source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, old_result_name, new_result_name, new_er_data=None, new_pmag_data=None, spec_names=None, samp_names=None, site_names=None, loc_names=None, replace_data=False): result = self.find_by_name(old_result_name, self.results) if not result: msg = ( '-W- {} is not a currently existing result, so it cannot be updated.' .format(old_result_name)) print(msg) return False else: specimens, samples, sites, locations = None, None, None, None if spec_names: specimens = [self.find_or_create_by_name(spec, self.specimens, 'specimen') for spec in spec_names] if samp_names: samples = [self.find_or_create_by_name(samp, self.samples, 'sample') for samp in samp_names] if site_names: sites = [self.find_or_create_by_name(site, self.sites, 'site') for site in site_names] if loc_names: locations = [self.find_or_create_by_name(loc, self.locations, 'location') for loc in loc_names] result.change_result(new_result_name, new_pmag_data, specimens, samples, sites, locations, replace_data) return result
change_result
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, old_result_name, new_result_name, new_er_data=None,\n new_pmag_data=None, spec_names=None, samp_names=None, site_names=None,\n loc_names=None, replace_data=False):\n result = self.find_by_name(old_result_name, self.results)\n if not result:\n msg = (\n '-W- {} is not a currently existing result, so it cannot be updated.'\n .format(old_result_name))\n print(msg)\n return False\n else:\n specimens, samples, sites, locations = None, None, None, None\n if spec_names:\n specimens = [self.find_or_create_by_name(spec, self.specimens,\n 'specimen') for spec in spec_names]\n if samp_names:\n samples = [self.find_or_create_by_name(samp, self.samples,\n 'sample') for samp in samp_names]\n if site_names:\n sites = [self.find_or_create_by_name(site, self.sites, 'site') for\n site in site_names]\n if loc_names:\n locations = [self.find_or_create_by_name(loc, self.locations,\n 'location') for loc in loc_names]\n result.change_result(new_result_name, new_pmag_data, specimens,\n samples, sites, locations, replace_data)\n return result\n", "role": "user" }, { "content": "change_result", "role": "assistant" } ]
def x(self): meas_file = os.path.join(self.WD, 'magic_measurements.txt') if not os.path.isfile(meas_file): print('-I- No magic_measurements.txt file') return {} try: meas_data, file_type = pmag.magic_read(meas_file) except IOError: print('-I- No magic_measurements.txt file') return {} if file_type == 'bad_file': print( "-E- ERROR: Can't read magic_measurements.txt file. File is corrupted." ) old_specimen_name = '' meas_name_list = [measurement.name for measurement in self.measurements] for rec in meas_data: citation = rec.get('er_citation_names', 'This study') if 'This study' not in citation: citation = citation.strip() + ':This study' er_data = {'er_citation_names': citation} pmag_data = {'er_citation_names': 'This study'} specimen_name = rec['er_specimen_name'] if specimen_name == '' or specimen_name == ' ': continue if specimen_name != old_specimen_name: sample_name = rec['er_sample_name'] site_name = rec['er_site_name'] location_name = rec['er_location_name'] location = self.find_by_name(location_name, self.locations) if location_name and not location: location = self.add_location(location_name, er_data=er_data, pmag_data=pmag_data) site = self.find_by_name(site_name, self.sites) if site_name and not site: site = self.add_site(site_name, location_name, er_data, pmag_data) sample = self.find_by_name(sample_name, self.samples) if sample_name and not sample: sample = self.add_sample(sample_name, site_name, er_data, pmag_data) specimen = self.find_by_name(specimen_name, self.specimens) if specimen_name and not specimen: specimen = self.add_specimen(specimen_name, sample_name, er_data, pmag_data) if sample and not self.find_by_name(specimen_name, sample.specimens ): sample.specimens.append(specimen) if site and not self.find_by_name(sample_name, site.samples): site.samples.append(sample) if location and not self.find_by_name(site_name, location.sites): location.sites.append(site) exp_name = rec['magic_experiment_name'] meas_num = rec['measurement_number'] meas_name = exp_name + '_' + str(meas_num) measurement = self.find_by_name(meas_name, self.measurements, meas_name_list) if not measurement: self.add_measurement(exp_name, meas_num, specimen.name, rec) meas_name_list.append(meas_name) old_specimen_name = specimen_name
get_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n meas_file = os.path.join(self.WD, 'magic_measurements.txt')\n if not os.path.isfile(meas_file):\n print('-I- No magic_measurements.txt file')\n return {}\n try:\n meas_data, file_type = pmag.magic_read(meas_file)\n except IOError:\n print('-I- No magic_measurements.txt file')\n return {}\n if file_type == 'bad_file':\n print(\n \"-E- ERROR: Can't read magic_measurements.txt file. File is corrupted.\"\n )\n old_specimen_name = ''\n meas_name_list = [measurement.name for measurement in self.measurements]\n for rec in meas_data:\n citation = rec.get('er_citation_names', 'This study')\n if 'This study' not in citation:\n citation = citation.strip() + ':This study'\n er_data = {'er_citation_names': citation}\n pmag_data = {'er_citation_names': 'This study'}\n specimen_name = rec['er_specimen_name']\n if specimen_name == '' or specimen_name == ' ':\n continue\n if specimen_name != old_specimen_name:\n sample_name = rec['er_sample_name']\n site_name = rec['er_site_name']\n location_name = rec['er_location_name']\n location = self.find_by_name(location_name, self.locations)\n if location_name and not location:\n location = self.add_location(location_name, er_data=er_data,\n pmag_data=pmag_data)\n site = self.find_by_name(site_name, self.sites)\n if site_name and not site:\n site = self.add_site(site_name, location_name, er_data,\n pmag_data)\n sample = self.find_by_name(sample_name, self.samples)\n if sample_name and not sample:\n sample = self.add_sample(sample_name, site_name, er_data,\n pmag_data)\n specimen = self.find_by_name(specimen_name, self.specimens)\n if specimen_name and not specimen:\n specimen = self.add_specimen(specimen_name, sample_name,\n er_data, pmag_data)\n if sample and not self.find_by_name(specimen_name, sample.specimens\n ):\n sample.specimens.append(specimen)\n if site and not self.find_by_name(sample_name, site.samples):\n site.samples.append(sample)\n if location and not self.find_by_name(site_name, location.sites):\n location.sites.append(site)\n exp_name = rec['magic_experiment_name']\n meas_num = rec['measurement_number']\n meas_name = exp_name + '_' + str(meas_num)\n measurement = self.find_by_name(meas_name, self.measurements,\n meas_name_list)\n if not measurement:\n self.add_measurement(exp_name, meas_num, specimen.name, rec)\n meas_name_list.append(meas_name)\n old_specimen_name = specimen_name\n", "role": "user" }, { "content": "get_data", "role": "assistant" } ]
def x(self, child_type, parent_type=None, attr='er', filename=None, sort_by_file_type=False): parent = '' grandparent_type = None magic_name = 'er_' + child_type + '_name' expected_item_type = child_type if not filename: short_filename = attr + '_' + child_type + 's.txt' magic_file = os.path.join(self.WD, short_filename) else: short_filename = os.path.split(filename)[1] magic_file = filename attr = short_filename.split('_')[0] print('-I- Attempting to read {}'.format(magic_file)) if not os.path.isfile(magic_file): print('-W- Could not find {}'.format(magic_file)) return False data_dict, header, file_type = self.read_magic_file(magic_file, magic_name, sort_by_file_type=sort_by_file_type) if not data_dict: print( '-W- Could not read in file: {}.\n Make sure it is a MagIC-format file' .format(magic_file)) return False item_type = file_type.split('_')[1][:-1] if item_type != expected_item_type: print('-W- Expected data of type: {} but instead got: {}'.format( expected_item_type, item_type)) print('-W- Using type: {}'.format(item_type)) if item_type == 'age': self.get_age_info(filename) return 'age' child_type = item_type magic_name = 'er_' + child_type + '_name' ind = self.ancestry.index(child_type) parent_type = self.ancestry[ind + 1] if item_type != 'location': grandparent_type = self.ancestry[ind + 2] else: grandparent_type = '' if not grandparent_type: ind = self.ancestry.index(child_type) try: grandparent_type = self.ancestry[ind + 2] except IndexError: grandparent_type = None child_list, child_class, child_constructor = self.data_lists[child_type] if parent_type: parent_list, parent_class, parent_constructor = self.data_lists[ parent_type] else: parent_list, parent_name = None, None for child_name in data_dict: if parent_type: parent_name = data_dict[child_name].get('er_' + parent_type + '_name', '') parent = self.find_by_name(parent_name, parent_list) if parent: remove_dict_headers(parent.er_data) remove_dict_headers(parent.pmag_data) if parent_name and parent_type and not parent: grandparent = None grandparent_name = None if grandparent_type: (grandparent_list, grandparent_class, grandparent_constructor ) = self.data_lists[grandparent_type] grandparent_name = data_dict[child_name]['er_' + grandparent_type + '_name'] grandparent = self.find_by_name(grandparent_name, grandparent_list) if grandparent_name and not grandparent: grandparent = grandparent_constructor(grandparent_name, None) parent = parent_constructor(parent_name, grandparent_name) elif not parent: parent_name = None parent = '' child = self.find_by_name(child_name, child_list) if not child: child = child_constructor(child_name, parent_name) else: if parent: child.set_parent(parent) if parent and child not in parent.children: parent.add_child(child) if attr == 'er': self.update_methods[child_type](child_name, child_name, parent_name, new_er_data=data_dict[child_name]) else: self.update_methods[child_type](child_name, child_name, parent_name, new_pmag_data=data_dict[child_name]) remove_dict_headers(child.er_data) remove_dict_headers(child.pmag_data) return child_type
get_magic_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, child_type, parent_type=None, attr='er', filename=None,\n sort_by_file_type=False):\n parent = ''\n grandparent_type = None\n magic_name = 'er_' + child_type + '_name'\n expected_item_type = child_type\n if not filename:\n short_filename = attr + '_' + child_type + 's.txt'\n magic_file = os.path.join(self.WD, short_filename)\n else:\n short_filename = os.path.split(filename)[1]\n magic_file = filename\n attr = short_filename.split('_')[0]\n print('-I- Attempting to read {}'.format(magic_file))\n if not os.path.isfile(magic_file):\n print('-W- Could not find {}'.format(magic_file))\n return False\n data_dict, header, file_type = self.read_magic_file(magic_file,\n magic_name, sort_by_file_type=sort_by_file_type)\n if not data_dict:\n print(\n '-W- Could not read in file: {}.\\n Make sure it is a MagIC-format file'\n .format(magic_file))\n return False\n item_type = file_type.split('_')[1][:-1]\n if item_type != expected_item_type:\n print('-W- Expected data of type: {} but instead got: {}'.format(\n expected_item_type, item_type))\n print('-W- Using type: {}'.format(item_type))\n if item_type == 'age':\n self.get_age_info(filename)\n return 'age'\n child_type = item_type\n magic_name = 'er_' + child_type + '_name'\n ind = self.ancestry.index(child_type)\n parent_type = self.ancestry[ind + 1]\n if item_type != 'location':\n grandparent_type = self.ancestry[ind + 2]\n else:\n grandparent_type = ''\n if not grandparent_type:\n ind = self.ancestry.index(child_type)\n try:\n grandparent_type = self.ancestry[ind + 2]\n except IndexError:\n grandparent_type = None\n child_list, child_class, child_constructor = self.data_lists[child_type]\n if parent_type:\n parent_list, parent_class, parent_constructor = self.data_lists[\n parent_type]\n else:\n parent_list, parent_name = None, None\n for child_name in data_dict:\n if parent_type:\n parent_name = data_dict[child_name].get('er_' + parent_type +\n '_name', '')\n parent = self.find_by_name(parent_name, parent_list)\n if parent:\n remove_dict_headers(parent.er_data)\n remove_dict_headers(parent.pmag_data)\n if parent_name and parent_type and not parent:\n grandparent = None\n grandparent_name = None\n if grandparent_type:\n (grandparent_list, grandparent_class, grandparent_constructor\n ) = self.data_lists[grandparent_type]\n grandparent_name = data_dict[child_name]['er_' +\n grandparent_type + '_name']\n grandparent = self.find_by_name(grandparent_name,\n grandparent_list)\n if grandparent_name and not grandparent:\n grandparent = grandparent_constructor(grandparent_name,\n None)\n parent = parent_constructor(parent_name, grandparent_name)\n elif not parent:\n parent_name = None\n parent = ''\n child = self.find_by_name(child_name, child_list)\n if not child:\n child = child_constructor(child_name, parent_name)\n else:\n if parent:\n child.set_parent(parent)\n if parent and child not in parent.children:\n parent.add_child(child)\n if attr == 'er':\n self.update_methods[child_type](child_name, child_name,\n parent_name, new_er_data=data_dict[child_name])\n else:\n self.update_methods[child_type](child_name, child_name,\n parent_name, new_pmag_data=data_dict[child_name])\n remove_dict_headers(child.er_data)\n remove_dict_headers(child.pmag_data)\n return child_type\n", "role": "user" }, { "content": "get_magic_info", "role": "assistant" } ]
def x(self, filename=None): if not filename: short_filename = 'er_ages.txt' magic_file = os.path.join(self.WD, short_filename) else: magic_file = filename if not os.path.isfile(magic_file): print('-W- Could not find {}'.format(magic_file)) return False data_dict, header, file_type = self.read_magic_file(magic_file, 'by_line_number') if file_type != 'er_ages': item_type = file_type.split('_')[1][:-1] self.get_magic_info(item_type, filename=filename, sort_by_file_type =True) return file_type for item_dict in list(data_dict.values()): item_type = None for dtype in ['specimen', 'sample', 'site', 'location']: header_name = 'er_' + dtype + '_name' if header_name in list(item_dict.keys()): if item_dict[header_name]: item_type = dtype item_name = item_dict[header_name].strip() break if not item_type: print('-W- You must provide a name for your age') print(' These data:\n{}\n will not be imported'.format( item_dict)) continue items_list = self.data_lists[item_type][0] item = self.find_by_name(item_name, items_list) if not item: print( """-I- A {} named {} in your age file was not found in the data object: Now initializing {} {}""" .format(item_type, item_name, item_type, item_name)) ind = self.ancestry.index(item_type) parent_type = self.ancestry[ind + 1] parent_header, parent_constructor = None, None if parent_type: parent_list, parent_class, parent_constructor = (self. data_lists[parent_type]) parent_header = 'er_' + parent_type + '_name' parent_name = item_dict.get(parent_header, '') parent = self.find_by_name(parent_name, parent_list) if parent_name and not parent: print( """-I- A {} named {} in your age file was not found in the data object: Now initializing {} {}""" .format(parent_type, parent_name, parent_type, parent_name) ) parent = parent_constructor(parent_name, None) item_constructor = self.data_lists[item_type][2] if not parent: parent_name = None item = item_constructor(item_name, parent_name) item.age_data = remove_dict_headers(item_dict) self.write_ages = True return file_type
get_age_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename=None):\n if not filename:\n short_filename = 'er_ages.txt'\n magic_file = os.path.join(self.WD, short_filename)\n else:\n magic_file = filename\n if not os.path.isfile(magic_file):\n print('-W- Could not find {}'.format(magic_file))\n return False\n data_dict, header, file_type = self.read_magic_file(magic_file,\n 'by_line_number')\n if file_type != 'er_ages':\n item_type = file_type.split('_')[1][:-1]\n self.get_magic_info(item_type, filename=filename, sort_by_file_type\n =True)\n return file_type\n for item_dict in list(data_dict.values()):\n item_type = None\n for dtype in ['specimen', 'sample', 'site', 'location']:\n header_name = 'er_' + dtype + '_name'\n if header_name in list(item_dict.keys()):\n if item_dict[header_name]:\n item_type = dtype\n item_name = item_dict[header_name].strip()\n break\n if not item_type:\n print('-W- You must provide a name for your age')\n print(' These data:\\n{}\\n will not be imported'.format(\n item_dict))\n continue\n items_list = self.data_lists[item_type][0]\n item = self.find_by_name(item_name, items_list)\n if not item:\n print(\n \"\"\"-I- A {} named {} in your age file was not found in the data object:\n Now initializing {} {}\"\"\"\n .format(item_type, item_name, item_type, item_name))\n ind = self.ancestry.index(item_type)\n parent_type = self.ancestry[ind + 1]\n parent_header, parent_constructor = None, None\n if parent_type:\n parent_list, parent_class, parent_constructor = (self.\n data_lists[parent_type])\n parent_header = 'er_' + parent_type + '_name'\n parent_name = item_dict.get(parent_header, '')\n parent = self.find_by_name(parent_name, parent_list)\n if parent_name and not parent:\n print(\n \"\"\"-I- A {} named {} in your age file was not found in the data object:\n Now initializing {} {}\"\"\"\n .format(parent_type, parent_name, parent_type, parent_name)\n )\n parent = parent_constructor(parent_name, None)\n item_constructor = self.data_lists[item_type][2]\n if not parent:\n parent_name = None\n item = item_constructor(item_name, parent_name)\n item.age_data = remove_dict_headers(item_dict)\n self.write_ages = True\n return file_type\n", "role": "user" }, { "content": "get_age_info", "role": "assistant" } ]
def x(self, filename=None): if not filename: short_filename = 'pmag_results.txt' magic_file = os.path.join(self.WD, short_filename) else: magic_file = filename if not os.path.isfile(magic_file): print('-W- Could not find {} in your working directory {}'.format( short_filename, self.WD)) return False data_dict = self.read_magic_file(magic_file, 'by_line_number')[0] def x(string, search_items_list): names = string.split(':') items = [] for name in names: name = name.strip(' ') item = self.find_by_name(name, search_items_list) if item: items.append(item) return items for num, result in list(data_dict.items()): name, specimens, samples, sites, locations = (None, None, None, None, None) for key, value in list(result.items()): if key == 'er_specimen_names': specimens = make_items_list(value, self.specimens) if key == 'er_sample_names': samples = make_items_list(value, self.samples) if key == 'er_site_names': sites = make_items_list(value, self.sites) if key == 'er_location_names': locations = make_items_list(value, self.locations) if key == 'pmag_result_name': name = value for header_name in ['er_specimen_names', 'er_site_names', 'er_sample_names', 'er_location_names']: if header_name in list(result.keys()): result.pop(header_name) if not name: name = num result_item = self.find_by_name(name, self.results) if not result_item: result_item = Result(name, specimens, samples, sites, locations, result, self.data_model) else: print( """-W- Two or more results with name: {} found in your result file. Taking only the first.""" .format(name)) if result_item and result_item not in self.results: self.results.append(result_item)
get_results_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename=None):\n if not filename:\n short_filename = 'pmag_results.txt'\n magic_file = os.path.join(self.WD, short_filename)\n else:\n magic_file = filename\n if not os.path.isfile(magic_file):\n print('-W- Could not find {} in your working directory {}'.format(\n short_filename, self.WD))\n return False\n data_dict = self.read_magic_file(magic_file, 'by_line_number')[0]\n\n def x(string, search_items_list):\n names = string.split(':')\n items = []\n for name in names:\n name = name.strip(' ')\n item = self.find_by_name(name, search_items_list)\n if item:\n items.append(item)\n return items\n for num, result in list(data_dict.items()):\n name, specimens, samples, sites, locations = (None, None, None,\n None, None)\n for key, value in list(result.items()):\n if key == 'er_specimen_names':\n specimens = make_items_list(value, self.specimens)\n if key == 'er_sample_names':\n samples = make_items_list(value, self.samples)\n if key == 'er_site_names':\n sites = make_items_list(value, self.sites)\n if key == 'er_location_names':\n locations = make_items_list(value, self.locations)\n if key == 'pmag_result_name':\n name = value\n for header_name in ['er_specimen_names', 'er_site_names',\n 'er_sample_names', 'er_location_names']:\n if header_name in list(result.keys()):\n result.pop(header_name)\n if not name:\n name = num\n result_item = self.find_by_name(name, self.results)\n if not result_item:\n result_item = Result(name, specimens, samples, sites, locations,\n result, self.data_model)\n else:\n print(\n \"\"\"-W- Two or more results with name: {} found in your result file.\n Taking only the first.\"\"\"\n .format(name))\n if result_item and result_item not in self.results:\n self.results.append(result_item)\n", "role": "user" }, { "content": "get_results_info", "role": "assistant" } ]
def x(self, path, sort_by_this_name, sort_by_file_type=False): DATA = {} with open(path, 'r') as fin: lines = list(fin.readlines()) first_line = lines[0] if not first_line: return False, None, 'empty_file' if first_line[0] == 's' or first_line[1] == 's': delim = ' ' elif first_line[0] == 't' or first_line[1] == 't': delim = '\t' else: print('-W- error reading ', path) return False, None, 'bad_file' file_type = first_line.strip('\n').split(delim)[1] if sort_by_file_type: item_type = file_type.split('_')[1][:-1] if item_type == 'age': sort_by_this_name = 'by_line_number' else: sort_by_this_name = 'er_' + item_type + '_name' line = lines[1] header = line.strip('\n').split(delim) counter = 0 for line in lines[2:]: tmp_data = {} tmp_line = line.strip('\n').split(delim) for i in range(len(header)): if i < len(tmp_line): tmp_data[header[i]] = tmp_line[i].strip() else: tmp_data[header[i]] = '' if sort_by_this_name == 'by_line_number': DATA[counter] = tmp_data counter += 1 elif tmp_data[sort_by_this_name] != '': DATA[tmp_data[sort_by_this_name]] = tmp_data return DATA, header, file_type
read_magic_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path, sort_by_this_name, sort_by_file_type=False):\n DATA = {}\n with open(path, 'r') as fin:\n lines = list(fin.readlines())\n first_line = lines[0]\n if not first_line:\n return False, None, 'empty_file'\n if first_line[0] == 's' or first_line[1] == 's':\n delim = ' '\n elif first_line[0] == 't' or first_line[1] == 't':\n delim = '\\t'\n else:\n print('-W- error reading ', path)\n return False, None, 'bad_file'\n file_type = first_line.strip('\\n').split(delim)[1]\n if sort_by_file_type:\n item_type = file_type.split('_')[1][:-1]\n if item_type == 'age':\n sort_by_this_name = 'by_line_number'\n else:\n sort_by_this_name = 'er_' + item_type + '_name'\n line = lines[1]\n header = line.strip('\\n').split(delim)\n counter = 0\n for line in lines[2:]:\n tmp_data = {}\n tmp_line = line.strip('\\n').split(delim)\n for i in range(len(header)):\n if i < len(tmp_line):\n tmp_data[header[i]] = tmp_line[i].strip()\n else:\n tmp_data[header[i]] = ''\n if sort_by_this_name == 'by_line_number':\n DATA[counter] = tmp_data\n counter += 1\n elif tmp_data[sort_by_this_name] != '':\n DATA[tmp_data[sort_by_this_name]] = tmp_data\n return DATA, header, file_type\n", "role": "user" }, { "content": "read_magic_file", "role": "assistant" } ]
def x(self): warnings = self.validate_data() print('-I- Writing all saved data to files') if self.measurements: self.write_measurements_file() for dtype in ['specimen', 'sample', 'site']: if self.data_lists[dtype][0]: do_pmag = dtype in self.incl_pmag_data self.write_magic_file(dtype, do_er=True, do_pmag=do_pmag) if not do_pmag: pmag_file = os.path.join(self.WD, 'pmag_' + dtype + 's.txt') if os.path.isfile(pmag_file): os.remove(pmag_file) if self.locations: self.write_magic_file('location', do_er=True, do_pmag=False) self.write_age_file() if self.results: self.write_result_file() if warnings: print('-W- ' + str(warnings)) return False, warnings return True, None
write_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n warnings = self.validate_data()\n print('-I- Writing all saved data to files')\n if self.measurements:\n self.write_measurements_file()\n for dtype in ['specimen', 'sample', 'site']:\n if self.data_lists[dtype][0]:\n do_pmag = dtype in self.incl_pmag_data\n self.write_magic_file(dtype, do_er=True, do_pmag=do_pmag)\n if not do_pmag:\n pmag_file = os.path.join(self.WD, 'pmag_' + dtype + 's.txt')\n if os.path.isfile(pmag_file):\n os.remove(pmag_file)\n if self.locations:\n self.write_magic_file('location', do_er=True, do_pmag=False)\n self.write_age_file()\n if self.results:\n self.write_result_file()\n if warnings:\n print('-W- ' + str(warnings))\n return False, warnings\n return True, None\n", "role": "user" }, { "content": "write_files", "role": "assistant" } ]
def x(self): if not self.write_ages: print('-I- No age data available to write') return first_headers = self.first_age_headers actual_headers = sorted(self.headers['age']['er'][0]) for header in first_headers: if header in actual_headers: actual_headers.remove(header) add_headers = ['er_specimen_name', 'er_sample_name', 'er_site_name', 'er_location_name'] actual_headers[:0] = first_headers full_headers = add_headers[:] full_headers.extend(actual_headers) header_string = '\t'.join(full_headers) ages = [] for dtype in ['specimen', 'sample', 'site', 'location']: ages_list = sorted(self.data_lists[dtype][0], key=lambda item: item .name) ages.extend(ages_list) age_strings = [] for age in ages: ind = self.ancestry.index(age.dtype) ancestors = ['' for num in range(len(self.ancestry) - (ind + 2))] data_found = False string = '' if age.dtype == 'specimen': string += age.name + '\t' elif age.dtype == 'sample': string += '\t' + age.name + '\t' elif age.dtype == 'site': string += '\t\t' + age.name + '\t' elif age.dtype == 'location': string += '\t\t\t' + age.name + '\t' parent = age.get_parent() grandparent = None if parent: ancestors[0] = parent.name grandparent = parent.get_parent() if grandparent: ancestors[1] = grandparent.name greatgrandparent = grandparent.get_parent() if greatgrandparent: ancestors[2] = greatgrandparent.name for ancestor in ancestors: string += ancestor + '\t' for key in actual_headers: try: add_string = age.age_data[key] except KeyError: add_string = '' age.age_data[key] = '' if add_string and not key == 'er_citation_names': data_found = True if key == 'er_citation_names' and not add_string.strip('\t'): add_string = 'This study' string += add_string + '\t' if string.endswith('\t'): string = string[:-1] if data_found: age_strings.append(string) outfile = open(os.path.join(self.WD, 'er_ages.txt'), 'w') outfile.write('tab\ter_ages\n') outfile.write(header_string + '\n') if not age_strings: outfile.close() os.remove(os.path.join(self.WD, 'er_ages.txt')) return False for string in age_strings: outfile.write(string + '\n') outfile.close() return outfile
write_age_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.write_ages:\n print('-I- No age data available to write')\n return\n first_headers = self.first_age_headers\n actual_headers = sorted(self.headers['age']['er'][0])\n for header in first_headers:\n if header in actual_headers:\n actual_headers.remove(header)\n add_headers = ['er_specimen_name', 'er_sample_name', 'er_site_name',\n 'er_location_name']\n actual_headers[:0] = first_headers\n full_headers = add_headers[:]\n full_headers.extend(actual_headers)\n header_string = '\\t'.join(full_headers)\n ages = []\n for dtype in ['specimen', 'sample', 'site', 'location']:\n ages_list = sorted(self.data_lists[dtype][0], key=lambda item: item\n .name)\n ages.extend(ages_list)\n age_strings = []\n for age in ages:\n ind = self.ancestry.index(age.dtype)\n ancestors = ['' for num in range(len(self.ancestry) - (ind + 2))]\n data_found = False\n string = ''\n if age.dtype == 'specimen':\n string += age.name + '\\t'\n elif age.dtype == 'sample':\n string += '\\t' + age.name + '\\t'\n elif age.dtype == 'site':\n string += '\\t\\t' + age.name + '\\t'\n elif age.dtype == 'location':\n string += '\\t\\t\\t' + age.name + '\\t'\n parent = age.get_parent()\n grandparent = None\n if parent:\n ancestors[0] = parent.name\n grandparent = parent.get_parent()\n if grandparent:\n ancestors[1] = grandparent.name\n greatgrandparent = grandparent.get_parent()\n if greatgrandparent:\n ancestors[2] = greatgrandparent.name\n for ancestor in ancestors:\n string += ancestor + '\\t'\n for key in actual_headers:\n try:\n add_string = age.age_data[key]\n except KeyError:\n add_string = ''\n age.age_data[key] = ''\n if add_string and not key == 'er_citation_names':\n data_found = True\n if key == 'er_citation_names' and not add_string.strip('\\t'):\n add_string = 'This study'\n string += add_string + '\\t'\n if string.endswith('\\t'):\n string = string[:-1]\n if data_found:\n age_strings.append(string)\n outfile = open(os.path.join(self.WD, 'er_ages.txt'), 'w')\n outfile.write('tab\\ter_ages\\n')\n outfile.write(header_string + '\\n')\n if not age_strings:\n outfile.close()\n os.remove(os.path.join(self.WD, 'er_ages.txt'))\n return False\n for string in age_strings:\n outfile.write(string + '\\n')\n outfile.close()\n return outfile\n", "role": "user" }, { "content": "write_age_file", "role": "assistant" } ]
def x(self): warnings = {} spec_warnings, samp_warnings, site_warnings, loc_warnings = {}, {}, {}, {} if self.specimens: spec_warnings = self.validate_items(self.specimens, 'specimen') if self.samples: samp_warnings = self.validate_items(self.samples, 'sample') if self.sites: site_warnings = self.validate_items(self.sites, 'site') if self.locations: loc_warnings = self.validate_items(self.locations, 'location') return spec_warnings, samp_warnings, site_warnings, loc_warnings
validate_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n warnings = {}\n spec_warnings, samp_warnings, site_warnings, loc_warnings = {}, {}, {}, {}\n if self.specimens:\n spec_warnings = self.validate_items(self.specimens, 'specimen')\n if self.samples:\n samp_warnings = self.validate_items(self.samples, 'sample')\n if self.sites:\n site_warnings = self.validate_items(self.sites, 'site')\n if self.locations:\n loc_warnings = self.validate_items(self.locations, 'location')\n return spec_warnings, samp_warnings, site_warnings, loc_warnings\n", "role": "user" }, { "content": "validate_data", "role": "assistant" } ]
def x(self, item_list, item_type): def x(warning_type, dictionary, key, value): if not value: return try: name = key.name except AttributeError: name = key if not name in dictionary: dictionary[name] = {} if not warning_type in dictionary[name]: dictionary[name][warning_type] = [] for v in value: dictionary[name][warning_type].append(v) def x(item, item_type): warnings = [] item_list, item_class, item_constructor = self.data_lists[item_type] if not isinstance(item, item_class): warnings.append(PmagException('wrong type')) if item not in item_list: warnings.append(PmagException('not in data object')) return warnings def x(item, item_type, parent_type): if not parent_type: return [] if not isinstance(item, Pmag_object): return [] warnings = [] parent = item.get_parent() parent_list, parent_class, parent_constructor = self.data_lists[ parent_type] if not parent or not parent.name: warnings.append(PmagException('missing parent')) return warnings if not isinstance(parent, parent_class): warnings.append(PmagException('invalid parent type', parent)) if not parent in parent_list: warnings.append(PmagException('parent not in data object', parent)) return warnings def x(item, child_type): if not child_type: return [] warnings = [] children = item.children child_list, child_class, child_constructor = self.data_lists[child_type ] for child in children: if not isinstance(child, child_class): warnings.append(PmagException('child has wrong type', child)) if not child in child_list: warnings.append(PmagException('child not in data object', child)) return warnings warnings = {} type_ind = self.ancestry.index(item_type) parent_type = self.ancestry[type_ind + 1] child_type = self.ancestry[type_ind - 1] for item in item_list: type_warnings = check_item_type(item, item_type) append_or_create_dict_item('type', warnings, item, type_warnings) parent_warnings = check_item_for_parent(item, item_type, parent_type) append_or_create_dict_item('parent', warnings, item, parent_warnings) child_warnings = check_item_for_children(item, child_type) append_or_create_dict_item('children', warnings, item, child_warnings) return warnings
validate_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, item_list, item_type):\n\n def x(warning_type, dictionary, key, value):\n if not value:\n return\n try:\n name = key.name\n except AttributeError:\n name = key\n if not name in dictionary:\n dictionary[name] = {}\n if not warning_type in dictionary[name]:\n dictionary[name][warning_type] = []\n for v in value:\n dictionary[name][warning_type].append(v)\n\n def x(item, item_type):\n warnings = []\n item_list, item_class, item_constructor = self.data_lists[item_type]\n if not isinstance(item, item_class):\n warnings.append(PmagException('wrong type'))\n if item not in item_list:\n warnings.append(PmagException('not in data object'))\n return warnings\n\n def x(item, item_type, parent_type):\n if not parent_type:\n return []\n if not isinstance(item, Pmag_object):\n return []\n warnings = []\n parent = item.get_parent()\n parent_list, parent_class, parent_constructor = self.data_lists[\n parent_type]\n if not parent or not parent.name:\n warnings.append(PmagException('missing parent'))\n return warnings\n if not isinstance(parent, parent_class):\n warnings.append(PmagException('invalid parent type', parent))\n if not parent in parent_list:\n warnings.append(PmagException('parent not in data object', parent))\n return warnings\n\n def x(item, child_type):\n if not child_type:\n return []\n warnings = []\n children = item.children\n child_list, child_class, child_constructor = self.data_lists[child_type\n ]\n for child in children:\n if not isinstance(child, child_class):\n warnings.append(PmagException('child has wrong type', child))\n if not child in child_list:\n warnings.append(PmagException('child not in data object',\n child))\n return warnings\n warnings = {}\n type_ind = self.ancestry.index(item_type)\n parent_type = self.ancestry[type_ind + 1]\n child_type = self.ancestry[type_ind - 1]\n for item in item_list:\n type_warnings = check_item_type(item, item_type)\n append_or_create_dict_item('type', warnings, item, type_warnings)\n parent_warnings = check_item_for_parent(item, item_type, parent_type)\n append_or_create_dict_item('parent', warnings, item, parent_warnings)\n child_warnings = check_item_for_children(item, child_type)\n append_or_create_dict_item('children', warnings, item, child_warnings)\n return warnings\n", "role": "user" }, { "content": "validate_items", "role": "assistant" } ]
def x(self, locations): d = {} for location in locations: sites = location.sites max_lat, min_lat = '', '' max_lon, min_lon = '', '' if not any(sites): d[location.name] = {'location_begin_lat': min_lat, 'location_begin_lon': min_lon, 'location_end_lat': max_lat, 'location_end_lon': max_lon} continue lats, lons = [], [] for site in sites: if site.er_data['site_lon']: lons.append(site.er_data['site_lon']) if site.er_data['site_lat']: lats.append(site.er_data['site_lat']) if lats: lats = [float(lat) for lat in lats] max_lat = max(lats) min_lat = min(lats) if lons: lons = [float(lon) for lon in lons] max_lon = max(lons) min_lon = min(lons) d[location.name] = {'location_begin_lat': min_lat, 'location_begin_lon': min_lon, 'location_end_lat': max_lat, 'location_end_lon': max_lon} return d
get_min_max_lat_lon
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, locations):\n d = {}\n for location in locations:\n sites = location.sites\n max_lat, min_lat = '', ''\n max_lon, min_lon = '', ''\n if not any(sites):\n d[location.name] = {'location_begin_lat': min_lat,\n 'location_begin_lon': min_lon, 'location_end_lat': max_lat,\n 'location_end_lon': max_lon}\n continue\n lats, lons = [], []\n for site in sites:\n if site.er_data['site_lon']:\n lons.append(site.er_data['site_lon'])\n if site.er_data['site_lat']:\n lats.append(site.er_data['site_lat'])\n if lats:\n lats = [float(lat) for lat in lats]\n max_lat = max(lats)\n min_lat = min(lats)\n if lons:\n lons = [float(lon) for lon in lons]\n max_lon = max(lons)\n min_lon = min(lons)\n d[location.name] = {'location_begin_lat': min_lat,\n 'location_begin_lon': min_lon, 'location_end_lat': max_lat,\n 'location_end_lon': max_lon}\n return d\n", "role": "user" }, { "content": "get_min_max_lat_lon", "role": "assistant" } ]
def x(self, new_samp): self.sample = new_samp if new_samp: if not isinstance(new_samp, Sample): raise Exception self.propagate_data() return new_samp
set_parent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_samp):\n self.sample = new_samp\n if new_samp:\n if not isinstance(new_samp, Sample):\n raise Exception\n self.propagate_data()\n return new_samp\n", "role": "user" }, { "content": "set_parent", "role": "assistant" } ]
def x(self, new_site): if new_site: if not isinstance(new_site, Site): raise Exception self.site = new_site self.propagate_data() return new_site
set_parent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_site):\n if new_site:\n if not isinstance(new_site, Site):\n raise Exception\n self.site = new_site\n self.propagate_data()\n return new_site\n", "role": "user" }, { "content": "set_parent", "role": "assistant" } ]
def x(self, new_name, new_location=None, new_er_data=None, new_pmag_data= None, replace_data=False): self.name = new_name if new_location: self.location = new_location self.update_data(new_er_data, new_pmag_data, replace_data)
change_site
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_name, new_location=None, new_er_data=None, new_pmag_data=\n None, replace_data=False):\n self.name = new_name\n if new_location:\n self.location = new_location\n self.update_data(new_er_data, new_pmag_data, replace_data)\n", "role": "user" }, { "content": "change_site", "role": "assistant" } ]
def x(): beg, end, pole, geo, tilt, askave, save = 0, 0, [], 0, 0, 0, 0 samp_file = 1 args = sys.argv geo, tilt, orient = 0, 0, 0 doave = 1 user, comment, doave, coord = '', '', 1, 'g' geo, orient = 1, 1 dir_path = '.' if '-h' in args: print(main.__doc__) sys.exit() if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] meas_file = dir_path + '/measurements.txt' spec_file = dir_path + '/specimens.txt' samp_file = dir_path + '/samples.txt' out_file = dir_path + '/nrm_specimens.txt' if '-A' in args: doave = 0 if '-f' in args: ind = args.index('-f') meas_file = sys.argv[ind + 1] if '-F' in args: ind = args.index('-F') out_file = dir_path + '/' + sys.argv[ind + 1] speclist = [] if '-fsa' in args: ind = args.index('-fsa') samp_file = dir_path + '/' + sys.argv[ind + 1] if '-crd' in args: ind = args.index('-crd') coord = sys.argv[ind + 1] if coord == 't': tilt, orient, geo = 1, 1, 1 meas_data = pd.read_csv(meas_file, header=1, sep='\t') meas_data = meas_data[meas_data['method_codes'].str.contains('LT-NO') == True] meas_data = meas_data[['specimen', 'dir_dec', 'dir_inc']] meas_data = meas_data.dropna(subset=['dir_dec', 'dir_inc']) meas_data = pd.DataFrame(meas_data) if orient == 1: spec_data = pd.read_csv(spec_file, header=1, sep='\t') spec_data = spec_data[['specimen', 'sample']] meas_data = pd.merge(meas_data, spec_data, how='inner', on=['specimen'] ) samp_data = pd.read_csv(samp_file, header=1, sep='\t') sids = meas_data.specimen.unique() NrmSpecRecs = [] for spec in sids: gdec, ginc, bdec, binc = '', '', '', '' this_spec_data = meas_data[meas_data.specimen.str.contains(spec)] this_sample = this_spec_data['sample'].iloc[-1] this_sample_data = samp_data[samp_data['sample'].str.contains( this_sample)] this_sample_data = this_sample_data.to_dict('records') for m in this_spec_data.to_dict('records'): NrmSpecRec = {'specimen': spec, 'sample': this_sample} if coord == 'g': NrmSpecRec['dir_tilt_correction'] = '0' elif coord == 't': NrmSpecRec['dir_tilt_correction'] = '100' else: NrmSpecRec['dir_tilt_correction'] = '-1' if not orient: NrmSpecRec['dir_dec'] = m['dir_dec'] NrmSpecRec['dir_inc'] = m['dir_inc'] NrmSpecRec['method_codes'] = 'SO-NO' NrmSpecRecs.append(NrmSpecRec) else: or_info, az_type = pmag.get_orient(this_sample_data, this_sample, data_model=3) if 'azimuth' in or_info.keys() and or_info['azimuth'] != '': azimuth = or_info['azimuth'] dip = or_info['dip'] gdec, ginc = pmag.dogeo(m['dir_dec'], m['dir_inc'], azimuth, dip) if tilt: if 'bed_dip' in or_info.keys() and or_info['bed_dip' ] != '': bed_dip = or_info['bed_dip'] bed_dip_dir = or_info['bed_dip_direction'] bdec, binc = pmag.dogeo(gdec, ginc, bed_dip_dir, bed_dip) NrmSpecRec['dir_dec'] = bdec NrmSpecRec['dir_inc'] = binc NrmSpecRec['method_codes'] = az_type NrmSpecRecs.append(NrmSpecRec) else: print('no bedding orientation data for ', spec) else: NrmSpecRec['dir_dec'] = gdec NrmSpecRec['dir_inc'] = ginc NrmSpecRec['method_codes'] = az_type NrmSpecRecs.append(NrmSpecRec) else: print('no geo orientation data for ', spec) pmag.magic_write(out_file, NrmSpecRecs, 'specimens')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n beg, end, pole, geo, tilt, askave, save = 0, 0, [], 0, 0, 0, 0\n samp_file = 1\n args = sys.argv\n geo, tilt, orient = 0, 0, 0\n doave = 1\n user, comment, doave, coord = '', '', 1, 'g'\n geo, orient = 1, 1\n dir_path = '.'\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n meas_file = dir_path + '/measurements.txt'\n spec_file = dir_path + '/specimens.txt'\n samp_file = dir_path + '/samples.txt'\n out_file = dir_path + '/nrm_specimens.txt'\n if '-A' in args:\n doave = 0\n if '-f' in args:\n ind = args.index('-f')\n meas_file = sys.argv[ind + 1]\n if '-F' in args:\n ind = args.index('-F')\n out_file = dir_path + '/' + sys.argv[ind + 1]\n speclist = []\n if '-fsa' in args:\n ind = args.index('-fsa')\n samp_file = dir_path + '/' + sys.argv[ind + 1]\n if '-crd' in args:\n ind = args.index('-crd')\n coord = sys.argv[ind + 1]\n if coord == 't':\n tilt, orient, geo = 1, 1, 1\n meas_data = pd.read_csv(meas_file, header=1, sep='\\t')\n meas_data = meas_data[meas_data['method_codes'].str.contains('LT-NO') ==\n True]\n meas_data = meas_data[['specimen', 'dir_dec', 'dir_inc']]\n meas_data = meas_data.dropna(subset=['dir_dec', 'dir_inc'])\n meas_data = pd.DataFrame(meas_data)\n if orient == 1:\n spec_data = pd.read_csv(spec_file, header=1, sep='\\t')\n spec_data = spec_data[['specimen', 'sample']]\n meas_data = pd.merge(meas_data, spec_data, how='inner', on=['specimen']\n )\n samp_data = pd.read_csv(samp_file, header=1, sep='\\t')\n sids = meas_data.specimen.unique()\n NrmSpecRecs = []\n for spec in sids:\n gdec, ginc, bdec, binc = '', '', '', ''\n this_spec_data = meas_data[meas_data.specimen.str.contains(spec)]\n this_sample = this_spec_data['sample'].iloc[-1]\n this_sample_data = samp_data[samp_data['sample'].str.contains(\n this_sample)]\n this_sample_data = this_sample_data.to_dict('records')\n for m in this_spec_data.to_dict('records'):\n NrmSpecRec = {'specimen': spec, 'sample': this_sample}\n if coord == 'g':\n NrmSpecRec['dir_tilt_correction'] = '0'\n elif coord == 't':\n NrmSpecRec['dir_tilt_correction'] = '100'\n else:\n NrmSpecRec['dir_tilt_correction'] = '-1'\n if not orient:\n NrmSpecRec['dir_dec'] = m['dir_dec']\n NrmSpecRec['dir_inc'] = m['dir_inc']\n NrmSpecRec['method_codes'] = 'SO-NO'\n NrmSpecRecs.append(NrmSpecRec)\n else:\n or_info, az_type = pmag.get_orient(this_sample_data,\n this_sample, data_model=3)\n if 'azimuth' in or_info.keys() and or_info['azimuth'] != '':\n azimuth = or_info['azimuth']\n dip = or_info['dip']\n gdec, ginc = pmag.dogeo(m['dir_dec'], m['dir_inc'],\n azimuth, dip)\n if tilt:\n if 'bed_dip' in or_info.keys() and or_info['bed_dip'\n ] != '':\n bed_dip = or_info['bed_dip']\n bed_dip_dir = or_info['bed_dip_direction']\n bdec, binc = pmag.dogeo(gdec, ginc, bed_dip_dir,\n bed_dip)\n NrmSpecRec['dir_dec'] = bdec\n NrmSpecRec['dir_inc'] = binc\n NrmSpecRec['method_codes'] = az_type\n NrmSpecRecs.append(NrmSpecRec)\n else:\n print('no bedding orientation data for ', spec)\n else:\n NrmSpecRec['dir_dec'] = gdec\n NrmSpecRec['dir_inc'] = ginc\n NrmSpecRec['method_codes'] = az_type\n NrmSpecRecs.append(NrmSpecRec)\n else:\n print('no geo orientation data for ', spec)\n pmag.magic_write(out_file, NrmSpecRecs, 'specimens')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(self, LIST, value): diff = inf for a in LIST: if abs(value - a) < diff: diff = abs(value - a) result = a return result
find_close_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, LIST, value):\n diff = inf\n for a in LIST:\n if abs(value - a) < diff:\n diff = abs(value - a)\n result = a\n return result\n", "role": "user" }, { "content": "find_close_value", "role": "assistant" } ]
def x(self, Intensities): Best_array = [] best_array_std_perc = inf Best_array_tmp = [] Best_interpretations = {} Best_interpretations_tmp = {} for this_specimen in list(Intensities.keys()): for value in Intensities[this_specimen]: Best_interpretations_tmp[this_specimen] = value Best_array_tmp = [value] all_other_specimens = list(Intensities.keys()) all_other_specimens.remove(this_specimen) for other_specimen in all_other_specimens: closest_value = self.find_close_value(Intensities[ other_specimen], value) Best_array_tmp.append(closest_value) Best_interpretations_tmp[other_specimen] = closest_value if std(Best_array_tmp, ddof=1) / mean(Best_array_tmp ) < best_array_std_perc: Best_array = Best_array_tmp best_array_std_perc = std(Best_array, ddof=1) / mean( Best_array_tmp) Best_interpretations = copy.deepcopy(Best_interpretations_tmp) Best_interpretations_tmp = {} return Best_interpretations, mean(Best_array), std(Best_array, ddof=1)
find_sample_min_std
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Intensities):\n Best_array = []\n best_array_std_perc = inf\n Best_array_tmp = []\n Best_interpretations = {}\n Best_interpretations_tmp = {}\n for this_specimen in list(Intensities.keys()):\n for value in Intensities[this_specimen]:\n Best_interpretations_tmp[this_specimen] = value\n Best_array_tmp = [value]\n all_other_specimens = list(Intensities.keys())\n all_other_specimens.remove(this_specimen)\n for other_specimen in all_other_specimens:\n closest_value = self.find_close_value(Intensities[\n other_specimen], value)\n Best_array_tmp.append(closest_value)\n Best_interpretations_tmp[other_specimen] = closest_value\n if std(Best_array_tmp, ddof=1) / mean(Best_array_tmp\n ) < best_array_std_perc:\n Best_array = Best_array_tmp\n best_array_std_perc = std(Best_array, ddof=1) / mean(\n Best_array_tmp)\n Best_interpretations = copy.deepcopy(Best_interpretations_tmp)\n Best_interpretations_tmp = {}\n return Best_interpretations, mean(Best_array), std(Best_array, ddof=1)\n", "role": "user" }, { "content": "find_sample_min_std", "role": "assistant" } ]
def x(self, Intensities): if self.acceptance_criteria['average_by_sample_or_site']['value' ] == 'sample': int_n_cutoff = self.acceptance_criteria['sample_int_n']['value'] int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value' ] int_sigma_perc_cutoff = self.acceptance_criteria[ 'sample_int_sigma_perc']['value'] else: int_n_cutoff = self.acceptance_criteria['site_int_n']['value'] int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value'] int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc' ]['value'] if int_n_cutoff == -999: int_n_cutoff = 2 tmp_Intensities = {} Acceptable_sample_min_mean, Acceptable_sample_max_mean = '', '' for this_specimen in list(Intensities.keys()): B_list = [B for B in Intensities[this_specimen]] if len(B_list) > 0: B_list.sort() tmp_Intensities[this_specimen] = B_list while len(list(tmp_Intensities.keys())) >= int_n_cutoff: B_tmp = [] B_tmp_min = 10000000000.0 for specimen in list(tmp_Intensities.keys()): B_tmp.append(min(tmp_Intensities[specimen])) if min(tmp_Intensities[specimen]) < B_tmp_min: specimen_to_remove = specimen B_tmp_min = min(tmp_Intensities[specimen]) pass_or_fail = self.pass_or_fail_sigma(B_tmp, int_sigma_cutoff, int_sigma_perc_cutoff) if pass_or_fail == 'pass': Acceptable_sample_min_mean = mean(B_tmp) Acceptable_sample_min_std = std(B_tmp, ddof=1) break else: tmp_Intensities[specimen_to_remove].remove(B_tmp_min) if len(tmp_Intensities[specimen_to_remove]) == 0: break tmp_Intensities = {} for this_specimen in list(Intensities.keys()): B_list = [B for B in Intensities[this_specimen]] if len(B_list) > 0: B_list.sort() tmp_Intensities[this_specimen] = B_list while len(list(tmp_Intensities.keys())) >= int_n_cutoff: B_tmp = [] B_tmp_max = 0 for specimen in list(tmp_Intensities.keys()): B_tmp.append(max(tmp_Intensities[specimen])) if max(tmp_Intensities[specimen]) > B_tmp_max: specimen_to_remove = specimen B_tmp_max = max(tmp_Intensities[specimen]) pass_or_fail = self.pass_or_fail_sigma(B_tmp, int_sigma_cutoff, int_sigma_perc_cutoff) if pass_or_fail == 'pass': Acceptable_sample_max_mean = mean(B_tmp) Acceptable_sample_max_std = std(B_tmp, ddof=1) break else: tmp_Intensities[specimen_to_remove].remove(B_tmp_max) if len(tmp_Intensities[specimen_to_remove]) < 1: break if Acceptable_sample_min_mean == '' or Acceptable_sample_max_mean == '': return 0.0, 0.0, 0.0, 0.0 return (Acceptable_sample_min_mean, Acceptable_sample_min_std, Acceptable_sample_max_mean, Acceptable_sample_max_std)
find_sample_min_max_interpretation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Intensities):\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n int_n_cutoff = self.acceptance_criteria['sample_int_n']['value']\n int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value'\n ]\n int_sigma_perc_cutoff = self.acceptance_criteria[\n 'sample_int_sigma_perc']['value']\n else:\n int_n_cutoff = self.acceptance_criteria['site_int_n']['value']\n int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value']\n int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc'\n ]['value']\n if int_n_cutoff == -999:\n int_n_cutoff = 2\n tmp_Intensities = {}\n Acceptable_sample_min_mean, Acceptable_sample_max_mean = '', ''\n for this_specimen in list(Intensities.keys()):\n B_list = [B for B in Intensities[this_specimen]]\n if len(B_list) > 0:\n B_list.sort()\n tmp_Intensities[this_specimen] = B_list\n while len(list(tmp_Intensities.keys())) >= int_n_cutoff:\n B_tmp = []\n B_tmp_min = 10000000000.0\n for specimen in list(tmp_Intensities.keys()):\n B_tmp.append(min(tmp_Intensities[specimen]))\n if min(tmp_Intensities[specimen]) < B_tmp_min:\n specimen_to_remove = specimen\n B_tmp_min = min(tmp_Intensities[specimen])\n pass_or_fail = self.pass_or_fail_sigma(B_tmp, int_sigma_cutoff,\n int_sigma_perc_cutoff)\n if pass_or_fail == 'pass':\n Acceptable_sample_min_mean = mean(B_tmp)\n Acceptable_sample_min_std = std(B_tmp, ddof=1)\n break\n else:\n tmp_Intensities[specimen_to_remove].remove(B_tmp_min)\n if len(tmp_Intensities[specimen_to_remove]) == 0:\n break\n tmp_Intensities = {}\n for this_specimen in list(Intensities.keys()):\n B_list = [B for B in Intensities[this_specimen]]\n if len(B_list) > 0:\n B_list.sort()\n tmp_Intensities[this_specimen] = B_list\n while len(list(tmp_Intensities.keys())) >= int_n_cutoff:\n B_tmp = []\n B_tmp_max = 0\n for specimen in list(tmp_Intensities.keys()):\n B_tmp.append(max(tmp_Intensities[specimen]))\n if max(tmp_Intensities[specimen]) > B_tmp_max:\n specimen_to_remove = specimen\n B_tmp_max = max(tmp_Intensities[specimen])\n pass_or_fail = self.pass_or_fail_sigma(B_tmp, int_sigma_cutoff,\n int_sigma_perc_cutoff)\n if pass_or_fail == 'pass':\n Acceptable_sample_max_mean = mean(B_tmp)\n Acceptable_sample_max_std = std(B_tmp, ddof=1)\n break\n else:\n tmp_Intensities[specimen_to_remove].remove(B_tmp_max)\n if len(tmp_Intensities[specimen_to_remove]) < 1:\n break\n if Acceptable_sample_min_mean == '' or Acceptable_sample_max_mean == '':\n return 0.0, 0.0, 0.0, 0.0\n return (Acceptable_sample_min_mean, Acceptable_sample_min_std,\n Acceptable_sample_max_mean, Acceptable_sample_max_std)\n", "role": "user" }, { "content": "find_sample_min_max_interpretation", "role": "assistant" } ]
def x(self, Grade_As): thellier_interpreter_pars = {} thellier_interpreter_pars['stdev-opt'] = {} thellier_interpreter_pars['min-value'] = {} thellier_interpreter_pars['max-value'] = {} thellier_interpreter_pars['fail_criteria'] = [] thellier_interpreter_pars['pass_or_fail'] = 'pass' if self.acceptance_criteria['average_by_sample_or_site']['value' ] == 'sample': int_n_cutoff = self.acceptance_criteria['sample_int_n']['value'] int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value' ] int_sigma_perc_cutoff = self.acceptance_criteria[ 'sample_int_sigma_perc']['value'] int_interval_cutoff = self.acceptance_criteria['sample_int_interval_uT' ]['value'] int_interval_perc_cutoff = self.acceptance_criteria[ 'sample_int_interval_perc']['value'] else: int_n_cutoff = self.acceptance_criteria['site_int_n']['value'] int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value'] int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc' ]['value'] int_interval_cutoff = self.acceptance_criteria['site_int_interval_uT'][ 'value'] int_interval_perc_cutoff = self.acceptance_criteria[ 'site_int_interval_perc']['value'] N = len(list(Grade_As.keys())) if N <= 1: thellier_interpreter_pars['pass_or_fail'] = 'fail' thellier_interpreter_pars['fail_criteria'].append('int_n') return thellier_interpreter_pars Best_interpretations, best_mean, best_std = self.find_sample_min_std( Grade_As) (sample_acceptable_min, sample_acceptable_min_std, sample_acceptable_max, sample_acceptable_max_std ) = self.find_sample_min_max_interpretation(Grade_As) sample_int_interval_uT = sample_acceptable_max - sample_acceptable_min sample_int_interval_perc = 100 * ((sample_acceptable_max - sample_acceptable_min) / best_mean) thellier_interpreter_pars['stdev_opt_interpretations' ] = Best_interpretations thellier_interpreter_pars['stdev-opt']['B'] = best_mean thellier_interpreter_pars['stdev-opt']['std'] = best_std thellier_interpreter_pars['stdev-opt']['std_perc'] = 100.0 * (best_std / best_mean) thellier_interpreter_pars['min-value']['B'] = sample_acceptable_min thellier_interpreter_pars['min-value']['std'] = sample_acceptable_min_std thellier_interpreter_pars['max-value']['B'] = sample_acceptable_max thellier_interpreter_pars['max-value']['std'] = sample_acceptable_max_std thellier_interpreter_pars['sample_int_interval_uT' ] = sample_int_interval_uT thellier_interpreter_pars['sample_int_interval_perc' ] = sample_int_interval_perc if N < int_n_cutoff: thellier_interpreter_pars['pass_or_fail'] = 'fail' thellier_interpreter_pars['fail_criteria'].append('int_n') pass_int_sigma, pass_int_sigma_perc = True, True pass_int_interval, pass_int_interval_perc = True, True if not (int_sigma_cutoff == -999 and int_sigma_perc_cutoff == -999): if (best_std <= int_sigma_cutoff * 1000000.0 and int_sigma_cutoff != -999): pass_sigma = True else: pass_sigma = False if 100.0 * (best_std / best_mean ) <= int_sigma_perc_cutoff and int_sigma_perc_cutoff != -999: pass_sigma_perc = True else: pass_sigma_perc = False if not (pass_sigma or pass_sigma_perc): thellier_interpreter_pars['pass_or_fail'] = 'fail' thellier_interpreter_pars['fail_criteria'].append('int_sigma') if not (int_interval_cutoff == -999 and int_interval_perc_cutoff == -999): if (sample_int_interval_uT <= int_interval_perc_cutoff and int_interval_perc_cutoff != -999): pass_interval = True else: pass_interval = False if (sample_int_interval_perc <= int_interval_perc_cutoff and int_interval_perc_cutoff != -999): pass_interval_perc = True else: pass_interval_perc = False if not (pass_interval or pass_interval_perc): thellier_interpreter_pars['pass_or_fail'] = 'fail' thellier_interpreter_pars['fail_criteria'].append('int_interval') return thellier_interpreter_pars
thellier_interpreter_pars_calc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Grade_As):\n thellier_interpreter_pars = {}\n thellier_interpreter_pars['stdev-opt'] = {}\n thellier_interpreter_pars['min-value'] = {}\n thellier_interpreter_pars['max-value'] = {}\n thellier_interpreter_pars['fail_criteria'] = []\n thellier_interpreter_pars['pass_or_fail'] = 'pass'\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n int_n_cutoff = self.acceptance_criteria['sample_int_n']['value']\n int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value'\n ]\n int_sigma_perc_cutoff = self.acceptance_criteria[\n 'sample_int_sigma_perc']['value']\n int_interval_cutoff = self.acceptance_criteria['sample_int_interval_uT'\n ]['value']\n int_interval_perc_cutoff = self.acceptance_criteria[\n 'sample_int_interval_perc']['value']\n else:\n int_n_cutoff = self.acceptance_criteria['site_int_n']['value']\n int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value']\n int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc'\n ]['value']\n int_interval_cutoff = self.acceptance_criteria['site_int_interval_uT'][\n 'value']\n int_interval_perc_cutoff = self.acceptance_criteria[\n 'site_int_interval_perc']['value']\n N = len(list(Grade_As.keys()))\n if N <= 1:\n thellier_interpreter_pars['pass_or_fail'] = 'fail'\n thellier_interpreter_pars['fail_criteria'].append('int_n')\n return thellier_interpreter_pars\n Best_interpretations, best_mean, best_std = self.find_sample_min_std(\n Grade_As)\n (sample_acceptable_min, sample_acceptable_min_std,\n sample_acceptable_max, sample_acceptable_max_std\n ) = self.find_sample_min_max_interpretation(Grade_As)\n sample_int_interval_uT = sample_acceptable_max - sample_acceptable_min\n sample_int_interval_perc = 100 * ((sample_acceptable_max -\n sample_acceptable_min) / best_mean)\n thellier_interpreter_pars['stdev_opt_interpretations'\n ] = Best_interpretations\n thellier_interpreter_pars['stdev-opt']['B'] = best_mean\n thellier_interpreter_pars['stdev-opt']['std'] = best_std\n thellier_interpreter_pars['stdev-opt']['std_perc'] = 100.0 * (best_std /\n best_mean)\n thellier_interpreter_pars['min-value']['B'] = sample_acceptable_min\n thellier_interpreter_pars['min-value']['std'] = sample_acceptable_min_std\n thellier_interpreter_pars['max-value']['B'] = sample_acceptable_max\n thellier_interpreter_pars['max-value']['std'] = sample_acceptable_max_std\n thellier_interpreter_pars['sample_int_interval_uT'\n ] = sample_int_interval_uT\n thellier_interpreter_pars['sample_int_interval_perc'\n ] = sample_int_interval_perc\n if N < int_n_cutoff:\n thellier_interpreter_pars['pass_or_fail'] = 'fail'\n thellier_interpreter_pars['fail_criteria'].append('int_n')\n pass_int_sigma, pass_int_sigma_perc = True, True\n pass_int_interval, pass_int_interval_perc = True, True\n if not (int_sigma_cutoff == -999 and int_sigma_perc_cutoff == -999):\n if (best_std <= int_sigma_cutoff * 1000000.0 and int_sigma_cutoff !=\n -999):\n pass_sigma = True\n else:\n pass_sigma = False\n if 100.0 * (best_std / best_mean\n ) <= int_sigma_perc_cutoff and int_sigma_perc_cutoff != -999:\n pass_sigma_perc = True\n else:\n pass_sigma_perc = False\n if not (pass_sigma or pass_sigma_perc):\n thellier_interpreter_pars['pass_or_fail'] = 'fail'\n thellier_interpreter_pars['fail_criteria'].append('int_sigma')\n if not (int_interval_cutoff == -999 and int_interval_perc_cutoff == -999):\n if (sample_int_interval_uT <= int_interval_perc_cutoff and \n int_interval_perc_cutoff != -999):\n pass_interval = True\n else:\n pass_interval = False\n if (sample_int_interval_perc <= int_interval_perc_cutoff and \n int_interval_perc_cutoff != -999):\n pass_interval_perc = True\n else:\n pass_interval_perc = False\n if not (pass_interval or pass_interval_perc):\n thellier_interpreter_pars['pass_or_fail'] = 'fail'\n thellier_interpreter_pars['fail_criteria'].append('int_interval')\n return thellier_interpreter_pars\n", "role": "user" }, { "content": "thellier_interpreter_pars_calc", "role": "assistant" } ]
def x(self, Grade_As): thellier_interpreter_pars = {} thellier_interpreter_pars['fail_criteria'] = [] thellier_interpreter_pars['pass_or_fail'] = 'pass' BOOTSTRAP_N = int(self.preferences['BOOTSTRAP_N']) Grade_A_samples_BS = {} if len(list(Grade_As.keys())) >= self.acceptance_criteria['sample_int_n'][ 'value']: for specimen in list(Grade_As.keys()): if specimen not in list(Grade_A_samples_BS.keys()) and len(Grade_As [specimen]) > 0: Grade_A_samples_BS[specimen] = [] for B in Grade_As[specimen]: Grade_A_samples_BS[specimen].append(B) Grade_A_samples_BS[specimen].sort() specimen_int_max_slope_diff = max(Grade_A_samples_BS[specimen] ) / min(Grade_A_samples_BS[specimen]) if specimen_int_max_slope_diff > self.acceptance_criteria[ 'specimen_int_max_slope_diff']: self.thellier_interpreter_log.write( """-I- specimen %s Failed specimen_int_max_slope_diff """ % specimen, Grade_A_samples_BS[specimen]) del Grade_A_samples_BS[specimen] if len(list(Grade_A_samples_BS.keys())) >= self.acceptance_criteria[ 'sample_int_n']['value']: BS_means_collection = [] for i in range(BOOTSTRAP_N): B_BS = [] for j in range(len(list(Grade_A_samples_BS.keys()))): LIST = list(Grade_A_samples_BS.keys()) specimen = random.choice(LIST) if self.acceptance_criteria['interpreter_method']['value' ] == 'bs': B = random.choice(Grade_A_samples_BS[specimen]) if self.acceptance_criteria['interpreter_method']['value' ] == 'bs_par': B = random.uniform(min(Grade_A_samples_BS[specimen]), max(Grade_A_samples_BS[specimen])) B_BS.append(B) BS_means_collection.append(mean(B_BS)) BS_means = array(BS_means_collection) BS_means.sort() sample_median = median(BS_means) sample_std = std(BS_means, ddof=1) sample_68 = [BS_means[0.16 * len(BS_means)], BS_means[0.84 * len( BS_means)]] sample_95 = [BS_means[0.025 * len(BS_means)], BS_means[0.975 * len( BS_means)]] else: String = '-I- sample %s FAIL: not enough specimen int_n= %i < %i ' % ( sample, len(list(Grade_A_samples_BS.keys())), int(self. acceptance_criteria['sample_int_n']['value'])) self.thellier_interpreter_log.write(String) thellier_interpreter_pars['bs_bedian'] = sample_median thellier_interpreter_pars['bs_std'] = sample_std thellier_interpreter_pars['bs_68'] = sample_68 thellier_interpreter_pars['bs_95'] = sample_95 thellier_interpreter_pars['bs_n'] = len(list(Grade_A_samples_BS.keys()))
thellier_interpreter_BS_pars_calc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Grade_As):\n thellier_interpreter_pars = {}\n thellier_interpreter_pars['fail_criteria'] = []\n thellier_interpreter_pars['pass_or_fail'] = 'pass'\n BOOTSTRAP_N = int(self.preferences['BOOTSTRAP_N'])\n Grade_A_samples_BS = {}\n if len(list(Grade_As.keys())) >= self.acceptance_criteria['sample_int_n'][\n 'value']:\n for specimen in list(Grade_As.keys()):\n if specimen not in list(Grade_A_samples_BS.keys()) and len(Grade_As\n [specimen]) > 0:\n Grade_A_samples_BS[specimen] = []\n for B in Grade_As[specimen]:\n Grade_A_samples_BS[specimen].append(B)\n Grade_A_samples_BS[specimen].sort()\n specimen_int_max_slope_diff = max(Grade_A_samples_BS[specimen]\n ) / min(Grade_A_samples_BS[specimen])\n if specimen_int_max_slope_diff > self.acceptance_criteria[\n 'specimen_int_max_slope_diff']:\n self.thellier_interpreter_log.write(\n \"\"\"-I- specimen %s Failed specimen_int_max_slope_diff\n\"\"\" %\n specimen, Grade_A_samples_BS[specimen])\n del Grade_A_samples_BS[specimen]\n if len(list(Grade_A_samples_BS.keys())) >= self.acceptance_criteria[\n 'sample_int_n']['value']:\n BS_means_collection = []\n for i in range(BOOTSTRAP_N):\n B_BS = []\n for j in range(len(list(Grade_A_samples_BS.keys()))):\n LIST = list(Grade_A_samples_BS.keys())\n specimen = random.choice(LIST)\n if self.acceptance_criteria['interpreter_method']['value'\n ] == 'bs':\n B = random.choice(Grade_A_samples_BS[specimen])\n if self.acceptance_criteria['interpreter_method']['value'\n ] == 'bs_par':\n B = random.uniform(min(Grade_A_samples_BS[specimen]),\n max(Grade_A_samples_BS[specimen]))\n B_BS.append(B)\n BS_means_collection.append(mean(B_BS))\n BS_means = array(BS_means_collection)\n BS_means.sort()\n sample_median = median(BS_means)\n sample_std = std(BS_means, ddof=1)\n sample_68 = [BS_means[0.16 * len(BS_means)], BS_means[0.84 * len(\n BS_means)]]\n sample_95 = [BS_means[0.025 * len(BS_means)], BS_means[0.975 * len(\n BS_means)]]\n else:\n String = '-I- sample %s FAIL: not enough specimen int_n= %i < %i ' % (\n sample, len(list(Grade_A_samples_BS.keys())), int(self.\n acceptance_criteria['sample_int_n']['value']))\n self.thellier_interpreter_log.write(String)\n thellier_interpreter_pars['bs_bedian'] = sample_median\n thellier_interpreter_pars['bs_std'] = sample_std\n thellier_interpreter_pars['bs_68'] = sample_68\n thellier_interpreter_pars['bs_95'] = sample_95\n thellier_interpreter_pars['bs_n'] = len(list(Grade_A_samples_BS.keys()))\n", "role": "user" }, { "content": "thellier_interpreter_BS_pars_calc", "role": "assistant" } ]
def x(dictionary, mapping): mapped_dictionary = {} for key, value in dictionary.items(): if key in list(mapping.keys()): new_key = mapping[key] if new_key in mapped_dictionary: if hasattr(value, 'any'): if not value.any(): continue if hasattr(mapped_dictionary, 'any'): if value.any() and not mapped_dictionary[new_key].any( ): mapped_dictionary[new_key] = value elif value.any() and mapped_dictionary[new_key].any(): mapped_dictionary[new_key] = value elif value.any() and not mapped_dictionary[new_key].any(): mapped_dictionary[new_key] = value elif value.any() and mapped_dictionary[new_key].any(): mapped_dictionary[new_key] = value elif not value: continue elif value and not mapped_dictionary[new_key]: mapped_dictionary[new_key] = value elif value and mapped_dictionary[new_key]: mapped_dictionary[new_key] = value else: mapped_dictionary[new_key] = value else: mapped_dictionary[key] = value return mapped_dictionary
mapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dictionary, mapping):\n mapped_dictionary = {}\n for key, value in dictionary.items():\n if key in list(mapping.keys()):\n new_key = mapping[key]\n if new_key in mapped_dictionary:\n if hasattr(value, 'any'):\n if not value.any():\n continue\n if hasattr(mapped_dictionary, 'any'):\n if value.any() and not mapped_dictionary[new_key].any(\n ):\n mapped_dictionary[new_key] = value\n elif value.any() and mapped_dictionary[new_key].any():\n mapped_dictionary[new_key] = value\n elif value.any() and not mapped_dictionary[new_key].any():\n mapped_dictionary[new_key] = value\n elif value.any() and mapped_dictionary[new_key].any():\n mapped_dictionary[new_key] = value\n elif not value:\n continue\n elif value and not mapped_dictionary[new_key]:\n mapped_dictionary[new_key] = value\n elif value and mapped_dictionary[new_key]:\n mapped_dictionary[new_key] = value\n else:\n mapped_dictionary[new_key] = value\n else:\n mapped_dictionary[key] = value\n return mapped_dictionary\n", "role": "user" }, { "content": "mapping", "role": "assistant" } ]
def x(file_path): def x(dm_type, dm): table_names3_2_table_names2 = {'measurements': [ 'magic_measurements'], 'locations': ['er_locations'], 'sites': ['er_sites', 'pmag_sites'], 'samples': ['er_samples', 'pmag_samples'], 'specimens': ['er_specimens', 'pmag_specimens' ], 'ages': ['er_ages'], 'criteria': ['pmag_criteria'], 'images': ['er_images'], 'contribution': []} table_names3 = table_names3_2_table_names2[dm_type] dictionary = {} for label, row in dm.iterrows(): if isinstance(row['previous_columns'], list): for previous_values in row['previous_columns']: previous_table = previous_values['table'] previous_value = previous_values['column'] if previous_table in table_names3: add_to_dict(previous_value, label, dictionary) elif previous_table in ['pmag_results', 'rmag_results']: if label not in dictionary.values(): if previous_value not in dictionary.keys(): add_to_dict(previous_value, label, dictionary) return dictionary def x(key, value, dictionary): if key in dictionary: if value != dictionary[key]: print('W- OVERWRITING') print('was:', key, dictionary[key]) print('now:', key, value) dictionary[key] = value data_model = DataModel() maps = {} for table_name in data_model.dm: dm = data_model.dm[table_name] new_mapping = get_2_to_3(table_name, dm) maps[table_name] = new_mapping f = open(file_path, 'w') f.write('all_maps = ') json.dump(maps, f) f.close() return maps
cache_mappings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path):\n\n def x(dm_type, dm):\n table_names3_2_table_names2 = {'measurements': [\n 'magic_measurements'], 'locations': ['er_locations'], 'sites':\n ['er_sites', 'pmag_sites'], 'samples': ['er_samples',\n 'pmag_samples'], 'specimens': ['er_specimens', 'pmag_specimens'\n ], 'ages': ['er_ages'], 'criteria': ['pmag_criteria'], 'images':\n ['er_images'], 'contribution': []}\n table_names3 = table_names3_2_table_names2[dm_type]\n dictionary = {}\n for label, row in dm.iterrows():\n if isinstance(row['previous_columns'], list):\n for previous_values in row['previous_columns']:\n previous_table = previous_values['table']\n previous_value = previous_values['column']\n if previous_table in table_names3:\n add_to_dict(previous_value, label, dictionary)\n elif previous_table in ['pmag_results', 'rmag_results']:\n if label not in dictionary.values():\n if previous_value not in dictionary.keys():\n add_to_dict(previous_value, label, dictionary)\n return dictionary\n\n def x(key, value, dictionary):\n if key in dictionary:\n if value != dictionary[key]:\n print('W- OVERWRITING')\n print('was:', key, dictionary[key])\n print('now:', key, value)\n dictionary[key] = value\n data_model = DataModel()\n maps = {}\n for table_name in data_model.dm:\n dm = data_model.dm[table_name]\n new_mapping = get_2_to_3(table_name, dm)\n maps[table_name] = new_mapping\n f = open(file_path, 'w')\n f.write('all_maps = ')\n json.dump(maps, f)\n f.close()\n return maps\n", "role": "user" }, { "content": "cache_mappings", "role": "assistant" } ]
def x(input_df, output=2): if int(output) == 2: thellier_gui_meas3_2_meas2_map = meas_magic3_2_magic2_map.copy() if 'treat_step_num' in input_df.columns: thellier_gui_meas3_2_meas2_map.update({'treat_step_num': 'measurement_number'}) thellier_gui_meas3_2_meas2_map.pop('measurement') return thellier_gui_meas3_2_meas2_map else: thellier_gui_meas2_2_meas3_map = meas_magic2_2_magic3_map.copy() if 'measurement' in input_df.columns: thellier_gui_meas2_2_meas3_map.pop('measurement_number') try: res = int(input_df.iloc[0]['measurement_number']) if res < 100: thellier_gui_meas2_2_meas3_map['measurement_number' ] = 'treat_step_num' except ValueError as ex: pass return thellier_gui_meas2_2_meas3_map
get_thellier_gui_meas_mapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_df, output=2):\n if int(output) == 2:\n thellier_gui_meas3_2_meas2_map = meas_magic3_2_magic2_map.copy()\n if 'treat_step_num' in input_df.columns:\n thellier_gui_meas3_2_meas2_map.update({'treat_step_num':\n 'measurement_number'})\n thellier_gui_meas3_2_meas2_map.pop('measurement')\n return thellier_gui_meas3_2_meas2_map\n else:\n thellier_gui_meas2_2_meas3_map = meas_magic2_2_magic3_map.copy()\n if 'measurement' in input_df.columns:\n thellier_gui_meas2_2_meas3_map.pop('measurement_number')\n try:\n res = int(input_df.iloc[0]['measurement_number'])\n if res < 100:\n thellier_gui_meas2_2_meas3_map['measurement_number'\n ] = 'treat_step_num'\n except ValueError as ex:\n pass\n return thellier_gui_meas2_2_meas3_map\n", "role": "user" }, { "content": "get_thellier_gui_meas_mapping", "role": "assistant" } ]
def x(meas_df_in, output): output = int(output) meas_mapping = get_thellier_gui_meas_mapping(meas_df_in, output) meas_df_out = meas_df_in.rename(columns=meas_mapping) if 'measurement' not in meas_df_out.columns: meas_df_out['measurement'] = meas_df_in['measurement'] return meas_df_out
convert_meas_df_thellier_gui
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(meas_df_in, output):\n output = int(output)\n meas_mapping = get_thellier_gui_meas_mapping(meas_df_in, output)\n meas_df_out = meas_df_in.rename(columns=meas_mapping)\n if 'measurement' not in meas_df_out.columns:\n meas_df_out['measurement'] = meas_df_in['measurement']\n return meas_df_out\n", "role": "user" }, { "content": "convert_meas_df_thellier_gui", "role": "assistant" } ]
def x(direction, Rec): if direction == 'magic3': columns = meas_magic2_2_magic3_map MeasRec = {} for key in columns: if key in list(Rec.keys()): MeasRec[columns[key]] = Rec[key] return MeasRec else: pass
convert_meas
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(direction, Rec):\n if direction == 'magic3':\n columns = meas_magic2_2_magic3_map\n MeasRec = {}\n for key in columns:\n if key in list(Rec.keys()):\n MeasRec[columns[key]] = Rec[key]\n return MeasRec\n else:\n pass\n", "role": "user" }, { "content": "convert_meas", "role": "assistant" } ]
def x(sites_df): has_vadms, has_vdms = False, False if 'int_abs' not in sites_df: sites_df['int_abs'] = None if 'int_n_samples' not in sites_df: sites_df['int_n_samples'] = None int_df = sites_df.copy().dropna(subset=['int_abs']) int_df['int_n_samples'] = int_df['int_n_samples'].values.astype('int') if len(int_df) > 0: int_df['int_abs_uT'] = 1000000.0 * int_df.int_abs.values int_df['int_abs_sigma_uT'] = 1000000.0 * int_df.int_abs_sigma.values int_df['int_abs_uT'] = int_df['int_abs_uT'].values.astype('int') int_df['int_abs_sigma_uT'] = int_df['int_abs_sigma_uT'].values.astype( 'int') int_df['int_abs_sigma_perc'] = int_df['int_abs_sigma_perc' ].values.astype('int') IntCols = ['Site', 'N', 'B', 'B sigma', 'sigma (%)'] if 'vadm' in int_df.columns: test_vadm = int_df.dropna(subset=['vadm']) if len(test_vadm) > 0: has_vadms = True if 'vdm' in int_df.columns: test_vdm = int_df.dropna(subset=['vdm']) if len(test_vdm) > 0: has_vdms = True if has_vadms: IntCols.append('VADM') IntCols.append('VADM sigma') if has_vdms: IntCols.append('VDM') IntCols.append('VDM sigma') if not has_vadms and not has_vdms: int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT', 'int_abs_sigma_perc']] if has_vadms and not has_vdms: int_df.sort_values(by=['site', 'vadm'], ascending=False, inplace=True) int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True) int_df['vadm_ZAm2'] = 1e-21 * int_df.vadm.values int_df['vadm_sigma_ZAm2'] = 1e-21 * int_df.vadm_sigma.values int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vadm_ZAm2', 'vadm_ZAm2_sigma']] if not has_vadms and has_vdms: int_df.sort_values(by=['site', 'vdm'], ascending=False, inplace =True) int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True) int_df['vdm_ZAm2'] = 1e-21 * int_df.vdm.values() int_df['vdm_sigma_ZAm2'] = 1e-21 * int_df.vdm_sigma.values() int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vdm_ZAm2', 'vdm_ZAm2_sigma']] if has_vadms and has_vdms: int_df.sort_values(by=['site', 'vadm'], ascending=False, inplace=True) int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True) int_df['vadm_ZAm2'] = 1e-21 * int_df.vadm.values int_df['vadm_sigma_ZAm2'] = 1e-21 * int_df.vadm_sigma.values int_df['vdm_ZAm2'] = 1e-21 * int_df.vdm.values int_df['vdm_sigma_ZAm2'] = 1e-21 * int_df.vdm_sigma.values int_df = int_df[['site', 'int_n_samples', 'int_abs_uT', 'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vadm_ZAm2', 'vadm_sigma_ZAm2', 'vdm_ZAm2', 'vdm_sigma_ZAm2']] int_df.columns = IntCols int_df.sort_values(by=['Site'], inplace=True, ascending=True) int_df.fillna(value='', inplace=True) return int_df
convert_site_dm3_table_intensity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sites_df):\n has_vadms, has_vdms = False, False\n if 'int_abs' not in sites_df:\n sites_df['int_abs'] = None\n if 'int_n_samples' not in sites_df:\n sites_df['int_n_samples'] = None\n int_df = sites_df.copy().dropna(subset=['int_abs'])\n int_df['int_n_samples'] = int_df['int_n_samples'].values.astype('int')\n if len(int_df) > 0:\n int_df['int_abs_uT'] = 1000000.0 * int_df.int_abs.values\n int_df['int_abs_sigma_uT'] = 1000000.0 * int_df.int_abs_sigma.values\n int_df['int_abs_uT'] = int_df['int_abs_uT'].values.astype('int')\n int_df['int_abs_sigma_uT'] = int_df['int_abs_sigma_uT'].values.astype(\n 'int')\n int_df['int_abs_sigma_perc'] = int_df['int_abs_sigma_perc'\n ].values.astype('int')\n IntCols = ['Site', 'N', 'B', 'B sigma', 'sigma (%)']\n if 'vadm' in int_df.columns:\n test_vadm = int_df.dropna(subset=['vadm'])\n if len(test_vadm) > 0:\n has_vadms = True\n if 'vdm' in int_df.columns:\n test_vdm = int_df.dropna(subset=['vdm'])\n if len(test_vdm) > 0:\n has_vdms = True\n if has_vadms:\n IntCols.append('VADM')\n IntCols.append('VADM sigma')\n if has_vdms:\n IntCols.append('VDM')\n IntCols.append('VDM sigma')\n if not has_vadms and not has_vdms:\n int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',\n 'int_abs_sigma_uT', 'int_abs_sigma_perc']]\n if has_vadms and not has_vdms:\n int_df.sort_values(by=['site', 'vadm'], ascending=False,\n inplace=True)\n int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)\n int_df['vadm_ZAm2'] = 1e-21 * int_df.vadm.values\n int_df['vadm_sigma_ZAm2'] = 1e-21 * int_df.vadm_sigma.values\n int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',\n 'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vadm_ZAm2',\n 'vadm_ZAm2_sigma']]\n if not has_vadms and has_vdms:\n int_df.sort_values(by=['site', 'vdm'], ascending=False, inplace\n =True)\n int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)\n int_df['vdm_ZAm2'] = 1e-21 * int_df.vdm.values()\n int_df['vdm_sigma_ZAm2'] = 1e-21 * int_df.vdm_sigma.values()\n int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',\n 'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vdm_ZAm2',\n 'vdm_ZAm2_sigma']]\n if has_vadms and has_vdms:\n int_df.sort_values(by=['site', 'vadm'], ascending=False,\n inplace=True)\n int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)\n int_df['vadm_ZAm2'] = 1e-21 * int_df.vadm.values\n int_df['vadm_sigma_ZAm2'] = 1e-21 * int_df.vadm_sigma.values\n int_df['vdm_ZAm2'] = 1e-21 * int_df.vdm.values\n int_df['vdm_sigma_ZAm2'] = 1e-21 * int_df.vdm_sigma.values\n int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',\n 'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vadm_ZAm2',\n 'vadm_sigma_ZAm2', 'vdm_ZAm2', 'vdm_sigma_ZAm2']]\n int_df.columns = IntCols\n int_df.sort_values(by=['Site'], inplace=True, ascending=True)\n int_df.fillna(value='', inplace=True)\n return int_df\n", "role": "user" }, { "content": "convert_site_dm3_table_intensity", "role": "assistant" } ]
def x(sites_df): dir_df = sites_df.copy().dropna(subset=['dir_dec', 'dir_inc']) DirCols = ['Site', 'TC (%)', 'Dec.', 'Inc.', 'N', 'k ', 'R', 'a95', 'VGP Lat', 'VGP Long'] columns = ['site', 'dir_tilt_correction', 'dir_dec', 'dir_inc', 'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95', 'vgp_lat', 'vgp_lon'] dm3_to_readable = dict(zip(columns, DirCols)) if len(dir_df) > 0: for col in ['dir_n_samples', 'dir_tilt_correction']: if col in dir_df.columns: dir_df[col] = dir_df[col].values.astype('int') columns = dir_df.columns.intersection(columns) has_vgps = False if 'vgp_lat' in dir_df.columns: test_vgp = dir_df.dropna(subset=['vgp_lat', 'vgp_lon']) if len(test_vgp) > 0: has_vgps = True if has_vgps: dir_df['vgp_lat_abs'] = dir_df.vgp_lat.abs() dir_df.sort_values(by=['site', 'vgp_lat_abs'], ascending=False, inplace=True) dir_df = dir_df[columns] dir_df.drop_duplicates(subset=['dir_dec', 'dir_inc', 'site'], inplace=True) else: dir_df.drop_duplicates(subset=['dir_dec', 'dir_inc', 'site'], inplace=True) dir_df = dir_df[['site', 'dir_tilt_correction', 'dir_dec', 'dir_inc', 'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95']] dir_df.rename(dm3_to_readable, axis='columns', inplace=True) dir_df.sort_values(by=['Site'], inplace=True, ascending=True) new_cols = list(dir_df.columns.drop('Site')) dir_df = dir_df[['Site'] + new_cols] return dir_df
convert_site_dm3_table_directions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sites_df):\n dir_df = sites_df.copy().dropna(subset=['dir_dec', 'dir_inc'])\n DirCols = ['Site', 'TC (%)', 'Dec.', 'Inc.', 'N', 'k ', 'R', 'a95',\n 'VGP Lat', 'VGP Long']\n columns = ['site', 'dir_tilt_correction', 'dir_dec', 'dir_inc',\n 'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95', 'vgp_lat', 'vgp_lon']\n dm3_to_readable = dict(zip(columns, DirCols))\n if len(dir_df) > 0:\n for col in ['dir_n_samples', 'dir_tilt_correction']:\n if col in dir_df.columns:\n dir_df[col] = dir_df[col].values.astype('int')\n columns = dir_df.columns.intersection(columns)\n has_vgps = False\n if 'vgp_lat' in dir_df.columns:\n test_vgp = dir_df.dropna(subset=['vgp_lat', 'vgp_lon'])\n if len(test_vgp) > 0:\n has_vgps = True\n if has_vgps:\n dir_df['vgp_lat_abs'] = dir_df.vgp_lat.abs()\n dir_df.sort_values(by=['site', 'vgp_lat_abs'], ascending=False,\n inplace=True)\n dir_df = dir_df[columns]\n dir_df.drop_duplicates(subset=['dir_dec', 'dir_inc', 'site'],\n inplace=True)\n else:\n dir_df.drop_duplicates(subset=['dir_dec', 'dir_inc', 'site'],\n inplace=True)\n dir_df = dir_df[['site', 'dir_tilt_correction', 'dir_dec',\n 'dir_inc', 'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95']]\n dir_df.rename(dm3_to_readable, axis='columns', inplace=True)\n dir_df.sort_values(by=['Site'], inplace=True, ascending=True)\n new_cols = list(dir_df.columns.drop('Site'))\n dir_df = dir_df[['Site'] + new_cols]\n return dir_df\n", "role": "user" }, { "content": "convert_site_dm3_table_directions", "role": "assistant" } ]
def x(spec_df): from pmagpy import data_model3 as dm3 dm = dm3.DataModel() meas_group = ['meas_step_min', 'meas_step_max', 'meas_step_unit'] pint_group = dm.get_group_headers('specimens', 'Paleointensity') arai_group = dm.get_group_headers('specimens', 'Paleointensity Arai Statistics') dm3_columns = list(meas_group) + list(pint_group) + list(arai_group) dm3_columns = filter(lambda x: '_rel' not in x, dm3_columns) meas_group_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit'] pint_group_columns = list(spec_df.columns.intersection(pint_group)) arai_group_columns = list(spec_df.columns.intersection(arai_group)) columns = ['specimen', 'sample' ] + meas_group_columns + pint_group_columns + arai_group_columns spec_df = spec_df.copy()[columns] muT_list = ['int_abs', 'int_abs_sigma', 'int_treat_dc_field'] meas_list = ['meas_step_min', 'meas_step_max'] for el in muT_list: if el in columns: spec_df[el] = 1000000.0 * spec_df[el] if 'meas_step_unit' in columns: for el in meas_list: spec_df.loc[spec_df['meas_step_unit'] == 'K', el] = spec_df[el ] - 273 spec_df.loc[spec_df['meas_step_unit'] == 'T', el ] = 1000.0 * spec_df[el] spec_df.loc[spec_df['meas_step_unit'] == 'K', 'meas_step_unit'] = 'C' spec_df.loc[spec_df['meas_step_unit'] == 'T', 'meas_step_unit'] = 'mT' spec_df['meas_step_min'] = spec_df['meas_step_min'].astype('int') spec_df['meas_step_max'] = spec_df['meas_step_max'].astype('int') dm3_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit', 'int_abs', 'int_abs_sigma', 'int_abs_sigma_perc', 'int_n_measurements', 'int_corr', 'int_corr_cooling_rate', 'int_corr_aniso', 'int_corr_nlt', 'int_corr_arm', 'int_viscosity_index', 'int_treat_dc_field', 'int_b', 'int_b_sigma', 'int_b_beta', 'int_rsc', 'int_f', 'int_fvds', 'int_frac', 'int_g', 'int_gmax', 'int_q', 'int_w', 'int_k', 'int_k_sse', 'int_k_prime', 'int_k_prime_sse', 'int_scat', 'int_r2_corr', 'int_r2_det', 'int_z', 'int_z_md'] table_columns = ['Min', 'Max', 'Units', 'B (uT)', 'sigma', 'percent', 'N', 'c/u', 'CR', 'Aniso.', 'NLT', 'AARM', 'VI', 'Lab Field', 'b', 'b sigma', 'beta', 'R2', 'f', 'fvds', 'frac', 'g', 'gap max', 'q', 'w', 'k', 'k sse', 'k prime', 'k prime sse', 'scat', 'r2 corr', 'r2 det', 'Z', 'Z md'] spec_mapping = dict(list(zip(dm3_columns, table_columns))) spec_df_out = spec_df.rename(columns=spec_mapping) if 'N' in spec_df_out.columns: spec_df_out['N'] = spec_df_out['N'].astype('int') if 'Lab Field' in spec_df_out.columns: spec_df_out['Lab Field'] = spec_df_out['Lab Field'].round().astype( 'int') return spec_df_out
convert_specimen_dm3_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(spec_df):\n from pmagpy import data_model3 as dm3\n dm = dm3.DataModel()\n meas_group = ['meas_step_min', 'meas_step_max', 'meas_step_unit']\n pint_group = dm.get_group_headers('specimens', 'Paleointensity')\n arai_group = dm.get_group_headers('specimens',\n 'Paleointensity Arai Statistics')\n dm3_columns = list(meas_group) + list(pint_group) + list(arai_group)\n dm3_columns = filter(lambda x: '_rel' not in x, dm3_columns)\n meas_group_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit']\n pint_group_columns = list(spec_df.columns.intersection(pint_group))\n arai_group_columns = list(spec_df.columns.intersection(arai_group))\n columns = ['specimen', 'sample'\n ] + meas_group_columns + pint_group_columns + arai_group_columns\n spec_df = spec_df.copy()[columns]\n muT_list = ['int_abs', 'int_abs_sigma', 'int_treat_dc_field']\n meas_list = ['meas_step_min', 'meas_step_max']\n for el in muT_list:\n if el in columns:\n spec_df[el] = 1000000.0 * spec_df[el]\n if 'meas_step_unit' in columns:\n for el in meas_list:\n spec_df.loc[spec_df['meas_step_unit'] == 'K', el] = spec_df[el\n ] - 273\n spec_df.loc[spec_df['meas_step_unit'] == 'T', el\n ] = 1000.0 * spec_df[el]\n spec_df.loc[spec_df['meas_step_unit'] == 'K', 'meas_step_unit'] = 'C'\n spec_df.loc[spec_df['meas_step_unit'] == 'T', 'meas_step_unit'] = 'mT'\n spec_df['meas_step_min'] = spec_df['meas_step_min'].astype('int')\n spec_df['meas_step_max'] = spec_df['meas_step_max'].astype('int')\n dm3_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit',\n 'int_abs', 'int_abs_sigma', 'int_abs_sigma_perc',\n 'int_n_measurements', 'int_corr', 'int_corr_cooling_rate',\n 'int_corr_aniso', 'int_corr_nlt', 'int_corr_arm',\n 'int_viscosity_index', 'int_treat_dc_field', 'int_b', 'int_b_sigma',\n 'int_b_beta', 'int_rsc', 'int_f', 'int_fvds', 'int_frac', 'int_g',\n 'int_gmax', 'int_q', 'int_w', 'int_k', 'int_k_sse', 'int_k_prime',\n 'int_k_prime_sse', 'int_scat', 'int_r2_corr', 'int_r2_det', 'int_z',\n 'int_z_md']\n table_columns = ['Min', 'Max', 'Units', 'B (uT)', 'sigma', 'percent',\n 'N', 'c/u', 'CR', 'Aniso.', 'NLT', 'AARM', 'VI', 'Lab Field', 'b',\n 'b sigma', 'beta', 'R2', 'f', 'fvds', 'frac', 'g', 'gap max', 'q',\n 'w', 'k', 'k sse', 'k prime', 'k prime sse', 'scat', 'r2 corr',\n 'r2 det', 'Z', 'Z md']\n spec_mapping = dict(list(zip(dm3_columns, table_columns)))\n spec_df_out = spec_df.rename(columns=spec_mapping)\n if 'N' in spec_df_out.columns:\n spec_df_out['N'] = spec_df_out['N'].astype('int')\n if 'Lab Field' in spec_df_out.columns:\n spec_df_out['Lab Field'] = spec_df_out['Lab Field'].round().astype(\n 'int')\n return spec_df_out\n", "role": "user" }, { "content": "convert_specimen_dm3_table", "role": "assistant" } ]
def x(): args = sys.argv if '-h' in args: print(main.__doc__) sys.exit() dataframe = extractor.command_line_dataframe([['WD', False, '.'], ['ID', False, ''], ['usr', False, ''], ['ncn', False, '1'], ['k15', False, False], ['ins', False, ''], ['f', True, ''], ['F', False, 'measurements.txt'], ['Fa', False, 'rmag_anisotropy.txt'], ['Fsi', False, 'specimens.txt'], ['loc', False, 'unknown'], ['spc', False, 0], ['fsi', False, None], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) (output_dir_path, input_dir_path, user, sample_naming_con, static_15_position_mode, instrument, ascfile, meas_output, aniso_output, spec_outfile, locname, specnum, spec_infile, data_model_num) = (extractor.get_vars(['WD', 'ID', 'usr', 'ncn', 'k15', 'ins', 'f', 'F', 'Fa', 'Fsi', 'loc', 'spc', 'fsi', 'DM'], checked_args)) convert.sufar4(ascfile, meas_output, aniso_output, spec_infile, spec_outfile, specnum=specnum, sample_naming_con=sample_naming_con, user=user, locname=locname, instrument=instrument, static_15_position_mode=static_15_position_mode, dir_path= output_dir_path, input_dir_path=input_dir_path, data_model_num= data_model_num)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n dataframe = extractor.command_line_dataframe([['WD', False, '.'], ['ID',\n False, ''], ['usr', False, ''], ['ncn', False, '1'], ['k15', False,\n False], ['ins', False, ''], ['f', True, ''], ['F', False,\n 'measurements.txt'], ['Fa', False, 'rmag_anisotropy.txt'], ['Fsi', \n False, 'specimens.txt'], ['loc', False, 'unknown'], ['spc', False, \n 0], ['fsi', False, None], ['DM', False, 3]])\n checked_args = extractor.extract_and_check_args(args, dataframe)\n (output_dir_path, input_dir_path, user, sample_naming_con,\n static_15_position_mode, instrument, ascfile, meas_output,\n aniso_output, spec_outfile, locname, specnum, spec_infile,\n data_model_num) = (extractor.get_vars(['WD', 'ID', 'usr', 'ncn',\n 'k15', 'ins', 'f', 'F', 'Fa', 'Fsi', 'loc', 'spc', 'fsi', 'DM'],\n checked_args))\n convert.sufar4(ascfile, meas_output, aniso_output, spec_infile,\n spec_outfile, specnum=specnum, sample_naming_con=sample_naming_con,\n user=user, locname=locname, instrument=instrument,\n static_15_position_mode=static_15_position_mode, dir_path=\n output_dir_path, input_dir_path=input_dir_path, data_model_num=\n data_model_num)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(self): coordinate_list = ['specimen'] initial_coordinate = 'specimen' for specimen in self.specimens: if 'geographic' not in coordinate_list and self.Data[specimen][ 'zijdblock_geo']: coordinate_list.append('geographic') initial_coordinate = 'geographic' if 'tilt-corrected' not in coordinate_list and self.Data[specimen][ 'zijdblock_tilt']: coordinate_list.append('tilt-corrected') return initial_coordinate, coordinate_list
get_coordinate_system
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n coordinate_list = ['specimen']\n initial_coordinate = 'specimen'\n for specimen in self.specimens:\n if 'geographic' not in coordinate_list and self.Data[specimen][\n 'zijdblock_geo']:\n coordinate_list.append('geographic')\n initial_coordinate = 'geographic'\n if 'tilt-corrected' not in coordinate_list and self.Data[specimen][\n 'zijdblock_tilt']:\n coordinate_list.append('tilt-corrected')\n return initial_coordinate, coordinate_list\n", "role": "user" }, { "content": "get_coordinate_system", "role": "assistant" } ]
def x(self, s, update_high_plots=True): self.initialize_CART_rot(s) self.draw_zijderveld() self.draw_spec_eqarea() self.draw_MM0() if len(self.selected_meas) > 0: self.plot_selected_meas() if update_high_plots: self.plot_high_levels_data() self.canvas4.draw()
draw_figure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, s, update_high_plots=True):\n self.initialize_CART_rot(s)\n self.draw_zijderveld()\n self.draw_spec_eqarea()\n self.draw_MM0()\n if len(self.selected_meas) > 0:\n self.plot_selected_meas()\n if update_high_plots:\n self.plot_high_levels_data()\n self.canvas4.draw()\n", "role": "user" }, { "content": "draw_figure", "role": "assistant" } ]
def x(self): draw_net(self.specimen_eqarea) self.specimen_eqarea.text(-1.2, 1.15, 'specimen: %s' % self.s, { 'family': self.font_type, 'fontsize': 10 * self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'}) x_eq = array([row[0] for row in self.zij_norm]) y_eq = array([row[1] for row in self.zij_norm]) z_eq = abs(array([row[2] for row in self.zij_norm])) x_eq_good, y_eq_good, z_eq_good = [], [], [] x_eq_bad, y_eq_bad, z_eq_bad = [], [], [] for i in range(len(list(self.zij_norm))): if self.Data[self.s]['measurement_flag'][i] == 'g': x_eq_good.append(self.zij_norm[i][0]) y_eq_good.append(self.zij_norm[i][1]) z_eq_good.append(abs(self.zij_norm[i][2])) else: x_eq_bad.append(self.zij_norm[i][0]) y_eq_bad.append(self.zij_norm[i][1]) z_eq_bad.append(abs(self.zij_norm[i][2])) x_eq_good, y_eq_good, z_eq_good = array(x_eq_good), array(y_eq_good ), array(z_eq_good) x_eq_bad, y_eq_bad, z_eq_bad = array(x_eq_bad), array(y_eq_bad), array( z_eq_bad) R_good = array(sqrt(1 - z_eq_good) / sqrt(x_eq_good ** 2 + y_eq_good ** 2)) R_bad = array(sqrt(1 - z_eq_bad) / sqrt(x_eq_bad ** 2 + y_eq_bad ** 2)) eqarea_data_x_good = y_eq_good * R_good eqarea_data_y_good = x_eq_good * R_good eqarea_data_x_bad = y_eq_bad * R_bad eqarea_data_y_bad = x_eq_bad * R_bad self.specimen_eqarea.plot(eqarea_data_x_good, eqarea_data_y_good, lw= 0.5, color='gray') x_eq_dn, y_eq_dn, z_eq_dn, eq_dn_temperatures = [], [], [], [] x_eq_dn = array([row[0] for row in self.zij_norm if row[2] > 0]) y_eq_dn = array([row[1] for row in self.zij_norm if row[2] > 0]) z_eq_dn = abs(array([row[2] for row in self.zij_norm if row[2] > 0])) if len(x_eq_dn) > 0: R = array(sqrt(1 - z_eq_dn) / sqrt(x_eq_dn ** 2 + y_eq_dn ** 2)) eqarea_data_x_dn = y_eq_dn * R eqarea_data_y_dn = x_eq_dn * R self.specimen_eqarea.scatter([eqarea_data_x_dn], [eqarea_data_y_dn], marker='o', edgecolor='black', facecolor='#808080', s=15 * self .GUI_RESOLUTION, lw=1, clip_on=False) x_eq_up, y_eq_up, z_eq_up = [], [], [] x_eq_up = array([row[0] for row in self.zij_norm if row[2] <= 0]) y_eq_up = array([row[1] for row in self.zij_norm if row[2] <= 0]) z_eq_up = abs(array([row[2] for row in self.zij_norm if row[2] <= 0])) if len(x_eq_up) > 0: R = array(sqrt(1 - z_eq_up) / sqrt(x_eq_up ** 2 + y_eq_up ** 2)) eqarea_data_x_up = y_eq_up * R eqarea_data_y_up = x_eq_up * R self.specimen_eqarea.scatter([eqarea_data_x_up], [eqarea_data_y_up], marker='o', edgecolor='black', facecolor='#FFFFFF', s=15 * self .GUI_RESOLUTION, lw=1, clip_on=False) if self.preferences['show_eqarea_treatments']: for i in range(len(self.zijdblock_steps)): self.specimen_eqarea.text(eqarea_data_x[i], eqarea_data_y[i], '%.1f' % float(self.zijdblock_steps[i]), fontsize=8 * self. GUI_RESOLUTION, color='0.5') if str(self.orthogonal_box.GetValue()) in ['X=best fit line dec', 'X=NRM dec']: XY = [] if str(self.orthogonal_box.GetValue()) == 'X=NRM dec': dec_zij = self.zijblock[0][1] XY = pmag.dimap(dec_zij, 0) if str(self.orthogonal_box.GetValue()) == 'X=best fit line dec': if 'specimen_dec' in list(self.current_fit.pars.keys()) and type( self.current_fit.pars['specimen_dec']) != str: dec_zij = self.current_fit.pars['specimen_dec'] XY = pmag.dimap(dec_zij, 0) if XY != []: self.specimen_eqarea.plot([0, XY[0]], [0, XY[1]], ls='-', c= 'gray', lw=0.5) self.canvas2.draw()
draw_spec_eqarea
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n draw_net(self.specimen_eqarea)\n self.specimen_eqarea.text(-1.2, 1.15, 'specimen: %s' % self.s, {\n 'family': self.font_type, 'fontsize': 10 * self.GUI_RESOLUTION,\n 'style': 'normal', 'va': 'center', 'ha': 'left'})\n x_eq = array([row[0] for row in self.zij_norm])\n y_eq = array([row[1] for row in self.zij_norm])\n z_eq = abs(array([row[2] for row in self.zij_norm]))\n x_eq_good, y_eq_good, z_eq_good = [], [], []\n x_eq_bad, y_eq_bad, z_eq_bad = [], [], []\n for i in range(len(list(self.zij_norm))):\n if self.Data[self.s]['measurement_flag'][i] == 'g':\n x_eq_good.append(self.zij_norm[i][0])\n y_eq_good.append(self.zij_norm[i][1])\n z_eq_good.append(abs(self.zij_norm[i][2]))\n else:\n x_eq_bad.append(self.zij_norm[i][0])\n y_eq_bad.append(self.zij_norm[i][1])\n z_eq_bad.append(abs(self.zij_norm[i][2]))\n x_eq_good, y_eq_good, z_eq_good = array(x_eq_good), array(y_eq_good\n ), array(z_eq_good)\n x_eq_bad, y_eq_bad, z_eq_bad = array(x_eq_bad), array(y_eq_bad), array(\n z_eq_bad)\n R_good = array(sqrt(1 - z_eq_good) / sqrt(x_eq_good ** 2 + y_eq_good ** 2))\n R_bad = array(sqrt(1 - z_eq_bad) / sqrt(x_eq_bad ** 2 + y_eq_bad ** 2))\n eqarea_data_x_good = y_eq_good * R_good\n eqarea_data_y_good = x_eq_good * R_good\n eqarea_data_x_bad = y_eq_bad * R_bad\n eqarea_data_y_bad = x_eq_bad * R_bad\n self.specimen_eqarea.plot(eqarea_data_x_good, eqarea_data_y_good, lw=\n 0.5, color='gray')\n x_eq_dn, y_eq_dn, z_eq_dn, eq_dn_temperatures = [], [], [], []\n x_eq_dn = array([row[0] for row in self.zij_norm if row[2] > 0])\n y_eq_dn = array([row[1] for row in self.zij_norm if row[2] > 0])\n z_eq_dn = abs(array([row[2] for row in self.zij_norm if row[2] > 0]))\n if len(x_eq_dn) > 0:\n R = array(sqrt(1 - z_eq_dn) / sqrt(x_eq_dn ** 2 + y_eq_dn ** 2))\n eqarea_data_x_dn = y_eq_dn * R\n eqarea_data_y_dn = x_eq_dn * R\n self.specimen_eqarea.scatter([eqarea_data_x_dn], [eqarea_data_y_dn],\n marker='o', edgecolor='black', facecolor='#808080', s=15 * self\n .GUI_RESOLUTION, lw=1, clip_on=False)\n x_eq_up, y_eq_up, z_eq_up = [], [], []\n x_eq_up = array([row[0] for row in self.zij_norm if row[2] <= 0])\n y_eq_up = array([row[1] for row in self.zij_norm if row[2] <= 0])\n z_eq_up = abs(array([row[2] for row in self.zij_norm if row[2] <= 0]))\n if len(x_eq_up) > 0:\n R = array(sqrt(1 - z_eq_up) / sqrt(x_eq_up ** 2 + y_eq_up ** 2))\n eqarea_data_x_up = y_eq_up * R\n eqarea_data_y_up = x_eq_up * R\n self.specimen_eqarea.scatter([eqarea_data_x_up], [eqarea_data_y_up],\n marker='o', edgecolor='black', facecolor='#FFFFFF', s=15 * self\n .GUI_RESOLUTION, lw=1, clip_on=False)\n if self.preferences['show_eqarea_treatments']:\n for i in range(len(self.zijdblock_steps)):\n self.specimen_eqarea.text(eqarea_data_x[i], eqarea_data_y[i], \n '%.1f' % float(self.zijdblock_steps[i]), fontsize=8 * self.\n GUI_RESOLUTION, color='0.5')\n if str(self.orthogonal_box.GetValue()) in ['X=best fit line dec',\n 'X=NRM dec']:\n XY = []\n if str(self.orthogonal_box.GetValue()) == 'X=NRM dec':\n dec_zij = self.zijblock[0][1]\n XY = pmag.dimap(dec_zij, 0)\n if str(self.orthogonal_box.GetValue()) == 'X=best fit line dec':\n if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(\n self.current_fit.pars['specimen_dec']) != str:\n dec_zij = self.current_fit.pars['specimen_dec']\n XY = pmag.dimap(dec_zij, 0)\n if XY != []:\n self.specimen_eqarea.plot([0, XY[0]], [0, XY[1]], ls='-', c=\n 'gray', lw=0.5)\n self.canvas2.draw()\n", "role": "user" }, { "content": "draw_spec_eqarea", "role": "assistant" } ]
def x(self): self.fig3.clf() self.fig3.text(0.02, 0.96, 'M/M0', {'family': self.font_type, 'fontsize': 10 * self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'}) self.mplot = self.fig3.add_axes([0.2, 0.15, 0.7, 0.7], frameon=True, facecolor='None') thermal_x, thermal_y = [], [] thermal_x_bad, thermal_y_bad = [], [] af_x, af_y = [], [] af_x_bad, af_y_bad = [], [] for i in range(len(self.Data[self.s]['zijdblock'])): step = self.Data[self.s]['zijdblock_steps'][i] if self.Data[self.s]['measurement_flag'][i] == 'b': if step == '0': thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0]) af_x_bad.append(self.Data[self.s]['zijdblock'][i][0]) thermal_y_bad.append(self.Data[self.s]['zijdblock'][i][3] / self.Data[self.s]['zijdblock'][0][3]) af_y_bad.append(self.Data[self.s]['zijdblock'][i][3] / self .Data[self.s]['zijdblock'][0][3]) elif 'C' in step: thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0]) thermal_y_bad.append(self.Data[self.s]['zijdblock'][i][3] / self.Data[self.s]['zijdblock'][0][3]) elif 'T' in step: af_x_bad.append(self.Data[self.s]['zijdblock'][i][0]) af_y_bad.append(self.Data[self.s]['zijdblock'][i][3] / self .Data[self.s]['zijdblock'][0][3]) else: continue elif step == '0': thermal_x.append(self.Data[self.s]['zijdblock'][i][0]) af_x.append(self.Data[self.s]['zijdblock'][i][0]) thermal_y.append(self.Data[self.s]['zijdblock'][i][3] / self. Data[self.s]['zijdblock'][0][3]) af_y.append(self.Data[self.s]['zijdblock'][i][3] / self.Data[ self.s]['zijdblock'][0][3]) elif 'C' in step: thermal_x.append(self.Data[self.s]['zijdblock'][i][0]) thermal_y.append(self.Data[self.s]['zijdblock'][i][3] / self. Data[self.s]['zijdblock'][0][3]) elif 'T' in step: af_x.append(self.Data[self.s]['zijdblock'][i][0]) af_y.append(self.Data[self.s]['zijdblock'][i][3] / self.Data[ self.s]['zijdblock'][0][3]) else: continue if len(thermal_x) + len(thermal_x_bad) > self.Data[self.s][ 'zijdblock_steps'].count('0'): self.mplot.plot(thermal_x, thermal_y, 'ro-', markersize=self.MS, lw =1, clip_on=False, zorder=1) for i in range(len(thermal_x_bad)): self.mplot.plot([thermal_x_bad[i]], [thermal_y_bad[i]], 'o', mfc='None', mec='k', markersize=self.MS, clip_on=False, zorder=1) self.mplot.set_xlabel('Thermal (C)', color='r') for tl in self.mplot.get_xticklabels(): tl.set_color('r') self.mplot_af = self.mplot.twiny() if len(af_x) + len(af_x_bad) > self.Data[self.s]['zijdblock_steps'].count( '0'): self.mplot_af.plot(af_x, af_y, 'bo-', markersize=self.MS, lw=1, clip_on=False, zorder=1) for i in range(len(af_x_bad)): self.mplot_af.plot([af_x_bad[i]], [af_y_bad[i]], 'o', mfc= 'None', mec='k', markersize=self.MS, clip_on=False, zorder=1) self.mplot_af.set_xlabel('AF (mT)', color='b') for tl in self.mplot_af.get_xticklabels(): tl.set_color('b') self.mplot.tick_params(axis='both', which='major', labelsize=7) self.mplot_af.tick_params(axis='both', which='major', labelsize=7) self.mplot.spines['right'].set_visible(False) self.mplot_af.spines['right'].set_visible(False) self.mplot.get_xaxis().tick_bottom() self.mplot.get_yaxis().tick_left() self.mplot.set_ylabel('M / NRM0', fontsize=8 * self.GUI_RESOLUTION) self.canvas3.draw()
draw_MM0
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.fig3.clf()\n self.fig3.text(0.02, 0.96, 'M/M0', {'family': self.font_type,\n 'fontsize': 10 * self.GUI_RESOLUTION, 'style': 'normal', 'va':\n 'center', 'ha': 'left'})\n self.mplot = self.fig3.add_axes([0.2, 0.15, 0.7, 0.7], frameon=True,\n facecolor='None')\n thermal_x, thermal_y = [], []\n thermal_x_bad, thermal_y_bad = [], []\n af_x, af_y = [], []\n af_x_bad, af_y_bad = [], []\n for i in range(len(self.Data[self.s]['zijdblock'])):\n step = self.Data[self.s]['zijdblock_steps'][i]\n if self.Data[self.s]['measurement_flag'][i] == 'b':\n if step == '0':\n thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0])\n af_x_bad.append(self.Data[self.s]['zijdblock'][i][0])\n thermal_y_bad.append(self.Data[self.s]['zijdblock'][i][3] /\n self.Data[self.s]['zijdblock'][0][3])\n af_y_bad.append(self.Data[self.s]['zijdblock'][i][3] / self\n .Data[self.s]['zijdblock'][0][3])\n elif 'C' in step:\n thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0])\n thermal_y_bad.append(self.Data[self.s]['zijdblock'][i][3] /\n self.Data[self.s]['zijdblock'][0][3])\n elif 'T' in step:\n af_x_bad.append(self.Data[self.s]['zijdblock'][i][0])\n af_y_bad.append(self.Data[self.s]['zijdblock'][i][3] / self\n .Data[self.s]['zijdblock'][0][3])\n else:\n continue\n elif step == '0':\n thermal_x.append(self.Data[self.s]['zijdblock'][i][0])\n af_x.append(self.Data[self.s]['zijdblock'][i][0])\n thermal_y.append(self.Data[self.s]['zijdblock'][i][3] / self.\n Data[self.s]['zijdblock'][0][3])\n af_y.append(self.Data[self.s]['zijdblock'][i][3] / self.Data[\n self.s]['zijdblock'][0][3])\n elif 'C' in step:\n thermal_x.append(self.Data[self.s]['zijdblock'][i][0])\n thermal_y.append(self.Data[self.s]['zijdblock'][i][3] / self.\n Data[self.s]['zijdblock'][0][3])\n elif 'T' in step:\n af_x.append(self.Data[self.s]['zijdblock'][i][0])\n af_y.append(self.Data[self.s]['zijdblock'][i][3] / self.Data[\n self.s]['zijdblock'][0][3])\n else:\n continue\n if len(thermal_x) + len(thermal_x_bad) > self.Data[self.s][\n 'zijdblock_steps'].count('0'):\n self.mplot.plot(thermal_x, thermal_y, 'ro-', markersize=self.MS, lw\n =1, clip_on=False, zorder=1)\n for i in range(len(thermal_x_bad)):\n self.mplot.plot([thermal_x_bad[i]], [thermal_y_bad[i]], 'o',\n mfc='None', mec='k', markersize=self.MS, clip_on=False,\n zorder=1)\n self.mplot.set_xlabel('Thermal (C)', color='r')\n for tl in self.mplot.get_xticklabels():\n tl.set_color('r')\n self.mplot_af = self.mplot.twiny()\n if len(af_x) + len(af_x_bad) > self.Data[self.s]['zijdblock_steps'].count(\n '0'):\n self.mplot_af.plot(af_x, af_y, 'bo-', markersize=self.MS, lw=1,\n clip_on=False, zorder=1)\n for i in range(len(af_x_bad)):\n self.mplot_af.plot([af_x_bad[i]], [af_y_bad[i]], 'o', mfc=\n 'None', mec='k', markersize=self.MS, clip_on=False, zorder=1)\n self.mplot_af.set_xlabel('AF (mT)', color='b')\n for tl in self.mplot_af.get_xticklabels():\n tl.set_color('b')\n self.mplot.tick_params(axis='both', which='major', labelsize=7)\n self.mplot_af.tick_params(axis='both', which='major', labelsize=7)\n self.mplot.spines['right'].set_visible(False)\n self.mplot_af.spines['right'].set_visible(False)\n self.mplot.get_xaxis().tick_bottom()\n self.mplot.get_yaxis().tick_left()\n self.mplot.set_ylabel('M / NRM0', fontsize=8 * self.GUI_RESOLUTION)\n self.canvas3.draw()\n", "role": "user" }, { "content": "draw_MM0", "role": "assistant" } ]
def x(self): self.close_warning = True blue_cover = '#9999FF' red_cover = '#FF9999' eqarea_outline = '#FF0000' MS_selected = 40 for a in self.selected_meas_artists: if a in self.zijplot.collections: self.zijplot.collections.remove(a) if a in self.specimen_eqarea.collections: self.specimen_eqarea.collections.remove(a) if a in self.mplot.collections: self.mplot.collections.remove(a) if a in self.mplot_af.collections: self.mplot_af.collections.remove(a) self.selected_meas_artists = [] x, y, z = self.CART_rot[self.selected_meas, 0], self.CART_rot[self. selected_meas, 1], self.CART_rot[self.selected_meas, 2] self.selected_meas_artists.append(self.zijplot.scatter(x, -1 * y, c= red_cover, marker='o', s=MS_selected, zorder=2)) self.selected_meas_artists.append(self.zijplot.scatter(x, -1 * z, c= blue_cover, marker='s', s=MS_selected, zorder=2)) x_eq = array([row[0] for i, row in enumerate(self.zij_norm) if i in self.selected_meas and row[2] > 0]) y_eq = array([row[1] for i, row in enumerate(self.zij_norm) if i in self.selected_meas and row[2] > 0]) z_eq = abs(array([row[2] for i, row in enumerate(self.zij_norm) if i in self.selected_meas and row[2] > 0])) if len(x_eq) > 0: R = array(sqrt(1 - z_eq) / sqrt(x_eq ** 2 + y_eq ** 2)) eqarea_data_x = y_eq * R eqarea_data_y = x_eq * R self.selected_meas_artists.append(self.specimen_eqarea.scatter([ eqarea_data_x], [eqarea_data_y], marker='o', edgecolor= eqarea_outline, facecolor='#808080', s=15 * self.GUI_RESOLUTION, lw=1, clip_on=False)) x_eq = array([row[0] for i, row in enumerate(self.zij_norm) if i in self.selected_meas and row[2] < 0]) y_eq = array([row[1] for i, row in enumerate(self.zij_norm) if i in self.selected_meas and row[2] < 0]) z_eq = abs(array([row[2] for i, row in enumerate(self.zij_norm) if i in self.selected_meas and row[2] < 0])) if len(x_eq) > 0: R = array(sqrt(1 - z_eq) / sqrt(x_eq ** 2 + y_eq ** 2)) eqarea_data_x = y_eq * R eqarea_data_y = x_eq * R self.selected_meas_artists.append(self.specimen_eqarea.scatter([ eqarea_data_x], [eqarea_data_y], marker='o', edgecolor= eqarea_outline, facecolor='#FFFFFF', s=15 * self.GUI_RESOLUTION, lw=1, clip_on=False)) steps = self.Data[self.s]['zijdblock_steps'] flags = self.Data[self.s]['measurement_flag'] selected_af_meas = [i for i in self.selected_meas if 'T' in steps[i] or steps[i] == '0' and flags[i] != 'b'] selected_T_meas = [i for i in self.selected_meas if 'C' in steps[i] or steps[i] == '0' and flags[i] != 'b'] data = array(self.Data[self.s]['zijdblock']) af_x = array(list(map(float, data[selected_af_meas, 0]))) af_y = array(list(map(float, data[selected_af_meas, 3]))) / float(data[ 0, 3]) T_x = array(list(map(float, data[selected_T_meas, 0]))) T_y = array(list(map(float, data[selected_T_meas, 3]))) / float(data[0, 3]) xmin, xmax = self.mplot.get_xlim() ymin, ymax = self.mplot.get_ylim() if T_x.astype(float).any() or T_y.astype(float).any(): self.selected_meas_artists.append(self.mplot.scatter(T_x, T_y, facecolor=red_cover, edgecolor='#000000', marker='o', s=30, lw= 1, clip_on=False, zorder=3)) self.mplot.set_xlim([xmin, xmax]) self.mplot.set_ylim([ymin, ymax]) xmin, xmax = self.mplot_af.get_xlim() ymin, ymax = self.mplot_af.get_ylim() if af_x.astype(float).any() or af_y.astype(float).any(): self.selected_meas_artists.append(self.mplot_af.scatter(af_x, af_y, facecolor=blue_cover, edgecolor='#000000', marker='o', s=30, lw =1, clip_on=False, zorder=3)) self.mplot_af.set_xlim([xmin, xmax]) self.mplot_af.set_ylim([ymin, ymax]) self.canvas1.draw() self.canvas2.draw() self.canvas3.draw()
plot_selected_meas
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.close_warning = True\n blue_cover = '#9999FF'\n red_cover = '#FF9999'\n eqarea_outline = '#FF0000'\n MS_selected = 40\n for a in self.selected_meas_artists:\n if a in self.zijplot.collections:\n self.zijplot.collections.remove(a)\n if a in self.specimen_eqarea.collections:\n self.specimen_eqarea.collections.remove(a)\n if a in self.mplot.collections:\n self.mplot.collections.remove(a)\n if a in self.mplot_af.collections:\n self.mplot_af.collections.remove(a)\n self.selected_meas_artists = []\n x, y, z = self.CART_rot[self.selected_meas, 0], self.CART_rot[self.\n selected_meas, 1], self.CART_rot[self.selected_meas, 2]\n self.selected_meas_artists.append(self.zijplot.scatter(x, -1 * y, c=\n red_cover, marker='o', s=MS_selected, zorder=2))\n self.selected_meas_artists.append(self.zijplot.scatter(x, -1 * z, c=\n blue_cover, marker='s', s=MS_selected, zorder=2))\n x_eq = array([row[0] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] > 0])\n y_eq = array([row[1] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] > 0])\n z_eq = abs(array([row[2] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] > 0]))\n if len(x_eq) > 0:\n R = array(sqrt(1 - z_eq) / sqrt(x_eq ** 2 + y_eq ** 2))\n eqarea_data_x = y_eq * R\n eqarea_data_y = x_eq * R\n self.selected_meas_artists.append(self.specimen_eqarea.scatter([\n eqarea_data_x], [eqarea_data_y], marker='o', edgecolor=\n eqarea_outline, facecolor='#808080', s=15 * self.GUI_RESOLUTION,\n lw=1, clip_on=False))\n x_eq = array([row[0] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] < 0])\n y_eq = array([row[1] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] < 0])\n z_eq = abs(array([row[2] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] < 0]))\n if len(x_eq) > 0:\n R = array(sqrt(1 - z_eq) / sqrt(x_eq ** 2 + y_eq ** 2))\n eqarea_data_x = y_eq * R\n eqarea_data_y = x_eq * R\n self.selected_meas_artists.append(self.specimen_eqarea.scatter([\n eqarea_data_x], [eqarea_data_y], marker='o', edgecolor=\n eqarea_outline, facecolor='#FFFFFF', s=15 * self.GUI_RESOLUTION,\n lw=1, clip_on=False))\n steps = self.Data[self.s]['zijdblock_steps']\n flags = self.Data[self.s]['measurement_flag']\n selected_af_meas = [i for i in self.selected_meas if 'T' in steps[i] or\n steps[i] == '0' and flags[i] != 'b']\n selected_T_meas = [i for i in self.selected_meas if 'C' in steps[i] or \n steps[i] == '0' and flags[i] != 'b']\n data = array(self.Data[self.s]['zijdblock'])\n af_x = array(list(map(float, data[selected_af_meas, 0])))\n af_y = array(list(map(float, data[selected_af_meas, 3]))) / float(data[\n 0, 3])\n T_x = array(list(map(float, data[selected_T_meas, 0])))\n T_y = array(list(map(float, data[selected_T_meas, 3]))) / float(data[0, 3])\n xmin, xmax = self.mplot.get_xlim()\n ymin, ymax = self.mplot.get_ylim()\n if T_x.astype(float).any() or T_y.astype(float).any():\n self.selected_meas_artists.append(self.mplot.scatter(T_x, T_y,\n facecolor=red_cover, edgecolor='#000000', marker='o', s=30, lw=\n 1, clip_on=False, zorder=3))\n self.mplot.set_xlim([xmin, xmax])\n self.mplot.set_ylim([ymin, ymax])\n xmin, xmax = self.mplot_af.get_xlim()\n ymin, ymax = self.mplot_af.get_ylim()\n if af_x.astype(float).any() or af_y.astype(float).any():\n self.selected_meas_artists.append(self.mplot_af.scatter(af_x, af_y,\n facecolor=blue_cover, edgecolor='#000000', marker='o', s=30, lw\n =1, clip_on=False, zorder=3))\n self.mplot_af.set_xlim([xmin, xmax])\n self.mplot_af.set_ylim([ymin, ymax])\n self.canvas1.draw()\n self.canvas2.draw()\n self.canvas3.draw()\n", "role": "user" }, { "content": "plot_selected_meas", "role": "assistant" } ]
def x(self): high_level = self.level_box.GetValue() self.UPPER_LEVEL_NAME = self.level_names.GetValue() self.UPPER_LEVEL_MEAN = self.mean_type_box.GetValue() draw_net(self.high_level_eqarea) what_is_it = self.level_box.GetValue() + ': ' + self.level_names.GetValue() self.high_level_eqarea.text(-1.2, 1.15, what_is_it, {'family': self. font_type, 'fontsize': 10 * self.GUI_RESOLUTION, 'style': 'normal', 'va': 'center', 'ha': 'left'}) if self.ie_open: self.ie.draw_net() self.ie.write(what_is_it) self.plot_high_level_elements() self.plot_high_level_means() self.update_high_level_stats() if self.check_orient_on: self.calc_and_plot_sample_orient_check() self.canvas4.draw() if self.ie_open: self.ie.draw()
plot_high_levels_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n high_level = self.level_box.GetValue()\n self.UPPER_LEVEL_NAME = self.level_names.GetValue()\n self.UPPER_LEVEL_MEAN = self.mean_type_box.GetValue()\n draw_net(self.high_level_eqarea)\n what_is_it = self.level_box.GetValue() + ': ' + self.level_names.GetValue()\n self.high_level_eqarea.text(-1.2, 1.15, what_is_it, {'family': self.\n font_type, 'fontsize': 10 * self.GUI_RESOLUTION, 'style': 'normal',\n 'va': 'center', 'ha': 'left'})\n if self.ie_open:\n self.ie.draw_net()\n self.ie.write(what_is_it)\n self.plot_high_level_elements()\n self.plot_high_level_means()\n self.update_high_level_stats()\n if self.check_orient_on:\n self.calc_and_plot_sample_orient_check()\n self.canvas4.draw()\n if self.ie_open:\n self.ie.draw()\n", "role": "user" }, { "content": "plot_high_levels_data", "role": "assistant" } ]
def x(self): if self.COORDINATE_SYSTEM == 'geographic': dirtype = 'DA-DIR-GEO' elif self.COORDINATE_SYSTEM == 'tilt-corrected': dirtype = 'DA-DIR-TILT' else: dirtype = 'DA-DIR' if self.level_box.GetValue() == 'sample': high_level_type = 'samples' if self.level_box.GetValue() == 'site': high_level_type = 'sites' if self.level_box.GetValue() == 'location': high_level_type = 'locations' if self.level_box.GetValue() == 'study': high_level_type = 'study' high_level_name = str(self.level_names.GetValue()) return high_level_type, high_level_name, dirtype
get_levels_and_coordinates_names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.COORDINATE_SYSTEM == 'geographic':\n dirtype = 'DA-DIR-GEO'\n elif self.COORDINATE_SYSTEM == 'tilt-corrected':\n dirtype = 'DA-DIR-TILT'\n else:\n dirtype = 'DA-DIR'\n if self.level_box.GetValue() == 'sample':\n high_level_type = 'samples'\n if self.level_box.GetValue() == 'site':\n high_level_type = 'sites'\n if self.level_box.GetValue() == 'location':\n high_level_type = 'locations'\n if self.level_box.GetValue() == 'study':\n high_level_type = 'study'\n high_level_name = str(self.level_names.GetValue())\n return high_level_type, high_level_name, dirtype\n", "role": "user" }, { "content": "get_levels_and_coordinates_names", "role": "assistant" } ]
def x(self): fit = self.current_fit if fit == None: return pars = fit.get('specimen') if 'specimen_dec' not in list(pars.keys()) or 'specimen_inc' not in list( pars.keys()): fit.put(self.s, 'specimen', self.get_PCA_parameters(self.s, fit, fit.tmin, fit.tmax, 'specimen', fit.PCA_type)) pars = fit.get('specimen') if not pars: self.user_warning( 'could not calculate fit %s for specimen %s in specimen coordinate system while checking sample orientation please check data' % (fit.name, self.s)) return dec, inc = pars['specimen_dec'], pars['specimen_inc'] sample = self.Data_hierarchy['sample_of_specimen'][self.s] if sample not in list(self.Data_info['er_samples'].keys() ) or 'sample_azimuth' not in list(self.Data_info['er_samples'][ sample].keys()) or 'sample_dip' not in list(self.Data_info[ 'er_samples'][sample].keys()): self.user_warning( 'Could not display sample orientation checks because sample azimuth or sample dip is missing from er_samples table for sample %s' % sample) self.check_orient_on = False return try: azimuth = float(self.Data_info['er_samples'][sample]['sample_azimuth']) dip = float(self.Data_info['er_samples'][sample]['sample_dip']) except TypeError: self.user_warning( 'Could not display sample orientation checks because azimuth or dip is missing (or invalid) for sample %s' % sample) self.check_orient_on = False return d, i = pmag.dogeo(dec, inc, azimuth - 180.0, -dip) XY = pmag.dimap(d, i) if i > 0: FC = fit.color SIZE = 15 * self.GUI_RESOLUTION else: FC = 'white' SIZE = 15 * self.GUI_RESOLUTION self.high_level_eqarea.scatter([XY[0]], [XY[1]], marker='^', edgecolor= fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False) if self.ie_open: self.ie.scatter([XY[0]], [XY[1]], marker='^', edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False) d, i = pmag.dogeo(dec, inc, azimuth - 180.0, dip) XY = pmag.dimap(d, i) if i > 0: FC = fit.color SIZE = 15 * self.GUI_RESOLUTION else: FC = 'white' SIZE = 15 * self.GUI_RESOLUTION self.high_level_eqarea.scatter([XY[0]], [XY[1]], marker='v', edgecolor= fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False) if self.ie_open: self.ie.scatter([XY[0]], [XY[1]], marker='v', edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False) X_up, Y_up, X_d, Y_d = [], [], [], [] for incr in range(0, 360, 5): d, i = pmag.dogeo(dec + incr, inc, azimuth, dip) XY = pmag.dimap(d, i) if i >= 0: X_d.append(XY[0]) Y_d.append(XY[1]) else: X_up.append(XY[0]) Y_up.append(XY[1]) self.high_level_eqarea.scatter(X_d, Y_d, marker='.', color=fit.color, alpha=0.5, s=SIZE / 2, lw=1, clip_on=False) self.high_level_eqarea.scatter(X_up, Y_up, marker='.', color=fit.color, s=SIZE / 2, lw=1, clip_on=False) if self.ie_open: self.ie.scatter(X_d, Y_d, marker='.', color=fit.color, alpha=0.5, s =SIZE / 2, lw=1, clip_on=False) self.ie.scatter(X_up, Y_up, marker='.', color=fit.color, s=SIZE / 2, lw=1, clip_on=False)
calc_and_plot_sample_orient_check
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n fit = self.current_fit\n if fit == None:\n return\n pars = fit.get('specimen')\n if 'specimen_dec' not in list(pars.keys()) or 'specimen_inc' not in list(\n pars.keys()):\n fit.put(self.s, 'specimen', self.get_PCA_parameters(self.s, fit,\n fit.tmin, fit.tmax, 'specimen', fit.PCA_type))\n pars = fit.get('specimen')\n if not pars:\n self.user_warning(\n 'could not calculate fit %s for specimen %s in specimen coordinate system while checking sample orientation please check data'\n % (fit.name, self.s))\n return\n dec, inc = pars['specimen_dec'], pars['specimen_inc']\n sample = self.Data_hierarchy['sample_of_specimen'][self.s]\n if sample not in list(self.Data_info['er_samples'].keys()\n ) or 'sample_azimuth' not in list(self.Data_info['er_samples'][\n sample].keys()) or 'sample_dip' not in list(self.Data_info[\n 'er_samples'][sample].keys()):\n self.user_warning(\n 'Could not display sample orientation checks because sample azimuth or sample dip is missing from er_samples table for sample %s'\n % sample)\n self.check_orient_on = False\n return\n try:\n azimuth = float(self.Data_info['er_samples'][sample]['sample_azimuth'])\n dip = float(self.Data_info['er_samples'][sample]['sample_dip'])\n except TypeError:\n self.user_warning(\n 'Could not display sample orientation checks because azimuth or dip is missing (or invalid) for sample %s'\n % sample)\n self.check_orient_on = False\n return\n d, i = pmag.dogeo(dec, inc, azimuth - 180.0, -dip)\n XY = pmag.dimap(d, i)\n if i > 0:\n FC = fit.color\n SIZE = 15 * self.GUI_RESOLUTION\n else:\n FC = 'white'\n SIZE = 15 * self.GUI_RESOLUTION\n self.high_level_eqarea.scatter([XY[0]], [XY[1]], marker='^', edgecolor=\n fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)\n if self.ie_open:\n self.ie.scatter([XY[0]], [XY[1]], marker='^', edgecolor=fit.color,\n facecolor=FC, s=SIZE, lw=1, clip_on=False)\n d, i = pmag.dogeo(dec, inc, azimuth - 180.0, dip)\n XY = pmag.dimap(d, i)\n if i > 0:\n FC = fit.color\n SIZE = 15 * self.GUI_RESOLUTION\n else:\n FC = 'white'\n SIZE = 15 * self.GUI_RESOLUTION\n self.high_level_eqarea.scatter([XY[0]], [XY[1]], marker='v', edgecolor=\n fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)\n if self.ie_open:\n self.ie.scatter([XY[0]], [XY[1]], marker='v', edgecolor=fit.color,\n facecolor=FC, s=SIZE, lw=1, clip_on=False)\n X_up, Y_up, X_d, Y_d = [], [], [], []\n for incr in range(0, 360, 5):\n d, i = pmag.dogeo(dec + incr, inc, azimuth, dip)\n XY = pmag.dimap(d, i)\n if i >= 0:\n X_d.append(XY[0])\n Y_d.append(XY[1])\n else:\n X_up.append(XY[0])\n Y_up.append(XY[1])\n self.high_level_eqarea.scatter(X_d, Y_d, marker='.', color=fit.color,\n alpha=0.5, s=SIZE / 2, lw=1, clip_on=False)\n self.high_level_eqarea.scatter(X_up, Y_up, marker='.', color=fit.color,\n s=SIZE / 2, lw=1, clip_on=False)\n if self.ie_open:\n self.ie.scatter(X_d, Y_d, marker='.', color=fit.color, alpha=0.5, s\n =SIZE / 2, lw=1, clip_on=False)\n self.ie.scatter(X_up, Y_up, marker='.', color=fit.color, s=SIZE / 2,\n lw=1, clip_on=False)\n", "role": "user" }, { "content": "calc_and_plot_sample_orient_check", "role": "assistant" } ]
def x(self, element): if self.ie_open: high_level = self.ie.show_box.GetValue() else: high_level = self.UPPER_LEVEL_SHOW fits = [] if high_level not in self.pmag_results_data: print('no level: ' + str(high_level)) return if element not in self.pmag_results_data[high_level]: print('no element: ' + str(element)) return if self.mean_fit == 'All': fits = self.pmag_results_data[high_level][element] elif self.mean_fit != 'None' and self.mean_fit != None: fits = [fit for fit in self.pmag_results_data[high_level][element] if fit.name == self.mean_fit] else: fits = [] fig = self.high_level_eqarea if fits: for fit in fits: pars = fit.get(self.COORDINATE_SYSTEM) if not pars: if element in self.specimens: fit.put(element, self.COORDINATE_SYSTEM, self. get_PCA_parameters(element, fit, fit.tmin, fit.tmax, self.COORDINATE_SYSTEM, self.PCA_type_box.GetValue())) pars = fit.get(self.COORDINATE_SYSTEM) if not pars: print('No data for %s on element %s' % (fit.name, element)) return if 'specimen_dec' in list(pars.keys()) and 'specimen_inc' in list( pars.keys()): dec = pars['specimen_dec'] inc = pars['specimen_inc'] elif 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()): dec = pars['dec'] inc = pars['inc'] else: print('-E- no dec and inc values for:\n' + str(fit)) XY = pmag.dimap(dec, inc) if inc > 0: FC = fit.color SIZE = 15 * self.GUI_RESOLUTION else: FC = 'white' SIZE = 15 * self.GUI_RESOLUTION marker_shape = 'o' if pars['calculation_type'] == 'DE-BFP': marker_shape = 's' if 'bfv' in self.plane_display_box.GetValue(): marker_shape = '>' SIZE = 25 * self.GUI_RESOLUTION if fit == self.current_fit: marker_shape = 'D' if fit in self.bad_fits: marker_shape = 4, 1, 0 SIZE = 25 * self.GUI_RESOLUTION if pars['calculation_type' ] == 'DE-BFP' and self.plane_display_box.GetValue() != 'poles': if 'plane' in self.plane_display_box.GetValue( ) or 'hemisphere' in self.plane_display_box.GetValue( ) or 'wp' in self.plane_display_box.GetValue(): ymin, ymax = self.specimen_eqarea.get_ylim() xmin, xmax = self.specimen_eqarea.get_xlim() D_c, I_c = pmag.circ(pars['specimen_dec'], pars[ 'specimen_inc'], 90) X_c_up, Y_c_up = [], [] X_c_d, Y_c_d = [], [] for k in range(len(D_c)): XY = pmag.dimap(D_c[k], I_c[k]) if I_c[k] < 0: X_c_up.append(XY[0]) Y_c_up.append(XY[1]) if I_c[k] > 0: X_c_d.append(XY[0]) Y_c_d.append(XY[1]) if self.plane_display_box.GetValue( ) == 'u. hemisphere' or self.plane_display_box.GetValue( ) == 'whole plane' or self.plane_display_box.GetValue( ) == 'wp + bfv': fig.plot(X_c_d, Y_c_d, 'b') if self.ie_open: self.ie.plot(X_c_d, Y_c_d, 'b') if self.plane_display_box.GetValue( ) == 'l. hemisphere' or self.plane_display_box.GetValue( ) == 'whole plane' or self.plane_display_box.GetValue( ) == 'wp + bfv': fig.plot(X_c_up, Y_c_up, 'c') if self.ie_open: self.ie.plot(X_c_up, Y_c_up, 'c') if 'bfv' in self.plane_display_box.GetValue(): if 'bfv_dec' not in list(pars.keys() ) or 'bfv_inc' not in list(pars.keys()): self.calculate_best_fit_vectors() pars = fit.get(self.COORDINATE_SYSTEM) try: XY = pmag.dimap(pars['bfv_dec'], pars['bfv_inc']) except KeyError: print( 'specimen %s fit %s is marked bad or there was an error calculating bfv pole will be displayed instead' % (element, fit.name)) if inc > 0: FC = fit.color else: FC = 'white' self.high_EA_xdata.append(XY[0]) self.high_EA_ydata.append(XY[1]) fig.scatter([XY[0]], [XY[1]], marker=marker_shape, edgecolor= fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False) if self.ie_open: self.ie.scatter([XY[0]], [XY[1]], marker=marker_shape, edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)
plot_high_level_equalarea
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, element):\n if self.ie_open:\n high_level = self.ie.show_box.GetValue()\n else:\n high_level = self.UPPER_LEVEL_SHOW\n fits = []\n if high_level not in self.pmag_results_data:\n print('no level: ' + str(high_level))\n return\n if element not in self.pmag_results_data[high_level]:\n print('no element: ' + str(element))\n return\n if self.mean_fit == 'All':\n fits = self.pmag_results_data[high_level][element]\n elif self.mean_fit != 'None' and self.mean_fit != None:\n fits = [fit for fit in self.pmag_results_data[high_level][element] if\n fit.name == self.mean_fit]\n else:\n fits = []\n fig = self.high_level_eqarea\n if fits:\n for fit in fits:\n pars = fit.get(self.COORDINATE_SYSTEM)\n if not pars:\n if element in self.specimens:\n fit.put(element, self.COORDINATE_SYSTEM, self.\n get_PCA_parameters(element, fit, fit.tmin, fit.tmax,\n self.COORDINATE_SYSTEM, self.PCA_type_box.GetValue()))\n pars = fit.get(self.COORDINATE_SYSTEM)\n if not pars:\n print('No data for %s on element %s' % (fit.name, element))\n return\n if 'specimen_dec' in list(pars.keys()) and 'specimen_inc' in list(\n pars.keys()):\n dec = pars['specimen_dec']\n inc = pars['specimen_inc']\n elif 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()):\n dec = pars['dec']\n inc = pars['inc']\n else:\n print('-E- no dec and inc values for:\\n' + str(fit))\n XY = pmag.dimap(dec, inc)\n if inc > 0:\n FC = fit.color\n SIZE = 15 * self.GUI_RESOLUTION\n else:\n FC = 'white'\n SIZE = 15 * self.GUI_RESOLUTION\n marker_shape = 'o'\n if pars['calculation_type'] == 'DE-BFP':\n marker_shape = 's'\n if 'bfv' in self.plane_display_box.GetValue():\n marker_shape = '>'\n SIZE = 25 * self.GUI_RESOLUTION\n if fit == self.current_fit:\n marker_shape = 'D'\n if fit in self.bad_fits:\n marker_shape = 4, 1, 0\n SIZE = 25 * self.GUI_RESOLUTION\n if pars['calculation_type'\n ] == 'DE-BFP' and self.plane_display_box.GetValue() != 'poles':\n if 'plane' in self.plane_display_box.GetValue(\n ) or 'hemisphere' in self.plane_display_box.GetValue(\n ) or 'wp' in self.plane_display_box.GetValue():\n ymin, ymax = self.specimen_eqarea.get_ylim()\n xmin, xmax = self.specimen_eqarea.get_xlim()\n D_c, I_c = pmag.circ(pars['specimen_dec'], pars[\n 'specimen_inc'], 90)\n X_c_up, Y_c_up = [], []\n X_c_d, Y_c_d = [], []\n for k in range(len(D_c)):\n XY = pmag.dimap(D_c[k], I_c[k])\n if I_c[k] < 0:\n X_c_up.append(XY[0])\n Y_c_up.append(XY[1])\n if I_c[k] > 0:\n X_c_d.append(XY[0])\n Y_c_d.append(XY[1])\n if self.plane_display_box.GetValue(\n ) == 'u. hemisphere' or self.plane_display_box.GetValue(\n ) == 'whole plane' or self.plane_display_box.GetValue(\n ) == 'wp + bfv':\n fig.plot(X_c_d, Y_c_d, 'b')\n if self.ie_open:\n self.ie.plot(X_c_d, Y_c_d, 'b')\n if self.plane_display_box.GetValue(\n ) == 'l. hemisphere' or self.plane_display_box.GetValue(\n ) == 'whole plane' or self.plane_display_box.GetValue(\n ) == 'wp + bfv':\n fig.plot(X_c_up, Y_c_up, 'c')\n if self.ie_open:\n self.ie.plot(X_c_up, Y_c_up, 'c')\n if 'bfv' in self.plane_display_box.GetValue():\n if 'bfv_dec' not in list(pars.keys()\n ) or 'bfv_inc' not in list(pars.keys()):\n self.calculate_best_fit_vectors()\n pars = fit.get(self.COORDINATE_SYSTEM)\n try:\n XY = pmag.dimap(pars['bfv_dec'], pars['bfv_inc'])\n except KeyError:\n print(\n 'specimen %s fit %s is marked bad or there was an error calculating bfv pole will be displayed instead'\n % (element, fit.name))\n if inc > 0:\n FC = fit.color\n else:\n FC = 'white'\n self.high_EA_xdata.append(XY[0])\n self.high_EA_ydata.append(XY[1])\n fig.scatter([XY[0]], [XY[1]], marker=marker_shape, edgecolor=\n fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)\n if self.ie_open:\n self.ie.scatter([XY[0]], [XY[1]], marker=marker_shape,\n edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1,\n clip_on=False)\n", "role": "user" }, { "content": "plot_high_level_equalarea", "role": "assistant" } ]
def x(self, pars, fig): if pars == {}: pass elif 'calculation_type' in list(pars.keys()) and pars['calculation_type' ] == 'DE-BFP': ymin, ymax = fig.get_ylim() xmin, xmax = fig.get_xlim() D_c, I_c = pmag.circ(pars['specimen_dec'], pars['specimen_inc'], 90) X_c_up, Y_c_up = [], [] X_c_d, Y_c_d = [], [] for k in range(len(D_c)): XY = pmag.dimap(D_c[k], I_c[k]) if I_c[k] < 0: X_c_up.append(XY[0]) Y_c_up.append(XY[1]) if I_c[k] > 0: X_c_d.append(XY[0]) Y_c_d.append(XY[1]) fig.plot(X_c_d, Y_c_d, 'b', lw=0.5) fig.plot(X_c_up, Y_c_up, 'c', lw=0.5) if self.ie_open: self.ie.plot(X_c_d, Y_c_d, 'b', lw=0.5) self.ie.plot(X_c_up, Y_c_up, 'c', lw=0.5) fig.set_xlim(xmin, xmax) fig.set_ylim(ymin, ymax) else: if 'specimen_dec' in list(pars.keys()) and 'specimen_inc' in list(pars .keys()): dec = pars['specimen_dec'] inc = pars['specimen_inc'] elif 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()): dec = pars['dec'] inc = pars['inc'] else: print( 'either dec or inc missing from values recived for high level plot, was given %s, aborting' % str(pars)) return XY = pmag.dimap(float(dec), float(inc)) if inc > 0: if 'color' in list(pars.keys()): FC = pars['color'] EC = pars['color'] SIZE = 15 * self.GUI_RESOLUTION else: FC = 'grey' EC = 'grey' SIZE = 15 * self.GUI_RESOLUTION elif 'color' in list(pars.keys()): FC = 'white' EC = pars['color'] SIZE = 15 * self.GUI_RESOLUTION else: FC = 'white' EC = 'grey' SIZE = 15 * self.GUI_RESOLUTION fig.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC, facecolor= FC, s=SIZE, lw=1, clip_on=False) if self.ie_open: self.ie.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC, facecolor=FC, s=SIZE, lw=1, clip_on=False)
plot_eqarea_pars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pars, fig):\n if pars == {}:\n pass\n elif 'calculation_type' in list(pars.keys()) and pars['calculation_type'\n ] == 'DE-BFP':\n ymin, ymax = fig.get_ylim()\n xmin, xmax = fig.get_xlim()\n D_c, I_c = pmag.circ(pars['specimen_dec'], pars['specimen_inc'], 90)\n X_c_up, Y_c_up = [], []\n X_c_d, Y_c_d = [], []\n for k in range(len(D_c)):\n XY = pmag.dimap(D_c[k], I_c[k])\n if I_c[k] < 0:\n X_c_up.append(XY[0])\n Y_c_up.append(XY[1])\n if I_c[k] > 0:\n X_c_d.append(XY[0])\n Y_c_d.append(XY[1])\n fig.plot(X_c_d, Y_c_d, 'b', lw=0.5)\n fig.plot(X_c_up, Y_c_up, 'c', lw=0.5)\n if self.ie_open:\n self.ie.plot(X_c_d, Y_c_d, 'b', lw=0.5)\n self.ie.plot(X_c_up, Y_c_up, 'c', lw=0.5)\n fig.set_xlim(xmin, xmax)\n fig.set_ylim(ymin, ymax)\n else:\n if 'specimen_dec' in list(pars.keys()) and 'specimen_inc' in list(pars\n .keys()):\n dec = pars['specimen_dec']\n inc = pars['specimen_inc']\n elif 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()):\n dec = pars['dec']\n inc = pars['inc']\n else:\n print(\n 'either dec or inc missing from values recived for high level plot, was given %s, aborting'\n % str(pars))\n return\n XY = pmag.dimap(float(dec), float(inc))\n if inc > 0:\n if 'color' in list(pars.keys()):\n FC = pars['color']\n EC = pars['color']\n SIZE = 15 * self.GUI_RESOLUTION\n else:\n FC = 'grey'\n EC = 'grey'\n SIZE = 15 * self.GUI_RESOLUTION\n elif 'color' in list(pars.keys()):\n FC = 'white'\n EC = pars['color']\n SIZE = 15 * self.GUI_RESOLUTION\n else:\n FC = 'white'\n EC = 'grey'\n SIZE = 15 * self.GUI_RESOLUTION\n fig.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC, facecolor=\n FC, s=SIZE, lw=1, clip_on=False)\n if self.ie_open:\n self.ie.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC,\n facecolor=FC, s=SIZE, lw=1, clip_on=False)\n", "role": "user" }, { "content": "plot_eqarea_pars", "role": "assistant" } ]
def x(self, meanpars, fig): mpars_to_plot = [] if meanpars == {}: return if meanpars['calculation_type'] == 'Fisher by polarity': for mode in list(meanpars.keys()): if type(meanpars[mode]) == dict and meanpars[mode] != {}: mpars_to_plot.append(meanpars[mode]) else: mpars_to_plot.append(meanpars) ymin, ymax = fig.get_ylim() xmin, xmax = fig.get_xlim() if 'color' in meanpars: color = meanpars['color'] else: color = 'black' size, alpha = 30, 1.0 for mpars in mpars_to_plot: XYM = pmag.dimap(float(mpars['dec']), float(mpars['inc'])) if float(mpars['inc']) > 0: FC = color EC = 'black' else: FC = 'white' EC = color self.displayed_means.append(fig.scatter([XYM[0]], [XYM[1]], marker= 'o', edgecolor=EC, facecolor=FC, s=size, lw=1, clip_on=False, alpha=alpha)) if 'alpha95' in list(mpars.keys()): Xcirc, Ycirc = [], [] Da95, Ia95 = pmag.circ(float(mpars['dec']), float(mpars['inc']), float(mpars['alpha95'])) for k in range(len(Da95)): XY = pmag.dimap(Da95[k], Ia95[k]) Xcirc.append(XY[0]) Ycirc.append(XY[1]) self.displayed_means.append(fig.plot(Xcirc, Ycirc, color, alpha =alpha)) if self.ie_open: self.displayed_means.append(self.ie.scatter([XYM[0]], [XYM[1]], marker='o', edgecolor=EC, facecolor=FC, s=size, lw=1, clip_on=False, alpha=alpha)) if 'alpha95' in list(mpars.keys()): self.displayed_means.append(self.ie.plot(Xcirc, Ycirc, color, alpha=alpha)) self.ie.eqarea.set_xlim(xmin, xmax) self.ie.eqarea.set_ylim(ymin, ymax) fig.set_xlim(xmin, xmax) fig.set_ylim(ymin, ymax)
plot_eqarea_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, meanpars, fig):\n mpars_to_plot = []\n if meanpars == {}:\n return\n if meanpars['calculation_type'] == 'Fisher by polarity':\n for mode in list(meanpars.keys()):\n if type(meanpars[mode]) == dict and meanpars[mode] != {}:\n mpars_to_plot.append(meanpars[mode])\n else:\n mpars_to_plot.append(meanpars)\n ymin, ymax = fig.get_ylim()\n xmin, xmax = fig.get_xlim()\n if 'color' in meanpars:\n color = meanpars['color']\n else:\n color = 'black'\n size, alpha = 30, 1.0\n for mpars in mpars_to_plot:\n XYM = pmag.dimap(float(mpars['dec']), float(mpars['inc']))\n if float(mpars['inc']) > 0:\n FC = color\n EC = 'black'\n else:\n FC = 'white'\n EC = color\n self.displayed_means.append(fig.scatter([XYM[0]], [XYM[1]], marker=\n 'o', edgecolor=EC, facecolor=FC, s=size, lw=1, clip_on=False,\n alpha=alpha))\n if 'alpha95' in list(mpars.keys()):\n Xcirc, Ycirc = [], []\n Da95, Ia95 = pmag.circ(float(mpars['dec']), float(mpars['inc']),\n float(mpars['alpha95']))\n for k in range(len(Da95)):\n XY = pmag.dimap(Da95[k], Ia95[k])\n Xcirc.append(XY[0])\n Ycirc.append(XY[1])\n self.displayed_means.append(fig.plot(Xcirc, Ycirc, color, alpha\n =alpha))\n if self.ie_open:\n self.displayed_means.append(self.ie.scatter([XYM[0]], [XYM[1]],\n marker='o', edgecolor=EC, facecolor=FC, s=size, lw=1,\n clip_on=False, alpha=alpha))\n if 'alpha95' in list(mpars.keys()):\n self.displayed_means.append(self.ie.plot(Xcirc, Ycirc,\n color, alpha=alpha))\n self.ie.eqarea.set_xlim(xmin, xmax)\n self.ie.eqarea.set_ylim(ymin, ymax)\n fig.set_xlim(xmin, xmax)\n fig.set_ylim(ymin, ymax)\n", "role": "user" }, { "content": "plot_eqarea_mean", "role": "assistant" } ]
def x(self, s): self.s = s if self.orthogonal_box.GetValue() == 'X=East': self.ORTHO_PLOT_TYPE = 'E-W' elif self.orthogonal_box.GetValue() == 'X=North': self.ORTHO_PLOT_TYPE = 'N-S' elif self.orthogonal_box.GetValue() == 'X=best fit line dec': self.ORTHO_PLOT_TYPE = 'PCA_dec' else: self.ORTHO_PLOT_TYPE = 'ZIJ' if self.COORDINATE_SYSTEM == 'geographic': self.zij = array(self.Data[self.s]['zdata_geo']) self.zijblock = self.Data[self.s]['zijdblock_geo'] elif self.COORDINATE_SYSTEM == 'tilt-corrected': self.zij = array(self.Data[self.s]['zdata_tilt']) self.zijblock = self.Data[self.s]['zijdblock_tilt'] else: self.zij = array(self.Data[self.s]['zdata']) self.zijblock = self.Data[self.s]['zijdblock'] if self.COORDINATE_SYSTEM == 'geographic': if self.ORTHO_PLOT_TYPE == 'N-S': self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo' ], 0.0) elif self.ORTHO_PLOT_TYPE == 'E-W': self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo' ], 90.0) elif self.ORTHO_PLOT_TYPE == 'PCA_dec': if 'specimen_dec' in list(self.current_fit.pars.keys()) and type( self.current_fit.pars['specimen_dec']) != str: self.CART_rot = Rotate_zijderveld(self.Data[self.s][ 'zdata_geo'], self.current_fit.pars['specimen_dec']) else: self.CART_rot = Rotate_zijderveld(self.Data[self.s][ 'zdata_geo'], pmag.cart2dir(self.Data[self.s][ 'zdata_geo'][0])[0]) else: self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo' ], pmag.cart2dir(self.Data[self.s]['zdata_geo'][0])[0]) elif self.COORDINATE_SYSTEM == 'tilt-corrected': if self.ORTHO_PLOT_TYPE == 'N-S': self.CART_rot = Rotate_zijderveld(self.Data[self.s][ 'zdata_tilt'], 0.0) elif self.ORTHO_PLOT_TYPE == 'E-W': self.CART_rot = Rotate_zijderveld(self.Data[self.s][ 'zdata_tilt'], 90) elif self.ORTHO_PLOT_TYPE == 'PCA_dec': if 'specimen_dec' in list(self.current_fit.pars.keys()) and type( self.current_fit.pars['specimen_dec']) != str: self.CART_rot = Rotate_zijderveld(self.Data[self.s][ 'zdata_tilt'], self.current_fit.pars['specimen_dec']) else: self.CART_rot = Rotate_zijderveld(self.Data[self.s][ 'zdata_tilt'], pmag.cart2dir(self.Data[self.s][ 'zdata_tilt'][0])[0]) else: self.CART_rot = Rotate_zijderveld(self.Data[self.s][ 'zdata_tilt'], pmag.cart2dir(self.Data[self.s]['zdata_tilt' ][0])[0]) elif self.ORTHO_PLOT_TYPE == 'N-S': self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], 0.0) elif self.ORTHO_PLOT_TYPE == 'E-W': self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], 90) elif self.ORTHO_PLOT_TYPE == 'PCA_dec': if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self .current_fit.pars['specimen_dec']) != str: self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], self.current_fit.pars['specimen_dec']) else: self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], pmag.cart2dir(self.Data[self.s]['zdata'][0])[0]) else: self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], pmag. cart2dir(self.Data[self.s]['zdata'][0])[0]) self.zij_norm = array([(row / sqrt(sum(row ** 2))) for row in self.zij]) self.CART_rot_good = [] self.CART_rot_bad = [] for i in range(len(self.CART_rot)): if self.Data[self.s]['measurement_flag'][i] == 'g': self.CART_rot_good.append(list(self.CART_rot[i])) else: self.CART_rot_bad.append(list(self.CART_rot[i])) self.CART_rot = array(self.CART_rot) self.CART_rot_good = array(self.CART_rot_good) self.CART_rot_bad = array(self.CART_rot_bad)
initialize_CART_rot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, s):\n self.s = s\n if self.orthogonal_box.GetValue() == 'X=East':\n self.ORTHO_PLOT_TYPE = 'E-W'\n elif self.orthogonal_box.GetValue() == 'X=North':\n self.ORTHO_PLOT_TYPE = 'N-S'\n elif self.orthogonal_box.GetValue() == 'X=best fit line dec':\n self.ORTHO_PLOT_TYPE = 'PCA_dec'\n else:\n self.ORTHO_PLOT_TYPE = 'ZIJ'\n if self.COORDINATE_SYSTEM == 'geographic':\n self.zij = array(self.Data[self.s]['zdata_geo'])\n self.zijblock = self.Data[self.s]['zijdblock_geo']\n elif self.COORDINATE_SYSTEM == 'tilt-corrected':\n self.zij = array(self.Data[self.s]['zdata_tilt'])\n self.zijblock = self.Data[self.s]['zijdblock_tilt']\n else:\n self.zij = array(self.Data[self.s]['zdata'])\n self.zijblock = self.Data[self.s]['zijdblock']\n if self.COORDINATE_SYSTEM == 'geographic':\n if self.ORTHO_PLOT_TYPE == 'N-S':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'\n ], 0.0)\n elif self.ORTHO_PLOT_TYPE == 'E-W':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'\n ], 90.0)\n elif self.ORTHO_PLOT_TYPE == 'PCA_dec':\n if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(\n self.current_fit.pars['specimen_dec']) != str:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_geo'], self.current_fit.pars['specimen_dec'])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_geo'], pmag.cart2dir(self.Data[self.s][\n 'zdata_geo'][0])[0])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'\n ], pmag.cart2dir(self.Data[self.s]['zdata_geo'][0])[0])\n elif self.COORDINATE_SYSTEM == 'tilt-corrected':\n if self.ORTHO_PLOT_TYPE == 'N-S':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_tilt'], 0.0)\n elif self.ORTHO_PLOT_TYPE == 'E-W':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_tilt'], 90)\n elif self.ORTHO_PLOT_TYPE == 'PCA_dec':\n if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(\n self.current_fit.pars['specimen_dec']) != str:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_tilt'], self.current_fit.pars['specimen_dec'])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_tilt'], pmag.cart2dir(self.Data[self.s][\n 'zdata_tilt'][0])[0])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_tilt'], pmag.cart2dir(self.Data[self.s]['zdata_tilt'\n ][0])[0])\n elif self.ORTHO_PLOT_TYPE == 'N-S':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], 0.0)\n elif self.ORTHO_PLOT_TYPE == 'E-W':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], 90)\n elif self.ORTHO_PLOT_TYPE == 'PCA_dec':\n if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self\n .current_fit.pars['specimen_dec']) != str:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'],\n self.current_fit.pars['specimen_dec'])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'],\n pmag.cart2dir(self.Data[self.s]['zdata'][0])[0])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], pmag.\n cart2dir(self.Data[self.s]['zdata'][0])[0])\n self.zij_norm = array([(row / sqrt(sum(row ** 2))) for row in self.zij])\n self.CART_rot_good = []\n self.CART_rot_bad = []\n for i in range(len(self.CART_rot)):\n if self.Data[self.s]['measurement_flag'][i] == 'g':\n self.CART_rot_good.append(list(self.CART_rot[i]))\n else:\n self.CART_rot_bad.append(list(self.CART_rot[i]))\n self.CART_rot = array(self.CART_rot)\n self.CART_rot_good = array(self.CART_rot_good)\n self.CART_rot_bad = array(self.CART_rot_bad)\n", "role": "user" }, { "content": "initialize_CART_rot", "role": "assistant" } ]
def x(self, specimen, name, fmin, fmax, PCA_type='DE-BFL', color=None, suppress_warnings=False, saved=True): if specimen not in list(self.Data.keys()) and not suppress_warnings: self.user_warning( 'there is no measurement data for %s and therefore no interpretation can be created for this specimen' % specimen) return if fmax != None and fmax not in self.Data[specimen]['zijdblock_steps' ] or fmin != None and fmin not in self.Data[specimen]['zijdblock_steps' ]: return if not specimen in list(self.pmag_results_data['specimens'].keys()): self.pmag_results_data['specimens'][specimen] = [] next_fit = str(len(self.pmag_results_data['specimens'][specimen]) + 1) if name == None or name in [x.name for x in self.pmag_results_data[ 'specimens'][specimen]] or name == '' or name.replace(' ', '') == '': name = 'Fit ' + next_fit if name in [x.name for x in self.pmag_results_data['specimens'][ specimen]]: print('bad name') return if color == None: color = self.colors[(int(next_fit) - 1) % len(self.colors)] new_fit = Fit(name, fmax, fmin, color, self, PCA_type, saved) if fmin != None and fmax != None: new_fit.put(specimen, self.COORDINATE_SYSTEM, self. get_PCA_parameters(specimen, new_fit, fmin, fmax, self. COORDINATE_SYSTEM, PCA_type)) if ('specimen_dec' not in list(new_fit.get(self.COORDINATE_SYSTEM). keys()) or 'specimen_inc' not in list(new_fit.get(self. COORDINATE_SYSTEM).keys())) and not suppress_warnings: TEXT = ( 'Could not calculate dec or inc for specimen %s component %s with bounds %s and %s in coordinate_system %s, component not added' % (specimen, name, fmin, fmax, self.COORDINATE_SYSTEM)) self.user_warning(TEXT) print(TEXT) return self.pmag_results_data['specimens'][specimen].append(new_fit) samp = self.Data_hierarchy['sample_of_specimen'][specimen] if samp in list(self.Data_info['er_samples'].keys()): if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]: self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g' samp_flag = self.Data_info['er_samples'][samp][ 'sample_orientation_flag'] if samp_flag == 'b': self.mark_fit_bad(new_fit) self.close_warning = True return new_fit
add_fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, specimen, name, fmin, fmax, PCA_type='DE-BFL', color=None,\n suppress_warnings=False, saved=True):\n if specimen not in list(self.Data.keys()) and not suppress_warnings:\n self.user_warning(\n 'there is no measurement data for %s and therefore no interpretation can be created for this specimen'\n % specimen)\n return\n if fmax != None and fmax not in self.Data[specimen]['zijdblock_steps'\n ] or fmin != None and fmin not in self.Data[specimen]['zijdblock_steps'\n ]:\n return\n if not specimen in list(self.pmag_results_data['specimens'].keys()):\n self.pmag_results_data['specimens'][specimen] = []\n next_fit = str(len(self.pmag_results_data['specimens'][specimen]) + 1)\n if name == None or name in [x.name for x in self.pmag_results_data[\n 'specimens'][specimen]] or name == '' or name.replace(' ', '') == '':\n name = 'Fit ' + next_fit\n if name in [x.name for x in self.pmag_results_data['specimens'][\n specimen]]:\n print('bad name')\n return\n if color == None:\n color = self.colors[(int(next_fit) - 1) % len(self.colors)]\n new_fit = Fit(name, fmax, fmin, color, self, PCA_type, saved)\n if fmin != None and fmax != None:\n new_fit.put(specimen, self.COORDINATE_SYSTEM, self.\n get_PCA_parameters(specimen, new_fit, fmin, fmax, self.\n COORDINATE_SYSTEM, PCA_type))\n if ('specimen_dec' not in list(new_fit.get(self.COORDINATE_SYSTEM).\n keys()) or 'specimen_inc' not in list(new_fit.get(self.\n COORDINATE_SYSTEM).keys())) and not suppress_warnings:\n TEXT = (\n 'Could not calculate dec or inc for specimen %s component %s with bounds %s and %s in coordinate_system %s, component not added'\n % (specimen, name, fmin, fmax, self.COORDINATE_SYSTEM))\n self.user_warning(TEXT)\n print(TEXT)\n return\n self.pmag_results_data['specimens'][specimen].append(new_fit)\n samp = self.Data_hierarchy['sample_of_specimen'][specimen]\n if samp in list(self.Data_info['er_samples'].keys()):\n if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]:\n self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g'\n samp_flag = self.Data_info['er_samples'][samp][\n 'sample_orientation_flag']\n if samp_flag == 'b':\n self.mark_fit_bad(new_fit)\n self.close_warning = True\n return new_fit\n", "role": "user" }, { "content": "add_fit", "role": "assistant" } ]
def x(self, fit, specimen=None): if specimen == None: for spec in self.pmag_results_data['specimens']: if fit in self.pmag_results_data['specimens'][spec]: specimen = spec break if specimen not in self.pmag_results_data['specimens']: return if fit in self.pmag_results_data['specimens'][specimen]: self.pmag_results_data['specimens'][specimen].remove(fit) if fit == self.current_fit: if self.pmag_results_data['specimens'][specimen]: self.pmag_results_data['specimens'][specimen][-1].select() else: self.current_fit = None self.close_warning = True self.calculate_high_levels_data() if self.ie_open: self.ie.update_editor() self.update_selection()
delete_fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fit, specimen=None):\n if specimen == None:\n for spec in self.pmag_results_data['specimens']:\n if fit in self.pmag_results_data['specimens'][spec]:\n specimen = spec\n break\n if specimen not in self.pmag_results_data['specimens']:\n return\n if fit in self.pmag_results_data['specimens'][specimen]:\n self.pmag_results_data['specimens'][specimen].remove(fit)\n if fit == self.current_fit:\n if self.pmag_results_data['specimens'][specimen]:\n self.pmag_results_data['specimens'][specimen][-1].select()\n else:\n self.current_fit = None\n self.close_warning = True\n self.calculate_high_levels_data()\n if self.ie_open:\n self.ie.update_editor()\n self.update_selection()\n", "role": "user" }, { "content": "delete_fit", "role": "assistant" } ]
def x(self, er_ages_rec): if 'age' not in list(er_ages_rec.keys()): return er_ages_rec if 'age_unit' not in list(er_ages_rec.keys()): return er_ages_rec if er_ages_rec['age_unit'] == '': return er_ages_rec if er_ages_rec['age'] == '': if 'age_range_high' in list(er_ages_rec.keys() ) and 'age_range_low' in list(er_ages_rec.keys()): if er_ages_rec['age_range_high'] != '' and er_ages_rec[ 'age_range_low'] != '': er_ages_rec['age'] = scipy.mean([float(er_ages_rec[ 'age_range_high']), float(er_ages_rec['age_range_low'])]) if er_ages_rec['age'] == '': return er_ages_rec age_unit = er_ages_rec['age_unit'] mutliplier = 1 if age_unit == 'Ga': mutliplier = -1000000000.0 if age_unit == 'Ma': mutliplier = -1000000.0 if age_unit == 'Ka': mutliplier = -1000.0 if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)': mutliplier = 1 if age_unit == 'Years BP' or age_unit == 'Years Cal BP': mutliplier = 1 age = float(er_ages_rec['age']) * mutliplier if age_unit == 'Years BP' or age_unit == 'Years Cal BP': age = 1950 - age er_ages_rec['age_cal_year'] = age age_range_low = age age_range_high = age age_sigma = 0 if 'age_sigma' in list(er_ages_rec.keys()) and er_ages_rec['age_sigma' ] != '': age_sigma = float(er_ages_rec['age_sigma']) * mutliplier if age_unit == 'Years BP' or age_unit == 'Years Cal BP': age_sigma = 1950 - age_sigma age_range_low = age - age_sigma age_range_high = age + age_sigma if 'age_range_high' in list(er_ages_rec.keys() ) and 'age_range_low' in list(er_ages_rec.keys()): if er_ages_rec['age_range_high'] != '' and er_ages_rec['age_range_low' ] != '': age_range_high = float(er_ages_rec['age_range_high']) * mutliplier if age_unit == 'Years BP' or age_unit == 'Years Cal BP': age_range_high = 1950 - age_range_high age_range_low = float(er_ages_rec['age_range_low']) * mutliplier if age_unit == 'Years BP' or age_unit == 'Years Cal BP': age_range_low = 1950 - age_range_low er_ages_rec['age_cal_year_range_low'] = age_range_low er_ages_rec['age_cal_year_range_high'] = age_range_high return er_ages_rec
convert_ages_to_calendar_year
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, er_ages_rec):\n if 'age' not in list(er_ages_rec.keys()):\n return er_ages_rec\n if 'age_unit' not in list(er_ages_rec.keys()):\n return er_ages_rec\n if er_ages_rec['age_unit'] == '':\n return er_ages_rec\n if er_ages_rec['age'] == '':\n if 'age_range_high' in list(er_ages_rec.keys()\n ) and 'age_range_low' in list(er_ages_rec.keys()):\n if er_ages_rec['age_range_high'] != '' and er_ages_rec[\n 'age_range_low'] != '':\n er_ages_rec['age'] = scipy.mean([float(er_ages_rec[\n 'age_range_high']), float(er_ages_rec['age_range_low'])])\n if er_ages_rec['age'] == '':\n return er_ages_rec\n age_unit = er_ages_rec['age_unit']\n mutliplier = 1\n if age_unit == 'Ga':\n mutliplier = -1000000000.0\n if age_unit == 'Ma':\n mutliplier = -1000000.0\n if age_unit == 'Ka':\n mutliplier = -1000.0\n if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)':\n mutliplier = 1\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n mutliplier = 1\n age = float(er_ages_rec['age']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age = 1950 - age\n er_ages_rec['age_cal_year'] = age\n age_range_low = age\n age_range_high = age\n age_sigma = 0\n if 'age_sigma' in list(er_ages_rec.keys()) and er_ages_rec['age_sigma'\n ] != '':\n age_sigma = float(er_ages_rec['age_sigma']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_sigma = 1950 - age_sigma\n age_range_low = age - age_sigma\n age_range_high = age + age_sigma\n if 'age_range_high' in list(er_ages_rec.keys()\n ) and 'age_range_low' in list(er_ages_rec.keys()):\n if er_ages_rec['age_range_high'] != '' and er_ages_rec['age_range_low'\n ] != '':\n age_range_high = float(er_ages_rec['age_range_high']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_range_high = 1950 - age_range_high\n age_range_low = float(er_ages_rec['age_range_low']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_range_low = 1950 - age_range_low\n er_ages_rec['age_cal_year_range_low'] = age_range_low\n er_ages_rec['age_cal_year_range_high'] = age_range_high\n return er_ages_rec\n", "role": "user" }, { "content": "convert_ages_to_calendar_year", "role": "assistant" } ]
def x(self): self.warning_text = '' if self.s in list(self.pmag_results_data['specimens'].keys()): for fit in self.pmag_results_data['specimens'][self.s]: beg_pca, end_pca = self.get_indices(fit, fit.tmin, fit.tmax, self.s ) if beg_pca == None or end_pca == None: self.warning_text += ( '%s to %s are invalid bounds, to fit %s.\n' % (fit.tmin, fit.tmax, fit.name)) elif end_pca - beg_pca < 2: self.warning_text += ( 'there are not enough points between %s to %s, on fit %s.\n' % (fit.tmin, fit.tmax, fit.name)) else: check_duplicates = [] warning_issued = [] if end_pca + 2 < len(self.Data[self.s]['zijdblock_steps']): check_endpoint = end_pca + 2 else: check_endpoint = end_pca + 1 for s, f in zip(self.Data[self.s]['zijdblock_steps'][ beg_pca:check_endpoint], self.Data[self.s][ 'measurement_flag'][beg_pca:check_endpoint]): if f == 'g' and [s, 'g'] in check_duplicates: if s == fit.tmin and s not in warning_issued: self.warning_text += ( 'There are multiple good %s ' + 'steps at the upper bound of Fit %s. The first ' + """measurement will be used as the lower bound. """ ) % (s, fit.name) warning_issued.append(s) elif s == fit.tmax and s not in warning_issued: self.warning_text += ( 'There are multiple good %s ' + 'steps at the upper bound of Fit %s. The first ' + """measurement will be used as the upper bound. """ ) % (s, fit.name) warning_issued.append(s) elif s not in warning_issued: self.warning_text += ( 'Within Fit %s, there are ' + 'multiple good measurements at the %s step. All ' + """good measurements are included in the fit. """ ) % (fit.name, s) warning_issued.append(s) else: pass else: check_duplicates.append([s, f]) if self.s in list(self.Data.keys()): if not self.Data[self.s]['zijdblock_geo']: self.warning_text += ( 'There is no geographic data for this specimen.\n') if not self.Data[self.s]['zijdblock_tilt']: self.warning_text += ( 'There is no tilt-corrected data for this specimen.\n')
generate_warning_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.warning_text = ''\n if self.s in list(self.pmag_results_data['specimens'].keys()):\n for fit in self.pmag_results_data['specimens'][self.s]:\n beg_pca, end_pca = self.get_indices(fit, fit.tmin, fit.tmax, self.s\n )\n if beg_pca == None or end_pca == None:\n self.warning_text += (\n '%s to %s are invalid bounds, to fit %s.\\n' % (fit.tmin,\n fit.tmax, fit.name))\n elif end_pca - beg_pca < 2:\n self.warning_text += (\n 'there are not enough points between %s to %s, on fit %s.\\n'\n % (fit.tmin, fit.tmax, fit.name))\n else:\n check_duplicates = []\n warning_issued = []\n if end_pca + 2 < len(self.Data[self.s]['zijdblock_steps']):\n check_endpoint = end_pca + 2\n else:\n check_endpoint = end_pca + 1\n for s, f in zip(self.Data[self.s]['zijdblock_steps'][\n beg_pca:check_endpoint], self.Data[self.s][\n 'measurement_flag'][beg_pca:check_endpoint]):\n if f == 'g' and [s, 'g'] in check_duplicates:\n if s == fit.tmin and s not in warning_issued:\n self.warning_text += (\n 'There are multiple good %s ' +\n 'steps at the upper bound of Fit %s. The first '\n +\n \"\"\"measurement will be used as the lower bound.\n\"\"\"\n ) % (s, fit.name)\n warning_issued.append(s)\n elif s == fit.tmax and s not in warning_issued:\n self.warning_text += (\n 'There are multiple good %s ' +\n 'steps at the upper bound of Fit %s. The first '\n +\n \"\"\"measurement will be used as the upper bound.\n\"\"\"\n ) % (s, fit.name)\n warning_issued.append(s)\n elif s not in warning_issued:\n self.warning_text += (\n 'Within Fit %s, there are ' +\n 'multiple good measurements at the %s step. All '\n +\n \"\"\"good measurements are included in the fit.\n\"\"\"\n ) % (fit.name, s)\n warning_issued.append(s)\n else:\n pass\n else:\n check_duplicates.append([s, f])\n if self.s in list(self.Data.keys()):\n if not self.Data[self.s]['zijdblock_geo']:\n self.warning_text += (\n 'There is no geographic data for this specimen.\\n')\n if not self.Data[self.s]['zijdblock_tilt']:\n self.warning_text += (\n 'There is no tilt-corrected data for this specimen.\\n')\n", "role": "user" }, { "content": "generate_warning_text", "role": "assistant" } ]
def x(self, criteria_file_name=None): acceptance_criteria = pmag.initialize_acceptance_criteria() if self.data_model == 3: if criteria_file_name == None: criteria_file_name = 'criteria.txt' contribution = cb.Contribution(self.WD, read_tables=['criteria'], custom_filenames={'criteria': criteria_file_name}) if 'criteria' in contribution.tables: crit_container = contribution.tables['criteria'] crit_data = crit_container.df crit_data = crit_data.to_dict('records') for crit in crit_data: m2_name = map_magic.convert_direction_criteria('magic2', crit['table_column']) if m2_name != '': try: if crit['criterion_value'] == 'True': acceptance_criteria[m2_name]['value'] = 1 else: acceptance_criteria[m2_name]['value'] = 0 acceptance_criteria[m2_name]['value'] = float(crit[ 'criterion_value']) except ValueError: self.user_warning( '%s is not a valid comparitor for %s, skipping this criteria' % (str(crit['criterion_value']), m2_name)) continue acceptance_criteria[m2_name]['pmag_criteria_code'] = crit[ 'criterion'] return acceptance_criteria else: if criteria_file_name == None: criteria_file_name = 'pmag_criteria.txt' try: acceptance_criteria = pmag.read_criteria_from_file(os.path.join (self.WD, criteria_file_name), acceptance_criteria) except (IOError, OSError) as e: self.user_warning( 'File %s not found in directory %s aborting opperation' % ( criteria_file_name, self.WD)) return acceptance_criteria
read_criteria_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, criteria_file_name=None):\n acceptance_criteria = pmag.initialize_acceptance_criteria()\n if self.data_model == 3:\n if criteria_file_name == None:\n criteria_file_name = 'criteria.txt'\n contribution = cb.Contribution(self.WD, read_tables=['criteria'],\n custom_filenames={'criteria': criteria_file_name})\n if 'criteria' in contribution.tables:\n crit_container = contribution.tables['criteria']\n crit_data = crit_container.df\n crit_data = crit_data.to_dict('records')\n for crit in crit_data:\n m2_name = map_magic.convert_direction_criteria('magic2',\n crit['table_column'])\n if m2_name != '':\n try:\n if crit['criterion_value'] == 'True':\n acceptance_criteria[m2_name]['value'] = 1\n else:\n acceptance_criteria[m2_name]['value'] = 0\n acceptance_criteria[m2_name]['value'] = float(crit[\n 'criterion_value'])\n except ValueError:\n self.user_warning(\n '%s is not a valid comparitor for %s, skipping this criteria'\n % (str(crit['criterion_value']), m2_name))\n continue\n acceptance_criteria[m2_name]['pmag_criteria_code'] = crit[\n 'criterion']\n return acceptance_criteria\n else:\n if criteria_file_name == None:\n criteria_file_name = 'pmag_criteria.txt'\n try:\n acceptance_criteria = pmag.read_criteria_from_file(os.path.join\n (self.WD, criteria_file_name), acceptance_criteria)\n except (IOError, OSError) as e:\n self.user_warning(\n 'File %s not found in directory %s aborting opperation' % (\n criteria_file_name, self.WD))\n return acceptance_criteria\n", "role": "user" }, { "content": "read_criteria_file", "role": "assistant" } ]
def x(self, specimen, fit, tmin, tmax, coordinate_system, calculation_type): if tmin == '' or tmax == '': return beg_pca, end_pca = self.get_indices(fit, tmin, tmax, specimen) if coordinate_system == 'geographic' or coordinate_system == 'DA-DIR-GEO': block = self.Data[specimen]['zijdblock_geo'] elif coordinate_system == 'tilt-corrected' or coordinate_system == 'DA-DIR-TILT': block = self.Data[specimen]['zijdblock_tilt'] else: block = self.Data[specimen]['zijdblock'] if block == []: print( '-E- no measurement data for specimen %s in coordinate system %s' % (specimen, coordinate_system)) mpars = {} elif end_pca > beg_pca and end_pca - beg_pca > 1: try: mpars = pmag.domean(block, beg_pca, end_pca, calculation_type) except: print((block, beg_pca, end_pca, calculation_type, specimen, fit .name, tmin, tmax, coordinate_system)) return if 'specimen_direction_type' in mpars and mpars[ 'specimen_direction_type'] == 'Error': print( '-E- no measurement data for specimen %s in coordinate system %s' % (specimen, coordinate_system)) return {} else: mpars = {} for k in list(mpars.keys()): try: if math.isnan(float(mpars[k])): mpars[k] = 0 except: pass if 'DE-BFL' in calculation_type and 'specimen_dang' not in list(mpars. keys()): mpars['specimen_dang'] = 0 if 'best fit vector' in self.plane_display_box.GetValue(): self.calculate_best_fit_vectors() return mpars
get_PCA_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, specimen, fit, tmin, tmax, coordinate_system, calculation_type):\n if tmin == '' or tmax == '':\n return\n beg_pca, end_pca = self.get_indices(fit, tmin, tmax, specimen)\n if coordinate_system == 'geographic' or coordinate_system == 'DA-DIR-GEO':\n block = self.Data[specimen]['zijdblock_geo']\n elif coordinate_system == 'tilt-corrected' or coordinate_system == 'DA-DIR-TILT':\n block = self.Data[specimen]['zijdblock_tilt']\n else:\n block = self.Data[specimen]['zijdblock']\n if block == []:\n print(\n '-E- no measurement data for specimen %s in coordinate system %s' %\n (specimen, coordinate_system))\n mpars = {}\n elif end_pca > beg_pca and end_pca - beg_pca > 1:\n try:\n mpars = pmag.domean(block, beg_pca, end_pca, calculation_type)\n except:\n print((block, beg_pca, end_pca, calculation_type, specimen, fit\n .name, tmin, tmax, coordinate_system))\n return\n if 'specimen_direction_type' in mpars and mpars[\n 'specimen_direction_type'] == 'Error':\n print(\n '-E- no measurement data for specimen %s in coordinate system %s'\n % (specimen, coordinate_system))\n return {}\n else:\n mpars = {}\n for k in list(mpars.keys()):\n try:\n if math.isnan(float(mpars[k])):\n mpars[k] = 0\n except:\n pass\n if 'DE-BFL' in calculation_type and 'specimen_dang' not in list(mpars.\n keys()):\n mpars['specimen_dang'] = 0\n if 'best fit vector' in self.plane_display_box.GetValue():\n self.calculate_best_fit_vectors()\n return mpars\n", "role": "user" }, { "content": "get_PCA_parameters", "role": "assistant" } ]
def x(self, event, step_size=None, calculation_type='DE-BFL'): if not self.user_warning( 'This feature is in ALPHA and still in development and testing. It is subject to bugs and will often create a LOT of new interpretations. This feature should only be used to get a general idea of the trend of the data before actually mannuely interpreting the data and the output of this function should certainly not be trusted as 100% accurate and useable for publication. Would you like to continue?' ): return if not self.clear_interpretations(): return print('Autointerpretation Start') self.set_test_mode(True) for specimen in self.specimens: self.autointerpret_specimen(specimen, step_size, calculation_type) self.set_test_mode(False) if self.pmag_results_data['specimens'][self.s] != []: self.current_fit = self.pmag_results_data['specimens'][self.s][-1] else: self.current_fit = None print('Autointerpretation Complete') self.update_selection() if self.ie_open: self.ie.update_editor()
autointerpret
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event, step_size=None, calculation_type='DE-BFL'):\n if not self.user_warning(\n 'This feature is in ALPHA and still in development and testing. It is subject to bugs and will often create a LOT of new interpretations. This feature should only be used to get a general idea of the trend of the data before actually mannuely interpreting the data and the output of this function should certainly not be trusted as 100% accurate and useable for publication. Would you like to continue?'\n ):\n return\n if not self.clear_interpretations():\n return\n print('Autointerpretation Start')\n self.set_test_mode(True)\n for specimen in self.specimens:\n self.autointerpret_specimen(specimen, step_size, calculation_type)\n self.set_test_mode(False)\n if self.pmag_results_data['specimens'][self.s] != []:\n self.current_fit = self.pmag_results_data['specimens'][self.s][-1]\n else:\n self.current_fit = None\n print('Autointerpretation Complete')\n self.update_selection()\n if self.ie_open:\n self.ie.update_editor()\n", "role": "user" }, { "content": "autointerpret", "role": "assistant" } ]
def x(self, specimen, step_size, calculation_type): if self.COORDINATE_SYSTEM == 'geographic': block = self.Data[specimen]['zijdblock_geo'] elif self.COORDINATE_SYSTEM == 'tilt-corrected': block = self.Data[specimen]['zijdblock_tilt'] else: block = self.Data[specimen]['zijdblock'] if step_size == None: step_size = int(len(block) / 10 + 0.5) if step_size < 3: step_size = 3 temps = [] mads = [] for i in range(len(block) - step_size): if block[i][5] == 'b': return try: mpars = pmag.domean(block, i, i + step_size, calculation_type) except (IndexError, TypeError) as e: return if 'specimen_mad' in list(mpars.keys()): temps.append(block[i][0]) mads.append(mpars['specimen_mad']) if mads == []: return peaks = find_peaks_cwt(array(mads), arange(5, 10)) len_temps = len(self.Data[specimen]['zijdblock_steps']) peaks = [0] + peaks + [len(temps)] prev_peak = peaks[0] for peak in peaks[1:]: if peak - prev_peak < 3: prev_peak = peak continue tmin = self.Data[specimen]['zijdblock_steps'][prev_peak] tmax = self.Data[specimen]['zijdblock_steps'][peak] self.add_fit(specimen, None, tmin, tmax, calculation_type) prev_peak = peak + 1
autointerpret_specimen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, specimen, step_size, calculation_type):\n if self.COORDINATE_SYSTEM == 'geographic':\n block = self.Data[specimen]['zijdblock_geo']\n elif self.COORDINATE_SYSTEM == 'tilt-corrected':\n block = self.Data[specimen]['zijdblock_tilt']\n else:\n block = self.Data[specimen]['zijdblock']\n if step_size == None:\n step_size = int(len(block) / 10 + 0.5)\n if step_size < 3:\n step_size = 3\n temps = []\n mads = []\n for i in range(len(block) - step_size):\n if block[i][5] == 'b':\n return\n try:\n mpars = pmag.domean(block, i, i + step_size, calculation_type)\n except (IndexError, TypeError) as e:\n return\n if 'specimen_mad' in list(mpars.keys()):\n temps.append(block[i][0])\n mads.append(mpars['specimen_mad'])\n if mads == []:\n return\n peaks = find_peaks_cwt(array(mads), arange(5, 10))\n len_temps = len(self.Data[specimen]['zijdblock_steps'])\n peaks = [0] + peaks + [len(temps)]\n prev_peak = peaks[0]\n for peak in peaks[1:]:\n if peak - prev_peak < 3:\n prev_peak = peak\n continue\n tmin = self.Data[specimen]['zijdblock_steps'][prev_peak]\n tmax = self.Data[specimen]['zijdblock_steps'][peak]\n self.add_fit(specimen, None, tmin, tmax, calculation_type)\n prev_peak = peak + 1\n", "role": "user" }, { "content": "autointerpret_specimen", "role": "assistant" } ]
def x(self, high_level_type, high_level_name, calculation_type, elements_type, mean_fit, dirtype): elements_list = self.Data_hierarchy[high_level_type][high_level_name][ elements_type] pars_for_mean = {} pars_for_mean['All'] = [] for element in elements_list: if elements_type == 'specimens' and element in self.pmag_results_data[ 'specimens']: for fit in self.pmag_results_data['specimens'][element]: if fit in self.bad_fits: continue if fit.name not in list(pars_for_mean.keys()): pars_for_mean[fit.name] = [] try: if mean_fit == 'All' or mean_fit == fit.name: pars = fit.get(dirtype) if pars == {} or pars == None: pars = self.get_PCA_parameters(element, fit, fit.tmin, fit.tmax, dirtype, fit.PCA_type) if pars == {} or pars == None: print( 'cannot calculate parameters for element %s and fit %s in calculate_high_level_mean leaving out of fisher mean, please check this value.' % (element, fit.name)) continue fit.put(element, dirtype, pars) else: continue if 'calculation_type' in list(pars.keys()) and pars[ 'calculation_type'] == 'DE-BFP': dec, inc, direction_type = pars['specimen_dec'], pars[ 'specimen_inc'], 'p' elif 'specimen_dec' in list(pars.keys() ) and 'specimen_inc' in list(pars.keys()): dec, inc, direction_type = pars['specimen_dec'], pars[ 'specimen_inc'], 'l' elif 'dec' in list(pars.keys()) and 'inc' in list(pars. keys()): dec, inc, direction_type = pars['dec'], pars['inc' ], 'l' else: print( "-E- ERROR: can't find mean for specimen interpertation: %s , %s" % (element, fit.name)) print(pars) continue pars_for_mean[fit.name].append({'dec': float(dec), 'inc': float(inc), 'direction_type': direction_type, 'element_name': element}) pars_for_mean['All'].append({'dec': float(dec), 'inc': float(inc), 'direction_type': direction_type, 'element_name': element}) except KeyError: print( 'KeyError in calculate_high_level_mean for element: ' + str(element)) continue else: try: pars = self.high_level_means[elements_type][element][mean_fit][ dirtype] if 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()): dec, inc, direction_type = pars['dec'], pars['inc'], 'l' else: continue except KeyError: continue return pars_for_mean
get_high_level_mean_pars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, high_level_type, high_level_name, calculation_type,\n elements_type, mean_fit, dirtype):\n elements_list = self.Data_hierarchy[high_level_type][high_level_name][\n elements_type]\n pars_for_mean = {}\n pars_for_mean['All'] = []\n for element in elements_list:\n if elements_type == 'specimens' and element in self.pmag_results_data[\n 'specimens']:\n for fit in self.pmag_results_data['specimens'][element]:\n if fit in self.bad_fits:\n continue\n if fit.name not in list(pars_for_mean.keys()):\n pars_for_mean[fit.name] = []\n try:\n if mean_fit == 'All' or mean_fit == fit.name:\n pars = fit.get(dirtype)\n if pars == {} or pars == None:\n pars = self.get_PCA_parameters(element, fit,\n fit.tmin, fit.tmax, dirtype, fit.PCA_type)\n if pars == {} or pars == None:\n print(\n 'cannot calculate parameters for element %s and fit %s in calculate_high_level_mean leaving out of fisher mean, please check this value.'\n % (element, fit.name))\n continue\n fit.put(element, dirtype, pars)\n else:\n continue\n if 'calculation_type' in list(pars.keys()) and pars[\n 'calculation_type'] == 'DE-BFP':\n dec, inc, direction_type = pars['specimen_dec'], pars[\n 'specimen_inc'], 'p'\n elif 'specimen_dec' in list(pars.keys()\n ) and 'specimen_inc' in list(pars.keys()):\n dec, inc, direction_type = pars['specimen_dec'], pars[\n 'specimen_inc'], 'l'\n elif 'dec' in list(pars.keys()) and 'inc' in list(pars.\n keys()):\n dec, inc, direction_type = pars['dec'], pars['inc'\n ], 'l'\n else:\n print(\n \"-E- ERROR: can't find mean for specimen interpertation: %s , %s\"\n % (element, fit.name))\n print(pars)\n continue\n pars_for_mean[fit.name].append({'dec': float(dec),\n 'inc': float(inc), 'direction_type': direction_type,\n 'element_name': element})\n pars_for_mean['All'].append({'dec': float(dec), 'inc':\n float(inc), 'direction_type': direction_type,\n 'element_name': element})\n except KeyError:\n print(\n 'KeyError in calculate_high_level_mean for element: ' +\n str(element))\n continue\n else:\n try:\n pars = self.high_level_means[elements_type][element][mean_fit][\n dirtype]\n if 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()):\n dec, inc, direction_type = pars['dec'], pars['inc'], 'l'\n else:\n continue\n except KeyError:\n continue\n return pars_for_mean\n", "role": "user" }, { "content": "get_high_level_mean_pars", "role": "assistant" } ]
def x(self, pars_for_mean, calculation_type): if len(pars_for_mean) == 0: return {} elif len(pars_for_mean) == 1: return {'dec': float(pars_for_mean[0]['dec']), 'inc': float( pars_for_mean[0]['inc']), 'calculation_type': calculation_type, 'n': 1} elif calculation_type == 'Fisher': mpars = pmag.dolnp(pars_for_mean, 'direction_type') elif calculation_type == 'Fisher by polarity': mpars = pmag.fisher_by_pol(pars_for_mean) for key in list(mpars.keys()): mpars[key]['n_planes'] = 0 mpars[key]['calculation_type'] = 'Fisher' mpars['calculation_type'] = calculation_type return mpars
calculate_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pars_for_mean, calculation_type):\n if len(pars_for_mean) == 0:\n return {}\n elif len(pars_for_mean) == 1:\n return {'dec': float(pars_for_mean[0]['dec']), 'inc': float(\n pars_for_mean[0]['inc']), 'calculation_type': calculation_type,\n 'n': 1}\n elif calculation_type == 'Fisher':\n mpars = pmag.dolnp(pars_for_mean, 'direction_type')\n elif calculation_type == 'Fisher by polarity':\n mpars = pmag.fisher_by_pol(pars_for_mean)\n for key in list(mpars.keys()):\n mpars[key]['n_planes'] = 0\n mpars[key]['calculation_type'] = 'Fisher'\n mpars['calculation_type'] = calculation_type\n return mpars\n", "role": "user" }, { "content": "calculate_mean", "role": "assistant" } ]
def x(self): high_level_type = str(self.level_box.GetValue()) if high_level_type == 'sample': high_level_type = 'samples' if high_level_type == 'site': high_level_type = 'sites' if high_level_type == 'location': high_level_type = 'locations' high_level_name = str(self.level_names.GetValue()) calculation_type = str(self.mean_type_box.GetValue()) elements_type = self.UPPER_LEVEL_SHOW if self.ie_open: self.ie.mean_type_box.SetStringSelection(calculation_type) self.calculate_high_level_mean(high_level_type, high_level_name, calculation_type, elements_type, self.mean_fit)
calculate_high_levels_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n high_level_type = str(self.level_box.GetValue())\n if high_level_type == 'sample':\n high_level_type = 'samples'\n if high_level_type == 'site':\n high_level_type = 'sites'\n if high_level_type == 'location':\n high_level_type = 'locations'\n high_level_name = str(self.level_names.GetValue())\n calculation_type = str(self.mean_type_box.GetValue())\n elements_type = self.UPPER_LEVEL_SHOW\n if self.ie_open:\n self.ie.mean_type_box.SetStringSelection(calculation_type)\n self.calculate_high_level_mean(high_level_type, high_level_name,\n calculation_type, elements_type, self.mean_fit)\n", "role": "user" }, { "content": "calculate_high_levels_data", "role": "assistant" } ]
def x(self, reset_interps=True): new_Data_info = self.get_data_info() new_Data, new_Data_hierarchy = self.get_data() if not new_Data: print('Data read in failed when reseting, aborting reset') return else: self.Data, self.Data_hierarchy, self.Data_info = (new_Data, new_Data_hierarchy, new_Data_info) if reset_interps: self.pmag_results_data = {} for level in ['specimens', 'samples', 'sites', 'locations', 'study']: self.pmag_results_data[level] = {} self.high_level_means = {} high_level_means = {} for high_level in ['samples', 'sites', 'locations', 'study']: if high_level not in list(self.high_level_means.keys()): self.high_level_means[high_level] = {} self.locations = list(self.Data_hierarchy['locations'].keys()) self.locations.sort() self.sites = list(self.Data_hierarchy['sites'].keys()) self.sites.sort(key=spec_key_func) self.samples = [] for site in self.sites: self.samples.extend(sorted(self.Data_hierarchy['sites'][site][ 'samples'], key=spec_key_func)) self.specimens = [] for samp in self.samples: self.specimens.extend(sorted(self.Data_hierarchy['samples'][samp][ 'specimens'], key=spec_key_func)) if self.s in self.specimens: pass elif len(self.specimens) > 0: self.select_specimen(str(self.specimens[0])) else: self.select_specimen('') try: self.sample = self.Data_hierarchy['sample_of_specimen'][self.s] except KeyError: self.sample = '' try: self.site = self.Data_hierarchy['site_of_specimen'][self.s] except KeyError: self.site = '' if self.Data and reset_interps: self.update_pmag_tables() if self.ie_open: self.ie.specimens_list = self.specimens
quiet_reset_backend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, reset_interps=True):\n new_Data_info = self.get_data_info()\n new_Data, new_Data_hierarchy = self.get_data()\n if not new_Data:\n print('Data read in failed when reseting, aborting reset')\n return\n else:\n self.Data, self.Data_hierarchy, self.Data_info = (new_Data,\n new_Data_hierarchy, new_Data_info)\n if reset_interps:\n self.pmag_results_data = {}\n for level in ['specimens', 'samples', 'sites', 'locations', 'study']:\n self.pmag_results_data[level] = {}\n self.high_level_means = {}\n high_level_means = {}\n for high_level in ['samples', 'sites', 'locations', 'study']:\n if high_level not in list(self.high_level_means.keys()):\n self.high_level_means[high_level] = {}\n self.locations = list(self.Data_hierarchy['locations'].keys())\n self.locations.sort()\n self.sites = list(self.Data_hierarchy['sites'].keys())\n self.sites.sort(key=spec_key_func)\n self.samples = []\n for site in self.sites:\n self.samples.extend(sorted(self.Data_hierarchy['sites'][site][\n 'samples'], key=spec_key_func))\n self.specimens = []\n for samp in self.samples:\n self.specimens.extend(sorted(self.Data_hierarchy['samples'][samp][\n 'specimens'], key=spec_key_func))\n if self.s in self.specimens:\n pass\n elif len(self.specimens) > 0:\n self.select_specimen(str(self.specimens[0]))\n else:\n self.select_specimen('')\n try:\n self.sample = self.Data_hierarchy['sample_of_specimen'][self.s]\n except KeyError:\n self.sample = ''\n try:\n self.site = self.Data_hierarchy['site_of_specimen'][self.s]\n except KeyError:\n self.site = ''\n if self.Data and reset_interps:\n self.update_pmag_tables()\n if self.ie_open:\n self.ie.specimens_list = self.specimens\n", "role": "user" }, { "content": "quiet_reset_backend", "role": "assistant" } ]
def x(self, warn_user=True, reset_interps=True): if warn_user and not self.data_loss_warning(): return False self.quiet_reset_backend(reset_interps=reset_interps) self.specimens_box.SetItems(self.specimens) self.specimens_box.SetStringSelection(str(self.s)) self.level_names.Clear() self.level_names.AppendItems(self.sites) if self.sites: self.level_names.SetSelection(0) self.COORDINATE_SYSTEM, self.coordinate_list = self.get_coordinate_system() self.coordinates_box.Clear() self.coordinates_box.AppendItems(self.coordinate_list) self.coordinates_box.SetStringSelection(self.COORDINATE_SYSTEM) self.initialize_CART_rot(str(self.s)) if self.Data: if not self.current_fit: self.draw_figure(self.s) self.update_selection() else: self.Add_text() self.update_fit_boxes() if self.ie_open: self.ie.update_editor()
reset_backend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, warn_user=True, reset_interps=True):\n if warn_user and not self.data_loss_warning():\n return False\n self.quiet_reset_backend(reset_interps=reset_interps)\n self.specimens_box.SetItems(self.specimens)\n self.specimens_box.SetStringSelection(str(self.s))\n self.level_names.Clear()\n self.level_names.AppendItems(self.sites)\n if self.sites:\n self.level_names.SetSelection(0)\n self.COORDINATE_SYSTEM, self.coordinate_list = self.get_coordinate_system()\n self.coordinates_box.Clear()\n self.coordinates_box.AppendItems(self.coordinate_list)\n self.coordinates_box.SetStringSelection(self.COORDINATE_SYSTEM)\n self.initialize_CART_rot(str(self.s))\n if self.Data:\n if not self.current_fit:\n self.draw_figure(self.s)\n self.update_selection()\n else:\n self.Add_text()\n self.update_fit_boxes()\n if self.ie_open:\n self.ie.update_editor()\n", "role": "user" }, { "content": "reset_backend", "role": "assistant" } ]
def x(self): self.initialize_CART_rot(self.s) if str(self.s) in self.pmag_results_data['specimens']: for fit in self.pmag_results_data['specimens'][self.s]: if fit.get('specimen') and 'calculation_type' in fit.get('specimen' ): fit.put(self.s, 'specimen', self.get_PCA_parameters(self.s, fit, fit.tmin, fit.tmax, 'specimen', fit.get('specimen' )['calculation_type'])) if len(self.Data[self.s]['zijdblock_geo']) > 0 and fit.get( 'geographic') and 'calculation_type' in fit.get('geographic'): fit.put(self.s, 'geographic', self.get_PCA_parameters(self. s, fit, fit.tmin, fit.tmax, 'geographic', fit.get( 'geographic')['calculation_type'])) if len(self.Data[self.s]['zijdblock_tilt']) > 0 and fit.get( 'tilt-corrected') and 'calculation_type' in fit.get( 'tilt-corrected'): fit.put(self.s, 'tilt-corrected', self.get_PCA_parameters( self.s, fit, fit.tmin, fit.tmax, 'tilt-corrected', fit. get('tilt-corrected')['calculation_type']))
recalculate_current_specimen_interpreatations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.initialize_CART_rot(self.s)\n if str(self.s) in self.pmag_results_data['specimens']:\n for fit in self.pmag_results_data['specimens'][self.s]:\n if fit.get('specimen') and 'calculation_type' in fit.get('specimen'\n ):\n fit.put(self.s, 'specimen', self.get_PCA_parameters(self.s,\n fit, fit.tmin, fit.tmax, 'specimen', fit.get('specimen'\n )['calculation_type']))\n if len(self.Data[self.s]['zijdblock_geo']) > 0 and fit.get(\n 'geographic') and 'calculation_type' in fit.get('geographic'):\n fit.put(self.s, 'geographic', self.get_PCA_parameters(self.\n s, fit, fit.tmin, fit.tmax, 'geographic', fit.get(\n 'geographic')['calculation_type']))\n if len(self.Data[self.s]['zijdblock_tilt']) > 0 and fit.get(\n 'tilt-corrected') and 'calculation_type' in fit.get(\n 'tilt-corrected'):\n fit.put(self.s, 'tilt-corrected', self.get_PCA_parameters(\n self.s, fit, fit.tmin, fit.tmax, 'tilt-corrected', fit.\n get('tilt-corrected')['calculation_type']))\n", "role": "user" }, { "content": "recalculate_current_specimen_interpreatations", "role": "assistant" } ]
def x(self, tmin0, tmax0, specimen): if specimen not in self.Data: print( 'no measurement data found loaded for specimen %s and will be ignored' % specimen) return None, None if self.Data[specimen]['measurement_step_unit'] == 'C': if float(tmin0) == 0 or float(tmin0) == 273: tmin = '0' else: tmin = '%.0fC' % (float(tmin0) - 273) if float(tmax0) == 0 or float(tmax0) == 273: tmax = '0' else: tmax = '%.0fC' % (float(tmax0) - 273) elif self.Data[specimen]['measurement_step_unit'] == 'mT': if float(tmin0) == 0: tmin = '0' else: tmin = '%.1fmT' % (float(tmin0) * 1000) if float(tmax0) == 0: tmax = '0' else: tmax = '%.1fmT' % (float(tmax0) * 1000) else: if float(tmin0) == 0: tmin = '0' elif '%.0fC' % (float(tmin0) - 273) in self.Data[specimen][ 'zijdblock_steps']: tmin = '%.0fC' % (float(tmin0) - 273) elif '%.1fmT' % (float(tmin0) * 1000) in self.Data[specimen][ 'zijdblock_steps']: tmin = '%.1fmT' % (float(tmin0) * 1000) else: tmin = None if float(tmax0) == 0: tmax = '0' elif '%.0fC' % (float(tmax0) - 273) in self.Data[specimen][ 'zijdblock_steps']: tmax = '%.0fC' % (float(tmax0) - 273) elif '%.1fmT' % (float(tmax0) * 1000) in self.Data[specimen][ 'zijdblock_steps']: tmax = '%.1fmT' % (float(tmax0) * 1000) else: tmax = None return tmin, tmax
parse_bound_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tmin0, tmax0, specimen):\n if specimen not in self.Data:\n print(\n 'no measurement data found loaded for specimen %s and will be ignored'\n % specimen)\n return None, None\n if self.Data[specimen]['measurement_step_unit'] == 'C':\n if float(tmin0) == 0 or float(tmin0) == 273:\n tmin = '0'\n else:\n tmin = '%.0fC' % (float(tmin0) - 273)\n if float(tmax0) == 0 or float(tmax0) == 273:\n tmax = '0'\n else:\n tmax = '%.0fC' % (float(tmax0) - 273)\n elif self.Data[specimen]['measurement_step_unit'] == 'mT':\n if float(tmin0) == 0:\n tmin = '0'\n else:\n tmin = '%.1fmT' % (float(tmin0) * 1000)\n if float(tmax0) == 0:\n tmax = '0'\n else:\n tmax = '%.1fmT' % (float(tmax0) * 1000)\n else:\n if float(tmin0) == 0:\n tmin = '0'\n elif '%.0fC' % (float(tmin0) - 273) in self.Data[specimen][\n 'zijdblock_steps']:\n tmin = '%.0fC' % (float(tmin0) - 273)\n elif '%.1fmT' % (float(tmin0) * 1000) in self.Data[specimen][\n 'zijdblock_steps']:\n tmin = '%.1fmT' % (float(tmin0) * 1000)\n else:\n tmin = None\n if float(tmax0) == 0:\n tmax = '0'\n elif '%.0fC' % (float(tmax0) - 273) in self.Data[specimen][\n 'zijdblock_steps']:\n tmax = '%.0fC' % (float(tmax0) - 273)\n elif '%.1fmT' % (float(tmax0) * 1000) in self.Data[specimen][\n 'zijdblock_steps']:\n tmax = '%.1fmT' % (float(tmax0) * 1000)\n else:\n tmax = None\n return tmin, tmax\n", "role": "user" }, { "content": "parse_bound_data", "role": "assistant" } ]
def x(self, fit=None, tmin=None, tmax=None, specimen=None): if specimen == None: specimen = self.s if fit and not tmin and not tmax: tmin = fit.tmin tmax = fit.tmax if specimen not in list(self.Data.keys()): self.user_warning('No data for specimen ' + specimen) if tmin in self.Data[specimen]['zijdblock_steps']: tmin_index = self.Data[specimen]['zijdblock_steps'].index(tmin) elif type(tmin) == str or type(tmin) == str and tmin != '': int_steps = [float(x.strip('C mT')) for x in self.Data[specimen][ 'zijdblock_steps']] if tmin == '': tmin = self.Data[specimen]['zijdblock_steps'][0] print( 'No lower bound for %s on specimen %s using lowest step (%s) for lower bound' % (fit.name, specimen, tmin)) if fit != None: fit.tmin = tmin int_tmin = float(tmin.strip('C mT')) diffs = [abs(x - int_tmin) for x in int_steps] tmin_index = diffs.index(min(diffs)) else: tmin_index = self.tmin_box.GetSelection() if tmax in self.Data[specimen]['zijdblock_steps']: tmax_index = self.Data[specimen]['zijdblock_steps'].index(tmax) elif type(tmax) == str or type(tmax) == str and tmax != '': int_steps = [float(x.strip('C mT')) for x in self.Data[specimen][ 'zijdblock_steps']] if tmax == '': tmax = self.Data[specimen]['zijdblock_steps'][-1] print( 'No upper bound for fit %s on specimen %s using last step (%s) for upper bound' % (fit.name, specimen, tmax)) if fit != None: fit.tmax = tmax int_tmax = float(tmax.strip('C mT')) diffs = [abs(x - int_tmax) for x in int_steps] tmax_index = diffs.index(min(diffs)) else: tmax_index = self.tmin_box.GetSelection() max_index = len(self.Data[specimen]['zijdblock_steps']) - 1 while self.Data[specimen]['measurement_flag'][max_index ] == 'b' and max_index - 1 > 0: max_index -= 1 if tmin_index >= max_index: print( 'lower bound is greater or equal to max step cannot determine bounds for specimen: ' + specimen) return None, None if tmin_index >= 0: while self.Data[specimen]['measurement_flag'][tmin_index ] == 'b' and tmin_index + 1 < len(self.Data[specimen][ 'zijdblock_steps']): if self.Data[specimen]['zijdblock_steps'][tmin_index + 1] == tmin: tmin_index += 1 else: tmin_old = tmin while self.Data[specimen]['measurement_flag'][tmin_index ] == 'b' and tmin_index + 1 < len(self.Data[specimen][ 'zijdblock_steps']): tmin_index += 1 tmin = self.Data[specimen]['zijdblock_steps'][tmin_index] if fit != None: fit.tmin = tmin self.tmin_box.SetStringSelection(tmin) print('For specimen ' + str(specimen) + ' there are no good measurement steps with value - ' + str(tmin_old) + ' using step ' + str(tmin) + ' as lower bound instead') break if tmax_index < max_index: while self.Data[specimen]['measurement_flag'][tmax_index ] == 'b' and tmax_index + 1 < len(self.Data[specimen][ 'zijdblock_steps']): if self.Data[specimen]['zijdblock_steps'][tmax_index + 1] == tmax: tmax_index += 1 else: tmax_old = tmax while self.Data[specimen]['measurement_flag'][tmax_index ] == 'b' and tmax_index >= 0: tmax_index -= 1 tmax = self.Data[specimen]['zijdblock_steps'][tmax_index] if fit != None: fit.tmax = tmax self.tmax_box.SetStringSelection(tmax) print('For specimen ' + str(specimen) + ' there are no good measurement steps with value - ' + str(tmax_old) + ' using step ' + str(tmax) + ' as upper bound instead') break if tmin_index < 0: tmin_index = 0 if tmax_index > max_index: tmax_index = max_index return tmin_index, tmax_index
get_indices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fit=None, tmin=None, tmax=None, specimen=None):\n if specimen == None:\n specimen = self.s\n if fit and not tmin and not tmax:\n tmin = fit.tmin\n tmax = fit.tmax\n if specimen not in list(self.Data.keys()):\n self.user_warning('No data for specimen ' + specimen)\n if tmin in self.Data[specimen]['zijdblock_steps']:\n tmin_index = self.Data[specimen]['zijdblock_steps'].index(tmin)\n elif type(tmin) == str or type(tmin) == str and tmin != '':\n int_steps = [float(x.strip('C mT')) for x in self.Data[specimen][\n 'zijdblock_steps']]\n if tmin == '':\n tmin = self.Data[specimen]['zijdblock_steps'][0]\n print(\n 'No lower bound for %s on specimen %s using lowest step (%s) for lower bound'\n % (fit.name, specimen, tmin))\n if fit != None:\n fit.tmin = tmin\n int_tmin = float(tmin.strip('C mT'))\n diffs = [abs(x - int_tmin) for x in int_steps]\n tmin_index = diffs.index(min(diffs))\n else:\n tmin_index = self.tmin_box.GetSelection()\n if tmax in self.Data[specimen]['zijdblock_steps']:\n tmax_index = self.Data[specimen]['zijdblock_steps'].index(tmax)\n elif type(tmax) == str or type(tmax) == str and tmax != '':\n int_steps = [float(x.strip('C mT')) for x in self.Data[specimen][\n 'zijdblock_steps']]\n if tmax == '':\n tmax = self.Data[specimen]['zijdblock_steps'][-1]\n print(\n 'No upper bound for fit %s on specimen %s using last step (%s) for upper bound'\n % (fit.name, specimen, tmax))\n if fit != None:\n fit.tmax = tmax\n int_tmax = float(tmax.strip('C mT'))\n diffs = [abs(x - int_tmax) for x in int_steps]\n tmax_index = diffs.index(min(diffs))\n else:\n tmax_index = self.tmin_box.GetSelection()\n max_index = len(self.Data[specimen]['zijdblock_steps']) - 1\n while self.Data[specimen]['measurement_flag'][max_index\n ] == 'b' and max_index - 1 > 0:\n max_index -= 1\n if tmin_index >= max_index:\n print(\n 'lower bound is greater or equal to max step cannot determine bounds for specimen: '\n + specimen)\n return None, None\n if tmin_index >= 0:\n while self.Data[specimen]['measurement_flag'][tmin_index\n ] == 'b' and tmin_index + 1 < len(self.Data[specimen][\n 'zijdblock_steps']):\n if self.Data[specimen]['zijdblock_steps'][tmin_index + 1] == tmin:\n tmin_index += 1\n else:\n tmin_old = tmin\n while self.Data[specimen]['measurement_flag'][tmin_index\n ] == 'b' and tmin_index + 1 < len(self.Data[specimen][\n 'zijdblock_steps']):\n tmin_index += 1\n tmin = self.Data[specimen]['zijdblock_steps'][tmin_index]\n if fit != None:\n fit.tmin = tmin\n self.tmin_box.SetStringSelection(tmin)\n print('For specimen ' + str(specimen) +\n ' there are no good measurement steps with value - ' +\n str(tmin_old) + ' using step ' + str(tmin) +\n ' as lower bound instead')\n break\n if tmax_index < max_index:\n while self.Data[specimen]['measurement_flag'][tmax_index\n ] == 'b' and tmax_index + 1 < len(self.Data[specimen][\n 'zijdblock_steps']):\n if self.Data[specimen]['zijdblock_steps'][tmax_index + 1] == tmax:\n tmax_index += 1\n else:\n tmax_old = tmax\n while self.Data[specimen]['measurement_flag'][tmax_index\n ] == 'b' and tmax_index >= 0:\n tmax_index -= 1\n tmax = self.Data[specimen]['zijdblock_steps'][tmax_index]\n if fit != None:\n fit.tmax = tmax\n self.tmax_box.SetStringSelection(tmax)\n print('For specimen ' + str(specimen) +\n ' there are no good measurement steps with value - ' +\n str(tmax_old) + ' using step ' + str(tmax) +\n ' as upper bound instead')\n break\n if tmin_index < 0:\n tmin_index = 0\n if tmax_index > max_index:\n tmax_index = max_index\n return tmin_index, tmax_index\n", "role": "user" }, { "content": "get_indices", "role": "assistant" } ]
def x(self, old_recs): recs = {} recs = deepcopy(old_recs) headers = [] for rec in recs: for key in list(rec.keys()): if key not in headers: headers.append(key) for rec in recs: for header in headers: if header not in list(rec.keys()): rec[header] = '' return recs
merge_pmag_recs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, old_recs):\n recs = {}\n recs = deepcopy(old_recs)\n headers = []\n for rec in recs:\n for key in list(rec.keys()):\n if key not in headers:\n headers.append(key)\n for rec in recs:\n for header in headers:\n if header not in list(rec.keys()):\n rec[header] = ''\n return recs\n", "role": "user" }, { "content": "merge_pmag_recs", "role": "assistant" } ]
def x(self, specimen): try: fit_index = self.pmag_results_data['specimens'][self.s].index(self. current_fit) except KeyError: fit_index = None except ValueError: fit_index = None self.initialize_CART_rot(specimen) self.list_bound_loc = 0 if fit_index != None and self.s in self.pmag_results_data['specimens']: try: self.current_fit = self.pmag_results_data['specimens'][self.s][ fit_index] except IndexError: self.current_fit = None else: self.current_fit = None if self.s != self.specimens_box.GetValue(): self.specimens_box.SetValue(self.s)
select_specimen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, specimen):\n try:\n fit_index = self.pmag_results_data['specimens'][self.s].index(self.\n current_fit)\n except KeyError:\n fit_index = None\n except ValueError:\n fit_index = None\n self.initialize_CART_rot(specimen)\n self.list_bound_loc = 0\n if fit_index != None and self.s in self.pmag_results_data['specimens']:\n try:\n self.current_fit = self.pmag_results_data['specimens'][self.s][\n fit_index]\n except IndexError:\n self.current_fit = None\n else:\n self.current_fit = None\n if self.s != self.specimens_box.GetValue():\n self.specimens_box.SetValue(self.s)\n", "role": "user" }, { "content": "select_specimen", "role": "assistant" } ]
def x(self, message=None): if self.total_num_of_interpertations() == 0: print('There are no interpretations') return True if message == None: message = ( 'All interpretations will be deleted all unsaved data will be irretrievable, continue?' ) dlg = wx.MessageDialog(self, caption='Delete?', message=message, style= wx.OK | wx.CANCEL) result = self.show_dlg(dlg) dlg.Destroy() if result != wx.ID_OK: return False for specimen in list(self.pmag_results_data['specimens'].keys()): self.pmag_results_data['specimens'][specimen] = [] for high_level_type in ['samples', 'sites', 'locations', 'study']: self.high_level_means[high_level_type] = {} self.current_fit = None if self.ie_open: self.ie.update_editor() return True
clear_interpretations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message=None):\n if self.total_num_of_interpertations() == 0:\n print('There are no interpretations')\n return True\n if message == None:\n message = (\n 'All interpretations will be deleted all unsaved data will be irretrievable, continue?'\n )\n dlg = wx.MessageDialog(self, caption='Delete?', message=message, style=\n wx.OK | wx.CANCEL)\n result = self.show_dlg(dlg)\n dlg.Destroy()\n if result != wx.ID_OK:\n return False\n for specimen in list(self.pmag_results_data['specimens'].keys()):\n self.pmag_results_data['specimens'][specimen] = []\n for high_level_type in ['samples', 'sites', 'locations', 'study']:\n self.high_level_means[high_level_type] = {}\n self.current_fit = None\n if self.ie_open:\n self.ie.update_editor()\n return True\n", "role": "user" }, { "content": "clear_interpretations", "role": "assistant" } ]
def x(self, g_index): meas_index, ind_data = 0, [] for i, meas_data in enumerate(self.mag_meas_data): if meas_data['er_specimen_name'] == self.s: ind_data.append(i) meas_index = ind_data[g_index] self.Data[self.s]['measurement_flag'][g_index] = 'g' if len(self.Data[self.s]['zijdblock'][g_index]) < 6: self.Data[self.s]['zijdblock'][g_index].append('g') self.Data[self.s]['zijdblock'][g_index][5] = 'g' if 'zijdblock_geo' in self.Data[self.s] and g_index < len(self.Data[ self.s]['zijdblock_geo']): if len(self.Data[self.s]['zijdblock_geo'][g_index]) < 6: self.Data[self.s]['zijdblock_geo'][g_index].append('g') self.Data[self.s]['zijdblock_geo'][g_index][5] = 'g' if 'zijdblock_tilt' in self.Data[self.s] and g_index < len(self.Data[ self.s]['zijdblock_tilt']): if len(self.Data[self.s]['zijdblock_tilt'][g_index]) < 6: self.Data[self.s]['zijdblock_tilt'][g_index].append('g') self.Data[self.s]['zijdblock_tilt'][g_index][5] = 'g' self.mag_meas_data[meas_index]['measurement_flag'] = 'g' if self.data_model == 3.0: meas_name = str(self.Data[self.s]['measurement_names'][g_index]) mdf = self.con.tables['measurements'].df if not isinstance(mdf.loc[meas_name], pd.Series): res = self.user_warning( """Your measurements table has non-unique measurement names. You may end up marking more than one measurement as good. Right click this measurement again to undo.""" ) mdf.loc[meas_name, 'quality'] = 'g'
mark_meas_good
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, g_index):\n meas_index, ind_data = 0, []\n for i, meas_data in enumerate(self.mag_meas_data):\n if meas_data['er_specimen_name'] == self.s:\n ind_data.append(i)\n meas_index = ind_data[g_index]\n self.Data[self.s]['measurement_flag'][g_index] = 'g'\n if len(self.Data[self.s]['zijdblock'][g_index]) < 6:\n self.Data[self.s]['zijdblock'][g_index].append('g')\n self.Data[self.s]['zijdblock'][g_index][5] = 'g'\n if 'zijdblock_geo' in self.Data[self.s] and g_index < len(self.Data[\n self.s]['zijdblock_geo']):\n if len(self.Data[self.s]['zijdblock_geo'][g_index]) < 6:\n self.Data[self.s]['zijdblock_geo'][g_index].append('g')\n self.Data[self.s]['zijdblock_geo'][g_index][5] = 'g'\n if 'zijdblock_tilt' in self.Data[self.s] and g_index < len(self.Data[\n self.s]['zijdblock_tilt']):\n if len(self.Data[self.s]['zijdblock_tilt'][g_index]) < 6:\n self.Data[self.s]['zijdblock_tilt'][g_index].append('g')\n self.Data[self.s]['zijdblock_tilt'][g_index][5] = 'g'\n self.mag_meas_data[meas_index]['measurement_flag'] = 'g'\n if self.data_model == 3.0:\n meas_name = str(self.Data[self.s]['measurement_names'][g_index])\n mdf = self.con.tables['measurements'].df\n if not isinstance(mdf.loc[meas_name], pd.Series):\n res = self.user_warning(\n \"\"\"Your measurements table has non-unique measurement names.\nYou may end up marking more than one measurement as good.\nRight click this measurement again to undo.\"\"\"\n )\n mdf.loc[meas_name, 'quality'] = 'g'\n", "role": "user" }, { "content": "mark_meas_good", "role": "assistant" } ]
def x(self, fit, spec=None): if spec == None: for spec, fits in list(self.pmag_results_data['specimens'].items()): if fit in fits: break samp = self.Data_hierarchy['sample_of_specimen'][spec] if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]: self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g' samp_flag = self.Data_info['er_samples'][samp]['sample_orientation_flag'] if samp_flag == 'g': self.bad_fits.remove(fit) return True else: self.user_warning( 'Cannot mark this interpretation good its sample orientation has been marked bad' ) return False
mark_fit_good
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fit, spec=None):\n if spec == None:\n for spec, fits in list(self.pmag_results_data['specimens'].items()):\n if fit in fits:\n break\n samp = self.Data_hierarchy['sample_of_specimen'][spec]\n if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]:\n self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g'\n samp_flag = self.Data_info['er_samples'][samp]['sample_orientation_flag']\n if samp_flag == 'g':\n self.bad_fits.remove(fit)\n return True\n else:\n self.user_warning(\n 'Cannot mark this interpretation good its sample orientation has been marked bad'\n )\n return False\n", "role": "user" }, { "content": "mark_fit_good", "role": "assistant" } ]
def x(self, fit): if fit not in self.bad_fits: self.bad_fits.append(fit) return True else: return False
mark_fit_bad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fit):\n if fit not in self.bad_fits:\n self.bad_fits.append(fit)\n return True\n else:\n return False\n", "role": "user" }, { "content": "mark_fit_bad", "role": "assistant" } ]
def x(self): if ('specimen' not in self.spec_data.columns or 'meas_step_min' not in self.spec_data.columns or 'meas_step_max' not in self.spec_data. columns or 'meas_step_unit' not in self.spec_data.columns or 'method_codes' not in self.spec_data.columns): return if 'dir_comp' in self.spec_data.columns: fnames = 'dir_comp' elif 'dir_comp_name' in self.spec_data.columns: fnames = 'dir_comp_name' else: fnames = 'dir_comp' self.spec_data['dir_comp'] = 'Fit 1' if 'result_quality' not in self.spec_data.columns: self.spec_data['result_quality'] = 'g' if 'dir_tilt_correction' not in self.spec_data.columns: self.spec_data['dir_tilt_correction'] = '' fdict = self.spec_data[['specimen', fnames, 'meas_step_min', 'meas_step_max', 'meas_step_unit', 'dir_tilt_correction', 'method_codes', 'result_quality']].to_dict('records') for i in range(len(fdict)): spec = fdict[i]['specimen'] if spec not in self.specimens: print('-E- specimen %s does not exist in measurement data' % spec) continue fname = fdict[i][fnames] if fname == None or spec in list(self.pmag_results_data['specimens' ].keys()) and fname in [x.name for x in self.pmag_results_data[ 'specimens'][spec]]: continue if fdict[i]['meas_step_unit'] == 'K': fmin = int(float(fdict[i]['meas_step_min']) - 273) fmax = int(float(fdict[i]['meas_step_max']) - 273) if fmin == 0: fmin = str(fmin) else: fmin = str(fmin) + 'C' if fmax == 0: fmax = str(fmax) else: fmax = str(fmax) + 'C' elif fdict[i]['meas_step_unit'] == 'T': fmin = float(fdict[i]['meas_step_min']) * 1000 fmax = float(fdict[i]['meas_step_max']) * 1000 if fmin == 0: fmin = str(int(fmin)) else: fmin = str(fmin) + 'mT' if fmax == 0: fmax = str(int(fmax)) else: fmax = str(fmax) + 'mT' else: fmin = fdict[i]['meas_step_min'] fmax = fdict[i]['meas_step_max'] PCA_types = ['DE-BFL', 'DE-BFL-A', 'DE-BFL-O', 'DE-FM', 'DE-BFP'] PCA_type_list = [x for x in str(fdict[i]['method_codes']).split(':' ) if x.strip() in PCA_types] if len(PCA_type_list) > 0: PCA_type = PCA_type_list[0].strip() else: PCA_type = 'DE-BFL' fit = self.add_fit(spec, fname, fmin, fmax, PCA_type) if fdict[i]['result_quality'] == 'b': self.bad_fits.append(fit)
get_interpretations3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if ('specimen' not in self.spec_data.columns or 'meas_step_min' not in\n self.spec_data.columns or 'meas_step_max' not in self.spec_data.\n columns or 'meas_step_unit' not in self.spec_data.columns or \n 'method_codes' not in self.spec_data.columns):\n return\n if 'dir_comp' in self.spec_data.columns:\n fnames = 'dir_comp'\n elif 'dir_comp_name' in self.spec_data.columns:\n fnames = 'dir_comp_name'\n else:\n fnames = 'dir_comp'\n self.spec_data['dir_comp'] = 'Fit 1'\n if 'result_quality' not in self.spec_data.columns:\n self.spec_data['result_quality'] = 'g'\n if 'dir_tilt_correction' not in self.spec_data.columns:\n self.spec_data['dir_tilt_correction'] = ''\n fdict = self.spec_data[['specimen', fnames, 'meas_step_min',\n 'meas_step_max', 'meas_step_unit', 'dir_tilt_correction',\n 'method_codes', 'result_quality']].to_dict('records')\n for i in range(len(fdict)):\n spec = fdict[i]['specimen']\n if spec not in self.specimens:\n print('-E- specimen %s does not exist in measurement data' % spec)\n continue\n fname = fdict[i][fnames]\n if fname == None or spec in list(self.pmag_results_data['specimens'\n ].keys()) and fname in [x.name for x in self.pmag_results_data[\n 'specimens'][spec]]:\n continue\n if fdict[i]['meas_step_unit'] == 'K':\n fmin = int(float(fdict[i]['meas_step_min']) - 273)\n fmax = int(float(fdict[i]['meas_step_max']) - 273)\n if fmin == 0:\n fmin = str(fmin)\n else:\n fmin = str(fmin) + 'C'\n if fmax == 0:\n fmax = str(fmax)\n else:\n fmax = str(fmax) + 'C'\n elif fdict[i]['meas_step_unit'] == 'T':\n fmin = float(fdict[i]['meas_step_min']) * 1000\n fmax = float(fdict[i]['meas_step_max']) * 1000\n if fmin == 0:\n fmin = str(int(fmin))\n else:\n fmin = str(fmin) + 'mT'\n if fmax == 0:\n fmax = str(int(fmax))\n else:\n fmax = str(fmax) + 'mT'\n else:\n fmin = fdict[i]['meas_step_min']\n fmax = fdict[i]['meas_step_max']\n PCA_types = ['DE-BFL', 'DE-BFL-A', 'DE-BFL-O', 'DE-FM', 'DE-BFP']\n PCA_type_list = [x for x in str(fdict[i]['method_codes']).split(':'\n ) if x.strip() in PCA_types]\n if len(PCA_type_list) > 0:\n PCA_type = PCA_type_list[0].strip()\n else:\n PCA_type = 'DE-BFL'\n fit = self.add_fit(spec, fname, fmin, fmax, PCA_type)\n if fdict[i]['result_quality'] == 'b':\n self.bad_fits.append(fit)\n", "role": "user" }, { "content": "get_interpretations3", "role": "assistant" } ]
def x(self): Data_info = {} data_er_samples = {} data_er_sites = {} data_er_locations = {} data_er_ages = {} if self.data_model == 3.0: print('data model: %1.1f' % self.data_model) Data_info['er_samples'] = [] Data_info['er_sites'] = [] Data_info['er_locations'] = [] Data_info['er_ages'] = [] magic_file_real = os.path.realpath(self.magic_file) magic_file_short = os.path.split(self.magic_file)[1] WD_file_real = os.path.realpath(os.path.join(self.WD, magic_file_short) ) if magic_file_real == WD_file_real: fnames = {'measurements': magic_file_short} else: shutil.copy(magic_file_real, WD_file_real) fnames = {'measurements': magic_file_short} self.con = cb.Contribution(self.WD, custom_filenames=fnames, read_tables=['measurements', 'specimens', 'samples', 'sites', 'locations', 'criteria', 'ages']) if 'specimens' in self.con.tables: spec_container = self.con.tables['specimens'] self.spec_data = spec_container.df else: self.con.add_empty_magic_table('specimens') self.spec_data = self.con.tables['specimens'].df if 'samples' in self.con.tables: samp_container = self.con.tables['samples'] samp_container.front_and_backfill(['azimuth', 'dip']) self.samp_data = samp_container.df samp_data2 = self.samp_data.rename(columns=map_magic. samp_magic3_2_magic2_map) data_er_samples = samp_data2.T.to_dict() else: self.con.add_empty_magic_table('samples') self.samp_data = self.con.tables['samples'].df if 'sites' in self.con.tables: site_container = self.con.tables['sites'] self.site_data = site_container.df if 'age' in self.site_data.columns: self.site_data = self.site_data[self.site_data['age'].notnull() ] age_ids = [col for col in self.site_data.columns if col. startswith('age') or col == 'site'] age_data = self.site_data[age_ids].rename(columns=map_magic .site_magic3_2_magic2_map) er_ages = age_data.to_dict('records') data_er_ages = {} for s in er_ages: s = self.convert_ages_to_calendar_year(s) data_er_ages[s['er_site_name']] = s sites = self.site_data.rename(columns=map_magic. site_magic3_2_magic2_map) er_sites = sites.to_dict('records') data_er_sites = {} for s in er_sites: data_er_sites[s['er_site_name']] = s else: self.con.add_empty_magic_table('sites') self.site_data = self.con.tables['sites'].df if 'locations' in self.con.tables: location_container = self.con.tables['locations'] self.loc_data = location_container.df if self.loc_data['location'].isnull().any(): self.loc_data.replace({'location': {None: 'unknown'}}, inplace=True) self.loc_data.set_index('location', inplace=True) self.loc_data['location'] = self.loc_data.index loc2_data = self.loc_data.rename(columns=map_magic. loc_magic3_2_magic2_map) data_er_locations = loc2_data.to_dict('index') else: self.con.add_empty_magic_table('locations') self.loc_data = self.con.tables['locations'].df else: print('data model: %1.1f' % self.data_model) self.read_magic_file(os.path.join(self.WD, 'er_samples.txt'), 'er_sample_name') try: data_er_samples = self.read_magic_file(os.path.join(self.WD, 'er_samples.txt'), 'er_sample_name') except: print("-W- Can't find er_sample.txt in project directory") try: data_er_sites = self.read_magic_file(os.path.join(self.WD, 'er_sites.txt'), 'er_site_name') except: print("-W- Can't find er_sites.txt in project directory") try: data_er_locations = self.read_magic_file(os.path.join(self.WD, 'er_locations.txt'), 'er_location_name') except: print("-W- Can't find er_locations.txt in project directory") try: data_er_ages = self.read_magic_file(os.path.join(self.WD, 'er_ages.txt'), 'er_sample_name') except: try: data_er_ages = self.read_magic_file(os.path.join(self.WD, 'er_ages.txt'), 'er_site_name') except: print("-W- Can't find er_ages in project directory") Data_info['er_samples'] = data_er_samples Data_info['er_sites'] = data_er_sites Data_info['er_locations'] = data_er_locations Data_info['er_ages'] = data_er_ages return Data_info
get_data_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n Data_info = {}\n data_er_samples = {}\n data_er_sites = {}\n data_er_locations = {}\n data_er_ages = {}\n if self.data_model == 3.0:\n print('data model: %1.1f' % self.data_model)\n Data_info['er_samples'] = []\n Data_info['er_sites'] = []\n Data_info['er_locations'] = []\n Data_info['er_ages'] = []\n magic_file_real = os.path.realpath(self.magic_file)\n magic_file_short = os.path.split(self.magic_file)[1]\n WD_file_real = os.path.realpath(os.path.join(self.WD, magic_file_short)\n )\n if magic_file_real == WD_file_real:\n fnames = {'measurements': magic_file_short}\n else:\n shutil.copy(magic_file_real, WD_file_real)\n fnames = {'measurements': magic_file_short}\n self.con = cb.Contribution(self.WD, custom_filenames=fnames,\n read_tables=['measurements', 'specimens', 'samples', 'sites',\n 'locations', 'criteria', 'ages'])\n if 'specimens' in self.con.tables:\n spec_container = self.con.tables['specimens']\n self.spec_data = spec_container.df\n else:\n self.con.add_empty_magic_table('specimens')\n self.spec_data = self.con.tables['specimens'].df\n if 'samples' in self.con.tables:\n samp_container = self.con.tables['samples']\n samp_container.front_and_backfill(['azimuth', 'dip'])\n self.samp_data = samp_container.df\n samp_data2 = self.samp_data.rename(columns=map_magic.\n samp_magic3_2_magic2_map)\n data_er_samples = samp_data2.T.to_dict()\n else:\n self.con.add_empty_magic_table('samples')\n self.samp_data = self.con.tables['samples'].df\n if 'sites' in self.con.tables:\n site_container = self.con.tables['sites']\n self.site_data = site_container.df\n if 'age' in self.site_data.columns:\n self.site_data = self.site_data[self.site_data['age'].notnull()\n ]\n age_ids = [col for col in self.site_data.columns if col.\n startswith('age') or col == 'site']\n age_data = self.site_data[age_ids].rename(columns=map_magic\n .site_magic3_2_magic2_map)\n er_ages = age_data.to_dict('records')\n data_er_ages = {}\n for s in er_ages:\n s = self.convert_ages_to_calendar_year(s)\n data_er_ages[s['er_site_name']] = s\n sites = self.site_data.rename(columns=map_magic.\n site_magic3_2_magic2_map)\n er_sites = sites.to_dict('records')\n data_er_sites = {}\n for s in er_sites:\n data_er_sites[s['er_site_name']] = s\n else:\n self.con.add_empty_magic_table('sites')\n self.site_data = self.con.tables['sites'].df\n if 'locations' in self.con.tables:\n location_container = self.con.tables['locations']\n self.loc_data = location_container.df\n if self.loc_data['location'].isnull().any():\n self.loc_data.replace({'location': {None: 'unknown'}},\n inplace=True)\n self.loc_data.set_index('location', inplace=True)\n self.loc_data['location'] = self.loc_data.index\n loc2_data = self.loc_data.rename(columns=map_magic.\n loc_magic3_2_magic2_map)\n data_er_locations = loc2_data.to_dict('index')\n else:\n self.con.add_empty_magic_table('locations')\n self.loc_data = self.con.tables['locations'].df\n else:\n print('data model: %1.1f' % self.data_model)\n self.read_magic_file(os.path.join(self.WD, 'er_samples.txt'),\n 'er_sample_name')\n try:\n data_er_samples = self.read_magic_file(os.path.join(self.WD,\n 'er_samples.txt'), 'er_sample_name')\n except:\n print(\"-W- Can't find er_sample.txt in project directory\")\n try:\n data_er_sites = self.read_magic_file(os.path.join(self.WD,\n 'er_sites.txt'), 'er_site_name')\n except:\n print(\"-W- Can't find er_sites.txt in project directory\")\n try:\n data_er_locations = self.read_magic_file(os.path.join(self.WD,\n 'er_locations.txt'), 'er_location_name')\n except:\n print(\"-W- Can't find er_locations.txt in project directory\")\n try:\n data_er_ages = self.read_magic_file(os.path.join(self.WD,\n 'er_ages.txt'), 'er_sample_name')\n except:\n try:\n data_er_ages = self.read_magic_file(os.path.join(self.WD,\n 'er_ages.txt'), 'er_site_name')\n except:\n print(\"-W- Can't find er_ages in project directory\")\n Data_info['er_samples'] = data_er_samples\n Data_info['er_sites'] = data_er_sites\n Data_info['er_locations'] = data_er_locations\n Data_info['er_ages'] = data_er_ages\n return Data_info\n", "role": "user" }, { "content": "get_data_info", "role": "assistant" } ]
def x(self): preferences = {} preferences['gui_resolution'] = 100.0 preferences['show_Zij_treatments'] = True preferences['show_Zij_treatments_steps'] = 2.0 preferences['show_eqarea_treatments'] = False preferences['auto_save'] = True return preferences
get_preferences
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n preferences = {}\n preferences['gui_resolution'] = 100.0\n preferences['show_Zij_treatments'] = True\n preferences['show_Zij_treatments_steps'] = 2.0\n preferences['show_eqarea_treatments'] = False\n preferences['auto_save'] = True\n return preferences\n", "role": "user" }, { "content": "get_preferences", "role": "assistant" } ]
def x(self, path, sort_by_this_name): DATA = {} try: with open(path, 'r') as finput: lines = list(finput.readlines()[1:]) except FileNotFoundError: return [] line = lines[0] header = line.strip('\n').split('\t') error_strings = [] for line in lines[1:]: tmp_data = {} tmp_line = line.strip('\n').split('\t') for i in range(len(tmp_line)): tmp_data[header[i]] = tmp_line[i] if tmp_data[sort_by_this_name] in list(DATA.keys()): error_string = ( '-E- ERROR: magic file %s has more than one line for %s %s' % (path, sort_by_this_name, tmp_data[sort_by_this_name])) if error_string not in error_strings: print(error_string) error_strings.append(error_string) DATA[tmp_data[sort_by_this_name]] = tmp_data finput.close() return DATA
read_magic_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path, sort_by_this_name):\n DATA = {}\n try:\n with open(path, 'r') as finput:\n lines = list(finput.readlines()[1:])\n except FileNotFoundError:\n return []\n line = lines[0]\n header = line.strip('\\n').split('\\t')\n error_strings = []\n for line in lines[1:]:\n tmp_data = {}\n tmp_line = line.strip('\\n').split('\\t')\n for i in range(len(tmp_line)):\n tmp_data[header[i]] = tmp_line[i]\n if tmp_data[sort_by_this_name] in list(DATA.keys()):\n error_string = (\n '-E- ERROR: magic file %s has more than one line for %s %s' %\n (path, sort_by_this_name, tmp_data[sort_by_this_name]))\n if error_string not in error_strings:\n print(error_string)\n error_strings.append(error_string)\n DATA[tmp_data[sort_by_this_name]] = tmp_data\n finput.close()\n return DATA\n", "role": "user" }, { "content": "read_magic_file", "role": "assistant" } ]
def x(self, LSQ_file): cont = self.user_warning( 'LSQ import only works if all measurements are present and not averaged during import from magnetometer files to magic format. Do you wish to continue reading interpretations?' ) if not cont: return self.clear_interpretations(message= 'Do you wish to clear all previous interpretations on import?') old_s = self.s for specimen in self.specimens: self.select_specimen(specimen) for i in range(len(self.Data[specimen]['zijdblock'])): self.mark_meas_good(i) self.select_specimen(old_s) print('Reading LSQ file') interps = read_LSQ(LSQ_file) for interp in interps: specimen = interp['er_specimen_name'] if specimen not in self.specimens: print( 'specimen %s has no registered measurement data, skipping interpretation import' % specimen) continue PCA_type = interp['magic_method_codes'].split(':')[0] tmin = self.Data[specimen]['zijdblock_steps'][interp[ 'measurement_min_index']] tmax = self.Data[specimen]['zijdblock_steps'][interp[ 'measurement_max_index']] if 'specimen_comp_name' in list(interp.keys()): name = interp['specimen_comp_name'] else: name = None new_fit = self.add_fit(specimen, name, tmin, tmax, PCA_type) if 'bad_measurement_index' in list(interp.keys()): old_s = self.s self.select_specimen(specimen) for bmi in interp['bad_measurement_index']: try: self.mark_meas_bad(bmi) except IndexError: print( 'Magic Measurments length does not match that recorded in LSQ file' ) self.select_specimen(old_s) if self.ie_open: self.ie.update_editor() self.update_selection()
read_from_LSQ
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, LSQ_file):\n cont = self.user_warning(\n 'LSQ import only works if all measurements are present and not averaged during import from magnetometer files to magic format. Do you wish to continue reading interpretations?'\n )\n if not cont:\n return\n self.clear_interpretations(message=\n 'Do you wish to clear all previous interpretations on import?')\n old_s = self.s\n for specimen in self.specimens:\n self.select_specimen(specimen)\n for i in range(len(self.Data[specimen]['zijdblock'])):\n self.mark_meas_good(i)\n self.select_specimen(old_s)\n print('Reading LSQ file')\n interps = read_LSQ(LSQ_file)\n for interp in interps:\n specimen = interp['er_specimen_name']\n if specimen not in self.specimens:\n print(\n 'specimen %s has no registered measurement data, skipping interpretation import'\n % specimen)\n continue\n PCA_type = interp['magic_method_codes'].split(':')[0]\n tmin = self.Data[specimen]['zijdblock_steps'][interp[\n 'measurement_min_index']]\n tmax = self.Data[specimen]['zijdblock_steps'][interp[\n 'measurement_max_index']]\n if 'specimen_comp_name' in list(interp.keys()):\n name = interp['specimen_comp_name']\n else:\n name = None\n new_fit = self.add_fit(specimen, name, tmin, tmax, PCA_type)\n if 'bad_measurement_index' in list(interp.keys()):\n old_s = self.s\n self.select_specimen(specimen)\n for bmi in interp['bad_measurement_index']:\n try:\n self.mark_meas_bad(bmi)\n except IndexError:\n print(\n 'Magic Measurments length does not match that recorded in LSQ file'\n )\n self.select_specimen(old_s)\n if self.ie_open:\n self.ie.update_editor()\n self.update_selection()\n", "role": "user" }, { "content": "read_from_LSQ", "role": "assistant" } ]
def x(self, redo_file): if not self.clear_interpretations(): return print('-I- read redo file and processing new bounds') fin = open(redo_file, 'r') new_s = '' for Line in fin.read().splitlines(): line = Line.split('\t') specimen = line[0] if specimen.startswith('current_'): specimen = specimen.lstrip('current_') new_s = specimen if len(line) < 6: continue if len(line) < 6: print('insuffecent data for specimen %s and fit %s' % (line[0], line[4])) continue if len(line) == 6: line.append('g') if specimen not in self.specimens: print( 'specimen %s not found in this data set and will be ignored' % specimen) continue tmin, tmax = self.parse_bound_data(line[2], line[3], specimen) new_fit = self.add_fit(specimen, line[4], tmin, tmax, line[1], line[5]) if line[6] == 'b' and new_fit != None: self.bad_fits.append(new_fit) fin.close() if new_s != '': self.select_specimen(new_s) if self.s not in self.pmag_results_data['specimens' ] or not self.pmag_results_data['specimens'][self.s]: self.current_fit = None else: self.current_fit = self.pmag_results_data['specimens'][self.s][-1] self.calculate_high_levels_data() if self.ie_open: self.ie.update_editor() self.update_selection()
read_redo_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, redo_file):\n if not self.clear_interpretations():\n return\n print('-I- read redo file and processing new bounds')\n fin = open(redo_file, 'r')\n new_s = ''\n for Line in fin.read().splitlines():\n line = Line.split('\\t')\n specimen = line[0]\n if specimen.startswith('current_'):\n specimen = specimen.lstrip('current_')\n new_s = specimen\n if len(line) < 6:\n continue\n if len(line) < 6:\n print('insuffecent data for specimen %s and fit %s' % (line[0],\n line[4]))\n continue\n if len(line) == 6:\n line.append('g')\n if specimen not in self.specimens:\n print(\n 'specimen %s not found in this data set and will be ignored' %\n specimen)\n continue\n tmin, tmax = self.parse_bound_data(line[2], line[3], specimen)\n new_fit = self.add_fit(specimen, line[4], tmin, tmax, line[1], line[5])\n if line[6] == 'b' and new_fit != None:\n self.bad_fits.append(new_fit)\n fin.close()\n if new_s != '':\n self.select_specimen(new_s)\n if self.s not in self.pmag_results_data['specimens'\n ] or not self.pmag_results_data['specimens'][self.s]:\n self.current_fit = None\n else:\n self.current_fit = self.pmag_results_data['specimens'][self.s][-1]\n self.calculate_high_levels_data()\n if self.ie_open:\n self.ie.update_editor()\n self.update_selection()\n", "role": "user" }, { "content": "read_redo_file", "role": "assistant" } ]
def x(self, new_WD, meas_file=''): new_WD = os.path.abspath(new_WD) if not os.path.isdir(new_WD): return self.WD = new_WD if not meas_file: if self.data_model == None: if os.path.isfile(os.path.join(self.WD, 'measurements.txt') ) and os.path.isfile(os.path.join(self.WD, 'magic_measurements.txt')): ui_dialog = demag_dialogs.user_input(self, ['data_model'], parse_funcs=[float], heading= 'More than one measurement file found in CWD with different data models please input prefered data model (2.5,3.0)' , values=[3]) self.show_dlg(ui_dialog) ui_data = ui_dialog.get_values() self.data_model = ui_data[1]['data_model'] elif os.path.isfile(os.path.join(self.WD, 'measurements.txt')): self.data_model = 3.0 elif os.path.isfile(os.path.join(self.WD, 'magic_measurements.txt') ): self.data_model = 2.5 else: self.user_warning( 'No measurement file found in chosen directory') self.data_model = 3 try: self.data_model = float(self.data_model) if int(self.data_model) == 3: meas_file = os.path.join(self.WD, 'measurements.txt') elif int(self.data_model) == 2: meas_file = os.path.join(self.WD, 'magic_measurements.txt') else: meas_file = '' self.data_model = 3 except (ValueError, TypeError) as e: self.user_warning( 'Provided data model is unrecognized or invalid, assuming you want data model 3' ) self.data_model = 3 if os.path.isfile(meas_file): self.magic_file = meas_file else: self.magic_file = self.choose_meas_file() if not self.data_model: self.data_model = 3
change_WD
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_WD, meas_file=''):\n new_WD = os.path.abspath(new_WD)\n if not os.path.isdir(new_WD):\n return\n self.WD = new_WD\n if not meas_file:\n if self.data_model == None:\n if os.path.isfile(os.path.join(self.WD, 'measurements.txt')\n ) and os.path.isfile(os.path.join(self.WD,\n 'magic_measurements.txt')):\n ui_dialog = demag_dialogs.user_input(self, ['data_model'],\n parse_funcs=[float], heading=\n 'More than one measurement file found in CWD with different data models please input prefered data model (2.5,3.0)'\n , values=[3])\n self.show_dlg(ui_dialog)\n ui_data = ui_dialog.get_values()\n self.data_model = ui_data[1]['data_model']\n elif os.path.isfile(os.path.join(self.WD, 'measurements.txt')):\n self.data_model = 3.0\n elif os.path.isfile(os.path.join(self.WD, 'magic_measurements.txt')\n ):\n self.data_model = 2.5\n else:\n self.user_warning(\n 'No measurement file found in chosen directory')\n self.data_model = 3\n try:\n self.data_model = float(self.data_model)\n if int(self.data_model) == 3:\n meas_file = os.path.join(self.WD, 'measurements.txt')\n elif int(self.data_model) == 2:\n meas_file = os.path.join(self.WD, 'magic_measurements.txt')\n else:\n meas_file = ''\n self.data_model = 3\n except (ValueError, TypeError) as e:\n self.user_warning(\n 'Provided data model is unrecognized or invalid, assuming you want data model 3'\n )\n self.data_model = 3\n if os.path.isfile(meas_file):\n self.magic_file = meas_file\n else:\n self.magic_file = self.choose_meas_file()\n if not self.data_model:\n self.data_model = 3\n", "role": "user" }, { "content": "change_WD", "role": "assistant" } ]
def x(self): self.old_stdout = sys.stdout sys.stdout = open(os.path.join(self.WD, 'demag_gui.log'), 'w+')
init_log_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.old_stdout = sys.stdout\n sys.stdout = open(os.path.join(self.WD, 'demag_gui.log'), 'w+')\n", "role": "user" }, { "content": "init_log_file", "role": "assistant" } ]
def x(self): crit_list = list(self.acceptance_criteria.keys()) crit_list.sort() rec = {} rec['pmag_criteria_code'] = 'ACCEPT' rec['criteria_definition'] = 'acceptance criteria for study' rec['er_citation_names'] = 'This study' for crit in crit_list: if type(self.acceptance_criteria[crit]['value']) == str: if self.acceptance_criteria[crit]['value' ] != '-999' and self.acceptance_criteria[crit]['value'] != '': rec[crit] = self.acceptance_criteria[crit]['value'] elif type(self.acceptance_criteria[crit]['value']) == int: if self.acceptance_criteria[crit]['value'] != -999: rec[crit] = '%.i' % self.acceptance_criteria[crit]['value'] elif type(self.acceptance_criteria[crit]['value']) == float: if float(self.acceptance_criteria[crit]['value']) == -999: continue decimal_points = self.acceptance_criteria[crit]['decimal_points'] if decimal_points != -999: command = ( "rec[crit]='%%.%sf'%%(self.acceptance_criteria[crit]['value'])" % decimal_points) exec(command) else: rec[crit] = '%e' % self.acceptance_criteria[crit]['value'] pmag.magic_write(os.path.join(self.WD, 'pmag_criteria.txt'), [rec], 'pmag_criteria')
write_acceptance_criteria_to_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n crit_list = list(self.acceptance_criteria.keys())\n crit_list.sort()\n rec = {}\n rec['pmag_criteria_code'] = 'ACCEPT'\n rec['criteria_definition'] = 'acceptance criteria for study'\n rec['er_citation_names'] = 'This study'\n for crit in crit_list:\n if type(self.acceptance_criteria[crit]['value']) == str:\n if self.acceptance_criteria[crit]['value'\n ] != '-999' and self.acceptance_criteria[crit]['value'] != '':\n rec[crit] = self.acceptance_criteria[crit]['value']\n elif type(self.acceptance_criteria[crit]['value']) == int:\n if self.acceptance_criteria[crit]['value'] != -999:\n rec[crit] = '%.i' % self.acceptance_criteria[crit]['value']\n elif type(self.acceptance_criteria[crit]['value']) == float:\n if float(self.acceptance_criteria[crit]['value']) == -999:\n continue\n decimal_points = self.acceptance_criteria[crit]['decimal_points']\n if decimal_points != -999:\n command = (\n \"rec[crit]='%%.%sf'%%(self.acceptance_criteria[crit]['value'])\"\n % decimal_points)\n exec(command)\n else:\n rec[crit] = '%e' % self.acceptance_criteria[crit]['value']\n pmag.magic_write(os.path.join(self.WD, 'pmag_criteria.txt'), [rec],\n 'pmag_criteria')\n", "role": "user" }, { "content": "write_acceptance_criteria_to_file", "role": "assistant" } ]
def x(self, dlg): if not self.test_mode: dlg.Center() return dlg.ShowModal() else: return dlg.GetAffirmativeId()
show_dlg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dlg):\n if not self.test_mode:\n dlg.Center()\n return dlg.ShowModal()\n else:\n return dlg.GetAffirmativeId()\n", "role": "user" }, { "content": "show_dlg", "role": "assistant" } ]
def x(self): dlg = wx.DirDialog(self, 'Choose a directory:', defaultPath=self. currentDirectory, style=wx.DD_DEFAULT_STYLE | wx.DD_NEW_DIR_BUTTON | wx.DD_CHANGE_DIR) ok = self.show_dlg(dlg) if ok == wx.ID_OK: new_WD = dlg.GetPath() dlg.Destroy() else: new_WD = os.getcwd() dlg.Destroy() return new_WD
get_DIR
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n dlg = wx.DirDialog(self, 'Choose a directory:', defaultPath=self.\n currentDirectory, style=wx.DD_DEFAULT_STYLE | wx.DD_NEW_DIR_BUTTON |\n wx.DD_CHANGE_DIR)\n ok = self.show_dlg(dlg)\n if ok == wx.ID_OK:\n new_WD = dlg.GetPath()\n dlg.Destroy()\n else:\n new_WD = os.getcwd()\n dlg.Destroy()\n return new_WD\n", "role": "user" }, { "content": "get_DIR", "role": "assistant" } ]
def x(self, event=None): dlg = wx.FileDialog(self, message='Please choose a measurement file', defaultDir=self.WD, defaultFile='measurements.txt', wildcard= 'measurement files (*.magic,*.txt)|*.magic;*.txt', style=wx.FD_OPEN | wx.FD_CHANGE_DIR) if self.show_dlg(dlg) == wx.ID_OK: meas_file = dlg.GetPath() dlg.Destroy() else: meas_file = '' self.data_model = 2.5 dlg.Destroy() return meas_file
choose_meas_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event=None):\n dlg = wx.FileDialog(self, message='Please choose a measurement file',\n defaultDir=self.WD, defaultFile='measurements.txt', wildcard=\n 'measurement files (*.magic,*.txt)|*.magic;*.txt', style=wx.FD_OPEN |\n wx.FD_CHANGE_DIR)\n if self.show_dlg(dlg) == wx.ID_OK:\n meas_file = dlg.GetPath()\n dlg.Destroy()\n else:\n meas_file = ''\n self.data_model = 2.5\n dlg.Destroy()\n return meas_file\n", "role": "user" }, { "content": "choose_meas_file", "role": "assistant" } ]
def x(self, message, caption='Saved:'): dlg = wx.MessageDialog(self, caption=caption, message=message, style=wx.OK) result = self.show_dlg(dlg) dlg.Destroy()
saved_dlg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message, caption='Saved:'):\n dlg = wx.MessageDialog(self, caption=caption, message=message, style=wx.OK)\n result = self.show_dlg(dlg)\n dlg.Destroy()\n", "role": "user" }, { "content": "saved_dlg", "role": "assistant" } ]
def x(self, message, caption='Warning!'): dlg = wx.MessageDialog(self, message, caption, wx.OK | wx.CANCEL | wx. ICON_WARNING) if self.show_dlg(dlg) == wx.ID_OK: continue_bool = True else: continue_bool = False dlg.Destroy() return continue_bool
user_warning
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message, caption='Warning!'):\n dlg = wx.MessageDialog(self, message, caption, wx.OK | wx.CANCEL | wx.\n ICON_WARNING)\n if self.show_dlg(dlg) == wx.ID_OK:\n continue_bool = True\n else:\n continue_bool = False\n dlg.Destroy()\n return continue_bool\n", "role": "user" }, { "content": "user_warning", "role": "assistant" } ]
def x(self, dia): window_list_specimens = ['specimen_n', 'specimen_mad', 'specimen_dang', 'specimen_alpha95'] window_list_samples = ['sample_n', 'sample_n_lines', 'sample_n_planes', 'sample_k', 'sample_r', 'sample_alpha95'] window_list_sites = ['site_n', 'site_n_lines', 'site_n_planes', 'site_k', 'site_r', 'site_alpha95'] demag_gui_supported_criteria = (window_list_specimens + window_list_samples + window_list_sites) if self.data_model == 3: new_crits = [] for crit in demag_gui_supported_criteria: new_crit = {} command = 'dia.set_%s.GetValue()' % crit new_value = pmag.execute(command, dia=dia) if new_value == None or new_value == '': continue d = findall('[-+]?\\d*\\.\\d+|\\d+', new_value) if len(d) > 0: d = d[0] comp = new_value.strip(str(d)) if comp == '': comp = '>=' if 'specimen' in crit: col = 'specimens.' + map_magic.spec_magic2_2_magic3_map[crit] elif 'sample' in crit: col = 'samples.' + map_magic.samp_magic2_2_magic3_map[crit] elif 'site' in crit: col = 'sites.' + map_magic.site_magic2_2_magic3_map[crit] else: print('no way this like is impossible') continue new_crit['criterion'] = 'ACCEPT' new_crit['criterion_value'] = d new_crit['criterion_operation'] = comp new_crit['table_column'] = col new_crit['citations'] = 'This study' new_crit['description'] = '' new_crits.append(new_crit) cdf = DataFrame(new_crits) cdf = cdf.set_index('table_column') cdf['table_column'] = cdf.index cdf = cdf.reindex_axis(sorted(cdf.columns), axis=1) if 'criteria' not in self.con.tables: cols = ['criterion', 'criterion_value', 'criterion_operation', 'table_column', 'citations', 'description'] self.con.add_empty_magic_table('criteria', col_names=cols) self.con.tables['criteria'].df = cdf self.con.tables['criteria'].write_magic_file(dir_path=self.WD) else: for crit in demag_gui_supported_criteria: command = 'new_value=dia.set_%s.GetValue()' % crit exec(command) if new_value == '': self.acceptance_criteria[crit]['value'] = -999 continue try: float(new_value) except: self.show_crit_window_err_messege(crit) continue self.acceptance_criteria[crit]['value'] = float(new_value) self.saved_dlg(message='changes saved to criteria') self.write_acceptance_criteria_to_file() dia.Destroy()
on_close_criteria_box
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dia):\n window_list_specimens = ['specimen_n', 'specimen_mad', 'specimen_dang',\n 'specimen_alpha95']\n window_list_samples = ['sample_n', 'sample_n_lines', 'sample_n_planes',\n 'sample_k', 'sample_r', 'sample_alpha95']\n window_list_sites = ['site_n', 'site_n_lines', 'site_n_planes',\n 'site_k', 'site_r', 'site_alpha95']\n demag_gui_supported_criteria = (window_list_specimens +\n window_list_samples + window_list_sites)\n if self.data_model == 3:\n new_crits = []\n for crit in demag_gui_supported_criteria:\n new_crit = {}\n command = 'dia.set_%s.GetValue()' % crit\n new_value = pmag.execute(command, dia=dia)\n if new_value == None or new_value == '':\n continue\n d = findall('[-+]?\\\\d*\\\\.\\\\d+|\\\\d+', new_value)\n if len(d) > 0:\n d = d[0]\n comp = new_value.strip(str(d))\n if comp == '':\n comp = '>='\n if 'specimen' in crit:\n col = 'specimens.' + map_magic.spec_magic2_2_magic3_map[crit]\n elif 'sample' in crit:\n col = 'samples.' + map_magic.samp_magic2_2_magic3_map[crit]\n elif 'site' in crit:\n col = 'sites.' + map_magic.site_magic2_2_magic3_map[crit]\n else:\n print('no way this like is impossible')\n continue\n new_crit['criterion'] = 'ACCEPT'\n new_crit['criterion_value'] = d\n new_crit['criterion_operation'] = comp\n new_crit['table_column'] = col\n new_crit['citations'] = 'This study'\n new_crit['description'] = ''\n new_crits.append(new_crit)\n cdf = DataFrame(new_crits)\n cdf = cdf.set_index('table_column')\n cdf['table_column'] = cdf.index\n cdf = cdf.reindex_axis(sorted(cdf.columns), axis=1)\n if 'criteria' not in self.con.tables:\n cols = ['criterion', 'criterion_value', 'criterion_operation',\n 'table_column', 'citations', 'description']\n self.con.add_empty_magic_table('criteria', col_names=cols)\n self.con.tables['criteria'].df = cdf\n self.con.tables['criteria'].write_magic_file(dir_path=self.WD)\n else:\n for crit in demag_gui_supported_criteria:\n command = 'new_value=dia.set_%s.GetValue()' % crit\n exec(command)\n if new_value == '':\n self.acceptance_criteria[crit]['value'] = -999\n continue\n try:\n float(new_value)\n except:\n self.show_crit_window_err_messege(crit)\n continue\n self.acceptance_criteria[crit]['value'] = float(new_value)\n self.saved_dlg(message='changes saved to criteria')\n self.write_acceptance_criteria_to_file()\n dia.Destroy()\n", "role": "user" }, { "content": "on_close_criteria_box", "role": "assistant" } ]
def x(self, crit): dlg = wx.MessageDialog(self, caption='Error:', message= """not a vaild value for statistic %s ignoring value""" % crit, style=wx.OK) result = self.show_dlg(dlg) if result == wx.ID_OK: dlg.Destroy()
show_crit_window_err_messege
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, crit):\n dlg = wx.MessageDialog(self, caption='Error:', message=\n \"\"\"not a vaild value for statistic %s\n ignoring value\"\"\" % crit,\n style=wx.OK)\n result = self.show_dlg(dlg)\n if result == wx.ID_OK:\n dlg.Destroy()\n", "role": "user" }, { "content": "show_crit_window_err_messege", "role": "assistant" } ]
def x(self): self.clear_boxes() self.clear_high_level_pars() if self.UPPER_LEVEL_SHOW != 'specimens': self.mean_type_box.SetValue('None') coordinate_system = self.coordinates_box.GetValue() if coordinate_system == 'tilt-corrected' and len(self.Data[self.s][ 'zijdblock_tilt']) == 0: self.coordinates_box.SetStringSelection('specimen') elif coordinate_system == 'geographic' and len(self.Data[self.s][ 'zijdblock_geo']) == 0: self.coordinates_box.SetStringSelection('specimen') if coordinate_system != self.coordinates_box.GetValue() and self.ie_open: self.ie.coordinates_box.SetStringSelection(self.coordinates_box. GetValue()) self.ie.update_editor() coordinate_system = self.coordinates_box.GetValue() self.COORDINATE_SYSTEM = coordinate_system self.update_bounds_boxes() high_level = self.level_box.GetValue() old_string = self.level_names.GetValue() new_string = old_string if high_level == 'sample': if self.s in self.Data_hierarchy['sample_of_specimen']: new_string = self.Data_hierarchy['sample_of_specimen'][self.s] else: new_string = '' if high_level == 'site': if self.s in self.Data_hierarchy['site_of_specimen']: new_string = self.Data_hierarchy['site_of_specimen'][self.s] else: new_string = '' if high_level == 'location': if self.s in self.Data_hierarchy['location_of_specimen']: new_string = self.Data_hierarchy['location_of_specimen'][self.s] else: new_string = '' self.level_names.SetValue(new_string) if self.ie_open and new_string != old_string: self.ie.level_names.SetValue(new_string) self.ie.on_select_level_name(-1, True) self.update_PCA_box() self.generate_warning_text() self.update_warning_box() self.update_fit_boxes() self.update_mean_fit_box() self.Add_text() if self.current_fit: self.draw_figure(self.s, False) else: self.draw_figure(self.s, True) self.update_high_level_stats() self.update_GUI_with_new_interpretation()
update_selection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.clear_boxes()\n self.clear_high_level_pars()\n if self.UPPER_LEVEL_SHOW != 'specimens':\n self.mean_type_box.SetValue('None')\n coordinate_system = self.coordinates_box.GetValue()\n if coordinate_system == 'tilt-corrected' and len(self.Data[self.s][\n 'zijdblock_tilt']) == 0:\n self.coordinates_box.SetStringSelection('specimen')\n elif coordinate_system == 'geographic' and len(self.Data[self.s][\n 'zijdblock_geo']) == 0:\n self.coordinates_box.SetStringSelection('specimen')\n if coordinate_system != self.coordinates_box.GetValue() and self.ie_open:\n self.ie.coordinates_box.SetStringSelection(self.coordinates_box.\n GetValue())\n self.ie.update_editor()\n coordinate_system = self.coordinates_box.GetValue()\n self.COORDINATE_SYSTEM = coordinate_system\n self.update_bounds_boxes()\n high_level = self.level_box.GetValue()\n old_string = self.level_names.GetValue()\n new_string = old_string\n if high_level == 'sample':\n if self.s in self.Data_hierarchy['sample_of_specimen']:\n new_string = self.Data_hierarchy['sample_of_specimen'][self.s]\n else:\n new_string = ''\n if high_level == 'site':\n if self.s in self.Data_hierarchy['site_of_specimen']:\n new_string = self.Data_hierarchy['site_of_specimen'][self.s]\n else:\n new_string = ''\n if high_level == 'location':\n if self.s in self.Data_hierarchy['location_of_specimen']:\n new_string = self.Data_hierarchy['location_of_specimen'][self.s]\n else:\n new_string = ''\n self.level_names.SetValue(new_string)\n if self.ie_open and new_string != old_string:\n self.ie.level_names.SetValue(new_string)\n self.ie.on_select_level_name(-1, True)\n self.update_PCA_box()\n self.generate_warning_text()\n self.update_warning_box()\n self.update_fit_boxes()\n self.update_mean_fit_box()\n self.Add_text()\n if self.current_fit:\n self.draw_figure(self.s, False)\n else:\n self.draw_figure(self.s, True)\n self.update_high_level_stats()\n self.update_GUI_with_new_interpretation()\n", "role": "user" }, { "content": "update_selection", "role": "assistant" } ]
def x(self): self.warning_box.Clear() if self.warning_text == '': self.warning_box.AppendText('No Problems') else: self.warning_box.AppendText(self.warning_text)
update_warning_box
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.warning_box.Clear()\n if self.warning_text == '':\n self.warning_box.AppendText('No Problems')\n else:\n self.warning_box.AppendText(self.warning_text)\n", "role": "user" }, { "content": "update_warning_box", "role": "assistant" } ]
def x(self): self.update_fit_bounds_and_statistics() self.draw_interpretations() self.calculate_high_levels_data() self.plot_high_levels_data()
update_GUI_with_new_interpretation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.update_fit_bounds_and_statistics()\n self.draw_interpretations()\n self.calculate_high_levels_data()\n self.plot_high_levels_data()\n", "role": "user" }, { "content": "update_GUI_with_new_interpretation", "role": "assistant" } ]
def x(self): self.clear_high_level_pars() dirtype = str(self.coordinates_box.GetValue()) if dirtype == 'specimen': dirtype = 'DA-DIR' elif dirtype == 'geographic': dirtype = 'DA-DIR-GEO' elif dirtype == 'tilt-corrected': dirtype = 'DA-DIR-TILT' if str(self.level_box.GetValue()) == 'sample': high_level_type = 'samples' elif str(self.level_box.GetValue()) == 'site': high_level_type = 'sites' elif str(self.level_box.GetValue()) == 'location': high_level_type = 'locations' elif str(self.level_box.GetValue()) == 'study': high_level_type = 'study' high_level_name = str(self.level_names.GetValue()) elements_type = self.UPPER_LEVEL_SHOW if high_level_name in list(self.high_level_means[high_level_type].keys()): mpars = [] for mf in list(self.high_level_means[high_level_type][ high_level_name].keys()): if mf in list(self.high_level_means[high_level_type][ high_level_name].keys() ) and self.mean_fit == 'All' or mf == self.mean_fit: if dirtype in list(self.high_level_means[high_level_type][ high_level_name][mf].keys()): mpar = deepcopy(self.high_level_means[high_level_type][ high_level_name][mf][dirtype]) if 'n' in mpar and mpar['n'] == 1: mpar['calculation_type'] = 'Fisher:' + mf mpars.append(mpar) elif mpar['calculation_type'] == 'Fisher by polarity': for k in list(mpar.keys()): if k == 'color' or k == 'calculation_type': continue mpar[k]['calculation_type'] += ':' + k + ':' + mf mpar[k]['color'] = mpar['color'] if 'K' not in mpar[k] and 'k' in mpar[k]: mpar[k]['K'] = mpar[k]['k'] if 'R' not in mpar[k] and 'r' in mpar[k]: mpar[k]['R'] = mpar[k]['r'] if 'n_lines' not in mpar[k] and 'n' in mpar[k]: mpar[k]['n_lines'] = mpar[k]['n'] mpars.append(mpar[k]) else: mpar['calculation_type'] += ':' + mf mpars.append(mpar) self.switch_stats_button.SetRange(0, len(mpars) - 1) self.show_high_levels_pars(mpars) if self.ie_open: self.ie.switch_stats_button.SetRange(0, len(mpars) - 1)
update_high_level_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.clear_high_level_pars()\n dirtype = str(self.coordinates_box.GetValue())\n if dirtype == 'specimen':\n dirtype = 'DA-DIR'\n elif dirtype == 'geographic':\n dirtype = 'DA-DIR-GEO'\n elif dirtype == 'tilt-corrected':\n dirtype = 'DA-DIR-TILT'\n if str(self.level_box.GetValue()) == 'sample':\n high_level_type = 'samples'\n elif str(self.level_box.GetValue()) == 'site':\n high_level_type = 'sites'\n elif str(self.level_box.GetValue()) == 'location':\n high_level_type = 'locations'\n elif str(self.level_box.GetValue()) == 'study':\n high_level_type = 'study'\n high_level_name = str(self.level_names.GetValue())\n elements_type = self.UPPER_LEVEL_SHOW\n if high_level_name in list(self.high_level_means[high_level_type].keys()):\n mpars = []\n for mf in list(self.high_level_means[high_level_type][\n high_level_name].keys()):\n if mf in list(self.high_level_means[high_level_type][\n high_level_name].keys()\n ) and self.mean_fit == 'All' or mf == self.mean_fit:\n if dirtype in list(self.high_level_means[high_level_type][\n high_level_name][mf].keys()):\n mpar = deepcopy(self.high_level_means[high_level_type][\n high_level_name][mf][dirtype])\n if 'n' in mpar and mpar['n'] == 1:\n mpar['calculation_type'] = 'Fisher:' + mf\n mpars.append(mpar)\n elif mpar['calculation_type'] == 'Fisher by polarity':\n for k in list(mpar.keys()):\n if k == 'color' or k == 'calculation_type':\n continue\n mpar[k]['calculation_type'] += ':' + k + ':' + mf\n mpar[k]['color'] = mpar['color']\n if 'K' not in mpar[k] and 'k' in mpar[k]:\n mpar[k]['K'] = mpar[k]['k']\n if 'R' not in mpar[k] and 'r' in mpar[k]:\n mpar[k]['R'] = mpar[k]['r']\n if 'n_lines' not in mpar[k] and 'n' in mpar[k]:\n mpar[k]['n_lines'] = mpar[k]['n']\n mpars.append(mpar[k])\n else:\n mpar['calculation_type'] += ':' + mf\n mpars.append(mpar)\n self.switch_stats_button.SetRange(0, len(mpars) - 1)\n self.show_high_levels_pars(mpars)\n if self.ie_open:\n self.ie.switch_stats_button.SetRange(0, len(mpars) - 1)\n", "role": "user" }, { "content": "update_high_level_stats", "role": "assistant" } ]
def x(self): if self.s not in list(self.Data.keys()): self.select_specimen(list(self.Data.keys())[0]) self.T_list = self.Data[self.s]['zijdblock_steps'] if self.current_fit: self.tmin_box.SetItems(self.T_list) self.tmax_box.SetItems(self.T_list) if type(self.current_fit.tmin) == str and type(self.current_fit.tmax ) == str: self.tmin_box.SetStringSelection(self.current_fit.tmin) self.tmax_box.SetStringSelection(self.current_fit.tmax) if self.ie_open: self.ie.update_bounds_boxes(self.T_list)
update_bounds_boxes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.s not in list(self.Data.keys()):\n self.select_specimen(list(self.Data.keys())[0])\n self.T_list = self.Data[self.s]['zijdblock_steps']\n if self.current_fit:\n self.tmin_box.SetItems(self.T_list)\n self.tmax_box.SetItems(self.T_list)\n if type(self.current_fit.tmin) == str and type(self.current_fit.tmax\n ) == str:\n self.tmin_box.SetStringSelection(self.current_fit.tmin)\n self.tmax_box.SetStringSelection(self.current_fit.tmax)\n if self.ie_open:\n self.ie.update_bounds_boxes(self.T_list)\n", "role": "user" }, { "content": "update_bounds_boxes", "role": "assistant" } ]
def x(self): if self.s in list(self.pmag_results_data['specimens'].keys()): if self.current_fit: tmin = self.current_fit.tmin tmax = self.current_fit.tmax calculation_type = self.current_fit.PCA_type else: calculation_type = self.PCA_type_box.GetValue() PCA_type = 'None' if calculation_type == 'DE-BFL': PCA_type = 'line' elif calculation_type == 'DE-BFL-A': PCA_type = 'line-anchored' elif calculation_type == 'DE-BFL-O': PCA_type = 'line-with-origin' elif calculation_type == 'DE-FM': PCA_type = 'Fisher' elif calculation_type == 'DE-BFP': PCA_type = 'plane' else: print('no PCA type found setting to line') PCA_type = 'line' self.PCA_type_box.SetStringSelection(PCA_type)
update_PCA_box
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.s in list(self.pmag_results_data['specimens'].keys()):\n if self.current_fit:\n tmin = self.current_fit.tmin\n tmax = self.current_fit.tmax\n calculation_type = self.current_fit.PCA_type\n else:\n calculation_type = self.PCA_type_box.GetValue()\n PCA_type = 'None'\n if calculation_type == 'DE-BFL':\n PCA_type = 'line'\n elif calculation_type == 'DE-BFL-A':\n PCA_type = 'line-anchored'\n elif calculation_type == 'DE-BFL-O':\n PCA_type = 'line-with-origin'\n elif calculation_type == 'DE-FM':\n PCA_type = 'Fisher'\n elif calculation_type == 'DE-BFP':\n PCA_type = 'plane'\n else:\n print('no PCA type found setting to line')\n PCA_type = 'line'\n self.PCA_type_box.SetStringSelection(PCA_type)\n", "role": "user" }, { "content": "update_PCA_box", "role": "assistant" } ]
def x(self, new_fit=False): self.update_fit_box(new_fit) self.on_select_fit(None) self.update_mean_fit_box()
update_fit_boxes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_fit=False):\n self.update_fit_box(new_fit)\n self.on_select_fit(None)\n self.update_mean_fit_box()\n", "role": "user" }, { "content": "update_fit_boxes", "role": "assistant" } ]
def x(self, new_fit=False): if self.s in list(self.pmag_results_data['specimens'].keys()): self.fit_list = list([x.name for x in self.pmag_results_data[ 'specimens'][self.s]]) else: self.fit_list = [] if not self.fit_list: new_index = 'None' elif new_fit: new_index = len(self.fit_list) - 1 elif self.fit_box.GetValue() in self.fit_list: new_index = self.fit_list.index(self.fit_box.GetValue()) else: new_index = 'None' self.fit_box.Clear() self.fit_box.SetItems(self.fit_list) fit_index = None if new_index == 'None': self.fit_box.SetStringSelection('None') else: self.fit_box.SetSelection(new_index)
update_fit_box
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_fit=False):\n if self.s in list(self.pmag_results_data['specimens'].keys()):\n self.fit_list = list([x.name for x in self.pmag_results_data[\n 'specimens'][self.s]])\n else:\n self.fit_list = []\n if not self.fit_list:\n new_index = 'None'\n elif new_fit:\n new_index = len(self.fit_list) - 1\n elif self.fit_box.GetValue() in self.fit_list:\n new_index = self.fit_list.index(self.fit_box.GetValue())\n else:\n new_index = 'None'\n self.fit_box.Clear()\n self.fit_box.SetItems(self.fit_list)\n fit_index = None\n if new_index == 'None':\n self.fit_box.SetStringSelection('None')\n else:\n self.fit_box.SetSelection(new_index)\n", "role": "user" }, { "content": "update_fit_box", "role": "assistant" } ]
def x(self): self.mean_fit_box.Clear() fit_index = None if self.mean_fit in self.all_fits_list: fit_index = self.all_fits_list.index(self.mean_fit) self.all_fits_list = [] for specimen in self.specimens: if specimen in self.pmag_results_data['specimens']: for name in [x.name for x in self.pmag_results_data['specimens' ][specimen]]: if name not in self.all_fits_list: self.all_fits_list.append(name) self.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list) if not isinstance(fit_index, type(None)): self.mean_fit_box.SetValue(self.all_fits_list[fit_index]) elif self.mean_fit == 'All': self.mean_fit_box.SetValue('All') else: self.mean_fit_box.SetValue('None') self.mean_type_box.SetValue('None') self.clear_high_level_pars() self.update_toggleable_means_menu() if self.ie_open: self.ie.mean_fit_box.Clear() self.ie.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list) if fit_index: self.ie.mean_fit_box.SetValue(self.all_fits_list[fit_index]) elif self.mean_fit == 'All': self.ie.mean_fit_box.SetValue('All') else: self.ie.mean_fit_box.SetValue('None') self.ie.mean_type_box.SetValue('None')
update_mean_fit_box
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.mean_fit_box.Clear()\n fit_index = None\n if self.mean_fit in self.all_fits_list:\n fit_index = self.all_fits_list.index(self.mean_fit)\n self.all_fits_list = []\n for specimen in self.specimens:\n if specimen in self.pmag_results_data['specimens']:\n for name in [x.name for x in self.pmag_results_data['specimens'\n ][specimen]]:\n if name not in self.all_fits_list:\n self.all_fits_list.append(name)\n self.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list)\n if not isinstance(fit_index, type(None)):\n self.mean_fit_box.SetValue(self.all_fits_list[fit_index])\n elif self.mean_fit == 'All':\n self.mean_fit_box.SetValue('All')\n else:\n self.mean_fit_box.SetValue('None')\n self.mean_type_box.SetValue('None')\n self.clear_high_level_pars()\n self.update_toggleable_means_menu()\n if self.ie_open:\n self.ie.mean_fit_box.Clear()\n self.ie.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list)\n if fit_index:\n self.ie.mean_fit_box.SetValue(self.all_fits_list[fit_index])\n elif self.mean_fit == 'All':\n self.ie.mean_fit_box.SetValue('All')\n else:\n self.ie.mean_fit_box.SetValue('None')\n self.ie.mean_type_box.SetValue('None')\n", "role": "user" }, { "content": "update_mean_fit_box", "role": "assistant" } ]
def x(self, mpars): FONT_WEIGHT = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5 font2 = wx.Font(12 + min(1, FONT_WEIGHT), wx.SWISS, wx.NORMAL, wx. NORMAL, False, self.font_type) if self.mean_type_box.GetValue() != 'None' and self.mean_fit_box.GetValue( ) != 'None' and mpars: if isinstance(mpars, list): i = self.switch_stats_button.GetValue() if i >= len(mpars): print( 'Cannot display statistics as mpars does not have index %d. Was given mpars %s, aborting.' % (i, str(mpars))) return self.show_high_levels_pars(mpars[i]) elif mpars['calculation_type'].startswith('Fisher'): if 'alpha95' in list(mpars.keys()): for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R', 'n_lines:n_lines', 'n_planes:n_planes']: val, ind = val.split(':') COMMAND = "self.%s_window.SetValue(str(mpars['%s']))" % ( val, ind) exec(COMMAND) if self.ie_open: ie = self.ie if 'alpha95' in list(mpars.keys()): for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R', 'n_lines:n_lines', 'n_planes:n_planes']: val, ind = val.split(':') COMMAND = "ie.%s_window.SetValue(str(mpars['%s']))" % ( val, ind) exec(COMMAND) elif mpars['calculation_type'].startswith('Fisher by polarity'): i = self.switch_stats_button.GetValue() keys = list(mpars.keys()) keys.remove('calculation_type') if 'color' in keys: keys.remove('color') keys.sort() name = keys[i % len(keys)] mpars = mpars[name] if type(mpars) != dict: print('error in showing high level mean, reseaved %s' % str (mpars)) return if mpars['calculation_type'] == 'Fisher' and 'alpha95' in list( mpars.keys()): for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r', 'n_lines:n', 'n_planes:n_planes']: val, ind = val.split(':') if val == 'mean_type': COMMAND = "self.%s_window.SetValue('%s')" % (val, mpars[ind] + ':' + name) else: COMMAND = ( "self.%s_window.SetValue(str(mpars['%s']))" % ( val, ind)) exec(COMMAND) if self.ie_open: ie = self.ie if mpars['calculation_type'] == 'Fisher' and 'alpha95' in list( mpars.keys()): for val in ['mean_type:calculation_type', 'dec:dec', 'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r', 'n_lines:n', 'n_planes:n_planes']: val, ind = val.split(':') if val == 'mean_type': COMMAND = "ie.%s_window.SetValue('%s')" % (val, mpars[ind] + ':' + name) else: COMMAND = ( "ie.%s_window.SetValue(str(mpars['%s']))" % (val, ind)) exec(COMMAND) self.set_mean_stats_color()
show_high_levels_pars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mpars):\n FONT_WEIGHT = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5\n font2 = wx.Font(12 + min(1, FONT_WEIGHT), wx.SWISS, wx.NORMAL, wx.\n NORMAL, False, self.font_type)\n if self.mean_type_box.GetValue() != 'None' and self.mean_fit_box.GetValue(\n ) != 'None' and mpars:\n if isinstance(mpars, list):\n i = self.switch_stats_button.GetValue()\n if i >= len(mpars):\n print(\n 'Cannot display statistics as mpars does not have index %d. Was given mpars %s, aborting.'\n % (i, str(mpars)))\n return\n self.show_high_levels_pars(mpars[i])\n elif mpars['calculation_type'].startswith('Fisher'):\n if 'alpha95' in list(mpars.keys()):\n for val in ['mean_type:calculation_type', 'dec:dec',\n 'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R',\n 'n_lines:n_lines', 'n_planes:n_planes']:\n val, ind = val.split(':')\n COMMAND = \"self.%s_window.SetValue(str(mpars['%s']))\" % (\n val, ind)\n exec(COMMAND)\n if self.ie_open:\n ie = self.ie\n if 'alpha95' in list(mpars.keys()):\n for val in ['mean_type:calculation_type', 'dec:dec',\n 'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R',\n 'n_lines:n_lines', 'n_planes:n_planes']:\n val, ind = val.split(':')\n COMMAND = \"ie.%s_window.SetValue(str(mpars['%s']))\" % (\n val, ind)\n exec(COMMAND)\n elif mpars['calculation_type'].startswith('Fisher by polarity'):\n i = self.switch_stats_button.GetValue()\n keys = list(mpars.keys())\n keys.remove('calculation_type')\n if 'color' in keys:\n keys.remove('color')\n keys.sort()\n name = keys[i % len(keys)]\n mpars = mpars[name]\n if type(mpars) != dict:\n print('error in showing high level mean, reseaved %s' % str\n (mpars))\n return\n if mpars['calculation_type'] == 'Fisher' and 'alpha95' in list(\n mpars.keys()):\n for val in ['mean_type:calculation_type', 'dec:dec',\n 'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r', 'n_lines:n',\n 'n_planes:n_planes']:\n val, ind = val.split(':')\n if val == 'mean_type':\n COMMAND = \"self.%s_window.SetValue('%s')\" % (val, \n mpars[ind] + ':' + name)\n else:\n COMMAND = (\n \"self.%s_window.SetValue(str(mpars['%s']))\" % (\n val, ind))\n exec(COMMAND)\n if self.ie_open:\n ie = self.ie\n if mpars['calculation_type'] == 'Fisher' and 'alpha95' in list(\n mpars.keys()):\n for val in ['mean_type:calculation_type', 'dec:dec',\n 'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r',\n 'n_lines:n', 'n_planes:n_planes']:\n val, ind = val.split(':')\n if val == 'mean_type':\n COMMAND = \"ie.%s_window.SetValue('%s')\" % (val,\n mpars[ind] + ':' + name)\n else:\n COMMAND = (\n \"ie.%s_window.SetValue(str(mpars['%s']))\" %\n (val, ind))\n exec(COMMAND)\n self.set_mean_stats_color()\n", "role": "user" }, { "content": "show_high_levels_pars", "role": "assistant" } ]
def x(self): self.tmin_box.Clear() self.tmin_box.SetStringSelection('') if self.current_fit: self.tmin_box.SetItems(self.T_list) self.tmin_box.SetSelection(-1) self.tmax_box.Clear() self.tmax_box.SetStringSelection('') if self.current_fit: self.tmax_box.SetItems(self.T_list) self.tmax_box.SetSelection(-1) self.fit_box.Clear() self.fit_box.SetStringSelection('') if self.s in self.pmag_results_data['specimens' ] and self.pmag_results_data['specimens'][self.s]: self.fit_box.SetItems(list([x.name for x in self.pmag_results_data[ 'specimens'][self.s]])) for parameter in ['dec', 'inc', 'n', 'mad', 'dang', 'alpha95']: COMMAND = "self.s%s_window.SetValue('')" % parameter exec(COMMAND) COMMAND = ("self.s%s_window.SetBackgroundColour(wx.Colour('grey'))" % parameter) exec(COMMAND)
clear_boxes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.tmin_box.Clear()\n self.tmin_box.SetStringSelection('')\n if self.current_fit:\n self.tmin_box.SetItems(self.T_list)\n self.tmin_box.SetSelection(-1)\n self.tmax_box.Clear()\n self.tmax_box.SetStringSelection('')\n if self.current_fit:\n self.tmax_box.SetItems(self.T_list)\n self.tmax_box.SetSelection(-1)\n self.fit_box.Clear()\n self.fit_box.SetStringSelection('')\n if self.s in self.pmag_results_data['specimens'\n ] and self.pmag_results_data['specimens'][self.s]:\n self.fit_box.SetItems(list([x.name for x in self.pmag_results_data[\n 'specimens'][self.s]]))\n for parameter in ['dec', 'inc', 'n', 'mad', 'dang', 'alpha95']:\n COMMAND = \"self.s%s_window.SetValue('')\" % parameter\n exec(COMMAND)\n COMMAND = (\"self.s%s_window.SetBackgroundColour(wx.Colour('grey'))\" %\n parameter)\n exec(COMMAND)\n", "role": "user" }, { "content": "clear_boxes", "role": "assistant" } ]
def x(self): for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R', 'n_lines', 'n_planes']: COMMAND = 'self.%s_window.SetValue("")' % val exec(COMMAND) if self.ie_open: for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R', 'n_lines', 'n_planes']: COMMAND = 'self.ie.%s_window.SetValue("")' % val exec(COMMAND) self.set_mean_stats_color()
clear_high_level_pars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R', 'n_lines',\n 'n_planes']:\n COMMAND = 'self.%s_window.SetValue(\"\")' % val\n exec(COMMAND)\n if self.ie_open:\n for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R',\n 'n_lines', 'n_planes']:\n COMMAND = 'self.ie.%s_window.SetValue(\"\")' % val\n exec(COMMAND)\n self.set_mean_stats_color()\n", "role": "user" }, { "content": "clear_high_level_pars", "role": "assistant" } ]
def x(self, event): meas_file = self.choose_meas_file() WD = os.path.split(meas_file)[0] self.WD = WD self.magic_file = meas_file self.reset_backend()
on_menu_import_meas_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n meas_file = self.choose_meas_file()\n WD = os.path.split(meas_file)[0]\n self.WD = WD\n self.magic_file = meas_file\n self.reset_backend()\n", "role": "user" }, { "content": "on_menu_import_meas_file", "role": "assistant" } ]
def x(self, event): if self.data_model == 3: default_file = 'criteria.txt' else: default_file = 'pmag_criteria.txt' read_sucsess = False dlg = wx.FileDialog(self, message='choose pmag criteria file', defaultDir=self.WD, defaultFile=default_file, style=wx.FD_OPEN | wx .FD_CHANGE_DIR) if self.show_dlg(dlg) == wx.ID_OK: criteria_file = dlg.GetPath() print('-I- Read new criteria file: %s' % criteria_file) try: mag_meas_data, file_type = pmag.magic_read(criteria_file) except: dlg = wx.MessageDialog(self, caption='Error', message= 'not a valid pmag_criteria file', style=wx.OK) result = self.show_dlg(dlg) if result == wx.ID_OK: dlg.Destroy() dlg.Destroy() return self.acceptance_criteria = self.read_criteria_file(criteria_file) read_sucsess = True dlg.Destroy() if read_sucsess: self.on_menu_change_criteria(None)
on_menu_criteria_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if self.data_model == 3:\n default_file = 'criteria.txt'\n else:\n default_file = 'pmag_criteria.txt'\n read_sucsess = False\n dlg = wx.FileDialog(self, message='choose pmag criteria file',\n defaultDir=self.WD, defaultFile=default_file, style=wx.FD_OPEN | wx\n .FD_CHANGE_DIR)\n if self.show_dlg(dlg) == wx.ID_OK:\n criteria_file = dlg.GetPath()\n print('-I- Read new criteria file: %s' % criteria_file)\n try:\n mag_meas_data, file_type = pmag.magic_read(criteria_file)\n except:\n dlg = wx.MessageDialog(self, caption='Error', message=\n 'not a valid pmag_criteria file', style=wx.OK)\n result = self.show_dlg(dlg)\n if result == wx.ID_OK:\n dlg.Destroy()\n dlg.Destroy()\n return\n self.acceptance_criteria = self.read_criteria_file(criteria_file)\n read_sucsess = True\n dlg.Destroy()\n if read_sucsess:\n self.on_menu_change_criteria(None)\n", "role": "user" }, { "content": "on_menu_criteria_file", "role": "assistant" } ]
def x(self, event): if event.LeftIsDown() or event.ButtonDClick(): return elif self.zijderveld_setting == 'Zoom': self.zijderveld_setting = 'Pan' try: self.toolbar1.pan('off') except TypeError: pass elif self.zijderveld_setting == 'Pan': self.zijderveld_setting = 'Zoom' try: self.toolbar1.zoom() except TypeError: pass
right_click_zijderveld
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if event.LeftIsDown() or event.ButtonDClick():\n return\n elif self.zijderveld_setting == 'Zoom':\n self.zijderveld_setting = 'Pan'\n try:\n self.toolbar1.pan('off')\n except TypeError:\n pass\n elif self.zijderveld_setting == 'Pan':\n self.zijderveld_setting = 'Zoom'\n try:\n self.toolbar1.zoom()\n except TypeError:\n pass\n", "role": "user" }, { "content": "right_click_zijderveld", "role": "assistant" } ]
def x(self, event): if not array(self.CART_rot).any(): return pos = event.GetPosition() width, height = self.canvas1.get_width_height() pos[1] = height - pos[1] xpick_data, ypick_data = pos xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0]) ydata_org = list(-1 * self.CART_rot[:, 1]) + list(-1 * self.CART_rot[:, 2]) data_corrected = self.zijplot.transData.transform(vstack([xdata_org, ydata_org]).T) xdata, ydata = data_corrected.T xdata = list(map(float, xdata)) ydata = list(map(float, ydata)) e = 4.0 if self.zijderveld_setting == 'Zoom': self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_CROSS)) else: self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_ARROW)) for i, (x, y) in enumerate(zip(xdata, ydata)): if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e: self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_HAND)) break event.Skip()
on_change_zijd_mouse_cursor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if not array(self.CART_rot).any():\n return\n pos = event.GetPosition()\n width, height = self.canvas1.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0])\n ydata_org = list(-1 * self.CART_rot[:, 1]) + list(-1 * self.CART_rot[:, 2])\n data_corrected = self.zijplot.transData.transform(vstack([xdata_org,\n ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n if self.zijderveld_setting == 'Zoom':\n self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_CROSS))\n else:\n self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_ARROW))\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_HAND))\n break\n event.Skip()\n", "role": "user" }, { "content": "on_change_zijd_mouse_cursor", "role": "assistant" } ]
def x(self, event): if not array(self.CART_rot_good).any(): return pos = event.GetPosition() width, height = self.canvas1.get_width_height() pos[1] = height - pos[1] xpick_data, ypick_data = pos xdata_org = list(self.CART_rot_good[:, 0]) + list(self.CART_rot_good[:, 0]) ydata_org = list(-1 * self.CART_rot_good[:, 1]) + list(-1 * self. CART_rot_good[:, 2]) data_corrected = self.zijplot.transData.transform(vstack([xdata_org, ydata_org]).T) xdata, ydata = data_corrected.T xdata = list(map(float, xdata)) ydata = list(map(float, ydata)) e = 4.0 index = None for i, (x, y) in enumerate(zip(xdata, ydata)): if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e: index = i break if index != None: steps = self.Data[self.s]['zijdblock_steps'] bad_count = self.Data[self.s]['measurement_flag'][:index].count('b') if index > len(steps): bad_count *= 2 if not self.current_fit: self.on_btn_add_fit(event) self.select_bounds_in_logger((index + bad_count) % len(steps))
on_zijd_select
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if not array(self.CART_rot_good).any():\n return\n pos = event.GetPosition()\n width, height = self.canvas1.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = list(self.CART_rot_good[:, 0]) + list(self.CART_rot_good[:, 0])\n ydata_org = list(-1 * self.CART_rot_good[:, 1]) + list(-1 * self.\n CART_rot_good[:, 2])\n data_corrected = self.zijplot.transData.transform(vstack([xdata_org,\n ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n index = None\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n index = i\n break\n if index != None:\n steps = self.Data[self.s]['zijdblock_steps']\n bad_count = self.Data[self.s]['measurement_flag'][:index].count('b')\n if index > len(steps):\n bad_count *= 2\n if not self.current_fit:\n self.on_btn_add_fit(event)\n self.select_bounds_in_logger((index + bad_count) % len(steps))\n", "role": "user" }, { "content": "on_zijd_select", "role": "assistant" } ]
def x(self, event): if not array(self.CART_rot).any(): return pos = event.GetPosition() width, height = self.canvas1.get_width_height() pos[1] = height - pos[1] xpick_data, ypick_data = pos xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0]) ydata_org = list(-1 * self.CART_rot[:, 1]) + list(-1 * self.CART_rot[:, 2]) data_corrected = self.zijplot.transData.transform(vstack([xdata_org, ydata_org]).T) xdata, ydata = data_corrected.T xdata = list(map(float, xdata)) ydata = list(map(float, ydata)) e = 4.0 index = None for i, (x, y) in enumerate(zip(xdata, ydata)): if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e: index = i break if index != None: steps = self.Data[self.s]['zijdblock'] if self.Data[self.s]['measurement_flag'][index % len(steps)] == 'g': self.mark_meas_bad(index % len(steps)) else: self.mark_meas_good(index % len(steps)) pmag.magic_write(os.path.join(self.WD, 'magic_measurements.txt'), self.mag_meas_data, 'magic_measurements') self.recalculate_current_specimen_interpreatations() if self.ie_open: self.ie.update_current_fit_data() self.calculate_high_levels_data() self.update_selection()
on_zijd_mark
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if not array(self.CART_rot).any():\n return\n pos = event.GetPosition()\n width, height = self.canvas1.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0])\n ydata_org = list(-1 * self.CART_rot[:, 1]) + list(-1 * self.CART_rot[:, 2])\n data_corrected = self.zijplot.transData.transform(vstack([xdata_org,\n ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n index = None\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n index = i\n break\n if index != None:\n steps = self.Data[self.s]['zijdblock']\n if self.Data[self.s]['measurement_flag'][index % len(steps)] == 'g':\n self.mark_meas_bad(index % len(steps))\n else:\n self.mark_meas_good(index % len(steps))\n pmag.magic_write(os.path.join(self.WD, 'magic_measurements.txt'),\n self.mag_meas_data, 'magic_measurements')\n self.recalculate_current_specimen_interpreatations()\n if self.ie_open:\n self.ie.update_current_fit_data()\n self.calculate_high_levels_data()\n self.update_selection()\n", "role": "user" }, { "content": "on_zijd_mark", "role": "assistant" } ]
def x(self, event): if event.LeftIsDown() or event.ButtonDClick(): return elif self.specimen_EA_setting == 'Zoom': self.specimen_EA_setting = 'Pan' try: self.toolbar2.pan('off') except TypeError: pass elif self.specimen_EA_setting == 'Pan': self.specimen_EA_setting = 'Zoom' try: self.toolbar2.zoom() except TypeError: pass
right_click_specimen_equalarea
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if event.LeftIsDown() or event.ButtonDClick():\n return\n elif self.specimen_EA_setting == 'Zoom':\n self.specimen_EA_setting = 'Pan'\n try:\n self.toolbar2.pan('off')\n except TypeError:\n pass\n elif self.specimen_EA_setting == 'Pan':\n self.specimen_EA_setting = 'Zoom'\n try:\n self.toolbar2.zoom()\n except TypeError:\n pass\n", "role": "user" }, { "content": "right_click_specimen_equalarea", "role": "assistant" } ]
def x(self, event): if not self.specimen_EA_xdata or not self.specimen_EA_ydata: return pos = event.GetPosition() width, height = self.canvas2.get_width_height() pos[1] = height - pos[1] xpick_data, ypick_data = pos xdata_org = self.specimen_EA_xdata ydata_org = self.specimen_EA_ydata data_corrected = self.specimen_eqarea.transData.transform(vstack([ xdata_org, ydata_org]).T) xdata, ydata = data_corrected.T xdata = list(map(float, xdata)) ydata = list(map(float, ydata)) e = 4.0 if self.specimen_EA_setting == 'Zoom': self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_CROSS)) else: self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_ARROW)) for i, (x, y) in enumerate(zip(xdata, ydata)): if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e: self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_HAND)) break event.Skip()
on_change_specimen_mouse_cursor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if not self.specimen_EA_xdata or not self.specimen_EA_ydata:\n return\n pos = event.GetPosition()\n width, height = self.canvas2.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.specimen_EA_xdata\n ydata_org = self.specimen_EA_ydata\n data_corrected = self.specimen_eqarea.transData.transform(vstack([\n xdata_org, ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n if self.specimen_EA_setting == 'Zoom':\n self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_CROSS))\n else:\n self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_ARROW))\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_HAND))\n break\n event.Skip()\n", "role": "user" }, { "content": "on_change_specimen_mouse_cursor", "role": "assistant" } ]
def x(self, event): if not self.specimen_EA_xdata or not self.specimen_EA_ydata: return pos = event.GetPosition() width, height = self.canvas2.get_width_height() pos[1] = height - pos[1] xpick_data, ypick_data = pos xdata_org = self.specimen_EA_xdata ydata_org = self.specimen_EA_ydata data_corrected = self.specimen_eqarea.transData.transform(vstack([ xdata_org, ydata_org]).T) xdata, ydata = data_corrected.T xdata = list(map(float, xdata)) ydata = list(map(float, ydata)) e = 4.0 index = None for i, (x, y) in enumerate(zip(xdata, ydata)): if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e: index = i break if index != None: self.fit_box.SetSelection(index) self.draw_figure(self.s, True) self.on_select_fit(event)
on_equalarea_specimen_select
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if not self.specimen_EA_xdata or not self.specimen_EA_ydata:\n return\n pos = event.GetPosition()\n width, height = self.canvas2.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.specimen_EA_xdata\n ydata_org = self.specimen_EA_ydata\n data_corrected = self.specimen_eqarea.transData.transform(vstack([\n xdata_org, ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n index = None\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n index = i\n break\n if index != None:\n self.fit_box.SetSelection(index)\n self.draw_figure(self.s, True)\n self.on_select_fit(event)\n", "role": "user" }, { "content": "on_equalarea_specimen_select", "role": "assistant" } ]