source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, old_result_name, new_result_name, new_er_data=None,
new_pmag_data=None, spec_names=None, samp_names=None, site_names=None,
loc_names=None, replace_data=False):
result = self.find_by_name(old_result_name, self.results)
if not result:
msg = (
'-W- {} is not a currently existing result, so it cannot be updated.'
.format(old_result_name))
print(msg)
return False
else:
specimens, samples, sites, locations = None, None, None, None
if spec_names:
specimens = [self.find_or_create_by_name(spec, self.specimens,
'specimen') for spec in spec_names]
if samp_names:
samples = [self.find_or_create_by_name(samp, self.samples,
'sample') for samp in samp_names]
if site_names:
sites = [self.find_or_create_by_name(site, self.sites, 'site') for
site in site_names]
if loc_names:
locations = [self.find_or_create_by_name(loc, self.locations,
'location') for loc in loc_names]
result.change_result(new_result_name, new_pmag_data, specimens,
samples, sites, locations, replace_data)
return result
|
change_result
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, old_result_name, new_result_name, new_er_data=None,\n new_pmag_data=None, spec_names=None, samp_names=None, site_names=None,\n loc_names=None, replace_data=False):\n result = self.find_by_name(old_result_name, self.results)\n if not result:\n msg = (\n '-W- {} is not a currently existing result, so it cannot be updated.'\n .format(old_result_name))\n print(msg)\n return False\n else:\n specimens, samples, sites, locations = None, None, None, None\n if spec_names:\n specimens = [self.find_or_create_by_name(spec, self.specimens,\n 'specimen') for spec in spec_names]\n if samp_names:\n samples = [self.find_or_create_by_name(samp, self.samples,\n 'sample') for samp in samp_names]\n if site_names:\n sites = [self.find_or_create_by_name(site, self.sites, 'site') for\n site in site_names]\n if loc_names:\n locations = [self.find_or_create_by_name(loc, self.locations,\n 'location') for loc in loc_names]\n result.change_result(new_result_name, new_pmag_data, specimens,\n samples, sites, locations, replace_data)\n return result\n",
"role": "user"
},
{
"content": "change_result",
"role": "assistant"
}
] |
def x(self):
meas_file = os.path.join(self.WD, 'magic_measurements.txt')
if not os.path.isfile(meas_file):
print('-I- No magic_measurements.txt file')
return {}
try:
meas_data, file_type = pmag.magic_read(meas_file)
except IOError:
print('-I- No magic_measurements.txt file')
return {}
if file_type == 'bad_file':
print(
"-E- ERROR: Can't read magic_measurements.txt file. File is corrupted."
)
old_specimen_name = ''
meas_name_list = [measurement.name for measurement in self.measurements]
for rec in meas_data:
citation = rec.get('er_citation_names', 'This study')
if 'This study' not in citation:
citation = citation.strip() + ':This study'
er_data = {'er_citation_names': citation}
pmag_data = {'er_citation_names': 'This study'}
specimen_name = rec['er_specimen_name']
if specimen_name == '' or specimen_name == ' ':
continue
if specimen_name != old_specimen_name:
sample_name = rec['er_sample_name']
site_name = rec['er_site_name']
location_name = rec['er_location_name']
location = self.find_by_name(location_name, self.locations)
if location_name and not location:
location = self.add_location(location_name, er_data=er_data,
pmag_data=pmag_data)
site = self.find_by_name(site_name, self.sites)
if site_name and not site:
site = self.add_site(site_name, location_name, er_data,
pmag_data)
sample = self.find_by_name(sample_name, self.samples)
if sample_name and not sample:
sample = self.add_sample(sample_name, site_name, er_data,
pmag_data)
specimen = self.find_by_name(specimen_name, self.specimens)
if specimen_name and not specimen:
specimen = self.add_specimen(specimen_name, sample_name,
er_data, pmag_data)
if sample and not self.find_by_name(specimen_name, sample.specimens
):
sample.specimens.append(specimen)
if site and not self.find_by_name(sample_name, site.samples):
site.samples.append(sample)
if location and not self.find_by_name(site_name, location.sites):
location.sites.append(site)
exp_name = rec['magic_experiment_name']
meas_num = rec['measurement_number']
meas_name = exp_name + '_' + str(meas_num)
measurement = self.find_by_name(meas_name, self.measurements,
meas_name_list)
if not measurement:
self.add_measurement(exp_name, meas_num, specimen.name, rec)
meas_name_list.append(meas_name)
old_specimen_name = specimen_name
|
get_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n meas_file = os.path.join(self.WD, 'magic_measurements.txt')\n if not os.path.isfile(meas_file):\n print('-I- No magic_measurements.txt file')\n return {}\n try:\n meas_data, file_type = pmag.magic_read(meas_file)\n except IOError:\n print('-I- No magic_measurements.txt file')\n return {}\n if file_type == 'bad_file':\n print(\n \"-E- ERROR: Can't read magic_measurements.txt file. File is corrupted.\"\n )\n old_specimen_name = ''\n meas_name_list = [measurement.name for measurement in self.measurements]\n for rec in meas_data:\n citation = rec.get('er_citation_names', 'This study')\n if 'This study' not in citation:\n citation = citation.strip() + ':This study'\n er_data = {'er_citation_names': citation}\n pmag_data = {'er_citation_names': 'This study'}\n specimen_name = rec['er_specimen_name']\n if specimen_name == '' or specimen_name == ' ':\n continue\n if specimen_name != old_specimen_name:\n sample_name = rec['er_sample_name']\n site_name = rec['er_site_name']\n location_name = rec['er_location_name']\n location = self.find_by_name(location_name, self.locations)\n if location_name and not location:\n location = self.add_location(location_name, er_data=er_data,\n pmag_data=pmag_data)\n site = self.find_by_name(site_name, self.sites)\n if site_name and not site:\n site = self.add_site(site_name, location_name, er_data,\n pmag_data)\n sample = self.find_by_name(sample_name, self.samples)\n if sample_name and not sample:\n sample = self.add_sample(sample_name, site_name, er_data,\n pmag_data)\n specimen = self.find_by_name(specimen_name, self.specimens)\n if specimen_name and not specimen:\n specimen = self.add_specimen(specimen_name, sample_name,\n er_data, pmag_data)\n if sample and not self.find_by_name(specimen_name, sample.specimens\n ):\n sample.specimens.append(specimen)\n if site and not self.find_by_name(sample_name, site.samples):\n site.samples.append(sample)\n if location and not self.find_by_name(site_name, location.sites):\n location.sites.append(site)\n exp_name = rec['magic_experiment_name']\n meas_num = rec['measurement_number']\n meas_name = exp_name + '_' + str(meas_num)\n measurement = self.find_by_name(meas_name, self.measurements,\n meas_name_list)\n if not measurement:\n self.add_measurement(exp_name, meas_num, specimen.name, rec)\n meas_name_list.append(meas_name)\n old_specimen_name = specimen_name\n",
"role": "user"
},
{
"content": "get_data",
"role": "assistant"
}
] |
def x(self, child_type, parent_type=None, attr='er', filename=None,
sort_by_file_type=False):
parent = ''
grandparent_type = None
magic_name = 'er_' + child_type + '_name'
expected_item_type = child_type
if not filename:
short_filename = attr + '_' + child_type + 's.txt'
magic_file = os.path.join(self.WD, short_filename)
else:
short_filename = os.path.split(filename)[1]
magic_file = filename
attr = short_filename.split('_')[0]
print('-I- Attempting to read {}'.format(magic_file))
if not os.path.isfile(magic_file):
print('-W- Could not find {}'.format(magic_file))
return False
data_dict, header, file_type = self.read_magic_file(magic_file,
magic_name, sort_by_file_type=sort_by_file_type)
if not data_dict:
print(
'-W- Could not read in file: {}.\n Make sure it is a MagIC-format file'
.format(magic_file))
return False
item_type = file_type.split('_')[1][:-1]
if item_type != expected_item_type:
print('-W- Expected data of type: {} but instead got: {}'.format(
expected_item_type, item_type))
print('-W- Using type: {}'.format(item_type))
if item_type == 'age':
self.get_age_info(filename)
return 'age'
child_type = item_type
magic_name = 'er_' + child_type + '_name'
ind = self.ancestry.index(child_type)
parent_type = self.ancestry[ind + 1]
if item_type != 'location':
grandparent_type = self.ancestry[ind + 2]
else:
grandparent_type = ''
if not grandparent_type:
ind = self.ancestry.index(child_type)
try:
grandparent_type = self.ancestry[ind + 2]
except IndexError:
grandparent_type = None
child_list, child_class, child_constructor = self.data_lists[child_type]
if parent_type:
parent_list, parent_class, parent_constructor = self.data_lists[
parent_type]
else:
parent_list, parent_name = None, None
for child_name in data_dict:
if parent_type:
parent_name = data_dict[child_name].get('er_' + parent_type +
'_name', '')
parent = self.find_by_name(parent_name, parent_list)
if parent:
remove_dict_headers(parent.er_data)
remove_dict_headers(parent.pmag_data)
if parent_name and parent_type and not parent:
grandparent = None
grandparent_name = None
if grandparent_type:
(grandparent_list, grandparent_class, grandparent_constructor
) = self.data_lists[grandparent_type]
grandparent_name = data_dict[child_name]['er_' +
grandparent_type + '_name']
grandparent = self.find_by_name(grandparent_name,
grandparent_list)
if grandparent_name and not grandparent:
grandparent = grandparent_constructor(grandparent_name,
None)
parent = parent_constructor(parent_name, grandparent_name)
elif not parent:
parent_name = None
parent = ''
child = self.find_by_name(child_name, child_list)
if not child:
child = child_constructor(child_name, parent_name)
else:
if parent:
child.set_parent(parent)
if parent and child not in parent.children:
parent.add_child(child)
if attr == 'er':
self.update_methods[child_type](child_name, child_name,
parent_name, new_er_data=data_dict[child_name])
else:
self.update_methods[child_type](child_name, child_name,
parent_name, new_pmag_data=data_dict[child_name])
remove_dict_headers(child.er_data)
remove_dict_headers(child.pmag_data)
return child_type
|
get_magic_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, child_type, parent_type=None, attr='er', filename=None,\n sort_by_file_type=False):\n parent = ''\n grandparent_type = None\n magic_name = 'er_' + child_type + '_name'\n expected_item_type = child_type\n if not filename:\n short_filename = attr + '_' + child_type + 's.txt'\n magic_file = os.path.join(self.WD, short_filename)\n else:\n short_filename = os.path.split(filename)[1]\n magic_file = filename\n attr = short_filename.split('_')[0]\n print('-I- Attempting to read {}'.format(magic_file))\n if not os.path.isfile(magic_file):\n print('-W- Could not find {}'.format(magic_file))\n return False\n data_dict, header, file_type = self.read_magic_file(magic_file,\n magic_name, sort_by_file_type=sort_by_file_type)\n if not data_dict:\n print(\n '-W- Could not read in file: {}.\\n Make sure it is a MagIC-format file'\n .format(magic_file))\n return False\n item_type = file_type.split('_')[1][:-1]\n if item_type != expected_item_type:\n print('-W- Expected data of type: {} but instead got: {}'.format(\n expected_item_type, item_type))\n print('-W- Using type: {}'.format(item_type))\n if item_type == 'age':\n self.get_age_info(filename)\n return 'age'\n child_type = item_type\n magic_name = 'er_' + child_type + '_name'\n ind = self.ancestry.index(child_type)\n parent_type = self.ancestry[ind + 1]\n if item_type != 'location':\n grandparent_type = self.ancestry[ind + 2]\n else:\n grandparent_type = ''\n if not grandparent_type:\n ind = self.ancestry.index(child_type)\n try:\n grandparent_type = self.ancestry[ind + 2]\n except IndexError:\n grandparent_type = None\n child_list, child_class, child_constructor = self.data_lists[child_type]\n if parent_type:\n parent_list, parent_class, parent_constructor = self.data_lists[\n parent_type]\n else:\n parent_list, parent_name = None, None\n for child_name in data_dict:\n if parent_type:\n parent_name = data_dict[child_name].get('er_' + parent_type +\n '_name', '')\n parent = self.find_by_name(parent_name, parent_list)\n if parent:\n remove_dict_headers(parent.er_data)\n remove_dict_headers(parent.pmag_data)\n if parent_name and parent_type and not parent:\n grandparent = None\n grandparent_name = None\n if grandparent_type:\n (grandparent_list, grandparent_class, grandparent_constructor\n ) = self.data_lists[grandparent_type]\n grandparent_name = data_dict[child_name]['er_' +\n grandparent_type + '_name']\n grandparent = self.find_by_name(grandparent_name,\n grandparent_list)\n if grandparent_name and not grandparent:\n grandparent = grandparent_constructor(grandparent_name,\n None)\n parent = parent_constructor(parent_name, grandparent_name)\n elif not parent:\n parent_name = None\n parent = ''\n child = self.find_by_name(child_name, child_list)\n if not child:\n child = child_constructor(child_name, parent_name)\n else:\n if parent:\n child.set_parent(parent)\n if parent and child not in parent.children:\n parent.add_child(child)\n if attr == 'er':\n self.update_methods[child_type](child_name, child_name,\n parent_name, new_er_data=data_dict[child_name])\n else:\n self.update_methods[child_type](child_name, child_name,\n parent_name, new_pmag_data=data_dict[child_name])\n remove_dict_headers(child.er_data)\n remove_dict_headers(child.pmag_data)\n return child_type\n",
"role": "user"
},
{
"content": "get_magic_info",
"role": "assistant"
}
] |
def x(self, filename=None):
if not filename:
short_filename = 'er_ages.txt'
magic_file = os.path.join(self.WD, short_filename)
else:
magic_file = filename
if not os.path.isfile(magic_file):
print('-W- Could not find {}'.format(magic_file))
return False
data_dict, header, file_type = self.read_magic_file(magic_file,
'by_line_number')
if file_type != 'er_ages':
item_type = file_type.split('_')[1][:-1]
self.get_magic_info(item_type, filename=filename, sort_by_file_type
=True)
return file_type
for item_dict in list(data_dict.values()):
item_type = None
for dtype in ['specimen', 'sample', 'site', 'location']:
header_name = 'er_' + dtype + '_name'
if header_name in list(item_dict.keys()):
if item_dict[header_name]:
item_type = dtype
item_name = item_dict[header_name].strip()
break
if not item_type:
print('-W- You must provide a name for your age')
print(' These data:\n{}\n will not be imported'.format(
item_dict))
continue
items_list = self.data_lists[item_type][0]
item = self.find_by_name(item_name, items_list)
if not item:
print(
"""-I- A {} named {} in your age file was not found in the data object:
Now initializing {} {}"""
.format(item_type, item_name, item_type, item_name))
ind = self.ancestry.index(item_type)
parent_type = self.ancestry[ind + 1]
parent_header, parent_constructor = None, None
if parent_type:
parent_list, parent_class, parent_constructor = (self.
data_lists[parent_type])
parent_header = 'er_' + parent_type + '_name'
parent_name = item_dict.get(parent_header, '')
parent = self.find_by_name(parent_name, parent_list)
if parent_name and not parent:
print(
"""-I- A {} named {} in your age file was not found in the data object:
Now initializing {} {}"""
.format(parent_type, parent_name, parent_type, parent_name)
)
parent = parent_constructor(parent_name, None)
item_constructor = self.data_lists[item_type][2]
if not parent:
parent_name = None
item = item_constructor(item_name, parent_name)
item.age_data = remove_dict_headers(item_dict)
self.write_ages = True
return file_type
|
get_age_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename=None):\n if not filename:\n short_filename = 'er_ages.txt'\n magic_file = os.path.join(self.WD, short_filename)\n else:\n magic_file = filename\n if not os.path.isfile(magic_file):\n print('-W- Could not find {}'.format(magic_file))\n return False\n data_dict, header, file_type = self.read_magic_file(magic_file,\n 'by_line_number')\n if file_type != 'er_ages':\n item_type = file_type.split('_')[1][:-1]\n self.get_magic_info(item_type, filename=filename, sort_by_file_type\n =True)\n return file_type\n for item_dict in list(data_dict.values()):\n item_type = None\n for dtype in ['specimen', 'sample', 'site', 'location']:\n header_name = 'er_' + dtype + '_name'\n if header_name in list(item_dict.keys()):\n if item_dict[header_name]:\n item_type = dtype\n item_name = item_dict[header_name].strip()\n break\n if not item_type:\n print('-W- You must provide a name for your age')\n print(' These data:\\n{}\\n will not be imported'.format(\n item_dict))\n continue\n items_list = self.data_lists[item_type][0]\n item = self.find_by_name(item_name, items_list)\n if not item:\n print(\n \"\"\"-I- A {} named {} in your age file was not found in the data object:\n Now initializing {} {}\"\"\"\n .format(item_type, item_name, item_type, item_name))\n ind = self.ancestry.index(item_type)\n parent_type = self.ancestry[ind + 1]\n parent_header, parent_constructor = None, None\n if parent_type:\n parent_list, parent_class, parent_constructor = (self.\n data_lists[parent_type])\n parent_header = 'er_' + parent_type + '_name'\n parent_name = item_dict.get(parent_header, '')\n parent = self.find_by_name(parent_name, parent_list)\n if parent_name and not parent:\n print(\n \"\"\"-I- A {} named {} in your age file was not found in the data object:\n Now initializing {} {}\"\"\"\n .format(parent_type, parent_name, parent_type, parent_name)\n )\n parent = parent_constructor(parent_name, None)\n item_constructor = self.data_lists[item_type][2]\n if not parent:\n parent_name = None\n item = item_constructor(item_name, parent_name)\n item.age_data = remove_dict_headers(item_dict)\n self.write_ages = True\n return file_type\n",
"role": "user"
},
{
"content": "get_age_info",
"role": "assistant"
}
] |
def x(self, filename=None):
if not filename:
short_filename = 'pmag_results.txt'
magic_file = os.path.join(self.WD, short_filename)
else:
magic_file = filename
if not os.path.isfile(magic_file):
print('-W- Could not find {} in your working directory {}'.format(
short_filename, self.WD))
return False
data_dict = self.read_magic_file(magic_file, 'by_line_number')[0]
def x(string, search_items_list):
names = string.split(':')
items = []
for name in names:
name = name.strip(' ')
item = self.find_by_name(name, search_items_list)
if item:
items.append(item)
return items
for num, result in list(data_dict.items()):
name, specimens, samples, sites, locations = (None, None, None,
None, None)
for key, value in list(result.items()):
if key == 'er_specimen_names':
specimens = make_items_list(value, self.specimens)
if key == 'er_sample_names':
samples = make_items_list(value, self.samples)
if key == 'er_site_names':
sites = make_items_list(value, self.sites)
if key == 'er_location_names':
locations = make_items_list(value, self.locations)
if key == 'pmag_result_name':
name = value
for header_name in ['er_specimen_names', 'er_site_names',
'er_sample_names', 'er_location_names']:
if header_name in list(result.keys()):
result.pop(header_name)
if not name:
name = num
result_item = self.find_by_name(name, self.results)
if not result_item:
result_item = Result(name, specimens, samples, sites, locations,
result, self.data_model)
else:
print(
"""-W- Two or more results with name: {} found in your result file.
Taking only the first."""
.format(name))
if result_item and result_item not in self.results:
self.results.append(result_item)
|
get_results_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename=None):\n if not filename:\n short_filename = 'pmag_results.txt'\n magic_file = os.path.join(self.WD, short_filename)\n else:\n magic_file = filename\n if not os.path.isfile(magic_file):\n print('-W- Could not find {} in your working directory {}'.format(\n short_filename, self.WD))\n return False\n data_dict = self.read_magic_file(magic_file, 'by_line_number')[0]\n\n def x(string, search_items_list):\n names = string.split(':')\n items = []\n for name in names:\n name = name.strip(' ')\n item = self.find_by_name(name, search_items_list)\n if item:\n items.append(item)\n return items\n for num, result in list(data_dict.items()):\n name, specimens, samples, sites, locations = (None, None, None,\n None, None)\n for key, value in list(result.items()):\n if key == 'er_specimen_names':\n specimens = make_items_list(value, self.specimens)\n if key == 'er_sample_names':\n samples = make_items_list(value, self.samples)\n if key == 'er_site_names':\n sites = make_items_list(value, self.sites)\n if key == 'er_location_names':\n locations = make_items_list(value, self.locations)\n if key == 'pmag_result_name':\n name = value\n for header_name in ['er_specimen_names', 'er_site_names',\n 'er_sample_names', 'er_location_names']:\n if header_name in list(result.keys()):\n result.pop(header_name)\n if not name:\n name = num\n result_item = self.find_by_name(name, self.results)\n if not result_item:\n result_item = Result(name, specimens, samples, sites, locations,\n result, self.data_model)\n else:\n print(\n \"\"\"-W- Two or more results with name: {} found in your result file.\n Taking only the first.\"\"\"\n .format(name))\n if result_item and result_item not in self.results:\n self.results.append(result_item)\n",
"role": "user"
},
{
"content": "get_results_info",
"role": "assistant"
}
] |
def x(self, path, sort_by_this_name, sort_by_file_type=False):
DATA = {}
with open(path, 'r') as fin:
lines = list(fin.readlines())
first_line = lines[0]
if not first_line:
return False, None, 'empty_file'
if first_line[0] == 's' or first_line[1] == 's':
delim = ' '
elif first_line[0] == 't' or first_line[1] == 't':
delim = '\t'
else:
print('-W- error reading ', path)
return False, None, 'bad_file'
file_type = first_line.strip('\n').split(delim)[1]
if sort_by_file_type:
item_type = file_type.split('_')[1][:-1]
if item_type == 'age':
sort_by_this_name = 'by_line_number'
else:
sort_by_this_name = 'er_' + item_type + '_name'
line = lines[1]
header = line.strip('\n').split(delim)
counter = 0
for line in lines[2:]:
tmp_data = {}
tmp_line = line.strip('\n').split(delim)
for i in range(len(header)):
if i < len(tmp_line):
tmp_data[header[i]] = tmp_line[i].strip()
else:
tmp_data[header[i]] = ''
if sort_by_this_name == 'by_line_number':
DATA[counter] = tmp_data
counter += 1
elif tmp_data[sort_by_this_name] != '':
DATA[tmp_data[sort_by_this_name]] = tmp_data
return DATA, header, file_type
|
read_magic_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path, sort_by_this_name, sort_by_file_type=False):\n DATA = {}\n with open(path, 'r') as fin:\n lines = list(fin.readlines())\n first_line = lines[0]\n if not first_line:\n return False, None, 'empty_file'\n if first_line[0] == 's' or first_line[1] == 's':\n delim = ' '\n elif first_line[0] == 't' or first_line[1] == 't':\n delim = '\\t'\n else:\n print('-W- error reading ', path)\n return False, None, 'bad_file'\n file_type = first_line.strip('\\n').split(delim)[1]\n if sort_by_file_type:\n item_type = file_type.split('_')[1][:-1]\n if item_type == 'age':\n sort_by_this_name = 'by_line_number'\n else:\n sort_by_this_name = 'er_' + item_type + '_name'\n line = lines[1]\n header = line.strip('\\n').split(delim)\n counter = 0\n for line in lines[2:]:\n tmp_data = {}\n tmp_line = line.strip('\\n').split(delim)\n for i in range(len(header)):\n if i < len(tmp_line):\n tmp_data[header[i]] = tmp_line[i].strip()\n else:\n tmp_data[header[i]] = ''\n if sort_by_this_name == 'by_line_number':\n DATA[counter] = tmp_data\n counter += 1\n elif tmp_data[sort_by_this_name] != '':\n DATA[tmp_data[sort_by_this_name]] = tmp_data\n return DATA, header, file_type\n",
"role": "user"
},
{
"content": "read_magic_file",
"role": "assistant"
}
] |
def x(self):
warnings = self.validate_data()
print('-I- Writing all saved data to files')
if self.measurements:
self.write_measurements_file()
for dtype in ['specimen', 'sample', 'site']:
if self.data_lists[dtype][0]:
do_pmag = dtype in self.incl_pmag_data
self.write_magic_file(dtype, do_er=True, do_pmag=do_pmag)
if not do_pmag:
pmag_file = os.path.join(self.WD, 'pmag_' + dtype + 's.txt')
if os.path.isfile(pmag_file):
os.remove(pmag_file)
if self.locations:
self.write_magic_file('location', do_er=True, do_pmag=False)
self.write_age_file()
if self.results:
self.write_result_file()
if warnings:
print('-W- ' + str(warnings))
return False, warnings
return True, None
|
write_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n warnings = self.validate_data()\n print('-I- Writing all saved data to files')\n if self.measurements:\n self.write_measurements_file()\n for dtype in ['specimen', 'sample', 'site']:\n if self.data_lists[dtype][0]:\n do_pmag = dtype in self.incl_pmag_data\n self.write_magic_file(dtype, do_er=True, do_pmag=do_pmag)\n if not do_pmag:\n pmag_file = os.path.join(self.WD, 'pmag_' + dtype + 's.txt')\n if os.path.isfile(pmag_file):\n os.remove(pmag_file)\n if self.locations:\n self.write_magic_file('location', do_er=True, do_pmag=False)\n self.write_age_file()\n if self.results:\n self.write_result_file()\n if warnings:\n print('-W- ' + str(warnings))\n return False, warnings\n return True, None\n",
"role": "user"
},
{
"content": "write_files",
"role": "assistant"
}
] |
def x(self):
if not self.write_ages:
print('-I- No age data available to write')
return
first_headers = self.first_age_headers
actual_headers = sorted(self.headers['age']['er'][0])
for header in first_headers:
if header in actual_headers:
actual_headers.remove(header)
add_headers = ['er_specimen_name', 'er_sample_name', 'er_site_name',
'er_location_name']
actual_headers[:0] = first_headers
full_headers = add_headers[:]
full_headers.extend(actual_headers)
header_string = '\t'.join(full_headers)
ages = []
for dtype in ['specimen', 'sample', 'site', 'location']:
ages_list = sorted(self.data_lists[dtype][0], key=lambda item: item
.name)
ages.extend(ages_list)
age_strings = []
for age in ages:
ind = self.ancestry.index(age.dtype)
ancestors = ['' for num in range(len(self.ancestry) - (ind + 2))]
data_found = False
string = ''
if age.dtype == 'specimen':
string += age.name + '\t'
elif age.dtype == 'sample':
string += '\t' + age.name + '\t'
elif age.dtype == 'site':
string += '\t\t' + age.name + '\t'
elif age.dtype == 'location':
string += '\t\t\t' + age.name + '\t'
parent = age.get_parent()
grandparent = None
if parent:
ancestors[0] = parent.name
grandparent = parent.get_parent()
if grandparent:
ancestors[1] = grandparent.name
greatgrandparent = grandparent.get_parent()
if greatgrandparent:
ancestors[2] = greatgrandparent.name
for ancestor in ancestors:
string += ancestor + '\t'
for key in actual_headers:
try:
add_string = age.age_data[key]
except KeyError:
add_string = ''
age.age_data[key] = ''
if add_string and not key == 'er_citation_names':
data_found = True
if key == 'er_citation_names' and not add_string.strip('\t'):
add_string = 'This study'
string += add_string + '\t'
if string.endswith('\t'):
string = string[:-1]
if data_found:
age_strings.append(string)
outfile = open(os.path.join(self.WD, 'er_ages.txt'), 'w')
outfile.write('tab\ter_ages\n')
outfile.write(header_string + '\n')
if not age_strings:
outfile.close()
os.remove(os.path.join(self.WD, 'er_ages.txt'))
return False
for string in age_strings:
outfile.write(string + '\n')
outfile.close()
return outfile
|
write_age_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.write_ages:\n print('-I- No age data available to write')\n return\n first_headers = self.first_age_headers\n actual_headers = sorted(self.headers['age']['er'][0])\n for header in first_headers:\n if header in actual_headers:\n actual_headers.remove(header)\n add_headers = ['er_specimen_name', 'er_sample_name', 'er_site_name',\n 'er_location_name']\n actual_headers[:0] = first_headers\n full_headers = add_headers[:]\n full_headers.extend(actual_headers)\n header_string = '\\t'.join(full_headers)\n ages = []\n for dtype in ['specimen', 'sample', 'site', 'location']:\n ages_list = sorted(self.data_lists[dtype][0], key=lambda item: item\n .name)\n ages.extend(ages_list)\n age_strings = []\n for age in ages:\n ind = self.ancestry.index(age.dtype)\n ancestors = ['' for num in range(len(self.ancestry) - (ind + 2))]\n data_found = False\n string = ''\n if age.dtype == 'specimen':\n string += age.name + '\\t'\n elif age.dtype == 'sample':\n string += '\\t' + age.name + '\\t'\n elif age.dtype == 'site':\n string += '\\t\\t' + age.name + '\\t'\n elif age.dtype == 'location':\n string += '\\t\\t\\t' + age.name + '\\t'\n parent = age.get_parent()\n grandparent = None\n if parent:\n ancestors[0] = parent.name\n grandparent = parent.get_parent()\n if grandparent:\n ancestors[1] = grandparent.name\n greatgrandparent = grandparent.get_parent()\n if greatgrandparent:\n ancestors[2] = greatgrandparent.name\n for ancestor in ancestors:\n string += ancestor + '\\t'\n for key in actual_headers:\n try:\n add_string = age.age_data[key]\n except KeyError:\n add_string = ''\n age.age_data[key] = ''\n if add_string and not key == 'er_citation_names':\n data_found = True\n if key == 'er_citation_names' and not add_string.strip('\\t'):\n add_string = 'This study'\n string += add_string + '\\t'\n if string.endswith('\\t'):\n string = string[:-1]\n if data_found:\n age_strings.append(string)\n outfile = open(os.path.join(self.WD, 'er_ages.txt'), 'w')\n outfile.write('tab\\ter_ages\\n')\n outfile.write(header_string + '\\n')\n if not age_strings:\n outfile.close()\n os.remove(os.path.join(self.WD, 'er_ages.txt'))\n return False\n for string in age_strings:\n outfile.write(string + '\\n')\n outfile.close()\n return outfile\n",
"role": "user"
},
{
"content": "write_age_file",
"role": "assistant"
}
] |
def x(self):
warnings = {}
spec_warnings, samp_warnings, site_warnings, loc_warnings = {}, {}, {}, {}
if self.specimens:
spec_warnings = self.validate_items(self.specimens, 'specimen')
if self.samples:
samp_warnings = self.validate_items(self.samples, 'sample')
if self.sites:
site_warnings = self.validate_items(self.sites, 'site')
if self.locations:
loc_warnings = self.validate_items(self.locations, 'location')
return spec_warnings, samp_warnings, site_warnings, loc_warnings
|
validate_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n warnings = {}\n spec_warnings, samp_warnings, site_warnings, loc_warnings = {}, {}, {}, {}\n if self.specimens:\n spec_warnings = self.validate_items(self.specimens, 'specimen')\n if self.samples:\n samp_warnings = self.validate_items(self.samples, 'sample')\n if self.sites:\n site_warnings = self.validate_items(self.sites, 'site')\n if self.locations:\n loc_warnings = self.validate_items(self.locations, 'location')\n return spec_warnings, samp_warnings, site_warnings, loc_warnings\n",
"role": "user"
},
{
"content": "validate_data",
"role": "assistant"
}
] |
def x(self, item_list, item_type):
def x(warning_type, dictionary, key, value):
if not value:
return
try:
name = key.name
except AttributeError:
name = key
if not name in dictionary:
dictionary[name] = {}
if not warning_type in dictionary[name]:
dictionary[name][warning_type] = []
for v in value:
dictionary[name][warning_type].append(v)
def x(item, item_type):
warnings = []
item_list, item_class, item_constructor = self.data_lists[item_type]
if not isinstance(item, item_class):
warnings.append(PmagException('wrong type'))
if item not in item_list:
warnings.append(PmagException('not in data object'))
return warnings
def x(item, item_type, parent_type):
if not parent_type:
return []
if not isinstance(item, Pmag_object):
return []
warnings = []
parent = item.get_parent()
parent_list, parent_class, parent_constructor = self.data_lists[
parent_type]
if not parent or not parent.name:
warnings.append(PmagException('missing parent'))
return warnings
if not isinstance(parent, parent_class):
warnings.append(PmagException('invalid parent type', parent))
if not parent in parent_list:
warnings.append(PmagException('parent not in data object', parent))
return warnings
def x(item, child_type):
if not child_type:
return []
warnings = []
children = item.children
child_list, child_class, child_constructor = self.data_lists[child_type
]
for child in children:
if not isinstance(child, child_class):
warnings.append(PmagException('child has wrong type', child))
if not child in child_list:
warnings.append(PmagException('child not in data object',
child))
return warnings
warnings = {}
type_ind = self.ancestry.index(item_type)
parent_type = self.ancestry[type_ind + 1]
child_type = self.ancestry[type_ind - 1]
for item in item_list:
type_warnings = check_item_type(item, item_type)
append_or_create_dict_item('type', warnings, item, type_warnings)
parent_warnings = check_item_for_parent(item, item_type, parent_type)
append_or_create_dict_item('parent', warnings, item, parent_warnings)
child_warnings = check_item_for_children(item, child_type)
append_or_create_dict_item('children', warnings, item, child_warnings)
return warnings
|
validate_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, item_list, item_type):\n\n def x(warning_type, dictionary, key, value):\n if not value:\n return\n try:\n name = key.name\n except AttributeError:\n name = key\n if not name in dictionary:\n dictionary[name] = {}\n if not warning_type in dictionary[name]:\n dictionary[name][warning_type] = []\n for v in value:\n dictionary[name][warning_type].append(v)\n\n def x(item, item_type):\n warnings = []\n item_list, item_class, item_constructor = self.data_lists[item_type]\n if not isinstance(item, item_class):\n warnings.append(PmagException('wrong type'))\n if item not in item_list:\n warnings.append(PmagException('not in data object'))\n return warnings\n\n def x(item, item_type, parent_type):\n if not parent_type:\n return []\n if not isinstance(item, Pmag_object):\n return []\n warnings = []\n parent = item.get_parent()\n parent_list, parent_class, parent_constructor = self.data_lists[\n parent_type]\n if not parent or not parent.name:\n warnings.append(PmagException('missing parent'))\n return warnings\n if not isinstance(parent, parent_class):\n warnings.append(PmagException('invalid parent type', parent))\n if not parent in parent_list:\n warnings.append(PmagException('parent not in data object', parent))\n return warnings\n\n def x(item, child_type):\n if not child_type:\n return []\n warnings = []\n children = item.children\n child_list, child_class, child_constructor = self.data_lists[child_type\n ]\n for child in children:\n if not isinstance(child, child_class):\n warnings.append(PmagException('child has wrong type', child))\n if not child in child_list:\n warnings.append(PmagException('child not in data object',\n child))\n return warnings\n warnings = {}\n type_ind = self.ancestry.index(item_type)\n parent_type = self.ancestry[type_ind + 1]\n child_type = self.ancestry[type_ind - 1]\n for item in item_list:\n type_warnings = check_item_type(item, item_type)\n append_or_create_dict_item('type', warnings, item, type_warnings)\n parent_warnings = check_item_for_parent(item, item_type, parent_type)\n append_or_create_dict_item('parent', warnings, item, parent_warnings)\n child_warnings = check_item_for_children(item, child_type)\n append_or_create_dict_item('children', warnings, item, child_warnings)\n return warnings\n",
"role": "user"
},
{
"content": "validate_items",
"role": "assistant"
}
] |
def x(self, locations):
d = {}
for location in locations:
sites = location.sites
max_lat, min_lat = '', ''
max_lon, min_lon = '', ''
if not any(sites):
d[location.name] = {'location_begin_lat': min_lat,
'location_begin_lon': min_lon, 'location_end_lat': max_lat,
'location_end_lon': max_lon}
continue
lats, lons = [], []
for site in sites:
if site.er_data['site_lon']:
lons.append(site.er_data['site_lon'])
if site.er_data['site_lat']:
lats.append(site.er_data['site_lat'])
if lats:
lats = [float(lat) for lat in lats]
max_lat = max(lats)
min_lat = min(lats)
if lons:
lons = [float(lon) for lon in lons]
max_lon = max(lons)
min_lon = min(lons)
d[location.name] = {'location_begin_lat': min_lat,
'location_begin_lon': min_lon, 'location_end_lat': max_lat,
'location_end_lon': max_lon}
return d
|
get_min_max_lat_lon
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, locations):\n d = {}\n for location in locations:\n sites = location.sites\n max_lat, min_lat = '', ''\n max_lon, min_lon = '', ''\n if not any(sites):\n d[location.name] = {'location_begin_lat': min_lat,\n 'location_begin_lon': min_lon, 'location_end_lat': max_lat,\n 'location_end_lon': max_lon}\n continue\n lats, lons = [], []\n for site in sites:\n if site.er_data['site_lon']:\n lons.append(site.er_data['site_lon'])\n if site.er_data['site_lat']:\n lats.append(site.er_data['site_lat'])\n if lats:\n lats = [float(lat) for lat in lats]\n max_lat = max(lats)\n min_lat = min(lats)\n if lons:\n lons = [float(lon) for lon in lons]\n max_lon = max(lons)\n min_lon = min(lons)\n d[location.name] = {'location_begin_lat': min_lat,\n 'location_begin_lon': min_lon, 'location_end_lat': max_lat,\n 'location_end_lon': max_lon}\n return d\n",
"role": "user"
},
{
"content": "get_min_max_lat_lon",
"role": "assistant"
}
] |
def x(self, new_samp):
self.sample = new_samp
if new_samp:
if not isinstance(new_samp, Sample):
raise Exception
self.propagate_data()
return new_samp
|
set_parent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_samp):\n self.sample = new_samp\n if new_samp:\n if not isinstance(new_samp, Sample):\n raise Exception\n self.propagate_data()\n return new_samp\n",
"role": "user"
},
{
"content": "set_parent",
"role": "assistant"
}
] |
def x(self, new_site):
if new_site:
if not isinstance(new_site, Site):
raise Exception
self.site = new_site
self.propagate_data()
return new_site
|
set_parent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_site):\n if new_site:\n if not isinstance(new_site, Site):\n raise Exception\n self.site = new_site\n self.propagate_data()\n return new_site\n",
"role": "user"
},
{
"content": "set_parent",
"role": "assistant"
}
] |
def x(self, new_name, new_location=None, new_er_data=None, new_pmag_data=
None, replace_data=False):
self.name = new_name
if new_location:
self.location = new_location
self.update_data(new_er_data, new_pmag_data, replace_data)
|
change_site
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_name, new_location=None, new_er_data=None, new_pmag_data=\n None, replace_data=False):\n self.name = new_name\n if new_location:\n self.location = new_location\n self.update_data(new_er_data, new_pmag_data, replace_data)\n",
"role": "user"
},
{
"content": "change_site",
"role": "assistant"
}
] |
def x():
beg, end, pole, geo, tilt, askave, save = 0, 0, [], 0, 0, 0, 0
samp_file = 1
args = sys.argv
geo, tilt, orient = 0, 0, 0
doave = 1
user, comment, doave, coord = '', '', 1, 'g'
geo, orient = 1, 1
dir_path = '.'
if '-h' in args:
print(main.__doc__)
sys.exit()
if '-WD' in sys.argv:
ind = sys.argv.index('-WD')
dir_path = sys.argv[ind + 1]
meas_file = dir_path + '/measurements.txt'
spec_file = dir_path + '/specimens.txt'
samp_file = dir_path + '/samples.txt'
out_file = dir_path + '/nrm_specimens.txt'
if '-A' in args:
doave = 0
if '-f' in args:
ind = args.index('-f')
meas_file = sys.argv[ind + 1]
if '-F' in args:
ind = args.index('-F')
out_file = dir_path + '/' + sys.argv[ind + 1]
speclist = []
if '-fsa' in args:
ind = args.index('-fsa')
samp_file = dir_path + '/' + sys.argv[ind + 1]
if '-crd' in args:
ind = args.index('-crd')
coord = sys.argv[ind + 1]
if coord == 't':
tilt, orient, geo = 1, 1, 1
meas_data = pd.read_csv(meas_file, header=1, sep='\t')
meas_data = meas_data[meas_data['method_codes'].str.contains('LT-NO') ==
True]
meas_data = meas_data[['specimen', 'dir_dec', 'dir_inc']]
meas_data = meas_data.dropna(subset=['dir_dec', 'dir_inc'])
meas_data = pd.DataFrame(meas_data)
if orient == 1:
spec_data = pd.read_csv(spec_file, header=1, sep='\t')
spec_data = spec_data[['specimen', 'sample']]
meas_data = pd.merge(meas_data, spec_data, how='inner', on=['specimen']
)
samp_data = pd.read_csv(samp_file, header=1, sep='\t')
sids = meas_data.specimen.unique()
NrmSpecRecs = []
for spec in sids:
gdec, ginc, bdec, binc = '', '', '', ''
this_spec_data = meas_data[meas_data.specimen.str.contains(spec)]
this_sample = this_spec_data['sample'].iloc[-1]
this_sample_data = samp_data[samp_data['sample'].str.contains(
this_sample)]
this_sample_data = this_sample_data.to_dict('records')
for m in this_spec_data.to_dict('records'):
NrmSpecRec = {'specimen': spec, 'sample': this_sample}
if coord == 'g':
NrmSpecRec['dir_tilt_correction'] = '0'
elif coord == 't':
NrmSpecRec['dir_tilt_correction'] = '100'
else:
NrmSpecRec['dir_tilt_correction'] = '-1'
if not orient:
NrmSpecRec['dir_dec'] = m['dir_dec']
NrmSpecRec['dir_inc'] = m['dir_inc']
NrmSpecRec['method_codes'] = 'SO-NO'
NrmSpecRecs.append(NrmSpecRec)
else:
or_info, az_type = pmag.get_orient(this_sample_data,
this_sample, data_model=3)
if 'azimuth' in or_info.keys() and or_info['azimuth'] != '':
azimuth = or_info['azimuth']
dip = or_info['dip']
gdec, ginc = pmag.dogeo(m['dir_dec'], m['dir_inc'],
azimuth, dip)
if tilt:
if 'bed_dip' in or_info.keys() and or_info['bed_dip'
] != '':
bed_dip = or_info['bed_dip']
bed_dip_dir = or_info['bed_dip_direction']
bdec, binc = pmag.dogeo(gdec, ginc, bed_dip_dir,
bed_dip)
NrmSpecRec['dir_dec'] = bdec
NrmSpecRec['dir_inc'] = binc
NrmSpecRec['method_codes'] = az_type
NrmSpecRecs.append(NrmSpecRec)
else:
print('no bedding orientation data for ', spec)
else:
NrmSpecRec['dir_dec'] = gdec
NrmSpecRec['dir_inc'] = ginc
NrmSpecRec['method_codes'] = az_type
NrmSpecRecs.append(NrmSpecRec)
else:
print('no geo orientation data for ', spec)
pmag.magic_write(out_file, NrmSpecRecs, 'specimens')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n beg, end, pole, geo, tilt, askave, save = 0, 0, [], 0, 0, 0, 0\n samp_file = 1\n args = sys.argv\n geo, tilt, orient = 0, 0, 0\n doave = 1\n user, comment, doave, coord = '', '', 1, 'g'\n geo, orient = 1, 1\n dir_path = '.'\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n meas_file = dir_path + '/measurements.txt'\n spec_file = dir_path + '/specimens.txt'\n samp_file = dir_path + '/samples.txt'\n out_file = dir_path + '/nrm_specimens.txt'\n if '-A' in args:\n doave = 0\n if '-f' in args:\n ind = args.index('-f')\n meas_file = sys.argv[ind + 1]\n if '-F' in args:\n ind = args.index('-F')\n out_file = dir_path + '/' + sys.argv[ind + 1]\n speclist = []\n if '-fsa' in args:\n ind = args.index('-fsa')\n samp_file = dir_path + '/' + sys.argv[ind + 1]\n if '-crd' in args:\n ind = args.index('-crd')\n coord = sys.argv[ind + 1]\n if coord == 't':\n tilt, orient, geo = 1, 1, 1\n meas_data = pd.read_csv(meas_file, header=1, sep='\\t')\n meas_data = meas_data[meas_data['method_codes'].str.contains('LT-NO') ==\n True]\n meas_data = meas_data[['specimen', 'dir_dec', 'dir_inc']]\n meas_data = meas_data.dropna(subset=['dir_dec', 'dir_inc'])\n meas_data = pd.DataFrame(meas_data)\n if orient == 1:\n spec_data = pd.read_csv(spec_file, header=1, sep='\\t')\n spec_data = spec_data[['specimen', 'sample']]\n meas_data = pd.merge(meas_data, spec_data, how='inner', on=['specimen']\n )\n samp_data = pd.read_csv(samp_file, header=1, sep='\\t')\n sids = meas_data.specimen.unique()\n NrmSpecRecs = []\n for spec in sids:\n gdec, ginc, bdec, binc = '', '', '', ''\n this_spec_data = meas_data[meas_data.specimen.str.contains(spec)]\n this_sample = this_spec_data['sample'].iloc[-1]\n this_sample_data = samp_data[samp_data['sample'].str.contains(\n this_sample)]\n this_sample_data = this_sample_data.to_dict('records')\n for m in this_spec_data.to_dict('records'):\n NrmSpecRec = {'specimen': spec, 'sample': this_sample}\n if coord == 'g':\n NrmSpecRec['dir_tilt_correction'] = '0'\n elif coord == 't':\n NrmSpecRec['dir_tilt_correction'] = '100'\n else:\n NrmSpecRec['dir_tilt_correction'] = '-1'\n if not orient:\n NrmSpecRec['dir_dec'] = m['dir_dec']\n NrmSpecRec['dir_inc'] = m['dir_inc']\n NrmSpecRec['method_codes'] = 'SO-NO'\n NrmSpecRecs.append(NrmSpecRec)\n else:\n or_info, az_type = pmag.get_orient(this_sample_data,\n this_sample, data_model=3)\n if 'azimuth' in or_info.keys() and or_info['azimuth'] != '':\n azimuth = or_info['azimuth']\n dip = or_info['dip']\n gdec, ginc = pmag.dogeo(m['dir_dec'], m['dir_inc'],\n azimuth, dip)\n if tilt:\n if 'bed_dip' in or_info.keys() and or_info['bed_dip'\n ] != '':\n bed_dip = or_info['bed_dip']\n bed_dip_dir = or_info['bed_dip_direction']\n bdec, binc = pmag.dogeo(gdec, ginc, bed_dip_dir,\n bed_dip)\n NrmSpecRec['dir_dec'] = bdec\n NrmSpecRec['dir_inc'] = binc\n NrmSpecRec['method_codes'] = az_type\n NrmSpecRecs.append(NrmSpecRec)\n else:\n print('no bedding orientation data for ', spec)\n else:\n NrmSpecRec['dir_dec'] = gdec\n NrmSpecRec['dir_inc'] = ginc\n NrmSpecRec['method_codes'] = az_type\n NrmSpecRecs.append(NrmSpecRec)\n else:\n print('no geo orientation data for ', spec)\n pmag.magic_write(out_file, NrmSpecRecs, 'specimens')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self, LIST, value):
diff = inf
for a in LIST:
if abs(value - a) < diff:
diff = abs(value - a)
result = a
return result
|
find_close_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, LIST, value):\n diff = inf\n for a in LIST:\n if abs(value - a) < diff:\n diff = abs(value - a)\n result = a\n return result\n",
"role": "user"
},
{
"content": "find_close_value",
"role": "assistant"
}
] |
def x(self, Intensities):
Best_array = []
best_array_std_perc = inf
Best_array_tmp = []
Best_interpretations = {}
Best_interpretations_tmp = {}
for this_specimen in list(Intensities.keys()):
for value in Intensities[this_specimen]:
Best_interpretations_tmp[this_specimen] = value
Best_array_tmp = [value]
all_other_specimens = list(Intensities.keys())
all_other_specimens.remove(this_specimen)
for other_specimen in all_other_specimens:
closest_value = self.find_close_value(Intensities[
other_specimen], value)
Best_array_tmp.append(closest_value)
Best_interpretations_tmp[other_specimen] = closest_value
if std(Best_array_tmp, ddof=1) / mean(Best_array_tmp
) < best_array_std_perc:
Best_array = Best_array_tmp
best_array_std_perc = std(Best_array, ddof=1) / mean(
Best_array_tmp)
Best_interpretations = copy.deepcopy(Best_interpretations_tmp)
Best_interpretations_tmp = {}
return Best_interpretations, mean(Best_array), std(Best_array, ddof=1)
|
find_sample_min_std
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, Intensities):\n Best_array = []\n best_array_std_perc = inf\n Best_array_tmp = []\n Best_interpretations = {}\n Best_interpretations_tmp = {}\n for this_specimen in list(Intensities.keys()):\n for value in Intensities[this_specimen]:\n Best_interpretations_tmp[this_specimen] = value\n Best_array_tmp = [value]\n all_other_specimens = list(Intensities.keys())\n all_other_specimens.remove(this_specimen)\n for other_specimen in all_other_specimens:\n closest_value = self.find_close_value(Intensities[\n other_specimen], value)\n Best_array_tmp.append(closest_value)\n Best_interpretations_tmp[other_specimen] = closest_value\n if std(Best_array_tmp, ddof=1) / mean(Best_array_tmp\n ) < best_array_std_perc:\n Best_array = Best_array_tmp\n best_array_std_perc = std(Best_array, ddof=1) / mean(\n Best_array_tmp)\n Best_interpretations = copy.deepcopy(Best_interpretations_tmp)\n Best_interpretations_tmp = {}\n return Best_interpretations, mean(Best_array), std(Best_array, ddof=1)\n",
"role": "user"
},
{
"content": "find_sample_min_std",
"role": "assistant"
}
] |
def x(self, Intensities):
if self.acceptance_criteria['average_by_sample_or_site']['value'
] == 'sample':
int_n_cutoff = self.acceptance_criteria['sample_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value'
]
int_sigma_perc_cutoff = self.acceptance_criteria[
'sample_int_sigma_perc']['value']
else:
int_n_cutoff = self.acceptance_criteria['site_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value']
int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc'
]['value']
if int_n_cutoff == -999:
int_n_cutoff = 2
tmp_Intensities = {}
Acceptable_sample_min_mean, Acceptable_sample_max_mean = '', ''
for this_specimen in list(Intensities.keys()):
B_list = [B for B in Intensities[this_specimen]]
if len(B_list) > 0:
B_list.sort()
tmp_Intensities[this_specimen] = B_list
while len(list(tmp_Intensities.keys())) >= int_n_cutoff:
B_tmp = []
B_tmp_min = 10000000000.0
for specimen in list(tmp_Intensities.keys()):
B_tmp.append(min(tmp_Intensities[specimen]))
if min(tmp_Intensities[specimen]) < B_tmp_min:
specimen_to_remove = specimen
B_tmp_min = min(tmp_Intensities[specimen])
pass_or_fail = self.pass_or_fail_sigma(B_tmp, int_sigma_cutoff,
int_sigma_perc_cutoff)
if pass_or_fail == 'pass':
Acceptable_sample_min_mean = mean(B_tmp)
Acceptable_sample_min_std = std(B_tmp, ddof=1)
break
else:
tmp_Intensities[specimen_to_remove].remove(B_tmp_min)
if len(tmp_Intensities[specimen_to_remove]) == 0:
break
tmp_Intensities = {}
for this_specimen in list(Intensities.keys()):
B_list = [B for B in Intensities[this_specimen]]
if len(B_list) > 0:
B_list.sort()
tmp_Intensities[this_specimen] = B_list
while len(list(tmp_Intensities.keys())) >= int_n_cutoff:
B_tmp = []
B_tmp_max = 0
for specimen in list(tmp_Intensities.keys()):
B_tmp.append(max(tmp_Intensities[specimen]))
if max(tmp_Intensities[specimen]) > B_tmp_max:
specimen_to_remove = specimen
B_tmp_max = max(tmp_Intensities[specimen])
pass_or_fail = self.pass_or_fail_sigma(B_tmp, int_sigma_cutoff,
int_sigma_perc_cutoff)
if pass_or_fail == 'pass':
Acceptable_sample_max_mean = mean(B_tmp)
Acceptable_sample_max_std = std(B_tmp, ddof=1)
break
else:
tmp_Intensities[specimen_to_remove].remove(B_tmp_max)
if len(tmp_Intensities[specimen_to_remove]) < 1:
break
if Acceptable_sample_min_mean == '' or Acceptable_sample_max_mean == '':
return 0.0, 0.0, 0.0, 0.0
return (Acceptable_sample_min_mean, Acceptable_sample_min_std,
Acceptable_sample_max_mean, Acceptable_sample_max_std)
|
find_sample_min_max_interpretation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, Intensities):\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n int_n_cutoff = self.acceptance_criteria['sample_int_n']['value']\n int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value'\n ]\n int_sigma_perc_cutoff = self.acceptance_criteria[\n 'sample_int_sigma_perc']['value']\n else:\n int_n_cutoff = self.acceptance_criteria['site_int_n']['value']\n int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value']\n int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc'\n ]['value']\n if int_n_cutoff == -999:\n int_n_cutoff = 2\n tmp_Intensities = {}\n Acceptable_sample_min_mean, Acceptable_sample_max_mean = '', ''\n for this_specimen in list(Intensities.keys()):\n B_list = [B for B in Intensities[this_specimen]]\n if len(B_list) > 0:\n B_list.sort()\n tmp_Intensities[this_specimen] = B_list\n while len(list(tmp_Intensities.keys())) >= int_n_cutoff:\n B_tmp = []\n B_tmp_min = 10000000000.0\n for specimen in list(tmp_Intensities.keys()):\n B_tmp.append(min(tmp_Intensities[specimen]))\n if min(tmp_Intensities[specimen]) < B_tmp_min:\n specimen_to_remove = specimen\n B_tmp_min = min(tmp_Intensities[specimen])\n pass_or_fail = self.pass_or_fail_sigma(B_tmp, int_sigma_cutoff,\n int_sigma_perc_cutoff)\n if pass_or_fail == 'pass':\n Acceptable_sample_min_mean = mean(B_tmp)\n Acceptable_sample_min_std = std(B_tmp, ddof=1)\n break\n else:\n tmp_Intensities[specimen_to_remove].remove(B_tmp_min)\n if len(tmp_Intensities[specimen_to_remove]) == 0:\n break\n tmp_Intensities = {}\n for this_specimen in list(Intensities.keys()):\n B_list = [B for B in Intensities[this_specimen]]\n if len(B_list) > 0:\n B_list.sort()\n tmp_Intensities[this_specimen] = B_list\n while len(list(tmp_Intensities.keys())) >= int_n_cutoff:\n B_tmp = []\n B_tmp_max = 0\n for specimen in list(tmp_Intensities.keys()):\n B_tmp.append(max(tmp_Intensities[specimen]))\n if max(tmp_Intensities[specimen]) > B_tmp_max:\n specimen_to_remove = specimen\n B_tmp_max = max(tmp_Intensities[specimen])\n pass_or_fail = self.pass_or_fail_sigma(B_tmp, int_sigma_cutoff,\n int_sigma_perc_cutoff)\n if pass_or_fail == 'pass':\n Acceptable_sample_max_mean = mean(B_tmp)\n Acceptable_sample_max_std = std(B_tmp, ddof=1)\n break\n else:\n tmp_Intensities[specimen_to_remove].remove(B_tmp_max)\n if len(tmp_Intensities[specimen_to_remove]) < 1:\n break\n if Acceptable_sample_min_mean == '' or Acceptable_sample_max_mean == '':\n return 0.0, 0.0, 0.0, 0.0\n return (Acceptable_sample_min_mean, Acceptable_sample_min_std,\n Acceptable_sample_max_mean, Acceptable_sample_max_std)\n",
"role": "user"
},
{
"content": "find_sample_min_max_interpretation",
"role": "assistant"
}
] |
def x(self, Grade_As):
thellier_interpreter_pars = {}
thellier_interpreter_pars['stdev-opt'] = {}
thellier_interpreter_pars['min-value'] = {}
thellier_interpreter_pars['max-value'] = {}
thellier_interpreter_pars['fail_criteria'] = []
thellier_interpreter_pars['pass_or_fail'] = 'pass'
if self.acceptance_criteria['average_by_sample_or_site']['value'
] == 'sample':
int_n_cutoff = self.acceptance_criteria['sample_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value'
]
int_sigma_perc_cutoff = self.acceptance_criteria[
'sample_int_sigma_perc']['value']
int_interval_cutoff = self.acceptance_criteria['sample_int_interval_uT'
]['value']
int_interval_perc_cutoff = self.acceptance_criteria[
'sample_int_interval_perc']['value']
else:
int_n_cutoff = self.acceptance_criteria['site_int_n']['value']
int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value']
int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc'
]['value']
int_interval_cutoff = self.acceptance_criteria['site_int_interval_uT'][
'value']
int_interval_perc_cutoff = self.acceptance_criteria[
'site_int_interval_perc']['value']
N = len(list(Grade_As.keys()))
if N <= 1:
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append('int_n')
return thellier_interpreter_pars
Best_interpretations, best_mean, best_std = self.find_sample_min_std(
Grade_As)
(sample_acceptable_min, sample_acceptable_min_std,
sample_acceptable_max, sample_acceptable_max_std
) = self.find_sample_min_max_interpretation(Grade_As)
sample_int_interval_uT = sample_acceptable_max - sample_acceptable_min
sample_int_interval_perc = 100 * ((sample_acceptable_max -
sample_acceptable_min) / best_mean)
thellier_interpreter_pars['stdev_opt_interpretations'
] = Best_interpretations
thellier_interpreter_pars['stdev-opt']['B'] = best_mean
thellier_interpreter_pars['stdev-opt']['std'] = best_std
thellier_interpreter_pars['stdev-opt']['std_perc'] = 100.0 * (best_std /
best_mean)
thellier_interpreter_pars['min-value']['B'] = sample_acceptable_min
thellier_interpreter_pars['min-value']['std'] = sample_acceptable_min_std
thellier_interpreter_pars['max-value']['B'] = sample_acceptable_max
thellier_interpreter_pars['max-value']['std'] = sample_acceptable_max_std
thellier_interpreter_pars['sample_int_interval_uT'
] = sample_int_interval_uT
thellier_interpreter_pars['sample_int_interval_perc'
] = sample_int_interval_perc
if N < int_n_cutoff:
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append('int_n')
pass_int_sigma, pass_int_sigma_perc = True, True
pass_int_interval, pass_int_interval_perc = True, True
if not (int_sigma_cutoff == -999 and int_sigma_perc_cutoff == -999):
if (best_std <= int_sigma_cutoff * 1000000.0 and int_sigma_cutoff !=
-999):
pass_sigma = True
else:
pass_sigma = False
if 100.0 * (best_std / best_mean
) <= int_sigma_perc_cutoff and int_sigma_perc_cutoff != -999:
pass_sigma_perc = True
else:
pass_sigma_perc = False
if not (pass_sigma or pass_sigma_perc):
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append('int_sigma')
if not (int_interval_cutoff == -999 and int_interval_perc_cutoff == -999):
if (sample_int_interval_uT <= int_interval_perc_cutoff and
int_interval_perc_cutoff != -999):
pass_interval = True
else:
pass_interval = False
if (sample_int_interval_perc <= int_interval_perc_cutoff and
int_interval_perc_cutoff != -999):
pass_interval_perc = True
else:
pass_interval_perc = False
if not (pass_interval or pass_interval_perc):
thellier_interpreter_pars['pass_or_fail'] = 'fail'
thellier_interpreter_pars['fail_criteria'].append('int_interval')
return thellier_interpreter_pars
|
thellier_interpreter_pars_calc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, Grade_As):\n thellier_interpreter_pars = {}\n thellier_interpreter_pars['stdev-opt'] = {}\n thellier_interpreter_pars['min-value'] = {}\n thellier_interpreter_pars['max-value'] = {}\n thellier_interpreter_pars['fail_criteria'] = []\n thellier_interpreter_pars['pass_or_fail'] = 'pass'\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n int_n_cutoff = self.acceptance_criteria['sample_int_n']['value']\n int_sigma_cutoff = self.acceptance_criteria['sample_int_sigma']['value'\n ]\n int_sigma_perc_cutoff = self.acceptance_criteria[\n 'sample_int_sigma_perc']['value']\n int_interval_cutoff = self.acceptance_criteria['sample_int_interval_uT'\n ]['value']\n int_interval_perc_cutoff = self.acceptance_criteria[\n 'sample_int_interval_perc']['value']\n else:\n int_n_cutoff = self.acceptance_criteria['site_int_n']['value']\n int_sigma_cutoff = self.acceptance_criteria['site_int_sigma']['value']\n int_sigma_perc_cutoff = self.acceptance_criteria['site_int_sigma_perc'\n ]['value']\n int_interval_cutoff = self.acceptance_criteria['site_int_interval_uT'][\n 'value']\n int_interval_perc_cutoff = self.acceptance_criteria[\n 'site_int_interval_perc']['value']\n N = len(list(Grade_As.keys()))\n if N <= 1:\n thellier_interpreter_pars['pass_or_fail'] = 'fail'\n thellier_interpreter_pars['fail_criteria'].append('int_n')\n return thellier_interpreter_pars\n Best_interpretations, best_mean, best_std = self.find_sample_min_std(\n Grade_As)\n (sample_acceptable_min, sample_acceptable_min_std,\n sample_acceptable_max, sample_acceptable_max_std\n ) = self.find_sample_min_max_interpretation(Grade_As)\n sample_int_interval_uT = sample_acceptable_max - sample_acceptable_min\n sample_int_interval_perc = 100 * ((sample_acceptable_max -\n sample_acceptable_min) / best_mean)\n thellier_interpreter_pars['stdev_opt_interpretations'\n ] = Best_interpretations\n thellier_interpreter_pars['stdev-opt']['B'] = best_mean\n thellier_interpreter_pars['stdev-opt']['std'] = best_std\n thellier_interpreter_pars['stdev-opt']['std_perc'] = 100.0 * (best_std /\n best_mean)\n thellier_interpreter_pars['min-value']['B'] = sample_acceptable_min\n thellier_interpreter_pars['min-value']['std'] = sample_acceptable_min_std\n thellier_interpreter_pars['max-value']['B'] = sample_acceptable_max\n thellier_interpreter_pars['max-value']['std'] = sample_acceptable_max_std\n thellier_interpreter_pars['sample_int_interval_uT'\n ] = sample_int_interval_uT\n thellier_interpreter_pars['sample_int_interval_perc'\n ] = sample_int_interval_perc\n if N < int_n_cutoff:\n thellier_interpreter_pars['pass_or_fail'] = 'fail'\n thellier_interpreter_pars['fail_criteria'].append('int_n')\n pass_int_sigma, pass_int_sigma_perc = True, True\n pass_int_interval, pass_int_interval_perc = True, True\n if not (int_sigma_cutoff == -999 and int_sigma_perc_cutoff == -999):\n if (best_std <= int_sigma_cutoff * 1000000.0 and int_sigma_cutoff !=\n -999):\n pass_sigma = True\n else:\n pass_sigma = False\n if 100.0 * (best_std / best_mean\n ) <= int_sigma_perc_cutoff and int_sigma_perc_cutoff != -999:\n pass_sigma_perc = True\n else:\n pass_sigma_perc = False\n if not (pass_sigma or pass_sigma_perc):\n thellier_interpreter_pars['pass_or_fail'] = 'fail'\n thellier_interpreter_pars['fail_criteria'].append('int_sigma')\n if not (int_interval_cutoff == -999 and int_interval_perc_cutoff == -999):\n if (sample_int_interval_uT <= int_interval_perc_cutoff and \n int_interval_perc_cutoff != -999):\n pass_interval = True\n else:\n pass_interval = False\n if (sample_int_interval_perc <= int_interval_perc_cutoff and \n int_interval_perc_cutoff != -999):\n pass_interval_perc = True\n else:\n pass_interval_perc = False\n if not (pass_interval or pass_interval_perc):\n thellier_interpreter_pars['pass_or_fail'] = 'fail'\n thellier_interpreter_pars['fail_criteria'].append('int_interval')\n return thellier_interpreter_pars\n",
"role": "user"
},
{
"content": "thellier_interpreter_pars_calc",
"role": "assistant"
}
] |
def x(self, Grade_As):
thellier_interpreter_pars = {}
thellier_interpreter_pars['fail_criteria'] = []
thellier_interpreter_pars['pass_or_fail'] = 'pass'
BOOTSTRAP_N = int(self.preferences['BOOTSTRAP_N'])
Grade_A_samples_BS = {}
if len(list(Grade_As.keys())) >= self.acceptance_criteria['sample_int_n'][
'value']:
for specimen in list(Grade_As.keys()):
if specimen not in list(Grade_A_samples_BS.keys()) and len(Grade_As
[specimen]) > 0:
Grade_A_samples_BS[specimen] = []
for B in Grade_As[specimen]:
Grade_A_samples_BS[specimen].append(B)
Grade_A_samples_BS[specimen].sort()
specimen_int_max_slope_diff = max(Grade_A_samples_BS[specimen]
) / min(Grade_A_samples_BS[specimen])
if specimen_int_max_slope_diff > self.acceptance_criteria[
'specimen_int_max_slope_diff']:
self.thellier_interpreter_log.write(
"""-I- specimen %s Failed specimen_int_max_slope_diff
""" %
specimen, Grade_A_samples_BS[specimen])
del Grade_A_samples_BS[specimen]
if len(list(Grade_A_samples_BS.keys())) >= self.acceptance_criteria[
'sample_int_n']['value']:
BS_means_collection = []
for i in range(BOOTSTRAP_N):
B_BS = []
for j in range(len(list(Grade_A_samples_BS.keys()))):
LIST = list(Grade_A_samples_BS.keys())
specimen = random.choice(LIST)
if self.acceptance_criteria['interpreter_method']['value'
] == 'bs':
B = random.choice(Grade_A_samples_BS[specimen])
if self.acceptance_criteria['interpreter_method']['value'
] == 'bs_par':
B = random.uniform(min(Grade_A_samples_BS[specimen]),
max(Grade_A_samples_BS[specimen]))
B_BS.append(B)
BS_means_collection.append(mean(B_BS))
BS_means = array(BS_means_collection)
BS_means.sort()
sample_median = median(BS_means)
sample_std = std(BS_means, ddof=1)
sample_68 = [BS_means[0.16 * len(BS_means)], BS_means[0.84 * len(
BS_means)]]
sample_95 = [BS_means[0.025 * len(BS_means)], BS_means[0.975 * len(
BS_means)]]
else:
String = '-I- sample %s FAIL: not enough specimen int_n= %i < %i ' % (
sample, len(list(Grade_A_samples_BS.keys())), int(self.
acceptance_criteria['sample_int_n']['value']))
self.thellier_interpreter_log.write(String)
thellier_interpreter_pars['bs_bedian'] = sample_median
thellier_interpreter_pars['bs_std'] = sample_std
thellier_interpreter_pars['bs_68'] = sample_68
thellier_interpreter_pars['bs_95'] = sample_95
thellier_interpreter_pars['bs_n'] = len(list(Grade_A_samples_BS.keys()))
|
thellier_interpreter_BS_pars_calc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, Grade_As):\n thellier_interpreter_pars = {}\n thellier_interpreter_pars['fail_criteria'] = []\n thellier_interpreter_pars['pass_or_fail'] = 'pass'\n BOOTSTRAP_N = int(self.preferences['BOOTSTRAP_N'])\n Grade_A_samples_BS = {}\n if len(list(Grade_As.keys())) >= self.acceptance_criteria['sample_int_n'][\n 'value']:\n for specimen in list(Grade_As.keys()):\n if specimen not in list(Grade_A_samples_BS.keys()) and len(Grade_As\n [specimen]) > 0:\n Grade_A_samples_BS[specimen] = []\n for B in Grade_As[specimen]:\n Grade_A_samples_BS[specimen].append(B)\n Grade_A_samples_BS[specimen].sort()\n specimen_int_max_slope_diff = max(Grade_A_samples_BS[specimen]\n ) / min(Grade_A_samples_BS[specimen])\n if specimen_int_max_slope_diff > self.acceptance_criteria[\n 'specimen_int_max_slope_diff']:\n self.thellier_interpreter_log.write(\n \"\"\"-I- specimen %s Failed specimen_int_max_slope_diff\n\"\"\" %\n specimen, Grade_A_samples_BS[specimen])\n del Grade_A_samples_BS[specimen]\n if len(list(Grade_A_samples_BS.keys())) >= self.acceptance_criteria[\n 'sample_int_n']['value']:\n BS_means_collection = []\n for i in range(BOOTSTRAP_N):\n B_BS = []\n for j in range(len(list(Grade_A_samples_BS.keys()))):\n LIST = list(Grade_A_samples_BS.keys())\n specimen = random.choice(LIST)\n if self.acceptance_criteria['interpreter_method']['value'\n ] == 'bs':\n B = random.choice(Grade_A_samples_BS[specimen])\n if self.acceptance_criteria['interpreter_method']['value'\n ] == 'bs_par':\n B = random.uniform(min(Grade_A_samples_BS[specimen]),\n max(Grade_A_samples_BS[specimen]))\n B_BS.append(B)\n BS_means_collection.append(mean(B_BS))\n BS_means = array(BS_means_collection)\n BS_means.sort()\n sample_median = median(BS_means)\n sample_std = std(BS_means, ddof=1)\n sample_68 = [BS_means[0.16 * len(BS_means)], BS_means[0.84 * len(\n BS_means)]]\n sample_95 = [BS_means[0.025 * len(BS_means)], BS_means[0.975 * len(\n BS_means)]]\n else:\n String = '-I- sample %s FAIL: not enough specimen int_n= %i < %i ' % (\n sample, len(list(Grade_A_samples_BS.keys())), int(self.\n acceptance_criteria['sample_int_n']['value']))\n self.thellier_interpreter_log.write(String)\n thellier_interpreter_pars['bs_bedian'] = sample_median\n thellier_interpreter_pars['bs_std'] = sample_std\n thellier_interpreter_pars['bs_68'] = sample_68\n thellier_interpreter_pars['bs_95'] = sample_95\n thellier_interpreter_pars['bs_n'] = len(list(Grade_A_samples_BS.keys()))\n",
"role": "user"
},
{
"content": "thellier_interpreter_BS_pars_calc",
"role": "assistant"
}
] |
def x(dictionary, mapping):
mapped_dictionary = {}
for key, value in dictionary.items():
if key in list(mapping.keys()):
new_key = mapping[key]
if new_key in mapped_dictionary:
if hasattr(value, 'any'):
if not value.any():
continue
if hasattr(mapped_dictionary, 'any'):
if value.any() and not mapped_dictionary[new_key].any(
):
mapped_dictionary[new_key] = value
elif value.any() and mapped_dictionary[new_key].any():
mapped_dictionary[new_key] = value
elif value.any() and not mapped_dictionary[new_key].any():
mapped_dictionary[new_key] = value
elif value.any() and mapped_dictionary[new_key].any():
mapped_dictionary[new_key] = value
elif not value:
continue
elif value and not mapped_dictionary[new_key]:
mapped_dictionary[new_key] = value
elif value and mapped_dictionary[new_key]:
mapped_dictionary[new_key] = value
else:
mapped_dictionary[new_key] = value
else:
mapped_dictionary[key] = value
return mapped_dictionary
|
mapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dictionary, mapping):\n mapped_dictionary = {}\n for key, value in dictionary.items():\n if key in list(mapping.keys()):\n new_key = mapping[key]\n if new_key in mapped_dictionary:\n if hasattr(value, 'any'):\n if not value.any():\n continue\n if hasattr(mapped_dictionary, 'any'):\n if value.any() and not mapped_dictionary[new_key].any(\n ):\n mapped_dictionary[new_key] = value\n elif value.any() and mapped_dictionary[new_key].any():\n mapped_dictionary[new_key] = value\n elif value.any() and not mapped_dictionary[new_key].any():\n mapped_dictionary[new_key] = value\n elif value.any() and mapped_dictionary[new_key].any():\n mapped_dictionary[new_key] = value\n elif not value:\n continue\n elif value and not mapped_dictionary[new_key]:\n mapped_dictionary[new_key] = value\n elif value and mapped_dictionary[new_key]:\n mapped_dictionary[new_key] = value\n else:\n mapped_dictionary[new_key] = value\n else:\n mapped_dictionary[key] = value\n return mapped_dictionary\n",
"role": "user"
},
{
"content": "mapping",
"role": "assistant"
}
] |
def x(file_path):
def x(dm_type, dm):
table_names3_2_table_names2 = {'measurements': [
'magic_measurements'], 'locations': ['er_locations'], 'sites':
['er_sites', 'pmag_sites'], 'samples': ['er_samples',
'pmag_samples'], 'specimens': ['er_specimens', 'pmag_specimens'
], 'ages': ['er_ages'], 'criteria': ['pmag_criteria'], 'images':
['er_images'], 'contribution': []}
table_names3 = table_names3_2_table_names2[dm_type]
dictionary = {}
for label, row in dm.iterrows():
if isinstance(row['previous_columns'], list):
for previous_values in row['previous_columns']:
previous_table = previous_values['table']
previous_value = previous_values['column']
if previous_table in table_names3:
add_to_dict(previous_value, label, dictionary)
elif previous_table in ['pmag_results', 'rmag_results']:
if label not in dictionary.values():
if previous_value not in dictionary.keys():
add_to_dict(previous_value, label, dictionary)
return dictionary
def x(key, value, dictionary):
if key in dictionary:
if value != dictionary[key]:
print('W- OVERWRITING')
print('was:', key, dictionary[key])
print('now:', key, value)
dictionary[key] = value
data_model = DataModel()
maps = {}
for table_name in data_model.dm:
dm = data_model.dm[table_name]
new_mapping = get_2_to_3(table_name, dm)
maps[table_name] = new_mapping
f = open(file_path, 'w')
f.write('all_maps = ')
json.dump(maps, f)
f.close()
return maps
|
cache_mappings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path):\n\n def x(dm_type, dm):\n table_names3_2_table_names2 = {'measurements': [\n 'magic_measurements'], 'locations': ['er_locations'], 'sites':\n ['er_sites', 'pmag_sites'], 'samples': ['er_samples',\n 'pmag_samples'], 'specimens': ['er_specimens', 'pmag_specimens'\n ], 'ages': ['er_ages'], 'criteria': ['pmag_criteria'], 'images':\n ['er_images'], 'contribution': []}\n table_names3 = table_names3_2_table_names2[dm_type]\n dictionary = {}\n for label, row in dm.iterrows():\n if isinstance(row['previous_columns'], list):\n for previous_values in row['previous_columns']:\n previous_table = previous_values['table']\n previous_value = previous_values['column']\n if previous_table in table_names3:\n add_to_dict(previous_value, label, dictionary)\n elif previous_table in ['pmag_results', 'rmag_results']:\n if label not in dictionary.values():\n if previous_value not in dictionary.keys():\n add_to_dict(previous_value, label, dictionary)\n return dictionary\n\n def x(key, value, dictionary):\n if key in dictionary:\n if value != dictionary[key]:\n print('W- OVERWRITING')\n print('was:', key, dictionary[key])\n print('now:', key, value)\n dictionary[key] = value\n data_model = DataModel()\n maps = {}\n for table_name in data_model.dm:\n dm = data_model.dm[table_name]\n new_mapping = get_2_to_3(table_name, dm)\n maps[table_name] = new_mapping\n f = open(file_path, 'w')\n f.write('all_maps = ')\n json.dump(maps, f)\n f.close()\n return maps\n",
"role": "user"
},
{
"content": "cache_mappings",
"role": "assistant"
}
] |
def x(input_df, output=2):
if int(output) == 2:
thellier_gui_meas3_2_meas2_map = meas_magic3_2_magic2_map.copy()
if 'treat_step_num' in input_df.columns:
thellier_gui_meas3_2_meas2_map.update({'treat_step_num':
'measurement_number'})
thellier_gui_meas3_2_meas2_map.pop('measurement')
return thellier_gui_meas3_2_meas2_map
else:
thellier_gui_meas2_2_meas3_map = meas_magic2_2_magic3_map.copy()
if 'measurement' in input_df.columns:
thellier_gui_meas2_2_meas3_map.pop('measurement_number')
try:
res = int(input_df.iloc[0]['measurement_number'])
if res < 100:
thellier_gui_meas2_2_meas3_map['measurement_number'
] = 'treat_step_num'
except ValueError as ex:
pass
return thellier_gui_meas2_2_meas3_map
|
get_thellier_gui_meas_mapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_df, output=2):\n if int(output) == 2:\n thellier_gui_meas3_2_meas2_map = meas_magic3_2_magic2_map.copy()\n if 'treat_step_num' in input_df.columns:\n thellier_gui_meas3_2_meas2_map.update({'treat_step_num':\n 'measurement_number'})\n thellier_gui_meas3_2_meas2_map.pop('measurement')\n return thellier_gui_meas3_2_meas2_map\n else:\n thellier_gui_meas2_2_meas3_map = meas_magic2_2_magic3_map.copy()\n if 'measurement' in input_df.columns:\n thellier_gui_meas2_2_meas3_map.pop('measurement_number')\n try:\n res = int(input_df.iloc[0]['measurement_number'])\n if res < 100:\n thellier_gui_meas2_2_meas3_map['measurement_number'\n ] = 'treat_step_num'\n except ValueError as ex:\n pass\n return thellier_gui_meas2_2_meas3_map\n",
"role": "user"
},
{
"content": "get_thellier_gui_meas_mapping",
"role": "assistant"
}
] |
def x(meas_df_in, output):
output = int(output)
meas_mapping = get_thellier_gui_meas_mapping(meas_df_in, output)
meas_df_out = meas_df_in.rename(columns=meas_mapping)
if 'measurement' not in meas_df_out.columns:
meas_df_out['measurement'] = meas_df_in['measurement']
return meas_df_out
|
convert_meas_df_thellier_gui
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(meas_df_in, output):\n output = int(output)\n meas_mapping = get_thellier_gui_meas_mapping(meas_df_in, output)\n meas_df_out = meas_df_in.rename(columns=meas_mapping)\n if 'measurement' not in meas_df_out.columns:\n meas_df_out['measurement'] = meas_df_in['measurement']\n return meas_df_out\n",
"role": "user"
},
{
"content": "convert_meas_df_thellier_gui",
"role": "assistant"
}
] |
def x(direction, Rec):
if direction == 'magic3':
columns = meas_magic2_2_magic3_map
MeasRec = {}
for key in columns:
if key in list(Rec.keys()):
MeasRec[columns[key]] = Rec[key]
return MeasRec
else:
pass
|
convert_meas
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(direction, Rec):\n if direction == 'magic3':\n columns = meas_magic2_2_magic3_map\n MeasRec = {}\n for key in columns:\n if key in list(Rec.keys()):\n MeasRec[columns[key]] = Rec[key]\n return MeasRec\n else:\n pass\n",
"role": "user"
},
{
"content": "convert_meas",
"role": "assistant"
}
] |
def x(sites_df):
has_vadms, has_vdms = False, False
if 'int_abs' not in sites_df:
sites_df['int_abs'] = None
if 'int_n_samples' not in sites_df:
sites_df['int_n_samples'] = None
int_df = sites_df.copy().dropna(subset=['int_abs'])
int_df['int_n_samples'] = int_df['int_n_samples'].values.astype('int')
if len(int_df) > 0:
int_df['int_abs_uT'] = 1000000.0 * int_df.int_abs.values
int_df['int_abs_sigma_uT'] = 1000000.0 * int_df.int_abs_sigma.values
int_df['int_abs_uT'] = int_df['int_abs_uT'].values.astype('int')
int_df['int_abs_sigma_uT'] = int_df['int_abs_sigma_uT'].values.astype(
'int')
int_df['int_abs_sigma_perc'] = int_df['int_abs_sigma_perc'
].values.astype('int')
IntCols = ['Site', 'N', 'B', 'B sigma', 'sigma (%)']
if 'vadm' in int_df.columns:
test_vadm = int_df.dropna(subset=['vadm'])
if len(test_vadm) > 0:
has_vadms = True
if 'vdm' in int_df.columns:
test_vdm = int_df.dropna(subset=['vdm'])
if len(test_vdm) > 0:
has_vdms = True
if has_vadms:
IntCols.append('VADM')
IntCols.append('VADM sigma')
if has_vdms:
IntCols.append('VDM')
IntCols.append('VDM sigma')
if not has_vadms and not has_vdms:
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',
'int_abs_sigma_uT', 'int_abs_sigma_perc']]
if has_vadms and not has_vdms:
int_df.sort_values(by=['site', 'vadm'], ascending=False,
inplace=True)
int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)
int_df['vadm_ZAm2'] = 1e-21 * int_df.vadm.values
int_df['vadm_sigma_ZAm2'] = 1e-21 * int_df.vadm_sigma.values
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',
'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vadm_ZAm2',
'vadm_ZAm2_sigma']]
if not has_vadms and has_vdms:
int_df.sort_values(by=['site', 'vdm'], ascending=False, inplace
=True)
int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)
int_df['vdm_ZAm2'] = 1e-21 * int_df.vdm.values()
int_df['vdm_sigma_ZAm2'] = 1e-21 * int_df.vdm_sigma.values()
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',
'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vdm_ZAm2',
'vdm_ZAm2_sigma']]
if has_vadms and has_vdms:
int_df.sort_values(by=['site', 'vadm'], ascending=False,
inplace=True)
int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)
int_df['vadm_ZAm2'] = 1e-21 * int_df.vadm.values
int_df['vadm_sigma_ZAm2'] = 1e-21 * int_df.vadm_sigma.values
int_df['vdm_ZAm2'] = 1e-21 * int_df.vdm.values
int_df['vdm_sigma_ZAm2'] = 1e-21 * int_df.vdm_sigma.values
int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',
'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vadm_ZAm2',
'vadm_sigma_ZAm2', 'vdm_ZAm2', 'vdm_sigma_ZAm2']]
int_df.columns = IntCols
int_df.sort_values(by=['Site'], inplace=True, ascending=True)
int_df.fillna(value='', inplace=True)
return int_df
|
convert_site_dm3_table_intensity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sites_df):\n has_vadms, has_vdms = False, False\n if 'int_abs' not in sites_df:\n sites_df['int_abs'] = None\n if 'int_n_samples' not in sites_df:\n sites_df['int_n_samples'] = None\n int_df = sites_df.copy().dropna(subset=['int_abs'])\n int_df['int_n_samples'] = int_df['int_n_samples'].values.astype('int')\n if len(int_df) > 0:\n int_df['int_abs_uT'] = 1000000.0 * int_df.int_abs.values\n int_df['int_abs_sigma_uT'] = 1000000.0 * int_df.int_abs_sigma.values\n int_df['int_abs_uT'] = int_df['int_abs_uT'].values.astype('int')\n int_df['int_abs_sigma_uT'] = int_df['int_abs_sigma_uT'].values.astype(\n 'int')\n int_df['int_abs_sigma_perc'] = int_df['int_abs_sigma_perc'\n ].values.astype('int')\n IntCols = ['Site', 'N', 'B', 'B sigma', 'sigma (%)']\n if 'vadm' in int_df.columns:\n test_vadm = int_df.dropna(subset=['vadm'])\n if len(test_vadm) > 0:\n has_vadms = True\n if 'vdm' in int_df.columns:\n test_vdm = int_df.dropna(subset=['vdm'])\n if len(test_vdm) > 0:\n has_vdms = True\n if has_vadms:\n IntCols.append('VADM')\n IntCols.append('VADM sigma')\n if has_vdms:\n IntCols.append('VDM')\n IntCols.append('VDM sigma')\n if not has_vadms and not has_vdms:\n int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',\n 'int_abs_sigma_uT', 'int_abs_sigma_perc']]\n if has_vadms and not has_vdms:\n int_df.sort_values(by=['site', 'vadm'], ascending=False,\n inplace=True)\n int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)\n int_df['vadm_ZAm2'] = 1e-21 * int_df.vadm.values\n int_df['vadm_sigma_ZAm2'] = 1e-21 * int_df.vadm_sigma.values\n int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',\n 'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vadm_ZAm2',\n 'vadm_ZAm2_sigma']]\n if not has_vadms and has_vdms:\n int_df.sort_values(by=['site', 'vdm'], ascending=False, inplace\n =True)\n int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)\n int_df['vdm_ZAm2'] = 1e-21 * int_df.vdm.values()\n int_df['vdm_sigma_ZAm2'] = 1e-21 * int_df.vdm_sigma.values()\n int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',\n 'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vdm_ZAm2',\n 'vdm_ZAm2_sigma']]\n if has_vadms and has_vdms:\n int_df.sort_values(by=['site', 'vadm'], ascending=False,\n inplace=True)\n int_df.drop_duplicates(subset=['int_abs_uT', 'site'], inplace=True)\n int_df['vadm_ZAm2'] = 1e-21 * int_df.vadm.values\n int_df['vadm_sigma_ZAm2'] = 1e-21 * int_df.vadm_sigma.values\n int_df['vdm_ZAm2'] = 1e-21 * int_df.vdm.values\n int_df['vdm_sigma_ZAm2'] = 1e-21 * int_df.vdm_sigma.values\n int_df = int_df[['site', 'int_n_samples', 'int_abs_uT',\n 'int_abs_sigma_uT', 'int_abs_sigma_perc', 'vadm_ZAm2',\n 'vadm_sigma_ZAm2', 'vdm_ZAm2', 'vdm_sigma_ZAm2']]\n int_df.columns = IntCols\n int_df.sort_values(by=['Site'], inplace=True, ascending=True)\n int_df.fillna(value='', inplace=True)\n return int_df\n",
"role": "user"
},
{
"content": "convert_site_dm3_table_intensity",
"role": "assistant"
}
] |
def x(sites_df):
dir_df = sites_df.copy().dropna(subset=['dir_dec', 'dir_inc'])
DirCols = ['Site', 'TC (%)', 'Dec.', 'Inc.', 'N', 'k ', 'R', 'a95',
'VGP Lat', 'VGP Long']
columns = ['site', 'dir_tilt_correction', 'dir_dec', 'dir_inc',
'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95', 'vgp_lat', 'vgp_lon']
dm3_to_readable = dict(zip(columns, DirCols))
if len(dir_df) > 0:
for col in ['dir_n_samples', 'dir_tilt_correction']:
if col in dir_df.columns:
dir_df[col] = dir_df[col].values.astype('int')
columns = dir_df.columns.intersection(columns)
has_vgps = False
if 'vgp_lat' in dir_df.columns:
test_vgp = dir_df.dropna(subset=['vgp_lat', 'vgp_lon'])
if len(test_vgp) > 0:
has_vgps = True
if has_vgps:
dir_df['vgp_lat_abs'] = dir_df.vgp_lat.abs()
dir_df.sort_values(by=['site', 'vgp_lat_abs'], ascending=False,
inplace=True)
dir_df = dir_df[columns]
dir_df.drop_duplicates(subset=['dir_dec', 'dir_inc', 'site'],
inplace=True)
else:
dir_df.drop_duplicates(subset=['dir_dec', 'dir_inc', 'site'],
inplace=True)
dir_df = dir_df[['site', 'dir_tilt_correction', 'dir_dec',
'dir_inc', 'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95']]
dir_df.rename(dm3_to_readable, axis='columns', inplace=True)
dir_df.sort_values(by=['Site'], inplace=True, ascending=True)
new_cols = list(dir_df.columns.drop('Site'))
dir_df = dir_df[['Site'] + new_cols]
return dir_df
|
convert_site_dm3_table_directions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sites_df):\n dir_df = sites_df.copy().dropna(subset=['dir_dec', 'dir_inc'])\n DirCols = ['Site', 'TC (%)', 'Dec.', 'Inc.', 'N', 'k ', 'R', 'a95',\n 'VGP Lat', 'VGP Long']\n columns = ['site', 'dir_tilt_correction', 'dir_dec', 'dir_inc',\n 'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95', 'vgp_lat', 'vgp_lon']\n dm3_to_readable = dict(zip(columns, DirCols))\n if len(dir_df) > 0:\n for col in ['dir_n_samples', 'dir_tilt_correction']:\n if col in dir_df.columns:\n dir_df[col] = dir_df[col].values.astype('int')\n columns = dir_df.columns.intersection(columns)\n has_vgps = False\n if 'vgp_lat' in dir_df.columns:\n test_vgp = dir_df.dropna(subset=['vgp_lat', 'vgp_lon'])\n if len(test_vgp) > 0:\n has_vgps = True\n if has_vgps:\n dir_df['vgp_lat_abs'] = dir_df.vgp_lat.abs()\n dir_df.sort_values(by=['site', 'vgp_lat_abs'], ascending=False,\n inplace=True)\n dir_df = dir_df[columns]\n dir_df.drop_duplicates(subset=['dir_dec', 'dir_inc', 'site'],\n inplace=True)\n else:\n dir_df.drop_duplicates(subset=['dir_dec', 'dir_inc', 'site'],\n inplace=True)\n dir_df = dir_df[['site', 'dir_tilt_correction', 'dir_dec',\n 'dir_inc', 'dir_n_samples', 'dir_k', 'dir_r', 'dir_alpha95']]\n dir_df.rename(dm3_to_readable, axis='columns', inplace=True)\n dir_df.sort_values(by=['Site'], inplace=True, ascending=True)\n new_cols = list(dir_df.columns.drop('Site'))\n dir_df = dir_df[['Site'] + new_cols]\n return dir_df\n",
"role": "user"
},
{
"content": "convert_site_dm3_table_directions",
"role": "assistant"
}
] |
def x(spec_df):
from pmagpy import data_model3 as dm3
dm = dm3.DataModel()
meas_group = ['meas_step_min', 'meas_step_max', 'meas_step_unit']
pint_group = dm.get_group_headers('specimens', 'Paleointensity')
arai_group = dm.get_group_headers('specimens',
'Paleointensity Arai Statistics')
dm3_columns = list(meas_group) + list(pint_group) + list(arai_group)
dm3_columns = filter(lambda x: '_rel' not in x, dm3_columns)
meas_group_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit']
pint_group_columns = list(spec_df.columns.intersection(pint_group))
arai_group_columns = list(spec_df.columns.intersection(arai_group))
columns = ['specimen', 'sample'
] + meas_group_columns + pint_group_columns + arai_group_columns
spec_df = spec_df.copy()[columns]
muT_list = ['int_abs', 'int_abs_sigma', 'int_treat_dc_field']
meas_list = ['meas_step_min', 'meas_step_max']
for el in muT_list:
if el in columns:
spec_df[el] = 1000000.0 * spec_df[el]
if 'meas_step_unit' in columns:
for el in meas_list:
spec_df.loc[spec_df['meas_step_unit'] == 'K', el] = spec_df[el
] - 273
spec_df.loc[spec_df['meas_step_unit'] == 'T', el
] = 1000.0 * spec_df[el]
spec_df.loc[spec_df['meas_step_unit'] == 'K', 'meas_step_unit'] = 'C'
spec_df.loc[spec_df['meas_step_unit'] == 'T', 'meas_step_unit'] = 'mT'
spec_df['meas_step_min'] = spec_df['meas_step_min'].astype('int')
spec_df['meas_step_max'] = spec_df['meas_step_max'].astype('int')
dm3_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit',
'int_abs', 'int_abs_sigma', 'int_abs_sigma_perc',
'int_n_measurements', 'int_corr', 'int_corr_cooling_rate',
'int_corr_aniso', 'int_corr_nlt', 'int_corr_arm',
'int_viscosity_index', 'int_treat_dc_field', 'int_b', 'int_b_sigma',
'int_b_beta', 'int_rsc', 'int_f', 'int_fvds', 'int_frac', 'int_g',
'int_gmax', 'int_q', 'int_w', 'int_k', 'int_k_sse', 'int_k_prime',
'int_k_prime_sse', 'int_scat', 'int_r2_corr', 'int_r2_det', 'int_z',
'int_z_md']
table_columns = ['Min', 'Max', 'Units', 'B (uT)', 'sigma', 'percent',
'N', 'c/u', 'CR', 'Aniso.', 'NLT', 'AARM', 'VI', 'Lab Field', 'b',
'b sigma', 'beta', 'R2', 'f', 'fvds', 'frac', 'g', 'gap max', 'q',
'w', 'k', 'k sse', 'k prime', 'k prime sse', 'scat', 'r2 corr',
'r2 det', 'Z', 'Z md']
spec_mapping = dict(list(zip(dm3_columns, table_columns)))
spec_df_out = spec_df.rename(columns=spec_mapping)
if 'N' in spec_df_out.columns:
spec_df_out['N'] = spec_df_out['N'].astype('int')
if 'Lab Field' in spec_df_out.columns:
spec_df_out['Lab Field'] = spec_df_out['Lab Field'].round().astype(
'int')
return spec_df_out
|
convert_specimen_dm3_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(spec_df):\n from pmagpy import data_model3 as dm3\n dm = dm3.DataModel()\n meas_group = ['meas_step_min', 'meas_step_max', 'meas_step_unit']\n pint_group = dm.get_group_headers('specimens', 'Paleointensity')\n arai_group = dm.get_group_headers('specimens',\n 'Paleointensity Arai Statistics')\n dm3_columns = list(meas_group) + list(pint_group) + list(arai_group)\n dm3_columns = filter(lambda x: '_rel' not in x, dm3_columns)\n meas_group_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit']\n pint_group_columns = list(spec_df.columns.intersection(pint_group))\n arai_group_columns = list(spec_df.columns.intersection(arai_group))\n columns = ['specimen', 'sample'\n ] + meas_group_columns + pint_group_columns + arai_group_columns\n spec_df = spec_df.copy()[columns]\n muT_list = ['int_abs', 'int_abs_sigma', 'int_treat_dc_field']\n meas_list = ['meas_step_min', 'meas_step_max']\n for el in muT_list:\n if el in columns:\n spec_df[el] = 1000000.0 * spec_df[el]\n if 'meas_step_unit' in columns:\n for el in meas_list:\n spec_df.loc[spec_df['meas_step_unit'] == 'K', el] = spec_df[el\n ] - 273\n spec_df.loc[spec_df['meas_step_unit'] == 'T', el\n ] = 1000.0 * spec_df[el]\n spec_df.loc[spec_df['meas_step_unit'] == 'K', 'meas_step_unit'] = 'C'\n spec_df.loc[spec_df['meas_step_unit'] == 'T', 'meas_step_unit'] = 'mT'\n spec_df['meas_step_min'] = spec_df['meas_step_min'].astype('int')\n spec_df['meas_step_max'] = spec_df['meas_step_max'].astype('int')\n dm3_columns = ['meas_step_min', 'meas_step_max', 'meas_step_unit',\n 'int_abs', 'int_abs_sigma', 'int_abs_sigma_perc',\n 'int_n_measurements', 'int_corr', 'int_corr_cooling_rate',\n 'int_corr_aniso', 'int_corr_nlt', 'int_corr_arm',\n 'int_viscosity_index', 'int_treat_dc_field', 'int_b', 'int_b_sigma',\n 'int_b_beta', 'int_rsc', 'int_f', 'int_fvds', 'int_frac', 'int_g',\n 'int_gmax', 'int_q', 'int_w', 'int_k', 'int_k_sse', 'int_k_prime',\n 'int_k_prime_sse', 'int_scat', 'int_r2_corr', 'int_r2_det', 'int_z',\n 'int_z_md']\n table_columns = ['Min', 'Max', 'Units', 'B (uT)', 'sigma', 'percent',\n 'N', 'c/u', 'CR', 'Aniso.', 'NLT', 'AARM', 'VI', 'Lab Field', 'b',\n 'b sigma', 'beta', 'R2', 'f', 'fvds', 'frac', 'g', 'gap max', 'q',\n 'w', 'k', 'k sse', 'k prime', 'k prime sse', 'scat', 'r2 corr',\n 'r2 det', 'Z', 'Z md']\n spec_mapping = dict(list(zip(dm3_columns, table_columns)))\n spec_df_out = spec_df.rename(columns=spec_mapping)\n if 'N' in spec_df_out.columns:\n spec_df_out['N'] = spec_df_out['N'].astype('int')\n if 'Lab Field' in spec_df_out.columns:\n spec_df_out['Lab Field'] = spec_df_out['Lab Field'].round().astype(\n 'int')\n return spec_df_out\n",
"role": "user"
},
{
"content": "convert_specimen_dm3_table",
"role": "assistant"
}
] |
def x():
args = sys.argv
if '-h' in args:
print(main.__doc__)
sys.exit()
dataframe = extractor.command_line_dataframe([['WD', False, '.'], ['ID',
False, ''], ['usr', False, ''], ['ncn', False, '1'], ['k15', False,
False], ['ins', False, ''], ['f', True, ''], ['F', False,
'measurements.txt'], ['Fa', False, 'rmag_anisotropy.txt'], ['Fsi',
False, 'specimens.txt'], ['loc', False, 'unknown'], ['spc', False,
0], ['fsi', False, None], ['DM', False, 3]])
checked_args = extractor.extract_and_check_args(args, dataframe)
(output_dir_path, input_dir_path, user, sample_naming_con,
static_15_position_mode, instrument, ascfile, meas_output,
aniso_output, spec_outfile, locname, specnum, spec_infile,
data_model_num) = (extractor.get_vars(['WD', 'ID', 'usr', 'ncn',
'k15', 'ins', 'f', 'F', 'Fa', 'Fsi', 'loc', 'spc', 'fsi', 'DM'],
checked_args))
convert.sufar4(ascfile, meas_output, aniso_output, spec_infile,
spec_outfile, specnum=specnum, sample_naming_con=sample_naming_con,
user=user, locname=locname, instrument=instrument,
static_15_position_mode=static_15_position_mode, dir_path=
output_dir_path, input_dir_path=input_dir_path, data_model_num=
data_model_num)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n dataframe = extractor.command_line_dataframe([['WD', False, '.'], ['ID',\n False, ''], ['usr', False, ''], ['ncn', False, '1'], ['k15', False,\n False], ['ins', False, ''], ['f', True, ''], ['F', False,\n 'measurements.txt'], ['Fa', False, 'rmag_anisotropy.txt'], ['Fsi', \n False, 'specimens.txt'], ['loc', False, 'unknown'], ['spc', False, \n 0], ['fsi', False, None], ['DM', False, 3]])\n checked_args = extractor.extract_and_check_args(args, dataframe)\n (output_dir_path, input_dir_path, user, sample_naming_con,\n static_15_position_mode, instrument, ascfile, meas_output,\n aniso_output, spec_outfile, locname, specnum, spec_infile,\n data_model_num) = (extractor.get_vars(['WD', 'ID', 'usr', 'ncn',\n 'k15', 'ins', 'f', 'F', 'Fa', 'Fsi', 'loc', 'spc', 'fsi', 'DM'],\n checked_args))\n convert.sufar4(ascfile, meas_output, aniso_output, spec_infile,\n spec_outfile, specnum=specnum, sample_naming_con=sample_naming_con,\n user=user, locname=locname, instrument=instrument,\n static_15_position_mode=static_15_position_mode, dir_path=\n output_dir_path, input_dir_path=input_dir_path, data_model_num=\n data_model_num)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self):
coordinate_list = ['specimen']
initial_coordinate = 'specimen'
for specimen in self.specimens:
if 'geographic' not in coordinate_list and self.Data[specimen][
'zijdblock_geo']:
coordinate_list.append('geographic')
initial_coordinate = 'geographic'
if 'tilt-corrected' not in coordinate_list and self.Data[specimen][
'zijdblock_tilt']:
coordinate_list.append('tilt-corrected')
return initial_coordinate, coordinate_list
|
get_coordinate_system
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n coordinate_list = ['specimen']\n initial_coordinate = 'specimen'\n for specimen in self.specimens:\n if 'geographic' not in coordinate_list and self.Data[specimen][\n 'zijdblock_geo']:\n coordinate_list.append('geographic')\n initial_coordinate = 'geographic'\n if 'tilt-corrected' not in coordinate_list and self.Data[specimen][\n 'zijdblock_tilt']:\n coordinate_list.append('tilt-corrected')\n return initial_coordinate, coordinate_list\n",
"role": "user"
},
{
"content": "get_coordinate_system",
"role": "assistant"
}
] |
def x(self, s, update_high_plots=True):
self.initialize_CART_rot(s)
self.draw_zijderveld()
self.draw_spec_eqarea()
self.draw_MM0()
if len(self.selected_meas) > 0:
self.plot_selected_meas()
if update_high_plots:
self.plot_high_levels_data()
self.canvas4.draw()
|
draw_figure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, s, update_high_plots=True):\n self.initialize_CART_rot(s)\n self.draw_zijderveld()\n self.draw_spec_eqarea()\n self.draw_MM0()\n if len(self.selected_meas) > 0:\n self.plot_selected_meas()\n if update_high_plots:\n self.plot_high_levels_data()\n self.canvas4.draw()\n",
"role": "user"
},
{
"content": "draw_figure",
"role": "assistant"
}
] |
def x(self):
draw_net(self.specimen_eqarea)
self.specimen_eqarea.text(-1.2, 1.15, 'specimen: %s' % self.s, {
'family': self.font_type, 'fontsize': 10 * self.GUI_RESOLUTION,
'style': 'normal', 'va': 'center', 'ha': 'left'})
x_eq = array([row[0] for row in self.zij_norm])
y_eq = array([row[1] for row in self.zij_norm])
z_eq = abs(array([row[2] for row in self.zij_norm]))
x_eq_good, y_eq_good, z_eq_good = [], [], []
x_eq_bad, y_eq_bad, z_eq_bad = [], [], []
for i in range(len(list(self.zij_norm))):
if self.Data[self.s]['measurement_flag'][i] == 'g':
x_eq_good.append(self.zij_norm[i][0])
y_eq_good.append(self.zij_norm[i][1])
z_eq_good.append(abs(self.zij_norm[i][2]))
else:
x_eq_bad.append(self.zij_norm[i][0])
y_eq_bad.append(self.zij_norm[i][1])
z_eq_bad.append(abs(self.zij_norm[i][2]))
x_eq_good, y_eq_good, z_eq_good = array(x_eq_good), array(y_eq_good
), array(z_eq_good)
x_eq_bad, y_eq_bad, z_eq_bad = array(x_eq_bad), array(y_eq_bad), array(
z_eq_bad)
R_good = array(sqrt(1 - z_eq_good) / sqrt(x_eq_good ** 2 + y_eq_good ** 2))
R_bad = array(sqrt(1 - z_eq_bad) / sqrt(x_eq_bad ** 2 + y_eq_bad ** 2))
eqarea_data_x_good = y_eq_good * R_good
eqarea_data_y_good = x_eq_good * R_good
eqarea_data_x_bad = y_eq_bad * R_bad
eqarea_data_y_bad = x_eq_bad * R_bad
self.specimen_eqarea.plot(eqarea_data_x_good, eqarea_data_y_good, lw=
0.5, color='gray')
x_eq_dn, y_eq_dn, z_eq_dn, eq_dn_temperatures = [], [], [], []
x_eq_dn = array([row[0] for row in self.zij_norm if row[2] > 0])
y_eq_dn = array([row[1] for row in self.zij_norm if row[2] > 0])
z_eq_dn = abs(array([row[2] for row in self.zij_norm if row[2] > 0]))
if len(x_eq_dn) > 0:
R = array(sqrt(1 - z_eq_dn) / sqrt(x_eq_dn ** 2 + y_eq_dn ** 2))
eqarea_data_x_dn = y_eq_dn * R
eqarea_data_y_dn = x_eq_dn * R
self.specimen_eqarea.scatter([eqarea_data_x_dn], [eqarea_data_y_dn],
marker='o', edgecolor='black', facecolor='#808080', s=15 * self
.GUI_RESOLUTION, lw=1, clip_on=False)
x_eq_up, y_eq_up, z_eq_up = [], [], []
x_eq_up = array([row[0] for row in self.zij_norm if row[2] <= 0])
y_eq_up = array([row[1] for row in self.zij_norm if row[2] <= 0])
z_eq_up = abs(array([row[2] for row in self.zij_norm if row[2] <= 0]))
if len(x_eq_up) > 0:
R = array(sqrt(1 - z_eq_up) / sqrt(x_eq_up ** 2 + y_eq_up ** 2))
eqarea_data_x_up = y_eq_up * R
eqarea_data_y_up = x_eq_up * R
self.specimen_eqarea.scatter([eqarea_data_x_up], [eqarea_data_y_up],
marker='o', edgecolor='black', facecolor='#FFFFFF', s=15 * self
.GUI_RESOLUTION, lw=1, clip_on=False)
if self.preferences['show_eqarea_treatments']:
for i in range(len(self.zijdblock_steps)):
self.specimen_eqarea.text(eqarea_data_x[i], eqarea_data_y[i],
'%.1f' % float(self.zijdblock_steps[i]), fontsize=8 * self.
GUI_RESOLUTION, color='0.5')
if str(self.orthogonal_box.GetValue()) in ['X=best fit line dec',
'X=NRM dec']:
XY = []
if str(self.orthogonal_box.GetValue()) == 'X=NRM dec':
dec_zij = self.zijblock[0][1]
XY = pmag.dimap(dec_zij, 0)
if str(self.orthogonal_box.GetValue()) == 'X=best fit line dec':
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(
self.current_fit.pars['specimen_dec']) != str:
dec_zij = self.current_fit.pars['specimen_dec']
XY = pmag.dimap(dec_zij, 0)
if XY != []:
self.specimen_eqarea.plot([0, XY[0]], [0, XY[1]], ls='-', c=
'gray', lw=0.5)
self.canvas2.draw()
|
draw_spec_eqarea
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n draw_net(self.specimen_eqarea)\n self.specimen_eqarea.text(-1.2, 1.15, 'specimen: %s' % self.s, {\n 'family': self.font_type, 'fontsize': 10 * self.GUI_RESOLUTION,\n 'style': 'normal', 'va': 'center', 'ha': 'left'})\n x_eq = array([row[0] for row in self.zij_norm])\n y_eq = array([row[1] for row in self.zij_norm])\n z_eq = abs(array([row[2] for row in self.zij_norm]))\n x_eq_good, y_eq_good, z_eq_good = [], [], []\n x_eq_bad, y_eq_bad, z_eq_bad = [], [], []\n for i in range(len(list(self.zij_norm))):\n if self.Data[self.s]['measurement_flag'][i] == 'g':\n x_eq_good.append(self.zij_norm[i][0])\n y_eq_good.append(self.zij_norm[i][1])\n z_eq_good.append(abs(self.zij_norm[i][2]))\n else:\n x_eq_bad.append(self.zij_norm[i][0])\n y_eq_bad.append(self.zij_norm[i][1])\n z_eq_bad.append(abs(self.zij_norm[i][2]))\n x_eq_good, y_eq_good, z_eq_good = array(x_eq_good), array(y_eq_good\n ), array(z_eq_good)\n x_eq_bad, y_eq_bad, z_eq_bad = array(x_eq_bad), array(y_eq_bad), array(\n z_eq_bad)\n R_good = array(sqrt(1 - z_eq_good) / sqrt(x_eq_good ** 2 + y_eq_good ** 2))\n R_bad = array(sqrt(1 - z_eq_bad) / sqrt(x_eq_bad ** 2 + y_eq_bad ** 2))\n eqarea_data_x_good = y_eq_good * R_good\n eqarea_data_y_good = x_eq_good * R_good\n eqarea_data_x_bad = y_eq_bad * R_bad\n eqarea_data_y_bad = x_eq_bad * R_bad\n self.specimen_eqarea.plot(eqarea_data_x_good, eqarea_data_y_good, lw=\n 0.5, color='gray')\n x_eq_dn, y_eq_dn, z_eq_dn, eq_dn_temperatures = [], [], [], []\n x_eq_dn = array([row[0] for row in self.zij_norm if row[2] > 0])\n y_eq_dn = array([row[1] for row in self.zij_norm if row[2] > 0])\n z_eq_dn = abs(array([row[2] for row in self.zij_norm if row[2] > 0]))\n if len(x_eq_dn) > 0:\n R = array(sqrt(1 - z_eq_dn) / sqrt(x_eq_dn ** 2 + y_eq_dn ** 2))\n eqarea_data_x_dn = y_eq_dn * R\n eqarea_data_y_dn = x_eq_dn * R\n self.specimen_eqarea.scatter([eqarea_data_x_dn], [eqarea_data_y_dn],\n marker='o', edgecolor='black', facecolor='#808080', s=15 * self\n .GUI_RESOLUTION, lw=1, clip_on=False)\n x_eq_up, y_eq_up, z_eq_up = [], [], []\n x_eq_up = array([row[0] for row in self.zij_norm if row[2] <= 0])\n y_eq_up = array([row[1] for row in self.zij_norm if row[2] <= 0])\n z_eq_up = abs(array([row[2] for row in self.zij_norm if row[2] <= 0]))\n if len(x_eq_up) > 0:\n R = array(sqrt(1 - z_eq_up) / sqrt(x_eq_up ** 2 + y_eq_up ** 2))\n eqarea_data_x_up = y_eq_up * R\n eqarea_data_y_up = x_eq_up * R\n self.specimen_eqarea.scatter([eqarea_data_x_up], [eqarea_data_y_up],\n marker='o', edgecolor='black', facecolor='#FFFFFF', s=15 * self\n .GUI_RESOLUTION, lw=1, clip_on=False)\n if self.preferences['show_eqarea_treatments']:\n for i in range(len(self.zijdblock_steps)):\n self.specimen_eqarea.text(eqarea_data_x[i], eqarea_data_y[i], \n '%.1f' % float(self.zijdblock_steps[i]), fontsize=8 * self.\n GUI_RESOLUTION, color='0.5')\n if str(self.orthogonal_box.GetValue()) in ['X=best fit line dec',\n 'X=NRM dec']:\n XY = []\n if str(self.orthogonal_box.GetValue()) == 'X=NRM dec':\n dec_zij = self.zijblock[0][1]\n XY = pmag.dimap(dec_zij, 0)\n if str(self.orthogonal_box.GetValue()) == 'X=best fit line dec':\n if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(\n self.current_fit.pars['specimen_dec']) != str:\n dec_zij = self.current_fit.pars['specimen_dec']\n XY = pmag.dimap(dec_zij, 0)\n if XY != []:\n self.specimen_eqarea.plot([0, XY[0]], [0, XY[1]], ls='-', c=\n 'gray', lw=0.5)\n self.canvas2.draw()\n",
"role": "user"
},
{
"content": "draw_spec_eqarea",
"role": "assistant"
}
] |
def x(self):
self.fig3.clf()
self.fig3.text(0.02, 0.96, 'M/M0', {'family': self.font_type,
'fontsize': 10 * self.GUI_RESOLUTION, 'style': 'normal', 'va':
'center', 'ha': 'left'})
self.mplot = self.fig3.add_axes([0.2, 0.15, 0.7, 0.7], frameon=True,
facecolor='None')
thermal_x, thermal_y = [], []
thermal_x_bad, thermal_y_bad = [], []
af_x, af_y = [], []
af_x_bad, af_y_bad = [], []
for i in range(len(self.Data[self.s]['zijdblock'])):
step = self.Data[self.s]['zijdblock_steps'][i]
if self.Data[self.s]['measurement_flag'][i] == 'b':
if step == '0':
thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
af_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y_bad.append(self.Data[self.s]['zijdblock'][i][3] /
self.Data[self.s]['zijdblock'][0][3])
af_y_bad.append(self.Data[self.s]['zijdblock'][i][3] / self
.Data[self.s]['zijdblock'][0][3])
elif 'C' in step:
thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y_bad.append(self.Data[self.s]['zijdblock'][i][3] /
self.Data[self.s]['zijdblock'][0][3])
elif 'T' in step:
af_x_bad.append(self.Data[self.s]['zijdblock'][i][0])
af_y_bad.append(self.Data[self.s]['zijdblock'][i][3] / self
.Data[self.s]['zijdblock'][0][3])
else:
continue
elif step == '0':
thermal_x.append(self.Data[self.s]['zijdblock'][i][0])
af_x.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y.append(self.Data[self.s]['zijdblock'][i][3] / self.
Data[self.s]['zijdblock'][0][3])
af_y.append(self.Data[self.s]['zijdblock'][i][3] / self.Data[
self.s]['zijdblock'][0][3])
elif 'C' in step:
thermal_x.append(self.Data[self.s]['zijdblock'][i][0])
thermal_y.append(self.Data[self.s]['zijdblock'][i][3] / self.
Data[self.s]['zijdblock'][0][3])
elif 'T' in step:
af_x.append(self.Data[self.s]['zijdblock'][i][0])
af_y.append(self.Data[self.s]['zijdblock'][i][3] / self.Data[
self.s]['zijdblock'][0][3])
else:
continue
if len(thermal_x) + len(thermal_x_bad) > self.Data[self.s][
'zijdblock_steps'].count('0'):
self.mplot.plot(thermal_x, thermal_y, 'ro-', markersize=self.MS, lw
=1, clip_on=False, zorder=1)
for i in range(len(thermal_x_bad)):
self.mplot.plot([thermal_x_bad[i]], [thermal_y_bad[i]], 'o',
mfc='None', mec='k', markersize=self.MS, clip_on=False,
zorder=1)
self.mplot.set_xlabel('Thermal (C)', color='r')
for tl in self.mplot.get_xticklabels():
tl.set_color('r')
self.mplot_af = self.mplot.twiny()
if len(af_x) + len(af_x_bad) > self.Data[self.s]['zijdblock_steps'].count(
'0'):
self.mplot_af.plot(af_x, af_y, 'bo-', markersize=self.MS, lw=1,
clip_on=False, zorder=1)
for i in range(len(af_x_bad)):
self.mplot_af.plot([af_x_bad[i]], [af_y_bad[i]], 'o', mfc=
'None', mec='k', markersize=self.MS, clip_on=False, zorder=1)
self.mplot_af.set_xlabel('AF (mT)', color='b')
for tl in self.mplot_af.get_xticklabels():
tl.set_color('b')
self.mplot.tick_params(axis='both', which='major', labelsize=7)
self.mplot_af.tick_params(axis='both', which='major', labelsize=7)
self.mplot.spines['right'].set_visible(False)
self.mplot_af.spines['right'].set_visible(False)
self.mplot.get_xaxis().tick_bottom()
self.mplot.get_yaxis().tick_left()
self.mplot.set_ylabel('M / NRM0', fontsize=8 * self.GUI_RESOLUTION)
self.canvas3.draw()
|
draw_MM0
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.fig3.clf()\n self.fig3.text(0.02, 0.96, 'M/M0', {'family': self.font_type,\n 'fontsize': 10 * self.GUI_RESOLUTION, 'style': 'normal', 'va':\n 'center', 'ha': 'left'})\n self.mplot = self.fig3.add_axes([0.2, 0.15, 0.7, 0.7], frameon=True,\n facecolor='None')\n thermal_x, thermal_y = [], []\n thermal_x_bad, thermal_y_bad = [], []\n af_x, af_y = [], []\n af_x_bad, af_y_bad = [], []\n for i in range(len(self.Data[self.s]['zijdblock'])):\n step = self.Data[self.s]['zijdblock_steps'][i]\n if self.Data[self.s]['measurement_flag'][i] == 'b':\n if step == '0':\n thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0])\n af_x_bad.append(self.Data[self.s]['zijdblock'][i][0])\n thermal_y_bad.append(self.Data[self.s]['zijdblock'][i][3] /\n self.Data[self.s]['zijdblock'][0][3])\n af_y_bad.append(self.Data[self.s]['zijdblock'][i][3] / self\n .Data[self.s]['zijdblock'][0][3])\n elif 'C' in step:\n thermal_x_bad.append(self.Data[self.s]['zijdblock'][i][0])\n thermal_y_bad.append(self.Data[self.s]['zijdblock'][i][3] /\n self.Data[self.s]['zijdblock'][0][3])\n elif 'T' in step:\n af_x_bad.append(self.Data[self.s]['zijdblock'][i][0])\n af_y_bad.append(self.Data[self.s]['zijdblock'][i][3] / self\n .Data[self.s]['zijdblock'][0][3])\n else:\n continue\n elif step == '0':\n thermal_x.append(self.Data[self.s]['zijdblock'][i][0])\n af_x.append(self.Data[self.s]['zijdblock'][i][0])\n thermal_y.append(self.Data[self.s]['zijdblock'][i][3] / self.\n Data[self.s]['zijdblock'][0][3])\n af_y.append(self.Data[self.s]['zijdblock'][i][3] / self.Data[\n self.s]['zijdblock'][0][3])\n elif 'C' in step:\n thermal_x.append(self.Data[self.s]['zijdblock'][i][0])\n thermal_y.append(self.Data[self.s]['zijdblock'][i][3] / self.\n Data[self.s]['zijdblock'][0][3])\n elif 'T' in step:\n af_x.append(self.Data[self.s]['zijdblock'][i][0])\n af_y.append(self.Data[self.s]['zijdblock'][i][3] / self.Data[\n self.s]['zijdblock'][0][3])\n else:\n continue\n if len(thermal_x) + len(thermal_x_bad) > self.Data[self.s][\n 'zijdblock_steps'].count('0'):\n self.mplot.plot(thermal_x, thermal_y, 'ro-', markersize=self.MS, lw\n =1, clip_on=False, zorder=1)\n for i in range(len(thermal_x_bad)):\n self.mplot.plot([thermal_x_bad[i]], [thermal_y_bad[i]], 'o',\n mfc='None', mec='k', markersize=self.MS, clip_on=False,\n zorder=1)\n self.mplot.set_xlabel('Thermal (C)', color='r')\n for tl in self.mplot.get_xticklabels():\n tl.set_color('r')\n self.mplot_af = self.mplot.twiny()\n if len(af_x) + len(af_x_bad) > self.Data[self.s]['zijdblock_steps'].count(\n '0'):\n self.mplot_af.plot(af_x, af_y, 'bo-', markersize=self.MS, lw=1,\n clip_on=False, zorder=1)\n for i in range(len(af_x_bad)):\n self.mplot_af.plot([af_x_bad[i]], [af_y_bad[i]], 'o', mfc=\n 'None', mec='k', markersize=self.MS, clip_on=False, zorder=1)\n self.mplot_af.set_xlabel('AF (mT)', color='b')\n for tl in self.mplot_af.get_xticklabels():\n tl.set_color('b')\n self.mplot.tick_params(axis='both', which='major', labelsize=7)\n self.mplot_af.tick_params(axis='both', which='major', labelsize=7)\n self.mplot.spines['right'].set_visible(False)\n self.mplot_af.spines['right'].set_visible(False)\n self.mplot.get_xaxis().tick_bottom()\n self.mplot.get_yaxis().tick_left()\n self.mplot.set_ylabel('M / NRM0', fontsize=8 * self.GUI_RESOLUTION)\n self.canvas3.draw()\n",
"role": "user"
},
{
"content": "draw_MM0",
"role": "assistant"
}
] |
def x(self):
self.close_warning = True
blue_cover = '#9999FF'
red_cover = '#FF9999'
eqarea_outline = '#FF0000'
MS_selected = 40
for a in self.selected_meas_artists:
if a in self.zijplot.collections:
self.zijplot.collections.remove(a)
if a in self.specimen_eqarea.collections:
self.specimen_eqarea.collections.remove(a)
if a in self.mplot.collections:
self.mplot.collections.remove(a)
if a in self.mplot_af.collections:
self.mplot_af.collections.remove(a)
self.selected_meas_artists = []
x, y, z = self.CART_rot[self.selected_meas, 0], self.CART_rot[self.
selected_meas, 1], self.CART_rot[self.selected_meas, 2]
self.selected_meas_artists.append(self.zijplot.scatter(x, -1 * y, c=
red_cover, marker='o', s=MS_selected, zorder=2))
self.selected_meas_artists.append(self.zijplot.scatter(x, -1 * z, c=
blue_cover, marker='s', s=MS_selected, zorder=2))
x_eq = array([row[0] for i, row in enumerate(self.zij_norm) if i in
self.selected_meas and row[2] > 0])
y_eq = array([row[1] for i, row in enumerate(self.zij_norm) if i in
self.selected_meas and row[2] > 0])
z_eq = abs(array([row[2] for i, row in enumerate(self.zij_norm) if i in
self.selected_meas and row[2] > 0]))
if len(x_eq) > 0:
R = array(sqrt(1 - z_eq) / sqrt(x_eq ** 2 + y_eq ** 2))
eqarea_data_x = y_eq * R
eqarea_data_y = x_eq * R
self.selected_meas_artists.append(self.specimen_eqarea.scatter([
eqarea_data_x], [eqarea_data_y], marker='o', edgecolor=
eqarea_outline, facecolor='#808080', s=15 * self.GUI_RESOLUTION,
lw=1, clip_on=False))
x_eq = array([row[0] for i, row in enumerate(self.zij_norm) if i in
self.selected_meas and row[2] < 0])
y_eq = array([row[1] for i, row in enumerate(self.zij_norm) if i in
self.selected_meas and row[2] < 0])
z_eq = abs(array([row[2] for i, row in enumerate(self.zij_norm) if i in
self.selected_meas and row[2] < 0]))
if len(x_eq) > 0:
R = array(sqrt(1 - z_eq) / sqrt(x_eq ** 2 + y_eq ** 2))
eqarea_data_x = y_eq * R
eqarea_data_y = x_eq * R
self.selected_meas_artists.append(self.specimen_eqarea.scatter([
eqarea_data_x], [eqarea_data_y], marker='o', edgecolor=
eqarea_outline, facecolor='#FFFFFF', s=15 * self.GUI_RESOLUTION,
lw=1, clip_on=False))
steps = self.Data[self.s]['zijdblock_steps']
flags = self.Data[self.s]['measurement_flag']
selected_af_meas = [i for i in self.selected_meas if 'T' in steps[i] or
steps[i] == '0' and flags[i] != 'b']
selected_T_meas = [i for i in self.selected_meas if 'C' in steps[i] or
steps[i] == '0' and flags[i] != 'b']
data = array(self.Data[self.s]['zijdblock'])
af_x = array(list(map(float, data[selected_af_meas, 0])))
af_y = array(list(map(float, data[selected_af_meas, 3]))) / float(data[
0, 3])
T_x = array(list(map(float, data[selected_T_meas, 0])))
T_y = array(list(map(float, data[selected_T_meas, 3]))) / float(data[0, 3])
xmin, xmax = self.mplot.get_xlim()
ymin, ymax = self.mplot.get_ylim()
if T_x.astype(float).any() or T_y.astype(float).any():
self.selected_meas_artists.append(self.mplot.scatter(T_x, T_y,
facecolor=red_cover, edgecolor='#000000', marker='o', s=30, lw=
1, clip_on=False, zorder=3))
self.mplot.set_xlim([xmin, xmax])
self.mplot.set_ylim([ymin, ymax])
xmin, xmax = self.mplot_af.get_xlim()
ymin, ymax = self.mplot_af.get_ylim()
if af_x.astype(float).any() or af_y.astype(float).any():
self.selected_meas_artists.append(self.mplot_af.scatter(af_x, af_y,
facecolor=blue_cover, edgecolor='#000000', marker='o', s=30, lw
=1, clip_on=False, zorder=3))
self.mplot_af.set_xlim([xmin, xmax])
self.mplot_af.set_ylim([ymin, ymax])
self.canvas1.draw()
self.canvas2.draw()
self.canvas3.draw()
|
plot_selected_meas
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.close_warning = True\n blue_cover = '#9999FF'\n red_cover = '#FF9999'\n eqarea_outline = '#FF0000'\n MS_selected = 40\n for a in self.selected_meas_artists:\n if a in self.zijplot.collections:\n self.zijplot.collections.remove(a)\n if a in self.specimen_eqarea.collections:\n self.specimen_eqarea.collections.remove(a)\n if a in self.mplot.collections:\n self.mplot.collections.remove(a)\n if a in self.mplot_af.collections:\n self.mplot_af.collections.remove(a)\n self.selected_meas_artists = []\n x, y, z = self.CART_rot[self.selected_meas, 0], self.CART_rot[self.\n selected_meas, 1], self.CART_rot[self.selected_meas, 2]\n self.selected_meas_artists.append(self.zijplot.scatter(x, -1 * y, c=\n red_cover, marker='o', s=MS_selected, zorder=2))\n self.selected_meas_artists.append(self.zijplot.scatter(x, -1 * z, c=\n blue_cover, marker='s', s=MS_selected, zorder=2))\n x_eq = array([row[0] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] > 0])\n y_eq = array([row[1] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] > 0])\n z_eq = abs(array([row[2] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] > 0]))\n if len(x_eq) > 0:\n R = array(sqrt(1 - z_eq) / sqrt(x_eq ** 2 + y_eq ** 2))\n eqarea_data_x = y_eq * R\n eqarea_data_y = x_eq * R\n self.selected_meas_artists.append(self.specimen_eqarea.scatter([\n eqarea_data_x], [eqarea_data_y], marker='o', edgecolor=\n eqarea_outline, facecolor='#808080', s=15 * self.GUI_RESOLUTION,\n lw=1, clip_on=False))\n x_eq = array([row[0] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] < 0])\n y_eq = array([row[1] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] < 0])\n z_eq = abs(array([row[2] for i, row in enumerate(self.zij_norm) if i in\n self.selected_meas and row[2] < 0]))\n if len(x_eq) > 0:\n R = array(sqrt(1 - z_eq) / sqrt(x_eq ** 2 + y_eq ** 2))\n eqarea_data_x = y_eq * R\n eqarea_data_y = x_eq * R\n self.selected_meas_artists.append(self.specimen_eqarea.scatter([\n eqarea_data_x], [eqarea_data_y], marker='o', edgecolor=\n eqarea_outline, facecolor='#FFFFFF', s=15 * self.GUI_RESOLUTION,\n lw=1, clip_on=False))\n steps = self.Data[self.s]['zijdblock_steps']\n flags = self.Data[self.s]['measurement_flag']\n selected_af_meas = [i for i in self.selected_meas if 'T' in steps[i] or\n steps[i] == '0' and flags[i] != 'b']\n selected_T_meas = [i for i in self.selected_meas if 'C' in steps[i] or \n steps[i] == '0' and flags[i] != 'b']\n data = array(self.Data[self.s]['zijdblock'])\n af_x = array(list(map(float, data[selected_af_meas, 0])))\n af_y = array(list(map(float, data[selected_af_meas, 3]))) / float(data[\n 0, 3])\n T_x = array(list(map(float, data[selected_T_meas, 0])))\n T_y = array(list(map(float, data[selected_T_meas, 3]))) / float(data[0, 3])\n xmin, xmax = self.mplot.get_xlim()\n ymin, ymax = self.mplot.get_ylim()\n if T_x.astype(float).any() or T_y.astype(float).any():\n self.selected_meas_artists.append(self.mplot.scatter(T_x, T_y,\n facecolor=red_cover, edgecolor='#000000', marker='o', s=30, lw=\n 1, clip_on=False, zorder=3))\n self.mplot.set_xlim([xmin, xmax])\n self.mplot.set_ylim([ymin, ymax])\n xmin, xmax = self.mplot_af.get_xlim()\n ymin, ymax = self.mplot_af.get_ylim()\n if af_x.astype(float).any() or af_y.astype(float).any():\n self.selected_meas_artists.append(self.mplot_af.scatter(af_x, af_y,\n facecolor=blue_cover, edgecolor='#000000', marker='o', s=30, lw\n =1, clip_on=False, zorder=3))\n self.mplot_af.set_xlim([xmin, xmax])\n self.mplot_af.set_ylim([ymin, ymax])\n self.canvas1.draw()\n self.canvas2.draw()\n self.canvas3.draw()\n",
"role": "user"
},
{
"content": "plot_selected_meas",
"role": "assistant"
}
] |
def x(self):
high_level = self.level_box.GetValue()
self.UPPER_LEVEL_NAME = self.level_names.GetValue()
self.UPPER_LEVEL_MEAN = self.mean_type_box.GetValue()
draw_net(self.high_level_eqarea)
what_is_it = self.level_box.GetValue() + ': ' + self.level_names.GetValue()
self.high_level_eqarea.text(-1.2, 1.15, what_is_it, {'family': self.
font_type, 'fontsize': 10 * self.GUI_RESOLUTION, 'style': 'normal',
'va': 'center', 'ha': 'left'})
if self.ie_open:
self.ie.draw_net()
self.ie.write(what_is_it)
self.plot_high_level_elements()
self.plot_high_level_means()
self.update_high_level_stats()
if self.check_orient_on:
self.calc_and_plot_sample_orient_check()
self.canvas4.draw()
if self.ie_open:
self.ie.draw()
|
plot_high_levels_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n high_level = self.level_box.GetValue()\n self.UPPER_LEVEL_NAME = self.level_names.GetValue()\n self.UPPER_LEVEL_MEAN = self.mean_type_box.GetValue()\n draw_net(self.high_level_eqarea)\n what_is_it = self.level_box.GetValue() + ': ' + self.level_names.GetValue()\n self.high_level_eqarea.text(-1.2, 1.15, what_is_it, {'family': self.\n font_type, 'fontsize': 10 * self.GUI_RESOLUTION, 'style': 'normal',\n 'va': 'center', 'ha': 'left'})\n if self.ie_open:\n self.ie.draw_net()\n self.ie.write(what_is_it)\n self.plot_high_level_elements()\n self.plot_high_level_means()\n self.update_high_level_stats()\n if self.check_orient_on:\n self.calc_and_plot_sample_orient_check()\n self.canvas4.draw()\n if self.ie_open:\n self.ie.draw()\n",
"role": "user"
},
{
"content": "plot_high_levels_data",
"role": "assistant"
}
] |
def x(self):
if self.COORDINATE_SYSTEM == 'geographic':
dirtype = 'DA-DIR-GEO'
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
dirtype = 'DA-DIR-TILT'
else:
dirtype = 'DA-DIR'
if self.level_box.GetValue() == 'sample':
high_level_type = 'samples'
if self.level_box.GetValue() == 'site':
high_level_type = 'sites'
if self.level_box.GetValue() == 'location':
high_level_type = 'locations'
if self.level_box.GetValue() == 'study':
high_level_type = 'study'
high_level_name = str(self.level_names.GetValue())
return high_level_type, high_level_name, dirtype
|
get_levels_and_coordinates_names
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.COORDINATE_SYSTEM == 'geographic':\n dirtype = 'DA-DIR-GEO'\n elif self.COORDINATE_SYSTEM == 'tilt-corrected':\n dirtype = 'DA-DIR-TILT'\n else:\n dirtype = 'DA-DIR'\n if self.level_box.GetValue() == 'sample':\n high_level_type = 'samples'\n if self.level_box.GetValue() == 'site':\n high_level_type = 'sites'\n if self.level_box.GetValue() == 'location':\n high_level_type = 'locations'\n if self.level_box.GetValue() == 'study':\n high_level_type = 'study'\n high_level_name = str(self.level_names.GetValue())\n return high_level_type, high_level_name, dirtype\n",
"role": "user"
},
{
"content": "get_levels_and_coordinates_names",
"role": "assistant"
}
] |
def x(self):
fit = self.current_fit
if fit == None:
return
pars = fit.get('specimen')
if 'specimen_dec' not in list(pars.keys()) or 'specimen_inc' not in list(
pars.keys()):
fit.put(self.s, 'specimen', self.get_PCA_parameters(self.s, fit,
fit.tmin, fit.tmax, 'specimen', fit.PCA_type))
pars = fit.get('specimen')
if not pars:
self.user_warning(
'could not calculate fit %s for specimen %s in specimen coordinate system while checking sample orientation please check data'
% (fit.name, self.s))
return
dec, inc = pars['specimen_dec'], pars['specimen_inc']
sample = self.Data_hierarchy['sample_of_specimen'][self.s]
if sample not in list(self.Data_info['er_samples'].keys()
) or 'sample_azimuth' not in list(self.Data_info['er_samples'][
sample].keys()) or 'sample_dip' not in list(self.Data_info[
'er_samples'][sample].keys()):
self.user_warning(
'Could not display sample orientation checks because sample azimuth or sample dip is missing from er_samples table for sample %s'
% sample)
self.check_orient_on = False
return
try:
azimuth = float(self.Data_info['er_samples'][sample]['sample_azimuth'])
dip = float(self.Data_info['er_samples'][sample]['sample_dip'])
except TypeError:
self.user_warning(
'Could not display sample orientation checks because azimuth or dip is missing (or invalid) for sample %s'
% sample)
self.check_orient_on = False
return
d, i = pmag.dogeo(dec, inc, azimuth - 180.0, -dip)
XY = pmag.dimap(d, i)
if i > 0:
FC = fit.color
SIZE = 15 * self.GUI_RESOLUTION
else:
FC = 'white'
SIZE = 15 * self.GUI_RESOLUTION
self.high_level_eqarea.scatter([XY[0]], [XY[1]], marker='^', edgecolor=
fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker='^', edgecolor=fit.color,
facecolor=FC, s=SIZE, lw=1, clip_on=False)
d, i = pmag.dogeo(dec, inc, azimuth - 180.0, dip)
XY = pmag.dimap(d, i)
if i > 0:
FC = fit.color
SIZE = 15 * self.GUI_RESOLUTION
else:
FC = 'white'
SIZE = 15 * self.GUI_RESOLUTION
self.high_level_eqarea.scatter([XY[0]], [XY[1]], marker='v', edgecolor=
fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker='v', edgecolor=fit.color,
facecolor=FC, s=SIZE, lw=1, clip_on=False)
X_up, Y_up, X_d, Y_d = [], [], [], []
for incr in range(0, 360, 5):
d, i = pmag.dogeo(dec + incr, inc, azimuth, dip)
XY = pmag.dimap(d, i)
if i >= 0:
X_d.append(XY[0])
Y_d.append(XY[1])
else:
X_up.append(XY[0])
Y_up.append(XY[1])
self.high_level_eqarea.scatter(X_d, Y_d, marker='.', color=fit.color,
alpha=0.5, s=SIZE / 2, lw=1, clip_on=False)
self.high_level_eqarea.scatter(X_up, Y_up, marker='.', color=fit.color,
s=SIZE / 2, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter(X_d, Y_d, marker='.', color=fit.color, alpha=0.5, s
=SIZE / 2, lw=1, clip_on=False)
self.ie.scatter(X_up, Y_up, marker='.', color=fit.color, s=SIZE / 2,
lw=1, clip_on=False)
|
calc_and_plot_sample_orient_check
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n fit = self.current_fit\n if fit == None:\n return\n pars = fit.get('specimen')\n if 'specimen_dec' not in list(pars.keys()) or 'specimen_inc' not in list(\n pars.keys()):\n fit.put(self.s, 'specimen', self.get_PCA_parameters(self.s, fit,\n fit.tmin, fit.tmax, 'specimen', fit.PCA_type))\n pars = fit.get('specimen')\n if not pars:\n self.user_warning(\n 'could not calculate fit %s for specimen %s in specimen coordinate system while checking sample orientation please check data'\n % (fit.name, self.s))\n return\n dec, inc = pars['specimen_dec'], pars['specimen_inc']\n sample = self.Data_hierarchy['sample_of_specimen'][self.s]\n if sample not in list(self.Data_info['er_samples'].keys()\n ) or 'sample_azimuth' not in list(self.Data_info['er_samples'][\n sample].keys()) or 'sample_dip' not in list(self.Data_info[\n 'er_samples'][sample].keys()):\n self.user_warning(\n 'Could not display sample orientation checks because sample azimuth or sample dip is missing from er_samples table for sample %s'\n % sample)\n self.check_orient_on = False\n return\n try:\n azimuth = float(self.Data_info['er_samples'][sample]['sample_azimuth'])\n dip = float(self.Data_info['er_samples'][sample]['sample_dip'])\n except TypeError:\n self.user_warning(\n 'Could not display sample orientation checks because azimuth or dip is missing (or invalid) for sample %s'\n % sample)\n self.check_orient_on = False\n return\n d, i = pmag.dogeo(dec, inc, azimuth - 180.0, -dip)\n XY = pmag.dimap(d, i)\n if i > 0:\n FC = fit.color\n SIZE = 15 * self.GUI_RESOLUTION\n else:\n FC = 'white'\n SIZE = 15 * self.GUI_RESOLUTION\n self.high_level_eqarea.scatter([XY[0]], [XY[1]], marker='^', edgecolor=\n fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)\n if self.ie_open:\n self.ie.scatter([XY[0]], [XY[1]], marker='^', edgecolor=fit.color,\n facecolor=FC, s=SIZE, lw=1, clip_on=False)\n d, i = pmag.dogeo(dec, inc, azimuth - 180.0, dip)\n XY = pmag.dimap(d, i)\n if i > 0:\n FC = fit.color\n SIZE = 15 * self.GUI_RESOLUTION\n else:\n FC = 'white'\n SIZE = 15 * self.GUI_RESOLUTION\n self.high_level_eqarea.scatter([XY[0]], [XY[1]], marker='v', edgecolor=\n fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)\n if self.ie_open:\n self.ie.scatter([XY[0]], [XY[1]], marker='v', edgecolor=fit.color,\n facecolor=FC, s=SIZE, lw=1, clip_on=False)\n X_up, Y_up, X_d, Y_d = [], [], [], []\n for incr in range(0, 360, 5):\n d, i = pmag.dogeo(dec + incr, inc, azimuth, dip)\n XY = pmag.dimap(d, i)\n if i >= 0:\n X_d.append(XY[0])\n Y_d.append(XY[1])\n else:\n X_up.append(XY[0])\n Y_up.append(XY[1])\n self.high_level_eqarea.scatter(X_d, Y_d, marker='.', color=fit.color,\n alpha=0.5, s=SIZE / 2, lw=1, clip_on=False)\n self.high_level_eqarea.scatter(X_up, Y_up, marker='.', color=fit.color,\n s=SIZE / 2, lw=1, clip_on=False)\n if self.ie_open:\n self.ie.scatter(X_d, Y_d, marker='.', color=fit.color, alpha=0.5, s\n =SIZE / 2, lw=1, clip_on=False)\n self.ie.scatter(X_up, Y_up, marker='.', color=fit.color, s=SIZE / 2,\n lw=1, clip_on=False)\n",
"role": "user"
},
{
"content": "calc_and_plot_sample_orient_check",
"role": "assistant"
}
] |
def x(self, element):
if self.ie_open:
high_level = self.ie.show_box.GetValue()
else:
high_level = self.UPPER_LEVEL_SHOW
fits = []
if high_level not in self.pmag_results_data:
print('no level: ' + str(high_level))
return
if element not in self.pmag_results_data[high_level]:
print('no element: ' + str(element))
return
if self.mean_fit == 'All':
fits = self.pmag_results_data[high_level][element]
elif self.mean_fit != 'None' and self.mean_fit != None:
fits = [fit for fit in self.pmag_results_data[high_level][element] if
fit.name == self.mean_fit]
else:
fits = []
fig = self.high_level_eqarea
if fits:
for fit in fits:
pars = fit.get(self.COORDINATE_SYSTEM)
if not pars:
if element in self.specimens:
fit.put(element, self.COORDINATE_SYSTEM, self.
get_PCA_parameters(element, fit, fit.tmin, fit.tmax,
self.COORDINATE_SYSTEM, self.PCA_type_box.GetValue()))
pars = fit.get(self.COORDINATE_SYSTEM)
if not pars:
print('No data for %s on element %s' % (fit.name, element))
return
if 'specimen_dec' in list(pars.keys()) and 'specimen_inc' in list(
pars.keys()):
dec = pars['specimen_dec']
inc = pars['specimen_inc']
elif 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()):
dec = pars['dec']
inc = pars['inc']
else:
print('-E- no dec and inc values for:\n' + str(fit))
XY = pmag.dimap(dec, inc)
if inc > 0:
FC = fit.color
SIZE = 15 * self.GUI_RESOLUTION
else:
FC = 'white'
SIZE = 15 * self.GUI_RESOLUTION
marker_shape = 'o'
if pars['calculation_type'] == 'DE-BFP':
marker_shape = 's'
if 'bfv' in self.plane_display_box.GetValue():
marker_shape = '>'
SIZE = 25 * self.GUI_RESOLUTION
if fit == self.current_fit:
marker_shape = 'D'
if fit in self.bad_fits:
marker_shape = 4, 1, 0
SIZE = 25 * self.GUI_RESOLUTION
if pars['calculation_type'
] == 'DE-BFP' and self.plane_display_box.GetValue() != 'poles':
if 'plane' in self.plane_display_box.GetValue(
) or 'hemisphere' in self.plane_display_box.GetValue(
) or 'wp' in self.plane_display_box.GetValue():
ymin, ymax = self.specimen_eqarea.get_ylim()
xmin, xmax = self.specimen_eqarea.get_xlim()
D_c, I_c = pmag.circ(pars['specimen_dec'], pars[
'specimen_inc'], 90)
X_c_up, Y_c_up = [], []
X_c_d, Y_c_d = [], []
for k in range(len(D_c)):
XY = pmag.dimap(D_c[k], I_c[k])
if I_c[k] < 0:
X_c_up.append(XY[0])
Y_c_up.append(XY[1])
if I_c[k] > 0:
X_c_d.append(XY[0])
Y_c_d.append(XY[1])
if self.plane_display_box.GetValue(
) == 'u. hemisphere' or self.plane_display_box.GetValue(
) == 'whole plane' or self.plane_display_box.GetValue(
) == 'wp + bfv':
fig.plot(X_c_d, Y_c_d, 'b')
if self.ie_open:
self.ie.plot(X_c_d, Y_c_d, 'b')
if self.plane_display_box.GetValue(
) == 'l. hemisphere' or self.plane_display_box.GetValue(
) == 'whole plane' or self.plane_display_box.GetValue(
) == 'wp + bfv':
fig.plot(X_c_up, Y_c_up, 'c')
if self.ie_open:
self.ie.plot(X_c_up, Y_c_up, 'c')
if 'bfv' in self.plane_display_box.GetValue():
if 'bfv_dec' not in list(pars.keys()
) or 'bfv_inc' not in list(pars.keys()):
self.calculate_best_fit_vectors()
pars = fit.get(self.COORDINATE_SYSTEM)
try:
XY = pmag.dimap(pars['bfv_dec'], pars['bfv_inc'])
except KeyError:
print(
'specimen %s fit %s is marked bad or there was an error calculating bfv pole will be displayed instead'
% (element, fit.name))
if inc > 0:
FC = fit.color
else:
FC = 'white'
self.high_EA_xdata.append(XY[0])
self.high_EA_ydata.append(XY[1])
fig.scatter([XY[0]], [XY[1]], marker=marker_shape, edgecolor=
fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker=marker_shape,
edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1,
clip_on=False)
|
plot_high_level_equalarea
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, element):\n if self.ie_open:\n high_level = self.ie.show_box.GetValue()\n else:\n high_level = self.UPPER_LEVEL_SHOW\n fits = []\n if high_level not in self.pmag_results_data:\n print('no level: ' + str(high_level))\n return\n if element not in self.pmag_results_data[high_level]:\n print('no element: ' + str(element))\n return\n if self.mean_fit == 'All':\n fits = self.pmag_results_data[high_level][element]\n elif self.mean_fit != 'None' and self.mean_fit != None:\n fits = [fit for fit in self.pmag_results_data[high_level][element] if\n fit.name == self.mean_fit]\n else:\n fits = []\n fig = self.high_level_eqarea\n if fits:\n for fit in fits:\n pars = fit.get(self.COORDINATE_SYSTEM)\n if not pars:\n if element in self.specimens:\n fit.put(element, self.COORDINATE_SYSTEM, self.\n get_PCA_parameters(element, fit, fit.tmin, fit.tmax,\n self.COORDINATE_SYSTEM, self.PCA_type_box.GetValue()))\n pars = fit.get(self.COORDINATE_SYSTEM)\n if not pars:\n print('No data for %s on element %s' % (fit.name, element))\n return\n if 'specimen_dec' in list(pars.keys()) and 'specimen_inc' in list(\n pars.keys()):\n dec = pars['specimen_dec']\n inc = pars['specimen_inc']\n elif 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()):\n dec = pars['dec']\n inc = pars['inc']\n else:\n print('-E- no dec and inc values for:\\n' + str(fit))\n XY = pmag.dimap(dec, inc)\n if inc > 0:\n FC = fit.color\n SIZE = 15 * self.GUI_RESOLUTION\n else:\n FC = 'white'\n SIZE = 15 * self.GUI_RESOLUTION\n marker_shape = 'o'\n if pars['calculation_type'] == 'DE-BFP':\n marker_shape = 's'\n if 'bfv' in self.plane_display_box.GetValue():\n marker_shape = '>'\n SIZE = 25 * self.GUI_RESOLUTION\n if fit == self.current_fit:\n marker_shape = 'D'\n if fit in self.bad_fits:\n marker_shape = 4, 1, 0\n SIZE = 25 * self.GUI_RESOLUTION\n if pars['calculation_type'\n ] == 'DE-BFP' and self.plane_display_box.GetValue() != 'poles':\n if 'plane' in self.plane_display_box.GetValue(\n ) or 'hemisphere' in self.plane_display_box.GetValue(\n ) or 'wp' in self.plane_display_box.GetValue():\n ymin, ymax = self.specimen_eqarea.get_ylim()\n xmin, xmax = self.specimen_eqarea.get_xlim()\n D_c, I_c = pmag.circ(pars['specimen_dec'], pars[\n 'specimen_inc'], 90)\n X_c_up, Y_c_up = [], []\n X_c_d, Y_c_d = [], []\n for k in range(len(D_c)):\n XY = pmag.dimap(D_c[k], I_c[k])\n if I_c[k] < 0:\n X_c_up.append(XY[0])\n Y_c_up.append(XY[1])\n if I_c[k] > 0:\n X_c_d.append(XY[0])\n Y_c_d.append(XY[1])\n if self.plane_display_box.GetValue(\n ) == 'u. hemisphere' or self.plane_display_box.GetValue(\n ) == 'whole plane' or self.plane_display_box.GetValue(\n ) == 'wp + bfv':\n fig.plot(X_c_d, Y_c_d, 'b')\n if self.ie_open:\n self.ie.plot(X_c_d, Y_c_d, 'b')\n if self.plane_display_box.GetValue(\n ) == 'l. hemisphere' or self.plane_display_box.GetValue(\n ) == 'whole plane' or self.plane_display_box.GetValue(\n ) == 'wp + bfv':\n fig.plot(X_c_up, Y_c_up, 'c')\n if self.ie_open:\n self.ie.plot(X_c_up, Y_c_up, 'c')\n if 'bfv' in self.plane_display_box.GetValue():\n if 'bfv_dec' not in list(pars.keys()\n ) or 'bfv_inc' not in list(pars.keys()):\n self.calculate_best_fit_vectors()\n pars = fit.get(self.COORDINATE_SYSTEM)\n try:\n XY = pmag.dimap(pars['bfv_dec'], pars['bfv_inc'])\n except KeyError:\n print(\n 'specimen %s fit %s is marked bad or there was an error calculating bfv pole will be displayed instead'\n % (element, fit.name))\n if inc > 0:\n FC = fit.color\n else:\n FC = 'white'\n self.high_EA_xdata.append(XY[0])\n self.high_EA_ydata.append(XY[1])\n fig.scatter([XY[0]], [XY[1]], marker=marker_shape, edgecolor=\n fit.color, facecolor=FC, s=SIZE, lw=1, clip_on=False)\n if self.ie_open:\n self.ie.scatter([XY[0]], [XY[1]], marker=marker_shape,\n edgecolor=fit.color, facecolor=FC, s=SIZE, lw=1,\n clip_on=False)\n",
"role": "user"
},
{
"content": "plot_high_level_equalarea",
"role": "assistant"
}
] |
def x(self, pars, fig):
if pars == {}:
pass
elif 'calculation_type' in list(pars.keys()) and pars['calculation_type'
] == 'DE-BFP':
ymin, ymax = fig.get_ylim()
xmin, xmax = fig.get_xlim()
D_c, I_c = pmag.circ(pars['specimen_dec'], pars['specimen_inc'], 90)
X_c_up, Y_c_up = [], []
X_c_d, Y_c_d = [], []
for k in range(len(D_c)):
XY = pmag.dimap(D_c[k], I_c[k])
if I_c[k] < 0:
X_c_up.append(XY[0])
Y_c_up.append(XY[1])
if I_c[k] > 0:
X_c_d.append(XY[0])
Y_c_d.append(XY[1])
fig.plot(X_c_d, Y_c_d, 'b', lw=0.5)
fig.plot(X_c_up, Y_c_up, 'c', lw=0.5)
if self.ie_open:
self.ie.plot(X_c_d, Y_c_d, 'b', lw=0.5)
self.ie.plot(X_c_up, Y_c_up, 'c', lw=0.5)
fig.set_xlim(xmin, xmax)
fig.set_ylim(ymin, ymax)
else:
if 'specimen_dec' in list(pars.keys()) and 'specimen_inc' in list(pars
.keys()):
dec = pars['specimen_dec']
inc = pars['specimen_inc']
elif 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()):
dec = pars['dec']
inc = pars['inc']
else:
print(
'either dec or inc missing from values recived for high level plot, was given %s, aborting'
% str(pars))
return
XY = pmag.dimap(float(dec), float(inc))
if inc > 0:
if 'color' in list(pars.keys()):
FC = pars['color']
EC = pars['color']
SIZE = 15 * self.GUI_RESOLUTION
else:
FC = 'grey'
EC = 'grey'
SIZE = 15 * self.GUI_RESOLUTION
elif 'color' in list(pars.keys()):
FC = 'white'
EC = pars['color']
SIZE = 15 * self.GUI_RESOLUTION
else:
FC = 'white'
EC = 'grey'
SIZE = 15 * self.GUI_RESOLUTION
fig.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC, facecolor=
FC, s=SIZE, lw=1, clip_on=False)
if self.ie_open:
self.ie.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC,
facecolor=FC, s=SIZE, lw=1, clip_on=False)
|
plot_eqarea_pars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pars, fig):\n if pars == {}:\n pass\n elif 'calculation_type' in list(pars.keys()) and pars['calculation_type'\n ] == 'DE-BFP':\n ymin, ymax = fig.get_ylim()\n xmin, xmax = fig.get_xlim()\n D_c, I_c = pmag.circ(pars['specimen_dec'], pars['specimen_inc'], 90)\n X_c_up, Y_c_up = [], []\n X_c_d, Y_c_d = [], []\n for k in range(len(D_c)):\n XY = pmag.dimap(D_c[k], I_c[k])\n if I_c[k] < 0:\n X_c_up.append(XY[0])\n Y_c_up.append(XY[1])\n if I_c[k] > 0:\n X_c_d.append(XY[0])\n Y_c_d.append(XY[1])\n fig.plot(X_c_d, Y_c_d, 'b', lw=0.5)\n fig.plot(X_c_up, Y_c_up, 'c', lw=0.5)\n if self.ie_open:\n self.ie.plot(X_c_d, Y_c_d, 'b', lw=0.5)\n self.ie.plot(X_c_up, Y_c_up, 'c', lw=0.5)\n fig.set_xlim(xmin, xmax)\n fig.set_ylim(ymin, ymax)\n else:\n if 'specimen_dec' in list(pars.keys()) and 'specimen_inc' in list(pars\n .keys()):\n dec = pars['specimen_dec']\n inc = pars['specimen_inc']\n elif 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()):\n dec = pars['dec']\n inc = pars['inc']\n else:\n print(\n 'either dec or inc missing from values recived for high level plot, was given %s, aborting'\n % str(pars))\n return\n XY = pmag.dimap(float(dec), float(inc))\n if inc > 0:\n if 'color' in list(pars.keys()):\n FC = pars['color']\n EC = pars['color']\n SIZE = 15 * self.GUI_RESOLUTION\n else:\n FC = 'grey'\n EC = 'grey'\n SIZE = 15 * self.GUI_RESOLUTION\n elif 'color' in list(pars.keys()):\n FC = 'white'\n EC = pars['color']\n SIZE = 15 * self.GUI_RESOLUTION\n else:\n FC = 'white'\n EC = 'grey'\n SIZE = 15 * self.GUI_RESOLUTION\n fig.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC, facecolor=\n FC, s=SIZE, lw=1, clip_on=False)\n if self.ie_open:\n self.ie.scatter([XY[0]], [XY[1]], marker='o', edgecolor=EC,\n facecolor=FC, s=SIZE, lw=1, clip_on=False)\n",
"role": "user"
},
{
"content": "plot_eqarea_pars",
"role": "assistant"
}
] |
def x(self, meanpars, fig):
mpars_to_plot = []
if meanpars == {}:
return
if meanpars['calculation_type'] == 'Fisher by polarity':
for mode in list(meanpars.keys()):
if type(meanpars[mode]) == dict and meanpars[mode] != {}:
mpars_to_plot.append(meanpars[mode])
else:
mpars_to_plot.append(meanpars)
ymin, ymax = fig.get_ylim()
xmin, xmax = fig.get_xlim()
if 'color' in meanpars:
color = meanpars['color']
else:
color = 'black'
size, alpha = 30, 1.0
for mpars in mpars_to_plot:
XYM = pmag.dimap(float(mpars['dec']), float(mpars['inc']))
if float(mpars['inc']) > 0:
FC = color
EC = 'black'
else:
FC = 'white'
EC = color
self.displayed_means.append(fig.scatter([XYM[0]], [XYM[1]], marker=
'o', edgecolor=EC, facecolor=FC, s=size, lw=1, clip_on=False,
alpha=alpha))
if 'alpha95' in list(mpars.keys()):
Xcirc, Ycirc = [], []
Da95, Ia95 = pmag.circ(float(mpars['dec']), float(mpars['inc']),
float(mpars['alpha95']))
for k in range(len(Da95)):
XY = pmag.dimap(Da95[k], Ia95[k])
Xcirc.append(XY[0])
Ycirc.append(XY[1])
self.displayed_means.append(fig.plot(Xcirc, Ycirc, color, alpha
=alpha))
if self.ie_open:
self.displayed_means.append(self.ie.scatter([XYM[0]], [XYM[1]],
marker='o', edgecolor=EC, facecolor=FC, s=size, lw=1,
clip_on=False, alpha=alpha))
if 'alpha95' in list(mpars.keys()):
self.displayed_means.append(self.ie.plot(Xcirc, Ycirc,
color, alpha=alpha))
self.ie.eqarea.set_xlim(xmin, xmax)
self.ie.eqarea.set_ylim(ymin, ymax)
fig.set_xlim(xmin, xmax)
fig.set_ylim(ymin, ymax)
|
plot_eqarea_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, meanpars, fig):\n mpars_to_plot = []\n if meanpars == {}:\n return\n if meanpars['calculation_type'] == 'Fisher by polarity':\n for mode in list(meanpars.keys()):\n if type(meanpars[mode]) == dict and meanpars[mode] != {}:\n mpars_to_plot.append(meanpars[mode])\n else:\n mpars_to_plot.append(meanpars)\n ymin, ymax = fig.get_ylim()\n xmin, xmax = fig.get_xlim()\n if 'color' in meanpars:\n color = meanpars['color']\n else:\n color = 'black'\n size, alpha = 30, 1.0\n for mpars in mpars_to_plot:\n XYM = pmag.dimap(float(mpars['dec']), float(mpars['inc']))\n if float(mpars['inc']) > 0:\n FC = color\n EC = 'black'\n else:\n FC = 'white'\n EC = color\n self.displayed_means.append(fig.scatter([XYM[0]], [XYM[1]], marker=\n 'o', edgecolor=EC, facecolor=FC, s=size, lw=1, clip_on=False,\n alpha=alpha))\n if 'alpha95' in list(mpars.keys()):\n Xcirc, Ycirc = [], []\n Da95, Ia95 = pmag.circ(float(mpars['dec']), float(mpars['inc']),\n float(mpars['alpha95']))\n for k in range(len(Da95)):\n XY = pmag.dimap(Da95[k], Ia95[k])\n Xcirc.append(XY[0])\n Ycirc.append(XY[1])\n self.displayed_means.append(fig.plot(Xcirc, Ycirc, color, alpha\n =alpha))\n if self.ie_open:\n self.displayed_means.append(self.ie.scatter([XYM[0]], [XYM[1]],\n marker='o', edgecolor=EC, facecolor=FC, s=size, lw=1,\n clip_on=False, alpha=alpha))\n if 'alpha95' in list(mpars.keys()):\n self.displayed_means.append(self.ie.plot(Xcirc, Ycirc,\n color, alpha=alpha))\n self.ie.eqarea.set_xlim(xmin, xmax)\n self.ie.eqarea.set_ylim(ymin, ymax)\n fig.set_xlim(xmin, xmax)\n fig.set_ylim(ymin, ymax)\n",
"role": "user"
},
{
"content": "plot_eqarea_mean",
"role": "assistant"
}
] |
def x(self, s):
self.s = s
if self.orthogonal_box.GetValue() == 'X=East':
self.ORTHO_PLOT_TYPE = 'E-W'
elif self.orthogonal_box.GetValue() == 'X=North':
self.ORTHO_PLOT_TYPE = 'N-S'
elif self.orthogonal_box.GetValue() == 'X=best fit line dec':
self.ORTHO_PLOT_TYPE = 'PCA_dec'
else:
self.ORTHO_PLOT_TYPE = 'ZIJ'
if self.COORDINATE_SYSTEM == 'geographic':
self.zij = array(self.Data[self.s]['zdata_geo'])
self.zijblock = self.Data[self.s]['zijdblock_geo']
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
self.zij = array(self.Data[self.s]['zdata_tilt'])
self.zijblock = self.Data[self.s]['zijdblock_tilt']
else:
self.zij = array(self.Data[self.s]['zdata'])
self.zijblock = self.Data[self.s]['zijdblock']
if self.COORDINATE_SYSTEM == 'geographic':
if self.ORTHO_PLOT_TYPE == 'N-S':
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'
], 0.0)
elif self.ORTHO_PLOT_TYPE == 'E-W':
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'
], 90.0)
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(
self.current_fit.pars['specimen_dec']) != str:
self.CART_rot = Rotate_zijderveld(self.Data[self.s][
'zdata_geo'], self.current_fit.pars['specimen_dec'])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s][
'zdata_geo'], pmag.cart2dir(self.Data[self.s][
'zdata_geo'][0])[0])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'
], pmag.cart2dir(self.Data[self.s]['zdata_geo'][0])[0])
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
if self.ORTHO_PLOT_TYPE == 'N-S':
self.CART_rot = Rotate_zijderveld(self.Data[self.s][
'zdata_tilt'], 0.0)
elif self.ORTHO_PLOT_TYPE == 'E-W':
self.CART_rot = Rotate_zijderveld(self.Data[self.s][
'zdata_tilt'], 90)
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(
self.current_fit.pars['specimen_dec']) != str:
self.CART_rot = Rotate_zijderveld(self.Data[self.s][
'zdata_tilt'], self.current_fit.pars['specimen_dec'])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s][
'zdata_tilt'], pmag.cart2dir(self.Data[self.s][
'zdata_tilt'][0])[0])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s][
'zdata_tilt'], pmag.cart2dir(self.Data[self.s]['zdata_tilt'
][0])[0])
elif self.ORTHO_PLOT_TYPE == 'N-S':
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], 0.0)
elif self.ORTHO_PLOT_TYPE == 'E-W':
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], 90)
elif self.ORTHO_PLOT_TYPE == 'PCA_dec':
if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self
.current_fit.pars['specimen_dec']) != str:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'],
self.current_fit.pars['specimen_dec'])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'],
pmag.cart2dir(self.Data[self.s]['zdata'][0])[0])
else:
self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], pmag.
cart2dir(self.Data[self.s]['zdata'][0])[0])
self.zij_norm = array([(row / sqrt(sum(row ** 2))) for row in self.zij])
self.CART_rot_good = []
self.CART_rot_bad = []
for i in range(len(self.CART_rot)):
if self.Data[self.s]['measurement_flag'][i] == 'g':
self.CART_rot_good.append(list(self.CART_rot[i]))
else:
self.CART_rot_bad.append(list(self.CART_rot[i]))
self.CART_rot = array(self.CART_rot)
self.CART_rot_good = array(self.CART_rot_good)
self.CART_rot_bad = array(self.CART_rot_bad)
|
initialize_CART_rot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, s):\n self.s = s\n if self.orthogonal_box.GetValue() == 'X=East':\n self.ORTHO_PLOT_TYPE = 'E-W'\n elif self.orthogonal_box.GetValue() == 'X=North':\n self.ORTHO_PLOT_TYPE = 'N-S'\n elif self.orthogonal_box.GetValue() == 'X=best fit line dec':\n self.ORTHO_PLOT_TYPE = 'PCA_dec'\n else:\n self.ORTHO_PLOT_TYPE = 'ZIJ'\n if self.COORDINATE_SYSTEM == 'geographic':\n self.zij = array(self.Data[self.s]['zdata_geo'])\n self.zijblock = self.Data[self.s]['zijdblock_geo']\n elif self.COORDINATE_SYSTEM == 'tilt-corrected':\n self.zij = array(self.Data[self.s]['zdata_tilt'])\n self.zijblock = self.Data[self.s]['zijdblock_tilt']\n else:\n self.zij = array(self.Data[self.s]['zdata'])\n self.zijblock = self.Data[self.s]['zijdblock']\n if self.COORDINATE_SYSTEM == 'geographic':\n if self.ORTHO_PLOT_TYPE == 'N-S':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'\n ], 0.0)\n elif self.ORTHO_PLOT_TYPE == 'E-W':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'\n ], 90.0)\n elif self.ORTHO_PLOT_TYPE == 'PCA_dec':\n if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(\n self.current_fit.pars['specimen_dec']) != str:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_geo'], self.current_fit.pars['specimen_dec'])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_geo'], pmag.cart2dir(self.Data[self.s][\n 'zdata_geo'][0])[0])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata_geo'\n ], pmag.cart2dir(self.Data[self.s]['zdata_geo'][0])[0])\n elif self.COORDINATE_SYSTEM == 'tilt-corrected':\n if self.ORTHO_PLOT_TYPE == 'N-S':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_tilt'], 0.0)\n elif self.ORTHO_PLOT_TYPE == 'E-W':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_tilt'], 90)\n elif self.ORTHO_PLOT_TYPE == 'PCA_dec':\n if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(\n self.current_fit.pars['specimen_dec']) != str:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_tilt'], self.current_fit.pars['specimen_dec'])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_tilt'], pmag.cart2dir(self.Data[self.s][\n 'zdata_tilt'][0])[0])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s][\n 'zdata_tilt'], pmag.cart2dir(self.Data[self.s]['zdata_tilt'\n ][0])[0])\n elif self.ORTHO_PLOT_TYPE == 'N-S':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], 0.0)\n elif self.ORTHO_PLOT_TYPE == 'E-W':\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], 90)\n elif self.ORTHO_PLOT_TYPE == 'PCA_dec':\n if 'specimen_dec' in list(self.current_fit.pars.keys()) and type(self\n .current_fit.pars['specimen_dec']) != str:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'],\n self.current_fit.pars['specimen_dec'])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'],\n pmag.cart2dir(self.Data[self.s]['zdata'][0])[0])\n else:\n self.CART_rot = Rotate_zijderveld(self.Data[self.s]['zdata'], pmag.\n cart2dir(self.Data[self.s]['zdata'][0])[0])\n self.zij_norm = array([(row / sqrt(sum(row ** 2))) for row in self.zij])\n self.CART_rot_good = []\n self.CART_rot_bad = []\n for i in range(len(self.CART_rot)):\n if self.Data[self.s]['measurement_flag'][i] == 'g':\n self.CART_rot_good.append(list(self.CART_rot[i]))\n else:\n self.CART_rot_bad.append(list(self.CART_rot[i]))\n self.CART_rot = array(self.CART_rot)\n self.CART_rot_good = array(self.CART_rot_good)\n self.CART_rot_bad = array(self.CART_rot_bad)\n",
"role": "user"
},
{
"content": "initialize_CART_rot",
"role": "assistant"
}
] |
def x(self, specimen, name, fmin, fmax, PCA_type='DE-BFL', color=None,
suppress_warnings=False, saved=True):
if specimen not in list(self.Data.keys()) and not suppress_warnings:
self.user_warning(
'there is no measurement data for %s and therefore no interpretation can be created for this specimen'
% specimen)
return
if fmax != None and fmax not in self.Data[specimen]['zijdblock_steps'
] or fmin != None and fmin not in self.Data[specimen]['zijdblock_steps'
]:
return
if not specimen in list(self.pmag_results_data['specimens'].keys()):
self.pmag_results_data['specimens'][specimen] = []
next_fit = str(len(self.pmag_results_data['specimens'][specimen]) + 1)
if name == None or name in [x.name for x in self.pmag_results_data[
'specimens'][specimen]] or name == '' or name.replace(' ', '') == '':
name = 'Fit ' + next_fit
if name in [x.name for x in self.pmag_results_data['specimens'][
specimen]]:
print('bad name')
return
if color == None:
color = self.colors[(int(next_fit) - 1) % len(self.colors)]
new_fit = Fit(name, fmax, fmin, color, self, PCA_type, saved)
if fmin != None and fmax != None:
new_fit.put(specimen, self.COORDINATE_SYSTEM, self.
get_PCA_parameters(specimen, new_fit, fmin, fmax, self.
COORDINATE_SYSTEM, PCA_type))
if ('specimen_dec' not in list(new_fit.get(self.COORDINATE_SYSTEM).
keys()) or 'specimen_inc' not in list(new_fit.get(self.
COORDINATE_SYSTEM).keys())) and not suppress_warnings:
TEXT = (
'Could not calculate dec or inc for specimen %s component %s with bounds %s and %s in coordinate_system %s, component not added'
% (specimen, name, fmin, fmax, self.COORDINATE_SYSTEM))
self.user_warning(TEXT)
print(TEXT)
return
self.pmag_results_data['specimens'][specimen].append(new_fit)
samp = self.Data_hierarchy['sample_of_specimen'][specimen]
if samp in list(self.Data_info['er_samples'].keys()):
if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]:
self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g'
samp_flag = self.Data_info['er_samples'][samp][
'sample_orientation_flag']
if samp_flag == 'b':
self.mark_fit_bad(new_fit)
self.close_warning = True
return new_fit
|
add_fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, specimen, name, fmin, fmax, PCA_type='DE-BFL', color=None,\n suppress_warnings=False, saved=True):\n if specimen not in list(self.Data.keys()) and not suppress_warnings:\n self.user_warning(\n 'there is no measurement data for %s and therefore no interpretation can be created for this specimen'\n % specimen)\n return\n if fmax != None and fmax not in self.Data[specimen]['zijdblock_steps'\n ] or fmin != None and fmin not in self.Data[specimen]['zijdblock_steps'\n ]:\n return\n if not specimen in list(self.pmag_results_data['specimens'].keys()):\n self.pmag_results_data['specimens'][specimen] = []\n next_fit = str(len(self.pmag_results_data['specimens'][specimen]) + 1)\n if name == None or name in [x.name for x in self.pmag_results_data[\n 'specimens'][specimen]] or name == '' or name.replace(' ', '') == '':\n name = 'Fit ' + next_fit\n if name in [x.name for x in self.pmag_results_data['specimens'][\n specimen]]:\n print('bad name')\n return\n if color == None:\n color = self.colors[(int(next_fit) - 1) % len(self.colors)]\n new_fit = Fit(name, fmax, fmin, color, self, PCA_type, saved)\n if fmin != None and fmax != None:\n new_fit.put(specimen, self.COORDINATE_SYSTEM, self.\n get_PCA_parameters(specimen, new_fit, fmin, fmax, self.\n COORDINATE_SYSTEM, PCA_type))\n if ('specimen_dec' not in list(new_fit.get(self.COORDINATE_SYSTEM).\n keys()) or 'specimen_inc' not in list(new_fit.get(self.\n COORDINATE_SYSTEM).keys())) and not suppress_warnings:\n TEXT = (\n 'Could not calculate dec or inc for specimen %s component %s with bounds %s and %s in coordinate_system %s, component not added'\n % (specimen, name, fmin, fmax, self.COORDINATE_SYSTEM))\n self.user_warning(TEXT)\n print(TEXT)\n return\n self.pmag_results_data['specimens'][specimen].append(new_fit)\n samp = self.Data_hierarchy['sample_of_specimen'][specimen]\n if samp in list(self.Data_info['er_samples'].keys()):\n if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]:\n self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g'\n samp_flag = self.Data_info['er_samples'][samp][\n 'sample_orientation_flag']\n if samp_flag == 'b':\n self.mark_fit_bad(new_fit)\n self.close_warning = True\n return new_fit\n",
"role": "user"
},
{
"content": "add_fit",
"role": "assistant"
}
] |
def x(self, fit, specimen=None):
if specimen == None:
for spec in self.pmag_results_data['specimens']:
if fit in self.pmag_results_data['specimens'][spec]:
specimen = spec
break
if specimen not in self.pmag_results_data['specimens']:
return
if fit in self.pmag_results_data['specimens'][specimen]:
self.pmag_results_data['specimens'][specimen].remove(fit)
if fit == self.current_fit:
if self.pmag_results_data['specimens'][specimen]:
self.pmag_results_data['specimens'][specimen][-1].select()
else:
self.current_fit = None
self.close_warning = True
self.calculate_high_levels_data()
if self.ie_open:
self.ie.update_editor()
self.update_selection()
|
delete_fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fit, specimen=None):\n if specimen == None:\n for spec in self.pmag_results_data['specimens']:\n if fit in self.pmag_results_data['specimens'][spec]:\n specimen = spec\n break\n if specimen not in self.pmag_results_data['specimens']:\n return\n if fit in self.pmag_results_data['specimens'][specimen]:\n self.pmag_results_data['specimens'][specimen].remove(fit)\n if fit == self.current_fit:\n if self.pmag_results_data['specimens'][specimen]:\n self.pmag_results_data['specimens'][specimen][-1].select()\n else:\n self.current_fit = None\n self.close_warning = True\n self.calculate_high_levels_data()\n if self.ie_open:\n self.ie.update_editor()\n self.update_selection()\n",
"role": "user"
},
{
"content": "delete_fit",
"role": "assistant"
}
] |
def x(self, er_ages_rec):
if 'age' not in list(er_ages_rec.keys()):
return er_ages_rec
if 'age_unit' not in list(er_ages_rec.keys()):
return er_ages_rec
if er_ages_rec['age_unit'] == '':
return er_ages_rec
if er_ages_rec['age'] == '':
if 'age_range_high' in list(er_ages_rec.keys()
) and 'age_range_low' in list(er_ages_rec.keys()):
if er_ages_rec['age_range_high'] != '' and er_ages_rec[
'age_range_low'] != '':
er_ages_rec['age'] = scipy.mean([float(er_ages_rec[
'age_range_high']), float(er_ages_rec['age_range_low'])])
if er_ages_rec['age'] == '':
return er_ages_rec
age_unit = er_ages_rec['age_unit']
mutliplier = 1
if age_unit == 'Ga':
mutliplier = -1000000000.0
if age_unit == 'Ma':
mutliplier = -1000000.0
if age_unit == 'Ka':
mutliplier = -1000.0
if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)':
mutliplier = 1
if age_unit == 'Years BP' or age_unit == 'Years Cal BP':
mutliplier = 1
age = float(er_ages_rec['age']) * mutliplier
if age_unit == 'Years BP' or age_unit == 'Years Cal BP':
age = 1950 - age
er_ages_rec['age_cal_year'] = age
age_range_low = age
age_range_high = age
age_sigma = 0
if 'age_sigma' in list(er_ages_rec.keys()) and er_ages_rec['age_sigma'
] != '':
age_sigma = float(er_ages_rec['age_sigma']) * mutliplier
if age_unit == 'Years BP' or age_unit == 'Years Cal BP':
age_sigma = 1950 - age_sigma
age_range_low = age - age_sigma
age_range_high = age + age_sigma
if 'age_range_high' in list(er_ages_rec.keys()
) and 'age_range_low' in list(er_ages_rec.keys()):
if er_ages_rec['age_range_high'] != '' and er_ages_rec['age_range_low'
] != '':
age_range_high = float(er_ages_rec['age_range_high']) * mutliplier
if age_unit == 'Years BP' or age_unit == 'Years Cal BP':
age_range_high = 1950 - age_range_high
age_range_low = float(er_ages_rec['age_range_low']) * mutliplier
if age_unit == 'Years BP' or age_unit == 'Years Cal BP':
age_range_low = 1950 - age_range_low
er_ages_rec['age_cal_year_range_low'] = age_range_low
er_ages_rec['age_cal_year_range_high'] = age_range_high
return er_ages_rec
|
convert_ages_to_calendar_year
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, er_ages_rec):\n if 'age' not in list(er_ages_rec.keys()):\n return er_ages_rec\n if 'age_unit' not in list(er_ages_rec.keys()):\n return er_ages_rec\n if er_ages_rec['age_unit'] == '':\n return er_ages_rec\n if er_ages_rec['age'] == '':\n if 'age_range_high' in list(er_ages_rec.keys()\n ) and 'age_range_low' in list(er_ages_rec.keys()):\n if er_ages_rec['age_range_high'] != '' and er_ages_rec[\n 'age_range_low'] != '':\n er_ages_rec['age'] = scipy.mean([float(er_ages_rec[\n 'age_range_high']), float(er_ages_rec['age_range_low'])])\n if er_ages_rec['age'] == '':\n return er_ages_rec\n age_unit = er_ages_rec['age_unit']\n mutliplier = 1\n if age_unit == 'Ga':\n mutliplier = -1000000000.0\n if age_unit == 'Ma':\n mutliplier = -1000000.0\n if age_unit == 'Ka':\n mutliplier = -1000.0\n if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)':\n mutliplier = 1\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n mutliplier = 1\n age = float(er_ages_rec['age']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age = 1950 - age\n er_ages_rec['age_cal_year'] = age\n age_range_low = age\n age_range_high = age\n age_sigma = 0\n if 'age_sigma' in list(er_ages_rec.keys()) and er_ages_rec['age_sigma'\n ] != '':\n age_sigma = float(er_ages_rec['age_sigma']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_sigma = 1950 - age_sigma\n age_range_low = age - age_sigma\n age_range_high = age + age_sigma\n if 'age_range_high' in list(er_ages_rec.keys()\n ) and 'age_range_low' in list(er_ages_rec.keys()):\n if er_ages_rec['age_range_high'] != '' and er_ages_rec['age_range_low'\n ] != '':\n age_range_high = float(er_ages_rec['age_range_high']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_range_high = 1950 - age_range_high\n age_range_low = float(er_ages_rec['age_range_low']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_range_low = 1950 - age_range_low\n er_ages_rec['age_cal_year_range_low'] = age_range_low\n er_ages_rec['age_cal_year_range_high'] = age_range_high\n return er_ages_rec\n",
"role": "user"
},
{
"content": "convert_ages_to_calendar_year",
"role": "assistant"
}
] |
def x(self):
self.warning_text = ''
if self.s in list(self.pmag_results_data['specimens'].keys()):
for fit in self.pmag_results_data['specimens'][self.s]:
beg_pca, end_pca = self.get_indices(fit, fit.tmin, fit.tmax, self.s
)
if beg_pca == None or end_pca == None:
self.warning_text += (
'%s to %s are invalid bounds, to fit %s.\n' % (fit.tmin,
fit.tmax, fit.name))
elif end_pca - beg_pca < 2:
self.warning_text += (
'there are not enough points between %s to %s, on fit %s.\n'
% (fit.tmin, fit.tmax, fit.name))
else:
check_duplicates = []
warning_issued = []
if end_pca + 2 < len(self.Data[self.s]['zijdblock_steps']):
check_endpoint = end_pca + 2
else:
check_endpoint = end_pca + 1
for s, f in zip(self.Data[self.s]['zijdblock_steps'][
beg_pca:check_endpoint], self.Data[self.s][
'measurement_flag'][beg_pca:check_endpoint]):
if f == 'g' and [s, 'g'] in check_duplicates:
if s == fit.tmin and s not in warning_issued:
self.warning_text += (
'There are multiple good %s ' +
'steps at the upper bound of Fit %s. The first '
+
"""measurement will be used as the lower bound.
"""
) % (s, fit.name)
warning_issued.append(s)
elif s == fit.tmax and s not in warning_issued:
self.warning_text += (
'There are multiple good %s ' +
'steps at the upper bound of Fit %s. The first '
+
"""measurement will be used as the upper bound.
"""
) % (s, fit.name)
warning_issued.append(s)
elif s not in warning_issued:
self.warning_text += (
'Within Fit %s, there are ' +
'multiple good measurements at the %s step. All '
+
"""good measurements are included in the fit.
"""
) % (fit.name, s)
warning_issued.append(s)
else:
pass
else:
check_duplicates.append([s, f])
if self.s in list(self.Data.keys()):
if not self.Data[self.s]['zijdblock_geo']:
self.warning_text += (
'There is no geographic data for this specimen.\n')
if not self.Data[self.s]['zijdblock_tilt']:
self.warning_text += (
'There is no tilt-corrected data for this specimen.\n')
|
generate_warning_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.warning_text = ''\n if self.s in list(self.pmag_results_data['specimens'].keys()):\n for fit in self.pmag_results_data['specimens'][self.s]:\n beg_pca, end_pca = self.get_indices(fit, fit.tmin, fit.tmax, self.s\n )\n if beg_pca == None or end_pca == None:\n self.warning_text += (\n '%s to %s are invalid bounds, to fit %s.\\n' % (fit.tmin,\n fit.tmax, fit.name))\n elif end_pca - beg_pca < 2:\n self.warning_text += (\n 'there are not enough points between %s to %s, on fit %s.\\n'\n % (fit.tmin, fit.tmax, fit.name))\n else:\n check_duplicates = []\n warning_issued = []\n if end_pca + 2 < len(self.Data[self.s]['zijdblock_steps']):\n check_endpoint = end_pca + 2\n else:\n check_endpoint = end_pca + 1\n for s, f in zip(self.Data[self.s]['zijdblock_steps'][\n beg_pca:check_endpoint], self.Data[self.s][\n 'measurement_flag'][beg_pca:check_endpoint]):\n if f == 'g' and [s, 'g'] in check_duplicates:\n if s == fit.tmin and s not in warning_issued:\n self.warning_text += (\n 'There are multiple good %s ' +\n 'steps at the upper bound of Fit %s. The first '\n +\n \"\"\"measurement will be used as the lower bound.\n\"\"\"\n ) % (s, fit.name)\n warning_issued.append(s)\n elif s == fit.tmax and s not in warning_issued:\n self.warning_text += (\n 'There are multiple good %s ' +\n 'steps at the upper bound of Fit %s. The first '\n +\n \"\"\"measurement will be used as the upper bound.\n\"\"\"\n ) % (s, fit.name)\n warning_issued.append(s)\n elif s not in warning_issued:\n self.warning_text += (\n 'Within Fit %s, there are ' +\n 'multiple good measurements at the %s step. All '\n +\n \"\"\"good measurements are included in the fit.\n\"\"\"\n ) % (fit.name, s)\n warning_issued.append(s)\n else:\n pass\n else:\n check_duplicates.append([s, f])\n if self.s in list(self.Data.keys()):\n if not self.Data[self.s]['zijdblock_geo']:\n self.warning_text += (\n 'There is no geographic data for this specimen.\\n')\n if not self.Data[self.s]['zijdblock_tilt']:\n self.warning_text += (\n 'There is no tilt-corrected data for this specimen.\\n')\n",
"role": "user"
},
{
"content": "generate_warning_text",
"role": "assistant"
}
] |
def x(self, criteria_file_name=None):
acceptance_criteria = pmag.initialize_acceptance_criteria()
if self.data_model == 3:
if criteria_file_name == None:
criteria_file_name = 'criteria.txt'
contribution = cb.Contribution(self.WD, read_tables=['criteria'],
custom_filenames={'criteria': criteria_file_name})
if 'criteria' in contribution.tables:
crit_container = contribution.tables['criteria']
crit_data = crit_container.df
crit_data = crit_data.to_dict('records')
for crit in crit_data:
m2_name = map_magic.convert_direction_criteria('magic2',
crit['table_column'])
if m2_name != '':
try:
if crit['criterion_value'] == 'True':
acceptance_criteria[m2_name]['value'] = 1
else:
acceptance_criteria[m2_name]['value'] = 0
acceptance_criteria[m2_name]['value'] = float(crit[
'criterion_value'])
except ValueError:
self.user_warning(
'%s is not a valid comparitor for %s, skipping this criteria'
% (str(crit['criterion_value']), m2_name))
continue
acceptance_criteria[m2_name]['pmag_criteria_code'] = crit[
'criterion']
return acceptance_criteria
else:
if criteria_file_name == None:
criteria_file_name = 'pmag_criteria.txt'
try:
acceptance_criteria = pmag.read_criteria_from_file(os.path.join
(self.WD, criteria_file_name), acceptance_criteria)
except (IOError, OSError) as e:
self.user_warning(
'File %s not found in directory %s aborting opperation' % (
criteria_file_name, self.WD))
return acceptance_criteria
|
read_criteria_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, criteria_file_name=None):\n acceptance_criteria = pmag.initialize_acceptance_criteria()\n if self.data_model == 3:\n if criteria_file_name == None:\n criteria_file_name = 'criteria.txt'\n contribution = cb.Contribution(self.WD, read_tables=['criteria'],\n custom_filenames={'criteria': criteria_file_name})\n if 'criteria' in contribution.tables:\n crit_container = contribution.tables['criteria']\n crit_data = crit_container.df\n crit_data = crit_data.to_dict('records')\n for crit in crit_data:\n m2_name = map_magic.convert_direction_criteria('magic2',\n crit['table_column'])\n if m2_name != '':\n try:\n if crit['criterion_value'] == 'True':\n acceptance_criteria[m2_name]['value'] = 1\n else:\n acceptance_criteria[m2_name]['value'] = 0\n acceptance_criteria[m2_name]['value'] = float(crit[\n 'criterion_value'])\n except ValueError:\n self.user_warning(\n '%s is not a valid comparitor for %s, skipping this criteria'\n % (str(crit['criterion_value']), m2_name))\n continue\n acceptance_criteria[m2_name]['pmag_criteria_code'] = crit[\n 'criterion']\n return acceptance_criteria\n else:\n if criteria_file_name == None:\n criteria_file_name = 'pmag_criteria.txt'\n try:\n acceptance_criteria = pmag.read_criteria_from_file(os.path.join\n (self.WD, criteria_file_name), acceptance_criteria)\n except (IOError, OSError) as e:\n self.user_warning(\n 'File %s not found in directory %s aborting opperation' % (\n criteria_file_name, self.WD))\n return acceptance_criteria\n",
"role": "user"
},
{
"content": "read_criteria_file",
"role": "assistant"
}
] |
def x(self, specimen, fit, tmin, tmax, coordinate_system, calculation_type):
if tmin == '' or tmax == '':
return
beg_pca, end_pca = self.get_indices(fit, tmin, tmax, specimen)
if coordinate_system == 'geographic' or coordinate_system == 'DA-DIR-GEO':
block = self.Data[specimen]['zijdblock_geo']
elif coordinate_system == 'tilt-corrected' or coordinate_system == 'DA-DIR-TILT':
block = self.Data[specimen]['zijdblock_tilt']
else:
block = self.Data[specimen]['zijdblock']
if block == []:
print(
'-E- no measurement data for specimen %s in coordinate system %s' %
(specimen, coordinate_system))
mpars = {}
elif end_pca > beg_pca and end_pca - beg_pca > 1:
try:
mpars = pmag.domean(block, beg_pca, end_pca, calculation_type)
except:
print((block, beg_pca, end_pca, calculation_type, specimen, fit
.name, tmin, tmax, coordinate_system))
return
if 'specimen_direction_type' in mpars and mpars[
'specimen_direction_type'] == 'Error':
print(
'-E- no measurement data for specimen %s in coordinate system %s'
% (specimen, coordinate_system))
return {}
else:
mpars = {}
for k in list(mpars.keys()):
try:
if math.isnan(float(mpars[k])):
mpars[k] = 0
except:
pass
if 'DE-BFL' in calculation_type and 'specimen_dang' not in list(mpars.
keys()):
mpars['specimen_dang'] = 0
if 'best fit vector' in self.plane_display_box.GetValue():
self.calculate_best_fit_vectors()
return mpars
|
get_PCA_parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, specimen, fit, tmin, tmax, coordinate_system, calculation_type):\n if tmin == '' or tmax == '':\n return\n beg_pca, end_pca = self.get_indices(fit, tmin, tmax, specimen)\n if coordinate_system == 'geographic' or coordinate_system == 'DA-DIR-GEO':\n block = self.Data[specimen]['zijdblock_geo']\n elif coordinate_system == 'tilt-corrected' or coordinate_system == 'DA-DIR-TILT':\n block = self.Data[specimen]['zijdblock_tilt']\n else:\n block = self.Data[specimen]['zijdblock']\n if block == []:\n print(\n '-E- no measurement data for specimen %s in coordinate system %s' %\n (specimen, coordinate_system))\n mpars = {}\n elif end_pca > beg_pca and end_pca - beg_pca > 1:\n try:\n mpars = pmag.domean(block, beg_pca, end_pca, calculation_type)\n except:\n print((block, beg_pca, end_pca, calculation_type, specimen, fit\n .name, tmin, tmax, coordinate_system))\n return\n if 'specimen_direction_type' in mpars and mpars[\n 'specimen_direction_type'] == 'Error':\n print(\n '-E- no measurement data for specimen %s in coordinate system %s'\n % (specimen, coordinate_system))\n return {}\n else:\n mpars = {}\n for k in list(mpars.keys()):\n try:\n if math.isnan(float(mpars[k])):\n mpars[k] = 0\n except:\n pass\n if 'DE-BFL' in calculation_type and 'specimen_dang' not in list(mpars.\n keys()):\n mpars['specimen_dang'] = 0\n if 'best fit vector' in self.plane_display_box.GetValue():\n self.calculate_best_fit_vectors()\n return mpars\n",
"role": "user"
},
{
"content": "get_PCA_parameters",
"role": "assistant"
}
] |
def x(self, event, step_size=None, calculation_type='DE-BFL'):
if not self.user_warning(
'This feature is in ALPHA and still in development and testing. It is subject to bugs and will often create a LOT of new interpretations. This feature should only be used to get a general idea of the trend of the data before actually mannuely interpreting the data and the output of this function should certainly not be trusted as 100% accurate and useable for publication. Would you like to continue?'
):
return
if not self.clear_interpretations():
return
print('Autointerpretation Start')
self.set_test_mode(True)
for specimen in self.specimens:
self.autointerpret_specimen(specimen, step_size, calculation_type)
self.set_test_mode(False)
if self.pmag_results_data['specimens'][self.s] != []:
self.current_fit = self.pmag_results_data['specimens'][self.s][-1]
else:
self.current_fit = None
print('Autointerpretation Complete')
self.update_selection()
if self.ie_open:
self.ie.update_editor()
|
autointerpret
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event, step_size=None, calculation_type='DE-BFL'):\n if not self.user_warning(\n 'This feature is in ALPHA and still in development and testing. It is subject to bugs and will often create a LOT of new interpretations. This feature should only be used to get a general idea of the trend of the data before actually mannuely interpreting the data and the output of this function should certainly not be trusted as 100% accurate and useable for publication. Would you like to continue?'\n ):\n return\n if not self.clear_interpretations():\n return\n print('Autointerpretation Start')\n self.set_test_mode(True)\n for specimen in self.specimens:\n self.autointerpret_specimen(specimen, step_size, calculation_type)\n self.set_test_mode(False)\n if self.pmag_results_data['specimens'][self.s] != []:\n self.current_fit = self.pmag_results_data['specimens'][self.s][-1]\n else:\n self.current_fit = None\n print('Autointerpretation Complete')\n self.update_selection()\n if self.ie_open:\n self.ie.update_editor()\n",
"role": "user"
},
{
"content": "autointerpret",
"role": "assistant"
}
] |
def x(self, specimen, step_size, calculation_type):
if self.COORDINATE_SYSTEM == 'geographic':
block = self.Data[specimen]['zijdblock_geo']
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
block = self.Data[specimen]['zijdblock_tilt']
else:
block = self.Data[specimen]['zijdblock']
if step_size == None:
step_size = int(len(block) / 10 + 0.5)
if step_size < 3:
step_size = 3
temps = []
mads = []
for i in range(len(block) - step_size):
if block[i][5] == 'b':
return
try:
mpars = pmag.domean(block, i, i + step_size, calculation_type)
except (IndexError, TypeError) as e:
return
if 'specimen_mad' in list(mpars.keys()):
temps.append(block[i][0])
mads.append(mpars['specimen_mad'])
if mads == []:
return
peaks = find_peaks_cwt(array(mads), arange(5, 10))
len_temps = len(self.Data[specimen]['zijdblock_steps'])
peaks = [0] + peaks + [len(temps)]
prev_peak = peaks[0]
for peak in peaks[1:]:
if peak - prev_peak < 3:
prev_peak = peak
continue
tmin = self.Data[specimen]['zijdblock_steps'][prev_peak]
tmax = self.Data[specimen]['zijdblock_steps'][peak]
self.add_fit(specimen, None, tmin, tmax, calculation_type)
prev_peak = peak + 1
|
autointerpret_specimen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, specimen, step_size, calculation_type):\n if self.COORDINATE_SYSTEM == 'geographic':\n block = self.Data[specimen]['zijdblock_geo']\n elif self.COORDINATE_SYSTEM == 'tilt-corrected':\n block = self.Data[specimen]['zijdblock_tilt']\n else:\n block = self.Data[specimen]['zijdblock']\n if step_size == None:\n step_size = int(len(block) / 10 + 0.5)\n if step_size < 3:\n step_size = 3\n temps = []\n mads = []\n for i in range(len(block) - step_size):\n if block[i][5] == 'b':\n return\n try:\n mpars = pmag.domean(block, i, i + step_size, calculation_type)\n except (IndexError, TypeError) as e:\n return\n if 'specimen_mad' in list(mpars.keys()):\n temps.append(block[i][0])\n mads.append(mpars['specimen_mad'])\n if mads == []:\n return\n peaks = find_peaks_cwt(array(mads), arange(5, 10))\n len_temps = len(self.Data[specimen]['zijdblock_steps'])\n peaks = [0] + peaks + [len(temps)]\n prev_peak = peaks[0]\n for peak in peaks[1:]:\n if peak - prev_peak < 3:\n prev_peak = peak\n continue\n tmin = self.Data[specimen]['zijdblock_steps'][prev_peak]\n tmax = self.Data[specimen]['zijdblock_steps'][peak]\n self.add_fit(specimen, None, tmin, tmax, calculation_type)\n prev_peak = peak + 1\n",
"role": "user"
},
{
"content": "autointerpret_specimen",
"role": "assistant"
}
] |
def x(self, high_level_type, high_level_name, calculation_type,
elements_type, mean_fit, dirtype):
elements_list = self.Data_hierarchy[high_level_type][high_level_name][
elements_type]
pars_for_mean = {}
pars_for_mean['All'] = []
for element in elements_list:
if elements_type == 'specimens' and element in self.pmag_results_data[
'specimens']:
for fit in self.pmag_results_data['specimens'][element]:
if fit in self.bad_fits:
continue
if fit.name not in list(pars_for_mean.keys()):
pars_for_mean[fit.name] = []
try:
if mean_fit == 'All' or mean_fit == fit.name:
pars = fit.get(dirtype)
if pars == {} or pars == None:
pars = self.get_PCA_parameters(element, fit,
fit.tmin, fit.tmax, dirtype, fit.PCA_type)
if pars == {} or pars == None:
print(
'cannot calculate parameters for element %s and fit %s in calculate_high_level_mean leaving out of fisher mean, please check this value.'
% (element, fit.name))
continue
fit.put(element, dirtype, pars)
else:
continue
if 'calculation_type' in list(pars.keys()) and pars[
'calculation_type'] == 'DE-BFP':
dec, inc, direction_type = pars['specimen_dec'], pars[
'specimen_inc'], 'p'
elif 'specimen_dec' in list(pars.keys()
) and 'specimen_inc' in list(pars.keys()):
dec, inc, direction_type = pars['specimen_dec'], pars[
'specimen_inc'], 'l'
elif 'dec' in list(pars.keys()) and 'inc' in list(pars.
keys()):
dec, inc, direction_type = pars['dec'], pars['inc'
], 'l'
else:
print(
"-E- ERROR: can't find mean for specimen interpertation: %s , %s"
% (element, fit.name))
print(pars)
continue
pars_for_mean[fit.name].append({'dec': float(dec),
'inc': float(inc), 'direction_type': direction_type,
'element_name': element})
pars_for_mean['All'].append({'dec': float(dec), 'inc':
float(inc), 'direction_type': direction_type,
'element_name': element})
except KeyError:
print(
'KeyError in calculate_high_level_mean for element: ' +
str(element))
continue
else:
try:
pars = self.high_level_means[elements_type][element][mean_fit][
dirtype]
if 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()):
dec, inc, direction_type = pars['dec'], pars['inc'], 'l'
else:
continue
except KeyError:
continue
return pars_for_mean
|
get_high_level_mean_pars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, high_level_type, high_level_name, calculation_type,\n elements_type, mean_fit, dirtype):\n elements_list = self.Data_hierarchy[high_level_type][high_level_name][\n elements_type]\n pars_for_mean = {}\n pars_for_mean['All'] = []\n for element in elements_list:\n if elements_type == 'specimens' and element in self.pmag_results_data[\n 'specimens']:\n for fit in self.pmag_results_data['specimens'][element]:\n if fit in self.bad_fits:\n continue\n if fit.name not in list(pars_for_mean.keys()):\n pars_for_mean[fit.name] = []\n try:\n if mean_fit == 'All' or mean_fit == fit.name:\n pars = fit.get(dirtype)\n if pars == {} or pars == None:\n pars = self.get_PCA_parameters(element, fit,\n fit.tmin, fit.tmax, dirtype, fit.PCA_type)\n if pars == {} or pars == None:\n print(\n 'cannot calculate parameters for element %s and fit %s in calculate_high_level_mean leaving out of fisher mean, please check this value.'\n % (element, fit.name))\n continue\n fit.put(element, dirtype, pars)\n else:\n continue\n if 'calculation_type' in list(pars.keys()) and pars[\n 'calculation_type'] == 'DE-BFP':\n dec, inc, direction_type = pars['specimen_dec'], pars[\n 'specimen_inc'], 'p'\n elif 'specimen_dec' in list(pars.keys()\n ) and 'specimen_inc' in list(pars.keys()):\n dec, inc, direction_type = pars['specimen_dec'], pars[\n 'specimen_inc'], 'l'\n elif 'dec' in list(pars.keys()) and 'inc' in list(pars.\n keys()):\n dec, inc, direction_type = pars['dec'], pars['inc'\n ], 'l'\n else:\n print(\n \"-E- ERROR: can't find mean for specimen interpertation: %s , %s\"\n % (element, fit.name))\n print(pars)\n continue\n pars_for_mean[fit.name].append({'dec': float(dec),\n 'inc': float(inc), 'direction_type': direction_type,\n 'element_name': element})\n pars_for_mean['All'].append({'dec': float(dec), 'inc':\n float(inc), 'direction_type': direction_type,\n 'element_name': element})\n except KeyError:\n print(\n 'KeyError in calculate_high_level_mean for element: ' +\n str(element))\n continue\n else:\n try:\n pars = self.high_level_means[elements_type][element][mean_fit][\n dirtype]\n if 'dec' in list(pars.keys()) and 'inc' in list(pars.keys()):\n dec, inc, direction_type = pars['dec'], pars['inc'], 'l'\n else:\n continue\n except KeyError:\n continue\n return pars_for_mean\n",
"role": "user"
},
{
"content": "get_high_level_mean_pars",
"role": "assistant"
}
] |
def x(self, pars_for_mean, calculation_type):
if len(pars_for_mean) == 0:
return {}
elif len(pars_for_mean) == 1:
return {'dec': float(pars_for_mean[0]['dec']), 'inc': float(
pars_for_mean[0]['inc']), 'calculation_type': calculation_type,
'n': 1}
elif calculation_type == 'Fisher':
mpars = pmag.dolnp(pars_for_mean, 'direction_type')
elif calculation_type == 'Fisher by polarity':
mpars = pmag.fisher_by_pol(pars_for_mean)
for key in list(mpars.keys()):
mpars[key]['n_planes'] = 0
mpars[key]['calculation_type'] = 'Fisher'
mpars['calculation_type'] = calculation_type
return mpars
|
calculate_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pars_for_mean, calculation_type):\n if len(pars_for_mean) == 0:\n return {}\n elif len(pars_for_mean) == 1:\n return {'dec': float(pars_for_mean[0]['dec']), 'inc': float(\n pars_for_mean[0]['inc']), 'calculation_type': calculation_type,\n 'n': 1}\n elif calculation_type == 'Fisher':\n mpars = pmag.dolnp(pars_for_mean, 'direction_type')\n elif calculation_type == 'Fisher by polarity':\n mpars = pmag.fisher_by_pol(pars_for_mean)\n for key in list(mpars.keys()):\n mpars[key]['n_planes'] = 0\n mpars[key]['calculation_type'] = 'Fisher'\n mpars['calculation_type'] = calculation_type\n return mpars\n",
"role": "user"
},
{
"content": "calculate_mean",
"role": "assistant"
}
] |
def x(self):
high_level_type = str(self.level_box.GetValue())
if high_level_type == 'sample':
high_level_type = 'samples'
if high_level_type == 'site':
high_level_type = 'sites'
if high_level_type == 'location':
high_level_type = 'locations'
high_level_name = str(self.level_names.GetValue())
calculation_type = str(self.mean_type_box.GetValue())
elements_type = self.UPPER_LEVEL_SHOW
if self.ie_open:
self.ie.mean_type_box.SetStringSelection(calculation_type)
self.calculate_high_level_mean(high_level_type, high_level_name,
calculation_type, elements_type, self.mean_fit)
|
calculate_high_levels_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n high_level_type = str(self.level_box.GetValue())\n if high_level_type == 'sample':\n high_level_type = 'samples'\n if high_level_type == 'site':\n high_level_type = 'sites'\n if high_level_type == 'location':\n high_level_type = 'locations'\n high_level_name = str(self.level_names.GetValue())\n calculation_type = str(self.mean_type_box.GetValue())\n elements_type = self.UPPER_LEVEL_SHOW\n if self.ie_open:\n self.ie.mean_type_box.SetStringSelection(calculation_type)\n self.calculate_high_level_mean(high_level_type, high_level_name,\n calculation_type, elements_type, self.mean_fit)\n",
"role": "user"
},
{
"content": "calculate_high_levels_data",
"role": "assistant"
}
] |
def x(self, reset_interps=True):
new_Data_info = self.get_data_info()
new_Data, new_Data_hierarchy = self.get_data()
if not new_Data:
print('Data read in failed when reseting, aborting reset')
return
else:
self.Data, self.Data_hierarchy, self.Data_info = (new_Data,
new_Data_hierarchy, new_Data_info)
if reset_interps:
self.pmag_results_data = {}
for level in ['specimens', 'samples', 'sites', 'locations', 'study']:
self.pmag_results_data[level] = {}
self.high_level_means = {}
high_level_means = {}
for high_level in ['samples', 'sites', 'locations', 'study']:
if high_level not in list(self.high_level_means.keys()):
self.high_level_means[high_level] = {}
self.locations = list(self.Data_hierarchy['locations'].keys())
self.locations.sort()
self.sites = list(self.Data_hierarchy['sites'].keys())
self.sites.sort(key=spec_key_func)
self.samples = []
for site in self.sites:
self.samples.extend(sorted(self.Data_hierarchy['sites'][site][
'samples'], key=spec_key_func))
self.specimens = []
for samp in self.samples:
self.specimens.extend(sorted(self.Data_hierarchy['samples'][samp][
'specimens'], key=spec_key_func))
if self.s in self.specimens:
pass
elif len(self.specimens) > 0:
self.select_specimen(str(self.specimens[0]))
else:
self.select_specimen('')
try:
self.sample = self.Data_hierarchy['sample_of_specimen'][self.s]
except KeyError:
self.sample = ''
try:
self.site = self.Data_hierarchy['site_of_specimen'][self.s]
except KeyError:
self.site = ''
if self.Data and reset_interps:
self.update_pmag_tables()
if self.ie_open:
self.ie.specimens_list = self.specimens
|
quiet_reset_backend
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, reset_interps=True):\n new_Data_info = self.get_data_info()\n new_Data, new_Data_hierarchy = self.get_data()\n if not new_Data:\n print('Data read in failed when reseting, aborting reset')\n return\n else:\n self.Data, self.Data_hierarchy, self.Data_info = (new_Data,\n new_Data_hierarchy, new_Data_info)\n if reset_interps:\n self.pmag_results_data = {}\n for level in ['specimens', 'samples', 'sites', 'locations', 'study']:\n self.pmag_results_data[level] = {}\n self.high_level_means = {}\n high_level_means = {}\n for high_level in ['samples', 'sites', 'locations', 'study']:\n if high_level not in list(self.high_level_means.keys()):\n self.high_level_means[high_level] = {}\n self.locations = list(self.Data_hierarchy['locations'].keys())\n self.locations.sort()\n self.sites = list(self.Data_hierarchy['sites'].keys())\n self.sites.sort(key=spec_key_func)\n self.samples = []\n for site in self.sites:\n self.samples.extend(sorted(self.Data_hierarchy['sites'][site][\n 'samples'], key=spec_key_func))\n self.specimens = []\n for samp in self.samples:\n self.specimens.extend(sorted(self.Data_hierarchy['samples'][samp][\n 'specimens'], key=spec_key_func))\n if self.s in self.specimens:\n pass\n elif len(self.specimens) > 0:\n self.select_specimen(str(self.specimens[0]))\n else:\n self.select_specimen('')\n try:\n self.sample = self.Data_hierarchy['sample_of_specimen'][self.s]\n except KeyError:\n self.sample = ''\n try:\n self.site = self.Data_hierarchy['site_of_specimen'][self.s]\n except KeyError:\n self.site = ''\n if self.Data and reset_interps:\n self.update_pmag_tables()\n if self.ie_open:\n self.ie.specimens_list = self.specimens\n",
"role": "user"
},
{
"content": "quiet_reset_backend",
"role": "assistant"
}
] |
def x(self, warn_user=True, reset_interps=True):
if warn_user and not self.data_loss_warning():
return False
self.quiet_reset_backend(reset_interps=reset_interps)
self.specimens_box.SetItems(self.specimens)
self.specimens_box.SetStringSelection(str(self.s))
self.level_names.Clear()
self.level_names.AppendItems(self.sites)
if self.sites:
self.level_names.SetSelection(0)
self.COORDINATE_SYSTEM, self.coordinate_list = self.get_coordinate_system()
self.coordinates_box.Clear()
self.coordinates_box.AppendItems(self.coordinate_list)
self.coordinates_box.SetStringSelection(self.COORDINATE_SYSTEM)
self.initialize_CART_rot(str(self.s))
if self.Data:
if not self.current_fit:
self.draw_figure(self.s)
self.update_selection()
else:
self.Add_text()
self.update_fit_boxes()
if self.ie_open:
self.ie.update_editor()
|
reset_backend
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, warn_user=True, reset_interps=True):\n if warn_user and not self.data_loss_warning():\n return False\n self.quiet_reset_backend(reset_interps=reset_interps)\n self.specimens_box.SetItems(self.specimens)\n self.specimens_box.SetStringSelection(str(self.s))\n self.level_names.Clear()\n self.level_names.AppendItems(self.sites)\n if self.sites:\n self.level_names.SetSelection(0)\n self.COORDINATE_SYSTEM, self.coordinate_list = self.get_coordinate_system()\n self.coordinates_box.Clear()\n self.coordinates_box.AppendItems(self.coordinate_list)\n self.coordinates_box.SetStringSelection(self.COORDINATE_SYSTEM)\n self.initialize_CART_rot(str(self.s))\n if self.Data:\n if not self.current_fit:\n self.draw_figure(self.s)\n self.update_selection()\n else:\n self.Add_text()\n self.update_fit_boxes()\n if self.ie_open:\n self.ie.update_editor()\n",
"role": "user"
},
{
"content": "reset_backend",
"role": "assistant"
}
] |
def x(self):
self.initialize_CART_rot(self.s)
if str(self.s) in self.pmag_results_data['specimens']:
for fit in self.pmag_results_data['specimens'][self.s]:
if fit.get('specimen') and 'calculation_type' in fit.get('specimen'
):
fit.put(self.s, 'specimen', self.get_PCA_parameters(self.s,
fit, fit.tmin, fit.tmax, 'specimen', fit.get('specimen'
)['calculation_type']))
if len(self.Data[self.s]['zijdblock_geo']) > 0 and fit.get(
'geographic') and 'calculation_type' in fit.get('geographic'):
fit.put(self.s, 'geographic', self.get_PCA_parameters(self.
s, fit, fit.tmin, fit.tmax, 'geographic', fit.get(
'geographic')['calculation_type']))
if len(self.Data[self.s]['zijdblock_tilt']) > 0 and fit.get(
'tilt-corrected') and 'calculation_type' in fit.get(
'tilt-corrected'):
fit.put(self.s, 'tilt-corrected', self.get_PCA_parameters(
self.s, fit, fit.tmin, fit.tmax, 'tilt-corrected', fit.
get('tilt-corrected')['calculation_type']))
|
recalculate_current_specimen_interpreatations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.initialize_CART_rot(self.s)\n if str(self.s) in self.pmag_results_data['specimens']:\n for fit in self.pmag_results_data['specimens'][self.s]:\n if fit.get('specimen') and 'calculation_type' in fit.get('specimen'\n ):\n fit.put(self.s, 'specimen', self.get_PCA_parameters(self.s,\n fit, fit.tmin, fit.tmax, 'specimen', fit.get('specimen'\n )['calculation_type']))\n if len(self.Data[self.s]['zijdblock_geo']) > 0 and fit.get(\n 'geographic') and 'calculation_type' in fit.get('geographic'):\n fit.put(self.s, 'geographic', self.get_PCA_parameters(self.\n s, fit, fit.tmin, fit.tmax, 'geographic', fit.get(\n 'geographic')['calculation_type']))\n if len(self.Data[self.s]['zijdblock_tilt']) > 0 and fit.get(\n 'tilt-corrected') and 'calculation_type' in fit.get(\n 'tilt-corrected'):\n fit.put(self.s, 'tilt-corrected', self.get_PCA_parameters(\n self.s, fit, fit.tmin, fit.tmax, 'tilt-corrected', fit.\n get('tilt-corrected')['calculation_type']))\n",
"role": "user"
},
{
"content": "recalculate_current_specimen_interpreatations",
"role": "assistant"
}
] |
def x(self, tmin0, tmax0, specimen):
if specimen not in self.Data:
print(
'no measurement data found loaded for specimen %s and will be ignored'
% specimen)
return None, None
if self.Data[specimen]['measurement_step_unit'] == 'C':
if float(tmin0) == 0 or float(tmin0) == 273:
tmin = '0'
else:
tmin = '%.0fC' % (float(tmin0) - 273)
if float(tmax0) == 0 or float(tmax0) == 273:
tmax = '0'
else:
tmax = '%.0fC' % (float(tmax0) - 273)
elif self.Data[specimen]['measurement_step_unit'] == 'mT':
if float(tmin0) == 0:
tmin = '0'
else:
tmin = '%.1fmT' % (float(tmin0) * 1000)
if float(tmax0) == 0:
tmax = '0'
else:
tmax = '%.1fmT' % (float(tmax0) * 1000)
else:
if float(tmin0) == 0:
tmin = '0'
elif '%.0fC' % (float(tmin0) - 273) in self.Data[specimen][
'zijdblock_steps']:
tmin = '%.0fC' % (float(tmin0) - 273)
elif '%.1fmT' % (float(tmin0) * 1000) in self.Data[specimen][
'zijdblock_steps']:
tmin = '%.1fmT' % (float(tmin0) * 1000)
else:
tmin = None
if float(tmax0) == 0:
tmax = '0'
elif '%.0fC' % (float(tmax0) - 273) in self.Data[specimen][
'zijdblock_steps']:
tmax = '%.0fC' % (float(tmax0) - 273)
elif '%.1fmT' % (float(tmax0) * 1000) in self.Data[specimen][
'zijdblock_steps']:
tmax = '%.1fmT' % (float(tmax0) * 1000)
else:
tmax = None
return tmin, tmax
|
parse_bound_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tmin0, tmax0, specimen):\n if specimen not in self.Data:\n print(\n 'no measurement data found loaded for specimen %s and will be ignored'\n % specimen)\n return None, None\n if self.Data[specimen]['measurement_step_unit'] == 'C':\n if float(tmin0) == 0 or float(tmin0) == 273:\n tmin = '0'\n else:\n tmin = '%.0fC' % (float(tmin0) - 273)\n if float(tmax0) == 0 or float(tmax0) == 273:\n tmax = '0'\n else:\n tmax = '%.0fC' % (float(tmax0) - 273)\n elif self.Data[specimen]['measurement_step_unit'] == 'mT':\n if float(tmin0) == 0:\n tmin = '0'\n else:\n tmin = '%.1fmT' % (float(tmin0) * 1000)\n if float(tmax0) == 0:\n tmax = '0'\n else:\n tmax = '%.1fmT' % (float(tmax0) * 1000)\n else:\n if float(tmin0) == 0:\n tmin = '0'\n elif '%.0fC' % (float(tmin0) - 273) in self.Data[specimen][\n 'zijdblock_steps']:\n tmin = '%.0fC' % (float(tmin0) - 273)\n elif '%.1fmT' % (float(tmin0) * 1000) in self.Data[specimen][\n 'zijdblock_steps']:\n tmin = '%.1fmT' % (float(tmin0) * 1000)\n else:\n tmin = None\n if float(tmax0) == 0:\n tmax = '0'\n elif '%.0fC' % (float(tmax0) - 273) in self.Data[specimen][\n 'zijdblock_steps']:\n tmax = '%.0fC' % (float(tmax0) - 273)\n elif '%.1fmT' % (float(tmax0) * 1000) in self.Data[specimen][\n 'zijdblock_steps']:\n tmax = '%.1fmT' % (float(tmax0) * 1000)\n else:\n tmax = None\n return tmin, tmax\n",
"role": "user"
},
{
"content": "parse_bound_data",
"role": "assistant"
}
] |
def x(self, fit=None, tmin=None, tmax=None, specimen=None):
if specimen == None:
specimen = self.s
if fit and not tmin and not tmax:
tmin = fit.tmin
tmax = fit.tmax
if specimen not in list(self.Data.keys()):
self.user_warning('No data for specimen ' + specimen)
if tmin in self.Data[specimen]['zijdblock_steps']:
tmin_index = self.Data[specimen]['zijdblock_steps'].index(tmin)
elif type(tmin) == str or type(tmin) == str and tmin != '':
int_steps = [float(x.strip('C mT')) for x in self.Data[specimen][
'zijdblock_steps']]
if tmin == '':
tmin = self.Data[specimen]['zijdblock_steps'][0]
print(
'No lower bound for %s on specimen %s using lowest step (%s) for lower bound'
% (fit.name, specimen, tmin))
if fit != None:
fit.tmin = tmin
int_tmin = float(tmin.strip('C mT'))
diffs = [abs(x - int_tmin) for x in int_steps]
tmin_index = diffs.index(min(diffs))
else:
tmin_index = self.tmin_box.GetSelection()
if tmax in self.Data[specimen]['zijdblock_steps']:
tmax_index = self.Data[specimen]['zijdblock_steps'].index(tmax)
elif type(tmax) == str or type(tmax) == str and tmax != '':
int_steps = [float(x.strip('C mT')) for x in self.Data[specimen][
'zijdblock_steps']]
if tmax == '':
tmax = self.Data[specimen]['zijdblock_steps'][-1]
print(
'No upper bound for fit %s on specimen %s using last step (%s) for upper bound'
% (fit.name, specimen, tmax))
if fit != None:
fit.tmax = tmax
int_tmax = float(tmax.strip('C mT'))
diffs = [abs(x - int_tmax) for x in int_steps]
tmax_index = diffs.index(min(diffs))
else:
tmax_index = self.tmin_box.GetSelection()
max_index = len(self.Data[specimen]['zijdblock_steps']) - 1
while self.Data[specimen]['measurement_flag'][max_index
] == 'b' and max_index - 1 > 0:
max_index -= 1
if tmin_index >= max_index:
print(
'lower bound is greater or equal to max step cannot determine bounds for specimen: '
+ specimen)
return None, None
if tmin_index >= 0:
while self.Data[specimen]['measurement_flag'][tmin_index
] == 'b' and tmin_index + 1 < len(self.Data[specimen][
'zijdblock_steps']):
if self.Data[specimen]['zijdblock_steps'][tmin_index + 1] == tmin:
tmin_index += 1
else:
tmin_old = tmin
while self.Data[specimen]['measurement_flag'][tmin_index
] == 'b' and tmin_index + 1 < len(self.Data[specimen][
'zijdblock_steps']):
tmin_index += 1
tmin = self.Data[specimen]['zijdblock_steps'][tmin_index]
if fit != None:
fit.tmin = tmin
self.tmin_box.SetStringSelection(tmin)
print('For specimen ' + str(specimen) +
' there are no good measurement steps with value - ' +
str(tmin_old) + ' using step ' + str(tmin) +
' as lower bound instead')
break
if tmax_index < max_index:
while self.Data[specimen]['measurement_flag'][tmax_index
] == 'b' and tmax_index + 1 < len(self.Data[specimen][
'zijdblock_steps']):
if self.Data[specimen]['zijdblock_steps'][tmax_index + 1] == tmax:
tmax_index += 1
else:
tmax_old = tmax
while self.Data[specimen]['measurement_flag'][tmax_index
] == 'b' and tmax_index >= 0:
tmax_index -= 1
tmax = self.Data[specimen]['zijdblock_steps'][tmax_index]
if fit != None:
fit.tmax = tmax
self.tmax_box.SetStringSelection(tmax)
print('For specimen ' + str(specimen) +
' there are no good measurement steps with value - ' +
str(tmax_old) + ' using step ' + str(tmax) +
' as upper bound instead')
break
if tmin_index < 0:
tmin_index = 0
if tmax_index > max_index:
tmax_index = max_index
return tmin_index, tmax_index
|
get_indices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fit=None, tmin=None, tmax=None, specimen=None):\n if specimen == None:\n specimen = self.s\n if fit and not tmin and not tmax:\n tmin = fit.tmin\n tmax = fit.tmax\n if specimen not in list(self.Data.keys()):\n self.user_warning('No data for specimen ' + specimen)\n if tmin in self.Data[specimen]['zijdblock_steps']:\n tmin_index = self.Data[specimen]['zijdblock_steps'].index(tmin)\n elif type(tmin) == str or type(tmin) == str and tmin != '':\n int_steps = [float(x.strip('C mT')) for x in self.Data[specimen][\n 'zijdblock_steps']]\n if tmin == '':\n tmin = self.Data[specimen]['zijdblock_steps'][0]\n print(\n 'No lower bound for %s on specimen %s using lowest step (%s) for lower bound'\n % (fit.name, specimen, tmin))\n if fit != None:\n fit.tmin = tmin\n int_tmin = float(tmin.strip('C mT'))\n diffs = [abs(x - int_tmin) for x in int_steps]\n tmin_index = diffs.index(min(diffs))\n else:\n tmin_index = self.tmin_box.GetSelection()\n if tmax in self.Data[specimen]['zijdblock_steps']:\n tmax_index = self.Data[specimen]['zijdblock_steps'].index(tmax)\n elif type(tmax) == str or type(tmax) == str and tmax != '':\n int_steps = [float(x.strip('C mT')) for x in self.Data[specimen][\n 'zijdblock_steps']]\n if tmax == '':\n tmax = self.Data[specimen]['zijdblock_steps'][-1]\n print(\n 'No upper bound for fit %s on specimen %s using last step (%s) for upper bound'\n % (fit.name, specimen, tmax))\n if fit != None:\n fit.tmax = tmax\n int_tmax = float(tmax.strip('C mT'))\n diffs = [abs(x - int_tmax) for x in int_steps]\n tmax_index = diffs.index(min(diffs))\n else:\n tmax_index = self.tmin_box.GetSelection()\n max_index = len(self.Data[specimen]['zijdblock_steps']) - 1\n while self.Data[specimen]['measurement_flag'][max_index\n ] == 'b' and max_index - 1 > 0:\n max_index -= 1\n if tmin_index >= max_index:\n print(\n 'lower bound is greater or equal to max step cannot determine bounds for specimen: '\n + specimen)\n return None, None\n if tmin_index >= 0:\n while self.Data[specimen]['measurement_flag'][tmin_index\n ] == 'b' and tmin_index + 1 < len(self.Data[specimen][\n 'zijdblock_steps']):\n if self.Data[specimen]['zijdblock_steps'][tmin_index + 1] == tmin:\n tmin_index += 1\n else:\n tmin_old = tmin\n while self.Data[specimen]['measurement_flag'][tmin_index\n ] == 'b' and tmin_index + 1 < len(self.Data[specimen][\n 'zijdblock_steps']):\n tmin_index += 1\n tmin = self.Data[specimen]['zijdblock_steps'][tmin_index]\n if fit != None:\n fit.tmin = tmin\n self.tmin_box.SetStringSelection(tmin)\n print('For specimen ' + str(specimen) +\n ' there are no good measurement steps with value - ' +\n str(tmin_old) + ' using step ' + str(tmin) +\n ' as lower bound instead')\n break\n if tmax_index < max_index:\n while self.Data[specimen]['measurement_flag'][tmax_index\n ] == 'b' and tmax_index + 1 < len(self.Data[specimen][\n 'zijdblock_steps']):\n if self.Data[specimen]['zijdblock_steps'][tmax_index + 1] == tmax:\n tmax_index += 1\n else:\n tmax_old = tmax\n while self.Data[specimen]['measurement_flag'][tmax_index\n ] == 'b' and tmax_index >= 0:\n tmax_index -= 1\n tmax = self.Data[specimen]['zijdblock_steps'][tmax_index]\n if fit != None:\n fit.tmax = tmax\n self.tmax_box.SetStringSelection(tmax)\n print('For specimen ' + str(specimen) +\n ' there are no good measurement steps with value - ' +\n str(tmax_old) + ' using step ' + str(tmax) +\n ' as upper bound instead')\n break\n if tmin_index < 0:\n tmin_index = 0\n if tmax_index > max_index:\n tmax_index = max_index\n return tmin_index, tmax_index\n",
"role": "user"
},
{
"content": "get_indices",
"role": "assistant"
}
] |
def x(self, old_recs):
recs = {}
recs = deepcopy(old_recs)
headers = []
for rec in recs:
for key in list(rec.keys()):
if key not in headers:
headers.append(key)
for rec in recs:
for header in headers:
if header not in list(rec.keys()):
rec[header] = ''
return recs
|
merge_pmag_recs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, old_recs):\n recs = {}\n recs = deepcopy(old_recs)\n headers = []\n for rec in recs:\n for key in list(rec.keys()):\n if key not in headers:\n headers.append(key)\n for rec in recs:\n for header in headers:\n if header not in list(rec.keys()):\n rec[header] = ''\n return recs\n",
"role": "user"
},
{
"content": "merge_pmag_recs",
"role": "assistant"
}
] |
def x(self, specimen):
try:
fit_index = self.pmag_results_data['specimens'][self.s].index(self.
current_fit)
except KeyError:
fit_index = None
except ValueError:
fit_index = None
self.initialize_CART_rot(specimen)
self.list_bound_loc = 0
if fit_index != None and self.s in self.pmag_results_data['specimens']:
try:
self.current_fit = self.pmag_results_data['specimens'][self.s][
fit_index]
except IndexError:
self.current_fit = None
else:
self.current_fit = None
if self.s != self.specimens_box.GetValue():
self.specimens_box.SetValue(self.s)
|
select_specimen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, specimen):\n try:\n fit_index = self.pmag_results_data['specimens'][self.s].index(self.\n current_fit)\n except KeyError:\n fit_index = None\n except ValueError:\n fit_index = None\n self.initialize_CART_rot(specimen)\n self.list_bound_loc = 0\n if fit_index != None and self.s in self.pmag_results_data['specimens']:\n try:\n self.current_fit = self.pmag_results_data['specimens'][self.s][\n fit_index]\n except IndexError:\n self.current_fit = None\n else:\n self.current_fit = None\n if self.s != self.specimens_box.GetValue():\n self.specimens_box.SetValue(self.s)\n",
"role": "user"
},
{
"content": "select_specimen",
"role": "assistant"
}
] |
def x(self, message=None):
if self.total_num_of_interpertations() == 0:
print('There are no interpretations')
return True
if message == None:
message = (
'All interpretations will be deleted all unsaved data will be irretrievable, continue?'
)
dlg = wx.MessageDialog(self, caption='Delete?', message=message, style=
wx.OK | wx.CANCEL)
result = self.show_dlg(dlg)
dlg.Destroy()
if result != wx.ID_OK:
return False
for specimen in list(self.pmag_results_data['specimens'].keys()):
self.pmag_results_data['specimens'][specimen] = []
for high_level_type in ['samples', 'sites', 'locations', 'study']:
self.high_level_means[high_level_type] = {}
self.current_fit = None
if self.ie_open:
self.ie.update_editor()
return True
|
clear_interpretations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message=None):\n if self.total_num_of_interpertations() == 0:\n print('There are no interpretations')\n return True\n if message == None:\n message = (\n 'All interpretations will be deleted all unsaved data will be irretrievable, continue?'\n )\n dlg = wx.MessageDialog(self, caption='Delete?', message=message, style=\n wx.OK | wx.CANCEL)\n result = self.show_dlg(dlg)\n dlg.Destroy()\n if result != wx.ID_OK:\n return False\n for specimen in list(self.pmag_results_data['specimens'].keys()):\n self.pmag_results_data['specimens'][specimen] = []\n for high_level_type in ['samples', 'sites', 'locations', 'study']:\n self.high_level_means[high_level_type] = {}\n self.current_fit = None\n if self.ie_open:\n self.ie.update_editor()\n return True\n",
"role": "user"
},
{
"content": "clear_interpretations",
"role": "assistant"
}
] |
def x(self, g_index):
meas_index, ind_data = 0, []
for i, meas_data in enumerate(self.mag_meas_data):
if meas_data['er_specimen_name'] == self.s:
ind_data.append(i)
meas_index = ind_data[g_index]
self.Data[self.s]['measurement_flag'][g_index] = 'g'
if len(self.Data[self.s]['zijdblock'][g_index]) < 6:
self.Data[self.s]['zijdblock'][g_index].append('g')
self.Data[self.s]['zijdblock'][g_index][5] = 'g'
if 'zijdblock_geo' in self.Data[self.s] and g_index < len(self.Data[
self.s]['zijdblock_geo']):
if len(self.Data[self.s]['zijdblock_geo'][g_index]) < 6:
self.Data[self.s]['zijdblock_geo'][g_index].append('g')
self.Data[self.s]['zijdblock_geo'][g_index][5] = 'g'
if 'zijdblock_tilt' in self.Data[self.s] and g_index < len(self.Data[
self.s]['zijdblock_tilt']):
if len(self.Data[self.s]['zijdblock_tilt'][g_index]) < 6:
self.Data[self.s]['zijdblock_tilt'][g_index].append('g')
self.Data[self.s]['zijdblock_tilt'][g_index][5] = 'g'
self.mag_meas_data[meas_index]['measurement_flag'] = 'g'
if self.data_model == 3.0:
meas_name = str(self.Data[self.s]['measurement_names'][g_index])
mdf = self.con.tables['measurements'].df
if not isinstance(mdf.loc[meas_name], pd.Series):
res = self.user_warning(
"""Your measurements table has non-unique measurement names.
You may end up marking more than one measurement as good.
Right click this measurement again to undo."""
)
mdf.loc[meas_name, 'quality'] = 'g'
|
mark_meas_good
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, g_index):\n meas_index, ind_data = 0, []\n for i, meas_data in enumerate(self.mag_meas_data):\n if meas_data['er_specimen_name'] == self.s:\n ind_data.append(i)\n meas_index = ind_data[g_index]\n self.Data[self.s]['measurement_flag'][g_index] = 'g'\n if len(self.Data[self.s]['zijdblock'][g_index]) < 6:\n self.Data[self.s]['zijdblock'][g_index].append('g')\n self.Data[self.s]['zijdblock'][g_index][5] = 'g'\n if 'zijdblock_geo' in self.Data[self.s] and g_index < len(self.Data[\n self.s]['zijdblock_geo']):\n if len(self.Data[self.s]['zijdblock_geo'][g_index]) < 6:\n self.Data[self.s]['zijdblock_geo'][g_index].append('g')\n self.Data[self.s]['zijdblock_geo'][g_index][5] = 'g'\n if 'zijdblock_tilt' in self.Data[self.s] and g_index < len(self.Data[\n self.s]['zijdblock_tilt']):\n if len(self.Data[self.s]['zijdblock_tilt'][g_index]) < 6:\n self.Data[self.s]['zijdblock_tilt'][g_index].append('g')\n self.Data[self.s]['zijdblock_tilt'][g_index][5] = 'g'\n self.mag_meas_data[meas_index]['measurement_flag'] = 'g'\n if self.data_model == 3.0:\n meas_name = str(self.Data[self.s]['measurement_names'][g_index])\n mdf = self.con.tables['measurements'].df\n if not isinstance(mdf.loc[meas_name], pd.Series):\n res = self.user_warning(\n \"\"\"Your measurements table has non-unique measurement names.\nYou may end up marking more than one measurement as good.\nRight click this measurement again to undo.\"\"\"\n )\n mdf.loc[meas_name, 'quality'] = 'g'\n",
"role": "user"
},
{
"content": "mark_meas_good",
"role": "assistant"
}
] |
def x(self, fit, spec=None):
if spec == None:
for spec, fits in list(self.pmag_results_data['specimens'].items()):
if fit in fits:
break
samp = self.Data_hierarchy['sample_of_specimen'][spec]
if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]:
self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g'
samp_flag = self.Data_info['er_samples'][samp]['sample_orientation_flag']
if samp_flag == 'g':
self.bad_fits.remove(fit)
return True
else:
self.user_warning(
'Cannot mark this interpretation good its sample orientation has been marked bad'
)
return False
|
mark_fit_good
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fit, spec=None):\n if spec == None:\n for spec, fits in list(self.pmag_results_data['specimens'].items()):\n if fit in fits:\n break\n samp = self.Data_hierarchy['sample_of_specimen'][spec]\n if 'sample_orientation_flag' not in self.Data_info['er_samples'][samp]:\n self.Data_info['er_samples'][samp]['sample_orientation_flag'] = 'g'\n samp_flag = self.Data_info['er_samples'][samp]['sample_orientation_flag']\n if samp_flag == 'g':\n self.bad_fits.remove(fit)\n return True\n else:\n self.user_warning(\n 'Cannot mark this interpretation good its sample orientation has been marked bad'\n )\n return False\n",
"role": "user"
},
{
"content": "mark_fit_good",
"role": "assistant"
}
] |
def x(self, fit):
if fit not in self.bad_fits:
self.bad_fits.append(fit)
return True
else:
return False
|
mark_fit_bad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fit):\n if fit not in self.bad_fits:\n self.bad_fits.append(fit)\n return True\n else:\n return False\n",
"role": "user"
},
{
"content": "mark_fit_bad",
"role": "assistant"
}
] |
def x(self):
if ('specimen' not in self.spec_data.columns or 'meas_step_min' not in
self.spec_data.columns or 'meas_step_max' not in self.spec_data.
columns or 'meas_step_unit' not in self.spec_data.columns or
'method_codes' not in self.spec_data.columns):
return
if 'dir_comp' in self.spec_data.columns:
fnames = 'dir_comp'
elif 'dir_comp_name' in self.spec_data.columns:
fnames = 'dir_comp_name'
else:
fnames = 'dir_comp'
self.spec_data['dir_comp'] = 'Fit 1'
if 'result_quality' not in self.spec_data.columns:
self.spec_data['result_quality'] = 'g'
if 'dir_tilt_correction' not in self.spec_data.columns:
self.spec_data['dir_tilt_correction'] = ''
fdict = self.spec_data[['specimen', fnames, 'meas_step_min',
'meas_step_max', 'meas_step_unit', 'dir_tilt_correction',
'method_codes', 'result_quality']].to_dict('records')
for i in range(len(fdict)):
spec = fdict[i]['specimen']
if spec not in self.specimens:
print('-E- specimen %s does not exist in measurement data' % spec)
continue
fname = fdict[i][fnames]
if fname == None or spec in list(self.pmag_results_data['specimens'
].keys()) and fname in [x.name for x in self.pmag_results_data[
'specimens'][spec]]:
continue
if fdict[i]['meas_step_unit'] == 'K':
fmin = int(float(fdict[i]['meas_step_min']) - 273)
fmax = int(float(fdict[i]['meas_step_max']) - 273)
if fmin == 0:
fmin = str(fmin)
else:
fmin = str(fmin) + 'C'
if fmax == 0:
fmax = str(fmax)
else:
fmax = str(fmax) + 'C'
elif fdict[i]['meas_step_unit'] == 'T':
fmin = float(fdict[i]['meas_step_min']) * 1000
fmax = float(fdict[i]['meas_step_max']) * 1000
if fmin == 0:
fmin = str(int(fmin))
else:
fmin = str(fmin) + 'mT'
if fmax == 0:
fmax = str(int(fmax))
else:
fmax = str(fmax) + 'mT'
else:
fmin = fdict[i]['meas_step_min']
fmax = fdict[i]['meas_step_max']
PCA_types = ['DE-BFL', 'DE-BFL-A', 'DE-BFL-O', 'DE-FM', 'DE-BFP']
PCA_type_list = [x for x in str(fdict[i]['method_codes']).split(':'
) if x.strip() in PCA_types]
if len(PCA_type_list) > 0:
PCA_type = PCA_type_list[0].strip()
else:
PCA_type = 'DE-BFL'
fit = self.add_fit(spec, fname, fmin, fmax, PCA_type)
if fdict[i]['result_quality'] == 'b':
self.bad_fits.append(fit)
|
get_interpretations3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if ('specimen' not in self.spec_data.columns or 'meas_step_min' not in\n self.spec_data.columns or 'meas_step_max' not in self.spec_data.\n columns or 'meas_step_unit' not in self.spec_data.columns or \n 'method_codes' not in self.spec_data.columns):\n return\n if 'dir_comp' in self.spec_data.columns:\n fnames = 'dir_comp'\n elif 'dir_comp_name' in self.spec_data.columns:\n fnames = 'dir_comp_name'\n else:\n fnames = 'dir_comp'\n self.spec_data['dir_comp'] = 'Fit 1'\n if 'result_quality' not in self.spec_data.columns:\n self.spec_data['result_quality'] = 'g'\n if 'dir_tilt_correction' not in self.spec_data.columns:\n self.spec_data['dir_tilt_correction'] = ''\n fdict = self.spec_data[['specimen', fnames, 'meas_step_min',\n 'meas_step_max', 'meas_step_unit', 'dir_tilt_correction',\n 'method_codes', 'result_quality']].to_dict('records')\n for i in range(len(fdict)):\n spec = fdict[i]['specimen']\n if spec not in self.specimens:\n print('-E- specimen %s does not exist in measurement data' % spec)\n continue\n fname = fdict[i][fnames]\n if fname == None or spec in list(self.pmag_results_data['specimens'\n ].keys()) and fname in [x.name for x in self.pmag_results_data[\n 'specimens'][spec]]:\n continue\n if fdict[i]['meas_step_unit'] == 'K':\n fmin = int(float(fdict[i]['meas_step_min']) - 273)\n fmax = int(float(fdict[i]['meas_step_max']) - 273)\n if fmin == 0:\n fmin = str(fmin)\n else:\n fmin = str(fmin) + 'C'\n if fmax == 0:\n fmax = str(fmax)\n else:\n fmax = str(fmax) + 'C'\n elif fdict[i]['meas_step_unit'] == 'T':\n fmin = float(fdict[i]['meas_step_min']) * 1000\n fmax = float(fdict[i]['meas_step_max']) * 1000\n if fmin == 0:\n fmin = str(int(fmin))\n else:\n fmin = str(fmin) + 'mT'\n if fmax == 0:\n fmax = str(int(fmax))\n else:\n fmax = str(fmax) + 'mT'\n else:\n fmin = fdict[i]['meas_step_min']\n fmax = fdict[i]['meas_step_max']\n PCA_types = ['DE-BFL', 'DE-BFL-A', 'DE-BFL-O', 'DE-FM', 'DE-BFP']\n PCA_type_list = [x for x in str(fdict[i]['method_codes']).split(':'\n ) if x.strip() in PCA_types]\n if len(PCA_type_list) > 0:\n PCA_type = PCA_type_list[0].strip()\n else:\n PCA_type = 'DE-BFL'\n fit = self.add_fit(spec, fname, fmin, fmax, PCA_type)\n if fdict[i]['result_quality'] == 'b':\n self.bad_fits.append(fit)\n",
"role": "user"
},
{
"content": "get_interpretations3",
"role": "assistant"
}
] |
def x(self):
Data_info = {}
data_er_samples = {}
data_er_sites = {}
data_er_locations = {}
data_er_ages = {}
if self.data_model == 3.0:
print('data model: %1.1f' % self.data_model)
Data_info['er_samples'] = []
Data_info['er_sites'] = []
Data_info['er_locations'] = []
Data_info['er_ages'] = []
magic_file_real = os.path.realpath(self.magic_file)
magic_file_short = os.path.split(self.magic_file)[1]
WD_file_real = os.path.realpath(os.path.join(self.WD, magic_file_short)
)
if magic_file_real == WD_file_real:
fnames = {'measurements': magic_file_short}
else:
shutil.copy(magic_file_real, WD_file_real)
fnames = {'measurements': magic_file_short}
self.con = cb.Contribution(self.WD, custom_filenames=fnames,
read_tables=['measurements', 'specimens', 'samples', 'sites',
'locations', 'criteria', 'ages'])
if 'specimens' in self.con.tables:
spec_container = self.con.tables['specimens']
self.spec_data = spec_container.df
else:
self.con.add_empty_magic_table('specimens')
self.spec_data = self.con.tables['specimens'].df
if 'samples' in self.con.tables:
samp_container = self.con.tables['samples']
samp_container.front_and_backfill(['azimuth', 'dip'])
self.samp_data = samp_container.df
samp_data2 = self.samp_data.rename(columns=map_magic.
samp_magic3_2_magic2_map)
data_er_samples = samp_data2.T.to_dict()
else:
self.con.add_empty_magic_table('samples')
self.samp_data = self.con.tables['samples'].df
if 'sites' in self.con.tables:
site_container = self.con.tables['sites']
self.site_data = site_container.df
if 'age' in self.site_data.columns:
self.site_data = self.site_data[self.site_data['age'].notnull()
]
age_ids = [col for col in self.site_data.columns if col.
startswith('age') or col == 'site']
age_data = self.site_data[age_ids].rename(columns=map_magic
.site_magic3_2_magic2_map)
er_ages = age_data.to_dict('records')
data_er_ages = {}
for s in er_ages:
s = self.convert_ages_to_calendar_year(s)
data_er_ages[s['er_site_name']] = s
sites = self.site_data.rename(columns=map_magic.
site_magic3_2_magic2_map)
er_sites = sites.to_dict('records')
data_er_sites = {}
for s in er_sites:
data_er_sites[s['er_site_name']] = s
else:
self.con.add_empty_magic_table('sites')
self.site_data = self.con.tables['sites'].df
if 'locations' in self.con.tables:
location_container = self.con.tables['locations']
self.loc_data = location_container.df
if self.loc_data['location'].isnull().any():
self.loc_data.replace({'location': {None: 'unknown'}},
inplace=True)
self.loc_data.set_index('location', inplace=True)
self.loc_data['location'] = self.loc_data.index
loc2_data = self.loc_data.rename(columns=map_magic.
loc_magic3_2_magic2_map)
data_er_locations = loc2_data.to_dict('index')
else:
self.con.add_empty_magic_table('locations')
self.loc_data = self.con.tables['locations'].df
else:
print('data model: %1.1f' % self.data_model)
self.read_magic_file(os.path.join(self.WD, 'er_samples.txt'),
'er_sample_name')
try:
data_er_samples = self.read_magic_file(os.path.join(self.WD,
'er_samples.txt'), 'er_sample_name')
except:
print("-W- Can't find er_sample.txt in project directory")
try:
data_er_sites = self.read_magic_file(os.path.join(self.WD,
'er_sites.txt'), 'er_site_name')
except:
print("-W- Can't find er_sites.txt in project directory")
try:
data_er_locations = self.read_magic_file(os.path.join(self.WD,
'er_locations.txt'), 'er_location_name')
except:
print("-W- Can't find er_locations.txt in project directory")
try:
data_er_ages = self.read_magic_file(os.path.join(self.WD,
'er_ages.txt'), 'er_sample_name')
except:
try:
data_er_ages = self.read_magic_file(os.path.join(self.WD,
'er_ages.txt'), 'er_site_name')
except:
print("-W- Can't find er_ages in project directory")
Data_info['er_samples'] = data_er_samples
Data_info['er_sites'] = data_er_sites
Data_info['er_locations'] = data_er_locations
Data_info['er_ages'] = data_er_ages
return Data_info
|
get_data_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n Data_info = {}\n data_er_samples = {}\n data_er_sites = {}\n data_er_locations = {}\n data_er_ages = {}\n if self.data_model == 3.0:\n print('data model: %1.1f' % self.data_model)\n Data_info['er_samples'] = []\n Data_info['er_sites'] = []\n Data_info['er_locations'] = []\n Data_info['er_ages'] = []\n magic_file_real = os.path.realpath(self.magic_file)\n magic_file_short = os.path.split(self.magic_file)[1]\n WD_file_real = os.path.realpath(os.path.join(self.WD, magic_file_short)\n )\n if magic_file_real == WD_file_real:\n fnames = {'measurements': magic_file_short}\n else:\n shutil.copy(magic_file_real, WD_file_real)\n fnames = {'measurements': magic_file_short}\n self.con = cb.Contribution(self.WD, custom_filenames=fnames,\n read_tables=['measurements', 'specimens', 'samples', 'sites',\n 'locations', 'criteria', 'ages'])\n if 'specimens' in self.con.tables:\n spec_container = self.con.tables['specimens']\n self.spec_data = spec_container.df\n else:\n self.con.add_empty_magic_table('specimens')\n self.spec_data = self.con.tables['specimens'].df\n if 'samples' in self.con.tables:\n samp_container = self.con.tables['samples']\n samp_container.front_and_backfill(['azimuth', 'dip'])\n self.samp_data = samp_container.df\n samp_data2 = self.samp_data.rename(columns=map_magic.\n samp_magic3_2_magic2_map)\n data_er_samples = samp_data2.T.to_dict()\n else:\n self.con.add_empty_magic_table('samples')\n self.samp_data = self.con.tables['samples'].df\n if 'sites' in self.con.tables:\n site_container = self.con.tables['sites']\n self.site_data = site_container.df\n if 'age' in self.site_data.columns:\n self.site_data = self.site_data[self.site_data['age'].notnull()\n ]\n age_ids = [col for col in self.site_data.columns if col.\n startswith('age') or col == 'site']\n age_data = self.site_data[age_ids].rename(columns=map_magic\n .site_magic3_2_magic2_map)\n er_ages = age_data.to_dict('records')\n data_er_ages = {}\n for s in er_ages:\n s = self.convert_ages_to_calendar_year(s)\n data_er_ages[s['er_site_name']] = s\n sites = self.site_data.rename(columns=map_magic.\n site_magic3_2_magic2_map)\n er_sites = sites.to_dict('records')\n data_er_sites = {}\n for s in er_sites:\n data_er_sites[s['er_site_name']] = s\n else:\n self.con.add_empty_magic_table('sites')\n self.site_data = self.con.tables['sites'].df\n if 'locations' in self.con.tables:\n location_container = self.con.tables['locations']\n self.loc_data = location_container.df\n if self.loc_data['location'].isnull().any():\n self.loc_data.replace({'location': {None: 'unknown'}},\n inplace=True)\n self.loc_data.set_index('location', inplace=True)\n self.loc_data['location'] = self.loc_data.index\n loc2_data = self.loc_data.rename(columns=map_magic.\n loc_magic3_2_magic2_map)\n data_er_locations = loc2_data.to_dict('index')\n else:\n self.con.add_empty_magic_table('locations')\n self.loc_data = self.con.tables['locations'].df\n else:\n print('data model: %1.1f' % self.data_model)\n self.read_magic_file(os.path.join(self.WD, 'er_samples.txt'),\n 'er_sample_name')\n try:\n data_er_samples = self.read_magic_file(os.path.join(self.WD,\n 'er_samples.txt'), 'er_sample_name')\n except:\n print(\"-W- Can't find er_sample.txt in project directory\")\n try:\n data_er_sites = self.read_magic_file(os.path.join(self.WD,\n 'er_sites.txt'), 'er_site_name')\n except:\n print(\"-W- Can't find er_sites.txt in project directory\")\n try:\n data_er_locations = self.read_magic_file(os.path.join(self.WD,\n 'er_locations.txt'), 'er_location_name')\n except:\n print(\"-W- Can't find er_locations.txt in project directory\")\n try:\n data_er_ages = self.read_magic_file(os.path.join(self.WD,\n 'er_ages.txt'), 'er_sample_name')\n except:\n try:\n data_er_ages = self.read_magic_file(os.path.join(self.WD,\n 'er_ages.txt'), 'er_site_name')\n except:\n print(\"-W- Can't find er_ages in project directory\")\n Data_info['er_samples'] = data_er_samples\n Data_info['er_sites'] = data_er_sites\n Data_info['er_locations'] = data_er_locations\n Data_info['er_ages'] = data_er_ages\n return Data_info\n",
"role": "user"
},
{
"content": "get_data_info",
"role": "assistant"
}
] |
def x(self):
preferences = {}
preferences['gui_resolution'] = 100.0
preferences['show_Zij_treatments'] = True
preferences['show_Zij_treatments_steps'] = 2.0
preferences['show_eqarea_treatments'] = False
preferences['auto_save'] = True
return preferences
|
get_preferences
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n preferences = {}\n preferences['gui_resolution'] = 100.0\n preferences['show_Zij_treatments'] = True\n preferences['show_Zij_treatments_steps'] = 2.0\n preferences['show_eqarea_treatments'] = False\n preferences['auto_save'] = True\n return preferences\n",
"role": "user"
},
{
"content": "get_preferences",
"role": "assistant"
}
] |
def x(self, path, sort_by_this_name):
DATA = {}
try:
with open(path, 'r') as finput:
lines = list(finput.readlines()[1:])
except FileNotFoundError:
return []
line = lines[0]
header = line.strip('\n').split('\t')
error_strings = []
for line in lines[1:]:
tmp_data = {}
tmp_line = line.strip('\n').split('\t')
for i in range(len(tmp_line)):
tmp_data[header[i]] = tmp_line[i]
if tmp_data[sort_by_this_name] in list(DATA.keys()):
error_string = (
'-E- ERROR: magic file %s has more than one line for %s %s' %
(path, sort_by_this_name, tmp_data[sort_by_this_name]))
if error_string not in error_strings:
print(error_string)
error_strings.append(error_string)
DATA[tmp_data[sort_by_this_name]] = tmp_data
finput.close()
return DATA
|
read_magic_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path, sort_by_this_name):\n DATA = {}\n try:\n with open(path, 'r') as finput:\n lines = list(finput.readlines()[1:])\n except FileNotFoundError:\n return []\n line = lines[0]\n header = line.strip('\\n').split('\\t')\n error_strings = []\n for line in lines[1:]:\n tmp_data = {}\n tmp_line = line.strip('\\n').split('\\t')\n for i in range(len(tmp_line)):\n tmp_data[header[i]] = tmp_line[i]\n if tmp_data[sort_by_this_name] in list(DATA.keys()):\n error_string = (\n '-E- ERROR: magic file %s has more than one line for %s %s' %\n (path, sort_by_this_name, tmp_data[sort_by_this_name]))\n if error_string not in error_strings:\n print(error_string)\n error_strings.append(error_string)\n DATA[tmp_data[sort_by_this_name]] = tmp_data\n finput.close()\n return DATA\n",
"role": "user"
},
{
"content": "read_magic_file",
"role": "assistant"
}
] |
def x(self, LSQ_file):
cont = self.user_warning(
'LSQ import only works if all measurements are present and not averaged during import from magnetometer files to magic format. Do you wish to continue reading interpretations?'
)
if not cont:
return
self.clear_interpretations(message=
'Do you wish to clear all previous interpretations on import?')
old_s = self.s
for specimen in self.specimens:
self.select_specimen(specimen)
for i in range(len(self.Data[specimen]['zijdblock'])):
self.mark_meas_good(i)
self.select_specimen(old_s)
print('Reading LSQ file')
interps = read_LSQ(LSQ_file)
for interp in interps:
specimen = interp['er_specimen_name']
if specimen not in self.specimens:
print(
'specimen %s has no registered measurement data, skipping interpretation import'
% specimen)
continue
PCA_type = interp['magic_method_codes'].split(':')[0]
tmin = self.Data[specimen]['zijdblock_steps'][interp[
'measurement_min_index']]
tmax = self.Data[specimen]['zijdblock_steps'][interp[
'measurement_max_index']]
if 'specimen_comp_name' in list(interp.keys()):
name = interp['specimen_comp_name']
else:
name = None
new_fit = self.add_fit(specimen, name, tmin, tmax, PCA_type)
if 'bad_measurement_index' in list(interp.keys()):
old_s = self.s
self.select_specimen(specimen)
for bmi in interp['bad_measurement_index']:
try:
self.mark_meas_bad(bmi)
except IndexError:
print(
'Magic Measurments length does not match that recorded in LSQ file'
)
self.select_specimen(old_s)
if self.ie_open:
self.ie.update_editor()
self.update_selection()
|
read_from_LSQ
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, LSQ_file):\n cont = self.user_warning(\n 'LSQ import only works if all measurements are present and not averaged during import from magnetometer files to magic format. Do you wish to continue reading interpretations?'\n )\n if not cont:\n return\n self.clear_interpretations(message=\n 'Do you wish to clear all previous interpretations on import?')\n old_s = self.s\n for specimen in self.specimens:\n self.select_specimen(specimen)\n for i in range(len(self.Data[specimen]['zijdblock'])):\n self.mark_meas_good(i)\n self.select_specimen(old_s)\n print('Reading LSQ file')\n interps = read_LSQ(LSQ_file)\n for interp in interps:\n specimen = interp['er_specimen_name']\n if specimen not in self.specimens:\n print(\n 'specimen %s has no registered measurement data, skipping interpretation import'\n % specimen)\n continue\n PCA_type = interp['magic_method_codes'].split(':')[0]\n tmin = self.Data[specimen]['zijdblock_steps'][interp[\n 'measurement_min_index']]\n tmax = self.Data[specimen]['zijdblock_steps'][interp[\n 'measurement_max_index']]\n if 'specimen_comp_name' in list(interp.keys()):\n name = interp['specimen_comp_name']\n else:\n name = None\n new_fit = self.add_fit(specimen, name, tmin, tmax, PCA_type)\n if 'bad_measurement_index' in list(interp.keys()):\n old_s = self.s\n self.select_specimen(specimen)\n for bmi in interp['bad_measurement_index']:\n try:\n self.mark_meas_bad(bmi)\n except IndexError:\n print(\n 'Magic Measurments length does not match that recorded in LSQ file'\n )\n self.select_specimen(old_s)\n if self.ie_open:\n self.ie.update_editor()\n self.update_selection()\n",
"role": "user"
},
{
"content": "read_from_LSQ",
"role": "assistant"
}
] |
def x(self, redo_file):
if not self.clear_interpretations():
return
print('-I- read redo file and processing new bounds')
fin = open(redo_file, 'r')
new_s = ''
for Line in fin.read().splitlines():
line = Line.split('\t')
specimen = line[0]
if specimen.startswith('current_'):
specimen = specimen.lstrip('current_')
new_s = specimen
if len(line) < 6:
continue
if len(line) < 6:
print('insuffecent data for specimen %s and fit %s' % (line[0],
line[4]))
continue
if len(line) == 6:
line.append('g')
if specimen not in self.specimens:
print(
'specimen %s not found in this data set and will be ignored' %
specimen)
continue
tmin, tmax = self.parse_bound_data(line[2], line[3], specimen)
new_fit = self.add_fit(specimen, line[4], tmin, tmax, line[1], line[5])
if line[6] == 'b' and new_fit != None:
self.bad_fits.append(new_fit)
fin.close()
if new_s != '':
self.select_specimen(new_s)
if self.s not in self.pmag_results_data['specimens'
] or not self.pmag_results_data['specimens'][self.s]:
self.current_fit = None
else:
self.current_fit = self.pmag_results_data['specimens'][self.s][-1]
self.calculate_high_levels_data()
if self.ie_open:
self.ie.update_editor()
self.update_selection()
|
read_redo_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, redo_file):\n if not self.clear_interpretations():\n return\n print('-I- read redo file and processing new bounds')\n fin = open(redo_file, 'r')\n new_s = ''\n for Line in fin.read().splitlines():\n line = Line.split('\\t')\n specimen = line[0]\n if specimen.startswith('current_'):\n specimen = specimen.lstrip('current_')\n new_s = specimen\n if len(line) < 6:\n continue\n if len(line) < 6:\n print('insuffecent data for specimen %s and fit %s' % (line[0],\n line[4]))\n continue\n if len(line) == 6:\n line.append('g')\n if specimen not in self.specimens:\n print(\n 'specimen %s not found in this data set and will be ignored' %\n specimen)\n continue\n tmin, tmax = self.parse_bound_data(line[2], line[3], specimen)\n new_fit = self.add_fit(specimen, line[4], tmin, tmax, line[1], line[5])\n if line[6] == 'b' and new_fit != None:\n self.bad_fits.append(new_fit)\n fin.close()\n if new_s != '':\n self.select_specimen(new_s)\n if self.s not in self.pmag_results_data['specimens'\n ] or not self.pmag_results_data['specimens'][self.s]:\n self.current_fit = None\n else:\n self.current_fit = self.pmag_results_data['specimens'][self.s][-1]\n self.calculate_high_levels_data()\n if self.ie_open:\n self.ie.update_editor()\n self.update_selection()\n",
"role": "user"
},
{
"content": "read_redo_file",
"role": "assistant"
}
] |
def x(self, new_WD, meas_file=''):
new_WD = os.path.abspath(new_WD)
if not os.path.isdir(new_WD):
return
self.WD = new_WD
if not meas_file:
if self.data_model == None:
if os.path.isfile(os.path.join(self.WD, 'measurements.txt')
) and os.path.isfile(os.path.join(self.WD,
'magic_measurements.txt')):
ui_dialog = demag_dialogs.user_input(self, ['data_model'],
parse_funcs=[float], heading=
'More than one measurement file found in CWD with different data models please input prefered data model (2.5,3.0)'
, values=[3])
self.show_dlg(ui_dialog)
ui_data = ui_dialog.get_values()
self.data_model = ui_data[1]['data_model']
elif os.path.isfile(os.path.join(self.WD, 'measurements.txt')):
self.data_model = 3.0
elif os.path.isfile(os.path.join(self.WD, 'magic_measurements.txt')
):
self.data_model = 2.5
else:
self.user_warning(
'No measurement file found in chosen directory')
self.data_model = 3
try:
self.data_model = float(self.data_model)
if int(self.data_model) == 3:
meas_file = os.path.join(self.WD, 'measurements.txt')
elif int(self.data_model) == 2:
meas_file = os.path.join(self.WD, 'magic_measurements.txt')
else:
meas_file = ''
self.data_model = 3
except (ValueError, TypeError) as e:
self.user_warning(
'Provided data model is unrecognized or invalid, assuming you want data model 3'
)
self.data_model = 3
if os.path.isfile(meas_file):
self.magic_file = meas_file
else:
self.magic_file = self.choose_meas_file()
if not self.data_model:
self.data_model = 3
|
change_WD
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_WD, meas_file=''):\n new_WD = os.path.abspath(new_WD)\n if not os.path.isdir(new_WD):\n return\n self.WD = new_WD\n if not meas_file:\n if self.data_model == None:\n if os.path.isfile(os.path.join(self.WD, 'measurements.txt')\n ) and os.path.isfile(os.path.join(self.WD,\n 'magic_measurements.txt')):\n ui_dialog = demag_dialogs.user_input(self, ['data_model'],\n parse_funcs=[float], heading=\n 'More than one measurement file found in CWD with different data models please input prefered data model (2.5,3.0)'\n , values=[3])\n self.show_dlg(ui_dialog)\n ui_data = ui_dialog.get_values()\n self.data_model = ui_data[1]['data_model']\n elif os.path.isfile(os.path.join(self.WD, 'measurements.txt')):\n self.data_model = 3.0\n elif os.path.isfile(os.path.join(self.WD, 'magic_measurements.txt')\n ):\n self.data_model = 2.5\n else:\n self.user_warning(\n 'No measurement file found in chosen directory')\n self.data_model = 3\n try:\n self.data_model = float(self.data_model)\n if int(self.data_model) == 3:\n meas_file = os.path.join(self.WD, 'measurements.txt')\n elif int(self.data_model) == 2:\n meas_file = os.path.join(self.WD, 'magic_measurements.txt')\n else:\n meas_file = ''\n self.data_model = 3\n except (ValueError, TypeError) as e:\n self.user_warning(\n 'Provided data model is unrecognized or invalid, assuming you want data model 3'\n )\n self.data_model = 3\n if os.path.isfile(meas_file):\n self.magic_file = meas_file\n else:\n self.magic_file = self.choose_meas_file()\n if not self.data_model:\n self.data_model = 3\n",
"role": "user"
},
{
"content": "change_WD",
"role": "assistant"
}
] |
def x(self):
self.old_stdout = sys.stdout
sys.stdout = open(os.path.join(self.WD, 'demag_gui.log'), 'w+')
|
init_log_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.old_stdout = sys.stdout\n sys.stdout = open(os.path.join(self.WD, 'demag_gui.log'), 'w+')\n",
"role": "user"
},
{
"content": "init_log_file",
"role": "assistant"
}
] |
def x(self):
crit_list = list(self.acceptance_criteria.keys())
crit_list.sort()
rec = {}
rec['pmag_criteria_code'] = 'ACCEPT'
rec['criteria_definition'] = 'acceptance criteria for study'
rec['er_citation_names'] = 'This study'
for crit in crit_list:
if type(self.acceptance_criteria[crit]['value']) == str:
if self.acceptance_criteria[crit]['value'
] != '-999' and self.acceptance_criteria[crit]['value'] != '':
rec[crit] = self.acceptance_criteria[crit]['value']
elif type(self.acceptance_criteria[crit]['value']) == int:
if self.acceptance_criteria[crit]['value'] != -999:
rec[crit] = '%.i' % self.acceptance_criteria[crit]['value']
elif type(self.acceptance_criteria[crit]['value']) == float:
if float(self.acceptance_criteria[crit]['value']) == -999:
continue
decimal_points = self.acceptance_criteria[crit]['decimal_points']
if decimal_points != -999:
command = (
"rec[crit]='%%.%sf'%%(self.acceptance_criteria[crit]['value'])"
% decimal_points)
exec(command)
else:
rec[crit] = '%e' % self.acceptance_criteria[crit]['value']
pmag.magic_write(os.path.join(self.WD, 'pmag_criteria.txt'), [rec],
'pmag_criteria')
|
write_acceptance_criteria_to_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n crit_list = list(self.acceptance_criteria.keys())\n crit_list.sort()\n rec = {}\n rec['pmag_criteria_code'] = 'ACCEPT'\n rec['criteria_definition'] = 'acceptance criteria for study'\n rec['er_citation_names'] = 'This study'\n for crit in crit_list:\n if type(self.acceptance_criteria[crit]['value']) == str:\n if self.acceptance_criteria[crit]['value'\n ] != '-999' and self.acceptance_criteria[crit]['value'] != '':\n rec[crit] = self.acceptance_criteria[crit]['value']\n elif type(self.acceptance_criteria[crit]['value']) == int:\n if self.acceptance_criteria[crit]['value'] != -999:\n rec[crit] = '%.i' % self.acceptance_criteria[crit]['value']\n elif type(self.acceptance_criteria[crit]['value']) == float:\n if float(self.acceptance_criteria[crit]['value']) == -999:\n continue\n decimal_points = self.acceptance_criteria[crit]['decimal_points']\n if decimal_points != -999:\n command = (\n \"rec[crit]='%%.%sf'%%(self.acceptance_criteria[crit]['value'])\"\n % decimal_points)\n exec(command)\n else:\n rec[crit] = '%e' % self.acceptance_criteria[crit]['value']\n pmag.magic_write(os.path.join(self.WD, 'pmag_criteria.txt'), [rec],\n 'pmag_criteria')\n",
"role": "user"
},
{
"content": "write_acceptance_criteria_to_file",
"role": "assistant"
}
] |
def x(self, dlg):
if not self.test_mode:
dlg.Center()
return dlg.ShowModal()
else:
return dlg.GetAffirmativeId()
|
show_dlg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dlg):\n if not self.test_mode:\n dlg.Center()\n return dlg.ShowModal()\n else:\n return dlg.GetAffirmativeId()\n",
"role": "user"
},
{
"content": "show_dlg",
"role": "assistant"
}
] |
def x(self):
dlg = wx.DirDialog(self, 'Choose a directory:', defaultPath=self.
currentDirectory, style=wx.DD_DEFAULT_STYLE | wx.DD_NEW_DIR_BUTTON |
wx.DD_CHANGE_DIR)
ok = self.show_dlg(dlg)
if ok == wx.ID_OK:
new_WD = dlg.GetPath()
dlg.Destroy()
else:
new_WD = os.getcwd()
dlg.Destroy()
return new_WD
|
get_DIR
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n dlg = wx.DirDialog(self, 'Choose a directory:', defaultPath=self.\n currentDirectory, style=wx.DD_DEFAULT_STYLE | wx.DD_NEW_DIR_BUTTON |\n wx.DD_CHANGE_DIR)\n ok = self.show_dlg(dlg)\n if ok == wx.ID_OK:\n new_WD = dlg.GetPath()\n dlg.Destroy()\n else:\n new_WD = os.getcwd()\n dlg.Destroy()\n return new_WD\n",
"role": "user"
},
{
"content": "get_DIR",
"role": "assistant"
}
] |
def x(self, event=None):
dlg = wx.FileDialog(self, message='Please choose a measurement file',
defaultDir=self.WD, defaultFile='measurements.txt', wildcard=
'measurement files (*.magic,*.txt)|*.magic;*.txt', style=wx.FD_OPEN |
wx.FD_CHANGE_DIR)
if self.show_dlg(dlg) == wx.ID_OK:
meas_file = dlg.GetPath()
dlg.Destroy()
else:
meas_file = ''
self.data_model = 2.5
dlg.Destroy()
return meas_file
|
choose_meas_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event=None):\n dlg = wx.FileDialog(self, message='Please choose a measurement file',\n defaultDir=self.WD, defaultFile='measurements.txt', wildcard=\n 'measurement files (*.magic,*.txt)|*.magic;*.txt', style=wx.FD_OPEN |\n wx.FD_CHANGE_DIR)\n if self.show_dlg(dlg) == wx.ID_OK:\n meas_file = dlg.GetPath()\n dlg.Destroy()\n else:\n meas_file = ''\n self.data_model = 2.5\n dlg.Destroy()\n return meas_file\n",
"role": "user"
},
{
"content": "choose_meas_file",
"role": "assistant"
}
] |
def x(self, message, caption='Saved:'):
dlg = wx.MessageDialog(self, caption=caption, message=message, style=wx.OK)
result = self.show_dlg(dlg)
dlg.Destroy()
|
saved_dlg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message, caption='Saved:'):\n dlg = wx.MessageDialog(self, caption=caption, message=message, style=wx.OK)\n result = self.show_dlg(dlg)\n dlg.Destroy()\n",
"role": "user"
},
{
"content": "saved_dlg",
"role": "assistant"
}
] |
def x(self, message, caption='Warning!'):
dlg = wx.MessageDialog(self, message, caption, wx.OK | wx.CANCEL | wx.
ICON_WARNING)
if self.show_dlg(dlg) == wx.ID_OK:
continue_bool = True
else:
continue_bool = False
dlg.Destroy()
return continue_bool
|
user_warning
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message, caption='Warning!'):\n dlg = wx.MessageDialog(self, message, caption, wx.OK | wx.CANCEL | wx.\n ICON_WARNING)\n if self.show_dlg(dlg) == wx.ID_OK:\n continue_bool = True\n else:\n continue_bool = False\n dlg.Destroy()\n return continue_bool\n",
"role": "user"
},
{
"content": "user_warning",
"role": "assistant"
}
] |
def x(self, dia):
window_list_specimens = ['specimen_n', 'specimen_mad', 'specimen_dang',
'specimen_alpha95']
window_list_samples = ['sample_n', 'sample_n_lines', 'sample_n_planes',
'sample_k', 'sample_r', 'sample_alpha95']
window_list_sites = ['site_n', 'site_n_lines', 'site_n_planes',
'site_k', 'site_r', 'site_alpha95']
demag_gui_supported_criteria = (window_list_specimens +
window_list_samples + window_list_sites)
if self.data_model == 3:
new_crits = []
for crit in demag_gui_supported_criteria:
new_crit = {}
command = 'dia.set_%s.GetValue()' % crit
new_value = pmag.execute(command, dia=dia)
if new_value == None or new_value == '':
continue
d = findall('[-+]?\\d*\\.\\d+|\\d+', new_value)
if len(d) > 0:
d = d[0]
comp = new_value.strip(str(d))
if comp == '':
comp = '>='
if 'specimen' in crit:
col = 'specimens.' + map_magic.spec_magic2_2_magic3_map[crit]
elif 'sample' in crit:
col = 'samples.' + map_magic.samp_magic2_2_magic3_map[crit]
elif 'site' in crit:
col = 'sites.' + map_magic.site_magic2_2_magic3_map[crit]
else:
print('no way this like is impossible')
continue
new_crit['criterion'] = 'ACCEPT'
new_crit['criterion_value'] = d
new_crit['criterion_operation'] = comp
new_crit['table_column'] = col
new_crit['citations'] = 'This study'
new_crit['description'] = ''
new_crits.append(new_crit)
cdf = DataFrame(new_crits)
cdf = cdf.set_index('table_column')
cdf['table_column'] = cdf.index
cdf = cdf.reindex_axis(sorted(cdf.columns), axis=1)
if 'criteria' not in self.con.tables:
cols = ['criterion', 'criterion_value', 'criterion_operation',
'table_column', 'citations', 'description']
self.con.add_empty_magic_table('criteria', col_names=cols)
self.con.tables['criteria'].df = cdf
self.con.tables['criteria'].write_magic_file(dir_path=self.WD)
else:
for crit in demag_gui_supported_criteria:
command = 'new_value=dia.set_%s.GetValue()' % crit
exec(command)
if new_value == '':
self.acceptance_criteria[crit]['value'] = -999
continue
try:
float(new_value)
except:
self.show_crit_window_err_messege(crit)
continue
self.acceptance_criteria[crit]['value'] = float(new_value)
self.saved_dlg(message='changes saved to criteria')
self.write_acceptance_criteria_to_file()
dia.Destroy()
|
on_close_criteria_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dia):\n window_list_specimens = ['specimen_n', 'specimen_mad', 'specimen_dang',\n 'specimen_alpha95']\n window_list_samples = ['sample_n', 'sample_n_lines', 'sample_n_planes',\n 'sample_k', 'sample_r', 'sample_alpha95']\n window_list_sites = ['site_n', 'site_n_lines', 'site_n_planes',\n 'site_k', 'site_r', 'site_alpha95']\n demag_gui_supported_criteria = (window_list_specimens +\n window_list_samples + window_list_sites)\n if self.data_model == 3:\n new_crits = []\n for crit in demag_gui_supported_criteria:\n new_crit = {}\n command = 'dia.set_%s.GetValue()' % crit\n new_value = pmag.execute(command, dia=dia)\n if new_value == None or new_value == '':\n continue\n d = findall('[-+]?\\\\d*\\\\.\\\\d+|\\\\d+', new_value)\n if len(d) > 0:\n d = d[0]\n comp = new_value.strip(str(d))\n if comp == '':\n comp = '>='\n if 'specimen' in crit:\n col = 'specimens.' + map_magic.spec_magic2_2_magic3_map[crit]\n elif 'sample' in crit:\n col = 'samples.' + map_magic.samp_magic2_2_magic3_map[crit]\n elif 'site' in crit:\n col = 'sites.' + map_magic.site_magic2_2_magic3_map[crit]\n else:\n print('no way this like is impossible')\n continue\n new_crit['criterion'] = 'ACCEPT'\n new_crit['criterion_value'] = d\n new_crit['criterion_operation'] = comp\n new_crit['table_column'] = col\n new_crit['citations'] = 'This study'\n new_crit['description'] = ''\n new_crits.append(new_crit)\n cdf = DataFrame(new_crits)\n cdf = cdf.set_index('table_column')\n cdf['table_column'] = cdf.index\n cdf = cdf.reindex_axis(sorted(cdf.columns), axis=1)\n if 'criteria' not in self.con.tables:\n cols = ['criterion', 'criterion_value', 'criterion_operation',\n 'table_column', 'citations', 'description']\n self.con.add_empty_magic_table('criteria', col_names=cols)\n self.con.tables['criteria'].df = cdf\n self.con.tables['criteria'].write_magic_file(dir_path=self.WD)\n else:\n for crit in demag_gui_supported_criteria:\n command = 'new_value=dia.set_%s.GetValue()' % crit\n exec(command)\n if new_value == '':\n self.acceptance_criteria[crit]['value'] = -999\n continue\n try:\n float(new_value)\n except:\n self.show_crit_window_err_messege(crit)\n continue\n self.acceptance_criteria[crit]['value'] = float(new_value)\n self.saved_dlg(message='changes saved to criteria')\n self.write_acceptance_criteria_to_file()\n dia.Destroy()\n",
"role": "user"
},
{
"content": "on_close_criteria_box",
"role": "assistant"
}
] |
def x(self, crit):
dlg = wx.MessageDialog(self, caption='Error:', message=
"""not a vaild value for statistic %s
ignoring value""" % crit,
style=wx.OK)
result = self.show_dlg(dlg)
if result == wx.ID_OK:
dlg.Destroy()
|
show_crit_window_err_messege
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, crit):\n dlg = wx.MessageDialog(self, caption='Error:', message=\n \"\"\"not a vaild value for statistic %s\n ignoring value\"\"\" % crit,\n style=wx.OK)\n result = self.show_dlg(dlg)\n if result == wx.ID_OK:\n dlg.Destroy()\n",
"role": "user"
},
{
"content": "show_crit_window_err_messege",
"role": "assistant"
}
] |
def x(self):
self.clear_boxes()
self.clear_high_level_pars()
if self.UPPER_LEVEL_SHOW != 'specimens':
self.mean_type_box.SetValue('None')
coordinate_system = self.coordinates_box.GetValue()
if coordinate_system == 'tilt-corrected' and len(self.Data[self.s][
'zijdblock_tilt']) == 0:
self.coordinates_box.SetStringSelection('specimen')
elif coordinate_system == 'geographic' and len(self.Data[self.s][
'zijdblock_geo']) == 0:
self.coordinates_box.SetStringSelection('specimen')
if coordinate_system != self.coordinates_box.GetValue() and self.ie_open:
self.ie.coordinates_box.SetStringSelection(self.coordinates_box.
GetValue())
self.ie.update_editor()
coordinate_system = self.coordinates_box.GetValue()
self.COORDINATE_SYSTEM = coordinate_system
self.update_bounds_boxes()
high_level = self.level_box.GetValue()
old_string = self.level_names.GetValue()
new_string = old_string
if high_level == 'sample':
if self.s in self.Data_hierarchy['sample_of_specimen']:
new_string = self.Data_hierarchy['sample_of_specimen'][self.s]
else:
new_string = ''
if high_level == 'site':
if self.s in self.Data_hierarchy['site_of_specimen']:
new_string = self.Data_hierarchy['site_of_specimen'][self.s]
else:
new_string = ''
if high_level == 'location':
if self.s in self.Data_hierarchy['location_of_specimen']:
new_string = self.Data_hierarchy['location_of_specimen'][self.s]
else:
new_string = ''
self.level_names.SetValue(new_string)
if self.ie_open and new_string != old_string:
self.ie.level_names.SetValue(new_string)
self.ie.on_select_level_name(-1, True)
self.update_PCA_box()
self.generate_warning_text()
self.update_warning_box()
self.update_fit_boxes()
self.update_mean_fit_box()
self.Add_text()
if self.current_fit:
self.draw_figure(self.s, False)
else:
self.draw_figure(self.s, True)
self.update_high_level_stats()
self.update_GUI_with_new_interpretation()
|
update_selection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.clear_boxes()\n self.clear_high_level_pars()\n if self.UPPER_LEVEL_SHOW != 'specimens':\n self.mean_type_box.SetValue('None')\n coordinate_system = self.coordinates_box.GetValue()\n if coordinate_system == 'tilt-corrected' and len(self.Data[self.s][\n 'zijdblock_tilt']) == 0:\n self.coordinates_box.SetStringSelection('specimen')\n elif coordinate_system == 'geographic' and len(self.Data[self.s][\n 'zijdblock_geo']) == 0:\n self.coordinates_box.SetStringSelection('specimen')\n if coordinate_system != self.coordinates_box.GetValue() and self.ie_open:\n self.ie.coordinates_box.SetStringSelection(self.coordinates_box.\n GetValue())\n self.ie.update_editor()\n coordinate_system = self.coordinates_box.GetValue()\n self.COORDINATE_SYSTEM = coordinate_system\n self.update_bounds_boxes()\n high_level = self.level_box.GetValue()\n old_string = self.level_names.GetValue()\n new_string = old_string\n if high_level == 'sample':\n if self.s in self.Data_hierarchy['sample_of_specimen']:\n new_string = self.Data_hierarchy['sample_of_specimen'][self.s]\n else:\n new_string = ''\n if high_level == 'site':\n if self.s in self.Data_hierarchy['site_of_specimen']:\n new_string = self.Data_hierarchy['site_of_specimen'][self.s]\n else:\n new_string = ''\n if high_level == 'location':\n if self.s in self.Data_hierarchy['location_of_specimen']:\n new_string = self.Data_hierarchy['location_of_specimen'][self.s]\n else:\n new_string = ''\n self.level_names.SetValue(new_string)\n if self.ie_open and new_string != old_string:\n self.ie.level_names.SetValue(new_string)\n self.ie.on_select_level_name(-1, True)\n self.update_PCA_box()\n self.generate_warning_text()\n self.update_warning_box()\n self.update_fit_boxes()\n self.update_mean_fit_box()\n self.Add_text()\n if self.current_fit:\n self.draw_figure(self.s, False)\n else:\n self.draw_figure(self.s, True)\n self.update_high_level_stats()\n self.update_GUI_with_new_interpretation()\n",
"role": "user"
},
{
"content": "update_selection",
"role": "assistant"
}
] |
def x(self):
self.warning_box.Clear()
if self.warning_text == '':
self.warning_box.AppendText('No Problems')
else:
self.warning_box.AppendText(self.warning_text)
|
update_warning_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.warning_box.Clear()\n if self.warning_text == '':\n self.warning_box.AppendText('No Problems')\n else:\n self.warning_box.AppendText(self.warning_text)\n",
"role": "user"
},
{
"content": "update_warning_box",
"role": "assistant"
}
] |
def x(self):
self.update_fit_bounds_and_statistics()
self.draw_interpretations()
self.calculate_high_levels_data()
self.plot_high_levels_data()
|
update_GUI_with_new_interpretation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.update_fit_bounds_and_statistics()\n self.draw_interpretations()\n self.calculate_high_levels_data()\n self.plot_high_levels_data()\n",
"role": "user"
},
{
"content": "update_GUI_with_new_interpretation",
"role": "assistant"
}
] |
def x(self):
self.clear_high_level_pars()
dirtype = str(self.coordinates_box.GetValue())
if dirtype == 'specimen':
dirtype = 'DA-DIR'
elif dirtype == 'geographic':
dirtype = 'DA-DIR-GEO'
elif dirtype == 'tilt-corrected':
dirtype = 'DA-DIR-TILT'
if str(self.level_box.GetValue()) == 'sample':
high_level_type = 'samples'
elif str(self.level_box.GetValue()) == 'site':
high_level_type = 'sites'
elif str(self.level_box.GetValue()) == 'location':
high_level_type = 'locations'
elif str(self.level_box.GetValue()) == 'study':
high_level_type = 'study'
high_level_name = str(self.level_names.GetValue())
elements_type = self.UPPER_LEVEL_SHOW
if high_level_name in list(self.high_level_means[high_level_type].keys()):
mpars = []
for mf in list(self.high_level_means[high_level_type][
high_level_name].keys()):
if mf in list(self.high_level_means[high_level_type][
high_level_name].keys()
) and self.mean_fit == 'All' or mf == self.mean_fit:
if dirtype in list(self.high_level_means[high_level_type][
high_level_name][mf].keys()):
mpar = deepcopy(self.high_level_means[high_level_type][
high_level_name][mf][dirtype])
if 'n' in mpar and mpar['n'] == 1:
mpar['calculation_type'] = 'Fisher:' + mf
mpars.append(mpar)
elif mpar['calculation_type'] == 'Fisher by polarity':
for k in list(mpar.keys()):
if k == 'color' or k == 'calculation_type':
continue
mpar[k]['calculation_type'] += ':' + k + ':' + mf
mpar[k]['color'] = mpar['color']
if 'K' not in mpar[k] and 'k' in mpar[k]:
mpar[k]['K'] = mpar[k]['k']
if 'R' not in mpar[k] and 'r' in mpar[k]:
mpar[k]['R'] = mpar[k]['r']
if 'n_lines' not in mpar[k] and 'n' in mpar[k]:
mpar[k]['n_lines'] = mpar[k]['n']
mpars.append(mpar[k])
else:
mpar['calculation_type'] += ':' + mf
mpars.append(mpar)
self.switch_stats_button.SetRange(0, len(mpars) - 1)
self.show_high_levels_pars(mpars)
if self.ie_open:
self.ie.switch_stats_button.SetRange(0, len(mpars) - 1)
|
update_high_level_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.clear_high_level_pars()\n dirtype = str(self.coordinates_box.GetValue())\n if dirtype == 'specimen':\n dirtype = 'DA-DIR'\n elif dirtype == 'geographic':\n dirtype = 'DA-DIR-GEO'\n elif dirtype == 'tilt-corrected':\n dirtype = 'DA-DIR-TILT'\n if str(self.level_box.GetValue()) == 'sample':\n high_level_type = 'samples'\n elif str(self.level_box.GetValue()) == 'site':\n high_level_type = 'sites'\n elif str(self.level_box.GetValue()) == 'location':\n high_level_type = 'locations'\n elif str(self.level_box.GetValue()) == 'study':\n high_level_type = 'study'\n high_level_name = str(self.level_names.GetValue())\n elements_type = self.UPPER_LEVEL_SHOW\n if high_level_name in list(self.high_level_means[high_level_type].keys()):\n mpars = []\n for mf in list(self.high_level_means[high_level_type][\n high_level_name].keys()):\n if mf in list(self.high_level_means[high_level_type][\n high_level_name].keys()\n ) and self.mean_fit == 'All' or mf == self.mean_fit:\n if dirtype in list(self.high_level_means[high_level_type][\n high_level_name][mf].keys()):\n mpar = deepcopy(self.high_level_means[high_level_type][\n high_level_name][mf][dirtype])\n if 'n' in mpar and mpar['n'] == 1:\n mpar['calculation_type'] = 'Fisher:' + mf\n mpars.append(mpar)\n elif mpar['calculation_type'] == 'Fisher by polarity':\n for k in list(mpar.keys()):\n if k == 'color' or k == 'calculation_type':\n continue\n mpar[k]['calculation_type'] += ':' + k + ':' + mf\n mpar[k]['color'] = mpar['color']\n if 'K' not in mpar[k] and 'k' in mpar[k]:\n mpar[k]['K'] = mpar[k]['k']\n if 'R' not in mpar[k] and 'r' in mpar[k]:\n mpar[k]['R'] = mpar[k]['r']\n if 'n_lines' not in mpar[k] and 'n' in mpar[k]:\n mpar[k]['n_lines'] = mpar[k]['n']\n mpars.append(mpar[k])\n else:\n mpar['calculation_type'] += ':' + mf\n mpars.append(mpar)\n self.switch_stats_button.SetRange(0, len(mpars) - 1)\n self.show_high_levels_pars(mpars)\n if self.ie_open:\n self.ie.switch_stats_button.SetRange(0, len(mpars) - 1)\n",
"role": "user"
},
{
"content": "update_high_level_stats",
"role": "assistant"
}
] |
def x(self):
if self.s not in list(self.Data.keys()):
self.select_specimen(list(self.Data.keys())[0])
self.T_list = self.Data[self.s]['zijdblock_steps']
if self.current_fit:
self.tmin_box.SetItems(self.T_list)
self.tmax_box.SetItems(self.T_list)
if type(self.current_fit.tmin) == str and type(self.current_fit.tmax
) == str:
self.tmin_box.SetStringSelection(self.current_fit.tmin)
self.tmax_box.SetStringSelection(self.current_fit.tmax)
if self.ie_open:
self.ie.update_bounds_boxes(self.T_list)
|
update_bounds_boxes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.s not in list(self.Data.keys()):\n self.select_specimen(list(self.Data.keys())[0])\n self.T_list = self.Data[self.s]['zijdblock_steps']\n if self.current_fit:\n self.tmin_box.SetItems(self.T_list)\n self.tmax_box.SetItems(self.T_list)\n if type(self.current_fit.tmin) == str and type(self.current_fit.tmax\n ) == str:\n self.tmin_box.SetStringSelection(self.current_fit.tmin)\n self.tmax_box.SetStringSelection(self.current_fit.tmax)\n if self.ie_open:\n self.ie.update_bounds_boxes(self.T_list)\n",
"role": "user"
},
{
"content": "update_bounds_boxes",
"role": "assistant"
}
] |
def x(self):
if self.s in list(self.pmag_results_data['specimens'].keys()):
if self.current_fit:
tmin = self.current_fit.tmin
tmax = self.current_fit.tmax
calculation_type = self.current_fit.PCA_type
else:
calculation_type = self.PCA_type_box.GetValue()
PCA_type = 'None'
if calculation_type == 'DE-BFL':
PCA_type = 'line'
elif calculation_type == 'DE-BFL-A':
PCA_type = 'line-anchored'
elif calculation_type == 'DE-BFL-O':
PCA_type = 'line-with-origin'
elif calculation_type == 'DE-FM':
PCA_type = 'Fisher'
elif calculation_type == 'DE-BFP':
PCA_type = 'plane'
else:
print('no PCA type found setting to line')
PCA_type = 'line'
self.PCA_type_box.SetStringSelection(PCA_type)
|
update_PCA_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.s in list(self.pmag_results_data['specimens'].keys()):\n if self.current_fit:\n tmin = self.current_fit.tmin\n tmax = self.current_fit.tmax\n calculation_type = self.current_fit.PCA_type\n else:\n calculation_type = self.PCA_type_box.GetValue()\n PCA_type = 'None'\n if calculation_type == 'DE-BFL':\n PCA_type = 'line'\n elif calculation_type == 'DE-BFL-A':\n PCA_type = 'line-anchored'\n elif calculation_type == 'DE-BFL-O':\n PCA_type = 'line-with-origin'\n elif calculation_type == 'DE-FM':\n PCA_type = 'Fisher'\n elif calculation_type == 'DE-BFP':\n PCA_type = 'plane'\n else:\n print('no PCA type found setting to line')\n PCA_type = 'line'\n self.PCA_type_box.SetStringSelection(PCA_type)\n",
"role": "user"
},
{
"content": "update_PCA_box",
"role": "assistant"
}
] |
def x(self, new_fit=False):
self.update_fit_box(new_fit)
self.on_select_fit(None)
self.update_mean_fit_box()
|
update_fit_boxes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_fit=False):\n self.update_fit_box(new_fit)\n self.on_select_fit(None)\n self.update_mean_fit_box()\n",
"role": "user"
},
{
"content": "update_fit_boxes",
"role": "assistant"
}
] |
def x(self, new_fit=False):
if self.s in list(self.pmag_results_data['specimens'].keys()):
self.fit_list = list([x.name for x in self.pmag_results_data[
'specimens'][self.s]])
else:
self.fit_list = []
if not self.fit_list:
new_index = 'None'
elif new_fit:
new_index = len(self.fit_list) - 1
elif self.fit_box.GetValue() in self.fit_list:
new_index = self.fit_list.index(self.fit_box.GetValue())
else:
new_index = 'None'
self.fit_box.Clear()
self.fit_box.SetItems(self.fit_list)
fit_index = None
if new_index == 'None':
self.fit_box.SetStringSelection('None')
else:
self.fit_box.SetSelection(new_index)
|
update_fit_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_fit=False):\n if self.s in list(self.pmag_results_data['specimens'].keys()):\n self.fit_list = list([x.name for x in self.pmag_results_data[\n 'specimens'][self.s]])\n else:\n self.fit_list = []\n if not self.fit_list:\n new_index = 'None'\n elif new_fit:\n new_index = len(self.fit_list) - 1\n elif self.fit_box.GetValue() in self.fit_list:\n new_index = self.fit_list.index(self.fit_box.GetValue())\n else:\n new_index = 'None'\n self.fit_box.Clear()\n self.fit_box.SetItems(self.fit_list)\n fit_index = None\n if new_index == 'None':\n self.fit_box.SetStringSelection('None')\n else:\n self.fit_box.SetSelection(new_index)\n",
"role": "user"
},
{
"content": "update_fit_box",
"role": "assistant"
}
] |
def x(self):
self.mean_fit_box.Clear()
fit_index = None
if self.mean_fit in self.all_fits_list:
fit_index = self.all_fits_list.index(self.mean_fit)
self.all_fits_list = []
for specimen in self.specimens:
if specimen in self.pmag_results_data['specimens']:
for name in [x.name for x in self.pmag_results_data['specimens'
][specimen]]:
if name not in self.all_fits_list:
self.all_fits_list.append(name)
self.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list)
if not isinstance(fit_index, type(None)):
self.mean_fit_box.SetValue(self.all_fits_list[fit_index])
elif self.mean_fit == 'All':
self.mean_fit_box.SetValue('All')
else:
self.mean_fit_box.SetValue('None')
self.mean_type_box.SetValue('None')
self.clear_high_level_pars()
self.update_toggleable_means_menu()
if self.ie_open:
self.ie.mean_fit_box.Clear()
self.ie.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list)
if fit_index:
self.ie.mean_fit_box.SetValue(self.all_fits_list[fit_index])
elif self.mean_fit == 'All':
self.ie.mean_fit_box.SetValue('All')
else:
self.ie.mean_fit_box.SetValue('None')
self.ie.mean_type_box.SetValue('None')
|
update_mean_fit_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.mean_fit_box.Clear()\n fit_index = None\n if self.mean_fit in self.all_fits_list:\n fit_index = self.all_fits_list.index(self.mean_fit)\n self.all_fits_list = []\n for specimen in self.specimens:\n if specimen in self.pmag_results_data['specimens']:\n for name in [x.name for x in self.pmag_results_data['specimens'\n ][specimen]]:\n if name not in self.all_fits_list:\n self.all_fits_list.append(name)\n self.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list)\n if not isinstance(fit_index, type(None)):\n self.mean_fit_box.SetValue(self.all_fits_list[fit_index])\n elif self.mean_fit == 'All':\n self.mean_fit_box.SetValue('All')\n else:\n self.mean_fit_box.SetValue('None')\n self.mean_type_box.SetValue('None')\n self.clear_high_level_pars()\n self.update_toggleable_means_menu()\n if self.ie_open:\n self.ie.mean_fit_box.Clear()\n self.ie.mean_fit_box.SetItems(['None', 'All'] + self.all_fits_list)\n if fit_index:\n self.ie.mean_fit_box.SetValue(self.all_fits_list[fit_index])\n elif self.mean_fit == 'All':\n self.ie.mean_fit_box.SetValue('All')\n else:\n self.ie.mean_fit_box.SetValue('None')\n self.ie.mean_type_box.SetValue('None')\n",
"role": "user"
},
{
"content": "update_mean_fit_box",
"role": "assistant"
}
] |
def x(self, mpars):
FONT_WEIGHT = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5
font2 = wx.Font(12 + min(1, FONT_WEIGHT), wx.SWISS, wx.NORMAL, wx.
NORMAL, False, self.font_type)
if self.mean_type_box.GetValue() != 'None' and self.mean_fit_box.GetValue(
) != 'None' and mpars:
if isinstance(mpars, list):
i = self.switch_stats_button.GetValue()
if i >= len(mpars):
print(
'Cannot display statistics as mpars does not have index %d. Was given mpars %s, aborting.'
% (i, str(mpars)))
return
self.show_high_levels_pars(mpars[i])
elif mpars['calculation_type'].startswith('Fisher'):
if 'alpha95' in list(mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec',
'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R',
'n_lines:n_lines', 'n_planes:n_planes']:
val, ind = val.split(':')
COMMAND = "self.%s_window.SetValue(str(mpars['%s']))" % (
val, ind)
exec(COMMAND)
if self.ie_open:
ie = self.ie
if 'alpha95' in list(mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec',
'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R',
'n_lines:n_lines', 'n_planes:n_planes']:
val, ind = val.split(':')
COMMAND = "ie.%s_window.SetValue(str(mpars['%s']))" % (
val, ind)
exec(COMMAND)
elif mpars['calculation_type'].startswith('Fisher by polarity'):
i = self.switch_stats_button.GetValue()
keys = list(mpars.keys())
keys.remove('calculation_type')
if 'color' in keys:
keys.remove('color')
keys.sort()
name = keys[i % len(keys)]
mpars = mpars[name]
if type(mpars) != dict:
print('error in showing high level mean, reseaved %s' % str
(mpars))
return
if mpars['calculation_type'] == 'Fisher' and 'alpha95' in list(
mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec',
'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r', 'n_lines:n',
'n_planes:n_planes']:
val, ind = val.split(':')
if val == 'mean_type':
COMMAND = "self.%s_window.SetValue('%s')" % (val,
mpars[ind] + ':' + name)
else:
COMMAND = (
"self.%s_window.SetValue(str(mpars['%s']))" % (
val, ind))
exec(COMMAND)
if self.ie_open:
ie = self.ie
if mpars['calculation_type'] == 'Fisher' and 'alpha95' in list(
mpars.keys()):
for val in ['mean_type:calculation_type', 'dec:dec',
'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r',
'n_lines:n', 'n_planes:n_planes']:
val, ind = val.split(':')
if val == 'mean_type':
COMMAND = "ie.%s_window.SetValue('%s')" % (val,
mpars[ind] + ':' + name)
else:
COMMAND = (
"ie.%s_window.SetValue(str(mpars['%s']))" %
(val, ind))
exec(COMMAND)
self.set_mean_stats_color()
|
show_high_levels_pars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mpars):\n FONT_WEIGHT = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5\n font2 = wx.Font(12 + min(1, FONT_WEIGHT), wx.SWISS, wx.NORMAL, wx.\n NORMAL, False, self.font_type)\n if self.mean_type_box.GetValue() != 'None' and self.mean_fit_box.GetValue(\n ) != 'None' and mpars:\n if isinstance(mpars, list):\n i = self.switch_stats_button.GetValue()\n if i >= len(mpars):\n print(\n 'Cannot display statistics as mpars does not have index %d. Was given mpars %s, aborting.'\n % (i, str(mpars)))\n return\n self.show_high_levels_pars(mpars[i])\n elif mpars['calculation_type'].startswith('Fisher'):\n if 'alpha95' in list(mpars.keys()):\n for val in ['mean_type:calculation_type', 'dec:dec',\n 'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R',\n 'n_lines:n_lines', 'n_planes:n_planes']:\n val, ind = val.split(':')\n COMMAND = \"self.%s_window.SetValue(str(mpars['%s']))\" % (\n val, ind)\n exec(COMMAND)\n if self.ie_open:\n ie = self.ie\n if 'alpha95' in list(mpars.keys()):\n for val in ['mean_type:calculation_type', 'dec:dec',\n 'inc:inc', 'alpha95:alpha95', 'K:K', 'R:R',\n 'n_lines:n_lines', 'n_planes:n_planes']:\n val, ind = val.split(':')\n COMMAND = \"ie.%s_window.SetValue(str(mpars['%s']))\" % (\n val, ind)\n exec(COMMAND)\n elif mpars['calculation_type'].startswith('Fisher by polarity'):\n i = self.switch_stats_button.GetValue()\n keys = list(mpars.keys())\n keys.remove('calculation_type')\n if 'color' in keys:\n keys.remove('color')\n keys.sort()\n name = keys[i % len(keys)]\n mpars = mpars[name]\n if type(mpars) != dict:\n print('error in showing high level mean, reseaved %s' % str\n (mpars))\n return\n if mpars['calculation_type'] == 'Fisher' and 'alpha95' in list(\n mpars.keys()):\n for val in ['mean_type:calculation_type', 'dec:dec',\n 'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r', 'n_lines:n',\n 'n_planes:n_planes']:\n val, ind = val.split(':')\n if val == 'mean_type':\n COMMAND = \"self.%s_window.SetValue('%s')\" % (val, \n mpars[ind] + ':' + name)\n else:\n COMMAND = (\n \"self.%s_window.SetValue(str(mpars['%s']))\" % (\n val, ind))\n exec(COMMAND)\n if self.ie_open:\n ie = self.ie\n if mpars['calculation_type'] == 'Fisher' and 'alpha95' in list(\n mpars.keys()):\n for val in ['mean_type:calculation_type', 'dec:dec',\n 'inc:inc', 'alpha95:alpha95', 'K:k', 'R:r',\n 'n_lines:n', 'n_planes:n_planes']:\n val, ind = val.split(':')\n if val == 'mean_type':\n COMMAND = \"ie.%s_window.SetValue('%s')\" % (val,\n mpars[ind] + ':' + name)\n else:\n COMMAND = (\n \"ie.%s_window.SetValue(str(mpars['%s']))\" %\n (val, ind))\n exec(COMMAND)\n self.set_mean_stats_color()\n",
"role": "user"
},
{
"content": "show_high_levels_pars",
"role": "assistant"
}
] |
def x(self):
self.tmin_box.Clear()
self.tmin_box.SetStringSelection('')
if self.current_fit:
self.tmin_box.SetItems(self.T_list)
self.tmin_box.SetSelection(-1)
self.tmax_box.Clear()
self.tmax_box.SetStringSelection('')
if self.current_fit:
self.tmax_box.SetItems(self.T_list)
self.tmax_box.SetSelection(-1)
self.fit_box.Clear()
self.fit_box.SetStringSelection('')
if self.s in self.pmag_results_data['specimens'
] and self.pmag_results_data['specimens'][self.s]:
self.fit_box.SetItems(list([x.name for x in self.pmag_results_data[
'specimens'][self.s]]))
for parameter in ['dec', 'inc', 'n', 'mad', 'dang', 'alpha95']:
COMMAND = "self.s%s_window.SetValue('')" % parameter
exec(COMMAND)
COMMAND = ("self.s%s_window.SetBackgroundColour(wx.Colour('grey'))" %
parameter)
exec(COMMAND)
|
clear_boxes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.tmin_box.Clear()\n self.tmin_box.SetStringSelection('')\n if self.current_fit:\n self.tmin_box.SetItems(self.T_list)\n self.tmin_box.SetSelection(-1)\n self.tmax_box.Clear()\n self.tmax_box.SetStringSelection('')\n if self.current_fit:\n self.tmax_box.SetItems(self.T_list)\n self.tmax_box.SetSelection(-1)\n self.fit_box.Clear()\n self.fit_box.SetStringSelection('')\n if self.s in self.pmag_results_data['specimens'\n ] and self.pmag_results_data['specimens'][self.s]:\n self.fit_box.SetItems(list([x.name for x in self.pmag_results_data[\n 'specimens'][self.s]]))\n for parameter in ['dec', 'inc', 'n', 'mad', 'dang', 'alpha95']:\n COMMAND = \"self.s%s_window.SetValue('')\" % parameter\n exec(COMMAND)\n COMMAND = (\"self.s%s_window.SetBackgroundColour(wx.Colour('grey'))\" %\n parameter)\n exec(COMMAND)\n",
"role": "user"
},
{
"content": "clear_boxes",
"role": "assistant"
}
] |
def x(self):
for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R', 'n_lines',
'n_planes']:
COMMAND = 'self.%s_window.SetValue("")' % val
exec(COMMAND)
if self.ie_open:
for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R',
'n_lines', 'n_planes']:
COMMAND = 'self.ie.%s_window.SetValue("")' % val
exec(COMMAND)
self.set_mean_stats_color()
|
clear_high_level_pars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R', 'n_lines',\n 'n_planes']:\n COMMAND = 'self.%s_window.SetValue(\"\")' % val\n exec(COMMAND)\n if self.ie_open:\n for val in ['mean_type', 'dec', 'inc', 'alpha95', 'K', 'R',\n 'n_lines', 'n_planes']:\n COMMAND = 'self.ie.%s_window.SetValue(\"\")' % val\n exec(COMMAND)\n self.set_mean_stats_color()\n",
"role": "user"
},
{
"content": "clear_high_level_pars",
"role": "assistant"
}
] |
def x(self, event):
meas_file = self.choose_meas_file()
WD = os.path.split(meas_file)[0]
self.WD = WD
self.magic_file = meas_file
self.reset_backend()
|
on_menu_import_meas_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n meas_file = self.choose_meas_file()\n WD = os.path.split(meas_file)[0]\n self.WD = WD\n self.magic_file = meas_file\n self.reset_backend()\n",
"role": "user"
},
{
"content": "on_menu_import_meas_file",
"role": "assistant"
}
] |
def x(self, event):
if self.data_model == 3:
default_file = 'criteria.txt'
else:
default_file = 'pmag_criteria.txt'
read_sucsess = False
dlg = wx.FileDialog(self, message='choose pmag criteria file',
defaultDir=self.WD, defaultFile=default_file, style=wx.FD_OPEN | wx
.FD_CHANGE_DIR)
if self.show_dlg(dlg) == wx.ID_OK:
criteria_file = dlg.GetPath()
print('-I- Read new criteria file: %s' % criteria_file)
try:
mag_meas_data, file_type = pmag.magic_read(criteria_file)
except:
dlg = wx.MessageDialog(self, caption='Error', message=
'not a valid pmag_criteria file', style=wx.OK)
result = self.show_dlg(dlg)
if result == wx.ID_OK:
dlg.Destroy()
dlg.Destroy()
return
self.acceptance_criteria = self.read_criteria_file(criteria_file)
read_sucsess = True
dlg.Destroy()
if read_sucsess:
self.on_menu_change_criteria(None)
|
on_menu_criteria_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if self.data_model == 3:\n default_file = 'criteria.txt'\n else:\n default_file = 'pmag_criteria.txt'\n read_sucsess = False\n dlg = wx.FileDialog(self, message='choose pmag criteria file',\n defaultDir=self.WD, defaultFile=default_file, style=wx.FD_OPEN | wx\n .FD_CHANGE_DIR)\n if self.show_dlg(dlg) == wx.ID_OK:\n criteria_file = dlg.GetPath()\n print('-I- Read new criteria file: %s' % criteria_file)\n try:\n mag_meas_data, file_type = pmag.magic_read(criteria_file)\n except:\n dlg = wx.MessageDialog(self, caption='Error', message=\n 'not a valid pmag_criteria file', style=wx.OK)\n result = self.show_dlg(dlg)\n if result == wx.ID_OK:\n dlg.Destroy()\n dlg.Destroy()\n return\n self.acceptance_criteria = self.read_criteria_file(criteria_file)\n read_sucsess = True\n dlg.Destroy()\n if read_sucsess:\n self.on_menu_change_criteria(None)\n",
"role": "user"
},
{
"content": "on_menu_criteria_file",
"role": "assistant"
}
] |
def x(self, event):
if event.LeftIsDown() or event.ButtonDClick():
return
elif self.zijderveld_setting == 'Zoom':
self.zijderveld_setting = 'Pan'
try:
self.toolbar1.pan('off')
except TypeError:
pass
elif self.zijderveld_setting == 'Pan':
self.zijderveld_setting = 'Zoom'
try:
self.toolbar1.zoom()
except TypeError:
pass
|
right_click_zijderveld
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if event.LeftIsDown() or event.ButtonDClick():\n return\n elif self.zijderveld_setting == 'Zoom':\n self.zijderveld_setting = 'Pan'\n try:\n self.toolbar1.pan('off')\n except TypeError:\n pass\n elif self.zijderveld_setting == 'Pan':\n self.zijderveld_setting = 'Zoom'\n try:\n self.toolbar1.zoom()\n except TypeError:\n pass\n",
"role": "user"
},
{
"content": "right_click_zijderveld",
"role": "assistant"
}
] |
def x(self, event):
if not array(self.CART_rot).any():
return
pos = event.GetPosition()
width, height = self.canvas1.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0])
ydata_org = list(-1 * self.CART_rot[:, 1]) + list(-1 * self.CART_rot[:, 2])
data_corrected = self.zijplot.transData.transform(vstack([xdata_org,
ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4.0
if self.zijderveld_setting == 'Zoom':
self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_CROSS))
else:
self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_ARROW))
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:
self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_HAND))
break
event.Skip()
|
on_change_zijd_mouse_cursor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if not array(self.CART_rot).any():\n return\n pos = event.GetPosition()\n width, height = self.canvas1.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0])\n ydata_org = list(-1 * self.CART_rot[:, 1]) + list(-1 * self.CART_rot[:, 2])\n data_corrected = self.zijplot.transData.transform(vstack([xdata_org,\n ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n if self.zijderveld_setting == 'Zoom':\n self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_CROSS))\n else:\n self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_ARROW))\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n self.canvas1.SetCursor(wx.Cursor(wx.CURSOR_HAND))\n break\n event.Skip()\n",
"role": "user"
},
{
"content": "on_change_zijd_mouse_cursor",
"role": "assistant"
}
] |
def x(self, event):
if not array(self.CART_rot_good).any():
return
pos = event.GetPosition()
width, height = self.canvas1.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = list(self.CART_rot_good[:, 0]) + list(self.CART_rot_good[:, 0])
ydata_org = list(-1 * self.CART_rot_good[:, 1]) + list(-1 * self.
CART_rot_good[:, 2])
data_corrected = self.zijplot.transData.transform(vstack([xdata_org,
ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4.0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:
index = i
break
if index != None:
steps = self.Data[self.s]['zijdblock_steps']
bad_count = self.Data[self.s]['measurement_flag'][:index].count('b')
if index > len(steps):
bad_count *= 2
if not self.current_fit:
self.on_btn_add_fit(event)
self.select_bounds_in_logger((index + bad_count) % len(steps))
|
on_zijd_select
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if not array(self.CART_rot_good).any():\n return\n pos = event.GetPosition()\n width, height = self.canvas1.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = list(self.CART_rot_good[:, 0]) + list(self.CART_rot_good[:, 0])\n ydata_org = list(-1 * self.CART_rot_good[:, 1]) + list(-1 * self.\n CART_rot_good[:, 2])\n data_corrected = self.zijplot.transData.transform(vstack([xdata_org,\n ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n index = None\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n index = i\n break\n if index != None:\n steps = self.Data[self.s]['zijdblock_steps']\n bad_count = self.Data[self.s]['measurement_flag'][:index].count('b')\n if index > len(steps):\n bad_count *= 2\n if not self.current_fit:\n self.on_btn_add_fit(event)\n self.select_bounds_in_logger((index + bad_count) % len(steps))\n",
"role": "user"
},
{
"content": "on_zijd_select",
"role": "assistant"
}
] |
def x(self, event):
if not array(self.CART_rot).any():
return
pos = event.GetPosition()
width, height = self.canvas1.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0])
ydata_org = list(-1 * self.CART_rot[:, 1]) + list(-1 * self.CART_rot[:, 2])
data_corrected = self.zijplot.transData.transform(vstack([xdata_org,
ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4.0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:
index = i
break
if index != None:
steps = self.Data[self.s]['zijdblock']
if self.Data[self.s]['measurement_flag'][index % len(steps)] == 'g':
self.mark_meas_bad(index % len(steps))
else:
self.mark_meas_good(index % len(steps))
pmag.magic_write(os.path.join(self.WD, 'magic_measurements.txt'),
self.mag_meas_data, 'magic_measurements')
self.recalculate_current_specimen_interpreatations()
if self.ie_open:
self.ie.update_current_fit_data()
self.calculate_high_levels_data()
self.update_selection()
|
on_zijd_mark
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if not array(self.CART_rot).any():\n return\n pos = event.GetPosition()\n width, height = self.canvas1.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = list(self.CART_rot[:, 0]) + list(self.CART_rot[:, 0])\n ydata_org = list(-1 * self.CART_rot[:, 1]) + list(-1 * self.CART_rot[:, 2])\n data_corrected = self.zijplot.transData.transform(vstack([xdata_org,\n ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n index = None\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n index = i\n break\n if index != None:\n steps = self.Data[self.s]['zijdblock']\n if self.Data[self.s]['measurement_flag'][index % len(steps)] == 'g':\n self.mark_meas_bad(index % len(steps))\n else:\n self.mark_meas_good(index % len(steps))\n pmag.magic_write(os.path.join(self.WD, 'magic_measurements.txt'),\n self.mag_meas_data, 'magic_measurements')\n self.recalculate_current_specimen_interpreatations()\n if self.ie_open:\n self.ie.update_current_fit_data()\n self.calculate_high_levels_data()\n self.update_selection()\n",
"role": "user"
},
{
"content": "on_zijd_mark",
"role": "assistant"
}
] |
def x(self, event):
if event.LeftIsDown() or event.ButtonDClick():
return
elif self.specimen_EA_setting == 'Zoom':
self.specimen_EA_setting = 'Pan'
try:
self.toolbar2.pan('off')
except TypeError:
pass
elif self.specimen_EA_setting == 'Pan':
self.specimen_EA_setting = 'Zoom'
try:
self.toolbar2.zoom()
except TypeError:
pass
|
right_click_specimen_equalarea
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if event.LeftIsDown() or event.ButtonDClick():\n return\n elif self.specimen_EA_setting == 'Zoom':\n self.specimen_EA_setting = 'Pan'\n try:\n self.toolbar2.pan('off')\n except TypeError:\n pass\n elif self.specimen_EA_setting == 'Pan':\n self.specimen_EA_setting = 'Zoom'\n try:\n self.toolbar2.zoom()\n except TypeError:\n pass\n",
"role": "user"
},
{
"content": "right_click_specimen_equalarea",
"role": "assistant"
}
] |
def x(self, event):
if not self.specimen_EA_xdata or not self.specimen_EA_ydata:
return
pos = event.GetPosition()
width, height = self.canvas2.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.specimen_EA_xdata
ydata_org = self.specimen_EA_ydata
data_corrected = self.specimen_eqarea.transData.transform(vstack([
xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4.0
if self.specimen_EA_setting == 'Zoom':
self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_CROSS))
else:
self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_ARROW))
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:
self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_HAND))
break
event.Skip()
|
on_change_specimen_mouse_cursor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if not self.specimen_EA_xdata or not self.specimen_EA_ydata:\n return\n pos = event.GetPosition()\n width, height = self.canvas2.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.specimen_EA_xdata\n ydata_org = self.specimen_EA_ydata\n data_corrected = self.specimen_eqarea.transData.transform(vstack([\n xdata_org, ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n if self.specimen_EA_setting == 'Zoom':\n self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_CROSS))\n else:\n self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_ARROW))\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n self.canvas2.SetCursor(wx.Cursor(wx.CURSOR_HAND))\n break\n event.Skip()\n",
"role": "user"
},
{
"content": "on_change_specimen_mouse_cursor",
"role": "assistant"
}
] |
def x(self, event):
if not self.specimen_EA_xdata or not self.specimen_EA_ydata:
return
pos = event.GetPosition()
width, height = self.canvas2.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.specimen_EA_xdata
ydata_org = self.specimen_EA_ydata
data_corrected = self.specimen_eqarea.transData.transform(vstack([
xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4.0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:
index = i
break
if index != None:
self.fit_box.SetSelection(index)
self.draw_figure(self.s, True)
self.on_select_fit(event)
|
on_equalarea_specimen_select
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if not self.specimen_EA_xdata or not self.specimen_EA_ydata:\n return\n pos = event.GetPosition()\n width, height = self.canvas2.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.specimen_EA_xdata\n ydata_org = self.specimen_EA_ydata\n data_corrected = self.specimen_eqarea.transData.transform(vstack([\n xdata_org, ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n index = None\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n index = i\n break\n if index != None:\n self.fit_box.SetSelection(index)\n self.draw_figure(self.s, True)\n self.on_select_fit(event)\n",
"role": "user"
},
{
"content": "on_equalarea_specimen_select",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.