed,\n ps_add_fixed, cosmo_add_fixed, lens_remove_fixed,\n source_remove_fixed, lens_light_remove_fixed, ps_remove_fixed,\n cosmo_remove_fixed)\n self._updateManager.update_limits(change_source_lower_limit,\n change_source_upper_limit)\n return 0\n",
"role": "user"
},
{
"content": "update_settings",
"role": "assistant"
}
] |
def x(A, C_D_inv, d, inv_bool=True):
M = A.T.dot(np.multiply(C_D_inv, A.T).T)
if inv_bool:
if np.linalg.cond(M) < 5 / sys.float_info.epsilon:
try:
M_inv = np.linalg.inv(M)
except:
M_inv = np.zeros_like(M)
else:
M_inv = np.zeros_like(M)
R = A.T.dot(np.multiply(C_D_inv, d))
B = M_inv.dot(R)
else:
if np.linalg.cond(M) < 5 / sys.float_info.epsilon:
R = A.T.dot(np.multiply(C_D_inv, d))
try:
B = np.linalg.solve(M, R).T
except:
B = np.zeros(len(A.T))
else:
B = np.zeros(len(A.T))
M_inv = None
image = A.dot(B)
return B, M_inv, image
|
get_param_WLS
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(A, C_D_inv, d, inv_bool=True):\n M = A.T.dot(np.multiply(C_D_inv, A.T).T)\n if inv_bool:\n if np.linalg.cond(M) < 5 / sys.float_info.epsilon:\n try:\n M_inv = np.linalg.inv(M)\n except:\n M_inv = np.zeros_like(M)\n else:\n M_inv = np.zeros_like(M)\n R = A.T.dot(np.multiply(C_D_inv, d))\n B = M_inv.dot(R)\n else:\n if np.linalg.cond(M) < 5 / sys.float_info.epsilon:\n R = A.T.dot(np.multiply(C_D_inv, d))\n try:\n B = np.linalg.solve(M, R).T\n except:\n B = np.zeros(len(A.T))\n else:\n B = np.zeros(len(A.T))\n M_inv = None\n image = A.dot(B)\n return B, M_inv, image\n",
"role": "user"
},
{
"content": "get_param_WLS",
"role": "assistant"
}
] |
def x(self, r, R, kwargs):
u = r / R
if np.min(u) < 1:
raise ValueError(
'3d radius is smaller than projected radius! Does not make sense.')
if self._type == 'const_wrong':
beta = kwargs['beta']
k = 1.0 / 2.0 * u ** (2 * beta - 1.0) * ((3.0 / 2 - beta) * np.sqrt
(np.pi) * special.gamma(beta - 1.0 / 2) / special.gamma(beta) +
beta * self._B(x=1.0 / u ** 2, a=beta + 1.0 / 2, b=1.0 / 2) -
self._B(x=1.0 / u ** 2, a=beta - 1.0 / 2, b=1.0 / 2))
elif self._type == 'const':
beta = kwargs['beta']
k = np.sqrt(1 - 1.0 / u ** 2) / (1.0 - 2 * beta) + np.sqrt(np.pi
) / 2 * special.gamma(beta - 1.0 / 2) / special.gamma(beta) * (
3.0 / 2 - beta) * u ** (2 * beta - 1.0) * (1 - special.betainc(
beta + 1.0 / 2, 1.0 / 2, 1.0 / u ** 2))
elif self._type == 'isotropic':
k = np.sqrt(1 - 1.0 / u ** 2)
elif self._type == 'radial':
k = np.pi / 4 * u - 1.0 / 2 * np.sqrt(1 - 1.0 / u ** 2
) - u / 2.0 * np.arcsin(1.0 / u)
elif self._type == 'OsipkovMerritt':
r_ani = kwargs['r_ani']
ua = r_ani / R
k = (ua ** 2 + 1.0 / 2) / (ua ** 2 + 1) ** (3.0 / 2) * (u ** 2 + ua **
2) / u * np.arctan(np.sqrt((u ** 2 - 1) / (ua ** 2 + 1))
) - 1.0 / 2 / (ua ** 2 + 1) * np.sqrt(1 - 1.0 / u ** 2)
elif self._type == 'Colin':
r_ani = kwargs['r_ani']
ua = r_ani / R
if ua == 1:
k = (1 + 1.0 / u) * np.arccosh(u) - 1.0 / 6 * (8.0 / u + 7
) * np.sqrt((u - 1.0) / (u + 1.0))
else:
k = 0.5 / (ua ** 2 - 1) * np.sqrt(1 - 1.0 / u ** 2) + (1.0 + ua / u
) * np.cosh(u) - np.sign(ua - 1) * ua * (ua ** 2 - 0.5
) / np.abs(ua ** 2 - 1) ** (3.0 / 2) * (1.0 + ua / u
) * np.arccosh((ua * u + 1) / (u + ua))
else:
raise ValueError('anisotropy type %s not supported!' % self._type)
return k
|
K
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, R, kwargs):\n u = r / R\n if np.min(u) < 1:\n raise ValueError(\n '3d radius is smaller than projected radius! Does not make sense.')\n if self._type == 'const_wrong':\n beta = kwargs['beta']\n k = 1.0 / 2.0 * u ** (2 * beta - 1.0) * ((3.0 / 2 - beta) * np.sqrt\n (np.pi) * special.gamma(beta - 1.0 / 2) / special.gamma(beta) +\n beta * self._B(x=1.0 / u ** 2, a=beta + 1.0 / 2, b=1.0 / 2) -\n self._B(x=1.0 / u ** 2, a=beta - 1.0 / 2, b=1.0 / 2))\n elif self._type == 'const':\n beta = kwargs['beta']\n k = np.sqrt(1 - 1.0 / u ** 2) / (1.0 - 2 * beta) + np.sqrt(np.pi\n ) / 2 * special.gamma(beta - 1.0 / 2) / special.gamma(beta) * (\n 3.0 / 2 - beta) * u ** (2 * beta - 1.0) * (1 - special.betainc(\n beta + 1.0 / 2, 1.0 / 2, 1.0 / u ** 2))\n elif self._type == 'isotropic':\n k = np.sqrt(1 - 1.0 / u ** 2)\n elif self._type == 'radial':\n k = np.pi / 4 * u - 1.0 / 2 * np.sqrt(1 - 1.0 / u ** 2\n ) - u / 2.0 * np.arcsin(1.0 / u)\n elif self._type == 'OsipkovMerritt':\n r_ani = kwargs['r_ani']\n ua = r_ani / R\n k = (ua ** 2 + 1.0 / 2) / (ua ** 2 + 1) ** (3.0 / 2) * (u ** 2 + ua **\n 2) / u * np.arctan(np.sqrt((u ** 2 - 1) / (ua ** 2 + 1))\n ) - 1.0 / 2 / (ua ** 2 + 1) * np.sqrt(1 - 1.0 / u ** 2)\n elif self._type == 'Colin':\n r_ani = kwargs['r_ani']\n ua = r_ani / R\n if ua == 1:\n k = (1 + 1.0 / u) * np.arccosh(u) - 1.0 / 6 * (8.0 / u + 7\n ) * np.sqrt((u - 1.0) / (u + 1.0))\n else:\n k = 0.5 / (ua ** 2 - 1) * np.sqrt(1 - 1.0 / u ** 2) + (1.0 + ua / u\n ) * np.cosh(u) - np.sign(ua - 1) * ua * (ua ** 2 - 0.5\n ) / np.abs(ua ** 2 - 1) ** (3.0 / 2) * (1.0 + ua / u\n ) * np.arccosh((ua * u + 1) / (u + ua))\n else:\n raise ValueError('anisotropy type %s not supported!' % self._type)\n return k\n",
"role": "user"
},
{
"content": "K",
"role": "assistant"
}
] |
def x(self, r, kwargs):
if self._type == 'const':
return self.const_beta(kwargs)
elif self._type == 'OsipkovMerritt':
return self.ospikov_meritt(r, kwargs)
elif self._type == 'Colin':
return self.colin(r, kwargs)
elif self._type == 'isotropic':
return self.isotropic()
elif self._type == 'radial':
return self.radial()
else:
raise ValueError('anisotropy type %s not supported!' % self._type)
|
beta_r
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, kwargs):\n if self._type == 'const':\n return self.const_beta(kwargs)\n elif self._type == 'OsipkovMerritt':\n return self.ospikov_meritt(r, kwargs)\n elif self._type == 'Colin':\n return self.colin(r, kwargs)\n elif self._type == 'isotropic':\n return self.isotropic()\n elif self._type == 'radial':\n return self.radial()\n else:\n raise ValueError('anisotropy type %s not supported!' % self._type)\n",
"role": "user"
},
{
"content": "beta_r",
"role": "assistant"
}
] |
def x(self, x, a, b):
return special.betainc(a, b, x) * special.beta(a, b)
|
B
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, a, b):\n return special.betainc(a, b, x) * special.beta(a, b)\n",
"role": "user"
},
{
"content": "B",
"role": "assistant"
}
] |
def x(self, r, kwargs):
if self._type == 'const':
return self.const_beta(kwargs)
elif self._type == 'r_ani':
return self.beta_r_ani(r, kwargs)
else:
raise ValueError('anisotropy type %s not supported!' % self._type)
|
beta_r
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, kwargs):\n if self._type == 'const':\n return self.const_beta(kwargs)\n elif self._type == 'r_ani':\n return self.beta_r_ani(r, kwargs)\n else:\n raise ValueError('anisotropy type %s not supported!' % self._type)\n",
"role": "user"
},
{
"content": "beta_r",
"role": "assistant"
}
] |
def x(self):
(x_grid, y_grid, ra_at_xy_0, dec_at_xy_0, x_at_radec_0, y_at_radec_0,
Mpix2coord, Mcoord2pix) = (util.make_grid_with_coordtransform(
numPix=self.numpix, deltapix=self.pixel_scale, subgrid_res=1,
left_lower=False, inverse=False))
kwargs_data = {'numPix': self.numpix, 'ra_at_xy_0': ra_at_xy_0,
'dec_at_xy_0': dec_at_xy_0, 'transform_pix2angle': Mpix2coord,
'background_rms': self.background_noise, 'exp_time': self.
scaled_exposure_time}
data_class = Data(kwargs_data)
return data_class
|
data_class
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n (x_grid, y_grid, ra_at_xy_0, dec_at_xy_0, x_at_radec_0, y_at_radec_0,\n Mpix2coord, Mcoord2pix) = (util.make_grid_with_coordtransform(\n numPix=self.numpix, deltapix=self.pixel_scale, subgrid_res=1,\n left_lower=False, inverse=False))\n kwargs_data = {'numPix': self.numpix, 'ra_at_xy_0': ra_at_xy_0,\n 'dec_at_xy_0': dec_at_xy_0, 'transform_pix2angle': Mpix2coord,\n 'background_rms': self.background_noise, 'exp_time': self.\n scaled_exposure_time}\n data_class = Data(kwargs_data)\n return data_class\n",
"role": "user"
},
{
"content": "data_class",
"role": "assistant"
}
] |
def x(self):
if self._psf_type == 'GAUSSIAN':
psf_type = 'GAUSSIAN'
fwhm = self._seeing
kwargs_psf = {'psf_type': psf_type, 'fwhm': fwhm}
elif self._psf_type == 'PIXEL':
if self._psf_model is not None:
kwargs_psf = {'psf_type': 'PIXEL', 'kernel_point_source': self.
_psf_model}
else:
raise ValueError(
'You need to create the class instance with a psf_model!')
else:
raise ValueError('psf_type %s not supported!' % self._psf_type)
psf_class = PSF(kwargs_psf)
return psf_class
|
psf_class
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._psf_type == 'GAUSSIAN':\n psf_type = 'GAUSSIAN'\n fwhm = self._seeing\n kwargs_psf = {'psf_type': psf_type, 'fwhm': fwhm}\n elif self._psf_type == 'PIXEL':\n if self._psf_model is not None:\n kwargs_psf = {'psf_type': 'PIXEL', 'kernel_point_source': self.\n _psf_model}\n else:\n raise ValueError(\n 'You need to create the class instance with a psf_model!')\n else:\n raise ValueError('psf_type %s not supported!' % self._psf_type)\n psf_class = PSF(kwargs_psf)\n return psf_class\n",
"role": "user"
},
{
"content": "psf_class",
"role": "assistant"
}
] |
def x(self, kwargs_model, kwargs_constraints, kwargs_likelihood):
kwargs_model_updated = self.kwargs_model.update(kwargs_model)
kwargs_constraints_updated = self.kwargs_constraints.update(
kwargs_constraints)
kwargs_likelihood_updated = self.kwargs_likelihood.update(kwargs_likelihood
)
return (kwargs_model_updated, kwargs_constraints_updated,
kwargs_likelihood_updated)
|
update_options
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_model, kwargs_constraints, kwargs_likelihood):\n kwargs_model_updated = self.kwargs_model.update(kwargs_model)\n kwargs_constraints_updated = self.kwargs_constraints.update(\n kwargs_constraints)\n kwargs_likelihood_updated = self.kwargs_likelihood.update(kwargs_likelihood\n )\n return (kwargs_model_updated, kwargs_constraints_updated,\n kwargs_likelihood_updated)\n",
"role": "user"
},
{
"content": "update_options",
"role": "assistant"
}
] |
def x(self, change_source_lower_limit=None, change_source_upper_limit=None):
if not change_source_lower_limit is None:
self._source_lower = self._update_limit(change_source_lower_limit,
self._source_lower)
if not change_source_upper_limit is None:
self._source_upper = self._update_limit(change_source_upper_limit,
self._source_upper)
|
update_limits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, change_source_lower_limit=None, change_source_upper_limit=None):\n if not change_source_lower_limit is None:\n self._source_lower = self._update_limit(change_source_lower_limit,\n self._source_lower)\n if not change_source_upper_limit is None:\n self._source_upper = self._update_limit(change_source_upper_limit,\n self._source_upper)\n",
"role": "user"
},
{
"content": "update_limits",
"role": "assistant"
}
] |
def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,
kwargs_cosmo, lens_add_fixed=[], source_add_fixed=[],
lens_light_add_fixed=[], ps_add_fixed=[], cosmo_add_fixed=[],
lens_remove_fixed=[], source_remove_fixed=[], lens_light_remove_fixed=[
], ps_remove_fixed=[], cosmo_remove_fixed=[]):
lens_fixed = self._add_fixed(kwargs_lens, self._lens_fixed, lens_add_fixed)
lens_fixed = self._remove_fixed(lens_fixed, lens_remove_fixed)
source_fixed = self._add_fixed(kwargs_source, self._source_fixed,
source_add_fixed)
source_fixed = self._remove_fixed(source_fixed, source_remove_fixed)
lens_light_fixed = self._add_fixed(kwargs_lens_light, self.
_lens_light_fixed, lens_light_add_fixed)
lens_light_fixed = self._remove_fixed(lens_light_fixed,
lens_light_remove_fixed)
ps_fixed = self._add_fixed(kwargs_ps, self._ps_fixed, ps_add_fixed)
ps_fixed = self._remove_fixed(ps_fixed, ps_remove_fixed)
cosmo_fixed = copy.deepcopy(self._cosmo_fixed)
for param_name in cosmo_add_fixed:
if param_name in cosmo_fixed:
pass
else:
cosmo_fixed[param_name] = kwargs_cosmo[param_name]
for param_name in cosmo_remove_fixed:
if param_name in cosmo_fixed:
del cosmo_fixed[param_name]
(self._lens_fixed, self._source_fixed, self._lens_light_fixed,
self._ps_fixed, self._cosmo_fixed) = (lens_fixed,
source_fixed, lens_light_fixed, ps_fixed, cosmo_fixed)
|
update_fixed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps,\n kwargs_cosmo, lens_add_fixed=[], source_add_fixed=[],\n lens_light_add_fixed=[], ps_add_fixed=[], cosmo_add_fixed=[],\n lens_remove_fixed=[], source_remove_fixed=[], lens_light_remove_fixed=[\n ], ps_remove_fixed=[], cosmo_remove_fixed=[]):\n lens_fixed = self._add_fixed(kwargs_lens, self._lens_fixed, lens_add_fixed)\n lens_fixed = self._remove_fixed(lens_fixed, lens_remove_fixed)\n source_fixed = self._add_fixed(kwargs_source, self._source_fixed,\n source_add_fixed)\n source_fixed = self._remove_fixed(source_fixed, source_remove_fixed)\n lens_light_fixed = self._add_fixed(kwargs_lens_light, self.\n _lens_light_fixed, lens_light_add_fixed)\n lens_light_fixed = self._remove_fixed(lens_light_fixed,\n lens_light_remove_fixed)\n ps_fixed = self._add_fixed(kwargs_ps, self._ps_fixed, ps_add_fixed)\n ps_fixed = self._remove_fixed(ps_fixed, ps_remove_fixed)\n cosmo_fixed = copy.deepcopy(self._cosmo_fixed)\n for param_name in cosmo_add_fixed:\n if param_name in cosmo_fixed:\n pass\n else:\n cosmo_fixed[param_name] = kwargs_cosmo[param_name]\n for param_name in cosmo_remove_fixed:\n if param_name in cosmo_fixed:\n del cosmo_fixed[param_name]\n (self._lens_fixed, self._source_fixed, self._lens_light_fixed,\n self._ps_fixed, self._cosmo_fixed) = (lens_fixed,\n source_fixed, lens_light_fixed, ps_fixed, cosmo_fixed)\n",
"role": "user"
},
{
"content": "update_fixed",
"role": "assistant"
}
] |
def x(self, gamma, theta_E, r_eff, r_ani, R_slit, dR_slit, FWHM,
rendering_number=1000):
sigma_s2_sum = 0
rho0_r0_gamma = self._rho0_r0_gamma(theta_E, gamma)
for i in range(0, rendering_number):
sigma_s2_draw = self.vel_disp_one(gamma, rho0_r0_gamma, r_eff,
r_ani, R_slit, dR_slit, FWHM)
sigma_s2_sum += sigma_s2_draw
sigma_s2_average = sigma_s2_sum / rendering_number
return np.sqrt(sigma_s2_average)
|
vel_disp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, gamma, theta_E, r_eff, r_ani, R_slit, dR_slit, FWHM,\n rendering_number=1000):\n sigma_s2_sum = 0\n rho0_r0_gamma = self._rho0_r0_gamma(theta_E, gamma)\n for i in range(0, rendering_number):\n sigma_s2_draw = self.vel_disp_one(gamma, rho0_r0_gamma, r_eff,\n r_ani, R_slit, dR_slit, FWHM)\n sigma_s2_sum += sigma_s2_draw\n sigma_s2_average = sigma_s2_sum / rendering_number\n return np.sqrt(sigma_s2_average)\n",
"role": "user"
},
{
"content": "vel_disp",
"role": "assistant"
}
] |
def x(self, gamma, rho0_r0_gamma, r_eff, r_ani, R_slit, dR_slit, FWHM):
a = 0.551 * r_eff
while True:
r = self.P_r(a)
R, x, y = self.R_r(r)
x_, y_ = self.displace_PSF(x, y, FWHM)
bool = self.check_in_slit(x_, y_, R_slit, dR_slit)
if bool is True:
break
sigma_s2 = self.sigma_s2(r, R, r_ani, a, gamma, rho0_r0_gamma)
return sigma_s2
|
vel_disp_one
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, gamma, rho0_r0_gamma, r_eff, r_ani, R_slit, dR_slit, FWHM):\n a = 0.551 * r_eff\n while True:\n r = self.P_r(a)\n R, x, y = self.R_r(r)\n x_, y_ = self.displace_PSF(x, y, FWHM)\n bool = self.check_in_slit(x_, y_, R_slit, dR_slit)\n if bool is True:\n break\n sigma_s2 = self.sigma_s2(r, R, r_ani, a, gamma, rho0_r0_gamma)\n return sigma_s2\n",
"role": "user"
},
{
"content": "vel_disp_one",
"role": "assistant"
}
] |
def x(self, r):
phi = np.random.uniform(0, 2 * np.pi)
theta = np.random.uniform(0, np.pi)
x = r * np.sin(theta) * np.cos(phi)
y = r * np.sin(theta) * np.sin(phi)
R = np.sqrt(x ** 2 + y ** 2)
return R, x, y
|
R_r
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r):\n phi = np.random.uniform(0, 2 * np.pi)\n theta = np.random.uniform(0, np.pi)\n x = r * np.sin(theta) * np.cos(phi)\n y = r * np.sin(theta) * np.sin(phi)\n R = np.sqrt(x ** 2 + y ** 2)\n return R, x, y\n",
"role": "user"
},
{
"content": "R_r",
"role": "assistant"
}
] |
def x(self, r, R, r_ani, a, gamma, rho0_r0_gamma):
beta = self._beta_ani(r, r_ani)
return (1 - beta * R ** 2 / r ** 2) * self.sigma_r2(r, a, gamma,
rho0_r0_gamma, r_ani)
|
sigma_s2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, R, r_ani, a, gamma, rho0_r0_gamma):\n beta = self._beta_ani(r, r_ani)\n return (1 - beta * R ** 2 / r ** 2) * self.sigma_r2(r, a, gamma,\n rho0_r0_gamma, r_ani)\n",
"role": "user"
},
{
"content": "sigma_s2",
"role": "assistant"
}
] |
def x(self, r, a, gamma, rho0_r0_gamma, r_ani):
prefac1 = 4 * np.pi * const.G * a ** -gamma * rho0_r0_gamma / (3 - gamma)
prefac2 = r * (r + a) ** 3 / (r ** 2 + r_ani ** 2)
hyp1 = vel_util.hyp_2F1(a=2 + gamma, b=gamma, c=3 + gamma, z=1.0 / (1 +
r / a))
hyp2 = vel_util.hyp_2F1(a=3, b=gamma, c=1 + gamma, z=-a / r)
fac = r_ani ** 2 / a ** 2 * hyp1 / ((2 + gamma) * (r / a + 1) ** (2 +
gamma)) + hyp2 / (gamma * (r / a) ** gamma)
return prefac1 * prefac2 * fac * (self._cosmo.arcsec2phys_lens(1.0) *
const.Mpc / 1000) ** 2
|
sigma_r2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, a, gamma, rho0_r0_gamma, r_ani):\n prefac1 = 4 * np.pi * const.G * a ** -gamma * rho0_r0_gamma / (3 - gamma)\n prefac2 = r * (r + a) ** 3 / (r ** 2 + r_ani ** 2)\n hyp1 = vel_util.hyp_2F1(a=2 + gamma, b=gamma, c=3 + gamma, z=1.0 / (1 +\n r / a))\n hyp2 = vel_util.hyp_2F1(a=3, b=gamma, c=1 + gamma, z=-a / r)\n fac = r_ani ** 2 / a ** 2 * hyp1 / ((2 + gamma) * (r / a + 1) ** (2 +\n gamma)) + hyp2 / (gamma * (r / a) ** gamma)\n return prefac1 * prefac2 * fac * (self._cosmo.arcsec2phys_lens(1.0) *\n const.Mpc / 1000) ** 2\n",
"role": "user"
},
{
"content": "sigma_r2",
"role": "assistant"
}
] |
def x(self, kwargs_lens_light, center_x=0, center_y=0, model_bool_list=None,
deltaPix=None, numPix=None):
if model_bool_list is None:
model_bool_list = [True] * len(kwargs_lens_light)
if numPix is None:
numPix = 100
if deltaPix is None:
deltaPix = 0.05
x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)
x_grid += center_x
y_grid += center_y
I_xy = self._lens_light_internal(x_grid, y_grid, kwargs_lens_light,
model_bool_list=model_bool_list)
e1, e2 = analysis_util.ellipticities(I_xy, x_grid, y_grid)
return e1, e2
|
ellipticity_lens_light
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens_light, center_x=0, center_y=0, model_bool_list=None,\n deltaPix=None, numPix=None):\n if model_bool_list is None:\n model_bool_list = [True] * len(kwargs_lens_light)\n if numPix is None:\n numPix = 100\n if deltaPix is None:\n deltaPix = 0.05\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n x_grid += center_x\n y_grid += center_y\n I_xy = self._lens_light_internal(x_grid, y_grid, kwargs_lens_light,\n model_bool_list=model_bool_list)\n e1, e2 = analysis_util.ellipticities(I_xy, x_grid, y_grid)\n return e1, e2\n",
"role": "user"
},
{
"content": "ellipticity_lens_light",
"role": "assistant"
}
] |
def x(self, kwargs_lens_light, center_x=0, center_y=0, model_bool_list=None,
deltaPix=None, numPix=None):
if model_bool_list is None:
model_bool_list = [True] * len(kwargs_lens_light)
if numPix is None:
numPix = 1000
if deltaPix is None:
deltaPix = 0.05
x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)
x_grid += center_x
y_grid += center_y
lens_light = self._lens_light_internal(x_grid, y_grid,
kwargs_lens_light, model_bool_list=model_bool_list)
R_h = analysis_util.half_light_radius(lens_light, x_grid, y_grid,
center_x, center_y)
return R_h
|
half_light_radius_lens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens_light, center_x=0, center_y=0, model_bool_list=None,\n deltaPix=None, numPix=None):\n if model_bool_list is None:\n model_bool_list = [True] * len(kwargs_lens_light)\n if numPix is None:\n numPix = 1000\n if deltaPix is None:\n deltaPix = 0.05\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n x_grid += center_x\n y_grid += center_y\n lens_light = self._lens_light_internal(x_grid, y_grid,\n kwargs_lens_light, model_bool_list=model_bool_list)\n R_h = analysis_util.half_light_radius(lens_light, x_grid, y_grid,\n center_x, center_y)\n return R_h\n",
"role": "user"
},
{
"content": "half_light_radius_lens",
"role": "assistant"
}
] |
def x(self, kwargs_source, center_x=0, center_y=0, deltaPix=None, numPix=None):
if numPix is None:
numPix = 1000
if deltaPix is None:
deltaPix = 0.005
x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)
x_grid += center_x
y_grid += center_y
source_light = self.SourceModel.surface_brightness(x_grid, y_grid,
kwargs_source)
R_h = analysis_util.half_light_radius(source_light, x_grid, y_grid,
center_x=center_x, center_y=center_y)
return R_h
|
half_light_radius_source
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_source, center_x=0, center_y=0, deltaPix=None, numPix=None):\n if numPix is None:\n numPix = 1000\n if deltaPix is None:\n deltaPix = 0.005\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n x_grid += center_x\n y_grid += center_y\n source_light = self.SourceModel.surface_brightness(x_grid, y_grid,\n kwargs_source)\n R_h = analysis_util.half_light_radius(source_light, x_grid, y_grid,\n center_x=center_x, center_y=center_y)\n return R_h\n",
"role": "user"
},
{
"content": "half_light_radius_source",
"role": "assistant"
}
] |
def x(self, x_grid, y_grid, kwargs_lens_light, model_bool_list=None):
if model_bool_list is None:
model_bool_list = [True] * len(kwargs_lens_light)
lens_light = np.zeros_like(x_grid)
for i, bool in enumerate(model_bool_list):
if bool is True:
lens_light_i = self.LensLightModel.surface_brightness(x_grid,
y_grid, kwargs_lens_light, k=i)
lens_light += lens_light_i
return lens_light
|
lens_light_internal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x_grid, y_grid, kwargs_lens_light, model_bool_list=None):\n if model_bool_list is None:\n model_bool_list = [True] * len(kwargs_lens_light)\n lens_light = np.zeros_like(x_grid)\n for i, bool in enumerate(model_bool_list):\n if bool is True:\n lens_light_i = self.LensLightModel.surface_brightness(x_grid,\n y_grid, kwargs_lens_light, k=i)\n lens_light += lens_light_i\n return lens_light\n",
"role": "user"
},
{
"content": "lens_light_internal",
"role": "assistant"
}
] |
def x(self, kwargs_lens_light, model_bool_list=None, e1=0, e2=0, n_comp=20,
deltaPix=None, numPix=None):
if 'center_x' in kwargs_lens_light[0]:
center_x = kwargs_lens_light[0]['center_x']
center_y = kwargs_lens_light[0]['center_y']
else:
center_x, center_y = 0, 0
r_h = self.half_light_radius_lens(kwargs_lens_light, center_x=center_x,
center_y=center_y, model_bool_list=model_bool_list, deltaPix=
deltaPix, numPix=numPix)
r_array = np.logspace(-3, 2, 200) * r_h * 2
x_coords, y_coords = param_util.transform_e1e2(r_array, np.zeros_like(
r_array), e1=-e1, e2=-e2)
x_coords += center_x
y_coords += center_y
flux_r = self._lens_light_internal(x_coords, y_coords,
kwargs_lens_light, model_bool_list=model_bool_list)
amplitudes, sigmas, norm = mge.mge_1d(r_array, flux_r, N=n_comp)
return amplitudes, sigmas, center_x, center_y
|
multi_gaussian_lens_light
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens_light, model_bool_list=None, e1=0, e2=0, n_comp=20,\n deltaPix=None, numPix=None):\n if 'center_x' in kwargs_lens_light[0]:\n center_x = kwargs_lens_light[0]['center_x']\n center_y = kwargs_lens_light[0]['center_y']\n else:\n center_x, center_y = 0, 0\n r_h = self.half_light_radius_lens(kwargs_lens_light, center_x=center_x,\n center_y=center_y, model_bool_list=model_bool_list, deltaPix=\n deltaPix, numPix=numPix)\n r_array = np.logspace(-3, 2, 200) * r_h * 2\n x_coords, y_coords = param_util.transform_e1e2(r_array, np.zeros_like(\n r_array), e1=-e1, e2=-e2)\n x_coords += center_x\n y_coords += center_y\n flux_r = self._lens_light_internal(x_coords, y_coords,\n kwargs_lens_light, model_bool_list=model_bool_list)\n amplitudes, sigmas, norm = mge.mge_1d(r_array, flux_r, N=n_comp)\n return amplitudes, sigmas, center_x, center_y\n",
"role": "user"
},
{
"content": "multi_gaussian_lens_light",
"role": "assistant"
}
] |
def x(self, kwargs_lens, model_bool_list=None, e1=0, e2=0, n_comp=20):
if 'center_x' in kwargs_lens[0]:
center_x = kwargs_lens[0]['center_x']
center_y = kwargs_lens[0]['center_y']
else:
raise ValueError('no keyword center_x defined!')
theta_E = self._lensModelExtensions.effective_einstein_radius(kwargs_lens)
r_array = np.logspace(-4, 2, 200) * theta_E
x_coords, y_coords = param_util.transform_e1e2(r_array, np.zeros_like(
r_array), e1=-e1, e2=-e2)
x_coords += center_x
y_coords += center_y
if model_bool_list is None:
model_bool_list = [True] * len(kwargs_lens)
kappa_s = np.zeros_like(r_array)
for i in range(len(kwargs_lens)):
if model_bool_list[i] is True:
kappa_s += self.LensModel.kappa(x_coords, y_coords, kwargs_lens,
k=i)
amplitudes, sigmas, norm = mge.mge_1d(r_array, kappa_s, N=n_comp)
return amplitudes, sigmas, center_x, center_y
|
multi_gaussian_lens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, model_bool_list=None, e1=0, e2=0, n_comp=20):\n if 'center_x' in kwargs_lens[0]:\n center_x = kwargs_lens[0]['center_x']\n center_y = kwargs_lens[0]['center_y']\n else:\n raise ValueError('no keyword center_x defined!')\n theta_E = self._lensModelExtensions.effective_einstein_radius(kwargs_lens)\n r_array = np.logspace(-4, 2, 200) * theta_E\n x_coords, y_coords = param_util.transform_e1e2(r_array, np.zeros_like(\n r_array), e1=-e1, e2=-e2)\n x_coords += center_x\n y_coords += center_y\n if model_bool_list is None:\n model_bool_list = [True] * len(kwargs_lens)\n kappa_s = np.zeros_like(r_array)\n for i in range(len(kwargs_lens)):\n if model_bool_list[i] is True:\n kappa_s += self.LensModel.kappa(x_coords, y_coords, kwargs_lens,\n k=i)\n amplitudes, sigmas, norm = mge.mge_1d(r_array, kappa_s, N=n_comp)\n return amplitudes, sigmas, center_x, center_y\n",
"role": "user"
},
{
"content": "multi_gaussian_lens",
"role": "assistant"
}
] |
def x(self, kwargs_light, n_grid=400, delta_grid=0.01, deltaPix=0.05, type=
'lens'):
flux_list = []
R_h_list = []
x_grid, y_grid = util.make_grid(numPix=n_grid, deltapix=delta_grid)
kwargs_copy = copy.deepcopy(kwargs_light)
for k, kwargs in enumerate(kwargs_light):
if 'center_x' in kwargs_copy[k]:
kwargs_copy[k]['center_x'] = 0
kwargs_copy[k]['center_y'] = 0
if type == 'lens':
light = self.LensLightModel.surface_brightness(x_grid, y_grid,
kwargs_copy, k=k)
elif type == 'source':
light = self.SourceModel.surface_brightness(x_grid, y_grid,
kwargs_copy, k=k)
else:
raise ValueError('type %s not supported!' % type)
flux = np.sum(light) * delta_grid ** 2 / deltaPix ** 2
R_h = analysis_util.half_light_radius(light, x_grid, y_grid)
flux_list.append(flux)
R_h_list.append(R_h)
return flux_list, R_h_list
|
flux_components
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_light, n_grid=400, delta_grid=0.01, deltaPix=0.05, type=\n 'lens'):\n flux_list = []\n R_h_list = []\n x_grid, y_grid = util.make_grid(numPix=n_grid, deltapix=delta_grid)\n kwargs_copy = copy.deepcopy(kwargs_light)\n for k, kwargs in enumerate(kwargs_light):\n if 'center_x' in kwargs_copy[k]:\n kwargs_copy[k]['center_x'] = 0\n kwargs_copy[k]['center_y'] = 0\n if type == 'lens':\n light = self.LensLightModel.surface_brightness(x_grid, y_grid,\n kwargs_copy, k=k)\n elif type == 'source':\n light = self.SourceModel.surface_brightness(x_grid, y_grid,\n kwargs_copy, k=k)\n else:\n raise ValueError('type %s not supported!' % type)\n flux = np.sum(light) * delta_grid ** 2 / deltaPix ** 2\n R_h = analysis_util.half_light_radius(light, x_grid, y_grid)\n flux_list.append(flux)\n R_h_list.append(R_h)\n return flux_list, R_h_list\n",
"role": "user"
},
{
"content": "flux_components",
"role": "assistant"
}
] |
def x(self, kwargs_source, x_grid, y_grid, cov_param):
error_map = np.zeros_like(x_grid)
basis_functions, n_source = self.SourceModel.functions_split(x_grid,
y_grid, kwargs_source)
basis_functions = np.array(basis_functions)
if cov_param is not None:
for i in range(len(error_map)):
error_map[i] = basis_functions[:, i].T.dot(cov_param[:n_source,
:n_source]).dot(basis_functions[:, i])
return error_map
|
error_map_source
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_source, x_grid, y_grid, cov_param):\n error_map = np.zeros_like(x_grid)\n basis_functions, n_source = self.SourceModel.functions_split(x_grid,\n y_grid, kwargs_source)\n basis_functions = np.array(basis_functions)\n if cov_param is not None:\n for i in range(len(error_map)):\n error_map[i] = basis_functions[:, i].T.dot(cov_param[:n_source,\n :n_source]).dot(basis_functions[:, i])\n return error_map\n",
"role": "user"
},
{
"content": "error_map_source",
"role": "assistant"
}
] |
def x(lens_light_model_list, kwargs_lens_light, numPix=100, deltaPix=0.05,
subgrid_res=5, center_x=0, center_y=0):
x_grid_sub, y_grid_sub = util.make_grid(numPix=numPix * 5, deltapix=
deltaPix, subgrid_res=subgrid_res)
import lenstronomy.Util.mask as mask_util
mask = mask_util.mask_sphere(x_grid_sub, y_grid_sub, center_x, center_y,
r=1)
x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)
lightModel = LightModel(light_model_list=lens_light_model_list)
flux = lightModel.surface_brightness(x_grid_sub, y_grid_sub,
kwargs_lens_light)
flux_norm = np.sum(flux[mask == 1]) / np.sum(mask)
flux /= flux_norm
from lenstronomy.LensModel.numerical_profile_integrals import ConvergenceIntegrals
integral = ConvergenceIntegrals()
convergence_sub = flux
f_x_sub, f_y_sub = integral.deflection_from_kappa(convergence_sub,
x_grid_sub, y_grid_sub, deltaPix=deltaPix / float(subgrid_res))
f_sub = integral.potential_from_kappa(convergence_sub, x_grid_sub,
y_grid_sub, deltaPix=deltaPix / float(subgrid_res))
x_axes_sub, y_axes_sub = util.get_axes(x_grid_sub, y_grid_sub)
from lenstronomy.LensModel.Profiles.interpol import Interpol
interp_func = Interpol()
interp_func.do_interp(x_axes_sub, y_axes_sub, f_sub, f_x_sub, f_y_sub)
x_axes, y_axes = util.get_axes(x_grid, y_grid)
f_ = interp_func.function(x_grid, y_grid)
f_x, f_y = interp_func.derivatives(x_grid, y_grid)
from lenstronomy.LensModel.numeric_lens_differentials import NumericLens
lens_differential = NumericLens(lens_model_list=['INTERPOL'])
kwargs = [{'grid_interp_x': x_axes_sub, 'grid_interp_y': y_axes_sub,
'f_': f_sub, 'f_x': f_x_sub, 'f_y': f_y_sub}]
f_xx, f_xy, f_yx, f_yy = lens_differential.hessian(x_grid, y_grid, kwargs)
kwargs_interpol = {'grid_interp_x': x_axes, 'grid_interp_y': y_axes,
'f_': util.array2image(f_), 'f_x': util.array2image(f_x), 'f_y':
util.array2image(f_y), 'f_xx': util.array2image(f_xx), 'f_xy': util
.array2image(f_xy), 'f_yy': util.array2image(f_yy)}
return kwargs_interpol
|
light2mass_interpol
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lens_light_model_list, kwargs_lens_light, numPix=100, deltaPix=0.05,\n subgrid_res=5, center_x=0, center_y=0):\n x_grid_sub, y_grid_sub = util.make_grid(numPix=numPix * 5, deltapix=\n deltaPix, subgrid_res=subgrid_res)\n import lenstronomy.Util.mask as mask_util\n mask = mask_util.mask_sphere(x_grid_sub, y_grid_sub, center_x, center_y,\n r=1)\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n lightModel = LightModel(light_model_list=lens_light_model_list)\n flux = lightModel.surface_brightness(x_grid_sub, y_grid_sub,\n kwargs_lens_light)\n flux_norm = np.sum(flux[mask == 1]) / np.sum(mask)\n flux /= flux_norm\n from lenstronomy.LensModel.numerical_profile_integrals import ConvergenceIntegrals\n integral = ConvergenceIntegrals()\n convergence_sub = flux\n f_x_sub, f_y_sub = integral.deflection_from_kappa(convergence_sub,\n x_grid_sub, y_grid_sub, deltaPix=deltaPix / float(subgrid_res))\n f_sub = integral.potential_from_kappa(convergence_sub, x_grid_sub,\n y_grid_sub, deltaPix=deltaPix / float(subgrid_res))\n x_axes_sub, y_axes_sub = util.get_axes(x_grid_sub, y_grid_sub)\n from lenstronomy.LensModel.Profiles.interpol import Interpol\n interp_func = Interpol()\n interp_func.do_interp(x_axes_sub, y_axes_sub, f_sub, f_x_sub, f_y_sub)\n x_axes, y_axes = util.get_axes(x_grid, y_grid)\n f_ = interp_func.function(x_grid, y_grid)\n f_x, f_y = interp_func.derivatives(x_grid, y_grid)\n from lenstronomy.LensModel.numeric_lens_differentials import NumericLens\n lens_differential = NumericLens(lens_model_list=['INTERPOL'])\n kwargs = [{'grid_interp_x': x_axes_sub, 'grid_interp_y': y_axes_sub,\n 'f_': f_sub, 'f_x': f_x_sub, 'f_y': f_y_sub}]\n f_xx, f_xy, f_yx, f_yy = lens_differential.hessian(x_grid, y_grid, kwargs)\n kwargs_interpol = {'grid_interp_x': x_axes, 'grid_interp_y': y_axes,\n 'f_': util.array2image(f_), 'f_x': util.array2image(f_x), 'f_y':\n util.array2image(f_y), 'f_xx': util.array2image(f_xx), 'f_xy': util\n .array2image(f_xy), 'f_yy': util.array2image(f_yy)}\n return kwargs_interpol\n",
"role": "user"
},
{
"content": "light2mass_interpol",
"role": "assistant"
}
] |
def x(self, kwargs_lens, center_x, center_y, theta_E, numPix=100):
x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=2.0 * theta_E /
numPix)
x_grid += center_x
y_grid += center_y
mask = mask_util.mask_sphere(x_grid, y_grid, center_x, center_y, theta_E)
kappa_list = []
for i in range(len(kwargs_lens)):
kappa = self.LensModel.kappa(x_grid, y_grid, kwargs_lens, k=i)
kappa_mean = np.sum(kappa * mask) / np.sum(mask)
kappa_list.append(kappa_mean)
return kappa_list
|
mass_fraction_within_radius
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, center_x, center_y, theta_E, numPix=100):\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=2.0 * theta_E /\n numPix)\n x_grid += center_x\n y_grid += center_y\n mask = mask_util.mask_sphere(x_grid, y_grid, center_x, center_y, theta_E)\n kappa_list = []\n for i in range(len(kwargs_lens)):\n kappa = self.LensModel.kappa(x_grid, y_grid, kwargs_lens, k=i)\n kappa_mean = np.sum(kappa * mask) / np.sum(mask)\n kappa_list.append(kappa_mean)\n return kappa_list\n",
"role": "user"
},
{
"content": "mass_fraction_within_radius",
"role": "assistant"
}
] |
def x(self, search_window, x_center, y_center):
self._search_window, self._x_center, self._y_center = (search_window,
x_center, y_center)
|
update_search_window
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, search_window, x_center, y_center):\n self._search_window, self._x_center, self._y_center = (search_window,\n x_center, y_center)\n",
"role": "user"
},
{
"content": "update_search_window",
"role": "assistant"
}
] |
def x(self, kwargs_ps, kwargs_lens, k=None):
ra_list, dec_list = self.image_position(kwargs_ps, kwargs_lens, k=k)
amp_list = self.image_amplitude(kwargs_ps, kwargs_lens)
ra_array, dec_array, amp_array = [], [], []
for i, ra in enumerate(ra_list):
for j in range(len(ra)):
ra_array.append(ra_list[i][j])
dec_array.append(dec_list[i][j])
amp_array.append(amp_list[i][j])
return ra_array, dec_array, amp_array
|
point_source_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_ps, kwargs_lens, k=None):\n ra_list, dec_list = self.image_position(kwargs_ps, kwargs_lens, k=k)\n amp_list = self.image_amplitude(kwargs_ps, kwargs_lens)\n ra_array, dec_array, amp_array = [], [], []\n for i, ra in enumerate(ra_list):\n for j in range(len(ra)):\n ra_array.append(ra_list[i][j])\n dec_array.append(dec_list[i][j])\n amp_array.append(amp_list[i][j])\n return ra_array, dec_array, amp_array\n",
"role": "user"
},
{
"content": "point_source_list",
"role": "assistant"
}
] |
def x(self, kwargs_ps, kwargs_lens, k=None):
amp_list = []
for i, model in enumerate(self._point_source_list):
if k is None or k == i:
amp_list.append(model.image_amplitude(kwargs_ps=kwargs_ps[i],
kwargs_lens=kwargs_lens, min_distance=self._min_distance,
search_window=self._search_window, precision_limit=self.
_precision_limit, num_iter_max=self._num_iter_max, x_center
=self._x_center, y_center=self._y_center))
return amp_list
|
image_amplitude
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_ps, kwargs_lens, k=None):\n amp_list = []\n for i, model in enumerate(self._point_source_list):\n if k is None or k == i:\n amp_list.append(model.image_amplitude(kwargs_ps=kwargs_ps[i],\n kwargs_lens=kwargs_lens, min_distance=self._min_distance,\n search_window=self._search_window, precision_limit=self.\n _precision_limit, num_iter_max=self._num_iter_max, x_center\n =self._x_center, y_center=self._y_center))\n return amp_list\n",
"role": "user"
},
{
"content": "image_amplitude",
"role": "assistant"
}
] |
def x(self, kwargs_ps, kwargs_lens):
amp_list = []
for i, model in enumerate(self._point_source_list):
amp_list.append(model.source_amplitude(kwargs_ps=kwargs_ps[i],
kwargs_lens=kwargs_lens))
return amp_list
|
source_amplitude
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_ps, kwargs_lens):\n amp_list = []\n for i, model in enumerate(self._point_source_list):\n amp_list.append(model.source_amplitude(kwargs_ps=kwargs_ps[i],\n kwargs_lens=kwargs_lens))\n return amp_list\n",
"role": "user"
},
{
"content": "source_amplitude",
"role": "assistant"
}
] |
def x(self, kwargs_ps, kwargs_lens, tolerance=0.001):
x_image_list, y_image_list = self.image_position(kwargs_ps, kwargs_lens)
for i, model in enumerate(self._point_source_list):
if model in ['LENSED_POSITION', 'SOURCE_POSITION']:
x_pos = x_image_list[i]
y_pos = y_image_list[i]
x_source, y_source = self._lensModel.ray_shooting(x_pos, y_pos,
kwargs_lens)
dist = np.sqrt((x_source - x_source[0]) ** 2 + (y_source -
y_source[0]) ** 2)
if np.max(dist) > tolerance:
return False
return True
|
check_image_positions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_ps, kwargs_lens, tolerance=0.001):\n x_image_list, y_image_list = self.image_position(kwargs_ps, kwargs_lens)\n for i, model in enumerate(self._point_source_list):\n if model in ['LENSED_POSITION', 'SOURCE_POSITION']:\n x_pos = x_image_list[i]\n y_pos = y_image_list[i]\n x_source, y_source = self._lensModel.ray_shooting(x_pos, y_pos,\n kwargs_lens)\n dist = np.sqrt((x_source - x_source[0]) ** 2 + (y_source -\n y_source[0]) ** 2)\n if np.max(dist) > tolerance:\n return False\n return True\n",
"role": "user"
},
{
"content": "check_image_positions",
"role": "assistant"
}
] |
def x(self, kwargs_ps, norm_factor):
for i, model in enumerate(self.point_source_type_list):
if model == 'UNLENSED':
kwargs_ps[i]['point_amp'] *= norm_factor
elif model in ['LENSED_POSITION', 'SOURCE_POSITION']:
if self._fixed_magnification_list[i] is True:
kwargs_ps[i]['source_amp'] *= norm_factor
else:
kwargs_ps[i]['point_amp'] *= norm_factor
return kwargs_ps
|
re_normalize_flux
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_ps, norm_factor):\n for i, model in enumerate(self.point_source_type_list):\n if model == 'UNLENSED':\n kwargs_ps[i]['point_amp'] *= norm_factor\n elif model in ['LENSED_POSITION', 'SOURCE_POSITION']:\n if self._fixed_magnification_list[i] is True:\n kwargs_ps[i]['source_amp'] *= norm_factor\n else:\n kwargs_ps[i]['point_amp'] *= norm_factor\n return kwargs_ps\n",
"role": "user"
},
{
"content": "re_normalize_flux",
"role": "assistant"
}
] |
def x(self, x_pos, y_pos, kwargs_lens, source_sigma=0.003, window_size=0.1,
grid_number=100, shape='GAUSSIAN', polar_grid=False, aspect_ratio=0.5):
mag_finite = np.zeros_like(x_pos)
deltaPix = float(window_size) / grid_number
if shape == 'GAUSSIAN':
from lenstronomy.LightModel.Profiles.gaussian import Gaussian
quasar = Gaussian()
elif shape == 'TORUS':
import lenstronomy.LightModel.Profiles.torus as quasar
else:
raise ValueError(
'shape %s not valid for finite magnification computation!' % shape)
x_grid, y_grid = util.make_grid(numPix=grid_number, deltapix=deltaPix,
subgrid_res=1)
if polar_grid:
a = window_size * 0.5
b = window_size * 0.5 * aspect_ratio
ellipse_inds = (x_grid * a ** -1) ** 2 + (y_grid * b ** -1) ** 2 <= 1
x_grid, y_grid = x_grid[ellipse_inds], y_grid[ellipse_inds]
for i in range(len(x_pos)):
ra, dec = x_pos[i], y_pos[i]
center_x, center_y = self._lensModel.ray_shooting(ra, dec, kwargs_lens)
if polar_grid:
theta = np.arctan2(dec, ra)
xcoord, ycoord = util.rotate(x_grid, y_grid, theta)
else:
xcoord, ycoord = x_grid, y_grid
betax, betay = self._lensModel.ray_shooting(xcoord + ra, ycoord +
dec, kwargs_lens)
I_image = quasar.function(betax, betay, 1.0, source_sigma,
source_sigma, center_x, center_y)
mag_finite[i] = np.sum(I_image) * deltaPix ** 2
return mag_finite
|
magnification_finite
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x_pos, y_pos, kwargs_lens, source_sigma=0.003, window_size=0.1,\n grid_number=100, shape='GAUSSIAN', polar_grid=False, aspect_ratio=0.5):\n mag_finite = np.zeros_like(x_pos)\n deltaPix = float(window_size) / grid_number\n if shape == 'GAUSSIAN':\n from lenstronomy.LightModel.Profiles.gaussian import Gaussian\n quasar = Gaussian()\n elif shape == 'TORUS':\n import lenstronomy.LightModel.Profiles.torus as quasar\n else:\n raise ValueError(\n 'shape %s not valid for finite magnification computation!' % shape)\n x_grid, y_grid = util.make_grid(numPix=grid_number, deltapix=deltaPix,\n subgrid_res=1)\n if polar_grid:\n a = window_size * 0.5\n b = window_size * 0.5 * aspect_ratio\n ellipse_inds = (x_grid * a ** -1) ** 2 + (y_grid * b ** -1) ** 2 <= 1\n x_grid, y_grid = x_grid[ellipse_inds], y_grid[ellipse_inds]\n for i in range(len(x_pos)):\n ra, dec = x_pos[i], y_pos[i]\n center_x, center_y = self._lensModel.ray_shooting(ra, dec, kwargs_lens)\n if polar_grid:\n theta = np.arctan2(dec, ra)\n xcoord, ycoord = util.rotate(x_grid, y_grid, theta)\n else:\n xcoord, ycoord = x_grid, y_grid\n betax, betay = self._lensModel.ray_shooting(xcoord + ra, ycoord +\n dec, kwargs_lens)\n I_image = quasar.function(betax, betay, 1.0, source_sigma,\n source_sigma, center_x, center_y)\n mag_finite[i] = np.sum(I_image) * deltaPix ** 2\n return mag_finite\n",
"role": "user"
},
{
"content": "magnification_finite",
"role": "assistant"
}
] |
def x(self, edge1, edge2, edge_90, max_order, kwargs_lens):
ra_1, dec_1, mag_1 = edge1
ra_2, dec_2, mag_2 = edge2
ra_3, dec_3, mag_3 = edge_90
sign_list = np.sign([mag_1, mag_2, mag_3])
if sign_list[0] == sign_list[1] and sign_list[0] == sign_list[2]:
return [], []
else:
max_order -= 1
if max_order <= 0:
return [(ra_1 + ra_2 + ra_3) / 3], [(dec_1 + dec_2 + dec_3) / 3]
else:
ra_90_ = (ra_1 + ra_2) / 2
dec_90_ = (dec_1 + dec_2) / 2
mag_90_ = self._lensModel.magnification(ra_90_, dec_90_,
kwargs_lens)
edge_90_ = [ra_90_, dec_90_, mag_90_]
ra_crit, dec_crit = self._tiling_crit(edge1=edge_90, edge2=
edge1, edge_90=edge_90_, max_order=max_order, kwargs_lens=
kwargs_lens)
ra_crit_2, dec_crit_2 = self._tiling_crit(edge1=edge_90, edge2=
edge2, edge_90=edge_90_, max_order=max_order, kwargs_lens=
kwargs_lens)
ra_crit += ra_crit_2
dec_crit += dec_crit_2
return ra_crit, dec_crit
|
tiling_crit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, edge1, edge2, edge_90, max_order, kwargs_lens):\n ra_1, dec_1, mag_1 = edge1\n ra_2, dec_2, mag_2 = edge2\n ra_3, dec_3, mag_3 = edge_90\n sign_list = np.sign([mag_1, mag_2, mag_3])\n if sign_list[0] == sign_list[1] and sign_list[0] == sign_list[2]:\n return [], []\n else:\n max_order -= 1\n if max_order <= 0:\n return [(ra_1 + ra_2 + ra_3) / 3], [(dec_1 + dec_2 + dec_3) / 3]\n else:\n ra_90_ = (ra_1 + ra_2) / 2\n dec_90_ = (dec_1 + dec_2) / 2\n mag_90_ = self._lensModel.magnification(ra_90_, dec_90_,\n kwargs_lens)\n edge_90_ = [ra_90_, dec_90_, mag_90_]\n ra_crit, dec_crit = self._tiling_crit(edge1=edge_90, edge2=\n edge1, edge_90=edge_90_, max_order=max_order, kwargs_lens=\n kwargs_lens)\n ra_crit_2, dec_crit_2 = self._tiling_crit(edge1=edge_90, edge2=\n edge2, edge_90=edge_90_, max_order=max_order, kwargs_lens=\n kwargs_lens)\n ra_crit += ra_crit_2\n dec_crit += dec_crit_2\n return ra_crit, dec_crit\n",
"role": "user"
},
{
"content": "tiling_crit",
"role": "assistant"
}
] |
def x(self, kwargs_lens_list, k=None, spacing=1000):
if 'center_x' in kwargs_lens_list[0]:
center_x = kwargs_lens_list[0]['center_x']
center_y = kwargs_lens_list[0]['center_y']
elif self._lensModel.lens_model_list[0] in ['INTERPOL', 'INTERPOL_SCALED']:
center_x, center_y = 0, 0
else:
center_x, center_y = 0, 0
numPix = 200
deltaPix = 0.05
x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)
x_grid += center_x
y_grid += center_y
kappa = self._lensModel.kappa(x_grid, y_grid, kwargs_lens_list, k=k)
if self._lensModel.lens_model_list[0] in ['INTERPOL', 'INTERPOL_SCALED']:
center_x = x_grid[kappa == np.max(kappa)]
center_y = y_grid[kappa == np.max(kappa)]
kappa = util.array2image(kappa)
r_array = np.linspace(0.0001, numPix * deltaPix / 2.0, spacing)
for r in r_array:
mask = np.array(1 - mask_util.mask_center_2d(center_x, center_y, r,
x_grid, y_grid))
sum_mask = np.sum(mask)
if sum_mask > 0:
kappa_mean = np.sum(kappa * mask) / np.sum(mask)
if kappa_mean < 1:
return r
print(kwargs_lens_list, 'Warning, no Einstein radius computed!')
return r_array[-1]
|
effective_einstein_radius
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens_list, k=None, spacing=1000):\n if 'center_x' in kwargs_lens_list[0]:\n center_x = kwargs_lens_list[0]['center_x']\n center_y = kwargs_lens_list[0]['center_y']\n elif self._lensModel.lens_model_list[0] in ['INTERPOL', 'INTERPOL_SCALED']:\n center_x, center_y = 0, 0\n else:\n center_x, center_y = 0, 0\n numPix = 200\n deltaPix = 0.05\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n x_grid += center_x\n y_grid += center_y\n kappa = self._lensModel.kappa(x_grid, y_grid, kwargs_lens_list, k=k)\n if self._lensModel.lens_model_list[0] in ['INTERPOL', 'INTERPOL_SCALED']:\n center_x = x_grid[kappa == np.max(kappa)]\n center_y = y_grid[kappa == np.max(kappa)]\n kappa = util.array2image(kappa)\n r_array = np.linspace(0.0001, numPix * deltaPix / 2.0, spacing)\n for r in r_array:\n mask = np.array(1 - mask_util.mask_center_2d(center_x, center_y, r,\n x_grid, y_grid))\n sum_mask = np.sum(mask)\n if sum_mask > 0:\n kappa_mean = np.sum(kappa * mask) / np.sum(mask)\n if kappa_mean < 1:\n return r\n print(kwargs_lens_list, 'Warning, no Einstein radius computed!')\n return r_array[-1]\n",
"role": "user"
},
{
"content": "effective_einstein_radius",
"role": "assistant"
}
] |
def x(self, kwargs_lens, lens_model_internal_bool=None):
alpha0_x, alpha0_y = 0, 0
kappa_ext = 0
shear1, shear2 = 0, 0
if lens_model_internal_bool is None:
lens_model_internal_bool = [True] * len(kwargs_lens)
for i, kwargs in enumerate(kwargs_lens):
if not lens_model_internal_bool[i] is True:
f_x, f_y = self._lensModel.alpha(0, 0, kwargs_lens, k=i)
f_xx, f_xy, f_yx, f_yy = self._lensModel.hessian(0, 0,
kwargs_lens, k=i)
alpha0_x += f_x
alpha0_y += f_y
kappa_ext += (f_xx + f_yy) / 2.0
shear1 += 1.0 / 2 * (f_xx - f_yy)
shear2 += f_xy
return alpha0_x, alpha0_y, kappa_ext, shear1, shear2
|
external_lensing_effect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, lens_model_internal_bool=None):\n alpha0_x, alpha0_y = 0, 0\n kappa_ext = 0\n shear1, shear2 = 0, 0\n if lens_model_internal_bool is None:\n lens_model_internal_bool = [True] * len(kwargs_lens)\n for i, kwargs in enumerate(kwargs_lens):\n if not lens_model_internal_bool[i] is True:\n f_x, f_y = self._lensModel.alpha(0, 0, kwargs_lens, k=i)\n f_xx, f_xy, f_yx, f_yy = self._lensModel.hessian(0, 0,\n kwargs_lens, k=i)\n alpha0_x += f_x\n alpha0_y += f_y\n kappa_ext += (f_xx + f_yy) / 2.0\n shear1 += 1.0 / 2 * (f_xx - f_yy)\n shear2 += f_xy\n return alpha0_x, alpha0_y, kappa_ext, shear1, shear2\n",
"role": "user"
},
{
"content": "external_lensing_effect",
"role": "assistant"
}
] |
def x(self, kwargs_lens, k=None, bool_list=None, numPix=200, deltaPix=0.01,
center_x_init=0, center_y_init=0):
x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)
x_grid += center_x_init
y_grid += center_y_init
if bool_list is None:
kappa = self._lensModel.kappa(x_grid, y_grid, kwargs_lens, k=k)
else:
kappa = np.zeros_like(x_grid)
for k in range(len(kwargs_lens)):
if bool_list[k] is True:
kappa += self._lensModel.kappa(x_grid, y_grid, kwargs_lens, k=k
)
center_x = x_grid[kappa == np.max(kappa)]
center_y = y_grid[kappa == np.max(kappa)]
return center_x, center_y
|
lens_center
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens, k=None, bool_list=None, numPix=200, deltaPix=0.01,\n center_x_init=0, center_y_init=0):\n x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)\n x_grid += center_x_init\n y_grid += center_y_init\n if bool_list is None:\n kappa = self._lensModel.kappa(x_grid, y_grid, kwargs_lens, k=k)\n else:\n kappa = np.zeros_like(x_grid)\n for k in range(len(kwargs_lens)):\n if bool_list[k] is True:\n kappa += self._lensModel.kappa(x_grid, y_grid, kwargs_lens, k=k\n )\n center_x = x_grid[kappa == np.max(kappa)]\n center_y = y_grid[kappa == np.max(kappa)]\n return center_x, center_y\n",
"role": "user"
},
{
"content": "lens_center",
"role": "assistant"
}
] |
def x(self, kwargs_lens_list, lens_model_internal_bool=None, num_points=10):
theta_E = self.effective_einstein_radius(kwargs_lens_list)
x0 = kwargs_lens_list[0]['center_x']
y0 = kwargs_lens_list[0]['center_y']
x, y = util.points_on_circle(theta_E, num_points)
dr = 0.01
x_dr, y_dr = util.points_on_circle(theta_E + dr, num_points)
if lens_model_internal_bool is None:
lens_model_internal_bool = [True] * len(kwargs_lens_list)
alpha_E_x_i, alpha_E_y_i = self._lensModel.alpha(x0 + x, y0 + y,
kwargs_lens_list, k=lens_model_internal_bool)
alpha_E_r = np.sqrt(alpha_E_x_i ** 2 + alpha_E_y_i ** 2)
alpha_E_dr_x_i, alpha_E_dr_y_i = self._lensModel.alpha(x0 + x_dr, y0 +
y_dr, kwargs_lens_list, k=lens_model_internal_bool)
alpha_E_dr = np.sqrt(alpha_E_dr_x_i ** 2 + alpha_E_dr_y_i ** 2)
slope = np.mean(np.log(alpha_E_dr / alpha_E_r) / np.log((theta_E + dr) /
theta_E))
gamma = -slope + 2
return gamma
|
profile_slope
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kwargs_lens_list, lens_model_internal_bool=None, num_points=10):\n theta_E = self.effective_einstein_radius(kwargs_lens_list)\n x0 = kwargs_lens_list[0]['center_x']\n y0 = kwargs_lens_list[0]['center_y']\n x, y = util.points_on_circle(theta_E, num_points)\n dr = 0.01\n x_dr, y_dr = util.points_on_circle(theta_E + dr, num_points)\n if lens_model_internal_bool is None:\n lens_model_internal_bool = [True] * len(kwargs_lens_list)\n alpha_E_x_i, alpha_E_y_i = self._lensModel.alpha(x0 + x, y0 + y,\n kwargs_lens_list, k=lens_model_internal_bool)\n alpha_E_r = np.sqrt(alpha_E_x_i ** 2 + alpha_E_y_i ** 2)\n alpha_E_dr_x_i, alpha_E_dr_y_i = self._lensModel.alpha(x0 + x_dr, y0 +\n y_dr, kwargs_lens_list, k=lens_model_internal_bool)\n alpha_E_dr = np.sqrt(alpha_E_dr_x_i ** 2 + alpha_E_dr_y_i ** 2)\n slope = np.mean(np.log(alpha_E_dr / alpha_E_r) / np.log((theta_E + dr) /\n theta_E))\n gamma = -slope + 2\n return gamma\n",
"role": "user"
},
{
"content": "profile_slope",
"role": "assistant"
}
] |
def x(self, x, y, kwargs, diff=diff):
f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff)
kappa = 1.0 / 2 * (f_xx + f_yy)
return kappa
|
kappa
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kwargs, diff=diff):\n f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff)\n kappa = 1.0 / 2 * (f_xx + f_yy)\n return kappa\n",
"role": "user"
},
{
"content": "kappa",
"role": "assistant"
}
] |
def x(self, x, y, kwargs, diff=diff):
f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff)
gamma1 = 1.0 / 2 * (f_xx - f_yy)
gamma2 = f_xy
return gamma1, gamma2
|
gamma
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kwargs, diff=diff):\n f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff)\n gamma1 = 1.0 / 2 * (f_xx - f_yy)\n gamma2 = f_xy\n return gamma1, gamma2\n",
"role": "user"
},
{
"content": "gamma",
"role": "assistant"
}
] |
def x(self, x, y, kwargs, diff=diff):
f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff)
det_A = (1 - f_xx) * (1 - f_yy) - f_xy * f_yx
return 1 / det_A
|
magnification
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kwargs, diff=diff):\n f_xx, f_xy, f_yx, f_yy = self.hessian(x, y, kwargs, diff=diff)\n det_A = (1 - f_xx) * (1 - f_yy) - f_xy * f_yx\n return 1 / det_A\n",
"role": "user"
},
{
"content": "magnification",
"role": "assistant"
}
] |
def x(self, x, y, kwargs, diff=diff):
alpha_ra, alpha_dec = self.alpha(x, y, kwargs)
alpha_ra_dx, alpha_dec_dx = self.alpha(x + diff, y, kwargs)
alpha_ra_dy, alpha_dec_dy = self.alpha(x, y + diff, kwargs)
dalpha_rara = (alpha_ra_dx - alpha_ra) / diff
dalpha_radec = (alpha_ra_dy - alpha_ra) / diff
dalpha_decra = (alpha_dec_dx - alpha_dec) / diff
dalpha_decdec = (alpha_dec_dy - alpha_dec) / diff
f_xx = dalpha_rara
f_yy = dalpha_decdec
f_xy = dalpha_radec
f_yx = dalpha_decra
return f_xx, f_xy, f_yx, f_yy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kwargs, diff=diff):\n alpha_ra, alpha_dec = self.alpha(x, y, kwargs)\n alpha_ra_dx, alpha_dec_dx = self.alpha(x + diff, y, kwargs)\n alpha_ra_dy, alpha_dec_dy = self.alpha(x, y + diff, kwargs)\n dalpha_rara = (alpha_ra_dx - alpha_ra) / diff\n dalpha_radec = (alpha_ra_dy - alpha_ra) / diff\n dalpha_decra = (alpha_dec_dx - alpha_dec) / diff\n dalpha_decdec = (alpha_dec_dy - alpha_dec) / diff\n f_xx = dalpha_rara\n f_yy = dalpha_decdec\n f_xy = dalpha_radec\n f_yx = dalpha_decra\n return f_xx, f_xy, f_yx, f_yy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(self, z_lens, z_source):
return self.D_xy(0, z_lens) * self.D_xy(0, z_source) / self.D_xy(z_lens,
z_source) * (1 + z_lens)
|
D_dt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, z_lens, z_source):\n return self.D_xy(0, z_lens) * self.D_xy(0, z_source) / self.D_xy(z_lens,\n z_source) * (1 + z_lens)\n",
"role": "user"
},
{
"content": "D_dt",
"role": "assistant"
}
] |
def x(self):
h = self.cosmo.H(0).value / 100.0
return 3 * h ** 2 / (8 * np.pi * const.G
) * 10 ** 10 * const.Mpc / const.M_sun
|
rho_crit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n h = self.cosmo.H(0).value / 100.0\n return 3 * h ** 2 / (8 * np.pi * const.G\n ) * 10 ** 10 * const.Mpc / const.M_sun\n",
"role": "user"
},
{
"content": "rho_crit",
"role": "assistant"
}
] |
def x(self, x, n_array, tensor=True):
if not self._stable_cut:
return hermite.hermval(x, n_array)
else:
n_max = len(n_array)
x_cut = np.sqrt(n_max + 1) * self._cut_scale
if isinstance(x, int) or isinstance(x, float):
if x >= x_cut:
return 0
else:
return hermite.hermval(x, n_array)
else:
out = np.zeros_like(x)
out[x < x_cut] = hermite.hermval(x[x < x_cut], n_array, tensor=
tensor)
return out
|
hermval
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, n_array, tensor=True):\n if not self._stable_cut:\n return hermite.hermval(x, n_array)\n else:\n n_max = len(n_array)\n x_cut = np.sqrt(n_max + 1) * self._cut_scale\n if isinstance(x, int) or isinstance(x, float):\n if x >= x_cut:\n return 0\n else:\n return hermite.hermval(x, n_array)\n else:\n out = np.zeros_like(x)\n out[x < x_cut] = hermite.hermval(x[x < x_cut], n_array, tensor=\n tensor)\n return out\n",
"role": "user"
},
{
"content": "hermval",
"role": "assistant"
}
] |
def x(self, n, x):
if not self._interpolation:
n_array = np.zeros(n + 1)
n_array[n] = 1
return self.hermval(x, n_array, tensor=False)
else:
return np.interp(x, self.x_grid, self.H_interp[n])
|
H_n
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, x):\n if not self._interpolation:\n n_array = np.zeros(n + 1)\n n_array[n] = 1\n return self.hermval(x, n_array, tensor=False)\n else:\n return np.interp(x, self.x_grid, self.H_interp[n])\n",
"role": "user"
},
{
"content": "H_n",
"role": "assistant"
}
] |
def x(self, x, y, beta, n_order, center_x, center_y):
x_ = x - center_x
y_ = y - center_y
n = len(np.atleast_1d(x))
H_x = np.empty((n_order + 1, n))
H_y = np.empty((n_order + 1, n))
if n_order > 170:
raise ValueError('polynomial order to large', n_order)
for n in range(0, n_order + 1):
prefactor = 1.0 / np.sqrt(2 ** n * np.sqrt(np.pi) * math.factorial(n))
n_array = np.zeros(n + 1)
n_array[n] = 1
H_x[n] = self.hermval(x_ / beta, n_array, tensor=False
) * prefactor * np.exp(-(x_ / beta) ** 2 / 2.0)
H_y[n] = self.hermval(y_ / beta, n_array, tensor=False
) * prefactor * np.exp(-(y_ / beta) ** 2 / 2.0)
return H_x, H_y
|
pre_calc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, beta, n_order, center_x, center_y):\n x_ = x - center_x\n y_ = y - center_y\n n = len(np.atleast_1d(x))\n H_x = np.empty((n_order + 1, n))\n H_y = np.empty((n_order + 1, n))\n if n_order > 170:\n raise ValueError('polynomial order to large', n_order)\n for n in range(0, n_order + 1):\n prefactor = 1.0 / np.sqrt(2 ** n * np.sqrt(np.pi) * math.factorial(n))\n n_array = np.zeros(n + 1)\n n_array[n] = 1\n H_x[n] = self.hermval(x_ / beta, n_array, tensor=False\n ) * prefactor * np.exp(-(x_ / beta) ** 2 / 2.0)\n H_y[n] = self.hermval(y_ / beta, n_array, tensor=False\n ) * prefactor * np.exp(-(y_ / beta) ** 2 / 2.0)\n return H_x, H_y\n",
"role": "user"
},
{
"content": "pre_calc",
"role": "assistant"
}
] |
def x(self, image, x, y, n_max, beta, deltaPix, center_x=0, center_y=0):
num_param = int((n_max + 1) * (n_max + 2) / 2)
param_list = np.zeros(num_param)
amp_norm = 1.0 / beta ** 2 * deltaPix ** 2
n1 = 0
n2 = 0
H_x, H_y = self.shapelets.pre_calc(x, y, beta, n_max, center_x, center_y)
for i in range(num_param):
kwargs_source_shapelet = {'center_x': center_x, 'center_y':
center_y, 'n1': n1, 'n2': n2, 'beta': beta, 'amp': amp_norm}
base = self.shapelets.function(H_x, H_y, **kwargs_source_shapelet)
param = np.sum(image * base)
param_list[i] = param
if n1 == 0:
n1 = n2 + 1
n2 = 0
else:
n1 -= 1
n2 += 1
return param_list
|
decomposition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, x, y, n_max, beta, deltaPix, center_x=0, center_y=0):\n num_param = int((n_max + 1) * (n_max + 2) / 2)\n param_list = np.zeros(num_param)\n amp_norm = 1.0 / beta ** 2 * deltaPix ** 2\n n1 = 0\n n2 = 0\n H_x, H_y = self.shapelets.pre_calc(x, y, beta, n_max, center_x, center_y)\n for i in range(num_param):\n kwargs_source_shapelet = {'center_x': center_x, 'center_y':\n center_y, 'n1': n1, 'n2': n2, 'beta': beta, 'amp': amp_norm}\n base = self.shapelets.function(H_x, H_y, **kwargs_source_shapelet)\n param = np.sum(image * base)\n param_list[i] = param\n if n1 == 0:\n n1 = n2 + 1\n n2 = 0\n else:\n n1 -= 1\n n2 += 1\n return param_list\n",
"role": "user"
},
{
"content": "decomposition",
"role": "assistant"
}
] |
def x(self, maxIter=1000, c1=1.193, c2=1.193, lookback=0.25, standard_dev=None
):
self._get_fitness(self.swarm)
i = 0
self.i = i
while True:
for particle in self.swarm:
if self._gbest.fitness < particle.fitness:
self._gbest = particle.copy()
if particle.fitness > particle.pbest.fitness:
particle.updatePBest()
if i >= maxIter:
if self._verbose:
print('max iteration reached! stoping')
return
if self._func.is_converged:
return
if self._converged_likelihood(maxIter * lookback, self.
_particleCount, standard_dev):
return
for particle in self.swarm:
w = 0.5 + numpy.random.uniform(0, 1, size=self._paramCount) / 2
part_vel = w * particle.velocity
cog_vel = c1 * numpy.random.uniform(0, 1, size=self._paramCount
) * (particle.pbest.position - particle.position)
soc_vel = c2 * numpy.random.uniform(0, 1, size=self._paramCount
) * (self._gbest.position - particle.position)
particle.velocity = part_vel + cog_vel + soc_vel
particle.position = particle.position + particle.velocity
self._get_fitness(self.swarm)
swarm = []
for particle in self.swarm:
swarm.append(particle.copy())
yield swarm
i += 1
self.i = i
|
sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, maxIter=1000, c1=1.193, c2=1.193, lookback=0.25, standard_dev=None\n ):\n self._get_fitness(self.swarm)\n i = 0\n self.i = i\n while True:\n for particle in self.swarm:\n if self._gbest.fitness < particle.fitness:\n self._gbest = particle.copy()\n if particle.fitness > particle.pbest.fitness:\n particle.updatePBest()\n if i >= maxIter:\n if self._verbose:\n print('max iteration reached! stoping')\n return\n if self._func.is_converged:\n return\n if self._converged_likelihood(maxIter * lookback, self.\n _particleCount, standard_dev):\n return\n for particle in self.swarm:\n w = 0.5 + numpy.random.uniform(0, 1, size=self._paramCount) / 2\n part_vel = w * particle.velocity\n cog_vel = c1 * numpy.random.uniform(0, 1, size=self._paramCount\n ) * (particle.pbest.position - particle.position)\n soc_vel = c2 * numpy.random.uniform(0, 1, size=self._paramCount\n ) * (self._gbest.position - particle.position)\n particle.velocity = part_vel + cog_vel + soc_vel\n particle.position = particle.position + particle.velocity\n self._get_fitness(self.swarm)\n swarm = []\n for particle in self.swarm:\n swarm.append(particle.copy())\n yield swarm\n i += 1\n self.i = i\n",
"role": "user"
},
{
"content": "sample",
"role": "assistant"
}
] |
def x(self, maxIter=1000, c1=1.193, c2=1.193, lookback=0.25, standard_dev=None
):
gBests = []
for swarm in self._sample(maxIter, c1, c2, lookback, standard_dev):
gBests.append(self._gbest.copy())
return gBests
|
optimize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, maxIter=1000, c1=1.193, c2=1.193, lookback=0.25, standard_dev=None\n ):\n gBests = []\n for swarm in self._sample(maxIter, c1, c2, lookback, standard_dev):\n gBests.append(self._gbest.copy())\n return gBests\n",
"role": "user"
},
{
"content": "optimize",
"role": "assistant"
}
] |
def x(cls, paramCount):
return Particle(numpy.array([[]] * paramCount), numpy.array([[]] *
paramCount), -numpy.Inf)
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, paramCount):\n return Particle(numpy.array([[]] * paramCount), numpy.array([[]] *\n paramCount), -numpy.Inf)\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(self):
return Particle(copy(self.position), copy(self.velocity), self.fitness)
|
copy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return Particle(copy(self.position), copy(self.velocity), self.fitness)\n",
"role": "user"
},
{
"content": "copy",
"role": "assistant"
}
] |
def x(self, bool=True):
for imageModel in self._imageModel_list:
imageModel.reset_point_source_cache(bool=bool)
|
reset_point_source_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bool=True):\n for imageModel in self._imageModel_list:\n imageModel.reset_point_source_cache(bool=bool)\n",
"role": "user"
},
{
"content": "reset_point_source_cache",
"role": "assistant"
}
] |
def x(I_xy_input, x, y):
I_xy = copy.deepcopy(I_xy_input)
background = np.minimum(0, np.min(I_xy))
I_xy -= background
x_ = np.sum(I_xy * x)
y_ = np.sum(I_xy * y)
r = (np.max(x) - np.min(x)) / 3.0
mask = mask_util.mask_sphere(x, y, center_x=x_, center_y=y_, r=r)
Q_xx = np.sum(I_xy * mask * (x - x_) ** 2)
Q_xy = np.sum(I_xy * mask * (x - x_) * (y - y_))
Q_yy = np.sum(I_xy * mask * (y - y_) ** 2)
return Q_xx, Q_xy, Q_yy, background / np.mean(I_xy)
|
moments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(I_xy_input, x, y):\n I_xy = copy.deepcopy(I_xy_input)\n background = np.minimum(0, np.min(I_xy))\n I_xy -= background\n x_ = np.sum(I_xy * x)\n y_ = np.sum(I_xy * y)\n r = (np.max(x) - np.min(x)) / 3.0\n mask = mask_util.mask_sphere(x, y, center_x=x_, center_y=y_, r=r)\n Q_xx = np.sum(I_xy * mask * (x - x_) ** 2)\n Q_xy = np.sum(I_xy * mask * (x - x_) * (y - y_))\n Q_yy = np.sum(I_xy * mask * (y - y_) ** 2)\n return Q_xx, Q_xy, Q_yy, background / np.mean(I_xy)\n",
"role": "user"
},
{
"content": "moments",
"role": "assistant"
}
] |
def x(I_xy, x, y):
Q_xx, Q_xy, Q_yy, bkg = moments(I_xy, x, y)
norm = Q_xx + Q_yy + 2 * np.sqrt(Q_xx * Q_yy - Q_xy ** 2)
e1 = (Q_xx - Q_yy) / norm
e2 = 2 * Q_xy / norm
return e1 / (1 + bkg), e2 / (1 + bkg)
|
ellipticities
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(I_xy, x, y):\n Q_xx, Q_xy, Q_yy, bkg = moments(I_xy, x, y)\n norm = Q_xx + Q_yy + 2 * np.sqrt(Q_xx * Q_yy - Q_xy ** 2)\n e1 = (Q_xx - Q_yy) / norm\n e2 = 2 * Q_xy / norm\n return e1 / (1 + bkg), e2 / (1 + bkg)\n",
"role": "user"
},
{
"content": "ellipticities",
"role": "assistant"
}
] |
def x(self, theta_x, theta_y, kwargs_lens, k=None):
x = np.zeros_like(theta_x)
y = np.zeros_like(theta_y)
alpha_x = theta_x
alpha_y = theta_y
i = -1
for i, idex in enumerate(self._sorted_redshift_index):
delta_T = self._T_ij_list[i]
x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)
alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,
kwargs_lens, i)
delta_T = self._T_ij_list[i + 1]
x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)
beta_x, beta_y = self._co_moving2angle_source(x, y)
return beta_x, beta_y
|
ray_shooting
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, theta_x, theta_y, kwargs_lens, k=None):\n x = np.zeros_like(theta_x)\n y = np.zeros_like(theta_y)\n alpha_x = theta_x\n alpha_y = theta_y\n i = -1\n for i, idex in enumerate(self._sorted_redshift_index):\n delta_T = self._T_ij_list[i]\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,\n kwargs_lens, i)\n delta_T = self._T_ij_list[i + 1]\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n beta_x, beta_y = self._co_moving2angle_source(x, y)\n return beta_x, beta_y\n",
"role": "user"
},
{
"content": "ray_shooting",
"role": "assistant"
}
] |
def x(self, x, y, alpha_x, alpha_y, z_start, z_stop, kwargs_lens,
keep_range=False, include_z_start=False):
z_lens_last = z_start
first_deflector = True
for i, idex in enumerate(self._sorted_redshift_index):
z_lens = self._redshift_list[idex]
if self._start_condition(include_z_start, z_lens, z_start
) and z_lens <= z_stop:
if first_deflector is True:
if keep_range is True:
if not hasattr(self, '_cosmo_bkg_T_start'):
self._cosmo_bkg_T_start = self._cosmo_bkg.T_xy(z_start,
z_lens)
delta_T = self._cosmo_bkg_T_start
else:
delta_T = self._cosmo_bkg.T_xy(z_start, z_lens)
first_deflector = False
else:
delta_T = self._T_ij_list[i]
x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)
alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,
kwargs_lens, i)
z_lens_last = z_lens
if keep_range is True:
if not hasattr(self, '_cosmo_bkg_T_stop'):
self._cosmo_bkg_T_stop = self._cosmo_bkg.T_xy(z_lens_last, z_stop)
delta_T = self._cosmo_bkg_T_stop
else:
delta_T = self._cosmo_bkg.T_xy(z_lens_last, z_stop)
x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)
return x, y, alpha_x, alpha_y
|
ray_shooting_partial
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, alpha_x, alpha_y, z_start, z_stop, kwargs_lens,\n keep_range=False, include_z_start=False):\n z_lens_last = z_start\n first_deflector = True\n for i, idex in enumerate(self._sorted_redshift_index):\n z_lens = self._redshift_list[idex]\n if self._start_condition(include_z_start, z_lens, z_start\n ) and z_lens <= z_stop:\n if first_deflector is True:\n if keep_range is True:\n if not hasattr(self, '_cosmo_bkg_T_start'):\n self._cosmo_bkg_T_start = self._cosmo_bkg.T_xy(z_start,\n z_lens)\n delta_T = self._cosmo_bkg_T_start\n else:\n delta_T = self._cosmo_bkg.T_xy(z_start, z_lens)\n first_deflector = False\n else:\n delta_T = self._T_ij_list[i]\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,\n kwargs_lens, i)\n z_lens_last = z_lens\n if keep_range is True:\n if not hasattr(self, '_cosmo_bkg_T_stop'):\n self._cosmo_bkg_T_stop = self._cosmo_bkg.T_xy(z_lens_last, z_stop)\n delta_T = self._cosmo_bkg_T_stop\n else:\n delta_T = self._cosmo_bkg.T_xy(z_lens_last, z_stop)\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n return x, y, alpha_x, alpha_y\n",
"role": "user"
},
{
"content": "ray_shooting_partial",
"role": "assistant"
}
] |
def x(self, x, y, alpha_x, alpha_y, z_start, z_stop, kwargs_lens,
include_z_start=False):
z_lens_last = z_start
first_deflector = True
pos_x, pos_y, redshifts, Tz_list = [], [], [], []
pos_x.append(x)
pos_y.append(y)
redshifts.append(z_start)
Tz_list.append(self._cosmo_bkg.T_xy(0, z_start))
current_z = z_lens_last
for i, idex in enumerate(self._sorted_redshift_index):
z_lens = self._redshift_list[idex]
if self._start_condition(include_z_start, z_lens, z_start
) and z_lens <= z_stop:
if z_lens != current_z:
new_plane = True
current_z = z_lens
else:
new_plane = False
if first_deflector is True:
delta_T = self._cosmo_bkg.T_xy(z_start, z_lens)
first_deflector = False
else:
delta_T = self._T_ij_list[i]
x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)
alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,
kwargs_lens, i)
z_lens_last = z_lens
if new_plane:
pos_x.append(x)
pos_y.append(y)
redshifts.append(z_lens)
Tz_list.append(self._T_z_list[i])
delta_T = self._cosmo_bkg.T_xy(z_lens_last, z_stop)
x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)
pos_x.append(x)
pos_y.append(y)
redshifts.append(self._z_source)
Tz_list.append(self._T_z_source)
return pos_x, pos_y, redshifts, Tz_list
|
ray_shooting_partial_steps
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, alpha_x, alpha_y, z_start, z_stop, kwargs_lens,\n include_z_start=False):\n z_lens_last = z_start\n first_deflector = True\n pos_x, pos_y, redshifts, Tz_list = [], [], [], []\n pos_x.append(x)\n pos_y.append(y)\n redshifts.append(z_start)\n Tz_list.append(self._cosmo_bkg.T_xy(0, z_start))\n current_z = z_lens_last\n for i, idex in enumerate(self._sorted_redshift_index):\n z_lens = self._redshift_list[idex]\n if self._start_condition(include_z_start, z_lens, z_start\n ) and z_lens <= z_stop:\n if z_lens != current_z:\n new_plane = True\n current_z = z_lens\n else:\n new_plane = False\n if first_deflector is True:\n delta_T = self._cosmo_bkg.T_xy(z_start, z_lens)\n first_deflector = False\n else:\n delta_T = self._T_ij_list[i]\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,\n kwargs_lens, i)\n z_lens_last = z_lens\n if new_plane:\n pos_x.append(x)\n pos_y.append(y)\n redshifts.append(z_lens)\n Tz_list.append(self._T_z_list[i])\n delta_T = self._cosmo_bkg.T_xy(z_lens_last, z_stop)\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n pos_x.append(x)\n pos_y.append(y)\n redshifts.append(self._z_source)\n Tz_list.append(self._T_z_source)\n return pos_x, pos_y, redshifts, Tz_list\n",
"role": "user"
},
{
"content": "ray_shooting_partial_steps",
"role": "assistant"
}
] |
def x(self, theta_x, theta_y, kwargs_lens, k=None):
dt_grav = np.zeros_like(theta_x)
dt_geo = np.zeros_like(theta_x)
x = np.zeros_like(theta_x)
y = np.zeros_like(theta_y)
alpha_x = theta_x
alpha_y = theta_y
i = 0
for i, idex in enumerate(self._sorted_redshift_index):
z_lens = self._redshift_list[idex]
delta_T = self._T_ij_list[i]
dt_geo_new = self._geometrical_delay(alpha_x, alpha_y, delta_T)
x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)
dt_grav_new = self._gravitational_delay(x, y, kwargs_lens, i, z_lens)
alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,
kwargs_lens, i)
dt_geo = dt_geo + dt_geo_new
dt_grav = dt_grav + dt_grav_new
delta_T = self._T_ij_list[i + 1]
dt_geo += self._geometrical_delay(alpha_x, alpha_y, delta_T)
x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)
beta_x, beta_y = self._co_moving2angle_source(x, y)
dt_geo -= self._geometrical_delay(beta_x, beta_y, self._T_z_source)
return dt_grav + dt_geo
|
arrival_time
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, theta_x, theta_y, kwargs_lens, k=None):\n dt_grav = np.zeros_like(theta_x)\n dt_geo = np.zeros_like(theta_x)\n x = np.zeros_like(theta_x)\n y = np.zeros_like(theta_y)\n alpha_x = theta_x\n alpha_y = theta_y\n i = 0\n for i, idex in enumerate(self._sorted_redshift_index):\n z_lens = self._redshift_list[idex]\n delta_T = self._T_ij_list[i]\n dt_geo_new = self._geometrical_delay(alpha_x, alpha_y, delta_T)\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n dt_grav_new = self._gravitational_delay(x, y, kwargs_lens, i, z_lens)\n alpha_x, alpha_y = self._add_deflection(x, y, alpha_x, alpha_y,\n kwargs_lens, i)\n dt_geo = dt_geo + dt_geo_new\n dt_grav = dt_grav + dt_grav_new\n delta_T = self._T_ij_list[i + 1]\n dt_geo += self._geometrical_delay(alpha_x, alpha_y, delta_T)\n x, y = self._ray_step(x, y, alpha_x, alpha_y, delta_T)\n beta_x, beta_y = self._co_moving2angle_source(x, y)\n dt_geo -= self._geometrical_delay(beta_x, beta_y, self._T_z_source)\n return dt_grav + dt_geo\n",
"role": "user"
},
{
"content": "arrival_time",
"role": "assistant"
}
] |
def x(self, theta_x, theta_y, kwargs_lens, k=None):
beta_x, beta_y = self.ray_shooting(theta_x, theta_y, kwargs_lens)
alpha_x = theta_x - beta_x
alpha_y = theta_y - beta_y
return alpha_x, alpha_y
|
alpha
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, theta_x, theta_y, kwargs_lens, k=None):\n beta_x, beta_y = self.ray_shooting(theta_x, theta_y, kwargs_lens)\n alpha_x = theta_x - beta_x\n alpha_y = theta_y - beta_y\n return alpha_x, alpha_y\n",
"role": "user"
},
{
"content": "alpha",
"role": "assistant"
}
] |
def x(self, theta_x, theta_y, kwargs_lens, k=None, diff=1e-08):
alpha_ra, alpha_dec = self.alpha(theta_x, theta_y, kwargs_lens)
alpha_ra_dx, alpha_dec_dx = self.alpha(theta_x + diff, theta_y, kwargs_lens
)
alpha_ra_dy, alpha_dec_dy = self.alpha(theta_x, theta_y + diff, kwargs_lens
)
dalpha_rara = (alpha_ra_dx - alpha_ra) / diff
dalpha_radec = (alpha_ra_dy - alpha_ra) / diff
dalpha_decra = (alpha_dec_dx - alpha_dec) / diff
dalpha_decdec = (alpha_dec_dy - alpha_dec) / diff
f_xx = dalpha_rara
f_yy = dalpha_decdec
f_xy = dalpha_radec
f_yx = dalpha_decra
return f_xx, f_xy, f_yx, f_yy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, theta_x, theta_y, kwargs_lens, k=None, diff=1e-08):\n alpha_ra, alpha_dec = self.alpha(theta_x, theta_y, kwargs_lens)\n alpha_ra_dx, alpha_dec_dx = self.alpha(theta_x + diff, theta_y, kwargs_lens\n )\n alpha_ra_dy, alpha_dec_dy = self.alpha(theta_x, theta_y + diff, kwargs_lens\n )\n dalpha_rara = (alpha_ra_dx - alpha_ra) / diff\n dalpha_radec = (alpha_ra_dy - alpha_ra) / diff\n dalpha_decra = (alpha_dec_dx - alpha_dec) / diff\n dalpha_decdec = (alpha_dec_dy - alpha_dec) / diff\n f_xx = dalpha_rara\n f_yy = dalpha_decdec\n f_xy = dalpha_radec\n f_yx = dalpha_decra\n return f_xx, f_xy, f_yx, f_yy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(self, alpha_reduced, idex_lens):
factor = self._reduced2physical_factor[idex_lens]
return alpha_reduced * factor
|
reduced2physical_deflection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, alpha_reduced, idex_lens):\n factor = self._reduced2physical_factor[idex_lens]\n return alpha_reduced * factor\n",
"role": "user"
},
{
"content": "reduced2physical_deflection",
"role": "assistant"
}
] |
def x(self, alpha_x, alpha_y, delta_T):
dt_days = (alpha_x ** 2 + alpha_y ** 2
) / 2.0 * delta_T * const.Mpc / const.c / const.day_s * const.arcsec ** 2
return dt_days
|
geometrical_delay
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, alpha_x, alpha_y, delta_T):\n dt_days = (alpha_x ** 2 + alpha_y ** 2\n ) / 2.0 * delta_T * const.Mpc / const.c / const.day_s * const.arcsec ** 2\n return dt_days\n",
"role": "user"
},
{
"content": "geometrical_delay",
"role": "assistant"
}
] |
def x(self, potential, z_lens, z_source):
D_dt = self._cosmo_bkg.D_dt(z_lens, z_source)
delay_days = const.delay_arcsec2days(potential, D_dt)
return delay_days
|
lensing_potential2time_delay
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, potential, z_lens, z_source):\n D_dt = self._cosmo_bkg.D_dt(z_lens, z_source)\n delay_days = const.delay_arcsec2days(potential, D_dt)\n return delay_days\n",
"role": "user"
},
{
"content": "lensing_potential2time_delay",
"role": "assistant"
}
] |
def x(self, x, y, idex):
T_z = self._T_z_list[idex]
theta_x = x / T_z
theta_y = y / T_z
return theta_x, theta_y
|
co_moving2angle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, idex):\n T_z = self._T_z_list[idex]\n theta_x = x / T_z\n theta_y = y / T_z\n return theta_x, theta_y\n",
"role": "user"
},
{
"content": "co_moving2angle",
"role": "assistant"
}
] |
def x(self, x, y):
T_z = self._T_z_source
theta_x = x / T_z
theta_y = y / T_z
return theta_x, theta_y
|
co_moving2angle_source
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y):\n T_z = self._T_z_source\n theta_x = x / T_z\n theta_y = y / T_z\n return theta_x, theta_y\n",
"role": "user"
},
{
"content": "co_moving2angle_source",
"role": "assistant"
}
] |
def x(self, x, y, alpha_x, alpha_y, delta_T):
x_ = x + alpha_x * delta_T
y_ = y + alpha_y * delta_T
return x_, y_
|
ray_step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, alpha_x, alpha_y, delta_T):\n x_ = x + alpha_x * delta_T\n y_ = y + alpha_y * delta_T\n return x_, y_\n",
"role": "user"
},
{
"content": "ray_step",
"role": "assistant"
}
] |
def x(self, x, y, alpha_x, alpha_y, kwargs_lens, idex):
theta_x, theta_y = self._co_moving2angle(x, y, idex)
alpha_x_red, alpha_y_red = self._lens_model.alpha(theta_x, theta_y,
kwargs_lens, k=self._sorted_redshift_index[idex])
alpha_x_phys = self._reduced2physical_deflection(alpha_x_red, idex)
alpha_y_phys = self._reduced2physical_deflection(alpha_y_red, idex)
alpha_x_new = alpha_x - alpha_x_phys
alpha_y_new = alpha_y - alpha_y_phys
return alpha_x_new, alpha_y_new
|
add_deflection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, alpha_x, alpha_y, kwargs_lens, idex):\n theta_x, theta_y = self._co_moving2angle(x, y, idex)\n alpha_x_red, alpha_y_red = self._lens_model.alpha(theta_x, theta_y,\n kwargs_lens, k=self._sorted_redshift_index[idex])\n alpha_x_phys = self._reduced2physical_deflection(alpha_x_red, idex)\n alpha_y_phys = self._reduced2physical_deflection(alpha_y_red, idex)\n alpha_x_new = alpha_x - alpha_x_phys\n alpha_y_new = alpha_y - alpha_y_phys\n return alpha_x_new, alpha_y_new\n",
"role": "user"
},
{
"content": "add_deflection",
"role": "assistant"
}
] |
def x(self, x, y, theta_E, center_x=0, center_y=0):
x_shift = x - center_x
y_shift = y - center_y
R = np.sqrt(x_shift * x_shift + y_shift * y_shift)
if isinstance(R, int) or isinstance(R, float):
a = theta_E / max(1e-06, R)
else:
a = np.empty_like(R)
r = R[R > 0]
a[R == 0] = 0
a[R > 0] = theta_E / r
f_x = a * x_shift
f_y = a * y_shift
return f_x, f_y
|
derivatives
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, theta_E, center_x=0, center_y=0):\n x_shift = x - center_x\n y_shift = y - center_y\n R = np.sqrt(x_shift * x_shift + y_shift * y_shift)\n if isinstance(R, int) or isinstance(R, float):\n a = theta_E / max(1e-06, R)\n else:\n a = np.empty_like(R)\n r = R[R > 0]\n a[R == 0] = 0\n a[R > 0] = theta_E / r\n f_x = a * x_shift\n f_y = a * y_shift\n return f_x, f_y\n",
"role": "user"
},
{
"content": "derivatives",
"role": "assistant"
}
] |
def x(self, x, y, theta_E, center_x=0, center_y=0):
x_shift = x - center_x
y_shift = y - center_y
R = (x_shift * x_shift + y_shift * y_shift) ** (3.0 / 2)
if isinstance(R, int) or isinstance(R, float):
prefac = theta_E / max(1e-06, R)
else:
prefac = np.empty_like(R)
r = R[R > 0]
prefac[R == 0] = 0.0
prefac[R > 0] = theta_E / r
f_xx = y_shift * y_shift * prefac
f_yy = x_shift * x_shift * prefac
f_xy = -x_shift * y_shift * prefac
return f_xx, f_yy, f_xy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, theta_E, center_x=0, center_y=0):\n x_shift = x - center_x\n y_shift = y - center_y\n R = (x_shift * x_shift + y_shift * y_shift) ** (3.0 / 2)\n if isinstance(R, int) or isinstance(R, float):\n prefac = theta_E / max(1e-06, R)\n else:\n prefac = np.empty_like(R)\n r = R[R > 0]\n prefac[R == 0] = 0.0\n prefac[R > 0] = theta_E / r\n f_xx = y_shift * y_shift * prefac\n f_yy = x_shift * x_shift * prefac\n f_xy = -x_shift * y_shift * prefac\n return f_xx, f_yy, f_xy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(x, y, amp, a_x, a_y, center_x, center_y):
x_shift = x - center_x
y_shift = y - center_y
A = np.pi * a_x * a_y
dist = (x_shift / a_x) ** 2 + (y_shift / a_y) ** 2
torus = np.zeros_like(x)
torus[dist <= 1] = 1
return amp / A * torus
|
function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, amp, a_x, a_y, center_x, center_y):\n x_shift = x - center_x\n y_shift = y - center_y\n A = np.pi * a_x * a_y\n dist = (x_shift / a_x) ** 2 + (y_shift / a_y) ** 2\n torus = np.zeros_like(x)\n torus[dist <= 1] = 1\n return amp / A * torus\n",
"role": "user"
},
{
"content": "function",
"role": "assistant"
}
] |
def x(a, b, c, z):
return mp.hyp2f1(a, b, c, z)
|
hyp_2F1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, c, z):\n return mp.hyp2f1(a, b, c, z)\n",
"role": "user"
},
{
"content": "hyp_2F1",
"role": "assistant"
}
] |
def x(self, x, y, kwargs, k=None):
dx, dy = self.alpha(x, y, kwargs, k=k)
return x - dx, y - dy
|
ray_shooting
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kwargs, k=None):\n dx, dy = self.alpha(x, y, kwargs, k=k)\n return x - dx, y - dy\n",
"role": "user"
},
{
"content": "ray_shooting",
"role": "assistant"
}
] |
def x(self, x_image, y_image, x_source, y_source, kwargs_lens, k=None):
potential = self.potential(x_image, y_image, kwargs_lens, k=k)
geometry = ((x_image - x_source) ** 2 + (y_image - y_source) ** 2) / 2.0
return geometry - potential
|
fermat_potential
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x_image, y_image, x_source, y_source, kwargs_lens, k=None):\n potential = self.potential(x_image, y_image, kwargs_lens, k=k)\n geometry = ((x_image - x_source) ** 2 + (y_image - y_source) ** 2) / 2.0\n return geometry - potential\n",
"role": "user"
},
{
"content": "fermat_potential",
"role": "assistant"
}
] |
def x(self, x, y, kwargs, k=None):
x = np.array(x, dtype=float)
y = np.array(y, dtype=float)
bool_list = self._bool_list(k)
x_, y_, kwargs_copy = self._update_foreground(x, y, kwargs)
potential = np.zeros_like(x)
for i, func in enumerate(self.func_list):
if bool_list[i] is True:
if self._model_list[i] == 'SHEAR':
potential += func.function(x, y, **kwargs[i])
else:
potential += func.function(x_, y_, **kwargs_copy[i])
return potential
|
potential
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kwargs, k=None):\n x = np.array(x, dtype=float)\n y = np.array(y, dtype=float)\n bool_list = self._bool_list(k)\n x_, y_, kwargs_copy = self._update_foreground(x, y, kwargs)\n potential = np.zeros_like(x)\n for i, func in enumerate(self.func_list):\n if bool_list[i] is True:\n if self._model_list[i] == 'SHEAR':\n potential += func.function(x, y, **kwargs[i])\n else:\n potential += func.function(x_, y_, **kwargs_copy[i])\n return potential\n",
"role": "user"
},
{
"content": "potential",
"role": "assistant"
}
] |
def x(self, x, y, kwargs, k=None):
x = np.array(x, dtype=float)
y = np.array(y, dtype=float)
bool_list = self._bool_list(k)
x_, y_, kwargs_copy = self._update_foreground(x, y, kwargs)
f_x, f_y = np.zeros_like(x_), np.zeros_like(x_)
for i, func in enumerate(self.func_list):
if bool_list[i] is True:
if self._model_list[i] == 'SHEAR':
f_x_i, f_y_i = func.derivatives(x, y, **kwargs[i])
else:
f_x_i, f_y_i = func.derivatives(x_, y_, **kwargs_copy[i])
f_x += f_x_i
f_y += f_y_i
return f_x, f_y
|
alpha
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kwargs, k=None):\n x = np.array(x, dtype=float)\n y = np.array(y, dtype=float)\n bool_list = self._bool_list(k)\n x_, y_, kwargs_copy = self._update_foreground(x, y, kwargs)\n f_x, f_y = np.zeros_like(x_), np.zeros_like(x_)\n for i, func in enumerate(self.func_list):\n if bool_list[i] is True:\n if self._model_list[i] == 'SHEAR':\n f_x_i, f_y_i = func.derivatives(x, y, **kwargs[i])\n else:\n f_x_i, f_y_i = func.derivatives(x_, y_, **kwargs_copy[i])\n f_x += f_x_i\n f_y += f_y_i\n return f_x, f_y\n",
"role": "user"
},
{
"content": "alpha",
"role": "assistant"
}
] |
def x(self, x, y, kwargs, k=None):
x = np.array(x, dtype=float)
y = np.array(y, dtype=float)
if self._foreground_shear:
f_xx, f_xy, f_yx, f_yy = self.hessian_differential(x, y, kwargs, k=k)
else:
bool_list = self._bool_list(k)
x_ = x
y_ = y
f_xx, f_yy, f_xy = np.zeros_like(x_), np.zeros_like(x_), np.zeros_like(
x_)
for i, func in enumerate(self.func_list):
if bool_list[i] is True:
f_xx_i, f_yy_i, f_xy_i = func.hessian(x_, y_, **kwargs[i])
f_xx += f_xx_i
f_yy += f_yy_i
f_xy += f_xy_i
f_yx = f_xy
return f_xx, f_xy, f_yx, f_yy
|
hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, kwargs, k=None):\n x = np.array(x, dtype=float)\n y = np.array(y, dtype=float)\n if self._foreground_shear:\n f_xx, f_xy, f_yx, f_yy = self.hessian_differential(x, y, kwargs, k=k)\n else:\n bool_list = self._bool_list(k)\n x_ = x\n y_ = y\n f_xx, f_yy, f_xy = np.zeros_like(x_), np.zeros_like(x_), np.zeros_like(\n x_)\n for i, func in enumerate(self.func_list):\n if bool_list[i] is True:\n f_xx_i, f_yy_i, f_xy_i = func.hessian(x_, y_, **kwargs[i])\n f_xx += f_xx_i\n f_yy += f_yy_i\n f_xy += f_xy_i\n f_yx = f_xy\n return f_xx, f_xy, f_yx, f_yy\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(self, r, kwargs, bool_list=None):
bool_list = self._bool_list(bool_list)
mass_3d = 0
for i, func in enumerate(self.func_list):
if bool_list[i] is True:
kwargs_i = {k: v for k, v in kwargs[i].items() if not k in [
'center_x', 'center_y']}
mass_3d_i = func.mass_3d_lens(r, **kwargs_i)
mass_3d += mass_3d_i
return mass_3d
|
mass_3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, kwargs, bool_list=None):\n bool_list = self._bool_list(bool_list)\n mass_3d = 0\n for i, func in enumerate(self.func_list):\n if bool_list[i] is True:\n kwargs_i = {k: v for k, v in kwargs[i].items() if not k in [\n 'center_x', 'center_y']}\n mass_3d_i = func.mass_3d_lens(r, **kwargs_i)\n mass_3d += mass_3d_i\n return mass_3d\n",
"role": "user"
},
{
"content": "mass_3d",
"role": "assistant"
}
] |
def x(self, r, kwargs, bool_list=None):
bool_list = self._bool_list(bool_list)
mass_2d = 0
for i, func in enumerate(self.func_list):
if bool_list[i] is True:
kwargs_i = {k: v for k, v in kwargs[i].items() if not k in [
'center_x', 'center_y']}
mass_2d_i = func.mass_2d_lens(r, **kwargs_i)
mass_2d += mass_2d_i
return mass_2d
|
mass_2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r, kwargs, bool_list=None):\n bool_list = self._bool_list(bool_list)\n mass_2d = 0\n for i, func in enumerate(self.func_list):\n if bool_list[i] is True:\n kwargs_i = {k: v for k, v in kwargs[i].items() if not k in [\n 'center_x', 'center_y']}\n mass_2d_i = func.mass_2d_lens(r, **kwargs_i)\n mass_2d += mass_2d_i\n return mass_2d\n",
"role": "user"
},
{
"content": "mass_2d",
"role": "assistant"
}
] |
def x(self, k=None):
n = len(self.func_list)
if k is None:
bool_list = [True] * n
elif isinstance(k, (int, np.integer)):
bool_list = [False] * n
bool_list[k] = True
else:
bool_list = [False] * n
for i, k_i in enumerate(k):
if k_i is not False:
if k_i is True:
bool_list[i] = True
elif k_i < n:
bool_list[k_i] = True
else:
raise ValueError(
'k as set by %s is not convertable in a bool string!' %
k)
if self._foreground_shear is True:
bool_list[self._foreground_shear_idex] = False
return bool_list
|
bool_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, k=None):\n n = len(self.func_list)\n if k is None:\n bool_list = [True] * n\n elif isinstance(k, (int, np.integer)):\n bool_list = [False] * n\n bool_list[k] = True\n else:\n bool_list = [False] * n\n for i, k_i in enumerate(k):\n if k_i is not False:\n if k_i is True:\n bool_list[i] = True\n elif k_i < n:\n bool_list[k_i] = True\n else:\n raise ValueError(\n 'k as set by %s is not convertable in a bool string!' %\n k)\n if self._foreground_shear is True:\n bool_list[self._foreground_shear_idex] = False\n return bool_list\n",
"role": "user"
},
{
"content": "bool_list",
"role": "assistant"
}
] |
def x(symbol):
blocks = ['namespace {0} {{'.format(x) for x in symbol.module.name_parts]
return ' '.join(blocks)
|
open_ns
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(symbol):\n blocks = ['namespace {0} {{'.format(x) for x in symbol.module.name_parts]\n return ' '.join(blocks)\n",
"role": "user"
},
{
"content": "open_ns",
"role": "assistant"
}
] |
def x(symbol):
closing = ' '.join(['}' for x in symbol.module.name_parts])
name = '::'.join(symbol.module.name_parts)
return '{0} // namespace {1}'.format(closing, name)
|
close_ns
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(symbol):\n closing = ' '.join(['}' for x in symbol.module.name_parts])\n name = '::'.join(symbol.module.name_parts)\n return '{0} // namespace {1}'.format(closing, name)\n",
"role": "user"
},
{
"content": "close_ns",
"role": "assistant"
}
] |
def x(symbol):
if symbol.type and symbol.type.is_primitive:
return ''
return '{0}::'.format('::'.join(symbol.module.name_parts))
|
ns
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(symbol):\n if symbol.type and symbol.type.is_primitive:\n return ''\n return '{0}::'.format('::'.join(symbol.module.name_parts))\n",
"role": "user"
},
{
"content": "ns",
"role": "assistant"
}
] |
def x(config, src, dst, features, reload, force):
config = Path(config)
if reload:
argv = sys.argv.copy()
argv.remove('--reload')
monitor(config.dirname(), src, dst, argv)
else:
run(config, src, dst, force)
|
app
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config, src, dst, features, reload, force):\n config = Path(config)\n if reload:\n argv = sys.argv.copy()\n argv.remove('--reload')\n monitor(config.dirname(), src, dst, argv)\n else:\n run(config, src, dst, force)\n",
"role": "user"
},
{
"content": "app",
"role": "assistant"
}
] |
def x(script, input, output):
script = Path(script).expand().abspath()
output = Path(output).expand().abspath()
input = input if isinstance(input, (list, tuple)) else [input]
output.makedirs_p()
_script_reload(script, input, output)
|
reload
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(script, input, output):\n script = Path(script).expand().abspath()\n output = Path(output).expand().abspath()\n input = input if isinstance(input, (list, tuple)) else [input]\n output.makedirs_p()\n _script_reload(script, input, output)\n",
"role": "user"
},
{
"content": "reload",
"role": "assistant"
}
] |
def x(script, input, output):
input = [Path(entry).expand().abspath() for entry in input]
output = Path(output).expand().abspath()
cmd = 'python3 {0} {1} {2}'.format(script, ' '.join(input), output)
event_handler = RunScriptChangeHandler(cmd)
event_handler.run()
observer = Observer()
path = script.dirname().expand().abspath()
click.secho('watch: {0}'.format(path), fg='blue')
observer.schedule(event_handler, path, recursive=True)
for entry in input:
entry = entry.dirname().expand().abspath()
click.secho('watch: {0}'.format(entry), fg='blue')
observer.schedule(event_handler, entry, recursive=True)
path = Path(__file__).parent / 'qface'
click.secho('watch: {0}'.format(path), fg='blue')
observer.schedule(event_handler, path, recursive=True)
observer.start()
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
observer.stop()
observer.join()
|
script_reload
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(script, input, output):\n input = [Path(entry).expand().abspath() for entry in input]\n output = Path(output).expand().abspath()\n cmd = 'python3 {0} {1} {2}'.format(script, ' '.join(input), output)\n event_handler = RunScriptChangeHandler(cmd)\n event_handler.run()\n observer = Observer()\n path = script.dirname().expand().abspath()\n click.secho('watch: {0}'.format(path), fg='blue')\n observer.schedule(event_handler, path, recursive=True)\n for entry in input:\n entry = entry.dirname().expand().abspath()\n click.secho('watch: {0}'.format(entry), fg='blue')\n observer.schedule(event_handler, entry, recursive=True)\n path = Path(__file__).parent / 'qface'\n click.secho('watch: {0}'.format(path), fg='blue')\n observer.schedule(event_handler, path, recursive=True)\n observer.start()\n try:\n while True:\n time.sleep(1)\n except KeyboardInterrupt:\n observer.stop()\n observer.join()\n",
"role": "user"
},
{
"content": "script_reload",
"role": "assistant"
}
] |
def x(editable):
script_dir = str(Path(__file__).parent.abspath())
click.secho(script_dir, fg='blue')
if editable:
sh('pip3 install --editable {0} --upgrade'.format(script_dir))
else:
sh('pip3 install {0} --upgrade'.format(script_dir))
|
install
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(editable):\n script_dir = str(Path(__file__).parent.abspath())\n click.secho(script_dir, fg='blue')\n if editable:\n sh('pip3 install --editable {0} --upgrade'.format(script_dir))\n else:\n sh('pip3 install {0} --upgrade'.format(script_dir))\n",
"role": "user"
},
{
"content": "install",
"role": "assistant"
}
] |
def x(a, b):
for key in b:
if isinstance(a.get(key), dict) and isinstance(b.get(key), dict):
merge(a[key], b[key])
else:
a[key] = b[key]
return a
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b):\n for key in b:\n if isinstance(a.get(key), dict) and isinstance(b.get(key), dict):\n merge(a[key], b[key])\n else:\n a[key] = b[key]\n return a\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(self, name):
source = name
if name and name[0] is '/':
source = name[1:]
elif self.source is not None:
source = '/'.join((self.source, name))
return self.env.get_template(source)
|
get_template
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name):\n source = name\n if name and name[0] is '/':\n source = name[1:]\n elif self.source is not None:\n source = '/'.join((self.source, name))\n return self.env.get_template(source)\n",
"role": "user"
},
{
"content": "get_template",
"role": "assistant"
}
] |
def x(self, name, context):
if Generator.strict:
self.env.undefined = TestableUndefined
else:
self.env.undefined = Undefined
template = self.get_template(name)
return template.render(context)
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, context):\n if Generator.strict:\n self.env.undefined = TestableUndefined\n else:\n self.env.undefined = Undefined\n template = self.get_template(name)\n return template.render(context)\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x(self, template, context={}):
context.update(self.context)
"""Return the rendered text of a template instance"""
return self.env.from_string(template).render(context)
|
apply
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, template, context={}):\n context.update(self.context)\n \"\"\"Return the rendered text of a template instance\"\"\"\n return self.env.from_string(template).render(context)\n",
"role": "user"
},
{
"content": "apply",
"role": "assistant"
}
] |
def x(self, file_path, template, context={}, preserve=False, force=False):
if not file_path or not template:
click.secho('source or target missing for document')
return
if not context:
context = self.context
error = False
try:
self._write(file_path, template, context, preserve, force)
except TemplateSyntaxError as exc:
message = '{0}:{1}: error: {2}'.format(exc.filename, exc.lineno,
exc.message)
click.secho(message, fg='red', err=True)
error = True
except TemplateNotFound as exc:
message = '{0}: error: Template not found'.format(exc.name)
click.secho(message, fg='red', err=True)
error = True
except TemplateError as exc:
error = True
if error and Generator.strict:
sys.exit(1)
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, file_path, template, context={}, preserve=False, force=False):\n if not file_path or not template:\n click.secho('source or target missing for document')\n return\n if not context:\n context = self.context\n error = False\n try:\n self._write(file_path, template, context, preserve, force)\n except TemplateSyntaxError as exc:\n message = '{0}:{1}: error: {2}'.format(exc.filename, exc.lineno,\n exc.message)\n click.secho(message, fg='red', err=True)\n error = True\n except TemplateNotFound as exc:\n message = '{0}: error: Template not found'.format(exc.name)\n click.secho(message, fg='red', err=True)\n error = True\n except TemplateError as exc:\n error = True\n if error and Generator.strict:\n sys.exit(1)\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self, path: Path, system: System):
self.context.update({'system': system})
document = FileSystem.load_yaml(path, required=True)
for module, rules in document.items():
click.secho('process: {0}'.format(module), fg='green')
self._process_rules(rules, system)
|
process_rules
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path: Path, system: System):\n self.context.update({'system': system})\n document = FileSystem.load_yaml(path, required=True)\n for module, rules in document.items():\n click.secho('process: {0}'.format(module), fg='green')\n self._process_rules(rules, system)\n",
"role": "user"
},
{
"content": "process_rules",
"role": "assistant"
}
] |
def x(self, rules: dict, system: System):
self._source = None
if not self._shall_proceed(rules):
return
self.context.update(rules.get('context', {}))
self.path = rules.get('path', '')
self.source = rules.get('source', None)
self._process_rule(rules.get('system', None), {'system': system})
for module in system.modules:
self._process_rule(rules.get('module', None), {'module': module})
for interface in module.interfaces:
self._process_rule(rules.get('interface', None), {'interface':
interface})
for struct in module.structs:
self._process_rule(rules.get('struct', None), {'struct': struct})
for enum in module.enums:
self._process_rule(rules.get('enum', None), {'enum': enum})
|
process_rules
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rules: dict, system: System):\n self._source = None\n if not self._shall_proceed(rules):\n return\n self.context.update(rules.get('context', {}))\n self.path = rules.get('path', '')\n self.source = rules.get('source', None)\n self._process_rule(rules.get('system', None), {'system': system})\n for module in system.modules:\n self._process_rule(rules.get('module', None), {'module': module})\n for interface in module.interfaces:\n self._process_rule(rules.get('interface', None), {'interface':\n interface})\n for struct in module.structs:\n self._process_rule(rules.get('struct', None), {'struct': struct})\n for enum in module.enums:\n self._process_rule(rules.get('enum', None), {'enum': enum})\n",
"role": "user"
},
{
"content": "process_rules",
"role": "assistant"
}
] |
def x(self, rule: dict, context: dict):
if not rule or not self._shall_proceed(rule):
return
self.context.update(context)
self.context.update(rule.get('context', {}))
self.path = rule.get('path', None)
self.source = rule.get('source', None)
for entry in rule.get('documents', []):
target, source = self._resolve_rule_document(entry)
self.write(target, source)
for entry in rule.get('preserve', []):
target, source = self._resolve_rule_document(entry)
self.write(target, source, preserve=True)
|
process_rule
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rule: dict, context: dict):\n if not rule or not self._shall_proceed(rule):\n return\n self.context.update(context)\n self.context.update(rule.get('context', {}))\n self.path = rule.get('path', None)\n self.source = rule.get('source', None)\n for entry in rule.get('documents', []):\n target, source = self._resolve_rule_document(entry)\n self.write(target, source)\n for entry in rule.get('preserve', []):\n target, source = self._resolve_rule_document(entry)\n self.write(target, source, preserve=True)\n",
"role": "user"
},
{
"content": "process_rule",
"role": "assistant"
}
] |
def x(document: Path, system: System=None, profile=EProfile.FULL):
logger.debug('parse document: {0}'.format(document))
stream = FileStream(str(document), encoding='utf-8')
system = FileSystem._parse_stream(stream, system, document, profile)
FileSystem.merge_annotations(system, document.stripext() + '.yaml')
return system
|
parse_document
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(document: Path, system: System=None, profile=EProfile.FULL):\n logger.debug('parse document: {0}'.format(document))\n stream = FileStream(str(document), encoding='utf-8')\n system = FileSystem._parse_stream(stream, system, document, profile)\n FileSystem.merge_annotations(system, document.stripext() + '.yaml')\n return system\n",
"role": "user"
},
{
"content": "parse_document",
"role": "assistant"
}
] |
def x(system, document):
if not Path(document).exists():
return
meta = FileSystem.load_yaml(document)
click.secho('merge: {0}'.format(document.name), fg='blue')
for identifier, data in meta.items():
symbol = system.lookup(identifier)
if symbol:
merge(symbol.tags, data)
|
merge_annotations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(system, document):\n if not Path(document).exists():\n return\n meta = FileSystem.load_yaml(document)\n click.secho('merge: {0}'.format(document.name), fg='blue')\n for identifier, data in meta.items():\n symbol = system.lookup(identifier)\n if symbol:\n merge(symbol.tags, data)\n",
"role": "user"
},
{
"content": "merge_annotations",
"role": "assistant"
}
] |
def x(input, identifier: str=None, use_cache=False, clear_cache=True,
pattern='*.qface', profile=EProfile.FULL):
inputs = input if isinstance(input, (list, tuple)) else [input]
logger.debug('parse input={0}'.format(inputs))
identifier = 'system' if not identifier else identifier
system = System()
cache = None
if use_cache:
cache = shelve.open('qface.cache')
if identifier in cache and clear_cache:
del cache[identifier]
if identifier in cache:
system = cache[identifier]
for input in inputs:
path = Path.getcwd() / str(input)
if path.isfile():
FileSystem.parse_document(path, system)
else:
for document in path.walkfiles(pattern):
FileSystem.parse_document(document, system)
if use_cache:
cache[identifier] = system
return system
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input, identifier: str=None, use_cache=False, clear_cache=True,\n pattern='*.qface', profile=EProfile.FULL):\n inputs = input if isinstance(input, (list, tuple)) else [input]\n logger.debug('parse input={0}'.format(inputs))\n identifier = 'system' if not identifier else identifier\n system = System()\n cache = None\n if use_cache:\n cache = shelve.open('qface.cache')\n if identifier in cache and clear_cache:\n del cache[identifier]\n if identifier in cache:\n system = cache[identifier]\n for input in inputs:\n path = Path.getcwd() / str(input)\n if path.isfile():\n FileSystem.parse_document(path, system)\n else:\n for document in path.walkfiles(pattern):\n FileSystem.parse_document(document, system)\n if use_cache:\n cache[identifier] = system\n return system\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(args, watch):
watch = watch if isinstance(watch, (list, tuple)) else [watch]
watch = [Path(entry).expand().abspath() for entry in watch]
event_handler = RunScriptChangeHandler(args)
observer = Observer()
for entry in watch:
if entry.isfile():
entry = entry.parent
click.secho('watch recursive: {0}'.format(entry), fg='blue')
observer.schedule(event_handler, entry, recursive=True)
event_handler.run()
observer.start()
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
observer.stop()
observer.join()
|
monitor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args, watch):\n watch = watch if isinstance(watch, (list, tuple)) else [watch]\n watch = [Path(entry).expand().abspath() for entry in watch]\n event_handler = RunScriptChangeHandler(args)\n observer = Observer()\n for entry in watch:\n if entry.isfile():\n entry = entry.parent\n click.secho('watch recursive: {0}'.format(entry), fg='blue')\n observer.schedule(event_handler, entry, recursive=True)\n event_handler.run()\n observer.start()\n try:\n while True:\n time.sleep(1)\n except KeyboardInterrupt:\n observer.stop()\n observer.join()\n",
"role": "user"
},
{
"content": "monitor",
"role": "assistant"
}
] |
def x(self, name: str):
if name in self._moduleMap:
return self._moduleMap[name]
module_name, type_name, fragment_name = self.split_typename(name)
if not module_name and type_name:
click.secho('not able to lookup symbol: {0}'.format(name), fg='red')
return None
module = self._moduleMap[module_name]
return module.lookup(type_name, fragment_name)
|
lookup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name: str):\n if name in self._moduleMap:\n return self._moduleMap[name]\n module_name, type_name, fragment_name = self.split_typename(name)\n if not module_name and type_name:\n click.secho('not able to lookup symbol: {0}'.format(name), fg='red')\n return None\n module = self._moduleMap[module_name]\n return module.lookup(type_name, fragment_name)\n",
"role": "user"
},
{
"content": "lookup",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.