source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, event):
if event.LeftIsDown():
return
elif self.high_EA_setting == 'Zoom':
self.high_EA_setting = 'Pan'
try:
self.toolbar4.pan('off')
except TypeError:
pass
elif self.high_EA_setting == 'Pan':
self.high_EA_setting = 'Zoom'
try:
self.toolbar4.zoom()
except TypeError:
pass
|
right_click_high_equalarea
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if event.LeftIsDown():\n return\n elif self.high_EA_setting == 'Zoom':\n self.high_EA_setting = 'Pan'\n try:\n self.toolbar4.pan('off')\n except TypeError:\n pass\n elif self.high_EA_setting == 'Pan':\n self.high_EA_setting = 'Zoom'\n try:\n self.toolbar4.zoom()\n except TypeError:\n pass\n",
"role": "user"
},
{
"content": "right_click_high_equalarea",
"role": "assistant"
}
] |
def x(self, event):
if self.ie_open and self.ie.show_box.GetValue() != 'specimens':
return
pos = event.GetPosition()
width, height = self.canvas4.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.high_EA_xdata
ydata_org = self.high_EA_ydata
data_corrected = self.high_level_eqarea.transData.transform(vstack([
xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4.0
if self.high_EA_setting == 'Zoom':
self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_CROSS))
else:
self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_ARROW))
if not self.high_EA_xdata or not self.high_EA_ydata:
return
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:
self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_HAND))
break
event.Skip()
|
on_change_high_mouse_cursor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if self.ie_open and self.ie.show_box.GetValue() != 'specimens':\n return\n pos = event.GetPosition()\n width, height = self.canvas4.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.high_EA_xdata\n ydata_org = self.high_EA_ydata\n data_corrected = self.high_level_eqarea.transData.transform(vstack([\n xdata_org, ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n if self.high_EA_setting == 'Zoom':\n self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_CROSS))\n else:\n self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_ARROW))\n if not self.high_EA_xdata or not self.high_EA_ydata:\n return\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_HAND))\n break\n event.Skip()\n",
"role": "user"
},
{
"content": "on_change_high_mouse_cursor",
"role": "assistant"
}
] |
def x(self, event, fig=None, canvas=None):
if self.ie_open and self.ie.show_box.GetValue() != 'specimens':
return
if not self.high_EA_xdata or not self.high_EA_ydata:
return
if fig == None:
fig = self.high_level_eqarea
if canvas == None:
canvas = self.canvas4
pos = event.GetPosition()
width, height = canvas.get_width_height()
pos[1] = height - pos[1]
xpick_data, ypick_data = pos
xdata_org = self.high_EA_xdata
ydata_org = self.high_EA_ydata
data_corrected = fig.transData.transform(vstack([xdata_org, ydata_org]).T)
xdata, ydata = data_corrected.T
xdata = list(map(float, xdata))
ydata = list(map(float, ydata))
e = 4.0
index = None
for i, (x, y) in enumerate(zip(xdata, ydata)):
if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:
index = i
break
if index != None:
disp_fit_name = self.mean_fit_box.GetValue()
if self.level_box.GetValue() == 'sample':
high_level_type = 'samples'
if self.level_box.GetValue() == 'site':
high_level_type = 'sites'
if self.level_box.GetValue() == 'location':
high_level_type = 'locations'
if self.level_box.GetValue() == 'study':
high_level_type = 'study'
high_level_name = str(self.level_names.GetValue())
calculation_type = str(self.mean_type_box.GetValue())
elements_type = self.UPPER_LEVEL_SHOW
elements_list = self.Data_hierarchy[high_level_type][high_level_name][
elements_type]
new_fit_index = 0
for i, specimen in enumerate(elements_list):
if disp_fit_name == 'All' and specimen in self.pmag_results_data[
elements_type]:
l = 0
for fit in self.pmag_results_data[elements_type][specimen]:
l += 1
else:
try:
disp_fit_index = map(lambda x: x.name, self.
pmag_results_data[elements_type][specimen]).index(
disp_fit_name)
if self.pmag_results_data[elements_type][specimen][
disp_fit_index] in self.bad_fits:
l = 0
else:
l = 1
except IndexError:
l = 0
except KeyError:
l = 0
except ValueError:
l = 0
if index < l:
self.specimens_box.SetStringSelection(specimen)
self.select_specimen(specimen)
self.draw_figure(specimen, False)
if disp_fit_name == 'All':
new_fit_index = index
else:
new_fit_index = disp_fit_index
break
index -= l
self.update_fit_box()
self.fit_box.SetSelection(new_fit_index)
self.on_select_fit(event)
if disp_fit_name != 'All':
self.mean_fit = self.current_fit.name
self.mean_fit_box.SetSelection(2 + new_fit_index)
self.update_selection()
else:
self.Add_text()
if self.ie_open:
self.ie.change_selected(self.current_fit)
|
on_equalarea_high_select
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event, fig=None, canvas=None):\n if self.ie_open and self.ie.show_box.GetValue() != 'specimens':\n return\n if not self.high_EA_xdata or not self.high_EA_ydata:\n return\n if fig == None:\n fig = self.high_level_eqarea\n if canvas == None:\n canvas = self.canvas4\n pos = event.GetPosition()\n width, height = canvas.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.high_EA_xdata\n ydata_org = self.high_EA_ydata\n data_corrected = fig.transData.transform(vstack([xdata_org, ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n index = None\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n index = i\n break\n if index != None:\n disp_fit_name = self.mean_fit_box.GetValue()\n if self.level_box.GetValue() == 'sample':\n high_level_type = 'samples'\n if self.level_box.GetValue() == 'site':\n high_level_type = 'sites'\n if self.level_box.GetValue() == 'location':\n high_level_type = 'locations'\n if self.level_box.GetValue() == 'study':\n high_level_type = 'study'\n high_level_name = str(self.level_names.GetValue())\n calculation_type = str(self.mean_type_box.GetValue())\n elements_type = self.UPPER_LEVEL_SHOW\n elements_list = self.Data_hierarchy[high_level_type][high_level_name][\n elements_type]\n new_fit_index = 0\n for i, specimen in enumerate(elements_list):\n if disp_fit_name == 'All' and specimen in self.pmag_results_data[\n elements_type]:\n l = 0\n for fit in self.pmag_results_data[elements_type][specimen]:\n l += 1\n else:\n try:\n disp_fit_index = map(lambda x: x.name, self.\n pmag_results_data[elements_type][specimen]).index(\n disp_fit_name)\n if self.pmag_results_data[elements_type][specimen][\n disp_fit_index] in self.bad_fits:\n l = 0\n else:\n l = 1\n except IndexError:\n l = 0\n except KeyError:\n l = 0\n except ValueError:\n l = 0\n if index < l:\n self.specimens_box.SetStringSelection(specimen)\n self.select_specimen(specimen)\n self.draw_figure(specimen, False)\n if disp_fit_name == 'All':\n new_fit_index = index\n else:\n new_fit_index = disp_fit_index\n break\n index -= l\n self.update_fit_box()\n self.fit_box.SetSelection(new_fit_index)\n self.on_select_fit(event)\n if disp_fit_name != 'All':\n self.mean_fit = self.current_fit.name\n self.mean_fit_box.SetSelection(2 + new_fit_index)\n self.update_selection()\n else:\n self.Add_text()\n if self.ie_open:\n self.ie.change_selected(self.current_fit)\n",
"role": "user"
},
{
"content": "on_equalarea_high_select",
"role": "assistant"
}
] |
def x(self):
self.selected_meas = []
if self.COORDINATE_SYSTEM == 'geographic':
zijdblock = self.Data[self.s]['zijdblock_geo']
elif self.COORDINATE_SYSTEM == 'tilt-corrected':
zijdblock = self.Data[self.s]['zijdblock_tilt']
else:
zijdblock = self.Data[self.s]['zijdblock']
tmin_index, tmax_index = -1, -1
if self.current_fit and self.current_fit.tmin and self.current_fit.tmax:
tmin_index, tmax_index = self.get_indices(self.current_fit)
TEXT = ''
self.logger.DeleteAllItems()
for i in range(len(zijdblock)):
lab_treatment = self.Data[self.s]['zijdblock_lab_treatments'][i]
Step = ''
methods = lab_treatment.split('-')
if 'NO' in methods:
Step = 'N'
elif 'AF' in methods:
Step = 'AF'
elif 'ARM' in methods:
Step = 'ARM'
elif 'IRM' in methods:
Step = 'IRM'
elif 'T' in methods:
Step = 'T'
elif 'LT' in methods:
Step = 'LT'
Tr = zijdblock[i][0]
Dec = zijdblock[i][1]
Inc = zijdblock[i][2]
Int = zijdblock[i][3]
csd = self.Data[self.s]['csds'][i]
self.logger.InsertItem(i, '%i' % i)
self.logger.SetItem(i, 1, Step)
self.logger.SetItem(i, 2, '%.1f' % Tr)
self.logger.SetItem(i, 3, '%.1f' % Dec)
self.logger.SetItem(i, 4, '%.1f' % Inc)
self.logger.SetItem(i, 5, '%.2e' % Int)
self.logger.SetItem(i, 6, csd)
self.logger.SetItemBackgroundColour(i, 'WHITE')
if i >= tmin_index and i <= tmax_index:
self.logger.SetItemBackgroundColour(i, 'LIGHT BLUE')
if self.Data[self.s]['measurement_flag'][i] == 'b':
self.logger.SetItemBackgroundColour(i, 'red')
|
Add_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.selected_meas = []\n if self.COORDINATE_SYSTEM == 'geographic':\n zijdblock = self.Data[self.s]['zijdblock_geo']\n elif self.COORDINATE_SYSTEM == 'tilt-corrected':\n zijdblock = self.Data[self.s]['zijdblock_tilt']\n else:\n zijdblock = self.Data[self.s]['zijdblock']\n tmin_index, tmax_index = -1, -1\n if self.current_fit and self.current_fit.tmin and self.current_fit.tmax:\n tmin_index, tmax_index = self.get_indices(self.current_fit)\n TEXT = ''\n self.logger.DeleteAllItems()\n for i in range(len(zijdblock)):\n lab_treatment = self.Data[self.s]['zijdblock_lab_treatments'][i]\n Step = ''\n methods = lab_treatment.split('-')\n if 'NO' in methods:\n Step = 'N'\n elif 'AF' in methods:\n Step = 'AF'\n elif 'ARM' in methods:\n Step = 'ARM'\n elif 'IRM' in methods:\n Step = 'IRM'\n elif 'T' in methods:\n Step = 'T'\n elif 'LT' in methods:\n Step = 'LT'\n Tr = zijdblock[i][0]\n Dec = zijdblock[i][1]\n Inc = zijdblock[i][2]\n Int = zijdblock[i][3]\n csd = self.Data[self.s]['csds'][i]\n self.logger.InsertItem(i, '%i' % i)\n self.logger.SetItem(i, 1, Step)\n self.logger.SetItem(i, 2, '%.1f' % Tr)\n self.logger.SetItem(i, 3, '%.1f' % Dec)\n self.logger.SetItem(i, 4, '%.1f' % Inc)\n self.logger.SetItem(i, 5, '%.2e' % Int)\n self.logger.SetItem(i, 6, csd)\n self.logger.SetItemBackgroundColour(i, 'WHITE')\n if i >= tmin_index and i <= tmax_index:\n self.logger.SetItemBackgroundColour(i, 'LIGHT BLUE')\n if self.Data[self.s]['measurement_flag'][i] == 'b':\n self.logger.SetItemBackgroundColour(i, 'red')\n",
"role": "user"
},
{
"content": "Add_text",
"role": "assistant"
}
] |
def x(self, index):
tmin_index, tmax_index = '', ''
if str(self.tmin_box.GetValue()) != '':
tmin_index = self.tmin_box.GetSelection()
if str(self.tmax_box.GetValue()) != '':
tmax_index = self.tmax_box.GetSelection()
if self.list_bound_loc != 0:
if self.list_bound_loc == 1:
if index < tmin_index:
self.tmin_box.SetSelection(index)
self.tmax_box.SetSelection(tmin_index)
elif index == tmin_index:
pass
else:
self.tmax_box.SetSelection(index)
elif index > tmax_index:
self.tmin_box.SetSelection(tmax_index)
self.tmax_box.SetSelection(index)
elif index == tmax_index:
pass
else:
self.tmin_box.SetSelection(index)
self.list_bound_loc = 0
elif index < tmax_index:
self.tmin_box.SetSelection(index)
self.list_bound_loc = 1
else:
self.tmax_box.SetSelection(index)
self.list_bound_loc = 2
self.logger.Select(index, on=0)
self.get_new_PCA_parameters(-1)
|
select_bounds_in_logger
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index):\n tmin_index, tmax_index = '', ''\n if str(self.tmin_box.GetValue()) != '':\n tmin_index = self.tmin_box.GetSelection()\n if str(self.tmax_box.GetValue()) != '':\n tmax_index = self.tmax_box.GetSelection()\n if self.list_bound_loc != 0:\n if self.list_bound_loc == 1:\n if index < tmin_index:\n self.tmin_box.SetSelection(index)\n self.tmax_box.SetSelection(tmin_index)\n elif index == tmin_index:\n pass\n else:\n self.tmax_box.SetSelection(index)\n elif index > tmax_index:\n self.tmin_box.SetSelection(tmax_index)\n self.tmax_box.SetSelection(index)\n elif index == tmax_index:\n pass\n else:\n self.tmin_box.SetSelection(index)\n self.list_bound_loc = 0\n elif index < tmax_index:\n self.tmin_box.SetSelection(index)\n self.list_bound_loc = 1\n else:\n self.tmax_box.SetSelection(index)\n self.list_bound_loc = 2\n self.logger.Select(index, on=0)\n self.get_new_PCA_parameters(-1)\n",
"role": "user"
},
{
"content": "select_bounds_in_logger",
"role": "assistant"
}
] |
def x(self, event):
g_index = event.GetIndex()
if self.Data[self.s]['measurement_flag'][g_index] == 'g':
self.mark_meas_bad(g_index)
else:
self.mark_meas_good(g_index)
if self.data_model == 3.0:
self.con.tables['measurements'].write_magic_file(dir_path=self.WD)
else:
pmag.magic_write(os.path.join(self.WD, 'magic_measurements.txt'),
self.mag_meas_data, 'magic_measurements')
self.recalculate_current_specimen_interpreatations()
if self.ie_open:
self.ie.update_current_fit_data()
self.calculate_high_levels_data()
self.update_selection()
|
on_right_click_listctrl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n g_index = event.GetIndex()\n if self.Data[self.s]['measurement_flag'][g_index] == 'g':\n self.mark_meas_bad(g_index)\n else:\n self.mark_meas_good(g_index)\n if self.data_model == 3.0:\n self.con.tables['measurements'].write_magic_file(dir_path=self.WD)\n else:\n pmag.magic_write(os.path.join(self.WD, 'magic_measurements.txt'),\n self.mag_meas_data, 'magic_measurements')\n self.recalculate_current_specimen_interpreatations()\n if self.ie_open:\n self.ie.update_current_fit_data()\n self.calculate_high_levels_data()\n self.update_selection()\n",
"role": "user"
},
{
"content": "on_right_click_listctrl",
"role": "assistant"
}
] |
def x(self, event):
self.selected_meas = []
self.select_specimen(str(self.specimens_box.GetValue()))
if self.ie_open:
self.ie.change_selected(self.current_fit)
self.update_selection()
|
onSelect_specimen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n self.selected_meas = []\n self.select_specimen(str(self.specimens_box.GetValue()))\n if self.ie_open:\n self.ie.change_selected(self.current_fit)\n self.update_selection()\n",
"role": "user"
},
{
"content": "onSelect_specimen",
"role": "assistant"
}
] |
def x(self, event):
new_specimen = self.specimens_box.GetValue()
if new_specimen not in self.specimens:
self.user_warning(
'%s is not a valid specimen with measurement data, aborting' %
new_specimen)
self.specimens_box.SetValue(self.s)
return
self.select_specimen(new_specimen)
if self.ie_open:
self.ie.change_selected(self.current_fit)
self.update_selection()
|
on_enter_specimen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n new_specimen = self.specimens_box.GetValue()\n if new_specimen not in self.specimens:\n self.user_warning(\n '%s is not a valid specimen with measurement data, aborting' %\n new_specimen)\n self.specimens_box.SetValue(self.s)\n return\n self.select_specimen(new_specimen)\n if self.ie_open:\n self.ie.change_selected(self.current_fit)\n self.update_selection()\n",
"role": "user"
},
{
"content": "on_enter_specimen",
"role": "assistant"
}
] |
def x(self, event):
tmin = str(self.tmin_box.GetValue())
tmax = str(self.tmax_box.GetValue())
if tmin == '' or tmax == '':
return
if tmin in self.T_list and tmax in self.T_list and self.T_list.index(tmax
) <= self.T_list.index(tmin):
return
PCA_type = self.PCA_type_box.GetValue()
if PCA_type == 'line':
calculation_type = 'DE-BFL'
elif PCA_type == 'line-anchored':
calculation_type = 'DE-BFL-A'
elif PCA_type == 'line-with-origin':
calculation_type = 'DE-BFL-O'
elif PCA_type == 'Fisher':
calculation_type = 'DE-FM'
elif PCA_type == 'plane':
calculation_type = 'DE-BFP'
coordinate_system = self.COORDINATE_SYSTEM
if self.current_fit:
self.current_fit.put(self.s, coordinate_system, self.
get_PCA_parameters(self.s, self.current_fit, tmin, tmax,
coordinate_system, calculation_type))
if self.ie_open:
self.ie.update_current_fit_data()
self.update_GUI_with_new_interpretation()
|
get_new_PCA_parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n tmin = str(self.tmin_box.GetValue())\n tmax = str(self.tmax_box.GetValue())\n if tmin == '' or tmax == '':\n return\n if tmin in self.T_list and tmax in self.T_list and self.T_list.index(tmax\n ) <= self.T_list.index(tmin):\n return\n PCA_type = self.PCA_type_box.GetValue()\n if PCA_type == 'line':\n calculation_type = 'DE-BFL'\n elif PCA_type == 'line-anchored':\n calculation_type = 'DE-BFL-A'\n elif PCA_type == 'line-with-origin':\n calculation_type = 'DE-BFL-O'\n elif PCA_type == 'Fisher':\n calculation_type = 'DE-FM'\n elif PCA_type == 'plane':\n calculation_type = 'DE-BFP'\n coordinate_system = self.COORDINATE_SYSTEM\n if self.current_fit:\n self.current_fit.put(self.s, coordinate_system, self.\n get_PCA_parameters(self.s, self.current_fit, tmin, tmax,\n coordinate_system, calculation_type))\n if self.ie_open:\n self.ie.update_current_fit_data()\n self.update_GUI_with_new_interpretation()\n",
"role": "user"
},
{
"content": "get_new_PCA_parameters",
"role": "assistant"
}
] |
def x(self, event):
fit_val = self.fit_box.GetValue()
if self.s not in self.pmag_results_data['specimens'
] or not self.pmag_results_data['specimens'][self.s
] or fit_val == 'None':
self.clear_boxes()
self.current_fit = None
self.fit_box.SetStringSelection('None')
self.tmin_box.SetStringSelection('')
self.tmax_box.SetStringSelection('')
else:
try:
fit_num = list(map(lambda x: x.name, self.pmag_results_data[
'specimens'][self.s])).index(fit_val)
except ValueError:
fit_num = -1
self.pmag_results_data['specimens'][self.s][fit_num].select()
if self.ie_open:
self.ie.change_selected(self.current_fit)
|
on_select_fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n fit_val = self.fit_box.GetValue()\n if self.s not in self.pmag_results_data['specimens'\n ] or not self.pmag_results_data['specimens'][self.s\n ] or fit_val == 'None':\n self.clear_boxes()\n self.current_fit = None\n self.fit_box.SetStringSelection('None')\n self.tmin_box.SetStringSelection('')\n self.tmax_box.SetStringSelection('')\n else:\n try:\n fit_num = list(map(lambda x: x.name, self.pmag_results_data[\n 'specimens'][self.s])).index(fit_val)\n except ValueError:\n fit_num = -1\n self.pmag_results_data['specimens'][self.s][fit_num].select()\n if self.ie_open:\n self.ie.change_selected(self.current_fit)\n",
"role": "user"
},
{
"content": "on_select_fit",
"role": "assistant"
}
] |
def x(self, event):
if self.current_fit == None:
self.on_btn_add_fit(event)
value = self.fit_box.GetValue()
if ':' in value:
name, color = value.split(':')
else:
name, color = value, None
if name in [x.name for x in self.pmag_results_data['specimens'][self.s]]:
print('bad name')
return
self.current_fit.name = name
if color in list(self.color_dict.keys()):
self.current_fit.color = self.color_dict[color]
self.update_fit_boxes()
self.plot_high_levels_data()
|
on_enter_fit_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if self.current_fit == None:\n self.on_btn_add_fit(event)\n value = self.fit_box.GetValue()\n if ':' in value:\n name, color = value.split(':')\n else:\n name, color = value, None\n if name in [x.name for x in self.pmag_results_data['specimens'][self.s]]:\n print('bad name')\n return\n self.current_fit.name = name\n if color in list(self.color_dict.keys()):\n self.current_fit.color = self.color_dict[color]\n self.update_fit_boxes()\n self.plot_high_levels_data()\n",
"role": "user"
},
{
"content": "on_enter_fit_name",
"role": "assistant"
}
] |
def x(self, event):
if self.current_fit:
self.current_fit.saved = True
calculation_type = self.current_fit.get(self.COORDINATE_SYSTEM)[
'calculation_type']
tmin = str(self.tmin_box.GetValue())
tmax = str(self.tmax_box.GetValue())
self.current_fit.put(self.s, 'specimen', self.get_PCA_parameters(
self.s, self.current_fit, tmin, tmax, 'specimen', calculation_type)
)
if len(self.Data[self.s]['zijdblock_geo']) > 0:
self.current_fit.put(self.s, 'geographic', self.
get_PCA_parameters(self.s, self.current_fit, tmin, tmax,
'geographic', calculation_type))
if len(self.Data[self.s]['zijdblock_tilt']) > 0:
self.current_fit.put(self.s, 'tilt-corrected', self.
get_PCA_parameters(self.s, self.current_fit, tmin, tmax,
'tilt-corrected', calculation_type))
self.calculate_high_levels_data()
self.plot_high_levels_data()
self.on_menu_save_interpretation(event)
self.update_selection()
self.close_warning = True
|
on_save_interpretation_button
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if self.current_fit:\n self.current_fit.saved = True\n calculation_type = self.current_fit.get(self.COORDINATE_SYSTEM)[\n 'calculation_type']\n tmin = str(self.tmin_box.GetValue())\n tmax = str(self.tmax_box.GetValue())\n self.current_fit.put(self.s, 'specimen', self.get_PCA_parameters(\n self.s, self.current_fit, tmin, tmax, 'specimen', calculation_type)\n )\n if len(self.Data[self.s]['zijdblock_geo']) > 0:\n self.current_fit.put(self.s, 'geographic', self.\n get_PCA_parameters(self.s, self.current_fit, tmin, tmax,\n 'geographic', calculation_type))\n if len(self.Data[self.s]['zijdblock_tilt']) > 0:\n self.current_fit.put(self.s, 'tilt-corrected', self.\n get_PCA_parameters(self.s, self.current_fit, tmin, tmax,\n 'tilt-corrected', calculation_type))\n self.calculate_high_levels_data()\n self.plot_high_levels_data()\n self.on_menu_save_interpretation(event)\n self.update_selection()\n self.close_warning = True\n",
"role": "user"
},
{
"content": "on_save_interpretation_button",
"role": "assistant"
}
] |
def x(self, event):
if self.auto_save.GetValue():
self.current_fit = self.add_fit(self.s, None, None, None, saved=True)
else:
self.current_fit = self.add_fit(self.s, None, None, None, saved=False)
self.generate_warning_text()
self.update_warning_box()
if self.ie_open:
self.ie.update_editor()
self.update_fit_boxes(True)
self.get_new_PCA_parameters(event)
|
on_btn_add_fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if self.auto_save.GetValue():\n self.current_fit = self.add_fit(self.s, None, None, None, saved=True)\n else:\n self.current_fit = self.add_fit(self.s, None, None, None, saved=False)\n self.generate_warning_text()\n self.update_warning_box()\n if self.ie_open:\n self.ie.update_editor()\n self.update_fit_boxes(True)\n self.get_new_PCA_parameters(event)\n",
"role": "user"
},
{
"content": "on_btn_add_fit",
"role": "assistant"
}
] |
def x(self, event):
self.delete_fit(self.current_fit, specimen=self.s)
|
on_btn_delete_fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n self.delete_fit(self.current_fit, specimen=self.s)\n",
"role": "user"
},
{
"content": "on_btn_delete_fit",
"role": "assistant"
}
] |
def x(self):
if not self.auto_save.GetValue():
if self.current_fit:
if not self.current_fit.saved:
self.delete_fit(self.current_fit, specimen=self.s)
|
do_auto_save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.auto_save.GetValue():\n if self.current_fit:\n if not self.current_fit.saved:\n self.delete_fit(self.current_fit, specimen=self.s)\n",
"role": "user"
},
{
"content": "do_auto_save",
"role": "assistant"
}
] |
def x(self, event):
self.do_auto_save()
self.selected_meas = []
index = self.specimens.index(self.s)
try:
fit_index = self.pmag_results_data['specimens'][self.s].index(self.
current_fit)
except KeyError:
fit_index = None
except ValueError:
fit_index = None
if index == len(self.specimens) - 1:
index = 0
else:
index += 1
self.initialize_CART_rot(str(self.specimens[index]))
self.specimens_box.SetStringSelection(str(self.s))
if fit_index != None and self.s in self.pmag_results_data['specimens']:
try:
self.current_fit = self.pmag_results_data['specimens'][self.s][
fit_index]
except IndexError:
self.current_fit = None
else:
self.current_fit = None
if self.ie_open:
self.ie.change_selected(self.current_fit)
self.update_selection()
|
on_next_button
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n self.do_auto_save()\n self.selected_meas = []\n index = self.specimens.index(self.s)\n try:\n fit_index = self.pmag_results_data['specimens'][self.s].index(self.\n current_fit)\n except KeyError:\n fit_index = None\n except ValueError:\n fit_index = None\n if index == len(self.specimens) - 1:\n index = 0\n else:\n index += 1\n self.initialize_CART_rot(str(self.specimens[index]))\n self.specimens_box.SetStringSelection(str(self.s))\n if fit_index != None and self.s in self.pmag_results_data['specimens']:\n try:\n self.current_fit = self.pmag_results_data['specimens'][self.s][\n fit_index]\n except IndexError:\n self.current_fit = None\n else:\n self.current_fit = None\n if self.ie_open:\n self.ie.change_selected(self.current_fit)\n self.update_selection()\n",
"role": "user"
},
{
"content": "on_next_button",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
return
infile = pmag.get_named_arg('-f', 'measurements.txt')
dir_path = pmag.get_named_arg('-WD', '.')
infile = pmag.resolve_file_name(infile, dir_path)
fmt = pmag.get_named_arg('-fmt', 'svg')
save_plots = False
interactive = True
if '-sav' in sys.argv:
interactive = False
save_plots = True
experiments = pmag.get_named_arg('-e', '')
ipmag.chi_magic(infile, dir_path, experiments, fmt, save_plots, interactive
)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n return\n infile = pmag.get_named_arg('-f', 'measurements.txt')\n dir_path = pmag.get_named_arg('-WD', '.')\n infile = pmag.resolve_file_name(infile, dir_path)\n fmt = pmag.get_named_arg('-fmt', 'svg')\n save_plots = False\n interactive = True\n if '-sav' in sys.argv:\n interactive = False\n save_plots = True\n experiments = pmag.get_named_arg('-e', '')\n ipmag.chi_magic(infile, dir_path, experiments, fmt, save_plots, interactive\n )\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
D, D1, D2 = [], [], []
Flip = 0
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-ant' in sys.argv:
Flip = 1
if '-f' in sys.argv:
ind = sys.argv.index('-f')
file1 = sys.argv[ind + 1]
if '-f2' in sys.argv:
ind = sys.argv.index('-f2')
file2 = sys.argv[ind + 1]
f = open(file1, 'r')
for line in f.readlines():
if '\t' in line:
rec = line.split('\t')
else:
rec = line.split()
Dec, Inc = float(rec[0]), float(rec[1])
D1.append([Dec, Inc, 1.0])
D.append([Dec, Inc, 1.0])
f.close()
if Flip == 0:
f = open(file2, 'r')
for line in f.readlines():
rec = line.split()
Dec, Inc = float(rec[0]), float(rec[1])
D2.append([Dec, Inc, 1.0])
D.append([Dec, Inc, 1.0])
f.close()
else:
D1, D2 = pmag.flip(D1)
for d in D2:
D.append(d)
pars_0 = pmag.fisher_mean(D)
pars_1 = pmag.fisher_mean(D1)
pars_2 = pmag.fisher_mean(D2)
N = len(D)
R = pars_0['r']
R1 = pars_1['r']
R2 = pars_2['r']
F = (N - 2) * old_div(R1 + R2 - R, N - R1 - R2)
Fcrit = pmag.fcalc(2, 2 * (N - 2))
print('%7.2f %7.2f' % (F, Fcrit))
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n D, D1, D2 = [], [], []\n Flip = 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-ant' in sys.argv:\n Flip = 1\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file1 = sys.argv[ind + 1]\n if '-f2' in sys.argv:\n ind = sys.argv.index('-f2')\n file2 = sys.argv[ind + 1]\n f = open(file1, 'r')\n for line in f.readlines():\n if '\\t' in line:\n rec = line.split('\\t')\n else:\n rec = line.split()\n Dec, Inc = float(rec[0]), float(rec[1])\n D1.append([Dec, Inc, 1.0])\n D.append([Dec, Inc, 1.0])\n f.close()\n if Flip == 0:\n f = open(file2, 'r')\n for line in f.readlines():\n rec = line.split()\n Dec, Inc = float(rec[0]), float(rec[1])\n D2.append([Dec, Inc, 1.0])\n D.append([Dec, Inc, 1.0])\n f.close()\n else:\n D1, D2 = pmag.flip(D1)\n for d in D2:\n D.append(d)\n pars_0 = pmag.fisher_mean(D)\n pars_1 = pmag.fisher_mean(D1)\n pars_2 = pmag.fisher_mean(D2)\n N = len(D)\n R = pars_0['r']\n R1 = pars_1['r']\n R2 = pars_2['r']\n F = (N - 2) * old_div(R1 + R2 - R, N - R1 - R2)\n Fcrit = pmag.fcalc(2, 2 * (N - 2))\n print('%7.2f %7.2f' % (F, Fcrit))\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(x_segment, y_segment, x_mean, y_mean, n, lab_dc_field, steps_Arai):
x_err = x_segment - x_mean
y_err = y_segment - y_mean
york_b = -1 * numpy.sqrt(old_div(sum(y_err ** 2), sum(x_err ** 2)))
b = numpy.sign(sum(x_err * y_err)) * numpy.std(y_segment, ddof=1
) / numpy.std(x_segment, ddof=1)
if b == 0:
york_b = 1e-10
else:
york_b = b
york_sigma = numpy.sqrt(old_div(2 * sum(y_err ** 2) - 2 * york_b * sum(
x_err * y_err), (n - 2) * sum(x_err ** 2)))
if york_sigma == 0:
york_sigma = 1e-10
beta_Coe = abs(old_div(york_sigma, york_b))
y_T = y_mean - york_b * x_mean
x_T = old_div(-1 * y_T, york_b)
x_tag = old_div(y_segment - y_T, york_b)
y_tag = york_b * x_segment + y_T
x_prime = old_div(x_segment + x_tag, 2)
y_prime = old_div(y_segment + y_tag, 2)
delta_x_prime = abs(max(x_prime) - min(x_prime))
delta_y_prime = abs(max(y_prime) - min(y_prime))
f_Coe = old_div(delta_y_prime, abs(y_T))
if delta_y_prime:
g_Coe = 1 - old_div(sum((y_prime[:-1] - y_prime[1:]) ** 2),
delta_y_prime ** 2)
else:
g_Coe = float('nan')
g_lim = old_div(float(n) - 2, float(n) - 1)
q_Coe = abs(york_b) * f_Coe * g_Coe / york_sigma
w_Coe = old_div(q_Coe, numpy.sqrt(n - 2))
count_IZ = steps_Arai.count('IZ')
count_ZI = steps_Arai.count('ZI')
B_lab = lab_dc_field * 1000000.0
B_anc = abs(york_b) * B_lab
B_anc_sigma = york_sigma * B_lab
specimen_int = -1 * lab_dc_field * york_b
specimen_int_sigma = york_sigma * lab_dc_field
return {'x_err': x_err, 'y_err': y_err, 'x_tag': x_tag, 'y_tag': y_tag,
'specimen_b': york_b, 'specimen_b_sigma': york_sigma,
'specimen_b_beta': beta_Coe, 'y_int': y_T, 'x_int': x_T, 'x_prime':
x_prime, 'y_prime': y_prime, 'delta_x_prime': delta_x_prime,
'delta_y_prime': delta_y_prime, 'specimen_f': f_Coe, 'specimen_g':
g_Coe, 'specimen_g_lim': g_lim, 'specimen_q': q_Coe, 'specimen_w':
w_Coe, 'count_IZ': count_IZ, 'count_ZI': count_ZI, 'B_lab': B_lab,
'B_anc': B_anc, 'B_anc_sigma': B_anc_sigma, 'specimen_int':
specimen_int, 'specimen_int_sigma': specimen_int_sigma}
|
York_Regression
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x_segment, y_segment, x_mean, y_mean, n, lab_dc_field, steps_Arai):\n x_err = x_segment - x_mean\n y_err = y_segment - y_mean\n york_b = -1 * numpy.sqrt(old_div(sum(y_err ** 2), sum(x_err ** 2)))\n b = numpy.sign(sum(x_err * y_err)) * numpy.std(y_segment, ddof=1\n ) / numpy.std(x_segment, ddof=1)\n if b == 0:\n york_b = 1e-10\n else:\n york_b = b\n york_sigma = numpy.sqrt(old_div(2 * sum(y_err ** 2) - 2 * york_b * sum(\n x_err * y_err), (n - 2) * sum(x_err ** 2)))\n if york_sigma == 0:\n york_sigma = 1e-10\n beta_Coe = abs(old_div(york_sigma, york_b))\n y_T = y_mean - york_b * x_mean\n x_T = old_div(-1 * y_T, york_b)\n x_tag = old_div(y_segment - y_T, york_b)\n y_tag = york_b * x_segment + y_T\n x_prime = old_div(x_segment + x_tag, 2)\n y_prime = old_div(y_segment + y_tag, 2)\n delta_x_prime = abs(max(x_prime) - min(x_prime))\n delta_y_prime = abs(max(y_prime) - min(y_prime))\n f_Coe = old_div(delta_y_prime, abs(y_T))\n if delta_y_prime:\n g_Coe = 1 - old_div(sum((y_prime[:-1] - y_prime[1:]) ** 2), \n delta_y_prime ** 2)\n else:\n g_Coe = float('nan')\n g_lim = old_div(float(n) - 2, float(n) - 1)\n q_Coe = abs(york_b) * f_Coe * g_Coe / york_sigma\n w_Coe = old_div(q_Coe, numpy.sqrt(n - 2))\n count_IZ = steps_Arai.count('IZ')\n count_ZI = steps_Arai.count('ZI')\n B_lab = lab_dc_field * 1000000.0\n B_anc = abs(york_b) * B_lab\n B_anc_sigma = york_sigma * B_lab\n specimen_int = -1 * lab_dc_field * york_b\n specimen_int_sigma = york_sigma * lab_dc_field\n return {'x_err': x_err, 'y_err': y_err, 'x_tag': x_tag, 'y_tag': y_tag,\n 'specimen_b': york_b, 'specimen_b_sigma': york_sigma,\n 'specimen_b_beta': beta_Coe, 'y_int': y_T, 'x_int': x_T, 'x_prime':\n x_prime, 'y_prime': y_prime, 'delta_x_prime': delta_x_prime,\n 'delta_y_prime': delta_y_prime, 'specimen_f': f_Coe, 'specimen_g':\n g_Coe, 'specimen_g_lim': g_lim, 'specimen_q': q_Coe, 'specimen_w':\n w_Coe, 'count_IZ': count_IZ, 'count_ZI': count_ZI, 'B_lab': B_lab,\n 'B_anc': B_anc, 'B_anc_sigma': B_anc_sigma, 'specimen_int':\n specimen_int, 'specimen_int_sigma': specimen_int_sigma}\n",
"role": "user"
},
{
"content": "York_Regression",
"role": "assistant"
}
] |
def x(zdata, delta_y_prime, start, end):
vector_diffs = []
for k in range(len(zdata) - 1):
vector_diffs.append(numpy.sqrt(sum((numpy.array(zdata[k + 1]) -
numpy.array(zdata[k])) ** 2)))
last_vector = numpy.linalg.norm(zdata[-1])
vector_diffs.append(last_vector)
vds = sum(vector_diffs)
f_vds = abs(old_div(delta_y_prime, vds))
vector_diffs_segment = vector_diffs[start:end]
partial_vds = sum(vector_diffs_segment)
max_diff = max(vector_diffs_segment)
GAP_MAX = old_div(max_diff, partial_vds)
return {'max_diff': max_diff, 'vector_diffs': vector_diffs,
'specimen_vds': vds, 'specimen_fvds': f_vds, 'vector_diffs_segment':
vector_diffs_segment, 'partial_vds': partial_vds, 'GAP-MAX': GAP_MAX}
|
get_vds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(zdata, delta_y_prime, start, end):\n vector_diffs = []\n for k in range(len(zdata) - 1):\n vector_diffs.append(numpy.sqrt(sum((numpy.array(zdata[k + 1]) -\n numpy.array(zdata[k])) ** 2)))\n last_vector = numpy.linalg.norm(zdata[-1])\n vector_diffs.append(last_vector)\n vds = sum(vector_diffs)\n f_vds = abs(old_div(delta_y_prime, vds))\n vector_diffs_segment = vector_diffs[start:end]\n partial_vds = sum(vector_diffs_segment)\n max_diff = max(vector_diffs_segment)\n GAP_MAX = old_div(max_diff, partial_vds)\n return {'max_diff': max_diff, 'vector_diffs': vector_diffs,\n 'specimen_vds': vds, 'specimen_fvds': f_vds, 'vector_diffs_segment':\n vector_diffs_segment, 'partial_vds': partial_vds, 'GAP-MAX': GAP_MAX}\n",
"role": "user"
},
{
"content": "get_vds",
"role": "assistant"
}
] |
def x(slope, x_mean, y_mean, beta_threshold=0.1):
if beta_threshold == -999:
beta_threshold = 0.1
slope_err_threshold = abs(slope) * beta_threshold
x, y = x_mean, y_mean
slope1 = slope + 2 * slope_err_threshold
line1_y_int = y - slope1 * x
line1_x_int = -1 * old_div(line1_y_int, slope1)
slope2 = slope - 2 * slope_err_threshold
line2_y_int = y - slope2 * x
line2_x_int = -1 * old_div(line2_y_int, slope2)
low_bound = [(0, line1_y_int), (line2_x_int, 0)]
high_bound = [(0, line2_y_int), (line1_x_int, 0)]
x_max = high_bound[1][0]
y_max = high_bound[0][1]
low_slope = old_div(low_bound[0][1] - low_bound[1][1], low_bound[0][0] -
low_bound[1][0])
low_y_int = low_bound[0][1]
def x(x):
y = low_slope * x + low_y_int
return y
high_slope = old_div(high_bound[0][1] - high_bound[1][1], high_bound[0]
[0] - high_bound[1][0])
high_y_int = high_bound[0][1]
def x(x):
y = high_slope * x + high_y_int
return y
high_line = [high_y_int, high_slope]
low_line = [low_y_int, low_slope]
return low_bound, high_bound, x_max, y_max, low_line, high_line
|
get_SCAT_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(slope, x_mean, y_mean, beta_threshold=0.1):\n if beta_threshold == -999:\n beta_threshold = 0.1\n slope_err_threshold = abs(slope) * beta_threshold\n x, y = x_mean, y_mean\n slope1 = slope + 2 * slope_err_threshold\n line1_y_int = y - slope1 * x\n line1_x_int = -1 * old_div(line1_y_int, slope1)\n slope2 = slope - 2 * slope_err_threshold\n line2_y_int = y - slope2 * x\n line2_x_int = -1 * old_div(line2_y_int, slope2)\n low_bound = [(0, line1_y_int), (line2_x_int, 0)]\n high_bound = [(0, line2_y_int), (line1_x_int, 0)]\n x_max = high_bound[1][0]\n y_max = high_bound[0][1]\n low_slope = old_div(low_bound[0][1] - low_bound[1][1], low_bound[0][0] -\n low_bound[1][0])\n low_y_int = low_bound[0][1]\n\n def x(x):\n y = low_slope * x + low_y_int\n return y\n high_slope = old_div(high_bound[0][1] - high_bound[1][1], high_bound[0]\n [0] - high_bound[1][0])\n high_y_int = high_bound[0][1]\n\n def x(x):\n y = high_slope * x + high_y_int\n return y\n high_line = [high_y_int, high_slope]\n low_line = [low_y_int, low_slope]\n return low_bound, high_bound, x_max, y_max, low_line, high_line\n",
"role": "user"
},
{
"content": "get_SCAT_box",
"role": "assistant"
}
] |
def x(x, y, low_bound, high_bound, x_max, y_max):
passing = True
upper_limit = high_bound(x)
lower_limit = low_bound(x)
if x > x_max or y > y_max:
passing = False
if x < 0 or y < 0:
passing = False
if y > upper_limit:
passing = False
if y < lower_limit:
passing = False
return passing
|
in_SCAT_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, low_bound, high_bound, x_max, y_max):\n passing = True\n upper_limit = high_bound(x)\n lower_limit = low_bound(x)\n if x > x_max or y > y_max:\n passing = False\n if x < 0 or y < 0:\n passing = False\n if y > upper_limit:\n passing = False\n if y < lower_limit:\n passing = False\n return passing\n",
"role": "user"
},
{
"content": "in_SCAT_box",
"role": "assistant"
}
] |
def x(x_Arai_segment, y_Arai_segment, tmin, tmax, ptrm_checks_temperatures,
ptrm_checks_starting_temperatures, x_ptrm_check, y_ptrm_check,
tail_checks_temperatures, tail_checks_starting_temperatures,
x_tail_check, y_tail_check):
points = []
points_arai = []
points_ptrm = []
points_tail = []
for i in range(len(x_Arai_segment)):
x = x_Arai_segment[i]
y = y_Arai_segment[i]
points.append((x, y))
points_arai.append((x, y))
for num, temp in enumerate(ptrm_checks_temperatures):
if temp >= tmin and temp <= tmax:
if ptrm_checks_starting_temperatures[num
] >= tmin and ptrm_checks_starting_temperatures[num] <= tmax:
x = x_ptrm_check[num]
y = y_ptrm_check[num]
points.append((x, y))
points_ptrm.append((x, y))
for num, temp in enumerate(tail_checks_temperatures):
if temp >= tmin and temp <= tmax:
if tail_checks_starting_temperatures[num
] >= tmin and tail_checks_starting_temperatures[num] <= tmax:
x = x_tail_check[num]
y = y_tail_check[num]
points.append((x, y))
points_tail.append((x, y))
fancy_points = {'points_arai': points_arai, 'points_ptrm': points_ptrm,
'points_tail': points_tail}
return points, fancy_points
|
get_SCAT_points
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x_Arai_segment, y_Arai_segment, tmin, tmax, ptrm_checks_temperatures,\n ptrm_checks_starting_temperatures, x_ptrm_check, y_ptrm_check,\n tail_checks_temperatures, tail_checks_starting_temperatures,\n x_tail_check, y_tail_check):\n points = []\n points_arai = []\n points_ptrm = []\n points_tail = []\n for i in range(len(x_Arai_segment)):\n x = x_Arai_segment[i]\n y = y_Arai_segment[i]\n points.append((x, y))\n points_arai.append((x, y))\n for num, temp in enumerate(ptrm_checks_temperatures):\n if temp >= tmin and temp <= tmax:\n if ptrm_checks_starting_temperatures[num\n ] >= tmin and ptrm_checks_starting_temperatures[num] <= tmax:\n x = x_ptrm_check[num]\n y = y_ptrm_check[num]\n points.append((x, y))\n points_ptrm.append((x, y))\n for num, temp in enumerate(tail_checks_temperatures):\n if temp >= tmin and temp <= tmax:\n if tail_checks_starting_temperatures[num\n ] >= tmin and tail_checks_starting_temperatures[num] <= tmax:\n x = x_tail_check[num]\n y = y_tail_check[num]\n points.append((x, y))\n points_tail.append((x, y))\n fancy_points = {'points_arai': points_arai, 'points_ptrm': points_ptrm,\n 'points_tail': points_tail}\n return points, fancy_points\n",
"role": "user"
},
{
"content": "get_SCAT_points",
"role": "assistant"
}
] |
def x(points, low_bound, high_bound, x_max, y_max):
SCAT = True
for point in points:
result = in_SCAT_box(point[0], point[1], low_bound, high_bound,
x_max, y_max)
if result == False:
SCAT = False
return SCAT
|
get_SCAT
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, low_bound, high_bound, x_max, y_max):\n SCAT = True\n for point in points:\n result = in_SCAT_box(point[0], point[1], low_bound, high_bound,\n x_max, y_max)\n if result == False:\n SCAT = False\n return SCAT\n",
"role": "user"
},
{
"content": "get_SCAT",
"role": "assistant"
}
] |
def x(points, low_bound, high_bound, x_max, y_max):
SCAT = 'Pass'
SCATs = {'SCAT_arai': 'Pass', 'SCAT_ptrm': 'Pass', 'SCAT_tail': 'Pass'}
for point_type in points:
for point in points[point_type]:
result = in_SCAT_box(point[0], point[1], low_bound, high_bound,
x_max, y_max)
if not result:
x = 'SCAT' + point_type[6:]
SCATs[x] = 'Fail'
SCAT = 'Fail'
return SCAT, SCATs
|
fancy_SCAT
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, low_bound, high_bound, x_max, y_max):\n SCAT = 'Pass'\n SCATs = {'SCAT_arai': 'Pass', 'SCAT_ptrm': 'Pass', 'SCAT_tail': 'Pass'}\n for point_type in points:\n for point in points[point_type]:\n result = in_SCAT_box(point[0], point[1], low_bound, high_bound,\n x_max, y_max)\n if not result:\n x = 'SCAT' + point_type[6:]\n SCATs[x] = 'Fail'\n SCAT = 'Fail'\n return SCAT, SCATs\n",
"role": "user"
},
{
"content": "fancy_SCAT",
"role": "assistant"
}
] |
def x(vds, vector_diffs_segment):
for num in vector_diffs_segment:
if num < 0:
raise ValueError('vector diffs should not be negative')
if vds == 0:
raise ValueError(
'attempting to divide by zero. vds should be a positive number')
FRAC = old_div(sum(vector_diffs_segment), vds)
return FRAC
|
get_FRAC
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vds, vector_diffs_segment):\n for num in vector_diffs_segment:\n if num < 0:\n raise ValueError('vector diffs should not be negative')\n if vds == 0:\n raise ValueError(\n 'attempting to divide by zero. vds should be a positive number')\n FRAC = old_div(sum(vector_diffs_segment), vds)\n return FRAC\n",
"role": "user"
},
{
"content": "get_FRAC",
"role": "assistant"
}
] |
def x(x_avg, y_avg, x_segment, y_segment):
xd = x_segment - x_avg
yd = y_segment - y_avg
if sum(xd ** 2) * sum(yd ** 2) == 0:
return float('nan')
rcorr = old_div(sum(xd * yd) ** 2, sum(xd ** 2) * sum(yd ** 2))
return rcorr
|
get_R_corr2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x_avg, y_avg, x_segment, y_segment):\n xd = x_segment - x_avg\n yd = y_segment - y_avg\n if sum(xd ** 2) * sum(yd ** 2) == 0:\n return float('nan')\n rcorr = old_div(sum(xd * yd) ** 2, sum(xd ** 2) * sum(yd ** 2))\n return rcorr\n",
"role": "user"
},
{
"content": "get_R_corr2",
"role": "assistant"
}
] |
def x(y_segment, y_avg, y_prime):
numerator = sum((numpy.array(y_segment) - numpy.array(y_prime)) ** 2)
denominator = sum((numpy.array(y_segment) - y_avg) ** 2)
if denominator:
R_det2 = 1 - old_div(numerator, denominator)
return R_det2
else:
return float('nan')
|
get_R_det2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y_segment, y_avg, y_prime):\n numerator = sum((numpy.array(y_segment) - numpy.array(y_prime)) ** 2)\n denominator = sum((numpy.array(y_segment) - y_avg) ** 2)\n if denominator:\n R_det2 = 1 - old_div(numerator, denominator)\n return R_det2\n else:\n return float('nan')\n",
"role": "user"
},
{
"content": "get_R_det2",
"role": "assistant"
}
] |
def x(x, y, y_int):
if x == 0:
b_wiggle = 0
else:
b_wiggle = old_div(y_int - y, x)
return b_wiggle
|
get_b_wiggle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, y_int):\n if x == 0:\n b_wiggle = 0\n else:\n b_wiggle = old_div(y_int - y, x)\n return b_wiggle\n",
"role": "user"
},
{
"content": "get_b_wiggle",
"role": "assistant"
}
] |
def x(x_segment, y_segment, x_int, y_int, slope):
Z = 0
first_time = True
for num, x in enumerate(x_segment):
b_wiggle = get_b_wiggle(x, y_segment[num], y_int)
z = old_div(x * abs(b_wiggle - abs(slope)), abs(x_int))
Z += z
first_time = False
return Z
|
get_Z
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x_segment, y_segment, x_int, y_int, slope):\n Z = 0\n first_time = True\n for num, x in enumerate(x_segment):\n b_wiggle = get_b_wiggle(x, y_segment[num], y_int)\n z = old_div(x * abs(b_wiggle - abs(slope)), abs(x_int))\n Z += z\n first_time = False\n return Z\n",
"role": "user"
},
{
"content": "get_Z",
"role": "assistant"
}
] |
def x(x_segment, y_segment, x_int, y_int, slope, n):
total = 0
first_time = True
for num, x in enumerate(x_segment):
b_wiggle = get_b_wiggle(x, y_segment[num], y_int)
result = 100 * old_div(x * abs(b_wiggle - abs(slope)), abs(y_int))
total += result
first_time = False
Zstar = old_div(1.0, n - 1.0) * total
return Zstar
|
get_Zstar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x_segment, y_segment, x_int, y_int, slope, n):\n total = 0\n first_time = True\n for num, x in enumerate(x_segment):\n b_wiggle = get_b_wiggle(x, y_segment[num], y_int)\n result = 100 * old_div(x * abs(b_wiggle - abs(slope)), abs(y_int))\n total += result\n first_time = False\n Zstar = old_div(1.0, n - 1.0) * total\n return Zstar\n",
"role": "user"
},
{
"content": "get_Zstar",
"role": "assistant"
}
] |
def x(point_array, norm):
norm = float(norm)
points = old_div(numpy.array(point_array), norm)
return points
|
get_normed_points
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(point_array, norm):\n norm = float(norm)\n points = old_div(numpy.array(point_array), norm)\n return points\n",
"role": "user"
},
{
"content": "get_normed_points",
"role": "assistant"
}
] |
def x(x_segment, y_segment):
xy_array = []
for num, x in enumerate(x_segment):
xy_array.append((x, y_segment[num]))
return xy_array
|
get_xy_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x_segment, y_segment):\n xy_array = []\n for num, x in enumerate(x_segment):\n xy_array.append((x, y_segment[num]))\n return xy_array\n",
"role": "user"
},
{
"content": "get_xy_array",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-i' in sys.argv:
file = input('Enter file name: ')
f = open(file, 'r')
elif '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
f = open(file, 'r')
else:
f = sys.stdin
ofile = ''
if '-F' in sys.argv:
ind = sys.argv.index('-F')
ofile = sys.argv[ind + 1]
out = open(ofile, 'w + a')
data = f.readlines()
dat = []
sum = 0
for line in data:
rec = line.split()
dat.append(float(rec[0]))
sum += float(float(rec[0]))
mean, std = pmag.gausspars(dat)
outdata = len(dat), mean, sum, std, 100 * std / mean
if ofile == '':
print(len(dat), mean, sum, std, 100 * std / mean)
else:
for i in outdata:
i = str(i)
out.write(i + ' ')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-i' in sys.argv:\n file = input('Enter file name: ')\n f = open(file, 'r')\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n else:\n f = sys.stdin\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n data = f.readlines()\n dat = []\n sum = 0\n for line in data:\n rec = line.split()\n dat.append(float(rec[0]))\n sum += float(float(rec[0]))\n mean, std = pmag.gausspars(dat)\n outdata = len(dat), mean, sum, std, 100 * std / mean\n if ofile == '':\n print(len(dat), mean, sum, std, 100 * std / mean)\n else:\n for i in outdata:\n i = str(i)\n out.write(i + ' ')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
dir_path = '.'
flag = ''
if '-WD' in sys.argv:
ind = sys.argv.index('-WD')
dir_path = sys.argv[ind + 1]
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
magic_file = dir_path + '/' + sys.argv[ind + 1]
else:
print(main.__doc__)
print('-W- "-f" is a required option')
sys.exit()
if '-dm' in sys.argv:
ind = sys.argv.index('-dm')
data_model_num = sys.argv[ind + 1]
if data_model_num != '3':
data_model_num = 2.5
else:
data_model_num = 3
if '-F' in sys.argv:
ind = sys.argv.index('-F')
outfile = dir_path + '/' + sys.argv[ind + 1]
else:
print(main.__doc__)
print('-W- "-F" is a required option')
sys.exit()
if '-key' in sys.argv:
ind = sys.argv.index('-key')
grab_key = sys.argv[ind + 1]
v = sys.argv[ind + 2]
flag = sys.argv[ind + 3]
else:
print(main.__doc__)
print('-key is required')
sys.exit()
Data, file_type = pmag.magic_read(magic_file)
if grab_key == 'age':
grab_key = 'average_age'
Data = pmag.convert_ages(Data, data_model=data_model_num)
if grab_key == 'model_lat':
Data = pmag.convert_lat(Data)
Data = pmag.convert_ages(Data, data_model=data_model_num)
Selection = pmag.get_dictitem(Data, grab_key, v, flag, float_to_int=True)
if len(Selection) > 0:
pmag.magic_write(outfile, Selection, file_type)
else:
print('no data matched your criteria')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n dir_path = '.'\n flag = ''\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n magic_file = dir_path + '/' + sys.argv[ind + 1]\n else:\n print(main.__doc__)\n print('-W- \"-f\" is a required option')\n sys.exit()\n if '-dm' in sys.argv:\n ind = sys.argv.index('-dm')\n data_model_num = sys.argv[ind + 1]\n if data_model_num != '3':\n data_model_num = 2.5\n else:\n data_model_num = 3\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n outfile = dir_path + '/' + sys.argv[ind + 1]\n else:\n print(main.__doc__)\n print('-W- \"-F\" is a required option')\n sys.exit()\n if '-key' in sys.argv:\n ind = sys.argv.index('-key')\n grab_key = sys.argv[ind + 1]\n v = sys.argv[ind + 2]\n flag = sys.argv[ind + 3]\n else:\n print(main.__doc__)\n print('-key is required')\n sys.exit()\n Data, file_type = pmag.magic_read(magic_file)\n if grab_key == 'age':\n grab_key = 'average_age'\n Data = pmag.convert_ages(Data, data_model=data_model_num)\n if grab_key == 'model_lat':\n Data = pmag.convert_lat(Data)\n Data = pmag.convert_ages(Data, data_model=data_model_num)\n Selection = pmag.get_dictitem(Data, grab_key, v, flag, float_to_int=True)\n if len(Selection) > 0:\n pmag.magic_write(outfile, Selection, file_type)\n else:\n print('no data matched your criteria')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-F' in sys.argv:
ind = sys.argv.index('-F')
ofile = sys.argv[ind + 1]
out = open(ofile, 'w')
print(ofile, ' opened for output')
else:
ofile = ''
if '-i' in sys.argv:
while 1:
try:
Dec = float(input('Declination: <cntrl-D> to quit '))
except EOFError:
print('\n Good-bye\n')
sys.exit()
Inc = float(input('Inclination: '))
Az = float(input('Azimuth: '))
Pl = float(input('Plunge: '))
print('%7.1f %7.1f' % pmag.dogeo(Dec, Inc, Az, Pl))
elif '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
data = numpy.loadtxt(file)
else:
data = numpy.loadtxt(sys.stdin, dtype=numpy.float)
D, I = pmag.dogeo_V(data)
for k in range(len(D)):
if ofile == '':
print('%7.1f %7.1f' % (D[k], I[k]))
else:
out.write('%7.1f %7.1f\n' % (D[k], I[k]))
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w')\n print(ofile, ' opened for output')\n else:\n ofile = ''\n if '-i' in sys.argv:\n while 1:\n try:\n Dec = float(input('Declination: <cntrl-D> to quit '))\n except EOFError:\n print('\\n Good-bye\\n')\n sys.exit()\n Inc = float(input('Inclination: '))\n Az = float(input('Azimuth: '))\n Pl = float(input('Plunge: '))\n print('%7.1f %7.1f' % pmag.dogeo(Dec, Inc, Az, Pl))\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n data = numpy.loadtxt(file)\n else:\n data = numpy.loadtxt(sys.stdin, dtype=numpy.float)\n D, I = pmag.dogeo_V(data)\n for k in range(len(D)):\n if ofile == '':\n print('%7.1f %7.1f' % (D[k], I[k]))\n else:\n out.write('%7.1f %7.1f\\n' % (D[k], I[k]))\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
out = ''
UP = 0
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
DI = numpy.loadtxt(file, dtype=numpy.float)
else:
DI = numpy.loadtxt(sys.stdin, dtype=numpy.float)
Ds = DI.transpose()[0]
Is = DI.transpose()[1]
if len(DI) > 1:
XY = pmag.dimap_V(Ds, Is)
for xy in XY:
print('%f %f' % (xy[0], xy[1]))
else:
XY = pmag.dimap(Ds, Is)
print('%f %f' % (XY[0], XY[1]))
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n out = ''\n UP = 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n DI = numpy.loadtxt(file, dtype=numpy.float)\n else:\n DI = numpy.loadtxt(sys.stdin, dtype=numpy.float)\n Ds = DI.transpose()[0]\n Is = DI.transpose()[1]\n if len(DI) > 1:\n XY = pmag.dimap_V(Ds, Is)\n for xy in XY:\n print('%f %f' % (xy[0], xy[1]))\n else:\n XY = pmag.dimap(Ds, Is)\n print('%f %f' % (XY[0], XY[1]))\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(x1, y1, x2):
sp = Spline(x1, y1)
return sp(x2)
|
spline_interpolate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x1, y1, x2):\n sp = Spline(x1, y1)\n return sp(x2)\n",
"role": "user"
},
{
"content": "spline_interpolate",
"role": "assistant"
}
] |
def x(x1, y1, x2):
sp = Spline(log(x1), log(y1))
return exp(sp(log(x2)))
|
logspline_interpolate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x1, y1, x2):\n sp = Spline(log(x1), log(y1))\n return exp(sp(log(x2)))\n",
"role": "user"
},
{
"content": "logspline_interpolate",
"role": "assistant"
}
] |
def x(x1, y1, x2):
li = LinInt(x1, y1)
return li(x2)
|
linear_interpolate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x1, y1, x2):\n li = LinInt(x1, y1)\n return li(x2)\n",
"role": "user"
},
{
"content": "linear_interpolate",
"role": "assistant"
}
] |
def x(self, x):
if x <= self.x_vals[0]:
return self.y_vals[0]
if x >= self.x_vals[-1]:
return self.y_vals[-1]
pos = numpy.searchsorted(self.x_vals, x)
h = self.x_vals[pos] - self.x_vals[pos - 1]
if h == 0.0:
raise BadInput
a = old_div(self.x_vals[pos] - x, h)
b = old_div(x - self.x_vals[pos - 1], h)
return a * self.y_vals[pos - 1] + b * self.y_vals[pos]
|
call
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n if x <= self.x_vals[0]:\n return self.y_vals[0]\n if x >= self.x_vals[-1]:\n return self.y_vals[-1]\n pos = numpy.searchsorted(self.x_vals, x)\n h = self.x_vals[pos] - self.x_vals[pos - 1]\n if h == 0.0:\n raise BadInput\n a = old_div(self.x_vals[pos] - x, h)\n b = old_div(x - self.x_vals[pos - 1], h)\n return a * self.y_vals[pos - 1] + b * self.y_vals[pos]\n",
"role": "user"
},
{
"content": "call",
"role": "assistant"
}
] |
def x():
args = sys.argv
if '-h' in args:
print(main.__doc__)
sys.exit()
data_model_num = int(pmag.get_named_arg('-DM', 3))
spec_file = pmag.get_named_arg('-Fsi', 'specimens.txt')
if data_model_num == 3:
samp_file = pmag.get_named_arg('-fsa', 'samples.txt')
else:
samp_file = pmag.get_named_arg('-fsa', 'er_samples.txt')
dir_path = pmag.get_named_arg('-WD', '.')
input_dir_path = pmag.get_named_arg('-ID', '')
infile = pmag.get_named_arg('-f', reqd=True)
coord = pmag.get_named_arg('-crd', '-1')
ipmag.aarm_magic(infile, dir_path, input_dir_path, spec_file, samp_file,
data_model_num, coord)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n data_model_num = int(pmag.get_named_arg('-DM', 3))\n spec_file = pmag.get_named_arg('-Fsi', 'specimens.txt')\n if data_model_num == 3:\n samp_file = pmag.get_named_arg('-fsa', 'samples.txt')\n else:\n samp_file = pmag.get_named_arg('-fsa', 'er_samples.txt')\n dir_path = pmag.get_named_arg('-WD', '.')\n input_dir_path = pmag.get_named_arg('-ID', '')\n infile = pmag.get_named_arg('-f', reqd=True)\n coord = pmag.get_named_arg('-crd', '-1')\n ipmag.aarm_magic(infile, dir_path, input_dir_path, spec_file, samp_file,\n data_model_num, coord)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
FIG = {}
FIG['demag'] = 1
in_file, plot_key, LT = ('magic_measurements.txt', 'er_location_name',
'LT-AF-Z')
XLP = ''
norm = 1
LT = 'LT-AF-Z'
units, dmag_key = 'T', 'treatment_ac_field'
plot = 0
fmt = 'svg'
if len(sys.argv) > 1:
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-N' in sys.argv:
norm = 0
if '-sav' in sys.argv:
plot = 1
if '-f' in sys.argv:
ind = sys.argv.index('-f')
in_file = sys.argv[ind + 1]
if '-fmt' in sys.argv:
ind = sys.argv.index('-fmt')
fmt = sys.argv[ind + 1]
if '-obj' in sys.argv:
ind = sys.argv.index('-obj')
plot_by = sys.argv[ind + 1]
if plot_by == 'sit':
plot_key = 'er_site_name'
if plot_by == 'sam':
plot_key = 'er_sample_name'
if plot_by == 'spc':
plot_key = 'er_specimen_name'
if '-XLP' in sys.argv:
ind = sys.argv.index('-XLP')
XLP = sys.argv[ind + 1]
if '-LT' in sys.argv:
ind = sys.argv.index('-LT')
LT = 'LT-' + sys.argv[ind + 1] + '-Z'
if LT == 'LT-T-Z':
units, dmag_key = 'K', 'treatment_temp'
elif LT == 'LT-AF-Z':
units, dmag_key = 'T', 'treatment_ac_field'
elif LT == 'LT-M-Z':
units, dmag_key = 'J', 'treatment_mw_energy'
else:
units = 'U'
data, file_type = pmag.magic_read(in_file)
sids = pmag.get_specs(data)
pmagplotlib.plot_init(FIG['demag'], 5, 5)
print(len(data), ' records read from ', in_file)
plotlist, intlist = [], ['measurement_magnitude',
'measurement_magn_moment', 'measurement_magn_volume',
'measurement_magn_mass']
IntMeths = []
FixData = []
for rec in data:
meths = []
methcodes = rec['magic_method_codes'].split(':')
for meth in methcodes:
meths.append(meth.strip())
for key in rec.keys():
if key in intlist and rec[key] != '':
if key not in IntMeths:
IntMeths.append(key)
if rec[plot_key] not in plotlist and LT in meths:
plotlist.append(rec[plot_key])
if 'measurement_flag' not in rec.keys():
rec['measurement_flag'] = 'g'
FixData.append(rec)
plotlist.sort()
if len(IntMeths) == 0:
print('No intensity information found')
sys.exit()
data = FixData
int_key = IntMeths[0]
for plt in plotlist:
if plot == 0:
print(plt, 'plotting by: ', plot_key)
PLTblock = pmag.get_dictitem(data, plot_key, plt, 'T')
PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', LT, 'has')
PLTblock = pmag.get_dictitem(PLTblock, int_key, '', 'F')
if XLP != '':
PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes',
XLP, 'not')
if len(PLTblock) > 2:
title = PLTblock[0][plot_key]
spcs = []
for rec in PLTblock:
if rec['er_specimen_name'] not in spcs:
spcs.append(rec['er_specimen_name'])
for spc in spcs:
SPCblock = pmag.get_dictitem(PLTblock, 'er_specimen_name',
spc, 'T')
INTblock = []
for rec in SPCblock:
INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[
int_key]), 1, rec['measurement_flag']])
if len(INTblock) > 2:
pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0,
units, norm)
if plot == 1:
files = {}
for key in FIG.keys():
files[key] = title + '_' + LT + '.' + fmt
pmagplotlib.save_plots(FIG, files)
sys.exit()
else:
pmagplotlib.draw_figs(FIG)
ans = input(
' S[a]ve to save plot, [q]uit, Return to continue: ')
if ans == 'q':
sys.exit()
if ans == 'a':
files = {}
for key in FIG.keys():
files[key] = title + '_' + LT + '.' + fmt
pmagplotlib.save_plots(FIG, files)
pmagplotlib.clearFIG(FIG['demag'])
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n FIG = {}\n FIG['demag'] = 1\n in_file, plot_key, LT = ('magic_measurements.txt', 'er_location_name',\n 'LT-AF-Z')\n XLP = ''\n norm = 1\n LT = 'LT-AF-Z'\n units, dmag_key = 'T', 'treatment_ac_field'\n plot = 0\n fmt = 'svg'\n if len(sys.argv) > 1:\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-N' in sys.argv:\n norm = 0\n if '-sav' in sys.argv:\n plot = 1\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n in_file = sys.argv[ind + 1]\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if '-obj' in sys.argv:\n ind = sys.argv.index('-obj')\n plot_by = sys.argv[ind + 1]\n if plot_by == 'sit':\n plot_key = 'er_site_name'\n if plot_by == 'sam':\n plot_key = 'er_sample_name'\n if plot_by == 'spc':\n plot_key = 'er_specimen_name'\n if '-XLP' in sys.argv:\n ind = sys.argv.index('-XLP')\n XLP = sys.argv[ind + 1]\n if '-LT' in sys.argv:\n ind = sys.argv.index('-LT')\n LT = 'LT-' + sys.argv[ind + 1] + '-Z'\n if LT == 'LT-T-Z':\n units, dmag_key = 'K', 'treatment_temp'\n elif LT == 'LT-AF-Z':\n units, dmag_key = 'T', 'treatment_ac_field'\n elif LT == 'LT-M-Z':\n units, dmag_key = 'J', 'treatment_mw_energy'\n else:\n units = 'U'\n data, file_type = pmag.magic_read(in_file)\n sids = pmag.get_specs(data)\n pmagplotlib.plot_init(FIG['demag'], 5, 5)\n print(len(data), ' records read from ', in_file)\n plotlist, intlist = [], ['measurement_magnitude',\n 'measurement_magn_moment', 'measurement_magn_volume',\n 'measurement_magn_mass']\n IntMeths = []\n FixData = []\n for rec in data:\n meths = []\n methcodes = rec['magic_method_codes'].split(':')\n for meth in methcodes:\n meths.append(meth.strip())\n for key in rec.keys():\n if key in intlist and rec[key] != '':\n if key not in IntMeths:\n IntMeths.append(key)\n if rec[plot_key] not in plotlist and LT in meths:\n plotlist.append(rec[plot_key])\n if 'measurement_flag' not in rec.keys():\n rec['measurement_flag'] = 'g'\n FixData.append(rec)\n plotlist.sort()\n if len(IntMeths) == 0:\n print('No intensity information found')\n sys.exit()\n data = FixData\n int_key = IntMeths[0]\n for plt in plotlist:\n if plot == 0:\n print(plt, 'plotting by: ', plot_key)\n PLTblock = pmag.get_dictitem(data, plot_key, plt, 'T')\n PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', LT, 'has')\n PLTblock = pmag.get_dictitem(PLTblock, int_key, '', 'F')\n if XLP != '':\n PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes',\n XLP, 'not')\n if len(PLTblock) > 2:\n title = PLTblock[0][plot_key]\n spcs = []\n for rec in PLTblock:\n if rec['er_specimen_name'] not in spcs:\n spcs.append(rec['er_specimen_name'])\n for spc in spcs:\n SPCblock = pmag.get_dictitem(PLTblock, 'er_specimen_name',\n spc, 'T')\n INTblock = []\n for rec in SPCblock:\n INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[\n int_key]), 1, rec['measurement_flag']])\n if len(INTblock) > 2:\n pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0,\n units, norm)\n if plot == 1:\n files = {}\n for key in FIG.keys():\n files[key] = title + '_' + LT + '.' + fmt\n pmagplotlib.save_plots(FIG, files)\n sys.exit()\n else:\n pmagplotlib.draw_figs(FIG)\n ans = input(\n ' S[a]ve to save plot, [q]uit, Return to continue: ')\n if ans == 'q':\n sys.exit()\n if ans == 'a':\n files = {}\n for key in FIG.keys():\n files[key] = title + '_' + LT + '.' + fmt\n pmagplotlib.save_plots(FIG, files)\n pmagplotlib.clearFIG(FIG['demag'])\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
args = sys.argv
if '-h' in args:
print(main.__doc__)
sys.exit()
methcode = 'LP-NO'
demag = 'N'
data_model_num = int(float(pmag.get_named_arg('-DM', 3)))
user = pmag.get_named_arg('-usr', '')
dir_path = pmag.get_named_arg('-WD', '.')
inst = pmag.get_named_arg('-inst', '')
magfile = pmag.get_named_arg('-f', reqd=True)
magfile = pmag.resolve_file_name(magfile, dir_path)
if '-A' in args:
noave = 1
else:
noave = 0
if data_model_num == 2:
meas_file = pmag.get_named_arg('-F', 'magic_measurements.txt')
else:
meas_file = pmag.get_named_arg('-F', 'measurements.txt')
meas_file = pmag.resolve_file_name(meas_file, dir_path)
volume = pmag.get_named_arg('-vol', 12)
methcode = pmag.get_named_arg('-LP', 'LP-NO')
convert.mini(magfile, dir_path, meas_file, data_model_num, volume,
noave, inst, user, methcode)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n methcode = 'LP-NO'\n demag = 'N'\n data_model_num = int(float(pmag.get_named_arg('-DM', 3)))\n user = pmag.get_named_arg('-usr', '')\n dir_path = pmag.get_named_arg('-WD', '.')\n inst = pmag.get_named_arg('-inst', '')\n magfile = pmag.get_named_arg('-f', reqd=True)\n magfile = pmag.resolve_file_name(magfile, dir_path)\n if '-A' in args:\n noave = 1\n else:\n noave = 0\n if data_model_num == 2:\n meas_file = pmag.get_named_arg('-F', 'magic_measurements.txt')\n else:\n meas_file = pmag.get_named_arg('-F', 'measurements.txt')\n meas_file = pmag.resolve_file_name(meas_file, dir_path)\n volume = pmag.get_named_arg('-vol', 12)\n methcode = pmag.get_named_arg('-LP', 'LP-NO')\n convert.mini(magfile, dir_path, meas_file, data_model_num, volume,\n noave, inst, user, methcode)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
infile, critout = '', 'pmag_criteria.txt'
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
infile = sys.argv[ind + 1]
crit_data, file_type = pmag.magic_read(infile)
if file_type != 'pmag_criteria':
print('bad input file')
print(main.__doc__)
sys.exit()
print('Acceptance criteria read in from ', infile)
if '-F' in sys.argv:
ind = sys.argv.index('-F')
critout = sys.argv[ind + 1]
Dcrit, Icrit, nocrit = 0, 0, 0
custom = '1'
crit = input(
""" [0] Use no acceptance criteria?
[1] Use default criteria
[2] customize criteria
"""
)
if crit == '0':
print('Very very loose criteria saved in ', critout)
crit_data = pmag.default_criteria(1)
pmag.magic_write(critout, crit_data, 'pmag_criteria')
sys.exit()
crit_data = pmag.default_criteria(0)
if crit == '1':
print('Default criteria saved in ', critout)
pmag.magic_write(critout, crit_data, 'pmag_criteria')
sys.exit()
CritRec = crit_data[0]
crit_keys = list(CritRec.keys())
crit_keys.sort()
print(
"""Enter new threshold value.
Return to keep default.
Leave blank to not use as a criterion
"""
)
for key in crit_keys:
if (key != 'pmag_criteria_code' and key != 'er_citation_names' and
key != 'criteria_definition' and CritRec[key] != ''):
print(key, CritRec[key])
new = input('new value: ')
if new != '':
CritRec[key] = new
pmag.magic_write(critout, [CritRec], 'pmag_criteria')
print('Criteria saved in pmag_criteria.txt')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n infile, critout = '', 'pmag_criteria.txt'\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n infile = sys.argv[ind + 1]\n crit_data, file_type = pmag.magic_read(infile)\n if file_type != 'pmag_criteria':\n print('bad input file')\n print(main.__doc__)\n sys.exit()\n print('Acceptance criteria read in from ', infile)\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n critout = sys.argv[ind + 1]\n Dcrit, Icrit, nocrit = 0, 0, 0\n custom = '1'\n crit = input(\n \"\"\" [0] Use no acceptance criteria?\n [1] Use default criteria\n [2] customize criteria \n \"\"\"\n )\n if crit == '0':\n print('Very very loose criteria saved in ', critout)\n crit_data = pmag.default_criteria(1)\n pmag.magic_write(critout, crit_data, 'pmag_criteria')\n sys.exit()\n crit_data = pmag.default_criteria(0)\n if crit == '1':\n print('Default criteria saved in ', critout)\n pmag.magic_write(critout, crit_data, 'pmag_criteria')\n sys.exit()\n CritRec = crit_data[0]\n crit_keys = list(CritRec.keys())\n crit_keys.sort()\n print(\n \"\"\"Enter new threshold value.\n Return to keep default.\n Leave blank to not use as a criterion\n \"\"\"\n )\n for key in crit_keys:\n if (key != 'pmag_criteria_code' and key != 'er_citation_names' and \n key != 'criteria_definition' and CritRec[key] != ''):\n print(key, CritRec[key])\n new = input('new value: ')\n if new != '':\n CritRec[key] = new\n pmag.magic_write(critout, [CritRec], 'pmag_criteria')\n print('Criteria saved in pmag_criteria.txt')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self, WD=None):
if '-WD' in sys.argv and FIRST_RUN:
ind = sys.argv.index('-WD')
self.WD = sys.argv[ind + 1]
elif not WD:
dialog = wx.DirDialog(None, 'Choose a directory:', defaultPath=self
.currentDirectory, style=wx.DD_DEFAULT_STYLE | wx.
DD_NEW_DIR_BUTTON | wx.DD_CHANGE_DIR)
ok = self.show_dlg(dialog)
if ok == wx.ID_OK:
self.WD = dialog.GetPath()
else:
self.WD = os.getcwd()
dialog.Destroy()
self.WD = os.path.realpath(self.WD)
if self.data_model == 3:
meas_file = 'measurements.txt'
else:
meas_file = 'magic_measurements.txt'
self.magic_file = os.path.join(self.WD, meas_file)
self.GUI_log = open(os.path.join(self.WD, 'thellier_GUI.log'), 'w+')
self.GUI_log.write('starting...\n')
self.GUI_log.close()
self.GUI_log = open(os.path.join(self.WD, 'thellier_GUI.log'), 'a')
os.chdir(self.WD)
self.WD = os.getcwd()
|
get_DIR
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, WD=None):\n if '-WD' in sys.argv and FIRST_RUN:\n ind = sys.argv.index('-WD')\n self.WD = sys.argv[ind + 1]\n elif not WD:\n dialog = wx.DirDialog(None, 'Choose a directory:', defaultPath=self\n .currentDirectory, style=wx.DD_DEFAULT_STYLE | wx.\n DD_NEW_DIR_BUTTON | wx.DD_CHANGE_DIR)\n ok = self.show_dlg(dialog)\n if ok == wx.ID_OK:\n self.WD = dialog.GetPath()\n else:\n self.WD = os.getcwd()\n dialog.Destroy()\n self.WD = os.path.realpath(self.WD)\n if self.data_model == 3:\n meas_file = 'measurements.txt'\n else:\n meas_file = 'magic_measurements.txt'\n self.magic_file = os.path.join(self.WD, meas_file)\n self.GUI_log = open(os.path.join(self.WD, 'thellier_GUI.log'), 'w+')\n self.GUI_log.write('starting...\\n')\n self.GUI_log.close()\n self.GUI_log = open(os.path.join(self.WD, 'thellier_GUI.log'), 'a')\n os.chdir(self.WD)\n self.WD = os.getcwd()\n",
"role": "user"
},
{
"content": "get_DIR",
"role": "assistant"
}
] |
def x(self, event):
if 'specimen_int_uT' not in self.Data[self.s]['pars']:
return
if 'deleted' in self.Data[self.s]['pars']:
self.Data[self.s]['pars'].pop('deleted')
self.Data[self.s]['pars']['saved'] = True
sample = self.Data_hierarchy['specimens'][self.s]
if sample not in list(self.Data_samples.keys()):
self.Data_samples[sample] = {}
if self.s not in list(self.Data_samples[sample].keys()):
self.Data_samples[sample][self.s] = {}
self.Data_samples[sample][self.s]['B'] = self.Data[self.s]['pars'][
'specimen_int_uT']
site = thellier_gui_lib.get_site_from_hierarchy(sample, self.Data_hierarchy
)
if site not in list(self.Data_sites.keys()):
self.Data_sites[site] = {}
if self.s not in list(self.Data_sites[site].keys()):
self.Data_sites[site][self.s] = {}
self.Data_sites[site][self.s]['B'] = self.Data[self.s]['pars'][
'specimen_int_uT']
self.draw_sample_mean()
self.write_sample_box()
self.close_warning = True
|
on_save_interpretation_button
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if 'specimen_int_uT' not in self.Data[self.s]['pars']:\n return\n if 'deleted' in self.Data[self.s]['pars']:\n self.Data[self.s]['pars'].pop('deleted')\n self.Data[self.s]['pars']['saved'] = True\n sample = self.Data_hierarchy['specimens'][self.s]\n if sample not in list(self.Data_samples.keys()):\n self.Data_samples[sample] = {}\n if self.s not in list(self.Data_samples[sample].keys()):\n self.Data_samples[sample][self.s] = {}\n self.Data_samples[sample][self.s]['B'] = self.Data[self.s]['pars'][\n 'specimen_int_uT']\n site = thellier_gui_lib.get_site_from_hierarchy(sample, self.Data_hierarchy\n )\n if site not in list(self.Data_sites.keys()):\n self.Data_sites[site] = {}\n if self.s not in list(self.Data_sites[site].keys()):\n self.Data_sites[site][self.s] = {}\n self.Data_sites[site][self.s]['B'] = self.Data[self.s]['pars'][\n 'specimen_int_uT']\n self.draw_sample_mean()\n self.write_sample_box()\n self.close_warning = True\n",
"role": "user"
},
{
"content": "on_save_interpretation_button",
"role": "assistant"
}
] |
def x(self, event):
del self.Data[self.s]['pars']
self.Data[self.s]['pars'] = {}
self.Data[self.s]['pars']['deleted'] = True
self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s][
'lab_dc_field']
self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s][
'er_specimen_name']
self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][
'er_sample_name']
self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][
'er_sample_name']
sample = self.Data_hierarchy['specimens'][self.s]
if sample in list(self.Data_samples.keys()):
if self.s in list(self.Data_samples[sample].keys()):
if 'B' in list(self.Data_samples[sample][self.s].keys()):
del self.Data_samples[sample][self.s]['B']
site = thellier_gui_lib.get_site_from_hierarchy(sample, self.Data_hierarchy
)
if site in list(self.Data_sites.keys()):
if self.s in list(self.Data_sites[site].keys()):
del self.Data_sites[site][self.s]['B']
self.tmin_box.SetValue('')
self.tmax_box.SetValue('')
self.clear_boxes()
self.draw_figure(self.s)
self.draw_sample_mean()
self.write_sample_box()
self.close_warning = True
|
on_delete_interpretation_button
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n del self.Data[self.s]['pars']\n self.Data[self.s]['pars'] = {}\n self.Data[self.s]['pars']['deleted'] = True\n self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s][\n 'lab_dc_field']\n self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s][\n 'er_specimen_name']\n self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][\n 'er_sample_name']\n self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][\n 'er_sample_name']\n sample = self.Data_hierarchy['specimens'][self.s]\n if sample in list(self.Data_samples.keys()):\n if self.s in list(self.Data_samples[sample].keys()):\n if 'B' in list(self.Data_samples[sample][self.s].keys()):\n del self.Data_samples[sample][self.s]['B']\n site = thellier_gui_lib.get_site_from_hierarchy(sample, self.Data_hierarchy\n )\n if site in list(self.Data_sites.keys()):\n if self.s in list(self.Data_sites[site].keys()):\n del self.Data_sites[site][self.s]['B']\n self.tmin_box.SetValue('')\n self.tmax_box.SetValue('')\n self.clear_boxes()\n self.draw_figure(self.s)\n self.draw_sample_mean()\n self.write_sample_box()\n self.close_warning = True\n",
"role": "user"
},
{
"content": "on_delete_interpretation_button",
"role": "assistant"
}
] |
def x(self):
self.ignore_parameters, value = {}, ''
for crit_short_name in self.preferences['show_statistics_on_gui']:
crit = 'specimen_' + crit_short_name
if self.acceptance_criteria[crit]['value'] == -999:
self.threshold_windows[crit_short_name].SetValue('')
self.threshold_windows[crit_short_name].SetBackgroundColour(wx.
Colour(128, 128, 128))
self.ignore_parameters[crit] = True
continue
elif crit == 'specimen_scat':
if self.acceptance_criteria[crit]['value'] in ['g', 1, '1',
True, 'True', 't']:
value = 'True'
value = 't'
else:
value = ''
value = 'f'
self.threshold_windows['scat'].SetBackgroundColour((128,
128, 128))
elif type(self.acceptance_criteria[crit]['value']) == int:
value = '%i' % self.acceptance_criteria[crit]['value']
elif type(self.acceptance_criteria[crit]['value']) == float:
if self.acceptance_criteria[crit]['decimal_points'] == -999:
value = '%.3e' % self.acceptance_criteria[crit]['value']
else:
value = '{:.{}f}'.format(self.acceptance_criteria[crit][
'value'], self.acceptance_criteria[crit]['decimal_points'])
else:
continue
self.threshold_windows[crit_short_name].SetValue(value)
self.threshold_windows[crit_short_name].SetBackgroundColour(wx.WHITE)
|
write_acceptance_criteria_to_boxes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.ignore_parameters, value = {}, ''\n for crit_short_name in self.preferences['show_statistics_on_gui']:\n crit = 'specimen_' + crit_short_name\n if self.acceptance_criteria[crit]['value'] == -999:\n self.threshold_windows[crit_short_name].SetValue('')\n self.threshold_windows[crit_short_name].SetBackgroundColour(wx.\n Colour(128, 128, 128))\n self.ignore_parameters[crit] = True\n continue\n elif crit == 'specimen_scat':\n if self.acceptance_criteria[crit]['value'] in ['g', 1, '1', \n True, 'True', 't']:\n value = 'True'\n value = 't'\n else:\n value = ''\n value = 'f'\n self.threshold_windows['scat'].SetBackgroundColour((128, \n 128, 128))\n elif type(self.acceptance_criteria[crit]['value']) == int:\n value = '%i' % self.acceptance_criteria[crit]['value']\n elif type(self.acceptance_criteria[crit]['value']) == float:\n if self.acceptance_criteria[crit]['decimal_points'] == -999:\n value = '%.3e' % self.acceptance_criteria[crit]['value']\n else:\n value = '{:.{}f}'.format(self.acceptance_criteria[crit][\n 'value'], self.acceptance_criteria[crit]['decimal_points'])\n else:\n continue\n self.threshold_windows[crit_short_name].SetValue(value)\n self.threshold_windows[crit_short_name].SetBackgroundColour(wx.WHITE)\n",
"role": "user"
},
{
"content": "write_acceptance_criteria_to_boxes",
"role": "assistant"
}
] |
def x(self, s):
self.logger.DeleteAllItems()
FONT_RATIO = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5
if self.GUI_RESOLUTION > 1.1:
font1 = wx.Font(11, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.
font_type)
elif self.GUI_RESOLUTION <= 0.9:
font1 = wx.Font(8, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.
font_type)
else:
font1 = wx.Font(10, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.
font_type)
t1 = self.tmin_box.GetValue()
t2 = self.tmax_box.GetValue()
if 'LP-PI-M' in self.Data[s]['datablock'][0]['magic_method_codes']:
MICROWAVE = True
THERMAL = False
steps_tr = []
for rec in self.Data[s]['datablock']:
if 'measurement_description' in rec:
MW_step = rec['measurement_description'].strip('\n').split(':')
for STEP in MW_step:
if 'Number' in STEP:
temp = float(STEP.split('-')[-1])
steps_tr.append(temp)
else:
power = rec['treatment_mw_power']
if '-' in str(power):
power = power.split('-')[-1]
steps_tr.append(int(power))
else:
MICROWAVE = False
THERMAL = True
steps_tr = [(float(d['treatment_temp']) - 273) for d in self.Data[s
]['datablock']]
if (t1 == '' or t2 == '') or float(t2) < float(t1):
tmin_index, tmax_index = -1, -1
else:
tmin_index = steps_tr.index(int(t1))
tmax_index = steps_tr.index(int(t2))
self.logger.SetFont(font1)
for i, rec in enumerate(self.Data[s]['datablock']):
if 'LT-NO' in rec['magic_method_codes']:
step = 'N'
elif 'LT-AF-Z' in rec['magic_method_codes']:
step = 'AFD'
elif 'LT-T-Z' in rec['magic_method_codes'] or 'LT-M-Z' in rec[
'magic_method_codes']:
step = 'Z'
elif 'LT-T-I' in rec['magic_method_codes'] or 'LT-M-I' in rec[
'magic_method_codes']:
step = 'I'
elif 'LT-PTRM-I' in rec['magic_method_codes'] or 'LT-PMRM-I' in rec[
'magic_method_codes']:
step = 'P'
elif 'LT-PTRM-MD' in rec['magic_method_codes'] or 'LT-PMRM-MD' in rec[
'magic_method_codes']:
step = 'T'
elif 'LT-PTRM-AC' in rec['magic_method_codes'] or 'LT-PMRM-AC' in rec[
'magic_method_codes']:
step = 'A'
else:
print('unrecognized step in specimen %s Method codes: %s' % (
str(rec['magic_method_codes']), s))
if THERMAL:
self.logger.InsertItem(i, '%i' % i)
self.logger.SetItem(i, 1, step)
self.logger.SetItem(i, 2, '%1.0f' % (float(rec['treatment_temp'
]) - 273.0))
self.logger.SetItem(i, 3, '%.1f' % float(rec['measurement_dec']))
self.logger.SetItem(i, 4, '%.1f' % float(rec['measurement_inc']))
self.logger.SetItem(i, 5, '%.2e' % float(rec[
'measurement_magn_moment']))
elif MICROWAVE:
if 'measurement_description' in list(rec.keys()):
MW_step = rec['measurement_description'].strip('\n').split(':')
for STEP in MW_step:
if 'Number' not in STEP:
continue
temp = float(STEP.split('-')[-1])
self.logger.InsertItem(i, '%i' % i)
self.logger.SetItem(i, 1, step)
self.logger.SetItem(i, 2, '%1.0f' % temp)
self.logger.SetItem(i, 3, '%.1f' % float(rec[
'measurement_dec']))
self.logger.SetItem(i, 4, '%.1f' % float(rec[
'measurement_inc']))
self.logger.SetItem(i, 5, '%.2e' % float(rec[
'measurement_magn_moment']))
self.logger.SetItemBackgroundColour(i, 'WHITE')
if i >= tmin_index and i <= tmax_index:
self.logger.SetItemBackgroundColour(i, 'LIGHT BLUE')
if 'measurement_flag' not in list(rec.keys()):
rec['measurement_flag'] = 'g'
|
Add_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, s):\n self.logger.DeleteAllItems()\n FONT_RATIO = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5\n if self.GUI_RESOLUTION > 1.1:\n font1 = wx.Font(11, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.\n font_type)\n elif self.GUI_RESOLUTION <= 0.9:\n font1 = wx.Font(8, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.\n font_type)\n else:\n font1 = wx.Font(10, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.\n font_type)\n t1 = self.tmin_box.GetValue()\n t2 = self.tmax_box.GetValue()\n if 'LP-PI-M' in self.Data[s]['datablock'][0]['magic_method_codes']:\n MICROWAVE = True\n THERMAL = False\n steps_tr = []\n for rec in self.Data[s]['datablock']:\n if 'measurement_description' in rec:\n MW_step = rec['measurement_description'].strip('\\n').split(':')\n for STEP in MW_step:\n if 'Number' in STEP:\n temp = float(STEP.split('-')[-1])\n steps_tr.append(temp)\n else:\n power = rec['treatment_mw_power']\n if '-' in str(power):\n power = power.split('-')[-1]\n steps_tr.append(int(power))\n else:\n MICROWAVE = False\n THERMAL = True\n steps_tr = [(float(d['treatment_temp']) - 273) for d in self.Data[s\n ]['datablock']]\n if (t1 == '' or t2 == '') or float(t2) < float(t1):\n tmin_index, tmax_index = -1, -1\n else:\n tmin_index = steps_tr.index(int(t1))\n tmax_index = steps_tr.index(int(t2))\n self.logger.SetFont(font1)\n for i, rec in enumerate(self.Data[s]['datablock']):\n if 'LT-NO' in rec['magic_method_codes']:\n step = 'N'\n elif 'LT-AF-Z' in rec['magic_method_codes']:\n step = 'AFD'\n elif 'LT-T-Z' in rec['magic_method_codes'] or 'LT-M-Z' in rec[\n 'magic_method_codes']:\n step = 'Z'\n elif 'LT-T-I' in rec['magic_method_codes'] or 'LT-M-I' in rec[\n 'magic_method_codes']:\n step = 'I'\n elif 'LT-PTRM-I' in rec['magic_method_codes'] or 'LT-PMRM-I' in rec[\n 'magic_method_codes']:\n step = 'P'\n elif 'LT-PTRM-MD' in rec['magic_method_codes'] or 'LT-PMRM-MD' in rec[\n 'magic_method_codes']:\n step = 'T'\n elif 'LT-PTRM-AC' in rec['magic_method_codes'] or 'LT-PMRM-AC' in rec[\n 'magic_method_codes']:\n step = 'A'\n else:\n print('unrecognized step in specimen %s Method codes: %s' % (\n str(rec['magic_method_codes']), s))\n if THERMAL:\n self.logger.InsertItem(i, '%i' % i)\n self.logger.SetItem(i, 1, step)\n self.logger.SetItem(i, 2, '%1.0f' % (float(rec['treatment_temp'\n ]) - 273.0))\n self.logger.SetItem(i, 3, '%.1f' % float(rec['measurement_dec']))\n self.logger.SetItem(i, 4, '%.1f' % float(rec['measurement_inc']))\n self.logger.SetItem(i, 5, '%.2e' % float(rec[\n 'measurement_magn_moment']))\n elif MICROWAVE:\n if 'measurement_description' in list(rec.keys()):\n MW_step = rec['measurement_description'].strip('\\n').split(':')\n for STEP in MW_step:\n if 'Number' not in STEP:\n continue\n temp = float(STEP.split('-')[-1])\n self.logger.InsertItem(i, '%i' % i)\n self.logger.SetItem(i, 1, step)\n self.logger.SetItem(i, 2, '%1.0f' % temp)\n self.logger.SetItem(i, 3, '%.1f' % float(rec[\n 'measurement_dec']))\n self.logger.SetItem(i, 4, '%.1f' % float(rec[\n 'measurement_inc']))\n self.logger.SetItem(i, 5, '%.2e' % float(rec[\n 'measurement_magn_moment']))\n self.logger.SetItemBackgroundColour(i, 'WHITE')\n if i >= tmin_index and i <= tmax_index:\n self.logger.SetItemBackgroundColour(i, 'LIGHT BLUE')\n if 'measurement_flag' not in list(rec.keys()):\n rec['measurement_flag'] = 'g'\n",
"role": "user"
},
{
"content": "Add_text",
"role": "assistant"
}
] |
def x(self, index):
tmin_index, tmax_index = '', ''
if str(self.tmin_box.GetValue()) != '':
tmin_index = self.tmin_box.GetSelection()
if str(self.tmax_box.GetValue()) != '':
tmax_index = self.tmax_box.GetSelection()
if not tmin_index and not tmax_index:
tmin_index = index
self.tmin_box.SetSelection(index)
max_step_data = self.Data[self.s]['datablock'][-1]
step_key = 'treatment_temp'
if MICROWAVE:
step_key = 'treatment_mw_power'
max_step = max_step_data[step_key]
tmax_index = self.tmax_box.GetCount() - 1
self.tmax_box.SetSelection(tmax_index)
elif self.list_bound_loc != 0:
if self.list_bound_loc == 1:
if index < tmin_index:
self.tmin_box.SetSelection(index)
self.tmax_box.SetSelection(tmin_index)
elif index == tmin_index:
pass
else:
self.tmax_box.SetSelection(index)
elif index > tmax_index:
self.tmin_box.SetSelection(tmax_index)
self.tmax_box.SetSelection(index)
elif index == tmax_index:
pass
else:
self.tmin_box.SetSelection(index)
self.list_bound_loc = 0
elif index < tmax_index:
self.tmin_box.SetSelection(index)
self.list_bound_loc = 1
else:
self.tmax_box.SetSelection(index)
self.list_bound_loc = 2
self.logger.Select(index, on=0)
self.get_new_T_PI_parameters(-1)
|
select_bounds_in_logger
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index):\n tmin_index, tmax_index = '', ''\n if str(self.tmin_box.GetValue()) != '':\n tmin_index = self.tmin_box.GetSelection()\n if str(self.tmax_box.GetValue()) != '':\n tmax_index = self.tmax_box.GetSelection()\n if not tmin_index and not tmax_index:\n tmin_index = index\n self.tmin_box.SetSelection(index)\n max_step_data = self.Data[self.s]['datablock'][-1]\n step_key = 'treatment_temp'\n if MICROWAVE:\n step_key = 'treatment_mw_power'\n max_step = max_step_data[step_key]\n tmax_index = self.tmax_box.GetCount() - 1\n self.tmax_box.SetSelection(tmax_index)\n elif self.list_bound_loc != 0:\n if self.list_bound_loc == 1:\n if index < tmin_index:\n self.tmin_box.SetSelection(index)\n self.tmax_box.SetSelection(tmin_index)\n elif index == tmin_index:\n pass\n else:\n self.tmax_box.SetSelection(index)\n elif index > tmax_index:\n self.tmin_box.SetSelection(tmax_index)\n self.tmax_box.SetSelection(index)\n elif index == tmax_index:\n pass\n else:\n self.tmin_box.SetSelection(index)\n self.list_bound_loc = 0\n elif index < tmax_index:\n self.tmin_box.SetSelection(index)\n self.list_bound_loc = 1\n else:\n self.tmax_box.SetSelection(index)\n self.list_bound_loc = 2\n self.logger.Select(index, on=0)\n self.get_new_T_PI_parameters(-1)\n",
"role": "user"
},
{
"content": "select_bounds_in_logger",
"role": "assistant"
}
] |
def x(self):
self.clear_boxes()
self.draw_figure(self.s)
if self.Data[self.s]['T_or_MW'] == 'T':
self.temperatures = np.array(self.Data[self.s]['t_Arai']) - 273.0
else:
self.temperatures = np.array(self.Data[self.s]['t_Arai'])
self.T_list = [('%.0f' % T) for T in self.temperatures]
self.tmin_box.SetItems(self.T_list)
self.tmax_box.SetItems(self.T_list)
self.tmin_box.SetValue('')
self.tmax_box.SetValue('')
self.Blab_window.SetValue('%.0f' % (float(self.Data[self.s]['pars'][
'lab_dc_field']) * 1000000.0))
if 'saved' in self.Data[self.s]['pars']:
self.pars = self.Data[self.s]['pars']
self.update_GUI_with_new_interpretation()
self.Add_text(self.s)
self.write_sample_box()
|
update_selection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.clear_boxes()\n self.draw_figure(self.s)\n if self.Data[self.s]['T_or_MW'] == 'T':\n self.temperatures = np.array(self.Data[self.s]['t_Arai']) - 273.0\n else:\n self.temperatures = np.array(self.Data[self.s]['t_Arai'])\n self.T_list = [('%.0f' % T) for T in self.temperatures]\n self.tmin_box.SetItems(self.T_list)\n self.tmax_box.SetItems(self.T_list)\n self.tmin_box.SetValue('')\n self.tmax_box.SetValue('')\n self.Blab_window.SetValue('%.0f' % (float(self.Data[self.s]['pars'][\n 'lab_dc_field']) * 1000000.0))\n if 'saved' in self.Data[self.s]['pars']:\n self.pars = self.Data[self.s]['pars']\n self.update_GUI_with_new_interpretation()\n self.Add_text(self.s)\n self.write_sample_box()\n",
"role": "user"
},
{
"content": "update_selection",
"role": "assistant"
}
] |
def x(self, event):
new_s = self.specimens_box.GetValue()
if self.select_specimen(new_s):
self.update_selection()
else:
self.specimens_box.SetValue(self.s)
self.user_warning('no specimen %s reverting to old specimen %s' % (
new_s, self.s))
|
onSelect_specimen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n new_s = self.specimens_box.GetValue()\n if self.select_specimen(new_s):\n self.update_selection()\n else:\n self.specimens_box.SetValue(self.s)\n self.user_warning('no specimen %s reverting to old specimen %s' % (\n new_s, self.s))\n",
"role": "user"
},
{
"content": "onSelect_specimen",
"role": "assistant"
}
] |
def x(self, event):
def x(event, wind):
wind.Close()
wind.Destroy()
event.Skip()
wind = wx.PopupTransientWindow(self, wx.RAISED_BORDER)
if self.auto_save.GetValue():
info = (
"'auto-save' is currently selected. Temperature bounds will be saved when you click 'next' or 'back'."
)
else:
info = (
"'auto-save' is not selected. Temperature bounds will only be saved when you click 'save'."
)
text = wx.StaticText(wind, -1, info)
box = wx.StaticBox(wind, -1, 'Info:')
boxSizer = wx.StaticBoxSizer(box, wx.VERTICAL)
boxSizer.Add(text, 5, wx.ALL | wx.CENTER)
exit_btn = wx.Button(wind, wx.ID_EXIT, 'Close')
wind.Bind(wx.EVT_BUTTON, lambda evt: on_close(evt, wind), exit_btn)
boxSizer.Add(exit_btn, 5, wx.ALL | wx.CENTER)
wind.SetSizer(boxSizer)
wind.Layout()
wind.Popup()
|
on_info_click
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n\n def x(event, wind):\n wind.Close()\n wind.Destroy()\n event.Skip()\n wind = wx.PopupTransientWindow(self, wx.RAISED_BORDER)\n if self.auto_save.GetValue():\n info = (\n \"'auto-save' is currently selected. Temperature bounds will be saved when you click 'next' or 'back'.\"\n )\n else:\n info = (\n \"'auto-save' is not selected. Temperature bounds will only be saved when you click 'save'.\"\n )\n text = wx.StaticText(wind, -1, info)\n box = wx.StaticBox(wind, -1, 'Info:')\n boxSizer = wx.StaticBoxSizer(box, wx.VERTICAL)\n boxSizer.Add(text, 5, wx.ALL | wx.CENTER)\n exit_btn = wx.Button(wind, wx.ID_EXIT, 'Close')\n wind.Bind(wx.EVT_BUTTON, lambda evt: on_close(evt, wind), exit_btn)\n boxSizer.Add(exit_btn, 5, wx.ALL | wx.CENTER)\n wind.SetSizer(boxSizer)\n wind.Layout()\n wind.Popup()\n",
"role": "user"
},
{
"content": "on_info_click",
"role": "assistant"
}
] |
def x(self, event):
if 'saved' not in self.Data[self.s]['pars'] or self.Data[self.s]['pars'][
'saved'] != True:
if self.auto_save.GetValue():
self.on_save_interpretation_button(None)
else:
del self.Data[self.s]['pars']
self.Data[self.s]['pars'] = {}
self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s][
'lab_dc_field']
self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s][
'er_specimen_name']
self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][
'er_sample_name']
if 'er_specimen_name' in list(self.last_saved_pars.keys()
) and self.last_saved_pars['er_specimen_name'] == self.s:
for key in list(self.last_saved_pars.keys()):
self.Data[self.s]['pars'][key] = self.last_saved_pars[key]
self.last_saved_pars = {}
index = self.specimens.index(self.s)
if index == 0:
index = len(self.specimens)
index -= 1
self.s = self.specimens[index]
self.specimens_box.SetStringSelection(self.s)
self.update_selection()
|
on_prev_button
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if 'saved' not in self.Data[self.s]['pars'] or self.Data[self.s]['pars'][\n 'saved'] != True:\n if self.auto_save.GetValue():\n self.on_save_interpretation_button(None)\n else:\n del self.Data[self.s]['pars']\n self.Data[self.s]['pars'] = {}\n self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s][\n 'lab_dc_field']\n self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s][\n 'er_specimen_name']\n self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][\n 'er_sample_name']\n if 'er_specimen_name' in list(self.last_saved_pars.keys()\n ) and self.last_saved_pars['er_specimen_name'] == self.s:\n for key in list(self.last_saved_pars.keys()):\n self.Data[self.s]['pars'][key] = self.last_saved_pars[key]\n self.last_saved_pars = {}\n index = self.specimens.index(self.s)\n if index == 0:\n index = len(self.specimens)\n index -= 1\n self.s = self.specimens[index]\n self.specimens_box.SetStringSelection(self.s)\n self.update_selection()\n",
"role": "user"
},
{
"content": "on_prev_button",
"role": "assistant"
}
] |
def x(self):
self.tmin_box.Clear()
self.tmin_box.SetItems(self.T_list)
self.tmin_box.SetSelection(-1)
self.tmax_box.Clear()
self.tmax_box.SetItems(self.T_list)
self.tmax_box.SetSelection(-1)
self.Blab_window.SetValue('')
self.Banc_window.SetValue('')
self.Banc_window.SetBackgroundColour(wx.Colour('grey'))
self.Aniso_factor_window.SetValue('')
self.Aniso_factor_window.SetBackgroundColour(wx.Colour('grey'))
self.NLT_factor_window.SetValue('')
self.NLT_factor_window.SetBackgroundColour(wx.Colour('grey'))
self.CR_factor_window.SetValue('')
self.CR_factor_window.SetBackgroundColour(wx.Colour('grey'))
self.declination_window.SetValue('')
self.declination_window.SetBackgroundColour(wx.Colour('grey'))
self.inclination_window.SetValue('')
self.inclination_window.SetBackgroundColour(wx.Colour('grey'))
window_list = ['sample_int_n', 'sample_int_uT', 'sample_int_sigma',
'sample_int_sigma_perc']
for key in window_list:
command = 'self.%s_window.SetValue("")' % key
exec(command)
command = "self.%s_window.SetBackgroundColour(wx.Colour('grey'))" % key
exec(command)
for key in self.preferences['show_statistics_on_gui']:
self.stat_windows[key].SetValue('')
self.stat_windows[key].SetBackgroundColour(wx.Colour('grey'))
|
clear_boxes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.tmin_box.Clear()\n self.tmin_box.SetItems(self.T_list)\n self.tmin_box.SetSelection(-1)\n self.tmax_box.Clear()\n self.tmax_box.SetItems(self.T_list)\n self.tmax_box.SetSelection(-1)\n self.Blab_window.SetValue('')\n self.Banc_window.SetValue('')\n self.Banc_window.SetBackgroundColour(wx.Colour('grey'))\n self.Aniso_factor_window.SetValue('')\n self.Aniso_factor_window.SetBackgroundColour(wx.Colour('grey'))\n self.NLT_factor_window.SetValue('')\n self.NLT_factor_window.SetBackgroundColour(wx.Colour('grey'))\n self.CR_factor_window.SetValue('')\n self.CR_factor_window.SetBackgroundColour(wx.Colour('grey'))\n self.declination_window.SetValue('')\n self.declination_window.SetBackgroundColour(wx.Colour('grey'))\n self.inclination_window.SetValue('')\n self.inclination_window.SetBackgroundColour(wx.Colour('grey'))\n window_list = ['sample_int_n', 'sample_int_uT', 'sample_int_sigma',\n 'sample_int_sigma_perc']\n for key in window_list:\n command = 'self.%s_window.SetValue(\"\")' % key\n exec(command)\n command = \"self.%s_window.SetBackgroundColour(wx.Colour('grey'))\" % key\n exec(command)\n for key in self.preferences['show_statistics_on_gui']:\n self.stat_windows[key].SetValue('')\n self.stat_windows[key].SetBackgroundColour(wx.Colour('grey'))\n",
"role": "user"
},
{
"content": "clear_boxes",
"role": "assistant"
}
] |
def x(self):
user_data_dir = find_pmag_dir.find_user_data_dir('thellier_gui')
if not user_data_dir:
return {}
if os.path.exists(user_data_dir):
pref_file = os.path.join(user_data_dir, 'thellier_gui_preferences.json'
)
if os.path.exists(pref_file):
with open(pref_file, 'r') as pfile:
return json.load(pfile)
return {}
|
read_preferences_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n user_data_dir = find_pmag_dir.find_user_data_dir('thellier_gui')\n if not user_data_dir:\n return {}\n if os.path.exists(user_data_dir):\n pref_file = os.path.join(user_data_dir, 'thellier_gui_preferences.json'\n )\n if os.path.exists(pref_file):\n with open(pref_file, 'r') as pfile:\n return json.load(pfile)\n return {}\n",
"role": "user"
},
{
"content": "read_preferences_file",
"role": "assistant"
}
] |
def x(self):
user_data_dir = find_pmag_dir.find_user_data_dir('thellier_gui')
if not os.path.exists(user_data_dir):
find_pmag_dir.make_user_data_dir(user_data_dir)
pref_file = os.path.join(user_data_dir, 'thellier_gui_preferences.json')
with open(pref_file, 'w+') as pfile:
print('-I- writing preferences to {}'.format(pref_file))
json.dump(self.preferences, pfile)
|
write_preferences_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n user_data_dir = find_pmag_dir.find_user_data_dir('thellier_gui')\n if not os.path.exists(user_data_dir):\n find_pmag_dir.make_user_data_dir(user_data_dir)\n pref_file = os.path.join(user_data_dir, 'thellier_gui_preferences.json')\n with open(pref_file, 'w+') as pfile:\n print('-I- writing preferences to {}'.format(pref_file))\n json.dump(self.preferences, pfile)\n",
"role": "user"
},
{
"content": "write_preferences_file",
"role": "assistant"
}
] |
def x(self, event):
if self.close_warning:
TEXT = """Data is not saved to a file yet!
To properly save your data:
1) Analysis --> Save current interpretations to a redo file.
or
1) File --> Save MagIC tables.
Press OK to exit without saving."""
dlg1 = wx.MessageDialog(None, caption='Warning:', message=TEXT,
style=wx.OK | wx.CANCEL | wx.ICON_EXCLAMATION)
if self.show_dlg(dlg1) == wx.ID_OK:
dlg1.Destroy()
self.GUI_log.close()
self.Destroy()
if self.evt_quit:
event = self.evt_quit(self.GetId())
self.GetEventHandler().ProcessEvent(event)
if self.standalone:
sys.exit()
else:
self.GUI_log.close()
self.Destroy()
if self.evt_quit:
event = self.evt_quit(self.GetId())
self.GetEventHandler().ProcessEvent(event)
if self.standalone:
sys.exit()
|
on_menu_exit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if self.close_warning:\n TEXT = \"\"\"Data is not saved to a file yet!\nTo properly save your data:\n1) Analysis --> Save current interpretations to a redo file.\nor\n1) File --> Save MagIC tables.\n\n Press OK to exit without saving.\"\"\"\n dlg1 = wx.MessageDialog(None, caption='Warning:', message=TEXT,\n style=wx.OK | wx.CANCEL | wx.ICON_EXCLAMATION)\n if self.show_dlg(dlg1) == wx.ID_OK:\n dlg1.Destroy()\n self.GUI_log.close()\n self.Destroy()\n if self.evt_quit:\n event = self.evt_quit(self.GetId())\n self.GetEventHandler().ProcessEvent(event)\n if self.standalone:\n sys.exit()\n else:\n self.GUI_log.close()\n self.Destroy()\n if self.evt_quit:\n event = self.evt_quit(self.GetId())\n self.GetEventHandler().ProcessEvent(event)\n if self.standalone:\n sys.exit()\n",
"role": "user"
},
{
"content": "on_menu_exit",
"role": "assistant"
}
] |
def x(self, event):
save_current_specimen = self.s
dlg = wx.FileDialog(self, message=
'choose a file in a pmagpy redo format', defaultDir=self.WD,
defaultFile='thellier_GUI.redo', wildcard='*.redo', style=wx.
FD_OPEN | wx.FD_CHANGE_DIR)
if self.show_dlg(dlg) == wx.ID_OK:
redo_file = dlg.GetPath()
if self.test_mode:
redo_file = 'thellier_GUI.redo'
else:
redo_file = None
dlg.Destroy()
print('redo_file', redo_file)
if redo_file:
self.read_redo_file(redo_file)
|
on_menu_previous_interpretation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n save_current_specimen = self.s\n dlg = wx.FileDialog(self, message=\n 'choose a file in a pmagpy redo format', defaultDir=self.WD,\n defaultFile='thellier_GUI.redo', wildcard='*.redo', style=wx.\n FD_OPEN | wx.FD_CHANGE_DIR)\n if self.show_dlg(dlg) == wx.ID_OK:\n redo_file = dlg.GetPath()\n if self.test_mode:\n redo_file = 'thellier_GUI.redo'\n else:\n redo_file = None\n dlg.Destroy()\n print('redo_file', redo_file)\n if redo_file:\n self.read_redo_file(redo_file)\n",
"role": "user"
},
{
"content": "on_menu_previous_interpretation",
"role": "assistant"
}
] |
def x(self, event):
if self.data_model == 3:
dlg = wx.FileDialog(self, message=
'choose a file in MagIC Data Model 3.0 format', defaultDir=
self.WD, defaultFile='criteria.txt', style=wx.FD_OPEN | wx.
FD_CHANGE_DIR)
else:
dlg = wx.FileDialog(self, message=
'choose a file in a MagIC Data Model 2.5 pmagpy format',
defaultDir=self.WD, defaultFile='pmag_criteria.txt', style=wx.
FD_OPEN | wx.FD_CHANGE_DIR)
if self.show_dlg(dlg) == wx.ID_OK:
criteria_file = dlg.GetPath()
self.GUI_log.write('-I- Read new criteria file: %s\n' % criteria_file)
dlg.Destroy()
replace_acceptance_criteria = pmag.initialize_acceptance_criteria(
data_model=self.data_model)
try:
if self.data_model == 3:
self.read_criteria_file(criteria_file)
replace_acceptance_criteria = self.acceptance_criteria
print(replace_acceptance_criteria)
else:
replace_acceptance_criteria = pmag.read_criteria_from_file(
criteria_file, replace_acceptance_criteria, data_model=self
.data_model)
except Exception as ex:
print('-W-', ex)
dlg1 = wx.MessageDialog(self, caption='Error:', message=
'error in reading file', style=wx.OK)
result = self.show_dlg(dlg1)
if result == wx.ID_OK:
dlg1.Destroy()
return
self.add_thellier_gui_criteria()
self.read_criteria_file(criteria_file)
crit_list_not_in_pref = []
for crit in list(self.acceptance_criteria.keys()):
if self.acceptance_criteria[crit]['category'] == 'IE-SPEC':
if self.acceptance_criteria[crit]['value'] != -999:
short_crit = crit.split('specimen_')[-1]
if short_crit not in self.preferences['show_statistics_on_gui'
]:
print('-I- statistic %s is not in your preferences' % crit)
self.preferences['show_statistics_on_gui'].append(
short_crit)
crit_list_not_in_pref.append(crit)
if len(crit_list_not_in_pref) > 0:
stat_list = ':'.join(crit_list_not_in_pref)
dlg1 = wx.MessageDialog(self, caption='WARNING:', message=
"""statistics '%s' is in the imported criteria file but not in your appearence preferences.
This statistic will not appear on the gui panel.
The program will exit after saving new acceptance criteria, and it will be added automatically the next time you open it """
% stat_list, style=wx.OK | wx.ICON_INFORMATION)
self.show_dlg(dlg1)
dlg1.Destroy()
dia = thellier_gui_dialogs.Criteria_Dialog(None, self.
acceptance_criteria, self.preferences, title='Acceptance Criteria')
dia.Center()
result = self.show_dlg(dia)
if result == wx.ID_OK:
self.On_close_criteria_box(dia)
if len(crit_list_not_in_pref) > 0:
dlg1 = wx.MessageDialog(self, caption='WARNING:', message=
'Exiting now! When you restart the gui all the new statistics will be added.'
, style=wx.OK | wx.ICON_INFORMATION)
self.show_dlg(dlg1)
dlg1.Destroy()
self.on_menu_exit(None)
if result == wx.ID_CANCEL:
for crit in crit_list_not_in_pref:
short_crit = crit.split('specimen_')[-1]
self.preferences['show_statistics_on_gui'].remove(short_crit)
|
on_menu_criteria_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if self.data_model == 3:\n dlg = wx.FileDialog(self, message=\n 'choose a file in MagIC Data Model 3.0 format', defaultDir=\n self.WD, defaultFile='criteria.txt', style=wx.FD_OPEN | wx.\n FD_CHANGE_DIR)\n else:\n dlg = wx.FileDialog(self, message=\n 'choose a file in a MagIC Data Model 2.5 pmagpy format',\n defaultDir=self.WD, defaultFile='pmag_criteria.txt', style=wx.\n FD_OPEN | wx.FD_CHANGE_DIR)\n if self.show_dlg(dlg) == wx.ID_OK:\n criteria_file = dlg.GetPath()\n self.GUI_log.write('-I- Read new criteria file: %s\\n' % criteria_file)\n dlg.Destroy()\n replace_acceptance_criteria = pmag.initialize_acceptance_criteria(\n data_model=self.data_model)\n try:\n if self.data_model == 3:\n self.read_criteria_file(criteria_file)\n replace_acceptance_criteria = self.acceptance_criteria\n print(replace_acceptance_criteria)\n else:\n replace_acceptance_criteria = pmag.read_criteria_from_file(\n criteria_file, replace_acceptance_criteria, data_model=self\n .data_model)\n except Exception as ex:\n print('-W-', ex)\n dlg1 = wx.MessageDialog(self, caption='Error:', message=\n 'error in reading file', style=wx.OK)\n result = self.show_dlg(dlg1)\n if result == wx.ID_OK:\n dlg1.Destroy()\n return\n self.add_thellier_gui_criteria()\n self.read_criteria_file(criteria_file)\n crit_list_not_in_pref = []\n for crit in list(self.acceptance_criteria.keys()):\n if self.acceptance_criteria[crit]['category'] == 'IE-SPEC':\n if self.acceptance_criteria[crit]['value'] != -999:\n short_crit = crit.split('specimen_')[-1]\n if short_crit not in self.preferences['show_statistics_on_gui'\n ]:\n print('-I- statistic %s is not in your preferences' % crit)\n self.preferences['show_statistics_on_gui'].append(\n short_crit)\n crit_list_not_in_pref.append(crit)\n if len(crit_list_not_in_pref) > 0:\n stat_list = ':'.join(crit_list_not_in_pref)\n dlg1 = wx.MessageDialog(self, caption='WARNING:', message=\n \"\"\"statistics '%s' is in the imported criteria file but not in your appearence preferences.\nThis statistic will not appear on the gui panel.\n The program will exit after saving new acceptance criteria, and it will be added automatically the next time you open it \"\"\"\n % stat_list, style=wx.OK | wx.ICON_INFORMATION)\n self.show_dlg(dlg1)\n dlg1.Destroy()\n dia = thellier_gui_dialogs.Criteria_Dialog(None, self.\n acceptance_criteria, self.preferences, title='Acceptance Criteria')\n dia.Center()\n result = self.show_dlg(dia)\n if result == wx.ID_OK:\n self.On_close_criteria_box(dia)\n if len(crit_list_not_in_pref) > 0:\n dlg1 = wx.MessageDialog(self, caption='WARNING:', message=\n 'Exiting now! When you restart the gui all the new statistics will be added.'\n , style=wx.OK | wx.ICON_INFORMATION)\n self.show_dlg(dlg1)\n dlg1.Destroy()\n self.on_menu_exit(None)\n if result == wx.ID_CANCEL:\n for crit in crit_list_not_in_pref:\n short_crit = crit.split('specimen_')[-1]\n self.preferences['show_statistics_on_gui'].remove(short_crit)\n",
"role": "user"
},
{
"content": "on_menu_criteria_file",
"role": "assistant"
}
] |
def x(self, event):
dia = thellier_gui_dialogs.Criteria_Dialog(None, self.
acceptance_criteria, self.preferences, title='Set Acceptance Criteria')
dia.Center()
result = self.show_dlg(dia)
if result == wx.ID_OK:
self.On_close_criteria_box(dia)
|
on_menu_criteria
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n dia = thellier_gui_dialogs.Criteria_Dialog(None, self.\n acceptance_criteria, self.preferences, title='Set Acceptance Criteria')\n dia.Center()\n result = self.show_dlg(dia)\n if result == wx.ID_OK:\n self.On_close_criteria_box(dia)\n",
"role": "user"
},
{
"content": "on_menu_criteria",
"role": "assistant"
}
] |
def x(self, dia):
criteria_list = list(self.acceptance_criteria.keys())
criteria_list.sort()
avg_by = dia.set_average_by_sample_or_site.GetValue()
if avg_by == 'sample':
for crit in ['site_int_n', 'site_int_sigma', 'site_int_sigma_perc',
'site_aniso_mean', 'site_int_n_outlier_check']:
self.acceptance_criteria[crit]['value'] = -999
if avg_by == 'site':
for crit in ['sample_int_n', 'sample_int_sigma',
'sample_int_sigma_perc', 'sample_aniso_mean',
'sample_int_n_outlier_check']:
self.acceptance_criteria[crit]['value'] = -999
for i in range(len(criteria_list)):
crit = criteria_list[i]
value, accept = dia.get_value_for_crit(crit, self.acceptance_criteria)
if accept:
self.acceptance_criteria.update(accept)
if dia.set_stdev_opt.GetValue() == True:
self.acceptance_criteria['interpreter_method']['value'] = 'stdev_opt'
elif dia.set_bs.GetValue() == True:
self.acceptance_criteria['interpreter_method']['value'] = 'bs'
elif dia.set_bs_par.GetValue() == True:
self.acceptance_criteria['interpreter_method']['value'] = 'bs_par'
dlg1 = wx.MessageDialog(self, caption='Warning:', message=
"""changes are saved to the criteria file
""", style=wx.OK)
result = self.show_dlg(dlg1)
if result == wx.ID_OK:
try:
self.clear_boxes()
except IndexError:
pass
try:
self.write_acceptance_criteria_to_boxes()
except IOError:
pass
if self.data_model == 3:
crit_file = 'criteria.txt'
else:
crit_file = 'pmag_criteria.txt'
try:
pmag.write_criteria_to_file(os.path.join(self.WD, crit_file),
self.acceptance_criteria, data_model=self.data_model,
prior_crits=self.crit_data)
except AttributeError as ex:
print(ex)
print('no criteria given to save')
dlg1.Destroy()
dia.Destroy()
self.fig4.texts[0].remove()
txt = '{} data'.format(avg_by).capitalize()
self.fig4.text(0.02, 0.96, txt, {'family': self.font_type, 'fontsize':
10, 'style': 'normal', 'va': 'center', 'ha': 'left'})
self.recalculate_satistics()
try:
self.update_GUI_with_new_interpretation()
except KeyError:
pass
|
On_close_criteria_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dia):\n criteria_list = list(self.acceptance_criteria.keys())\n criteria_list.sort()\n avg_by = dia.set_average_by_sample_or_site.GetValue()\n if avg_by == 'sample':\n for crit in ['site_int_n', 'site_int_sigma', 'site_int_sigma_perc',\n 'site_aniso_mean', 'site_int_n_outlier_check']:\n self.acceptance_criteria[crit]['value'] = -999\n if avg_by == 'site':\n for crit in ['sample_int_n', 'sample_int_sigma',\n 'sample_int_sigma_perc', 'sample_aniso_mean',\n 'sample_int_n_outlier_check']:\n self.acceptance_criteria[crit]['value'] = -999\n for i in range(len(criteria_list)):\n crit = criteria_list[i]\n value, accept = dia.get_value_for_crit(crit, self.acceptance_criteria)\n if accept:\n self.acceptance_criteria.update(accept)\n if dia.set_stdev_opt.GetValue() == True:\n self.acceptance_criteria['interpreter_method']['value'] = 'stdev_opt'\n elif dia.set_bs.GetValue() == True:\n self.acceptance_criteria['interpreter_method']['value'] = 'bs'\n elif dia.set_bs_par.GetValue() == True:\n self.acceptance_criteria['interpreter_method']['value'] = 'bs_par'\n dlg1 = wx.MessageDialog(self, caption='Warning:', message=\n \"\"\"changes are saved to the criteria file\n \"\"\", style=wx.OK)\n result = self.show_dlg(dlg1)\n if result == wx.ID_OK:\n try:\n self.clear_boxes()\n except IndexError:\n pass\n try:\n self.write_acceptance_criteria_to_boxes()\n except IOError:\n pass\n if self.data_model == 3:\n crit_file = 'criteria.txt'\n else:\n crit_file = 'pmag_criteria.txt'\n try:\n pmag.write_criteria_to_file(os.path.join(self.WD, crit_file),\n self.acceptance_criteria, data_model=self.data_model,\n prior_crits=self.crit_data)\n except AttributeError as ex:\n print(ex)\n print('no criteria given to save')\n dlg1.Destroy()\n dia.Destroy()\n self.fig4.texts[0].remove()\n txt = '{} data'.format(avg_by).capitalize()\n self.fig4.text(0.02, 0.96, txt, {'family': self.font_type, 'fontsize': \n 10, 'style': 'normal', 'va': 'center', 'ha': 'left'})\n self.recalculate_satistics()\n try:\n self.update_GUI_with_new_interpretation()\n except KeyError:\n pass\n",
"role": "user"
},
{
"content": "On_close_criteria_box",
"role": "assistant"
}
] |
def x(self):
gframe = wx.BusyInfo(
'Re-calculating statistics for all specimens\n Please wait..', self)
for specimen in list(self.Data.keys()):
if 'pars' not in list(self.Data[specimen].keys()):
continue
if 'specimen_int_uT' not in list(self.Data[specimen]['pars'].keys()):
continue
tmin = self.Data[specimen]['pars']['measurement_step_min']
tmax = self.Data[specimen]['pars']['measurement_step_max']
pars = thellier_gui_lib.get_PI_parameters(self.Data, self.
acceptance_criteria, self.preferences, specimen, tmin, tmax,
self.GUI_log, THERMAL, MICROWAVE)
self.Data[specimen]['pars'] = pars
self.Data[specimen]['pars']['lab_dc_field'] = self.Data[specimen][
'lab_dc_field']
self.Data[specimen]['pars']['er_specimen_name'] = self.Data[specimen][
'er_specimen_name']
self.Data[specimen]['pars']['er_sample_name'] = self.Data[specimen][
'er_sample_name']
del gframe
|
recalculate_satistics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n gframe = wx.BusyInfo(\n 'Re-calculating statistics for all specimens\\n Please wait..', self)\n for specimen in list(self.Data.keys()):\n if 'pars' not in list(self.Data[specimen].keys()):\n continue\n if 'specimen_int_uT' not in list(self.Data[specimen]['pars'].keys()):\n continue\n tmin = self.Data[specimen]['pars']['measurement_step_min']\n tmax = self.Data[specimen]['pars']['measurement_step_max']\n pars = thellier_gui_lib.get_PI_parameters(self.Data, self.\n acceptance_criteria, self.preferences, specimen, tmin, tmax,\n self.GUI_log, THERMAL, MICROWAVE)\n self.Data[specimen]['pars'] = pars\n self.Data[specimen]['pars']['lab_dc_field'] = self.Data[specimen][\n 'lab_dc_field']\n self.Data[specimen]['pars']['er_specimen_name'] = self.Data[specimen][\n 'er_specimen_name']\n self.Data[specimen]['pars']['er_sample_name'] = self.Data[specimen][\n 'er_sample_name']\n del gframe\n",
"role": "user"
},
{
"content": "recalculate_satistics",
"role": "assistant"
}
] |
def x(self, criteria_file):
if self.data_model == 3:
self.acceptance_criteria = pmag.initialize_acceptance_criteria(
data_model=self.data_model)
self.add_thellier_gui_criteria()
fnames = {'criteria': criteria_file}
contribution = cb.Contribution(self.WD, custom_filenames=fnames,
read_tables=['criteria'])
if 'criteria' in contribution.tables:
crit_container = contribution.tables['criteria']
crit_data = crit_container.df
crit_data['definition'] = 'acceptance criteria for study'
self.crit_data = crit_data.to_dict('records')
for crit in self.crit_data:
m2_name = map_magic.convert_intensity_criteria('magic2',
crit['table_column'])
if not m2_name:
pass
elif m2_name not in self.acceptance_criteria:
print(
'-W- Your criteria file contains {}, which is not currently supported in Thellier GUI.'
.format(m2_name))
print(' This record will be skipped:\n {}'.format
(crit))
else:
if m2_name != crit['table_column'
] and 'scat' not in m2_name != '':
self.acceptance_criteria[m2_name]['value'] = float(crit
['criterion_value'])
self.acceptance_criteria[m2_name]['pmag_criteria_code'
] = crit['criterion']
if m2_name != crit['table_column'
] and 'scat' in m2_name != '':
if crit['criterion_value'] == 'True':
self.acceptance_criteria[m2_name]['value'] = 1
else:
self.acceptance_criteria[m2_name]['value'] = 0
else:
print("-E- Can't read criteria file")
else:
self.crit_data = {}
try:
self.acceptance_criteria = pmag.read_criteria_from_file(
criteria_file, self.acceptance_criteria)
except:
print("-E- Can't read pmag criteria file")
by_sample = True
flag = False
for crit in ['sample_int_n', 'sample_int_sigma_perc', 'sample_int_sigma']:
if self.acceptance_criteria[crit]['value'] == -999:
flag = True
if flag:
for crit in ['site_int_n', 'site_int_sigma_perc', 'site_int_sigma']:
if self.acceptance_criteria[crit]['value'] != -999:
by_sample = False
if not by_sample:
self.acceptance_criteria['average_by_sample_or_site']['value'] = 'site'
|
read_criteria_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, criteria_file):\n if self.data_model == 3:\n self.acceptance_criteria = pmag.initialize_acceptance_criteria(\n data_model=self.data_model)\n self.add_thellier_gui_criteria()\n fnames = {'criteria': criteria_file}\n contribution = cb.Contribution(self.WD, custom_filenames=fnames,\n read_tables=['criteria'])\n if 'criteria' in contribution.tables:\n crit_container = contribution.tables['criteria']\n crit_data = crit_container.df\n crit_data['definition'] = 'acceptance criteria for study'\n self.crit_data = crit_data.to_dict('records')\n for crit in self.crit_data:\n m2_name = map_magic.convert_intensity_criteria('magic2',\n crit['table_column'])\n if not m2_name:\n pass\n elif m2_name not in self.acceptance_criteria:\n print(\n '-W- Your criteria file contains {}, which is not currently supported in Thellier GUI.'\n .format(m2_name))\n print(' This record will be skipped:\\n {}'.format\n (crit))\n else:\n if m2_name != crit['table_column'\n ] and 'scat' not in m2_name != '':\n self.acceptance_criteria[m2_name]['value'] = float(crit\n ['criterion_value'])\n self.acceptance_criteria[m2_name]['pmag_criteria_code'\n ] = crit['criterion']\n if m2_name != crit['table_column'\n ] and 'scat' in m2_name != '':\n if crit['criterion_value'] == 'True':\n self.acceptance_criteria[m2_name]['value'] = 1\n else:\n self.acceptance_criteria[m2_name]['value'] = 0\n else:\n print(\"-E- Can't read criteria file\")\n else:\n self.crit_data = {}\n try:\n self.acceptance_criteria = pmag.read_criteria_from_file(\n criteria_file, self.acceptance_criteria)\n except:\n print(\"-E- Can't read pmag criteria file\")\n by_sample = True\n flag = False\n for crit in ['sample_int_n', 'sample_int_sigma_perc', 'sample_int_sigma']:\n if self.acceptance_criteria[crit]['value'] == -999:\n flag = True\n if flag:\n for crit in ['site_int_n', 'site_int_sigma_perc', 'site_int_sigma']:\n if self.acceptance_criteria[crit]['value'] != -999:\n by_sample = False\n if not by_sample:\n self.acceptance_criteria['average_by_sample_or_site']['value'] = 'site'\n",
"role": "user"
},
{
"content": "read_criteria_file",
"role": "assistant"
}
] |
def x(self, event):
thellier_gui_redo_file = open(os.path.join(self.WD, 'thellier_GUI.redo'
), 'w')
spec_list = list(self.Data.keys())
spec_list.sort()
redo_specimens_list = []
for sp in spec_list:
if 'saved' not in self.Data[sp]['pars']:
continue
if not self.Data[sp]['pars']['saved']:
continue
redo_specimens_list.append(sp)
thellier_gui_redo_file.write('%s %.0f %.0f\n' % (sp, self.Data[sp][
'pars']['measurement_step_min'], self.Data[sp]['pars'][
'measurement_step_max']))
dlg1 = wx.MessageDialog(self, caption='Saved:', message=
'File thellier_GUI.redo is saved in MagIC working folder', style=wx.OK)
result = self.show_dlg(dlg1)
if result == wx.ID_OK:
dlg1.Destroy()
thellier_gui_redo_file.close()
return
thellier_gui_redo_file.close()
self.close_warning = False
|
on_menu_save_interpretation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n thellier_gui_redo_file = open(os.path.join(self.WD, 'thellier_GUI.redo'\n ), 'w')\n spec_list = list(self.Data.keys())\n spec_list.sort()\n redo_specimens_list = []\n for sp in spec_list:\n if 'saved' not in self.Data[sp]['pars']:\n continue\n if not self.Data[sp]['pars']['saved']:\n continue\n redo_specimens_list.append(sp)\n thellier_gui_redo_file.write('%s %.0f %.0f\\n' % (sp, self.Data[sp][\n 'pars']['measurement_step_min'], self.Data[sp]['pars'][\n 'measurement_step_max']))\n dlg1 = wx.MessageDialog(self, caption='Saved:', message=\n 'File thellier_GUI.redo is saved in MagIC working folder', style=wx.OK)\n result = self.show_dlg(dlg1)\n if result == wx.ID_OK:\n dlg1.Destroy()\n thellier_gui_redo_file.close()\n return\n thellier_gui_redo_file.close()\n self.close_warning = False\n",
"role": "user"
},
{
"content": "on_menu_save_interpretation",
"role": "assistant"
}
] |
def x(self, event):
for sp in list(self.Data.keys()):
del self.Data[sp]['pars']
self.Data[sp]['pars'] = {}
self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field']
self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp][
'er_specimen_name']
self.Data[sp]['pars']['er_sample_name'] = self.Data[sp][
'er_sample_name']
self.Data_samples = {}
self.Data_sites = {}
self.tmin_box.SetValue('')
self.tmax_box.SetValue('')
self.clear_boxes()
self.draw_figure(self.s)
|
on_menu_clear_interpretation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n for sp in list(self.Data.keys()):\n del self.Data[sp]['pars']\n self.Data[sp]['pars'] = {}\n self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field']\n self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp][\n 'er_specimen_name']\n self.Data[sp]['pars']['er_sample_name'] = self.Data[sp][\n 'er_sample_name']\n self.Data_samples = {}\n self.Data_sites = {}\n self.tmin_box.SetValue('')\n self.tmax_box.SetValue('')\n self.clear_boxes()\n self.draw_figure(self.s)\n",
"role": "user"
},
{
"content": "on_menu_clear_interpretation",
"role": "assistant"
}
] |
def x(self, redo_file):
self.GUI_log.write(
'-I- reading redo file and processing new temperature bounds')
self.redo_specimens = {}
for sp in list(self.Data.keys()):
del self.Data[sp]['pars']
self.Data[sp]['pars'] = {}
self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field']
self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp][
'er_specimen_name']
self.Data[sp]['pars']['er_sample_name'] = self.Data[sp][
'er_sample_name']
self.Data_samples = {}
self.Data_sites = {}
fin = open(redo_file, 'r')
lines = fin.readlines()
fin.close()
for Line in lines:
line = Line.strip('\n').split()
specimen = line[0]
tmin_kelvin = float(line[1])
tmax_kelvin = float(line[2])
if specimen not in list(self.redo_specimens.keys()):
self.redo_specimens[specimen] = {}
self.redo_specimens[specimen]['t_min'] = float(tmin_kelvin)
self.redo_specimens[specimen]['t_max'] = float(tmax_kelvin)
if specimen in list(self.Data.keys()):
if tmin_kelvin not in self.Data[specimen]['t_Arai'
] or tmax_kelvin not in self.Data[specimen]['t_Arai']:
self.GUI_log.write(
"""-W- WARNING: can't fit temperature bounds in the redo file to the actual measurement. specimen %s
"""
% specimen)
else:
self.Data[specimen]['pars'
] = thellier_gui_lib.get_PI_parameters(self.Data, self.
acceptance_criteria, self.preferences, specimen, float(
tmin_kelvin), float(tmax_kelvin), self.GUI_log, THERMAL,
MICROWAVE)
try:
self.Data[specimen]['pars'
] = thellier_gui_lib.get_PI_parameters(self.Data,
self.acceptance_criteria, self.preferences,
specimen, float(tmin_kelvin), float(tmax_kelvin),
self.GUI_log, THERMAL, MICROWAVE)
self.Data[specimen]['pars']['saved'] = True
sample = self.Data_hierarchy['specimens'][specimen]
if sample not in list(self.Data_samples.keys()):
self.Data_samples[sample] = {}
if specimen not in list(self.Data_samples[sample].keys()):
self.Data_samples[sample][specimen] = {}
self.Data_samples[sample][specimen]['B'] = self.Data[
specimen]['pars']['specimen_int_uT']
site = thellier_gui_lib.get_site_from_hierarchy(sample,
self.Data_hierarchy)
if site not in list(self.Data_sites.keys()):
self.Data_sites[site] = {}
if specimen not in list(self.Data_sites[site].keys()):
self.Data_sites[site][specimen] = {}
self.Data_sites[site][specimen]['B'] = self.Data[specimen][
'pars']['specimen_int_uT']
except:
print('-E- ERROR 1')
self.GUI_log.write(
"""-E- ERROR. Can't calculate PI paremeters for specimen %s using redo file. Check!
"""
% specimen)
else:
self.GUI_log.write(
"""-W- WARNING: Can't find specimen %s from redo file in measurement file!
"""
% specimen)
print(
"-W- WARNING: Can't find specimen %s from redo file in measurement file!\n"
% specimen)
if not fin.closed:
fin.close()
self.pars = self.Data[self.s]['pars']
self.clear_boxes()
self.draw_figure(self.s)
self.update_GUI_with_new_interpretation()
|
read_redo_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, redo_file):\n self.GUI_log.write(\n '-I- reading redo file and processing new temperature bounds')\n self.redo_specimens = {}\n for sp in list(self.Data.keys()):\n del self.Data[sp]['pars']\n self.Data[sp]['pars'] = {}\n self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field']\n self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp][\n 'er_specimen_name']\n self.Data[sp]['pars']['er_sample_name'] = self.Data[sp][\n 'er_sample_name']\n self.Data_samples = {}\n self.Data_sites = {}\n fin = open(redo_file, 'r')\n lines = fin.readlines()\n fin.close()\n for Line in lines:\n line = Line.strip('\\n').split()\n specimen = line[0]\n tmin_kelvin = float(line[1])\n tmax_kelvin = float(line[2])\n if specimen not in list(self.redo_specimens.keys()):\n self.redo_specimens[specimen] = {}\n self.redo_specimens[specimen]['t_min'] = float(tmin_kelvin)\n self.redo_specimens[specimen]['t_max'] = float(tmax_kelvin)\n if specimen in list(self.Data.keys()):\n if tmin_kelvin not in self.Data[specimen]['t_Arai'\n ] or tmax_kelvin not in self.Data[specimen]['t_Arai']:\n self.GUI_log.write(\n \"\"\"-W- WARNING: can't fit temperature bounds in the redo file to the actual measurement. specimen %s\n\"\"\"\n % specimen)\n else:\n self.Data[specimen]['pars'\n ] = thellier_gui_lib.get_PI_parameters(self.Data, self.\n acceptance_criteria, self.preferences, specimen, float(\n tmin_kelvin), float(tmax_kelvin), self.GUI_log, THERMAL,\n MICROWAVE)\n try:\n self.Data[specimen]['pars'\n ] = thellier_gui_lib.get_PI_parameters(self.Data,\n self.acceptance_criteria, self.preferences,\n specimen, float(tmin_kelvin), float(tmax_kelvin),\n self.GUI_log, THERMAL, MICROWAVE)\n self.Data[specimen]['pars']['saved'] = True\n sample = self.Data_hierarchy['specimens'][specimen]\n if sample not in list(self.Data_samples.keys()):\n self.Data_samples[sample] = {}\n if specimen not in list(self.Data_samples[sample].keys()):\n self.Data_samples[sample][specimen] = {}\n self.Data_samples[sample][specimen]['B'] = self.Data[\n specimen]['pars']['specimen_int_uT']\n site = thellier_gui_lib.get_site_from_hierarchy(sample,\n self.Data_hierarchy)\n if site not in list(self.Data_sites.keys()):\n self.Data_sites[site] = {}\n if specimen not in list(self.Data_sites[site].keys()):\n self.Data_sites[site][specimen] = {}\n self.Data_sites[site][specimen]['B'] = self.Data[specimen][\n 'pars']['specimen_int_uT']\n except:\n print('-E- ERROR 1')\n self.GUI_log.write(\n \"\"\"-E- ERROR. Can't calculate PI paremeters for specimen %s using redo file. Check!\n\"\"\"\n % specimen)\n else:\n self.GUI_log.write(\n \"\"\"-W- WARNING: Can't find specimen %s from redo file in measurement file!\n\"\"\"\n % specimen)\n print(\n \"-W- WARNING: Can't find specimen %s from redo file in measurement file!\\n\"\n % specimen)\n if not fin.closed:\n fin.close()\n self.pars = self.Data[self.s]['pars']\n self.clear_boxes()\n self.draw_figure(self.s)\n self.update_GUI_with_new_interpretation()\n",
"role": "user"
},
{
"content": "read_redo_file",
"role": "assistant"
}
] |
def x(self, path, ignore_lines_n, sort_by_these_names):
DATA = {}
fin = open(path, 'r')
for i in range(ignore_lines_n):
fin.readline()
line = fin.readline()
header = line.strip('\n').split('\t')
for line in fin.readlines():
if line[0] == '#':
continue
tmp_data = {}
tmp_line = line.strip('\n').split('\t')
for i in range(len(tmp_line)):
if i >= len(header):
continue
tmp_data[header[i]] = tmp_line[i]
for name in sort_by_these_names:
if name in list(tmp_data.keys()) and tmp_data[name] != '':
er_ages_rec = self.convert_ages_to_calendar_year(tmp_data)
DATA[tmp_data[name]] = er_ages_rec
fin.close()
return DATA
|
read_er_ages_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path, ignore_lines_n, sort_by_these_names):\n DATA = {}\n fin = open(path, 'r')\n for i in range(ignore_lines_n):\n fin.readline()\n line = fin.readline()\n header = line.strip('\\n').split('\\t')\n for line in fin.readlines():\n if line[0] == '#':\n continue\n tmp_data = {}\n tmp_line = line.strip('\\n').split('\\t')\n for i in range(len(tmp_line)):\n if i >= len(header):\n continue\n tmp_data[header[i]] = tmp_line[i]\n for name in sort_by_these_names:\n if name in list(tmp_data.keys()) and tmp_data[name] != '':\n er_ages_rec = self.convert_ages_to_calendar_year(tmp_data)\n DATA[tmp_data[name]] = er_ages_rec\n fin.close()\n return DATA\n",
"role": "user"
},
{
"content": "read_er_ages_file",
"role": "assistant"
}
] |
def x(self, Data_sample_or_site):
pars = {}
tmp_B = []
for spec in list(Data_sample_or_site.keys()):
if 'B' in list(Data_sample_or_site[spec].keys()):
tmp_B.append(Data_sample_or_site[spec]['B'])
if len(tmp_B) < 1:
pars['N'] = 0
pars['pass_or_fail'] = 'fail'
return pars
tmp_B = np.array(tmp_B)
pars['pass_or_fail'] = 'pass'
pars['N'] = len(tmp_B)
pars['B_uT'] = np.mean(tmp_B)
if len(tmp_B) > 1:
pars['B_std_uT'] = np.std(tmp_B, ddof=1)
pars['B_std_perc'] = 100 * (pars['B_std_uT'] / pars['B_uT'])
else:
pars['B_std_uT'] = 0
pars['B_std_perc'] = 0
pars['sample_int_interval_uT'] = max(tmp_B) - min(tmp_B)
pars['sample_int_interval_perc'] = 100 * (pars['sample_int_interval_uT'
] / pars['B_uT'])
pars['fail_list'] = []
if self.acceptance_criteria['average_by_sample_or_site']['value'
] == 'sample':
average_by_sample_or_site = 'sample'
else:
average_by_sample_or_site = 'site'
if average_by_sample_or_site == 'sample':
cutoff_value = self.acceptance_criteria['sample_int_n']['value']
else:
cutoff_value = self.acceptance_criteria['site_int_n']['value']
if cutoff_value != -999:
if pars['N'] < cutoff_value:
pars['pass_or_fail'] = 'fail'
pars['fail_list'].append('int_n')
pass_sigma, pass_sigma_perc = False, False
if self.acceptance_criteria['average_by_sample_or_site']['value'
] == 'sample':
sigma_cutoff_value = self.acceptance_criteria['sample_int_sigma'][
'value']
else:
sigma_cutoff_value = self.acceptance_criteria['site_int_sigma']['value'
]
if sigma_cutoff_value != -999:
if pars['B_std_uT'] * 1e-06 <= sigma_cutoff_value:
pass_sigma = True
if self.acceptance_criteria['average_by_sample_or_site']['value'
] == 'sample':
sigma_perc_cutoff_value = self.acceptance_criteria[
'sample_int_sigma_perc']['value']
else:
sigma_perc_cutoff_value = self.acceptance_criteria[
'site_int_sigma_perc']['value']
if sigma_perc_cutoff_value != -999:
if pars['B_std_perc'] <= sigma_perc_cutoff_value:
pass_sigma_perc = True
if not (sigma_cutoff_value == -999 and sigma_perc_cutoff_value == -999):
if not (pass_sigma or pass_sigma_perc):
pars['pass_or_fail'] = 'fail'
pars['fail_list'].append('int_sigma')
pass_int_interval, pass_int_interval_perc = False, False
if self.acceptance_criteria['average_by_sample_or_site']['value'
] == 'sample':
cutoff_value = self.acceptance_criteria['sample_int_interval_uT'][
'value']
if cutoff_value != -999:
if pars['sample_int_interval_uT'] <= cutoff_value:
pass_int_interval = True
cutoff_value_perc = self.acceptance_criteria['sample_int_interval_perc'
]['value']
if cutoff_value_perc != -999:
if pars['sample_int_interval_perc'] <= cutoff_value_perc:
pass_int_interval_perc = True
if not (cutoff_value == -999 and cutoff_value_perc == -999):
if not (pass_int_interval or pass_int_interval_perc):
pars['pass_or_fail'] = 'fail'
pars['fail_list'].append('int_interval')
return pars
|
calculate_sample_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, Data_sample_or_site):\n pars = {}\n tmp_B = []\n for spec in list(Data_sample_or_site.keys()):\n if 'B' in list(Data_sample_or_site[spec].keys()):\n tmp_B.append(Data_sample_or_site[spec]['B'])\n if len(tmp_B) < 1:\n pars['N'] = 0\n pars['pass_or_fail'] = 'fail'\n return pars\n tmp_B = np.array(tmp_B)\n pars['pass_or_fail'] = 'pass'\n pars['N'] = len(tmp_B)\n pars['B_uT'] = np.mean(tmp_B)\n if len(tmp_B) > 1:\n pars['B_std_uT'] = np.std(tmp_B, ddof=1)\n pars['B_std_perc'] = 100 * (pars['B_std_uT'] / pars['B_uT'])\n else:\n pars['B_std_uT'] = 0\n pars['B_std_perc'] = 0\n pars['sample_int_interval_uT'] = max(tmp_B) - min(tmp_B)\n pars['sample_int_interval_perc'] = 100 * (pars['sample_int_interval_uT'\n ] / pars['B_uT'])\n pars['fail_list'] = []\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n average_by_sample_or_site = 'sample'\n else:\n average_by_sample_or_site = 'site'\n if average_by_sample_or_site == 'sample':\n cutoff_value = self.acceptance_criteria['sample_int_n']['value']\n else:\n cutoff_value = self.acceptance_criteria['site_int_n']['value']\n if cutoff_value != -999:\n if pars['N'] < cutoff_value:\n pars['pass_or_fail'] = 'fail'\n pars['fail_list'].append('int_n')\n pass_sigma, pass_sigma_perc = False, False\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n sigma_cutoff_value = self.acceptance_criteria['sample_int_sigma'][\n 'value']\n else:\n sigma_cutoff_value = self.acceptance_criteria['site_int_sigma']['value'\n ]\n if sigma_cutoff_value != -999:\n if pars['B_std_uT'] * 1e-06 <= sigma_cutoff_value:\n pass_sigma = True\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n sigma_perc_cutoff_value = self.acceptance_criteria[\n 'sample_int_sigma_perc']['value']\n else:\n sigma_perc_cutoff_value = self.acceptance_criteria[\n 'site_int_sigma_perc']['value']\n if sigma_perc_cutoff_value != -999:\n if pars['B_std_perc'] <= sigma_perc_cutoff_value:\n pass_sigma_perc = True\n if not (sigma_cutoff_value == -999 and sigma_perc_cutoff_value == -999):\n if not (pass_sigma or pass_sigma_perc):\n pars['pass_or_fail'] = 'fail'\n pars['fail_list'].append('int_sigma')\n pass_int_interval, pass_int_interval_perc = False, False\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n cutoff_value = self.acceptance_criteria['sample_int_interval_uT'][\n 'value']\n if cutoff_value != -999:\n if pars['sample_int_interval_uT'] <= cutoff_value:\n pass_int_interval = True\n cutoff_value_perc = self.acceptance_criteria['sample_int_interval_perc'\n ]['value']\n if cutoff_value_perc != -999:\n if pars['sample_int_interval_perc'] <= cutoff_value_perc:\n pass_int_interval_perc = True\n if not (cutoff_value == -999 and cutoff_value_perc == -999):\n if not (pass_int_interval or pass_int_interval_perc):\n pars['pass_or_fail'] = 'fail'\n pars['fail_list'].append('int_interval')\n return pars\n",
"role": "user"
},
{
"content": "calculate_sample_mean",
"role": "assistant"
}
] |
def x(self, er_ages_rec):
if 'age' not in list(er_ages_rec.keys()) or cb.is_null(er_ages_rec[
'age'], False):
return er_ages_rec
if 'age_unit' not in list(er_ages_rec.keys()) or cb.is_null(er_ages_rec
['age_unit']):
return er_ages_rec
if cb.is_null(er_ages_rec['age'], False):
if 'age_range_high' in list(er_ages_rec.keys()
) and 'age_range_low' in list(er_ages_rec.keys()):
if cb.not_null(er_ages_rec['age_range_high'], False
) and cb.not_null(er_ages_rec['age_range_low'], False):
er_ages_rec['age'] = np.mean([float(er_ages_rec[
'age_range_high']), float(er_ages_rec['age_range_low'])])
if cb.is_null(er_ages_rec['age'], False):
return er_ages_rec
age_unit = er_ages_rec['age_unit']
mutliplier = 1
if age_unit == 'Ga':
mutliplier = -1000000000.0
if age_unit == 'Ma':
mutliplier = -1000000.0
if age_unit == 'Ka':
mutliplier = -1000.0
if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)':
mutliplier = 1
if age_unit == 'Years BP' or age_unit == 'Years Cal BP':
mutliplier = 1
age = float(er_ages_rec['age']) * mutliplier
if age_unit == 'Years BP' or age_unit == 'Years Cal BP':
age = 1950 - age
er_ages_rec['age_cal_year'] = age
age_range_low = age
age_range_high = age
age_sigma = 0
if 'age_sigma' in list(er_ages_rec.keys()) and cb.not_null(er_ages_rec[
'age_sigma'], False):
age_sigma = float(er_ages_rec['age_sigma']) * mutliplier
if age_unit == 'Years BP' or age_unit == 'Years Cal BP':
age_sigma = 1950 - age_sigma
age_range_low = age - age_sigma
age_range_high = age + age_sigma
if 'age_range_high' in list(er_ages_rec.keys()
) and 'age_range_low' in list(er_ages_rec.keys()):
if cb.not_null(er_ages_rec['age_range_high'], False) and cb.not_null(
er_ages_rec['age_range_low'], False):
age_range_high = float(er_ages_rec['age_range_high']) * mutliplier
if age_unit == 'Years BP' or age_unit == 'Years Cal BP':
age_range_high = 1950 - age_range_high
age_range_low = float(er_ages_rec['age_range_low']) * mutliplier
if age_unit == 'Years BP' or age_unit == 'Years Cal BP':
age_range_low = 1950 - age_range_low
er_ages_rec['age_cal_year_range_low'] = age_range_low
er_ages_rec['age_cal_year_range_high'] = age_range_high
return er_ages_rec
|
convert_ages_to_calendar_year
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, er_ages_rec):\n if 'age' not in list(er_ages_rec.keys()) or cb.is_null(er_ages_rec[\n 'age'], False):\n return er_ages_rec\n if 'age_unit' not in list(er_ages_rec.keys()) or cb.is_null(er_ages_rec\n ['age_unit']):\n return er_ages_rec\n if cb.is_null(er_ages_rec['age'], False):\n if 'age_range_high' in list(er_ages_rec.keys()\n ) and 'age_range_low' in list(er_ages_rec.keys()):\n if cb.not_null(er_ages_rec['age_range_high'], False\n ) and cb.not_null(er_ages_rec['age_range_low'], False):\n er_ages_rec['age'] = np.mean([float(er_ages_rec[\n 'age_range_high']), float(er_ages_rec['age_range_low'])])\n if cb.is_null(er_ages_rec['age'], False):\n return er_ages_rec\n age_unit = er_ages_rec['age_unit']\n mutliplier = 1\n if age_unit == 'Ga':\n mutliplier = -1000000000.0\n if age_unit == 'Ma':\n mutliplier = -1000000.0\n if age_unit == 'Ka':\n mutliplier = -1000.0\n if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)':\n mutliplier = 1\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n mutliplier = 1\n age = float(er_ages_rec['age']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age = 1950 - age\n er_ages_rec['age_cal_year'] = age\n age_range_low = age\n age_range_high = age\n age_sigma = 0\n if 'age_sigma' in list(er_ages_rec.keys()) and cb.not_null(er_ages_rec[\n 'age_sigma'], False):\n age_sigma = float(er_ages_rec['age_sigma']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_sigma = 1950 - age_sigma\n age_range_low = age - age_sigma\n age_range_high = age + age_sigma\n if 'age_range_high' in list(er_ages_rec.keys()\n ) and 'age_range_low' in list(er_ages_rec.keys()):\n if cb.not_null(er_ages_rec['age_range_high'], False) and cb.not_null(\n er_ages_rec['age_range_low'], False):\n age_range_high = float(er_ages_rec['age_range_high']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_range_high = 1950 - age_range_high\n age_range_low = float(er_ages_rec['age_range_low']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_range_low = 1950 - age_range_low\n er_ages_rec['age_cal_year_range_low'] = age_range_low\n er_ages_rec['age_cal_year_range_high'] = age_range_high\n return er_ages_rec\n",
"role": "user"
},
{
"content": "convert_ages_to_calendar_year",
"role": "assistant"
}
] |
def x(self, event):
if 'saved' in list(self.pars.keys()):
if self.pars['saved']:
self.last_saved_pars = {}
for key in list(self.pars.keys()):
self.last_saved_pars[key] = self.pars[key]
self.pars['saved'] = False
t1 = self.tmin_box.GetValue()
t2 = self.tmax_box.GetValue()
if t1 == '' or t2 == '':
print('empty interpretation bounds')
return
if float(t2) < float(t1):
print('upper bound less than lower bound')
return
index_1 = self.T_list.index(t1)
index_2 = self.T_list.index(t2)
if index_2 - index_1 + 1 >= 3:
if self.Data[self.s]['T_or_MW'] != 'MW':
self.pars = thellier_gui_lib.get_PI_parameters(self.Data, self.
acceptance_criteria, self.preferences, self.s, float(t1) +
273.0, float(t2) + 273.0, self.GUI_log, THERMAL, MICROWAVE)
self.Data[self.s]['pars'] = self.pars
else:
self.pars = thellier_gui_lib.get_PI_parameters(self.Data, self.
acceptance_criteria, self.preferences, self.s, float(t1),
float(t2), self.GUI_log, THERMAL, MICROWAVE)
self.Data[self.s]['pars'] = self.pars
self.update_GUI_with_new_interpretation()
self.Add_text(self.s)
|
get_new_T_PI_parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if 'saved' in list(self.pars.keys()):\n if self.pars['saved']:\n self.last_saved_pars = {}\n for key in list(self.pars.keys()):\n self.last_saved_pars[key] = self.pars[key]\n self.pars['saved'] = False\n t1 = self.tmin_box.GetValue()\n t2 = self.tmax_box.GetValue()\n if t1 == '' or t2 == '':\n print('empty interpretation bounds')\n return\n if float(t2) < float(t1):\n print('upper bound less than lower bound')\n return\n index_1 = self.T_list.index(t1)\n index_2 = self.T_list.index(t2)\n if index_2 - index_1 + 1 >= 3:\n if self.Data[self.s]['T_or_MW'] != 'MW':\n self.pars = thellier_gui_lib.get_PI_parameters(self.Data, self.\n acceptance_criteria, self.preferences, self.s, float(t1) + \n 273.0, float(t2) + 273.0, self.GUI_log, THERMAL, MICROWAVE)\n self.Data[self.s]['pars'] = self.pars\n else:\n self.pars = thellier_gui_lib.get_PI_parameters(self.Data, self.\n acceptance_criteria, self.preferences, self.s, float(t1),\n float(t2), self.GUI_log, THERMAL, MICROWAVE)\n self.Data[self.s]['pars'] = self.pars\n self.update_GUI_with_new_interpretation()\n self.Add_text(self.s)\n",
"role": "user"
},
{
"content": "get_new_T_PI_parameters",
"role": "assistant"
}
] |
def x(self):
category = 'thellier_gui'
for crit in ['sample_int_n_outlier_check', 'site_int_n_outlier_check']:
self.acceptance_criteria[crit] = {}
self.acceptance_criteria[crit]['category'] = category
self.acceptance_criteria[crit]['criterion_name'] = crit
self.acceptance_criteria[crit]['value'] = -999
self.acceptance_criteria[crit]['threshold_type'] = 'low'
self.acceptance_criteria[crit]['decimal_points'] = 0
for crit in ['sample_int_interval_uT', 'sample_int_interval_perc',
'site_int_interval_uT', 'site_int_interval_perc',
'sample_int_BS_68_uT', 'sample_int_BS_95_uT',
'sample_int_BS_68_perc', 'sample_int_BS_95_perc',
'specimen_int_max_slope_diff']:
self.acceptance_criteria[crit] = {}
self.acceptance_criteria[crit]['category'] = category
self.acceptance_criteria[crit]['criterion_name'] = crit
self.acceptance_criteria[crit]['value'] = -999
self.acceptance_criteria[crit]['threshold_type'] = 'high'
if crit in ['specimen_int_max_slope_diff']:
self.acceptance_criteria[crit]['decimal_points'] = -999
else:
self.acceptance_criteria[crit]['decimal_points'] = 1
self.acceptance_criteria[crit]['comments'] = 'thellier_gui_only'
for crit in ['average_by_sample_or_site', 'interpreter_method']:
self.acceptance_criteria[crit] = {}
self.acceptance_criteria[crit]['category'] = category
self.acceptance_criteria[crit]['criterion_name'] = crit
if crit in ['average_by_sample_or_site']:
self.acceptance_criteria[crit]['value'] = 'sample'
if crit in ['interpreter_method']:
self.acceptance_criteria[crit]['value'] = 'stdev_opt'
self.acceptance_criteria[crit]['threshold_type'] = 'flag'
self.acceptance_criteria[crit]['decimal_points'] = -999
for crit in ['include_nrm']:
self.acceptance_criteria[crit] = {}
self.acceptance_criteria[crit]['category'] = category
self.acceptance_criteria[crit]['criterion_name'] = crit
self.acceptance_criteria[crit]['value'] = True
self.acceptance_criteria[crit]['threshold_type'] = 'bool'
self.acceptance_criteria[crit]['decimal_points'] = -999
self.average_by_sample_or_site = 'sample'
self.stdev_opt = True
self.bs = False
self.bs_par = False
|
add_thellier_gui_criteria
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n category = 'thellier_gui'\n for crit in ['sample_int_n_outlier_check', 'site_int_n_outlier_check']:\n self.acceptance_criteria[crit] = {}\n self.acceptance_criteria[crit]['category'] = category\n self.acceptance_criteria[crit]['criterion_name'] = crit\n self.acceptance_criteria[crit]['value'] = -999\n self.acceptance_criteria[crit]['threshold_type'] = 'low'\n self.acceptance_criteria[crit]['decimal_points'] = 0\n for crit in ['sample_int_interval_uT', 'sample_int_interval_perc',\n 'site_int_interval_uT', 'site_int_interval_perc',\n 'sample_int_BS_68_uT', 'sample_int_BS_95_uT',\n 'sample_int_BS_68_perc', 'sample_int_BS_95_perc',\n 'specimen_int_max_slope_diff']:\n self.acceptance_criteria[crit] = {}\n self.acceptance_criteria[crit]['category'] = category\n self.acceptance_criteria[crit]['criterion_name'] = crit\n self.acceptance_criteria[crit]['value'] = -999\n self.acceptance_criteria[crit]['threshold_type'] = 'high'\n if crit in ['specimen_int_max_slope_diff']:\n self.acceptance_criteria[crit]['decimal_points'] = -999\n else:\n self.acceptance_criteria[crit]['decimal_points'] = 1\n self.acceptance_criteria[crit]['comments'] = 'thellier_gui_only'\n for crit in ['average_by_sample_or_site', 'interpreter_method']:\n self.acceptance_criteria[crit] = {}\n self.acceptance_criteria[crit]['category'] = category\n self.acceptance_criteria[crit]['criterion_name'] = crit\n if crit in ['average_by_sample_or_site']:\n self.acceptance_criteria[crit]['value'] = 'sample'\n if crit in ['interpreter_method']:\n self.acceptance_criteria[crit]['value'] = 'stdev_opt'\n self.acceptance_criteria[crit]['threshold_type'] = 'flag'\n self.acceptance_criteria[crit]['decimal_points'] = -999\n for crit in ['include_nrm']:\n self.acceptance_criteria[crit] = {}\n self.acceptance_criteria[crit]['category'] = category\n self.acceptance_criteria[crit]['criterion_name'] = crit\n self.acceptance_criteria[crit]['value'] = True\n self.acceptance_criteria[crit]['threshold_type'] = 'bool'\n self.acceptance_criteria[crit]['decimal_points'] = -999\n self.average_by_sample_or_site = 'sample'\n self.stdev_opt = True\n self.bs = False\n self.bs_par = False\n",
"role": "user"
},
{
"content": "add_thellier_gui_criteria",
"role": "assistant"
}
] |
def x():
ofile = ''
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-F' in sys.argv:
ind = sys.argv.index('-F')
ofile = sys.argv[ind + 1]
outfile = open(ofile, 'w')
if '-i' in sys.argv:
cont = 1
while cont == 1:
cart = []
try:
ans = input('X: [ctrl-D to quit] ')
cart.append(float(ans))
ans = input('Y: ')
cart.append(float(ans))
ans = input('Z: ')
cart.append(float(ans))
except:
print('\n Good-bye \n')
sys.exit()
dir = pmag.cart2dir(cart)
print('%7.1f %7.1f %10.3e' % (dir[0], dir[1], dir[2]))
elif '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
inp = numpy.loadtxt(file)
else:
inp = numpy.loadtxt(sys.stdin, dtype=numpy.float)
dir = pmag.cart2dir(inp)
if len(dir.shape) == 1:
line = dir
print('%7.1f %7.1f %10.3e' % (line[0], line[1], line[2]))
if ofile != '':
outstring = '%7.1f %7.1f %10.8e\n' % (line[0], line[1], line[2])
outfile.write(outstring)
else:
for line in dir:
print('%7.1f %7.1f %10.3e' % (line[0], line[1], line[2]))
if ofile != '':
outstring = '%7.1f %7.1f %10.8e\n' % (line[0], line[1], line[2]
)
outfile.write(outstring)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n ofile = ''\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n outfile = open(ofile, 'w')\n if '-i' in sys.argv:\n cont = 1\n while cont == 1:\n cart = []\n try:\n ans = input('X: [ctrl-D to quit] ')\n cart.append(float(ans))\n ans = input('Y: ')\n cart.append(float(ans))\n ans = input('Z: ')\n cart.append(float(ans))\n except:\n print('\\n Good-bye \\n')\n sys.exit()\n dir = pmag.cart2dir(cart)\n print('%7.1f %7.1f %10.3e' % (dir[0], dir[1], dir[2]))\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n inp = numpy.loadtxt(file)\n else:\n inp = numpy.loadtxt(sys.stdin, dtype=numpy.float)\n dir = pmag.cart2dir(inp)\n if len(dir.shape) == 1:\n line = dir\n print('%7.1f %7.1f %10.3e' % (line[0], line[1], line[2]))\n if ofile != '':\n outstring = '%7.1f %7.1f %10.8e\\n' % (line[0], line[1], line[2])\n outfile.write(outstring)\n else:\n for line in dir:\n print('%7.1f %7.1f %10.3e' % (line[0], line[1], line[2]))\n if ofile != '':\n outstring = '%7.1f %7.1f %10.8e\\n' % (line[0], line[1], line[2]\n )\n outfile.write(outstring)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
save_plots = False
if '-sav' in sys.argv:
save_plots = True
interactive = False
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
fmt = pmag.get_named_arg('-fmt', 'svg')
fname = pmag.get_named_arg('-f', '')
outfile = pmag.get_named_arg('-F', '')
norm = 1
if '-N' in sys.argv:
norm = 0
if '-twin' in sys.argv:
norm = -1
binsize = pmag.get_named_arg('-b', 0)
if '-xlab' in sys.argv:
ind = sys.argv.index('-xlab')
xlab = sys.argv[ind + 1]
else:
xlab = 'x'
data = []
if not fname:
print('-I- Trying to read from stdin... <ctrl>-c to quit')
data = np.loadtxt(sys.stdin, dtype=np.float)
ipmag.histplot(fname, data, outfile, xlab, binsize, norm, fmt,
save_plots, interactive)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n save_plots = False\n if '-sav' in sys.argv:\n save_plots = True\n interactive = False\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n fmt = pmag.get_named_arg('-fmt', 'svg')\n fname = pmag.get_named_arg('-f', '')\n outfile = pmag.get_named_arg('-F', '')\n norm = 1\n if '-N' in sys.argv:\n norm = 0\n if '-twin' in sys.argv:\n norm = -1\n binsize = pmag.get_named_arg('-b', 0)\n if '-xlab' in sys.argv:\n ind = sys.argv.index('-xlab')\n xlab = sys.argv[ind + 1]\n else:\n xlab = 'x'\n data = []\n if not fname:\n print('-I- Trying to read from stdin... <ctrl>-c to quit')\n data = np.loadtxt(sys.stdin, dtype=np.float)\n ipmag.histplot(fname, data, outfile, xlab, binsize, norm, fmt,\n save_plots, interactive)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(argv):
string = ' '.join(argv)
string = string.split(' -')
program = string[0]
arguments = [s.split() for s in string[1:]]
return arguments
|
extract_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(argv):\n string = ' '.join(argv)\n string = string.split(' -')\n program = string[0]\n arguments = [s.split() for s in string[1:]]\n return arguments\n",
"role": "user"
},
{
"content": "extract_args",
"role": "assistant"
}
] |
def x(arguments, data_frame):
stripped_args = [a[0] for a in arguments]
df = data_frame.df
for a in arguments:
if a[0] not in df.index:
print('-I- ignoring invalid argument: {}'.format(a[0]))
print('-')
condition = df['reqd']
reqd_args = df[condition]
for arg in reqd_args['arg_name']:
if arg not in stripped_args:
raise pmag.MissingCommandLineArgException('-' + arg)
default_args = df
using_defaults = []
for arg_name, row in default_args.iterrows():
default = row['default']
if arg_name not in stripped_args:
using_defaults.append(arg_name)
arguments.append([arg_name, default])
using_defaults = [('-' + arg) for arg in using_defaults]
print('Using default arguments for: {}'.format(', '.join(using_defaults)))
return arguments
|
check_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arguments, data_frame):\n stripped_args = [a[0] for a in arguments]\n df = data_frame.df\n for a in arguments:\n if a[0] not in df.index:\n print('-I- ignoring invalid argument: {}'.format(a[0]))\n print('-')\n condition = df['reqd']\n reqd_args = df[condition]\n for arg in reqd_args['arg_name']:\n if arg not in stripped_args:\n raise pmag.MissingCommandLineArgException('-' + arg)\n default_args = df\n using_defaults = []\n for arg_name, row in default_args.iterrows():\n default = row['default']\n if arg_name not in stripped_args:\n using_defaults.append(arg_name)\n arguments.append([arg_name, default])\n using_defaults = [('-' + arg) for arg in using_defaults]\n print('Using default arguments for: {}'.format(', '.join(using_defaults)))\n return arguments\n",
"role": "user"
},
{
"content": "check_args",
"role": "assistant"
}
] |
def x(self):
if self.data_type in ['orient', 'ages']:
belongs_to = []
else:
parent_table_name = self.parent_type + 's'
if parent_table_name in self.contribution.tables:
belongs_to = sorted(self.contribution.tables[parent_table_name]
.df.index.unique())
else:
belongs_to = []
self.choices = {}
if self.data_type in ['specimens', 'samples', 'sites']:
self.choices = {(1): (belongs_to, False)}
if self.data_type == 'orient':
self.choices = {(1): (['g', 'b'], False)}
if self.data_type == 'ages':
for level in ['specimen', 'sample', 'site', 'location']:
if level in self.grid.col_labels:
level_names = []
if level + 's' in self.contribution.tables:
level_names = list(self.contribution.tables[level + 's'
].df.index.unique())
num = self.grid.col_labels.index(level)
self.choices[num] = level_names, False
self.grid.Bind(wx.grid.EVT_GRID_CELL_LEFT_CLICK, lambda event: self.
on_left_click(event, self.grid, self.choices))
cols = self.grid.GetNumberCols()
col_labels = [self.grid.GetColLabelValue(col) for col in range(cols)]
for col_number, label in enumerate(col_labels):
self.add_drop_down(col_number, label)
|
InitUI
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.data_type in ['orient', 'ages']:\n belongs_to = []\n else:\n parent_table_name = self.parent_type + 's'\n if parent_table_name in self.contribution.tables:\n belongs_to = sorted(self.contribution.tables[parent_table_name]\n .df.index.unique())\n else:\n belongs_to = []\n self.choices = {}\n if self.data_type in ['specimens', 'samples', 'sites']:\n self.choices = {(1): (belongs_to, False)}\n if self.data_type == 'orient':\n self.choices = {(1): (['g', 'b'], False)}\n if self.data_type == 'ages':\n for level in ['specimen', 'sample', 'site', 'location']:\n if level in self.grid.col_labels:\n level_names = []\n if level + 's' in self.contribution.tables:\n level_names = list(self.contribution.tables[level + 's'\n ].df.index.unique())\n num = self.grid.col_labels.index(level)\n self.choices[num] = level_names, False\n self.grid.Bind(wx.grid.EVT_GRID_CELL_LEFT_CLICK, lambda event: self.\n on_left_click(event, self.grid, self.choices))\n cols = self.grid.GetNumberCols()\n col_labels = [self.grid.GetColLabelValue(col) for col in range(cols)]\n for col_number, label in enumerate(col_labels):\n self.add_drop_down(col_number, label)\n",
"role": "user"
},
{
"content": "InitUI",
"role": "assistant"
}
] |
def x(self, col_number, col_label):
if col_label.endswith('**') or col_label.endswith('^^'):
col_label = col_label[:-2]
if col_label == 'experiments':
if 'measurements' in self.contribution.tables:
meas_table = self.contribution.tables['measurements'].df
if 'experiment' in meas_table.columns:
exps = meas_table['experiment'].unique()
self.choices[col_number] = sorted(exps), False
self.grid.SetColLabelValue(col_number, col_label + '**')
return
if col_label == 'method_codes':
self.add_method_drop_down(col_number, col_label)
elif col_label == 'magic_method_codes':
self.add_method_drop_down(col_number, 'method_codes')
elif col_label in ['specimens', 'samples', 'sites', 'locations']:
if col_label in self.contribution.tables:
item_df = self.contribution.tables[col_label].df
item_names = item_df.index.unique()
self.choices[col_number] = sorted(item_names), False
elif col_label in ['specimen', 'sample', 'site', 'location']:
if col_label + 's' in self.contribution.tables:
item_df = self.contribution.tables[col_label + 's'].df
item_names = item_df.index.unique()
self.choices[col_number] = sorted(item_names), False
if col_label in self.contribution.vocab.suggested:
typ = 'suggested'
elif col_label in self.contribution.vocab.vocabularies:
typ = 'controlled'
else:
return
if col_number not in list(self.choices.keys()):
if typ == 'suggested':
self.grid.SetColLabelValue(col_number, col_label + '^^')
controlled_vocabulary = self.contribution.vocab.suggested[col_label
]
else:
self.grid.SetColLabelValue(col_number, col_label + '**')
controlled_vocabulary = self.contribution.vocab.vocabularies[
col_label]
stripped_list = []
for item in controlled_vocabulary:
try:
stripped_list.append(str(item))
except UnicodeEncodeError:
pass
if len(stripped_list) > 100:
dictionary = {}
for item in stripped_list:
letter = item[0].upper()
if letter not in list(dictionary.keys()):
dictionary[letter] = []
dictionary[letter].append(item)
stripped_list = dictionary
two_tiered = True if isinstance(stripped_list, dict) else False
self.choices[col_number] = stripped_list, two_tiered
return
|
add_drop_down
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, col_number, col_label):\n if col_label.endswith('**') or col_label.endswith('^^'):\n col_label = col_label[:-2]\n if col_label == 'experiments':\n if 'measurements' in self.contribution.tables:\n meas_table = self.contribution.tables['measurements'].df\n if 'experiment' in meas_table.columns:\n exps = meas_table['experiment'].unique()\n self.choices[col_number] = sorted(exps), False\n self.grid.SetColLabelValue(col_number, col_label + '**')\n return\n if col_label == 'method_codes':\n self.add_method_drop_down(col_number, col_label)\n elif col_label == 'magic_method_codes':\n self.add_method_drop_down(col_number, 'method_codes')\n elif col_label in ['specimens', 'samples', 'sites', 'locations']:\n if col_label in self.contribution.tables:\n item_df = self.contribution.tables[col_label].df\n item_names = item_df.index.unique()\n self.choices[col_number] = sorted(item_names), False\n elif col_label in ['specimen', 'sample', 'site', 'location']:\n if col_label + 's' in self.contribution.tables:\n item_df = self.contribution.tables[col_label + 's'].df\n item_names = item_df.index.unique()\n self.choices[col_number] = sorted(item_names), False\n if col_label in self.contribution.vocab.suggested:\n typ = 'suggested'\n elif col_label in self.contribution.vocab.vocabularies:\n typ = 'controlled'\n else:\n return\n if col_number not in list(self.choices.keys()):\n if typ == 'suggested':\n self.grid.SetColLabelValue(col_number, col_label + '^^')\n controlled_vocabulary = self.contribution.vocab.suggested[col_label\n ]\n else:\n self.grid.SetColLabelValue(col_number, col_label + '**')\n controlled_vocabulary = self.contribution.vocab.vocabularies[\n col_label]\n stripped_list = []\n for item in controlled_vocabulary:\n try:\n stripped_list.append(str(item))\n except UnicodeEncodeError:\n pass\n if len(stripped_list) > 100:\n dictionary = {}\n for item in stripped_list:\n letter = item[0].upper()\n if letter not in list(dictionary.keys()):\n dictionary[letter] = []\n dictionary[letter].append(item)\n stripped_list = dictionary\n two_tiered = True if isinstance(stripped_list, dict) else False\n self.choices[col_number] = stripped_list, two_tiered\n return\n",
"role": "user"
},
{
"content": "add_drop_down",
"role": "assistant"
}
] |
def x(self, col_number, col_label):
if self.data_type == 'ages':
method_list = self.contribution.vocab.age_methods
else:
method_list = self.contribution.vocab.age_methods.copy()
method_list.update(self.contribution.vocab.methods)
self.choices[col_number] = method_list, True
|
add_method_drop_down
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, col_number, col_label):\n if self.data_type == 'ages':\n method_list = self.contribution.vocab.age_methods\n else:\n method_list = self.contribution.vocab.age_methods.copy()\n method_list.update(self.contribution.vocab.methods)\n self.choices[col_number] = method_list, True\n",
"role": "user"
},
{
"content": "add_method_drop_down",
"role": "assistant"
}
] |
def x(self, event, grid, choices):
row, col = event.GetRow(), event.GetCol()
if col == 0 and self.grid.name != 'ages':
default_val = self.grid.GetCellValue(row, col)
msg = (
"""Choose a new name for {}.
The new value will propagate throughout the contribution."""
.format(default_val))
dia = wx.TextEntryDialog(self.grid, msg, 'Rename {}'.format(self.
grid.name, default_val), default_val)
res = dia.ShowModal()
if res == wx.ID_OK:
new_val = dia.GetValue()
self.contribution.rename_item(self.grid.name, default_val, new_val)
if default_val == '':
self.grid.SetCellValue(row, 0, new_val)
return
for row in range(self.grid.GetNumberRows()):
cell_value = self.grid.GetCellValue(row, 0)
if cell_value == default_val:
self.grid.SetCellValue(row, 0, new_val)
else:
continue
return
color = self.grid.GetCellBackgroundColour(event.GetRow(), event.GetCol())
if event.ControlDown() or event.MetaDown():
row, col = event.GetRow(), event.GetCol()
if (row, col) not in self.dispersed_selection:
self.dispersed_selection.append((row, col))
self.grid.SetCellBackgroundColour(row, col, 'light blue')
else:
self.dispersed_selection.remove((row, col))
self.grid.SetCellBackgroundColour(row, col, color)
self.grid.ForceRefresh()
return
if event.ShiftDown():
previous_col = self.grid.GetGridCursorCol()
previous_row = self.grid.GetGridCursorRow()
col = event.GetCol()
row = event.GetRow()
if col != previous_col:
return
elif row > previous_row:
row_range = list(range(previous_row, row + 1))
else:
row_range = list(range(row, previous_row + 1))
for r in row_range:
self.grid.SetCellBackgroundColour(r, col, 'light blue')
self.selection.append((r, col))
self.grid.ForceRefresh()
return
selection = False
if self.dispersed_selection:
is_dispersed = True
selection = self.dispersed_selection
if self.selection:
is_dispersed = False
selection = self.selection
try:
col = event.GetCol()
row = event.GetRow()
except AttributeError:
row, col = selection[0][0], selection[0][1]
self.grid.SetGridCursor(row, col)
if col in list(choices.keys()):
menu = wx.Menu()
two_tiered = choices[col][1]
choices = choices[col][0]
if not two_tiered:
if 'CLEAR cell of all values' not in choices:
choices.insert(0, 'CLEAR cell of all values')
for choice in choices:
if not choice:
choice = ' '
menuitem = menu.Append(wx.ID_ANY, str(choice))
self.window.Bind(wx.EVT_MENU, lambda event: self.
on_select_menuitem(event, grid, row, col, selection),
menuitem)
self.show_menu(event, menu)
else:
clear = menu.Append(-1, 'CLEAR cell of all values')
self.window.Bind(wx.EVT_MENU, lambda event: self.
on_select_menuitem(event, grid, row, col, selection), clear)
for choice in sorted(choices.items()):
submenu = wx.Menu()
for item in choice[1]:
menuitem = submenu.Append(-1, str(item))
self.window.Bind(wx.EVT_MENU, lambda event: self.
on_select_menuitem(event, grid, row, col, selection
), menuitem)
menu.Append(-1, choice[0], submenu)
self.show_menu(event, menu)
if selection:
for row, col in selection:
self.grid.SetCellBackgroundColour(row, col, self.col_color)
self.dispersed_selection = []
self.selection = []
self.grid.ForceRefresh()
|
on_left_click
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event, grid, choices):\n row, col = event.GetRow(), event.GetCol()\n if col == 0 and self.grid.name != 'ages':\n default_val = self.grid.GetCellValue(row, col)\n msg = (\n \"\"\"Choose a new name for {}.\nThe new value will propagate throughout the contribution.\"\"\"\n .format(default_val))\n dia = wx.TextEntryDialog(self.grid, msg, 'Rename {}'.format(self.\n grid.name, default_val), default_val)\n res = dia.ShowModal()\n if res == wx.ID_OK:\n new_val = dia.GetValue()\n self.contribution.rename_item(self.grid.name, default_val, new_val)\n if default_val == '':\n self.grid.SetCellValue(row, 0, new_val)\n return\n for row in range(self.grid.GetNumberRows()):\n cell_value = self.grid.GetCellValue(row, 0)\n if cell_value == default_val:\n self.grid.SetCellValue(row, 0, new_val)\n else:\n continue\n return\n color = self.grid.GetCellBackgroundColour(event.GetRow(), event.GetCol())\n if event.ControlDown() or event.MetaDown():\n row, col = event.GetRow(), event.GetCol()\n if (row, col) not in self.dispersed_selection:\n self.dispersed_selection.append((row, col))\n self.grid.SetCellBackgroundColour(row, col, 'light blue')\n else:\n self.dispersed_selection.remove((row, col))\n self.grid.SetCellBackgroundColour(row, col, color)\n self.grid.ForceRefresh()\n return\n if event.ShiftDown():\n previous_col = self.grid.GetGridCursorCol()\n previous_row = self.grid.GetGridCursorRow()\n col = event.GetCol()\n row = event.GetRow()\n if col != previous_col:\n return\n elif row > previous_row:\n row_range = list(range(previous_row, row + 1))\n else:\n row_range = list(range(row, previous_row + 1))\n for r in row_range:\n self.grid.SetCellBackgroundColour(r, col, 'light blue')\n self.selection.append((r, col))\n self.grid.ForceRefresh()\n return\n selection = False\n if self.dispersed_selection:\n is_dispersed = True\n selection = self.dispersed_selection\n if self.selection:\n is_dispersed = False\n selection = self.selection\n try:\n col = event.GetCol()\n row = event.GetRow()\n except AttributeError:\n row, col = selection[0][0], selection[0][1]\n self.grid.SetGridCursor(row, col)\n if col in list(choices.keys()):\n menu = wx.Menu()\n two_tiered = choices[col][1]\n choices = choices[col][0]\n if not two_tiered:\n if 'CLEAR cell of all values' not in choices:\n choices.insert(0, 'CLEAR cell of all values')\n for choice in choices:\n if not choice:\n choice = ' '\n menuitem = menu.Append(wx.ID_ANY, str(choice))\n self.window.Bind(wx.EVT_MENU, lambda event: self.\n on_select_menuitem(event, grid, row, col, selection),\n menuitem)\n self.show_menu(event, menu)\n else:\n clear = menu.Append(-1, 'CLEAR cell of all values')\n self.window.Bind(wx.EVT_MENU, lambda event: self.\n on_select_menuitem(event, grid, row, col, selection), clear)\n for choice in sorted(choices.items()):\n submenu = wx.Menu()\n for item in choice[1]:\n menuitem = submenu.Append(-1, str(item))\n self.window.Bind(wx.EVT_MENU, lambda event: self.\n on_select_menuitem(event, grid, row, col, selection\n ), menuitem)\n menu.Append(-1, choice[0], submenu)\n self.show_menu(event, menu)\n if selection:\n for row, col in selection:\n self.grid.SetCellBackgroundColour(row, col, self.col_color)\n self.dispersed_selection = []\n self.selection = []\n self.grid.ForceRefresh()\n",
"role": "user"
},
{
"content": "on_left_click",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-F' in sys.argv:
ind = sys.argv.index('-F')
ofile = sys.argv[ind + 1]
out = open(ofile, 'w')
print(ofile, ' opened for output')
else:
ofile = ''
if '-i' in sys.argv:
while 1:
try:
Dec = float(input('Declination: <cntl-D> to quit '))
except:
print('\n Good-bye\n')
sys.exit()
Inc = float(input('Inclination: '))
Dip_dir = float(input('Dip direction: '))
Dip = float(input('Dip: '))
print('%7.1f %7.1f' % pmag.dotilt(Dec, Inc, Dip_dir, Dip))
elif '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
data = numpy.loadtxt(file)
else:
data = numpy.loadtxt(sys.stdin, dtype=numpy.float)
D, I = pmag.dotilt_V(data)
for k in range(len(D)):
if ofile == '':
print('%7.1f %7.1f' % (D[k], I[k]))
else:
out.write('%7.1f %7.1f\n' % (D[k], I[k]))
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w')\n print(ofile, ' opened for output')\n else:\n ofile = ''\n if '-i' in sys.argv:\n while 1:\n try:\n Dec = float(input('Declination: <cntl-D> to quit '))\n except:\n print('\\n Good-bye\\n')\n sys.exit()\n Inc = float(input('Inclination: '))\n Dip_dir = float(input('Dip direction: '))\n Dip = float(input('Dip: '))\n print('%7.1f %7.1f' % pmag.dotilt(Dec, Inc, Dip_dir, Dip))\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n data = numpy.loadtxt(file)\n else:\n data = numpy.loadtxt(sys.stdin, dtype=numpy.float)\n D, I = pmag.dotilt_V(data)\n for k in range(len(D)):\n if ofile == '':\n print('%7.1f %7.1f' % (D[k], I[k]))\n else:\n out.write('%7.1f %7.1f\\n' % (D[k], I[k]))\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
file = sys.argv[1]
f = open(file, 'r')
Input = f.readlines()
f.close()
out = open(file, 'w')
for line in Input:
out.write(line)
out.close()
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n file = sys.argv[1]\n f = open(file, 'r')\n Input = f.readlines()\n f.close()\n out = open(file, 'w')\n for line in Input:\n out.write(line)\n out.close()\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
if len(sys.argv) > 0:
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
f = open(file, 'r')
data = f.readlines()
elif '-i' in sys.argv:
file = input('Enter file name with dec, inc data: ')
f = open(file, 'r')
data = f.readlines()
else:
data = sys.stdin.readlines()
ofile = ''
if '-F' in sys.argv:
ind = sys.argv.index('-F')
ofile = sys.argv[ind + 1]
out = open(ofile, 'w + a')
DIs = []
for line in data:
if '\t' in line:
rec = line.split('\t')
else:
rec = line.split()
DIs.append((float(rec[0]), float(rec[1])))
kpars = pmag.dokent(DIs, len(DIs))
output = '%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %i' % (kpars[
'dec'], kpars['inc'], kpars['Eta'], kpars['Edec'], kpars['Einc'],
kpars['Zeta'], kpars['Zdec'], kpars['Zinc'], kpars['n'])
if ofile == '':
print(output)
else:
out.write(output + '\n')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if len(sys.argv) > 0:\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n elif '-i' in sys.argv:\n file = input('Enter file name with dec, inc data: ')\n f = open(file, 'r')\n data = f.readlines()\n else:\n data = sys.stdin.readlines()\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n DIs = []\n for line in data:\n if '\\t' in line:\n rec = line.split('\\t')\n else:\n rec = line.split()\n DIs.append((float(rec[0]), float(rec[1])))\n kpars = pmag.dokent(DIs, len(DIs))\n output = '%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %i' % (kpars[\n 'dec'], kpars['inc'], kpars['Eta'], kpars['Edec'], kpars['Einc'],\n kpars['Zeta'], kpars['Zdec'], kpars['Zinc'], kpars['n'])\n if ofile == '':\n print(output)\n else:\n out.write(output + '\\n')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(FIGS):
is_win = True if sys.platform in ['win32', 'win64'] else False
if not is_win:
plt.ion()
for fig in list(FIGS.keys()):
plt.draw()
plt.show()
plt.ioff()
if is_win:
plt.draw()
print('You must manually close all plots to continue')
plt.show()
|
draw_figs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(FIGS):\n is_win = True if sys.platform in ['win32', 'win64'] else False\n if not is_win:\n plt.ion()\n for fig in list(FIGS.keys()):\n plt.draw()\n plt.show()\n plt.ioff()\n if is_win:\n plt.draw()\n print('You must manually close all plots to continue')\n plt.show()\n",
"role": "user"
},
{
"content": "draw_figs",
"role": "assistant"
}
] |
def x(fig):
locs = fig.xaxis.get_ticklocs()
nlocs = np.delete(locs, list(range(0, len(locs), 2)))
fig.set_xticks(nlocs)
|
delticks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fig):\n locs = fig.xaxis.get_ticklocs()\n nlocs = np.delete(locs, list(range(0, len(locs), 2)))\n fig.set_xticks(nlocs)\n",
"role": "user"
},
{
"content": "delticks",
"role": "assistant"
}
] |
def x(fignum, w, h):
global fig_x_pos, fig_y_pos, plt_num
dpi = 80
if isServer:
dpi = 240
plt_num += 1
fig = plt.figure(num=fignum, figsize=(w, h), dpi=dpi)
if not isServer and not set_env.IS_NOTEBOOK:
plt.get_current_fig_manager().show()
fig_x_pos = fig_x_pos + dpi * w + 25
if plt_num == 3:
plt_num = 0
fig_x_pos = 25
fig_y_pos = fig_y_pos + dpi * h + 25
plt.figtext(0.02, 0.01, version_num)
return fig
|
plot_init
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum, w, h):\n global fig_x_pos, fig_y_pos, plt_num\n dpi = 80\n if isServer:\n dpi = 240\n plt_num += 1\n fig = plt.figure(num=fignum, figsize=(w, h), dpi=dpi)\n if not isServer and not set_env.IS_NOTEBOOK:\n plt.get_current_fig_manager().show()\n fig_x_pos = fig_x_pos + dpi * w + 25\n if plt_num == 3:\n plt_num = 0\n fig_x_pos = 25\n fig_y_pos = fig_y_pos + dpi * h + 25\n plt.figtext(0.02, 0.01, version_num)\n return fig\n",
"role": "user"
},
{
"content": "plot_init",
"role": "assistant"
}
] |
def x(fignum):
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(fignum)
ax = fig.add_subplot(111, projection='3d')
return ax
|
plot3d_init
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum):\n from mpl_toolkits.mplot3d import Axes3D\n fig = plt.figure(fignum)\n ax = fig.add_subplot(111, projection='3d')\n return ax\n",
"role": "user"
},
{
"content": "plot3d_init",
"role": "assistant"
}
] |
def x(y, ybar, sigma):
x = old_div(y - ybar, np.sqrt(2.0) * sigma)
t = old_div(1.0, 1.0 + 0.3275911 * abs(x))
erf = 1.0 - np.exp(-x * x) * t * (0.254829592 - t * (0.284496736 - t *
(1.421413741 - t * (1.453152027 - t * 1.061405429))))
erf = abs(erf)
sign = old_div(x, abs(x))
return 0.5 * (1.0 + sign * erf)
|
gaussfunc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y, ybar, sigma):\n x = old_div(y - ybar, np.sqrt(2.0) * sigma)\n t = old_div(1.0, 1.0 + 0.3275911 * abs(x))\n erf = 1.0 - np.exp(-x * x) * t * (0.254829592 - t * (0.284496736 - t *\n (1.421413741 - t * (1.453152027 - t * 1.061405429))))\n erf = abs(erf)\n sign = old_div(x, abs(x))\n return 0.5 * (1.0 + sign * erf)\n",
"role": "user"
},
{
"content": "gaussfunc",
"role": "assistant"
}
] |
def x(X):
xbar, sigma = pmag.gausspars(X)
d, f = 0, 0.0
for i in range(1, len(X) + 1):
b = old_div(float(i), float(len(X)))
a = gaussfunc(X[i - 1], xbar, sigma)
if abs(f - a) > abs(b - a):
delta = abs(f - a)
else:
delta = abs(b - a)
if delta > d:
d = delta
f = b
return d, xbar, sigma
|
k_s
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X):\n xbar, sigma = pmag.gausspars(X)\n d, f = 0, 0.0\n for i in range(1, len(X) + 1):\n b = old_div(float(i), float(len(X)))\n a = gaussfunc(X[i - 1], xbar, sigma)\n if abs(f - a) > abs(b - a):\n delta = abs(f - a)\n else:\n delta = abs(b - a)\n if delta > d:\n d = delta\n f = b\n return d, xbar, sigma\n",
"role": "user"
},
{
"content": "k_s",
"role": "assistant"
}
] |
def x(p):
d = p
if d < 0.0 or d > 1.0:
print('d not in (1,1) ')
sys.exit()
x = 0.0
if d - 0.5 > 0:
d = 1.0 - d
if d - 0.5 < 0:
t2 = -2.0 * np.log(d)
t = np.sqrt(t2)
x = t - old_div(2.515517 + 0.802853 * t + 0.010328 * t2, 1.0 +
1.432788 * t + 0.189269 * t2 + 0.001308 * t * t2)
if p < 0.5:
x = -x
return x
|
qsnorm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p):\n d = p\n if d < 0.0 or d > 1.0:\n print('d not in (1,1) ')\n sys.exit()\n x = 0.0\n if d - 0.5 > 0:\n d = 1.0 - d\n if d - 0.5 < 0:\n t2 = -2.0 * np.log(d)\n t = np.sqrt(t2)\n x = t - old_div(2.515517 + 0.802853 * t + 0.010328 * t2, 1.0 + \n 1.432788 * t + 0.189269 * t2 + 0.001308 * t * t2)\n if p < 0.5:\n x = -x\n return x\n",
"role": "user"
},
{
"content": "qsnorm",
"role": "assistant"
}
] |
def x(fignum, X, Y, **kwargs):
plt.figure(num=fignum)
if 'sym' in list(kwargs.keys()):
sym = kwargs['sym']
else:
sym = 'ro'
if 'lw' in list(kwargs.keys()):
lw = kwargs['lw']
else:
lw = 1
if 'xerr' in list(kwargs.keys()):
plt.errorbar(X, Y, fmt=sym, xerr=kwargs['xerr'])
if 'yerr' in list(kwargs.keys()):
plt.errorbar(X, Y, fmt=sym, yerr=kwargs['yerr'])
if 'axis' in list(kwargs.keys()):
if kwargs['axis'] == 'semilogx':
plt.semilogx(X, Y, marker=sym[1], markerfacecolor=sym[0])
if kwargs['axis'] == 'semilogy':
plt.semilogy(X, Y, marker=sym[1], markerfacecolor=sym[0])
if kwargs['axis'] == 'loglog':
plt.loglog(X, Y, marker=sym[1], markerfacecolor=sym[0])
else:
plt.plot(X, Y, sym, linewidth=lw)
if 'xlab' in list(kwargs.keys()):
plt.xlabel(kwargs['xlab'])
if 'ylab' in list(kwargs.keys()):
plt.ylabel(kwargs['ylab'])
if 'title' in list(kwargs.keys()):
plt.title(kwargs['title'])
if 'xmin' in list(kwargs.keys()):
plt.axis([kwargs['xmin'], kwargs['xmax'], kwargs['ymin'], kwargs[
'ymax']])
if 'notes' in list(kwargs.keys()):
for note in kwargs['notes']:
plt.text(note[0], note[1], note[2])
|
plot_xy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum, X, Y, **kwargs):\n plt.figure(num=fignum)\n if 'sym' in list(kwargs.keys()):\n sym = kwargs['sym']\n else:\n sym = 'ro'\n if 'lw' in list(kwargs.keys()):\n lw = kwargs['lw']\n else:\n lw = 1\n if 'xerr' in list(kwargs.keys()):\n plt.errorbar(X, Y, fmt=sym, xerr=kwargs['xerr'])\n if 'yerr' in list(kwargs.keys()):\n plt.errorbar(X, Y, fmt=sym, yerr=kwargs['yerr'])\n if 'axis' in list(kwargs.keys()):\n if kwargs['axis'] == 'semilogx':\n plt.semilogx(X, Y, marker=sym[1], markerfacecolor=sym[0])\n if kwargs['axis'] == 'semilogy':\n plt.semilogy(X, Y, marker=sym[1], markerfacecolor=sym[0])\n if kwargs['axis'] == 'loglog':\n plt.loglog(X, Y, marker=sym[1], markerfacecolor=sym[0])\n else:\n plt.plot(X, Y, sym, linewidth=lw)\n if 'xlab' in list(kwargs.keys()):\n plt.xlabel(kwargs['xlab'])\n if 'ylab' in list(kwargs.keys()):\n plt.ylabel(kwargs['ylab'])\n if 'title' in list(kwargs.keys()):\n plt.title(kwargs['title'])\n if 'xmin' in list(kwargs.keys()):\n plt.axis([kwargs['xmin'], kwargs['xmax'], kwargs['ymin'], kwargs[\n 'ymax']])\n if 'notes' in list(kwargs.keys()):\n for note in kwargs['notes']:\n plt.text(note[0], note[1], note[2])\n",
"role": "user"
},
{
"content": "plot_xy",
"role": "assistant"
}
] |
def x(fignum, SiteRec, data, key):
print('Site mean data: ')
print(' dec inc n_lines n_planes kappa R alpha_95 comp coord')
print(SiteRec['site_dec'], SiteRec['site_inc'], SiteRec['site_n_lines'],
SiteRec['site_n_planes'], SiteRec['site_k'], SiteRec['site_r'],
SiteRec['site_alpha95'], SiteRec['site_comp_name'], SiteRec[
'site_tilt_correction'])
print('sample/specimen, dec, inc, n_specs/a95,| method codes ')
for i in range(len(data)):
print('%s: %s %s %s / %s | %s' % (data[i]['er_' + key + '_name'],
data[i][key + '_dec'], data[i][key + '_inc'], data[i][key +
'_n'], data[i][key + '_alpha95'], data[i]['magic_method_codes']))
plot_slnp(fignum, SiteRec, data, key)
plot = input('s[a]ve plot, [q]uit or <return> to continue: ')
if plot == 'q':
print('CUL8R')
sys.exit()
if plot == 'a':
files = {}
for key in list(EQ.keys()):
files[key] = site + '_' + key + '.' + fmt
save_plots(EQ, files)
|
plot_site
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum, SiteRec, data, key):\n print('Site mean data: ')\n print(' dec inc n_lines n_planes kappa R alpha_95 comp coord')\n print(SiteRec['site_dec'], SiteRec['site_inc'], SiteRec['site_n_lines'],\n SiteRec['site_n_planes'], SiteRec['site_k'], SiteRec['site_r'],\n SiteRec['site_alpha95'], SiteRec['site_comp_name'], SiteRec[\n 'site_tilt_correction'])\n print('sample/specimen, dec, inc, n_specs/a95,| method codes ')\n for i in range(len(data)):\n print('%s: %s %s %s / %s | %s' % (data[i]['er_' + key + '_name'],\n data[i][key + '_dec'], data[i][key + '_inc'], data[i][key +\n '_n'], data[i][key + '_alpha95'], data[i]['magic_method_codes']))\n plot_slnp(fignum, SiteRec, data, key)\n plot = input('s[a]ve plot, [q]uit or <return> to continue: ')\n if plot == 'q':\n print('CUL8R')\n sys.exit()\n if plot == 'a':\n files = {}\n for key in list(EQ.keys()):\n files[key] = site + '_' + key + '.' + fmt\n save_plots(EQ, files)\n",
"role": "user"
},
{
"content": "plot_site",
"role": "assistant"
}
] |
def x(fignum, Y, title):
plt.figure(num=fignum)
if type(Y) == list:
Y = np.array(Y)
Y = np.sort(Y)
n = len(Y)
d, mean, sigma = k_s(Y)
dc = old_div(0.886, np.sqrt(float(n)))
X = []
for i in range(1, n + 1):
p = old_div(float(i), float(n + 1))
X.append(qsnorm(p))
plt.plot(X, Y, 'ro')
plt.title(title)
plt.xlabel('Normal Quantile')
plt.ylabel('Data Quantile')
bounds = plt.axis()
notestr = 'N: ' + '%i' % n
plt.text(-0.9 * bounds[1], 0.9 * bounds[3], notestr)
notestr = 'mean: ' + '%8.3e' % mean
plt.text(-0.9 * bounds[1], 0.8 * bounds[3], notestr)
notestr = 'std dev: ' + '%8.3e' % sigma
plt.text(-0.9 * bounds[1], 0.7 * bounds[3], notestr)
notestr = 'D: ' + '%8.3e' % d
plt.text(-0.9 * bounds[1], 0.6 * bounds[3], notestr)
notestr = 'Dc: ' + '%8.3e' % dc
plt.text(-0.9 * bounds[1], 0.5 * bounds[3], notestr)
return d, dc
|
plot_qq_norm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum, Y, title):\n plt.figure(num=fignum)\n if type(Y) == list:\n Y = np.array(Y)\n Y = np.sort(Y)\n n = len(Y)\n d, mean, sigma = k_s(Y)\n dc = old_div(0.886, np.sqrt(float(n)))\n X = []\n for i in range(1, n + 1):\n p = old_div(float(i), float(n + 1))\n X.append(qsnorm(p))\n plt.plot(X, Y, 'ro')\n plt.title(title)\n plt.xlabel('Normal Quantile')\n plt.ylabel('Data Quantile')\n bounds = plt.axis()\n notestr = 'N: ' + '%i' % n\n plt.text(-0.9 * bounds[1], 0.9 * bounds[3], notestr)\n notestr = 'mean: ' + '%8.3e' % mean\n plt.text(-0.9 * bounds[1], 0.8 * bounds[3], notestr)\n notestr = 'std dev: ' + '%8.3e' % sigma\n plt.text(-0.9 * bounds[1], 0.7 * bounds[3], notestr)\n notestr = 'D: ' + '%8.3e' % d\n plt.text(-0.9 * bounds[1], 0.6 * bounds[3], notestr)\n notestr = 'Dc: ' + '%8.3e' % dc\n plt.text(-0.9 * bounds[1], 0.5 * bounds[3], notestr)\n return d, dc\n",
"role": "user"
},
{
"content": "plot_qq_norm",
"role": "assistant"
}
] |
def x(fignum, D, title, subplot=False, degrees=True):
if subplot == True:
plt.subplot(1, 2, fignum)
else:
plt.figure(num=fignum)
X, Y, dpos, dneg = [], [], 0.0, 0.0
if degrees:
D = np.array(D) % 360
X = D / D.max()
X = np.sort(X)
n = float(len(D))
i = np.arange(0, len(D))
Y = (i - 0.5) / n
ds = i / n - X
dpos = ds.max()
dneg = ds.min()
plt.plot(Y, X, 'ro')
v = dneg + dpos
Mu = v * (np.sqrt(n) - 0.567 + old_div(1.623, np.sqrt(n)))
plt.axis([0, 1.0, 0.0, 1.0])
bounds = plt.axis()
notestr = 'N: ' + '%i' % n
plt.text(0.1 * bounds[1], 0.9 * bounds[3], notestr)
notestr = 'Mu: ' + '%7.3f' % Mu
plt.text(0.1 * bounds[1], 0.8 * bounds[3], notestr)
if Mu > 1.347:
notestr = 'Non-uniform (99%)'
elif Mu < 1.207:
notestr = 'Uniform (95%)'
elif Mu > 1.207:
notestr = 'Uniform (99%)'
plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr)
plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr)
plt.title(title)
plt.xlabel('Uniform Quantile')
plt.ylabel('Data Quantile')
return Mu, 1.207
|
plot_qq_unf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum, D, title, subplot=False, degrees=True):\n if subplot == True:\n plt.subplot(1, 2, fignum)\n else:\n plt.figure(num=fignum)\n X, Y, dpos, dneg = [], [], 0.0, 0.0\n if degrees:\n D = np.array(D) % 360\n X = D / D.max()\n X = np.sort(X)\n n = float(len(D))\n i = np.arange(0, len(D))\n Y = (i - 0.5) / n\n ds = i / n - X\n dpos = ds.max()\n dneg = ds.min()\n plt.plot(Y, X, 'ro')\n v = dneg + dpos\n Mu = v * (np.sqrt(n) - 0.567 + old_div(1.623, np.sqrt(n)))\n plt.axis([0, 1.0, 0.0, 1.0])\n bounds = plt.axis()\n notestr = 'N: ' + '%i' % n\n plt.text(0.1 * bounds[1], 0.9 * bounds[3], notestr)\n notestr = 'Mu: ' + '%7.3f' % Mu\n plt.text(0.1 * bounds[1], 0.8 * bounds[3], notestr)\n if Mu > 1.347:\n notestr = 'Non-uniform (99%)'\n elif Mu < 1.207:\n notestr = 'Uniform (95%)'\n elif Mu > 1.207:\n notestr = 'Uniform (99%)'\n plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr)\n plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr)\n plt.title(title)\n plt.xlabel('Uniform Quantile')\n plt.ylabel('Data Quantile')\n return Mu, 1.207\n",
"role": "user"
},
{
"content": "plot_qq_unf",
"role": "assistant"
}
] |
def x(fignum, I, title, subplot=False):
if subplot == True:
plt.subplot(1, 2, fignum)
else:
plt.figure(num=fignum)
X, Y, dpos, dneg = [], [], 0.0, 0.0
rad = old_div(np.pi, 180.0)
xsum = 0
for i in I:
theta = (90.0 - i) * rad
X.append(1.0 - np.cos(theta))
xsum += X[-1]
X.sort()
n = float(len(X))
kappa = old_div(n - 1.0, xsum)
for i in range(len(X)):
p = old_div(float(i) - 0.5, n)
Y.append(-np.log(1.0 - p))
f = 1.0 - np.exp(-kappa * X[i])
ds = old_div(float(i), n) - f
if dpos < ds:
dpos = ds
ds = f - old_div(float(i) - 1.0, n)
if dneg < ds:
dneg = ds
if dneg > dpos:
ds = dneg
else:
ds = dpos
Me = (ds - old_div(0.2, n)) * (np.sqrt(n) + 0.26 + old_div(0.5, np.sqrt(n))
)
plt.plot(Y, X, 'ro')
bounds = plt.axis()
plt.axis([0, bounds[1], 0.0, bounds[3]])
notestr = 'N: ' + '%i' % n
plt.text(0.1 * bounds[1], 0.9 * bounds[3], notestr)
notestr = 'Me: ' + '%7.3f' % Me
plt.text(0.1 * bounds[1], 0.8 * bounds[3], notestr)
if Me > 1.094:
notestr = 'Not Exponential'
else:
notestr = 'Exponential (95%)'
plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr)
plt.title(title)
plt.xlabel('Exponential Quantile')
plt.ylabel('Data Quantile')
return Me, 1.094
|
plot_qq_exp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum, I, title, subplot=False):\n if subplot == True:\n plt.subplot(1, 2, fignum)\n else:\n plt.figure(num=fignum)\n X, Y, dpos, dneg = [], [], 0.0, 0.0\n rad = old_div(np.pi, 180.0)\n xsum = 0\n for i in I:\n theta = (90.0 - i) * rad\n X.append(1.0 - np.cos(theta))\n xsum += X[-1]\n X.sort()\n n = float(len(X))\n kappa = old_div(n - 1.0, xsum)\n for i in range(len(X)):\n p = old_div(float(i) - 0.5, n)\n Y.append(-np.log(1.0 - p))\n f = 1.0 - np.exp(-kappa * X[i])\n ds = old_div(float(i), n) - f\n if dpos < ds:\n dpos = ds\n ds = f - old_div(float(i) - 1.0, n)\n if dneg < ds:\n dneg = ds\n if dneg > dpos:\n ds = dneg\n else:\n ds = dpos\n Me = (ds - old_div(0.2, n)) * (np.sqrt(n) + 0.26 + old_div(0.5, np.sqrt(n))\n )\n plt.plot(Y, X, 'ro')\n bounds = plt.axis()\n plt.axis([0, bounds[1], 0.0, bounds[3]])\n notestr = 'N: ' + '%i' % n\n plt.text(0.1 * bounds[1], 0.9 * bounds[3], notestr)\n notestr = 'Me: ' + '%7.3f' % Me\n plt.text(0.1 * bounds[1], 0.8 * bounds[3], notestr)\n if Me > 1.094:\n notestr = 'Not Exponential'\n else:\n notestr = 'Exponential (95%)'\n plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr)\n plt.title(title)\n plt.xlabel('Exponential Quantile')\n plt.ylabel('Data Quantile')\n return Me, 1.094\n",
"role": "user"
},
{
"content": "plot_qq_exp",
"role": "assistant"
}
] |
def x(fignum, DIblock):
global globals
"""
plots directions on equal area net
Parameters
_________
fignum : matplotlib figure number
DIblock : nested list of dec, inc pairs
"""
X_down, X_up, Y_down, Y_up = [], [], [], []
plt.figure(num=fignum)
for rec in DIblock:
Up, Down = 0, 0
XY = pmag.dimap(rec[0], rec[1])
if rec[1] >= 0:
X_down.append(XY[0])
Y_down.append(XY[1])
else:
X_up.append(XY[0])
Y_up.append(XY[1])
if len(X_down) > 0:
plt.scatter(X_down, Y_down, marker='o', c='blue')
if globals != 0:
globals.DIlist = X_down
globals.DIlisty = Y_down
if len(X_up) > 0:
plt.scatter(X_up, Y_up, marker='o', facecolor='white', edgecolor='blue'
)
if globals != 0:
globals.DIlist = X_up
globals.DIlisty = Y_up
|
plot_di
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum, DIblock):\n global globals\n \"\"\"\n plots directions on equal area net\n Parameters\n _________\n fignum : matplotlib figure number\n DIblock : nested list of dec, inc pairs\n \"\"\"\n X_down, X_up, Y_down, Y_up = [], [], [], []\n plt.figure(num=fignum)\n for rec in DIblock:\n Up, Down = 0, 0\n XY = pmag.dimap(rec[0], rec[1])\n if rec[1] >= 0:\n X_down.append(XY[0])\n Y_down.append(XY[1])\n else:\n X_up.append(XY[0])\n Y_up.append(XY[1])\n if len(X_down) > 0:\n plt.scatter(X_down, Y_down, marker='o', c='blue')\n if globals != 0:\n globals.DIlist = X_down\n globals.DIlisty = Y_down\n if len(X_up) > 0:\n plt.scatter(X_up, Y_up, marker='o', facecolor='white', edgecolor='blue'\n )\n if globals != 0:\n globals.DIlist = X_up\n globals.DIlisty = Y_up\n",
"role": "user"
},
{
"content": "plot_di",
"role": "assistant"
}
] |
def x(fignum, DIblock, sym):
global globals
"""
plots directions on equal area net
Parameters
_________
fignum : matplotlib figure number
DIblock : nested list of dec, inc pairs
sym : set matplotlib symbol (e.g., 'bo' for blue circles)
"""
X_down, X_up, Y_down, Y_up = [], [], [], []
plt.figure(num=fignum)
for rec in DIblock:
Up, Down = 0, 0
XY = pmag.dimap(rec[0], rec[1])
if rec[1] >= 0:
X_down.append(XY[0])
Y_down.append(XY[1])
else:
X_up.append(XY[0])
Y_up.append(XY[1])
if 'size' not in list(sym.keys()):
size = 50
else:
size = sym['size']
if 'edgecolor' not in list(sym.keys()):
sym['edgecolor'] = 'k'
if len(X_down) > 0:
plt.scatter(X_down, Y_down, marker=sym['lower'][0], c=sym['lower'][
1], s=size, edgecolor=sym['edgecolor'])
if globals != 0:
globals.DIlist = X_down
globals.DIlisty = Y_down
if len(X_up) > 0:
plt.scatter(X_up, Y_up, marker=sym['upper'][0], c=sym['upper'][1],
s=size, edgecolor=sym['edgecolor'])
if globals != 0:
globals.DIlist = X_up
globals.DIlisty = Y_up
|
plot_di_sym
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum, DIblock, sym):\n global globals\n \"\"\"\n plots directions on equal area net\n Parameters\n _________\n fignum : matplotlib figure number\n DIblock : nested list of dec, inc pairs\n sym : set matplotlib symbol (e.g., 'bo' for blue circles)\n \"\"\"\n X_down, X_up, Y_down, Y_up = [], [], [], []\n plt.figure(num=fignum)\n for rec in DIblock:\n Up, Down = 0, 0\n XY = pmag.dimap(rec[0], rec[1])\n if rec[1] >= 0:\n X_down.append(XY[0])\n Y_down.append(XY[1])\n else:\n X_up.append(XY[0])\n Y_up.append(XY[1])\n if 'size' not in list(sym.keys()):\n size = 50\n else:\n size = sym['size']\n if 'edgecolor' not in list(sym.keys()):\n sym['edgecolor'] = 'k'\n if len(X_down) > 0:\n plt.scatter(X_down, Y_down, marker=sym['lower'][0], c=sym['lower'][\n 1], s=size, edgecolor=sym['edgecolor'])\n if globals != 0:\n globals.DIlist = X_down\n globals.DIlisty = Y_down\n if len(X_up) > 0:\n plt.scatter(X_up, Y_up, marker=sym['upper'][0], c=sym['upper'][1],\n s=size, edgecolor=sym['edgecolor'])\n if globals != 0:\n globals.DIlist = X_up\n globals.DIlisty = Y_up\n",
"role": "user"
},
{
"content": "plot_di_sym",
"role": "assistant"
}
] |
def x(fignum, pole, ang, col):
plt.figure(num=fignum)
D_c, I_c = pmag.circ(pole[0], pole[1], ang)
X_c_up, Y_c_up = [], []
X_c_d, Y_c_d = [], []
for k in range(len(D_c)):
XY = pmag.dimap(D_c[k], I_c[k])
if I_c[k] < 0:
X_c_up.append(XY[0])
Y_c_up.append(XY[1])
else:
X_c_d.append(XY[0])
Y_c_d.append(XY[1])
plt.plot(X_c_d, Y_c_d, col + '.', ms=5)
plt.plot(X_c_up, Y_c_up, 'c.', ms=2)
|
plot_circ
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum, pole, ang, col):\n plt.figure(num=fignum)\n D_c, I_c = pmag.circ(pole[0], pole[1], ang)\n X_c_up, Y_c_up = [], []\n X_c_d, Y_c_d = [], []\n for k in range(len(D_c)):\n XY = pmag.dimap(D_c[k], I_c[k])\n if I_c[k] < 0:\n X_c_up.append(XY[0])\n Y_c_up.append(XY[1])\n else:\n X_c_d.append(XY[0])\n Y_c_d.append(XY[1])\n plt.plot(X_c_d, Y_c_d, col + '.', ms=5)\n plt.plot(X_c_up, Y_c_up, 'c.', ms=2)\n",
"role": "user"
},
{
"content": "plot_circ",
"role": "assistant"
}
] |
def x(fignum, datablock, angle, s, norm=True):
global globals
plt.figure(num=fignum)
plt.clf()
if not isServer:
plt.figtext(0.02, 0.01, version_num)
amin, amax = 0.0, -100.0
if norm == 0:
fact = 1.0
else:
fact = 1.0 / datablock[0][3]
data = pd.DataFrame(datablock)
if len(data.columns) == 5:
data.columns = ['treat', 'dec', 'inc', 'int', 'quality']
if len(data.columns) == 6:
data.columns = ['treat', 'dec', 'inc', 'int', 'type', 'quality']
elif len(data.columns) == 7:
data.columns = ['treat', 'dec', 'inc', 'int', 'type', 'quality', 'y']
data['int'] = data['int'] * fact
data['dec'] = (data['dec'] - angle) % 360
gdata = data[data['quality'].str.contains('g')]
bdata = data[data['quality'].str.contains('b')]
forVDS = gdata[['dec', 'inc', 'int']].values
gXYZ = pd.DataFrame(pmag.dir2cart(forVDS))
gXYZ.columns = ['X', 'Y', 'Z']
amax = np.maximum(gXYZ.X.max(), gXYZ.Z.max())
amin = np.minimum(gXYZ.X.min(), gXYZ.Z.min())
if amin > 0:
amin = 0
bXYZ = pmag.dir2cart(bdata[['dec', 'inc', 'int']].values).transpose()
if angle != 0:
tempstr = '\n Declination rotated by: ' + str(angle) + '\n'
if globals != 0:
globals.text.insert(globals.END, tempstr)
globals.Zlist = gXYZ['x'].tolist()
globals.Zlisty = gXYZ['y'].tolist()
globals.Zlistz = gXYZ['z'].tolist()
if len(bXYZ) > 0:
plt.scatter(bXYZ[0], bXYZ[1], marker='d', c='y', s=30)
plt.scatter(bXYZ[0], bXYZ[2], marker='d', c='y', s=30)
plt.plot(gXYZ['X'], gXYZ['Y'], 'ro')
plt.plot(gXYZ['X'], gXYZ['Z'], 'ws', markeredgecolor='blue')
plt.plot(gXYZ['X'], gXYZ['Y'], 'r-')
plt.plot(gXYZ['X'], gXYZ['Z'], 'b-')
for k in range(len(gXYZ)):
plt.annotate(str(k), (gXYZ['X'][k], gXYZ['Z'][k]), ha='left', va=
'bottom')
if amin > 0 and amax > 0:
amin = 0
if amin < 0 and amax < 0:
amax = 0
xline = [amin, amax]
yline = [amax, amin]
zline = [0, 0]
plt.plot(xline, zline, 'k-')
plt.plot(zline, xline, 'k-')
if angle != 0:
xlab = 'X: rotated to Dec = ' + '%7.1f' % angle
if angle == 0:
xlab = 'X: rotated to Dec = ' + '%7.1f' % angle
plt.xlabel(xlab)
plt.ylabel('Circles: Y; Squares: Z')
tstring = s + ': NRM = ' + '%9.2e' % datablock[0][3]
plt.axis([amin, amax, amax, amin])
plt.axis('equal')
plt.title(tstring)
|
plot_zij
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fignum, datablock, angle, s, norm=True):\n global globals\n plt.figure(num=fignum)\n plt.clf()\n if not isServer:\n plt.figtext(0.02, 0.01, version_num)\n amin, amax = 0.0, -100.0\n if norm == 0:\n fact = 1.0\n else:\n fact = 1.0 / datablock[0][3]\n data = pd.DataFrame(datablock)\n if len(data.columns) == 5:\n data.columns = ['treat', 'dec', 'inc', 'int', 'quality']\n if len(data.columns) == 6:\n data.columns = ['treat', 'dec', 'inc', 'int', 'type', 'quality']\n elif len(data.columns) == 7:\n data.columns = ['treat', 'dec', 'inc', 'int', 'type', 'quality', 'y']\n data['int'] = data['int'] * fact\n data['dec'] = (data['dec'] - angle) % 360\n gdata = data[data['quality'].str.contains('g')]\n bdata = data[data['quality'].str.contains('b')]\n forVDS = gdata[['dec', 'inc', 'int']].values\n gXYZ = pd.DataFrame(pmag.dir2cart(forVDS))\n gXYZ.columns = ['X', 'Y', 'Z']\n amax = np.maximum(gXYZ.X.max(), gXYZ.Z.max())\n amin = np.minimum(gXYZ.X.min(), gXYZ.Z.min())\n if amin > 0:\n amin = 0\n bXYZ = pmag.dir2cart(bdata[['dec', 'inc', 'int']].values).transpose()\n if angle != 0:\n tempstr = '\\n Declination rotated by: ' + str(angle) + '\\n'\n if globals != 0:\n globals.text.insert(globals.END, tempstr)\n globals.Zlist = gXYZ['x'].tolist()\n globals.Zlisty = gXYZ['y'].tolist()\n globals.Zlistz = gXYZ['z'].tolist()\n if len(bXYZ) > 0:\n plt.scatter(bXYZ[0], bXYZ[1], marker='d', c='y', s=30)\n plt.scatter(bXYZ[0], bXYZ[2], marker='d', c='y', s=30)\n plt.plot(gXYZ['X'], gXYZ['Y'], 'ro')\n plt.plot(gXYZ['X'], gXYZ['Z'], 'ws', markeredgecolor='blue')\n plt.plot(gXYZ['X'], gXYZ['Y'], 'r-')\n plt.plot(gXYZ['X'], gXYZ['Z'], 'b-')\n for k in range(len(gXYZ)):\n plt.annotate(str(k), (gXYZ['X'][k], gXYZ['Z'][k]), ha='left', va=\n 'bottom')\n if amin > 0 and amax > 0:\n amin = 0\n if amin < 0 and amax < 0:\n amax = 0\n xline = [amin, amax]\n yline = [amax, amin]\n zline = [0, 0]\n plt.plot(xline, zline, 'k-')\n plt.plot(zline, xline, 'k-')\n if angle != 0:\n xlab = 'X: rotated to Dec = ' + '%7.1f' % angle\n if angle == 0:\n xlab = 'X: rotated to Dec = ' + '%7.1f' % angle\n plt.xlabel(xlab)\n plt.ylabel('Circles: Y; Squares: Z')\n tstring = s + ': NRM = ' + '%9.2e' % datablock[0][3]\n plt.axis([amin, amax, amax, amin])\n plt.axis('equal')\n plt.title(tstring)\n",
"role": "user"
},
{
"content": "plot_zij",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.