source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(**kwargs):
user = kwargs.get('user', '')
magfile = kwargs.get('magfile')
try:
infile = open(magfile, 'r')
except Exception as ex:
print(('bad file path: ', magfile))
return False, 'bad file path'
SpecRecs, SampRecs, SiteRecs, LocRecs, MeasRecs = [], [], [], [], []
for line in infile.readlines():
MeasRec, SpecRec, SampRec, SiteRec, LocRec = {}, {}, {}, {}, {}
if specimen != '' and specimen not in [(x['specimen'] if 'specimen' in
list(x.keys()) else '') for x in SpecRecs]:
SpecRec['analysts'] = user
SpecRecs.append(SpecRec)
if sample != '' and sample not in [(x['sample'] if 'sample' in list
(x.keys()) else '') for x in SampRecs]:
SampRec['analysts'] = user
SampRecs.append(SampRec)
if site != '' and site not in [(x['site'] if 'site' in list(x.keys(
)) else '') for x in SiteRecs]:
SiteRec['analysts'] = user
SiteRecs.append(SiteRec)
if location != '' and location not in [(x['location'] if 'location' in
list(x.keys()) else '') for x in LocRecs]:
LocRec['analysts'] = user
LocRecs.append(LocRec)
MeasRec['analysts'] = user
MeasRecs.append(MeasRec)
infile.close()
con = cb.Contribution(output_dir_path, read_tables=[])
con.add_magic_table_from_data(dtype='specimens', data=SpecRecs)
con.add_magic_table_from_data(dtype='samples', data=SampRecs)
con.add_magic_table_from_data(dtype='sites', data=SiteRecs)
con.add_magic_table_from_data(dtype='locations', data=LocRecs)
MeasOuts = pmag.measurements_methods3(MeasRecs, noave)
con.add_magic_table_from_data(dtype='measurements', data=MeasOuts)
con.write_table_to_file('specimens', custom_name=spec_file)
con.write_table_to_file('samples', custom_name=samp_file)
con.write_table_to_file('sites', custom_name=site_file)
con.write_table_to_file('locations', custom_name=loc_file)
meas_file = con.write_table_to_file('measurements', custom_name=meas_file)
return True, meas_file
|
convert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(**kwargs):\n user = kwargs.get('user', '')\n magfile = kwargs.get('magfile')\n try:\n infile = open(magfile, 'r')\n except Exception as ex:\n print(('bad file path: ', magfile))\n return False, 'bad file path'\n SpecRecs, SampRecs, SiteRecs, LocRecs, MeasRecs = [], [], [], [], []\n for line in infile.readlines():\n MeasRec, SpecRec, SampRec, SiteRec, LocRec = {}, {}, {}, {}, {}\n if specimen != '' and specimen not in [(x['specimen'] if 'specimen' in\n list(x.keys()) else '') for x in SpecRecs]:\n SpecRec['analysts'] = user\n SpecRecs.append(SpecRec)\n if sample != '' and sample not in [(x['sample'] if 'sample' in list\n (x.keys()) else '') for x in SampRecs]:\n SampRec['analysts'] = user\n SampRecs.append(SampRec)\n if site != '' and site not in [(x['site'] if 'site' in list(x.keys(\n )) else '') for x in SiteRecs]:\n SiteRec['analysts'] = user\n SiteRecs.append(SiteRec)\n if location != '' and location not in [(x['location'] if 'location' in\n list(x.keys()) else '') for x in LocRecs]:\n LocRec['analysts'] = user\n LocRecs.append(LocRec)\n MeasRec['analysts'] = user\n MeasRecs.append(MeasRec)\n infile.close()\n con = cb.Contribution(output_dir_path, read_tables=[])\n con.add_magic_table_from_data(dtype='specimens', data=SpecRecs)\n con.add_magic_table_from_data(dtype='samples', data=SampRecs)\n con.add_magic_table_from_data(dtype='sites', data=SiteRecs)\n con.add_magic_table_from_data(dtype='locations', data=LocRecs)\n MeasOuts = pmag.measurements_methods3(MeasRecs, noave)\n con.add_magic_table_from_data(dtype='measurements', data=MeasOuts)\n con.write_table_to_file('specimens', custom_name=spec_file)\n con.write_table_to_file('samples', custom_name=samp_file)\n con.write_table_to_file('sites', custom_name=site_file)\n con.write_table_to_file('locations', custom_name=loc_file)\n meas_file = con.write_table_to_file('measurements', custom_name=meas_file)\n return True, meas_file\n",
"role": "user"
},
{
"content": "convert",
"role": "assistant"
}
] |
def x():
inp, out = '', ''
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
f = open(file, 'r')
inp = f.readlines()
if '-F' in sys.argv:
ind = sys.argv.index('-F')
o = sys.argv[ind + 1]
out = open(o, 'w')
if '-i' in sys.argv:
cont = 1
while cont == 1:
try:
b = 1e-06 * float(input('B (in microtesla): <cntl-D to quit '))
lat = float(input('Latitude: '))
except:
print('\nGood bye\n')
sys.exit()
vdm = pmag.b_vdm(b, lat)
print('%10.3e ' % vdm)
if inp == '':
inp = sys.stdin.readlines()
for line in inp:
vdm = spitout(line)
if out == '':
print('%10.3e' % vdm)
else:
out.write('%10.3e \n' % vdm)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n inp, out = '', ''\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n inp = f.readlines()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n o = sys.argv[ind + 1]\n out = open(o, 'w')\n if '-i' in sys.argv:\n cont = 1\n while cont == 1:\n try:\n b = 1e-06 * float(input('B (in microtesla): <cntl-D to quit '))\n lat = float(input('Latitude: '))\n except:\n print('\\nGood bye\\n')\n sys.exit()\n vdm = pmag.b_vdm(b, lat)\n print('%10.3e ' % vdm)\n if inp == '':\n inp = sys.stdin.readlines()\n for line in inp:\n vdm = spitout(line)\n if out == '':\n print('%10.3e' % vdm)\n else:\n out.write('%10.3e \\n' % vdm)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(data_path):
data_files = {}
def x(File, prefix):
file_path = path.join(prefix, 'data_files', File)
return not File.startswith('!') and not File.endswith('~'
) and not File.endswith('#') and not File.endswith('.pyc'
) and not File.startswith('.') and path.exists(path.join(prefix,
File))
for dir_path, dirs, files in os.walk(data_path):
data_files[dir_path] = [f for f in files if cond(f, dir_path)]
if not dirs:
continue
else:
for Dir in dirs:
do_walk(os.path.join(dir_path, Dir))
return data_files
|
do_walk
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_path):\n data_files = {}\n\n def x(File, prefix):\n file_path = path.join(prefix, 'data_files', File)\n return not File.startswith('!') and not File.endswith('~'\n ) and not File.endswith('#') and not File.endswith('.pyc'\n ) and not File.startswith('.') and path.exists(path.join(prefix,\n File))\n for dir_path, dirs, files in os.walk(data_path):\n data_files[dir_path] = [f for f in files if cond(f, dir_path)]\n if not dirs:\n continue\n else:\n for Dir in dirs:\n do_walk(os.path.join(dir_path, Dir))\n return data_files\n",
"role": "user"
},
{
"content": "do_walk",
"role": "assistant"
}
] |
def x():
dir_path = './'
change = 'l'
if '-WD' in sys.argv:
ind = sys.argv.index('-WD')
dir_path = sys.argv[ind + 1]
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
magic_file = dir_path + '/' + sys.argv[ind + 1]
else:
print(main.__doc__)
sys.exit()
if '-F' in sys.argv:
ind = sys.argv.index('-F')
out_file = dir_path + '/' + sys.argv[ind + 1]
else:
out_file = magic_file
if '-keys' in sys.argv:
ind = sys.argv.index('-keys')
grab_keys = sys.argv[ind + 1].split(':')
else:
print(main.__doc__)
sys.exit()
if '-U' in sys.argv:
change = 'U'
Data, file_type = pmag.magic_read(magic_file)
if len(Data) > 0:
for grab_key in grab_keys:
for rec in Data:
if change == 'l':
rec[grab_key] = rec[grab_key].lower()
else:
rec[grab_key] = rec[grab_key].upper()
else:
print('bad file name')
pmag.magic_write(out_file, Data, file_type)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n dir_path = './'\n change = 'l'\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n magic_file = dir_path + '/' + sys.argv[ind + 1]\n else:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n out_file = dir_path + '/' + sys.argv[ind + 1]\n else:\n out_file = magic_file\n if '-keys' in sys.argv:\n ind = sys.argv.index('-keys')\n grab_keys = sys.argv[ind + 1].split(':')\n else:\n print(main.__doc__)\n sys.exit()\n if '-U' in sys.argv:\n change = 'U'\n Data, file_type = pmag.magic_read(magic_file)\n if len(Data) > 0:\n for grab_key in grab_keys:\n for rec in Data:\n if change == 'l':\n rec[grab_key] = rec[grab_key].lower()\n else:\n rec[grab_key] = rec[grab_key].upper()\n else:\n print('bad file name')\n pmag.magic_write(out_file, Data, file_type)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
cmap = 'RdYlBu'
date = 2016.0
if not ccrs:
print('-W- You must intstall the cartopy module to run plot_magmap.py')
sys.exit()
dir_path = '.'
lincr = 1
if '-WD' in sys.argv:
ind = sys.argv.index('-WD')
dir_path = sys.argv[ind + 1]
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-fmt' in sys.argv:
ind = sys.argv.index('-fmt')
fmt = sys.argv[ind + 1]
if fmt == 'jpg':
print('jpg not a supported option')
print(main.__doc__)
sys.exit()
else:
fmt = 'png'
if '-cm' in sys.argv:
ind = sys.argv.index('-cm')
cmap = sys.argv[ind + 1]
if '-el' in sys.argv:
ind = sys.argv.index('-el')
el = sys.argv[ind + 1]
else:
el = 'B'
if '-alt' in sys.argv:
ind = sys.argv.index('-alt')
alt = sys.argv[ind + 1]
else:
alt = 0
if '-lon0' in sys.argv:
ind = sys.argv.index('-lon0')
lon_0 = float(sys.argv[ind + 1])
else:
lon_0 = 0
if '-mod' in sys.argv:
ind = sys.argv.index('-mod')
mod = sys.argv[ind + 1]
ghfile = ''
elif '-f' in sys.argv:
ind = sys.argv.index('-f')
ghfile = sys.argv[ind + 1]
mod = 'custom'
date = ''
else:
mod, ghfile = 'cals10k', ''
if '-age' in sys.argv:
ind = sys.argv.index('-age')
date = float(sys.argv[ind + 1])
if '-alt' in sys.argv:
ind = sys.argv.index('-alt')
alt = float(sys.argv[ind + 1])
else:
alt = 0
Ds, Is, Bs, Brs, lons, lats = pmag.do_mag_map(date, mod=mod, lon_0=
lon_0, alt=alt, file=ghfile)
ax = plt.axes(projection=ccrs.Mollweide(central_longitude=lon_0))
ax.coastlines()
xx, yy = meshgrid(lons, lats)
if mod == 'custom':
str_date = 'Custom'
else:
str_date = str(date)
if el == 'B':
levmax = Bs.max() + lincr
levmin = round(Bs.min() - lincr)
levels = np.arange(levmin, levmax, lincr)
plt.contourf(xx, yy, Bs, levels=levels, cmap=cmap, transform=ccrs.
PlateCarree(central_longitude=lon_0))
plt.title('Field strength ($\\mu$T): ' + str_date)
if el == 'Br':
levmax = Brs.max() + lincr
levmin = round(Brs.min() - lincr)
plt.contourf(xx, yy, Brs, levels=np.arange(levmin, levmax, lincr),
cmap=cmap, transform=ccrs.PlateCarree(central_longitude=lon_0))
plt.title('Radial field strength ($\\mu$T): ' + str_date)
if el == 'I':
levmax = Is.max() + lincr
levmin = round(Is.min() - lincr)
plt.contourf(xx, yy, Is, levels=np.arange(levmin, levmax, lincr),
cmap=cmap, transform=ccrs.PlateCarree(central_longitude=lon_0))
plt.contour(xx, yy, Is, levels=np.arange(-80, 90, 10), colors=
'black', transform=ccrs.PlateCarree(central_longitude=lon_0))
plt.title('Field inclination: ' + str_date)
if el == 'D':
plt.contourf(xx, yy, Ds, levels=np.arange(-180, 180, 10), cmap=cmap,
transform=ccrs.PlateCarree(central_longitude=lon_0))
plt.contour(xx, yy, Ds, levels=np.arange(-180, 180, 10), colors='black'
)
plt.title('Field declination: ' + str_date)
cbar = plt.colorbar(orientation='horizontal')
figname = 'geomagnetic_field_' + str_date + '.' + fmt
plt.savefig(figname)
print('Figure saved as: ', figname)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n cmap = 'RdYlBu'\n date = 2016.0\n if not ccrs:\n print('-W- You must intstall the cartopy module to run plot_magmap.py')\n sys.exit()\n dir_path = '.'\n lincr = 1\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if fmt == 'jpg':\n print('jpg not a supported option')\n print(main.__doc__)\n sys.exit()\n else:\n fmt = 'png'\n if '-cm' in sys.argv:\n ind = sys.argv.index('-cm')\n cmap = sys.argv[ind + 1]\n if '-el' in sys.argv:\n ind = sys.argv.index('-el')\n el = sys.argv[ind + 1]\n else:\n el = 'B'\n if '-alt' in sys.argv:\n ind = sys.argv.index('-alt')\n alt = sys.argv[ind + 1]\n else:\n alt = 0\n if '-lon0' in sys.argv:\n ind = sys.argv.index('-lon0')\n lon_0 = float(sys.argv[ind + 1])\n else:\n lon_0 = 0\n if '-mod' in sys.argv:\n ind = sys.argv.index('-mod')\n mod = sys.argv[ind + 1]\n ghfile = ''\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n ghfile = sys.argv[ind + 1]\n mod = 'custom'\n date = ''\n else:\n mod, ghfile = 'cals10k', ''\n if '-age' in sys.argv:\n ind = sys.argv.index('-age')\n date = float(sys.argv[ind + 1])\n if '-alt' in sys.argv:\n ind = sys.argv.index('-alt')\n alt = float(sys.argv[ind + 1])\n else:\n alt = 0\n Ds, Is, Bs, Brs, lons, lats = pmag.do_mag_map(date, mod=mod, lon_0=\n lon_0, alt=alt, file=ghfile)\n ax = plt.axes(projection=ccrs.Mollweide(central_longitude=lon_0))\n ax.coastlines()\n xx, yy = meshgrid(lons, lats)\n if mod == 'custom':\n str_date = 'Custom'\n else:\n str_date = str(date)\n if el == 'B':\n levmax = Bs.max() + lincr\n levmin = round(Bs.min() - lincr)\n levels = np.arange(levmin, levmax, lincr)\n plt.contourf(xx, yy, Bs, levels=levels, cmap=cmap, transform=ccrs.\n PlateCarree(central_longitude=lon_0))\n plt.title('Field strength ($\\\\mu$T): ' + str_date)\n if el == 'Br':\n levmax = Brs.max() + lincr\n levmin = round(Brs.min() - lincr)\n plt.contourf(xx, yy, Brs, levels=np.arange(levmin, levmax, lincr),\n cmap=cmap, transform=ccrs.PlateCarree(central_longitude=lon_0))\n plt.title('Radial field strength ($\\\\mu$T): ' + str_date)\n if el == 'I':\n levmax = Is.max() + lincr\n levmin = round(Is.min() - lincr)\n plt.contourf(xx, yy, Is, levels=np.arange(levmin, levmax, lincr),\n cmap=cmap, transform=ccrs.PlateCarree(central_longitude=lon_0))\n plt.contour(xx, yy, Is, levels=np.arange(-80, 90, 10), colors=\n 'black', transform=ccrs.PlateCarree(central_longitude=lon_0))\n plt.title('Field inclination: ' + str_date)\n if el == 'D':\n plt.contourf(xx, yy, Ds, levels=np.arange(-180, 180, 10), cmap=cmap,\n transform=ccrs.PlateCarree(central_longitude=lon_0))\n plt.contour(xx, yy, Ds, levels=np.arange(-180, 180, 10), colors='black'\n )\n plt.title('Field declination: ' + str_date)\n cbar = plt.colorbar(orientation='horizontal')\n figname = 'geomagnetic_field_' + str_date + '.' + fmt\n plt.savefig(figname)\n print('Figure saved as: ', figname)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-WD' in sys.argv:
ind = sys.argv.index('-WD')
dir_path = sys.argv[ind + 1]
if '-i' in sys.argv:
infile = input('Magic txt file for unpacking? ')
dir_path = '.'
input_dir_path = '.'
else:
infile = pmag.get_named_arg('-f', reqd=True)
overwrite = pmag.get_flag_arg_from_sys('-O', true=False, false=True)
sep = pmag.get_flag_arg_from_sys('-sep', true=True, false=False)
data_model = pmag.get_named_arg('-DM', default_val=3, reqd=False)
dir_path = pmag.get_named_arg('-WD', default_val='.', reqd=False)
input_dir_path = pmag.get_named_arg('-ID', default_val='.', reqd=False)
if '-WD' not in sys.argv and '-ID' not in sys.argv:
input_dir_path = os.path.split(infile)[0]
if not input_dir_path:
input_dir_path = '.'
ipmag.download_magic(infile, dir_path, input_dir_path, overwrite, True,
data_model, sep)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-i' in sys.argv:\n infile = input('Magic txt file for unpacking? ')\n dir_path = '.'\n input_dir_path = '.'\n else:\n infile = pmag.get_named_arg('-f', reqd=True)\n overwrite = pmag.get_flag_arg_from_sys('-O', true=False, false=True)\n sep = pmag.get_flag_arg_from_sys('-sep', true=True, false=False)\n data_model = pmag.get_named_arg('-DM', default_val=3, reqd=False)\n dir_path = pmag.get_named_arg('-WD', default_val='.', reqd=False)\n input_dir_path = pmag.get_named_arg('-ID', default_val='.', reqd=False)\n if '-WD' not in sys.argv and '-ID' not in sys.argv:\n input_dir_path = os.path.split(infile)[0]\n if not input_dir_path:\n input_dir_path = '.'\n ipmag.download_magic(infile, dir_path, input_dir_path, overwrite, True,\n data_model, sep)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
args = sys.argv
if '-h' in args:
print(main.__doc__)
sys.exit()
pltspec = ''
verbose = pmagplotlib.verbose
dir_path = pmag.get_named_arg('-WD', '.')
dir_path = os.path.realpath(dir_path)
meas_file = pmag.get_named_arg('-f', 'measurements.txt')
fmt = pmag.get_named_arg('-fmt', 'png')
save_plots = False
interactive = True
if '-sav' in args:
verbose = False
save_plots = True
interactive = False
if '-spc' in args:
ind = args.index('-spc')
pltspec = args[ind + 1]
verbose = False
save_plots = True
ipmag.quick_hyst(dir_path, meas_file, save_plots, interactive, fmt,
pltspec, verbose)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n pltspec = ''\n verbose = pmagplotlib.verbose\n dir_path = pmag.get_named_arg('-WD', '.')\n dir_path = os.path.realpath(dir_path)\n meas_file = pmag.get_named_arg('-f', 'measurements.txt')\n fmt = pmag.get_named_arg('-fmt', 'png')\n save_plots = False\n interactive = True\n if '-sav' in args:\n verbose = False\n save_plots = True\n interactive = False\n if '-spc' in args:\n ind = args.index('-spc')\n pltspec = args[ind + 1]\n verbose = False\n save_plots = True\n ipmag.quick_hyst(dir_path, meas_file, save_plots, interactive, fmt,\n pltspec, verbose)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(x, window_len, window='bartlett'):
if x.ndim != 1:
raise ValueError('smooth only accepts 1 dimension arrays.')
if x.size < window_len:
raise ValueError('Input vector needs to be bigger than window size.')
if window_len < 3:
return x
if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise ValueError(
"Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'"
)
start = [average(x[0:10])] * window_len
end = [average(x[-10:])] * window_len
s = start + list(x) + end
if window == 'flat':
w = ones(window_len, 'd')
else:
w = eval('numpy.' + window + '(window_len)')
y = numpy.convolve(old_div(w, w.sum()), s, mode='same')
return array(y[window_len:-window_len])
|
smooth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, window_len, window='bartlett'):\n if x.ndim != 1:\n raise ValueError('smooth only accepts 1 dimension arrays.')\n if x.size < window_len:\n raise ValueError('Input vector needs to be bigger than window size.')\n if window_len < 3:\n return x\n if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:\n raise ValueError(\n \"Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'\"\n )\n start = [average(x[0:10])] * window_len\n end = [average(x[-10:])] * window_len\n s = start + list(x) + end\n if window == 'flat':\n w = ones(window_len, 'd')\n else:\n w = eval('numpy.' + window + '(window_len)')\n y = numpy.convolve(old_div(w, w.sum()), s, mode='same')\n return array(y[window_len:-window_len])\n",
"role": "user"
},
{
"content": "smooth",
"role": "assistant"
}
] |
def x(x, y, i, n):
m_, x_, y_, xy_, x_2 = 0.0, 0.0, 0.0, 0.0, 0.0
for ix in range(i, i + n, 1):
x_ = x_ + x[ix]
y_ = y_ + y[ix]
xy_ = xy_ + x[ix] * y[ix]
x_2 = x_2 + x[ix] ** 2
m = old_div(n * xy_ - x_ * y_, n * x_2 - x_ ** 2)
return m
|
deriv1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, i, n):\n m_, x_, y_, xy_, x_2 = 0.0, 0.0, 0.0, 0.0, 0.0\n for ix in range(i, i + n, 1):\n x_ = x_ + x[ix]\n y_ = y_ + y[ix]\n xy_ = xy_ + x[ix] * y[ix]\n x_2 = x_2 + x[ix] ** 2\n m = old_div(n * xy_ - x_ * y_, n * x_2 - x_ ** 2)\n return m\n",
"role": "user"
},
{
"content": "deriv1",
"role": "assistant"
}
] |
def x():
citation = 'This study'
args = sys.argv
outfile = 'magic_methods.txt'
infile = 'magic_measurements.txt'
dir_path = '.'
if '-WD' in args:
ind = args.index('-WD')
dir_path = args[ind + 1]
if '-h' in args:
print(main.__doc__)
sys.exit()
if '-F' in args:
ind = args.index('-F')
outfile = args[ind + 1]
if '-f' in args:
ind = args.index('-f')
infile = args[ind + 1]
infile = dir_path + '/' + infile
outfile = dir_path + '/' + outfile
data, file_type = pmag.magic_read(infile)
MethRecs = []
methods = []
for rec in data:
meths = rec['magic_method_codes'].split(':')
for meth in meths:
if meth not in methods:
MethRec = {}
methods.append(meth)
MethRec['magic_method_code'] = meth
MethRecs.append(MethRec)
pmag.magic_write(outfile, MethRecs, 'magic_methods')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n citation = 'This study'\n args = sys.argv\n outfile = 'magic_methods.txt'\n infile = 'magic_measurements.txt'\n dir_path = '.'\n if '-WD' in args:\n ind = args.index('-WD')\n dir_path = args[ind + 1]\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n if '-F' in args:\n ind = args.index('-F')\n outfile = args[ind + 1]\n if '-f' in args:\n ind = args.index('-f')\n infile = args[ind + 1]\n infile = dir_path + '/' + infile\n outfile = dir_path + '/' + outfile\n data, file_type = pmag.magic_read(infile)\n MethRecs = []\n methods = []\n for rec in data:\n meths = rec['magic_method_codes'].split(':')\n for meth in meths:\n if meth not in methods:\n MethRec = {}\n methods.append(meth)\n MethRec['magic_method_code'] = meth\n MethRecs.append(MethRec)\n pmag.magic_write(outfile, MethRecs, 'magic_methods')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-i' in sys.argv:
file = input('Enter file name with dec, inc data: ')
f = open(file, 'r')
data = f.readlines()
elif '-f' in sys.argv:
dat = []
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
f = open(file, 'r')
data = f.readlines()
else:
data = sys.stdin.readlines()
ofile = ''
if '-F' in sys.argv:
ind = sys.argv.index('-F')
ofile = sys.argv[ind + 1]
out = open(ofile, 'w + a')
DIs = []
for line in data:
if '\t' in line:
rec = line.split('\t')
else:
rec = line.split()
DIs.append((float(rec[0]), float(rec[1])))
fpars = pmag.fisher_mean(DIs)
outstring = '%7.1f %7.1f %i %10.4f %8.1f %7.1f %7.1f' % (fpars['dec'
], fpars['inc'], fpars['n'], fpars['r'], fpars['k'], fpars[
'alpha95'], fpars['csd'])
if ofile == '':
print(outstring)
else:
out.write(outstring + '\n')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-i' in sys.argv:\n file = input('Enter file name with dec, inc data: ')\n f = open(file, 'r')\n data = f.readlines()\n elif '-f' in sys.argv:\n dat = []\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n else:\n data = sys.stdin.readlines()\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n DIs = []\n for line in data:\n if '\\t' in line:\n rec = line.split('\\t')\n else:\n rec = line.split()\n DIs.append((float(rec[0]), float(rec[1])))\n fpars = pmag.fisher_mean(DIs)\n outstring = '%7.1f %7.1f %i %10.4f %8.1f %7.1f %7.1f' % (fpars['dec'\n ], fpars['inc'], fpars['n'], fpars['r'], fpars['k'], fpars[\n 'alpha95'], fpars['csd'])\n if ofile == '':\n print(outstring)\n else:\n out.write(outstring + '\\n')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
meas_file = 'trmaq_measurements.txt'
tspec = 'thellier_specimens.txt'
output = 'NLT_specimens.txt'
data_model_num = int(float(pmag.get_named_arg('-DM', 3)))
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-i' in sys.argv:
meas_file = input(
'Input magic_measurements file name? [trmaq_measurements.txt] ')
if meas_file == '':
meas_file = 'trmaq_measurements.txt'
tspec = input(
' thellier_specimens file name? [thellier_specimens.txt] ')
if tspec == '':
tspec = 'thellier_specimens.txt'
output = input(
'File for non-linear TRM adjusted specimen data: [NLTspecimens.txt] '
)
if output == '':
output = 'NLT_specimens.txt'
if '-f' in sys.argv:
ind = sys.argv.index('-f')
meas_file = sys.argv[ind + 1]
if '-ft' in sys.argv:
ind = sys.argv.index('-ft')
tspec = sys.argv[ind + 1]
if '-F' in sys.argv:
ind = sys.argv.index('-F')
output = sys.argv[ind + 1]
if '-sav' in sys.argv:
save_plots = True
else:
save_plots = False
fmt = pmag.get_named_arg('-fmt', 'svg')
PLT = {'aq': 1}
if not save_plots:
pmagplotlib.plot_init(PLT['aq'], 5, 5)
comment = ''
meas_data, file_type = pmag.magic_read(meas_file)
if 'measurements' not in file_type:
print(file_type, 'This is not a valid measurements file ')
sys.exit()
if data_model_num == 2:
spec_col = 'er_specimen_name'
lab_field_dc_col = 'specimen_lab_field_dc'
int_col = 'specimen_int'
meth_col = 'magic_method_codes'
treat_dc_col = 'treatment_dc_field'
magn_moment_col = 'measurement_magn_moment'
experiment_col = 'magic_experiment_name'
outfile_type = 'pmag_specimens'
else:
spec_col = 'specimen'
lab_field_dc_col = 'int_treat_dc_field'
int_col = 'int_abs'
meth_col = 'method_codes'
treat_dc_col = 'treat_dc_field'
magn_moment_col = 'magn_moment'
experiment_col = 'experiment'
outfile_type = 'specimens'
sids = pmag.get_specs(meas_data)
specimen = 0
nrm, file_type = pmag.magic_read(tspec)
PmagSpecRecs = []
while specimen < len(sids):
s = sids[specimen]
blab, best = '', ''
for nrec in nrm:
if nrec[spec_col] == s:
try:
blab = float(nrec[lab_field_dc_col])
except ValueError:
continue
best = float(nrec[int_col])
TrmRec = nrec
break
if blab == '':
print('skipping ', s, ' : no best ')
specimen += 1
else:
print(sids[specimen], specimen + 1, 'of ', len(sids), 'Best = ',
best * 1000000.0)
MeasRecs = []
for rec in meas_data:
if rec[spec_col] == s:
meths = rec[meth_col].split(':')
methcodes = []
for meth in meths:
methcodes.append(meth.strip())
if 'LP-TRM' in methcodes:
MeasRecs.append(rec)
if len(MeasRecs) < 2:
specimen += 1
print('skipping specimen - no trm acquisition data ', s)
else:
TRMs, Bs = [], []
for rec in MeasRecs:
Bs.append(float(rec[treat_dc_col]))
TRMs.append(float(rec[magn_moment_col]))
NLpars = nlt.NLtrm(Bs, TRMs, best, blab, 0)
Mp, Bp = [], []
for k in range(int(max(Bs) * 1000000.0)):
Bp.append(float(k) * 1e-06)
npred = nlt.TRM(Bp[-1], NLpars['xopt'][0], NLpars[
'xopt'][1])
Mp.append(npred)
pmagplotlib.plot_trm(PLT['aq'], Bs, TRMs, Bp, Mp, NLpars,
rec[experiment_col])
if not save_plots:
pmagplotlib.draw_figs(PLT)
print('Banc= ', float(NLpars['banc']) * 1000000.0)
trmTC = {}
for key in list(TrmRec.keys()):
trmTC[key] = TrmRec[key]
trmTC[int_col] = '%8.3e' % NLpars['banc']
trmTC[meth_col] = TrmRec[meth_col] + ':DA-NL'
PmagSpecRecs.append(trmTC)
if not save_plots:
ans = input('Return for next specimen, s[a]ve plot ')
if ans == 'a':
Name = {'aq': rec[spec_col] + '_TRM.{}'.format(fmt)}
pmagplotlib.save_plots(PLT, Name)
else:
Name = {'aq': rec[spec_col] + '_TRM.{}'.format(fmt)}
pmagplotlib.save_plots(PLT, Name)
specimen += 1
pmag.magic_write(output, PmagSpecRecs, outfile_type)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n meas_file = 'trmaq_measurements.txt'\n tspec = 'thellier_specimens.txt'\n output = 'NLT_specimens.txt'\n data_model_num = int(float(pmag.get_named_arg('-DM', 3)))\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-i' in sys.argv:\n meas_file = input(\n 'Input magic_measurements file name? [trmaq_measurements.txt] ')\n if meas_file == '':\n meas_file = 'trmaq_measurements.txt'\n tspec = input(\n ' thellier_specimens file name? [thellier_specimens.txt] ')\n if tspec == '':\n tspec = 'thellier_specimens.txt'\n output = input(\n 'File for non-linear TRM adjusted specimen data: [NLTspecimens.txt] '\n )\n if output == '':\n output = 'NLT_specimens.txt'\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n meas_file = sys.argv[ind + 1]\n if '-ft' in sys.argv:\n ind = sys.argv.index('-ft')\n tspec = sys.argv[ind + 1]\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n output = sys.argv[ind + 1]\n if '-sav' in sys.argv:\n save_plots = True\n else:\n save_plots = False\n fmt = pmag.get_named_arg('-fmt', 'svg')\n PLT = {'aq': 1}\n if not save_plots:\n pmagplotlib.plot_init(PLT['aq'], 5, 5)\n comment = ''\n meas_data, file_type = pmag.magic_read(meas_file)\n if 'measurements' not in file_type:\n print(file_type, 'This is not a valid measurements file ')\n sys.exit()\n if data_model_num == 2:\n spec_col = 'er_specimen_name'\n lab_field_dc_col = 'specimen_lab_field_dc'\n int_col = 'specimen_int'\n meth_col = 'magic_method_codes'\n treat_dc_col = 'treatment_dc_field'\n magn_moment_col = 'measurement_magn_moment'\n experiment_col = 'magic_experiment_name'\n outfile_type = 'pmag_specimens'\n else:\n spec_col = 'specimen'\n lab_field_dc_col = 'int_treat_dc_field'\n int_col = 'int_abs'\n meth_col = 'method_codes'\n treat_dc_col = 'treat_dc_field'\n magn_moment_col = 'magn_moment'\n experiment_col = 'experiment'\n outfile_type = 'specimens'\n sids = pmag.get_specs(meas_data)\n specimen = 0\n nrm, file_type = pmag.magic_read(tspec)\n PmagSpecRecs = []\n while specimen < len(sids):\n s = sids[specimen]\n blab, best = '', ''\n for nrec in nrm:\n if nrec[spec_col] == s:\n try:\n blab = float(nrec[lab_field_dc_col])\n except ValueError:\n continue\n best = float(nrec[int_col])\n TrmRec = nrec\n break\n if blab == '':\n print('skipping ', s, ' : no best ')\n specimen += 1\n else:\n print(sids[specimen], specimen + 1, 'of ', len(sids), 'Best = ',\n best * 1000000.0)\n MeasRecs = []\n for rec in meas_data:\n if rec[spec_col] == s:\n meths = rec[meth_col].split(':')\n methcodes = []\n for meth in meths:\n methcodes.append(meth.strip())\n if 'LP-TRM' in methcodes:\n MeasRecs.append(rec)\n if len(MeasRecs) < 2:\n specimen += 1\n print('skipping specimen - no trm acquisition data ', s)\n else:\n TRMs, Bs = [], []\n for rec in MeasRecs:\n Bs.append(float(rec[treat_dc_col]))\n TRMs.append(float(rec[magn_moment_col]))\n NLpars = nlt.NLtrm(Bs, TRMs, best, blab, 0)\n Mp, Bp = [], []\n for k in range(int(max(Bs) * 1000000.0)):\n Bp.append(float(k) * 1e-06)\n npred = nlt.TRM(Bp[-1], NLpars['xopt'][0], NLpars[\n 'xopt'][1])\n Mp.append(npred)\n pmagplotlib.plot_trm(PLT['aq'], Bs, TRMs, Bp, Mp, NLpars,\n rec[experiment_col])\n if not save_plots:\n pmagplotlib.draw_figs(PLT)\n print('Banc= ', float(NLpars['banc']) * 1000000.0)\n trmTC = {}\n for key in list(TrmRec.keys()):\n trmTC[key] = TrmRec[key]\n trmTC[int_col] = '%8.3e' % NLpars['banc']\n trmTC[meth_col] = TrmRec[meth_col] + ':DA-NL'\n PmagSpecRecs.append(trmTC)\n if not save_plots:\n ans = input('Return for next specimen, s[a]ve plot ')\n if ans == 'a':\n Name = {'aq': rec[spec_col] + '_TRM.{}'.format(fmt)}\n pmagplotlib.save_plots(PLT, Name)\n else:\n Name = {'aq': rec[spec_col] + '_TRM.{}'.format(fmt)}\n pmagplotlib.save_plots(PLT, Name)\n specimen += 1\n pmag.magic_write(output, PmagSpecRecs, outfile_type)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
args = sys.argv
if '-h' in args:
print(main.__doc__)
sys.exit()
Z = 1
orient_file = pmag.get_named_arg('-f', reqd=True)
data_model_num = int(float(pmag.get_named_arg('-DM', 3)))
if data_model_num == 2:
samp_file = pmag.get_named_arg('-Fsa', 'er_samples.txt')
site_file = pmag.get_named_arg('-Fsi', 'er_sites.txt')
else:
samp_file = pmag.get_named_arg('-Fsa', 'samples.txt')
site_file = pmag.get_named_arg('-Fsi', 'sites.txt')
samp_con = pmag.get_named_arg('-ncn', '1')
if '4' in samp_con:
if '-' not in samp_con:
print('option [4] must be in form 3-Z where Z is an integer')
sys.exit()
else:
Z = samp_con.split('-')[1]
print(samp_con)
meths = pmag.get_named_arg('-mcd', 'FS-FD:SO-POM:SO-SUN')
location_name = pmag.get_named_arg('-loc', 'unknown')
if '-Iso' in args:
ignore = 0
else:
ignore = 1
convert.huji_sample(orient_file, meths, location_name, samp_con, ignore)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n Z = 1\n orient_file = pmag.get_named_arg('-f', reqd=True)\n data_model_num = int(float(pmag.get_named_arg('-DM', 3)))\n if data_model_num == 2:\n samp_file = pmag.get_named_arg('-Fsa', 'er_samples.txt')\n site_file = pmag.get_named_arg('-Fsi', 'er_sites.txt')\n else:\n samp_file = pmag.get_named_arg('-Fsa', 'samples.txt')\n site_file = pmag.get_named_arg('-Fsi', 'sites.txt')\n samp_con = pmag.get_named_arg('-ncn', '1')\n if '4' in samp_con:\n if '-' not in samp_con:\n print('option [4] must be in form 3-Z where Z is an integer')\n sys.exit()\n else:\n Z = samp_con.split('-')[1]\n print(samp_con)\n meths = pmag.get_named_arg('-mcd', 'FS-FD:SO-POM:SO-SUN')\n location_name = pmag.get_named_arg('-loc', 'unknown')\n if '-Iso' in args:\n ignore = 0\n else:\n ignore = 1\n convert.huji_sample(orient_file, meths, location_name, samp_con, ignore)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
dat = []
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
else:
file = sys.stdin
ofile = ''
if '-F' in sys.argv:
ind = sys.argv.index('-F')
ofile = sys.argv[ind + 1]
out = open(ofile, 'w + a')
DIIs = numpy.loadtxt(file, dtype=numpy.float)
vpars, R = pmag.vector_mean(DIIs)
outstring = '%7.1f %7.1f %10.3e %i' % (vpars[0], vpars[1], R, len(DIIs))
if ofile == '':
print(outstring)
else:
out.write(outstring + '\n')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n dat = []\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n else:\n file = sys.stdin\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n DIIs = numpy.loadtxt(file, dtype=numpy.float)\n vpars, R = pmag.vector_mean(DIIs)\n outstring = '%7.1f %7.1f %10.3e %i' % (vpars[0], vpars[1], R, len(DIIs))\n if ofile == '':\n print(outstring)\n else:\n out.write(outstring + '\\n')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
kappa, cutoff = 0, 180
rev, anti, boot = 0, 0, 0
spin, n, v, mm97 = 0, 0, 0, 0
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
in_file = sys.argv[ind + 1]
vgp_df = pd.read_csv(in_file, delim_whitespace=True, header=None)
else:
vgp_df = pd.read_csv(sys.stdin, delim_whitespace=True, header=None)
if '-c' in sys.argv:
ind = sys.argv.index('-c')
cutoff = float(sys.argv[ind + 1])
if '-k' in sys.argv:
ind = sys.argv.index('-k')
kappa = float(sys.argv[ind + 1])
if '-n' in sys.argv:
ind = sys.argv.index('-n')
n = int(sys.argv[ind + 1])
if '-a' in sys.argv:
anti = 1
if '-r' in sys.argv:
rev = 1
if '-b' in sys.argv:
boot = 1
if '-v' in sys.argv:
v = 1
if '-p' in sys.argv:
spin = 1
if '-mm97' in sys.argv:
mm97 = 1
if len(list(vgp_df.columns)) == 2:
vgp_df.columns = ['vgp_lon', 'vgp_lat']
vgp_df['dir_k'], vgp_df['dir_n_samples'], vgp_df['lat'] = 0, 0, 0
else:
vgp_df.columns = ['vgp_lon', 'vgp_lat', 'dir_k', 'dir_n_samples', 'lat'
]
N, S_B, low, high, cutoff = pmag.scalc_vgp_df(vgp_df, anti=anti, rev=
rev, cutoff=cutoff, kappa=kappa, n=n, spin=spin, v=v, boot=boot,
mm97=mm97)
if high != 0:
print(N, '%7.1f %7.1f %7.1f %7.1f ' % (S_B, low, high, cutoff))
else:
print(N, '%7.1f %7.1f ' % (S_B, cutoff))
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n kappa, cutoff = 0, 180\n rev, anti, boot = 0, 0, 0\n spin, n, v, mm97 = 0, 0, 0, 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n in_file = sys.argv[ind + 1]\n vgp_df = pd.read_csv(in_file, delim_whitespace=True, header=None)\n else:\n vgp_df = pd.read_csv(sys.stdin, delim_whitespace=True, header=None)\n if '-c' in sys.argv:\n ind = sys.argv.index('-c')\n cutoff = float(sys.argv[ind + 1])\n if '-k' in sys.argv:\n ind = sys.argv.index('-k')\n kappa = float(sys.argv[ind + 1])\n if '-n' in sys.argv:\n ind = sys.argv.index('-n')\n n = int(sys.argv[ind + 1])\n if '-a' in sys.argv:\n anti = 1\n if '-r' in sys.argv:\n rev = 1\n if '-b' in sys.argv:\n boot = 1\n if '-v' in sys.argv:\n v = 1\n if '-p' in sys.argv:\n spin = 1\n if '-mm97' in sys.argv:\n mm97 = 1\n if len(list(vgp_df.columns)) == 2:\n vgp_df.columns = ['vgp_lon', 'vgp_lat']\n vgp_df['dir_k'], vgp_df['dir_n_samples'], vgp_df['lat'] = 0, 0, 0\n else:\n vgp_df.columns = ['vgp_lon', 'vgp_lat', 'dir_k', 'dir_n_samples', 'lat'\n ]\n N, S_B, low, high, cutoff = pmag.scalc_vgp_df(vgp_df, anti=anti, rev=\n rev, cutoff=cutoff, kappa=kappa, n=n, spin=spin, v=v, boot=boot,\n mm97=mm97)\n if high != 0:\n print(N, '%7.1f %7.1f %7.1f %7.1f ' % (S_B, low, high, cutoff))\n else:\n print(N, '%7.1f %7.1f ' % (S_B, cutoff))\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
FIG = {}
FIG['exp'] = 1
dir_path = './'
plot, fmt = 0, 'svg'
units = 'T',
XLP = []
norm = 1
LP = 'LP-IRM'
if len(sys.argv) > 1:
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
data_model = int(pmag.get_named_arg('-DM', 3))
if '-N' in sys.argv:
norm = 0
if '-sav' in sys.argv:
plot = 1
if '-fmt' in sys.argv:
ind = sys.argv.index('-fmt')
fmt = sys.argv[ind + 1]
if data_model == 3:
in_file = pmag.get_named_arg('-f', 'measurements.txt')
else:
in_file = pmag.get_named_arg('-f', 'magic_measurements.txt')
if '-WD' in sys.argv:
ind = sys.argv.index('-WD')
dir_path = sys.argv[ind + 1]
dir_path = os.path.realpath(dir_path)
in_file = pmag.resolve_file_name(in_file, dir_path)
if '-WD' not in sys.argv:
dir_path = os.path.split(in_file)[0]
plot_by = pmag.get_named_arg('-obj', 'loc')
if data_model == 3:
plot_key = 'location'
if plot_by == 'sit':
plot_key = 'site'
if plot_by == 'sam':
plot_key = 'sample'
if plot_by == 'spc':
plot_key = 'specimen'
else:
plot_key = 'er_location_name'
if plot_by == 'sit':
plot_key = 'er_site_name'
if plot_by == 'sam':
plot_key = 'er_sample_name'
if plot_by == 'spc':
plot_key = 'er_specimen_name'
if data_model == 3:
dmag_key = 'treat_dc_field'
else:
dmag_key = 'treatment_dc_field'
if data_model == 3 and plot_key != 'specimen':
print('-W- You are trying to plot measurements by {}'.format(plot_key))
print(
' By default, this information is not available in your measurement file.'
)
print(' Trying to acquire this information from {}'.format(dir_path)
)
con = cb.Contribution(dir_path)
meas_df = con.propagate_location_to_measurements()
if meas_df is None:
print('-W- No data found in {}'.format(dir_path))
return
if plot_key not in meas_df.columns:
print('-W- Could not find required data.')
print(' Try a different plot key.')
return
else:
print('-I- Found {} information, continuing with plotting'.
format(plot_key))
data = con.tables['measurements'].convert_to_pmag_data_list()
file_type = 'measurements'
else:
data, file_type = pmag.magic_read(in_file)
sids = pmag.get_specs(data)
pmagplotlib.plot_init(FIG['exp'], 6, 6)
plotlist = []
if data_model == 3:
intlist = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']
else:
intlist = ['measurement_magnitude', 'measurement_magn_moment',
'measurement_magn_volume', 'measurement_magn_mass']
IntMeths = []
if data_model == 3:
data = pmag.get_dictitem(data, 'method_codes', LP, 'has')
else:
data = pmag.get_dictitem(data, 'magic_method_codes', LP, 'has')
Ints = {}
NoInts, int_key = 1, ''
for key in intlist:
Ints[key] = pmag.get_dictitem(data, key, '', 'F')
if len(Ints[key]) > 0:
NoInts = 0
if int_key == '':
int_key = key
if NoInts == 1:
print('No intensity information found')
sys.exit()
for rec in Ints[int_key]:
if rec[plot_key] not in plotlist:
plotlist.append(rec[plot_key])
plotlist.sort()
for plt in plotlist:
print(plt)
INTblock = []
data = pmag.get_dictitem(Ints[int_key], plot_key, plt, 'T')
sids = pmag.get_specs(data)
if len(sids) > 0:
title = data[0][plot_key]
for s in sids:
INTblock = []
if data_model == 3:
sdata = pmag.get_dictitem(data, 'specimen', s, 'T')
else:
sdata = pmag.get_dictitem(data, 'er_specimen_name', s, 'T')
for rec in sdata:
INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[
int_key]), 1, 'g'])
pmagplotlib.plot_mag(FIG['exp'], INTblock, title, 0, units, norm)
files = {}
for key in list(FIG.keys()):
files[key] = title + '_' + LP + '.' + fmt
if plot == 0:
pmagplotlib.draw_figs(FIG)
ans = input(' S[a]ve to save plot, [q]uit, Return to continue: ')
if ans == 'q':
sys.exit()
if ans == 'a':
pmagplotlib.save_plots(FIG, files)
if plt != plotlist[-1]:
pmagplotlib.plot_init(FIG['exp'], 6, 6)
else:
pmagplotlib.save_plots(FIG, files)
pmagplotlib.clearFIG(FIG['exp'])
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n FIG = {}\n FIG['exp'] = 1\n dir_path = './'\n plot, fmt = 0, 'svg'\n units = 'T',\n XLP = []\n norm = 1\n LP = 'LP-IRM'\n if len(sys.argv) > 1:\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n data_model = int(pmag.get_named_arg('-DM', 3))\n if '-N' in sys.argv:\n norm = 0\n if '-sav' in sys.argv:\n plot = 1\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if data_model == 3:\n in_file = pmag.get_named_arg('-f', 'measurements.txt')\n else:\n in_file = pmag.get_named_arg('-f', 'magic_measurements.txt')\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n dir_path = os.path.realpath(dir_path)\n in_file = pmag.resolve_file_name(in_file, dir_path)\n if '-WD' not in sys.argv:\n dir_path = os.path.split(in_file)[0]\n plot_by = pmag.get_named_arg('-obj', 'loc')\n if data_model == 3:\n plot_key = 'location'\n if plot_by == 'sit':\n plot_key = 'site'\n if plot_by == 'sam':\n plot_key = 'sample'\n if plot_by == 'spc':\n plot_key = 'specimen'\n else:\n plot_key = 'er_location_name'\n if plot_by == 'sit':\n plot_key = 'er_site_name'\n if plot_by == 'sam':\n plot_key = 'er_sample_name'\n if plot_by == 'spc':\n plot_key = 'er_specimen_name'\n if data_model == 3:\n dmag_key = 'treat_dc_field'\n else:\n dmag_key = 'treatment_dc_field'\n if data_model == 3 and plot_key != 'specimen':\n print('-W- You are trying to plot measurements by {}'.format(plot_key))\n print(\n ' By default, this information is not available in your measurement file.'\n )\n print(' Trying to acquire this information from {}'.format(dir_path)\n )\n con = cb.Contribution(dir_path)\n meas_df = con.propagate_location_to_measurements()\n if meas_df is None:\n print('-W- No data found in {}'.format(dir_path))\n return\n if plot_key not in meas_df.columns:\n print('-W- Could not find required data.')\n print(' Try a different plot key.')\n return\n else:\n print('-I- Found {} information, continuing with plotting'.\n format(plot_key))\n data = con.tables['measurements'].convert_to_pmag_data_list()\n file_type = 'measurements'\n else:\n data, file_type = pmag.magic_read(in_file)\n sids = pmag.get_specs(data)\n pmagplotlib.plot_init(FIG['exp'], 6, 6)\n plotlist = []\n if data_model == 3:\n intlist = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']\n else:\n intlist = ['measurement_magnitude', 'measurement_magn_moment',\n 'measurement_magn_volume', 'measurement_magn_mass']\n IntMeths = []\n if data_model == 3:\n data = pmag.get_dictitem(data, 'method_codes', LP, 'has')\n else:\n data = pmag.get_dictitem(data, 'magic_method_codes', LP, 'has')\n Ints = {}\n NoInts, int_key = 1, ''\n for key in intlist:\n Ints[key] = pmag.get_dictitem(data, key, '', 'F')\n if len(Ints[key]) > 0:\n NoInts = 0\n if int_key == '':\n int_key = key\n if NoInts == 1:\n print('No intensity information found')\n sys.exit()\n for rec in Ints[int_key]:\n if rec[plot_key] not in plotlist:\n plotlist.append(rec[plot_key])\n plotlist.sort()\n for plt in plotlist:\n print(plt)\n INTblock = []\n data = pmag.get_dictitem(Ints[int_key], plot_key, plt, 'T')\n sids = pmag.get_specs(data)\n if len(sids) > 0:\n title = data[0][plot_key]\n for s in sids:\n INTblock = []\n if data_model == 3:\n sdata = pmag.get_dictitem(data, 'specimen', s, 'T')\n else:\n sdata = pmag.get_dictitem(data, 'er_specimen_name', s, 'T')\n for rec in sdata:\n INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[\n int_key]), 1, 'g'])\n pmagplotlib.plot_mag(FIG['exp'], INTblock, title, 0, units, norm)\n files = {}\n for key in list(FIG.keys()):\n files[key] = title + '_' + LP + '.' + fmt\n if plot == 0:\n pmagplotlib.draw_figs(FIG)\n ans = input(' S[a]ve to save plot, [q]uit, Return to continue: ')\n if ans == 'q':\n sys.exit()\n if ans == 'a':\n pmagplotlib.save_plots(FIG, files)\n if plt != plotlist[-1]:\n pmagplotlib.plot_init(FIG['exp'], 6, 6)\n else:\n pmagplotlib.save_plots(FIG, files)\n pmagplotlib.clearFIG(FIG['exp'])\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(i, axis, num_axes):
the_slice = ()
for j in range(num_axes):
if j == axis:
the_slice = the_slice + (i,)
else:
the_slice = the_slice + (slice(None),)
return the_slice
|
all_but_axis
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(i, axis, num_axes):\n the_slice = ()\n for j in range(num_axes):\n if j == axis:\n the_slice = the_slice + (i,)\n else:\n the_slice = the_slice + (slice(None),)\n return the_slice\n",
"role": "user"
},
{
"content": "all_but_axis",
"role": "assistant"
}
] |
def x(f, ar):
flat_ar = ravel(ar)
out = zeros(len(flat_ar), flat_ar.typecode())
for i in range(len(flat_ar)):
out[i] = f(flat_ar[i])
out.shape = ar.shape
return out
|
array_map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, ar):\n flat_ar = ravel(ar)\n out = zeros(len(flat_ar), flat_ar.typecode())\n for i in range(len(flat_ar)):\n out[i] = f(flat_ar[i])\n out.shape = ar.shape\n return out\n",
"role": "user"
},
{
"content": "array_map",
"role": "assistant"
}
] |
def x(self, event):
if not self.xdata or not self.ydata:
return
pos = event.GetPosition()
width, height = self.canvas.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.xdata
ydata_org = self.ydata
data_corrected = self.map.transData.transform(vstack([xdata_org,
ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4.0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:
index = i
break
if index == None:
print("Couldn't find point %.1f,%.1f" % (xpick_data, ypick_data))
self.change_selected(index)
|
on_plot_select
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if not self.xdata or not self.ydata:\n return\n pos = event.GetPosition()\n width, height = self.canvas.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.xdata\n ydata_org = self.ydata\n data_corrected = self.map.transData.transform(vstack([xdata_org,\n ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n index = None\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n index = i\n break\n if index == None:\n print(\"Couldn't find point %.1f,%.1f\" % (xpick_data, ypick_data))\n self.change_selected(index)\n",
"role": "user"
},
{
"content": "on_plot_select",
"role": "assistant"
}
] |
def x(self, event):
if not self.xdata or not self.ydata:
return
pos = event.GetPosition()
width, height = self.canvas.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.xdata
ydata_org = self.ydata
data_corrected = self.map.transData.transform(vstack([xdata_org,
ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4.0
if self.plot_setting == 'Zoom':
self.canvas.SetCursor(wx.Cursor(wx.CURSOR_CROSS))
else:
self.canvas.SetCursor(wx.Cursor(wx.CURSOR_ARROW))
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:
self.canvas.SetCursor(wx.Cursor(wx.CURSOR_HAND))
break
event.Skip()
|
on_change_plot_cursor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if not self.xdata or not self.ydata:\n return\n pos = event.GetPosition()\n width, height = self.canvas.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.xdata\n ydata_org = self.ydata\n data_corrected = self.map.transData.transform(vstack([xdata_org,\n ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n if self.plot_setting == 'Zoom':\n self.canvas.SetCursor(wx.Cursor(wx.CURSOR_CROSS))\n else:\n self.canvas.SetCursor(wx.Cursor(wx.CURSOR_ARROW))\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n self.canvas.SetCursor(wx.Cursor(wx.CURSOR_HAND))\n break\n event.Skip()\n",
"role": "user"
},
{
"content": "on_change_plot_cursor",
"role": "assistant"
}
] |
def x(self):
return_dict = {}
for i, ctrl in enumerate(self.list_ctrls):
if hasattr(self.parse_funcs, '__getitem__') and len(self.parse_funcs
) > i and hasattr(self.parse_funcs[i], '__call__'):
try:
return_dict[self.inputs[i]] = self.parse_funcs[i](ctrl.
GetValue())
except:
return_dict[self.inputs[i]] = ctrl.GetValue()
else:
return_dict[self.inputs[i]] = ctrl.GetValue()
return '' not in list(return_dict.values()), return_dict
|
get_values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return_dict = {}\n for i, ctrl in enumerate(self.list_ctrls):\n if hasattr(self.parse_funcs, '__getitem__') and len(self.parse_funcs\n ) > i and hasattr(self.parse_funcs[i], '__call__'):\n try:\n return_dict[self.inputs[i]] = self.parse_funcs[i](ctrl.\n GetValue())\n except:\n return_dict[self.inputs[i]] = ctrl.GetValue()\n else:\n return_dict[self.inputs[i]] = ctrl.GetValue()\n return '' not in list(return_dict.values()), return_dict\n",
"role": "user"
},
{
"content": "get_values",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
else:
data_model_num = pmag.get_named_arg('-DM', 3)
dataframe = extractor.command_line_dataframe([['cat', False, 0], [
'F', False, ''], ['f', False, '']])
checked_args = extractor.extract_and_check_args(sys.argv, dataframe)
dir_path, concat = extractor.get_vars(['WD', 'cat'], checked_args)
data_model_num = int(float(data_model_num))
if data_model_num == 2:
ipmag.upload_magic2(concat, dir_path)
else:
ipmag.upload_magic(concat, dir_path)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n else:\n data_model_num = pmag.get_named_arg('-DM', 3)\n dataframe = extractor.command_line_dataframe([['cat', False, 0], [\n 'F', False, ''], ['f', False, '']])\n checked_args = extractor.extract_and_check_args(sys.argv, dataframe)\n dir_path, concat = extractor.get_vars(['WD', 'cat'], checked_args)\n data_model_num = int(float(data_model_num))\n if data_model_num == 2:\n ipmag.upload_magic2(concat, dir_path)\n else:\n ipmag.upload_magic(concat, dir_path)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(x, y, z):
X, Y = np.meshgrid(x, y, copy=False)
X = X.flatten()
Y = Y.flatten()
A = np.array([np.ones(len(X)), X, X ** 2, Y, Y ** 2, X * Y]).T
Z = np.array(z)
B = Z.flatten()
coeff, r, rank, s = np.linalg.lstsq(A, B, rcond=None)
return -coeff[5]
|
d2_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, z):\n X, Y = np.meshgrid(x, y, copy=False)\n X = X.flatten()\n Y = Y.flatten()\n A = np.array([np.ones(len(X)), X, X ** 2, Y, Y ** 2, X * Y]).T\n Z = np.array(z)\n B = Z.flatten()\n coeff, r, rank, s = np.linalg.lstsq(A, B, rcond=None)\n return -coeff[5]\n",
"role": "user"
},
{
"content": "d2_func",
"role": "assistant"
}
] |
def x(data):
a = []
b = []
M = []
for i in data:
a.append(i[0])
b.append(i[1])
M.append(i[2])
a = np.array(a, dtype=np.float64).tolist()
b = np.array(b, dtype=np.float64).tolist()
M = np.array(M, dtype=np.float64).tolist()
a = list(set(a))
b = list(set(b))
return a, b, M
|
grid_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n a = []\n b = []\n M = []\n for i in data:\n a.append(i[0])\n b.append(i[1])\n M.append(i[2])\n a = np.array(a, dtype=np.float64).tolist()\n b = np.array(b, dtype=np.float64).tolist()\n M = np.array(M, dtype=np.float64).tolist()\n a = list(set(a))\n b = list(set(b))\n return a, b, M\n",
"role": "user"
},
{
"content": "grid_list",
"role": "assistant"
}
] |
def x(self, SF, x_range, y_range, matrix_z):
xx, yy, zz = [], [], []
m0, n0 = [], []
for m, n in itertools.product(np.arange(0, len(x_range), step=SF), np.
arange(0, len(y_range), step=SF)):
if x_range[m] > y_range[n]:
m0.append(m)
n0.append(n)
aa, bb, cc = [], [], []
for m, n in zip(m0, n0):
s = 0
try:
grid_data = []
a_ = x_range[m + s]
b_ = y_range[n - s]
for i, j in itertools.product(np.arange(3 * SF + 1), np.arange(
3 * SF + 1)):
try:
grid_data.append([x_range[m + s + i], y_range[n - s - j
], matrix_z.item(n - s - j, m + s + i)])
except:
try:
for i, j in itertools.product(np.arange(3), np.
arange(3)):
grid_data.append([x_range[m + i], y_range[n - j
], matrix_z.item(n - j, m + i)])
except:
pass
"""
#=================================================
/when SF = n
/data grid as (2*n+1)x(2*n+1)
/grid_list: convert grid to list
/every grid produce on FORC distritution p
/the poly fitting use d2_func
#=================================================
"""
x, y, z = grid_list(grid_data)
try:
p = d2_func(x, y, z)
xx.append((a_ - b_) / 2)
yy.append((a_ + b_) / 2)
zz.append(p)
except Exception as e:
pass
except:
pass
"""
#=================================================
/the data will be save as pandas dataframe
/all the data with nan values will be delete be dropna()
#=================================================
"""
df = pd.DataFrame({'x': xx, 'y': yy, 'z': zz})
df = df.dropna()
"""
#=================================================
/due to the space near Bc = zero
/the Bi values when Bc <0.003 will be mirrored to -Bc
#=================================================
"""
df_negative = df[df.x < 0.03].copy()
df_negative.x = df_negative.x * -1
df = df.append(df_negative)
df = df.drop_duplicates(['x', 'y'])
df = df.sort_values('x')
"""
#=================================================
/reset the Bc and Bi range by X,Y
/use linear interpolate to obtain FORC distribution
#=================================================
"""
xrange = [0, int((np.max(df.x) + 0.05) * 10) / 10]
yrange = [int((np.min(df.y) - 0.05) * 10) / 10, int((np.max(df.y) +
0.05) * 10) / 10]
X = np.linspace(xrange[0], xrange[1], 200)
Y = np.linspace(yrange[0], yrange[1], 200)
self.yi, self.xi = np.mgrid[yrange[0]:yrange[1]:200.0j, xrange[0]:
xrange[1]:200.0j]
z = df.z / np.max(df.z)
z = np.asarray(z.tolist())
self.zi = griddata((df.x, df.y), z, (self.xi, self.yi), method='cubic')
|
fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, SF, x_range, y_range, matrix_z):\n xx, yy, zz = [], [], []\n m0, n0 = [], []\n for m, n in itertools.product(np.arange(0, len(x_range), step=SF), np.\n arange(0, len(y_range), step=SF)):\n if x_range[m] > y_range[n]:\n m0.append(m)\n n0.append(n)\n aa, bb, cc = [], [], []\n for m, n in zip(m0, n0):\n s = 0\n try:\n grid_data = []\n a_ = x_range[m + s]\n b_ = y_range[n - s]\n for i, j in itertools.product(np.arange(3 * SF + 1), np.arange(\n 3 * SF + 1)):\n try:\n grid_data.append([x_range[m + s + i], y_range[n - s - j\n ], matrix_z.item(n - s - j, m + s + i)])\n except:\n try:\n for i, j in itertools.product(np.arange(3), np.\n arange(3)):\n grid_data.append([x_range[m + i], y_range[n - j\n ], matrix_z.item(n - j, m + i)])\n except:\n pass\n \"\"\"\n #=================================================\n /when SF = n\n /data grid as (2*n+1)x(2*n+1)\n /grid_list: convert grid to list\n /every grid produce on FORC distritution p\n /the poly fitting use d2_func\n #=================================================\n \"\"\"\n x, y, z = grid_list(grid_data)\n try:\n p = d2_func(x, y, z)\n xx.append((a_ - b_) / 2)\n yy.append((a_ + b_) / 2)\n zz.append(p)\n except Exception as e:\n pass\n except:\n pass\n \"\"\"\n #=================================================\n /the data will be save as pandas dataframe\n /all the data with nan values will be delete be dropna()\n #=================================================\n \"\"\"\n df = pd.DataFrame({'x': xx, 'y': yy, 'z': zz})\n df = df.dropna()\n \"\"\"\n #=================================================\n /due to the space near Bc = zero\n /the Bi values when Bc <0.003 will be mirrored to -Bc\n #=================================================\n \"\"\"\n df_negative = df[df.x < 0.03].copy()\n df_negative.x = df_negative.x * -1\n df = df.append(df_negative)\n df = df.drop_duplicates(['x', 'y'])\n df = df.sort_values('x')\n \"\"\"\n #=================================================\n /reset the Bc and Bi range by X,Y\n /use linear interpolate to obtain FORC distribution\n #=================================================\n \"\"\"\n xrange = [0, int((np.max(df.x) + 0.05) * 10) / 10]\n yrange = [int((np.min(df.y) - 0.05) * 10) / 10, int((np.max(df.y) + \n 0.05) * 10) / 10]\n X = np.linspace(xrange[0], xrange[1], 200)\n Y = np.linspace(yrange[0], yrange[1], 200)\n self.yi, self.xi = np.mgrid[yrange[0]:yrange[1]:200.0j, xrange[0]:\n xrange[1]:200.0j]\n z = df.z / np.max(df.z)\n z = np.asarray(z.tolist())\n self.zi = griddata((df.x, df.y), z, (self.xi, self.yi), method='cubic')\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
] |
def x(self, fileAdres=None):
skiprows = None
skip_from = [b'Field', b'Moment']
with open(fileAdres, 'rb') as fr:
for i, line in enumerate(fr, 1):
if skip_from == line.split():
skiprows = i + 2
break
skiprows = 34 if skiprows == None else skiprows
df = pd.read_csv(fileAdres, skiprows=skiprows, sep='\\s+', delimiter=
',', names=['H', 'M'], skipfooter=1, engine='python')
H = df.H
M = df.M
"""
#=================================================
/datainterval_H/_M
/slice the measured data into pieces
/for every measured FORC
#=================================================
"""
dataInterval_H = []
dataInterval_M = []
cretia = df.H.mean()
H0 = df.H.max()
self.x, self.y, self.z = [[], [], []]
for i in np.arange(1, len(H)):
dataInterval_H.append(H[i])
dataInterval_M.append(M[i])
if abs(H[i] - H0) <= 0.001:
if len(dataInterval_H) >= 0 and len(dataInterval_H) <= 200:
Ha = dataInterval_H[0]
dataInterval_H.pop(-1)
dataInterval_M.pop(-1)
Hb = dataInterval_H[1:-1]
Hm = dataInterval_M[1:-1]
for t in np.arange(len(Hb)):
self.x.append(Hb[t])
self.y.append(Ha)
self.z.append(Hm[t])
dataInterval_H = []
dataInterval_M = []
self.rawdf = df
"""
#=================================================
transfer the data set to matrix as len(x)*len(y) with z value
/mesh up the rawdata
/select the data area by X,Y ranges
/obtain regular spaced data potins by np.linspace
/use interplote to caculate the Hm values
/loop Ha(Y),Hb(X)
/fill every position with Hm, else with np.nan
#=================================================
"""
self.z = self.z / np.max(self.z)
xrange = [int((np.min(self.x) - 0.1) * 10) / 10, int((np.max(self.x) +
0.1) * 10) / 10]
yrange = [int((np.min(self.y) - 0.1) * 10) / 10, int((np.max(self.y) +
0.1) * 10) / 10]
X = np.linspace(xrange[0], xrange[1], 200)
Y = np.linspace(yrange[0], yrange[1], 200)
yi, xi = np.mgrid[yrange[0]:yrange[1]:200.0j, xrange[0]:xrange[1]:200.0j]
zi = griddata((self.x, self.y), self.z, (xi, yi), method='linear')
self.matrix_z = zi
self.x_range = X
self.y_range = Y
|
rawData
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fileAdres=None):\n skiprows = None\n skip_from = [b'Field', b'Moment']\n with open(fileAdres, 'rb') as fr:\n for i, line in enumerate(fr, 1):\n if skip_from == line.split():\n skiprows = i + 2\n break\n skiprows = 34 if skiprows == None else skiprows\n df = pd.read_csv(fileAdres, skiprows=skiprows, sep='\\\\s+', delimiter=\n ',', names=['H', 'M'], skipfooter=1, engine='python')\n H = df.H\n M = df.M\n \"\"\"\n #=================================================\n /datainterval_H/_M\n /slice the measured data into pieces\n /for every measured FORC\n #=================================================\n \"\"\"\n dataInterval_H = []\n dataInterval_M = []\n cretia = df.H.mean()\n H0 = df.H.max()\n self.x, self.y, self.z = [[], [], []]\n for i in np.arange(1, len(H)):\n dataInterval_H.append(H[i])\n dataInterval_M.append(M[i])\n if abs(H[i] - H0) <= 0.001:\n if len(dataInterval_H) >= 0 and len(dataInterval_H) <= 200:\n Ha = dataInterval_H[0]\n dataInterval_H.pop(-1)\n dataInterval_M.pop(-1)\n Hb = dataInterval_H[1:-1]\n Hm = dataInterval_M[1:-1]\n for t in np.arange(len(Hb)):\n self.x.append(Hb[t])\n self.y.append(Ha)\n self.z.append(Hm[t])\n dataInterval_H = []\n dataInterval_M = []\n self.rawdf = df\n \"\"\"\n #=================================================\n transfer the data set to matrix as len(x)*len(y) with z value\n /mesh up the rawdata\n /select the data area by X,Y ranges\n /obtain regular spaced data potins by np.linspace\n /use interplote to caculate the Hm values\n /loop Ha(Y),Hb(X)\n /fill every position with Hm, else with np.nan\n #=================================================\n \"\"\"\n self.z = self.z / np.max(self.z)\n xrange = [int((np.min(self.x) - 0.1) * 10) / 10, int((np.max(self.x) + \n 0.1) * 10) / 10]\n yrange = [int((np.min(self.y) - 0.1) * 10) / 10, int((np.max(self.y) + \n 0.1) * 10) / 10]\n X = np.linspace(xrange[0], xrange[1], 200)\n Y = np.linspace(yrange[0], yrange[1], 200)\n yi, xi = np.mgrid[yrange[0]:yrange[1]:200.0j, xrange[0]:xrange[1]:200.0j]\n zi = griddata((self.x, self.y), self.z, (xi, yi), method='linear')\n self.matrix_z = zi\n self.x_range = X\n self.y_range = Y\n",
"role": "user"
},
{
"content": "rawData",
"role": "assistant"
}
] |
def x():
url = 'http://earthref.org/services/MagIC-data-model.txt'
offline = True
if offline:
data = get_data_offline()
data_model, file_type = pmag.magic_read(None, data)
if file_type in ('bad file', 'empty_file'):
print(
'-W- Unable to read online data model.\nTrying to use cached data model instead'
)
data = get_data_offline()
data_model, file_type = pmag.magic_read(None, data)
ref_dicts = [d for d in data_model if d['column_nmb'] != '>>>>>>>>>>']
file_types = [d['field_name'] for d in data_model if d['column_nmb'] ==
'tab delimited']
file_types.insert(0, file_type)
complete_ref = {}
dictionary = {}
n = 0
for d in ref_dicts:
if d['field_name'] in file_types:
complete_ref[file_types[n]] = dictionary
n += 1
dictionary = {}
else:
dictionary[d['field_name_oracle']] = {'data_type': d[
'data_type'], 'data_status': d['data_status']}
return complete_ref
|
get_data_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n url = 'http://earthref.org/services/MagIC-data-model.txt'\n offline = True\n if offline:\n data = get_data_offline()\n data_model, file_type = pmag.magic_read(None, data)\n if file_type in ('bad file', 'empty_file'):\n print(\n '-W- Unable to read online data model.\\nTrying to use cached data model instead'\n )\n data = get_data_offline()\n data_model, file_type = pmag.magic_read(None, data)\n ref_dicts = [d for d in data_model if d['column_nmb'] != '>>>>>>>>>>']\n file_types = [d['field_name'] for d in data_model if d['column_nmb'] ==\n 'tab delimited']\n file_types.insert(0, file_type)\n complete_ref = {}\n dictionary = {}\n n = 0\n for d in ref_dicts:\n if d['field_name'] in file_types:\n complete_ref[file_types[n]] = dictionary\n n += 1\n dictionary = {}\n else:\n dictionary[d['field_name_oracle']] = {'data_type': d[\n 'data_type'], 'data_status': d['data_status']}\n return complete_ref\n",
"role": "user"
},
{
"content": "get_data_model",
"role": "assistant"
}
] |
def x(lines):
container = []
new_list = []
for line in lines:
if '>>>' in line:
container.append(new_list)
new_list = []
else:
new_list.append(line)
container.append(new_list)
return container
|
split_lines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lines):\n container = []\n new_list = []\n for line in lines:\n if '>>>' in line:\n container.append(new_list)\n new_list = []\n else:\n new_list.append(line)\n container.append(new_list)\n return container\n",
"role": "user"
},
{
"content": "split_lines",
"role": "assistant"
}
] |
def x(data):
data_dictionaries = []
for chunk in data[:-1]:
if not chunk:
continue
data1 = data[0]
file_type = chunk[0].split('\t')[1].strip('\n').strip('\r')
keys = chunk[1].split('\t')
clean_keys = []
for key in keys:
clean_key = key.strip('\n').strip('\r')
if clean_key:
clean_keys.append(clean_key)
for line in chunk[2:]:
data_dict = {}
for key in clean_keys:
data_dict[key] = ''
line = line.split('\t')
for n, key in enumerate(clean_keys):
data_dict[key] = line[n].strip('\n').strip('\r')
data_dict['file_type'] = file_type
data_dictionaries.append(data_dict)
return data_dictionaries
|
get_dicts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n data_dictionaries = []\n for chunk in data[:-1]:\n if not chunk:\n continue\n data1 = data[0]\n file_type = chunk[0].split('\\t')[1].strip('\\n').strip('\\r')\n keys = chunk[1].split('\\t')\n clean_keys = []\n for key in keys:\n clean_key = key.strip('\\n').strip('\\r')\n if clean_key:\n clean_keys.append(clean_key)\n for line in chunk[2:]:\n data_dict = {}\n for key in clean_keys:\n data_dict[key] = ''\n line = line.split('\\t')\n for n, key in enumerate(clean_keys):\n data_dict[key] = line[n].strip('\\n').strip('\\r')\n data_dict['file_type'] = file_type\n data_dictionaries.append(data_dict)\n return data_dictionaries\n",
"role": "user"
},
{
"content": "get_dicts",
"role": "assistant"
}
] |
def x():
letters = string.ascii_uppercase
for l in string.ascii_lowercase:
letters = letters + l
dir_path = '.'
if '-WD' in sys.argv:
ind = sys.argv.index('-WD')
dir_path = sys.argv[ind + 1]
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
inspec = dir_path + '/' + sys.argv[ind + 1]
else:
zfile = dir_path + '/zeq_redo'
if '-fm' in sys.argv:
ind = sys.argv.index('-f')
meas_file = dir_path + '/' + sys.argv[ind + 1]
else:
meas_file = dir_path + '/magic_measurements.txt'
if '-F' in sys.argv:
ind = sys.argv.index('-F')
zfile = dir_path + '/' + sys.argv[ind + 1]
else:
zfile = dir_path + '/zeq_redo'
try:
open(meas_file, 'r')
meas_data, file_type = pmag.magic_read(meas_file)
except IOError:
print(main.__doc__)
print(
"""You must have a valid measurements file prior to converting
this LSQ file"""
)
sys.exit()
zredo = open(zfile, 'w')
MeasRecs = []
specs, MeasOuts = [], []
prior_spec_data = open(inspec, 'r').readlines()
for line in prior_spec_data:
if len(line) < 2:
sys.exit()
rec = line.split('\t')
spec = rec[0].lower()
specs.append(spec)
comp_name = rec[2]
calculation_type = 'DE-FM'
if rec[1][0] == 'L':
calculation_type = 'DE-BFL'
else:
calculation_type = 'DE-BFP'
lists = rec[7].split('-')
incl = []
for l in lists[0]:
incl.append(letters.index(l))
for l in letters[letters.index(lists[0][-1]) + 1:letters.index(
lists[1][0])]:
incl.append(letters.index(l))
for l in lists[1]:
incl.append(letters.index(l))
if len(lists) > 2:
for l in letters[letters.index(lists[1][-1]) + 1:letters.index(
lists[2][0])]:
incl.append(letters.index(l))
for l in lists[2]:
incl.append(letters.index(l))
datablock, min, max = [], '', ''
demag = 'N'
for s in meas_data:
if s['er_specimen_name'].lower() == spec.lower():
meths = s['magic_method_codes'].replace(' ', '').split(':')
if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths:
datablock.append(s)
if len(datablock) > 0:
for t in datablock:
print(t['magic_method_codes'])
incl_int = len(incl)
while incl[-1] > len(datablock) - 1:
del incl[-1]
if len(incl) != incl_int:
"""converting calculation type to best-fit line"""
meths0 = datablock[incl[0]]['magic_method_codes'].replace(' ', ''
).split(':')
meths1 = datablock[incl[-1]]['magic_method_codes'].replace(' ', ''
).split(':')
H0 = datablock[incl[0]]['treatment_ac_field']
T0 = datablock[incl[0]]['treatment_temp']
H1 = datablock[incl[-1]]['treatment_ac_field']
T1 = datablock[incl[-1]]['treatment_temp']
if 'LT-T-Z' in meths1:
max = T1
demag = 'T'
elif 'LT-AF-Z' in meths1:
demag = 'AF'
max = H1
if 'LT-NO' in meths0:
if demag == 'T':
min = 273
else:
min = 0
elif 'LT-T-Z' in meths0:
min = T0
else:
min = H0
for ind in range(incl[0]):
MeasRecs.append(datablock[ind])
for ind in range(incl[0], incl[-1]):
if ind not in incl:
datablock[ind]['measurement_flag'] = 'b'
MeasRecs.append(datablock[ind])
for ind in range(incl[-1], len(datablock)):
MeasRecs.append(datablock[ind])
outstring = '%s %s %s %s %s \n' % (spec, calculation_type, min,
max, comp_name)
zredo.write(outstring)
for s in meas_data:
if s['er_specimen_name'] not in specs:
MeasRecs.append(s)
pmag.magic_write(meas_file, MeasRecs, 'magic_measurements')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n letters = string.ascii_uppercase\n for l in string.ascii_lowercase:\n letters = letters + l\n dir_path = '.'\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n inspec = dir_path + '/' + sys.argv[ind + 1]\n else:\n zfile = dir_path + '/zeq_redo'\n if '-fm' in sys.argv:\n ind = sys.argv.index('-f')\n meas_file = dir_path + '/' + sys.argv[ind + 1]\n else:\n meas_file = dir_path + '/magic_measurements.txt'\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n zfile = dir_path + '/' + sys.argv[ind + 1]\n else:\n zfile = dir_path + '/zeq_redo'\n try:\n open(meas_file, 'r')\n meas_data, file_type = pmag.magic_read(meas_file)\n except IOError:\n print(main.__doc__)\n print(\n \"\"\"You must have a valid measurements file prior to converting\n this LSQ file\"\"\"\n )\n sys.exit()\n zredo = open(zfile, 'w')\n MeasRecs = []\n specs, MeasOuts = [], []\n prior_spec_data = open(inspec, 'r').readlines()\n for line in prior_spec_data:\n if len(line) < 2:\n sys.exit()\n rec = line.split('\\t')\n spec = rec[0].lower()\n specs.append(spec)\n comp_name = rec[2]\n calculation_type = 'DE-FM'\n if rec[1][0] == 'L':\n calculation_type = 'DE-BFL'\n else:\n calculation_type = 'DE-BFP'\n lists = rec[7].split('-')\n incl = []\n for l in lists[0]:\n incl.append(letters.index(l))\n for l in letters[letters.index(lists[0][-1]) + 1:letters.index(\n lists[1][0])]:\n incl.append(letters.index(l))\n for l in lists[1]:\n incl.append(letters.index(l))\n if len(lists) > 2:\n for l in letters[letters.index(lists[1][-1]) + 1:letters.index(\n lists[2][0])]:\n incl.append(letters.index(l))\n for l in lists[2]:\n incl.append(letters.index(l))\n datablock, min, max = [], '', ''\n demag = 'N'\n for s in meas_data:\n if s['er_specimen_name'].lower() == spec.lower():\n meths = s['magic_method_codes'].replace(' ', '').split(':')\n if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths:\n datablock.append(s)\n if len(datablock) > 0:\n for t in datablock:\n print(t['magic_method_codes'])\n incl_int = len(incl)\n while incl[-1] > len(datablock) - 1:\n del incl[-1]\n if len(incl) != incl_int:\n \"\"\"converting calculation type to best-fit line\"\"\"\n meths0 = datablock[incl[0]]['magic_method_codes'].replace(' ', ''\n ).split(':')\n meths1 = datablock[incl[-1]]['magic_method_codes'].replace(' ', ''\n ).split(':')\n H0 = datablock[incl[0]]['treatment_ac_field']\n T0 = datablock[incl[0]]['treatment_temp']\n H1 = datablock[incl[-1]]['treatment_ac_field']\n T1 = datablock[incl[-1]]['treatment_temp']\n if 'LT-T-Z' in meths1:\n max = T1\n demag = 'T'\n elif 'LT-AF-Z' in meths1:\n demag = 'AF'\n max = H1\n if 'LT-NO' in meths0:\n if demag == 'T':\n min = 273\n else:\n min = 0\n elif 'LT-T-Z' in meths0:\n min = T0\n else:\n min = H0\n for ind in range(incl[0]):\n MeasRecs.append(datablock[ind])\n for ind in range(incl[0], incl[-1]):\n if ind not in incl:\n datablock[ind]['measurement_flag'] = 'b'\n MeasRecs.append(datablock[ind])\n for ind in range(incl[-1], len(datablock)):\n MeasRecs.append(datablock[ind])\n outstring = '%s %s %s %s %s \\n' % (spec, calculation_type, min,\n max, comp_name)\n zredo.write(outstring)\n for s in meas_data:\n if s['er_specimen_name'] not in specs:\n MeasRecs.append(s)\n pmag.magic_write(meas_file, MeasRecs, 'magic_measurements')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(input_list, mod='', ghfile=''):
if ghfile != '':
lmgh = np.loadtxt(ghfile)
gh = []
lmgh = np.loadtxt(ghfile).transpose()
gh.append(lmgh[2][0])
for i in range(1, lmgh.shape[1]):
gh.append(lmgh[2][i])
gh.append(lmgh[3][i])
if len(gh) == 0:
print('no valid gh file')
return
mod = 'custom'
if mod == '':
x, y, z, f = pmag.doigrf(input_list[3] % 360.0, input_list[2],
input_list[1], input_list[0])
elif mod != 'custom':
x, y, z, f = pmag.doigrf(input_list[3] % 360.0, input_list[2],
input_list[1], input_list[0], mod=mod)
else:
x, y, z, f = pmag.docustom(input_list[3] % 360.0, input_list[2],
input_list[1], gh)
igrf_array = pmag.cart2dir((x, y, z))
return igrf_array
|
igrf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_list, mod='', ghfile=''):\n if ghfile != '':\n lmgh = np.loadtxt(ghfile)\n gh = []\n lmgh = np.loadtxt(ghfile).transpose()\n gh.append(lmgh[2][0])\n for i in range(1, lmgh.shape[1]):\n gh.append(lmgh[2][i])\n gh.append(lmgh[3][i])\n if len(gh) == 0:\n print('no valid gh file')\n return\n mod = 'custom'\n if mod == '':\n x, y, z, f = pmag.doigrf(input_list[3] % 360.0, input_list[2],\n input_list[1], input_list[0])\n elif mod != 'custom':\n x, y, z, f = pmag.doigrf(input_list[3] % 360.0, input_list[2],\n input_list[1], input_list[0], mod=mod)\n else:\n x, y, z, f = pmag.docustom(input_list[3] % 360.0, input_list[2],\n input_list[1], gh)\n igrf_array = pmag.cart2dir((x, y, z))\n return igrf_array\n",
"role": "user"
},
{
"content": "igrf",
"role": "assistant"
}
] |
def x(degrees, minutes, seconds):
dd = float(degrees) + old_div(float(minutes), 60) + old_div(float(
seconds), 60 * 60)
return dd
|
dms2dd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(degrees, minutes, seconds):\n dd = float(degrees) + old_div(float(minutes), 60) + old_div(float(\n seconds), 60 * 60)\n return dd\n",
"role": "user"
},
{
"content": "dms2dd",
"role": "assistant"
}
] |
def x(dec=None, inc=None, di_block=None):
if di_block is None:
di_block = make_di_block(dec, inc)
return pmag.fisher_mean(di_block)
else:
return pmag.fisher_mean(di_block)
|
fisher_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec=None, inc=None, di_block=None):\n if di_block is None:\n di_block = make_di_block(dec, inc)\n return pmag.fisher_mean(di_block)\n else:\n return pmag.fisher_mean(di_block)\n",
"role": "user"
},
{
"content": "fisher_mean",
"role": "assistant"
}
] |
def x(dec=None, inc=None, di_block=None, confidence=95):
if di_block is None:
di_block = make_di_block(dec, inc)
mean = pmag.fisher_mean(di_block)
else:
mean = pmag.fisher_mean(di_block)
if confidence == 50:
theta = old_div(67.5, np.sqrt(mean['k']))
if confidence == 63:
theta = old_div(81, np.sqrt(mean['k']))
if confidence == 95:
theta = old_div(140, np.sqrt(mean['k']))
return theta
|
fisher_angular_deviation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec=None, inc=None, di_block=None, confidence=95):\n if di_block is None:\n di_block = make_di_block(dec, inc)\n mean = pmag.fisher_mean(di_block)\n else:\n mean = pmag.fisher_mean(di_block)\n if confidence == 50:\n theta = old_div(67.5, np.sqrt(mean['k']))\n if confidence == 63:\n theta = old_div(81, np.sqrt(mean['k']))\n if confidence == 95:\n theta = old_div(140, np.sqrt(mean['k']))\n return theta\n",
"role": "user"
},
{
"content": "fisher_angular_deviation",
"role": "assistant"
}
] |
def x(dec=None, inc=None, di_block=None):
if di_block is None:
di_block = make_di_block(dec, inc)
return pmag.dobingham(di_block)
else:
return pmag.dobingham(di_block)
|
bingham_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec=None, inc=None, di_block=None):\n if di_block is None:\n di_block = make_di_block(dec, inc)\n return pmag.dobingham(di_block)\n else:\n return pmag.dobingham(di_block)\n",
"role": "user"
},
{
"content": "bingham_mean",
"role": "assistant"
}
] |
def x(dec=None, inc=None, di_block=None):
if di_block is None:
di_block = make_di_block(dec, inc)
return pmag.dokent(di_block, len(di_block))
else:
return pmag.dokent(di_block, len(di_block))
|
kent_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec=None, inc=None, di_block=None):\n if di_block is None:\n di_block = make_di_block(dec, inc)\n return pmag.dokent(di_block, len(di_block))\n else:\n return pmag.dokent(di_block, len(di_block))\n",
"role": "user"
},
{
"content": "kent_mean",
"role": "assistant"
}
] |
def x(mean_dictionary):
print('Dec: ' + str(round(mean_dictionary['dec'], 1)) + ' Inc: ' + str
(round(mean_dictionary['inc'], 1)))
print('Number of directions in mean (n): ' + str(mean_dictionary['n']))
print('Angular radius of 95% confidence (a_95): ' + str(round(
mean_dictionary['alpha95'], 1)))
print('Precision parameter (k) estimate: ' + str(round(mean_dictionary[
'k'], 1)))
|
print_direction_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mean_dictionary):\n print('Dec: ' + str(round(mean_dictionary['dec'], 1)) + ' Inc: ' + str\n (round(mean_dictionary['inc'], 1)))\n print('Number of directions in mean (n): ' + str(mean_dictionary['n']))\n print('Angular radius of 95% confidence (a_95): ' + str(round(\n mean_dictionary['alpha95'], 1)))\n print('Precision parameter (k) estimate: ' + str(round(mean_dictionary[\n 'k'], 1)))\n",
"role": "user"
},
{
"content": "print_direction_mean",
"role": "assistant"
}
] |
def x(mean_dictionary):
print('Plon: ' + str(round(mean_dictionary['dec'], 1)) + ' Plat: ' +
str(round(mean_dictionary['inc'], 1)))
print('Number of directions in mean (n): ' + str(mean_dictionary['n']))
print('Angular radius of 95% confidence (A_95): ' + str(round(
mean_dictionary['alpha95'], 1)))
print('Precision parameter (k) estimate: ' + str(round(mean_dictionary[
'k'], 1)))
|
print_pole_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mean_dictionary):\n print('Plon: ' + str(round(mean_dictionary['dec'], 1)) + ' Plat: ' +\n str(round(mean_dictionary['inc'], 1)))\n print('Number of directions in mean (n): ' + str(mean_dictionary['n']))\n print('Angular radius of 95% confidence (A_95): ' + str(round(\n mean_dictionary['alpha95'], 1)))\n print('Precision parameter (k) estimate: ' + str(round(mean_dictionary[\n 'k'], 1)))\n",
"role": "user"
},
{
"content": "print_pole_mean",
"role": "assistant"
}
] |
def x(k=20, n=100, dec=0, inc=90, di_block=True):
directions = []
declinations = []
inclinations = []
if di_block == True:
for data in range(n):
d, i = pmag.fshdev(k)
drot, irot = pmag.dodirot(d, i, dec, inc)
directions.append([drot, irot, 1.0])
return directions
else:
for data in range(n):
d, i = pmag.fshdev(k)
drot, irot = pmag.dodirot(d, i, dec, inc)
declinations.append(drot)
inclinations.append(irot)
return declinations, inclinations
|
fishrot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(k=20, n=100, dec=0, inc=90, di_block=True):\n directions = []\n declinations = []\n inclinations = []\n if di_block == True:\n for data in range(n):\n d, i = pmag.fshdev(k)\n drot, irot = pmag.dodirot(d, i, dec, inc)\n directions.append([drot, irot, 1.0])\n return directions\n else:\n for data in range(n):\n d, i = pmag.fshdev(k)\n drot, irot = pmag.dodirot(d, i, dec, inc)\n declinations.append(drot)\n inclinations.append(irot)\n return declinations, inclinations\n",
"role": "user"
},
{
"content": "fishrot",
"role": "assistant"
}
] |
def x(n=100, dec=0, lat=0, rev='no', G2=0, G3=0):
tk_03_output = []
for k in range(n):
gh = pmag.mktk03(8, k, G2, G3)
lon = random.randint(0, 360)
vec = pmag.getvec(gh, lat, lon)
vec[0] += dec
if vec[0] >= 360.0:
vec[0] -= 360.0
if k % 2 == 0 and rev == 'yes':
vec[0] += 180.0
vec[1] = -vec[1]
tk_03_output.append([vec[0], vec[1], vec[2]])
return tk_03_output
|
tk03
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n=100, dec=0, lat=0, rev='no', G2=0, G3=0):\n tk_03_output = []\n for k in range(n):\n gh = pmag.mktk03(8, k, G2, G3)\n lon = random.randint(0, 360)\n vec = pmag.getvec(gh, lat, lon)\n vec[0] += dec\n if vec[0] >= 360.0:\n vec[0] -= 360.0\n if k % 2 == 0 and rev == 'yes':\n vec[0] += 180.0\n vec[1] = -vec[1]\n tk_03_output.append([vec[0], vec[1], vec[2]])\n return tk_03_output\n",
"role": "user"
},
{
"content": "tk03",
"role": "assistant"
}
] |
def x(incs, f):
try:
length = len(incs)
incs_unsquished = []
for n in range(0, length):
inc_rad = np.deg2rad(incs[n])
inc_new_rad = old_div(1.0, f) * np.tan(inc_rad)
inc_new = np.rad2deg(np.arctan(inc_new_rad))
incs_unsquished.append(inc_new)
return incs_unsquished
except:
inc_rad = np.deg2rad(incs)
inc_new_rad = old_div(1.0, f) * np.tan(inc_rad)
inc_new = np.rad2deg(np.arctan(inc_new_rad))
return inc_new
|
unsquish
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(incs, f):\n try:\n length = len(incs)\n incs_unsquished = []\n for n in range(0, length):\n inc_rad = np.deg2rad(incs[n])\n inc_new_rad = old_div(1.0, f) * np.tan(inc_rad)\n inc_new = np.rad2deg(np.arctan(inc_new_rad))\n incs_unsquished.append(inc_new)\n return incs_unsquished\n except:\n inc_rad = np.deg2rad(incs)\n inc_new_rad = old_div(1.0, f) * np.tan(inc_rad)\n inc_new = np.rad2deg(np.arctan(inc_new_rad))\n return inc_new\n",
"role": "user"
},
{
"content": "unsquish",
"role": "assistant"
}
] |
def x(incs, f):
try:
length = len(incs)
incs_squished = []
for n in range(0, length):
inc_rad = incs[n] * np.pi / 180.0
inc_new_rad = f * np.tan(inc_rad)
inc_new = np.arctan(inc_new_rad) * 180.0 / np.pi
incs_squished.append(inc_new)
return incs_squished
except:
inc_rad = incs * np.pi / 180.0
inc_new_rad = f * np.tan(inc_rad)
inc_new = np.arctan(inc_new_rad) * 180.0 / np.pi
return inc_new
|
squish
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(incs, f):\n try:\n length = len(incs)\n incs_squished = []\n for n in range(0, length):\n inc_rad = incs[n] * np.pi / 180.0\n inc_new_rad = f * np.tan(inc_rad)\n inc_new = np.arctan(inc_new_rad) * 180.0 / np.pi\n incs_squished.append(inc_new)\n return incs_squished\n except:\n inc_rad = incs * np.pi / 180.0\n inc_new_rad = f * np.tan(inc_rad)\n inc_new = np.arctan(inc_new_rad) * 180.0 / np.pi\n return inc_new\n",
"role": "user"
},
{
"content": "squish",
"role": "assistant"
}
] |
def x(dec=None, inc=None, di_block=None):
if di_block is None:
dec_flip = []
inc_flip = []
for n in range(0, len(dec)):
dec_flip.append((dec[n] - 180.0) % 360.0)
inc_flip.append(-inc[n])
return dec_flip, inc_flip
else:
dflip = []
for rec in di_block:
d, i = (rec[0] - 180.0) % 360.0, -rec[1]
dflip.append([d, i, 1.0])
return dflip
|
do_flip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec=None, inc=None, di_block=None):\n if di_block is None:\n dec_flip = []\n inc_flip = []\n for n in range(0, len(dec)):\n dec_flip.append((dec[n] - 180.0) % 360.0)\n inc_flip.append(-inc[n])\n return dec_flip, inc_flip\n else:\n dflip = []\n for rec in di_block:\n d, i = (rec[0] - 180.0) % 360.0, -rec[1]\n dflip.append([d, i, 1.0])\n return dflip\n",
"role": "user"
},
{
"content": "do_flip",
"role": "assistant"
}
] |
def x(Data1, Data2, NumSims=1000, save=False, save_folder='.', fmt='svg',
figsize=(7, 2.3), x_tick_bins=4):
counter = 0
BDI1 = pmag.di_boot(Data1)
cart1 = pmag.dir2cart(BDI1).transpose()
X1, Y1, Z1 = cart1[0], cart1[1], cart1[2]
if np.array(Data2).shape[0] > 2:
BDI2 = pmag.di_boot(Data2)
cart2 = pmag.dir2cart(BDI2).transpose()
X2, Y2, Z2 = cart2[0], cart2[1], cart2[2]
else:
cart = pmag.dir2cart(Data2).transpose()
fignum = 1
fig = plt.figure(figsize=figsize)
fig = plt.subplot(1, 3, 1)
minimum = int(0.025 * len(X1))
maximum = int(0.975 * len(X1))
X1, y = pmagplotlib.plot_cdf(fignum, X1, 'X component', 'r', '')
bounds1 = [X1[minimum], X1[maximum]]
pmagplotlib.plot_vs(fignum, bounds1, 'r', '-')
if np.array(Data2).shape[0] > 2:
X2, y = pmagplotlib.plot_cdf(fignum, X2, 'X component', 'b', '')
bounds2 = [X2[minimum], X2[maximum]]
pmagplotlib.plot_vs(fignum, bounds2, 'b', '--')
else:
pmagplotlib.plot_vs(fignum, [cart[0]], 'k', '--')
plt.ylim(0, 1)
plt.locator_params(nbins=x_tick_bins)
plt.subplot(1, 3, 2)
Y1, y = pmagplotlib.plot_cdf(fignum, Y1, 'Y component', 'r', '')
bounds1 = [Y1[minimum], Y1[maximum]]
pmagplotlib.plot_vs(fignum, bounds1, 'r', '-')
if np.array(Data2).shape[0] > 2:
Y2, y = pmagplotlib.plot_cdf(fignum, Y2, 'Y component', 'b', '')
bounds2 = [Y2[minimum], Y2[maximum]]
pmagplotlib.plot_vs(fignum, bounds2, 'b', '--')
else:
pmagplotlib.plot_vs(fignum, [cart[1]], 'k', '--')
plt.ylim(0, 1)
plt.subplot(1, 3, 3)
Z1, y = pmagplotlib.plot_cdf(fignum, Z1, 'Z component', 'r', '')
bounds1 = [Z1[minimum], Z1[maximum]]
pmagplotlib.plot_vs(fignum, bounds1, 'r', '-')
if np.array(Data2).shape[0] > 2:
Z2, y = pmagplotlib.plot_cdf(fignum, Z2, 'Z component', 'b', '')
bounds2 = [Z2[minimum], Z2[maximum]]
pmagplotlib.plot_vs(fignum, bounds2, 'b', '--')
else:
pmagplotlib.plot_vs(fignum, [cart[2]], 'k', '--')
plt.ylim(0, 1)
plt.locator_params(nbins=x_tick_bins)
plt.tight_layout()
if save == True:
plt.savefig(os.path.join(save_folder, 'common_mean_bootstrap') +
'.' + fmt)
plt.show()
|
common_mean_bootstrap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Data1, Data2, NumSims=1000, save=False, save_folder='.', fmt='svg',\n figsize=(7, 2.3), x_tick_bins=4):\n counter = 0\n BDI1 = pmag.di_boot(Data1)\n cart1 = pmag.dir2cart(BDI1).transpose()\n X1, Y1, Z1 = cart1[0], cart1[1], cart1[2]\n if np.array(Data2).shape[0] > 2:\n BDI2 = pmag.di_boot(Data2)\n cart2 = pmag.dir2cart(BDI2).transpose()\n X2, Y2, Z2 = cart2[0], cart2[1], cart2[2]\n else:\n cart = pmag.dir2cart(Data2).transpose()\n fignum = 1\n fig = plt.figure(figsize=figsize)\n fig = plt.subplot(1, 3, 1)\n minimum = int(0.025 * len(X1))\n maximum = int(0.975 * len(X1))\n X1, y = pmagplotlib.plot_cdf(fignum, X1, 'X component', 'r', '')\n bounds1 = [X1[minimum], X1[maximum]]\n pmagplotlib.plot_vs(fignum, bounds1, 'r', '-')\n if np.array(Data2).shape[0] > 2:\n X2, y = pmagplotlib.plot_cdf(fignum, X2, 'X component', 'b', '')\n bounds2 = [X2[minimum], X2[maximum]]\n pmagplotlib.plot_vs(fignum, bounds2, 'b', '--')\n else:\n pmagplotlib.plot_vs(fignum, [cart[0]], 'k', '--')\n plt.ylim(0, 1)\n plt.locator_params(nbins=x_tick_bins)\n plt.subplot(1, 3, 2)\n Y1, y = pmagplotlib.plot_cdf(fignum, Y1, 'Y component', 'r', '')\n bounds1 = [Y1[minimum], Y1[maximum]]\n pmagplotlib.plot_vs(fignum, bounds1, 'r', '-')\n if np.array(Data2).shape[0] > 2:\n Y2, y = pmagplotlib.plot_cdf(fignum, Y2, 'Y component', 'b', '')\n bounds2 = [Y2[minimum], Y2[maximum]]\n pmagplotlib.plot_vs(fignum, bounds2, 'b', '--')\n else:\n pmagplotlib.plot_vs(fignum, [cart[1]], 'k', '--')\n plt.ylim(0, 1)\n plt.subplot(1, 3, 3)\n Z1, y = pmagplotlib.plot_cdf(fignum, Z1, 'Z component', 'r', '')\n bounds1 = [Z1[minimum], Z1[maximum]]\n pmagplotlib.plot_vs(fignum, bounds1, 'r', '-')\n if np.array(Data2).shape[0] > 2:\n Z2, y = pmagplotlib.plot_cdf(fignum, Z2, 'Z component', 'b', '')\n bounds2 = [Z2[minimum], Z2[maximum]]\n pmagplotlib.plot_vs(fignum, bounds2, 'b', '--')\n else:\n pmagplotlib.plot_vs(fignum, [cart[2]], 'k', '--')\n plt.ylim(0, 1)\n plt.locator_params(nbins=x_tick_bins)\n plt.tight_layout()\n if save == True:\n plt.savefig(os.path.join(save_folder, 'common_mean_bootstrap') +\n '.' + fmt)\n plt.show()\n",
"role": "user"
},
{
"content": "common_mean_bootstrap",
"role": "assistant"
}
] |
def x(Data1, Data2, NumSims=5000, print_result=True, plot='no', save=False,
save_folder='.', fmt='svg'):
pars_1 = pmag.fisher_mean(Data1)
pars_2 = pmag.fisher_mean(Data2)
cart_1 = pmag.dir2cart([pars_1['dec'], pars_1['inc'], pars_1['r']])
cart_2 = pmag.dir2cart([pars_2['dec'], pars_2['inc'], pars_2['r']])
Sw = pars_1['k'] * pars_1['r'] + pars_2['k'] * pars_2['r']
xhat_1 = pars_1['k'] * cart_1[0] + pars_2['k'] * cart_2[0]
xhat_2 = pars_1['k'] * cart_1[1] + pars_2['k'] * cart_2[1]
xhat_3 = pars_1['k'] * cart_1[2] + pars_2['k'] * cart_2[2]
Rw = np.sqrt(xhat_1 ** 2 + xhat_2 ** 2 + xhat_3 ** 2)
V = 2 * (Sw - Rw)
Sr = Sw
counter = 0
Vp = []
for k in range(NumSims):
Dirp = []
for i in range(pars_1['n']):
Dirp.append(pmag.fshdev(pars_1['k']))
pars_p1 = pmag.fisher_mean(Dirp)
Dirp = []
for i in range(pars_2['n']):
Dirp.append(pmag.fshdev(pars_2['k']))
pars_p2 = pmag.fisher_mean(Dirp)
Vk = pmag.vfunc(pars_p1, pars_p2)
Vp.append(Vk)
Vp.sort()
k = int(0.95 * NumSims)
Vcrit = Vp[k]
Rwc = Sr - old_div(Vcrit, 2)
k1 = pars_1['k']
k2 = pars_2['k']
R1 = pars_1['r']
R2 = pars_2['r']
critical_angle = np.degrees(np.arccos(old_div(Rwc ** 2 - (k1 * R1) ** 2 -
(k2 * R2) ** 2, 2 * k1 * R1 * k2 * R2)))
D1 = pars_1['dec'], pars_1['inc']
D2 = pars_2['dec'], pars_2['inc']
angle = pmag.angle(D1, D2)
if print_result == True:
print('Results of Watson V test: ')
print('')
print("Watson's V: %.1f" % V)
print('Critical value of V: %.1f' % Vcrit)
if V < Vcrit:
if print_result == True:
print('"Pass": Since V is less than Vcrit, the null hypothesis')
print('that the two populations are drawn from distributions')
print('that share a common mean direction can not be rejected.')
result = 1
elif V > Vcrit:
if print_result == True:
print('"Fail": Since V is greater than Vcrit, the two means can')
print('be distinguished at the 95% confidence level.')
result = 0
if print_result == True:
print('')
print('M&M1990 classification:')
print('')
print('Angle between data set means: %.1f' % angle)
print('Critical angle for M&M1990: %.1f' % critical_angle)
if print_result == True:
if V > Vcrit:
print('')
elif V < Vcrit:
if critical_angle < 5:
print('The McFadden and McElhinny (1990) classification for')
print("this test is: 'A'")
elif critical_angle < 10:
print('The McFadden and McElhinny (1990) classification for')
print("this test is: 'B'")
elif critical_angle < 20:
print('The McFadden and McElhinny (1990) classification for')
print("this test is: 'C'")
else:
print('The McFadden and McElhinny (1990) classification for')
print("this test is: 'INDETERMINATE;")
if plot == 'yes':
CDF = {'cdf': 1}
plt.figure(figsize=(3.5, 2.5))
p1 = pmagplotlib.plot_cdf(CDF['cdf'], Vp, "Watson's V", 'r', '')
p2 = pmagplotlib.plot_vs(CDF['cdf'], [V], 'g', '-')
p3 = pmagplotlib.plot_vs(CDF['cdf'], [Vp[k]], 'b', '--')
if save == True:
plt.savefig(os.path.join(save_folder, 'common_mean_watson') +
'.' + fmt)
pmagplotlib.show_fig(CDF['cdf'])
return result, angle[0], critical_angle
|
common_mean_watson
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Data1, Data2, NumSims=5000, print_result=True, plot='no', save=False,\n save_folder='.', fmt='svg'):\n pars_1 = pmag.fisher_mean(Data1)\n pars_2 = pmag.fisher_mean(Data2)\n cart_1 = pmag.dir2cart([pars_1['dec'], pars_1['inc'], pars_1['r']])\n cart_2 = pmag.dir2cart([pars_2['dec'], pars_2['inc'], pars_2['r']])\n Sw = pars_1['k'] * pars_1['r'] + pars_2['k'] * pars_2['r']\n xhat_1 = pars_1['k'] * cart_1[0] + pars_2['k'] * cart_2[0]\n xhat_2 = pars_1['k'] * cart_1[1] + pars_2['k'] * cart_2[1]\n xhat_3 = pars_1['k'] * cart_1[2] + pars_2['k'] * cart_2[2]\n Rw = np.sqrt(xhat_1 ** 2 + xhat_2 ** 2 + xhat_3 ** 2)\n V = 2 * (Sw - Rw)\n Sr = Sw\n counter = 0\n Vp = []\n for k in range(NumSims):\n Dirp = []\n for i in range(pars_1['n']):\n Dirp.append(pmag.fshdev(pars_1['k']))\n pars_p1 = pmag.fisher_mean(Dirp)\n Dirp = []\n for i in range(pars_2['n']):\n Dirp.append(pmag.fshdev(pars_2['k']))\n pars_p2 = pmag.fisher_mean(Dirp)\n Vk = pmag.vfunc(pars_p1, pars_p2)\n Vp.append(Vk)\n Vp.sort()\n k = int(0.95 * NumSims)\n Vcrit = Vp[k]\n Rwc = Sr - old_div(Vcrit, 2)\n k1 = pars_1['k']\n k2 = pars_2['k']\n R1 = pars_1['r']\n R2 = pars_2['r']\n critical_angle = np.degrees(np.arccos(old_div(Rwc ** 2 - (k1 * R1) ** 2 -\n (k2 * R2) ** 2, 2 * k1 * R1 * k2 * R2)))\n D1 = pars_1['dec'], pars_1['inc']\n D2 = pars_2['dec'], pars_2['inc']\n angle = pmag.angle(D1, D2)\n if print_result == True:\n print('Results of Watson V test: ')\n print('')\n print(\"Watson's V: %.1f\" % V)\n print('Critical value of V: %.1f' % Vcrit)\n if V < Vcrit:\n if print_result == True:\n print('\"Pass\": Since V is less than Vcrit, the null hypothesis')\n print('that the two populations are drawn from distributions')\n print('that share a common mean direction can not be rejected.')\n result = 1\n elif V > Vcrit:\n if print_result == True:\n print('\"Fail\": Since V is greater than Vcrit, the two means can')\n print('be distinguished at the 95% confidence level.')\n result = 0\n if print_result == True:\n print('')\n print('M&M1990 classification:')\n print('')\n print('Angle between data set means: %.1f' % angle)\n print('Critical angle for M&M1990: %.1f' % critical_angle)\n if print_result == True:\n if V > Vcrit:\n print('')\n elif V < Vcrit:\n if critical_angle < 5:\n print('The McFadden and McElhinny (1990) classification for')\n print(\"this test is: 'A'\")\n elif critical_angle < 10:\n print('The McFadden and McElhinny (1990) classification for')\n print(\"this test is: 'B'\")\n elif critical_angle < 20:\n print('The McFadden and McElhinny (1990) classification for')\n print(\"this test is: 'C'\")\n else:\n print('The McFadden and McElhinny (1990) classification for')\n print(\"this test is: 'INDETERMINATE;\")\n if plot == 'yes':\n CDF = {'cdf': 1}\n plt.figure(figsize=(3.5, 2.5))\n p1 = pmagplotlib.plot_cdf(CDF['cdf'], Vp, \"Watson's V\", 'r', '')\n p2 = pmagplotlib.plot_vs(CDF['cdf'], [V], 'g', '-')\n p3 = pmagplotlib.plot_vs(CDF['cdf'], [Vp[k]], 'b', '--')\n if save == True:\n plt.savefig(os.path.join(save_folder, 'common_mean_watson') +\n '.' + fmt)\n pmagplotlib.show_fig(CDF['cdf'])\n return result, angle[0], critical_angle\n",
"role": "user"
},
{
"content": "common_mean_watson",
"role": "assistant"
}
] |
def x(lon=None, lat=None, di_block=None):
if di_block is None:
all_dirs = make_di_block(lon, lat)
else:
all_dirs = di_block
ppars = pmag.doprinc(all_dirs)
rDIs = []
nDIs = []
QQ_dict1 = {}
QQ_dict2 = {}
for rec in all_dirs:
angle = pmag.angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']])
if angle > 90.0:
rDIs.append(rec)
else:
nDIs.append(rec)
if len(rDIs) >= 10 or len(nDIs) >= 10:
D1, I1 = [], []
QQ = {'unf': 1, 'exp': 2}
if len(nDIs) < 10:
ppars = pmag.doprinc(rDIs)
Drbar, Irbar = ppars['dec'] - 180.0, -ppars['inc']
Nr = len(rDIs)
for di in rDIs:
d, irot = pmag.dotilt(di[0], di[1], Drbar - 180.0, 90.0 - Irbar
)
drot = d - 180.0
if drot < 0:
drot = drot + 360.0
D1.append(drot)
I1.append(irot)
Dtit = 'Mode 2 Declinations'
Itit = 'Mode 2 Inclinations'
else:
ppars = pmag.doprinc(nDIs)
Dnbar, Inbar = ppars['dec'], ppars['inc']
Nn = len(nDIs)
for di in nDIs:
d, irot = pmag.dotilt(di[0], di[1], Dnbar - 180.0, 90.0 - Inbar
)
drot = d - 180.0
if drot < 0:
drot = drot + 360.0
D1.append(drot)
I1.append(irot)
Dtit = 'Mode 1 Declinations'
Itit = 'Mode 1 Inclinations'
plt.figure(figsize=(6, 3))
Mu_n, Mu_ncr = pmagplotlib.plot_qq_unf(QQ['unf'], D1, Dtit, subplot
=True)
Me_n, Me_ncr = pmagplotlib.plot_qq_exp(QQ['exp'], I1, Itit, subplot
=True)
plt.tight_layout()
if Mu_n <= Mu_ncr and Me_n <= Me_ncr:
F_n = 'consistent with Fisherian model'
else:
F_n = 'Fisherian model rejected'
QQ_dict1['Mode'] = 'Mode 1'
QQ_dict1['Dec'] = Dnbar
QQ_dict1['Inc'] = Inbar
QQ_dict1['N'] = Nn
QQ_dict1['Mu'] = Mu_n
QQ_dict1['Mu_critical'] = Mu_ncr
QQ_dict1['Me'] = Me_n
QQ_dict1['Me_critical'] = Me_ncr
QQ_dict1['Test_result'] = F_n
if len(rDIs) > 10 and len(nDIs) > 10:
D2, I2 = [], []
ppars = pmag.doprinc(rDIs)
Drbar, Irbar = ppars['dec'] - 180.0, -ppars['inc']
Nr = len(rDIs)
for di in rDIs:
d, irot = pmag.dotilt(di[0], di[1], Drbar - 180.0, 90.0 - Irbar)
drot = d - 180.0
if drot < 0:
drot = drot + 360.0
D2.append(drot)
I2.append(irot)
Dtit = 'Mode 2 Declinations'
Itit = 'Mode 2 Inclinations'
plt.figure(figsize=(6, 3))
Mu_r, Mu_rcr = pmagplotlib.plot_qq_unf(QQ['unf'], D2, Dtit, subplot
=True)
Me_r, Me_rcr = pmagplotlib.plot_qq_exp(QQ['exp'], I2, Itit, subplot
=True)
plt.tight_layout()
if Mu_r <= Mu_rcr and Me_r <= Me_rcr:
F_r = 'consistent with Fisherian model'
else:
F_r = 'Fisherian model rejected'
QQ_dict2['Mode'] = 'Mode 2'
QQ_dict2['Dec'] = Drbar
QQ_dict2['Inc'] = Irbar
QQ_dict2['N'] = Nr
QQ_dict2['Mu'] = Mu_r
QQ_dict2['Mu_critical'] = Mu_rcr
QQ_dict2['Me'] = Me_r
QQ_dict2['Me_critical'] = Me_rcr
QQ_dict2['Test_result'] = F_r
if QQ_dict2:
return QQ_dict1, QQ_dict2
elif QQ_dict1:
return QQ_dict1
else:
print('you need N> 10 for at least one mode')
|
fishqq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lon=None, lat=None, di_block=None):\n if di_block is None:\n all_dirs = make_di_block(lon, lat)\n else:\n all_dirs = di_block\n ppars = pmag.doprinc(all_dirs)\n rDIs = []\n nDIs = []\n QQ_dict1 = {}\n QQ_dict2 = {}\n for rec in all_dirs:\n angle = pmag.angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']])\n if angle > 90.0:\n rDIs.append(rec)\n else:\n nDIs.append(rec)\n if len(rDIs) >= 10 or len(nDIs) >= 10:\n D1, I1 = [], []\n QQ = {'unf': 1, 'exp': 2}\n if len(nDIs) < 10:\n ppars = pmag.doprinc(rDIs)\n Drbar, Irbar = ppars['dec'] - 180.0, -ppars['inc']\n Nr = len(rDIs)\n for di in rDIs:\n d, irot = pmag.dotilt(di[0], di[1], Drbar - 180.0, 90.0 - Irbar\n )\n drot = d - 180.0\n if drot < 0:\n drot = drot + 360.0\n D1.append(drot)\n I1.append(irot)\n Dtit = 'Mode 2 Declinations'\n Itit = 'Mode 2 Inclinations'\n else:\n ppars = pmag.doprinc(nDIs)\n Dnbar, Inbar = ppars['dec'], ppars['inc']\n Nn = len(nDIs)\n for di in nDIs:\n d, irot = pmag.dotilt(di[0], di[1], Dnbar - 180.0, 90.0 - Inbar\n )\n drot = d - 180.0\n if drot < 0:\n drot = drot + 360.0\n D1.append(drot)\n I1.append(irot)\n Dtit = 'Mode 1 Declinations'\n Itit = 'Mode 1 Inclinations'\n plt.figure(figsize=(6, 3))\n Mu_n, Mu_ncr = pmagplotlib.plot_qq_unf(QQ['unf'], D1, Dtit, subplot\n =True)\n Me_n, Me_ncr = pmagplotlib.plot_qq_exp(QQ['exp'], I1, Itit, subplot\n =True)\n plt.tight_layout()\n if Mu_n <= Mu_ncr and Me_n <= Me_ncr:\n F_n = 'consistent with Fisherian model'\n else:\n F_n = 'Fisherian model rejected'\n QQ_dict1['Mode'] = 'Mode 1'\n QQ_dict1['Dec'] = Dnbar\n QQ_dict1['Inc'] = Inbar\n QQ_dict1['N'] = Nn\n QQ_dict1['Mu'] = Mu_n\n QQ_dict1['Mu_critical'] = Mu_ncr\n QQ_dict1['Me'] = Me_n\n QQ_dict1['Me_critical'] = Me_ncr\n QQ_dict1['Test_result'] = F_n\n if len(rDIs) > 10 and len(nDIs) > 10:\n D2, I2 = [], []\n ppars = pmag.doprinc(rDIs)\n Drbar, Irbar = ppars['dec'] - 180.0, -ppars['inc']\n Nr = len(rDIs)\n for di in rDIs:\n d, irot = pmag.dotilt(di[0], di[1], Drbar - 180.0, 90.0 - Irbar)\n drot = d - 180.0\n if drot < 0:\n drot = drot + 360.0\n D2.append(drot)\n I2.append(irot)\n Dtit = 'Mode 2 Declinations'\n Itit = 'Mode 2 Inclinations'\n plt.figure(figsize=(6, 3))\n Mu_r, Mu_rcr = pmagplotlib.plot_qq_unf(QQ['unf'], D2, Dtit, subplot\n =True)\n Me_r, Me_rcr = pmagplotlib.plot_qq_exp(QQ['exp'], I2, Itit, subplot\n =True)\n plt.tight_layout()\n if Mu_r <= Mu_rcr and Me_r <= Me_rcr:\n F_r = 'consistent with Fisherian model'\n else:\n F_r = 'Fisherian model rejected'\n QQ_dict2['Mode'] = 'Mode 2'\n QQ_dict2['Dec'] = Drbar\n QQ_dict2['Inc'] = Irbar\n QQ_dict2['N'] = Nr\n QQ_dict2['Mu'] = Mu_r\n QQ_dict2['Mu_critical'] = Mu_rcr\n QQ_dict2['Me'] = Me_r\n QQ_dict2['Me_critical'] = Me_rcr\n QQ_dict2['Test_result'] = F_r\n if QQ_dict2:\n return QQ_dict1, QQ_dict2\n elif QQ_dict1:\n return QQ_dict1\n else:\n print('you need N> 10 for at least one mode')\n",
"role": "user"
},
{
"content": "fishqq",
"role": "assistant"
}
] |
def x(inc, a95=None):
rad = old_div(np.pi, 180.0)
paleo_lat = old_div(np.arctan(0.5 * np.tan(inc * rad)), rad)
if a95 is not None:
paleo_lat_max = old_div(np.arctan(0.5 * np.tan((inc + a95) * rad)), rad
)
paleo_lat_min = old_div(np.arctan(0.5 * np.tan((inc - a95) * rad)), rad
)
return paleo_lat, paleo_lat_max, paleo_lat_min
else:
return paleo_lat
|
lat_from_inc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inc, a95=None):\n rad = old_div(np.pi, 180.0)\n paleo_lat = old_div(np.arctan(0.5 * np.tan(inc * rad)), rad)\n if a95 is not None:\n paleo_lat_max = old_div(np.arctan(0.5 * np.tan((inc + a95) * rad)), rad\n )\n paleo_lat_min = old_div(np.arctan(0.5 * np.tan((inc - a95) * rad)), rad\n )\n return paleo_lat, paleo_lat_max, paleo_lat_min\n else:\n return paleo_lat\n",
"role": "user"
},
{
"content": "lat_from_inc",
"role": "assistant"
}
] |
def x(ref_loc_lon, ref_loc_lat, pole_plon, pole_plat):
ref_loc = ref_loc_lon, ref_loc_lat
pole = pole_plon, pole_plat
paleo_lat = 90 - pmag.angle(pole, ref_loc)
return float(paleo_lat)
|
lat_from_pole
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ref_loc_lon, ref_loc_lat, pole_plon, pole_plat):\n ref_loc = ref_loc_lon, ref_loc_lat\n pole = pole_plon, pole_plat\n paleo_lat = 90 - pmag.angle(pole, ref_loc)\n return float(paleo_lat)\n",
"role": "user"
},
{
"content": "lat_from_pole",
"role": "assistant"
}
] |
def x(lat):
rad = old_div(np.pi, 180.0)
inc = old_div(np.arctan(2 * np.tan(lat * rad)), rad)
return inc
|
inc_from_lat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lat):\n rad = old_div(np.pi, 180.0)\n inc = old_div(np.arctan(2 * np.tan(lat * rad)), rad)\n return inc\n",
"role": "user"
},
{
"content": "inc_from_lat",
"role": "assistant"
}
] |
def x(fignum):
plt.figure(num=fignum)
plt.clf()
plt.axis('off')
Dcirc = np.arange(0, 361.0)
Icirc = np.zeros(361, 'f')
Xcirc, Ycirc = [], []
for k in range(361):
XY = pmag.dimap(Dcirc[k], Icirc[k])
Xcirc.append(XY[0])
Ycirc.append(XY[1])
plt.plot(Xcirc, Ycirc, 'k')
Xsym, Ysym = [], []
for I in range(10, 100, 10):
XY = pmag.dimap(0.0, I)
Xsym.append(XY[0])
Ysym.append(XY[1])
plt.plot(Xsym, Ysym, 'k+')
Xsym, Ysym = [], []
for I in range(10, 90, 10):
XY = pmag.dimap(90.0, I)
Xsym.append(XY[0])
Ysym.append(XY[1])
plt.plot(Xsym, Ysym, 'k+')
Xsym, Ysym = [], []
for I in range(10, 90, 10):
XY = pmag.dimap(180.0, I)
Xsym.append(XY[0])
Ysym.append(XY[1])
plt.plot(Xsym, Ysym, 'k+')
Xsym, Ysym = [], []
for I in range(10, 90, 10):
XY = pmag.dimap(270.0, I)
Xsym.append(XY[0])
Ysym.append(XY[1])
plt.plot(Xsym, Ysym, 'k+')
for D in range(0, 360, 10):
Xtick, Ytick = [], []
for I in range(4):
XY = pmag.dimap(D, I)
Xtick.append(XY[0])
Ytick.append(XY[1])
plt.plot(Xtick, Ytick, 'k')
plt.axis('equal')
plt.axis((-1.05, 1.05, -1.05, 1.05))
|
plot_net
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum):\n plt.figure(num=fignum)\n plt.clf()\n plt.axis('off')\n Dcirc = np.arange(0, 361.0)\n Icirc = np.zeros(361, 'f')\n Xcirc, Ycirc = [], []\n for k in range(361):\n XY = pmag.dimap(Dcirc[k], Icirc[k])\n Xcirc.append(XY[0])\n Ycirc.append(XY[1])\n plt.plot(Xcirc, Ycirc, 'k')\n Xsym, Ysym = [], []\n for I in range(10, 100, 10):\n XY = pmag.dimap(0.0, I)\n Xsym.append(XY[0])\n Ysym.append(XY[1])\n plt.plot(Xsym, Ysym, 'k+')\n Xsym, Ysym = [], []\n for I in range(10, 90, 10):\n XY = pmag.dimap(90.0, I)\n Xsym.append(XY[0])\n Ysym.append(XY[1])\n plt.plot(Xsym, Ysym, 'k+')\n Xsym, Ysym = [], []\n for I in range(10, 90, 10):\n XY = pmag.dimap(180.0, I)\n Xsym.append(XY[0])\n Ysym.append(XY[1])\n plt.plot(Xsym, Ysym, 'k+')\n Xsym, Ysym = [], []\n for I in range(10, 90, 10):\n XY = pmag.dimap(270.0, I)\n Xsym.append(XY[0])\n Ysym.append(XY[1])\n plt.plot(Xsym, Ysym, 'k+')\n for D in range(0, 360, 10):\n Xtick, Ytick = [], []\n for I in range(4):\n XY = pmag.dimap(D, I)\n Xtick.append(XY[0])\n Ytick.append(XY[1])\n plt.plot(Xtick, Ytick, 'k')\n plt.axis('equal')\n plt.axis((-1.05, 1.05, -1.05, 1.05))\n",
"role": "user"
},
{
"content": "plot_net",
"role": "assistant"
}
] |
def x(dec=None, inc=None, di_block=None, color='k', marker='o', markersize=
20, legend='no', label='', title='', edge='', alpha=1):
X_down = []
X_up = []
Y_down = []
Y_up = []
color_down = []
color_up = []
if di_block is not None:
di_lists = unpack_di_block(di_block)
if len(di_lists) == 3:
dec, inc, intensity = di_lists
if len(di_lists) == 2:
dec, inc = di_lists
try:
length = len(dec)
for n in range(len(dec)):
XY = pmag.dimap(dec[n], inc[n])
if inc[n] >= 0:
X_down.append(XY[0])
Y_down.append(XY[1])
if type(color) == list:
color_down.append(color[n])
else:
color_down.append(color)
else:
X_up.append(XY[0])
Y_up.append(XY[1])
if type(color) == list:
color_up.append(color[n])
else:
color_up.append(color)
except:
XY = pmag.dimap(dec, inc)
if inc >= 0:
X_down.append(XY[0])
Y_down.append(XY[1])
color_down.append(color)
else:
X_up.append(XY[0])
Y_up.append(XY[1])
color_up.append(color)
if len(X_up) > 0:
plt.scatter(X_up, Y_up, facecolors='none', edgecolors=color_up, s=
markersize, marker=marker, label=label, alpha=alpha)
if len(X_down) > 0:
plt.scatter(X_down, Y_down, facecolors=color_down, edgecolors=edge,
s=markersize, marker=marker, label=label, alpha=alpha)
if legend == 'yes':
plt.legend(loc=2)
plt.tight_layout()
if title != '':
plt.title(title)
|
plot_di
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec=None, inc=None, di_block=None, color='k', marker='o', markersize=\n 20, legend='no', label='', title='', edge='', alpha=1):\n X_down = []\n X_up = []\n Y_down = []\n Y_up = []\n color_down = []\n color_up = []\n if di_block is not None:\n di_lists = unpack_di_block(di_block)\n if len(di_lists) == 3:\n dec, inc, intensity = di_lists\n if len(di_lists) == 2:\n dec, inc = di_lists\n try:\n length = len(dec)\n for n in range(len(dec)):\n XY = pmag.dimap(dec[n], inc[n])\n if inc[n] >= 0:\n X_down.append(XY[0])\n Y_down.append(XY[1])\n if type(color) == list:\n color_down.append(color[n])\n else:\n color_down.append(color)\n else:\n X_up.append(XY[0])\n Y_up.append(XY[1])\n if type(color) == list:\n color_up.append(color[n])\n else:\n color_up.append(color)\n except:\n XY = pmag.dimap(dec, inc)\n if inc >= 0:\n X_down.append(XY[0])\n Y_down.append(XY[1])\n color_down.append(color)\n else:\n X_up.append(XY[0])\n Y_up.append(XY[1])\n color_up.append(color)\n if len(X_up) > 0:\n plt.scatter(X_up, Y_up, facecolors='none', edgecolors=color_up, s=\n markersize, marker=marker, label=label, alpha=alpha)\n if len(X_down) > 0:\n plt.scatter(X_down, Y_down, facecolors=color_down, edgecolors=edge,\n s=markersize, marker=marker, label=label, alpha=alpha)\n if legend == 'yes':\n plt.legend(loc=2)\n plt.tight_layout()\n if title != '':\n plt.title(title)\n",
"role": "user"
},
{
"content": "plot_di",
"role": "assistant"
}
] |
def x(dec, inc, a95, color='k', marker='o', markersize=20, label='', legend
='no'):
DI_dimap = pmag.dimap(dec, inc)
if inc < 0:
plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=
'white', marker=marker, s=markersize, label=label)
if inc >= 0:
plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=
color, marker=marker, s=markersize, label=label)
Xcirc, Ycirc = [], []
Da95, Ia95 = pmag.circ(dec, inc, a95)
if legend == 'yes':
plt.legend(loc=2)
for k in range(len(Da95)):
XY = pmag.dimap(Da95[k], Ia95[k])
Xcirc.append(XY[0])
Ycirc.append(XY[1])
plt.plot(Xcirc, Ycirc, c=color)
plt.tight_layout()
|
plot_di_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec, inc, a95, color='k', marker='o', markersize=20, label='', legend\n ='no'):\n DI_dimap = pmag.dimap(dec, inc)\n if inc < 0:\n plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=\n 'white', marker=marker, s=markersize, label=label)\n if inc >= 0:\n plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=\n color, marker=marker, s=markersize, label=label)\n Xcirc, Ycirc = [], []\n Da95, Ia95 = pmag.circ(dec, inc, a95)\n if legend == 'yes':\n plt.legend(loc=2)\n for k in range(len(Da95)):\n XY = pmag.dimap(Da95[k], Ia95[k])\n Xcirc.append(XY[0])\n Ycirc.append(XY[1])\n plt.plot(Xcirc, Ycirc, c=color)\n plt.tight_layout()\n",
"role": "user"
},
{
"content": "plot_di_mean",
"role": "assistant"
}
] |
def x(bingham_dictionary, fignum=1, color='k', marker='o', markersize=20,
label='', legend='no'):
plot_di_mean_ellipse(bingham_dictionary, fignum=fignum, color=color,
marker=marker, markersize=markersize, label=label, legend=legend)
|
plot_di_mean_bingham
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bingham_dictionary, fignum=1, color='k', marker='o', markersize=20,\n label='', legend='no'):\n plot_di_mean_ellipse(bingham_dictionary, fignum=fignum, color=color,\n marker=marker, markersize=markersize, label=label, legend=legend)\n",
"role": "user"
},
{
"content": "plot_di_mean_bingham",
"role": "assistant"
}
] |
def x(dictionary, fignum=1, color='k', marker='o', markersize=20, label='',
legend='no'):
pars = []
pars.append(dictionary['dec'])
pars.append(dictionary['inc'])
pars.append(dictionary['Zeta'])
pars.append(dictionary['Zdec'])
pars.append(dictionary['Zinc'])
pars.append(dictionary['Eta'])
pars.append(dictionary['Edec'])
pars.append(dictionary['Einc'])
DI_dimap = pmag.dimap(dictionary['dec'], dictionary['inc'])
if dictionary['inc'] < 0:
plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=
'white', marker=marker, s=markersize, label=label)
if dictionary['inc'] >= 0:
plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=
color, marker=marker, s=markersize, label=label)
pmagplotlib.plot_ell(fignum, pars, color, 0, 1)
|
plot_di_mean_ellipse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dictionary, fignum=1, color='k', marker='o', markersize=20, label='',\n legend='no'):\n pars = []\n pars.append(dictionary['dec'])\n pars.append(dictionary['inc'])\n pars.append(dictionary['Zeta'])\n pars.append(dictionary['Zdec'])\n pars.append(dictionary['Zinc'])\n pars.append(dictionary['Eta'])\n pars.append(dictionary['Edec'])\n pars.append(dictionary['Einc'])\n DI_dimap = pmag.dimap(dictionary['dec'], dictionary['inc'])\n if dictionary['inc'] < 0:\n plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=\n 'white', marker=marker, s=markersize, label=label)\n if dictionary['inc'] >= 0:\n plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=\n color, marker=marker, s=markersize, label=label)\n pmagplotlib.plot_ell(fignum, pars, color, 0, 1)\n",
"role": "user"
},
{
"content": "plot_di_mean_ellipse",
"role": "assistant"
}
] |
def x(central_longitude=0, central_latitude=0, figsize=(8, 8), add_land=
True, land_color='tan', add_ocean=False, ocean_color='lightblue',
grid_lines=True, lat_grid=[-80.0, -60.0, -30.0, 0.0, 30.0, 60.0, 80.0],
lon_grid=[-180.0, -150.0, -120.0, -90.0, -60.0, -30.0, 0.0, 30.0, 60.0,
90.0, 120.0, 150.0, 180.0]):
if not has_cartopy:
print(
'-W- cartopy must be installed to run ipmag.make_orthographic_map')
return
fig = plt.figure(figsize=figsize)
map_projection = ccrs.Orthographic(central_longitude=central_longitude,
central_latitude=central_latitude)
ax = plt.axes(projection=map_projection)
ax.set_global()
if add_ocean == True:
ax.add_feature(cartopy.feature.OCEAN, zorder=0, facecolor=ocean_color)
if add_land == True:
ax.add_feature(cartopy.feature.LAND, zorder=0, facecolor=land_color,
edgecolor='black')
if grid_lines == True:
ax.gridlines(xlocs=lon_grid, ylocs=lat_grid, linewidth=1, color=
'black', linestyle='dotted')
return ax
|
make_orthographic_map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(central_longitude=0, central_latitude=0, figsize=(8, 8), add_land=\n True, land_color='tan', add_ocean=False, ocean_color='lightblue',\n grid_lines=True, lat_grid=[-80.0, -60.0, -30.0, 0.0, 30.0, 60.0, 80.0],\n lon_grid=[-180.0, -150.0, -120.0, -90.0, -60.0, -30.0, 0.0, 30.0, 60.0,\n 90.0, 120.0, 150.0, 180.0]):\n if not has_cartopy:\n print(\n '-W- cartopy must be installed to run ipmag.make_orthographic_map')\n return\n fig = plt.figure(figsize=figsize)\n map_projection = ccrs.Orthographic(central_longitude=central_longitude,\n central_latitude=central_latitude)\n ax = plt.axes(projection=map_projection)\n ax.set_global()\n if add_ocean == True:\n ax.add_feature(cartopy.feature.OCEAN, zorder=0, facecolor=ocean_color)\n if add_land == True:\n ax.add_feature(cartopy.feature.LAND, zorder=0, facecolor=land_color,\n edgecolor='black')\n if grid_lines == True:\n ax.gridlines(xlocs=lon_grid, ylocs=lat_grid, linewidth=1, color=\n 'black', linestyle='dotted')\n return ax\n",
"role": "user"
},
{
"content": "make_orthographic_map",
"role": "assistant"
}
] |
def x(map_axis, plon, plat, A95, label='', color='k', edgecolor='k', marker
='o', markersize=20, legend='no'):
if not has_cartopy:
print('-W- cartopy must be installed to run ipmag.plot_pole')
return
A95_km = A95 * 111.32
map_axis.scatter(plon, plat, marker=marker, color=color, edgecolors=
edgecolor, s=markersize, label=label, zorder=101, transform=ccrs.
Geodetic())
equi(map_axis, plon, plat, A95_km, color)
if legend == 'yes':
plt.legend(loc=2)
|
plot_pole
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(map_axis, plon, plat, A95, label='', color='k', edgecolor='k', marker\n ='o', markersize=20, legend='no'):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.plot_pole')\n return\n A95_km = A95 * 111.32\n map_axis.scatter(plon, plat, marker=marker, color=color, edgecolors=\n edgecolor, s=markersize, label=label, zorder=101, transform=ccrs.\n Geodetic())\n equi(map_axis, plon, plat, A95_km, color)\n if legend == 'yes':\n plt.legend(loc=2)\n",
"role": "user"
},
{
"content": "plot_pole",
"role": "assistant"
}
] |
def x(map_axis, plon, plat, A95, label='', color='k', edgecolor='k', marker
='o', markersize=20, legend='no'):
map_axis.scatter(plon, plat, marker=marker, color=color, edgecolors=
edgecolor, s=markersize, label=label, zorder=101, transform=ccrs.
Geodetic())
if isinstance(color, str) == True:
for n in range(0, len(A95)):
A95_km = A95[n] * 111.32
equi(map_axis, plon[n], plat[n], A95_km, color)
else:
for n in range(0, len(A95)):
A95_km = A95[n] * 111.32
equi(map_axis, plon[n], plat[n], A95_km, color[n])
if legend == 'yes':
plt.legend(loc=2)
|
plot_poles
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(map_axis, plon, plat, A95, label='', color='k', edgecolor='k', marker\n ='o', markersize=20, legend='no'):\n map_axis.scatter(plon, plat, marker=marker, color=color, edgecolors=\n edgecolor, s=markersize, label=label, zorder=101, transform=ccrs.\n Geodetic())\n if isinstance(color, str) == True:\n for n in range(0, len(A95)):\n A95_km = A95[n] * 111.32\n equi(map_axis, plon[n], plat[n], A95_km, color)\n else:\n for n in range(0, len(A95)):\n A95_km = A95[n] * 111.32\n equi(map_axis, plon[n], plat[n], A95_km, color[n])\n if legend == 'yes':\n plt.legend(loc=2)\n",
"role": "user"
},
{
"content": "plot_poles",
"role": "assistant"
}
] |
def x(mapname, plon, plat, A95, label='', color='k', edgecolor='k', marker=
'o', markersize=20, legend='no'):
centerlon, centerlat = mapname(plon, plat)
A95_km = A95 * 111.32
mapname.scatter(centerlon, centerlat, marker=marker, color=color,
edgecolors=edgecolor, s=markersize, label=label, zorder=101)
equi_basemap(mapname, plon, plat, A95_km, color)
if legend == 'yes':
plt.legend(loc=2)
|
plot_pole_basemap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mapname, plon, plat, A95, label='', color='k', edgecolor='k', marker=\n 'o', markersize=20, legend='no'):\n centerlon, centerlat = mapname(plon, plat)\n A95_km = A95 * 111.32\n mapname.scatter(centerlon, centerlat, marker=marker, color=color,\n edgecolors=edgecolor, s=markersize, label=label, zorder=101)\n equi_basemap(mapname, plon, plat, A95_km, color)\n if legend == 'yes':\n plt.legend(loc=2)\n",
"role": "user"
},
{
"content": "plot_pole_basemap",
"role": "assistant"
}
] |
def x(map_axis, plon, plat, slon, slat, dp, dm, pole_label='pole',
site_label='site', pole_color='k', pole_edgecolor='k', pole_marker='o',
site_color='r', site_edgecolor='r', site_marker='s', markersize=20,
legend=True):
if not has_cartopy:
print('-W- cartopy must be installed to run ipmag.plot_pole_dp_dm')
return
dp_km = dp * 111.32
dm_km = dm * 111.32
map_axis.scatter(plon, plat, marker=pole_marker, color=pole_color,
edgecolors=pole_edgecolor, s=markersize, label=pole_label, zorder=
101, transform=ccrs.Geodetic())
map_axis.scatter(slon, slat, marker=site_marker, color=site_color,
edgecolors=site_edgecolor, s=markersize, label=site_label, zorder=
101, transform=ccrs.Geodetic())
site_lon_rad = np.deg2rad(slon)
site_lat_rad = np.deg2rad(slat)
c_rad = np.deg2rad(90 - slat)
pole_lon_rad = np.deg2rad(plon)
pole_lat_rad = np.deg2rad(plat)
a_rad = np.deg2rad(90 - plat)
B_rad = np.abs(pole_lon_rad - site_lon_rad)
cos_b = np.cos(c_rad) * np.cos(a_rad) + np.sin(c_rad) * np.sin(a_rad
) * np.cos(B_rad)
b_rad = np.arccos(cos_b)
sin_C = np.sin(B_rad) / np.sin(b_rad) * np.sin(c_rad)
C_rad = np.arcsin(sin_C)
if slon - plon > 180:
if plon >= slon and plat >= slat:
C_deg = -np.abs(np.rad2deg(C_rad))
elif plon <= slon and plat >= slat:
C_deg = np.abs(np.rad2deg(C_rad))
elif plon >= slon and plat <= slat:
C_deg = np.abs(np.rad2deg(C_rad))
elif plon <= slon and plat <= slat:
C_deg = -np.abs(np.rad2deg(C_rad))
elif slon - plon <= 180:
if plon >= slon and plat >= slat:
C_deg = np.abs(np.rad2deg(C_rad))
elif plon <= slon and plat >= slat:
C_deg = -np.abs(np.rad2deg(C_rad))
elif plon >= slon and plat <= slat:
C_deg = -np.abs(np.rad2deg(C_rad))
elif plon <= slon and plat <= slat:
C_deg = np.abs(np.rad2deg(C_rad))
print(C_deg)
ellipse(map_axis, plon, plat, dp_km, dm_km, C_deg)
if legend == True:
plt.legend(loc=2)
|
plot_pole_dp_dm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(map_axis, plon, plat, slon, slat, dp, dm, pole_label='pole',\n site_label='site', pole_color='k', pole_edgecolor='k', pole_marker='o',\n site_color='r', site_edgecolor='r', site_marker='s', markersize=20,\n legend=True):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.plot_pole_dp_dm')\n return\n dp_km = dp * 111.32\n dm_km = dm * 111.32\n map_axis.scatter(plon, plat, marker=pole_marker, color=pole_color,\n edgecolors=pole_edgecolor, s=markersize, label=pole_label, zorder=\n 101, transform=ccrs.Geodetic())\n map_axis.scatter(slon, slat, marker=site_marker, color=site_color,\n edgecolors=site_edgecolor, s=markersize, label=site_label, zorder=\n 101, transform=ccrs.Geodetic())\n site_lon_rad = np.deg2rad(slon)\n site_lat_rad = np.deg2rad(slat)\n c_rad = np.deg2rad(90 - slat)\n pole_lon_rad = np.deg2rad(plon)\n pole_lat_rad = np.deg2rad(plat)\n a_rad = np.deg2rad(90 - plat)\n B_rad = np.abs(pole_lon_rad - site_lon_rad)\n cos_b = np.cos(c_rad) * np.cos(a_rad) + np.sin(c_rad) * np.sin(a_rad\n ) * np.cos(B_rad)\n b_rad = np.arccos(cos_b)\n sin_C = np.sin(B_rad) / np.sin(b_rad) * np.sin(c_rad)\n C_rad = np.arcsin(sin_C)\n if slon - plon > 180:\n if plon >= slon and plat >= slat:\n C_deg = -np.abs(np.rad2deg(C_rad))\n elif plon <= slon and plat >= slat:\n C_deg = np.abs(np.rad2deg(C_rad))\n elif plon >= slon and plat <= slat:\n C_deg = np.abs(np.rad2deg(C_rad))\n elif plon <= slon and plat <= slat:\n C_deg = -np.abs(np.rad2deg(C_rad))\n elif slon - plon <= 180:\n if plon >= slon and plat >= slat:\n C_deg = np.abs(np.rad2deg(C_rad))\n elif plon <= slon and plat >= slat:\n C_deg = -np.abs(np.rad2deg(C_rad))\n elif plon >= slon and plat <= slat:\n C_deg = -np.abs(np.rad2deg(C_rad))\n elif plon <= slon and plat <= slat:\n C_deg = np.abs(np.rad2deg(C_rad))\n print(C_deg)\n ellipse(map_axis, plon, plat, dp_km, dm_km, C_deg)\n if legend == True:\n plt.legend(loc=2)\n",
"role": "user"
},
{
"content": "plot_pole_dp_dm",
"role": "assistant"
}
] |
def x(map_axis, plons, plats, A95s, colorvalues, vmin, vmax, colormap=
'viridis', edgecolor='k', marker='o', markersize='20', alpha=1.0,
colorbar=True, colorbar_label='pole age (Ma)'):
if not has_cartopy:
print('-W- cartopy must be installed to run ipmag.plot_poles_colorbar')
return
color_mapping = plt.cm.ScalarMappable(cmap=colormap, norm=plt.Normalize
(vmin=vmin, vmax=vmax))
colors = color_mapping.to_rgba(colorvalues).tolist()
plot_poles(map_axis, plons, plats, A95s, label='', color=colors,
edgecolor=edgecolor, marker=marker)
if colorbar == True:
sm = plt.cm.ScalarMappable(cmap=colormap, norm=plt.Normalize(vmin=
vmin, vmax=vmax))
sm._A = []
plt.colorbar(sm, orientation='horizontal', shrink=0.8, pad=0.05,
label=colorbar_label)
|
plot_poles_colorbar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(map_axis, plons, plats, A95s, colorvalues, vmin, vmax, colormap=\n 'viridis', edgecolor='k', marker='o', markersize='20', alpha=1.0,\n colorbar=True, colorbar_label='pole age (Ma)'):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.plot_poles_colorbar')\n return\n color_mapping = plt.cm.ScalarMappable(cmap=colormap, norm=plt.Normalize\n (vmin=vmin, vmax=vmax))\n colors = color_mapping.to_rgba(colorvalues).tolist()\n plot_poles(map_axis, plons, plats, A95s, label='', color=colors,\n edgecolor=edgecolor, marker=marker)\n if colorbar == True:\n sm = plt.cm.ScalarMappable(cmap=colormap, norm=plt.Normalize(vmin=\n vmin, vmax=vmax))\n sm._A = []\n plt.colorbar(sm, orientation='horizontal', shrink=0.8, pad=0.05,\n label=colorbar_label)\n",
"role": "user"
},
{
"content": "plot_poles_colorbar",
"role": "assistant"
}
] |
def x(map_axis, vgp_lon=None, vgp_lat=None, di_block=None, label='', color=
'k', marker='o', edge='black', markersize=20, legend=False):
if not has_cartopy:
print('-W- cartopy must be installed to run ipmag.plot_vgp')
return
if di_block != None:
di_lists = unpack_di_block(di_block)
if len(di_lists) == 3:
vgp_lon, vgp_lat, intensity = di_lists
if len(di_lists) == 2:
vgp_lon, vgp_lat = di_lists
map_axis.scatter(vgp_lon, vgp_lat, marker=marker, edgecolors=[edge], s=
markersize, color=color, label=label, zorder=100, transform=ccrs.
Geodetic())
map_axis.set_global()
if legend == True:
plt.legend(loc=2)
|
plot_vgp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(map_axis, vgp_lon=None, vgp_lat=None, di_block=None, label='', color=\n 'k', marker='o', edge='black', markersize=20, legend=False):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.plot_vgp')\n return\n if di_block != None:\n di_lists = unpack_di_block(di_block)\n if len(di_lists) == 3:\n vgp_lon, vgp_lat, intensity = di_lists\n if len(di_lists) == 2:\n vgp_lon, vgp_lat = di_lists\n map_axis.scatter(vgp_lon, vgp_lat, marker=marker, edgecolors=[edge], s=\n markersize, color=color, label=label, zorder=100, transform=ccrs.\n Geodetic())\n map_axis.set_global()\n if legend == True:\n plt.legend(loc=2)\n",
"role": "user"
},
{
"content": "plot_vgp",
"role": "assistant"
}
] |
def x(mapname, vgp_lon=None, vgp_lat=None, di_block=None, label='', color=
'k', marker='o', markersize=20, legend='no'):
if di_block != None:
di_lists = unpack_di_block(di_block)
if len(di_lists) == 3:
vgp_lon, vgp_lat, intensity = di_lists
if len(di_lists) == 2:
vgp_lon, vgp_lat = di_lists
centerlon, centerlat = mapname(vgp_lon, vgp_lat)
mapname.scatter(centerlon, centerlat, marker=marker, s=markersize,
color=color, label=label, zorder=100)
if legend == 'yes':
plt.legend(loc=2)
|
plot_vgp_basemap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mapname, vgp_lon=None, vgp_lat=None, di_block=None, label='', color=\n 'k', marker='o', markersize=20, legend='no'):\n if di_block != None:\n di_lists = unpack_di_block(di_block)\n if len(di_lists) == 3:\n vgp_lon, vgp_lat, intensity = di_lists\n if len(di_lists) == 2:\n vgp_lon, vgp_lat = di_lists\n centerlon, centerlat = mapname(vgp_lon, vgp_lat)\n mapname.scatter(centerlon, centerlat, marker=marker, s=markersize,\n color=color, label=label, zorder=100)\n if legend == 'yes':\n plt.legend(loc=2)\n",
"role": "user"
},
{
"content": "plot_vgp_basemap",
"role": "assistant"
}
] |
def x(dataframe, tilt_correction='yes', site_lon='site_lon', site_lat=
'site_lat', dec_is='dec_is', inc_is='inc_is', dec_tc='dec_tc', inc_tc=
'inc_tc'):
dataframe.is_copy = False
if tilt_correction == 'yes':
dataframe['paleolatitude'] = np.degrees(np.arctan(0.5 * np.tan(np.
radians(dataframe[inc_tc]))))
dataframe['colatitude'] = 90 - dataframe['paleolatitude']
dataframe['vgp_lat'] = np.degrees(np.arcsin(np.sin(np.radians(
dataframe[site_lat])) * np.cos(np.radians(dataframe[
'colatitude'])) + np.cos(np.radians(dataframe[site_lat])) * np.
sin(np.radians(dataframe['colatitude'])) * np.cos(np.radians(
dataframe[dec_tc]))))
dataframe['beta'] = np.degrees(np.arcsin(old_div(np.sin(np.radians(
dataframe['colatitude'])) * np.sin(np.radians(dataframe[dec_tc]
)), np.cos(np.radians(dataframe['vgp_lat'])))))
mask = np.cos(np.radians(dataframe['colatitude'])) > np.sin(np.
radians(dataframe[site_lat])) * np.sin(np.radians(dataframe[
'vgp_lat']))
dataframe['vgp_lon'] = np.where(mask, (dataframe[site_lon] +
dataframe['beta']) % 360.0, (dataframe[site_lon] + 180 -
dataframe['beta']) % 360.0)
dataframe['vgp_lat_rev'] = -dataframe['vgp_lat']
dataframe['vgp_lon_rev'] = (dataframe['vgp_lon'] - 180.0) % 360.0
del dataframe['colatitude']
del dataframe['beta']
if tilt_correction == 'no':
dataframe['paleolatitude'] = np.degrees(np.arctan(0.5 * np.tan(np.
radians(dataframe[inc_is]))))
dataframe['colatitude'] = 90 - dataframe['paleolatitude']
dataframe['vgp_lat'] = np.degrees(np.arcsin(np.sin(np.radians(
dataframe[site_lat])) * np.cos(np.radians(dataframe[
'colatitude'])) + np.cos(np.radians(dataframe[site_lat])) * np.
sin(np.radians(dataframe['colatitude'])) * np.cos(np.radians(
dataframe[dec_is]))))
dataframe['beta'] = np.degrees(np.arcsin(old_div(np.sin(np.radians(
dataframe['colatitude'])) * np.sin(np.radians(dataframe[dec_is]
)), np.cos(np.radians(dataframe['vgp_lat'])))))
mask = np.cos(np.radians(dataframe['colatitude'])) > np.sin(np.
radians(dataframe[site_lat])) * np.sin(np.radians(dataframe[
'vgp_lat']))
dataframe['vgp_lon'] = np.where(mask, (dataframe[site_lon] +
dataframe['beta']) % 360.0, (dataframe[site_lon] + 180 -
dataframe['beta']) % 360.0)
dataframe['vgp_lat_rev'] = -dataframe['vgp_lat']
dataframe['vgp_lon_rev'] = (dataframe['vgp_lon'] - 180.0) % 360.0
del dataframe['colatitude']
del dataframe['beta']
return dataframe
|
vgp_calc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dataframe, tilt_correction='yes', site_lon='site_lon', site_lat=\n 'site_lat', dec_is='dec_is', inc_is='inc_is', dec_tc='dec_tc', inc_tc=\n 'inc_tc'):\n dataframe.is_copy = False\n if tilt_correction == 'yes':\n dataframe['paleolatitude'] = np.degrees(np.arctan(0.5 * np.tan(np.\n radians(dataframe[inc_tc]))))\n dataframe['colatitude'] = 90 - dataframe['paleolatitude']\n dataframe['vgp_lat'] = np.degrees(np.arcsin(np.sin(np.radians(\n dataframe[site_lat])) * np.cos(np.radians(dataframe[\n 'colatitude'])) + np.cos(np.radians(dataframe[site_lat])) * np.\n sin(np.radians(dataframe['colatitude'])) * np.cos(np.radians(\n dataframe[dec_tc]))))\n dataframe['beta'] = np.degrees(np.arcsin(old_div(np.sin(np.radians(\n dataframe['colatitude'])) * np.sin(np.radians(dataframe[dec_tc]\n )), np.cos(np.radians(dataframe['vgp_lat'])))))\n mask = np.cos(np.radians(dataframe['colatitude'])) > np.sin(np.\n radians(dataframe[site_lat])) * np.sin(np.radians(dataframe[\n 'vgp_lat']))\n dataframe['vgp_lon'] = np.where(mask, (dataframe[site_lon] +\n dataframe['beta']) % 360.0, (dataframe[site_lon] + 180 -\n dataframe['beta']) % 360.0)\n dataframe['vgp_lat_rev'] = -dataframe['vgp_lat']\n dataframe['vgp_lon_rev'] = (dataframe['vgp_lon'] - 180.0) % 360.0\n del dataframe['colatitude']\n del dataframe['beta']\n if tilt_correction == 'no':\n dataframe['paleolatitude'] = np.degrees(np.arctan(0.5 * np.tan(np.\n radians(dataframe[inc_is]))))\n dataframe['colatitude'] = 90 - dataframe['paleolatitude']\n dataframe['vgp_lat'] = np.degrees(np.arcsin(np.sin(np.radians(\n dataframe[site_lat])) * np.cos(np.radians(dataframe[\n 'colatitude'])) + np.cos(np.radians(dataframe[site_lat])) * np.\n sin(np.radians(dataframe['colatitude'])) * np.cos(np.radians(\n dataframe[dec_is]))))\n dataframe['beta'] = np.degrees(np.arcsin(old_div(np.sin(np.radians(\n dataframe['colatitude'])) * np.sin(np.radians(dataframe[dec_is]\n )), np.cos(np.radians(dataframe['vgp_lat'])))))\n mask = np.cos(np.radians(dataframe['colatitude'])) > np.sin(np.\n radians(dataframe[site_lat])) * np.sin(np.radians(dataframe[\n 'vgp_lat']))\n dataframe['vgp_lon'] = np.where(mask, (dataframe[site_lon] +\n dataframe['beta']) % 360.0, (dataframe[site_lon] + 180 -\n dataframe['beta']) % 360.0)\n dataframe['vgp_lat_rev'] = -dataframe['vgp_lat']\n dataframe['vgp_lon_rev'] = (dataframe['vgp_lon'] - 180.0) % 360.0\n del dataframe['colatitude']\n del dataframe['beta']\n return dataframe\n",
"role": "user"
},
{
"content": "vgp_calc",
"role": "assistant"
}
] |
def x(dataframe, site_correction='yes', dec_tc='dec_tc', inc_tc='inc_tc'):
dataframe_dirs = []
for n in range(0, len(dataframe)):
dataframe_dirs.append([dataframe[dec_tc][n], dataframe[inc_tc][n], 1.0]
)
dataframe_dir_mean = pmag.fisher_mean(dataframe_dirs)
dataframe_poles = []
dataframe_pole_lats = []
dataframe_pole_lons = []
for n in range(0, len(dataframe)):
dataframe_poles.append([dataframe['vgp_lon'][n], dataframe[
'vgp_lat'][n], 1.0])
dataframe_pole_lats.append(dataframe['vgp_lat'][n])
dataframe_pole_lons.append(dataframe['vgp_lon'][n])
dataframe_pole_mean = pmag.fisher_mean(dataframe_poles)
dataframe['paleolatitude'] = lat_from_inc(dataframe_dir_mean['inc'])
angle_list = []
for n in range(0, len(dataframe)):
angle = pmag.angle([dataframe['vgp_lon'][n], dataframe['vgp_lat'][n
]], [dataframe_pole_mean['dec'], dataframe_pole_mean['inc']])
angle_list.append(angle[0])
dataframe['delta_mean_pole'] = angle_list
if site_correction == 'yes':
dataframe['K'] = old_div(dataframe['k'], 0.125 * (5 + 18 * np.sin(
np.deg2rad(dataframe['paleolatitude'])) ** 2 + 9 * np.sin(np.
deg2rad(dataframe['paleolatitude'])) ** 4))
dataframe['Sw'] = old_div(81, dataframe['K'] ** 0.5)
summation = 0
N = 0
for n in range(0, len(dataframe)):
quantity = dataframe['delta_mean_pole'][n] ** 2 - old_div(
dataframe['Sw'][n] ** 2, dataframe['n'][n])
summation += quantity
N += 1
Sb = (old_div(1.0, N - 1.0) * summation) ** 0.5
if site_correction == 'no':
summation = 0
N = 0
for n in range(0, len(dataframe)):
quantity = dataframe['delta_mean_pole'][n] ** 2
summation += quantity
N += 1
Sb = (old_div(1.0, N - 1.0) * summation) ** 0.5
return Sb
|
sb_vgp_calc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dataframe, site_correction='yes', dec_tc='dec_tc', inc_tc='inc_tc'):\n dataframe_dirs = []\n for n in range(0, len(dataframe)):\n dataframe_dirs.append([dataframe[dec_tc][n], dataframe[inc_tc][n], 1.0]\n )\n dataframe_dir_mean = pmag.fisher_mean(dataframe_dirs)\n dataframe_poles = []\n dataframe_pole_lats = []\n dataframe_pole_lons = []\n for n in range(0, len(dataframe)):\n dataframe_poles.append([dataframe['vgp_lon'][n], dataframe[\n 'vgp_lat'][n], 1.0])\n dataframe_pole_lats.append(dataframe['vgp_lat'][n])\n dataframe_pole_lons.append(dataframe['vgp_lon'][n])\n dataframe_pole_mean = pmag.fisher_mean(dataframe_poles)\n dataframe['paleolatitude'] = lat_from_inc(dataframe_dir_mean['inc'])\n angle_list = []\n for n in range(0, len(dataframe)):\n angle = pmag.angle([dataframe['vgp_lon'][n], dataframe['vgp_lat'][n\n ]], [dataframe_pole_mean['dec'], dataframe_pole_mean['inc']])\n angle_list.append(angle[0])\n dataframe['delta_mean_pole'] = angle_list\n if site_correction == 'yes':\n dataframe['K'] = old_div(dataframe['k'], 0.125 * (5 + 18 * np.sin(\n np.deg2rad(dataframe['paleolatitude'])) ** 2 + 9 * np.sin(np.\n deg2rad(dataframe['paleolatitude'])) ** 4))\n dataframe['Sw'] = old_div(81, dataframe['K'] ** 0.5)\n summation = 0\n N = 0\n for n in range(0, len(dataframe)):\n quantity = dataframe['delta_mean_pole'][n] ** 2 - old_div(\n dataframe['Sw'][n] ** 2, dataframe['n'][n])\n summation += quantity\n N += 1\n Sb = (old_div(1.0, N - 1.0) * summation) ** 0.5\n if site_correction == 'no':\n summation = 0\n N = 0\n for n in range(0, len(dataframe)):\n quantity = dataframe['delta_mean_pole'][n] ** 2\n summation += quantity\n N += 1\n Sb = (old_div(1.0, N - 1.0) * summation) ** 0.5\n return Sb\n",
"role": "user"
},
{
"content": "sb_vgp_calc",
"role": "assistant"
}
] |
def x(dec, inc):
di_block = []
for n in range(0, len(dec)):
di_block.append([dec[n], inc[n], 1.0])
return di_block
|
make_di_block
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec, inc):\n di_block = []\n for n in range(0, len(dec)):\n di_block.append([dec[n], inc[n], 1.0])\n return di_block\n",
"role": "user"
},
{
"content": "make_di_block",
"role": "assistant"
}
] |
def x(di_block):
dec_list = []
inc_list = []
moment_list = []
for n in range(0, len(di_block)):
dec = di_block[n][0]
inc = di_block[n][1]
dec_list.append(dec)
inc_list.append(inc)
if len(di_block[n]) > 2:
moment = di_block[n][2]
moment_list.append(moment)
return dec_list, inc_list, moment_list
|
unpack_di_block
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(di_block):\n dec_list = []\n inc_list = []\n moment_list = []\n for n in range(0, len(di_block)):\n dec = di_block[n][0]\n inc = di_block[n][1]\n dec_list.append(dec)\n inc_list.append(inc)\n if len(di_block[n]) > 2:\n moment = di_block[n][2]\n moment_list.append(moment)\n return dec_list, inc_list, moment_list\n",
"role": "user"
},
{
"content": "unpack_di_block",
"role": "assistant"
}
] |
def x(dec, inc, dip_direction, dip):
diddd_block = []
for n in range(0, len(dec)):
diddd_block.append([dec[n], inc[n], dip_direction[n], dip[n]])
diddd_array = np.array(diddd_block)
return diddd_array
|
make_diddd_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec, inc, dip_direction, dip):\n diddd_block = []\n for n in range(0, len(dec)):\n diddd_block.append([dec[n], inc[n], dip_direction[n], dip[n]])\n diddd_array = np.array(diddd_block)\n return diddd_array\n",
"role": "user"
},
{
"content": "make_diddd_array",
"role": "assistant"
}
] |
def x(map_axis, centerlon, centerlat, radius, color, alpha=1.0):
if not has_cartopy:
print('-W- cartopy must be installed to run ipmag.equi')
return
glon1 = centerlon
glat1 = centerlat
X = []
Y = []
for azimuth in range(0, 360):
glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius)
X.append(glon2)
Y.append(glat2)
X.append(X[0])
Y.append(Y[0])
plt.plot(X[::-1], Y[::-1], color=color, transform=ccrs.Geodetic(),
alpha=alpha)
|
equi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(map_axis, centerlon, centerlat, radius, color, alpha=1.0):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.equi')\n return\n glon1 = centerlon\n glat1 = centerlat\n X = []\n Y = []\n for azimuth in range(0, 360):\n glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius)\n X.append(glon2)\n Y.append(glat2)\n X.append(X[0])\n Y.append(Y[0])\n plt.plot(X[::-1], Y[::-1], color=color, transform=ccrs.Geodetic(),\n alpha=alpha)\n",
"role": "user"
},
{
"content": "equi",
"role": "assistant"
}
] |
def x(m, centerlon, centerlat, radius, color):
glon1 = centerlon
glat1 = centerlat
X = []
Y = []
for azimuth in range(0, 360):
glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius)
X.append(glon2)
Y.append(glat2)
X.append(X[0])
Y.append(Y[0])
X, Y = m(X, Y)
plt.plot(X, Y, color)
|
equi_basemap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(m, centerlon, centerlat, radius, color):\n glon1 = centerlon\n glat1 = centerlat\n X = []\n Y = []\n for azimuth in range(0, 360):\n glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius)\n X.append(glon2)\n Y.append(glat2)\n X.append(X[0])\n Y.append(Y[0])\n X, Y = m(X, Y)\n plt.plot(X, Y, color)\n",
"role": "user"
},
{
"content": "equi_basemap",
"role": "assistant"
}
] |
def x(map_axis, centerlon, centerlat, major_axis, minor_axis, angle, n=360,
filled=False, **kwargs):
if not has_cartopy:
print('-W- cartopy must be installed to run ipmag.ellipse')
return False
angle = angle * (np.pi / 180)
glon1 = centerlon
glat1 = centerlat
X = []
Y = []
for azimuth in np.linspace(0, 360, n):
az_rad = azimuth * (np.pi / 180)
radius = major_axis * minor_axis / ((minor_axis * np.cos(az_rad -
angle)) ** 2 + (major_axis * np.sin(az_rad - angle)) ** 2) ** 0.5
glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius)
X.append((360 + glon2) % 360)
Y.append(glat2)
X.append(X[0])
Y.append(Y[0])
if filled:
ellip = np.array((X, Y)).T
ellip = map_axis.projection.transform_points(ccrs.PlateCarree(),
ellip[:, 0], ellip[:, 1])
poly = Polygon(ellip[:, :2], **kwargs)
map_axis.add_patch(poly)
else:
try:
map_axis.plot(X, Y, transform=ccrs.Geodetic(), **kwargs)
return True
except ValueError:
return False
|
ellipse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(map_axis, centerlon, centerlat, major_axis, minor_axis, angle, n=360,\n filled=False, **kwargs):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.ellipse')\n return False\n angle = angle * (np.pi / 180)\n glon1 = centerlon\n glat1 = centerlat\n X = []\n Y = []\n for azimuth in np.linspace(0, 360, n):\n az_rad = azimuth * (np.pi / 180)\n radius = major_axis * minor_axis / ((minor_axis * np.cos(az_rad -\n angle)) ** 2 + (major_axis * np.sin(az_rad - angle)) ** 2) ** 0.5\n glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius)\n X.append((360 + glon2) % 360)\n Y.append(glat2)\n X.append(X[0])\n Y.append(Y[0])\n if filled:\n ellip = np.array((X, Y)).T\n ellip = map_axis.projection.transform_points(ccrs.PlateCarree(),\n ellip[:, 0], ellip[:, 1])\n poly = Polygon(ellip[:, :2], **kwargs)\n map_axis.add_patch(poly)\n else:\n try:\n map_axis.plot(X, Y, transform=ccrs.Geodetic(), **kwargs)\n return True\n except ValueError:\n return False\n",
"role": "user"
},
{
"content": "ellipse",
"role": "assistant"
}
] |
def x(filenames, outfile='measurements.txt', data_model=3, magic_table=
'measurements', dir_path='.', input_dir_path=''):
input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,
dir_path)
if float(data_model) == 3.0:
outfile = pmag.resolve_file_name(outfile, output_dir_path)
output_dir_path, file_name = os.path.split(outfile)
con = cb.Contribution(output_dir_path, read_tables=[])
filenames = [pmag.resolve_file_name(f, input_dir_path) for f in
filenames]
filenames = [f for f in filenames if os.path.exists(f)]
if not filenames:
print(
'You have provided no valid file paths, so nothing will be combined'
.format(magic_table))
return False
with open(filenames[0]) as f:
file_type = f.readline().split()[1]
if file_type in ['er_specimens', 'er_samples', 'er_sites',
'er_locations', 'er_ages', 'pmag_specimens', 'pmag_samples',
'pmag_sites', 'pmag_results', 'magic_measurements',
'rmag_anisotropy', 'rmag_results', 'rmag_specimens']:
print(
'-W- You are working in MagIC 3 but have provided a MagIC 2.5 file: {}'
.format(file_type))
return False
if file_type not in con.table_names:
file_type = magic_table
infiles = [pd.read_csv(infile, sep='\t', header=1) for infile in
filenames]
df = pd.concat(infiles, ignore_index=True, sort=True)
df.drop_duplicates(inplace=True)
con.add_magic_table(dtype=file_type, df=df)
parent, child = con.get_parent_and_child(file_type)
ignore_cols = [col[:-1] for col in [file_type, parent] if col]
ignore_cols.extend(['software_packages', 'citations'])
con.tables[file_type].drop_duplicate_rows(ignore_cols)
if 'sequence' in con.tables[file_type].df:
con.tables[file_type].df['sequence'] = range(1, len(con.tables[
file_type].df) + 1)
res = con.write_table_to_file(file_type, custom_name=file_name)
return res
else:
datasets = []
if not filenames:
print('You must provide at least one file')
return False
for infile in filenames:
if not os.path.isfile(infile):
print('{} is not a valid file name'.format(infile))
return False
try:
dataset, file_type = pmag.magic_read(infile)
except IndexError:
print('-W- Could not get records from {}'.format(infile))
print(' Skipping...')
continue
print('File ', infile, ' read in with ', len(dataset), ' records')
for rec in dataset:
datasets.append(rec)
Recs, keys = pmag.fillkeys(datasets)
if Recs:
pmag.magic_write(outfile, Recs, file_type)
print('All records stored in ', outfile)
return outfile
print('No file could be created')
return False
|
combine_magic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filenames, outfile='measurements.txt', data_model=3, magic_table=\n 'measurements', dir_path='.', input_dir_path=''):\n input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,\n dir_path)\n if float(data_model) == 3.0:\n outfile = pmag.resolve_file_name(outfile, output_dir_path)\n output_dir_path, file_name = os.path.split(outfile)\n con = cb.Contribution(output_dir_path, read_tables=[])\n filenames = [pmag.resolve_file_name(f, input_dir_path) for f in\n filenames]\n filenames = [f for f in filenames if os.path.exists(f)]\n if not filenames:\n print(\n 'You have provided no valid file paths, so nothing will be combined'\n .format(magic_table))\n return False\n with open(filenames[0]) as f:\n file_type = f.readline().split()[1]\n if file_type in ['er_specimens', 'er_samples', 'er_sites',\n 'er_locations', 'er_ages', 'pmag_specimens', 'pmag_samples',\n 'pmag_sites', 'pmag_results', 'magic_measurements',\n 'rmag_anisotropy', 'rmag_results', 'rmag_specimens']:\n print(\n '-W- You are working in MagIC 3 but have provided a MagIC 2.5 file: {}'\n .format(file_type))\n return False\n if file_type not in con.table_names:\n file_type = magic_table\n infiles = [pd.read_csv(infile, sep='\\t', header=1) for infile in\n filenames]\n df = pd.concat(infiles, ignore_index=True, sort=True)\n df.drop_duplicates(inplace=True)\n con.add_magic_table(dtype=file_type, df=df)\n parent, child = con.get_parent_and_child(file_type)\n ignore_cols = [col[:-1] for col in [file_type, parent] if col]\n ignore_cols.extend(['software_packages', 'citations'])\n con.tables[file_type].drop_duplicate_rows(ignore_cols)\n if 'sequence' in con.tables[file_type].df:\n con.tables[file_type].df['sequence'] = range(1, len(con.tables[\n file_type].df) + 1)\n res = con.write_table_to_file(file_type, custom_name=file_name)\n return res\n else:\n datasets = []\n if not filenames:\n print('You must provide at least one file')\n return False\n for infile in filenames:\n if not os.path.isfile(infile):\n print('{} is not a valid file name'.format(infile))\n return False\n try:\n dataset, file_type = pmag.magic_read(infile)\n except IndexError:\n print('-W- Could not get records from {}'.format(infile))\n print(' Skipping...')\n continue\n print('File ', infile, ' read in with ', len(dataset), ' records')\n for rec in dataset:\n datasets.append(rec)\n Recs, keys = pmag.fillkeys(datasets)\n if Recs:\n pmag.magic_write(outfile, Recs, file_type)\n print('All records stored in ', outfile)\n return outfile\n print('No file could be created')\n return False\n",
"role": "user"
},
{
"content": "combine_magic",
"role": "assistant"
}
] |
def x(orient_file='orient.txt', samp_file='samples.txt', samp_con='1', Z=1,
method_codes='FS-FD', location_name='unknown', append=False, output_dir
='.', input_dir='.', data_model=3):
data_model = int(data_model)
if data_model != 3 and samp_file == 'samples.txt':
samp_file = 'er_samples.txt'
if data_model == 2 and samp_file == 'er_samples.txt':
samp_file = 'samples.txt'
DEBUG = 0
version_num = pmag.get_version()
or_con, corr = '3', '1'
date, lat, lon = '', '', ''
bed_dip, bed_dip_dir = '', ''
participantlist = ''
sites = []
Lats, Lons = [], []
SampRecs, SiteRecs, ImageRecs, imagelist = [], [], [], []
average_bedding = '1', 1, '0'
newbaseline, newbeddir, newbeddip = '', '', ''
delta_u = '0'
sclass, lithology, type = '', '', ''
newclass, newlith, newtype = '', '', ''
user = ''
corr == '3'
DecCorr = 0.0
samp_file = pmag.resolve_file_name(samp_file, output_dir)
orient_file = pmag.resolve_file_name(orient_file, input_dir)
input_dir = os.path.split(orient_file)[0]
output_dir = os.path.split(samp_file)[0]
if append:
try:
SampRecs, file_type = pmag.magic_read(samp_file)
print('sample data to be appended to: ', samp_file)
except:
print('problem with existing samp file: ', samp_file,
' will create new')
azfile = open(orient_file, 'r')
AzDipDat = azfile.readlines()
azfile.close()
if not AzDipDat:
return False, 'No data in orientation file, please try again'
azfile.close()
SampOut, samplist = [], []
for line in AzDipDat:
orec = line.split()
if len(orec) > 2:
labaz, labdip = pmag.orient(float(orec[1]), float(orec[2]), or_con)
bed_dip = float(orec[4])
if bed_dip != 0:
bed_dip_dir = float(orec[3]) - 90.0
else:
bed_dip_dir = float(orec[3])
MagRec = {}
MagRec['er_location_name'] = location_name
MagRec['er_citation_names'] = 'This study'
MagRec['er_sample_name'] = orec[0]
MagRec['sample_bed_dip'] = '%7.1f' % bed_dip
MagRec['sample_bed_dip_direction'] = '%7.1f' % bed_dip_dir
MagRec['sample_dip'] = '%7.1f' % labdip
MagRec['sample_azimuth'] = '%7.1f' % labaz
methods = method_codes.replace(' ', '').split(':')
OR = 0
for method in methods:
method_type = method.split('-')
if 'SO' in method_type:
OR = 1
if OR == 0:
method_codes = method_codes + ':SO-NO'
MagRec['magic_method_codes'] = method_codes
site = pmag.parse_site(orec[0], samp_con, Z)
MagRec['er_site_name'] = site
MagRec['magic_software_packages'] = version_num
SampOut.append(MagRec)
if MagRec['er_sample_name'] not in samplist:
samplist.append(MagRec['er_sample_name'])
for samp in SampRecs:
if samp not in samplist:
SampOut.append(samp)
Samps, keys = pmag.fillkeys(SampOut)
if data_model == 2:
pmag.magic_write(samp_file, Samps, 'er_samples')
else:
Samps3 = []
for samp in Samps:
Samps3.append(map_magic.mapping(samp, map_magic.
samp_magic2_2_magic3_map))
pmag.magic_write(samp_file, Samps3, 'samples')
print('Data saved in ', samp_file)
return True, None
|
azdip_magic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(orient_file='orient.txt', samp_file='samples.txt', samp_con='1', Z=1,\n method_codes='FS-FD', location_name='unknown', append=False, output_dir\n ='.', input_dir='.', data_model=3):\n data_model = int(data_model)\n if data_model != 3 and samp_file == 'samples.txt':\n samp_file = 'er_samples.txt'\n if data_model == 2 and samp_file == 'er_samples.txt':\n samp_file = 'samples.txt'\n DEBUG = 0\n version_num = pmag.get_version()\n or_con, corr = '3', '1'\n date, lat, lon = '', '', ''\n bed_dip, bed_dip_dir = '', ''\n participantlist = ''\n sites = []\n Lats, Lons = [], []\n SampRecs, SiteRecs, ImageRecs, imagelist = [], [], [], []\n average_bedding = '1', 1, '0'\n newbaseline, newbeddir, newbeddip = '', '', ''\n delta_u = '0'\n sclass, lithology, type = '', '', ''\n newclass, newlith, newtype = '', '', ''\n user = ''\n corr == '3'\n DecCorr = 0.0\n samp_file = pmag.resolve_file_name(samp_file, output_dir)\n orient_file = pmag.resolve_file_name(orient_file, input_dir)\n input_dir = os.path.split(orient_file)[0]\n output_dir = os.path.split(samp_file)[0]\n if append:\n try:\n SampRecs, file_type = pmag.magic_read(samp_file)\n print('sample data to be appended to: ', samp_file)\n except:\n print('problem with existing samp file: ', samp_file,\n ' will create new')\n azfile = open(orient_file, 'r')\n AzDipDat = azfile.readlines()\n azfile.close()\n if not AzDipDat:\n return False, 'No data in orientation file, please try again'\n azfile.close()\n SampOut, samplist = [], []\n for line in AzDipDat:\n orec = line.split()\n if len(orec) > 2:\n labaz, labdip = pmag.orient(float(orec[1]), float(orec[2]), or_con)\n bed_dip = float(orec[4])\n if bed_dip != 0:\n bed_dip_dir = float(orec[3]) - 90.0\n else:\n bed_dip_dir = float(orec[3])\n MagRec = {}\n MagRec['er_location_name'] = location_name\n MagRec['er_citation_names'] = 'This study'\n MagRec['er_sample_name'] = orec[0]\n MagRec['sample_bed_dip'] = '%7.1f' % bed_dip\n MagRec['sample_bed_dip_direction'] = '%7.1f' % bed_dip_dir\n MagRec['sample_dip'] = '%7.1f' % labdip\n MagRec['sample_azimuth'] = '%7.1f' % labaz\n methods = method_codes.replace(' ', '').split(':')\n OR = 0\n for method in methods:\n method_type = method.split('-')\n if 'SO' in method_type:\n OR = 1\n if OR == 0:\n method_codes = method_codes + ':SO-NO'\n MagRec['magic_method_codes'] = method_codes\n site = pmag.parse_site(orec[0], samp_con, Z)\n MagRec['er_site_name'] = site\n MagRec['magic_software_packages'] = version_num\n SampOut.append(MagRec)\n if MagRec['er_sample_name'] not in samplist:\n samplist.append(MagRec['er_sample_name'])\n for samp in SampRecs:\n if samp not in samplist:\n SampOut.append(samp)\n Samps, keys = pmag.fillkeys(SampOut)\n if data_model == 2:\n pmag.magic_write(samp_file, Samps, 'er_samples')\n else:\n Samps3 = []\n for samp in Samps:\n Samps3.append(map_magic.mapping(samp, map_magic.\n samp_magic2_2_magic3_map))\n pmag.magic_write(samp_file, Samps3, 'samples')\n print('Data saved in ', samp_file)\n return True, None\n",
"role": "user"
},
{
"content": "azdip_magic",
"role": "assistant"
}
] |
def x(path_to_file='.', file_name='magic_measurements.txt', save=False,
save_folder='.', fmt='svg'):
cont, FTinit, BTinit, k = '', 0, 0, 0
complete_path = os.path.join(path_to_file, file_name)
Tind, cont = 0, ''
EXP = ''
meas_data, file_type = pmag.magic_read(complete_path)
experiment_names = []
for rec in meas_data:
if rec['magic_experiment_name'] not in experiment_names:
experiment_names.append(rec['magic_experiment_name'])
if EXP != '':
try:
k = experiment_names.index(EXP)
except:
print('Bad experiment name')
sys.exit()
while k < len(experiment_names):
e = experiment_names[k]
if EXP == '':
print(e, k + 1, 'out of ', len(experiment_names))
X, T, F, B = [], [], [], []
for rec in meas_data:
methcodes = rec['magic_method_codes']
meths = methcodes.strip().split(':')
if rec['magic_experiment_name'] == e and 'LP-X' in meths:
if 'measurement_temp' not in list(rec.keys()):
rec['measurement_temp'] = '300'
if 'measurement_freq' not in list(rec.keys()):
rec['measurement_freq'] = '0'
if 'measurement_lab_field_ac' not in list(rec.keys()):
rec['measurement_lab_field_ac'] = '0'
X.append(float(rec['measurement_x']))
T.append(float(rec['measurement_temp']))
F.append(float(rec['measurement_freq']))
B.append(float(rec['measurement_lab_field_ac']))
Ts, Fs, Bs = [], [], []
for k in range(len(X)):
if T[k] not in Ts:
Ts.append(T[k])
if F[k] not in Fs:
Fs.append(F[k])
if B[k] not in Bs:
Bs.append(B[k])
Ts.sort()
Fs.sort()
Bs.sort()
if '-x' in sys.argv:
k = len(experiment_names) + 1
else:
k += 1
plotnum = 1
if len(X) > 2:
b = Bs[-1]
XTF = []
for f in Fs:
XT = []
for kk in range(len(X)):
if F[kk] == f and B[kk] == b:
XT.append([X[kk], T[kk]])
XTF.append(XT)
if len(XT) > 1:
plt.figure(num=plotnum, figsize=(5, 5))
pmagplotlib.plot_xtf(plotnum, XTF, Fs, e, b)
pmagplotlib.show_fig(plotnum)
plotnum += 1
f = Fs[0]
XTB = []
for b in Bs:
XT = []
for kk in range(len(X)):
if F[kk] == f and B[kk] == b:
XT.append([X[kk], T[kk]])
XTB.append(XT)
if len(XT) > 1:
plt.figure(num=plotnum, figsize=(5, 5))
pmagplotlib.plot_xtb(plotnum, XTB, Bs, e, f)
pmagplotlib.show_fig(plotnum)
plotnum += 1
if save == True:
files = {}
PLTS = {}
for p in range(1, plotnum):
key = str(p)
files[key] = e + '_' + key + '.' + fmt
PLTS[key] = p
for key in list(PLTS.keys()):
try:
plt.figure(num=PLTS[key])
plt.savefig(save_folder + '/' + files[key].replace(
'/', '-'))
except:
print('could not save: ', PLTS[key], files[key])
print('output file format not supported ')
|
chi_magic2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path_to_file='.', file_name='magic_measurements.txt', save=False,\n save_folder='.', fmt='svg'):\n cont, FTinit, BTinit, k = '', 0, 0, 0\n complete_path = os.path.join(path_to_file, file_name)\n Tind, cont = 0, ''\n EXP = ''\n meas_data, file_type = pmag.magic_read(complete_path)\n experiment_names = []\n for rec in meas_data:\n if rec['magic_experiment_name'] not in experiment_names:\n experiment_names.append(rec['magic_experiment_name'])\n if EXP != '':\n try:\n k = experiment_names.index(EXP)\n except:\n print('Bad experiment name')\n sys.exit()\n while k < len(experiment_names):\n e = experiment_names[k]\n if EXP == '':\n print(e, k + 1, 'out of ', len(experiment_names))\n X, T, F, B = [], [], [], []\n for rec in meas_data:\n methcodes = rec['magic_method_codes']\n meths = methcodes.strip().split(':')\n if rec['magic_experiment_name'] == e and 'LP-X' in meths:\n if 'measurement_temp' not in list(rec.keys()):\n rec['measurement_temp'] = '300'\n if 'measurement_freq' not in list(rec.keys()):\n rec['measurement_freq'] = '0'\n if 'measurement_lab_field_ac' not in list(rec.keys()):\n rec['measurement_lab_field_ac'] = '0'\n X.append(float(rec['measurement_x']))\n T.append(float(rec['measurement_temp']))\n F.append(float(rec['measurement_freq']))\n B.append(float(rec['measurement_lab_field_ac']))\n Ts, Fs, Bs = [], [], []\n for k in range(len(X)):\n if T[k] not in Ts:\n Ts.append(T[k])\n if F[k] not in Fs:\n Fs.append(F[k])\n if B[k] not in Bs:\n Bs.append(B[k])\n Ts.sort()\n Fs.sort()\n Bs.sort()\n if '-x' in sys.argv:\n k = len(experiment_names) + 1\n else:\n k += 1\n plotnum = 1\n if len(X) > 2:\n b = Bs[-1]\n XTF = []\n for f in Fs:\n XT = []\n for kk in range(len(X)):\n if F[kk] == f and B[kk] == b:\n XT.append([X[kk], T[kk]])\n XTF.append(XT)\n if len(XT) > 1:\n plt.figure(num=plotnum, figsize=(5, 5))\n pmagplotlib.plot_xtf(plotnum, XTF, Fs, e, b)\n pmagplotlib.show_fig(plotnum)\n plotnum += 1\n f = Fs[0]\n XTB = []\n for b in Bs:\n XT = []\n for kk in range(len(X)):\n if F[kk] == f and B[kk] == b:\n XT.append([X[kk], T[kk]])\n XTB.append(XT)\n if len(XT) > 1:\n plt.figure(num=plotnum, figsize=(5, 5))\n pmagplotlib.plot_xtb(plotnum, XTB, Bs, e, f)\n pmagplotlib.show_fig(plotnum)\n plotnum += 1\n if save == True:\n files = {}\n PLTS = {}\n for p in range(1, plotnum):\n key = str(p)\n files[key] = e + '_' + key + '.' + fmt\n PLTS[key] = p\n for key in list(PLTS.keys()):\n try:\n plt.figure(num=PLTS[key])\n plt.savefig(save_folder + '/' + files[key].replace(\n '/', '-'))\n except:\n print('could not save: ', PLTS[key], files[key])\n print('output file format not supported ')\n",
"role": "user"
},
{
"content": "chi_magic2",
"role": "assistant"
}
] |
def x(path_to_file='.', file_name='magic_measurements.txt', save=False,
save_folder='.', fmt='svg', plot_by='loc', treat=None, XLP='',
individual=None, average_measurements=False, single_plot=False):
FIG = {}
FIG['demag'] = 1
in_file, plot_key, LT = os.path.join(path_to_file, file_name
), 'er_location_name', 'LT-AF-Z'
XLP = ''
norm = 1
units, dmag_key = 'T', 'treatment_ac_field'
plot_num = 0
if plot_by == 'loc':
plot_key = 'er_location_name'
elif plot_by == 'exp':
plot_key = 'er_expedition_name'
elif plot_by == 'site':
plot_key = 'er_site_name'
elif plot_by == 'sam':
plot_key = 'er_sample_name'
elif plot_by == 'spc':
plot_key = 'er_specimen_name'
if treat != None:
LT = 'LT-' + treat + '-Z'
if LT == 'LT-T-Z':
units, dmag_key = 'K', 'treatment_temp'
elif LT == 'LT-AF-Z':
units, dmag_key = 'T', 'treatment_ac_field'
elif LT == 'LT-M-Z':
units, dmag_key = 'J', 'treatment_mw_energy'
else:
units = 'U'
else:
LT = 'LT-AF-Z'
plot_dict = {}
data, file_type = pmag.magic_read(in_file)
sids = pmag.get_specs(data)
plt.figure(num=FIG['demag'], figsize=(5, 5))
print(len(data), ' records read from ', in_file)
plotlist, intlist = [], ['measurement_magnitude',
'measurement_magn_moment', 'measurement_magn_volume',
'measurement_magn_mass']
IntMeths = []
FixData = []
for rec in data:
meths = []
methcodes = rec['magic_method_codes'].split(':')
for meth in methcodes:
meths.append(meth.strip())
for key in list(rec.keys()):
if key in intlist and rec[key] != '':
if key not in IntMeths:
IntMeths.append(key)
if rec[plot_key] not in plotlist and LT in meths:
plotlist.append(rec[plot_key])
if 'measurement_flag' not in list(rec.keys()):
rec['measurement_flag'] = 'g'
FixData.append(rec)
plotlist.sort()
if len(IntMeths) == 0:
print('No intensity information found')
data = FixData
int_key = IntMeths[0]
if individual is not None:
if type(individual) == list or type(individual) == tuple:
plotlist = list(individual)
else:
plotlist = []
plotlist.append(individual)
for plot in plotlist:
print(plot, 'plotting by: ', plot_key)
PLTblock = pmag.get_dictitem(data, plot_key, plot, 'T')
PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', LT, 'has')
PLTblock = pmag.get_dictitem(PLTblock, int_key, '', 'F')
if XLP != '':
PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes',
XLP, 'not')
if len(PLTblock) > 2:
title = PLTblock[0][plot_key]
spcs = []
for rec in PLTblock:
if rec['er_specimen_name'] not in spcs:
spcs.append(rec['er_specimen_name'])
if average_measurements is False:
for spc in spcs:
SPCblock = pmag.get_dictitem(PLTblock,
'er_specimen_name', spc, 'T')
INTblock = []
for rec in SPCblock:
INTblock.append([float(rec[dmag_key]), 0, 0, float(
rec[int_key]), 1, rec['measurement_flag']])
if len(INTblock) > 2:
pmagplotlib.plot_mag(FIG['demag'], INTblock, title,
0, units, norm)
else:
AVGblock = {}
for spc in spcs:
SPCblock = pmag.get_dictitem(PLTblock,
'er_specimen_name', spc, 'T')
for rec in SPCblock:
if rec['measurement_flag'] == 'g':
if float(rec[dmag_key]) not in list(AVGblock.keys()
):
AVGblock[float(rec[dmag_key])] = [float(rec
[int_key])]
else:
AVGblock[float(rec[dmag_key])].append(float
(rec[int_key]))
INTblock = []
for step in sorted(AVGblock.keys()):
INTblock.append([float(step), 0, 0, old_div(float(sum(
AVGblock[step])), float(len(AVGblock[step]))), 1, 'g'])
pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0,
units, norm)
if save == True:
plt.savefig(os.path.join(save_folder, title) + '.' + fmt)
if single_plot is False:
plt.show()
if single_plot is True:
plt.show()
|
demag_magic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path_to_file='.', file_name='magic_measurements.txt', save=False,\n save_folder='.', fmt='svg', plot_by='loc', treat=None, XLP='',\n individual=None, average_measurements=False, single_plot=False):\n FIG = {}\n FIG['demag'] = 1\n in_file, plot_key, LT = os.path.join(path_to_file, file_name\n ), 'er_location_name', 'LT-AF-Z'\n XLP = ''\n norm = 1\n units, dmag_key = 'T', 'treatment_ac_field'\n plot_num = 0\n if plot_by == 'loc':\n plot_key = 'er_location_name'\n elif plot_by == 'exp':\n plot_key = 'er_expedition_name'\n elif plot_by == 'site':\n plot_key = 'er_site_name'\n elif plot_by == 'sam':\n plot_key = 'er_sample_name'\n elif plot_by == 'spc':\n plot_key = 'er_specimen_name'\n if treat != None:\n LT = 'LT-' + treat + '-Z'\n if LT == 'LT-T-Z':\n units, dmag_key = 'K', 'treatment_temp'\n elif LT == 'LT-AF-Z':\n units, dmag_key = 'T', 'treatment_ac_field'\n elif LT == 'LT-M-Z':\n units, dmag_key = 'J', 'treatment_mw_energy'\n else:\n units = 'U'\n else:\n LT = 'LT-AF-Z'\n plot_dict = {}\n data, file_type = pmag.magic_read(in_file)\n sids = pmag.get_specs(data)\n plt.figure(num=FIG['demag'], figsize=(5, 5))\n print(len(data), ' records read from ', in_file)\n plotlist, intlist = [], ['measurement_magnitude',\n 'measurement_magn_moment', 'measurement_magn_volume',\n 'measurement_magn_mass']\n IntMeths = []\n FixData = []\n for rec in data:\n meths = []\n methcodes = rec['magic_method_codes'].split(':')\n for meth in methcodes:\n meths.append(meth.strip())\n for key in list(rec.keys()):\n if key in intlist and rec[key] != '':\n if key not in IntMeths:\n IntMeths.append(key)\n if rec[plot_key] not in plotlist and LT in meths:\n plotlist.append(rec[plot_key])\n if 'measurement_flag' not in list(rec.keys()):\n rec['measurement_flag'] = 'g'\n FixData.append(rec)\n plotlist.sort()\n if len(IntMeths) == 0:\n print('No intensity information found')\n data = FixData\n int_key = IntMeths[0]\n if individual is not None:\n if type(individual) == list or type(individual) == tuple:\n plotlist = list(individual)\n else:\n plotlist = []\n plotlist.append(individual)\n for plot in plotlist:\n print(plot, 'plotting by: ', plot_key)\n PLTblock = pmag.get_dictitem(data, plot_key, plot, 'T')\n PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', LT, 'has')\n PLTblock = pmag.get_dictitem(PLTblock, int_key, '', 'F')\n if XLP != '':\n PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes',\n XLP, 'not')\n if len(PLTblock) > 2:\n title = PLTblock[0][plot_key]\n spcs = []\n for rec in PLTblock:\n if rec['er_specimen_name'] not in spcs:\n spcs.append(rec['er_specimen_name'])\n if average_measurements is False:\n for spc in spcs:\n SPCblock = pmag.get_dictitem(PLTblock,\n 'er_specimen_name', spc, 'T')\n INTblock = []\n for rec in SPCblock:\n INTblock.append([float(rec[dmag_key]), 0, 0, float(\n rec[int_key]), 1, rec['measurement_flag']])\n if len(INTblock) > 2:\n pmagplotlib.plot_mag(FIG['demag'], INTblock, title,\n 0, units, norm)\n else:\n AVGblock = {}\n for spc in spcs:\n SPCblock = pmag.get_dictitem(PLTblock,\n 'er_specimen_name', spc, 'T')\n for rec in SPCblock:\n if rec['measurement_flag'] == 'g':\n if float(rec[dmag_key]) not in list(AVGblock.keys()\n ):\n AVGblock[float(rec[dmag_key])] = [float(rec\n [int_key])]\n else:\n AVGblock[float(rec[dmag_key])].append(float\n (rec[int_key]))\n INTblock = []\n for step in sorted(AVGblock.keys()):\n INTblock.append([float(step), 0, 0, old_div(float(sum(\n AVGblock[step])), float(len(AVGblock[step]))), 1, 'g'])\n pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0,\n units, norm)\n if save == True:\n plt.savefig(os.path.join(save_folder, title) + '.' + fmt)\n if single_plot is False:\n plt.show()\n if single_plot is True:\n plt.show()\n",
"role": "user"
},
{
"content": "demag_magic",
"role": "assistant"
}
] |
def x(fignum, B, M, s):
if fignum != 0:
plt.figure(num=fignum)
plt.clf()
hpars = {}
Npts = len(M)
B70 = 0.7 * B[0]
for b in B:
if b < B70:
break
Nint = B.index(b) - 1
if Nint > 30:
Nint = 30
if Nint < 10:
Nint = 10
Bzero, Mzero, Mfix, Mnorm, Madj, MadjN = '', '', [], [], [], []
Mazero = ''
m_init = 0.5 * (M[0] + M[1])
m_fin = 0.5 * (M[-1] + M[-2])
diff = m_fin - m_init
Bmin = 0.0
for k in range(Npts):
frac = old_div(float(k), float(Npts - 1))
Mfix.append(M[k] - diff * frac)
if Bzero == '' and B[k] < 0:
Bzero = k
if B[k] < Bmin:
Bmin = B[k]
kmin = k
Bslop = B[2:Nint + 2]
Mslop = Mfix[2:Nint + 2]
polyU = polyfit(Bslop, Mslop, 1)
Bslop = B[kmin:kmin + (Nint + 1)]
Mslop = Mfix[kmin:kmin + (Nint + 1)]
polyL = polyfit(Bslop, Mslop, 1)
xhf = 0.5 * (polyU[0] + polyL[0])
hpars['hysteresis_xhf'] = '%8.2e' % (xhf * 4 * np.pi * 1e-07)
meanint = 0.5 * (polyU[1] + polyL[1])
Msat = 0.5 * (polyU[1] - polyL[1])
Moff = []
for k in range(Npts):
Moff.append(Mfix[k] - xhf * B[k] - meanint)
if Mzero == '' and Moff[k] < 0:
Mzero = k
if Mzero != '' and Mazero == '' and Moff[k] > 0:
Mazero = k
hpars['hysteresis_ms_moment'] = '%8.3e' % Msat
Mupper, Bupper, Mlower, Blower = [], [], [], []
deltaM, Bdm = [], []
for k in range(kmin - 2, 0, -2):
Mupper.append(old_div(Moff[k], Msat))
Bupper.append(B[k])
for k in range(kmin + 2, len(B) - 1):
Mlower.append(Moff[k] / Msat)
Blower.append(B[k])
Iupper = spline.Spline(Bupper, Mupper)
Ilower = spline.Spline(Blower, Mlower)
for b in np.arange(B[0]):
Mpos = Iupper(b) - Ilower(b)
Mneg = Iupper(-b) - Ilower(-b)
Bdm.append(b)
deltaM.append(0.5 * (Mpos + Mneg))
print('whew')
for k in range(Npts):
MadjN.append(old_div(Moff[k], Msat))
Mnorm.append(old_div(M[k], Msat))
Mr = Msat * 0.5 * (Iupper(0.0) - Ilower(0.0))
hpars['hysteresis_mr_moment'] = '%8.3e' % Mr
Bz = B[Mzero - 1:Mzero + 1]
Mz = Moff[Mzero - 1:Mzero + 1]
Baz = B[Mazero - 1:Mazero + 1]
Maz = Moff[Mazero - 1:Mazero + 1]
try:
poly = polyfit(Bz, Mz, 1)
Bc = old_div(-poly[1], poly[0])
poly = polyfit(Baz, Maz, 1)
Bac = old_div(-poly[1], poly[0])
hpars['hysteresis_bc'] = '%8.3e' % (0.5 * (abs(Bc) + abs(Bac)))
except:
hpars['hysteresis_bc'] = '0'
return hpars, deltaM, Bdm, B, Mnorm, MadjN
|
iplot_hys
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum, B, M, s):\n if fignum != 0:\n plt.figure(num=fignum)\n plt.clf()\n hpars = {}\n Npts = len(M)\n B70 = 0.7 * B[0]\n for b in B:\n if b < B70:\n break\n Nint = B.index(b) - 1\n if Nint > 30:\n Nint = 30\n if Nint < 10:\n Nint = 10\n Bzero, Mzero, Mfix, Mnorm, Madj, MadjN = '', '', [], [], [], []\n Mazero = ''\n m_init = 0.5 * (M[0] + M[1])\n m_fin = 0.5 * (M[-1] + M[-2])\n diff = m_fin - m_init\n Bmin = 0.0\n for k in range(Npts):\n frac = old_div(float(k), float(Npts - 1))\n Mfix.append(M[k] - diff * frac)\n if Bzero == '' and B[k] < 0:\n Bzero = k\n if B[k] < Bmin:\n Bmin = B[k]\n kmin = k\n Bslop = B[2:Nint + 2]\n Mslop = Mfix[2:Nint + 2]\n polyU = polyfit(Bslop, Mslop, 1)\n Bslop = B[kmin:kmin + (Nint + 1)]\n Mslop = Mfix[kmin:kmin + (Nint + 1)]\n polyL = polyfit(Bslop, Mslop, 1)\n xhf = 0.5 * (polyU[0] + polyL[0])\n hpars['hysteresis_xhf'] = '%8.2e' % (xhf * 4 * np.pi * 1e-07)\n meanint = 0.5 * (polyU[1] + polyL[1])\n Msat = 0.5 * (polyU[1] - polyL[1])\n Moff = []\n for k in range(Npts):\n Moff.append(Mfix[k] - xhf * B[k] - meanint)\n if Mzero == '' and Moff[k] < 0:\n Mzero = k\n if Mzero != '' and Mazero == '' and Moff[k] > 0:\n Mazero = k\n hpars['hysteresis_ms_moment'] = '%8.3e' % Msat\n Mupper, Bupper, Mlower, Blower = [], [], [], []\n deltaM, Bdm = [], []\n for k in range(kmin - 2, 0, -2):\n Mupper.append(old_div(Moff[k], Msat))\n Bupper.append(B[k])\n for k in range(kmin + 2, len(B) - 1):\n Mlower.append(Moff[k] / Msat)\n Blower.append(B[k])\n Iupper = spline.Spline(Bupper, Mupper)\n Ilower = spline.Spline(Blower, Mlower)\n for b in np.arange(B[0]):\n Mpos = Iupper(b) - Ilower(b)\n Mneg = Iupper(-b) - Ilower(-b)\n Bdm.append(b)\n deltaM.append(0.5 * (Mpos + Mneg))\n print('whew')\n for k in range(Npts):\n MadjN.append(old_div(Moff[k], Msat))\n Mnorm.append(old_div(M[k], Msat))\n Mr = Msat * 0.5 * (Iupper(0.0) - Ilower(0.0))\n hpars['hysteresis_mr_moment'] = '%8.3e' % Mr\n Bz = B[Mzero - 1:Mzero + 1]\n Mz = Moff[Mzero - 1:Mzero + 1]\n Baz = B[Mazero - 1:Mazero + 1]\n Maz = Moff[Mazero - 1:Mazero + 1]\n try:\n poly = polyfit(Bz, Mz, 1)\n Bc = old_div(-poly[1], poly[0])\n poly = polyfit(Baz, Maz, 1)\n Bac = old_div(-poly[1], poly[0])\n hpars['hysteresis_bc'] = '%8.3e' % (0.5 * (abs(Bc) + abs(Bac)))\n except:\n hpars['hysteresis_bc'] = '0'\n return hpars, deltaM, Bdm, B, Mnorm, MadjN\n",
"role": "user"
},
{
"content": "iplot_hys",
"role": "assistant"
}
] |
def x(data, nb=1000, save=False, save_folder='.', fmt='svg',
site_correction=False, return_new_dirs=False):
print('Bootstrapping.... be patient')
print('')
sys.stdout.flush()
upper, lower = int(round(0.975 * nb)), int(round(0.025 * nb))
E, I = [], []
plt.figure(num=1, figsize=(4, 4))
plot_net(1)
plot_di(di_block=data)
plt.title('Original')
ppars = pmag.doprinc(data)
Io = ppars['inc']
n = ppars['N']
Es, Is, Fs, V2s = pmag.find_f(data)
if site_correction == True:
Inc, Elong = Is[Es.index(min(Es))], Es[Es.index(min(Es))]
flat_f = Fs[Es.index(min(Es))]
else:
Inc, Elong = Is[-1], Es[-1]
flat_f = Fs[-1]
plt.figure(num=2, figsize=(4, 4))
plt.plot(Is, Es, 'r')
plt.xlabel('Inclination')
plt.ylabel('Elongation')
plt.text(Inc, Elong, ' %3.1f' % flat_f)
plt.text(Is[0] - 2, Es[0], ' %s' % 'f=1')
b = 0
while b < nb:
bdata = pmag.pseudo(data)
Esb, Isb, Fsb, V2sb = pmag.find_f(bdata)
if b < 25:
plt.plot(Isb, Esb, 'y')
if Esb[-1] != 0:
ppars = pmag.doprinc(bdata)
if site_correction == True:
I.append(abs(Isb[Esb.index(min(Esb))]))
E.append(Esb[Esb.index(min(Esb))])
else:
I.append(abs(Isb[-1]))
E.append(Esb[-1])
b += 1
I.sort()
E.sort()
Eexp = []
for i in I:
Eexp.append(pmag.EI(i))
plt.plot(I, Eexp, 'g-')
if Inc == 0:
title = 'Pathological Distribution: ' + '[%7.1f, %7.1f]' % (I[lower
], I[upper])
else:
title = '%7.1f [%7.1f, %7.1f]' % (Inc, I[lower], I[upper])
cdf_fig_num = 3
plt.figure(num=cdf_fig_num, figsize=(4, 4))
pmagplotlib.plot_cdf(cdf_fig_num, I, 'Inclinations', 'r', title)
pmagplotlib.plot_vs(cdf_fig_num, [I[lower], I[upper]], 'b', '--')
pmagplotlib.plot_vs(cdf_fig_num, [Inc], 'g', '-')
pmagplotlib.plot_vs(cdf_fig_num, [Io], 'k', '-')
di_lists = unpack_di_block(data)
if len(di_lists) == 3:
decs, incs, intensity = di_lists
if len(di_lists) == 2:
decs, incs = di_lists
if flat_f:
unsquished_incs = unsquish(incs, flat_f)
plt.figure(num=4, figsize=(4, 4))
plot_net(4)
plot_di(decs, unsquished_incs)
plt.title('Corrected for flattening')
else:
plt.figure(num=4, figsize=(4, 4))
plot_net(4)
plot_di(decs, incs)
plt.title('Corrected for flattening')
if (Inc, Elong, flat_f) == (0, 0, 0):
print('PATHOLOGICAL DISTRIBUTION')
print('The original inclination was: ' + str(Io))
print('')
print('The corrected inclination is: ' + str(Inc))
print('with bootstrapped confidence bounds of: ' + str(I[lower]) +
' to ' + str(I[upper]))
print('and elongation parameter of: ' + str(Elong))
print('The flattening factor is: ' + str(flat_f))
if return_new_dirs is True:
return make_di_block(decs, unsquished_incs)
|
find_ei
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, nb=1000, save=False, save_folder='.', fmt='svg',\n site_correction=False, return_new_dirs=False):\n print('Bootstrapping.... be patient')\n print('')\n sys.stdout.flush()\n upper, lower = int(round(0.975 * nb)), int(round(0.025 * nb))\n E, I = [], []\n plt.figure(num=1, figsize=(4, 4))\n plot_net(1)\n plot_di(di_block=data)\n plt.title('Original')\n ppars = pmag.doprinc(data)\n Io = ppars['inc']\n n = ppars['N']\n Es, Is, Fs, V2s = pmag.find_f(data)\n if site_correction == True:\n Inc, Elong = Is[Es.index(min(Es))], Es[Es.index(min(Es))]\n flat_f = Fs[Es.index(min(Es))]\n else:\n Inc, Elong = Is[-1], Es[-1]\n flat_f = Fs[-1]\n plt.figure(num=2, figsize=(4, 4))\n plt.plot(Is, Es, 'r')\n plt.xlabel('Inclination')\n plt.ylabel('Elongation')\n plt.text(Inc, Elong, ' %3.1f' % flat_f)\n plt.text(Is[0] - 2, Es[0], ' %s' % 'f=1')\n b = 0\n while b < nb:\n bdata = pmag.pseudo(data)\n Esb, Isb, Fsb, V2sb = pmag.find_f(bdata)\n if b < 25:\n plt.plot(Isb, Esb, 'y')\n if Esb[-1] != 0:\n ppars = pmag.doprinc(bdata)\n if site_correction == True:\n I.append(abs(Isb[Esb.index(min(Esb))]))\n E.append(Esb[Esb.index(min(Esb))])\n else:\n I.append(abs(Isb[-1]))\n E.append(Esb[-1])\n b += 1\n I.sort()\n E.sort()\n Eexp = []\n for i in I:\n Eexp.append(pmag.EI(i))\n plt.plot(I, Eexp, 'g-')\n if Inc == 0:\n title = 'Pathological Distribution: ' + '[%7.1f, %7.1f]' % (I[lower\n ], I[upper])\n else:\n title = '%7.1f [%7.1f, %7.1f]' % (Inc, I[lower], I[upper])\n cdf_fig_num = 3\n plt.figure(num=cdf_fig_num, figsize=(4, 4))\n pmagplotlib.plot_cdf(cdf_fig_num, I, 'Inclinations', 'r', title)\n pmagplotlib.plot_vs(cdf_fig_num, [I[lower], I[upper]], 'b', '--')\n pmagplotlib.plot_vs(cdf_fig_num, [Inc], 'g', '-')\n pmagplotlib.plot_vs(cdf_fig_num, [Io], 'k', '-')\n di_lists = unpack_di_block(data)\n if len(di_lists) == 3:\n decs, incs, intensity = di_lists\n if len(di_lists) == 2:\n decs, incs = di_lists\n if flat_f:\n unsquished_incs = unsquish(incs, flat_f)\n plt.figure(num=4, figsize=(4, 4))\n plot_net(4)\n plot_di(decs, unsquished_incs)\n plt.title('Corrected for flattening')\n else:\n plt.figure(num=4, figsize=(4, 4))\n plot_net(4)\n plot_di(decs, incs)\n plt.title('Corrected for flattening')\n if (Inc, Elong, flat_f) == (0, 0, 0):\n print('PATHOLOGICAL DISTRIBUTION')\n print('The original inclination was: ' + str(Io))\n print('')\n print('The corrected inclination is: ' + str(Inc))\n print('with bootstrapped confidence bounds of: ' + str(I[lower]) +\n ' to ' + str(I[upper]))\n print('and elongation parameter of: ' + str(Elong))\n print('The flattening factor is: ' + str(flat_f))\n if return_new_dirs is True:\n return make_di_block(decs, unsquished_incs)\n",
"role": "user"
},
{
"content": "find_ei",
"role": "assistant"
}
] |
def x(path_to_file='.', file='', data='', units='U', calculation_type=
'DE-BFL', save=False, save_folder='.', fmt='svg', begin_pca='', end_pca
='', angle=0):
if units == 'C':
SIunits = 'K'
if units == 'mT':
SIunits = 'T'
if units == 'U':
SIunits = 'U'
if file != '':
f = pd.read_csv(os.path.join(path_to_file, file), delim_whitespace=
True, header=None)
f.columns = ['specimen', 'treatment', 'intensity', 'declination',
'inclination']
f['declination'] = (f['declination'] - angle) % 360
f['quality'] = 'g'
f['type'] = ''
s = f['specimen'].tolist()[0]
if units == 'mT':
f['treatment'] = f['treatment'] * 0.001
if units == 'C':
f['treatment'] = f['treatment'] + 273
data = f[['treatment', 'declination', 'inclination', 'intensity',
'type', 'quality']]
print(s)
datablock = data.values.tolist()
ZED = {}
ZED['eqarea'], ZED['zijd'], ZED['demag'] = 2, 1, 3
plt.figure(num=ZED['zijd'], figsize=(5, 5))
plt.figure(num=ZED['eqarea'], figsize=(5, 5))
plt.figure(num=ZED['demag'], figsize=(5, 5))
pmagplotlib.plot_zed(ZED, datablock, angle, s, SIunits)
recnum = 0
print('step treat intensity dec inc')
for plotrec in datablock:
if units == 'mT':
print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0] *
1000.0, plotrec[3], plotrec[1], plotrec[2]))
if units == 'C':
print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0] -
273.0, plotrec[3], plotrec[1], plotrec[2]))
if units == 'U':
print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0],
plotrec[3], plotrec[1], plotrec[2]))
recnum += 1
pmagplotlib.draw_figs(ZED)
if begin_pca != '' and end_pca != '' and calculation_type != '':
pmagplotlib.plot_zed(ZED, datablock, angle, s, SIunits)
mpars = pmag.domean(datablock, begin_pca, end_pca, calculation_type)
pmagplotlib.plot_dir(ZED, mpars, datablock, angle)
print('Specimen, calc_type, N, min, max, MAD, dec, inc')
if units == 'mT':
print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,
calculation_type, mpars['specimen_n'], mpars[
'measurement_step_min'] * 1000.0, mpars[
'measurement_step_max'] * 1000.0, mpars['specimen_mad'],
mpars['specimen_dec'], mpars['specimen_inc']))
if units == 'C':
print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,
calculation_type, mpars['specimen_n'], mpars[
'measurement_step_min'] - 273, mpars['measurement_step_max'
] - 273, mpars['specimen_mad'], mpars['specimen_dec'],
mpars['specimen_inc']))
if units == 'U':
print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,
calculation_type, mpars['specimen_n'], mpars[
'measurement_step_min'], mpars['measurement_step_max'],
mpars['specimen_mad'], mpars['specimen_dec'], mpars[
'specimen_inc']))
if save:
files = {}
for key in list(ZED.keys()):
files[key] = s + '_' + key + '.' + fmt
pmagplotlib.save_plots(ZED, files)
|
zeq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path_to_file='.', file='', data='', units='U', calculation_type=\n 'DE-BFL', save=False, save_folder='.', fmt='svg', begin_pca='', end_pca\n ='', angle=0):\n if units == 'C':\n SIunits = 'K'\n if units == 'mT':\n SIunits = 'T'\n if units == 'U':\n SIunits = 'U'\n if file != '':\n f = pd.read_csv(os.path.join(path_to_file, file), delim_whitespace=\n True, header=None)\n f.columns = ['specimen', 'treatment', 'intensity', 'declination',\n 'inclination']\n f['declination'] = (f['declination'] - angle) % 360\n f['quality'] = 'g'\n f['type'] = ''\n s = f['specimen'].tolist()[0]\n if units == 'mT':\n f['treatment'] = f['treatment'] * 0.001\n if units == 'C':\n f['treatment'] = f['treatment'] + 273\n data = f[['treatment', 'declination', 'inclination', 'intensity',\n 'type', 'quality']]\n print(s)\n datablock = data.values.tolist()\n ZED = {}\n ZED['eqarea'], ZED['zijd'], ZED['demag'] = 2, 1, 3\n plt.figure(num=ZED['zijd'], figsize=(5, 5))\n plt.figure(num=ZED['eqarea'], figsize=(5, 5))\n plt.figure(num=ZED['demag'], figsize=(5, 5))\n pmagplotlib.plot_zed(ZED, datablock, angle, s, SIunits)\n recnum = 0\n print('step treat intensity dec inc')\n for plotrec in datablock:\n if units == 'mT':\n print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0] * \n 1000.0, plotrec[3], plotrec[1], plotrec[2]))\n if units == 'C':\n print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0] - \n 273.0, plotrec[3], plotrec[1], plotrec[2]))\n if units == 'U':\n print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0],\n plotrec[3], plotrec[1], plotrec[2]))\n recnum += 1\n pmagplotlib.draw_figs(ZED)\n if begin_pca != '' and end_pca != '' and calculation_type != '':\n pmagplotlib.plot_zed(ZED, datablock, angle, s, SIunits)\n mpars = pmag.domean(datablock, begin_pca, end_pca, calculation_type)\n pmagplotlib.plot_dir(ZED, mpars, datablock, angle)\n print('Specimen, calc_type, N, min, max, MAD, dec, inc')\n if units == 'mT':\n print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,\n calculation_type, mpars['specimen_n'], mpars[\n 'measurement_step_min'] * 1000.0, mpars[\n 'measurement_step_max'] * 1000.0, mpars['specimen_mad'],\n mpars['specimen_dec'], mpars['specimen_inc']))\n if units == 'C':\n print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,\n calculation_type, mpars['specimen_n'], mpars[\n 'measurement_step_min'] - 273, mpars['measurement_step_max'\n ] - 273, mpars['specimen_mad'], mpars['specimen_dec'],\n mpars['specimen_inc']))\n if units == 'U':\n print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,\n calculation_type, mpars['specimen_n'], mpars[\n 'measurement_step_min'], mpars['measurement_step_max'],\n mpars['specimen_mad'], mpars['specimen_dec'], mpars[\n 'specimen_inc']))\n if save:\n files = {}\n for key in list(ZED.keys()):\n files[key] = s + '_' + key + '.' + fmt\n pmagplotlib.save_plots(ZED, files)\n",
"role": "user"
},
{
"content": "zeq",
"role": "assistant"
}
] |
def x(infile='specimens.txt', samp_file='samples.txt', site_file=
'sites.txt', verbose=True, ipar=False, ihext=True, ivec=False, isite=
False, iloc=False, iboot=False, vec=0, Dir=[], PDir=[], crd='s',
num_bootstraps=1000, dir_path='.', fignum=1, save_plots=True,
interactive=False, fmt='png'):
figs = {}
saved = []
ipar = int(ipar)
ihext = int(ihext)
ivec = int(ivec)
isite = int(isite)
iboot = int(iboot)
input_dir_path = os.path.realpath(dir_path)
version_num = pmag.get_version()
hpars, bpars = [], []
CS = -1
if crd == 'g':
CS = 0
if crd == 't':
CS = 100
fnames = {'specimens': infile, 'samples': samp_file, 'sites': site_file}
con = cb.Contribution(input_dir_path, read_tables=['specimens',
'samples', 'sites', 'contribution'], custom_filenames=fnames)
con_id = ''
if 'contribution' in con.tables:
if 'id' in con.tables['contribution'].df.columns:
con_id = str(con.tables['contribution'].df['id'].values[0])
con.propagate_location_to_specimens()
spec_container = con.tables['specimens']
spec_df = spec_container.df
spec_df = spec_df.dropna(subset=['aniso_s']).copy()
if 'aniso_tilt_correction' not in spec_df.columns:
spec_df['aniso_tilt_correction'] = -1
if 'aniso_s_n_measurements' not in spec_df.columns:
spec_df['aniso_s_n_measurements'] = '6'
if 'aniso_s_sigma' not in spec_df.columns:
spec_df['aniso_sigma'] = '0'
orlist = spec_df['aniso_tilt_correction'].dropna().unique()
if CS not in orlist:
if len(orlist) > 0:
CS = orlist[0]
else:
CS = -1
if CS == -1:
crd = 's'
if CS == 0:
crd = 'g'
if CS == 100:
crd = 't'
if verbose:
print('desired coordinate system not available, using available: ',
crd)
cs_df = spec_df[spec_df['aniso_tilt_correction'] == CS]
if isite:
sites = cs_df['site'].unique()
for site in list(sites):
site_df = cs_df[cs_df.site == site]
loc = ''
if 'sites' in con.tables:
if 'location' in con.tables['sites'].df.columns:
locs = con.tables['sites'].df.loc[site, 'location'].dropna(
)
if any(locs):
loc = locs.iloc[0]
figs = plot_aniso(fignum, site_df, Dir=Dir, PDir=PDir, ipar=
ipar, ihext=ihext, ivec=ivec, iboot=iboot, vec=vec,
num_bootstraps=num_bootstraps, title=site)
files = {key: (loc + '_' + site + '_' + crd + '_aniso-' + key +
'.png') for key, value in figs.items()}
if pmagplotlib.isServer:
for key in figs.keys():
files[key] = ('LO:_' + loc + '_SI:_' + site +
'_TY:_aniso_' + key + '_.' + fmt)
titles = {}
titles['data'] = 'Eigenvectors'
titles['tcdf'] = 'Eigenvalue Confidence'
titles['conf'] = 'Confidence Ellipses'
for key in figs:
if key not in titles:
titles[key] = key
pmagplotlib.add_borders(figs, titles, con_id=con_id)
if save_plots:
saved.extend(pmagplotlib.save_plots(figs, files))
elif interactive:
pmagplotlib.draw_figs(figs)
ans = pmagplotlib.save_or_quit()
if ans == 'a':
saved.extend(pmagplotlib.save_plots(figs, files))
else:
continue
else:
fignum += 2
if iboot:
fignum += 1
if len(Dir) > 0:
fignum += 1
else:
figs = plot_aniso(fignum, cs_df, Dir=Dir, PDir=PDir, ipar=ipar,
ihext=ihext, ivec=ivec, iboot=iboot, vec=vec, num_bootstraps=
num_bootstraps)
try:
locs = cs_df['location'].unique()
except:
locs = ['']
locs = '-'.join(locs)
files = {key: (locs + '_' + crd + '_aniso-' + key + '.png') for key,
value in figs.items()}
if pmagplotlib.isServer:
for key in figs.keys():
files[key] = 'MC:_' + con_id + '_TY:_aniso_' + key + '_.' + fmt
titles = {}
titles['data'] = 'Eigenvectors'
titles['tcdf'] = 'Eigenvalue Confidence'
titles['conf'] = 'Confidence Ellipses'
for key in figs:
if key not in titles:
titles[key] = key
pmagplotlib.add_borders(figs, titles, con_id=con_id)
if save_plots:
saved.extend(pmagplotlib.save_plots(figs, files))
elif interactive:
pmagplotlib.draw_figs(figs)
ans = pmagplotlib.save_or_quit()
if ans == 'a':
saved.extend(pmagplotlib.save_plots(figs, files))
return True, saved
|
aniso_magic_nb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile='specimens.txt', samp_file='samples.txt', site_file=\n 'sites.txt', verbose=True, ipar=False, ihext=True, ivec=False, isite=\n False, iloc=False, iboot=False, vec=0, Dir=[], PDir=[], crd='s',\n num_bootstraps=1000, dir_path='.', fignum=1, save_plots=True,\n interactive=False, fmt='png'):\n figs = {}\n saved = []\n ipar = int(ipar)\n ihext = int(ihext)\n ivec = int(ivec)\n isite = int(isite)\n iboot = int(iboot)\n input_dir_path = os.path.realpath(dir_path)\n version_num = pmag.get_version()\n hpars, bpars = [], []\n CS = -1\n if crd == 'g':\n CS = 0\n if crd == 't':\n CS = 100\n fnames = {'specimens': infile, 'samples': samp_file, 'sites': site_file}\n con = cb.Contribution(input_dir_path, read_tables=['specimens',\n 'samples', 'sites', 'contribution'], custom_filenames=fnames)\n con_id = ''\n if 'contribution' in con.tables:\n if 'id' in con.tables['contribution'].df.columns:\n con_id = str(con.tables['contribution'].df['id'].values[0])\n con.propagate_location_to_specimens()\n spec_container = con.tables['specimens']\n spec_df = spec_container.df\n spec_df = spec_df.dropna(subset=['aniso_s']).copy()\n if 'aniso_tilt_correction' not in spec_df.columns:\n spec_df['aniso_tilt_correction'] = -1\n if 'aniso_s_n_measurements' not in spec_df.columns:\n spec_df['aniso_s_n_measurements'] = '6'\n if 'aniso_s_sigma' not in spec_df.columns:\n spec_df['aniso_sigma'] = '0'\n orlist = spec_df['aniso_tilt_correction'].dropna().unique()\n if CS not in orlist:\n if len(orlist) > 0:\n CS = orlist[0]\n else:\n CS = -1\n if CS == -1:\n crd = 's'\n if CS == 0:\n crd = 'g'\n if CS == 100:\n crd = 't'\n if verbose:\n print('desired coordinate system not available, using available: ',\n crd)\n cs_df = spec_df[spec_df['aniso_tilt_correction'] == CS]\n if isite:\n sites = cs_df['site'].unique()\n for site in list(sites):\n site_df = cs_df[cs_df.site == site]\n loc = ''\n if 'sites' in con.tables:\n if 'location' in con.tables['sites'].df.columns:\n locs = con.tables['sites'].df.loc[site, 'location'].dropna(\n )\n if any(locs):\n loc = locs.iloc[0]\n figs = plot_aniso(fignum, site_df, Dir=Dir, PDir=PDir, ipar=\n ipar, ihext=ihext, ivec=ivec, iboot=iboot, vec=vec,\n num_bootstraps=num_bootstraps, title=site)\n files = {key: (loc + '_' + site + '_' + crd + '_aniso-' + key +\n '.png') for key, value in figs.items()}\n if pmagplotlib.isServer:\n for key in figs.keys():\n files[key] = ('LO:_' + loc + '_SI:_' + site +\n '_TY:_aniso_' + key + '_.' + fmt)\n titles = {}\n titles['data'] = 'Eigenvectors'\n titles['tcdf'] = 'Eigenvalue Confidence'\n titles['conf'] = 'Confidence Ellipses'\n for key in figs:\n if key not in titles:\n titles[key] = key\n pmagplotlib.add_borders(figs, titles, con_id=con_id)\n if save_plots:\n saved.extend(pmagplotlib.save_plots(figs, files))\n elif interactive:\n pmagplotlib.draw_figs(figs)\n ans = pmagplotlib.save_or_quit()\n if ans == 'a':\n saved.extend(pmagplotlib.save_plots(figs, files))\n else:\n continue\n else:\n fignum += 2\n if iboot:\n fignum += 1\n if len(Dir) > 0:\n fignum += 1\n else:\n figs = plot_aniso(fignum, cs_df, Dir=Dir, PDir=PDir, ipar=ipar,\n ihext=ihext, ivec=ivec, iboot=iboot, vec=vec, num_bootstraps=\n num_bootstraps)\n try:\n locs = cs_df['location'].unique()\n except:\n locs = ['']\n locs = '-'.join(locs)\n files = {key: (locs + '_' + crd + '_aniso-' + key + '.png') for key,\n value in figs.items()}\n if pmagplotlib.isServer:\n for key in figs.keys():\n files[key] = 'MC:_' + con_id + '_TY:_aniso_' + key + '_.' + fmt\n titles = {}\n titles['data'] = 'Eigenvectors'\n titles['tcdf'] = 'Eigenvalue Confidence'\n titles['conf'] = 'Confidence Ellipses'\n for key in figs:\n if key not in titles:\n titles[key] = key\n pmagplotlib.add_borders(figs, titles, con_id=con_id)\n if save_plots:\n saved.extend(pmagplotlib.save_plots(figs, files))\n elif interactive:\n pmagplotlib.draw_figs(figs)\n ans = pmagplotlib.save_or_quit()\n if ans == 'a':\n saved.extend(pmagplotlib.save_plots(figs, files))\n return True, saved\n",
"role": "user"
},
{
"content": "aniso_magic_nb",
"role": "assistant"
}
] |
def x(data='', title='', fignum=1, norm=1, dmag_key='treat_ac_field',
intensity='', quality=False):
plt.figure(num=fignum, figsize=(5, 5))
if intensity:
int_key = intensity
else:
intlist = ['magn_moment', 'magn_volume', 'magn_mass']
IntMeths = [col_name for col_name in data.columns if col_name in
intlist]
int_key = IntMeths[0]
data = data[data[int_key].notnull()]
units = 'U'
if not dmag_key:
if 'treat_temp' in data.columns:
units = 'K'
elif 'treat_ac_field' in data.columns:
units = 'T'
elif 'treat_mw_energy' in data.columns:
units = 'J'
if dmag_key == 'treat_temp':
units = 'K'
if dmag_key == 'treat_ac_field':
units = 'T'
if dmag_key == 'treat_mw_energy':
units = 'J'
spcs = data.specimen.unique()
if len(spcs) == 0:
print('no data for plotting')
return
for spc in spcs:
spec_data = data[data.specimen.str.contains(spc)]
INTblock = []
for ind, rec in spec_data.iterrows():
INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[int_key]
), 1, rec['quality']])
if len(INTblock) > 2:
pmagplotlib.plot_mag(fignum, INTblock, title, 0, units, norm)
|
plot_dmag
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data='', title='', fignum=1, norm=1, dmag_key='treat_ac_field',\n intensity='', quality=False):\n plt.figure(num=fignum, figsize=(5, 5))\n if intensity:\n int_key = intensity\n else:\n intlist = ['magn_moment', 'magn_volume', 'magn_mass']\n IntMeths = [col_name for col_name in data.columns if col_name in\n intlist]\n int_key = IntMeths[0]\n data = data[data[int_key].notnull()]\n units = 'U'\n if not dmag_key:\n if 'treat_temp' in data.columns:\n units = 'K'\n elif 'treat_ac_field' in data.columns:\n units = 'T'\n elif 'treat_mw_energy' in data.columns:\n units = 'J'\n if dmag_key == 'treat_temp':\n units = 'K'\n if dmag_key == 'treat_ac_field':\n units = 'T'\n if dmag_key == 'treat_mw_energy':\n units = 'J'\n spcs = data.specimen.unique()\n if len(spcs) == 0:\n print('no data for plotting')\n return\n for spc in spcs:\n spec_data = data[data.specimen.str.contains(spc)]\n INTblock = []\n for ind, rec in spec_data.iterrows():\n INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[int_key]\n ), 1, rec['quality']])\n if len(INTblock) > 2:\n pmagplotlib.plot_mag(fignum, INTblock, title, 0, units, norm)\n",
"role": "user"
},
{
"content": "plot_dmag",
"role": "assistant"
}
] |
def x(infile='', dir_path='.'):
file = os.path.join(dir_path, infile)
eigs_data = np.loadtxt(file)
Ss = []
for ind in range(eigs_data.shape[0]):
tau, Vdirs = [], []
for k in range(0, 9, 3):
tau.append(eigs_data[ind][k])
Vdirs.append([eigs_data[ind][k + 1], eigs_data[ind][k + 2]])
s = list(pmag.doeigs_s(tau, Vdirs))
Ss.append(s)
return Ss
|
eigs_s
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile='', dir_path='.'):\n file = os.path.join(dir_path, infile)\n eigs_data = np.loadtxt(file)\n Ss = []\n for ind in range(eigs_data.shape[0]):\n tau, Vdirs = [], []\n for k in range(0, 9, 3):\n tau.append(eigs_data[ind][k])\n Vdirs.append([eigs_data[ind][k + 1], eigs_data[ind][k + 2]])\n s = list(pmag.doeigs_s(tau, Vdirs))\n Ss.append(s)\n return Ss\n",
"role": "user"
},
{
"content": "eigs_s",
"role": "assistant"
}
] |
def x(poles, color='g', fignum=1):
for pole in poles:
pmagplotlib.plot_circ(fignum, pole, 90.0, color)
|
plot_gc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(poles, color='g', fignum=1):\n for pole in poles:\n pmagplotlib.plot_circ(fignum, pole, 90.0, color)\n",
"role": "user"
},
{
"content": "plot_gc",
"role": "assistant"
}
] |
def x(this_spec_meas_df, samp_df, samp, coord='0'):
decs = this_spec_meas_df['dir_dec'].values.tolist()
incs = this_spec_meas_df['dir_inc'].values.tolist()
or_info, az_type = pmag.get_orient(samp_df, samp, data_model=3)
if 'azimuth' in or_info.keys() and cb.not_null(or_info['azimuth'], False):
azimuths = len(decs) * [or_info['azimuth']]
dips = len(decs) * [or_info['dip']]
else:
return this_spec_meas_df
dirs = [decs, incs, azimuths, dips]
dirs_geo = np.array(list(map(list, list(zip(*dirs)))))
decs, incs = pmag.dogeo_V(dirs_geo)
if coord == '100' and 'bed_dip_direction' in or_info.keys() and or_info[
'bed_dip_direction'] != '':
bed_dip_dirs = len(decs) * [or_info['bed_dip_direction']]
bed_dips = len(decs) * [or_info['bed_dip']]
dirs = [decs, incs, bed_dip_dirs, bed_dips]
dirs_tilt = np.array(list(map(list, list(zip(*dirs)))))
decs, incs = pmag.dotilt_V(dirs_tilt)
this_spec_meas_df['dir_dec'] = decs
this_spec_meas_df['dir_inc'] = incs
return this_spec_meas_df
|
transform_to_geographic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(this_spec_meas_df, samp_df, samp, coord='0'):\n decs = this_spec_meas_df['dir_dec'].values.tolist()\n incs = this_spec_meas_df['dir_inc'].values.tolist()\n or_info, az_type = pmag.get_orient(samp_df, samp, data_model=3)\n if 'azimuth' in or_info.keys() and cb.not_null(or_info['azimuth'], False):\n azimuths = len(decs) * [or_info['azimuth']]\n dips = len(decs) * [or_info['dip']]\n else:\n return this_spec_meas_df\n dirs = [decs, incs, azimuths, dips]\n dirs_geo = np.array(list(map(list, list(zip(*dirs)))))\n decs, incs = pmag.dogeo_V(dirs_geo)\n if coord == '100' and 'bed_dip_direction' in or_info.keys() and or_info[\n 'bed_dip_direction'] != '':\n bed_dip_dirs = len(decs) * [or_info['bed_dip_direction']]\n bed_dips = len(decs) * [or_info['bed_dip']]\n dirs = [decs, incs, bed_dip_dirs, bed_dips]\n dirs_tilt = np.array(list(map(list, list(zip(*dirs)))))\n decs, incs = pmag.dotilt_V(dirs_tilt)\n this_spec_meas_df['dir_dec'] = decs\n this_spec_meas_df['dir_inc'] = incs\n return this_spec_meas_df\n",
"role": "user"
},
{
"content": "transform_to_geographic",
"role": "assistant"
}
] |
def x(meas_file='measurements.txt', dir_path='.', input_dir_path='', spec=
'', n_specs=5, save_plots=True, fmt='svg', interactive=False,
contribution=None):
def x(this_specimen, thel_data, cnt=1):
zed = False
if pmagplotlib.verbose:
print(this_specimen)
AZD = {'arai': cnt, 'zijd': cnt + 1, 'eqarea': cnt + 2, 'deremag':
cnt + 3}
spec_df = thel_data[thel_data.specimen == this_specimen]
if len(spec_df) >= 3:
try:
araiblock, field = pmag.sortarai(spec_df, this_specimen, 0,
version=3)
except Exception as ex:
print('-W-', ex)
return zed
if not save_plots:
for key, val in AZD.items():
pmagplotlib.plot_init(val, 5, 5)
zijdblock, units = pmag.find_dmag_rec(this_specimen, spec_df,
version=3)
if not len(units):
unit_string = ''
else:
unit_string = units[-1]
zed = pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock,
this_specimen, unit_string)
return zed
if interactive:
save_plots = False
if not isinstance(contribution, cb.Contribution):
input_dir_path, dir_path = pmag.fix_directories(input_dir_path,
dir_path)
file_path = pmag.resolve_file_name(meas_file, input_dir_path)
input_dir_path = os.path.split(file_path)[0]
contribution = cb.Contribution(input_dir_path)
if not contribution.tables.get('measurements'):
print('-W- No measurements table found')
return False, []
try:
contribution.propagate_location_to_samples()
contribution.propagate_location_to_specimens()
contribution.propagate_location_to_measurements()
except KeyError as ex:
pass
meas_df = contribution.tables['measurements'].df
if pmagplotlib.isServer:
con_id = contribution.get_con_id()
int_key = cb.get_intensity_col(meas_df)
saved = []
meas_data = meas_df[meas_df[int_key].notnull()]
thel_data = meas_data.dropna(subset=['method_codes'])
thel_data = thel_data[thel_data['method_codes'].str.contains('LP-PI-TRM')]
specimens = meas_data.specimen.unique()
if len(specimens) == 0:
print('there are no data for plotting')
return False, []
if spec:
if spec not in specimens:
print('could not find specimen {}'.format(spec))
return False, []
specimens = [spec]
elif n_specs != 'all':
try:
specimens = specimens[:n_specs]
except Exception as ex:
pass
cnt = 1
for this_specimen in specimens:
zed = make_plots(this_specimen, thel_data, cnt)
if zed:
if interactive:
pmagplotlib.draw_figs(zed)
ans = input('S[a]ve plots, [q]uit, <return> to continue\n ')
if ans == 'q':
return True, []
if ans == 'a':
files = {key: (this_specimen + '_' + key + '.' + fmt) for
key, value in zed.items()}
if not set_env.IS_WIN:
files = {key: os.path.join(dir_path, value) for key,
value in files.items()}
incl_directory = True
saved.append(pmagplotlib.save_plots(zed, files,
incl_directory=incl_directory))
elif save_plots:
files = {key: (this_specimen + '_' + key + '.' + fmt) for
key, value in zed.items()}
incl_directory = False
if not pmagplotlib.isServer:
if not set_env.IS_WIN:
files = {key: os.path.join(dir_path, value) for key,
value in files.items()}
incl_directory = True
else:
for key, value in files.copy().items():
files[key] = 'SP:_{}_TY:_{}_.{}'.format(this_specimen,
key, fmt)
titles = {}
titles['deremag'] = 'DeReMag Plot'
titles['zijd'] = 'Zijderveld Plot'
titles['arai'] = 'Arai Plot'
titles['TRM'] = 'TRM Acquisition data'
titles['eqarea'] = 'Equal Area Plot'
zed = pmagplotlib.add_borders(zed, titles, con_id=con_id)
saved.append(pmagplotlib.save_plots(zed, files,
incl_directory=incl_directory))
else:
cnt += len(zed)
else:
print('no data for ', this_specimen)
print('skipping')
return True, saved
|
thellier_magic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(meas_file='measurements.txt', dir_path='.', input_dir_path='', spec=\n '', n_specs=5, save_plots=True, fmt='svg', interactive=False,\n contribution=None):\n\n def x(this_specimen, thel_data, cnt=1):\n zed = False\n if pmagplotlib.verbose:\n print(this_specimen)\n AZD = {'arai': cnt, 'zijd': cnt + 1, 'eqarea': cnt + 2, 'deremag': \n cnt + 3}\n spec_df = thel_data[thel_data.specimen == this_specimen]\n if len(spec_df) >= 3:\n try:\n araiblock, field = pmag.sortarai(spec_df, this_specimen, 0,\n version=3)\n except Exception as ex:\n print('-W-', ex)\n return zed\n if not save_plots:\n for key, val in AZD.items():\n pmagplotlib.plot_init(val, 5, 5)\n zijdblock, units = pmag.find_dmag_rec(this_specimen, spec_df,\n version=3)\n if not len(units):\n unit_string = ''\n else:\n unit_string = units[-1]\n zed = pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock,\n this_specimen, unit_string)\n return zed\n if interactive:\n save_plots = False\n if not isinstance(contribution, cb.Contribution):\n input_dir_path, dir_path = pmag.fix_directories(input_dir_path,\n dir_path)\n file_path = pmag.resolve_file_name(meas_file, input_dir_path)\n input_dir_path = os.path.split(file_path)[0]\n contribution = cb.Contribution(input_dir_path)\n if not contribution.tables.get('measurements'):\n print('-W- No measurements table found')\n return False, []\n try:\n contribution.propagate_location_to_samples()\n contribution.propagate_location_to_specimens()\n contribution.propagate_location_to_measurements()\n except KeyError as ex:\n pass\n meas_df = contribution.tables['measurements'].df\n if pmagplotlib.isServer:\n con_id = contribution.get_con_id()\n int_key = cb.get_intensity_col(meas_df)\n saved = []\n meas_data = meas_df[meas_df[int_key].notnull()]\n thel_data = meas_data.dropna(subset=['method_codes'])\n thel_data = thel_data[thel_data['method_codes'].str.contains('LP-PI-TRM')]\n specimens = meas_data.specimen.unique()\n if len(specimens) == 0:\n print('there are no data for plotting')\n return False, []\n if spec:\n if spec not in specimens:\n print('could not find specimen {}'.format(spec))\n return False, []\n specimens = [spec]\n elif n_specs != 'all':\n try:\n specimens = specimens[:n_specs]\n except Exception as ex:\n pass\n cnt = 1\n for this_specimen in specimens:\n zed = make_plots(this_specimen, thel_data, cnt)\n if zed:\n if interactive:\n pmagplotlib.draw_figs(zed)\n ans = input('S[a]ve plots, [q]uit, <return> to continue\\n ')\n if ans == 'q':\n return True, []\n if ans == 'a':\n files = {key: (this_specimen + '_' + key + '.' + fmt) for\n key, value in zed.items()}\n if not set_env.IS_WIN:\n files = {key: os.path.join(dir_path, value) for key,\n value in files.items()}\n incl_directory = True\n saved.append(pmagplotlib.save_plots(zed, files,\n incl_directory=incl_directory))\n elif save_plots:\n files = {key: (this_specimen + '_' + key + '.' + fmt) for \n key, value in zed.items()}\n incl_directory = False\n if not pmagplotlib.isServer:\n if not set_env.IS_WIN:\n files = {key: os.path.join(dir_path, value) for key,\n value in files.items()}\n incl_directory = True\n else:\n for key, value in files.copy().items():\n files[key] = 'SP:_{}_TY:_{}_.{}'.format(this_specimen,\n key, fmt)\n titles = {}\n titles['deremag'] = 'DeReMag Plot'\n titles['zijd'] = 'Zijderveld Plot'\n titles['arai'] = 'Arai Plot'\n titles['TRM'] = 'TRM Acquisition data'\n titles['eqarea'] = 'Equal Area Plot'\n zed = pmagplotlib.add_borders(zed, titles, con_id=con_id)\n saved.append(pmagplotlib.save_plots(zed, files,\n incl_directory=incl_directory))\n else:\n cnt += len(zed)\n else:\n print('no data for ', this_specimen)\n print('skipping')\n return True, saved\n",
"role": "user"
},
{
"content": "thellier_magic",
"role": "assistant"
}
] |
def x(site_file='sites.txt', directions_file='directions.xls',
intensity_file='intensity.xls', info_file='site_info.xls',
output_dir_path='.', input_dir_path='', latex=False):
input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,
output_dir_path)
try:
fname = pmag.resolve_file_name(site_file, input_dir_path)
except IOError:
print('bad site file name')
return False, 'bad site file name'
sites_df = pd.read_csv(fname, sep='\t', header=1)
dir_df = map_magic.convert_site_dm3_table_directions(sites_df)
dir_file = pmag.resolve_file_name(directions_file, output_dir_path)
if len(dir_df):
if latex:
if dir_file.endswith('.xls'):
dir_file = dir_file[:-4] + '.tex'
directions_out = open(dir_file, 'w+', errors='backslashreplace')
directions_out.write('\\documentclass{article}\n')
directions_out.write('\\usepackage{booktabs}\n')
directions_out.write('\\usepackage{longtable}\n')
directions_out.write('\\begin{document}')
directions_out.write(dir_df.to_latex(index=False, longtable=
True, multicolumn=False))
directions_out.write('\\end{document}\n')
directions_out.close()
else:
dir_df.to_excel(dir_file, index=False)
else:
print('No directional data for ouput.')
dir_file = None
intensity_file = pmag.resolve_file_name(intensity_file, output_dir_path)
int_df = map_magic.convert_site_dm3_table_intensity(sites_df)
if len(int_df):
if latex:
if intensity_file.endswith('.xls'):
intensity_file = intensity_file[:-4] + '.tex'
intensities_out = open(intensity_file, 'w+', errors=
'backslashreplace')
intensities_out.write('\\documentclass{article}\n')
intensities_out.write('\\usepackage{booktabs}\n')
intensities_out.write('\\usepackage{longtable}\n')
intensities_out.write('\\begin{document}')
intensities_out.write(int_df.to_latex(index=False, longtable=
True, multicolumn=False))
intensities_out.write('\\end{document}\n')
intensities_out.close()
else:
int_df.to_excel(intensity_file, index=False)
else:
print('No intensity data for ouput.')
intensity_file = None
nfo_df = sites_df.dropna(subset=['lat', 'lon'])
if len(nfo_df) > 0:
SiteCols = ['Site', 'Location', 'Lat. (N)', 'Long. (E)']
info_file = pmag.resolve_file_name(info_file, output_dir_path)
age_cols = ['age', 'age_sigma', 'age_unit']
for col in age_cols:
if col not in nfo_df:
nfo_df[col] = None
test_age = nfo_df.dropna(subset=['age', 'age_sigma', 'age_unit'])
if len(test_age) > 0:
SiteCols.append('Age ')
SiteCols.append('Age sigma')
SiteCols.append('Units')
nfo_df = nfo_df[['site', 'location', 'lat', 'lon', 'age',
'age_sigma', 'age_unit']]
else:
nfo_df = nfo_df[['site', 'location', 'lat', 'lon']]
nfo_df.drop_duplicates(inplace=True)
nfo_df.columns = SiteCols
nfo_df.fillna(value='', inplace=True)
if latex:
if info_file.endswith('.xls'):
info_file = info_file[:-4] + '.tex'
info_out = open(info_file, 'w+', errors='backslashreplace')
info_out.write('\\documentclass{article}\n')
info_out.write('\\usepackage{booktabs}\n')
info_out.write('\\usepackage{longtable}\n')
info_out.write('\\begin{document}')
info_out.write(nfo_df.to_latex(index=False, longtable=True,
multicolumn=False))
info_out.write('\\end{document}\n')
info_out.close()
else:
nfo_df.to_excel(info_file, index=False)
else:
print('No location information for ouput.')
info_file = None
return True, [fname for fname in [info_file, intensity_file, dir_file] if
fname]
|
sites_extract
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(site_file='sites.txt', directions_file='directions.xls',\n intensity_file='intensity.xls', info_file='site_info.xls',\n output_dir_path='.', input_dir_path='', latex=False):\n input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,\n output_dir_path)\n try:\n fname = pmag.resolve_file_name(site_file, input_dir_path)\n except IOError:\n print('bad site file name')\n return False, 'bad site file name'\n sites_df = pd.read_csv(fname, sep='\\t', header=1)\n dir_df = map_magic.convert_site_dm3_table_directions(sites_df)\n dir_file = pmag.resolve_file_name(directions_file, output_dir_path)\n if len(dir_df):\n if latex:\n if dir_file.endswith('.xls'):\n dir_file = dir_file[:-4] + '.tex'\n directions_out = open(dir_file, 'w+', errors='backslashreplace')\n directions_out.write('\\\\documentclass{article}\\n')\n directions_out.write('\\\\usepackage{booktabs}\\n')\n directions_out.write('\\\\usepackage{longtable}\\n')\n directions_out.write('\\\\begin{document}')\n directions_out.write(dir_df.to_latex(index=False, longtable=\n True, multicolumn=False))\n directions_out.write('\\\\end{document}\\n')\n directions_out.close()\n else:\n dir_df.to_excel(dir_file, index=False)\n else:\n print('No directional data for ouput.')\n dir_file = None\n intensity_file = pmag.resolve_file_name(intensity_file, output_dir_path)\n int_df = map_magic.convert_site_dm3_table_intensity(sites_df)\n if len(int_df):\n if latex:\n if intensity_file.endswith('.xls'):\n intensity_file = intensity_file[:-4] + '.tex'\n intensities_out = open(intensity_file, 'w+', errors=\n 'backslashreplace')\n intensities_out.write('\\\\documentclass{article}\\n')\n intensities_out.write('\\\\usepackage{booktabs}\\n')\n intensities_out.write('\\\\usepackage{longtable}\\n')\n intensities_out.write('\\\\begin{document}')\n intensities_out.write(int_df.to_latex(index=False, longtable=\n True, multicolumn=False))\n intensities_out.write('\\\\end{document}\\n')\n intensities_out.close()\n else:\n int_df.to_excel(intensity_file, index=False)\n else:\n print('No intensity data for ouput.')\n intensity_file = None\n nfo_df = sites_df.dropna(subset=['lat', 'lon'])\n if len(nfo_df) > 0:\n SiteCols = ['Site', 'Location', 'Lat. (N)', 'Long. (E)']\n info_file = pmag.resolve_file_name(info_file, output_dir_path)\n age_cols = ['age', 'age_sigma', 'age_unit']\n for col in age_cols:\n if col not in nfo_df:\n nfo_df[col] = None\n test_age = nfo_df.dropna(subset=['age', 'age_sigma', 'age_unit'])\n if len(test_age) > 0:\n SiteCols.append('Age ')\n SiteCols.append('Age sigma')\n SiteCols.append('Units')\n nfo_df = nfo_df[['site', 'location', 'lat', 'lon', 'age',\n 'age_sigma', 'age_unit']]\n else:\n nfo_df = nfo_df[['site', 'location', 'lat', 'lon']]\n nfo_df.drop_duplicates(inplace=True)\n nfo_df.columns = SiteCols\n nfo_df.fillna(value='', inplace=True)\n if latex:\n if info_file.endswith('.xls'):\n info_file = info_file[:-4] + '.tex'\n info_out = open(info_file, 'w+', errors='backslashreplace')\n info_out.write('\\\\documentclass{article}\\n')\n info_out.write('\\\\usepackage{booktabs}\\n')\n info_out.write('\\\\usepackage{longtable}\\n')\n info_out.write('\\\\begin{document}')\n info_out.write(nfo_df.to_latex(index=False, longtable=True,\n multicolumn=False))\n info_out.write('\\\\end{document}\\n')\n info_out.close()\n else:\n nfo_df.to_excel(info_file, index=False)\n else:\n print('No location information for ouput.')\n info_file = None\n return True, [fname for fname in [info_file, intensity_file, dir_file] if\n fname]\n",
"role": "user"
},
{
"content": "sites_extract",
"role": "assistant"
}
] |
def x(spec_file='specimens.txt', output_file='specimens.xls', landscape=
False, longtable=False, output_dir_path='.', input_dir_path='', latex=False
):
input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,
output_dir_path)
try:
fname = pmag.resolve_file_name(spec_file, input_dir_path)
except IOError:
print('bad specimen file name')
return False, 'bad specimen file name'
spec_df = pd.read_csv(fname, sep='\t', header=1)
spec_df.dropna('columns', how='all', inplace=True)
if 'int_abs' in spec_df.columns:
spec_df.dropna(subset=['int_abs'], inplace=True)
if len(spec_df) > 0:
table_df = map_magic.convert_specimen_dm3_table(spec_df)
out_file = pmag.resolve_file_name(output_file, output_dir_path)
if latex:
if out_file.endswith('.xls'):
out_file = out_file.rsplit('.')[0] + '.tex'
info_out = open(out_file, 'w+', errors='backslashreplace')
info_out.write('\\documentclass{article}\n')
info_out.write('\\usepackage{booktabs}\n')
if landscape:
info_out.write('\\usepackage{lscape}')
if longtable:
info_out.write('\\usepackage{longtable}\n')
info_out.write('\\begin{document}\n')
if landscape:
info_out.write('\\begin{landscape}\n')
info_out.write(table_df.to_latex(index=False, longtable=
longtable, escape=True, multicolumn=False))
if landscape:
info_out.write('\\end{landscape}\n')
info_out.write('\\end{document}\n')
info_out.close()
else:
table_df.to_excel(out_file, index=False)
else:
print('No specimen data for ouput.')
return True, [out_file]
|
specimens_extract
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(spec_file='specimens.txt', output_file='specimens.xls', landscape=\n False, longtable=False, output_dir_path='.', input_dir_path='', latex=False\n ):\n input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,\n output_dir_path)\n try:\n fname = pmag.resolve_file_name(spec_file, input_dir_path)\n except IOError:\n print('bad specimen file name')\n return False, 'bad specimen file name'\n spec_df = pd.read_csv(fname, sep='\\t', header=1)\n spec_df.dropna('columns', how='all', inplace=True)\n if 'int_abs' in spec_df.columns:\n spec_df.dropna(subset=['int_abs'], inplace=True)\n if len(spec_df) > 0:\n table_df = map_magic.convert_specimen_dm3_table(spec_df)\n out_file = pmag.resolve_file_name(output_file, output_dir_path)\n if latex:\n if out_file.endswith('.xls'):\n out_file = out_file.rsplit('.')[0] + '.tex'\n info_out = open(out_file, 'w+', errors='backslashreplace')\n info_out.write('\\\\documentclass{article}\\n')\n info_out.write('\\\\usepackage{booktabs}\\n')\n if landscape:\n info_out.write('\\\\usepackage{lscape}')\n if longtable:\n info_out.write('\\\\usepackage{longtable}\\n')\n info_out.write('\\\\begin{document}\\n')\n if landscape:\n info_out.write('\\\\begin{landscape}\\n')\n info_out.write(table_df.to_latex(index=False, longtable=\n longtable, escape=True, multicolumn=False))\n if landscape:\n info_out.write('\\\\end{landscape}\\n')\n info_out.write('\\\\end{document}\\n')\n info_out.close()\n else:\n table_df.to_excel(out_file, index=False)\n else:\n print('No specimen data for ouput.')\n return True, [out_file]\n",
"role": "user"
},
{
"content": "specimens_extract",
"role": "assistant"
}
] |
def x(crit_file='criteria.txt', output_file='criteria.xls', output_dir_path
='.', input_dir_path='', latex=False):
input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,
output_dir_path)
try:
fname = pmag.resolve_file_name(crit_file, input_dir_path)
except IOError:
print('bad criteria file name')
return False, 'bad criteria file name'
crit_df = pd.read_csv(fname, sep='\t', header=1)
if len(crit_df) > 0:
out_file = pmag.resolve_file_name(output_file, output_dir_path)
s = crit_df['table_column'].str.split(pat='.', expand=True)
crit_df['table'] = s[0]
crit_df['column'] = s[1]
crit_df = crit_df[['table', 'column', 'criterion_value',
'criterion_operation']]
crit_df.columns = ['Table', 'Statistic', 'Threshold', 'Operation']
if latex:
if out_file.endswith('.xls'):
out_file = out_file.rsplit('.')[0] + '.tex'
crit_df.loc[crit_df['Operation'].str.contains('<'), 'operation'
] = 'maximum'
crit_df.loc[crit_df['Operation'].str.contains('>'), 'operation'
] = 'minimum'
crit_df.loc[crit_df['Operation'] == '=', 'operation'] = 'equal to'
info_out = open(out_file, 'w+', errors='backslashreplace')
info_out.write('\\documentclass{article}\n')
info_out.write('\\usepackage{booktabs}\n')
info_out.write('\\usepackage[T1]{fontenc}\n')
info_out.write('\\begin{document}')
info_out.write(crit_df.to_latex(index=False, longtable=False,
escape=True, multicolumn=False))
info_out.write('\\end{document}\n')
info_out.close()
else:
crit_df.to_excel(out_file, index=False)
else:
print('No criteria for ouput.')
return True, [out_file]
|
criteria_extract
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(crit_file='criteria.txt', output_file='criteria.xls', output_dir_path\n ='.', input_dir_path='', latex=False):\n input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,\n output_dir_path)\n try:\n fname = pmag.resolve_file_name(crit_file, input_dir_path)\n except IOError:\n print('bad criteria file name')\n return False, 'bad criteria file name'\n crit_df = pd.read_csv(fname, sep='\\t', header=1)\n if len(crit_df) > 0:\n out_file = pmag.resolve_file_name(output_file, output_dir_path)\n s = crit_df['table_column'].str.split(pat='.', expand=True)\n crit_df['table'] = s[0]\n crit_df['column'] = s[1]\n crit_df = crit_df[['table', 'column', 'criterion_value',\n 'criterion_operation']]\n crit_df.columns = ['Table', 'Statistic', 'Threshold', 'Operation']\n if latex:\n if out_file.endswith('.xls'):\n out_file = out_file.rsplit('.')[0] + '.tex'\n crit_df.loc[crit_df['Operation'].str.contains('<'), 'operation'\n ] = 'maximum'\n crit_df.loc[crit_df['Operation'].str.contains('>'), 'operation'\n ] = 'minimum'\n crit_df.loc[crit_df['Operation'] == '=', 'operation'] = 'equal to'\n info_out = open(out_file, 'w+', errors='backslashreplace')\n info_out.write('\\\\documentclass{article}\\n')\n info_out.write('\\\\usepackage{booktabs}\\n')\n info_out.write('\\\\usepackage[T1]{fontenc}\\n')\n info_out.write('\\\\begin{document}')\n info_out.write(crit_df.to_latex(index=False, longtable=False,\n escape=True, multicolumn=False))\n info_out.write('\\\\end{document}\\n')\n info_out.close()\n else:\n crit_df.to_excel(out_file, index=False)\n else:\n print('No criteria for ouput.')\n return True, [out_file]\n",
"role": "user"
},
{
"content": "criteria_extract",
"role": "assistant"
}
] |
def x(infile='measurements.txt', dir_path='.', experiments='', fmt='svg',
save_plots=True, interactive=False, contribution=None):
saved = []
if contribution:
chi_data_all = contribution.tables['measurements'].df
else:
infile = pmag.resolve_file_name(infile, dir_path)
chi_data_all = pd.read_csv(infile, sep='\t', header=1)
if not experiments:
try:
experiments = chi_data_all.experiment.unique()
except Exception as ex:
print(ex)
experiments = ['all']
else:
experiments = [experiments]
plotnum = 0
figs = {}
fnames = {}
for exp in experiments:
if exp == 'all':
chi_data = chi_data_all
chi_data = chi_data_all[chi_data_all.experiment == exp]
if len(chi_data) <= 1:
print('Not enough data to plot {}'.format(exp))
continue
plotnum += 1
if not save_plots:
pmagplotlib.plot_init(plotnum, 5, 5)
else:
plt.figure(plotnum)
figs[str(plotnum)] = plotnum
fnames[str(plotnum)] = exp + '_temperature.{}'.format(fmt)
Ts = np.sort(chi_data.meas_temp.unique())
Fs = np.sort(chi_data.meas_freq.unique())
Bs = np.sort(chi_data.meas_field_ac.unique())
b = Bs.max()
for num, f in enumerate(Fs):
this_f = chi_data[chi_data.meas_freq == f]
this_f = this_f[this_f.meas_field_ac == b]
plt.plot(this_f.meas_temp, 1000000.0 * this_f.susc_chi_volume,
label='%i' % f + ' Hz')
plt.legend()
plt.xlabel('Temperature (K)')
plt.ylabel('$\\chi$ ($\\mu$SI)')
plt.title('B = ' + '%7.2e' % b + ' T')
plotnum += 1
figs[str(plotnum)] = plotnum
fnames[str(plotnum)] = exp + '_frequency.{}'.format(fmt)
if not save_plots:
pmagplotlib.plot_init(plotnum, 5, 5)
else:
plt.figure(plotnum)
b = Bs.max()
t = Ts.min()
this_t = chi_data[chi_data.meas_temp == t]
this_t = this_t[this_t.meas_field_ac == b]
plt.semilogx(this_t.meas_freq, 1000000.0 * this_t.susc_chi_volume,
label='%i' % t + ' K')
plt.legend()
plt.xlabel('Frequency (Hz)')
plt.ylabel('$\\chi$ ($\\mu$SI)')
plt.title('B = ' + '%7.2e' % b + ' T')
if interactive:
pmagplotlib.draw_figs(figs)
ans = input('enter s[a]ve to save files, [return] to quit ')
if ans == 'a':
saved.extend(pmagplotlib.save_plots(figs, fnames))
else:
return True, []
elif save_plots:
saved.extend(pmagplotlib.save_plots(figs, fnames))
return True, saved
|
chi_magic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile='measurements.txt', dir_path='.', experiments='', fmt='svg',\n save_plots=True, interactive=False, contribution=None):\n saved = []\n if contribution:\n chi_data_all = contribution.tables['measurements'].df\n else:\n infile = pmag.resolve_file_name(infile, dir_path)\n chi_data_all = pd.read_csv(infile, sep='\\t', header=1)\n if not experiments:\n try:\n experiments = chi_data_all.experiment.unique()\n except Exception as ex:\n print(ex)\n experiments = ['all']\n else:\n experiments = [experiments]\n plotnum = 0\n figs = {}\n fnames = {}\n for exp in experiments:\n if exp == 'all':\n chi_data = chi_data_all\n chi_data = chi_data_all[chi_data_all.experiment == exp]\n if len(chi_data) <= 1:\n print('Not enough data to plot {}'.format(exp))\n continue\n plotnum += 1\n if not save_plots:\n pmagplotlib.plot_init(plotnum, 5, 5)\n else:\n plt.figure(plotnum)\n figs[str(plotnum)] = plotnum\n fnames[str(plotnum)] = exp + '_temperature.{}'.format(fmt)\n Ts = np.sort(chi_data.meas_temp.unique())\n Fs = np.sort(chi_data.meas_freq.unique())\n Bs = np.sort(chi_data.meas_field_ac.unique())\n b = Bs.max()\n for num, f in enumerate(Fs):\n this_f = chi_data[chi_data.meas_freq == f]\n this_f = this_f[this_f.meas_field_ac == b]\n plt.plot(this_f.meas_temp, 1000000.0 * this_f.susc_chi_volume,\n label='%i' % f + ' Hz')\n plt.legend()\n plt.xlabel('Temperature (K)')\n plt.ylabel('$\\\\chi$ ($\\\\mu$SI)')\n plt.title('B = ' + '%7.2e' % b + ' T')\n plotnum += 1\n figs[str(plotnum)] = plotnum\n fnames[str(plotnum)] = exp + '_frequency.{}'.format(fmt)\n if not save_plots:\n pmagplotlib.plot_init(plotnum, 5, 5)\n else:\n plt.figure(plotnum)\n b = Bs.max()\n t = Ts.min()\n this_t = chi_data[chi_data.meas_temp == t]\n this_t = this_t[this_t.meas_field_ac == b]\n plt.semilogx(this_t.meas_freq, 1000000.0 * this_t.susc_chi_volume,\n label='%i' % t + ' K')\n plt.legend()\n plt.xlabel('Frequency (Hz)')\n plt.ylabel('$\\\\chi$ ($\\\\mu$SI)')\n plt.title('B = ' + '%7.2e' % b + ' T')\n if interactive:\n pmagplotlib.draw_figs(figs)\n ans = input('enter s[a]ve to save files, [return] to quit ')\n if ans == 'a':\n saved.extend(pmagplotlib.save_plots(figs, fnames))\n else:\n return True, []\n elif save_plots:\n saved.extend(pmagplotlib.save_plots(figs, fnames))\n return True, saved\n",
"role": "user"
},
{
"content": "chi_magic",
"role": "assistant"
}
] |
def x(infile='', data=(), outfile='', xlab='x', binsize=False, norm=1, fmt=
'svg', save_plots=True, interactive=False):
if outfile:
fmt = ''
else:
outfile = 'hist.' + fmt
if os.path.exists(infile):
D = np.loadtxt(infile)
else:
D = np.array(data)
try:
if not len(D):
print('-W- No data found')
return False, []
except ValueError:
pass
fig = pmagplotlib.plot_init(1, 8, 7)
try:
len(D)
except TypeError:
D = np.array([D])
if len(D) < 5:
print(
'-W- Not enough points to plot histogram ({} point(s) provided, 5 required)'
.format(len(D)))
return False, []
if not binsize:
binsize = int(np.around(1 + 3.22 * np.log(len(D))))
binsize = int(binsize)
Nbins = int(len(D) / binsize)
ax = fig.add_subplot(111)
if norm == 1:
print('normalizing')
n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3',
histtype='stepfilled', color='black', density=True)
ax.set_ylabel('Frequency')
elif norm == 0:
print('not normalizing')
n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3',
histtype='stepfilled', color='black', density=False)
ax.set_ylabel('Number')
elif norm == -1:
n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3',
histtype='stepfilled', color='black', density=True)
ax.set_ylabel('Frequency')
ax2 = ax.twinx()
n, bins, patches = ax2.hist(D, bins=Nbins, facecolor='#D3D3D3',
histtype='stepfilled', color='black', density=False)
ax2.set_ylabel('Number', rotation=-90)
plt.axis([D.min(), D.max(), 0, n.max() + 0.1 * n.max()])
ax.set_xlabel(xlab)
name = 'N = ' + str(len(D))
plt.title(name)
if interactive:
pmagplotlib.draw_figs({(1): 'hist'})
p = input('s[a]ve to save plot, [q]uit to exit without saving ')
if p != 'a':
return True, []
plt.savefig(outfile)
print('plot saved in ', outfile)
return True, [outfile]
if pmagplotlib.isServer:
pmagplotlib.add_borders({'hist': 1}, {'hist': 'Intensity Histogram'})
if save_plots:
plt.savefig(outfile)
print('plot saved in ', outfile)
return True, [outfile]
|
histplot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile='', data=(), outfile='', xlab='x', binsize=False, norm=1, fmt=\n 'svg', save_plots=True, interactive=False):\n if outfile:\n fmt = ''\n else:\n outfile = 'hist.' + fmt\n if os.path.exists(infile):\n D = np.loadtxt(infile)\n else:\n D = np.array(data)\n try:\n if not len(D):\n print('-W- No data found')\n return False, []\n except ValueError:\n pass\n fig = pmagplotlib.plot_init(1, 8, 7)\n try:\n len(D)\n except TypeError:\n D = np.array([D])\n if len(D) < 5:\n print(\n '-W- Not enough points to plot histogram ({} point(s) provided, 5 required)'\n .format(len(D)))\n return False, []\n if not binsize:\n binsize = int(np.around(1 + 3.22 * np.log(len(D))))\n binsize = int(binsize)\n Nbins = int(len(D) / binsize)\n ax = fig.add_subplot(111)\n if norm == 1:\n print('normalizing')\n n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3',\n histtype='stepfilled', color='black', density=True)\n ax.set_ylabel('Frequency')\n elif norm == 0:\n print('not normalizing')\n n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3',\n histtype='stepfilled', color='black', density=False)\n ax.set_ylabel('Number')\n elif norm == -1:\n n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3',\n histtype='stepfilled', color='black', density=True)\n ax.set_ylabel('Frequency')\n ax2 = ax.twinx()\n n, bins, patches = ax2.hist(D, bins=Nbins, facecolor='#D3D3D3',\n histtype='stepfilled', color='black', density=False)\n ax2.set_ylabel('Number', rotation=-90)\n plt.axis([D.min(), D.max(), 0, n.max() + 0.1 * n.max()])\n ax.set_xlabel(xlab)\n name = 'N = ' + str(len(D))\n plt.title(name)\n if interactive:\n pmagplotlib.draw_figs({(1): 'hist'})\n p = input('s[a]ve to save plot, [q]uit to exit without saving ')\n if p != 'a':\n return True, []\n plt.savefig(outfile)\n print('plot saved in ', outfile)\n return True, [outfile]\n if pmagplotlib.isServer:\n pmagplotlib.add_borders({'hist': 1}, {'hist': 'Intensity Histogram'})\n if save_plots:\n plt.savefig(outfile)\n print('plot saved in ', outfile)\n return True, [outfile]\n",
"role": "user"
},
{
"content": "histplot",
"role": "assistant"
}
] |
def x(self, fit_name):
fits = self.fits.loc[self.fits.specimen_comp_name == fit_name].loc[self
.fits.specimen_tilt_correction == 0]
fits.reset_index(inplace=True)
means = self.means.loc[self.means.site_comp_name == fit_name].loc[self.
means.site_tilt_correction == 0]
means.reset_index(inplace=True)
mean_name = str(fit_name) + '_mean'
setattr(self, fit_name, fits)
setattr(self, mean_name, means)
|
parse_fits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fit_name):\n fits = self.fits.loc[self.fits.specimen_comp_name == fit_name].loc[self\n .fits.specimen_tilt_correction == 0]\n fits.reset_index(inplace=True)\n means = self.means.loc[self.means.site_comp_name == fit_name].loc[self.\n means.site_tilt_correction == 0]\n means.reset_index(inplace=True)\n mean_name = str(fit_name) + '_mean'\n setattr(self, fit_name, fits)\n setattr(self, mean_name, means)\n",
"role": "user"
},
{
"content": "parse_fits",
"role": "assistant"
}
] |
def x():
dir_path = '.'
if '-WD' in sys.argv:
ind = sys.argv.index('-WD')
dir_path = sys.argv[ind + 1]
meas_file, spec_file = (dir_path + '/magic_measurements.txt', dir_path +
'/er_specimens.txt')
out_file = meas_file
MeasRecs, SpecRecs = [], []
OutRecs = []
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
meas_file = dir_path + '/' + sys.argv[ind + 1]
if '-fsp' in sys.argv:
ind = sys.argv.index('-fsp')
spec_file = dir_path + '/' + sys.argv[ind + 1]
if '-F' in sys.argv:
ind = sys.argv.index('-F')
out_file = dir_path + '/' + sys.argv[ind + 1]
MeasRecs, file_type = pmag.magic_read(meas_file)
Specs, file_type = pmag.magic_read(spec_file)
for rec in MeasRecs:
if 'measurement_magn_moment' in list(rec.keys()) and rec[
'measurement_magn_moment'] != '':
for spec in Specs:
if spec['er_specimen_name'] == rec['er_specimen_name']:
if 'specimen_weight' in list(spec.keys()) and spec[
'specimen_weight'] != '':
rec['measurement_magn_mass'] = '%e' % old_div(float
(rec['measurement_magn_moment']), float(spec[
'specimen_weight']))
if 'specimen_volume' in list(spec.keys()) and spec[
'specimen_volume'] != '':
rec['measurement_magn_volume'] = '%e' % old_div(float
(rec['measurement_magn_moment']), float(spec[
'specimen_volume']))
break
if 'measurement_magn_volume' not in list(rec.keys()):
rec['measurement_magn_volume'] = ''
if 'measurement_magn_mass' not in list(rec.keys()):
rec['measurement_magn_mass'] = ''
OutRecs.append(rec)
pmag.magic_write(out_file, OutRecs, 'magic_measurements')
print('Data saved in ', out_file)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n dir_path = '.'\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n meas_file, spec_file = (dir_path + '/magic_measurements.txt', dir_path +\n '/er_specimens.txt')\n out_file = meas_file\n MeasRecs, SpecRecs = [], []\n OutRecs = []\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n meas_file = dir_path + '/' + sys.argv[ind + 1]\n if '-fsp' in sys.argv:\n ind = sys.argv.index('-fsp')\n spec_file = dir_path + '/' + sys.argv[ind + 1]\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n out_file = dir_path + '/' + sys.argv[ind + 1]\n MeasRecs, file_type = pmag.magic_read(meas_file)\n Specs, file_type = pmag.magic_read(spec_file)\n for rec in MeasRecs:\n if 'measurement_magn_moment' in list(rec.keys()) and rec[\n 'measurement_magn_moment'] != '':\n for spec in Specs:\n if spec['er_specimen_name'] == rec['er_specimen_name']:\n if 'specimen_weight' in list(spec.keys()) and spec[\n 'specimen_weight'] != '':\n rec['measurement_magn_mass'] = '%e' % old_div(float\n (rec['measurement_magn_moment']), float(spec[\n 'specimen_weight']))\n if 'specimen_volume' in list(spec.keys()) and spec[\n 'specimen_volume'] != '':\n rec['measurement_magn_volume'] = '%e' % old_div(float\n (rec['measurement_magn_moment']), float(spec[\n 'specimen_volume']))\n break\n if 'measurement_magn_volume' not in list(rec.keys()):\n rec['measurement_magn_volume'] = ''\n if 'measurement_magn_mass' not in list(rec.keys()):\n rec['measurement_magn_mass'] = ''\n OutRecs.append(rec)\n pmag.magic_write(out_file, OutRecs, 'magic_measurements')\n print('Data saved in ', out_file)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self, event, wind=None):
if wind:
wind.Destroy()
if not self.parent.IsShown():
self.on_show_mainframe(None)
self.parent.Bind(wx.EVT_MENU, self.on_quit, self.file_quit)
else:
self.parent.Close()
|
on_quit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event, wind=None):\n if wind:\n wind.Destroy()\n if not self.parent.IsShown():\n self.on_show_mainframe(None)\n self.parent.Bind(wx.EVT_MENU, self.on_quit, self.file_quit)\n else:\n self.parent.Close()\n",
"role": "user"
},
{
"content": "on_quit",
"role": "assistant"
}
] |
def x(self, event):
self.parent.Enable()
self.parent.Show()
self.parent.Raise()
|
on_show_mainframe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n self.parent.Enable()\n self.parent.Show()\n self.parent.Raise()\n",
"role": "user"
},
{
"content": "on_show_mainframe",
"role": "assistant"
}
] |
def x(self, event):
dia = pmag_menu_dialogs.ClearWD(self.parent, self.parent.WD)
clear = dia.do_clear()
if clear:
if self.data_model_num == 2.5:
self.parent.er_magic = builder.ErMagicBuilder(self.parent.WD,
self.parent.er_magic.data_model)
elif self.data_model_num == 3:
self.parent.contribution = cb.Contribution(self.parent.WD,
dmodel=self.parent.contribution.data_model)
|
on_clear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n dia = pmag_menu_dialogs.ClearWD(self.parent, self.parent.WD)\n clear = dia.do_clear()\n if clear:\n if self.data_model_num == 2.5:\n self.parent.er_magic = builder.ErMagicBuilder(self.parent.WD,\n self.parent.er_magic.data_model)\n elif self.data_model_num == 3:\n self.parent.contribution = cb.Contribution(self.parent.WD,\n dmodel=self.parent.contribution.data_model)\n",
"role": "user"
},
{
"content": "on_clear",
"role": "assistant"
}
] |
def x():
col1, col2 = 0, 1
sym, size = 'ro', 20
xlab, ylab = '', ''
lines = 0
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
else:
"""-f option is a required field"""
print(main.__doc__)
sys.exit()
if '-c' in sys.argv:
ind = sys.argv.index('-c')
col1 = sys.argv[ind + 1]
col2 = sys.argv[ind + 2]
else:
"""Column headers a required field"""
print(main.__doc__)
sys.exit()
if '-xlab' in sys.argv:
ind = sys.argv.index('-xlab')
xlab = sys.argv[ind + 1]
if '-ylab' in sys.argv:
ind = sys.argv.index('-ylab')
ylab = sys.argv[ind + 1]
if '-b' in sys.argv:
ind = sys.argv.index('-b')
xmin = float(sys.argv[ind + 1])
xmax = float(sys.argv[ind + 2])
ymin = float(sys.argv[ind + 3])
ymax = float(sys.argv[ind + 4])
if '-sym' in sys.argv:
ind = sys.argv.index('-sym')
sym = sys.argv[ind + 1]
size = int(sys.argv[ind + 2])
if '-l' in sys.argv:
lines = 1
if '-S' in sys.argv:
sym = ''
X, Y = [], []
data, file_type = pmag.magic_read(file)
print(file_type)
for rec in data:
if col1 not in list(rec.keys()) or col2 not in list(rec.keys()):
print(col1, ' and/or ', col2, ' not in file headers')
print('try again')
sys.exit()
if rec[col1] != '' and rec[col2] != '':
skip = 0
if '-crit' in sys.argv:
for crit in bounds:
crits = crit.split(':')
crit_key = crits[0]
crit_min = crits[1]
crit_max = crits[2]
if rec[crit_key] == '':
skip = 1
else:
if crit_min != '' and float(rec[crit_key]) < float(
crit_min):
skip = 1
if crit_max != '' and float(rec[crit_key]) > float(
crit_min):
skip = 1
if skip == 0:
X.append(float(rec[col1]))
Y.append(float(rec[col2]))
if len(X) == 0:
print(col1, ' and/or ', col2, ' have no data ')
print('try again')
sys.exit()
else:
print(len(X), ' data points')
if sym != '':
pylab.scatter(X, Y, c=sym[0], marker=sym[1], s=size)
if xlab != '':
pylab.xlabel(xlab)
if ylab != '':
pylab.ylabel(ylab)
if lines == 1:
pylab.plot(X, Y, 'k-')
if '-b' in sys.argv:
pylab.axis([xmin, xmax, ymin, ymax])
pylab.draw()
ans = input('Press return to quit ')
sys.exit()
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n col1, col2 = 0, 1\n sym, size = 'ro', 20\n xlab, ylab = '', ''\n lines = 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n else:\n \"\"\"-f option is a required field\"\"\"\n print(main.__doc__)\n sys.exit()\n if '-c' in sys.argv:\n ind = sys.argv.index('-c')\n col1 = sys.argv[ind + 1]\n col2 = sys.argv[ind + 2]\n else:\n \"\"\"Column headers a required field\"\"\"\n print(main.__doc__)\n sys.exit()\n if '-xlab' in sys.argv:\n ind = sys.argv.index('-xlab')\n xlab = sys.argv[ind + 1]\n if '-ylab' in sys.argv:\n ind = sys.argv.index('-ylab')\n ylab = sys.argv[ind + 1]\n if '-b' in sys.argv:\n ind = sys.argv.index('-b')\n xmin = float(sys.argv[ind + 1])\n xmax = float(sys.argv[ind + 2])\n ymin = float(sys.argv[ind + 3])\n ymax = float(sys.argv[ind + 4])\n if '-sym' in sys.argv:\n ind = sys.argv.index('-sym')\n sym = sys.argv[ind + 1]\n size = int(sys.argv[ind + 2])\n if '-l' in sys.argv:\n lines = 1\n if '-S' in sys.argv:\n sym = ''\n X, Y = [], []\n data, file_type = pmag.magic_read(file)\n print(file_type)\n for rec in data:\n if col1 not in list(rec.keys()) or col2 not in list(rec.keys()):\n print(col1, ' and/or ', col2, ' not in file headers')\n print('try again')\n sys.exit()\n if rec[col1] != '' and rec[col2] != '':\n skip = 0\n if '-crit' in sys.argv:\n for crit in bounds:\n crits = crit.split(':')\n crit_key = crits[0]\n crit_min = crits[1]\n crit_max = crits[2]\n if rec[crit_key] == '':\n skip = 1\n else:\n if crit_min != '' and float(rec[crit_key]) < float(\n crit_min):\n skip = 1\n if crit_max != '' and float(rec[crit_key]) > float(\n crit_min):\n skip = 1\n if skip == 0:\n X.append(float(rec[col1]))\n Y.append(float(rec[col2]))\n if len(X) == 0:\n print(col1, ' and/or ', col2, ' have no data ')\n print('try again')\n sys.exit()\n else:\n print(len(X), ' data points')\n if sym != '':\n pylab.scatter(X, Y, c=sym[0], marker=sym[1], s=size)\n if xlab != '':\n pylab.xlabel(xlab)\n if ylab != '':\n pylab.ylabel(ylab)\n if lines == 1:\n pylab.plot(X, Y, 'k-')\n if '-b' in sys.argv:\n pylab.axis([xmin, xmax, ymin, ymax])\n pylab.draw()\n ans = input('Press return to quit ')\n sys.exit()\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
fmt, plot = 'svg', 0
FIG = {}
FIG['lowrie'] = 1
pmagplotlib.plot_init(FIG['lowrie'], 6, 6)
norm = 1
if len(sys.argv) > 1:
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-N' in sys.argv:
norm = 0
if '-sav' in sys.argv:
plot = 1
if '-fmt' in sys.argv:
ind = sys.argv.index('-fmt')
fmt = sys.argv[ind + 1]
if '-f' in sys.argv:
ind = sys.argv.index('-f')
in_file = sys.argv[ind + 1]
else:
print(main.__doc__)
print('you must supply a file name')
sys.exit()
else:
print(main.__doc__)
print('you must supply a file name')
sys.exit()
data = pmag.open_file(in_file)
PmagRecs = []
keys = ['specimen', 'treatment', 'csd', 'M', 'dec', 'inc']
for line in data:
PmagRec = {}
rec = line.replace('\n', '').split()
for k in range(len(keys)):
PmagRec[keys[k]] = rec[k]
PmagRecs.append(PmagRec)
specs = pmag.get_dictkey(PmagRecs, 'specimen', '')
sids = []
for spec in specs:
if spec not in sids:
sids.append(spec)
for spc in sids:
pmagplotlib.plot_init(FIG['lowrie'], 6, 6)
print(spc)
specdata = pmag.get_dictitem(PmagRecs, 'specimen', spc, 'T')
DIMs, Temps = [], []
for dat in specdata:
DIMs.append([float(dat['dec']), float(dat['inc']), float(dat[
'M']) * 0.001])
Temps.append(float(dat['treatment']))
carts = pmag.dir2cart(DIMs).transpose()
if norm == 1:
nrm = DIMs[0][2]
ylab = 'M/M_o'
else:
nrm = 1.0
ylab = 'Magnetic moment (Am^2)'
xlab = 'Temperature (C)'
pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[0]),
nrm), sym='r-')
pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[0]),
nrm), sym='ro')
pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[1]),
nrm), sym='c-')
pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[1]),
nrm), sym='cs')
pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[2]),
nrm), sym='k-')
pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[2]),
nrm), sym='k^', title=spc, xlab=xlab, ylab=ylab)
files = {'lowrie': 'lowrie:_' + spc + '_.' + fmt}
if plot == 0:
pmagplotlib.draw_figs(FIG)
ans = input('S[a]ve figure? [q]uit, <return> to continue ')
if ans == 'a':
pmagplotlib.save_plots(FIG, files)
elif ans == 'q':
sys.exit()
else:
pmagplotlib.save_plots(FIG, files)
pmagplotlib.clearFIG(FIG['lowrie'])
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n fmt, plot = 'svg', 0\n FIG = {}\n FIG['lowrie'] = 1\n pmagplotlib.plot_init(FIG['lowrie'], 6, 6)\n norm = 1\n if len(sys.argv) > 1:\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-N' in sys.argv:\n norm = 0\n if '-sav' in sys.argv:\n plot = 1\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n in_file = sys.argv[ind + 1]\n else:\n print(main.__doc__)\n print('you must supply a file name')\n sys.exit()\n else:\n print(main.__doc__)\n print('you must supply a file name')\n sys.exit()\n data = pmag.open_file(in_file)\n PmagRecs = []\n keys = ['specimen', 'treatment', 'csd', 'M', 'dec', 'inc']\n for line in data:\n PmagRec = {}\n rec = line.replace('\\n', '').split()\n for k in range(len(keys)):\n PmagRec[keys[k]] = rec[k]\n PmagRecs.append(PmagRec)\n specs = pmag.get_dictkey(PmagRecs, 'specimen', '')\n sids = []\n for spec in specs:\n if spec not in sids:\n sids.append(spec)\n for spc in sids:\n pmagplotlib.plot_init(FIG['lowrie'], 6, 6)\n print(spc)\n specdata = pmag.get_dictitem(PmagRecs, 'specimen', spc, 'T')\n DIMs, Temps = [], []\n for dat in specdata:\n DIMs.append([float(dat['dec']), float(dat['inc']), float(dat[\n 'M']) * 0.001])\n Temps.append(float(dat['treatment']))\n carts = pmag.dir2cart(DIMs).transpose()\n if norm == 1:\n nrm = DIMs[0][2]\n ylab = 'M/M_o'\n else:\n nrm = 1.0\n ylab = 'Magnetic moment (Am^2)'\n xlab = 'Temperature (C)'\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[0]),\n nrm), sym='r-')\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[0]),\n nrm), sym='ro')\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[1]),\n nrm), sym='c-')\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[1]),\n nrm), sym='cs')\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[2]),\n nrm), sym='k-')\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[2]),\n nrm), sym='k^', title=spc, xlab=xlab, ylab=ylab)\n files = {'lowrie': 'lowrie:_' + spc + '_.' + fmt}\n if plot == 0:\n pmagplotlib.draw_figs(FIG)\n ans = input('S[a]ve figure? [q]uit, <return> to continue ')\n if ans == 'a':\n pmagplotlib.save_plots(FIG, files)\n elif ans == 'q':\n sys.exit()\n else:\n pmagplotlib.save_plots(FIG, files)\n pmagplotlib.clearFIG(FIG['lowrie'])\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
infile, outfile, data, indata = '', '', [], []
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-F' in sys.argv:
ind = sys.argv.index('-F')
outfile = sys.argv[ind + 1]
out = open(outfile, 'w')
if '-i' in sys.argv:
print('Welcome to paleolatitude calculator\n')
while 1:
data = []
print(
'pick a plate: NA, SA, AF, IN, EU, AU, ANT, GL \n cntl-D to quit'
)
try:
plate = input('Plate\n').upper()
except:
print('Goodbye \n')
sys.exit()
lat = float(input('Site latitude\n'))
lon = float(input(' Site longitude\n'))
age = float(input(' Age\n'))
data = [plate, lat, lon, age]
print('Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.')
print(spitout(data))
elif '-f' in sys.argv:
ind = sys.argv.index('-f')
infile = sys.argv[ind + 1]
f = open(infile, 'r')
inp = f.readlines()
elif '-P' in sys.argv:
ind = sys.argv.index('-P')
plate = sys.argv[ind + 1].upper()
if '-lat' in sys.argv:
ind = sys.argv.index('-lat')
lat = float(sys.argv[ind + 1])
else:
print(main.__doc__)
sys.exit()
if '-lon' in sys.argv:
ind = sys.argv.index('-lon')
lon = float(sys.argv[ind + 1])
else:
print(main.__doc__)
sys.exit()
if '-age' in sys.argv:
ind = sys.argv.index('-age')
age = float(sys.argv[ind + 1])
else:
print(main.__doc__)
sys.exit()
data = [plate, lat, lon, age]
outstring = spitout(data)
if outfile == '':
print('Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.')
print(outstring)
else:
out.write(outstring)
sys.exit()
else:
inp = sys.stdin.readlines()
if len(inp) > 0:
for line in inp:
data = []
rec = line.split()
data.append(rec[0])
for k in range(1, 4):
data.append(float(rec[k]))
indata.append(data)
if len(indata) > 0:
for line in indata:
outstring = spitout(line)
if outfile == '':
print(outstring)
else:
out.write(outstring)
else:
print('no input data')
sys.exit()
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n infile, outfile, data, indata = '', '', [], []\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n outfile = sys.argv[ind + 1]\n out = open(outfile, 'w')\n if '-i' in sys.argv:\n print('Welcome to paleolatitude calculator\\n')\n while 1:\n data = []\n print(\n 'pick a plate: NA, SA, AF, IN, EU, AU, ANT, GL \\n cntl-D to quit'\n )\n try:\n plate = input('Plate\\n').upper()\n except:\n print('Goodbye \\n')\n sys.exit()\n lat = float(input('Site latitude\\n'))\n lon = float(input(' Site longitude\\n'))\n age = float(input(' Age\\n'))\n data = [plate, lat, lon, age]\n print('Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.')\n print(spitout(data))\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n infile = sys.argv[ind + 1]\n f = open(infile, 'r')\n inp = f.readlines()\n elif '-P' in sys.argv:\n ind = sys.argv.index('-P')\n plate = sys.argv[ind + 1].upper()\n if '-lat' in sys.argv:\n ind = sys.argv.index('-lat')\n lat = float(sys.argv[ind + 1])\n else:\n print(main.__doc__)\n sys.exit()\n if '-lon' in sys.argv:\n ind = sys.argv.index('-lon')\n lon = float(sys.argv[ind + 1])\n else:\n print(main.__doc__)\n sys.exit()\n if '-age' in sys.argv:\n ind = sys.argv.index('-age')\n age = float(sys.argv[ind + 1])\n else:\n print(main.__doc__)\n sys.exit()\n data = [plate, lat, lon, age]\n outstring = spitout(data)\n if outfile == '':\n print('Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.')\n print(outstring)\n else:\n out.write(outstring)\n sys.exit()\n else:\n inp = sys.stdin.readlines()\n if len(inp) > 0:\n for line in inp:\n data = []\n rec = line.split()\n data.append(rec[0])\n for k in range(1, 4):\n data.append(float(rec[k]))\n indata.append(data)\n if len(indata) > 0:\n for line in indata:\n outstring = spitout(line)\n if outfile == '':\n print(outstring)\n else:\n out.write(outstring)\n else:\n print('no input data')\n sys.exit()\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(T):
t, V, tr = [], [], 0.0
ind1, ind2, ind3 = 0, 1, 2
evalues, evectmps = numpy.linalg.eig(T)
evectors = numpy.transpose(evectmps)
for tau in evalues:
tr += tau
if tr != 0:
for i in range(3):
evalues[i] = old_div(evalues[i], tr)
else:
return t, V
t1, t2, t3 = 0.0, 0.0, 1.0
for k in range(3):
if evalues[k] > t1:
t1, ind1 = evalues[k], k
if evalues[k] < t3:
t3, ind3 = evalues[k], k
for k in range(3):
if evalues[k] != t1 and evalues[k] != t3:
t2, ind2 = evalues[k], k
V.append(evectors[ind1])
V.append(evectors[ind2])
V.append(evectors[ind3])
t.append(t1)
t.append(t2)
t.append(t3)
return t, V
|
tauV
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(T):\n t, V, tr = [], [], 0.0\n ind1, ind2, ind3 = 0, 1, 2\n evalues, evectmps = numpy.linalg.eig(T)\n evectors = numpy.transpose(evectmps)\n for tau in evalues:\n tr += tau\n if tr != 0:\n for i in range(3):\n evalues[i] = old_div(evalues[i], tr)\n else:\n return t, V\n t1, t2, t3 = 0.0, 0.0, 1.0\n for k in range(3):\n if evalues[k] > t1:\n t1, ind1 = evalues[k], k\n if evalues[k] < t3:\n t3, ind3 = evalues[k], k\n for k in range(3):\n if evalues[k] != t1 and evalues[k] != t3:\n t2, ind2 = evalues[k], k\n V.append(evectors[ind1])\n V.append(evectors[ind2])\n V.append(evectors[ind3])\n t.append(t1)\n t.append(t2)\n t.append(t3)\n return t, V\n",
"role": "user"
},
{
"content": "tauV",
"role": "assistant"
}
] |
def x(X1_prime, X2_prime, X3_prime, PD):
n = len(X1_prime) - 1
X1 = X1_prime[0] - X1_prime[n]
X2 = X2_prime[0] - X2_prime[n]
X3 = X3_prime[0] - X3_prime[n]
R = numpy.array([X1, X2, X3])
dot = numpy.dot(PD, R)
if dot < -1:
dot = -1
elif dot > 1:
dot = 1
if numpy.arccos(dot) > old_div(numpy.pi, 2.0):
PD = -1.0 * numpy.array(PD)
return PD
|
get_PD_direction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X1_prime, X2_prime, X3_prime, PD):\n n = len(X1_prime) - 1\n X1 = X1_prime[0] - X1_prime[n]\n X2 = X2_prime[0] - X2_prime[n]\n X3 = X3_prime[0] - X3_prime[n]\n R = numpy.array([X1, X2, X3])\n dot = numpy.dot(PD, R)\n if dot < -1:\n dot = -1\n elif dot > 1:\n dot = 1\n if numpy.arccos(dot) > old_div(numpy.pi, 2.0):\n PD = -1.0 * numpy.array(PD)\n return PD\n",
"role": "user"
},
{
"content": "get_PD_direction",
"role": "assistant"
}
] |
def x(tau):
for t in tau:
if isinstance(t, complex):
return -999
MAD = math.degrees(numpy.arctan(numpy.sqrt(old_div(tau[1] + tau[2], tau
[0]))))
return MAD
|
get_MAD
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tau):\n for t in tau:\n if isinstance(t, complex):\n return -999\n MAD = math.degrees(numpy.arctan(numpy.sqrt(old_div(tau[1] + tau[2], tau\n [0]))))\n return MAD\n",
"role": "user"
},
{
"content": "get_MAD",
"role": "assistant"
}
] |
def x(d):
ints = numpy.ones(len(d)).transpose()
d = numpy.array(d)
rad = old_div(numpy.pi, 180.0)
if len(d.shape) > 1:
decs, incs = d[:, 0] * rad, d[:, 1] * rad
if d.shape[1] == 3:
ints = d[:, 2]
else:
decs, incs = numpy.array(d[0]) * rad, numpy.array(d[1]) * rad
if len(d) == 3:
ints = numpy.array(d[2])
else:
ints = numpy.array([1.0])
cart = numpy.array([ints * numpy.cos(decs) * numpy.cos(incs), ints *
numpy.sin(decs) * numpy.cos(incs), ints * numpy.sin(incs)]).transpose()
return cart
|
dir2cart
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d):\n ints = numpy.ones(len(d)).transpose()\n d = numpy.array(d)\n rad = old_div(numpy.pi, 180.0)\n if len(d.shape) > 1:\n decs, incs = d[:, 0] * rad, d[:, 1] * rad\n if d.shape[1] == 3:\n ints = d[:, 2]\n else:\n decs, incs = numpy.array(d[0]) * rad, numpy.array(d[1]) * rad\n if len(d) == 3:\n ints = numpy.array(d[2])\n else:\n ints = numpy.array([1.0])\n cart = numpy.array([ints * numpy.cos(decs) * numpy.cos(incs), ints *\n numpy.sin(decs) * numpy.cos(incs), ints * numpy.sin(incs)]).transpose()\n return cart\n",
"role": "user"
},
{
"content": "dir2cart",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.