source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(**kwargs): user = kwargs.get('user', '') magfile = kwargs.get('magfile') try: infile = open(magfile, 'r') except Exception as ex: print(('bad file path: ', magfile)) return False, 'bad file path' SpecRecs, SampRecs, SiteRecs, LocRecs, MeasRecs = [], [], [], [], [] for line in infile.readlines(): MeasRec, SpecRec, SampRec, SiteRec, LocRec = {}, {}, {}, {}, {} if specimen != '' and specimen not in [(x['specimen'] if 'specimen' in list(x.keys()) else '') for x in SpecRecs]: SpecRec['analysts'] = user SpecRecs.append(SpecRec) if sample != '' and sample not in [(x['sample'] if 'sample' in list (x.keys()) else '') for x in SampRecs]: SampRec['analysts'] = user SampRecs.append(SampRec) if site != '' and site not in [(x['site'] if 'site' in list(x.keys( )) else '') for x in SiteRecs]: SiteRec['analysts'] = user SiteRecs.append(SiteRec) if location != '' and location not in [(x['location'] if 'location' in list(x.keys()) else '') for x in LocRecs]: LocRec['analysts'] = user LocRecs.append(LocRec) MeasRec['analysts'] = user MeasRecs.append(MeasRec) infile.close() con = cb.Contribution(output_dir_path, read_tables=[]) con.add_magic_table_from_data(dtype='specimens', data=SpecRecs) con.add_magic_table_from_data(dtype='samples', data=SampRecs) con.add_magic_table_from_data(dtype='sites', data=SiteRecs) con.add_magic_table_from_data(dtype='locations', data=LocRecs) MeasOuts = pmag.measurements_methods3(MeasRecs, noave) con.add_magic_table_from_data(dtype='measurements', data=MeasOuts) con.write_table_to_file('specimens', custom_name=spec_file) con.write_table_to_file('samples', custom_name=samp_file) con.write_table_to_file('sites', custom_name=site_file) con.write_table_to_file('locations', custom_name=loc_file) meas_file = con.write_table_to_file('measurements', custom_name=meas_file) return True, meas_file
convert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(**kwargs):\n user = kwargs.get('user', '')\n magfile = kwargs.get('magfile')\n try:\n infile = open(magfile, 'r')\n except Exception as ex:\n print(('bad file path: ', magfile))\n return False, 'bad file path'\n SpecRecs, SampRecs, SiteRecs, LocRecs, MeasRecs = [], [], [], [], []\n for line in infile.readlines():\n MeasRec, SpecRec, SampRec, SiteRec, LocRec = {}, {}, {}, {}, {}\n if specimen != '' and specimen not in [(x['specimen'] if 'specimen' in\n list(x.keys()) else '') for x in SpecRecs]:\n SpecRec['analysts'] = user\n SpecRecs.append(SpecRec)\n if sample != '' and sample not in [(x['sample'] if 'sample' in list\n (x.keys()) else '') for x in SampRecs]:\n SampRec['analysts'] = user\n SampRecs.append(SampRec)\n if site != '' and site not in [(x['site'] if 'site' in list(x.keys(\n )) else '') for x in SiteRecs]:\n SiteRec['analysts'] = user\n SiteRecs.append(SiteRec)\n if location != '' and location not in [(x['location'] if 'location' in\n list(x.keys()) else '') for x in LocRecs]:\n LocRec['analysts'] = user\n LocRecs.append(LocRec)\n MeasRec['analysts'] = user\n MeasRecs.append(MeasRec)\n infile.close()\n con = cb.Contribution(output_dir_path, read_tables=[])\n con.add_magic_table_from_data(dtype='specimens', data=SpecRecs)\n con.add_magic_table_from_data(dtype='samples', data=SampRecs)\n con.add_magic_table_from_data(dtype='sites', data=SiteRecs)\n con.add_magic_table_from_data(dtype='locations', data=LocRecs)\n MeasOuts = pmag.measurements_methods3(MeasRecs, noave)\n con.add_magic_table_from_data(dtype='measurements', data=MeasOuts)\n con.write_table_to_file('specimens', custom_name=spec_file)\n con.write_table_to_file('samples', custom_name=samp_file)\n con.write_table_to_file('sites', custom_name=site_file)\n con.write_table_to_file('locations', custom_name=loc_file)\n meas_file = con.write_table_to_file('measurements', custom_name=meas_file)\n return True, meas_file\n", "role": "user" }, { "content": "convert", "role": "assistant" } ]
def x(): inp, out = '', '' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] f = open(file, 'r') inp = f.readlines() if '-F' in sys.argv: ind = sys.argv.index('-F') o = sys.argv[ind + 1] out = open(o, 'w') if '-i' in sys.argv: cont = 1 while cont == 1: try: b = 1e-06 * float(input('B (in microtesla): <cntl-D to quit ')) lat = float(input('Latitude: ')) except: print('\nGood bye\n') sys.exit() vdm = pmag.b_vdm(b, lat) print('%10.3e ' % vdm) if inp == '': inp = sys.stdin.readlines() for line in inp: vdm = spitout(line) if out == '': print('%10.3e' % vdm) else: out.write('%10.3e \n' % vdm)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n inp, out = '', ''\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n inp = f.readlines()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n o = sys.argv[ind + 1]\n out = open(o, 'w')\n if '-i' in sys.argv:\n cont = 1\n while cont == 1:\n try:\n b = 1e-06 * float(input('B (in microtesla): <cntl-D to quit '))\n lat = float(input('Latitude: '))\n except:\n print('\\nGood bye\\n')\n sys.exit()\n vdm = pmag.b_vdm(b, lat)\n print('%10.3e ' % vdm)\n if inp == '':\n inp = sys.stdin.readlines()\n for line in inp:\n vdm = spitout(line)\n if out == '':\n print('%10.3e' % vdm)\n else:\n out.write('%10.3e \\n' % vdm)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(data_path): data_files = {} def x(File, prefix): file_path = path.join(prefix, 'data_files', File) return not File.startswith('!') and not File.endswith('~' ) and not File.endswith('#') and not File.endswith('.pyc' ) and not File.startswith('.') and path.exists(path.join(prefix, File)) for dir_path, dirs, files in os.walk(data_path): data_files[dir_path] = [f for f in files if cond(f, dir_path)] if not dirs: continue else: for Dir in dirs: do_walk(os.path.join(dir_path, Dir)) return data_files
do_walk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_path):\n data_files = {}\n\n def x(File, prefix):\n file_path = path.join(prefix, 'data_files', File)\n return not File.startswith('!') and not File.endswith('~'\n ) and not File.endswith('#') and not File.endswith('.pyc'\n ) and not File.startswith('.') and path.exists(path.join(prefix,\n File))\n for dir_path, dirs, files in os.walk(data_path):\n data_files[dir_path] = [f for f in files if cond(f, dir_path)]\n if not dirs:\n continue\n else:\n for Dir in dirs:\n do_walk(os.path.join(dir_path, Dir))\n return data_files\n", "role": "user" }, { "content": "do_walk", "role": "assistant" } ]
def x(): dir_path = './' change = 'l' if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') magic_file = dir_path + '/' + sys.argv[ind + 1] else: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind = sys.argv.index('-F') out_file = dir_path + '/' + sys.argv[ind + 1] else: out_file = magic_file if '-keys' in sys.argv: ind = sys.argv.index('-keys') grab_keys = sys.argv[ind + 1].split(':') else: print(main.__doc__) sys.exit() if '-U' in sys.argv: change = 'U' Data, file_type = pmag.magic_read(magic_file) if len(Data) > 0: for grab_key in grab_keys: for rec in Data: if change == 'l': rec[grab_key] = rec[grab_key].lower() else: rec[grab_key] = rec[grab_key].upper() else: print('bad file name') pmag.magic_write(out_file, Data, file_type)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n dir_path = './'\n change = 'l'\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n magic_file = dir_path + '/' + sys.argv[ind + 1]\n else:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n out_file = dir_path + '/' + sys.argv[ind + 1]\n else:\n out_file = magic_file\n if '-keys' in sys.argv:\n ind = sys.argv.index('-keys')\n grab_keys = sys.argv[ind + 1].split(':')\n else:\n print(main.__doc__)\n sys.exit()\n if '-U' in sys.argv:\n change = 'U'\n Data, file_type = pmag.magic_read(magic_file)\n if len(Data) > 0:\n for grab_key in grab_keys:\n for rec in Data:\n if change == 'l':\n rec[grab_key] = rec[grab_key].lower()\n else:\n rec[grab_key] = rec[grab_key].upper()\n else:\n print('bad file name')\n pmag.magic_write(out_file, Data, file_type)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): cmap = 'RdYlBu' date = 2016.0 if not ccrs: print('-W- You must intstall the cartopy module to run plot_magmap.py') sys.exit() dir_path = '.' lincr = 1 if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if fmt == 'jpg': print('jpg not a supported option') print(main.__doc__) sys.exit() else: fmt = 'png' if '-cm' in sys.argv: ind = sys.argv.index('-cm') cmap = sys.argv[ind + 1] if '-el' in sys.argv: ind = sys.argv.index('-el') el = sys.argv[ind + 1] else: el = 'B' if '-alt' in sys.argv: ind = sys.argv.index('-alt') alt = sys.argv[ind + 1] else: alt = 0 if '-lon0' in sys.argv: ind = sys.argv.index('-lon0') lon_0 = float(sys.argv[ind + 1]) else: lon_0 = 0 if '-mod' in sys.argv: ind = sys.argv.index('-mod') mod = sys.argv[ind + 1] ghfile = '' elif '-f' in sys.argv: ind = sys.argv.index('-f') ghfile = sys.argv[ind + 1] mod = 'custom' date = '' else: mod, ghfile = 'cals10k', '' if '-age' in sys.argv: ind = sys.argv.index('-age') date = float(sys.argv[ind + 1]) if '-alt' in sys.argv: ind = sys.argv.index('-alt') alt = float(sys.argv[ind + 1]) else: alt = 0 Ds, Is, Bs, Brs, lons, lats = pmag.do_mag_map(date, mod=mod, lon_0= lon_0, alt=alt, file=ghfile) ax = plt.axes(projection=ccrs.Mollweide(central_longitude=lon_0)) ax.coastlines() xx, yy = meshgrid(lons, lats) if mod == 'custom': str_date = 'Custom' else: str_date = str(date) if el == 'B': levmax = Bs.max() + lincr levmin = round(Bs.min() - lincr) levels = np.arange(levmin, levmax, lincr) plt.contourf(xx, yy, Bs, levels=levels, cmap=cmap, transform=ccrs. PlateCarree(central_longitude=lon_0)) plt.title('Field strength ($\\mu$T): ' + str_date) if el == 'Br': levmax = Brs.max() + lincr levmin = round(Brs.min() - lincr) plt.contourf(xx, yy, Brs, levels=np.arange(levmin, levmax, lincr), cmap=cmap, transform=ccrs.PlateCarree(central_longitude=lon_0)) plt.title('Radial field strength ($\\mu$T): ' + str_date) if el == 'I': levmax = Is.max() + lincr levmin = round(Is.min() - lincr) plt.contourf(xx, yy, Is, levels=np.arange(levmin, levmax, lincr), cmap=cmap, transform=ccrs.PlateCarree(central_longitude=lon_0)) plt.contour(xx, yy, Is, levels=np.arange(-80, 90, 10), colors= 'black', transform=ccrs.PlateCarree(central_longitude=lon_0)) plt.title('Field inclination: ' + str_date) if el == 'D': plt.contourf(xx, yy, Ds, levels=np.arange(-180, 180, 10), cmap=cmap, transform=ccrs.PlateCarree(central_longitude=lon_0)) plt.contour(xx, yy, Ds, levels=np.arange(-180, 180, 10), colors='black' ) plt.title('Field declination: ' + str_date) cbar = plt.colorbar(orientation='horizontal') figname = 'geomagnetic_field_' + str_date + '.' + fmt plt.savefig(figname) print('Figure saved as: ', figname)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n cmap = 'RdYlBu'\n date = 2016.0\n if not ccrs:\n print('-W- You must intstall the cartopy module to run plot_magmap.py')\n sys.exit()\n dir_path = '.'\n lincr = 1\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if fmt == 'jpg':\n print('jpg not a supported option')\n print(main.__doc__)\n sys.exit()\n else:\n fmt = 'png'\n if '-cm' in sys.argv:\n ind = sys.argv.index('-cm')\n cmap = sys.argv[ind + 1]\n if '-el' in sys.argv:\n ind = sys.argv.index('-el')\n el = sys.argv[ind + 1]\n else:\n el = 'B'\n if '-alt' in sys.argv:\n ind = sys.argv.index('-alt')\n alt = sys.argv[ind + 1]\n else:\n alt = 0\n if '-lon0' in sys.argv:\n ind = sys.argv.index('-lon0')\n lon_0 = float(sys.argv[ind + 1])\n else:\n lon_0 = 0\n if '-mod' in sys.argv:\n ind = sys.argv.index('-mod')\n mod = sys.argv[ind + 1]\n ghfile = ''\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n ghfile = sys.argv[ind + 1]\n mod = 'custom'\n date = ''\n else:\n mod, ghfile = 'cals10k', ''\n if '-age' in sys.argv:\n ind = sys.argv.index('-age')\n date = float(sys.argv[ind + 1])\n if '-alt' in sys.argv:\n ind = sys.argv.index('-alt')\n alt = float(sys.argv[ind + 1])\n else:\n alt = 0\n Ds, Is, Bs, Brs, lons, lats = pmag.do_mag_map(date, mod=mod, lon_0=\n lon_0, alt=alt, file=ghfile)\n ax = plt.axes(projection=ccrs.Mollweide(central_longitude=lon_0))\n ax.coastlines()\n xx, yy = meshgrid(lons, lats)\n if mod == 'custom':\n str_date = 'Custom'\n else:\n str_date = str(date)\n if el == 'B':\n levmax = Bs.max() + lincr\n levmin = round(Bs.min() - lincr)\n levels = np.arange(levmin, levmax, lincr)\n plt.contourf(xx, yy, Bs, levels=levels, cmap=cmap, transform=ccrs.\n PlateCarree(central_longitude=lon_0))\n plt.title('Field strength ($\\\\mu$T): ' + str_date)\n if el == 'Br':\n levmax = Brs.max() + lincr\n levmin = round(Brs.min() - lincr)\n plt.contourf(xx, yy, Brs, levels=np.arange(levmin, levmax, lincr),\n cmap=cmap, transform=ccrs.PlateCarree(central_longitude=lon_0))\n plt.title('Radial field strength ($\\\\mu$T): ' + str_date)\n if el == 'I':\n levmax = Is.max() + lincr\n levmin = round(Is.min() - lincr)\n plt.contourf(xx, yy, Is, levels=np.arange(levmin, levmax, lincr),\n cmap=cmap, transform=ccrs.PlateCarree(central_longitude=lon_0))\n plt.contour(xx, yy, Is, levels=np.arange(-80, 90, 10), colors=\n 'black', transform=ccrs.PlateCarree(central_longitude=lon_0))\n plt.title('Field inclination: ' + str_date)\n if el == 'D':\n plt.contourf(xx, yy, Ds, levels=np.arange(-180, 180, 10), cmap=cmap,\n transform=ccrs.PlateCarree(central_longitude=lon_0))\n plt.contour(xx, yy, Ds, levels=np.arange(-180, 180, 10), colors='black'\n )\n plt.title('Field declination: ' + str_date)\n cbar = plt.colorbar(orientation='horizontal')\n figname = 'geomagnetic_field_' + str_date + '.' + fmt\n plt.savefig(figname)\n print('Figure saved as: ', figname)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] if '-i' in sys.argv: infile = input('Magic txt file for unpacking? ') dir_path = '.' input_dir_path = '.' else: infile = pmag.get_named_arg('-f', reqd=True) overwrite = pmag.get_flag_arg_from_sys('-O', true=False, false=True) sep = pmag.get_flag_arg_from_sys('-sep', true=True, false=False) data_model = pmag.get_named_arg('-DM', default_val=3, reqd=False) dir_path = pmag.get_named_arg('-WD', default_val='.', reqd=False) input_dir_path = pmag.get_named_arg('-ID', default_val='.', reqd=False) if '-WD' not in sys.argv and '-ID' not in sys.argv: input_dir_path = os.path.split(infile)[0] if not input_dir_path: input_dir_path = '.' ipmag.download_magic(infile, dir_path, input_dir_path, overwrite, True, data_model, sep)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-i' in sys.argv:\n infile = input('Magic txt file for unpacking? ')\n dir_path = '.'\n input_dir_path = '.'\n else:\n infile = pmag.get_named_arg('-f', reqd=True)\n overwrite = pmag.get_flag_arg_from_sys('-O', true=False, false=True)\n sep = pmag.get_flag_arg_from_sys('-sep', true=True, false=False)\n data_model = pmag.get_named_arg('-DM', default_val=3, reqd=False)\n dir_path = pmag.get_named_arg('-WD', default_val='.', reqd=False)\n input_dir_path = pmag.get_named_arg('-ID', default_val='.', reqd=False)\n if '-WD' not in sys.argv and '-ID' not in sys.argv:\n input_dir_path = os.path.split(infile)[0]\n if not input_dir_path:\n input_dir_path = '.'\n ipmag.download_magic(infile, dir_path, input_dir_path, overwrite, True,\n data_model, sep)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): args = sys.argv if '-h' in args: print(main.__doc__) sys.exit() pltspec = '' verbose = pmagplotlib.verbose dir_path = pmag.get_named_arg('-WD', '.') dir_path = os.path.realpath(dir_path) meas_file = pmag.get_named_arg('-f', 'measurements.txt') fmt = pmag.get_named_arg('-fmt', 'png') save_plots = False interactive = True if '-sav' in args: verbose = False save_plots = True interactive = False if '-spc' in args: ind = args.index('-spc') pltspec = args[ind + 1] verbose = False save_plots = True ipmag.quick_hyst(dir_path, meas_file, save_plots, interactive, fmt, pltspec, verbose)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n pltspec = ''\n verbose = pmagplotlib.verbose\n dir_path = pmag.get_named_arg('-WD', '.')\n dir_path = os.path.realpath(dir_path)\n meas_file = pmag.get_named_arg('-f', 'measurements.txt')\n fmt = pmag.get_named_arg('-fmt', 'png')\n save_plots = False\n interactive = True\n if '-sav' in args:\n verbose = False\n save_plots = True\n interactive = False\n if '-spc' in args:\n ind = args.index('-spc')\n pltspec = args[ind + 1]\n verbose = False\n save_plots = True\n ipmag.quick_hyst(dir_path, meas_file, save_plots, interactive, fmt,\n pltspec, verbose)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(x, window_len, window='bartlett'): if x.ndim != 1: raise ValueError('smooth only accepts 1 dimension arrays.') if x.size < window_len: raise ValueError('Input vector needs to be bigger than window size.') if window_len < 3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError( "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'" ) start = [average(x[0:10])] * window_len end = [average(x[-10:])] * window_len s = start + list(x) + end if window == 'flat': w = ones(window_len, 'd') else: w = eval('numpy.' + window + '(window_len)') y = numpy.convolve(old_div(w, w.sum()), s, mode='same') return array(y[window_len:-window_len])
smooth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, window_len, window='bartlett'):\n if x.ndim != 1:\n raise ValueError('smooth only accepts 1 dimension arrays.')\n if x.size < window_len:\n raise ValueError('Input vector needs to be bigger than window size.')\n if window_len < 3:\n return x\n if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:\n raise ValueError(\n \"Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'\"\n )\n start = [average(x[0:10])] * window_len\n end = [average(x[-10:])] * window_len\n s = start + list(x) + end\n if window == 'flat':\n w = ones(window_len, 'd')\n else:\n w = eval('numpy.' + window + '(window_len)')\n y = numpy.convolve(old_div(w, w.sum()), s, mode='same')\n return array(y[window_len:-window_len])\n", "role": "user" }, { "content": "smooth", "role": "assistant" } ]
def x(x, y, i, n): m_, x_, y_, xy_, x_2 = 0.0, 0.0, 0.0, 0.0, 0.0 for ix in range(i, i + n, 1): x_ = x_ + x[ix] y_ = y_ + y[ix] xy_ = xy_ + x[ix] * y[ix] x_2 = x_2 + x[ix] ** 2 m = old_div(n * xy_ - x_ * y_, n * x_2 - x_ ** 2) return m
deriv1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, i, n):\n m_, x_, y_, xy_, x_2 = 0.0, 0.0, 0.0, 0.0, 0.0\n for ix in range(i, i + n, 1):\n x_ = x_ + x[ix]\n y_ = y_ + y[ix]\n xy_ = xy_ + x[ix] * y[ix]\n x_2 = x_2 + x[ix] ** 2\n m = old_div(n * xy_ - x_ * y_, n * x_2 - x_ ** 2)\n return m\n", "role": "user" }, { "content": "deriv1", "role": "assistant" } ]
def x(): citation = 'This study' args = sys.argv outfile = 'magic_methods.txt' infile = 'magic_measurements.txt' dir_path = '.' if '-WD' in args: ind = args.index('-WD') dir_path = args[ind + 1] if '-h' in args: print(main.__doc__) sys.exit() if '-F' in args: ind = args.index('-F') outfile = args[ind + 1] if '-f' in args: ind = args.index('-f') infile = args[ind + 1] infile = dir_path + '/' + infile outfile = dir_path + '/' + outfile data, file_type = pmag.magic_read(infile) MethRecs = [] methods = [] for rec in data: meths = rec['magic_method_codes'].split(':') for meth in meths: if meth not in methods: MethRec = {} methods.append(meth) MethRec['magic_method_code'] = meth MethRecs.append(MethRec) pmag.magic_write(outfile, MethRecs, 'magic_methods')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n citation = 'This study'\n args = sys.argv\n outfile = 'magic_methods.txt'\n infile = 'magic_measurements.txt'\n dir_path = '.'\n if '-WD' in args:\n ind = args.index('-WD')\n dir_path = args[ind + 1]\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n if '-F' in args:\n ind = args.index('-F')\n outfile = args[ind + 1]\n if '-f' in args:\n ind = args.index('-f')\n infile = args[ind + 1]\n infile = dir_path + '/' + infile\n outfile = dir_path + '/' + outfile\n data, file_type = pmag.magic_read(infile)\n MethRecs = []\n methods = []\n for rec in data:\n meths = rec['magic_method_codes'].split(':')\n for meth in meths:\n if meth not in methods:\n MethRec = {}\n methods.append(meth)\n MethRec['magic_method_code'] = meth\n MethRecs.append(MethRec)\n pmag.magic_write(outfile, MethRecs, 'magic_methods')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-i' in sys.argv: file = input('Enter file name with dec, inc data: ') f = open(file, 'r') data = f.readlines() elif '-f' in sys.argv: dat = [] ind = sys.argv.index('-f') file = sys.argv[ind + 1] f = open(file, 'r') data = f.readlines() else: data = sys.stdin.readlines() ofile = '' if '-F' in sys.argv: ind = sys.argv.index('-F') ofile = sys.argv[ind + 1] out = open(ofile, 'w + a') DIs = [] for line in data: if '\t' in line: rec = line.split('\t') else: rec = line.split() DIs.append((float(rec[0]), float(rec[1]))) fpars = pmag.fisher_mean(DIs) outstring = '%7.1f %7.1f %i %10.4f %8.1f %7.1f %7.1f' % (fpars['dec' ], fpars['inc'], fpars['n'], fpars['r'], fpars['k'], fpars[ 'alpha95'], fpars['csd']) if ofile == '': print(outstring) else: out.write(outstring + '\n')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-i' in sys.argv:\n file = input('Enter file name with dec, inc data: ')\n f = open(file, 'r')\n data = f.readlines()\n elif '-f' in sys.argv:\n dat = []\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n else:\n data = sys.stdin.readlines()\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n DIs = []\n for line in data:\n if '\\t' in line:\n rec = line.split('\\t')\n else:\n rec = line.split()\n DIs.append((float(rec[0]), float(rec[1])))\n fpars = pmag.fisher_mean(DIs)\n outstring = '%7.1f %7.1f %i %10.4f %8.1f %7.1f %7.1f' % (fpars['dec'\n ], fpars['inc'], fpars['n'], fpars['r'], fpars['k'], fpars[\n 'alpha95'], fpars['csd'])\n if ofile == '':\n print(outstring)\n else:\n out.write(outstring + '\\n')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): meas_file = 'trmaq_measurements.txt' tspec = 'thellier_specimens.txt' output = 'NLT_specimens.txt' data_model_num = int(float(pmag.get_named_arg('-DM', 3))) if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-i' in sys.argv: meas_file = input( 'Input magic_measurements file name? [trmaq_measurements.txt] ') if meas_file == '': meas_file = 'trmaq_measurements.txt' tspec = input( ' thellier_specimens file name? [thellier_specimens.txt] ') if tspec == '': tspec = 'thellier_specimens.txt' output = input( 'File for non-linear TRM adjusted specimen data: [NLTspecimens.txt] ' ) if output == '': output = 'NLT_specimens.txt' if '-f' in sys.argv: ind = sys.argv.index('-f') meas_file = sys.argv[ind + 1] if '-ft' in sys.argv: ind = sys.argv.index('-ft') tspec = sys.argv[ind + 1] if '-F' in sys.argv: ind = sys.argv.index('-F') output = sys.argv[ind + 1] if '-sav' in sys.argv: save_plots = True else: save_plots = False fmt = pmag.get_named_arg('-fmt', 'svg') PLT = {'aq': 1} if not save_plots: pmagplotlib.plot_init(PLT['aq'], 5, 5) comment = '' meas_data, file_type = pmag.magic_read(meas_file) if 'measurements' not in file_type: print(file_type, 'This is not a valid measurements file ') sys.exit() if data_model_num == 2: spec_col = 'er_specimen_name' lab_field_dc_col = 'specimen_lab_field_dc' int_col = 'specimen_int' meth_col = 'magic_method_codes' treat_dc_col = 'treatment_dc_field' magn_moment_col = 'measurement_magn_moment' experiment_col = 'magic_experiment_name' outfile_type = 'pmag_specimens' else: spec_col = 'specimen' lab_field_dc_col = 'int_treat_dc_field' int_col = 'int_abs' meth_col = 'method_codes' treat_dc_col = 'treat_dc_field' magn_moment_col = 'magn_moment' experiment_col = 'experiment' outfile_type = 'specimens' sids = pmag.get_specs(meas_data) specimen = 0 nrm, file_type = pmag.magic_read(tspec) PmagSpecRecs = [] while specimen < len(sids): s = sids[specimen] blab, best = '', '' for nrec in nrm: if nrec[spec_col] == s: try: blab = float(nrec[lab_field_dc_col]) except ValueError: continue best = float(nrec[int_col]) TrmRec = nrec break if blab == '': print('skipping ', s, ' : no best ') specimen += 1 else: print(sids[specimen], specimen + 1, 'of ', len(sids), 'Best = ', best * 1000000.0) MeasRecs = [] for rec in meas_data: if rec[spec_col] == s: meths = rec[meth_col].split(':') methcodes = [] for meth in meths: methcodes.append(meth.strip()) if 'LP-TRM' in methcodes: MeasRecs.append(rec) if len(MeasRecs) < 2: specimen += 1 print('skipping specimen - no trm acquisition data ', s) else: TRMs, Bs = [], [] for rec in MeasRecs: Bs.append(float(rec[treat_dc_col])) TRMs.append(float(rec[magn_moment_col])) NLpars = nlt.NLtrm(Bs, TRMs, best, blab, 0) Mp, Bp = [], [] for k in range(int(max(Bs) * 1000000.0)): Bp.append(float(k) * 1e-06) npred = nlt.TRM(Bp[-1], NLpars['xopt'][0], NLpars[ 'xopt'][1]) Mp.append(npred) pmagplotlib.plot_trm(PLT['aq'], Bs, TRMs, Bp, Mp, NLpars, rec[experiment_col]) if not save_plots: pmagplotlib.draw_figs(PLT) print('Banc= ', float(NLpars['banc']) * 1000000.0) trmTC = {} for key in list(TrmRec.keys()): trmTC[key] = TrmRec[key] trmTC[int_col] = '%8.3e' % NLpars['banc'] trmTC[meth_col] = TrmRec[meth_col] + ':DA-NL' PmagSpecRecs.append(trmTC) if not save_plots: ans = input('Return for next specimen, s[a]ve plot ') if ans == 'a': Name = {'aq': rec[spec_col] + '_TRM.{}'.format(fmt)} pmagplotlib.save_plots(PLT, Name) else: Name = {'aq': rec[spec_col] + '_TRM.{}'.format(fmt)} pmagplotlib.save_plots(PLT, Name) specimen += 1 pmag.magic_write(output, PmagSpecRecs, outfile_type)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n meas_file = 'trmaq_measurements.txt'\n tspec = 'thellier_specimens.txt'\n output = 'NLT_specimens.txt'\n data_model_num = int(float(pmag.get_named_arg('-DM', 3)))\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-i' in sys.argv:\n meas_file = input(\n 'Input magic_measurements file name? [trmaq_measurements.txt] ')\n if meas_file == '':\n meas_file = 'trmaq_measurements.txt'\n tspec = input(\n ' thellier_specimens file name? [thellier_specimens.txt] ')\n if tspec == '':\n tspec = 'thellier_specimens.txt'\n output = input(\n 'File for non-linear TRM adjusted specimen data: [NLTspecimens.txt] '\n )\n if output == '':\n output = 'NLT_specimens.txt'\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n meas_file = sys.argv[ind + 1]\n if '-ft' in sys.argv:\n ind = sys.argv.index('-ft')\n tspec = sys.argv[ind + 1]\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n output = sys.argv[ind + 1]\n if '-sav' in sys.argv:\n save_plots = True\n else:\n save_plots = False\n fmt = pmag.get_named_arg('-fmt', 'svg')\n PLT = {'aq': 1}\n if not save_plots:\n pmagplotlib.plot_init(PLT['aq'], 5, 5)\n comment = ''\n meas_data, file_type = pmag.magic_read(meas_file)\n if 'measurements' not in file_type:\n print(file_type, 'This is not a valid measurements file ')\n sys.exit()\n if data_model_num == 2:\n spec_col = 'er_specimen_name'\n lab_field_dc_col = 'specimen_lab_field_dc'\n int_col = 'specimen_int'\n meth_col = 'magic_method_codes'\n treat_dc_col = 'treatment_dc_field'\n magn_moment_col = 'measurement_magn_moment'\n experiment_col = 'magic_experiment_name'\n outfile_type = 'pmag_specimens'\n else:\n spec_col = 'specimen'\n lab_field_dc_col = 'int_treat_dc_field'\n int_col = 'int_abs'\n meth_col = 'method_codes'\n treat_dc_col = 'treat_dc_field'\n magn_moment_col = 'magn_moment'\n experiment_col = 'experiment'\n outfile_type = 'specimens'\n sids = pmag.get_specs(meas_data)\n specimen = 0\n nrm, file_type = pmag.magic_read(tspec)\n PmagSpecRecs = []\n while specimen < len(sids):\n s = sids[specimen]\n blab, best = '', ''\n for nrec in nrm:\n if nrec[spec_col] == s:\n try:\n blab = float(nrec[lab_field_dc_col])\n except ValueError:\n continue\n best = float(nrec[int_col])\n TrmRec = nrec\n break\n if blab == '':\n print('skipping ', s, ' : no best ')\n specimen += 1\n else:\n print(sids[specimen], specimen + 1, 'of ', len(sids), 'Best = ',\n best * 1000000.0)\n MeasRecs = []\n for rec in meas_data:\n if rec[spec_col] == s:\n meths = rec[meth_col].split(':')\n methcodes = []\n for meth in meths:\n methcodes.append(meth.strip())\n if 'LP-TRM' in methcodes:\n MeasRecs.append(rec)\n if len(MeasRecs) < 2:\n specimen += 1\n print('skipping specimen - no trm acquisition data ', s)\n else:\n TRMs, Bs = [], []\n for rec in MeasRecs:\n Bs.append(float(rec[treat_dc_col]))\n TRMs.append(float(rec[magn_moment_col]))\n NLpars = nlt.NLtrm(Bs, TRMs, best, blab, 0)\n Mp, Bp = [], []\n for k in range(int(max(Bs) * 1000000.0)):\n Bp.append(float(k) * 1e-06)\n npred = nlt.TRM(Bp[-1], NLpars['xopt'][0], NLpars[\n 'xopt'][1])\n Mp.append(npred)\n pmagplotlib.plot_trm(PLT['aq'], Bs, TRMs, Bp, Mp, NLpars,\n rec[experiment_col])\n if not save_plots:\n pmagplotlib.draw_figs(PLT)\n print('Banc= ', float(NLpars['banc']) * 1000000.0)\n trmTC = {}\n for key in list(TrmRec.keys()):\n trmTC[key] = TrmRec[key]\n trmTC[int_col] = '%8.3e' % NLpars['banc']\n trmTC[meth_col] = TrmRec[meth_col] + ':DA-NL'\n PmagSpecRecs.append(trmTC)\n if not save_plots:\n ans = input('Return for next specimen, s[a]ve plot ')\n if ans == 'a':\n Name = {'aq': rec[spec_col] + '_TRM.{}'.format(fmt)}\n pmagplotlib.save_plots(PLT, Name)\n else:\n Name = {'aq': rec[spec_col] + '_TRM.{}'.format(fmt)}\n pmagplotlib.save_plots(PLT, Name)\n specimen += 1\n pmag.magic_write(output, PmagSpecRecs, outfile_type)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): args = sys.argv if '-h' in args: print(main.__doc__) sys.exit() Z = 1 orient_file = pmag.get_named_arg('-f', reqd=True) data_model_num = int(float(pmag.get_named_arg('-DM', 3))) if data_model_num == 2: samp_file = pmag.get_named_arg('-Fsa', 'er_samples.txt') site_file = pmag.get_named_arg('-Fsi', 'er_sites.txt') else: samp_file = pmag.get_named_arg('-Fsa', 'samples.txt') site_file = pmag.get_named_arg('-Fsi', 'sites.txt') samp_con = pmag.get_named_arg('-ncn', '1') if '4' in samp_con: if '-' not in samp_con: print('option [4] must be in form 3-Z where Z is an integer') sys.exit() else: Z = samp_con.split('-')[1] print(samp_con) meths = pmag.get_named_arg('-mcd', 'FS-FD:SO-POM:SO-SUN') location_name = pmag.get_named_arg('-loc', 'unknown') if '-Iso' in args: ignore = 0 else: ignore = 1 convert.huji_sample(orient_file, meths, location_name, samp_con, ignore)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n Z = 1\n orient_file = pmag.get_named_arg('-f', reqd=True)\n data_model_num = int(float(pmag.get_named_arg('-DM', 3)))\n if data_model_num == 2:\n samp_file = pmag.get_named_arg('-Fsa', 'er_samples.txt')\n site_file = pmag.get_named_arg('-Fsi', 'er_sites.txt')\n else:\n samp_file = pmag.get_named_arg('-Fsa', 'samples.txt')\n site_file = pmag.get_named_arg('-Fsi', 'sites.txt')\n samp_con = pmag.get_named_arg('-ncn', '1')\n if '4' in samp_con:\n if '-' not in samp_con:\n print('option [4] must be in form 3-Z where Z is an integer')\n sys.exit()\n else:\n Z = samp_con.split('-')[1]\n print(samp_con)\n meths = pmag.get_named_arg('-mcd', 'FS-FD:SO-POM:SO-SUN')\n location_name = pmag.get_named_arg('-loc', 'unknown')\n if '-Iso' in args:\n ignore = 0\n else:\n ignore = 1\n convert.huji_sample(orient_file, meths, location_name, samp_con, ignore)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: dat = [] ind = sys.argv.index('-f') file = sys.argv[ind + 1] else: file = sys.stdin ofile = '' if '-F' in sys.argv: ind = sys.argv.index('-F') ofile = sys.argv[ind + 1] out = open(ofile, 'w + a') DIIs = numpy.loadtxt(file, dtype=numpy.float) vpars, R = pmag.vector_mean(DIIs) outstring = '%7.1f %7.1f %10.3e %i' % (vpars[0], vpars[1], R, len(DIIs)) if ofile == '': print(outstring) else: out.write(outstring + '\n')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n dat = []\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n else:\n file = sys.stdin\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n DIIs = numpy.loadtxt(file, dtype=numpy.float)\n vpars, R = pmag.vector_mean(DIIs)\n outstring = '%7.1f %7.1f %10.3e %i' % (vpars[0], vpars[1], R, len(DIIs))\n if ofile == '':\n print(outstring)\n else:\n out.write(outstring + '\\n')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): kappa, cutoff = 0, 180 rev, anti, boot = 0, 0, 0 spin, n, v, mm97 = 0, 0, 0, 0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') in_file = sys.argv[ind + 1] vgp_df = pd.read_csv(in_file, delim_whitespace=True, header=None) else: vgp_df = pd.read_csv(sys.stdin, delim_whitespace=True, header=None) if '-c' in sys.argv: ind = sys.argv.index('-c') cutoff = float(sys.argv[ind + 1]) if '-k' in sys.argv: ind = sys.argv.index('-k') kappa = float(sys.argv[ind + 1]) if '-n' in sys.argv: ind = sys.argv.index('-n') n = int(sys.argv[ind + 1]) if '-a' in sys.argv: anti = 1 if '-r' in sys.argv: rev = 1 if '-b' in sys.argv: boot = 1 if '-v' in sys.argv: v = 1 if '-p' in sys.argv: spin = 1 if '-mm97' in sys.argv: mm97 = 1 if len(list(vgp_df.columns)) == 2: vgp_df.columns = ['vgp_lon', 'vgp_lat'] vgp_df['dir_k'], vgp_df['dir_n_samples'], vgp_df['lat'] = 0, 0, 0 else: vgp_df.columns = ['vgp_lon', 'vgp_lat', 'dir_k', 'dir_n_samples', 'lat' ] N, S_B, low, high, cutoff = pmag.scalc_vgp_df(vgp_df, anti=anti, rev= rev, cutoff=cutoff, kappa=kappa, n=n, spin=spin, v=v, boot=boot, mm97=mm97) if high != 0: print(N, '%7.1f %7.1f %7.1f %7.1f ' % (S_B, low, high, cutoff)) else: print(N, '%7.1f %7.1f ' % (S_B, cutoff))
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n kappa, cutoff = 0, 180\n rev, anti, boot = 0, 0, 0\n spin, n, v, mm97 = 0, 0, 0, 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n in_file = sys.argv[ind + 1]\n vgp_df = pd.read_csv(in_file, delim_whitespace=True, header=None)\n else:\n vgp_df = pd.read_csv(sys.stdin, delim_whitespace=True, header=None)\n if '-c' in sys.argv:\n ind = sys.argv.index('-c')\n cutoff = float(sys.argv[ind + 1])\n if '-k' in sys.argv:\n ind = sys.argv.index('-k')\n kappa = float(sys.argv[ind + 1])\n if '-n' in sys.argv:\n ind = sys.argv.index('-n')\n n = int(sys.argv[ind + 1])\n if '-a' in sys.argv:\n anti = 1\n if '-r' in sys.argv:\n rev = 1\n if '-b' in sys.argv:\n boot = 1\n if '-v' in sys.argv:\n v = 1\n if '-p' in sys.argv:\n spin = 1\n if '-mm97' in sys.argv:\n mm97 = 1\n if len(list(vgp_df.columns)) == 2:\n vgp_df.columns = ['vgp_lon', 'vgp_lat']\n vgp_df['dir_k'], vgp_df['dir_n_samples'], vgp_df['lat'] = 0, 0, 0\n else:\n vgp_df.columns = ['vgp_lon', 'vgp_lat', 'dir_k', 'dir_n_samples', 'lat'\n ]\n N, S_B, low, high, cutoff = pmag.scalc_vgp_df(vgp_df, anti=anti, rev=\n rev, cutoff=cutoff, kappa=kappa, n=n, spin=spin, v=v, boot=boot,\n mm97=mm97)\n if high != 0:\n print(N, '%7.1f %7.1f %7.1f %7.1f ' % (S_B, low, high, cutoff))\n else:\n print(N, '%7.1f %7.1f ' % (S_B, cutoff))\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): FIG = {} FIG['exp'] = 1 dir_path = './' plot, fmt = 0, 'svg' units = 'T', XLP = [] norm = 1 LP = 'LP-IRM' if len(sys.argv) > 1: if '-h' in sys.argv: print(main.__doc__) sys.exit() data_model = int(pmag.get_named_arg('-DM', 3)) if '-N' in sys.argv: norm = 0 if '-sav' in sys.argv: plot = 1 if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if data_model == 3: in_file = pmag.get_named_arg('-f', 'measurements.txt') else: in_file = pmag.get_named_arg('-f', 'magic_measurements.txt') if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] dir_path = os.path.realpath(dir_path) in_file = pmag.resolve_file_name(in_file, dir_path) if '-WD' not in sys.argv: dir_path = os.path.split(in_file)[0] plot_by = pmag.get_named_arg('-obj', 'loc') if data_model == 3: plot_key = 'location' if plot_by == 'sit': plot_key = 'site' if plot_by == 'sam': plot_key = 'sample' if plot_by == 'spc': plot_key = 'specimen' else: plot_key = 'er_location_name' if plot_by == 'sit': plot_key = 'er_site_name' if plot_by == 'sam': plot_key = 'er_sample_name' if plot_by == 'spc': plot_key = 'er_specimen_name' if data_model == 3: dmag_key = 'treat_dc_field' else: dmag_key = 'treatment_dc_field' if data_model == 3 and plot_key != 'specimen': print('-W- You are trying to plot measurements by {}'.format(plot_key)) print( ' By default, this information is not available in your measurement file.' ) print(' Trying to acquire this information from {}'.format(dir_path) ) con = cb.Contribution(dir_path) meas_df = con.propagate_location_to_measurements() if meas_df is None: print('-W- No data found in {}'.format(dir_path)) return if plot_key not in meas_df.columns: print('-W- Could not find required data.') print(' Try a different plot key.') return else: print('-I- Found {} information, continuing with plotting'. format(plot_key)) data = con.tables['measurements'].convert_to_pmag_data_list() file_type = 'measurements' else: data, file_type = pmag.magic_read(in_file) sids = pmag.get_specs(data) pmagplotlib.plot_init(FIG['exp'], 6, 6) plotlist = [] if data_model == 3: intlist = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude'] else: intlist = ['measurement_magnitude', 'measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass'] IntMeths = [] if data_model == 3: data = pmag.get_dictitem(data, 'method_codes', LP, 'has') else: data = pmag.get_dictitem(data, 'magic_method_codes', LP, 'has') Ints = {} NoInts, int_key = 1, '' for key in intlist: Ints[key] = pmag.get_dictitem(data, key, '', 'F') if len(Ints[key]) > 0: NoInts = 0 if int_key == '': int_key = key if NoInts == 1: print('No intensity information found') sys.exit() for rec in Ints[int_key]: if rec[plot_key] not in plotlist: plotlist.append(rec[plot_key]) plotlist.sort() for plt in plotlist: print(plt) INTblock = [] data = pmag.get_dictitem(Ints[int_key], plot_key, plt, 'T') sids = pmag.get_specs(data) if len(sids) > 0: title = data[0][plot_key] for s in sids: INTblock = [] if data_model == 3: sdata = pmag.get_dictitem(data, 'specimen', s, 'T') else: sdata = pmag.get_dictitem(data, 'er_specimen_name', s, 'T') for rec in sdata: INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[ int_key]), 1, 'g']) pmagplotlib.plot_mag(FIG['exp'], INTblock, title, 0, units, norm) files = {} for key in list(FIG.keys()): files[key] = title + '_' + LP + '.' + fmt if plot == 0: pmagplotlib.draw_figs(FIG) ans = input(' S[a]ve to save plot, [q]uit, Return to continue: ') if ans == 'q': sys.exit() if ans == 'a': pmagplotlib.save_plots(FIG, files) if plt != plotlist[-1]: pmagplotlib.plot_init(FIG['exp'], 6, 6) else: pmagplotlib.save_plots(FIG, files) pmagplotlib.clearFIG(FIG['exp'])
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n FIG = {}\n FIG['exp'] = 1\n dir_path = './'\n plot, fmt = 0, 'svg'\n units = 'T',\n XLP = []\n norm = 1\n LP = 'LP-IRM'\n if len(sys.argv) > 1:\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n data_model = int(pmag.get_named_arg('-DM', 3))\n if '-N' in sys.argv:\n norm = 0\n if '-sav' in sys.argv:\n plot = 1\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if data_model == 3:\n in_file = pmag.get_named_arg('-f', 'measurements.txt')\n else:\n in_file = pmag.get_named_arg('-f', 'magic_measurements.txt')\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n dir_path = os.path.realpath(dir_path)\n in_file = pmag.resolve_file_name(in_file, dir_path)\n if '-WD' not in sys.argv:\n dir_path = os.path.split(in_file)[0]\n plot_by = pmag.get_named_arg('-obj', 'loc')\n if data_model == 3:\n plot_key = 'location'\n if plot_by == 'sit':\n plot_key = 'site'\n if plot_by == 'sam':\n plot_key = 'sample'\n if plot_by == 'spc':\n plot_key = 'specimen'\n else:\n plot_key = 'er_location_name'\n if plot_by == 'sit':\n plot_key = 'er_site_name'\n if plot_by == 'sam':\n plot_key = 'er_sample_name'\n if plot_by == 'spc':\n plot_key = 'er_specimen_name'\n if data_model == 3:\n dmag_key = 'treat_dc_field'\n else:\n dmag_key = 'treatment_dc_field'\n if data_model == 3 and plot_key != 'specimen':\n print('-W- You are trying to plot measurements by {}'.format(plot_key))\n print(\n ' By default, this information is not available in your measurement file.'\n )\n print(' Trying to acquire this information from {}'.format(dir_path)\n )\n con = cb.Contribution(dir_path)\n meas_df = con.propagate_location_to_measurements()\n if meas_df is None:\n print('-W- No data found in {}'.format(dir_path))\n return\n if plot_key not in meas_df.columns:\n print('-W- Could not find required data.')\n print(' Try a different plot key.')\n return\n else:\n print('-I- Found {} information, continuing with plotting'.\n format(plot_key))\n data = con.tables['measurements'].convert_to_pmag_data_list()\n file_type = 'measurements'\n else:\n data, file_type = pmag.magic_read(in_file)\n sids = pmag.get_specs(data)\n pmagplotlib.plot_init(FIG['exp'], 6, 6)\n plotlist = []\n if data_model == 3:\n intlist = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']\n else:\n intlist = ['measurement_magnitude', 'measurement_magn_moment',\n 'measurement_magn_volume', 'measurement_magn_mass']\n IntMeths = []\n if data_model == 3:\n data = pmag.get_dictitem(data, 'method_codes', LP, 'has')\n else:\n data = pmag.get_dictitem(data, 'magic_method_codes', LP, 'has')\n Ints = {}\n NoInts, int_key = 1, ''\n for key in intlist:\n Ints[key] = pmag.get_dictitem(data, key, '', 'F')\n if len(Ints[key]) > 0:\n NoInts = 0\n if int_key == '':\n int_key = key\n if NoInts == 1:\n print('No intensity information found')\n sys.exit()\n for rec in Ints[int_key]:\n if rec[plot_key] not in plotlist:\n plotlist.append(rec[plot_key])\n plotlist.sort()\n for plt in plotlist:\n print(plt)\n INTblock = []\n data = pmag.get_dictitem(Ints[int_key], plot_key, plt, 'T')\n sids = pmag.get_specs(data)\n if len(sids) > 0:\n title = data[0][plot_key]\n for s in sids:\n INTblock = []\n if data_model == 3:\n sdata = pmag.get_dictitem(data, 'specimen', s, 'T')\n else:\n sdata = pmag.get_dictitem(data, 'er_specimen_name', s, 'T')\n for rec in sdata:\n INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[\n int_key]), 1, 'g'])\n pmagplotlib.plot_mag(FIG['exp'], INTblock, title, 0, units, norm)\n files = {}\n for key in list(FIG.keys()):\n files[key] = title + '_' + LP + '.' + fmt\n if plot == 0:\n pmagplotlib.draw_figs(FIG)\n ans = input(' S[a]ve to save plot, [q]uit, Return to continue: ')\n if ans == 'q':\n sys.exit()\n if ans == 'a':\n pmagplotlib.save_plots(FIG, files)\n if plt != plotlist[-1]:\n pmagplotlib.plot_init(FIG['exp'], 6, 6)\n else:\n pmagplotlib.save_plots(FIG, files)\n pmagplotlib.clearFIG(FIG['exp'])\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(i, axis, num_axes): the_slice = () for j in range(num_axes): if j == axis: the_slice = the_slice + (i,) else: the_slice = the_slice + (slice(None),) return the_slice
all_but_axis
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(i, axis, num_axes):\n the_slice = ()\n for j in range(num_axes):\n if j == axis:\n the_slice = the_slice + (i,)\n else:\n the_slice = the_slice + (slice(None),)\n return the_slice\n", "role": "user" }, { "content": "all_but_axis", "role": "assistant" } ]
def x(f, ar): flat_ar = ravel(ar) out = zeros(len(flat_ar), flat_ar.typecode()) for i in range(len(flat_ar)): out[i] = f(flat_ar[i]) out.shape = ar.shape return out
array_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, ar):\n flat_ar = ravel(ar)\n out = zeros(len(flat_ar), flat_ar.typecode())\n for i in range(len(flat_ar)):\n out[i] = f(flat_ar[i])\n out.shape = ar.shape\n return out\n", "role": "user" }, { "content": "array_map", "role": "assistant" } ]
def x(self, event): if not self.xdata or not self.ydata: return pos = event.GetPosition() width, height = self.canvas.get_width_height() pos[1] = height - pos[1] xpick_data, ypick_data = pos xdata_org = self.xdata ydata_org = self.ydata data_corrected = self.map.transData.transform(vstack([xdata_org, ydata_org]).T) xdata, ydata = data_corrected.T xdata = list(map(float, xdata)) ydata = list(map(float, ydata)) e = 4.0 index = None for i, (x, y) in enumerate(zip(xdata, ydata)): if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e: index = i break if index == None: print("Couldn't find point %.1f,%.1f" % (xpick_data, ypick_data)) self.change_selected(index)
on_plot_select
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if not self.xdata or not self.ydata:\n return\n pos = event.GetPosition()\n width, height = self.canvas.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.xdata\n ydata_org = self.ydata\n data_corrected = self.map.transData.transform(vstack([xdata_org,\n ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n index = None\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n index = i\n break\n if index == None:\n print(\"Couldn't find point %.1f,%.1f\" % (xpick_data, ypick_data))\n self.change_selected(index)\n", "role": "user" }, { "content": "on_plot_select", "role": "assistant" } ]
def x(self, event): if not self.xdata or not self.ydata: return pos = event.GetPosition() width, height = self.canvas.get_width_height() pos[1] = height - pos[1] xpick_data, ypick_data = pos xdata_org = self.xdata ydata_org = self.ydata data_corrected = self.map.transData.transform(vstack([xdata_org, ydata_org]).T) xdata, ydata = data_corrected.T xdata = list(map(float, xdata)) ydata = list(map(float, ydata)) e = 4.0 if self.plot_setting == 'Zoom': self.canvas.SetCursor(wx.Cursor(wx.CURSOR_CROSS)) else: self.canvas.SetCursor(wx.Cursor(wx.CURSOR_ARROW)) for i, (x, y) in enumerate(zip(xdata, ydata)): if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e: self.canvas.SetCursor(wx.Cursor(wx.CURSOR_HAND)) break event.Skip()
on_change_plot_cursor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if not self.xdata or not self.ydata:\n return\n pos = event.GetPosition()\n width, height = self.canvas.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.xdata\n ydata_org = self.ydata\n data_corrected = self.map.transData.transform(vstack([xdata_org,\n ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n if self.plot_setting == 'Zoom':\n self.canvas.SetCursor(wx.Cursor(wx.CURSOR_CROSS))\n else:\n self.canvas.SetCursor(wx.Cursor(wx.CURSOR_ARROW))\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n self.canvas.SetCursor(wx.Cursor(wx.CURSOR_HAND))\n break\n event.Skip()\n", "role": "user" }, { "content": "on_change_plot_cursor", "role": "assistant" } ]
def x(self): return_dict = {} for i, ctrl in enumerate(self.list_ctrls): if hasattr(self.parse_funcs, '__getitem__') and len(self.parse_funcs ) > i and hasattr(self.parse_funcs[i], '__call__'): try: return_dict[self.inputs[i]] = self.parse_funcs[i](ctrl. GetValue()) except: return_dict[self.inputs[i]] = ctrl.GetValue() else: return_dict[self.inputs[i]] = ctrl.GetValue() return '' not in list(return_dict.values()), return_dict
get_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return_dict = {}\n for i, ctrl in enumerate(self.list_ctrls):\n if hasattr(self.parse_funcs, '__getitem__') and len(self.parse_funcs\n ) > i and hasattr(self.parse_funcs[i], '__call__'):\n try:\n return_dict[self.inputs[i]] = self.parse_funcs[i](ctrl.\n GetValue())\n except:\n return_dict[self.inputs[i]] = ctrl.GetValue()\n else:\n return_dict[self.inputs[i]] = ctrl.GetValue()\n return '' not in list(return_dict.values()), return_dict\n", "role": "user" }, { "content": "get_values", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() else: data_model_num = pmag.get_named_arg('-DM', 3) dataframe = extractor.command_line_dataframe([['cat', False, 0], [ 'F', False, ''], ['f', False, '']]) checked_args = extractor.extract_and_check_args(sys.argv, dataframe) dir_path, concat = extractor.get_vars(['WD', 'cat'], checked_args) data_model_num = int(float(data_model_num)) if data_model_num == 2: ipmag.upload_magic2(concat, dir_path) else: ipmag.upload_magic(concat, dir_path)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n else:\n data_model_num = pmag.get_named_arg('-DM', 3)\n dataframe = extractor.command_line_dataframe([['cat', False, 0], [\n 'F', False, ''], ['f', False, '']])\n checked_args = extractor.extract_and_check_args(sys.argv, dataframe)\n dir_path, concat = extractor.get_vars(['WD', 'cat'], checked_args)\n data_model_num = int(float(data_model_num))\n if data_model_num == 2:\n ipmag.upload_magic2(concat, dir_path)\n else:\n ipmag.upload_magic(concat, dir_path)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(x, y, z): X, Y = np.meshgrid(x, y, copy=False) X = X.flatten() Y = Y.flatten() A = np.array([np.ones(len(X)), X, X ** 2, Y, Y ** 2, X * Y]).T Z = np.array(z) B = Z.flatten() coeff, r, rank, s = np.linalg.lstsq(A, B, rcond=None) return -coeff[5]
d2_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, z):\n X, Y = np.meshgrid(x, y, copy=False)\n X = X.flatten()\n Y = Y.flatten()\n A = np.array([np.ones(len(X)), X, X ** 2, Y, Y ** 2, X * Y]).T\n Z = np.array(z)\n B = Z.flatten()\n coeff, r, rank, s = np.linalg.lstsq(A, B, rcond=None)\n return -coeff[5]\n", "role": "user" }, { "content": "d2_func", "role": "assistant" } ]
def x(data): a = [] b = [] M = [] for i in data: a.append(i[0]) b.append(i[1]) M.append(i[2]) a = np.array(a, dtype=np.float64).tolist() b = np.array(b, dtype=np.float64).tolist() M = np.array(M, dtype=np.float64).tolist() a = list(set(a)) b = list(set(b)) return a, b, M
grid_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n a = []\n b = []\n M = []\n for i in data:\n a.append(i[0])\n b.append(i[1])\n M.append(i[2])\n a = np.array(a, dtype=np.float64).tolist()\n b = np.array(b, dtype=np.float64).tolist()\n M = np.array(M, dtype=np.float64).tolist()\n a = list(set(a))\n b = list(set(b))\n return a, b, M\n", "role": "user" }, { "content": "grid_list", "role": "assistant" } ]
def x(self, SF, x_range, y_range, matrix_z): xx, yy, zz = [], [], [] m0, n0 = [], [] for m, n in itertools.product(np.arange(0, len(x_range), step=SF), np. arange(0, len(y_range), step=SF)): if x_range[m] > y_range[n]: m0.append(m) n0.append(n) aa, bb, cc = [], [], [] for m, n in zip(m0, n0): s = 0 try: grid_data = [] a_ = x_range[m + s] b_ = y_range[n - s] for i, j in itertools.product(np.arange(3 * SF + 1), np.arange( 3 * SF + 1)): try: grid_data.append([x_range[m + s + i], y_range[n - s - j ], matrix_z.item(n - s - j, m + s + i)]) except: try: for i, j in itertools.product(np.arange(3), np. arange(3)): grid_data.append([x_range[m + i], y_range[n - j ], matrix_z.item(n - j, m + i)]) except: pass """ #================================================= /when SF = n /data grid as (2*n+1)x(2*n+1) /grid_list: convert grid to list /every grid produce on FORC distritution p /the poly fitting use d2_func #================================================= """ x, y, z = grid_list(grid_data) try: p = d2_func(x, y, z) xx.append((a_ - b_) / 2) yy.append((a_ + b_) / 2) zz.append(p) except Exception as e: pass except: pass """ #================================================= /the data will be save as pandas dataframe /all the data with nan values will be delete be dropna() #================================================= """ df = pd.DataFrame({'x': xx, 'y': yy, 'z': zz}) df = df.dropna() """ #================================================= /due to the space near Bc = zero /the Bi values when Bc <0.003 will be mirrored to -Bc #================================================= """ df_negative = df[df.x < 0.03].copy() df_negative.x = df_negative.x * -1 df = df.append(df_negative) df = df.drop_duplicates(['x', 'y']) df = df.sort_values('x') """ #================================================= /reset the Bc and Bi range by X,Y /use linear interpolate to obtain FORC distribution #================================================= """ xrange = [0, int((np.max(df.x) + 0.05) * 10) / 10] yrange = [int((np.min(df.y) - 0.05) * 10) / 10, int((np.max(df.y) + 0.05) * 10) / 10] X = np.linspace(xrange[0], xrange[1], 200) Y = np.linspace(yrange[0], yrange[1], 200) self.yi, self.xi = np.mgrid[yrange[0]:yrange[1]:200.0j, xrange[0]: xrange[1]:200.0j] z = df.z / np.max(df.z) z = np.asarray(z.tolist()) self.zi = griddata((df.x, df.y), z, (self.xi, self.yi), method='cubic')
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, SF, x_range, y_range, matrix_z):\n xx, yy, zz = [], [], []\n m0, n0 = [], []\n for m, n in itertools.product(np.arange(0, len(x_range), step=SF), np.\n arange(0, len(y_range), step=SF)):\n if x_range[m] > y_range[n]:\n m0.append(m)\n n0.append(n)\n aa, bb, cc = [], [], []\n for m, n in zip(m0, n0):\n s = 0\n try:\n grid_data = []\n a_ = x_range[m + s]\n b_ = y_range[n - s]\n for i, j in itertools.product(np.arange(3 * SF + 1), np.arange(\n 3 * SF + 1)):\n try:\n grid_data.append([x_range[m + s + i], y_range[n - s - j\n ], matrix_z.item(n - s - j, m + s + i)])\n except:\n try:\n for i, j in itertools.product(np.arange(3), np.\n arange(3)):\n grid_data.append([x_range[m + i], y_range[n - j\n ], matrix_z.item(n - j, m + i)])\n except:\n pass\n \"\"\"\n #=================================================\n /when SF = n\n /data grid as (2*n+1)x(2*n+1)\n /grid_list: convert grid to list\n /every grid produce on FORC distritution p\n /the poly fitting use d2_func\n #=================================================\n \"\"\"\n x, y, z = grid_list(grid_data)\n try:\n p = d2_func(x, y, z)\n xx.append((a_ - b_) / 2)\n yy.append((a_ + b_) / 2)\n zz.append(p)\n except Exception as e:\n pass\n except:\n pass\n \"\"\"\n #=================================================\n /the data will be save as pandas dataframe\n /all the data with nan values will be delete be dropna()\n #=================================================\n \"\"\"\n df = pd.DataFrame({'x': xx, 'y': yy, 'z': zz})\n df = df.dropna()\n \"\"\"\n #=================================================\n /due to the space near Bc = zero\n /the Bi values when Bc <0.003 will be mirrored to -Bc\n #=================================================\n \"\"\"\n df_negative = df[df.x < 0.03].copy()\n df_negative.x = df_negative.x * -1\n df = df.append(df_negative)\n df = df.drop_duplicates(['x', 'y'])\n df = df.sort_values('x')\n \"\"\"\n #=================================================\n /reset the Bc and Bi range by X,Y\n /use linear interpolate to obtain FORC distribution\n #=================================================\n \"\"\"\n xrange = [0, int((np.max(df.x) + 0.05) * 10) / 10]\n yrange = [int((np.min(df.y) - 0.05) * 10) / 10, int((np.max(df.y) + \n 0.05) * 10) / 10]\n X = np.linspace(xrange[0], xrange[1], 200)\n Y = np.linspace(yrange[0], yrange[1], 200)\n self.yi, self.xi = np.mgrid[yrange[0]:yrange[1]:200.0j, xrange[0]:\n xrange[1]:200.0j]\n z = df.z / np.max(df.z)\n z = np.asarray(z.tolist())\n self.zi = griddata((df.x, df.y), z, (self.xi, self.yi), method='cubic')\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(self, fileAdres=None): skiprows = None skip_from = [b'Field', b'Moment'] with open(fileAdres, 'rb') as fr: for i, line in enumerate(fr, 1): if skip_from == line.split(): skiprows = i + 2 break skiprows = 34 if skiprows == None else skiprows df = pd.read_csv(fileAdres, skiprows=skiprows, sep='\\s+', delimiter= ',', names=['H', 'M'], skipfooter=1, engine='python') H = df.H M = df.M """ #================================================= /datainterval_H/_M /slice the measured data into pieces /for every measured FORC #================================================= """ dataInterval_H = [] dataInterval_M = [] cretia = df.H.mean() H0 = df.H.max() self.x, self.y, self.z = [[], [], []] for i in np.arange(1, len(H)): dataInterval_H.append(H[i]) dataInterval_M.append(M[i]) if abs(H[i] - H0) <= 0.001: if len(dataInterval_H) >= 0 and len(dataInterval_H) <= 200: Ha = dataInterval_H[0] dataInterval_H.pop(-1) dataInterval_M.pop(-1) Hb = dataInterval_H[1:-1] Hm = dataInterval_M[1:-1] for t in np.arange(len(Hb)): self.x.append(Hb[t]) self.y.append(Ha) self.z.append(Hm[t]) dataInterval_H = [] dataInterval_M = [] self.rawdf = df """ #================================================= transfer the data set to matrix as len(x)*len(y) with z value /mesh up the rawdata /select the data area by X,Y ranges /obtain regular spaced data potins by np.linspace /use interplote to caculate the Hm values /loop Ha(Y),Hb(X) /fill every position with Hm, else with np.nan #================================================= """ self.z = self.z / np.max(self.z) xrange = [int((np.min(self.x) - 0.1) * 10) / 10, int((np.max(self.x) + 0.1) * 10) / 10] yrange = [int((np.min(self.y) - 0.1) * 10) / 10, int((np.max(self.y) + 0.1) * 10) / 10] X = np.linspace(xrange[0], xrange[1], 200) Y = np.linspace(yrange[0], yrange[1], 200) yi, xi = np.mgrid[yrange[0]:yrange[1]:200.0j, xrange[0]:xrange[1]:200.0j] zi = griddata((self.x, self.y), self.z, (xi, yi), method='linear') self.matrix_z = zi self.x_range = X self.y_range = Y
rawData
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fileAdres=None):\n skiprows = None\n skip_from = [b'Field', b'Moment']\n with open(fileAdres, 'rb') as fr:\n for i, line in enumerate(fr, 1):\n if skip_from == line.split():\n skiprows = i + 2\n break\n skiprows = 34 if skiprows == None else skiprows\n df = pd.read_csv(fileAdres, skiprows=skiprows, sep='\\\\s+', delimiter=\n ',', names=['H', 'M'], skipfooter=1, engine='python')\n H = df.H\n M = df.M\n \"\"\"\n #=================================================\n /datainterval_H/_M\n /slice the measured data into pieces\n /for every measured FORC\n #=================================================\n \"\"\"\n dataInterval_H = []\n dataInterval_M = []\n cretia = df.H.mean()\n H0 = df.H.max()\n self.x, self.y, self.z = [[], [], []]\n for i in np.arange(1, len(H)):\n dataInterval_H.append(H[i])\n dataInterval_M.append(M[i])\n if abs(H[i] - H0) <= 0.001:\n if len(dataInterval_H) >= 0 and len(dataInterval_H) <= 200:\n Ha = dataInterval_H[0]\n dataInterval_H.pop(-1)\n dataInterval_M.pop(-1)\n Hb = dataInterval_H[1:-1]\n Hm = dataInterval_M[1:-1]\n for t in np.arange(len(Hb)):\n self.x.append(Hb[t])\n self.y.append(Ha)\n self.z.append(Hm[t])\n dataInterval_H = []\n dataInterval_M = []\n self.rawdf = df\n \"\"\"\n #=================================================\n transfer the data set to matrix as len(x)*len(y) with z value\n /mesh up the rawdata\n /select the data area by X,Y ranges\n /obtain regular spaced data potins by np.linspace\n /use interplote to caculate the Hm values\n /loop Ha(Y),Hb(X)\n /fill every position with Hm, else with np.nan\n #=================================================\n \"\"\"\n self.z = self.z / np.max(self.z)\n xrange = [int((np.min(self.x) - 0.1) * 10) / 10, int((np.max(self.x) + \n 0.1) * 10) / 10]\n yrange = [int((np.min(self.y) - 0.1) * 10) / 10, int((np.max(self.y) + \n 0.1) * 10) / 10]\n X = np.linspace(xrange[0], xrange[1], 200)\n Y = np.linspace(yrange[0], yrange[1], 200)\n yi, xi = np.mgrid[yrange[0]:yrange[1]:200.0j, xrange[0]:xrange[1]:200.0j]\n zi = griddata((self.x, self.y), self.z, (xi, yi), method='linear')\n self.matrix_z = zi\n self.x_range = X\n self.y_range = Y\n", "role": "user" }, { "content": "rawData", "role": "assistant" } ]
def x(): url = 'http://earthref.org/services/MagIC-data-model.txt' offline = True if offline: data = get_data_offline() data_model, file_type = pmag.magic_read(None, data) if file_type in ('bad file', 'empty_file'): print( '-W- Unable to read online data model.\nTrying to use cached data model instead' ) data = get_data_offline() data_model, file_type = pmag.magic_read(None, data) ref_dicts = [d for d in data_model if d['column_nmb'] != '>>>>>>>>>>'] file_types = [d['field_name'] for d in data_model if d['column_nmb'] == 'tab delimited'] file_types.insert(0, file_type) complete_ref = {} dictionary = {} n = 0 for d in ref_dicts: if d['field_name'] in file_types: complete_ref[file_types[n]] = dictionary n += 1 dictionary = {} else: dictionary[d['field_name_oracle']] = {'data_type': d[ 'data_type'], 'data_status': d['data_status']} return complete_ref
get_data_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n url = 'http://earthref.org/services/MagIC-data-model.txt'\n offline = True\n if offline:\n data = get_data_offline()\n data_model, file_type = pmag.magic_read(None, data)\n if file_type in ('bad file', 'empty_file'):\n print(\n '-W- Unable to read online data model.\\nTrying to use cached data model instead'\n )\n data = get_data_offline()\n data_model, file_type = pmag.magic_read(None, data)\n ref_dicts = [d for d in data_model if d['column_nmb'] != '>>>>>>>>>>']\n file_types = [d['field_name'] for d in data_model if d['column_nmb'] ==\n 'tab delimited']\n file_types.insert(0, file_type)\n complete_ref = {}\n dictionary = {}\n n = 0\n for d in ref_dicts:\n if d['field_name'] in file_types:\n complete_ref[file_types[n]] = dictionary\n n += 1\n dictionary = {}\n else:\n dictionary[d['field_name_oracle']] = {'data_type': d[\n 'data_type'], 'data_status': d['data_status']}\n return complete_ref\n", "role": "user" }, { "content": "get_data_model", "role": "assistant" } ]
def x(lines): container = [] new_list = [] for line in lines: if '>>>' in line: container.append(new_list) new_list = [] else: new_list.append(line) container.append(new_list) return container
split_lines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lines):\n container = []\n new_list = []\n for line in lines:\n if '>>>' in line:\n container.append(new_list)\n new_list = []\n else:\n new_list.append(line)\n container.append(new_list)\n return container\n", "role": "user" }, { "content": "split_lines", "role": "assistant" } ]
def x(data): data_dictionaries = [] for chunk in data[:-1]: if not chunk: continue data1 = data[0] file_type = chunk[0].split('\t')[1].strip('\n').strip('\r') keys = chunk[1].split('\t') clean_keys = [] for key in keys: clean_key = key.strip('\n').strip('\r') if clean_key: clean_keys.append(clean_key) for line in chunk[2:]: data_dict = {} for key in clean_keys: data_dict[key] = '' line = line.split('\t') for n, key in enumerate(clean_keys): data_dict[key] = line[n].strip('\n').strip('\r') data_dict['file_type'] = file_type data_dictionaries.append(data_dict) return data_dictionaries
get_dicts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n data_dictionaries = []\n for chunk in data[:-1]:\n if not chunk:\n continue\n data1 = data[0]\n file_type = chunk[0].split('\\t')[1].strip('\\n').strip('\\r')\n keys = chunk[1].split('\\t')\n clean_keys = []\n for key in keys:\n clean_key = key.strip('\\n').strip('\\r')\n if clean_key:\n clean_keys.append(clean_key)\n for line in chunk[2:]:\n data_dict = {}\n for key in clean_keys:\n data_dict[key] = ''\n line = line.split('\\t')\n for n, key in enumerate(clean_keys):\n data_dict[key] = line[n].strip('\\n').strip('\\r')\n data_dict['file_type'] = file_type\n data_dictionaries.append(data_dict)\n return data_dictionaries\n", "role": "user" }, { "content": "get_dicts", "role": "assistant" } ]
def x(): letters = string.ascii_uppercase for l in string.ascii_lowercase: letters = letters + l dir_path = '.' if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') inspec = dir_path + '/' + sys.argv[ind + 1] else: zfile = dir_path + '/zeq_redo' if '-fm' in sys.argv: ind = sys.argv.index('-f') meas_file = dir_path + '/' + sys.argv[ind + 1] else: meas_file = dir_path + '/magic_measurements.txt' if '-F' in sys.argv: ind = sys.argv.index('-F') zfile = dir_path + '/' + sys.argv[ind + 1] else: zfile = dir_path + '/zeq_redo' try: open(meas_file, 'r') meas_data, file_type = pmag.magic_read(meas_file) except IOError: print(main.__doc__) print( """You must have a valid measurements file prior to converting this LSQ file""" ) sys.exit() zredo = open(zfile, 'w') MeasRecs = [] specs, MeasOuts = [], [] prior_spec_data = open(inspec, 'r').readlines() for line in prior_spec_data: if len(line) < 2: sys.exit() rec = line.split('\t') spec = rec[0].lower() specs.append(spec) comp_name = rec[2] calculation_type = 'DE-FM' if rec[1][0] == 'L': calculation_type = 'DE-BFL' else: calculation_type = 'DE-BFP' lists = rec[7].split('-') incl = [] for l in lists[0]: incl.append(letters.index(l)) for l in letters[letters.index(lists[0][-1]) + 1:letters.index( lists[1][0])]: incl.append(letters.index(l)) for l in lists[1]: incl.append(letters.index(l)) if len(lists) > 2: for l in letters[letters.index(lists[1][-1]) + 1:letters.index( lists[2][0])]: incl.append(letters.index(l)) for l in lists[2]: incl.append(letters.index(l)) datablock, min, max = [], '', '' demag = 'N' for s in meas_data: if s['er_specimen_name'].lower() == spec.lower(): meths = s['magic_method_codes'].replace(' ', '').split(':') if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths: datablock.append(s) if len(datablock) > 0: for t in datablock: print(t['magic_method_codes']) incl_int = len(incl) while incl[-1] > len(datablock) - 1: del incl[-1] if len(incl) != incl_int: """converting calculation type to best-fit line""" meths0 = datablock[incl[0]]['magic_method_codes'].replace(' ', '' ).split(':') meths1 = datablock[incl[-1]]['magic_method_codes'].replace(' ', '' ).split(':') H0 = datablock[incl[0]]['treatment_ac_field'] T0 = datablock[incl[0]]['treatment_temp'] H1 = datablock[incl[-1]]['treatment_ac_field'] T1 = datablock[incl[-1]]['treatment_temp'] if 'LT-T-Z' in meths1: max = T1 demag = 'T' elif 'LT-AF-Z' in meths1: demag = 'AF' max = H1 if 'LT-NO' in meths0: if demag == 'T': min = 273 else: min = 0 elif 'LT-T-Z' in meths0: min = T0 else: min = H0 for ind in range(incl[0]): MeasRecs.append(datablock[ind]) for ind in range(incl[0], incl[-1]): if ind not in incl: datablock[ind]['measurement_flag'] = 'b' MeasRecs.append(datablock[ind]) for ind in range(incl[-1], len(datablock)): MeasRecs.append(datablock[ind]) outstring = '%s %s %s %s %s \n' % (spec, calculation_type, min, max, comp_name) zredo.write(outstring) for s in meas_data: if s['er_specimen_name'] not in specs: MeasRecs.append(s) pmag.magic_write(meas_file, MeasRecs, 'magic_measurements')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n letters = string.ascii_uppercase\n for l in string.ascii_lowercase:\n letters = letters + l\n dir_path = '.'\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n inspec = dir_path + '/' + sys.argv[ind + 1]\n else:\n zfile = dir_path + '/zeq_redo'\n if '-fm' in sys.argv:\n ind = sys.argv.index('-f')\n meas_file = dir_path + '/' + sys.argv[ind + 1]\n else:\n meas_file = dir_path + '/magic_measurements.txt'\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n zfile = dir_path + '/' + sys.argv[ind + 1]\n else:\n zfile = dir_path + '/zeq_redo'\n try:\n open(meas_file, 'r')\n meas_data, file_type = pmag.magic_read(meas_file)\n except IOError:\n print(main.__doc__)\n print(\n \"\"\"You must have a valid measurements file prior to converting\n this LSQ file\"\"\"\n )\n sys.exit()\n zredo = open(zfile, 'w')\n MeasRecs = []\n specs, MeasOuts = [], []\n prior_spec_data = open(inspec, 'r').readlines()\n for line in prior_spec_data:\n if len(line) < 2:\n sys.exit()\n rec = line.split('\\t')\n spec = rec[0].lower()\n specs.append(spec)\n comp_name = rec[2]\n calculation_type = 'DE-FM'\n if rec[1][0] == 'L':\n calculation_type = 'DE-BFL'\n else:\n calculation_type = 'DE-BFP'\n lists = rec[7].split('-')\n incl = []\n for l in lists[0]:\n incl.append(letters.index(l))\n for l in letters[letters.index(lists[0][-1]) + 1:letters.index(\n lists[1][0])]:\n incl.append(letters.index(l))\n for l in lists[1]:\n incl.append(letters.index(l))\n if len(lists) > 2:\n for l in letters[letters.index(lists[1][-1]) + 1:letters.index(\n lists[2][0])]:\n incl.append(letters.index(l))\n for l in lists[2]:\n incl.append(letters.index(l))\n datablock, min, max = [], '', ''\n demag = 'N'\n for s in meas_data:\n if s['er_specimen_name'].lower() == spec.lower():\n meths = s['magic_method_codes'].replace(' ', '').split(':')\n if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths:\n datablock.append(s)\n if len(datablock) > 0:\n for t in datablock:\n print(t['magic_method_codes'])\n incl_int = len(incl)\n while incl[-1] > len(datablock) - 1:\n del incl[-1]\n if len(incl) != incl_int:\n \"\"\"converting calculation type to best-fit line\"\"\"\n meths0 = datablock[incl[0]]['magic_method_codes'].replace(' ', ''\n ).split(':')\n meths1 = datablock[incl[-1]]['magic_method_codes'].replace(' ', ''\n ).split(':')\n H0 = datablock[incl[0]]['treatment_ac_field']\n T0 = datablock[incl[0]]['treatment_temp']\n H1 = datablock[incl[-1]]['treatment_ac_field']\n T1 = datablock[incl[-1]]['treatment_temp']\n if 'LT-T-Z' in meths1:\n max = T1\n demag = 'T'\n elif 'LT-AF-Z' in meths1:\n demag = 'AF'\n max = H1\n if 'LT-NO' in meths0:\n if demag == 'T':\n min = 273\n else:\n min = 0\n elif 'LT-T-Z' in meths0:\n min = T0\n else:\n min = H0\n for ind in range(incl[0]):\n MeasRecs.append(datablock[ind])\n for ind in range(incl[0], incl[-1]):\n if ind not in incl:\n datablock[ind]['measurement_flag'] = 'b'\n MeasRecs.append(datablock[ind])\n for ind in range(incl[-1], len(datablock)):\n MeasRecs.append(datablock[ind])\n outstring = '%s %s %s %s %s \\n' % (spec, calculation_type, min,\n max, comp_name)\n zredo.write(outstring)\n for s in meas_data:\n if s['er_specimen_name'] not in specs:\n MeasRecs.append(s)\n pmag.magic_write(meas_file, MeasRecs, 'magic_measurements')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(input_list, mod='', ghfile=''): if ghfile != '': lmgh = np.loadtxt(ghfile) gh = [] lmgh = np.loadtxt(ghfile).transpose() gh.append(lmgh[2][0]) for i in range(1, lmgh.shape[1]): gh.append(lmgh[2][i]) gh.append(lmgh[3][i]) if len(gh) == 0: print('no valid gh file') return mod = 'custom' if mod == '': x, y, z, f = pmag.doigrf(input_list[3] % 360.0, input_list[2], input_list[1], input_list[0]) elif mod != 'custom': x, y, z, f = pmag.doigrf(input_list[3] % 360.0, input_list[2], input_list[1], input_list[0], mod=mod) else: x, y, z, f = pmag.docustom(input_list[3] % 360.0, input_list[2], input_list[1], gh) igrf_array = pmag.cart2dir((x, y, z)) return igrf_array
igrf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_list, mod='', ghfile=''):\n if ghfile != '':\n lmgh = np.loadtxt(ghfile)\n gh = []\n lmgh = np.loadtxt(ghfile).transpose()\n gh.append(lmgh[2][0])\n for i in range(1, lmgh.shape[1]):\n gh.append(lmgh[2][i])\n gh.append(lmgh[3][i])\n if len(gh) == 0:\n print('no valid gh file')\n return\n mod = 'custom'\n if mod == '':\n x, y, z, f = pmag.doigrf(input_list[3] % 360.0, input_list[2],\n input_list[1], input_list[0])\n elif mod != 'custom':\n x, y, z, f = pmag.doigrf(input_list[3] % 360.0, input_list[2],\n input_list[1], input_list[0], mod=mod)\n else:\n x, y, z, f = pmag.docustom(input_list[3] % 360.0, input_list[2],\n input_list[1], gh)\n igrf_array = pmag.cart2dir((x, y, z))\n return igrf_array\n", "role": "user" }, { "content": "igrf", "role": "assistant" } ]
def x(degrees, minutes, seconds): dd = float(degrees) + old_div(float(minutes), 60) + old_div(float( seconds), 60 * 60) return dd
dms2dd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(degrees, minutes, seconds):\n dd = float(degrees) + old_div(float(minutes), 60) + old_div(float(\n seconds), 60 * 60)\n return dd\n", "role": "user" }, { "content": "dms2dd", "role": "assistant" } ]
def x(dec=None, inc=None, di_block=None): if di_block is None: di_block = make_di_block(dec, inc) return pmag.fisher_mean(di_block) else: return pmag.fisher_mean(di_block)
fisher_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec=None, inc=None, di_block=None):\n if di_block is None:\n di_block = make_di_block(dec, inc)\n return pmag.fisher_mean(di_block)\n else:\n return pmag.fisher_mean(di_block)\n", "role": "user" }, { "content": "fisher_mean", "role": "assistant" } ]
def x(dec=None, inc=None, di_block=None, confidence=95): if di_block is None: di_block = make_di_block(dec, inc) mean = pmag.fisher_mean(di_block) else: mean = pmag.fisher_mean(di_block) if confidence == 50: theta = old_div(67.5, np.sqrt(mean['k'])) if confidence == 63: theta = old_div(81, np.sqrt(mean['k'])) if confidence == 95: theta = old_div(140, np.sqrt(mean['k'])) return theta
fisher_angular_deviation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec=None, inc=None, di_block=None, confidence=95):\n if di_block is None:\n di_block = make_di_block(dec, inc)\n mean = pmag.fisher_mean(di_block)\n else:\n mean = pmag.fisher_mean(di_block)\n if confidence == 50:\n theta = old_div(67.5, np.sqrt(mean['k']))\n if confidence == 63:\n theta = old_div(81, np.sqrt(mean['k']))\n if confidence == 95:\n theta = old_div(140, np.sqrt(mean['k']))\n return theta\n", "role": "user" }, { "content": "fisher_angular_deviation", "role": "assistant" } ]
def x(dec=None, inc=None, di_block=None): if di_block is None: di_block = make_di_block(dec, inc) return pmag.dobingham(di_block) else: return pmag.dobingham(di_block)
bingham_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec=None, inc=None, di_block=None):\n if di_block is None:\n di_block = make_di_block(dec, inc)\n return pmag.dobingham(di_block)\n else:\n return pmag.dobingham(di_block)\n", "role": "user" }, { "content": "bingham_mean", "role": "assistant" } ]
def x(dec=None, inc=None, di_block=None): if di_block is None: di_block = make_di_block(dec, inc) return pmag.dokent(di_block, len(di_block)) else: return pmag.dokent(di_block, len(di_block))
kent_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec=None, inc=None, di_block=None):\n if di_block is None:\n di_block = make_di_block(dec, inc)\n return pmag.dokent(di_block, len(di_block))\n else:\n return pmag.dokent(di_block, len(di_block))\n", "role": "user" }, { "content": "kent_mean", "role": "assistant" } ]
def x(mean_dictionary): print('Dec: ' + str(round(mean_dictionary['dec'], 1)) + ' Inc: ' + str (round(mean_dictionary['inc'], 1))) print('Number of directions in mean (n): ' + str(mean_dictionary['n'])) print('Angular radius of 95% confidence (a_95): ' + str(round( mean_dictionary['alpha95'], 1))) print('Precision parameter (k) estimate: ' + str(round(mean_dictionary[ 'k'], 1)))
print_direction_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mean_dictionary):\n print('Dec: ' + str(round(mean_dictionary['dec'], 1)) + ' Inc: ' + str\n (round(mean_dictionary['inc'], 1)))\n print('Number of directions in mean (n): ' + str(mean_dictionary['n']))\n print('Angular radius of 95% confidence (a_95): ' + str(round(\n mean_dictionary['alpha95'], 1)))\n print('Precision parameter (k) estimate: ' + str(round(mean_dictionary[\n 'k'], 1)))\n", "role": "user" }, { "content": "print_direction_mean", "role": "assistant" } ]
def x(mean_dictionary): print('Plon: ' + str(round(mean_dictionary['dec'], 1)) + ' Plat: ' + str(round(mean_dictionary['inc'], 1))) print('Number of directions in mean (n): ' + str(mean_dictionary['n'])) print('Angular radius of 95% confidence (A_95): ' + str(round( mean_dictionary['alpha95'], 1))) print('Precision parameter (k) estimate: ' + str(round(mean_dictionary[ 'k'], 1)))
print_pole_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mean_dictionary):\n print('Plon: ' + str(round(mean_dictionary['dec'], 1)) + ' Plat: ' +\n str(round(mean_dictionary['inc'], 1)))\n print('Number of directions in mean (n): ' + str(mean_dictionary['n']))\n print('Angular radius of 95% confidence (A_95): ' + str(round(\n mean_dictionary['alpha95'], 1)))\n print('Precision parameter (k) estimate: ' + str(round(mean_dictionary[\n 'k'], 1)))\n", "role": "user" }, { "content": "print_pole_mean", "role": "assistant" } ]
def x(k=20, n=100, dec=0, inc=90, di_block=True): directions = [] declinations = [] inclinations = [] if di_block == True: for data in range(n): d, i = pmag.fshdev(k) drot, irot = pmag.dodirot(d, i, dec, inc) directions.append([drot, irot, 1.0]) return directions else: for data in range(n): d, i = pmag.fshdev(k) drot, irot = pmag.dodirot(d, i, dec, inc) declinations.append(drot) inclinations.append(irot) return declinations, inclinations
fishrot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(k=20, n=100, dec=0, inc=90, di_block=True):\n directions = []\n declinations = []\n inclinations = []\n if di_block == True:\n for data in range(n):\n d, i = pmag.fshdev(k)\n drot, irot = pmag.dodirot(d, i, dec, inc)\n directions.append([drot, irot, 1.0])\n return directions\n else:\n for data in range(n):\n d, i = pmag.fshdev(k)\n drot, irot = pmag.dodirot(d, i, dec, inc)\n declinations.append(drot)\n inclinations.append(irot)\n return declinations, inclinations\n", "role": "user" }, { "content": "fishrot", "role": "assistant" } ]
def x(n=100, dec=0, lat=0, rev='no', G2=0, G3=0): tk_03_output = [] for k in range(n): gh = pmag.mktk03(8, k, G2, G3) lon = random.randint(0, 360) vec = pmag.getvec(gh, lat, lon) vec[0] += dec if vec[0] >= 360.0: vec[0] -= 360.0 if k % 2 == 0 and rev == 'yes': vec[0] += 180.0 vec[1] = -vec[1] tk_03_output.append([vec[0], vec[1], vec[2]]) return tk_03_output
tk03
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n=100, dec=0, lat=0, rev='no', G2=0, G3=0):\n tk_03_output = []\n for k in range(n):\n gh = pmag.mktk03(8, k, G2, G3)\n lon = random.randint(0, 360)\n vec = pmag.getvec(gh, lat, lon)\n vec[0] += dec\n if vec[0] >= 360.0:\n vec[0] -= 360.0\n if k % 2 == 0 and rev == 'yes':\n vec[0] += 180.0\n vec[1] = -vec[1]\n tk_03_output.append([vec[0], vec[1], vec[2]])\n return tk_03_output\n", "role": "user" }, { "content": "tk03", "role": "assistant" } ]
def x(incs, f): try: length = len(incs) incs_unsquished = [] for n in range(0, length): inc_rad = np.deg2rad(incs[n]) inc_new_rad = old_div(1.0, f) * np.tan(inc_rad) inc_new = np.rad2deg(np.arctan(inc_new_rad)) incs_unsquished.append(inc_new) return incs_unsquished except: inc_rad = np.deg2rad(incs) inc_new_rad = old_div(1.0, f) * np.tan(inc_rad) inc_new = np.rad2deg(np.arctan(inc_new_rad)) return inc_new
unsquish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(incs, f):\n try:\n length = len(incs)\n incs_unsquished = []\n for n in range(0, length):\n inc_rad = np.deg2rad(incs[n])\n inc_new_rad = old_div(1.0, f) * np.tan(inc_rad)\n inc_new = np.rad2deg(np.arctan(inc_new_rad))\n incs_unsquished.append(inc_new)\n return incs_unsquished\n except:\n inc_rad = np.deg2rad(incs)\n inc_new_rad = old_div(1.0, f) * np.tan(inc_rad)\n inc_new = np.rad2deg(np.arctan(inc_new_rad))\n return inc_new\n", "role": "user" }, { "content": "unsquish", "role": "assistant" } ]
def x(incs, f): try: length = len(incs) incs_squished = [] for n in range(0, length): inc_rad = incs[n] * np.pi / 180.0 inc_new_rad = f * np.tan(inc_rad) inc_new = np.arctan(inc_new_rad) * 180.0 / np.pi incs_squished.append(inc_new) return incs_squished except: inc_rad = incs * np.pi / 180.0 inc_new_rad = f * np.tan(inc_rad) inc_new = np.arctan(inc_new_rad) * 180.0 / np.pi return inc_new
squish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(incs, f):\n try:\n length = len(incs)\n incs_squished = []\n for n in range(0, length):\n inc_rad = incs[n] * np.pi / 180.0\n inc_new_rad = f * np.tan(inc_rad)\n inc_new = np.arctan(inc_new_rad) * 180.0 / np.pi\n incs_squished.append(inc_new)\n return incs_squished\n except:\n inc_rad = incs * np.pi / 180.0\n inc_new_rad = f * np.tan(inc_rad)\n inc_new = np.arctan(inc_new_rad) * 180.0 / np.pi\n return inc_new\n", "role": "user" }, { "content": "squish", "role": "assistant" } ]
def x(dec=None, inc=None, di_block=None): if di_block is None: dec_flip = [] inc_flip = [] for n in range(0, len(dec)): dec_flip.append((dec[n] - 180.0) % 360.0) inc_flip.append(-inc[n]) return dec_flip, inc_flip else: dflip = [] for rec in di_block: d, i = (rec[0] - 180.0) % 360.0, -rec[1] dflip.append([d, i, 1.0]) return dflip
do_flip
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec=None, inc=None, di_block=None):\n if di_block is None:\n dec_flip = []\n inc_flip = []\n for n in range(0, len(dec)):\n dec_flip.append((dec[n] - 180.0) % 360.0)\n inc_flip.append(-inc[n])\n return dec_flip, inc_flip\n else:\n dflip = []\n for rec in di_block:\n d, i = (rec[0] - 180.0) % 360.0, -rec[1]\n dflip.append([d, i, 1.0])\n return dflip\n", "role": "user" }, { "content": "do_flip", "role": "assistant" } ]
def x(Data1, Data2, NumSims=1000, save=False, save_folder='.', fmt='svg', figsize=(7, 2.3), x_tick_bins=4): counter = 0 BDI1 = pmag.di_boot(Data1) cart1 = pmag.dir2cart(BDI1).transpose() X1, Y1, Z1 = cart1[0], cart1[1], cart1[2] if np.array(Data2).shape[0] > 2: BDI2 = pmag.di_boot(Data2) cart2 = pmag.dir2cart(BDI2).transpose() X2, Y2, Z2 = cart2[0], cart2[1], cart2[2] else: cart = pmag.dir2cart(Data2).transpose() fignum = 1 fig = plt.figure(figsize=figsize) fig = plt.subplot(1, 3, 1) minimum = int(0.025 * len(X1)) maximum = int(0.975 * len(X1)) X1, y = pmagplotlib.plot_cdf(fignum, X1, 'X component', 'r', '') bounds1 = [X1[minimum], X1[maximum]] pmagplotlib.plot_vs(fignum, bounds1, 'r', '-') if np.array(Data2).shape[0] > 2: X2, y = pmagplotlib.plot_cdf(fignum, X2, 'X component', 'b', '') bounds2 = [X2[minimum], X2[maximum]] pmagplotlib.plot_vs(fignum, bounds2, 'b', '--') else: pmagplotlib.plot_vs(fignum, [cart[0]], 'k', '--') plt.ylim(0, 1) plt.locator_params(nbins=x_tick_bins) plt.subplot(1, 3, 2) Y1, y = pmagplotlib.plot_cdf(fignum, Y1, 'Y component', 'r', '') bounds1 = [Y1[minimum], Y1[maximum]] pmagplotlib.plot_vs(fignum, bounds1, 'r', '-') if np.array(Data2).shape[0] > 2: Y2, y = pmagplotlib.plot_cdf(fignum, Y2, 'Y component', 'b', '') bounds2 = [Y2[minimum], Y2[maximum]] pmagplotlib.plot_vs(fignum, bounds2, 'b', '--') else: pmagplotlib.plot_vs(fignum, [cart[1]], 'k', '--') plt.ylim(0, 1) plt.subplot(1, 3, 3) Z1, y = pmagplotlib.plot_cdf(fignum, Z1, 'Z component', 'r', '') bounds1 = [Z1[minimum], Z1[maximum]] pmagplotlib.plot_vs(fignum, bounds1, 'r', '-') if np.array(Data2).shape[0] > 2: Z2, y = pmagplotlib.plot_cdf(fignum, Z2, 'Z component', 'b', '') bounds2 = [Z2[minimum], Z2[maximum]] pmagplotlib.plot_vs(fignum, bounds2, 'b', '--') else: pmagplotlib.plot_vs(fignum, [cart[2]], 'k', '--') plt.ylim(0, 1) plt.locator_params(nbins=x_tick_bins) plt.tight_layout() if save == True: plt.savefig(os.path.join(save_folder, 'common_mean_bootstrap') + '.' + fmt) plt.show()
common_mean_bootstrap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Data1, Data2, NumSims=1000, save=False, save_folder='.', fmt='svg',\n figsize=(7, 2.3), x_tick_bins=4):\n counter = 0\n BDI1 = pmag.di_boot(Data1)\n cart1 = pmag.dir2cart(BDI1).transpose()\n X1, Y1, Z1 = cart1[0], cart1[1], cart1[2]\n if np.array(Data2).shape[0] > 2:\n BDI2 = pmag.di_boot(Data2)\n cart2 = pmag.dir2cart(BDI2).transpose()\n X2, Y2, Z2 = cart2[0], cart2[1], cart2[2]\n else:\n cart = pmag.dir2cart(Data2).transpose()\n fignum = 1\n fig = plt.figure(figsize=figsize)\n fig = plt.subplot(1, 3, 1)\n minimum = int(0.025 * len(X1))\n maximum = int(0.975 * len(X1))\n X1, y = pmagplotlib.plot_cdf(fignum, X1, 'X component', 'r', '')\n bounds1 = [X1[minimum], X1[maximum]]\n pmagplotlib.plot_vs(fignum, bounds1, 'r', '-')\n if np.array(Data2).shape[0] > 2:\n X2, y = pmagplotlib.plot_cdf(fignum, X2, 'X component', 'b', '')\n bounds2 = [X2[minimum], X2[maximum]]\n pmagplotlib.plot_vs(fignum, bounds2, 'b', '--')\n else:\n pmagplotlib.plot_vs(fignum, [cart[0]], 'k', '--')\n plt.ylim(0, 1)\n plt.locator_params(nbins=x_tick_bins)\n plt.subplot(1, 3, 2)\n Y1, y = pmagplotlib.plot_cdf(fignum, Y1, 'Y component', 'r', '')\n bounds1 = [Y1[minimum], Y1[maximum]]\n pmagplotlib.plot_vs(fignum, bounds1, 'r', '-')\n if np.array(Data2).shape[0] > 2:\n Y2, y = pmagplotlib.plot_cdf(fignum, Y2, 'Y component', 'b', '')\n bounds2 = [Y2[minimum], Y2[maximum]]\n pmagplotlib.plot_vs(fignum, bounds2, 'b', '--')\n else:\n pmagplotlib.plot_vs(fignum, [cart[1]], 'k', '--')\n plt.ylim(0, 1)\n plt.subplot(1, 3, 3)\n Z1, y = pmagplotlib.plot_cdf(fignum, Z1, 'Z component', 'r', '')\n bounds1 = [Z1[minimum], Z1[maximum]]\n pmagplotlib.plot_vs(fignum, bounds1, 'r', '-')\n if np.array(Data2).shape[0] > 2:\n Z2, y = pmagplotlib.plot_cdf(fignum, Z2, 'Z component', 'b', '')\n bounds2 = [Z2[minimum], Z2[maximum]]\n pmagplotlib.plot_vs(fignum, bounds2, 'b', '--')\n else:\n pmagplotlib.plot_vs(fignum, [cart[2]], 'k', '--')\n plt.ylim(0, 1)\n plt.locator_params(nbins=x_tick_bins)\n plt.tight_layout()\n if save == True:\n plt.savefig(os.path.join(save_folder, 'common_mean_bootstrap') +\n '.' + fmt)\n plt.show()\n", "role": "user" }, { "content": "common_mean_bootstrap", "role": "assistant" } ]
def x(Data1, Data2, NumSims=5000, print_result=True, plot='no', save=False, save_folder='.', fmt='svg'): pars_1 = pmag.fisher_mean(Data1) pars_2 = pmag.fisher_mean(Data2) cart_1 = pmag.dir2cart([pars_1['dec'], pars_1['inc'], pars_1['r']]) cart_2 = pmag.dir2cart([pars_2['dec'], pars_2['inc'], pars_2['r']]) Sw = pars_1['k'] * pars_1['r'] + pars_2['k'] * pars_2['r'] xhat_1 = pars_1['k'] * cart_1[0] + pars_2['k'] * cart_2[0] xhat_2 = pars_1['k'] * cart_1[1] + pars_2['k'] * cart_2[1] xhat_3 = pars_1['k'] * cart_1[2] + pars_2['k'] * cart_2[2] Rw = np.sqrt(xhat_1 ** 2 + xhat_2 ** 2 + xhat_3 ** 2) V = 2 * (Sw - Rw) Sr = Sw counter = 0 Vp = [] for k in range(NumSims): Dirp = [] for i in range(pars_1['n']): Dirp.append(pmag.fshdev(pars_1['k'])) pars_p1 = pmag.fisher_mean(Dirp) Dirp = [] for i in range(pars_2['n']): Dirp.append(pmag.fshdev(pars_2['k'])) pars_p2 = pmag.fisher_mean(Dirp) Vk = pmag.vfunc(pars_p1, pars_p2) Vp.append(Vk) Vp.sort() k = int(0.95 * NumSims) Vcrit = Vp[k] Rwc = Sr - old_div(Vcrit, 2) k1 = pars_1['k'] k2 = pars_2['k'] R1 = pars_1['r'] R2 = pars_2['r'] critical_angle = np.degrees(np.arccos(old_div(Rwc ** 2 - (k1 * R1) ** 2 - (k2 * R2) ** 2, 2 * k1 * R1 * k2 * R2))) D1 = pars_1['dec'], pars_1['inc'] D2 = pars_2['dec'], pars_2['inc'] angle = pmag.angle(D1, D2) if print_result == True: print('Results of Watson V test: ') print('') print("Watson's V: %.1f" % V) print('Critical value of V: %.1f' % Vcrit) if V < Vcrit: if print_result == True: print('"Pass": Since V is less than Vcrit, the null hypothesis') print('that the two populations are drawn from distributions') print('that share a common mean direction can not be rejected.') result = 1 elif V > Vcrit: if print_result == True: print('"Fail": Since V is greater than Vcrit, the two means can') print('be distinguished at the 95% confidence level.') result = 0 if print_result == True: print('') print('M&M1990 classification:') print('') print('Angle between data set means: %.1f' % angle) print('Critical angle for M&M1990: %.1f' % critical_angle) if print_result == True: if V > Vcrit: print('') elif V < Vcrit: if critical_angle < 5: print('The McFadden and McElhinny (1990) classification for') print("this test is: 'A'") elif critical_angle < 10: print('The McFadden and McElhinny (1990) classification for') print("this test is: 'B'") elif critical_angle < 20: print('The McFadden and McElhinny (1990) classification for') print("this test is: 'C'") else: print('The McFadden and McElhinny (1990) classification for') print("this test is: 'INDETERMINATE;") if plot == 'yes': CDF = {'cdf': 1} plt.figure(figsize=(3.5, 2.5)) p1 = pmagplotlib.plot_cdf(CDF['cdf'], Vp, "Watson's V", 'r', '') p2 = pmagplotlib.plot_vs(CDF['cdf'], [V], 'g', '-') p3 = pmagplotlib.plot_vs(CDF['cdf'], [Vp[k]], 'b', '--') if save == True: plt.savefig(os.path.join(save_folder, 'common_mean_watson') + '.' + fmt) pmagplotlib.show_fig(CDF['cdf']) return result, angle[0], critical_angle
common_mean_watson
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Data1, Data2, NumSims=5000, print_result=True, plot='no', save=False,\n save_folder='.', fmt='svg'):\n pars_1 = pmag.fisher_mean(Data1)\n pars_2 = pmag.fisher_mean(Data2)\n cart_1 = pmag.dir2cart([pars_1['dec'], pars_1['inc'], pars_1['r']])\n cart_2 = pmag.dir2cart([pars_2['dec'], pars_2['inc'], pars_2['r']])\n Sw = pars_1['k'] * pars_1['r'] + pars_2['k'] * pars_2['r']\n xhat_1 = pars_1['k'] * cart_1[0] + pars_2['k'] * cart_2[0]\n xhat_2 = pars_1['k'] * cart_1[1] + pars_2['k'] * cart_2[1]\n xhat_3 = pars_1['k'] * cart_1[2] + pars_2['k'] * cart_2[2]\n Rw = np.sqrt(xhat_1 ** 2 + xhat_2 ** 2 + xhat_3 ** 2)\n V = 2 * (Sw - Rw)\n Sr = Sw\n counter = 0\n Vp = []\n for k in range(NumSims):\n Dirp = []\n for i in range(pars_1['n']):\n Dirp.append(pmag.fshdev(pars_1['k']))\n pars_p1 = pmag.fisher_mean(Dirp)\n Dirp = []\n for i in range(pars_2['n']):\n Dirp.append(pmag.fshdev(pars_2['k']))\n pars_p2 = pmag.fisher_mean(Dirp)\n Vk = pmag.vfunc(pars_p1, pars_p2)\n Vp.append(Vk)\n Vp.sort()\n k = int(0.95 * NumSims)\n Vcrit = Vp[k]\n Rwc = Sr - old_div(Vcrit, 2)\n k1 = pars_1['k']\n k2 = pars_2['k']\n R1 = pars_1['r']\n R2 = pars_2['r']\n critical_angle = np.degrees(np.arccos(old_div(Rwc ** 2 - (k1 * R1) ** 2 -\n (k2 * R2) ** 2, 2 * k1 * R1 * k2 * R2)))\n D1 = pars_1['dec'], pars_1['inc']\n D2 = pars_2['dec'], pars_2['inc']\n angle = pmag.angle(D1, D2)\n if print_result == True:\n print('Results of Watson V test: ')\n print('')\n print(\"Watson's V: %.1f\" % V)\n print('Critical value of V: %.1f' % Vcrit)\n if V < Vcrit:\n if print_result == True:\n print('\"Pass\": Since V is less than Vcrit, the null hypothesis')\n print('that the two populations are drawn from distributions')\n print('that share a common mean direction can not be rejected.')\n result = 1\n elif V > Vcrit:\n if print_result == True:\n print('\"Fail\": Since V is greater than Vcrit, the two means can')\n print('be distinguished at the 95% confidence level.')\n result = 0\n if print_result == True:\n print('')\n print('M&M1990 classification:')\n print('')\n print('Angle between data set means: %.1f' % angle)\n print('Critical angle for M&M1990: %.1f' % critical_angle)\n if print_result == True:\n if V > Vcrit:\n print('')\n elif V < Vcrit:\n if critical_angle < 5:\n print('The McFadden and McElhinny (1990) classification for')\n print(\"this test is: 'A'\")\n elif critical_angle < 10:\n print('The McFadden and McElhinny (1990) classification for')\n print(\"this test is: 'B'\")\n elif critical_angle < 20:\n print('The McFadden and McElhinny (1990) classification for')\n print(\"this test is: 'C'\")\n else:\n print('The McFadden and McElhinny (1990) classification for')\n print(\"this test is: 'INDETERMINATE;\")\n if plot == 'yes':\n CDF = {'cdf': 1}\n plt.figure(figsize=(3.5, 2.5))\n p1 = pmagplotlib.plot_cdf(CDF['cdf'], Vp, \"Watson's V\", 'r', '')\n p2 = pmagplotlib.plot_vs(CDF['cdf'], [V], 'g', '-')\n p3 = pmagplotlib.plot_vs(CDF['cdf'], [Vp[k]], 'b', '--')\n if save == True:\n plt.savefig(os.path.join(save_folder, 'common_mean_watson') +\n '.' + fmt)\n pmagplotlib.show_fig(CDF['cdf'])\n return result, angle[0], critical_angle\n", "role": "user" }, { "content": "common_mean_watson", "role": "assistant" } ]
def x(lon=None, lat=None, di_block=None): if di_block is None: all_dirs = make_di_block(lon, lat) else: all_dirs = di_block ppars = pmag.doprinc(all_dirs) rDIs = [] nDIs = [] QQ_dict1 = {} QQ_dict2 = {} for rec in all_dirs: angle = pmag.angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']]) if angle > 90.0: rDIs.append(rec) else: nDIs.append(rec) if len(rDIs) >= 10 or len(nDIs) >= 10: D1, I1 = [], [] QQ = {'unf': 1, 'exp': 2} if len(nDIs) < 10: ppars = pmag.doprinc(rDIs) Drbar, Irbar = ppars['dec'] - 180.0, -ppars['inc'] Nr = len(rDIs) for di in rDIs: d, irot = pmag.dotilt(di[0], di[1], Drbar - 180.0, 90.0 - Irbar ) drot = d - 180.0 if drot < 0: drot = drot + 360.0 D1.append(drot) I1.append(irot) Dtit = 'Mode 2 Declinations' Itit = 'Mode 2 Inclinations' else: ppars = pmag.doprinc(nDIs) Dnbar, Inbar = ppars['dec'], ppars['inc'] Nn = len(nDIs) for di in nDIs: d, irot = pmag.dotilt(di[0], di[1], Dnbar - 180.0, 90.0 - Inbar ) drot = d - 180.0 if drot < 0: drot = drot + 360.0 D1.append(drot) I1.append(irot) Dtit = 'Mode 1 Declinations' Itit = 'Mode 1 Inclinations' plt.figure(figsize=(6, 3)) Mu_n, Mu_ncr = pmagplotlib.plot_qq_unf(QQ['unf'], D1, Dtit, subplot =True) Me_n, Me_ncr = pmagplotlib.plot_qq_exp(QQ['exp'], I1, Itit, subplot =True) plt.tight_layout() if Mu_n <= Mu_ncr and Me_n <= Me_ncr: F_n = 'consistent with Fisherian model' else: F_n = 'Fisherian model rejected' QQ_dict1['Mode'] = 'Mode 1' QQ_dict1['Dec'] = Dnbar QQ_dict1['Inc'] = Inbar QQ_dict1['N'] = Nn QQ_dict1['Mu'] = Mu_n QQ_dict1['Mu_critical'] = Mu_ncr QQ_dict1['Me'] = Me_n QQ_dict1['Me_critical'] = Me_ncr QQ_dict1['Test_result'] = F_n if len(rDIs) > 10 and len(nDIs) > 10: D2, I2 = [], [] ppars = pmag.doprinc(rDIs) Drbar, Irbar = ppars['dec'] - 180.0, -ppars['inc'] Nr = len(rDIs) for di in rDIs: d, irot = pmag.dotilt(di[0], di[1], Drbar - 180.0, 90.0 - Irbar) drot = d - 180.0 if drot < 0: drot = drot + 360.0 D2.append(drot) I2.append(irot) Dtit = 'Mode 2 Declinations' Itit = 'Mode 2 Inclinations' plt.figure(figsize=(6, 3)) Mu_r, Mu_rcr = pmagplotlib.plot_qq_unf(QQ['unf'], D2, Dtit, subplot =True) Me_r, Me_rcr = pmagplotlib.plot_qq_exp(QQ['exp'], I2, Itit, subplot =True) plt.tight_layout() if Mu_r <= Mu_rcr and Me_r <= Me_rcr: F_r = 'consistent with Fisherian model' else: F_r = 'Fisherian model rejected' QQ_dict2['Mode'] = 'Mode 2' QQ_dict2['Dec'] = Drbar QQ_dict2['Inc'] = Irbar QQ_dict2['N'] = Nr QQ_dict2['Mu'] = Mu_r QQ_dict2['Mu_critical'] = Mu_rcr QQ_dict2['Me'] = Me_r QQ_dict2['Me_critical'] = Me_rcr QQ_dict2['Test_result'] = F_r if QQ_dict2: return QQ_dict1, QQ_dict2 elif QQ_dict1: return QQ_dict1 else: print('you need N> 10 for at least one mode')
fishqq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lon=None, lat=None, di_block=None):\n if di_block is None:\n all_dirs = make_di_block(lon, lat)\n else:\n all_dirs = di_block\n ppars = pmag.doprinc(all_dirs)\n rDIs = []\n nDIs = []\n QQ_dict1 = {}\n QQ_dict2 = {}\n for rec in all_dirs:\n angle = pmag.angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']])\n if angle > 90.0:\n rDIs.append(rec)\n else:\n nDIs.append(rec)\n if len(rDIs) >= 10 or len(nDIs) >= 10:\n D1, I1 = [], []\n QQ = {'unf': 1, 'exp': 2}\n if len(nDIs) < 10:\n ppars = pmag.doprinc(rDIs)\n Drbar, Irbar = ppars['dec'] - 180.0, -ppars['inc']\n Nr = len(rDIs)\n for di in rDIs:\n d, irot = pmag.dotilt(di[0], di[1], Drbar - 180.0, 90.0 - Irbar\n )\n drot = d - 180.0\n if drot < 0:\n drot = drot + 360.0\n D1.append(drot)\n I1.append(irot)\n Dtit = 'Mode 2 Declinations'\n Itit = 'Mode 2 Inclinations'\n else:\n ppars = pmag.doprinc(nDIs)\n Dnbar, Inbar = ppars['dec'], ppars['inc']\n Nn = len(nDIs)\n for di in nDIs:\n d, irot = pmag.dotilt(di[0], di[1], Dnbar - 180.0, 90.0 - Inbar\n )\n drot = d - 180.0\n if drot < 0:\n drot = drot + 360.0\n D1.append(drot)\n I1.append(irot)\n Dtit = 'Mode 1 Declinations'\n Itit = 'Mode 1 Inclinations'\n plt.figure(figsize=(6, 3))\n Mu_n, Mu_ncr = pmagplotlib.plot_qq_unf(QQ['unf'], D1, Dtit, subplot\n =True)\n Me_n, Me_ncr = pmagplotlib.plot_qq_exp(QQ['exp'], I1, Itit, subplot\n =True)\n plt.tight_layout()\n if Mu_n <= Mu_ncr and Me_n <= Me_ncr:\n F_n = 'consistent with Fisherian model'\n else:\n F_n = 'Fisherian model rejected'\n QQ_dict1['Mode'] = 'Mode 1'\n QQ_dict1['Dec'] = Dnbar\n QQ_dict1['Inc'] = Inbar\n QQ_dict1['N'] = Nn\n QQ_dict1['Mu'] = Mu_n\n QQ_dict1['Mu_critical'] = Mu_ncr\n QQ_dict1['Me'] = Me_n\n QQ_dict1['Me_critical'] = Me_ncr\n QQ_dict1['Test_result'] = F_n\n if len(rDIs) > 10 and len(nDIs) > 10:\n D2, I2 = [], []\n ppars = pmag.doprinc(rDIs)\n Drbar, Irbar = ppars['dec'] - 180.0, -ppars['inc']\n Nr = len(rDIs)\n for di in rDIs:\n d, irot = pmag.dotilt(di[0], di[1], Drbar - 180.0, 90.0 - Irbar)\n drot = d - 180.0\n if drot < 0:\n drot = drot + 360.0\n D2.append(drot)\n I2.append(irot)\n Dtit = 'Mode 2 Declinations'\n Itit = 'Mode 2 Inclinations'\n plt.figure(figsize=(6, 3))\n Mu_r, Mu_rcr = pmagplotlib.plot_qq_unf(QQ['unf'], D2, Dtit, subplot\n =True)\n Me_r, Me_rcr = pmagplotlib.plot_qq_exp(QQ['exp'], I2, Itit, subplot\n =True)\n plt.tight_layout()\n if Mu_r <= Mu_rcr and Me_r <= Me_rcr:\n F_r = 'consistent with Fisherian model'\n else:\n F_r = 'Fisherian model rejected'\n QQ_dict2['Mode'] = 'Mode 2'\n QQ_dict2['Dec'] = Drbar\n QQ_dict2['Inc'] = Irbar\n QQ_dict2['N'] = Nr\n QQ_dict2['Mu'] = Mu_r\n QQ_dict2['Mu_critical'] = Mu_rcr\n QQ_dict2['Me'] = Me_r\n QQ_dict2['Me_critical'] = Me_rcr\n QQ_dict2['Test_result'] = F_r\n if QQ_dict2:\n return QQ_dict1, QQ_dict2\n elif QQ_dict1:\n return QQ_dict1\n else:\n print('you need N> 10 for at least one mode')\n", "role": "user" }, { "content": "fishqq", "role": "assistant" } ]
def x(inc, a95=None): rad = old_div(np.pi, 180.0) paleo_lat = old_div(np.arctan(0.5 * np.tan(inc * rad)), rad) if a95 is not None: paleo_lat_max = old_div(np.arctan(0.5 * np.tan((inc + a95) * rad)), rad ) paleo_lat_min = old_div(np.arctan(0.5 * np.tan((inc - a95) * rad)), rad ) return paleo_lat, paleo_lat_max, paleo_lat_min else: return paleo_lat
lat_from_inc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inc, a95=None):\n rad = old_div(np.pi, 180.0)\n paleo_lat = old_div(np.arctan(0.5 * np.tan(inc * rad)), rad)\n if a95 is not None:\n paleo_lat_max = old_div(np.arctan(0.5 * np.tan((inc + a95) * rad)), rad\n )\n paleo_lat_min = old_div(np.arctan(0.5 * np.tan((inc - a95) * rad)), rad\n )\n return paleo_lat, paleo_lat_max, paleo_lat_min\n else:\n return paleo_lat\n", "role": "user" }, { "content": "lat_from_inc", "role": "assistant" } ]
def x(ref_loc_lon, ref_loc_lat, pole_plon, pole_plat): ref_loc = ref_loc_lon, ref_loc_lat pole = pole_plon, pole_plat paleo_lat = 90 - pmag.angle(pole, ref_loc) return float(paleo_lat)
lat_from_pole
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ref_loc_lon, ref_loc_lat, pole_plon, pole_plat):\n ref_loc = ref_loc_lon, ref_loc_lat\n pole = pole_plon, pole_plat\n paleo_lat = 90 - pmag.angle(pole, ref_loc)\n return float(paleo_lat)\n", "role": "user" }, { "content": "lat_from_pole", "role": "assistant" } ]
def x(lat): rad = old_div(np.pi, 180.0) inc = old_div(np.arctan(2 * np.tan(lat * rad)), rad) return inc
inc_from_lat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lat):\n rad = old_div(np.pi, 180.0)\n inc = old_div(np.arctan(2 * np.tan(lat * rad)), rad)\n return inc\n", "role": "user" }, { "content": "inc_from_lat", "role": "assistant" } ]
def x(fignum): plt.figure(num=fignum) plt.clf() plt.axis('off') Dcirc = np.arange(0, 361.0) Icirc = np.zeros(361, 'f') Xcirc, Ycirc = [], [] for k in range(361): XY = pmag.dimap(Dcirc[k], Icirc[k]) Xcirc.append(XY[0]) Ycirc.append(XY[1]) plt.plot(Xcirc, Ycirc, 'k') Xsym, Ysym = [], [] for I in range(10, 100, 10): XY = pmag.dimap(0.0, I) Xsym.append(XY[0]) Ysym.append(XY[1]) plt.plot(Xsym, Ysym, 'k+') Xsym, Ysym = [], [] for I in range(10, 90, 10): XY = pmag.dimap(90.0, I) Xsym.append(XY[0]) Ysym.append(XY[1]) plt.plot(Xsym, Ysym, 'k+') Xsym, Ysym = [], [] for I in range(10, 90, 10): XY = pmag.dimap(180.0, I) Xsym.append(XY[0]) Ysym.append(XY[1]) plt.plot(Xsym, Ysym, 'k+') Xsym, Ysym = [], [] for I in range(10, 90, 10): XY = pmag.dimap(270.0, I) Xsym.append(XY[0]) Ysym.append(XY[1]) plt.plot(Xsym, Ysym, 'k+') for D in range(0, 360, 10): Xtick, Ytick = [], [] for I in range(4): XY = pmag.dimap(D, I) Xtick.append(XY[0]) Ytick.append(XY[1]) plt.plot(Xtick, Ytick, 'k') plt.axis('equal') plt.axis((-1.05, 1.05, -1.05, 1.05))
plot_net
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum):\n plt.figure(num=fignum)\n plt.clf()\n plt.axis('off')\n Dcirc = np.arange(0, 361.0)\n Icirc = np.zeros(361, 'f')\n Xcirc, Ycirc = [], []\n for k in range(361):\n XY = pmag.dimap(Dcirc[k], Icirc[k])\n Xcirc.append(XY[0])\n Ycirc.append(XY[1])\n plt.plot(Xcirc, Ycirc, 'k')\n Xsym, Ysym = [], []\n for I in range(10, 100, 10):\n XY = pmag.dimap(0.0, I)\n Xsym.append(XY[0])\n Ysym.append(XY[1])\n plt.plot(Xsym, Ysym, 'k+')\n Xsym, Ysym = [], []\n for I in range(10, 90, 10):\n XY = pmag.dimap(90.0, I)\n Xsym.append(XY[0])\n Ysym.append(XY[1])\n plt.plot(Xsym, Ysym, 'k+')\n Xsym, Ysym = [], []\n for I in range(10, 90, 10):\n XY = pmag.dimap(180.0, I)\n Xsym.append(XY[0])\n Ysym.append(XY[1])\n plt.plot(Xsym, Ysym, 'k+')\n Xsym, Ysym = [], []\n for I in range(10, 90, 10):\n XY = pmag.dimap(270.0, I)\n Xsym.append(XY[0])\n Ysym.append(XY[1])\n plt.plot(Xsym, Ysym, 'k+')\n for D in range(0, 360, 10):\n Xtick, Ytick = [], []\n for I in range(4):\n XY = pmag.dimap(D, I)\n Xtick.append(XY[0])\n Ytick.append(XY[1])\n plt.plot(Xtick, Ytick, 'k')\n plt.axis('equal')\n plt.axis((-1.05, 1.05, -1.05, 1.05))\n", "role": "user" }, { "content": "plot_net", "role": "assistant" } ]
def x(dec=None, inc=None, di_block=None, color='k', marker='o', markersize= 20, legend='no', label='', title='', edge='', alpha=1): X_down = [] X_up = [] Y_down = [] Y_up = [] color_down = [] color_up = [] if di_block is not None: di_lists = unpack_di_block(di_block) if len(di_lists) == 3: dec, inc, intensity = di_lists if len(di_lists) == 2: dec, inc = di_lists try: length = len(dec) for n in range(len(dec)): XY = pmag.dimap(dec[n], inc[n]) if inc[n] >= 0: X_down.append(XY[0]) Y_down.append(XY[1]) if type(color) == list: color_down.append(color[n]) else: color_down.append(color) else: X_up.append(XY[0]) Y_up.append(XY[1]) if type(color) == list: color_up.append(color[n]) else: color_up.append(color) except: XY = pmag.dimap(dec, inc) if inc >= 0: X_down.append(XY[0]) Y_down.append(XY[1]) color_down.append(color) else: X_up.append(XY[0]) Y_up.append(XY[1]) color_up.append(color) if len(X_up) > 0: plt.scatter(X_up, Y_up, facecolors='none', edgecolors=color_up, s= markersize, marker=marker, label=label, alpha=alpha) if len(X_down) > 0: plt.scatter(X_down, Y_down, facecolors=color_down, edgecolors=edge, s=markersize, marker=marker, label=label, alpha=alpha) if legend == 'yes': plt.legend(loc=2) plt.tight_layout() if title != '': plt.title(title)
plot_di
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec=None, inc=None, di_block=None, color='k', marker='o', markersize=\n 20, legend='no', label='', title='', edge='', alpha=1):\n X_down = []\n X_up = []\n Y_down = []\n Y_up = []\n color_down = []\n color_up = []\n if di_block is not None:\n di_lists = unpack_di_block(di_block)\n if len(di_lists) == 3:\n dec, inc, intensity = di_lists\n if len(di_lists) == 2:\n dec, inc = di_lists\n try:\n length = len(dec)\n for n in range(len(dec)):\n XY = pmag.dimap(dec[n], inc[n])\n if inc[n] >= 0:\n X_down.append(XY[0])\n Y_down.append(XY[1])\n if type(color) == list:\n color_down.append(color[n])\n else:\n color_down.append(color)\n else:\n X_up.append(XY[0])\n Y_up.append(XY[1])\n if type(color) == list:\n color_up.append(color[n])\n else:\n color_up.append(color)\n except:\n XY = pmag.dimap(dec, inc)\n if inc >= 0:\n X_down.append(XY[0])\n Y_down.append(XY[1])\n color_down.append(color)\n else:\n X_up.append(XY[0])\n Y_up.append(XY[1])\n color_up.append(color)\n if len(X_up) > 0:\n plt.scatter(X_up, Y_up, facecolors='none', edgecolors=color_up, s=\n markersize, marker=marker, label=label, alpha=alpha)\n if len(X_down) > 0:\n plt.scatter(X_down, Y_down, facecolors=color_down, edgecolors=edge,\n s=markersize, marker=marker, label=label, alpha=alpha)\n if legend == 'yes':\n plt.legend(loc=2)\n plt.tight_layout()\n if title != '':\n plt.title(title)\n", "role": "user" }, { "content": "plot_di", "role": "assistant" } ]
def x(dec, inc, a95, color='k', marker='o', markersize=20, label='', legend ='no'): DI_dimap = pmag.dimap(dec, inc) if inc < 0: plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors= 'white', marker=marker, s=markersize, label=label) if inc >= 0: plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors= color, marker=marker, s=markersize, label=label) Xcirc, Ycirc = [], [] Da95, Ia95 = pmag.circ(dec, inc, a95) if legend == 'yes': plt.legend(loc=2) for k in range(len(Da95)): XY = pmag.dimap(Da95[k], Ia95[k]) Xcirc.append(XY[0]) Ycirc.append(XY[1]) plt.plot(Xcirc, Ycirc, c=color) plt.tight_layout()
plot_di_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec, inc, a95, color='k', marker='o', markersize=20, label='', legend\n ='no'):\n DI_dimap = pmag.dimap(dec, inc)\n if inc < 0:\n plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=\n 'white', marker=marker, s=markersize, label=label)\n if inc >= 0:\n plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=\n color, marker=marker, s=markersize, label=label)\n Xcirc, Ycirc = [], []\n Da95, Ia95 = pmag.circ(dec, inc, a95)\n if legend == 'yes':\n plt.legend(loc=2)\n for k in range(len(Da95)):\n XY = pmag.dimap(Da95[k], Ia95[k])\n Xcirc.append(XY[0])\n Ycirc.append(XY[1])\n plt.plot(Xcirc, Ycirc, c=color)\n plt.tight_layout()\n", "role": "user" }, { "content": "plot_di_mean", "role": "assistant" } ]
def x(bingham_dictionary, fignum=1, color='k', marker='o', markersize=20, label='', legend='no'): plot_di_mean_ellipse(bingham_dictionary, fignum=fignum, color=color, marker=marker, markersize=markersize, label=label, legend=legend)
plot_di_mean_bingham
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bingham_dictionary, fignum=1, color='k', marker='o', markersize=20,\n label='', legend='no'):\n plot_di_mean_ellipse(bingham_dictionary, fignum=fignum, color=color,\n marker=marker, markersize=markersize, label=label, legend=legend)\n", "role": "user" }, { "content": "plot_di_mean_bingham", "role": "assistant" } ]
def x(dictionary, fignum=1, color='k', marker='o', markersize=20, label='', legend='no'): pars = [] pars.append(dictionary['dec']) pars.append(dictionary['inc']) pars.append(dictionary['Zeta']) pars.append(dictionary['Zdec']) pars.append(dictionary['Zinc']) pars.append(dictionary['Eta']) pars.append(dictionary['Edec']) pars.append(dictionary['Einc']) DI_dimap = pmag.dimap(dictionary['dec'], dictionary['inc']) if dictionary['inc'] < 0: plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors= 'white', marker=marker, s=markersize, label=label) if dictionary['inc'] >= 0: plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors= color, marker=marker, s=markersize, label=label) pmagplotlib.plot_ell(fignum, pars, color, 0, 1)
plot_di_mean_ellipse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dictionary, fignum=1, color='k', marker='o', markersize=20, label='',\n legend='no'):\n pars = []\n pars.append(dictionary['dec'])\n pars.append(dictionary['inc'])\n pars.append(dictionary['Zeta'])\n pars.append(dictionary['Zdec'])\n pars.append(dictionary['Zinc'])\n pars.append(dictionary['Eta'])\n pars.append(dictionary['Edec'])\n pars.append(dictionary['Einc'])\n DI_dimap = pmag.dimap(dictionary['dec'], dictionary['inc'])\n if dictionary['inc'] < 0:\n plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=\n 'white', marker=marker, s=markersize, label=label)\n if dictionary['inc'] >= 0:\n plt.scatter(DI_dimap[0], DI_dimap[1], edgecolors=color, facecolors=\n color, marker=marker, s=markersize, label=label)\n pmagplotlib.plot_ell(fignum, pars, color, 0, 1)\n", "role": "user" }, { "content": "plot_di_mean_ellipse", "role": "assistant" } ]
def x(central_longitude=0, central_latitude=0, figsize=(8, 8), add_land= True, land_color='tan', add_ocean=False, ocean_color='lightblue', grid_lines=True, lat_grid=[-80.0, -60.0, -30.0, 0.0, 30.0, 60.0, 80.0], lon_grid=[-180.0, -150.0, -120.0, -90.0, -60.0, -30.0, 0.0, 30.0, 60.0, 90.0, 120.0, 150.0, 180.0]): if not has_cartopy: print( '-W- cartopy must be installed to run ipmag.make_orthographic_map') return fig = plt.figure(figsize=figsize) map_projection = ccrs.Orthographic(central_longitude=central_longitude, central_latitude=central_latitude) ax = plt.axes(projection=map_projection) ax.set_global() if add_ocean == True: ax.add_feature(cartopy.feature.OCEAN, zorder=0, facecolor=ocean_color) if add_land == True: ax.add_feature(cartopy.feature.LAND, zorder=0, facecolor=land_color, edgecolor='black') if grid_lines == True: ax.gridlines(xlocs=lon_grid, ylocs=lat_grid, linewidth=1, color= 'black', linestyle='dotted') return ax
make_orthographic_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(central_longitude=0, central_latitude=0, figsize=(8, 8), add_land=\n True, land_color='tan', add_ocean=False, ocean_color='lightblue',\n grid_lines=True, lat_grid=[-80.0, -60.0, -30.0, 0.0, 30.0, 60.0, 80.0],\n lon_grid=[-180.0, -150.0, -120.0, -90.0, -60.0, -30.0, 0.0, 30.0, 60.0,\n 90.0, 120.0, 150.0, 180.0]):\n if not has_cartopy:\n print(\n '-W- cartopy must be installed to run ipmag.make_orthographic_map')\n return\n fig = plt.figure(figsize=figsize)\n map_projection = ccrs.Orthographic(central_longitude=central_longitude,\n central_latitude=central_latitude)\n ax = plt.axes(projection=map_projection)\n ax.set_global()\n if add_ocean == True:\n ax.add_feature(cartopy.feature.OCEAN, zorder=0, facecolor=ocean_color)\n if add_land == True:\n ax.add_feature(cartopy.feature.LAND, zorder=0, facecolor=land_color,\n edgecolor='black')\n if grid_lines == True:\n ax.gridlines(xlocs=lon_grid, ylocs=lat_grid, linewidth=1, color=\n 'black', linestyle='dotted')\n return ax\n", "role": "user" }, { "content": "make_orthographic_map", "role": "assistant" } ]
def x(map_axis, plon, plat, A95, label='', color='k', edgecolor='k', marker ='o', markersize=20, legend='no'): if not has_cartopy: print('-W- cartopy must be installed to run ipmag.plot_pole') return A95_km = A95 * 111.32 map_axis.scatter(plon, plat, marker=marker, color=color, edgecolors= edgecolor, s=markersize, label=label, zorder=101, transform=ccrs. Geodetic()) equi(map_axis, plon, plat, A95_km, color) if legend == 'yes': plt.legend(loc=2)
plot_pole
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(map_axis, plon, plat, A95, label='', color='k', edgecolor='k', marker\n ='o', markersize=20, legend='no'):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.plot_pole')\n return\n A95_km = A95 * 111.32\n map_axis.scatter(plon, plat, marker=marker, color=color, edgecolors=\n edgecolor, s=markersize, label=label, zorder=101, transform=ccrs.\n Geodetic())\n equi(map_axis, plon, plat, A95_km, color)\n if legend == 'yes':\n plt.legend(loc=2)\n", "role": "user" }, { "content": "plot_pole", "role": "assistant" } ]
def x(map_axis, plon, plat, A95, label='', color='k', edgecolor='k', marker ='o', markersize=20, legend='no'): map_axis.scatter(plon, plat, marker=marker, color=color, edgecolors= edgecolor, s=markersize, label=label, zorder=101, transform=ccrs. Geodetic()) if isinstance(color, str) == True: for n in range(0, len(A95)): A95_km = A95[n] * 111.32 equi(map_axis, plon[n], plat[n], A95_km, color) else: for n in range(0, len(A95)): A95_km = A95[n] * 111.32 equi(map_axis, plon[n], plat[n], A95_km, color[n]) if legend == 'yes': plt.legend(loc=2)
plot_poles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(map_axis, plon, plat, A95, label='', color='k', edgecolor='k', marker\n ='o', markersize=20, legend='no'):\n map_axis.scatter(plon, plat, marker=marker, color=color, edgecolors=\n edgecolor, s=markersize, label=label, zorder=101, transform=ccrs.\n Geodetic())\n if isinstance(color, str) == True:\n for n in range(0, len(A95)):\n A95_km = A95[n] * 111.32\n equi(map_axis, plon[n], plat[n], A95_km, color)\n else:\n for n in range(0, len(A95)):\n A95_km = A95[n] * 111.32\n equi(map_axis, plon[n], plat[n], A95_km, color[n])\n if legend == 'yes':\n plt.legend(loc=2)\n", "role": "user" }, { "content": "plot_poles", "role": "assistant" } ]
def x(mapname, plon, plat, A95, label='', color='k', edgecolor='k', marker= 'o', markersize=20, legend='no'): centerlon, centerlat = mapname(plon, plat) A95_km = A95 * 111.32 mapname.scatter(centerlon, centerlat, marker=marker, color=color, edgecolors=edgecolor, s=markersize, label=label, zorder=101) equi_basemap(mapname, plon, plat, A95_km, color) if legend == 'yes': plt.legend(loc=2)
plot_pole_basemap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mapname, plon, plat, A95, label='', color='k', edgecolor='k', marker=\n 'o', markersize=20, legend='no'):\n centerlon, centerlat = mapname(plon, plat)\n A95_km = A95 * 111.32\n mapname.scatter(centerlon, centerlat, marker=marker, color=color,\n edgecolors=edgecolor, s=markersize, label=label, zorder=101)\n equi_basemap(mapname, plon, plat, A95_km, color)\n if legend == 'yes':\n plt.legend(loc=2)\n", "role": "user" }, { "content": "plot_pole_basemap", "role": "assistant" } ]
def x(map_axis, plon, plat, slon, slat, dp, dm, pole_label='pole', site_label='site', pole_color='k', pole_edgecolor='k', pole_marker='o', site_color='r', site_edgecolor='r', site_marker='s', markersize=20, legend=True): if not has_cartopy: print('-W- cartopy must be installed to run ipmag.plot_pole_dp_dm') return dp_km = dp * 111.32 dm_km = dm * 111.32 map_axis.scatter(plon, plat, marker=pole_marker, color=pole_color, edgecolors=pole_edgecolor, s=markersize, label=pole_label, zorder= 101, transform=ccrs.Geodetic()) map_axis.scatter(slon, slat, marker=site_marker, color=site_color, edgecolors=site_edgecolor, s=markersize, label=site_label, zorder= 101, transform=ccrs.Geodetic()) site_lon_rad = np.deg2rad(slon) site_lat_rad = np.deg2rad(slat) c_rad = np.deg2rad(90 - slat) pole_lon_rad = np.deg2rad(plon) pole_lat_rad = np.deg2rad(plat) a_rad = np.deg2rad(90 - plat) B_rad = np.abs(pole_lon_rad - site_lon_rad) cos_b = np.cos(c_rad) * np.cos(a_rad) + np.sin(c_rad) * np.sin(a_rad ) * np.cos(B_rad) b_rad = np.arccos(cos_b) sin_C = np.sin(B_rad) / np.sin(b_rad) * np.sin(c_rad) C_rad = np.arcsin(sin_C) if slon - plon > 180: if plon >= slon and plat >= slat: C_deg = -np.abs(np.rad2deg(C_rad)) elif plon <= slon and plat >= slat: C_deg = np.abs(np.rad2deg(C_rad)) elif plon >= slon and plat <= slat: C_deg = np.abs(np.rad2deg(C_rad)) elif plon <= slon and plat <= slat: C_deg = -np.abs(np.rad2deg(C_rad)) elif slon - plon <= 180: if plon >= slon and plat >= slat: C_deg = np.abs(np.rad2deg(C_rad)) elif plon <= slon and plat >= slat: C_deg = -np.abs(np.rad2deg(C_rad)) elif plon >= slon and plat <= slat: C_deg = -np.abs(np.rad2deg(C_rad)) elif plon <= slon and plat <= slat: C_deg = np.abs(np.rad2deg(C_rad)) print(C_deg) ellipse(map_axis, plon, plat, dp_km, dm_km, C_deg) if legend == True: plt.legend(loc=2)
plot_pole_dp_dm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(map_axis, plon, plat, slon, slat, dp, dm, pole_label='pole',\n site_label='site', pole_color='k', pole_edgecolor='k', pole_marker='o',\n site_color='r', site_edgecolor='r', site_marker='s', markersize=20,\n legend=True):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.plot_pole_dp_dm')\n return\n dp_km = dp * 111.32\n dm_km = dm * 111.32\n map_axis.scatter(plon, plat, marker=pole_marker, color=pole_color,\n edgecolors=pole_edgecolor, s=markersize, label=pole_label, zorder=\n 101, transform=ccrs.Geodetic())\n map_axis.scatter(slon, slat, marker=site_marker, color=site_color,\n edgecolors=site_edgecolor, s=markersize, label=site_label, zorder=\n 101, transform=ccrs.Geodetic())\n site_lon_rad = np.deg2rad(slon)\n site_lat_rad = np.deg2rad(slat)\n c_rad = np.deg2rad(90 - slat)\n pole_lon_rad = np.deg2rad(plon)\n pole_lat_rad = np.deg2rad(plat)\n a_rad = np.deg2rad(90 - plat)\n B_rad = np.abs(pole_lon_rad - site_lon_rad)\n cos_b = np.cos(c_rad) * np.cos(a_rad) + np.sin(c_rad) * np.sin(a_rad\n ) * np.cos(B_rad)\n b_rad = np.arccos(cos_b)\n sin_C = np.sin(B_rad) / np.sin(b_rad) * np.sin(c_rad)\n C_rad = np.arcsin(sin_C)\n if slon - plon > 180:\n if plon >= slon and plat >= slat:\n C_deg = -np.abs(np.rad2deg(C_rad))\n elif plon <= slon and plat >= slat:\n C_deg = np.abs(np.rad2deg(C_rad))\n elif plon >= slon and plat <= slat:\n C_deg = np.abs(np.rad2deg(C_rad))\n elif plon <= slon and plat <= slat:\n C_deg = -np.abs(np.rad2deg(C_rad))\n elif slon - plon <= 180:\n if plon >= slon and plat >= slat:\n C_deg = np.abs(np.rad2deg(C_rad))\n elif plon <= slon and plat >= slat:\n C_deg = -np.abs(np.rad2deg(C_rad))\n elif plon >= slon and plat <= slat:\n C_deg = -np.abs(np.rad2deg(C_rad))\n elif plon <= slon and plat <= slat:\n C_deg = np.abs(np.rad2deg(C_rad))\n print(C_deg)\n ellipse(map_axis, plon, plat, dp_km, dm_km, C_deg)\n if legend == True:\n plt.legend(loc=2)\n", "role": "user" }, { "content": "plot_pole_dp_dm", "role": "assistant" } ]
def x(map_axis, plons, plats, A95s, colorvalues, vmin, vmax, colormap= 'viridis', edgecolor='k', marker='o', markersize='20', alpha=1.0, colorbar=True, colorbar_label='pole age (Ma)'): if not has_cartopy: print('-W- cartopy must be installed to run ipmag.plot_poles_colorbar') return color_mapping = plt.cm.ScalarMappable(cmap=colormap, norm=plt.Normalize (vmin=vmin, vmax=vmax)) colors = color_mapping.to_rgba(colorvalues).tolist() plot_poles(map_axis, plons, plats, A95s, label='', color=colors, edgecolor=edgecolor, marker=marker) if colorbar == True: sm = plt.cm.ScalarMappable(cmap=colormap, norm=plt.Normalize(vmin= vmin, vmax=vmax)) sm._A = [] plt.colorbar(sm, orientation='horizontal', shrink=0.8, pad=0.05, label=colorbar_label)
plot_poles_colorbar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(map_axis, plons, plats, A95s, colorvalues, vmin, vmax, colormap=\n 'viridis', edgecolor='k', marker='o', markersize='20', alpha=1.0,\n colorbar=True, colorbar_label='pole age (Ma)'):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.plot_poles_colorbar')\n return\n color_mapping = plt.cm.ScalarMappable(cmap=colormap, norm=plt.Normalize\n (vmin=vmin, vmax=vmax))\n colors = color_mapping.to_rgba(colorvalues).tolist()\n plot_poles(map_axis, plons, plats, A95s, label='', color=colors,\n edgecolor=edgecolor, marker=marker)\n if colorbar == True:\n sm = plt.cm.ScalarMappable(cmap=colormap, norm=plt.Normalize(vmin=\n vmin, vmax=vmax))\n sm._A = []\n plt.colorbar(sm, orientation='horizontal', shrink=0.8, pad=0.05,\n label=colorbar_label)\n", "role": "user" }, { "content": "plot_poles_colorbar", "role": "assistant" } ]
def x(map_axis, vgp_lon=None, vgp_lat=None, di_block=None, label='', color= 'k', marker='o', edge='black', markersize=20, legend=False): if not has_cartopy: print('-W- cartopy must be installed to run ipmag.plot_vgp') return if di_block != None: di_lists = unpack_di_block(di_block) if len(di_lists) == 3: vgp_lon, vgp_lat, intensity = di_lists if len(di_lists) == 2: vgp_lon, vgp_lat = di_lists map_axis.scatter(vgp_lon, vgp_lat, marker=marker, edgecolors=[edge], s= markersize, color=color, label=label, zorder=100, transform=ccrs. Geodetic()) map_axis.set_global() if legend == True: plt.legend(loc=2)
plot_vgp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(map_axis, vgp_lon=None, vgp_lat=None, di_block=None, label='', color=\n 'k', marker='o', edge='black', markersize=20, legend=False):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.plot_vgp')\n return\n if di_block != None:\n di_lists = unpack_di_block(di_block)\n if len(di_lists) == 3:\n vgp_lon, vgp_lat, intensity = di_lists\n if len(di_lists) == 2:\n vgp_lon, vgp_lat = di_lists\n map_axis.scatter(vgp_lon, vgp_lat, marker=marker, edgecolors=[edge], s=\n markersize, color=color, label=label, zorder=100, transform=ccrs.\n Geodetic())\n map_axis.set_global()\n if legend == True:\n plt.legend(loc=2)\n", "role": "user" }, { "content": "plot_vgp", "role": "assistant" } ]
def x(mapname, vgp_lon=None, vgp_lat=None, di_block=None, label='', color= 'k', marker='o', markersize=20, legend='no'): if di_block != None: di_lists = unpack_di_block(di_block) if len(di_lists) == 3: vgp_lon, vgp_lat, intensity = di_lists if len(di_lists) == 2: vgp_lon, vgp_lat = di_lists centerlon, centerlat = mapname(vgp_lon, vgp_lat) mapname.scatter(centerlon, centerlat, marker=marker, s=markersize, color=color, label=label, zorder=100) if legend == 'yes': plt.legend(loc=2)
plot_vgp_basemap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mapname, vgp_lon=None, vgp_lat=None, di_block=None, label='', color=\n 'k', marker='o', markersize=20, legend='no'):\n if di_block != None:\n di_lists = unpack_di_block(di_block)\n if len(di_lists) == 3:\n vgp_lon, vgp_lat, intensity = di_lists\n if len(di_lists) == 2:\n vgp_lon, vgp_lat = di_lists\n centerlon, centerlat = mapname(vgp_lon, vgp_lat)\n mapname.scatter(centerlon, centerlat, marker=marker, s=markersize,\n color=color, label=label, zorder=100)\n if legend == 'yes':\n plt.legend(loc=2)\n", "role": "user" }, { "content": "plot_vgp_basemap", "role": "assistant" } ]
def x(dataframe, tilt_correction='yes', site_lon='site_lon', site_lat= 'site_lat', dec_is='dec_is', inc_is='inc_is', dec_tc='dec_tc', inc_tc= 'inc_tc'): dataframe.is_copy = False if tilt_correction == 'yes': dataframe['paleolatitude'] = np.degrees(np.arctan(0.5 * np.tan(np. radians(dataframe[inc_tc])))) dataframe['colatitude'] = 90 - dataframe['paleolatitude'] dataframe['vgp_lat'] = np.degrees(np.arcsin(np.sin(np.radians( dataframe[site_lat])) * np.cos(np.radians(dataframe[ 'colatitude'])) + np.cos(np.radians(dataframe[site_lat])) * np. sin(np.radians(dataframe['colatitude'])) * np.cos(np.radians( dataframe[dec_tc])))) dataframe['beta'] = np.degrees(np.arcsin(old_div(np.sin(np.radians( dataframe['colatitude'])) * np.sin(np.radians(dataframe[dec_tc] )), np.cos(np.radians(dataframe['vgp_lat']))))) mask = np.cos(np.radians(dataframe['colatitude'])) > np.sin(np. radians(dataframe[site_lat])) * np.sin(np.radians(dataframe[ 'vgp_lat'])) dataframe['vgp_lon'] = np.where(mask, (dataframe[site_lon] + dataframe['beta']) % 360.0, (dataframe[site_lon] + 180 - dataframe['beta']) % 360.0) dataframe['vgp_lat_rev'] = -dataframe['vgp_lat'] dataframe['vgp_lon_rev'] = (dataframe['vgp_lon'] - 180.0) % 360.0 del dataframe['colatitude'] del dataframe['beta'] if tilt_correction == 'no': dataframe['paleolatitude'] = np.degrees(np.arctan(0.5 * np.tan(np. radians(dataframe[inc_is])))) dataframe['colatitude'] = 90 - dataframe['paleolatitude'] dataframe['vgp_lat'] = np.degrees(np.arcsin(np.sin(np.radians( dataframe[site_lat])) * np.cos(np.radians(dataframe[ 'colatitude'])) + np.cos(np.radians(dataframe[site_lat])) * np. sin(np.radians(dataframe['colatitude'])) * np.cos(np.radians( dataframe[dec_is])))) dataframe['beta'] = np.degrees(np.arcsin(old_div(np.sin(np.radians( dataframe['colatitude'])) * np.sin(np.radians(dataframe[dec_is] )), np.cos(np.radians(dataframe['vgp_lat']))))) mask = np.cos(np.radians(dataframe['colatitude'])) > np.sin(np. radians(dataframe[site_lat])) * np.sin(np.radians(dataframe[ 'vgp_lat'])) dataframe['vgp_lon'] = np.where(mask, (dataframe[site_lon] + dataframe['beta']) % 360.0, (dataframe[site_lon] + 180 - dataframe['beta']) % 360.0) dataframe['vgp_lat_rev'] = -dataframe['vgp_lat'] dataframe['vgp_lon_rev'] = (dataframe['vgp_lon'] - 180.0) % 360.0 del dataframe['colatitude'] del dataframe['beta'] return dataframe
vgp_calc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dataframe, tilt_correction='yes', site_lon='site_lon', site_lat=\n 'site_lat', dec_is='dec_is', inc_is='inc_is', dec_tc='dec_tc', inc_tc=\n 'inc_tc'):\n dataframe.is_copy = False\n if tilt_correction == 'yes':\n dataframe['paleolatitude'] = np.degrees(np.arctan(0.5 * np.tan(np.\n radians(dataframe[inc_tc]))))\n dataframe['colatitude'] = 90 - dataframe['paleolatitude']\n dataframe['vgp_lat'] = np.degrees(np.arcsin(np.sin(np.radians(\n dataframe[site_lat])) * np.cos(np.radians(dataframe[\n 'colatitude'])) + np.cos(np.radians(dataframe[site_lat])) * np.\n sin(np.radians(dataframe['colatitude'])) * np.cos(np.radians(\n dataframe[dec_tc]))))\n dataframe['beta'] = np.degrees(np.arcsin(old_div(np.sin(np.radians(\n dataframe['colatitude'])) * np.sin(np.radians(dataframe[dec_tc]\n )), np.cos(np.radians(dataframe['vgp_lat'])))))\n mask = np.cos(np.radians(dataframe['colatitude'])) > np.sin(np.\n radians(dataframe[site_lat])) * np.sin(np.radians(dataframe[\n 'vgp_lat']))\n dataframe['vgp_lon'] = np.where(mask, (dataframe[site_lon] +\n dataframe['beta']) % 360.0, (dataframe[site_lon] + 180 -\n dataframe['beta']) % 360.0)\n dataframe['vgp_lat_rev'] = -dataframe['vgp_lat']\n dataframe['vgp_lon_rev'] = (dataframe['vgp_lon'] - 180.0) % 360.0\n del dataframe['colatitude']\n del dataframe['beta']\n if tilt_correction == 'no':\n dataframe['paleolatitude'] = np.degrees(np.arctan(0.5 * np.tan(np.\n radians(dataframe[inc_is]))))\n dataframe['colatitude'] = 90 - dataframe['paleolatitude']\n dataframe['vgp_lat'] = np.degrees(np.arcsin(np.sin(np.radians(\n dataframe[site_lat])) * np.cos(np.radians(dataframe[\n 'colatitude'])) + np.cos(np.radians(dataframe[site_lat])) * np.\n sin(np.radians(dataframe['colatitude'])) * np.cos(np.radians(\n dataframe[dec_is]))))\n dataframe['beta'] = np.degrees(np.arcsin(old_div(np.sin(np.radians(\n dataframe['colatitude'])) * np.sin(np.radians(dataframe[dec_is]\n )), np.cos(np.radians(dataframe['vgp_lat'])))))\n mask = np.cos(np.radians(dataframe['colatitude'])) > np.sin(np.\n radians(dataframe[site_lat])) * np.sin(np.radians(dataframe[\n 'vgp_lat']))\n dataframe['vgp_lon'] = np.where(mask, (dataframe[site_lon] +\n dataframe['beta']) % 360.0, (dataframe[site_lon] + 180 -\n dataframe['beta']) % 360.0)\n dataframe['vgp_lat_rev'] = -dataframe['vgp_lat']\n dataframe['vgp_lon_rev'] = (dataframe['vgp_lon'] - 180.0) % 360.0\n del dataframe['colatitude']\n del dataframe['beta']\n return dataframe\n", "role": "user" }, { "content": "vgp_calc", "role": "assistant" } ]
def x(dataframe, site_correction='yes', dec_tc='dec_tc', inc_tc='inc_tc'): dataframe_dirs = [] for n in range(0, len(dataframe)): dataframe_dirs.append([dataframe[dec_tc][n], dataframe[inc_tc][n], 1.0] ) dataframe_dir_mean = pmag.fisher_mean(dataframe_dirs) dataframe_poles = [] dataframe_pole_lats = [] dataframe_pole_lons = [] for n in range(0, len(dataframe)): dataframe_poles.append([dataframe['vgp_lon'][n], dataframe[ 'vgp_lat'][n], 1.0]) dataframe_pole_lats.append(dataframe['vgp_lat'][n]) dataframe_pole_lons.append(dataframe['vgp_lon'][n]) dataframe_pole_mean = pmag.fisher_mean(dataframe_poles) dataframe['paleolatitude'] = lat_from_inc(dataframe_dir_mean['inc']) angle_list = [] for n in range(0, len(dataframe)): angle = pmag.angle([dataframe['vgp_lon'][n], dataframe['vgp_lat'][n ]], [dataframe_pole_mean['dec'], dataframe_pole_mean['inc']]) angle_list.append(angle[0]) dataframe['delta_mean_pole'] = angle_list if site_correction == 'yes': dataframe['K'] = old_div(dataframe['k'], 0.125 * (5 + 18 * np.sin( np.deg2rad(dataframe['paleolatitude'])) ** 2 + 9 * np.sin(np. deg2rad(dataframe['paleolatitude'])) ** 4)) dataframe['Sw'] = old_div(81, dataframe['K'] ** 0.5) summation = 0 N = 0 for n in range(0, len(dataframe)): quantity = dataframe['delta_mean_pole'][n] ** 2 - old_div( dataframe['Sw'][n] ** 2, dataframe['n'][n]) summation += quantity N += 1 Sb = (old_div(1.0, N - 1.0) * summation) ** 0.5 if site_correction == 'no': summation = 0 N = 0 for n in range(0, len(dataframe)): quantity = dataframe['delta_mean_pole'][n] ** 2 summation += quantity N += 1 Sb = (old_div(1.0, N - 1.0) * summation) ** 0.5 return Sb
sb_vgp_calc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dataframe, site_correction='yes', dec_tc='dec_tc', inc_tc='inc_tc'):\n dataframe_dirs = []\n for n in range(0, len(dataframe)):\n dataframe_dirs.append([dataframe[dec_tc][n], dataframe[inc_tc][n], 1.0]\n )\n dataframe_dir_mean = pmag.fisher_mean(dataframe_dirs)\n dataframe_poles = []\n dataframe_pole_lats = []\n dataframe_pole_lons = []\n for n in range(0, len(dataframe)):\n dataframe_poles.append([dataframe['vgp_lon'][n], dataframe[\n 'vgp_lat'][n], 1.0])\n dataframe_pole_lats.append(dataframe['vgp_lat'][n])\n dataframe_pole_lons.append(dataframe['vgp_lon'][n])\n dataframe_pole_mean = pmag.fisher_mean(dataframe_poles)\n dataframe['paleolatitude'] = lat_from_inc(dataframe_dir_mean['inc'])\n angle_list = []\n for n in range(0, len(dataframe)):\n angle = pmag.angle([dataframe['vgp_lon'][n], dataframe['vgp_lat'][n\n ]], [dataframe_pole_mean['dec'], dataframe_pole_mean['inc']])\n angle_list.append(angle[0])\n dataframe['delta_mean_pole'] = angle_list\n if site_correction == 'yes':\n dataframe['K'] = old_div(dataframe['k'], 0.125 * (5 + 18 * np.sin(\n np.deg2rad(dataframe['paleolatitude'])) ** 2 + 9 * np.sin(np.\n deg2rad(dataframe['paleolatitude'])) ** 4))\n dataframe['Sw'] = old_div(81, dataframe['K'] ** 0.5)\n summation = 0\n N = 0\n for n in range(0, len(dataframe)):\n quantity = dataframe['delta_mean_pole'][n] ** 2 - old_div(\n dataframe['Sw'][n] ** 2, dataframe['n'][n])\n summation += quantity\n N += 1\n Sb = (old_div(1.0, N - 1.0) * summation) ** 0.5\n if site_correction == 'no':\n summation = 0\n N = 0\n for n in range(0, len(dataframe)):\n quantity = dataframe['delta_mean_pole'][n] ** 2\n summation += quantity\n N += 1\n Sb = (old_div(1.0, N - 1.0) * summation) ** 0.5\n return Sb\n", "role": "user" }, { "content": "sb_vgp_calc", "role": "assistant" } ]
def x(dec, inc): di_block = [] for n in range(0, len(dec)): di_block.append([dec[n], inc[n], 1.0]) return di_block
make_di_block
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec, inc):\n di_block = []\n for n in range(0, len(dec)):\n di_block.append([dec[n], inc[n], 1.0])\n return di_block\n", "role": "user" }, { "content": "make_di_block", "role": "assistant" } ]
def x(di_block): dec_list = [] inc_list = [] moment_list = [] for n in range(0, len(di_block)): dec = di_block[n][0] inc = di_block[n][1] dec_list.append(dec) inc_list.append(inc) if len(di_block[n]) > 2: moment = di_block[n][2] moment_list.append(moment) return dec_list, inc_list, moment_list
unpack_di_block
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(di_block):\n dec_list = []\n inc_list = []\n moment_list = []\n for n in range(0, len(di_block)):\n dec = di_block[n][0]\n inc = di_block[n][1]\n dec_list.append(dec)\n inc_list.append(inc)\n if len(di_block[n]) > 2:\n moment = di_block[n][2]\n moment_list.append(moment)\n return dec_list, inc_list, moment_list\n", "role": "user" }, { "content": "unpack_di_block", "role": "assistant" } ]
def x(dec, inc, dip_direction, dip): diddd_block = [] for n in range(0, len(dec)): diddd_block.append([dec[n], inc[n], dip_direction[n], dip[n]]) diddd_array = np.array(diddd_block) return diddd_array
make_diddd_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec, inc, dip_direction, dip):\n diddd_block = []\n for n in range(0, len(dec)):\n diddd_block.append([dec[n], inc[n], dip_direction[n], dip[n]])\n diddd_array = np.array(diddd_block)\n return diddd_array\n", "role": "user" }, { "content": "make_diddd_array", "role": "assistant" } ]
def x(map_axis, centerlon, centerlat, radius, color, alpha=1.0): if not has_cartopy: print('-W- cartopy must be installed to run ipmag.equi') return glon1 = centerlon glat1 = centerlat X = [] Y = [] for azimuth in range(0, 360): glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius) X.append(glon2) Y.append(glat2) X.append(X[0]) Y.append(Y[0]) plt.plot(X[::-1], Y[::-1], color=color, transform=ccrs.Geodetic(), alpha=alpha)
equi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(map_axis, centerlon, centerlat, radius, color, alpha=1.0):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.equi')\n return\n glon1 = centerlon\n glat1 = centerlat\n X = []\n Y = []\n for azimuth in range(0, 360):\n glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius)\n X.append(glon2)\n Y.append(glat2)\n X.append(X[0])\n Y.append(Y[0])\n plt.plot(X[::-1], Y[::-1], color=color, transform=ccrs.Geodetic(),\n alpha=alpha)\n", "role": "user" }, { "content": "equi", "role": "assistant" } ]
def x(m, centerlon, centerlat, radius, color): glon1 = centerlon glat1 = centerlat X = [] Y = [] for azimuth in range(0, 360): glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius) X.append(glon2) Y.append(glat2) X.append(X[0]) Y.append(Y[0]) X, Y = m(X, Y) plt.plot(X, Y, color)
equi_basemap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(m, centerlon, centerlat, radius, color):\n glon1 = centerlon\n glat1 = centerlat\n X = []\n Y = []\n for azimuth in range(0, 360):\n glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius)\n X.append(glon2)\n Y.append(glat2)\n X.append(X[0])\n Y.append(Y[0])\n X, Y = m(X, Y)\n plt.plot(X, Y, color)\n", "role": "user" }, { "content": "equi_basemap", "role": "assistant" } ]
def x(map_axis, centerlon, centerlat, major_axis, minor_axis, angle, n=360, filled=False, **kwargs): if not has_cartopy: print('-W- cartopy must be installed to run ipmag.ellipse') return False angle = angle * (np.pi / 180) glon1 = centerlon glat1 = centerlat X = [] Y = [] for azimuth in np.linspace(0, 360, n): az_rad = azimuth * (np.pi / 180) radius = major_axis * minor_axis / ((minor_axis * np.cos(az_rad - angle)) ** 2 + (major_axis * np.sin(az_rad - angle)) ** 2) ** 0.5 glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius) X.append((360 + glon2) % 360) Y.append(glat2) X.append(X[0]) Y.append(Y[0]) if filled: ellip = np.array((X, Y)).T ellip = map_axis.projection.transform_points(ccrs.PlateCarree(), ellip[:, 0], ellip[:, 1]) poly = Polygon(ellip[:, :2], **kwargs) map_axis.add_patch(poly) else: try: map_axis.plot(X, Y, transform=ccrs.Geodetic(), **kwargs) return True except ValueError: return False
ellipse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(map_axis, centerlon, centerlat, major_axis, minor_axis, angle, n=360,\n filled=False, **kwargs):\n if not has_cartopy:\n print('-W- cartopy must be installed to run ipmag.ellipse')\n return False\n angle = angle * (np.pi / 180)\n glon1 = centerlon\n glat1 = centerlat\n X = []\n Y = []\n for azimuth in np.linspace(0, 360, n):\n az_rad = azimuth * (np.pi / 180)\n radius = major_axis * minor_axis / ((minor_axis * np.cos(az_rad -\n angle)) ** 2 + (major_axis * np.sin(az_rad - angle)) ** 2) ** 0.5\n glon2, glat2, baz = shoot(glon1, glat1, azimuth, radius)\n X.append((360 + glon2) % 360)\n Y.append(glat2)\n X.append(X[0])\n Y.append(Y[0])\n if filled:\n ellip = np.array((X, Y)).T\n ellip = map_axis.projection.transform_points(ccrs.PlateCarree(),\n ellip[:, 0], ellip[:, 1])\n poly = Polygon(ellip[:, :2], **kwargs)\n map_axis.add_patch(poly)\n else:\n try:\n map_axis.plot(X, Y, transform=ccrs.Geodetic(), **kwargs)\n return True\n except ValueError:\n return False\n", "role": "user" }, { "content": "ellipse", "role": "assistant" } ]
def x(filenames, outfile='measurements.txt', data_model=3, magic_table= 'measurements', dir_path='.', input_dir_path=''): input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path, dir_path) if float(data_model) == 3.0: outfile = pmag.resolve_file_name(outfile, output_dir_path) output_dir_path, file_name = os.path.split(outfile) con = cb.Contribution(output_dir_path, read_tables=[]) filenames = [pmag.resolve_file_name(f, input_dir_path) for f in filenames] filenames = [f for f in filenames if os.path.exists(f)] if not filenames: print( 'You have provided no valid file paths, so nothing will be combined' .format(magic_table)) return False with open(filenames[0]) as f: file_type = f.readline().split()[1] if file_type in ['er_specimens', 'er_samples', 'er_sites', 'er_locations', 'er_ages', 'pmag_specimens', 'pmag_samples', 'pmag_sites', 'pmag_results', 'magic_measurements', 'rmag_anisotropy', 'rmag_results', 'rmag_specimens']: print( '-W- You are working in MagIC 3 but have provided a MagIC 2.5 file: {}' .format(file_type)) return False if file_type not in con.table_names: file_type = magic_table infiles = [pd.read_csv(infile, sep='\t', header=1) for infile in filenames] df = pd.concat(infiles, ignore_index=True, sort=True) df.drop_duplicates(inplace=True) con.add_magic_table(dtype=file_type, df=df) parent, child = con.get_parent_and_child(file_type) ignore_cols = [col[:-1] for col in [file_type, parent] if col] ignore_cols.extend(['software_packages', 'citations']) con.tables[file_type].drop_duplicate_rows(ignore_cols) if 'sequence' in con.tables[file_type].df: con.tables[file_type].df['sequence'] = range(1, len(con.tables[ file_type].df) + 1) res = con.write_table_to_file(file_type, custom_name=file_name) return res else: datasets = [] if not filenames: print('You must provide at least one file') return False for infile in filenames: if not os.path.isfile(infile): print('{} is not a valid file name'.format(infile)) return False try: dataset, file_type = pmag.magic_read(infile) except IndexError: print('-W- Could not get records from {}'.format(infile)) print(' Skipping...') continue print('File ', infile, ' read in with ', len(dataset), ' records') for rec in dataset: datasets.append(rec) Recs, keys = pmag.fillkeys(datasets) if Recs: pmag.magic_write(outfile, Recs, file_type) print('All records stored in ', outfile) return outfile print('No file could be created') return False
combine_magic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filenames, outfile='measurements.txt', data_model=3, magic_table=\n 'measurements', dir_path='.', input_dir_path=''):\n input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,\n dir_path)\n if float(data_model) == 3.0:\n outfile = pmag.resolve_file_name(outfile, output_dir_path)\n output_dir_path, file_name = os.path.split(outfile)\n con = cb.Contribution(output_dir_path, read_tables=[])\n filenames = [pmag.resolve_file_name(f, input_dir_path) for f in\n filenames]\n filenames = [f for f in filenames if os.path.exists(f)]\n if not filenames:\n print(\n 'You have provided no valid file paths, so nothing will be combined'\n .format(magic_table))\n return False\n with open(filenames[0]) as f:\n file_type = f.readline().split()[1]\n if file_type in ['er_specimens', 'er_samples', 'er_sites',\n 'er_locations', 'er_ages', 'pmag_specimens', 'pmag_samples',\n 'pmag_sites', 'pmag_results', 'magic_measurements',\n 'rmag_anisotropy', 'rmag_results', 'rmag_specimens']:\n print(\n '-W- You are working in MagIC 3 but have provided a MagIC 2.5 file: {}'\n .format(file_type))\n return False\n if file_type not in con.table_names:\n file_type = magic_table\n infiles = [pd.read_csv(infile, sep='\\t', header=1) for infile in\n filenames]\n df = pd.concat(infiles, ignore_index=True, sort=True)\n df.drop_duplicates(inplace=True)\n con.add_magic_table(dtype=file_type, df=df)\n parent, child = con.get_parent_and_child(file_type)\n ignore_cols = [col[:-1] for col in [file_type, parent] if col]\n ignore_cols.extend(['software_packages', 'citations'])\n con.tables[file_type].drop_duplicate_rows(ignore_cols)\n if 'sequence' in con.tables[file_type].df:\n con.tables[file_type].df['sequence'] = range(1, len(con.tables[\n file_type].df) + 1)\n res = con.write_table_to_file(file_type, custom_name=file_name)\n return res\n else:\n datasets = []\n if not filenames:\n print('You must provide at least one file')\n return False\n for infile in filenames:\n if not os.path.isfile(infile):\n print('{} is not a valid file name'.format(infile))\n return False\n try:\n dataset, file_type = pmag.magic_read(infile)\n except IndexError:\n print('-W- Could not get records from {}'.format(infile))\n print(' Skipping...')\n continue\n print('File ', infile, ' read in with ', len(dataset), ' records')\n for rec in dataset:\n datasets.append(rec)\n Recs, keys = pmag.fillkeys(datasets)\n if Recs:\n pmag.magic_write(outfile, Recs, file_type)\n print('All records stored in ', outfile)\n return outfile\n print('No file could be created')\n return False\n", "role": "user" }, { "content": "combine_magic", "role": "assistant" } ]
def x(orient_file='orient.txt', samp_file='samples.txt', samp_con='1', Z=1, method_codes='FS-FD', location_name='unknown', append=False, output_dir ='.', input_dir='.', data_model=3): data_model = int(data_model) if data_model != 3 and samp_file == 'samples.txt': samp_file = 'er_samples.txt' if data_model == 2 and samp_file == 'er_samples.txt': samp_file = 'samples.txt' DEBUG = 0 version_num = pmag.get_version() or_con, corr = '3', '1' date, lat, lon = '', '', '' bed_dip, bed_dip_dir = '', '' participantlist = '' sites = [] Lats, Lons = [], [] SampRecs, SiteRecs, ImageRecs, imagelist = [], [], [], [] average_bedding = '1', 1, '0' newbaseline, newbeddir, newbeddip = '', '', '' delta_u = '0' sclass, lithology, type = '', '', '' newclass, newlith, newtype = '', '', '' user = '' corr == '3' DecCorr = 0.0 samp_file = pmag.resolve_file_name(samp_file, output_dir) orient_file = pmag.resolve_file_name(orient_file, input_dir) input_dir = os.path.split(orient_file)[0] output_dir = os.path.split(samp_file)[0] if append: try: SampRecs, file_type = pmag.magic_read(samp_file) print('sample data to be appended to: ', samp_file) except: print('problem with existing samp file: ', samp_file, ' will create new') azfile = open(orient_file, 'r') AzDipDat = azfile.readlines() azfile.close() if not AzDipDat: return False, 'No data in orientation file, please try again' azfile.close() SampOut, samplist = [], [] for line in AzDipDat: orec = line.split() if len(orec) > 2: labaz, labdip = pmag.orient(float(orec[1]), float(orec[2]), or_con) bed_dip = float(orec[4]) if bed_dip != 0: bed_dip_dir = float(orec[3]) - 90.0 else: bed_dip_dir = float(orec[3]) MagRec = {} MagRec['er_location_name'] = location_name MagRec['er_citation_names'] = 'This study' MagRec['er_sample_name'] = orec[0] MagRec['sample_bed_dip'] = '%7.1f' % bed_dip MagRec['sample_bed_dip_direction'] = '%7.1f' % bed_dip_dir MagRec['sample_dip'] = '%7.1f' % labdip MagRec['sample_azimuth'] = '%7.1f' % labaz methods = method_codes.replace(' ', '').split(':') OR = 0 for method in methods: method_type = method.split('-') if 'SO' in method_type: OR = 1 if OR == 0: method_codes = method_codes + ':SO-NO' MagRec['magic_method_codes'] = method_codes site = pmag.parse_site(orec[0], samp_con, Z) MagRec['er_site_name'] = site MagRec['magic_software_packages'] = version_num SampOut.append(MagRec) if MagRec['er_sample_name'] not in samplist: samplist.append(MagRec['er_sample_name']) for samp in SampRecs: if samp not in samplist: SampOut.append(samp) Samps, keys = pmag.fillkeys(SampOut) if data_model == 2: pmag.magic_write(samp_file, Samps, 'er_samples') else: Samps3 = [] for samp in Samps: Samps3.append(map_magic.mapping(samp, map_magic. samp_magic2_2_magic3_map)) pmag.magic_write(samp_file, Samps3, 'samples') print('Data saved in ', samp_file) return True, None
azdip_magic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(orient_file='orient.txt', samp_file='samples.txt', samp_con='1', Z=1,\n method_codes='FS-FD', location_name='unknown', append=False, output_dir\n ='.', input_dir='.', data_model=3):\n data_model = int(data_model)\n if data_model != 3 and samp_file == 'samples.txt':\n samp_file = 'er_samples.txt'\n if data_model == 2 and samp_file == 'er_samples.txt':\n samp_file = 'samples.txt'\n DEBUG = 0\n version_num = pmag.get_version()\n or_con, corr = '3', '1'\n date, lat, lon = '', '', ''\n bed_dip, bed_dip_dir = '', ''\n participantlist = ''\n sites = []\n Lats, Lons = [], []\n SampRecs, SiteRecs, ImageRecs, imagelist = [], [], [], []\n average_bedding = '1', 1, '0'\n newbaseline, newbeddir, newbeddip = '', '', ''\n delta_u = '0'\n sclass, lithology, type = '', '', ''\n newclass, newlith, newtype = '', '', ''\n user = ''\n corr == '3'\n DecCorr = 0.0\n samp_file = pmag.resolve_file_name(samp_file, output_dir)\n orient_file = pmag.resolve_file_name(orient_file, input_dir)\n input_dir = os.path.split(orient_file)[0]\n output_dir = os.path.split(samp_file)[0]\n if append:\n try:\n SampRecs, file_type = pmag.magic_read(samp_file)\n print('sample data to be appended to: ', samp_file)\n except:\n print('problem with existing samp file: ', samp_file,\n ' will create new')\n azfile = open(orient_file, 'r')\n AzDipDat = azfile.readlines()\n azfile.close()\n if not AzDipDat:\n return False, 'No data in orientation file, please try again'\n azfile.close()\n SampOut, samplist = [], []\n for line in AzDipDat:\n orec = line.split()\n if len(orec) > 2:\n labaz, labdip = pmag.orient(float(orec[1]), float(orec[2]), or_con)\n bed_dip = float(orec[4])\n if bed_dip != 0:\n bed_dip_dir = float(orec[3]) - 90.0\n else:\n bed_dip_dir = float(orec[3])\n MagRec = {}\n MagRec['er_location_name'] = location_name\n MagRec['er_citation_names'] = 'This study'\n MagRec['er_sample_name'] = orec[0]\n MagRec['sample_bed_dip'] = '%7.1f' % bed_dip\n MagRec['sample_bed_dip_direction'] = '%7.1f' % bed_dip_dir\n MagRec['sample_dip'] = '%7.1f' % labdip\n MagRec['sample_azimuth'] = '%7.1f' % labaz\n methods = method_codes.replace(' ', '').split(':')\n OR = 0\n for method in methods:\n method_type = method.split('-')\n if 'SO' in method_type:\n OR = 1\n if OR == 0:\n method_codes = method_codes + ':SO-NO'\n MagRec['magic_method_codes'] = method_codes\n site = pmag.parse_site(orec[0], samp_con, Z)\n MagRec['er_site_name'] = site\n MagRec['magic_software_packages'] = version_num\n SampOut.append(MagRec)\n if MagRec['er_sample_name'] not in samplist:\n samplist.append(MagRec['er_sample_name'])\n for samp in SampRecs:\n if samp not in samplist:\n SampOut.append(samp)\n Samps, keys = pmag.fillkeys(SampOut)\n if data_model == 2:\n pmag.magic_write(samp_file, Samps, 'er_samples')\n else:\n Samps3 = []\n for samp in Samps:\n Samps3.append(map_magic.mapping(samp, map_magic.\n samp_magic2_2_magic3_map))\n pmag.magic_write(samp_file, Samps3, 'samples')\n print('Data saved in ', samp_file)\n return True, None\n", "role": "user" }, { "content": "azdip_magic", "role": "assistant" } ]
def x(path_to_file='.', file_name='magic_measurements.txt', save=False, save_folder='.', fmt='svg'): cont, FTinit, BTinit, k = '', 0, 0, 0 complete_path = os.path.join(path_to_file, file_name) Tind, cont = 0, '' EXP = '' meas_data, file_type = pmag.magic_read(complete_path) experiment_names = [] for rec in meas_data: if rec['magic_experiment_name'] not in experiment_names: experiment_names.append(rec['magic_experiment_name']) if EXP != '': try: k = experiment_names.index(EXP) except: print('Bad experiment name') sys.exit() while k < len(experiment_names): e = experiment_names[k] if EXP == '': print(e, k + 1, 'out of ', len(experiment_names)) X, T, F, B = [], [], [], [] for rec in meas_data: methcodes = rec['magic_method_codes'] meths = methcodes.strip().split(':') if rec['magic_experiment_name'] == e and 'LP-X' in meths: if 'measurement_temp' not in list(rec.keys()): rec['measurement_temp'] = '300' if 'measurement_freq' not in list(rec.keys()): rec['measurement_freq'] = '0' if 'measurement_lab_field_ac' not in list(rec.keys()): rec['measurement_lab_field_ac'] = '0' X.append(float(rec['measurement_x'])) T.append(float(rec['measurement_temp'])) F.append(float(rec['measurement_freq'])) B.append(float(rec['measurement_lab_field_ac'])) Ts, Fs, Bs = [], [], [] for k in range(len(X)): if T[k] not in Ts: Ts.append(T[k]) if F[k] not in Fs: Fs.append(F[k]) if B[k] not in Bs: Bs.append(B[k]) Ts.sort() Fs.sort() Bs.sort() if '-x' in sys.argv: k = len(experiment_names) + 1 else: k += 1 plotnum = 1 if len(X) > 2: b = Bs[-1] XTF = [] for f in Fs: XT = [] for kk in range(len(X)): if F[kk] == f and B[kk] == b: XT.append([X[kk], T[kk]]) XTF.append(XT) if len(XT) > 1: plt.figure(num=plotnum, figsize=(5, 5)) pmagplotlib.plot_xtf(plotnum, XTF, Fs, e, b) pmagplotlib.show_fig(plotnum) plotnum += 1 f = Fs[0] XTB = [] for b in Bs: XT = [] for kk in range(len(X)): if F[kk] == f and B[kk] == b: XT.append([X[kk], T[kk]]) XTB.append(XT) if len(XT) > 1: plt.figure(num=plotnum, figsize=(5, 5)) pmagplotlib.plot_xtb(plotnum, XTB, Bs, e, f) pmagplotlib.show_fig(plotnum) plotnum += 1 if save == True: files = {} PLTS = {} for p in range(1, plotnum): key = str(p) files[key] = e + '_' + key + '.' + fmt PLTS[key] = p for key in list(PLTS.keys()): try: plt.figure(num=PLTS[key]) plt.savefig(save_folder + '/' + files[key].replace( '/', '-')) except: print('could not save: ', PLTS[key], files[key]) print('output file format not supported ')
chi_magic2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path_to_file='.', file_name='magic_measurements.txt', save=False,\n save_folder='.', fmt='svg'):\n cont, FTinit, BTinit, k = '', 0, 0, 0\n complete_path = os.path.join(path_to_file, file_name)\n Tind, cont = 0, ''\n EXP = ''\n meas_data, file_type = pmag.magic_read(complete_path)\n experiment_names = []\n for rec in meas_data:\n if rec['magic_experiment_name'] not in experiment_names:\n experiment_names.append(rec['magic_experiment_name'])\n if EXP != '':\n try:\n k = experiment_names.index(EXP)\n except:\n print('Bad experiment name')\n sys.exit()\n while k < len(experiment_names):\n e = experiment_names[k]\n if EXP == '':\n print(e, k + 1, 'out of ', len(experiment_names))\n X, T, F, B = [], [], [], []\n for rec in meas_data:\n methcodes = rec['magic_method_codes']\n meths = methcodes.strip().split(':')\n if rec['magic_experiment_name'] == e and 'LP-X' in meths:\n if 'measurement_temp' not in list(rec.keys()):\n rec['measurement_temp'] = '300'\n if 'measurement_freq' not in list(rec.keys()):\n rec['measurement_freq'] = '0'\n if 'measurement_lab_field_ac' not in list(rec.keys()):\n rec['measurement_lab_field_ac'] = '0'\n X.append(float(rec['measurement_x']))\n T.append(float(rec['measurement_temp']))\n F.append(float(rec['measurement_freq']))\n B.append(float(rec['measurement_lab_field_ac']))\n Ts, Fs, Bs = [], [], []\n for k in range(len(X)):\n if T[k] not in Ts:\n Ts.append(T[k])\n if F[k] not in Fs:\n Fs.append(F[k])\n if B[k] not in Bs:\n Bs.append(B[k])\n Ts.sort()\n Fs.sort()\n Bs.sort()\n if '-x' in sys.argv:\n k = len(experiment_names) + 1\n else:\n k += 1\n plotnum = 1\n if len(X) > 2:\n b = Bs[-1]\n XTF = []\n for f in Fs:\n XT = []\n for kk in range(len(X)):\n if F[kk] == f and B[kk] == b:\n XT.append([X[kk], T[kk]])\n XTF.append(XT)\n if len(XT) > 1:\n plt.figure(num=plotnum, figsize=(5, 5))\n pmagplotlib.plot_xtf(plotnum, XTF, Fs, e, b)\n pmagplotlib.show_fig(plotnum)\n plotnum += 1\n f = Fs[0]\n XTB = []\n for b in Bs:\n XT = []\n for kk in range(len(X)):\n if F[kk] == f and B[kk] == b:\n XT.append([X[kk], T[kk]])\n XTB.append(XT)\n if len(XT) > 1:\n plt.figure(num=plotnum, figsize=(5, 5))\n pmagplotlib.plot_xtb(plotnum, XTB, Bs, e, f)\n pmagplotlib.show_fig(plotnum)\n plotnum += 1\n if save == True:\n files = {}\n PLTS = {}\n for p in range(1, plotnum):\n key = str(p)\n files[key] = e + '_' + key + '.' + fmt\n PLTS[key] = p\n for key in list(PLTS.keys()):\n try:\n plt.figure(num=PLTS[key])\n plt.savefig(save_folder + '/' + files[key].replace(\n '/', '-'))\n except:\n print('could not save: ', PLTS[key], files[key])\n print('output file format not supported ')\n", "role": "user" }, { "content": "chi_magic2", "role": "assistant" } ]
def x(path_to_file='.', file_name='magic_measurements.txt', save=False, save_folder='.', fmt='svg', plot_by='loc', treat=None, XLP='', individual=None, average_measurements=False, single_plot=False): FIG = {} FIG['demag'] = 1 in_file, plot_key, LT = os.path.join(path_to_file, file_name ), 'er_location_name', 'LT-AF-Z' XLP = '' norm = 1 units, dmag_key = 'T', 'treatment_ac_field' plot_num = 0 if plot_by == 'loc': plot_key = 'er_location_name' elif plot_by == 'exp': plot_key = 'er_expedition_name' elif plot_by == 'site': plot_key = 'er_site_name' elif plot_by == 'sam': plot_key = 'er_sample_name' elif plot_by == 'spc': plot_key = 'er_specimen_name' if treat != None: LT = 'LT-' + treat + '-Z' if LT == 'LT-T-Z': units, dmag_key = 'K', 'treatment_temp' elif LT == 'LT-AF-Z': units, dmag_key = 'T', 'treatment_ac_field' elif LT == 'LT-M-Z': units, dmag_key = 'J', 'treatment_mw_energy' else: units = 'U' else: LT = 'LT-AF-Z' plot_dict = {} data, file_type = pmag.magic_read(in_file) sids = pmag.get_specs(data) plt.figure(num=FIG['demag'], figsize=(5, 5)) print(len(data), ' records read from ', in_file) plotlist, intlist = [], ['measurement_magnitude', 'measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass'] IntMeths = [] FixData = [] for rec in data: meths = [] methcodes = rec['magic_method_codes'].split(':') for meth in methcodes: meths.append(meth.strip()) for key in list(rec.keys()): if key in intlist and rec[key] != '': if key not in IntMeths: IntMeths.append(key) if rec[plot_key] not in plotlist and LT in meths: plotlist.append(rec[plot_key]) if 'measurement_flag' not in list(rec.keys()): rec['measurement_flag'] = 'g' FixData.append(rec) plotlist.sort() if len(IntMeths) == 0: print('No intensity information found') data = FixData int_key = IntMeths[0] if individual is not None: if type(individual) == list or type(individual) == tuple: plotlist = list(individual) else: plotlist = [] plotlist.append(individual) for plot in plotlist: print(plot, 'plotting by: ', plot_key) PLTblock = pmag.get_dictitem(data, plot_key, plot, 'T') PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', LT, 'has') PLTblock = pmag.get_dictitem(PLTblock, int_key, '', 'F') if XLP != '': PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', XLP, 'not') if len(PLTblock) > 2: title = PLTblock[0][plot_key] spcs = [] for rec in PLTblock: if rec['er_specimen_name'] not in spcs: spcs.append(rec['er_specimen_name']) if average_measurements is False: for spc in spcs: SPCblock = pmag.get_dictitem(PLTblock, 'er_specimen_name', spc, 'T') INTblock = [] for rec in SPCblock: INTblock.append([float(rec[dmag_key]), 0, 0, float( rec[int_key]), 1, rec['measurement_flag']]) if len(INTblock) > 2: pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0, units, norm) else: AVGblock = {} for spc in spcs: SPCblock = pmag.get_dictitem(PLTblock, 'er_specimen_name', spc, 'T') for rec in SPCblock: if rec['measurement_flag'] == 'g': if float(rec[dmag_key]) not in list(AVGblock.keys() ): AVGblock[float(rec[dmag_key])] = [float(rec [int_key])] else: AVGblock[float(rec[dmag_key])].append(float (rec[int_key])) INTblock = [] for step in sorted(AVGblock.keys()): INTblock.append([float(step), 0, 0, old_div(float(sum( AVGblock[step])), float(len(AVGblock[step]))), 1, 'g']) pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0, units, norm) if save == True: plt.savefig(os.path.join(save_folder, title) + '.' + fmt) if single_plot is False: plt.show() if single_plot is True: plt.show()
demag_magic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path_to_file='.', file_name='magic_measurements.txt', save=False,\n save_folder='.', fmt='svg', plot_by='loc', treat=None, XLP='',\n individual=None, average_measurements=False, single_plot=False):\n FIG = {}\n FIG['demag'] = 1\n in_file, plot_key, LT = os.path.join(path_to_file, file_name\n ), 'er_location_name', 'LT-AF-Z'\n XLP = ''\n norm = 1\n units, dmag_key = 'T', 'treatment_ac_field'\n plot_num = 0\n if plot_by == 'loc':\n plot_key = 'er_location_name'\n elif plot_by == 'exp':\n plot_key = 'er_expedition_name'\n elif plot_by == 'site':\n plot_key = 'er_site_name'\n elif plot_by == 'sam':\n plot_key = 'er_sample_name'\n elif plot_by == 'spc':\n plot_key = 'er_specimen_name'\n if treat != None:\n LT = 'LT-' + treat + '-Z'\n if LT == 'LT-T-Z':\n units, dmag_key = 'K', 'treatment_temp'\n elif LT == 'LT-AF-Z':\n units, dmag_key = 'T', 'treatment_ac_field'\n elif LT == 'LT-M-Z':\n units, dmag_key = 'J', 'treatment_mw_energy'\n else:\n units = 'U'\n else:\n LT = 'LT-AF-Z'\n plot_dict = {}\n data, file_type = pmag.magic_read(in_file)\n sids = pmag.get_specs(data)\n plt.figure(num=FIG['demag'], figsize=(5, 5))\n print(len(data), ' records read from ', in_file)\n plotlist, intlist = [], ['measurement_magnitude',\n 'measurement_magn_moment', 'measurement_magn_volume',\n 'measurement_magn_mass']\n IntMeths = []\n FixData = []\n for rec in data:\n meths = []\n methcodes = rec['magic_method_codes'].split(':')\n for meth in methcodes:\n meths.append(meth.strip())\n for key in list(rec.keys()):\n if key in intlist and rec[key] != '':\n if key not in IntMeths:\n IntMeths.append(key)\n if rec[plot_key] not in plotlist and LT in meths:\n plotlist.append(rec[plot_key])\n if 'measurement_flag' not in list(rec.keys()):\n rec['measurement_flag'] = 'g'\n FixData.append(rec)\n plotlist.sort()\n if len(IntMeths) == 0:\n print('No intensity information found')\n data = FixData\n int_key = IntMeths[0]\n if individual is not None:\n if type(individual) == list or type(individual) == tuple:\n plotlist = list(individual)\n else:\n plotlist = []\n plotlist.append(individual)\n for plot in plotlist:\n print(plot, 'plotting by: ', plot_key)\n PLTblock = pmag.get_dictitem(data, plot_key, plot, 'T')\n PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', LT, 'has')\n PLTblock = pmag.get_dictitem(PLTblock, int_key, '', 'F')\n if XLP != '':\n PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes',\n XLP, 'not')\n if len(PLTblock) > 2:\n title = PLTblock[0][plot_key]\n spcs = []\n for rec in PLTblock:\n if rec['er_specimen_name'] not in spcs:\n spcs.append(rec['er_specimen_name'])\n if average_measurements is False:\n for spc in spcs:\n SPCblock = pmag.get_dictitem(PLTblock,\n 'er_specimen_name', spc, 'T')\n INTblock = []\n for rec in SPCblock:\n INTblock.append([float(rec[dmag_key]), 0, 0, float(\n rec[int_key]), 1, rec['measurement_flag']])\n if len(INTblock) > 2:\n pmagplotlib.plot_mag(FIG['demag'], INTblock, title,\n 0, units, norm)\n else:\n AVGblock = {}\n for spc in spcs:\n SPCblock = pmag.get_dictitem(PLTblock,\n 'er_specimen_name', spc, 'T')\n for rec in SPCblock:\n if rec['measurement_flag'] == 'g':\n if float(rec[dmag_key]) not in list(AVGblock.keys()\n ):\n AVGblock[float(rec[dmag_key])] = [float(rec\n [int_key])]\n else:\n AVGblock[float(rec[dmag_key])].append(float\n (rec[int_key]))\n INTblock = []\n for step in sorted(AVGblock.keys()):\n INTblock.append([float(step), 0, 0, old_div(float(sum(\n AVGblock[step])), float(len(AVGblock[step]))), 1, 'g'])\n pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0,\n units, norm)\n if save == True:\n plt.savefig(os.path.join(save_folder, title) + '.' + fmt)\n if single_plot is False:\n plt.show()\n if single_plot is True:\n plt.show()\n", "role": "user" }, { "content": "demag_magic", "role": "assistant" } ]
def x(fignum, B, M, s): if fignum != 0: plt.figure(num=fignum) plt.clf() hpars = {} Npts = len(M) B70 = 0.7 * B[0] for b in B: if b < B70: break Nint = B.index(b) - 1 if Nint > 30: Nint = 30 if Nint < 10: Nint = 10 Bzero, Mzero, Mfix, Mnorm, Madj, MadjN = '', '', [], [], [], [] Mazero = '' m_init = 0.5 * (M[0] + M[1]) m_fin = 0.5 * (M[-1] + M[-2]) diff = m_fin - m_init Bmin = 0.0 for k in range(Npts): frac = old_div(float(k), float(Npts - 1)) Mfix.append(M[k] - diff * frac) if Bzero == '' and B[k] < 0: Bzero = k if B[k] < Bmin: Bmin = B[k] kmin = k Bslop = B[2:Nint + 2] Mslop = Mfix[2:Nint + 2] polyU = polyfit(Bslop, Mslop, 1) Bslop = B[kmin:kmin + (Nint + 1)] Mslop = Mfix[kmin:kmin + (Nint + 1)] polyL = polyfit(Bslop, Mslop, 1) xhf = 0.5 * (polyU[0] + polyL[0]) hpars['hysteresis_xhf'] = '%8.2e' % (xhf * 4 * np.pi * 1e-07) meanint = 0.5 * (polyU[1] + polyL[1]) Msat = 0.5 * (polyU[1] - polyL[1]) Moff = [] for k in range(Npts): Moff.append(Mfix[k] - xhf * B[k] - meanint) if Mzero == '' and Moff[k] < 0: Mzero = k if Mzero != '' and Mazero == '' and Moff[k] > 0: Mazero = k hpars['hysteresis_ms_moment'] = '%8.3e' % Msat Mupper, Bupper, Mlower, Blower = [], [], [], [] deltaM, Bdm = [], [] for k in range(kmin - 2, 0, -2): Mupper.append(old_div(Moff[k], Msat)) Bupper.append(B[k]) for k in range(kmin + 2, len(B) - 1): Mlower.append(Moff[k] / Msat) Blower.append(B[k]) Iupper = spline.Spline(Bupper, Mupper) Ilower = spline.Spline(Blower, Mlower) for b in np.arange(B[0]): Mpos = Iupper(b) - Ilower(b) Mneg = Iupper(-b) - Ilower(-b) Bdm.append(b) deltaM.append(0.5 * (Mpos + Mneg)) print('whew') for k in range(Npts): MadjN.append(old_div(Moff[k], Msat)) Mnorm.append(old_div(M[k], Msat)) Mr = Msat * 0.5 * (Iupper(0.0) - Ilower(0.0)) hpars['hysteresis_mr_moment'] = '%8.3e' % Mr Bz = B[Mzero - 1:Mzero + 1] Mz = Moff[Mzero - 1:Mzero + 1] Baz = B[Mazero - 1:Mazero + 1] Maz = Moff[Mazero - 1:Mazero + 1] try: poly = polyfit(Bz, Mz, 1) Bc = old_div(-poly[1], poly[0]) poly = polyfit(Baz, Maz, 1) Bac = old_div(-poly[1], poly[0]) hpars['hysteresis_bc'] = '%8.3e' % (0.5 * (abs(Bc) + abs(Bac))) except: hpars['hysteresis_bc'] = '0' return hpars, deltaM, Bdm, B, Mnorm, MadjN
iplot_hys
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum, B, M, s):\n if fignum != 0:\n plt.figure(num=fignum)\n plt.clf()\n hpars = {}\n Npts = len(M)\n B70 = 0.7 * B[0]\n for b in B:\n if b < B70:\n break\n Nint = B.index(b) - 1\n if Nint > 30:\n Nint = 30\n if Nint < 10:\n Nint = 10\n Bzero, Mzero, Mfix, Mnorm, Madj, MadjN = '', '', [], [], [], []\n Mazero = ''\n m_init = 0.5 * (M[0] + M[1])\n m_fin = 0.5 * (M[-1] + M[-2])\n diff = m_fin - m_init\n Bmin = 0.0\n for k in range(Npts):\n frac = old_div(float(k), float(Npts - 1))\n Mfix.append(M[k] - diff * frac)\n if Bzero == '' and B[k] < 0:\n Bzero = k\n if B[k] < Bmin:\n Bmin = B[k]\n kmin = k\n Bslop = B[2:Nint + 2]\n Mslop = Mfix[2:Nint + 2]\n polyU = polyfit(Bslop, Mslop, 1)\n Bslop = B[kmin:kmin + (Nint + 1)]\n Mslop = Mfix[kmin:kmin + (Nint + 1)]\n polyL = polyfit(Bslop, Mslop, 1)\n xhf = 0.5 * (polyU[0] + polyL[0])\n hpars['hysteresis_xhf'] = '%8.2e' % (xhf * 4 * np.pi * 1e-07)\n meanint = 0.5 * (polyU[1] + polyL[1])\n Msat = 0.5 * (polyU[1] - polyL[1])\n Moff = []\n for k in range(Npts):\n Moff.append(Mfix[k] - xhf * B[k] - meanint)\n if Mzero == '' and Moff[k] < 0:\n Mzero = k\n if Mzero != '' and Mazero == '' and Moff[k] > 0:\n Mazero = k\n hpars['hysteresis_ms_moment'] = '%8.3e' % Msat\n Mupper, Bupper, Mlower, Blower = [], [], [], []\n deltaM, Bdm = [], []\n for k in range(kmin - 2, 0, -2):\n Mupper.append(old_div(Moff[k], Msat))\n Bupper.append(B[k])\n for k in range(kmin + 2, len(B) - 1):\n Mlower.append(Moff[k] / Msat)\n Blower.append(B[k])\n Iupper = spline.Spline(Bupper, Mupper)\n Ilower = spline.Spline(Blower, Mlower)\n for b in np.arange(B[0]):\n Mpos = Iupper(b) - Ilower(b)\n Mneg = Iupper(-b) - Ilower(-b)\n Bdm.append(b)\n deltaM.append(0.5 * (Mpos + Mneg))\n print('whew')\n for k in range(Npts):\n MadjN.append(old_div(Moff[k], Msat))\n Mnorm.append(old_div(M[k], Msat))\n Mr = Msat * 0.5 * (Iupper(0.0) - Ilower(0.0))\n hpars['hysteresis_mr_moment'] = '%8.3e' % Mr\n Bz = B[Mzero - 1:Mzero + 1]\n Mz = Moff[Mzero - 1:Mzero + 1]\n Baz = B[Mazero - 1:Mazero + 1]\n Maz = Moff[Mazero - 1:Mazero + 1]\n try:\n poly = polyfit(Bz, Mz, 1)\n Bc = old_div(-poly[1], poly[0])\n poly = polyfit(Baz, Maz, 1)\n Bac = old_div(-poly[1], poly[0])\n hpars['hysteresis_bc'] = '%8.3e' % (0.5 * (abs(Bc) + abs(Bac)))\n except:\n hpars['hysteresis_bc'] = '0'\n return hpars, deltaM, Bdm, B, Mnorm, MadjN\n", "role": "user" }, { "content": "iplot_hys", "role": "assistant" } ]
def x(data, nb=1000, save=False, save_folder='.', fmt='svg', site_correction=False, return_new_dirs=False): print('Bootstrapping.... be patient') print('') sys.stdout.flush() upper, lower = int(round(0.975 * nb)), int(round(0.025 * nb)) E, I = [], [] plt.figure(num=1, figsize=(4, 4)) plot_net(1) plot_di(di_block=data) plt.title('Original') ppars = pmag.doprinc(data) Io = ppars['inc'] n = ppars['N'] Es, Is, Fs, V2s = pmag.find_f(data) if site_correction == True: Inc, Elong = Is[Es.index(min(Es))], Es[Es.index(min(Es))] flat_f = Fs[Es.index(min(Es))] else: Inc, Elong = Is[-1], Es[-1] flat_f = Fs[-1] plt.figure(num=2, figsize=(4, 4)) plt.plot(Is, Es, 'r') plt.xlabel('Inclination') plt.ylabel('Elongation') plt.text(Inc, Elong, ' %3.1f' % flat_f) plt.text(Is[0] - 2, Es[0], ' %s' % 'f=1') b = 0 while b < nb: bdata = pmag.pseudo(data) Esb, Isb, Fsb, V2sb = pmag.find_f(bdata) if b < 25: plt.plot(Isb, Esb, 'y') if Esb[-1] != 0: ppars = pmag.doprinc(bdata) if site_correction == True: I.append(abs(Isb[Esb.index(min(Esb))])) E.append(Esb[Esb.index(min(Esb))]) else: I.append(abs(Isb[-1])) E.append(Esb[-1]) b += 1 I.sort() E.sort() Eexp = [] for i in I: Eexp.append(pmag.EI(i)) plt.plot(I, Eexp, 'g-') if Inc == 0: title = 'Pathological Distribution: ' + '[%7.1f, %7.1f]' % (I[lower ], I[upper]) else: title = '%7.1f [%7.1f, %7.1f]' % (Inc, I[lower], I[upper]) cdf_fig_num = 3 plt.figure(num=cdf_fig_num, figsize=(4, 4)) pmagplotlib.plot_cdf(cdf_fig_num, I, 'Inclinations', 'r', title) pmagplotlib.plot_vs(cdf_fig_num, [I[lower], I[upper]], 'b', '--') pmagplotlib.plot_vs(cdf_fig_num, [Inc], 'g', '-') pmagplotlib.plot_vs(cdf_fig_num, [Io], 'k', '-') di_lists = unpack_di_block(data) if len(di_lists) == 3: decs, incs, intensity = di_lists if len(di_lists) == 2: decs, incs = di_lists if flat_f: unsquished_incs = unsquish(incs, flat_f) plt.figure(num=4, figsize=(4, 4)) plot_net(4) plot_di(decs, unsquished_incs) plt.title('Corrected for flattening') else: plt.figure(num=4, figsize=(4, 4)) plot_net(4) plot_di(decs, incs) plt.title('Corrected for flattening') if (Inc, Elong, flat_f) == (0, 0, 0): print('PATHOLOGICAL DISTRIBUTION') print('The original inclination was: ' + str(Io)) print('') print('The corrected inclination is: ' + str(Inc)) print('with bootstrapped confidence bounds of: ' + str(I[lower]) + ' to ' + str(I[upper])) print('and elongation parameter of: ' + str(Elong)) print('The flattening factor is: ' + str(flat_f)) if return_new_dirs is True: return make_di_block(decs, unsquished_incs)
find_ei
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, nb=1000, save=False, save_folder='.', fmt='svg',\n site_correction=False, return_new_dirs=False):\n print('Bootstrapping.... be patient')\n print('')\n sys.stdout.flush()\n upper, lower = int(round(0.975 * nb)), int(round(0.025 * nb))\n E, I = [], []\n plt.figure(num=1, figsize=(4, 4))\n plot_net(1)\n plot_di(di_block=data)\n plt.title('Original')\n ppars = pmag.doprinc(data)\n Io = ppars['inc']\n n = ppars['N']\n Es, Is, Fs, V2s = pmag.find_f(data)\n if site_correction == True:\n Inc, Elong = Is[Es.index(min(Es))], Es[Es.index(min(Es))]\n flat_f = Fs[Es.index(min(Es))]\n else:\n Inc, Elong = Is[-1], Es[-1]\n flat_f = Fs[-1]\n plt.figure(num=2, figsize=(4, 4))\n plt.plot(Is, Es, 'r')\n plt.xlabel('Inclination')\n plt.ylabel('Elongation')\n plt.text(Inc, Elong, ' %3.1f' % flat_f)\n plt.text(Is[0] - 2, Es[0], ' %s' % 'f=1')\n b = 0\n while b < nb:\n bdata = pmag.pseudo(data)\n Esb, Isb, Fsb, V2sb = pmag.find_f(bdata)\n if b < 25:\n plt.plot(Isb, Esb, 'y')\n if Esb[-1] != 0:\n ppars = pmag.doprinc(bdata)\n if site_correction == True:\n I.append(abs(Isb[Esb.index(min(Esb))]))\n E.append(Esb[Esb.index(min(Esb))])\n else:\n I.append(abs(Isb[-1]))\n E.append(Esb[-1])\n b += 1\n I.sort()\n E.sort()\n Eexp = []\n for i in I:\n Eexp.append(pmag.EI(i))\n plt.plot(I, Eexp, 'g-')\n if Inc == 0:\n title = 'Pathological Distribution: ' + '[%7.1f, %7.1f]' % (I[lower\n ], I[upper])\n else:\n title = '%7.1f [%7.1f, %7.1f]' % (Inc, I[lower], I[upper])\n cdf_fig_num = 3\n plt.figure(num=cdf_fig_num, figsize=(4, 4))\n pmagplotlib.plot_cdf(cdf_fig_num, I, 'Inclinations', 'r', title)\n pmagplotlib.plot_vs(cdf_fig_num, [I[lower], I[upper]], 'b', '--')\n pmagplotlib.plot_vs(cdf_fig_num, [Inc], 'g', '-')\n pmagplotlib.plot_vs(cdf_fig_num, [Io], 'k', '-')\n di_lists = unpack_di_block(data)\n if len(di_lists) == 3:\n decs, incs, intensity = di_lists\n if len(di_lists) == 2:\n decs, incs = di_lists\n if flat_f:\n unsquished_incs = unsquish(incs, flat_f)\n plt.figure(num=4, figsize=(4, 4))\n plot_net(4)\n plot_di(decs, unsquished_incs)\n plt.title('Corrected for flattening')\n else:\n plt.figure(num=4, figsize=(4, 4))\n plot_net(4)\n plot_di(decs, incs)\n plt.title('Corrected for flattening')\n if (Inc, Elong, flat_f) == (0, 0, 0):\n print('PATHOLOGICAL DISTRIBUTION')\n print('The original inclination was: ' + str(Io))\n print('')\n print('The corrected inclination is: ' + str(Inc))\n print('with bootstrapped confidence bounds of: ' + str(I[lower]) +\n ' to ' + str(I[upper]))\n print('and elongation parameter of: ' + str(Elong))\n print('The flattening factor is: ' + str(flat_f))\n if return_new_dirs is True:\n return make_di_block(decs, unsquished_incs)\n", "role": "user" }, { "content": "find_ei", "role": "assistant" } ]
def x(path_to_file='.', file='', data='', units='U', calculation_type= 'DE-BFL', save=False, save_folder='.', fmt='svg', begin_pca='', end_pca ='', angle=0): if units == 'C': SIunits = 'K' if units == 'mT': SIunits = 'T' if units == 'U': SIunits = 'U' if file != '': f = pd.read_csv(os.path.join(path_to_file, file), delim_whitespace= True, header=None) f.columns = ['specimen', 'treatment', 'intensity', 'declination', 'inclination'] f['declination'] = (f['declination'] - angle) % 360 f['quality'] = 'g' f['type'] = '' s = f['specimen'].tolist()[0] if units == 'mT': f['treatment'] = f['treatment'] * 0.001 if units == 'C': f['treatment'] = f['treatment'] + 273 data = f[['treatment', 'declination', 'inclination', 'intensity', 'type', 'quality']] print(s) datablock = data.values.tolist() ZED = {} ZED['eqarea'], ZED['zijd'], ZED['demag'] = 2, 1, 3 plt.figure(num=ZED['zijd'], figsize=(5, 5)) plt.figure(num=ZED['eqarea'], figsize=(5, 5)) plt.figure(num=ZED['demag'], figsize=(5, 5)) pmagplotlib.plot_zed(ZED, datablock, angle, s, SIunits) recnum = 0 print('step treat intensity dec inc') for plotrec in datablock: if units == 'mT': print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0] * 1000.0, plotrec[3], plotrec[1], plotrec[2])) if units == 'C': print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0] - 273.0, plotrec[3], plotrec[1], plotrec[2])) if units == 'U': print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0], plotrec[3], plotrec[1], plotrec[2])) recnum += 1 pmagplotlib.draw_figs(ZED) if begin_pca != '' and end_pca != '' and calculation_type != '': pmagplotlib.plot_zed(ZED, datablock, angle, s, SIunits) mpars = pmag.domean(datablock, begin_pca, end_pca, calculation_type) pmagplotlib.plot_dir(ZED, mpars, datablock, angle) print('Specimen, calc_type, N, min, max, MAD, dec, inc') if units == 'mT': print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s, calculation_type, mpars['specimen_n'], mpars[ 'measurement_step_min'] * 1000.0, mpars[ 'measurement_step_max'] * 1000.0, mpars['specimen_mad'], mpars['specimen_dec'], mpars['specimen_inc'])) if units == 'C': print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s, calculation_type, mpars['specimen_n'], mpars[ 'measurement_step_min'] - 273, mpars['measurement_step_max' ] - 273, mpars['specimen_mad'], mpars['specimen_dec'], mpars['specimen_inc'])) if units == 'U': print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s, calculation_type, mpars['specimen_n'], mpars[ 'measurement_step_min'], mpars['measurement_step_max'], mpars['specimen_mad'], mpars['specimen_dec'], mpars[ 'specimen_inc'])) if save: files = {} for key in list(ZED.keys()): files[key] = s + '_' + key + '.' + fmt pmagplotlib.save_plots(ZED, files)
zeq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path_to_file='.', file='', data='', units='U', calculation_type=\n 'DE-BFL', save=False, save_folder='.', fmt='svg', begin_pca='', end_pca\n ='', angle=0):\n if units == 'C':\n SIunits = 'K'\n if units == 'mT':\n SIunits = 'T'\n if units == 'U':\n SIunits = 'U'\n if file != '':\n f = pd.read_csv(os.path.join(path_to_file, file), delim_whitespace=\n True, header=None)\n f.columns = ['specimen', 'treatment', 'intensity', 'declination',\n 'inclination']\n f['declination'] = (f['declination'] - angle) % 360\n f['quality'] = 'g'\n f['type'] = ''\n s = f['specimen'].tolist()[0]\n if units == 'mT':\n f['treatment'] = f['treatment'] * 0.001\n if units == 'C':\n f['treatment'] = f['treatment'] + 273\n data = f[['treatment', 'declination', 'inclination', 'intensity',\n 'type', 'quality']]\n print(s)\n datablock = data.values.tolist()\n ZED = {}\n ZED['eqarea'], ZED['zijd'], ZED['demag'] = 2, 1, 3\n plt.figure(num=ZED['zijd'], figsize=(5, 5))\n plt.figure(num=ZED['eqarea'], figsize=(5, 5))\n plt.figure(num=ZED['demag'], figsize=(5, 5))\n pmagplotlib.plot_zed(ZED, datablock, angle, s, SIunits)\n recnum = 0\n print('step treat intensity dec inc')\n for plotrec in datablock:\n if units == 'mT':\n print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0] * \n 1000.0, plotrec[3], plotrec[1], plotrec[2]))\n if units == 'C':\n print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0] - \n 273.0, plotrec[3], plotrec[1], plotrec[2]))\n if units == 'U':\n print('%i %7.1f %8.3e %7.1f %7.1f ' % (recnum, plotrec[0],\n plotrec[3], plotrec[1], plotrec[2]))\n recnum += 1\n pmagplotlib.draw_figs(ZED)\n if begin_pca != '' and end_pca != '' and calculation_type != '':\n pmagplotlib.plot_zed(ZED, datablock, angle, s, SIunits)\n mpars = pmag.domean(datablock, begin_pca, end_pca, calculation_type)\n pmagplotlib.plot_dir(ZED, mpars, datablock, angle)\n print('Specimen, calc_type, N, min, max, MAD, dec, inc')\n if units == 'mT':\n print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,\n calculation_type, mpars['specimen_n'], mpars[\n 'measurement_step_min'] * 1000.0, mpars[\n 'measurement_step_max'] * 1000.0, mpars['specimen_mad'],\n mpars['specimen_dec'], mpars['specimen_inc']))\n if units == 'C':\n print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,\n calculation_type, mpars['specimen_n'], mpars[\n 'measurement_step_min'] - 273, mpars['measurement_step_max'\n ] - 273, mpars['specimen_mad'], mpars['specimen_dec'],\n mpars['specimen_inc']))\n if units == 'U':\n print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,\n calculation_type, mpars['specimen_n'], mpars[\n 'measurement_step_min'], mpars['measurement_step_max'],\n mpars['specimen_mad'], mpars['specimen_dec'], mpars[\n 'specimen_inc']))\n if save:\n files = {}\n for key in list(ZED.keys()):\n files[key] = s + '_' + key + '.' + fmt\n pmagplotlib.save_plots(ZED, files)\n", "role": "user" }, { "content": "zeq", "role": "assistant" } ]
def x(infile='specimens.txt', samp_file='samples.txt', site_file= 'sites.txt', verbose=True, ipar=False, ihext=True, ivec=False, isite= False, iloc=False, iboot=False, vec=0, Dir=[], PDir=[], crd='s', num_bootstraps=1000, dir_path='.', fignum=1, save_plots=True, interactive=False, fmt='png'): figs = {} saved = [] ipar = int(ipar) ihext = int(ihext) ivec = int(ivec) isite = int(isite) iboot = int(iboot) input_dir_path = os.path.realpath(dir_path) version_num = pmag.get_version() hpars, bpars = [], [] CS = -1 if crd == 'g': CS = 0 if crd == 't': CS = 100 fnames = {'specimens': infile, 'samples': samp_file, 'sites': site_file} con = cb.Contribution(input_dir_path, read_tables=['specimens', 'samples', 'sites', 'contribution'], custom_filenames=fnames) con_id = '' if 'contribution' in con.tables: if 'id' in con.tables['contribution'].df.columns: con_id = str(con.tables['contribution'].df['id'].values[0]) con.propagate_location_to_specimens() spec_container = con.tables['specimens'] spec_df = spec_container.df spec_df = spec_df.dropna(subset=['aniso_s']).copy() if 'aniso_tilt_correction' not in spec_df.columns: spec_df['aniso_tilt_correction'] = -1 if 'aniso_s_n_measurements' not in spec_df.columns: spec_df['aniso_s_n_measurements'] = '6' if 'aniso_s_sigma' not in spec_df.columns: spec_df['aniso_sigma'] = '0' orlist = spec_df['aniso_tilt_correction'].dropna().unique() if CS not in orlist: if len(orlist) > 0: CS = orlist[0] else: CS = -1 if CS == -1: crd = 's' if CS == 0: crd = 'g' if CS == 100: crd = 't' if verbose: print('desired coordinate system not available, using available: ', crd) cs_df = spec_df[spec_df['aniso_tilt_correction'] == CS] if isite: sites = cs_df['site'].unique() for site in list(sites): site_df = cs_df[cs_df.site == site] loc = '' if 'sites' in con.tables: if 'location' in con.tables['sites'].df.columns: locs = con.tables['sites'].df.loc[site, 'location'].dropna( ) if any(locs): loc = locs.iloc[0] figs = plot_aniso(fignum, site_df, Dir=Dir, PDir=PDir, ipar= ipar, ihext=ihext, ivec=ivec, iboot=iboot, vec=vec, num_bootstraps=num_bootstraps, title=site) files = {key: (loc + '_' + site + '_' + crd + '_aniso-' + key + '.png') for key, value in figs.items()} if pmagplotlib.isServer: for key in figs.keys(): files[key] = ('LO:_' + loc + '_SI:_' + site + '_TY:_aniso_' + key + '_.' + fmt) titles = {} titles['data'] = 'Eigenvectors' titles['tcdf'] = 'Eigenvalue Confidence' titles['conf'] = 'Confidence Ellipses' for key in figs: if key not in titles: titles[key] = key pmagplotlib.add_borders(figs, titles, con_id=con_id) if save_plots: saved.extend(pmagplotlib.save_plots(figs, files)) elif interactive: pmagplotlib.draw_figs(figs) ans = pmagplotlib.save_or_quit() if ans == 'a': saved.extend(pmagplotlib.save_plots(figs, files)) else: continue else: fignum += 2 if iboot: fignum += 1 if len(Dir) > 0: fignum += 1 else: figs = plot_aniso(fignum, cs_df, Dir=Dir, PDir=PDir, ipar=ipar, ihext=ihext, ivec=ivec, iboot=iboot, vec=vec, num_bootstraps= num_bootstraps) try: locs = cs_df['location'].unique() except: locs = [''] locs = '-'.join(locs) files = {key: (locs + '_' + crd + '_aniso-' + key + '.png') for key, value in figs.items()} if pmagplotlib.isServer: for key in figs.keys(): files[key] = 'MC:_' + con_id + '_TY:_aniso_' + key + '_.' + fmt titles = {} titles['data'] = 'Eigenvectors' titles['tcdf'] = 'Eigenvalue Confidence' titles['conf'] = 'Confidence Ellipses' for key in figs: if key not in titles: titles[key] = key pmagplotlib.add_borders(figs, titles, con_id=con_id) if save_plots: saved.extend(pmagplotlib.save_plots(figs, files)) elif interactive: pmagplotlib.draw_figs(figs) ans = pmagplotlib.save_or_quit() if ans == 'a': saved.extend(pmagplotlib.save_plots(figs, files)) return True, saved
aniso_magic_nb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile='specimens.txt', samp_file='samples.txt', site_file=\n 'sites.txt', verbose=True, ipar=False, ihext=True, ivec=False, isite=\n False, iloc=False, iboot=False, vec=0, Dir=[], PDir=[], crd='s',\n num_bootstraps=1000, dir_path='.', fignum=1, save_plots=True,\n interactive=False, fmt='png'):\n figs = {}\n saved = []\n ipar = int(ipar)\n ihext = int(ihext)\n ivec = int(ivec)\n isite = int(isite)\n iboot = int(iboot)\n input_dir_path = os.path.realpath(dir_path)\n version_num = pmag.get_version()\n hpars, bpars = [], []\n CS = -1\n if crd == 'g':\n CS = 0\n if crd == 't':\n CS = 100\n fnames = {'specimens': infile, 'samples': samp_file, 'sites': site_file}\n con = cb.Contribution(input_dir_path, read_tables=['specimens',\n 'samples', 'sites', 'contribution'], custom_filenames=fnames)\n con_id = ''\n if 'contribution' in con.tables:\n if 'id' in con.tables['contribution'].df.columns:\n con_id = str(con.tables['contribution'].df['id'].values[0])\n con.propagate_location_to_specimens()\n spec_container = con.tables['specimens']\n spec_df = spec_container.df\n spec_df = spec_df.dropna(subset=['aniso_s']).copy()\n if 'aniso_tilt_correction' not in spec_df.columns:\n spec_df['aniso_tilt_correction'] = -1\n if 'aniso_s_n_measurements' not in spec_df.columns:\n spec_df['aniso_s_n_measurements'] = '6'\n if 'aniso_s_sigma' not in spec_df.columns:\n spec_df['aniso_sigma'] = '0'\n orlist = spec_df['aniso_tilt_correction'].dropna().unique()\n if CS not in orlist:\n if len(orlist) > 0:\n CS = orlist[0]\n else:\n CS = -1\n if CS == -1:\n crd = 's'\n if CS == 0:\n crd = 'g'\n if CS == 100:\n crd = 't'\n if verbose:\n print('desired coordinate system not available, using available: ',\n crd)\n cs_df = spec_df[spec_df['aniso_tilt_correction'] == CS]\n if isite:\n sites = cs_df['site'].unique()\n for site in list(sites):\n site_df = cs_df[cs_df.site == site]\n loc = ''\n if 'sites' in con.tables:\n if 'location' in con.tables['sites'].df.columns:\n locs = con.tables['sites'].df.loc[site, 'location'].dropna(\n )\n if any(locs):\n loc = locs.iloc[0]\n figs = plot_aniso(fignum, site_df, Dir=Dir, PDir=PDir, ipar=\n ipar, ihext=ihext, ivec=ivec, iboot=iboot, vec=vec,\n num_bootstraps=num_bootstraps, title=site)\n files = {key: (loc + '_' + site + '_' + crd + '_aniso-' + key +\n '.png') for key, value in figs.items()}\n if pmagplotlib.isServer:\n for key in figs.keys():\n files[key] = ('LO:_' + loc + '_SI:_' + site +\n '_TY:_aniso_' + key + '_.' + fmt)\n titles = {}\n titles['data'] = 'Eigenvectors'\n titles['tcdf'] = 'Eigenvalue Confidence'\n titles['conf'] = 'Confidence Ellipses'\n for key in figs:\n if key not in titles:\n titles[key] = key\n pmagplotlib.add_borders(figs, titles, con_id=con_id)\n if save_plots:\n saved.extend(pmagplotlib.save_plots(figs, files))\n elif interactive:\n pmagplotlib.draw_figs(figs)\n ans = pmagplotlib.save_or_quit()\n if ans == 'a':\n saved.extend(pmagplotlib.save_plots(figs, files))\n else:\n continue\n else:\n fignum += 2\n if iboot:\n fignum += 1\n if len(Dir) > 0:\n fignum += 1\n else:\n figs = plot_aniso(fignum, cs_df, Dir=Dir, PDir=PDir, ipar=ipar,\n ihext=ihext, ivec=ivec, iboot=iboot, vec=vec, num_bootstraps=\n num_bootstraps)\n try:\n locs = cs_df['location'].unique()\n except:\n locs = ['']\n locs = '-'.join(locs)\n files = {key: (locs + '_' + crd + '_aniso-' + key + '.png') for key,\n value in figs.items()}\n if pmagplotlib.isServer:\n for key in figs.keys():\n files[key] = 'MC:_' + con_id + '_TY:_aniso_' + key + '_.' + fmt\n titles = {}\n titles['data'] = 'Eigenvectors'\n titles['tcdf'] = 'Eigenvalue Confidence'\n titles['conf'] = 'Confidence Ellipses'\n for key in figs:\n if key not in titles:\n titles[key] = key\n pmagplotlib.add_borders(figs, titles, con_id=con_id)\n if save_plots:\n saved.extend(pmagplotlib.save_plots(figs, files))\n elif interactive:\n pmagplotlib.draw_figs(figs)\n ans = pmagplotlib.save_or_quit()\n if ans == 'a':\n saved.extend(pmagplotlib.save_plots(figs, files))\n return True, saved\n", "role": "user" }, { "content": "aniso_magic_nb", "role": "assistant" } ]
def x(data='', title='', fignum=1, norm=1, dmag_key='treat_ac_field', intensity='', quality=False): plt.figure(num=fignum, figsize=(5, 5)) if intensity: int_key = intensity else: intlist = ['magn_moment', 'magn_volume', 'magn_mass'] IntMeths = [col_name for col_name in data.columns if col_name in intlist] int_key = IntMeths[0] data = data[data[int_key].notnull()] units = 'U' if not dmag_key: if 'treat_temp' in data.columns: units = 'K' elif 'treat_ac_field' in data.columns: units = 'T' elif 'treat_mw_energy' in data.columns: units = 'J' if dmag_key == 'treat_temp': units = 'K' if dmag_key == 'treat_ac_field': units = 'T' if dmag_key == 'treat_mw_energy': units = 'J' spcs = data.specimen.unique() if len(spcs) == 0: print('no data for plotting') return for spc in spcs: spec_data = data[data.specimen.str.contains(spc)] INTblock = [] for ind, rec in spec_data.iterrows(): INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[int_key] ), 1, rec['quality']]) if len(INTblock) > 2: pmagplotlib.plot_mag(fignum, INTblock, title, 0, units, norm)
plot_dmag
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data='', title='', fignum=1, norm=1, dmag_key='treat_ac_field',\n intensity='', quality=False):\n plt.figure(num=fignum, figsize=(5, 5))\n if intensity:\n int_key = intensity\n else:\n intlist = ['magn_moment', 'magn_volume', 'magn_mass']\n IntMeths = [col_name for col_name in data.columns if col_name in\n intlist]\n int_key = IntMeths[0]\n data = data[data[int_key].notnull()]\n units = 'U'\n if not dmag_key:\n if 'treat_temp' in data.columns:\n units = 'K'\n elif 'treat_ac_field' in data.columns:\n units = 'T'\n elif 'treat_mw_energy' in data.columns:\n units = 'J'\n if dmag_key == 'treat_temp':\n units = 'K'\n if dmag_key == 'treat_ac_field':\n units = 'T'\n if dmag_key == 'treat_mw_energy':\n units = 'J'\n spcs = data.specimen.unique()\n if len(spcs) == 0:\n print('no data for plotting')\n return\n for spc in spcs:\n spec_data = data[data.specimen.str.contains(spc)]\n INTblock = []\n for ind, rec in spec_data.iterrows():\n INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[int_key]\n ), 1, rec['quality']])\n if len(INTblock) > 2:\n pmagplotlib.plot_mag(fignum, INTblock, title, 0, units, norm)\n", "role": "user" }, { "content": "plot_dmag", "role": "assistant" } ]
def x(infile='', dir_path='.'): file = os.path.join(dir_path, infile) eigs_data = np.loadtxt(file) Ss = [] for ind in range(eigs_data.shape[0]): tau, Vdirs = [], [] for k in range(0, 9, 3): tau.append(eigs_data[ind][k]) Vdirs.append([eigs_data[ind][k + 1], eigs_data[ind][k + 2]]) s = list(pmag.doeigs_s(tau, Vdirs)) Ss.append(s) return Ss
eigs_s
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile='', dir_path='.'):\n file = os.path.join(dir_path, infile)\n eigs_data = np.loadtxt(file)\n Ss = []\n for ind in range(eigs_data.shape[0]):\n tau, Vdirs = [], []\n for k in range(0, 9, 3):\n tau.append(eigs_data[ind][k])\n Vdirs.append([eigs_data[ind][k + 1], eigs_data[ind][k + 2]])\n s = list(pmag.doeigs_s(tau, Vdirs))\n Ss.append(s)\n return Ss\n", "role": "user" }, { "content": "eigs_s", "role": "assistant" } ]
def x(poles, color='g', fignum=1): for pole in poles: pmagplotlib.plot_circ(fignum, pole, 90.0, color)
plot_gc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(poles, color='g', fignum=1):\n for pole in poles:\n pmagplotlib.plot_circ(fignum, pole, 90.0, color)\n", "role": "user" }, { "content": "plot_gc", "role": "assistant" } ]
def x(this_spec_meas_df, samp_df, samp, coord='0'): decs = this_spec_meas_df['dir_dec'].values.tolist() incs = this_spec_meas_df['dir_inc'].values.tolist() or_info, az_type = pmag.get_orient(samp_df, samp, data_model=3) if 'azimuth' in or_info.keys() and cb.not_null(or_info['azimuth'], False): azimuths = len(decs) * [or_info['azimuth']] dips = len(decs) * [or_info['dip']] else: return this_spec_meas_df dirs = [decs, incs, azimuths, dips] dirs_geo = np.array(list(map(list, list(zip(*dirs))))) decs, incs = pmag.dogeo_V(dirs_geo) if coord == '100' and 'bed_dip_direction' in or_info.keys() and or_info[ 'bed_dip_direction'] != '': bed_dip_dirs = len(decs) * [or_info['bed_dip_direction']] bed_dips = len(decs) * [or_info['bed_dip']] dirs = [decs, incs, bed_dip_dirs, bed_dips] dirs_tilt = np.array(list(map(list, list(zip(*dirs))))) decs, incs = pmag.dotilt_V(dirs_tilt) this_spec_meas_df['dir_dec'] = decs this_spec_meas_df['dir_inc'] = incs return this_spec_meas_df
transform_to_geographic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(this_spec_meas_df, samp_df, samp, coord='0'):\n decs = this_spec_meas_df['dir_dec'].values.tolist()\n incs = this_spec_meas_df['dir_inc'].values.tolist()\n or_info, az_type = pmag.get_orient(samp_df, samp, data_model=3)\n if 'azimuth' in or_info.keys() and cb.not_null(or_info['azimuth'], False):\n azimuths = len(decs) * [or_info['azimuth']]\n dips = len(decs) * [or_info['dip']]\n else:\n return this_spec_meas_df\n dirs = [decs, incs, azimuths, dips]\n dirs_geo = np.array(list(map(list, list(zip(*dirs)))))\n decs, incs = pmag.dogeo_V(dirs_geo)\n if coord == '100' and 'bed_dip_direction' in or_info.keys() and or_info[\n 'bed_dip_direction'] != '':\n bed_dip_dirs = len(decs) * [or_info['bed_dip_direction']]\n bed_dips = len(decs) * [or_info['bed_dip']]\n dirs = [decs, incs, bed_dip_dirs, bed_dips]\n dirs_tilt = np.array(list(map(list, list(zip(*dirs)))))\n decs, incs = pmag.dotilt_V(dirs_tilt)\n this_spec_meas_df['dir_dec'] = decs\n this_spec_meas_df['dir_inc'] = incs\n return this_spec_meas_df\n", "role": "user" }, { "content": "transform_to_geographic", "role": "assistant" } ]
def x(meas_file='measurements.txt', dir_path='.', input_dir_path='', spec= '', n_specs=5, save_plots=True, fmt='svg', interactive=False, contribution=None): def x(this_specimen, thel_data, cnt=1): zed = False if pmagplotlib.verbose: print(this_specimen) AZD = {'arai': cnt, 'zijd': cnt + 1, 'eqarea': cnt + 2, 'deremag': cnt + 3} spec_df = thel_data[thel_data.specimen == this_specimen] if len(spec_df) >= 3: try: araiblock, field = pmag.sortarai(spec_df, this_specimen, 0, version=3) except Exception as ex: print('-W-', ex) return zed if not save_plots: for key, val in AZD.items(): pmagplotlib.plot_init(val, 5, 5) zijdblock, units = pmag.find_dmag_rec(this_specimen, spec_df, version=3) if not len(units): unit_string = '' else: unit_string = units[-1] zed = pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock, this_specimen, unit_string) return zed if interactive: save_plots = False if not isinstance(contribution, cb.Contribution): input_dir_path, dir_path = pmag.fix_directories(input_dir_path, dir_path) file_path = pmag.resolve_file_name(meas_file, input_dir_path) input_dir_path = os.path.split(file_path)[0] contribution = cb.Contribution(input_dir_path) if not contribution.tables.get('measurements'): print('-W- No measurements table found') return False, [] try: contribution.propagate_location_to_samples() contribution.propagate_location_to_specimens() contribution.propagate_location_to_measurements() except KeyError as ex: pass meas_df = contribution.tables['measurements'].df if pmagplotlib.isServer: con_id = contribution.get_con_id() int_key = cb.get_intensity_col(meas_df) saved = [] meas_data = meas_df[meas_df[int_key].notnull()] thel_data = meas_data.dropna(subset=['method_codes']) thel_data = thel_data[thel_data['method_codes'].str.contains('LP-PI-TRM')] specimens = meas_data.specimen.unique() if len(specimens) == 0: print('there are no data for plotting') return False, [] if spec: if spec not in specimens: print('could not find specimen {}'.format(spec)) return False, [] specimens = [spec] elif n_specs != 'all': try: specimens = specimens[:n_specs] except Exception as ex: pass cnt = 1 for this_specimen in specimens: zed = make_plots(this_specimen, thel_data, cnt) if zed: if interactive: pmagplotlib.draw_figs(zed) ans = input('S[a]ve plots, [q]uit, <return> to continue\n ') if ans == 'q': return True, [] if ans == 'a': files = {key: (this_specimen + '_' + key + '.' + fmt) for key, value in zed.items()} if not set_env.IS_WIN: files = {key: os.path.join(dir_path, value) for key, value in files.items()} incl_directory = True saved.append(pmagplotlib.save_plots(zed, files, incl_directory=incl_directory)) elif save_plots: files = {key: (this_specimen + '_' + key + '.' + fmt) for key, value in zed.items()} incl_directory = False if not pmagplotlib.isServer: if not set_env.IS_WIN: files = {key: os.path.join(dir_path, value) for key, value in files.items()} incl_directory = True else: for key, value in files.copy().items(): files[key] = 'SP:_{}_TY:_{}_.{}'.format(this_specimen, key, fmt) titles = {} titles['deremag'] = 'DeReMag Plot' titles['zijd'] = 'Zijderveld Plot' titles['arai'] = 'Arai Plot' titles['TRM'] = 'TRM Acquisition data' titles['eqarea'] = 'Equal Area Plot' zed = pmagplotlib.add_borders(zed, titles, con_id=con_id) saved.append(pmagplotlib.save_plots(zed, files, incl_directory=incl_directory)) else: cnt += len(zed) else: print('no data for ', this_specimen) print('skipping') return True, saved
thellier_magic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(meas_file='measurements.txt', dir_path='.', input_dir_path='', spec=\n '', n_specs=5, save_plots=True, fmt='svg', interactive=False,\n contribution=None):\n\n def x(this_specimen, thel_data, cnt=1):\n zed = False\n if pmagplotlib.verbose:\n print(this_specimen)\n AZD = {'arai': cnt, 'zijd': cnt + 1, 'eqarea': cnt + 2, 'deremag': \n cnt + 3}\n spec_df = thel_data[thel_data.specimen == this_specimen]\n if len(spec_df) >= 3:\n try:\n araiblock, field = pmag.sortarai(spec_df, this_specimen, 0,\n version=3)\n except Exception as ex:\n print('-W-', ex)\n return zed\n if not save_plots:\n for key, val in AZD.items():\n pmagplotlib.plot_init(val, 5, 5)\n zijdblock, units = pmag.find_dmag_rec(this_specimen, spec_df,\n version=3)\n if not len(units):\n unit_string = ''\n else:\n unit_string = units[-1]\n zed = pmagplotlib.plot_arai_zij(AZD, araiblock, zijdblock,\n this_specimen, unit_string)\n return zed\n if interactive:\n save_plots = False\n if not isinstance(contribution, cb.Contribution):\n input_dir_path, dir_path = pmag.fix_directories(input_dir_path,\n dir_path)\n file_path = pmag.resolve_file_name(meas_file, input_dir_path)\n input_dir_path = os.path.split(file_path)[0]\n contribution = cb.Contribution(input_dir_path)\n if not contribution.tables.get('measurements'):\n print('-W- No measurements table found')\n return False, []\n try:\n contribution.propagate_location_to_samples()\n contribution.propagate_location_to_specimens()\n contribution.propagate_location_to_measurements()\n except KeyError as ex:\n pass\n meas_df = contribution.tables['measurements'].df\n if pmagplotlib.isServer:\n con_id = contribution.get_con_id()\n int_key = cb.get_intensity_col(meas_df)\n saved = []\n meas_data = meas_df[meas_df[int_key].notnull()]\n thel_data = meas_data.dropna(subset=['method_codes'])\n thel_data = thel_data[thel_data['method_codes'].str.contains('LP-PI-TRM')]\n specimens = meas_data.specimen.unique()\n if len(specimens) == 0:\n print('there are no data for plotting')\n return False, []\n if spec:\n if spec not in specimens:\n print('could not find specimen {}'.format(spec))\n return False, []\n specimens = [spec]\n elif n_specs != 'all':\n try:\n specimens = specimens[:n_specs]\n except Exception as ex:\n pass\n cnt = 1\n for this_specimen in specimens:\n zed = make_plots(this_specimen, thel_data, cnt)\n if zed:\n if interactive:\n pmagplotlib.draw_figs(zed)\n ans = input('S[a]ve plots, [q]uit, <return> to continue\\n ')\n if ans == 'q':\n return True, []\n if ans == 'a':\n files = {key: (this_specimen + '_' + key + '.' + fmt) for\n key, value in zed.items()}\n if not set_env.IS_WIN:\n files = {key: os.path.join(dir_path, value) for key,\n value in files.items()}\n incl_directory = True\n saved.append(pmagplotlib.save_plots(zed, files,\n incl_directory=incl_directory))\n elif save_plots:\n files = {key: (this_specimen + '_' + key + '.' + fmt) for \n key, value in zed.items()}\n incl_directory = False\n if not pmagplotlib.isServer:\n if not set_env.IS_WIN:\n files = {key: os.path.join(dir_path, value) for key,\n value in files.items()}\n incl_directory = True\n else:\n for key, value in files.copy().items():\n files[key] = 'SP:_{}_TY:_{}_.{}'.format(this_specimen,\n key, fmt)\n titles = {}\n titles['deremag'] = 'DeReMag Plot'\n titles['zijd'] = 'Zijderveld Plot'\n titles['arai'] = 'Arai Plot'\n titles['TRM'] = 'TRM Acquisition data'\n titles['eqarea'] = 'Equal Area Plot'\n zed = pmagplotlib.add_borders(zed, titles, con_id=con_id)\n saved.append(pmagplotlib.save_plots(zed, files,\n incl_directory=incl_directory))\n else:\n cnt += len(zed)\n else:\n print('no data for ', this_specimen)\n print('skipping')\n return True, saved\n", "role": "user" }, { "content": "thellier_magic", "role": "assistant" } ]
def x(site_file='sites.txt', directions_file='directions.xls', intensity_file='intensity.xls', info_file='site_info.xls', output_dir_path='.', input_dir_path='', latex=False): input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path, output_dir_path) try: fname = pmag.resolve_file_name(site_file, input_dir_path) except IOError: print('bad site file name') return False, 'bad site file name' sites_df = pd.read_csv(fname, sep='\t', header=1) dir_df = map_magic.convert_site_dm3_table_directions(sites_df) dir_file = pmag.resolve_file_name(directions_file, output_dir_path) if len(dir_df): if latex: if dir_file.endswith('.xls'): dir_file = dir_file[:-4] + '.tex' directions_out = open(dir_file, 'w+', errors='backslashreplace') directions_out.write('\\documentclass{article}\n') directions_out.write('\\usepackage{booktabs}\n') directions_out.write('\\usepackage{longtable}\n') directions_out.write('\\begin{document}') directions_out.write(dir_df.to_latex(index=False, longtable= True, multicolumn=False)) directions_out.write('\\end{document}\n') directions_out.close() else: dir_df.to_excel(dir_file, index=False) else: print('No directional data for ouput.') dir_file = None intensity_file = pmag.resolve_file_name(intensity_file, output_dir_path) int_df = map_magic.convert_site_dm3_table_intensity(sites_df) if len(int_df): if latex: if intensity_file.endswith('.xls'): intensity_file = intensity_file[:-4] + '.tex' intensities_out = open(intensity_file, 'w+', errors= 'backslashreplace') intensities_out.write('\\documentclass{article}\n') intensities_out.write('\\usepackage{booktabs}\n') intensities_out.write('\\usepackage{longtable}\n') intensities_out.write('\\begin{document}') intensities_out.write(int_df.to_latex(index=False, longtable= True, multicolumn=False)) intensities_out.write('\\end{document}\n') intensities_out.close() else: int_df.to_excel(intensity_file, index=False) else: print('No intensity data for ouput.') intensity_file = None nfo_df = sites_df.dropna(subset=['lat', 'lon']) if len(nfo_df) > 0: SiteCols = ['Site', 'Location', 'Lat. (N)', 'Long. (E)'] info_file = pmag.resolve_file_name(info_file, output_dir_path) age_cols = ['age', 'age_sigma', 'age_unit'] for col in age_cols: if col not in nfo_df: nfo_df[col] = None test_age = nfo_df.dropna(subset=['age', 'age_sigma', 'age_unit']) if len(test_age) > 0: SiteCols.append('Age ') SiteCols.append('Age sigma') SiteCols.append('Units') nfo_df = nfo_df[['site', 'location', 'lat', 'lon', 'age', 'age_sigma', 'age_unit']] else: nfo_df = nfo_df[['site', 'location', 'lat', 'lon']] nfo_df.drop_duplicates(inplace=True) nfo_df.columns = SiteCols nfo_df.fillna(value='', inplace=True) if latex: if info_file.endswith('.xls'): info_file = info_file[:-4] + '.tex' info_out = open(info_file, 'w+', errors='backslashreplace') info_out.write('\\documentclass{article}\n') info_out.write('\\usepackage{booktabs}\n') info_out.write('\\usepackage{longtable}\n') info_out.write('\\begin{document}') info_out.write(nfo_df.to_latex(index=False, longtable=True, multicolumn=False)) info_out.write('\\end{document}\n') info_out.close() else: nfo_df.to_excel(info_file, index=False) else: print('No location information for ouput.') info_file = None return True, [fname for fname in [info_file, intensity_file, dir_file] if fname]
sites_extract
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(site_file='sites.txt', directions_file='directions.xls',\n intensity_file='intensity.xls', info_file='site_info.xls',\n output_dir_path='.', input_dir_path='', latex=False):\n input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,\n output_dir_path)\n try:\n fname = pmag.resolve_file_name(site_file, input_dir_path)\n except IOError:\n print('bad site file name')\n return False, 'bad site file name'\n sites_df = pd.read_csv(fname, sep='\\t', header=1)\n dir_df = map_magic.convert_site_dm3_table_directions(sites_df)\n dir_file = pmag.resolve_file_name(directions_file, output_dir_path)\n if len(dir_df):\n if latex:\n if dir_file.endswith('.xls'):\n dir_file = dir_file[:-4] + '.tex'\n directions_out = open(dir_file, 'w+', errors='backslashreplace')\n directions_out.write('\\\\documentclass{article}\\n')\n directions_out.write('\\\\usepackage{booktabs}\\n')\n directions_out.write('\\\\usepackage{longtable}\\n')\n directions_out.write('\\\\begin{document}')\n directions_out.write(dir_df.to_latex(index=False, longtable=\n True, multicolumn=False))\n directions_out.write('\\\\end{document}\\n')\n directions_out.close()\n else:\n dir_df.to_excel(dir_file, index=False)\n else:\n print('No directional data for ouput.')\n dir_file = None\n intensity_file = pmag.resolve_file_name(intensity_file, output_dir_path)\n int_df = map_magic.convert_site_dm3_table_intensity(sites_df)\n if len(int_df):\n if latex:\n if intensity_file.endswith('.xls'):\n intensity_file = intensity_file[:-4] + '.tex'\n intensities_out = open(intensity_file, 'w+', errors=\n 'backslashreplace')\n intensities_out.write('\\\\documentclass{article}\\n')\n intensities_out.write('\\\\usepackage{booktabs}\\n')\n intensities_out.write('\\\\usepackage{longtable}\\n')\n intensities_out.write('\\\\begin{document}')\n intensities_out.write(int_df.to_latex(index=False, longtable=\n True, multicolumn=False))\n intensities_out.write('\\\\end{document}\\n')\n intensities_out.close()\n else:\n int_df.to_excel(intensity_file, index=False)\n else:\n print('No intensity data for ouput.')\n intensity_file = None\n nfo_df = sites_df.dropna(subset=['lat', 'lon'])\n if len(nfo_df) > 0:\n SiteCols = ['Site', 'Location', 'Lat. (N)', 'Long. (E)']\n info_file = pmag.resolve_file_name(info_file, output_dir_path)\n age_cols = ['age', 'age_sigma', 'age_unit']\n for col in age_cols:\n if col not in nfo_df:\n nfo_df[col] = None\n test_age = nfo_df.dropna(subset=['age', 'age_sigma', 'age_unit'])\n if len(test_age) > 0:\n SiteCols.append('Age ')\n SiteCols.append('Age sigma')\n SiteCols.append('Units')\n nfo_df = nfo_df[['site', 'location', 'lat', 'lon', 'age',\n 'age_sigma', 'age_unit']]\n else:\n nfo_df = nfo_df[['site', 'location', 'lat', 'lon']]\n nfo_df.drop_duplicates(inplace=True)\n nfo_df.columns = SiteCols\n nfo_df.fillna(value='', inplace=True)\n if latex:\n if info_file.endswith('.xls'):\n info_file = info_file[:-4] + '.tex'\n info_out = open(info_file, 'w+', errors='backslashreplace')\n info_out.write('\\\\documentclass{article}\\n')\n info_out.write('\\\\usepackage{booktabs}\\n')\n info_out.write('\\\\usepackage{longtable}\\n')\n info_out.write('\\\\begin{document}')\n info_out.write(nfo_df.to_latex(index=False, longtable=True,\n multicolumn=False))\n info_out.write('\\\\end{document}\\n')\n info_out.close()\n else:\n nfo_df.to_excel(info_file, index=False)\n else:\n print('No location information for ouput.')\n info_file = None\n return True, [fname for fname in [info_file, intensity_file, dir_file] if\n fname]\n", "role": "user" }, { "content": "sites_extract", "role": "assistant" } ]
def x(spec_file='specimens.txt', output_file='specimens.xls', landscape= False, longtable=False, output_dir_path='.', input_dir_path='', latex=False ): input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path, output_dir_path) try: fname = pmag.resolve_file_name(spec_file, input_dir_path) except IOError: print('bad specimen file name') return False, 'bad specimen file name' spec_df = pd.read_csv(fname, sep='\t', header=1) spec_df.dropna('columns', how='all', inplace=True) if 'int_abs' in spec_df.columns: spec_df.dropna(subset=['int_abs'], inplace=True) if len(spec_df) > 0: table_df = map_magic.convert_specimen_dm3_table(spec_df) out_file = pmag.resolve_file_name(output_file, output_dir_path) if latex: if out_file.endswith('.xls'): out_file = out_file.rsplit('.')[0] + '.tex' info_out = open(out_file, 'w+', errors='backslashreplace') info_out.write('\\documentclass{article}\n') info_out.write('\\usepackage{booktabs}\n') if landscape: info_out.write('\\usepackage{lscape}') if longtable: info_out.write('\\usepackage{longtable}\n') info_out.write('\\begin{document}\n') if landscape: info_out.write('\\begin{landscape}\n') info_out.write(table_df.to_latex(index=False, longtable= longtable, escape=True, multicolumn=False)) if landscape: info_out.write('\\end{landscape}\n') info_out.write('\\end{document}\n') info_out.close() else: table_df.to_excel(out_file, index=False) else: print('No specimen data for ouput.') return True, [out_file]
specimens_extract
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(spec_file='specimens.txt', output_file='specimens.xls', landscape=\n False, longtable=False, output_dir_path='.', input_dir_path='', latex=False\n ):\n input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,\n output_dir_path)\n try:\n fname = pmag.resolve_file_name(spec_file, input_dir_path)\n except IOError:\n print('bad specimen file name')\n return False, 'bad specimen file name'\n spec_df = pd.read_csv(fname, sep='\\t', header=1)\n spec_df.dropna('columns', how='all', inplace=True)\n if 'int_abs' in spec_df.columns:\n spec_df.dropna(subset=['int_abs'], inplace=True)\n if len(spec_df) > 0:\n table_df = map_magic.convert_specimen_dm3_table(spec_df)\n out_file = pmag.resolve_file_name(output_file, output_dir_path)\n if latex:\n if out_file.endswith('.xls'):\n out_file = out_file.rsplit('.')[0] + '.tex'\n info_out = open(out_file, 'w+', errors='backslashreplace')\n info_out.write('\\\\documentclass{article}\\n')\n info_out.write('\\\\usepackage{booktabs}\\n')\n if landscape:\n info_out.write('\\\\usepackage{lscape}')\n if longtable:\n info_out.write('\\\\usepackage{longtable}\\n')\n info_out.write('\\\\begin{document}\\n')\n if landscape:\n info_out.write('\\\\begin{landscape}\\n')\n info_out.write(table_df.to_latex(index=False, longtable=\n longtable, escape=True, multicolumn=False))\n if landscape:\n info_out.write('\\\\end{landscape}\\n')\n info_out.write('\\\\end{document}\\n')\n info_out.close()\n else:\n table_df.to_excel(out_file, index=False)\n else:\n print('No specimen data for ouput.')\n return True, [out_file]\n", "role": "user" }, { "content": "specimens_extract", "role": "assistant" } ]
def x(crit_file='criteria.txt', output_file='criteria.xls', output_dir_path ='.', input_dir_path='', latex=False): input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path, output_dir_path) try: fname = pmag.resolve_file_name(crit_file, input_dir_path) except IOError: print('bad criteria file name') return False, 'bad criteria file name' crit_df = pd.read_csv(fname, sep='\t', header=1) if len(crit_df) > 0: out_file = pmag.resolve_file_name(output_file, output_dir_path) s = crit_df['table_column'].str.split(pat='.', expand=True) crit_df['table'] = s[0] crit_df['column'] = s[1] crit_df = crit_df[['table', 'column', 'criterion_value', 'criterion_operation']] crit_df.columns = ['Table', 'Statistic', 'Threshold', 'Operation'] if latex: if out_file.endswith('.xls'): out_file = out_file.rsplit('.')[0] + '.tex' crit_df.loc[crit_df['Operation'].str.contains('<'), 'operation' ] = 'maximum' crit_df.loc[crit_df['Operation'].str.contains('>'), 'operation' ] = 'minimum' crit_df.loc[crit_df['Operation'] == '=', 'operation'] = 'equal to' info_out = open(out_file, 'w+', errors='backslashreplace') info_out.write('\\documentclass{article}\n') info_out.write('\\usepackage{booktabs}\n') info_out.write('\\usepackage[T1]{fontenc}\n') info_out.write('\\begin{document}') info_out.write(crit_df.to_latex(index=False, longtable=False, escape=True, multicolumn=False)) info_out.write('\\end{document}\n') info_out.close() else: crit_df.to_excel(out_file, index=False) else: print('No criteria for ouput.') return True, [out_file]
criteria_extract
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(crit_file='criteria.txt', output_file='criteria.xls', output_dir_path\n ='.', input_dir_path='', latex=False):\n input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path,\n output_dir_path)\n try:\n fname = pmag.resolve_file_name(crit_file, input_dir_path)\n except IOError:\n print('bad criteria file name')\n return False, 'bad criteria file name'\n crit_df = pd.read_csv(fname, sep='\\t', header=1)\n if len(crit_df) > 0:\n out_file = pmag.resolve_file_name(output_file, output_dir_path)\n s = crit_df['table_column'].str.split(pat='.', expand=True)\n crit_df['table'] = s[0]\n crit_df['column'] = s[1]\n crit_df = crit_df[['table', 'column', 'criterion_value',\n 'criterion_operation']]\n crit_df.columns = ['Table', 'Statistic', 'Threshold', 'Operation']\n if latex:\n if out_file.endswith('.xls'):\n out_file = out_file.rsplit('.')[0] + '.tex'\n crit_df.loc[crit_df['Operation'].str.contains('<'), 'operation'\n ] = 'maximum'\n crit_df.loc[crit_df['Operation'].str.contains('>'), 'operation'\n ] = 'minimum'\n crit_df.loc[crit_df['Operation'] == '=', 'operation'] = 'equal to'\n info_out = open(out_file, 'w+', errors='backslashreplace')\n info_out.write('\\\\documentclass{article}\\n')\n info_out.write('\\\\usepackage{booktabs}\\n')\n info_out.write('\\\\usepackage[T1]{fontenc}\\n')\n info_out.write('\\\\begin{document}')\n info_out.write(crit_df.to_latex(index=False, longtable=False,\n escape=True, multicolumn=False))\n info_out.write('\\\\end{document}\\n')\n info_out.close()\n else:\n crit_df.to_excel(out_file, index=False)\n else:\n print('No criteria for ouput.')\n return True, [out_file]\n", "role": "user" }, { "content": "criteria_extract", "role": "assistant" } ]
def x(infile='measurements.txt', dir_path='.', experiments='', fmt='svg', save_plots=True, interactive=False, contribution=None): saved = [] if contribution: chi_data_all = contribution.tables['measurements'].df else: infile = pmag.resolve_file_name(infile, dir_path) chi_data_all = pd.read_csv(infile, sep='\t', header=1) if not experiments: try: experiments = chi_data_all.experiment.unique() except Exception as ex: print(ex) experiments = ['all'] else: experiments = [experiments] plotnum = 0 figs = {} fnames = {} for exp in experiments: if exp == 'all': chi_data = chi_data_all chi_data = chi_data_all[chi_data_all.experiment == exp] if len(chi_data) <= 1: print('Not enough data to plot {}'.format(exp)) continue plotnum += 1 if not save_plots: pmagplotlib.plot_init(plotnum, 5, 5) else: plt.figure(plotnum) figs[str(plotnum)] = plotnum fnames[str(plotnum)] = exp + '_temperature.{}'.format(fmt) Ts = np.sort(chi_data.meas_temp.unique()) Fs = np.sort(chi_data.meas_freq.unique()) Bs = np.sort(chi_data.meas_field_ac.unique()) b = Bs.max() for num, f in enumerate(Fs): this_f = chi_data[chi_data.meas_freq == f] this_f = this_f[this_f.meas_field_ac == b] plt.plot(this_f.meas_temp, 1000000.0 * this_f.susc_chi_volume, label='%i' % f + ' Hz') plt.legend() plt.xlabel('Temperature (K)') plt.ylabel('$\\chi$ ($\\mu$SI)') plt.title('B = ' + '%7.2e' % b + ' T') plotnum += 1 figs[str(plotnum)] = plotnum fnames[str(plotnum)] = exp + '_frequency.{}'.format(fmt) if not save_plots: pmagplotlib.plot_init(plotnum, 5, 5) else: plt.figure(plotnum) b = Bs.max() t = Ts.min() this_t = chi_data[chi_data.meas_temp == t] this_t = this_t[this_t.meas_field_ac == b] plt.semilogx(this_t.meas_freq, 1000000.0 * this_t.susc_chi_volume, label='%i' % t + ' K') plt.legend() plt.xlabel('Frequency (Hz)') plt.ylabel('$\\chi$ ($\\mu$SI)') plt.title('B = ' + '%7.2e' % b + ' T') if interactive: pmagplotlib.draw_figs(figs) ans = input('enter s[a]ve to save files, [return] to quit ') if ans == 'a': saved.extend(pmagplotlib.save_plots(figs, fnames)) else: return True, [] elif save_plots: saved.extend(pmagplotlib.save_plots(figs, fnames)) return True, saved
chi_magic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile='measurements.txt', dir_path='.', experiments='', fmt='svg',\n save_plots=True, interactive=False, contribution=None):\n saved = []\n if contribution:\n chi_data_all = contribution.tables['measurements'].df\n else:\n infile = pmag.resolve_file_name(infile, dir_path)\n chi_data_all = pd.read_csv(infile, sep='\\t', header=1)\n if not experiments:\n try:\n experiments = chi_data_all.experiment.unique()\n except Exception as ex:\n print(ex)\n experiments = ['all']\n else:\n experiments = [experiments]\n plotnum = 0\n figs = {}\n fnames = {}\n for exp in experiments:\n if exp == 'all':\n chi_data = chi_data_all\n chi_data = chi_data_all[chi_data_all.experiment == exp]\n if len(chi_data) <= 1:\n print('Not enough data to plot {}'.format(exp))\n continue\n plotnum += 1\n if not save_plots:\n pmagplotlib.plot_init(plotnum, 5, 5)\n else:\n plt.figure(plotnum)\n figs[str(plotnum)] = plotnum\n fnames[str(plotnum)] = exp + '_temperature.{}'.format(fmt)\n Ts = np.sort(chi_data.meas_temp.unique())\n Fs = np.sort(chi_data.meas_freq.unique())\n Bs = np.sort(chi_data.meas_field_ac.unique())\n b = Bs.max()\n for num, f in enumerate(Fs):\n this_f = chi_data[chi_data.meas_freq == f]\n this_f = this_f[this_f.meas_field_ac == b]\n plt.plot(this_f.meas_temp, 1000000.0 * this_f.susc_chi_volume,\n label='%i' % f + ' Hz')\n plt.legend()\n plt.xlabel('Temperature (K)')\n plt.ylabel('$\\\\chi$ ($\\\\mu$SI)')\n plt.title('B = ' + '%7.2e' % b + ' T')\n plotnum += 1\n figs[str(plotnum)] = plotnum\n fnames[str(plotnum)] = exp + '_frequency.{}'.format(fmt)\n if not save_plots:\n pmagplotlib.plot_init(plotnum, 5, 5)\n else:\n plt.figure(plotnum)\n b = Bs.max()\n t = Ts.min()\n this_t = chi_data[chi_data.meas_temp == t]\n this_t = this_t[this_t.meas_field_ac == b]\n plt.semilogx(this_t.meas_freq, 1000000.0 * this_t.susc_chi_volume,\n label='%i' % t + ' K')\n plt.legend()\n plt.xlabel('Frequency (Hz)')\n plt.ylabel('$\\\\chi$ ($\\\\mu$SI)')\n plt.title('B = ' + '%7.2e' % b + ' T')\n if interactive:\n pmagplotlib.draw_figs(figs)\n ans = input('enter s[a]ve to save files, [return] to quit ')\n if ans == 'a':\n saved.extend(pmagplotlib.save_plots(figs, fnames))\n else:\n return True, []\n elif save_plots:\n saved.extend(pmagplotlib.save_plots(figs, fnames))\n return True, saved\n", "role": "user" }, { "content": "chi_magic", "role": "assistant" } ]
def x(infile='', data=(), outfile='', xlab='x', binsize=False, norm=1, fmt= 'svg', save_plots=True, interactive=False): if outfile: fmt = '' else: outfile = 'hist.' + fmt if os.path.exists(infile): D = np.loadtxt(infile) else: D = np.array(data) try: if not len(D): print('-W- No data found') return False, [] except ValueError: pass fig = pmagplotlib.plot_init(1, 8, 7) try: len(D) except TypeError: D = np.array([D]) if len(D) < 5: print( '-W- Not enough points to plot histogram ({} point(s) provided, 5 required)' .format(len(D))) return False, [] if not binsize: binsize = int(np.around(1 + 3.22 * np.log(len(D)))) binsize = int(binsize) Nbins = int(len(D) / binsize) ax = fig.add_subplot(111) if norm == 1: print('normalizing') n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3', histtype='stepfilled', color='black', density=True) ax.set_ylabel('Frequency') elif norm == 0: print('not normalizing') n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3', histtype='stepfilled', color='black', density=False) ax.set_ylabel('Number') elif norm == -1: n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3', histtype='stepfilled', color='black', density=True) ax.set_ylabel('Frequency') ax2 = ax.twinx() n, bins, patches = ax2.hist(D, bins=Nbins, facecolor='#D3D3D3', histtype='stepfilled', color='black', density=False) ax2.set_ylabel('Number', rotation=-90) plt.axis([D.min(), D.max(), 0, n.max() + 0.1 * n.max()]) ax.set_xlabel(xlab) name = 'N = ' + str(len(D)) plt.title(name) if interactive: pmagplotlib.draw_figs({(1): 'hist'}) p = input('s[a]ve to save plot, [q]uit to exit without saving ') if p != 'a': return True, [] plt.savefig(outfile) print('plot saved in ', outfile) return True, [outfile] if pmagplotlib.isServer: pmagplotlib.add_borders({'hist': 1}, {'hist': 'Intensity Histogram'}) if save_plots: plt.savefig(outfile) print('plot saved in ', outfile) return True, [outfile]
histplot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile='', data=(), outfile='', xlab='x', binsize=False, norm=1, fmt=\n 'svg', save_plots=True, interactive=False):\n if outfile:\n fmt = ''\n else:\n outfile = 'hist.' + fmt\n if os.path.exists(infile):\n D = np.loadtxt(infile)\n else:\n D = np.array(data)\n try:\n if not len(D):\n print('-W- No data found')\n return False, []\n except ValueError:\n pass\n fig = pmagplotlib.plot_init(1, 8, 7)\n try:\n len(D)\n except TypeError:\n D = np.array([D])\n if len(D) < 5:\n print(\n '-W- Not enough points to plot histogram ({} point(s) provided, 5 required)'\n .format(len(D)))\n return False, []\n if not binsize:\n binsize = int(np.around(1 + 3.22 * np.log(len(D))))\n binsize = int(binsize)\n Nbins = int(len(D) / binsize)\n ax = fig.add_subplot(111)\n if norm == 1:\n print('normalizing')\n n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3',\n histtype='stepfilled', color='black', density=True)\n ax.set_ylabel('Frequency')\n elif norm == 0:\n print('not normalizing')\n n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3',\n histtype='stepfilled', color='black', density=False)\n ax.set_ylabel('Number')\n elif norm == -1:\n n, bins, patches = ax.hist(D, bins=Nbins, facecolor='#D3D3D3',\n histtype='stepfilled', color='black', density=True)\n ax.set_ylabel('Frequency')\n ax2 = ax.twinx()\n n, bins, patches = ax2.hist(D, bins=Nbins, facecolor='#D3D3D3',\n histtype='stepfilled', color='black', density=False)\n ax2.set_ylabel('Number', rotation=-90)\n plt.axis([D.min(), D.max(), 0, n.max() + 0.1 * n.max()])\n ax.set_xlabel(xlab)\n name = 'N = ' + str(len(D))\n plt.title(name)\n if interactive:\n pmagplotlib.draw_figs({(1): 'hist'})\n p = input('s[a]ve to save plot, [q]uit to exit without saving ')\n if p != 'a':\n return True, []\n plt.savefig(outfile)\n print('plot saved in ', outfile)\n return True, [outfile]\n if pmagplotlib.isServer:\n pmagplotlib.add_borders({'hist': 1}, {'hist': 'Intensity Histogram'})\n if save_plots:\n plt.savefig(outfile)\n print('plot saved in ', outfile)\n return True, [outfile]\n", "role": "user" }, { "content": "histplot", "role": "assistant" } ]
def x(self, fit_name): fits = self.fits.loc[self.fits.specimen_comp_name == fit_name].loc[self .fits.specimen_tilt_correction == 0] fits.reset_index(inplace=True) means = self.means.loc[self.means.site_comp_name == fit_name].loc[self. means.site_tilt_correction == 0] means.reset_index(inplace=True) mean_name = str(fit_name) + '_mean' setattr(self, fit_name, fits) setattr(self, mean_name, means)
parse_fits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fit_name):\n fits = self.fits.loc[self.fits.specimen_comp_name == fit_name].loc[self\n .fits.specimen_tilt_correction == 0]\n fits.reset_index(inplace=True)\n means = self.means.loc[self.means.site_comp_name == fit_name].loc[self.\n means.site_tilt_correction == 0]\n means.reset_index(inplace=True)\n mean_name = str(fit_name) + '_mean'\n setattr(self, fit_name, fits)\n setattr(self, mean_name, means)\n", "role": "user" }, { "content": "parse_fits", "role": "assistant" } ]
def x(): dir_path = '.' if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] meas_file, spec_file = (dir_path + '/magic_measurements.txt', dir_path + '/er_specimens.txt') out_file = meas_file MeasRecs, SpecRecs = [], [] OutRecs = [] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') meas_file = dir_path + '/' + sys.argv[ind + 1] if '-fsp' in sys.argv: ind = sys.argv.index('-fsp') spec_file = dir_path + '/' + sys.argv[ind + 1] if '-F' in sys.argv: ind = sys.argv.index('-F') out_file = dir_path + '/' + sys.argv[ind + 1] MeasRecs, file_type = pmag.magic_read(meas_file) Specs, file_type = pmag.magic_read(spec_file) for rec in MeasRecs: if 'measurement_magn_moment' in list(rec.keys()) and rec[ 'measurement_magn_moment'] != '': for spec in Specs: if spec['er_specimen_name'] == rec['er_specimen_name']: if 'specimen_weight' in list(spec.keys()) and spec[ 'specimen_weight'] != '': rec['measurement_magn_mass'] = '%e' % old_div(float (rec['measurement_magn_moment']), float(spec[ 'specimen_weight'])) if 'specimen_volume' in list(spec.keys()) and spec[ 'specimen_volume'] != '': rec['measurement_magn_volume'] = '%e' % old_div(float (rec['measurement_magn_moment']), float(spec[ 'specimen_volume'])) break if 'measurement_magn_volume' not in list(rec.keys()): rec['measurement_magn_volume'] = '' if 'measurement_magn_mass' not in list(rec.keys()): rec['measurement_magn_mass'] = '' OutRecs.append(rec) pmag.magic_write(out_file, OutRecs, 'magic_measurements') print('Data saved in ', out_file)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n dir_path = '.'\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n meas_file, spec_file = (dir_path + '/magic_measurements.txt', dir_path +\n '/er_specimens.txt')\n out_file = meas_file\n MeasRecs, SpecRecs = [], []\n OutRecs = []\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n meas_file = dir_path + '/' + sys.argv[ind + 1]\n if '-fsp' in sys.argv:\n ind = sys.argv.index('-fsp')\n spec_file = dir_path + '/' + sys.argv[ind + 1]\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n out_file = dir_path + '/' + sys.argv[ind + 1]\n MeasRecs, file_type = pmag.magic_read(meas_file)\n Specs, file_type = pmag.magic_read(spec_file)\n for rec in MeasRecs:\n if 'measurement_magn_moment' in list(rec.keys()) and rec[\n 'measurement_magn_moment'] != '':\n for spec in Specs:\n if spec['er_specimen_name'] == rec['er_specimen_name']:\n if 'specimen_weight' in list(spec.keys()) and spec[\n 'specimen_weight'] != '':\n rec['measurement_magn_mass'] = '%e' % old_div(float\n (rec['measurement_magn_moment']), float(spec[\n 'specimen_weight']))\n if 'specimen_volume' in list(spec.keys()) and spec[\n 'specimen_volume'] != '':\n rec['measurement_magn_volume'] = '%e' % old_div(float\n (rec['measurement_magn_moment']), float(spec[\n 'specimen_volume']))\n break\n if 'measurement_magn_volume' not in list(rec.keys()):\n rec['measurement_magn_volume'] = ''\n if 'measurement_magn_mass' not in list(rec.keys()):\n rec['measurement_magn_mass'] = ''\n OutRecs.append(rec)\n pmag.magic_write(out_file, OutRecs, 'magic_measurements')\n print('Data saved in ', out_file)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(self, event, wind=None): if wind: wind.Destroy() if not self.parent.IsShown(): self.on_show_mainframe(None) self.parent.Bind(wx.EVT_MENU, self.on_quit, self.file_quit) else: self.parent.Close()
on_quit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event, wind=None):\n if wind:\n wind.Destroy()\n if not self.parent.IsShown():\n self.on_show_mainframe(None)\n self.parent.Bind(wx.EVT_MENU, self.on_quit, self.file_quit)\n else:\n self.parent.Close()\n", "role": "user" }, { "content": "on_quit", "role": "assistant" } ]
def x(self, event): self.parent.Enable() self.parent.Show() self.parent.Raise()
on_show_mainframe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n self.parent.Enable()\n self.parent.Show()\n self.parent.Raise()\n", "role": "user" }, { "content": "on_show_mainframe", "role": "assistant" } ]
def x(self, event): dia = pmag_menu_dialogs.ClearWD(self.parent, self.parent.WD) clear = dia.do_clear() if clear: if self.data_model_num == 2.5: self.parent.er_magic = builder.ErMagicBuilder(self.parent.WD, self.parent.er_magic.data_model) elif self.data_model_num == 3: self.parent.contribution = cb.Contribution(self.parent.WD, dmodel=self.parent.contribution.data_model)
on_clear
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n dia = pmag_menu_dialogs.ClearWD(self.parent, self.parent.WD)\n clear = dia.do_clear()\n if clear:\n if self.data_model_num == 2.5:\n self.parent.er_magic = builder.ErMagicBuilder(self.parent.WD,\n self.parent.er_magic.data_model)\n elif self.data_model_num == 3:\n self.parent.contribution = cb.Contribution(self.parent.WD,\n dmodel=self.parent.contribution.data_model)\n", "role": "user" }, { "content": "on_clear", "role": "assistant" } ]
def x(): col1, col2 = 0, 1 sym, size = 'ro', 20 xlab, ylab = '', '' lines = 0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] else: """-f option is a required field""" print(main.__doc__) sys.exit() if '-c' in sys.argv: ind = sys.argv.index('-c') col1 = sys.argv[ind + 1] col2 = sys.argv[ind + 2] else: """Column headers a required field""" print(main.__doc__) sys.exit() if '-xlab' in sys.argv: ind = sys.argv.index('-xlab') xlab = sys.argv[ind + 1] if '-ylab' in sys.argv: ind = sys.argv.index('-ylab') ylab = sys.argv[ind + 1] if '-b' in sys.argv: ind = sys.argv.index('-b') xmin = float(sys.argv[ind + 1]) xmax = float(sys.argv[ind + 2]) ymin = float(sys.argv[ind + 3]) ymax = float(sys.argv[ind + 4]) if '-sym' in sys.argv: ind = sys.argv.index('-sym') sym = sys.argv[ind + 1] size = int(sys.argv[ind + 2]) if '-l' in sys.argv: lines = 1 if '-S' in sys.argv: sym = '' X, Y = [], [] data, file_type = pmag.magic_read(file) print(file_type) for rec in data: if col1 not in list(rec.keys()) or col2 not in list(rec.keys()): print(col1, ' and/or ', col2, ' not in file headers') print('try again') sys.exit() if rec[col1] != '' and rec[col2] != '': skip = 0 if '-crit' in sys.argv: for crit in bounds: crits = crit.split(':') crit_key = crits[0] crit_min = crits[1] crit_max = crits[2] if rec[crit_key] == '': skip = 1 else: if crit_min != '' and float(rec[crit_key]) < float( crit_min): skip = 1 if crit_max != '' and float(rec[crit_key]) > float( crit_min): skip = 1 if skip == 0: X.append(float(rec[col1])) Y.append(float(rec[col2])) if len(X) == 0: print(col1, ' and/or ', col2, ' have no data ') print('try again') sys.exit() else: print(len(X), ' data points') if sym != '': pylab.scatter(X, Y, c=sym[0], marker=sym[1], s=size) if xlab != '': pylab.xlabel(xlab) if ylab != '': pylab.ylabel(ylab) if lines == 1: pylab.plot(X, Y, 'k-') if '-b' in sys.argv: pylab.axis([xmin, xmax, ymin, ymax]) pylab.draw() ans = input('Press return to quit ') sys.exit()
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n col1, col2 = 0, 1\n sym, size = 'ro', 20\n xlab, ylab = '', ''\n lines = 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n else:\n \"\"\"-f option is a required field\"\"\"\n print(main.__doc__)\n sys.exit()\n if '-c' in sys.argv:\n ind = sys.argv.index('-c')\n col1 = sys.argv[ind + 1]\n col2 = sys.argv[ind + 2]\n else:\n \"\"\"Column headers a required field\"\"\"\n print(main.__doc__)\n sys.exit()\n if '-xlab' in sys.argv:\n ind = sys.argv.index('-xlab')\n xlab = sys.argv[ind + 1]\n if '-ylab' in sys.argv:\n ind = sys.argv.index('-ylab')\n ylab = sys.argv[ind + 1]\n if '-b' in sys.argv:\n ind = sys.argv.index('-b')\n xmin = float(sys.argv[ind + 1])\n xmax = float(sys.argv[ind + 2])\n ymin = float(sys.argv[ind + 3])\n ymax = float(sys.argv[ind + 4])\n if '-sym' in sys.argv:\n ind = sys.argv.index('-sym')\n sym = sys.argv[ind + 1]\n size = int(sys.argv[ind + 2])\n if '-l' in sys.argv:\n lines = 1\n if '-S' in sys.argv:\n sym = ''\n X, Y = [], []\n data, file_type = pmag.magic_read(file)\n print(file_type)\n for rec in data:\n if col1 not in list(rec.keys()) or col2 not in list(rec.keys()):\n print(col1, ' and/or ', col2, ' not in file headers')\n print('try again')\n sys.exit()\n if rec[col1] != '' and rec[col2] != '':\n skip = 0\n if '-crit' in sys.argv:\n for crit in bounds:\n crits = crit.split(':')\n crit_key = crits[0]\n crit_min = crits[1]\n crit_max = crits[2]\n if rec[crit_key] == '':\n skip = 1\n else:\n if crit_min != '' and float(rec[crit_key]) < float(\n crit_min):\n skip = 1\n if crit_max != '' and float(rec[crit_key]) > float(\n crit_min):\n skip = 1\n if skip == 0:\n X.append(float(rec[col1]))\n Y.append(float(rec[col2]))\n if len(X) == 0:\n print(col1, ' and/or ', col2, ' have no data ')\n print('try again')\n sys.exit()\n else:\n print(len(X), ' data points')\n if sym != '':\n pylab.scatter(X, Y, c=sym[0], marker=sym[1], s=size)\n if xlab != '':\n pylab.xlabel(xlab)\n if ylab != '':\n pylab.ylabel(ylab)\n if lines == 1:\n pylab.plot(X, Y, 'k-')\n if '-b' in sys.argv:\n pylab.axis([xmin, xmax, ymin, ymax])\n pylab.draw()\n ans = input('Press return to quit ')\n sys.exit()\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): fmt, plot = 'svg', 0 FIG = {} FIG['lowrie'] = 1 pmagplotlib.plot_init(FIG['lowrie'], 6, 6) norm = 1 if len(sys.argv) > 1: if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-N' in sys.argv: norm = 0 if '-sav' in sys.argv: plot = 1 if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if '-f' in sys.argv: ind = sys.argv.index('-f') in_file = sys.argv[ind + 1] else: print(main.__doc__) print('you must supply a file name') sys.exit() else: print(main.__doc__) print('you must supply a file name') sys.exit() data = pmag.open_file(in_file) PmagRecs = [] keys = ['specimen', 'treatment', 'csd', 'M', 'dec', 'inc'] for line in data: PmagRec = {} rec = line.replace('\n', '').split() for k in range(len(keys)): PmagRec[keys[k]] = rec[k] PmagRecs.append(PmagRec) specs = pmag.get_dictkey(PmagRecs, 'specimen', '') sids = [] for spec in specs: if spec not in sids: sids.append(spec) for spc in sids: pmagplotlib.plot_init(FIG['lowrie'], 6, 6) print(spc) specdata = pmag.get_dictitem(PmagRecs, 'specimen', spc, 'T') DIMs, Temps = [], [] for dat in specdata: DIMs.append([float(dat['dec']), float(dat['inc']), float(dat[ 'M']) * 0.001]) Temps.append(float(dat['treatment'])) carts = pmag.dir2cart(DIMs).transpose() if norm == 1: nrm = DIMs[0][2] ylab = 'M/M_o' else: nrm = 1.0 ylab = 'Magnetic moment (Am^2)' xlab = 'Temperature (C)' pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[0]), nrm), sym='r-') pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[0]), nrm), sym='ro') pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[1]), nrm), sym='c-') pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[1]), nrm), sym='cs') pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[2]), nrm), sym='k-') pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[2]), nrm), sym='k^', title=spc, xlab=xlab, ylab=ylab) files = {'lowrie': 'lowrie:_' + spc + '_.' + fmt} if plot == 0: pmagplotlib.draw_figs(FIG) ans = input('S[a]ve figure? [q]uit, <return> to continue ') if ans == 'a': pmagplotlib.save_plots(FIG, files) elif ans == 'q': sys.exit() else: pmagplotlib.save_plots(FIG, files) pmagplotlib.clearFIG(FIG['lowrie'])
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n fmt, plot = 'svg', 0\n FIG = {}\n FIG['lowrie'] = 1\n pmagplotlib.plot_init(FIG['lowrie'], 6, 6)\n norm = 1\n if len(sys.argv) > 1:\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-N' in sys.argv:\n norm = 0\n if '-sav' in sys.argv:\n plot = 1\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n in_file = sys.argv[ind + 1]\n else:\n print(main.__doc__)\n print('you must supply a file name')\n sys.exit()\n else:\n print(main.__doc__)\n print('you must supply a file name')\n sys.exit()\n data = pmag.open_file(in_file)\n PmagRecs = []\n keys = ['specimen', 'treatment', 'csd', 'M', 'dec', 'inc']\n for line in data:\n PmagRec = {}\n rec = line.replace('\\n', '').split()\n for k in range(len(keys)):\n PmagRec[keys[k]] = rec[k]\n PmagRecs.append(PmagRec)\n specs = pmag.get_dictkey(PmagRecs, 'specimen', '')\n sids = []\n for spec in specs:\n if spec not in sids:\n sids.append(spec)\n for spc in sids:\n pmagplotlib.plot_init(FIG['lowrie'], 6, 6)\n print(spc)\n specdata = pmag.get_dictitem(PmagRecs, 'specimen', spc, 'T')\n DIMs, Temps = [], []\n for dat in specdata:\n DIMs.append([float(dat['dec']), float(dat['inc']), float(dat[\n 'M']) * 0.001])\n Temps.append(float(dat['treatment']))\n carts = pmag.dir2cart(DIMs).transpose()\n if norm == 1:\n nrm = DIMs[0][2]\n ylab = 'M/M_o'\n else:\n nrm = 1.0\n ylab = 'Magnetic moment (Am^2)'\n xlab = 'Temperature (C)'\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[0]),\n nrm), sym='r-')\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[0]),\n nrm), sym='ro')\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[1]),\n nrm), sym='c-')\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[1]),\n nrm), sym='cs')\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[2]),\n nrm), sym='k-')\n pmagplotlib.plot_xy(FIG['lowrie'], Temps, old_div(abs(carts[2]),\n nrm), sym='k^', title=spc, xlab=xlab, ylab=ylab)\n files = {'lowrie': 'lowrie:_' + spc + '_.' + fmt}\n if plot == 0:\n pmagplotlib.draw_figs(FIG)\n ans = input('S[a]ve figure? [q]uit, <return> to continue ')\n if ans == 'a':\n pmagplotlib.save_plots(FIG, files)\n elif ans == 'q':\n sys.exit()\n else:\n pmagplotlib.save_plots(FIG, files)\n pmagplotlib.clearFIG(FIG['lowrie'])\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): infile, outfile, data, indata = '', '', [], [] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind = sys.argv.index('-F') outfile = sys.argv[ind + 1] out = open(outfile, 'w') if '-i' in sys.argv: print('Welcome to paleolatitude calculator\n') while 1: data = [] print( 'pick a plate: NA, SA, AF, IN, EU, AU, ANT, GL \n cntl-D to quit' ) try: plate = input('Plate\n').upper() except: print('Goodbye \n') sys.exit() lat = float(input('Site latitude\n')) lon = float(input(' Site longitude\n')) age = float(input(' Age\n')) data = [plate, lat, lon, age] print('Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.') print(spitout(data)) elif '-f' in sys.argv: ind = sys.argv.index('-f') infile = sys.argv[ind + 1] f = open(infile, 'r') inp = f.readlines() elif '-P' in sys.argv: ind = sys.argv.index('-P') plate = sys.argv[ind + 1].upper() if '-lat' in sys.argv: ind = sys.argv.index('-lat') lat = float(sys.argv[ind + 1]) else: print(main.__doc__) sys.exit() if '-lon' in sys.argv: ind = sys.argv.index('-lon') lon = float(sys.argv[ind + 1]) else: print(main.__doc__) sys.exit() if '-age' in sys.argv: ind = sys.argv.index('-age') age = float(sys.argv[ind + 1]) else: print(main.__doc__) sys.exit() data = [plate, lat, lon, age] outstring = spitout(data) if outfile == '': print('Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.') print(outstring) else: out.write(outstring) sys.exit() else: inp = sys.stdin.readlines() if len(inp) > 0: for line in inp: data = [] rec = line.split() data.append(rec[0]) for k in range(1, 4): data.append(float(rec[k])) indata.append(data) if len(indata) > 0: for line in indata: outstring = spitout(line) if outfile == '': print(outstring) else: out.write(outstring) else: print('no input data') sys.exit()
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n infile, outfile, data, indata = '', '', [], []\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n outfile = sys.argv[ind + 1]\n out = open(outfile, 'w')\n if '-i' in sys.argv:\n print('Welcome to paleolatitude calculator\\n')\n while 1:\n data = []\n print(\n 'pick a plate: NA, SA, AF, IN, EU, AU, ANT, GL \\n cntl-D to quit'\n )\n try:\n plate = input('Plate\\n').upper()\n except:\n print('Goodbye \\n')\n sys.exit()\n lat = float(input('Site latitude\\n'))\n lon = float(input(' Site longitude\\n'))\n age = float(input(' Age\\n'))\n data = [plate, lat, lon, age]\n print('Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.')\n print(spitout(data))\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n infile = sys.argv[ind + 1]\n f = open(infile, 'r')\n inp = f.readlines()\n elif '-P' in sys.argv:\n ind = sys.argv.index('-P')\n plate = sys.argv[ind + 1].upper()\n if '-lat' in sys.argv:\n ind = sys.argv.index('-lat')\n lat = float(sys.argv[ind + 1])\n else:\n print(main.__doc__)\n sys.exit()\n if '-lon' in sys.argv:\n ind = sys.argv.index('-lon')\n lon = float(sys.argv[ind + 1])\n else:\n print(main.__doc__)\n sys.exit()\n if '-age' in sys.argv:\n ind = sys.argv.index('-age')\n age = float(sys.argv[ind + 1])\n else:\n print(main.__doc__)\n sys.exit()\n data = [plate, lat, lon, age]\n outstring = spitout(data)\n if outfile == '':\n print('Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.')\n print(outstring)\n else:\n out.write(outstring)\n sys.exit()\n else:\n inp = sys.stdin.readlines()\n if len(inp) > 0:\n for line in inp:\n data = []\n rec = line.split()\n data.append(rec[0])\n for k in range(1, 4):\n data.append(float(rec[k]))\n indata.append(data)\n if len(indata) > 0:\n for line in indata:\n outstring = spitout(line)\n if outfile == '':\n print(outstring)\n else:\n out.write(outstring)\n else:\n print('no input data')\n sys.exit()\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(T): t, V, tr = [], [], 0.0 ind1, ind2, ind3 = 0, 1, 2 evalues, evectmps = numpy.linalg.eig(T) evectors = numpy.transpose(evectmps) for tau in evalues: tr += tau if tr != 0: for i in range(3): evalues[i] = old_div(evalues[i], tr) else: return t, V t1, t2, t3 = 0.0, 0.0, 1.0 for k in range(3): if evalues[k] > t1: t1, ind1 = evalues[k], k if evalues[k] < t3: t3, ind3 = evalues[k], k for k in range(3): if evalues[k] != t1 and evalues[k] != t3: t2, ind2 = evalues[k], k V.append(evectors[ind1]) V.append(evectors[ind2]) V.append(evectors[ind3]) t.append(t1) t.append(t2) t.append(t3) return t, V
tauV
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(T):\n t, V, tr = [], [], 0.0\n ind1, ind2, ind3 = 0, 1, 2\n evalues, evectmps = numpy.linalg.eig(T)\n evectors = numpy.transpose(evectmps)\n for tau in evalues:\n tr += tau\n if tr != 0:\n for i in range(3):\n evalues[i] = old_div(evalues[i], tr)\n else:\n return t, V\n t1, t2, t3 = 0.0, 0.0, 1.0\n for k in range(3):\n if evalues[k] > t1:\n t1, ind1 = evalues[k], k\n if evalues[k] < t3:\n t3, ind3 = evalues[k], k\n for k in range(3):\n if evalues[k] != t1 and evalues[k] != t3:\n t2, ind2 = evalues[k], k\n V.append(evectors[ind1])\n V.append(evectors[ind2])\n V.append(evectors[ind3])\n t.append(t1)\n t.append(t2)\n t.append(t3)\n return t, V\n", "role": "user" }, { "content": "tauV", "role": "assistant" } ]
def x(X1_prime, X2_prime, X3_prime, PD): n = len(X1_prime) - 1 X1 = X1_prime[0] - X1_prime[n] X2 = X2_prime[0] - X2_prime[n] X3 = X3_prime[0] - X3_prime[n] R = numpy.array([X1, X2, X3]) dot = numpy.dot(PD, R) if dot < -1: dot = -1 elif dot > 1: dot = 1 if numpy.arccos(dot) > old_div(numpy.pi, 2.0): PD = -1.0 * numpy.array(PD) return PD
get_PD_direction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X1_prime, X2_prime, X3_prime, PD):\n n = len(X1_prime) - 1\n X1 = X1_prime[0] - X1_prime[n]\n X2 = X2_prime[0] - X2_prime[n]\n X3 = X3_prime[0] - X3_prime[n]\n R = numpy.array([X1, X2, X3])\n dot = numpy.dot(PD, R)\n if dot < -1:\n dot = -1\n elif dot > 1:\n dot = 1\n if numpy.arccos(dot) > old_div(numpy.pi, 2.0):\n PD = -1.0 * numpy.array(PD)\n return PD\n", "role": "user" }, { "content": "get_PD_direction", "role": "assistant" } ]
def x(tau): for t in tau: if isinstance(t, complex): return -999 MAD = math.degrees(numpy.arctan(numpy.sqrt(old_div(tau[1] + tau[2], tau [0])))) return MAD
get_MAD
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tau):\n for t in tau:\n if isinstance(t, complex):\n return -999\n MAD = math.degrees(numpy.arctan(numpy.sqrt(old_div(tau[1] + tau[2], tau\n [0]))))\n return MAD\n", "role": "user" }, { "content": "get_MAD", "role": "assistant" } ]
def x(d): ints = numpy.ones(len(d)).transpose() d = numpy.array(d) rad = old_div(numpy.pi, 180.0) if len(d.shape) > 1: decs, incs = d[:, 0] * rad, d[:, 1] * rad if d.shape[1] == 3: ints = d[:, 2] else: decs, incs = numpy.array(d[0]) * rad, numpy.array(d[1]) * rad if len(d) == 3: ints = numpy.array(d[2]) else: ints = numpy.array([1.0]) cart = numpy.array([ints * numpy.cos(decs) * numpy.cos(incs), ints * numpy.sin(decs) * numpy.cos(incs), ints * numpy.sin(incs)]).transpose() return cart
dir2cart
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d):\n ints = numpy.ones(len(d)).transpose()\n d = numpy.array(d)\n rad = old_div(numpy.pi, 180.0)\n if len(d.shape) > 1:\n decs, incs = d[:, 0] * rad, d[:, 1] * rad\n if d.shape[1] == 3:\n ints = d[:, 2]\n else:\n decs, incs = numpy.array(d[0]) * rad, numpy.array(d[1]) * rad\n if len(d) == 3:\n ints = numpy.array(d[2])\n else:\n ints = numpy.array([1.0])\n cart = numpy.array([ints * numpy.cos(decs) * numpy.cos(incs), ints *\n numpy.sin(decs) * numpy.cos(incs), ints * numpy.sin(incs)]).transpose()\n return cart\n", "role": "user" }, { "content": "dir2cart", "role": "assistant" } ]