source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, event): if event.LeftIsDown(): return elif self.high_EA_setting == 'Zoom': self.high_EA_setting = 'Pan' try: self.toolbar4.pan('off') except TypeError: pass elif self.high_EA_setting == 'Pan': self.high_EA_setting = 'Zoom' try: self.toolbar4.zoom() except TypeError: pass
right_click_high_equalarea
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if event.LeftIsDown():\n return\n elif self.high_EA_setting == 'Zoom':\n self.high_EA_setting = 'Pan'\n try:\n self.toolbar4.pan('off')\n except TypeError:\n pass\n elif self.high_EA_setting == 'Pan':\n self.high_EA_setting = 'Zoom'\n try:\n self.toolbar4.zoom()\n except TypeError:\n pass\n", "role": "user" }, { "content": "right_click_high_equalarea", "role": "assistant" } ]
def x(self, event): if self.ie_open and self.ie.show_box.GetValue() != 'specimens': return pos = event.GetPosition() width, height = self.canvas4.get_width_height() pos[1] = height - pos[1] xpick_data, ypick_data = pos xdata_org = self.high_EA_xdata ydata_org = self.high_EA_ydata data_corrected = self.high_level_eqarea.transData.transform(vstack([ xdata_org, ydata_org]).T) xdata, ydata = data_corrected.T xdata = list(map(float, xdata)) ydata = list(map(float, ydata)) e = 4.0 if self.high_EA_setting == 'Zoom': self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_CROSS)) else: self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_ARROW)) if not self.high_EA_xdata or not self.high_EA_ydata: return for i, (x, y) in enumerate(zip(xdata, ydata)): if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e: self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_HAND)) break event.Skip()
on_change_high_mouse_cursor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if self.ie_open and self.ie.show_box.GetValue() != 'specimens':\n return\n pos = event.GetPosition()\n width, height = self.canvas4.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.high_EA_xdata\n ydata_org = self.high_EA_ydata\n data_corrected = self.high_level_eqarea.transData.transform(vstack([\n xdata_org, ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n if self.high_EA_setting == 'Zoom':\n self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_CROSS))\n else:\n self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_ARROW))\n if not self.high_EA_xdata or not self.high_EA_ydata:\n return\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n self.canvas4.SetCursor(wx.Cursor(wx.CURSOR_HAND))\n break\n event.Skip()\n", "role": "user" }, { "content": "on_change_high_mouse_cursor", "role": "assistant" } ]
def x(self, event, fig=None, canvas=None): if self.ie_open and self.ie.show_box.GetValue() != 'specimens': return if not self.high_EA_xdata or not self.high_EA_ydata: return if fig == None: fig = self.high_level_eqarea if canvas == None: canvas = self.canvas4 pos = event.GetPosition() width, height = canvas.get_width_height() pos[1] = height - pos[1] xpick_data, ypick_data = pos xdata_org = self.high_EA_xdata ydata_org = self.high_EA_ydata data_corrected = fig.transData.transform(vstack([xdata_org, ydata_org]).T) xdata, ydata = data_corrected.T xdata = list(map(float, xdata)) ydata = list(map(float, ydata)) e = 4.0 index = None for i, (x, y) in enumerate(zip(xdata, ydata)): if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e: index = i break if index != None: disp_fit_name = self.mean_fit_box.GetValue() if self.level_box.GetValue() == 'sample': high_level_type = 'samples' if self.level_box.GetValue() == 'site': high_level_type = 'sites' if self.level_box.GetValue() == 'location': high_level_type = 'locations' if self.level_box.GetValue() == 'study': high_level_type = 'study' high_level_name = str(self.level_names.GetValue()) calculation_type = str(self.mean_type_box.GetValue()) elements_type = self.UPPER_LEVEL_SHOW elements_list = self.Data_hierarchy[high_level_type][high_level_name][ elements_type] new_fit_index = 0 for i, specimen in enumerate(elements_list): if disp_fit_name == 'All' and specimen in self.pmag_results_data[ elements_type]: l = 0 for fit in self.pmag_results_data[elements_type][specimen]: l += 1 else: try: disp_fit_index = map(lambda x: x.name, self. pmag_results_data[elements_type][specimen]).index( disp_fit_name) if self.pmag_results_data[elements_type][specimen][ disp_fit_index] in self.bad_fits: l = 0 else: l = 1 except IndexError: l = 0 except KeyError: l = 0 except ValueError: l = 0 if index < l: self.specimens_box.SetStringSelection(specimen) self.select_specimen(specimen) self.draw_figure(specimen, False) if disp_fit_name == 'All': new_fit_index = index else: new_fit_index = disp_fit_index break index -= l self.update_fit_box() self.fit_box.SetSelection(new_fit_index) self.on_select_fit(event) if disp_fit_name != 'All': self.mean_fit = self.current_fit.name self.mean_fit_box.SetSelection(2 + new_fit_index) self.update_selection() else: self.Add_text() if self.ie_open: self.ie.change_selected(self.current_fit)
on_equalarea_high_select
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event, fig=None, canvas=None):\n if self.ie_open and self.ie.show_box.GetValue() != 'specimens':\n return\n if not self.high_EA_xdata or not self.high_EA_ydata:\n return\n if fig == None:\n fig = self.high_level_eqarea\n if canvas == None:\n canvas = self.canvas4\n pos = event.GetPosition()\n width, height = canvas.get_width_height()\n pos[1] = height - pos[1]\n xpick_data, ypick_data = pos\n xdata_org = self.high_EA_xdata\n ydata_org = self.high_EA_ydata\n data_corrected = fig.transData.transform(vstack([xdata_org, ydata_org]).T)\n xdata, ydata = data_corrected.T\n xdata = list(map(float, xdata))\n ydata = list(map(float, ydata))\n e = 4.0\n index = None\n for i, (x, y) in enumerate(zip(xdata, ydata)):\n if 0 < sqrt((x - xpick_data) ** 2.0 + (y - ypick_data) ** 2.0) < e:\n index = i\n break\n if index != None:\n disp_fit_name = self.mean_fit_box.GetValue()\n if self.level_box.GetValue() == 'sample':\n high_level_type = 'samples'\n if self.level_box.GetValue() == 'site':\n high_level_type = 'sites'\n if self.level_box.GetValue() == 'location':\n high_level_type = 'locations'\n if self.level_box.GetValue() == 'study':\n high_level_type = 'study'\n high_level_name = str(self.level_names.GetValue())\n calculation_type = str(self.mean_type_box.GetValue())\n elements_type = self.UPPER_LEVEL_SHOW\n elements_list = self.Data_hierarchy[high_level_type][high_level_name][\n elements_type]\n new_fit_index = 0\n for i, specimen in enumerate(elements_list):\n if disp_fit_name == 'All' and specimen in self.pmag_results_data[\n elements_type]:\n l = 0\n for fit in self.pmag_results_data[elements_type][specimen]:\n l += 1\n else:\n try:\n disp_fit_index = map(lambda x: x.name, self.\n pmag_results_data[elements_type][specimen]).index(\n disp_fit_name)\n if self.pmag_results_data[elements_type][specimen][\n disp_fit_index] in self.bad_fits:\n l = 0\n else:\n l = 1\n except IndexError:\n l = 0\n except KeyError:\n l = 0\n except ValueError:\n l = 0\n if index < l:\n self.specimens_box.SetStringSelection(specimen)\n self.select_specimen(specimen)\n self.draw_figure(specimen, False)\n if disp_fit_name == 'All':\n new_fit_index = index\n else:\n new_fit_index = disp_fit_index\n break\n index -= l\n self.update_fit_box()\n self.fit_box.SetSelection(new_fit_index)\n self.on_select_fit(event)\n if disp_fit_name != 'All':\n self.mean_fit = self.current_fit.name\n self.mean_fit_box.SetSelection(2 + new_fit_index)\n self.update_selection()\n else:\n self.Add_text()\n if self.ie_open:\n self.ie.change_selected(self.current_fit)\n", "role": "user" }, { "content": "on_equalarea_high_select", "role": "assistant" } ]
def x(self): self.selected_meas = [] if self.COORDINATE_SYSTEM == 'geographic': zijdblock = self.Data[self.s]['zijdblock_geo'] elif self.COORDINATE_SYSTEM == 'tilt-corrected': zijdblock = self.Data[self.s]['zijdblock_tilt'] else: zijdblock = self.Data[self.s]['zijdblock'] tmin_index, tmax_index = -1, -1 if self.current_fit and self.current_fit.tmin and self.current_fit.tmax: tmin_index, tmax_index = self.get_indices(self.current_fit) TEXT = '' self.logger.DeleteAllItems() for i in range(len(zijdblock)): lab_treatment = self.Data[self.s]['zijdblock_lab_treatments'][i] Step = '' methods = lab_treatment.split('-') if 'NO' in methods: Step = 'N' elif 'AF' in methods: Step = 'AF' elif 'ARM' in methods: Step = 'ARM' elif 'IRM' in methods: Step = 'IRM' elif 'T' in methods: Step = 'T' elif 'LT' in methods: Step = 'LT' Tr = zijdblock[i][0] Dec = zijdblock[i][1] Inc = zijdblock[i][2] Int = zijdblock[i][3] csd = self.Data[self.s]['csds'][i] self.logger.InsertItem(i, '%i' % i) self.logger.SetItem(i, 1, Step) self.logger.SetItem(i, 2, '%.1f' % Tr) self.logger.SetItem(i, 3, '%.1f' % Dec) self.logger.SetItem(i, 4, '%.1f' % Inc) self.logger.SetItem(i, 5, '%.2e' % Int) self.logger.SetItem(i, 6, csd) self.logger.SetItemBackgroundColour(i, 'WHITE') if i >= tmin_index and i <= tmax_index: self.logger.SetItemBackgroundColour(i, 'LIGHT BLUE') if self.Data[self.s]['measurement_flag'][i] == 'b': self.logger.SetItemBackgroundColour(i, 'red')
Add_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.selected_meas = []\n if self.COORDINATE_SYSTEM == 'geographic':\n zijdblock = self.Data[self.s]['zijdblock_geo']\n elif self.COORDINATE_SYSTEM == 'tilt-corrected':\n zijdblock = self.Data[self.s]['zijdblock_tilt']\n else:\n zijdblock = self.Data[self.s]['zijdblock']\n tmin_index, tmax_index = -1, -1\n if self.current_fit and self.current_fit.tmin and self.current_fit.tmax:\n tmin_index, tmax_index = self.get_indices(self.current_fit)\n TEXT = ''\n self.logger.DeleteAllItems()\n for i in range(len(zijdblock)):\n lab_treatment = self.Data[self.s]['zijdblock_lab_treatments'][i]\n Step = ''\n methods = lab_treatment.split('-')\n if 'NO' in methods:\n Step = 'N'\n elif 'AF' in methods:\n Step = 'AF'\n elif 'ARM' in methods:\n Step = 'ARM'\n elif 'IRM' in methods:\n Step = 'IRM'\n elif 'T' in methods:\n Step = 'T'\n elif 'LT' in methods:\n Step = 'LT'\n Tr = zijdblock[i][0]\n Dec = zijdblock[i][1]\n Inc = zijdblock[i][2]\n Int = zijdblock[i][3]\n csd = self.Data[self.s]['csds'][i]\n self.logger.InsertItem(i, '%i' % i)\n self.logger.SetItem(i, 1, Step)\n self.logger.SetItem(i, 2, '%.1f' % Tr)\n self.logger.SetItem(i, 3, '%.1f' % Dec)\n self.logger.SetItem(i, 4, '%.1f' % Inc)\n self.logger.SetItem(i, 5, '%.2e' % Int)\n self.logger.SetItem(i, 6, csd)\n self.logger.SetItemBackgroundColour(i, 'WHITE')\n if i >= tmin_index and i <= tmax_index:\n self.logger.SetItemBackgroundColour(i, 'LIGHT BLUE')\n if self.Data[self.s]['measurement_flag'][i] == 'b':\n self.logger.SetItemBackgroundColour(i, 'red')\n", "role": "user" }, { "content": "Add_text", "role": "assistant" } ]
def x(self, index): tmin_index, tmax_index = '', '' if str(self.tmin_box.GetValue()) != '': tmin_index = self.tmin_box.GetSelection() if str(self.tmax_box.GetValue()) != '': tmax_index = self.tmax_box.GetSelection() if self.list_bound_loc != 0: if self.list_bound_loc == 1: if index < tmin_index: self.tmin_box.SetSelection(index) self.tmax_box.SetSelection(tmin_index) elif index == tmin_index: pass else: self.tmax_box.SetSelection(index) elif index > tmax_index: self.tmin_box.SetSelection(tmax_index) self.tmax_box.SetSelection(index) elif index == tmax_index: pass else: self.tmin_box.SetSelection(index) self.list_bound_loc = 0 elif index < tmax_index: self.tmin_box.SetSelection(index) self.list_bound_loc = 1 else: self.tmax_box.SetSelection(index) self.list_bound_loc = 2 self.logger.Select(index, on=0) self.get_new_PCA_parameters(-1)
select_bounds_in_logger
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index):\n tmin_index, tmax_index = '', ''\n if str(self.tmin_box.GetValue()) != '':\n tmin_index = self.tmin_box.GetSelection()\n if str(self.tmax_box.GetValue()) != '':\n tmax_index = self.tmax_box.GetSelection()\n if self.list_bound_loc != 0:\n if self.list_bound_loc == 1:\n if index < tmin_index:\n self.tmin_box.SetSelection(index)\n self.tmax_box.SetSelection(tmin_index)\n elif index == tmin_index:\n pass\n else:\n self.tmax_box.SetSelection(index)\n elif index > tmax_index:\n self.tmin_box.SetSelection(tmax_index)\n self.tmax_box.SetSelection(index)\n elif index == tmax_index:\n pass\n else:\n self.tmin_box.SetSelection(index)\n self.list_bound_loc = 0\n elif index < tmax_index:\n self.tmin_box.SetSelection(index)\n self.list_bound_loc = 1\n else:\n self.tmax_box.SetSelection(index)\n self.list_bound_loc = 2\n self.logger.Select(index, on=0)\n self.get_new_PCA_parameters(-1)\n", "role": "user" }, { "content": "select_bounds_in_logger", "role": "assistant" } ]
def x(self, event): g_index = event.GetIndex() if self.Data[self.s]['measurement_flag'][g_index] == 'g': self.mark_meas_bad(g_index) else: self.mark_meas_good(g_index) if self.data_model == 3.0: self.con.tables['measurements'].write_magic_file(dir_path=self.WD) else: pmag.magic_write(os.path.join(self.WD, 'magic_measurements.txt'), self.mag_meas_data, 'magic_measurements') self.recalculate_current_specimen_interpreatations() if self.ie_open: self.ie.update_current_fit_data() self.calculate_high_levels_data() self.update_selection()
on_right_click_listctrl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n g_index = event.GetIndex()\n if self.Data[self.s]['measurement_flag'][g_index] == 'g':\n self.mark_meas_bad(g_index)\n else:\n self.mark_meas_good(g_index)\n if self.data_model == 3.0:\n self.con.tables['measurements'].write_magic_file(dir_path=self.WD)\n else:\n pmag.magic_write(os.path.join(self.WD, 'magic_measurements.txt'),\n self.mag_meas_data, 'magic_measurements')\n self.recalculate_current_specimen_interpreatations()\n if self.ie_open:\n self.ie.update_current_fit_data()\n self.calculate_high_levels_data()\n self.update_selection()\n", "role": "user" }, { "content": "on_right_click_listctrl", "role": "assistant" } ]
def x(self, event): self.selected_meas = [] self.select_specimen(str(self.specimens_box.GetValue())) if self.ie_open: self.ie.change_selected(self.current_fit) self.update_selection()
onSelect_specimen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n self.selected_meas = []\n self.select_specimen(str(self.specimens_box.GetValue()))\n if self.ie_open:\n self.ie.change_selected(self.current_fit)\n self.update_selection()\n", "role": "user" }, { "content": "onSelect_specimen", "role": "assistant" } ]
def x(self, event): new_specimen = self.specimens_box.GetValue() if new_specimen not in self.specimens: self.user_warning( '%s is not a valid specimen with measurement data, aborting' % new_specimen) self.specimens_box.SetValue(self.s) return self.select_specimen(new_specimen) if self.ie_open: self.ie.change_selected(self.current_fit) self.update_selection()
on_enter_specimen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n new_specimen = self.specimens_box.GetValue()\n if new_specimen not in self.specimens:\n self.user_warning(\n '%s is not a valid specimen with measurement data, aborting' %\n new_specimen)\n self.specimens_box.SetValue(self.s)\n return\n self.select_specimen(new_specimen)\n if self.ie_open:\n self.ie.change_selected(self.current_fit)\n self.update_selection()\n", "role": "user" }, { "content": "on_enter_specimen", "role": "assistant" } ]
def x(self, event): tmin = str(self.tmin_box.GetValue()) tmax = str(self.tmax_box.GetValue()) if tmin == '' or tmax == '': return if tmin in self.T_list and tmax in self.T_list and self.T_list.index(tmax ) <= self.T_list.index(tmin): return PCA_type = self.PCA_type_box.GetValue() if PCA_type == 'line': calculation_type = 'DE-BFL' elif PCA_type == 'line-anchored': calculation_type = 'DE-BFL-A' elif PCA_type == 'line-with-origin': calculation_type = 'DE-BFL-O' elif PCA_type == 'Fisher': calculation_type = 'DE-FM' elif PCA_type == 'plane': calculation_type = 'DE-BFP' coordinate_system = self.COORDINATE_SYSTEM if self.current_fit: self.current_fit.put(self.s, coordinate_system, self. get_PCA_parameters(self.s, self.current_fit, tmin, tmax, coordinate_system, calculation_type)) if self.ie_open: self.ie.update_current_fit_data() self.update_GUI_with_new_interpretation()
get_new_PCA_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n tmin = str(self.tmin_box.GetValue())\n tmax = str(self.tmax_box.GetValue())\n if tmin == '' or tmax == '':\n return\n if tmin in self.T_list and tmax in self.T_list and self.T_list.index(tmax\n ) <= self.T_list.index(tmin):\n return\n PCA_type = self.PCA_type_box.GetValue()\n if PCA_type == 'line':\n calculation_type = 'DE-BFL'\n elif PCA_type == 'line-anchored':\n calculation_type = 'DE-BFL-A'\n elif PCA_type == 'line-with-origin':\n calculation_type = 'DE-BFL-O'\n elif PCA_type == 'Fisher':\n calculation_type = 'DE-FM'\n elif PCA_type == 'plane':\n calculation_type = 'DE-BFP'\n coordinate_system = self.COORDINATE_SYSTEM\n if self.current_fit:\n self.current_fit.put(self.s, coordinate_system, self.\n get_PCA_parameters(self.s, self.current_fit, tmin, tmax,\n coordinate_system, calculation_type))\n if self.ie_open:\n self.ie.update_current_fit_data()\n self.update_GUI_with_new_interpretation()\n", "role": "user" }, { "content": "get_new_PCA_parameters", "role": "assistant" } ]
def x(self, event): fit_val = self.fit_box.GetValue() if self.s not in self.pmag_results_data['specimens' ] or not self.pmag_results_data['specimens'][self.s ] or fit_val == 'None': self.clear_boxes() self.current_fit = None self.fit_box.SetStringSelection('None') self.tmin_box.SetStringSelection('') self.tmax_box.SetStringSelection('') else: try: fit_num = list(map(lambda x: x.name, self.pmag_results_data[ 'specimens'][self.s])).index(fit_val) except ValueError: fit_num = -1 self.pmag_results_data['specimens'][self.s][fit_num].select() if self.ie_open: self.ie.change_selected(self.current_fit)
on_select_fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n fit_val = self.fit_box.GetValue()\n if self.s not in self.pmag_results_data['specimens'\n ] or not self.pmag_results_data['specimens'][self.s\n ] or fit_val == 'None':\n self.clear_boxes()\n self.current_fit = None\n self.fit_box.SetStringSelection('None')\n self.tmin_box.SetStringSelection('')\n self.tmax_box.SetStringSelection('')\n else:\n try:\n fit_num = list(map(lambda x: x.name, self.pmag_results_data[\n 'specimens'][self.s])).index(fit_val)\n except ValueError:\n fit_num = -1\n self.pmag_results_data['specimens'][self.s][fit_num].select()\n if self.ie_open:\n self.ie.change_selected(self.current_fit)\n", "role": "user" }, { "content": "on_select_fit", "role": "assistant" } ]
def x(self, event): if self.current_fit == None: self.on_btn_add_fit(event) value = self.fit_box.GetValue() if ':' in value: name, color = value.split(':') else: name, color = value, None if name in [x.name for x in self.pmag_results_data['specimens'][self.s]]: print('bad name') return self.current_fit.name = name if color in list(self.color_dict.keys()): self.current_fit.color = self.color_dict[color] self.update_fit_boxes() self.plot_high_levels_data()
on_enter_fit_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if self.current_fit == None:\n self.on_btn_add_fit(event)\n value = self.fit_box.GetValue()\n if ':' in value:\n name, color = value.split(':')\n else:\n name, color = value, None\n if name in [x.name for x in self.pmag_results_data['specimens'][self.s]]:\n print('bad name')\n return\n self.current_fit.name = name\n if color in list(self.color_dict.keys()):\n self.current_fit.color = self.color_dict[color]\n self.update_fit_boxes()\n self.plot_high_levels_data()\n", "role": "user" }, { "content": "on_enter_fit_name", "role": "assistant" } ]
def x(self, event): if self.current_fit: self.current_fit.saved = True calculation_type = self.current_fit.get(self.COORDINATE_SYSTEM)[ 'calculation_type'] tmin = str(self.tmin_box.GetValue()) tmax = str(self.tmax_box.GetValue()) self.current_fit.put(self.s, 'specimen', self.get_PCA_parameters( self.s, self.current_fit, tmin, tmax, 'specimen', calculation_type) ) if len(self.Data[self.s]['zijdblock_geo']) > 0: self.current_fit.put(self.s, 'geographic', self. get_PCA_parameters(self.s, self.current_fit, tmin, tmax, 'geographic', calculation_type)) if len(self.Data[self.s]['zijdblock_tilt']) > 0: self.current_fit.put(self.s, 'tilt-corrected', self. get_PCA_parameters(self.s, self.current_fit, tmin, tmax, 'tilt-corrected', calculation_type)) self.calculate_high_levels_data() self.plot_high_levels_data() self.on_menu_save_interpretation(event) self.update_selection() self.close_warning = True
on_save_interpretation_button
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if self.current_fit:\n self.current_fit.saved = True\n calculation_type = self.current_fit.get(self.COORDINATE_SYSTEM)[\n 'calculation_type']\n tmin = str(self.tmin_box.GetValue())\n tmax = str(self.tmax_box.GetValue())\n self.current_fit.put(self.s, 'specimen', self.get_PCA_parameters(\n self.s, self.current_fit, tmin, tmax, 'specimen', calculation_type)\n )\n if len(self.Data[self.s]['zijdblock_geo']) > 0:\n self.current_fit.put(self.s, 'geographic', self.\n get_PCA_parameters(self.s, self.current_fit, tmin, tmax,\n 'geographic', calculation_type))\n if len(self.Data[self.s]['zijdblock_tilt']) > 0:\n self.current_fit.put(self.s, 'tilt-corrected', self.\n get_PCA_parameters(self.s, self.current_fit, tmin, tmax,\n 'tilt-corrected', calculation_type))\n self.calculate_high_levels_data()\n self.plot_high_levels_data()\n self.on_menu_save_interpretation(event)\n self.update_selection()\n self.close_warning = True\n", "role": "user" }, { "content": "on_save_interpretation_button", "role": "assistant" } ]
def x(self, event): if self.auto_save.GetValue(): self.current_fit = self.add_fit(self.s, None, None, None, saved=True) else: self.current_fit = self.add_fit(self.s, None, None, None, saved=False) self.generate_warning_text() self.update_warning_box() if self.ie_open: self.ie.update_editor() self.update_fit_boxes(True) self.get_new_PCA_parameters(event)
on_btn_add_fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if self.auto_save.GetValue():\n self.current_fit = self.add_fit(self.s, None, None, None, saved=True)\n else:\n self.current_fit = self.add_fit(self.s, None, None, None, saved=False)\n self.generate_warning_text()\n self.update_warning_box()\n if self.ie_open:\n self.ie.update_editor()\n self.update_fit_boxes(True)\n self.get_new_PCA_parameters(event)\n", "role": "user" }, { "content": "on_btn_add_fit", "role": "assistant" } ]
def x(self, event): self.delete_fit(self.current_fit, specimen=self.s)
on_btn_delete_fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n self.delete_fit(self.current_fit, specimen=self.s)\n", "role": "user" }, { "content": "on_btn_delete_fit", "role": "assistant" } ]
def x(self): if not self.auto_save.GetValue(): if self.current_fit: if not self.current_fit.saved: self.delete_fit(self.current_fit, specimen=self.s)
do_auto_save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.auto_save.GetValue():\n if self.current_fit:\n if not self.current_fit.saved:\n self.delete_fit(self.current_fit, specimen=self.s)\n", "role": "user" }, { "content": "do_auto_save", "role": "assistant" } ]
def x(self, event): self.do_auto_save() self.selected_meas = [] index = self.specimens.index(self.s) try: fit_index = self.pmag_results_data['specimens'][self.s].index(self. current_fit) except KeyError: fit_index = None except ValueError: fit_index = None if index == len(self.specimens) - 1: index = 0 else: index += 1 self.initialize_CART_rot(str(self.specimens[index])) self.specimens_box.SetStringSelection(str(self.s)) if fit_index != None and self.s in self.pmag_results_data['specimens']: try: self.current_fit = self.pmag_results_data['specimens'][self.s][ fit_index] except IndexError: self.current_fit = None else: self.current_fit = None if self.ie_open: self.ie.change_selected(self.current_fit) self.update_selection()
on_next_button
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n self.do_auto_save()\n self.selected_meas = []\n index = self.specimens.index(self.s)\n try:\n fit_index = self.pmag_results_data['specimens'][self.s].index(self.\n current_fit)\n except KeyError:\n fit_index = None\n except ValueError:\n fit_index = None\n if index == len(self.specimens) - 1:\n index = 0\n else:\n index += 1\n self.initialize_CART_rot(str(self.specimens[index]))\n self.specimens_box.SetStringSelection(str(self.s))\n if fit_index != None and self.s in self.pmag_results_data['specimens']:\n try:\n self.current_fit = self.pmag_results_data['specimens'][self.s][\n fit_index]\n except IndexError:\n self.current_fit = None\n else:\n self.current_fit = None\n if self.ie_open:\n self.ie.change_selected(self.current_fit)\n self.update_selection()\n", "role": "user" }, { "content": "on_next_button", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) return infile = pmag.get_named_arg('-f', 'measurements.txt') dir_path = pmag.get_named_arg('-WD', '.') infile = pmag.resolve_file_name(infile, dir_path) fmt = pmag.get_named_arg('-fmt', 'svg') save_plots = False interactive = True if '-sav' in sys.argv: interactive = False save_plots = True experiments = pmag.get_named_arg('-e', '') ipmag.chi_magic(infile, dir_path, experiments, fmt, save_plots, interactive )
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n return\n infile = pmag.get_named_arg('-f', 'measurements.txt')\n dir_path = pmag.get_named_arg('-WD', '.')\n infile = pmag.resolve_file_name(infile, dir_path)\n fmt = pmag.get_named_arg('-fmt', 'svg')\n save_plots = False\n interactive = True\n if '-sav' in sys.argv:\n interactive = False\n save_plots = True\n experiments = pmag.get_named_arg('-e', '')\n ipmag.chi_magic(infile, dir_path, experiments, fmt, save_plots, interactive\n )\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): D, D1, D2 = [], [], [] Flip = 0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-ant' in sys.argv: Flip = 1 if '-f' in sys.argv: ind = sys.argv.index('-f') file1 = sys.argv[ind + 1] if '-f2' in sys.argv: ind = sys.argv.index('-f2') file2 = sys.argv[ind + 1] f = open(file1, 'r') for line in f.readlines(): if '\t' in line: rec = line.split('\t') else: rec = line.split() Dec, Inc = float(rec[0]), float(rec[1]) D1.append([Dec, Inc, 1.0]) D.append([Dec, Inc, 1.0]) f.close() if Flip == 0: f = open(file2, 'r') for line in f.readlines(): rec = line.split() Dec, Inc = float(rec[0]), float(rec[1]) D2.append([Dec, Inc, 1.0]) D.append([Dec, Inc, 1.0]) f.close() else: D1, D2 = pmag.flip(D1) for d in D2: D.append(d) pars_0 = pmag.fisher_mean(D) pars_1 = pmag.fisher_mean(D1) pars_2 = pmag.fisher_mean(D2) N = len(D) R = pars_0['r'] R1 = pars_1['r'] R2 = pars_2['r'] F = (N - 2) * old_div(R1 + R2 - R, N - R1 - R2) Fcrit = pmag.fcalc(2, 2 * (N - 2)) print('%7.2f %7.2f' % (F, Fcrit))
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n D, D1, D2 = [], [], []\n Flip = 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-ant' in sys.argv:\n Flip = 1\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file1 = sys.argv[ind + 1]\n if '-f2' in sys.argv:\n ind = sys.argv.index('-f2')\n file2 = sys.argv[ind + 1]\n f = open(file1, 'r')\n for line in f.readlines():\n if '\\t' in line:\n rec = line.split('\\t')\n else:\n rec = line.split()\n Dec, Inc = float(rec[0]), float(rec[1])\n D1.append([Dec, Inc, 1.0])\n D.append([Dec, Inc, 1.0])\n f.close()\n if Flip == 0:\n f = open(file2, 'r')\n for line in f.readlines():\n rec = line.split()\n Dec, Inc = float(rec[0]), float(rec[1])\n D2.append([Dec, Inc, 1.0])\n D.append([Dec, Inc, 1.0])\n f.close()\n else:\n D1, D2 = pmag.flip(D1)\n for d in D2:\n D.append(d)\n pars_0 = pmag.fisher_mean(D)\n pars_1 = pmag.fisher_mean(D1)\n pars_2 = pmag.fisher_mean(D2)\n N = len(D)\n R = pars_0['r']\n R1 = pars_1['r']\n R2 = pars_2['r']\n F = (N - 2) * old_div(R1 + R2 - R, N - R1 - R2)\n Fcrit = pmag.fcalc(2, 2 * (N - 2))\n print('%7.2f %7.2f' % (F, Fcrit))\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(x_segment, y_segment, x_mean, y_mean, n, lab_dc_field, steps_Arai): x_err = x_segment - x_mean y_err = y_segment - y_mean york_b = -1 * numpy.sqrt(old_div(sum(y_err ** 2), sum(x_err ** 2))) b = numpy.sign(sum(x_err * y_err)) * numpy.std(y_segment, ddof=1 ) / numpy.std(x_segment, ddof=1) if b == 0: york_b = 1e-10 else: york_b = b york_sigma = numpy.sqrt(old_div(2 * sum(y_err ** 2) - 2 * york_b * sum( x_err * y_err), (n - 2) * sum(x_err ** 2))) if york_sigma == 0: york_sigma = 1e-10 beta_Coe = abs(old_div(york_sigma, york_b)) y_T = y_mean - york_b * x_mean x_T = old_div(-1 * y_T, york_b) x_tag = old_div(y_segment - y_T, york_b) y_tag = york_b * x_segment + y_T x_prime = old_div(x_segment + x_tag, 2) y_prime = old_div(y_segment + y_tag, 2) delta_x_prime = abs(max(x_prime) - min(x_prime)) delta_y_prime = abs(max(y_prime) - min(y_prime)) f_Coe = old_div(delta_y_prime, abs(y_T)) if delta_y_prime: g_Coe = 1 - old_div(sum((y_prime[:-1] - y_prime[1:]) ** 2), delta_y_prime ** 2) else: g_Coe = float('nan') g_lim = old_div(float(n) - 2, float(n) - 1) q_Coe = abs(york_b) * f_Coe * g_Coe / york_sigma w_Coe = old_div(q_Coe, numpy.sqrt(n - 2)) count_IZ = steps_Arai.count('IZ') count_ZI = steps_Arai.count('ZI') B_lab = lab_dc_field * 1000000.0 B_anc = abs(york_b) * B_lab B_anc_sigma = york_sigma * B_lab specimen_int = -1 * lab_dc_field * york_b specimen_int_sigma = york_sigma * lab_dc_field return {'x_err': x_err, 'y_err': y_err, 'x_tag': x_tag, 'y_tag': y_tag, 'specimen_b': york_b, 'specimen_b_sigma': york_sigma, 'specimen_b_beta': beta_Coe, 'y_int': y_T, 'x_int': x_T, 'x_prime': x_prime, 'y_prime': y_prime, 'delta_x_prime': delta_x_prime, 'delta_y_prime': delta_y_prime, 'specimen_f': f_Coe, 'specimen_g': g_Coe, 'specimen_g_lim': g_lim, 'specimen_q': q_Coe, 'specimen_w': w_Coe, 'count_IZ': count_IZ, 'count_ZI': count_ZI, 'B_lab': B_lab, 'B_anc': B_anc, 'B_anc_sigma': B_anc_sigma, 'specimen_int': specimen_int, 'specimen_int_sigma': specimen_int_sigma}
York_Regression
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_segment, y_segment, x_mean, y_mean, n, lab_dc_field, steps_Arai):\n x_err = x_segment - x_mean\n y_err = y_segment - y_mean\n york_b = -1 * numpy.sqrt(old_div(sum(y_err ** 2), sum(x_err ** 2)))\n b = numpy.sign(sum(x_err * y_err)) * numpy.std(y_segment, ddof=1\n ) / numpy.std(x_segment, ddof=1)\n if b == 0:\n york_b = 1e-10\n else:\n york_b = b\n york_sigma = numpy.sqrt(old_div(2 * sum(y_err ** 2) - 2 * york_b * sum(\n x_err * y_err), (n - 2) * sum(x_err ** 2)))\n if york_sigma == 0:\n york_sigma = 1e-10\n beta_Coe = abs(old_div(york_sigma, york_b))\n y_T = y_mean - york_b * x_mean\n x_T = old_div(-1 * y_T, york_b)\n x_tag = old_div(y_segment - y_T, york_b)\n y_tag = york_b * x_segment + y_T\n x_prime = old_div(x_segment + x_tag, 2)\n y_prime = old_div(y_segment + y_tag, 2)\n delta_x_prime = abs(max(x_prime) - min(x_prime))\n delta_y_prime = abs(max(y_prime) - min(y_prime))\n f_Coe = old_div(delta_y_prime, abs(y_T))\n if delta_y_prime:\n g_Coe = 1 - old_div(sum((y_prime[:-1] - y_prime[1:]) ** 2), \n delta_y_prime ** 2)\n else:\n g_Coe = float('nan')\n g_lim = old_div(float(n) - 2, float(n) - 1)\n q_Coe = abs(york_b) * f_Coe * g_Coe / york_sigma\n w_Coe = old_div(q_Coe, numpy.sqrt(n - 2))\n count_IZ = steps_Arai.count('IZ')\n count_ZI = steps_Arai.count('ZI')\n B_lab = lab_dc_field * 1000000.0\n B_anc = abs(york_b) * B_lab\n B_anc_sigma = york_sigma * B_lab\n specimen_int = -1 * lab_dc_field * york_b\n specimen_int_sigma = york_sigma * lab_dc_field\n return {'x_err': x_err, 'y_err': y_err, 'x_tag': x_tag, 'y_tag': y_tag,\n 'specimen_b': york_b, 'specimen_b_sigma': york_sigma,\n 'specimen_b_beta': beta_Coe, 'y_int': y_T, 'x_int': x_T, 'x_prime':\n x_prime, 'y_prime': y_prime, 'delta_x_prime': delta_x_prime,\n 'delta_y_prime': delta_y_prime, 'specimen_f': f_Coe, 'specimen_g':\n g_Coe, 'specimen_g_lim': g_lim, 'specimen_q': q_Coe, 'specimen_w':\n w_Coe, 'count_IZ': count_IZ, 'count_ZI': count_ZI, 'B_lab': B_lab,\n 'B_anc': B_anc, 'B_anc_sigma': B_anc_sigma, 'specimen_int':\n specimen_int, 'specimen_int_sigma': specimen_int_sigma}\n", "role": "user" }, { "content": "York_Regression", "role": "assistant" } ]
def x(zdata, delta_y_prime, start, end): vector_diffs = [] for k in range(len(zdata) - 1): vector_diffs.append(numpy.sqrt(sum((numpy.array(zdata[k + 1]) - numpy.array(zdata[k])) ** 2))) last_vector = numpy.linalg.norm(zdata[-1]) vector_diffs.append(last_vector) vds = sum(vector_diffs) f_vds = abs(old_div(delta_y_prime, vds)) vector_diffs_segment = vector_diffs[start:end] partial_vds = sum(vector_diffs_segment) max_diff = max(vector_diffs_segment) GAP_MAX = old_div(max_diff, partial_vds) return {'max_diff': max_diff, 'vector_diffs': vector_diffs, 'specimen_vds': vds, 'specimen_fvds': f_vds, 'vector_diffs_segment': vector_diffs_segment, 'partial_vds': partial_vds, 'GAP-MAX': GAP_MAX}
get_vds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(zdata, delta_y_prime, start, end):\n vector_diffs = []\n for k in range(len(zdata) - 1):\n vector_diffs.append(numpy.sqrt(sum((numpy.array(zdata[k + 1]) -\n numpy.array(zdata[k])) ** 2)))\n last_vector = numpy.linalg.norm(zdata[-1])\n vector_diffs.append(last_vector)\n vds = sum(vector_diffs)\n f_vds = abs(old_div(delta_y_prime, vds))\n vector_diffs_segment = vector_diffs[start:end]\n partial_vds = sum(vector_diffs_segment)\n max_diff = max(vector_diffs_segment)\n GAP_MAX = old_div(max_diff, partial_vds)\n return {'max_diff': max_diff, 'vector_diffs': vector_diffs,\n 'specimen_vds': vds, 'specimen_fvds': f_vds, 'vector_diffs_segment':\n vector_diffs_segment, 'partial_vds': partial_vds, 'GAP-MAX': GAP_MAX}\n", "role": "user" }, { "content": "get_vds", "role": "assistant" } ]
def x(slope, x_mean, y_mean, beta_threshold=0.1): if beta_threshold == -999: beta_threshold = 0.1 slope_err_threshold = abs(slope) * beta_threshold x, y = x_mean, y_mean slope1 = slope + 2 * slope_err_threshold line1_y_int = y - slope1 * x line1_x_int = -1 * old_div(line1_y_int, slope1) slope2 = slope - 2 * slope_err_threshold line2_y_int = y - slope2 * x line2_x_int = -1 * old_div(line2_y_int, slope2) low_bound = [(0, line1_y_int), (line2_x_int, 0)] high_bound = [(0, line2_y_int), (line1_x_int, 0)] x_max = high_bound[1][0] y_max = high_bound[0][1] low_slope = old_div(low_bound[0][1] - low_bound[1][1], low_bound[0][0] - low_bound[1][0]) low_y_int = low_bound[0][1] def x(x): y = low_slope * x + low_y_int return y high_slope = old_div(high_bound[0][1] - high_bound[1][1], high_bound[0] [0] - high_bound[1][0]) high_y_int = high_bound[0][1] def x(x): y = high_slope * x + high_y_int return y high_line = [high_y_int, high_slope] low_line = [low_y_int, low_slope] return low_bound, high_bound, x_max, y_max, low_line, high_line
get_SCAT_box
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(slope, x_mean, y_mean, beta_threshold=0.1):\n if beta_threshold == -999:\n beta_threshold = 0.1\n slope_err_threshold = abs(slope) * beta_threshold\n x, y = x_mean, y_mean\n slope1 = slope + 2 * slope_err_threshold\n line1_y_int = y - slope1 * x\n line1_x_int = -1 * old_div(line1_y_int, slope1)\n slope2 = slope - 2 * slope_err_threshold\n line2_y_int = y - slope2 * x\n line2_x_int = -1 * old_div(line2_y_int, slope2)\n low_bound = [(0, line1_y_int), (line2_x_int, 0)]\n high_bound = [(0, line2_y_int), (line1_x_int, 0)]\n x_max = high_bound[1][0]\n y_max = high_bound[0][1]\n low_slope = old_div(low_bound[0][1] - low_bound[1][1], low_bound[0][0] -\n low_bound[1][0])\n low_y_int = low_bound[0][1]\n\n def x(x):\n y = low_slope * x + low_y_int\n return y\n high_slope = old_div(high_bound[0][1] - high_bound[1][1], high_bound[0]\n [0] - high_bound[1][0])\n high_y_int = high_bound[0][1]\n\n def x(x):\n y = high_slope * x + high_y_int\n return y\n high_line = [high_y_int, high_slope]\n low_line = [low_y_int, low_slope]\n return low_bound, high_bound, x_max, y_max, low_line, high_line\n", "role": "user" }, { "content": "get_SCAT_box", "role": "assistant" } ]
def x(x, y, low_bound, high_bound, x_max, y_max): passing = True upper_limit = high_bound(x) lower_limit = low_bound(x) if x > x_max or y > y_max: passing = False if x < 0 or y < 0: passing = False if y > upper_limit: passing = False if y < lower_limit: passing = False return passing
in_SCAT_box
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, low_bound, high_bound, x_max, y_max):\n passing = True\n upper_limit = high_bound(x)\n lower_limit = low_bound(x)\n if x > x_max or y > y_max:\n passing = False\n if x < 0 or y < 0:\n passing = False\n if y > upper_limit:\n passing = False\n if y < lower_limit:\n passing = False\n return passing\n", "role": "user" }, { "content": "in_SCAT_box", "role": "assistant" } ]
def x(x_Arai_segment, y_Arai_segment, tmin, tmax, ptrm_checks_temperatures, ptrm_checks_starting_temperatures, x_ptrm_check, y_ptrm_check, tail_checks_temperatures, tail_checks_starting_temperatures, x_tail_check, y_tail_check): points = [] points_arai = [] points_ptrm = [] points_tail = [] for i in range(len(x_Arai_segment)): x = x_Arai_segment[i] y = y_Arai_segment[i] points.append((x, y)) points_arai.append((x, y)) for num, temp in enumerate(ptrm_checks_temperatures): if temp >= tmin and temp <= tmax: if ptrm_checks_starting_temperatures[num ] >= tmin and ptrm_checks_starting_temperatures[num] <= tmax: x = x_ptrm_check[num] y = y_ptrm_check[num] points.append((x, y)) points_ptrm.append((x, y)) for num, temp in enumerate(tail_checks_temperatures): if temp >= tmin and temp <= tmax: if tail_checks_starting_temperatures[num ] >= tmin and tail_checks_starting_temperatures[num] <= tmax: x = x_tail_check[num] y = y_tail_check[num] points.append((x, y)) points_tail.append((x, y)) fancy_points = {'points_arai': points_arai, 'points_ptrm': points_ptrm, 'points_tail': points_tail} return points, fancy_points
get_SCAT_points
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_Arai_segment, y_Arai_segment, tmin, tmax, ptrm_checks_temperatures,\n ptrm_checks_starting_temperatures, x_ptrm_check, y_ptrm_check,\n tail_checks_temperatures, tail_checks_starting_temperatures,\n x_tail_check, y_tail_check):\n points = []\n points_arai = []\n points_ptrm = []\n points_tail = []\n for i in range(len(x_Arai_segment)):\n x = x_Arai_segment[i]\n y = y_Arai_segment[i]\n points.append((x, y))\n points_arai.append((x, y))\n for num, temp in enumerate(ptrm_checks_temperatures):\n if temp >= tmin and temp <= tmax:\n if ptrm_checks_starting_temperatures[num\n ] >= tmin and ptrm_checks_starting_temperatures[num] <= tmax:\n x = x_ptrm_check[num]\n y = y_ptrm_check[num]\n points.append((x, y))\n points_ptrm.append((x, y))\n for num, temp in enumerate(tail_checks_temperatures):\n if temp >= tmin and temp <= tmax:\n if tail_checks_starting_temperatures[num\n ] >= tmin and tail_checks_starting_temperatures[num] <= tmax:\n x = x_tail_check[num]\n y = y_tail_check[num]\n points.append((x, y))\n points_tail.append((x, y))\n fancy_points = {'points_arai': points_arai, 'points_ptrm': points_ptrm,\n 'points_tail': points_tail}\n return points, fancy_points\n", "role": "user" }, { "content": "get_SCAT_points", "role": "assistant" } ]
def x(points, low_bound, high_bound, x_max, y_max): SCAT = True for point in points: result = in_SCAT_box(point[0], point[1], low_bound, high_bound, x_max, y_max) if result == False: SCAT = False return SCAT
get_SCAT
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, low_bound, high_bound, x_max, y_max):\n SCAT = True\n for point in points:\n result = in_SCAT_box(point[0], point[1], low_bound, high_bound,\n x_max, y_max)\n if result == False:\n SCAT = False\n return SCAT\n", "role": "user" }, { "content": "get_SCAT", "role": "assistant" } ]
def x(points, low_bound, high_bound, x_max, y_max): SCAT = 'Pass' SCATs = {'SCAT_arai': 'Pass', 'SCAT_ptrm': 'Pass', 'SCAT_tail': 'Pass'} for point_type in points: for point in points[point_type]: result = in_SCAT_box(point[0], point[1], low_bound, high_bound, x_max, y_max) if not result: x = 'SCAT' + point_type[6:] SCATs[x] = 'Fail' SCAT = 'Fail' return SCAT, SCATs
fancy_SCAT
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, low_bound, high_bound, x_max, y_max):\n SCAT = 'Pass'\n SCATs = {'SCAT_arai': 'Pass', 'SCAT_ptrm': 'Pass', 'SCAT_tail': 'Pass'}\n for point_type in points:\n for point in points[point_type]:\n result = in_SCAT_box(point[0], point[1], low_bound, high_bound,\n x_max, y_max)\n if not result:\n x = 'SCAT' + point_type[6:]\n SCATs[x] = 'Fail'\n SCAT = 'Fail'\n return SCAT, SCATs\n", "role": "user" }, { "content": "fancy_SCAT", "role": "assistant" } ]
def x(vds, vector_diffs_segment): for num in vector_diffs_segment: if num < 0: raise ValueError('vector diffs should not be negative') if vds == 0: raise ValueError( 'attempting to divide by zero. vds should be a positive number') FRAC = old_div(sum(vector_diffs_segment), vds) return FRAC
get_FRAC
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vds, vector_diffs_segment):\n for num in vector_diffs_segment:\n if num < 0:\n raise ValueError('vector diffs should not be negative')\n if vds == 0:\n raise ValueError(\n 'attempting to divide by zero. vds should be a positive number')\n FRAC = old_div(sum(vector_diffs_segment), vds)\n return FRAC\n", "role": "user" }, { "content": "get_FRAC", "role": "assistant" } ]
def x(x_avg, y_avg, x_segment, y_segment): xd = x_segment - x_avg yd = y_segment - y_avg if sum(xd ** 2) * sum(yd ** 2) == 0: return float('nan') rcorr = old_div(sum(xd * yd) ** 2, sum(xd ** 2) * sum(yd ** 2)) return rcorr
get_R_corr2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_avg, y_avg, x_segment, y_segment):\n xd = x_segment - x_avg\n yd = y_segment - y_avg\n if sum(xd ** 2) * sum(yd ** 2) == 0:\n return float('nan')\n rcorr = old_div(sum(xd * yd) ** 2, sum(xd ** 2) * sum(yd ** 2))\n return rcorr\n", "role": "user" }, { "content": "get_R_corr2", "role": "assistant" } ]
def x(y_segment, y_avg, y_prime): numerator = sum((numpy.array(y_segment) - numpy.array(y_prime)) ** 2) denominator = sum((numpy.array(y_segment) - y_avg) ** 2) if denominator: R_det2 = 1 - old_div(numerator, denominator) return R_det2 else: return float('nan')
get_R_det2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y_segment, y_avg, y_prime):\n numerator = sum((numpy.array(y_segment) - numpy.array(y_prime)) ** 2)\n denominator = sum((numpy.array(y_segment) - y_avg) ** 2)\n if denominator:\n R_det2 = 1 - old_div(numerator, denominator)\n return R_det2\n else:\n return float('nan')\n", "role": "user" }, { "content": "get_R_det2", "role": "assistant" } ]
def x(x, y, y_int): if x == 0: b_wiggle = 0 else: b_wiggle = old_div(y_int - y, x) return b_wiggle
get_b_wiggle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, y_int):\n if x == 0:\n b_wiggle = 0\n else:\n b_wiggle = old_div(y_int - y, x)\n return b_wiggle\n", "role": "user" }, { "content": "get_b_wiggle", "role": "assistant" } ]
def x(x_segment, y_segment, x_int, y_int, slope): Z = 0 first_time = True for num, x in enumerate(x_segment): b_wiggle = get_b_wiggle(x, y_segment[num], y_int) z = old_div(x * abs(b_wiggle - abs(slope)), abs(x_int)) Z += z first_time = False return Z
get_Z
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_segment, y_segment, x_int, y_int, slope):\n Z = 0\n first_time = True\n for num, x in enumerate(x_segment):\n b_wiggle = get_b_wiggle(x, y_segment[num], y_int)\n z = old_div(x * abs(b_wiggle - abs(slope)), abs(x_int))\n Z += z\n first_time = False\n return Z\n", "role": "user" }, { "content": "get_Z", "role": "assistant" } ]
def x(x_segment, y_segment, x_int, y_int, slope, n): total = 0 first_time = True for num, x in enumerate(x_segment): b_wiggle = get_b_wiggle(x, y_segment[num], y_int) result = 100 * old_div(x * abs(b_wiggle - abs(slope)), abs(y_int)) total += result first_time = False Zstar = old_div(1.0, n - 1.0) * total return Zstar
get_Zstar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_segment, y_segment, x_int, y_int, slope, n):\n total = 0\n first_time = True\n for num, x in enumerate(x_segment):\n b_wiggle = get_b_wiggle(x, y_segment[num], y_int)\n result = 100 * old_div(x * abs(b_wiggle - abs(slope)), abs(y_int))\n total += result\n first_time = False\n Zstar = old_div(1.0, n - 1.0) * total\n return Zstar\n", "role": "user" }, { "content": "get_Zstar", "role": "assistant" } ]
def x(point_array, norm): norm = float(norm) points = old_div(numpy.array(point_array), norm) return points
get_normed_points
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(point_array, norm):\n norm = float(norm)\n points = old_div(numpy.array(point_array), norm)\n return points\n", "role": "user" }, { "content": "get_normed_points", "role": "assistant" } ]
def x(x_segment, y_segment): xy_array = [] for num, x in enumerate(x_segment): xy_array.append((x, y_segment[num])) return xy_array
get_xy_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_segment, y_segment):\n xy_array = []\n for num, x in enumerate(x_segment):\n xy_array.append((x, y_segment[num]))\n return xy_array\n", "role": "user" }, { "content": "get_xy_array", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-i' in sys.argv: file = input('Enter file name: ') f = open(file, 'r') elif '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] f = open(file, 'r') else: f = sys.stdin ofile = '' if '-F' in sys.argv: ind = sys.argv.index('-F') ofile = sys.argv[ind + 1] out = open(ofile, 'w + a') data = f.readlines() dat = [] sum = 0 for line in data: rec = line.split() dat.append(float(rec[0])) sum += float(float(rec[0])) mean, std = pmag.gausspars(dat) outdata = len(dat), mean, sum, std, 100 * std / mean if ofile == '': print(len(dat), mean, sum, std, 100 * std / mean) else: for i in outdata: i = str(i) out.write(i + ' ')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-i' in sys.argv:\n file = input('Enter file name: ')\n f = open(file, 'r')\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n else:\n f = sys.stdin\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n data = f.readlines()\n dat = []\n sum = 0\n for line in data:\n rec = line.split()\n dat.append(float(rec[0]))\n sum += float(float(rec[0]))\n mean, std = pmag.gausspars(dat)\n outdata = len(dat), mean, sum, std, 100 * std / mean\n if ofile == '':\n print(len(dat), mean, sum, std, 100 * std / mean)\n else:\n for i in outdata:\n i = str(i)\n out.write(i + ' ')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): dir_path = '.' flag = '' if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') magic_file = dir_path + '/' + sys.argv[ind + 1] else: print(main.__doc__) print('-W- "-f" is a required option') sys.exit() if '-dm' in sys.argv: ind = sys.argv.index('-dm') data_model_num = sys.argv[ind + 1] if data_model_num != '3': data_model_num = 2.5 else: data_model_num = 3 if '-F' in sys.argv: ind = sys.argv.index('-F') outfile = dir_path + '/' + sys.argv[ind + 1] else: print(main.__doc__) print('-W- "-F" is a required option') sys.exit() if '-key' in sys.argv: ind = sys.argv.index('-key') grab_key = sys.argv[ind + 1] v = sys.argv[ind + 2] flag = sys.argv[ind + 3] else: print(main.__doc__) print('-key is required') sys.exit() Data, file_type = pmag.magic_read(magic_file) if grab_key == 'age': grab_key = 'average_age' Data = pmag.convert_ages(Data, data_model=data_model_num) if grab_key == 'model_lat': Data = pmag.convert_lat(Data) Data = pmag.convert_ages(Data, data_model=data_model_num) Selection = pmag.get_dictitem(Data, grab_key, v, flag, float_to_int=True) if len(Selection) > 0: pmag.magic_write(outfile, Selection, file_type) else: print('no data matched your criteria')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n dir_path = '.'\n flag = ''\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n magic_file = dir_path + '/' + sys.argv[ind + 1]\n else:\n print(main.__doc__)\n print('-W- \"-f\" is a required option')\n sys.exit()\n if '-dm' in sys.argv:\n ind = sys.argv.index('-dm')\n data_model_num = sys.argv[ind + 1]\n if data_model_num != '3':\n data_model_num = 2.5\n else:\n data_model_num = 3\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n outfile = dir_path + '/' + sys.argv[ind + 1]\n else:\n print(main.__doc__)\n print('-W- \"-F\" is a required option')\n sys.exit()\n if '-key' in sys.argv:\n ind = sys.argv.index('-key')\n grab_key = sys.argv[ind + 1]\n v = sys.argv[ind + 2]\n flag = sys.argv[ind + 3]\n else:\n print(main.__doc__)\n print('-key is required')\n sys.exit()\n Data, file_type = pmag.magic_read(magic_file)\n if grab_key == 'age':\n grab_key = 'average_age'\n Data = pmag.convert_ages(Data, data_model=data_model_num)\n if grab_key == 'model_lat':\n Data = pmag.convert_lat(Data)\n Data = pmag.convert_ages(Data, data_model=data_model_num)\n Selection = pmag.get_dictitem(Data, grab_key, v, flag, float_to_int=True)\n if len(Selection) > 0:\n pmag.magic_write(outfile, Selection, file_type)\n else:\n print('no data matched your criteria')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind = sys.argv.index('-F') ofile = sys.argv[ind + 1] out = open(ofile, 'w') print(ofile, ' opened for output') else: ofile = '' if '-i' in sys.argv: while 1: try: Dec = float(input('Declination: <cntrl-D> to quit ')) except EOFError: print('\n Good-bye\n') sys.exit() Inc = float(input('Inclination: ')) Az = float(input('Azimuth: ')) Pl = float(input('Plunge: ')) print('%7.1f %7.1f' % pmag.dogeo(Dec, Inc, Az, Pl)) elif '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] data = numpy.loadtxt(file) else: data = numpy.loadtxt(sys.stdin, dtype=numpy.float) D, I = pmag.dogeo_V(data) for k in range(len(D)): if ofile == '': print('%7.1f %7.1f' % (D[k], I[k])) else: out.write('%7.1f %7.1f\n' % (D[k], I[k]))
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w')\n print(ofile, ' opened for output')\n else:\n ofile = ''\n if '-i' in sys.argv:\n while 1:\n try:\n Dec = float(input('Declination: <cntrl-D> to quit '))\n except EOFError:\n print('\\n Good-bye\\n')\n sys.exit()\n Inc = float(input('Inclination: '))\n Az = float(input('Azimuth: '))\n Pl = float(input('Plunge: '))\n print('%7.1f %7.1f' % pmag.dogeo(Dec, Inc, Az, Pl))\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n data = numpy.loadtxt(file)\n else:\n data = numpy.loadtxt(sys.stdin, dtype=numpy.float)\n D, I = pmag.dogeo_V(data)\n for k in range(len(D)):\n if ofile == '':\n print('%7.1f %7.1f' % (D[k], I[k]))\n else:\n out.write('%7.1f %7.1f\\n' % (D[k], I[k]))\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): out = '' UP = 0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] DI = numpy.loadtxt(file, dtype=numpy.float) else: DI = numpy.loadtxt(sys.stdin, dtype=numpy.float) Ds = DI.transpose()[0] Is = DI.transpose()[1] if len(DI) > 1: XY = pmag.dimap_V(Ds, Is) for xy in XY: print('%f %f' % (xy[0], xy[1])) else: XY = pmag.dimap(Ds, Is) print('%f %f' % (XY[0], XY[1]))
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n out = ''\n UP = 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n DI = numpy.loadtxt(file, dtype=numpy.float)\n else:\n DI = numpy.loadtxt(sys.stdin, dtype=numpy.float)\n Ds = DI.transpose()[0]\n Is = DI.transpose()[1]\n if len(DI) > 1:\n XY = pmag.dimap_V(Ds, Is)\n for xy in XY:\n print('%f %f' % (xy[0], xy[1]))\n else:\n XY = pmag.dimap(Ds, Is)\n print('%f %f' % (XY[0], XY[1]))\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(x1, y1, x2): sp = Spline(x1, y1) return sp(x2)
spline_interpolate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x1, y1, x2):\n sp = Spline(x1, y1)\n return sp(x2)\n", "role": "user" }, { "content": "spline_interpolate", "role": "assistant" } ]
def x(x1, y1, x2): sp = Spline(log(x1), log(y1)) return exp(sp(log(x2)))
logspline_interpolate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x1, y1, x2):\n sp = Spline(log(x1), log(y1))\n return exp(sp(log(x2)))\n", "role": "user" }, { "content": "logspline_interpolate", "role": "assistant" } ]
def x(x1, y1, x2): li = LinInt(x1, y1) return li(x2)
linear_interpolate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x1, y1, x2):\n li = LinInt(x1, y1)\n return li(x2)\n", "role": "user" }, { "content": "linear_interpolate", "role": "assistant" } ]
def x(self, x): if x <= self.x_vals[0]: return self.y_vals[0] if x >= self.x_vals[-1]: return self.y_vals[-1] pos = numpy.searchsorted(self.x_vals, x) h = self.x_vals[pos] - self.x_vals[pos - 1] if h == 0.0: raise BadInput a = old_div(self.x_vals[pos] - x, h) b = old_div(x - self.x_vals[pos - 1], h) return a * self.y_vals[pos - 1] + b * self.y_vals[pos]
call
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x):\n if x <= self.x_vals[0]:\n return self.y_vals[0]\n if x >= self.x_vals[-1]:\n return self.y_vals[-1]\n pos = numpy.searchsorted(self.x_vals, x)\n h = self.x_vals[pos] - self.x_vals[pos - 1]\n if h == 0.0:\n raise BadInput\n a = old_div(self.x_vals[pos] - x, h)\n b = old_div(x - self.x_vals[pos - 1], h)\n return a * self.y_vals[pos - 1] + b * self.y_vals[pos]\n", "role": "user" }, { "content": "call", "role": "assistant" } ]
def x(): args = sys.argv if '-h' in args: print(main.__doc__) sys.exit() data_model_num = int(pmag.get_named_arg('-DM', 3)) spec_file = pmag.get_named_arg('-Fsi', 'specimens.txt') if data_model_num == 3: samp_file = pmag.get_named_arg('-fsa', 'samples.txt') else: samp_file = pmag.get_named_arg('-fsa', 'er_samples.txt') dir_path = pmag.get_named_arg('-WD', '.') input_dir_path = pmag.get_named_arg('-ID', '') infile = pmag.get_named_arg('-f', reqd=True) coord = pmag.get_named_arg('-crd', '-1') ipmag.aarm_magic(infile, dir_path, input_dir_path, spec_file, samp_file, data_model_num, coord)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n data_model_num = int(pmag.get_named_arg('-DM', 3))\n spec_file = pmag.get_named_arg('-Fsi', 'specimens.txt')\n if data_model_num == 3:\n samp_file = pmag.get_named_arg('-fsa', 'samples.txt')\n else:\n samp_file = pmag.get_named_arg('-fsa', 'er_samples.txt')\n dir_path = pmag.get_named_arg('-WD', '.')\n input_dir_path = pmag.get_named_arg('-ID', '')\n infile = pmag.get_named_arg('-f', reqd=True)\n coord = pmag.get_named_arg('-crd', '-1')\n ipmag.aarm_magic(infile, dir_path, input_dir_path, spec_file, samp_file,\n data_model_num, coord)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): FIG = {} FIG['demag'] = 1 in_file, plot_key, LT = ('magic_measurements.txt', 'er_location_name', 'LT-AF-Z') XLP = '' norm = 1 LT = 'LT-AF-Z' units, dmag_key = 'T', 'treatment_ac_field' plot = 0 fmt = 'svg' if len(sys.argv) > 1: if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-N' in sys.argv: norm = 0 if '-sav' in sys.argv: plot = 1 if '-f' in sys.argv: ind = sys.argv.index('-f') in_file = sys.argv[ind + 1] if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if '-obj' in sys.argv: ind = sys.argv.index('-obj') plot_by = sys.argv[ind + 1] if plot_by == 'sit': plot_key = 'er_site_name' if plot_by == 'sam': plot_key = 'er_sample_name' if plot_by == 'spc': plot_key = 'er_specimen_name' if '-XLP' in sys.argv: ind = sys.argv.index('-XLP') XLP = sys.argv[ind + 1] if '-LT' in sys.argv: ind = sys.argv.index('-LT') LT = 'LT-' + sys.argv[ind + 1] + '-Z' if LT == 'LT-T-Z': units, dmag_key = 'K', 'treatment_temp' elif LT == 'LT-AF-Z': units, dmag_key = 'T', 'treatment_ac_field' elif LT == 'LT-M-Z': units, dmag_key = 'J', 'treatment_mw_energy' else: units = 'U' data, file_type = pmag.magic_read(in_file) sids = pmag.get_specs(data) pmagplotlib.plot_init(FIG['demag'], 5, 5) print(len(data), ' records read from ', in_file) plotlist, intlist = [], ['measurement_magnitude', 'measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass'] IntMeths = [] FixData = [] for rec in data: meths = [] methcodes = rec['magic_method_codes'].split(':') for meth in methcodes: meths.append(meth.strip()) for key in rec.keys(): if key in intlist and rec[key] != '': if key not in IntMeths: IntMeths.append(key) if rec[plot_key] not in plotlist and LT in meths: plotlist.append(rec[plot_key]) if 'measurement_flag' not in rec.keys(): rec['measurement_flag'] = 'g' FixData.append(rec) plotlist.sort() if len(IntMeths) == 0: print('No intensity information found') sys.exit() data = FixData int_key = IntMeths[0] for plt in plotlist: if plot == 0: print(plt, 'plotting by: ', plot_key) PLTblock = pmag.get_dictitem(data, plot_key, plt, 'T') PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', LT, 'has') PLTblock = pmag.get_dictitem(PLTblock, int_key, '', 'F') if XLP != '': PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', XLP, 'not') if len(PLTblock) > 2: title = PLTblock[0][plot_key] spcs = [] for rec in PLTblock: if rec['er_specimen_name'] not in spcs: spcs.append(rec['er_specimen_name']) for spc in spcs: SPCblock = pmag.get_dictitem(PLTblock, 'er_specimen_name', spc, 'T') INTblock = [] for rec in SPCblock: INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[ int_key]), 1, rec['measurement_flag']]) if len(INTblock) > 2: pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0, units, norm) if plot == 1: files = {} for key in FIG.keys(): files[key] = title + '_' + LT + '.' + fmt pmagplotlib.save_plots(FIG, files) sys.exit() else: pmagplotlib.draw_figs(FIG) ans = input( ' S[a]ve to save plot, [q]uit, Return to continue: ') if ans == 'q': sys.exit() if ans == 'a': files = {} for key in FIG.keys(): files[key] = title + '_' + LT + '.' + fmt pmagplotlib.save_plots(FIG, files) pmagplotlib.clearFIG(FIG['demag'])
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n FIG = {}\n FIG['demag'] = 1\n in_file, plot_key, LT = ('magic_measurements.txt', 'er_location_name',\n 'LT-AF-Z')\n XLP = ''\n norm = 1\n LT = 'LT-AF-Z'\n units, dmag_key = 'T', 'treatment_ac_field'\n plot = 0\n fmt = 'svg'\n if len(sys.argv) > 1:\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-N' in sys.argv:\n norm = 0\n if '-sav' in sys.argv:\n plot = 1\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n in_file = sys.argv[ind + 1]\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if '-obj' in sys.argv:\n ind = sys.argv.index('-obj')\n plot_by = sys.argv[ind + 1]\n if plot_by == 'sit':\n plot_key = 'er_site_name'\n if plot_by == 'sam':\n plot_key = 'er_sample_name'\n if plot_by == 'spc':\n plot_key = 'er_specimen_name'\n if '-XLP' in sys.argv:\n ind = sys.argv.index('-XLP')\n XLP = sys.argv[ind + 1]\n if '-LT' in sys.argv:\n ind = sys.argv.index('-LT')\n LT = 'LT-' + sys.argv[ind + 1] + '-Z'\n if LT == 'LT-T-Z':\n units, dmag_key = 'K', 'treatment_temp'\n elif LT == 'LT-AF-Z':\n units, dmag_key = 'T', 'treatment_ac_field'\n elif LT == 'LT-M-Z':\n units, dmag_key = 'J', 'treatment_mw_energy'\n else:\n units = 'U'\n data, file_type = pmag.magic_read(in_file)\n sids = pmag.get_specs(data)\n pmagplotlib.plot_init(FIG['demag'], 5, 5)\n print(len(data), ' records read from ', in_file)\n plotlist, intlist = [], ['measurement_magnitude',\n 'measurement_magn_moment', 'measurement_magn_volume',\n 'measurement_magn_mass']\n IntMeths = []\n FixData = []\n for rec in data:\n meths = []\n methcodes = rec['magic_method_codes'].split(':')\n for meth in methcodes:\n meths.append(meth.strip())\n for key in rec.keys():\n if key in intlist and rec[key] != '':\n if key not in IntMeths:\n IntMeths.append(key)\n if rec[plot_key] not in plotlist and LT in meths:\n plotlist.append(rec[plot_key])\n if 'measurement_flag' not in rec.keys():\n rec['measurement_flag'] = 'g'\n FixData.append(rec)\n plotlist.sort()\n if len(IntMeths) == 0:\n print('No intensity information found')\n sys.exit()\n data = FixData\n int_key = IntMeths[0]\n for plt in plotlist:\n if plot == 0:\n print(plt, 'plotting by: ', plot_key)\n PLTblock = pmag.get_dictitem(data, plot_key, plt, 'T')\n PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes', LT, 'has')\n PLTblock = pmag.get_dictitem(PLTblock, int_key, '', 'F')\n if XLP != '':\n PLTblock = pmag.get_dictitem(PLTblock, 'magic_method_codes',\n XLP, 'not')\n if len(PLTblock) > 2:\n title = PLTblock[0][plot_key]\n spcs = []\n for rec in PLTblock:\n if rec['er_specimen_name'] not in spcs:\n spcs.append(rec['er_specimen_name'])\n for spc in spcs:\n SPCblock = pmag.get_dictitem(PLTblock, 'er_specimen_name',\n spc, 'T')\n INTblock = []\n for rec in SPCblock:\n INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[\n int_key]), 1, rec['measurement_flag']])\n if len(INTblock) > 2:\n pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0,\n units, norm)\n if plot == 1:\n files = {}\n for key in FIG.keys():\n files[key] = title + '_' + LT + '.' + fmt\n pmagplotlib.save_plots(FIG, files)\n sys.exit()\n else:\n pmagplotlib.draw_figs(FIG)\n ans = input(\n ' S[a]ve to save plot, [q]uit, Return to continue: ')\n if ans == 'q':\n sys.exit()\n if ans == 'a':\n files = {}\n for key in FIG.keys():\n files[key] = title + '_' + LT + '.' + fmt\n pmagplotlib.save_plots(FIG, files)\n pmagplotlib.clearFIG(FIG['demag'])\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): args = sys.argv if '-h' in args: print(main.__doc__) sys.exit() methcode = 'LP-NO' demag = 'N' data_model_num = int(float(pmag.get_named_arg('-DM', 3))) user = pmag.get_named_arg('-usr', '') dir_path = pmag.get_named_arg('-WD', '.') inst = pmag.get_named_arg('-inst', '') magfile = pmag.get_named_arg('-f', reqd=True) magfile = pmag.resolve_file_name(magfile, dir_path) if '-A' in args: noave = 1 else: noave = 0 if data_model_num == 2: meas_file = pmag.get_named_arg('-F', 'magic_measurements.txt') else: meas_file = pmag.get_named_arg('-F', 'measurements.txt') meas_file = pmag.resolve_file_name(meas_file, dir_path) volume = pmag.get_named_arg('-vol', 12) methcode = pmag.get_named_arg('-LP', 'LP-NO') convert.mini(magfile, dir_path, meas_file, data_model_num, volume, noave, inst, user, methcode)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n methcode = 'LP-NO'\n demag = 'N'\n data_model_num = int(float(pmag.get_named_arg('-DM', 3)))\n user = pmag.get_named_arg('-usr', '')\n dir_path = pmag.get_named_arg('-WD', '.')\n inst = pmag.get_named_arg('-inst', '')\n magfile = pmag.get_named_arg('-f', reqd=True)\n magfile = pmag.resolve_file_name(magfile, dir_path)\n if '-A' in args:\n noave = 1\n else:\n noave = 0\n if data_model_num == 2:\n meas_file = pmag.get_named_arg('-F', 'magic_measurements.txt')\n else:\n meas_file = pmag.get_named_arg('-F', 'measurements.txt')\n meas_file = pmag.resolve_file_name(meas_file, dir_path)\n volume = pmag.get_named_arg('-vol', 12)\n methcode = pmag.get_named_arg('-LP', 'LP-NO')\n convert.mini(magfile, dir_path, meas_file, data_model_num, volume,\n noave, inst, user, methcode)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): infile, critout = '', 'pmag_criteria.txt' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') infile = sys.argv[ind + 1] crit_data, file_type = pmag.magic_read(infile) if file_type != 'pmag_criteria': print('bad input file') print(main.__doc__) sys.exit() print('Acceptance criteria read in from ', infile) if '-F' in sys.argv: ind = sys.argv.index('-F') critout = sys.argv[ind + 1] Dcrit, Icrit, nocrit = 0, 0, 0 custom = '1' crit = input( """ [0] Use no acceptance criteria? [1] Use default criteria [2] customize criteria """ ) if crit == '0': print('Very very loose criteria saved in ', critout) crit_data = pmag.default_criteria(1) pmag.magic_write(critout, crit_data, 'pmag_criteria') sys.exit() crit_data = pmag.default_criteria(0) if crit == '1': print('Default criteria saved in ', critout) pmag.magic_write(critout, crit_data, 'pmag_criteria') sys.exit() CritRec = crit_data[0] crit_keys = list(CritRec.keys()) crit_keys.sort() print( """Enter new threshold value. Return to keep default. Leave blank to not use as a criterion """ ) for key in crit_keys: if (key != 'pmag_criteria_code' and key != 'er_citation_names' and key != 'criteria_definition' and CritRec[key] != ''): print(key, CritRec[key]) new = input('new value: ') if new != '': CritRec[key] = new pmag.magic_write(critout, [CritRec], 'pmag_criteria') print('Criteria saved in pmag_criteria.txt')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n infile, critout = '', 'pmag_criteria.txt'\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n infile = sys.argv[ind + 1]\n crit_data, file_type = pmag.magic_read(infile)\n if file_type != 'pmag_criteria':\n print('bad input file')\n print(main.__doc__)\n sys.exit()\n print('Acceptance criteria read in from ', infile)\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n critout = sys.argv[ind + 1]\n Dcrit, Icrit, nocrit = 0, 0, 0\n custom = '1'\n crit = input(\n \"\"\" [0] Use no acceptance criteria?\n [1] Use default criteria\n [2] customize criteria \n \"\"\"\n )\n if crit == '0':\n print('Very very loose criteria saved in ', critout)\n crit_data = pmag.default_criteria(1)\n pmag.magic_write(critout, crit_data, 'pmag_criteria')\n sys.exit()\n crit_data = pmag.default_criteria(0)\n if crit == '1':\n print('Default criteria saved in ', critout)\n pmag.magic_write(critout, crit_data, 'pmag_criteria')\n sys.exit()\n CritRec = crit_data[0]\n crit_keys = list(CritRec.keys())\n crit_keys.sort()\n print(\n \"\"\"Enter new threshold value.\n Return to keep default.\n Leave blank to not use as a criterion\n \"\"\"\n )\n for key in crit_keys:\n if (key != 'pmag_criteria_code' and key != 'er_citation_names' and \n key != 'criteria_definition' and CritRec[key] != ''):\n print(key, CritRec[key])\n new = input('new value: ')\n if new != '':\n CritRec[key] = new\n pmag.magic_write(critout, [CritRec], 'pmag_criteria')\n print('Criteria saved in pmag_criteria.txt')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(self, WD=None): if '-WD' in sys.argv and FIRST_RUN: ind = sys.argv.index('-WD') self.WD = sys.argv[ind + 1] elif not WD: dialog = wx.DirDialog(None, 'Choose a directory:', defaultPath=self .currentDirectory, style=wx.DD_DEFAULT_STYLE | wx. DD_NEW_DIR_BUTTON | wx.DD_CHANGE_DIR) ok = self.show_dlg(dialog) if ok == wx.ID_OK: self.WD = dialog.GetPath() else: self.WD = os.getcwd() dialog.Destroy() self.WD = os.path.realpath(self.WD) if self.data_model == 3: meas_file = 'measurements.txt' else: meas_file = 'magic_measurements.txt' self.magic_file = os.path.join(self.WD, meas_file) self.GUI_log = open(os.path.join(self.WD, 'thellier_GUI.log'), 'w+') self.GUI_log.write('starting...\n') self.GUI_log.close() self.GUI_log = open(os.path.join(self.WD, 'thellier_GUI.log'), 'a') os.chdir(self.WD) self.WD = os.getcwd()
get_DIR
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, WD=None):\n if '-WD' in sys.argv and FIRST_RUN:\n ind = sys.argv.index('-WD')\n self.WD = sys.argv[ind + 1]\n elif not WD:\n dialog = wx.DirDialog(None, 'Choose a directory:', defaultPath=self\n .currentDirectory, style=wx.DD_DEFAULT_STYLE | wx.\n DD_NEW_DIR_BUTTON | wx.DD_CHANGE_DIR)\n ok = self.show_dlg(dialog)\n if ok == wx.ID_OK:\n self.WD = dialog.GetPath()\n else:\n self.WD = os.getcwd()\n dialog.Destroy()\n self.WD = os.path.realpath(self.WD)\n if self.data_model == 3:\n meas_file = 'measurements.txt'\n else:\n meas_file = 'magic_measurements.txt'\n self.magic_file = os.path.join(self.WD, meas_file)\n self.GUI_log = open(os.path.join(self.WD, 'thellier_GUI.log'), 'w+')\n self.GUI_log.write('starting...\\n')\n self.GUI_log.close()\n self.GUI_log = open(os.path.join(self.WD, 'thellier_GUI.log'), 'a')\n os.chdir(self.WD)\n self.WD = os.getcwd()\n", "role": "user" }, { "content": "get_DIR", "role": "assistant" } ]
def x(self, event): if 'specimen_int_uT' not in self.Data[self.s]['pars']: return if 'deleted' in self.Data[self.s]['pars']: self.Data[self.s]['pars'].pop('deleted') self.Data[self.s]['pars']['saved'] = True sample = self.Data_hierarchy['specimens'][self.s] if sample not in list(self.Data_samples.keys()): self.Data_samples[sample] = {} if self.s not in list(self.Data_samples[sample].keys()): self.Data_samples[sample][self.s] = {} self.Data_samples[sample][self.s]['B'] = self.Data[self.s]['pars'][ 'specimen_int_uT'] site = thellier_gui_lib.get_site_from_hierarchy(sample, self.Data_hierarchy ) if site not in list(self.Data_sites.keys()): self.Data_sites[site] = {} if self.s not in list(self.Data_sites[site].keys()): self.Data_sites[site][self.s] = {} self.Data_sites[site][self.s]['B'] = self.Data[self.s]['pars'][ 'specimen_int_uT'] self.draw_sample_mean() self.write_sample_box() self.close_warning = True
on_save_interpretation_button
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if 'specimen_int_uT' not in self.Data[self.s]['pars']:\n return\n if 'deleted' in self.Data[self.s]['pars']:\n self.Data[self.s]['pars'].pop('deleted')\n self.Data[self.s]['pars']['saved'] = True\n sample = self.Data_hierarchy['specimens'][self.s]\n if sample not in list(self.Data_samples.keys()):\n self.Data_samples[sample] = {}\n if self.s not in list(self.Data_samples[sample].keys()):\n self.Data_samples[sample][self.s] = {}\n self.Data_samples[sample][self.s]['B'] = self.Data[self.s]['pars'][\n 'specimen_int_uT']\n site = thellier_gui_lib.get_site_from_hierarchy(sample, self.Data_hierarchy\n )\n if site not in list(self.Data_sites.keys()):\n self.Data_sites[site] = {}\n if self.s not in list(self.Data_sites[site].keys()):\n self.Data_sites[site][self.s] = {}\n self.Data_sites[site][self.s]['B'] = self.Data[self.s]['pars'][\n 'specimen_int_uT']\n self.draw_sample_mean()\n self.write_sample_box()\n self.close_warning = True\n", "role": "user" }, { "content": "on_save_interpretation_button", "role": "assistant" } ]
def x(self, event): del self.Data[self.s]['pars'] self.Data[self.s]['pars'] = {} self.Data[self.s]['pars']['deleted'] = True self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s][ 'lab_dc_field'] self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s][ 'er_specimen_name'] self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][ 'er_sample_name'] self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][ 'er_sample_name'] sample = self.Data_hierarchy['specimens'][self.s] if sample in list(self.Data_samples.keys()): if self.s in list(self.Data_samples[sample].keys()): if 'B' in list(self.Data_samples[sample][self.s].keys()): del self.Data_samples[sample][self.s]['B'] site = thellier_gui_lib.get_site_from_hierarchy(sample, self.Data_hierarchy ) if site in list(self.Data_sites.keys()): if self.s in list(self.Data_sites[site].keys()): del self.Data_sites[site][self.s]['B'] self.tmin_box.SetValue('') self.tmax_box.SetValue('') self.clear_boxes() self.draw_figure(self.s) self.draw_sample_mean() self.write_sample_box() self.close_warning = True
on_delete_interpretation_button
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n del self.Data[self.s]['pars']\n self.Data[self.s]['pars'] = {}\n self.Data[self.s]['pars']['deleted'] = True\n self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s][\n 'lab_dc_field']\n self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s][\n 'er_specimen_name']\n self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][\n 'er_sample_name']\n self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][\n 'er_sample_name']\n sample = self.Data_hierarchy['specimens'][self.s]\n if sample in list(self.Data_samples.keys()):\n if self.s in list(self.Data_samples[sample].keys()):\n if 'B' in list(self.Data_samples[sample][self.s].keys()):\n del self.Data_samples[sample][self.s]['B']\n site = thellier_gui_lib.get_site_from_hierarchy(sample, self.Data_hierarchy\n )\n if site in list(self.Data_sites.keys()):\n if self.s in list(self.Data_sites[site].keys()):\n del self.Data_sites[site][self.s]['B']\n self.tmin_box.SetValue('')\n self.tmax_box.SetValue('')\n self.clear_boxes()\n self.draw_figure(self.s)\n self.draw_sample_mean()\n self.write_sample_box()\n self.close_warning = True\n", "role": "user" }, { "content": "on_delete_interpretation_button", "role": "assistant" } ]
def x(self): self.ignore_parameters, value = {}, '' for crit_short_name in self.preferences['show_statistics_on_gui']: crit = 'specimen_' + crit_short_name if self.acceptance_criteria[crit]['value'] == -999: self.threshold_windows[crit_short_name].SetValue('') self.threshold_windows[crit_short_name].SetBackgroundColour(wx. Colour(128, 128, 128)) self.ignore_parameters[crit] = True continue elif crit == 'specimen_scat': if self.acceptance_criteria[crit]['value'] in ['g', 1, '1', True, 'True', 't']: value = 'True' value = 't' else: value = '' value = 'f' self.threshold_windows['scat'].SetBackgroundColour((128, 128, 128)) elif type(self.acceptance_criteria[crit]['value']) == int: value = '%i' % self.acceptance_criteria[crit]['value'] elif type(self.acceptance_criteria[crit]['value']) == float: if self.acceptance_criteria[crit]['decimal_points'] == -999: value = '%.3e' % self.acceptance_criteria[crit]['value'] else: value = '{:.{}f}'.format(self.acceptance_criteria[crit][ 'value'], self.acceptance_criteria[crit]['decimal_points']) else: continue self.threshold_windows[crit_short_name].SetValue(value) self.threshold_windows[crit_short_name].SetBackgroundColour(wx.WHITE)
write_acceptance_criteria_to_boxes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.ignore_parameters, value = {}, ''\n for crit_short_name in self.preferences['show_statistics_on_gui']:\n crit = 'specimen_' + crit_short_name\n if self.acceptance_criteria[crit]['value'] == -999:\n self.threshold_windows[crit_short_name].SetValue('')\n self.threshold_windows[crit_short_name].SetBackgroundColour(wx.\n Colour(128, 128, 128))\n self.ignore_parameters[crit] = True\n continue\n elif crit == 'specimen_scat':\n if self.acceptance_criteria[crit]['value'] in ['g', 1, '1', \n True, 'True', 't']:\n value = 'True'\n value = 't'\n else:\n value = ''\n value = 'f'\n self.threshold_windows['scat'].SetBackgroundColour((128, \n 128, 128))\n elif type(self.acceptance_criteria[crit]['value']) == int:\n value = '%i' % self.acceptance_criteria[crit]['value']\n elif type(self.acceptance_criteria[crit]['value']) == float:\n if self.acceptance_criteria[crit]['decimal_points'] == -999:\n value = '%.3e' % self.acceptance_criteria[crit]['value']\n else:\n value = '{:.{}f}'.format(self.acceptance_criteria[crit][\n 'value'], self.acceptance_criteria[crit]['decimal_points'])\n else:\n continue\n self.threshold_windows[crit_short_name].SetValue(value)\n self.threshold_windows[crit_short_name].SetBackgroundColour(wx.WHITE)\n", "role": "user" }, { "content": "write_acceptance_criteria_to_boxes", "role": "assistant" } ]
def x(self, s): self.logger.DeleteAllItems() FONT_RATIO = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5 if self.GUI_RESOLUTION > 1.1: font1 = wx.Font(11, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self. font_type) elif self.GUI_RESOLUTION <= 0.9: font1 = wx.Font(8, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self. font_type) else: font1 = wx.Font(10, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self. font_type) t1 = self.tmin_box.GetValue() t2 = self.tmax_box.GetValue() if 'LP-PI-M' in self.Data[s]['datablock'][0]['magic_method_codes']: MICROWAVE = True THERMAL = False steps_tr = [] for rec in self.Data[s]['datablock']: if 'measurement_description' in rec: MW_step = rec['measurement_description'].strip('\n').split(':') for STEP in MW_step: if 'Number' in STEP: temp = float(STEP.split('-')[-1]) steps_tr.append(temp) else: power = rec['treatment_mw_power'] if '-' in str(power): power = power.split('-')[-1] steps_tr.append(int(power)) else: MICROWAVE = False THERMAL = True steps_tr = [(float(d['treatment_temp']) - 273) for d in self.Data[s ]['datablock']] if (t1 == '' or t2 == '') or float(t2) < float(t1): tmin_index, tmax_index = -1, -1 else: tmin_index = steps_tr.index(int(t1)) tmax_index = steps_tr.index(int(t2)) self.logger.SetFont(font1) for i, rec in enumerate(self.Data[s]['datablock']): if 'LT-NO' in rec['magic_method_codes']: step = 'N' elif 'LT-AF-Z' in rec['magic_method_codes']: step = 'AFD' elif 'LT-T-Z' in rec['magic_method_codes'] or 'LT-M-Z' in rec[ 'magic_method_codes']: step = 'Z' elif 'LT-T-I' in rec['magic_method_codes'] or 'LT-M-I' in rec[ 'magic_method_codes']: step = 'I' elif 'LT-PTRM-I' in rec['magic_method_codes'] or 'LT-PMRM-I' in rec[ 'magic_method_codes']: step = 'P' elif 'LT-PTRM-MD' in rec['magic_method_codes'] or 'LT-PMRM-MD' in rec[ 'magic_method_codes']: step = 'T' elif 'LT-PTRM-AC' in rec['magic_method_codes'] or 'LT-PMRM-AC' in rec[ 'magic_method_codes']: step = 'A' else: print('unrecognized step in specimen %s Method codes: %s' % ( str(rec['magic_method_codes']), s)) if THERMAL: self.logger.InsertItem(i, '%i' % i) self.logger.SetItem(i, 1, step) self.logger.SetItem(i, 2, '%1.0f' % (float(rec['treatment_temp' ]) - 273.0)) self.logger.SetItem(i, 3, '%.1f' % float(rec['measurement_dec'])) self.logger.SetItem(i, 4, '%.1f' % float(rec['measurement_inc'])) self.logger.SetItem(i, 5, '%.2e' % float(rec[ 'measurement_magn_moment'])) elif MICROWAVE: if 'measurement_description' in list(rec.keys()): MW_step = rec['measurement_description'].strip('\n').split(':') for STEP in MW_step: if 'Number' not in STEP: continue temp = float(STEP.split('-')[-1]) self.logger.InsertItem(i, '%i' % i) self.logger.SetItem(i, 1, step) self.logger.SetItem(i, 2, '%1.0f' % temp) self.logger.SetItem(i, 3, '%.1f' % float(rec[ 'measurement_dec'])) self.logger.SetItem(i, 4, '%.1f' % float(rec[ 'measurement_inc'])) self.logger.SetItem(i, 5, '%.2e' % float(rec[ 'measurement_magn_moment'])) self.logger.SetItemBackgroundColour(i, 'WHITE') if i >= tmin_index and i <= tmax_index: self.logger.SetItemBackgroundColour(i, 'LIGHT BLUE') if 'measurement_flag' not in list(rec.keys()): rec['measurement_flag'] = 'g'
Add_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, s):\n self.logger.DeleteAllItems()\n FONT_RATIO = self.GUI_RESOLUTION + (self.GUI_RESOLUTION - 1) * 5\n if self.GUI_RESOLUTION > 1.1:\n font1 = wx.Font(11, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.\n font_type)\n elif self.GUI_RESOLUTION <= 0.9:\n font1 = wx.Font(8, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.\n font_type)\n else:\n font1 = wx.Font(10, wx.SWISS, wx.NORMAL, wx.NORMAL, False, self.\n font_type)\n t1 = self.tmin_box.GetValue()\n t2 = self.tmax_box.GetValue()\n if 'LP-PI-M' in self.Data[s]['datablock'][0]['magic_method_codes']:\n MICROWAVE = True\n THERMAL = False\n steps_tr = []\n for rec in self.Data[s]['datablock']:\n if 'measurement_description' in rec:\n MW_step = rec['measurement_description'].strip('\\n').split(':')\n for STEP in MW_step:\n if 'Number' in STEP:\n temp = float(STEP.split('-')[-1])\n steps_tr.append(temp)\n else:\n power = rec['treatment_mw_power']\n if '-' in str(power):\n power = power.split('-')[-1]\n steps_tr.append(int(power))\n else:\n MICROWAVE = False\n THERMAL = True\n steps_tr = [(float(d['treatment_temp']) - 273) for d in self.Data[s\n ]['datablock']]\n if (t1 == '' or t2 == '') or float(t2) < float(t1):\n tmin_index, tmax_index = -1, -1\n else:\n tmin_index = steps_tr.index(int(t1))\n tmax_index = steps_tr.index(int(t2))\n self.logger.SetFont(font1)\n for i, rec in enumerate(self.Data[s]['datablock']):\n if 'LT-NO' in rec['magic_method_codes']:\n step = 'N'\n elif 'LT-AF-Z' in rec['magic_method_codes']:\n step = 'AFD'\n elif 'LT-T-Z' in rec['magic_method_codes'] or 'LT-M-Z' in rec[\n 'magic_method_codes']:\n step = 'Z'\n elif 'LT-T-I' in rec['magic_method_codes'] or 'LT-M-I' in rec[\n 'magic_method_codes']:\n step = 'I'\n elif 'LT-PTRM-I' in rec['magic_method_codes'] or 'LT-PMRM-I' in rec[\n 'magic_method_codes']:\n step = 'P'\n elif 'LT-PTRM-MD' in rec['magic_method_codes'] or 'LT-PMRM-MD' in rec[\n 'magic_method_codes']:\n step = 'T'\n elif 'LT-PTRM-AC' in rec['magic_method_codes'] or 'LT-PMRM-AC' in rec[\n 'magic_method_codes']:\n step = 'A'\n else:\n print('unrecognized step in specimen %s Method codes: %s' % (\n str(rec['magic_method_codes']), s))\n if THERMAL:\n self.logger.InsertItem(i, '%i' % i)\n self.logger.SetItem(i, 1, step)\n self.logger.SetItem(i, 2, '%1.0f' % (float(rec['treatment_temp'\n ]) - 273.0))\n self.logger.SetItem(i, 3, '%.1f' % float(rec['measurement_dec']))\n self.logger.SetItem(i, 4, '%.1f' % float(rec['measurement_inc']))\n self.logger.SetItem(i, 5, '%.2e' % float(rec[\n 'measurement_magn_moment']))\n elif MICROWAVE:\n if 'measurement_description' in list(rec.keys()):\n MW_step = rec['measurement_description'].strip('\\n').split(':')\n for STEP in MW_step:\n if 'Number' not in STEP:\n continue\n temp = float(STEP.split('-')[-1])\n self.logger.InsertItem(i, '%i' % i)\n self.logger.SetItem(i, 1, step)\n self.logger.SetItem(i, 2, '%1.0f' % temp)\n self.logger.SetItem(i, 3, '%.1f' % float(rec[\n 'measurement_dec']))\n self.logger.SetItem(i, 4, '%.1f' % float(rec[\n 'measurement_inc']))\n self.logger.SetItem(i, 5, '%.2e' % float(rec[\n 'measurement_magn_moment']))\n self.logger.SetItemBackgroundColour(i, 'WHITE')\n if i >= tmin_index and i <= tmax_index:\n self.logger.SetItemBackgroundColour(i, 'LIGHT BLUE')\n if 'measurement_flag' not in list(rec.keys()):\n rec['measurement_flag'] = 'g'\n", "role": "user" }, { "content": "Add_text", "role": "assistant" } ]
def x(self, index): tmin_index, tmax_index = '', '' if str(self.tmin_box.GetValue()) != '': tmin_index = self.tmin_box.GetSelection() if str(self.tmax_box.GetValue()) != '': tmax_index = self.tmax_box.GetSelection() if not tmin_index and not tmax_index: tmin_index = index self.tmin_box.SetSelection(index) max_step_data = self.Data[self.s]['datablock'][-1] step_key = 'treatment_temp' if MICROWAVE: step_key = 'treatment_mw_power' max_step = max_step_data[step_key] tmax_index = self.tmax_box.GetCount() - 1 self.tmax_box.SetSelection(tmax_index) elif self.list_bound_loc != 0: if self.list_bound_loc == 1: if index < tmin_index: self.tmin_box.SetSelection(index) self.tmax_box.SetSelection(tmin_index) elif index == tmin_index: pass else: self.tmax_box.SetSelection(index) elif index > tmax_index: self.tmin_box.SetSelection(tmax_index) self.tmax_box.SetSelection(index) elif index == tmax_index: pass else: self.tmin_box.SetSelection(index) self.list_bound_loc = 0 elif index < tmax_index: self.tmin_box.SetSelection(index) self.list_bound_loc = 1 else: self.tmax_box.SetSelection(index) self.list_bound_loc = 2 self.logger.Select(index, on=0) self.get_new_T_PI_parameters(-1)
select_bounds_in_logger
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index):\n tmin_index, tmax_index = '', ''\n if str(self.tmin_box.GetValue()) != '':\n tmin_index = self.tmin_box.GetSelection()\n if str(self.tmax_box.GetValue()) != '':\n tmax_index = self.tmax_box.GetSelection()\n if not tmin_index and not tmax_index:\n tmin_index = index\n self.tmin_box.SetSelection(index)\n max_step_data = self.Data[self.s]['datablock'][-1]\n step_key = 'treatment_temp'\n if MICROWAVE:\n step_key = 'treatment_mw_power'\n max_step = max_step_data[step_key]\n tmax_index = self.tmax_box.GetCount() - 1\n self.tmax_box.SetSelection(tmax_index)\n elif self.list_bound_loc != 0:\n if self.list_bound_loc == 1:\n if index < tmin_index:\n self.tmin_box.SetSelection(index)\n self.tmax_box.SetSelection(tmin_index)\n elif index == tmin_index:\n pass\n else:\n self.tmax_box.SetSelection(index)\n elif index > tmax_index:\n self.tmin_box.SetSelection(tmax_index)\n self.tmax_box.SetSelection(index)\n elif index == tmax_index:\n pass\n else:\n self.tmin_box.SetSelection(index)\n self.list_bound_loc = 0\n elif index < tmax_index:\n self.tmin_box.SetSelection(index)\n self.list_bound_loc = 1\n else:\n self.tmax_box.SetSelection(index)\n self.list_bound_loc = 2\n self.logger.Select(index, on=0)\n self.get_new_T_PI_parameters(-1)\n", "role": "user" }, { "content": "select_bounds_in_logger", "role": "assistant" } ]
def x(self): self.clear_boxes() self.draw_figure(self.s) if self.Data[self.s]['T_or_MW'] == 'T': self.temperatures = np.array(self.Data[self.s]['t_Arai']) - 273.0 else: self.temperatures = np.array(self.Data[self.s]['t_Arai']) self.T_list = [('%.0f' % T) for T in self.temperatures] self.tmin_box.SetItems(self.T_list) self.tmax_box.SetItems(self.T_list) self.tmin_box.SetValue('') self.tmax_box.SetValue('') self.Blab_window.SetValue('%.0f' % (float(self.Data[self.s]['pars'][ 'lab_dc_field']) * 1000000.0)) if 'saved' in self.Data[self.s]['pars']: self.pars = self.Data[self.s]['pars'] self.update_GUI_with_new_interpretation() self.Add_text(self.s) self.write_sample_box()
update_selection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.clear_boxes()\n self.draw_figure(self.s)\n if self.Data[self.s]['T_or_MW'] == 'T':\n self.temperatures = np.array(self.Data[self.s]['t_Arai']) - 273.0\n else:\n self.temperatures = np.array(self.Data[self.s]['t_Arai'])\n self.T_list = [('%.0f' % T) for T in self.temperatures]\n self.tmin_box.SetItems(self.T_list)\n self.tmax_box.SetItems(self.T_list)\n self.tmin_box.SetValue('')\n self.tmax_box.SetValue('')\n self.Blab_window.SetValue('%.0f' % (float(self.Data[self.s]['pars'][\n 'lab_dc_field']) * 1000000.0))\n if 'saved' in self.Data[self.s]['pars']:\n self.pars = self.Data[self.s]['pars']\n self.update_GUI_with_new_interpretation()\n self.Add_text(self.s)\n self.write_sample_box()\n", "role": "user" }, { "content": "update_selection", "role": "assistant" } ]
def x(self, event): new_s = self.specimens_box.GetValue() if self.select_specimen(new_s): self.update_selection() else: self.specimens_box.SetValue(self.s) self.user_warning('no specimen %s reverting to old specimen %s' % ( new_s, self.s))
onSelect_specimen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n new_s = self.specimens_box.GetValue()\n if self.select_specimen(new_s):\n self.update_selection()\n else:\n self.specimens_box.SetValue(self.s)\n self.user_warning('no specimen %s reverting to old specimen %s' % (\n new_s, self.s))\n", "role": "user" }, { "content": "onSelect_specimen", "role": "assistant" } ]
def x(self, event): def x(event, wind): wind.Close() wind.Destroy() event.Skip() wind = wx.PopupTransientWindow(self, wx.RAISED_BORDER) if self.auto_save.GetValue(): info = ( "'auto-save' is currently selected. Temperature bounds will be saved when you click 'next' or 'back'." ) else: info = ( "'auto-save' is not selected. Temperature bounds will only be saved when you click 'save'." ) text = wx.StaticText(wind, -1, info) box = wx.StaticBox(wind, -1, 'Info:') boxSizer = wx.StaticBoxSizer(box, wx.VERTICAL) boxSizer.Add(text, 5, wx.ALL | wx.CENTER) exit_btn = wx.Button(wind, wx.ID_EXIT, 'Close') wind.Bind(wx.EVT_BUTTON, lambda evt: on_close(evt, wind), exit_btn) boxSizer.Add(exit_btn, 5, wx.ALL | wx.CENTER) wind.SetSizer(boxSizer) wind.Layout() wind.Popup()
on_info_click
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n\n def x(event, wind):\n wind.Close()\n wind.Destroy()\n event.Skip()\n wind = wx.PopupTransientWindow(self, wx.RAISED_BORDER)\n if self.auto_save.GetValue():\n info = (\n \"'auto-save' is currently selected. Temperature bounds will be saved when you click 'next' or 'back'.\"\n )\n else:\n info = (\n \"'auto-save' is not selected. Temperature bounds will only be saved when you click 'save'.\"\n )\n text = wx.StaticText(wind, -1, info)\n box = wx.StaticBox(wind, -1, 'Info:')\n boxSizer = wx.StaticBoxSizer(box, wx.VERTICAL)\n boxSizer.Add(text, 5, wx.ALL | wx.CENTER)\n exit_btn = wx.Button(wind, wx.ID_EXIT, 'Close')\n wind.Bind(wx.EVT_BUTTON, lambda evt: on_close(evt, wind), exit_btn)\n boxSizer.Add(exit_btn, 5, wx.ALL | wx.CENTER)\n wind.SetSizer(boxSizer)\n wind.Layout()\n wind.Popup()\n", "role": "user" }, { "content": "on_info_click", "role": "assistant" } ]
def x(self, event): if 'saved' not in self.Data[self.s]['pars'] or self.Data[self.s]['pars'][ 'saved'] != True: if self.auto_save.GetValue(): self.on_save_interpretation_button(None) else: del self.Data[self.s]['pars'] self.Data[self.s]['pars'] = {} self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s][ 'lab_dc_field'] self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s][ 'er_specimen_name'] self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][ 'er_sample_name'] if 'er_specimen_name' in list(self.last_saved_pars.keys() ) and self.last_saved_pars['er_specimen_name'] == self.s: for key in list(self.last_saved_pars.keys()): self.Data[self.s]['pars'][key] = self.last_saved_pars[key] self.last_saved_pars = {} index = self.specimens.index(self.s) if index == 0: index = len(self.specimens) index -= 1 self.s = self.specimens[index] self.specimens_box.SetStringSelection(self.s) self.update_selection()
on_prev_button
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if 'saved' not in self.Data[self.s]['pars'] or self.Data[self.s]['pars'][\n 'saved'] != True:\n if self.auto_save.GetValue():\n self.on_save_interpretation_button(None)\n else:\n del self.Data[self.s]['pars']\n self.Data[self.s]['pars'] = {}\n self.Data[self.s]['pars']['lab_dc_field'] = self.Data[self.s][\n 'lab_dc_field']\n self.Data[self.s]['pars']['er_specimen_name'] = self.Data[self.s][\n 'er_specimen_name']\n self.Data[self.s]['pars']['er_sample_name'] = self.Data[self.s][\n 'er_sample_name']\n if 'er_specimen_name' in list(self.last_saved_pars.keys()\n ) and self.last_saved_pars['er_specimen_name'] == self.s:\n for key in list(self.last_saved_pars.keys()):\n self.Data[self.s]['pars'][key] = self.last_saved_pars[key]\n self.last_saved_pars = {}\n index = self.specimens.index(self.s)\n if index == 0:\n index = len(self.specimens)\n index -= 1\n self.s = self.specimens[index]\n self.specimens_box.SetStringSelection(self.s)\n self.update_selection()\n", "role": "user" }, { "content": "on_prev_button", "role": "assistant" } ]
def x(self): self.tmin_box.Clear() self.tmin_box.SetItems(self.T_list) self.tmin_box.SetSelection(-1) self.tmax_box.Clear() self.tmax_box.SetItems(self.T_list) self.tmax_box.SetSelection(-1) self.Blab_window.SetValue('') self.Banc_window.SetValue('') self.Banc_window.SetBackgroundColour(wx.Colour('grey')) self.Aniso_factor_window.SetValue('') self.Aniso_factor_window.SetBackgroundColour(wx.Colour('grey')) self.NLT_factor_window.SetValue('') self.NLT_factor_window.SetBackgroundColour(wx.Colour('grey')) self.CR_factor_window.SetValue('') self.CR_factor_window.SetBackgroundColour(wx.Colour('grey')) self.declination_window.SetValue('') self.declination_window.SetBackgroundColour(wx.Colour('grey')) self.inclination_window.SetValue('') self.inclination_window.SetBackgroundColour(wx.Colour('grey')) window_list = ['sample_int_n', 'sample_int_uT', 'sample_int_sigma', 'sample_int_sigma_perc'] for key in window_list: command = 'self.%s_window.SetValue("")' % key exec(command) command = "self.%s_window.SetBackgroundColour(wx.Colour('grey'))" % key exec(command) for key in self.preferences['show_statistics_on_gui']: self.stat_windows[key].SetValue('') self.stat_windows[key].SetBackgroundColour(wx.Colour('grey'))
clear_boxes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.tmin_box.Clear()\n self.tmin_box.SetItems(self.T_list)\n self.tmin_box.SetSelection(-1)\n self.tmax_box.Clear()\n self.tmax_box.SetItems(self.T_list)\n self.tmax_box.SetSelection(-1)\n self.Blab_window.SetValue('')\n self.Banc_window.SetValue('')\n self.Banc_window.SetBackgroundColour(wx.Colour('grey'))\n self.Aniso_factor_window.SetValue('')\n self.Aniso_factor_window.SetBackgroundColour(wx.Colour('grey'))\n self.NLT_factor_window.SetValue('')\n self.NLT_factor_window.SetBackgroundColour(wx.Colour('grey'))\n self.CR_factor_window.SetValue('')\n self.CR_factor_window.SetBackgroundColour(wx.Colour('grey'))\n self.declination_window.SetValue('')\n self.declination_window.SetBackgroundColour(wx.Colour('grey'))\n self.inclination_window.SetValue('')\n self.inclination_window.SetBackgroundColour(wx.Colour('grey'))\n window_list = ['sample_int_n', 'sample_int_uT', 'sample_int_sigma',\n 'sample_int_sigma_perc']\n for key in window_list:\n command = 'self.%s_window.SetValue(\"\")' % key\n exec(command)\n command = \"self.%s_window.SetBackgroundColour(wx.Colour('grey'))\" % key\n exec(command)\n for key in self.preferences['show_statistics_on_gui']:\n self.stat_windows[key].SetValue('')\n self.stat_windows[key].SetBackgroundColour(wx.Colour('grey'))\n", "role": "user" }, { "content": "clear_boxes", "role": "assistant" } ]
def x(self): user_data_dir = find_pmag_dir.find_user_data_dir('thellier_gui') if not user_data_dir: return {} if os.path.exists(user_data_dir): pref_file = os.path.join(user_data_dir, 'thellier_gui_preferences.json' ) if os.path.exists(pref_file): with open(pref_file, 'r') as pfile: return json.load(pfile) return {}
read_preferences_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n user_data_dir = find_pmag_dir.find_user_data_dir('thellier_gui')\n if not user_data_dir:\n return {}\n if os.path.exists(user_data_dir):\n pref_file = os.path.join(user_data_dir, 'thellier_gui_preferences.json'\n )\n if os.path.exists(pref_file):\n with open(pref_file, 'r') as pfile:\n return json.load(pfile)\n return {}\n", "role": "user" }, { "content": "read_preferences_file", "role": "assistant" } ]
def x(self): user_data_dir = find_pmag_dir.find_user_data_dir('thellier_gui') if not os.path.exists(user_data_dir): find_pmag_dir.make_user_data_dir(user_data_dir) pref_file = os.path.join(user_data_dir, 'thellier_gui_preferences.json') with open(pref_file, 'w+') as pfile: print('-I- writing preferences to {}'.format(pref_file)) json.dump(self.preferences, pfile)
write_preferences_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n user_data_dir = find_pmag_dir.find_user_data_dir('thellier_gui')\n if not os.path.exists(user_data_dir):\n find_pmag_dir.make_user_data_dir(user_data_dir)\n pref_file = os.path.join(user_data_dir, 'thellier_gui_preferences.json')\n with open(pref_file, 'w+') as pfile:\n print('-I- writing preferences to {}'.format(pref_file))\n json.dump(self.preferences, pfile)\n", "role": "user" }, { "content": "write_preferences_file", "role": "assistant" } ]
def x(self, event): if self.close_warning: TEXT = """Data is not saved to a file yet! To properly save your data: 1) Analysis --> Save current interpretations to a redo file. or 1) File --> Save MagIC tables. Press OK to exit without saving.""" dlg1 = wx.MessageDialog(None, caption='Warning:', message=TEXT, style=wx.OK | wx.CANCEL | wx.ICON_EXCLAMATION) if self.show_dlg(dlg1) == wx.ID_OK: dlg1.Destroy() self.GUI_log.close() self.Destroy() if self.evt_quit: event = self.evt_quit(self.GetId()) self.GetEventHandler().ProcessEvent(event) if self.standalone: sys.exit() else: self.GUI_log.close() self.Destroy() if self.evt_quit: event = self.evt_quit(self.GetId()) self.GetEventHandler().ProcessEvent(event) if self.standalone: sys.exit()
on_menu_exit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if self.close_warning:\n TEXT = \"\"\"Data is not saved to a file yet!\nTo properly save your data:\n1) Analysis --> Save current interpretations to a redo file.\nor\n1) File --> Save MagIC tables.\n\n Press OK to exit without saving.\"\"\"\n dlg1 = wx.MessageDialog(None, caption='Warning:', message=TEXT,\n style=wx.OK | wx.CANCEL | wx.ICON_EXCLAMATION)\n if self.show_dlg(dlg1) == wx.ID_OK:\n dlg1.Destroy()\n self.GUI_log.close()\n self.Destroy()\n if self.evt_quit:\n event = self.evt_quit(self.GetId())\n self.GetEventHandler().ProcessEvent(event)\n if self.standalone:\n sys.exit()\n else:\n self.GUI_log.close()\n self.Destroy()\n if self.evt_quit:\n event = self.evt_quit(self.GetId())\n self.GetEventHandler().ProcessEvent(event)\n if self.standalone:\n sys.exit()\n", "role": "user" }, { "content": "on_menu_exit", "role": "assistant" } ]
def x(self, event): save_current_specimen = self.s dlg = wx.FileDialog(self, message= 'choose a file in a pmagpy redo format', defaultDir=self.WD, defaultFile='thellier_GUI.redo', wildcard='*.redo', style=wx. FD_OPEN | wx.FD_CHANGE_DIR) if self.show_dlg(dlg) == wx.ID_OK: redo_file = dlg.GetPath() if self.test_mode: redo_file = 'thellier_GUI.redo' else: redo_file = None dlg.Destroy() print('redo_file', redo_file) if redo_file: self.read_redo_file(redo_file)
on_menu_previous_interpretation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n save_current_specimen = self.s\n dlg = wx.FileDialog(self, message=\n 'choose a file in a pmagpy redo format', defaultDir=self.WD,\n defaultFile='thellier_GUI.redo', wildcard='*.redo', style=wx.\n FD_OPEN | wx.FD_CHANGE_DIR)\n if self.show_dlg(dlg) == wx.ID_OK:\n redo_file = dlg.GetPath()\n if self.test_mode:\n redo_file = 'thellier_GUI.redo'\n else:\n redo_file = None\n dlg.Destroy()\n print('redo_file', redo_file)\n if redo_file:\n self.read_redo_file(redo_file)\n", "role": "user" }, { "content": "on_menu_previous_interpretation", "role": "assistant" } ]
def x(self, event): if self.data_model == 3: dlg = wx.FileDialog(self, message= 'choose a file in MagIC Data Model 3.0 format', defaultDir= self.WD, defaultFile='criteria.txt', style=wx.FD_OPEN | wx. FD_CHANGE_DIR) else: dlg = wx.FileDialog(self, message= 'choose a file in a MagIC Data Model 2.5 pmagpy format', defaultDir=self.WD, defaultFile='pmag_criteria.txt', style=wx. FD_OPEN | wx.FD_CHANGE_DIR) if self.show_dlg(dlg) == wx.ID_OK: criteria_file = dlg.GetPath() self.GUI_log.write('-I- Read new criteria file: %s\n' % criteria_file) dlg.Destroy() replace_acceptance_criteria = pmag.initialize_acceptance_criteria( data_model=self.data_model) try: if self.data_model == 3: self.read_criteria_file(criteria_file) replace_acceptance_criteria = self.acceptance_criteria print(replace_acceptance_criteria) else: replace_acceptance_criteria = pmag.read_criteria_from_file( criteria_file, replace_acceptance_criteria, data_model=self .data_model) except Exception as ex: print('-W-', ex) dlg1 = wx.MessageDialog(self, caption='Error:', message= 'error in reading file', style=wx.OK) result = self.show_dlg(dlg1) if result == wx.ID_OK: dlg1.Destroy() return self.add_thellier_gui_criteria() self.read_criteria_file(criteria_file) crit_list_not_in_pref = [] for crit in list(self.acceptance_criteria.keys()): if self.acceptance_criteria[crit]['category'] == 'IE-SPEC': if self.acceptance_criteria[crit]['value'] != -999: short_crit = crit.split('specimen_')[-1] if short_crit not in self.preferences['show_statistics_on_gui' ]: print('-I- statistic %s is not in your preferences' % crit) self.preferences['show_statistics_on_gui'].append( short_crit) crit_list_not_in_pref.append(crit) if len(crit_list_not_in_pref) > 0: stat_list = ':'.join(crit_list_not_in_pref) dlg1 = wx.MessageDialog(self, caption='WARNING:', message= """statistics '%s' is in the imported criteria file but not in your appearence preferences. This statistic will not appear on the gui panel. The program will exit after saving new acceptance criteria, and it will be added automatically the next time you open it """ % stat_list, style=wx.OK | wx.ICON_INFORMATION) self.show_dlg(dlg1) dlg1.Destroy() dia = thellier_gui_dialogs.Criteria_Dialog(None, self. acceptance_criteria, self.preferences, title='Acceptance Criteria') dia.Center() result = self.show_dlg(dia) if result == wx.ID_OK: self.On_close_criteria_box(dia) if len(crit_list_not_in_pref) > 0: dlg1 = wx.MessageDialog(self, caption='WARNING:', message= 'Exiting now! When you restart the gui all the new statistics will be added.' , style=wx.OK | wx.ICON_INFORMATION) self.show_dlg(dlg1) dlg1.Destroy() self.on_menu_exit(None) if result == wx.ID_CANCEL: for crit in crit_list_not_in_pref: short_crit = crit.split('specimen_')[-1] self.preferences['show_statistics_on_gui'].remove(short_crit)
on_menu_criteria_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if self.data_model == 3:\n dlg = wx.FileDialog(self, message=\n 'choose a file in MagIC Data Model 3.0 format', defaultDir=\n self.WD, defaultFile='criteria.txt', style=wx.FD_OPEN | wx.\n FD_CHANGE_DIR)\n else:\n dlg = wx.FileDialog(self, message=\n 'choose a file in a MagIC Data Model 2.5 pmagpy format',\n defaultDir=self.WD, defaultFile='pmag_criteria.txt', style=wx.\n FD_OPEN | wx.FD_CHANGE_DIR)\n if self.show_dlg(dlg) == wx.ID_OK:\n criteria_file = dlg.GetPath()\n self.GUI_log.write('-I- Read new criteria file: %s\\n' % criteria_file)\n dlg.Destroy()\n replace_acceptance_criteria = pmag.initialize_acceptance_criteria(\n data_model=self.data_model)\n try:\n if self.data_model == 3:\n self.read_criteria_file(criteria_file)\n replace_acceptance_criteria = self.acceptance_criteria\n print(replace_acceptance_criteria)\n else:\n replace_acceptance_criteria = pmag.read_criteria_from_file(\n criteria_file, replace_acceptance_criteria, data_model=self\n .data_model)\n except Exception as ex:\n print('-W-', ex)\n dlg1 = wx.MessageDialog(self, caption='Error:', message=\n 'error in reading file', style=wx.OK)\n result = self.show_dlg(dlg1)\n if result == wx.ID_OK:\n dlg1.Destroy()\n return\n self.add_thellier_gui_criteria()\n self.read_criteria_file(criteria_file)\n crit_list_not_in_pref = []\n for crit in list(self.acceptance_criteria.keys()):\n if self.acceptance_criteria[crit]['category'] == 'IE-SPEC':\n if self.acceptance_criteria[crit]['value'] != -999:\n short_crit = crit.split('specimen_')[-1]\n if short_crit not in self.preferences['show_statistics_on_gui'\n ]:\n print('-I- statistic %s is not in your preferences' % crit)\n self.preferences['show_statistics_on_gui'].append(\n short_crit)\n crit_list_not_in_pref.append(crit)\n if len(crit_list_not_in_pref) > 0:\n stat_list = ':'.join(crit_list_not_in_pref)\n dlg1 = wx.MessageDialog(self, caption='WARNING:', message=\n \"\"\"statistics '%s' is in the imported criteria file but not in your appearence preferences.\nThis statistic will not appear on the gui panel.\n The program will exit after saving new acceptance criteria, and it will be added automatically the next time you open it \"\"\"\n % stat_list, style=wx.OK | wx.ICON_INFORMATION)\n self.show_dlg(dlg1)\n dlg1.Destroy()\n dia = thellier_gui_dialogs.Criteria_Dialog(None, self.\n acceptance_criteria, self.preferences, title='Acceptance Criteria')\n dia.Center()\n result = self.show_dlg(dia)\n if result == wx.ID_OK:\n self.On_close_criteria_box(dia)\n if len(crit_list_not_in_pref) > 0:\n dlg1 = wx.MessageDialog(self, caption='WARNING:', message=\n 'Exiting now! When you restart the gui all the new statistics will be added.'\n , style=wx.OK | wx.ICON_INFORMATION)\n self.show_dlg(dlg1)\n dlg1.Destroy()\n self.on_menu_exit(None)\n if result == wx.ID_CANCEL:\n for crit in crit_list_not_in_pref:\n short_crit = crit.split('specimen_')[-1]\n self.preferences['show_statistics_on_gui'].remove(short_crit)\n", "role": "user" }, { "content": "on_menu_criteria_file", "role": "assistant" } ]
def x(self, event): dia = thellier_gui_dialogs.Criteria_Dialog(None, self. acceptance_criteria, self.preferences, title='Set Acceptance Criteria') dia.Center() result = self.show_dlg(dia) if result == wx.ID_OK: self.On_close_criteria_box(dia)
on_menu_criteria
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n dia = thellier_gui_dialogs.Criteria_Dialog(None, self.\n acceptance_criteria, self.preferences, title='Set Acceptance Criteria')\n dia.Center()\n result = self.show_dlg(dia)\n if result == wx.ID_OK:\n self.On_close_criteria_box(dia)\n", "role": "user" }, { "content": "on_menu_criteria", "role": "assistant" } ]
def x(self, dia): criteria_list = list(self.acceptance_criteria.keys()) criteria_list.sort() avg_by = dia.set_average_by_sample_or_site.GetValue() if avg_by == 'sample': for crit in ['site_int_n', 'site_int_sigma', 'site_int_sigma_perc', 'site_aniso_mean', 'site_int_n_outlier_check']: self.acceptance_criteria[crit]['value'] = -999 if avg_by == 'site': for crit in ['sample_int_n', 'sample_int_sigma', 'sample_int_sigma_perc', 'sample_aniso_mean', 'sample_int_n_outlier_check']: self.acceptance_criteria[crit]['value'] = -999 for i in range(len(criteria_list)): crit = criteria_list[i] value, accept = dia.get_value_for_crit(crit, self.acceptance_criteria) if accept: self.acceptance_criteria.update(accept) if dia.set_stdev_opt.GetValue() == True: self.acceptance_criteria['interpreter_method']['value'] = 'stdev_opt' elif dia.set_bs.GetValue() == True: self.acceptance_criteria['interpreter_method']['value'] = 'bs' elif dia.set_bs_par.GetValue() == True: self.acceptance_criteria['interpreter_method']['value'] = 'bs_par' dlg1 = wx.MessageDialog(self, caption='Warning:', message= """changes are saved to the criteria file """, style=wx.OK) result = self.show_dlg(dlg1) if result == wx.ID_OK: try: self.clear_boxes() except IndexError: pass try: self.write_acceptance_criteria_to_boxes() except IOError: pass if self.data_model == 3: crit_file = 'criteria.txt' else: crit_file = 'pmag_criteria.txt' try: pmag.write_criteria_to_file(os.path.join(self.WD, crit_file), self.acceptance_criteria, data_model=self.data_model, prior_crits=self.crit_data) except AttributeError as ex: print(ex) print('no criteria given to save') dlg1.Destroy() dia.Destroy() self.fig4.texts[0].remove() txt = '{} data'.format(avg_by).capitalize() self.fig4.text(0.02, 0.96, txt, {'family': self.font_type, 'fontsize': 10, 'style': 'normal', 'va': 'center', 'ha': 'left'}) self.recalculate_satistics() try: self.update_GUI_with_new_interpretation() except KeyError: pass
On_close_criteria_box
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dia):\n criteria_list = list(self.acceptance_criteria.keys())\n criteria_list.sort()\n avg_by = dia.set_average_by_sample_or_site.GetValue()\n if avg_by == 'sample':\n for crit in ['site_int_n', 'site_int_sigma', 'site_int_sigma_perc',\n 'site_aniso_mean', 'site_int_n_outlier_check']:\n self.acceptance_criteria[crit]['value'] = -999\n if avg_by == 'site':\n for crit in ['sample_int_n', 'sample_int_sigma',\n 'sample_int_sigma_perc', 'sample_aniso_mean',\n 'sample_int_n_outlier_check']:\n self.acceptance_criteria[crit]['value'] = -999\n for i in range(len(criteria_list)):\n crit = criteria_list[i]\n value, accept = dia.get_value_for_crit(crit, self.acceptance_criteria)\n if accept:\n self.acceptance_criteria.update(accept)\n if dia.set_stdev_opt.GetValue() == True:\n self.acceptance_criteria['interpreter_method']['value'] = 'stdev_opt'\n elif dia.set_bs.GetValue() == True:\n self.acceptance_criteria['interpreter_method']['value'] = 'bs'\n elif dia.set_bs_par.GetValue() == True:\n self.acceptance_criteria['interpreter_method']['value'] = 'bs_par'\n dlg1 = wx.MessageDialog(self, caption='Warning:', message=\n \"\"\"changes are saved to the criteria file\n \"\"\", style=wx.OK)\n result = self.show_dlg(dlg1)\n if result == wx.ID_OK:\n try:\n self.clear_boxes()\n except IndexError:\n pass\n try:\n self.write_acceptance_criteria_to_boxes()\n except IOError:\n pass\n if self.data_model == 3:\n crit_file = 'criteria.txt'\n else:\n crit_file = 'pmag_criteria.txt'\n try:\n pmag.write_criteria_to_file(os.path.join(self.WD, crit_file),\n self.acceptance_criteria, data_model=self.data_model,\n prior_crits=self.crit_data)\n except AttributeError as ex:\n print(ex)\n print('no criteria given to save')\n dlg1.Destroy()\n dia.Destroy()\n self.fig4.texts[0].remove()\n txt = '{} data'.format(avg_by).capitalize()\n self.fig4.text(0.02, 0.96, txt, {'family': self.font_type, 'fontsize': \n 10, 'style': 'normal', 'va': 'center', 'ha': 'left'})\n self.recalculate_satistics()\n try:\n self.update_GUI_with_new_interpretation()\n except KeyError:\n pass\n", "role": "user" }, { "content": "On_close_criteria_box", "role": "assistant" } ]
def x(self): gframe = wx.BusyInfo( 'Re-calculating statistics for all specimens\n Please wait..', self) for specimen in list(self.Data.keys()): if 'pars' not in list(self.Data[specimen].keys()): continue if 'specimen_int_uT' not in list(self.Data[specimen]['pars'].keys()): continue tmin = self.Data[specimen]['pars']['measurement_step_min'] tmax = self.Data[specimen]['pars']['measurement_step_max'] pars = thellier_gui_lib.get_PI_parameters(self.Data, self. acceptance_criteria, self.preferences, specimen, tmin, tmax, self.GUI_log, THERMAL, MICROWAVE) self.Data[specimen]['pars'] = pars self.Data[specimen]['pars']['lab_dc_field'] = self.Data[specimen][ 'lab_dc_field'] self.Data[specimen]['pars']['er_specimen_name'] = self.Data[specimen][ 'er_specimen_name'] self.Data[specimen]['pars']['er_sample_name'] = self.Data[specimen][ 'er_sample_name'] del gframe
recalculate_satistics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n gframe = wx.BusyInfo(\n 'Re-calculating statistics for all specimens\\n Please wait..', self)\n for specimen in list(self.Data.keys()):\n if 'pars' not in list(self.Data[specimen].keys()):\n continue\n if 'specimen_int_uT' not in list(self.Data[specimen]['pars'].keys()):\n continue\n tmin = self.Data[specimen]['pars']['measurement_step_min']\n tmax = self.Data[specimen]['pars']['measurement_step_max']\n pars = thellier_gui_lib.get_PI_parameters(self.Data, self.\n acceptance_criteria, self.preferences, specimen, tmin, tmax,\n self.GUI_log, THERMAL, MICROWAVE)\n self.Data[specimen]['pars'] = pars\n self.Data[specimen]['pars']['lab_dc_field'] = self.Data[specimen][\n 'lab_dc_field']\n self.Data[specimen]['pars']['er_specimen_name'] = self.Data[specimen][\n 'er_specimen_name']\n self.Data[specimen]['pars']['er_sample_name'] = self.Data[specimen][\n 'er_sample_name']\n del gframe\n", "role": "user" }, { "content": "recalculate_satistics", "role": "assistant" } ]
def x(self, criteria_file): if self.data_model == 3: self.acceptance_criteria = pmag.initialize_acceptance_criteria( data_model=self.data_model) self.add_thellier_gui_criteria() fnames = {'criteria': criteria_file} contribution = cb.Contribution(self.WD, custom_filenames=fnames, read_tables=['criteria']) if 'criteria' in contribution.tables: crit_container = contribution.tables['criteria'] crit_data = crit_container.df crit_data['definition'] = 'acceptance criteria for study' self.crit_data = crit_data.to_dict('records') for crit in self.crit_data: m2_name = map_magic.convert_intensity_criteria('magic2', crit['table_column']) if not m2_name: pass elif m2_name not in self.acceptance_criteria: print( '-W- Your criteria file contains {}, which is not currently supported in Thellier GUI.' .format(m2_name)) print(' This record will be skipped:\n {}'.format (crit)) else: if m2_name != crit['table_column' ] and 'scat' not in m2_name != '': self.acceptance_criteria[m2_name]['value'] = float(crit ['criterion_value']) self.acceptance_criteria[m2_name]['pmag_criteria_code' ] = crit['criterion'] if m2_name != crit['table_column' ] and 'scat' in m2_name != '': if crit['criterion_value'] == 'True': self.acceptance_criteria[m2_name]['value'] = 1 else: self.acceptance_criteria[m2_name]['value'] = 0 else: print("-E- Can't read criteria file") else: self.crit_data = {} try: self.acceptance_criteria = pmag.read_criteria_from_file( criteria_file, self.acceptance_criteria) except: print("-E- Can't read pmag criteria file") by_sample = True flag = False for crit in ['sample_int_n', 'sample_int_sigma_perc', 'sample_int_sigma']: if self.acceptance_criteria[crit]['value'] == -999: flag = True if flag: for crit in ['site_int_n', 'site_int_sigma_perc', 'site_int_sigma']: if self.acceptance_criteria[crit]['value'] != -999: by_sample = False if not by_sample: self.acceptance_criteria['average_by_sample_or_site']['value'] = 'site'
read_criteria_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, criteria_file):\n if self.data_model == 3:\n self.acceptance_criteria = pmag.initialize_acceptance_criteria(\n data_model=self.data_model)\n self.add_thellier_gui_criteria()\n fnames = {'criteria': criteria_file}\n contribution = cb.Contribution(self.WD, custom_filenames=fnames,\n read_tables=['criteria'])\n if 'criteria' in contribution.tables:\n crit_container = contribution.tables['criteria']\n crit_data = crit_container.df\n crit_data['definition'] = 'acceptance criteria for study'\n self.crit_data = crit_data.to_dict('records')\n for crit in self.crit_data:\n m2_name = map_magic.convert_intensity_criteria('magic2',\n crit['table_column'])\n if not m2_name:\n pass\n elif m2_name not in self.acceptance_criteria:\n print(\n '-W- Your criteria file contains {}, which is not currently supported in Thellier GUI.'\n .format(m2_name))\n print(' This record will be skipped:\\n {}'.format\n (crit))\n else:\n if m2_name != crit['table_column'\n ] and 'scat' not in m2_name != '':\n self.acceptance_criteria[m2_name]['value'] = float(crit\n ['criterion_value'])\n self.acceptance_criteria[m2_name]['pmag_criteria_code'\n ] = crit['criterion']\n if m2_name != crit['table_column'\n ] and 'scat' in m2_name != '':\n if crit['criterion_value'] == 'True':\n self.acceptance_criteria[m2_name]['value'] = 1\n else:\n self.acceptance_criteria[m2_name]['value'] = 0\n else:\n print(\"-E- Can't read criteria file\")\n else:\n self.crit_data = {}\n try:\n self.acceptance_criteria = pmag.read_criteria_from_file(\n criteria_file, self.acceptance_criteria)\n except:\n print(\"-E- Can't read pmag criteria file\")\n by_sample = True\n flag = False\n for crit in ['sample_int_n', 'sample_int_sigma_perc', 'sample_int_sigma']:\n if self.acceptance_criteria[crit]['value'] == -999:\n flag = True\n if flag:\n for crit in ['site_int_n', 'site_int_sigma_perc', 'site_int_sigma']:\n if self.acceptance_criteria[crit]['value'] != -999:\n by_sample = False\n if not by_sample:\n self.acceptance_criteria['average_by_sample_or_site']['value'] = 'site'\n", "role": "user" }, { "content": "read_criteria_file", "role": "assistant" } ]
def x(self, event): thellier_gui_redo_file = open(os.path.join(self.WD, 'thellier_GUI.redo' ), 'w') spec_list = list(self.Data.keys()) spec_list.sort() redo_specimens_list = [] for sp in spec_list: if 'saved' not in self.Data[sp]['pars']: continue if not self.Data[sp]['pars']['saved']: continue redo_specimens_list.append(sp) thellier_gui_redo_file.write('%s %.0f %.0f\n' % (sp, self.Data[sp][ 'pars']['measurement_step_min'], self.Data[sp]['pars'][ 'measurement_step_max'])) dlg1 = wx.MessageDialog(self, caption='Saved:', message= 'File thellier_GUI.redo is saved in MagIC working folder', style=wx.OK) result = self.show_dlg(dlg1) if result == wx.ID_OK: dlg1.Destroy() thellier_gui_redo_file.close() return thellier_gui_redo_file.close() self.close_warning = False
on_menu_save_interpretation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n thellier_gui_redo_file = open(os.path.join(self.WD, 'thellier_GUI.redo'\n ), 'w')\n spec_list = list(self.Data.keys())\n spec_list.sort()\n redo_specimens_list = []\n for sp in spec_list:\n if 'saved' not in self.Data[sp]['pars']:\n continue\n if not self.Data[sp]['pars']['saved']:\n continue\n redo_specimens_list.append(sp)\n thellier_gui_redo_file.write('%s %.0f %.0f\\n' % (sp, self.Data[sp][\n 'pars']['measurement_step_min'], self.Data[sp]['pars'][\n 'measurement_step_max']))\n dlg1 = wx.MessageDialog(self, caption='Saved:', message=\n 'File thellier_GUI.redo is saved in MagIC working folder', style=wx.OK)\n result = self.show_dlg(dlg1)\n if result == wx.ID_OK:\n dlg1.Destroy()\n thellier_gui_redo_file.close()\n return\n thellier_gui_redo_file.close()\n self.close_warning = False\n", "role": "user" }, { "content": "on_menu_save_interpretation", "role": "assistant" } ]
def x(self, event): for sp in list(self.Data.keys()): del self.Data[sp]['pars'] self.Data[sp]['pars'] = {} self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field'] self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp][ 'er_specimen_name'] self.Data[sp]['pars']['er_sample_name'] = self.Data[sp][ 'er_sample_name'] self.Data_samples = {} self.Data_sites = {} self.tmin_box.SetValue('') self.tmax_box.SetValue('') self.clear_boxes() self.draw_figure(self.s)
on_menu_clear_interpretation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n for sp in list(self.Data.keys()):\n del self.Data[sp]['pars']\n self.Data[sp]['pars'] = {}\n self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field']\n self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp][\n 'er_specimen_name']\n self.Data[sp]['pars']['er_sample_name'] = self.Data[sp][\n 'er_sample_name']\n self.Data_samples = {}\n self.Data_sites = {}\n self.tmin_box.SetValue('')\n self.tmax_box.SetValue('')\n self.clear_boxes()\n self.draw_figure(self.s)\n", "role": "user" }, { "content": "on_menu_clear_interpretation", "role": "assistant" } ]
def x(self, redo_file): self.GUI_log.write( '-I- reading redo file and processing new temperature bounds') self.redo_specimens = {} for sp in list(self.Data.keys()): del self.Data[sp]['pars'] self.Data[sp]['pars'] = {} self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field'] self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp][ 'er_specimen_name'] self.Data[sp]['pars']['er_sample_name'] = self.Data[sp][ 'er_sample_name'] self.Data_samples = {} self.Data_sites = {} fin = open(redo_file, 'r') lines = fin.readlines() fin.close() for Line in lines: line = Line.strip('\n').split() specimen = line[0] tmin_kelvin = float(line[1]) tmax_kelvin = float(line[2]) if specimen not in list(self.redo_specimens.keys()): self.redo_specimens[specimen] = {} self.redo_specimens[specimen]['t_min'] = float(tmin_kelvin) self.redo_specimens[specimen]['t_max'] = float(tmax_kelvin) if specimen in list(self.Data.keys()): if tmin_kelvin not in self.Data[specimen]['t_Arai' ] or tmax_kelvin not in self.Data[specimen]['t_Arai']: self.GUI_log.write( """-W- WARNING: can't fit temperature bounds in the redo file to the actual measurement. specimen %s """ % specimen) else: self.Data[specimen]['pars' ] = thellier_gui_lib.get_PI_parameters(self.Data, self. acceptance_criteria, self.preferences, specimen, float( tmin_kelvin), float(tmax_kelvin), self.GUI_log, THERMAL, MICROWAVE) try: self.Data[specimen]['pars' ] = thellier_gui_lib.get_PI_parameters(self.Data, self.acceptance_criteria, self.preferences, specimen, float(tmin_kelvin), float(tmax_kelvin), self.GUI_log, THERMAL, MICROWAVE) self.Data[specimen]['pars']['saved'] = True sample = self.Data_hierarchy['specimens'][specimen] if sample not in list(self.Data_samples.keys()): self.Data_samples[sample] = {} if specimen not in list(self.Data_samples[sample].keys()): self.Data_samples[sample][specimen] = {} self.Data_samples[sample][specimen]['B'] = self.Data[ specimen]['pars']['specimen_int_uT'] site = thellier_gui_lib.get_site_from_hierarchy(sample, self.Data_hierarchy) if site not in list(self.Data_sites.keys()): self.Data_sites[site] = {} if specimen not in list(self.Data_sites[site].keys()): self.Data_sites[site][specimen] = {} self.Data_sites[site][specimen]['B'] = self.Data[specimen][ 'pars']['specimen_int_uT'] except: print('-E- ERROR 1') self.GUI_log.write( """-E- ERROR. Can't calculate PI paremeters for specimen %s using redo file. Check! """ % specimen) else: self.GUI_log.write( """-W- WARNING: Can't find specimen %s from redo file in measurement file! """ % specimen) print( "-W- WARNING: Can't find specimen %s from redo file in measurement file!\n" % specimen) if not fin.closed: fin.close() self.pars = self.Data[self.s]['pars'] self.clear_boxes() self.draw_figure(self.s) self.update_GUI_with_new_interpretation()
read_redo_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, redo_file):\n self.GUI_log.write(\n '-I- reading redo file and processing new temperature bounds')\n self.redo_specimens = {}\n for sp in list(self.Data.keys()):\n del self.Data[sp]['pars']\n self.Data[sp]['pars'] = {}\n self.Data[sp]['pars']['lab_dc_field'] = self.Data[sp]['lab_dc_field']\n self.Data[sp]['pars']['er_specimen_name'] = self.Data[sp][\n 'er_specimen_name']\n self.Data[sp]['pars']['er_sample_name'] = self.Data[sp][\n 'er_sample_name']\n self.Data_samples = {}\n self.Data_sites = {}\n fin = open(redo_file, 'r')\n lines = fin.readlines()\n fin.close()\n for Line in lines:\n line = Line.strip('\\n').split()\n specimen = line[0]\n tmin_kelvin = float(line[1])\n tmax_kelvin = float(line[2])\n if specimen not in list(self.redo_specimens.keys()):\n self.redo_specimens[specimen] = {}\n self.redo_specimens[specimen]['t_min'] = float(tmin_kelvin)\n self.redo_specimens[specimen]['t_max'] = float(tmax_kelvin)\n if specimen in list(self.Data.keys()):\n if tmin_kelvin not in self.Data[specimen]['t_Arai'\n ] or tmax_kelvin not in self.Data[specimen]['t_Arai']:\n self.GUI_log.write(\n \"\"\"-W- WARNING: can't fit temperature bounds in the redo file to the actual measurement. specimen %s\n\"\"\"\n % specimen)\n else:\n self.Data[specimen]['pars'\n ] = thellier_gui_lib.get_PI_parameters(self.Data, self.\n acceptance_criteria, self.preferences, specimen, float(\n tmin_kelvin), float(tmax_kelvin), self.GUI_log, THERMAL,\n MICROWAVE)\n try:\n self.Data[specimen]['pars'\n ] = thellier_gui_lib.get_PI_parameters(self.Data,\n self.acceptance_criteria, self.preferences,\n specimen, float(tmin_kelvin), float(tmax_kelvin),\n self.GUI_log, THERMAL, MICROWAVE)\n self.Data[specimen]['pars']['saved'] = True\n sample = self.Data_hierarchy['specimens'][specimen]\n if sample not in list(self.Data_samples.keys()):\n self.Data_samples[sample] = {}\n if specimen not in list(self.Data_samples[sample].keys()):\n self.Data_samples[sample][specimen] = {}\n self.Data_samples[sample][specimen]['B'] = self.Data[\n specimen]['pars']['specimen_int_uT']\n site = thellier_gui_lib.get_site_from_hierarchy(sample,\n self.Data_hierarchy)\n if site not in list(self.Data_sites.keys()):\n self.Data_sites[site] = {}\n if specimen not in list(self.Data_sites[site].keys()):\n self.Data_sites[site][specimen] = {}\n self.Data_sites[site][specimen]['B'] = self.Data[specimen][\n 'pars']['specimen_int_uT']\n except:\n print('-E- ERROR 1')\n self.GUI_log.write(\n \"\"\"-E- ERROR. Can't calculate PI paremeters for specimen %s using redo file. Check!\n\"\"\"\n % specimen)\n else:\n self.GUI_log.write(\n \"\"\"-W- WARNING: Can't find specimen %s from redo file in measurement file!\n\"\"\"\n % specimen)\n print(\n \"-W- WARNING: Can't find specimen %s from redo file in measurement file!\\n\"\n % specimen)\n if not fin.closed:\n fin.close()\n self.pars = self.Data[self.s]['pars']\n self.clear_boxes()\n self.draw_figure(self.s)\n self.update_GUI_with_new_interpretation()\n", "role": "user" }, { "content": "read_redo_file", "role": "assistant" } ]
def x(self, path, ignore_lines_n, sort_by_these_names): DATA = {} fin = open(path, 'r') for i in range(ignore_lines_n): fin.readline() line = fin.readline() header = line.strip('\n').split('\t') for line in fin.readlines(): if line[0] == '#': continue tmp_data = {} tmp_line = line.strip('\n').split('\t') for i in range(len(tmp_line)): if i >= len(header): continue tmp_data[header[i]] = tmp_line[i] for name in sort_by_these_names: if name in list(tmp_data.keys()) and tmp_data[name] != '': er_ages_rec = self.convert_ages_to_calendar_year(tmp_data) DATA[tmp_data[name]] = er_ages_rec fin.close() return DATA
read_er_ages_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path, ignore_lines_n, sort_by_these_names):\n DATA = {}\n fin = open(path, 'r')\n for i in range(ignore_lines_n):\n fin.readline()\n line = fin.readline()\n header = line.strip('\\n').split('\\t')\n for line in fin.readlines():\n if line[0] == '#':\n continue\n tmp_data = {}\n tmp_line = line.strip('\\n').split('\\t')\n for i in range(len(tmp_line)):\n if i >= len(header):\n continue\n tmp_data[header[i]] = tmp_line[i]\n for name in sort_by_these_names:\n if name in list(tmp_data.keys()) and tmp_data[name] != '':\n er_ages_rec = self.convert_ages_to_calendar_year(tmp_data)\n DATA[tmp_data[name]] = er_ages_rec\n fin.close()\n return DATA\n", "role": "user" }, { "content": "read_er_ages_file", "role": "assistant" } ]
def x(self, Data_sample_or_site): pars = {} tmp_B = [] for spec in list(Data_sample_or_site.keys()): if 'B' in list(Data_sample_or_site[spec].keys()): tmp_B.append(Data_sample_or_site[spec]['B']) if len(tmp_B) < 1: pars['N'] = 0 pars['pass_or_fail'] = 'fail' return pars tmp_B = np.array(tmp_B) pars['pass_or_fail'] = 'pass' pars['N'] = len(tmp_B) pars['B_uT'] = np.mean(tmp_B) if len(tmp_B) > 1: pars['B_std_uT'] = np.std(tmp_B, ddof=1) pars['B_std_perc'] = 100 * (pars['B_std_uT'] / pars['B_uT']) else: pars['B_std_uT'] = 0 pars['B_std_perc'] = 0 pars['sample_int_interval_uT'] = max(tmp_B) - min(tmp_B) pars['sample_int_interval_perc'] = 100 * (pars['sample_int_interval_uT' ] / pars['B_uT']) pars['fail_list'] = [] if self.acceptance_criteria['average_by_sample_or_site']['value' ] == 'sample': average_by_sample_or_site = 'sample' else: average_by_sample_or_site = 'site' if average_by_sample_or_site == 'sample': cutoff_value = self.acceptance_criteria['sample_int_n']['value'] else: cutoff_value = self.acceptance_criteria['site_int_n']['value'] if cutoff_value != -999: if pars['N'] < cutoff_value: pars['pass_or_fail'] = 'fail' pars['fail_list'].append('int_n') pass_sigma, pass_sigma_perc = False, False if self.acceptance_criteria['average_by_sample_or_site']['value' ] == 'sample': sigma_cutoff_value = self.acceptance_criteria['sample_int_sigma'][ 'value'] else: sigma_cutoff_value = self.acceptance_criteria['site_int_sigma']['value' ] if sigma_cutoff_value != -999: if pars['B_std_uT'] * 1e-06 <= sigma_cutoff_value: pass_sigma = True if self.acceptance_criteria['average_by_sample_or_site']['value' ] == 'sample': sigma_perc_cutoff_value = self.acceptance_criteria[ 'sample_int_sigma_perc']['value'] else: sigma_perc_cutoff_value = self.acceptance_criteria[ 'site_int_sigma_perc']['value'] if sigma_perc_cutoff_value != -999: if pars['B_std_perc'] <= sigma_perc_cutoff_value: pass_sigma_perc = True if not (sigma_cutoff_value == -999 and sigma_perc_cutoff_value == -999): if not (pass_sigma or pass_sigma_perc): pars['pass_or_fail'] = 'fail' pars['fail_list'].append('int_sigma') pass_int_interval, pass_int_interval_perc = False, False if self.acceptance_criteria['average_by_sample_or_site']['value' ] == 'sample': cutoff_value = self.acceptance_criteria['sample_int_interval_uT'][ 'value'] if cutoff_value != -999: if pars['sample_int_interval_uT'] <= cutoff_value: pass_int_interval = True cutoff_value_perc = self.acceptance_criteria['sample_int_interval_perc' ]['value'] if cutoff_value_perc != -999: if pars['sample_int_interval_perc'] <= cutoff_value_perc: pass_int_interval_perc = True if not (cutoff_value == -999 and cutoff_value_perc == -999): if not (pass_int_interval or pass_int_interval_perc): pars['pass_or_fail'] = 'fail' pars['fail_list'].append('int_interval') return pars
calculate_sample_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Data_sample_or_site):\n pars = {}\n tmp_B = []\n for spec in list(Data_sample_or_site.keys()):\n if 'B' in list(Data_sample_or_site[spec].keys()):\n tmp_B.append(Data_sample_or_site[spec]['B'])\n if len(tmp_B) < 1:\n pars['N'] = 0\n pars['pass_or_fail'] = 'fail'\n return pars\n tmp_B = np.array(tmp_B)\n pars['pass_or_fail'] = 'pass'\n pars['N'] = len(tmp_B)\n pars['B_uT'] = np.mean(tmp_B)\n if len(tmp_B) > 1:\n pars['B_std_uT'] = np.std(tmp_B, ddof=1)\n pars['B_std_perc'] = 100 * (pars['B_std_uT'] / pars['B_uT'])\n else:\n pars['B_std_uT'] = 0\n pars['B_std_perc'] = 0\n pars['sample_int_interval_uT'] = max(tmp_B) - min(tmp_B)\n pars['sample_int_interval_perc'] = 100 * (pars['sample_int_interval_uT'\n ] / pars['B_uT'])\n pars['fail_list'] = []\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n average_by_sample_or_site = 'sample'\n else:\n average_by_sample_or_site = 'site'\n if average_by_sample_or_site == 'sample':\n cutoff_value = self.acceptance_criteria['sample_int_n']['value']\n else:\n cutoff_value = self.acceptance_criteria['site_int_n']['value']\n if cutoff_value != -999:\n if pars['N'] < cutoff_value:\n pars['pass_or_fail'] = 'fail'\n pars['fail_list'].append('int_n')\n pass_sigma, pass_sigma_perc = False, False\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n sigma_cutoff_value = self.acceptance_criteria['sample_int_sigma'][\n 'value']\n else:\n sigma_cutoff_value = self.acceptance_criteria['site_int_sigma']['value'\n ]\n if sigma_cutoff_value != -999:\n if pars['B_std_uT'] * 1e-06 <= sigma_cutoff_value:\n pass_sigma = True\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n sigma_perc_cutoff_value = self.acceptance_criteria[\n 'sample_int_sigma_perc']['value']\n else:\n sigma_perc_cutoff_value = self.acceptance_criteria[\n 'site_int_sigma_perc']['value']\n if sigma_perc_cutoff_value != -999:\n if pars['B_std_perc'] <= sigma_perc_cutoff_value:\n pass_sigma_perc = True\n if not (sigma_cutoff_value == -999 and sigma_perc_cutoff_value == -999):\n if not (pass_sigma or pass_sigma_perc):\n pars['pass_or_fail'] = 'fail'\n pars['fail_list'].append('int_sigma')\n pass_int_interval, pass_int_interval_perc = False, False\n if self.acceptance_criteria['average_by_sample_or_site']['value'\n ] == 'sample':\n cutoff_value = self.acceptance_criteria['sample_int_interval_uT'][\n 'value']\n if cutoff_value != -999:\n if pars['sample_int_interval_uT'] <= cutoff_value:\n pass_int_interval = True\n cutoff_value_perc = self.acceptance_criteria['sample_int_interval_perc'\n ]['value']\n if cutoff_value_perc != -999:\n if pars['sample_int_interval_perc'] <= cutoff_value_perc:\n pass_int_interval_perc = True\n if not (cutoff_value == -999 and cutoff_value_perc == -999):\n if not (pass_int_interval or pass_int_interval_perc):\n pars['pass_or_fail'] = 'fail'\n pars['fail_list'].append('int_interval')\n return pars\n", "role": "user" }, { "content": "calculate_sample_mean", "role": "assistant" } ]
def x(self, er_ages_rec): if 'age' not in list(er_ages_rec.keys()) or cb.is_null(er_ages_rec[ 'age'], False): return er_ages_rec if 'age_unit' not in list(er_ages_rec.keys()) or cb.is_null(er_ages_rec ['age_unit']): return er_ages_rec if cb.is_null(er_ages_rec['age'], False): if 'age_range_high' in list(er_ages_rec.keys() ) and 'age_range_low' in list(er_ages_rec.keys()): if cb.not_null(er_ages_rec['age_range_high'], False ) and cb.not_null(er_ages_rec['age_range_low'], False): er_ages_rec['age'] = np.mean([float(er_ages_rec[ 'age_range_high']), float(er_ages_rec['age_range_low'])]) if cb.is_null(er_ages_rec['age'], False): return er_ages_rec age_unit = er_ages_rec['age_unit'] mutliplier = 1 if age_unit == 'Ga': mutliplier = -1000000000.0 if age_unit == 'Ma': mutliplier = -1000000.0 if age_unit == 'Ka': mutliplier = -1000.0 if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)': mutliplier = 1 if age_unit == 'Years BP' or age_unit == 'Years Cal BP': mutliplier = 1 age = float(er_ages_rec['age']) * mutliplier if age_unit == 'Years BP' or age_unit == 'Years Cal BP': age = 1950 - age er_ages_rec['age_cal_year'] = age age_range_low = age age_range_high = age age_sigma = 0 if 'age_sigma' in list(er_ages_rec.keys()) and cb.not_null(er_ages_rec[ 'age_sigma'], False): age_sigma = float(er_ages_rec['age_sigma']) * mutliplier if age_unit == 'Years BP' or age_unit == 'Years Cal BP': age_sigma = 1950 - age_sigma age_range_low = age - age_sigma age_range_high = age + age_sigma if 'age_range_high' in list(er_ages_rec.keys() ) and 'age_range_low' in list(er_ages_rec.keys()): if cb.not_null(er_ages_rec['age_range_high'], False) and cb.not_null( er_ages_rec['age_range_low'], False): age_range_high = float(er_ages_rec['age_range_high']) * mutliplier if age_unit == 'Years BP' or age_unit == 'Years Cal BP': age_range_high = 1950 - age_range_high age_range_low = float(er_ages_rec['age_range_low']) * mutliplier if age_unit == 'Years BP' or age_unit == 'Years Cal BP': age_range_low = 1950 - age_range_low er_ages_rec['age_cal_year_range_low'] = age_range_low er_ages_rec['age_cal_year_range_high'] = age_range_high return er_ages_rec
convert_ages_to_calendar_year
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, er_ages_rec):\n if 'age' not in list(er_ages_rec.keys()) or cb.is_null(er_ages_rec[\n 'age'], False):\n return er_ages_rec\n if 'age_unit' not in list(er_ages_rec.keys()) or cb.is_null(er_ages_rec\n ['age_unit']):\n return er_ages_rec\n if cb.is_null(er_ages_rec['age'], False):\n if 'age_range_high' in list(er_ages_rec.keys()\n ) and 'age_range_low' in list(er_ages_rec.keys()):\n if cb.not_null(er_ages_rec['age_range_high'], False\n ) and cb.not_null(er_ages_rec['age_range_low'], False):\n er_ages_rec['age'] = np.mean([float(er_ages_rec[\n 'age_range_high']), float(er_ages_rec['age_range_low'])])\n if cb.is_null(er_ages_rec['age'], False):\n return er_ages_rec\n age_unit = er_ages_rec['age_unit']\n mutliplier = 1\n if age_unit == 'Ga':\n mutliplier = -1000000000.0\n if age_unit == 'Ma':\n mutliplier = -1000000.0\n if age_unit == 'Ka':\n mutliplier = -1000.0\n if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)':\n mutliplier = 1\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n mutliplier = 1\n age = float(er_ages_rec['age']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age = 1950 - age\n er_ages_rec['age_cal_year'] = age\n age_range_low = age\n age_range_high = age\n age_sigma = 0\n if 'age_sigma' in list(er_ages_rec.keys()) and cb.not_null(er_ages_rec[\n 'age_sigma'], False):\n age_sigma = float(er_ages_rec['age_sigma']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_sigma = 1950 - age_sigma\n age_range_low = age - age_sigma\n age_range_high = age + age_sigma\n if 'age_range_high' in list(er_ages_rec.keys()\n ) and 'age_range_low' in list(er_ages_rec.keys()):\n if cb.not_null(er_ages_rec['age_range_high'], False) and cb.not_null(\n er_ages_rec['age_range_low'], False):\n age_range_high = float(er_ages_rec['age_range_high']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_range_high = 1950 - age_range_high\n age_range_low = float(er_ages_rec['age_range_low']) * mutliplier\n if age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n age_range_low = 1950 - age_range_low\n er_ages_rec['age_cal_year_range_low'] = age_range_low\n er_ages_rec['age_cal_year_range_high'] = age_range_high\n return er_ages_rec\n", "role": "user" }, { "content": "convert_ages_to_calendar_year", "role": "assistant" } ]
def x(self, event): if 'saved' in list(self.pars.keys()): if self.pars['saved']: self.last_saved_pars = {} for key in list(self.pars.keys()): self.last_saved_pars[key] = self.pars[key] self.pars['saved'] = False t1 = self.tmin_box.GetValue() t2 = self.tmax_box.GetValue() if t1 == '' or t2 == '': print('empty interpretation bounds') return if float(t2) < float(t1): print('upper bound less than lower bound') return index_1 = self.T_list.index(t1) index_2 = self.T_list.index(t2) if index_2 - index_1 + 1 >= 3: if self.Data[self.s]['T_or_MW'] != 'MW': self.pars = thellier_gui_lib.get_PI_parameters(self.Data, self. acceptance_criteria, self.preferences, self.s, float(t1) + 273.0, float(t2) + 273.0, self.GUI_log, THERMAL, MICROWAVE) self.Data[self.s]['pars'] = self.pars else: self.pars = thellier_gui_lib.get_PI_parameters(self.Data, self. acceptance_criteria, self.preferences, self.s, float(t1), float(t2), self.GUI_log, THERMAL, MICROWAVE) self.Data[self.s]['pars'] = self.pars self.update_GUI_with_new_interpretation() self.Add_text(self.s)
get_new_T_PI_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if 'saved' in list(self.pars.keys()):\n if self.pars['saved']:\n self.last_saved_pars = {}\n for key in list(self.pars.keys()):\n self.last_saved_pars[key] = self.pars[key]\n self.pars['saved'] = False\n t1 = self.tmin_box.GetValue()\n t2 = self.tmax_box.GetValue()\n if t1 == '' or t2 == '':\n print('empty interpretation bounds')\n return\n if float(t2) < float(t1):\n print('upper bound less than lower bound')\n return\n index_1 = self.T_list.index(t1)\n index_2 = self.T_list.index(t2)\n if index_2 - index_1 + 1 >= 3:\n if self.Data[self.s]['T_or_MW'] != 'MW':\n self.pars = thellier_gui_lib.get_PI_parameters(self.Data, self.\n acceptance_criteria, self.preferences, self.s, float(t1) + \n 273.0, float(t2) + 273.0, self.GUI_log, THERMAL, MICROWAVE)\n self.Data[self.s]['pars'] = self.pars\n else:\n self.pars = thellier_gui_lib.get_PI_parameters(self.Data, self.\n acceptance_criteria, self.preferences, self.s, float(t1),\n float(t2), self.GUI_log, THERMAL, MICROWAVE)\n self.Data[self.s]['pars'] = self.pars\n self.update_GUI_with_new_interpretation()\n self.Add_text(self.s)\n", "role": "user" }, { "content": "get_new_T_PI_parameters", "role": "assistant" } ]
def x(self): category = 'thellier_gui' for crit in ['sample_int_n_outlier_check', 'site_int_n_outlier_check']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit self.acceptance_criteria[crit]['value'] = -999 self.acceptance_criteria[crit]['threshold_type'] = 'low' self.acceptance_criteria[crit]['decimal_points'] = 0 for crit in ['sample_int_interval_uT', 'sample_int_interval_perc', 'site_int_interval_uT', 'site_int_interval_perc', 'sample_int_BS_68_uT', 'sample_int_BS_95_uT', 'sample_int_BS_68_perc', 'sample_int_BS_95_perc', 'specimen_int_max_slope_diff']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit self.acceptance_criteria[crit]['value'] = -999 self.acceptance_criteria[crit]['threshold_type'] = 'high' if crit in ['specimen_int_max_slope_diff']: self.acceptance_criteria[crit]['decimal_points'] = -999 else: self.acceptance_criteria[crit]['decimal_points'] = 1 self.acceptance_criteria[crit]['comments'] = 'thellier_gui_only' for crit in ['average_by_sample_or_site', 'interpreter_method']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit if crit in ['average_by_sample_or_site']: self.acceptance_criteria[crit]['value'] = 'sample' if crit in ['interpreter_method']: self.acceptance_criteria[crit]['value'] = 'stdev_opt' self.acceptance_criteria[crit]['threshold_type'] = 'flag' self.acceptance_criteria[crit]['decimal_points'] = -999 for crit in ['include_nrm']: self.acceptance_criteria[crit] = {} self.acceptance_criteria[crit]['category'] = category self.acceptance_criteria[crit]['criterion_name'] = crit self.acceptance_criteria[crit]['value'] = True self.acceptance_criteria[crit]['threshold_type'] = 'bool' self.acceptance_criteria[crit]['decimal_points'] = -999 self.average_by_sample_or_site = 'sample' self.stdev_opt = True self.bs = False self.bs_par = False
add_thellier_gui_criteria
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n category = 'thellier_gui'\n for crit in ['sample_int_n_outlier_check', 'site_int_n_outlier_check']:\n self.acceptance_criteria[crit] = {}\n self.acceptance_criteria[crit]['category'] = category\n self.acceptance_criteria[crit]['criterion_name'] = crit\n self.acceptance_criteria[crit]['value'] = -999\n self.acceptance_criteria[crit]['threshold_type'] = 'low'\n self.acceptance_criteria[crit]['decimal_points'] = 0\n for crit in ['sample_int_interval_uT', 'sample_int_interval_perc',\n 'site_int_interval_uT', 'site_int_interval_perc',\n 'sample_int_BS_68_uT', 'sample_int_BS_95_uT',\n 'sample_int_BS_68_perc', 'sample_int_BS_95_perc',\n 'specimen_int_max_slope_diff']:\n self.acceptance_criteria[crit] = {}\n self.acceptance_criteria[crit]['category'] = category\n self.acceptance_criteria[crit]['criterion_name'] = crit\n self.acceptance_criteria[crit]['value'] = -999\n self.acceptance_criteria[crit]['threshold_type'] = 'high'\n if crit in ['specimen_int_max_slope_diff']:\n self.acceptance_criteria[crit]['decimal_points'] = -999\n else:\n self.acceptance_criteria[crit]['decimal_points'] = 1\n self.acceptance_criteria[crit]['comments'] = 'thellier_gui_only'\n for crit in ['average_by_sample_or_site', 'interpreter_method']:\n self.acceptance_criteria[crit] = {}\n self.acceptance_criteria[crit]['category'] = category\n self.acceptance_criteria[crit]['criterion_name'] = crit\n if crit in ['average_by_sample_or_site']:\n self.acceptance_criteria[crit]['value'] = 'sample'\n if crit in ['interpreter_method']:\n self.acceptance_criteria[crit]['value'] = 'stdev_opt'\n self.acceptance_criteria[crit]['threshold_type'] = 'flag'\n self.acceptance_criteria[crit]['decimal_points'] = -999\n for crit in ['include_nrm']:\n self.acceptance_criteria[crit] = {}\n self.acceptance_criteria[crit]['category'] = category\n self.acceptance_criteria[crit]['criterion_name'] = crit\n self.acceptance_criteria[crit]['value'] = True\n self.acceptance_criteria[crit]['threshold_type'] = 'bool'\n self.acceptance_criteria[crit]['decimal_points'] = -999\n self.average_by_sample_or_site = 'sample'\n self.stdev_opt = True\n self.bs = False\n self.bs_par = False\n", "role": "user" }, { "content": "add_thellier_gui_criteria", "role": "assistant" } ]
def x(): ofile = '' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind = sys.argv.index('-F') ofile = sys.argv[ind + 1] outfile = open(ofile, 'w') if '-i' in sys.argv: cont = 1 while cont == 1: cart = [] try: ans = input('X: [ctrl-D to quit] ') cart.append(float(ans)) ans = input('Y: ') cart.append(float(ans)) ans = input('Z: ') cart.append(float(ans)) except: print('\n Good-bye \n') sys.exit() dir = pmag.cart2dir(cart) print('%7.1f %7.1f %10.3e' % (dir[0], dir[1], dir[2])) elif '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] inp = numpy.loadtxt(file) else: inp = numpy.loadtxt(sys.stdin, dtype=numpy.float) dir = pmag.cart2dir(inp) if len(dir.shape) == 1: line = dir print('%7.1f %7.1f %10.3e' % (line[0], line[1], line[2])) if ofile != '': outstring = '%7.1f %7.1f %10.8e\n' % (line[0], line[1], line[2]) outfile.write(outstring) else: for line in dir: print('%7.1f %7.1f %10.3e' % (line[0], line[1], line[2])) if ofile != '': outstring = '%7.1f %7.1f %10.8e\n' % (line[0], line[1], line[2] ) outfile.write(outstring)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n ofile = ''\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n outfile = open(ofile, 'w')\n if '-i' in sys.argv:\n cont = 1\n while cont == 1:\n cart = []\n try:\n ans = input('X: [ctrl-D to quit] ')\n cart.append(float(ans))\n ans = input('Y: ')\n cart.append(float(ans))\n ans = input('Z: ')\n cart.append(float(ans))\n except:\n print('\\n Good-bye \\n')\n sys.exit()\n dir = pmag.cart2dir(cart)\n print('%7.1f %7.1f %10.3e' % (dir[0], dir[1], dir[2]))\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n inp = numpy.loadtxt(file)\n else:\n inp = numpy.loadtxt(sys.stdin, dtype=numpy.float)\n dir = pmag.cart2dir(inp)\n if len(dir.shape) == 1:\n line = dir\n print('%7.1f %7.1f %10.3e' % (line[0], line[1], line[2]))\n if ofile != '':\n outstring = '%7.1f %7.1f %10.8e\\n' % (line[0], line[1], line[2])\n outfile.write(outstring)\n else:\n for line in dir:\n print('%7.1f %7.1f %10.3e' % (line[0], line[1], line[2]))\n if ofile != '':\n outstring = '%7.1f %7.1f %10.8e\\n' % (line[0], line[1], line[2]\n )\n outfile.write(outstring)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): save_plots = False if '-sav' in sys.argv: save_plots = True interactive = False if '-h' in sys.argv: print(main.__doc__) sys.exit() fmt = pmag.get_named_arg('-fmt', 'svg') fname = pmag.get_named_arg('-f', '') outfile = pmag.get_named_arg('-F', '') norm = 1 if '-N' in sys.argv: norm = 0 if '-twin' in sys.argv: norm = -1 binsize = pmag.get_named_arg('-b', 0) if '-xlab' in sys.argv: ind = sys.argv.index('-xlab') xlab = sys.argv[ind + 1] else: xlab = 'x' data = [] if not fname: print('-I- Trying to read from stdin... <ctrl>-c to quit') data = np.loadtxt(sys.stdin, dtype=np.float) ipmag.histplot(fname, data, outfile, xlab, binsize, norm, fmt, save_plots, interactive)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n save_plots = False\n if '-sav' in sys.argv:\n save_plots = True\n interactive = False\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n fmt = pmag.get_named_arg('-fmt', 'svg')\n fname = pmag.get_named_arg('-f', '')\n outfile = pmag.get_named_arg('-F', '')\n norm = 1\n if '-N' in sys.argv:\n norm = 0\n if '-twin' in sys.argv:\n norm = -1\n binsize = pmag.get_named_arg('-b', 0)\n if '-xlab' in sys.argv:\n ind = sys.argv.index('-xlab')\n xlab = sys.argv[ind + 1]\n else:\n xlab = 'x'\n data = []\n if not fname:\n print('-I- Trying to read from stdin... <ctrl>-c to quit')\n data = np.loadtxt(sys.stdin, dtype=np.float)\n ipmag.histplot(fname, data, outfile, xlab, binsize, norm, fmt,\n save_plots, interactive)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(argv): string = ' '.join(argv) string = string.split(' -') program = string[0] arguments = [s.split() for s in string[1:]] return arguments
extract_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(argv):\n string = ' '.join(argv)\n string = string.split(' -')\n program = string[0]\n arguments = [s.split() for s in string[1:]]\n return arguments\n", "role": "user" }, { "content": "extract_args", "role": "assistant" } ]
def x(arguments, data_frame): stripped_args = [a[0] for a in arguments] df = data_frame.df for a in arguments: if a[0] not in df.index: print('-I- ignoring invalid argument: {}'.format(a[0])) print('-') condition = df['reqd'] reqd_args = df[condition] for arg in reqd_args['arg_name']: if arg not in stripped_args: raise pmag.MissingCommandLineArgException('-' + arg) default_args = df using_defaults = [] for arg_name, row in default_args.iterrows(): default = row['default'] if arg_name not in stripped_args: using_defaults.append(arg_name) arguments.append([arg_name, default]) using_defaults = [('-' + arg) for arg in using_defaults] print('Using default arguments for: {}'.format(', '.join(using_defaults))) return arguments
check_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arguments, data_frame):\n stripped_args = [a[0] for a in arguments]\n df = data_frame.df\n for a in arguments:\n if a[0] not in df.index:\n print('-I- ignoring invalid argument: {}'.format(a[0]))\n print('-')\n condition = df['reqd']\n reqd_args = df[condition]\n for arg in reqd_args['arg_name']:\n if arg not in stripped_args:\n raise pmag.MissingCommandLineArgException('-' + arg)\n default_args = df\n using_defaults = []\n for arg_name, row in default_args.iterrows():\n default = row['default']\n if arg_name not in stripped_args:\n using_defaults.append(arg_name)\n arguments.append([arg_name, default])\n using_defaults = [('-' + arg) for arg in using_defaults]\n print('Using default arguments for: {}'.format(', '.join(using_defaults)))\n return arguments\n", "role": "user" }, { "content": "check_args", "role": "assistant" } ]
def x(self): if self.data_type in ['orient', 'ages']: belongs_to = [] else: parent_table_name = self.parent_type + 's' if parent_table_name in self.contribution.tables: belongs_to = sorted(self.contribution.tables[parent_table_name] .df.index.unique()) else: belongs_to = [] self.choices = {} if self.data_type in ['specimens', 'samples', 'sites']: self.choices = {(1): (belongs_to, False)} if self.data_type == 'orient': self.choices = {(1): (['g', 'b'], False)} if self.data_type == 'ages': for level in ['specimen', 'sample', 'site', 'location']: if level in self.grid.col_labels: level_names = [] if level + 's' in self.contribution.tables: level_names = list(self.contribution.tables[level + 's' ].df.index.unique()) num = self.grid.col_labels.index(level) self.choices[num] = level_names, False self.grid.Bind(wx.grid.EVT_GRID_CELL_LEFT_CLICK, lambda event: self. on_left_click(event, self.grid, self.choices)) cols = self.grid.GetNumberCols() col_labels = [self.grid.GetColLabelValue(col) for col in range(cols)] for col_number, label in enumerate(col_labels): self.add_drop_down(col_number, label)
InitUI
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.data_type in ['orient', 'ages']:\n belongs_to = []\n else:\n parent_table_name = self.parent_type + 's'\n if parent_table_name in self.contribution.tables:\n belongs_to = sorted(self.contribution.tables[parent_table_name]\n .df.index.unique())\n else:\n belongs_to = []\n self.choices = {}\n if self.data_type in ['specimens', 'samples', 'sites']:\n self.choices = {(1): (belongs_to, False)}\n if self.data_type == 'orient':\n self.choices = {(1): (['g', 'b'], False)}\n if self.data_type == 'ages':\n for level in ['specimen', 'sample', 'site', 'location']:\n if level in self.grid.col_labels:\n level_names = []\n if level + 's' in self.contribution.tables:\n level_names = list(self.contribution.tables[level + 's'\n ].df.index.unique())\n num = self.grid.col_labels.index(level)\n self.choices[num] = level_names, False\n self.grid.Bind(wx.grid.EVT_GRID_CELL_LEFT_CLICK, lambda event: self.\n on_left_click(event, self.grid, self.choices))\n cols = self.grid.GetNumberCols()\n col_labels = [self.grid.GetColLabelValue(col) for col in range(cols)]\n for col_number, label in enumerate(col_labels):\n self.add_drop_down(col_number, label)\n", "role": "user" }, { "content": "InitUI", "role": "assistant" } ]
def x(self, col_number, col_label): if col_label.endswith('**') or col_label.endswith('^^'): col_label = col_label[:-2] if col_label == 'experiments': if 'measurements' in self.contribution.tables: meas_table = self.contribution.tables['measurements'].df if 'experiment' in meas_table.columns: exps = meas_table['experiment'].unique() self.choices[col_number] = sorted(exps), False self.grid.SetColLabelValue(col_number, col_label + '**') return if col_label == 'method_codes': self.add_method_drop_down(col_number, col_label) elif col_label == 'magic_method_codes': self.add_method_drop_down(col_number, 'method_codes') elif col_label in ['specimens', 'samples', 'sites', 'locations']: if col_label in self.contribution.tables: item_df = self.contribution.tables[col_label].df item_names = item_df.index.unique() self.choices[col_number] = sorted(item_names), False elif col_label in ['specimen', 'sample', 'site', 'location']: if col_label + 's' in self.contribution.tables: item_df = self.contribution.tables[col_label + 's'].df item_names = item_df.index.unique() self.choices[col_number] = sorted(item_names), False if col_label in self.contribution.vocab.suggested: typ = 'suggested' elif col_label in self.contribution.vocab.vocabularies: typ = 'controlled' else: return if col_number not in list(self.choices.keys()): if typ == 'suggested': self.grid.SetColLabelValue(col_number, col_label + '^^') controlled_vocabulary = self.contribution.vocab.suggested[col_label ] else: self.grid.SetColLabelValue(col_number, col_label + '**') controlled_vocabulary = self.contribution.vocab.vocabularies[ col_label] stripped_list = [] for item in controlled_vocabulary: try: stripped_list.append(str(item)) except UnicodeEncodeError: pass if len(stripped_list) > 100: dictionary = {} for item in stripped_list: letter = item[0].upper() if letter not in list(dictionary.keys()): dictionary[letter] = [] dictionary[letter].append(item) stripped_list = dictionary two_tiered = True if isinstance(stripped_list, dict) else False self.choices[col_number] = stripped_list, two_tiered return
add_drop_down
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, col_number, col_label):\n if col_label.endswith('**') or col_label.endswith('^^'):\n col_label = col_label[:-2]\n if col_label == 'experiments':\n if 'measurements' in self.contribution.tables:\n meas_table = self.contribution.tables['measurements'].df\n if 'experiment' in meas_table.columns:\n exps = meas_table['experiment'].unique()\n self.choices[col_number] = sorted(exps), False\n self.grid.SetColLabelValue(col_number, col_label + '**')\n return\n if col_label == 'method_codes':\n self.add_method_drop_down(col_number, col_label)\n elif col_label == 'magic_method_codes':\n self.add_method_drop_down(col_number, 'method_codes')\n elif col_label in ['specimens', 'samples', 'sites', 'locations']:\n if col_label in self.contribution.tables:\n item_df = self.contribution.tables[col_label].df\n item_names = item_df.index.unique()\n self.choices[col_number] = sorted(item_names), False\n elif col_label in ['specimen', 'sample', 'site', 'location']:\n if col_label + 's' in self.contribution.tables:\n item_df = self.contribution.tables[col_label + 's'].df\n item_names = item_df.index.unique()\n self.choices[col_number] = sorted(item_names), False\n if col_label in self.contribution.vocab.suggested:\n typ = 'suggested'\n elif col_label in self.contribution.vocab.vocabularies:\n typ = 'controlled'\n else:\n return\n if col_number not in list(self.choices.keys()):\n if typ == 'suggested':\n self.grid.SetColLabelValue(col_number, col_label + '^^')\n controlled_vocabulary = self.contribution.vocab.suggested[col_label\n ]\n else:\n self.grid.SetColLabelValue(col_number, col_label + '**')\n controlled_vocabulary = self.contribution.vocab.vocabularies[\n col_label]\n stripped_list = []\n for item in controlled_vocabulary:\n try:\n stripped_list.append(str(item))\n except UnicodeEncodeError:\n pass\n if len(stripped_list) > 100:\n dictionary = {}\n for item in stripped_list:\n letter = item[0].upper()\n if letter not in list(dictionary.keys()):\n dictionary[letter] = []\n dictionary[letter].append(item)\n stripped_list = dictionary\n two_tiered = True if isinstance(stripped_list, dict) else False\n self.choices[col_number] = stripped_list, two_tiered\n return\n", "role": "user" }, { "content": "add_drop_down", "role": "assistant" } ]
def x(self, col_number, col_label): if self.data_type == 'ages': method_list = self.contribution.vocab.age_methods else: method_list = self.contribution.vocab.age_methods.copy() method_list.update(self.contribution.vocab.methods) self.choices[col_number] = method_list, True
add_method_drop_down
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, col_number, col_label):\n if self.data_type == 'ages':\n method_list = self.contribution.vocab.age_methods\n else:\n method_list = self.contribution.vocab.age_methods.copy()\n method_list.update(self.contribution.vocab.methods)\n self.choices[col_number] = method_list, True\n", "role": "user" }, { "content": "add_method_drop_down", "role": "assistant" } ]
def x(self, event, grid, choices): row, col = event.GetRow(), event.GetCol() if col == 0 and self.grid.name != 'ages': default_val = self.grid.GetCellValue(row, col) msg = ( """Choose a new name for {}. The new value will propagate throughout the contribution.""" .format(default_val)) dia = wx.TextEntryDialog(self.grid, msg, 'Rename {}'.format(self. grid.name, default_val), default_val) res = dia.ShowModal() if res == wx.ID_OK: new_val = dia.GetValue() self.contribution.rename_item(self.grid.name, default_val, new_val) if default_val == '': self.grid.SetCellValue(row, 0, new_val) return for row in range(self.grid.GetNumberRows()): cell_value = self.grid.GetCellValue(row, 0) if cell_value == default_val: self.grid.SetCellValue(row, 0, new_val) else: continue return color = self.grid.GetCellBackgroundColour(event.GetRow(), event.GetCol()) if event.ControlDown() or event.MetaDown(): row, col = event.GetRow(), event.GetCol() if (row, col) not in self.dispersed_selection: self.dispersed_selection.append((row, col)) self.grid.SetCellBackgroundColour(row, col, 'light blue') else: self.dispersed_selection.remove((row, col)) self.grid.SetCellBackgroundColour(row, col, color) self.grid.ForceRefresh() return if event.ShiftDown(): previous_col = self.grid.GetGridCursorCol() previous_row = self.grid.GetGridCursorRow() col = event.GetCol() row = event.GetRow() if col != previous_col: return elif row > previous_row: row_range = list(range(previous_row, row + 1)) else: row_range = list(range(row, previous_row + 1)) for r in row_range: self.grid.SetCellBackgroundColour(r, col, 'light blue') self.selection.append((r, col)) self.grid.ForceRefresh() return selection = False if self.dispersed_selection: is_dispersed = True selection = self.dispersed_selection if self.selection: is_dispersed = False selection = self.selection try: col = event.GetCol() row = event.GetRow() except AttributeError: row, col = selection[0][0], selection[0][1] self.grid.SetGridCursor(row, col) if col in list(choices.keys()): menu = wx.Menu() two_tiered = choices[col][1] choices = choices[col][0] if not two_tiered: if 'CLEAR cell of all values' not in choices: choices.insert(0, 'CLEAR cell of all values') for choice in choices: if not choice: choice = ' ' menuitem = menu.Append(wx.ID_ANY, str(choice)) self.window.Bind(wx.EVT_MENU, lambda event: self. on_select_menuitem(event, grid, row, col, selection), menuitem) self.show_menu(event, menu) else: clear = menu.Append(-1, 'CLEAR cell of all values') self.window.Bind(wx.EVT_MENU, lambda event: self. on_select_menuitem(event, grid, row, col, selection), clear) for choice in sorted(choices.items()): submenu = wx.Menu() for item in choice[1]: menuitem = submenu.Append(-1, str(item)) self.window.Bind(wx.EVT_MENU, lambda event: self. on_select_menuitem(event, grid, row, col, selection ), menuitem) menu.Append(-1, choice[0], submenu) self.show_menu(event, menu) if selection: for row, col in selection: self.grid.SetCellBackgroundColour(row, col, self.col_color) self.dispersed_selection = [] self.selection = [] self.grid.ForceRefresh()
on_left_click
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event, grid, choices):\n row, col = event.GetRow(), event.GetCol()\n if col == 0 and self.grid.name != 'ages':\n default_val = self.grid.GetCellValue(row, col)\n msg = (\n \"\"\"Choose a new name for {}.\nThe new value will propagate throughout the contribution.\"\"\"\n .format(default_val))\n dia = wx.TextEntryDialog(self.grid, msg, 'Rename {}'.format(self.\n grid.name, default_val), default_val)\n res = dia.ShowModal()\n if res == wx.ID_OK:\n new_val = dia.GetValue()\n self.contribution.rename_item(self.grid.name, default_val, new_val)\n if default_val == '':\n self.grid.SetCellValue(row, 0, new_val)\n return\n for row in range(self.grid.GetNumberRows()):\n cell_value = self.grid.GetCellValue(row, 0)\n if cell_value == default_val:\n self.grid.SetCellValue(row, 0, new_val)\n else:\n continue\n return\n color = self.grid.GetCellBackgroundColour(event.GetRow(), event.GetCol())\n if event.ControlDown() or event.MetaDown():\n row, col = event.GetRow(), event.GetCol()\n if (row, col) not in self.dispersed_selection:\n self.dispersed_selection.append((row, col))\n self.grid.SetCellBackgroundColour(row, col, 'light blue')\n else:\n self.dispersed_selection.remove((row, col))\n self.grid.SetCellBackgroundColour(row, col, color)\n self.grid.ForceRefresh()\n return\n if event.ShiftDown():\n previous_col = self.grid.GetGridCursorCol()\n previous_row = self.grid.GetGridCursorRow()\n col = event.GetCol()\n row = event.GetRow()\n if col != previous_col:\n return\n elif row > previous_row:\n row_range = list(range(previous_row, row + 1))\n else:\n row_range = list(range(row, previous_row + 1))\n for r in row_range:\n self.grid.SetCellBackgroundColour(r, col, 'light blue')\n self.selection.append((r, col))\n self.grid.ForceRefresh()\n return\n selection = False\n if self.dispersed_selection:\n is_dispersed = True\n selection = self.dispersed_selection\n if self.selection:\n is_dispersed = False\n selection = self.selection\n try:\n col = event.GetCol()\n row = event.GetRow()\n except AttributeError:\n row, col = selection[0][0], selection[0][1]\n self.grid.SetGridCursor(row, col)\n if col in list(choices.keys()):\n menu = wx.Menu()\n two_tiered = choices[col][1]\n choices = choices[col][0]\n if not two_tiered:\n if 'CLEAR cell of all values' not in choices:\n choices.insert(0, 'CLEAR cell of all values')\n for choice in choices:\n if not choice:\n choice = ' '\n menuitem = menu.Append(wx.ID_ANY, str(choice))\n self.window.Bind(wx.EVT_MENU, lambda event: self.\n on_select_menuitem(event, grid, row, col, selection),\n menuitem)\n self.show_menu(event, menu)\n else:\n clear = menu.Append(-1, 'CLEAR cell of all values')\n self.window.Bind(wx.EVT_MENU, lambda event: self.\n on_select_menuitem(event, grid, row, col, selection), clear)\n for choice in sorted(choices.items()):\n submenu = wx.Menu()\n for item in choice[1]:\n menuitem = submenu.Append(-1, str(item))\n self.window.Bind(wx.EVT_MENU, lambda event: self.\n on_select_menuitem(event, grid, row, col, selection\n ), menuitem)\n menu.Append(-1, choice[0], submenu)\n self.show_menu(event, menu)\n if selection:\n for row, col in selection:\n self.grid.SetCellBackgroundColour(row, col, self.col_color)\n self.dispersed_selection = []\n self.selection = []\n self.grid.ForceRefresh()\n", "role": "user" }, { "content": "on_left_click", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind = sys.argv.index('-F') ofile = sys.argv[ind + 1] out = open(ofile, 'w') print(ofile, ' opened for output') else: ofile = '' if '-i' in sys.argv: while 1: try: Dec = float(input('Declination: <cntl-D> to quit ')) except: print('\n Good-bye\n') sys.exit() Inc = float(input('Inclination: ')) Dip_dir = float(input('Dip direction: ')) Dip = float(input('Dip: ')) print('%7.1f %7.1f' % pmag.dotilt(Dec, Inc, Dip_dir, Dip)) elif '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] data = numpy.loadtxt(file) else: data = numpy.loadtxt(sys.stdin, dtype=numpy.float) D, I = pmag.dotilt_V(data) for k in range(len(D)): if ofile == '': print('%7.1f %7.1f' % (D[k], I[k])) else: out.write('%7.1f %7.1f\n' % (D[k], I[k]))
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w')\n print(ofile, ' opened for output')\n else:\n ofile = ''\n if '-i' in sys.argv:\n while 1:\n try:\n Dec = float(input('Declination: <cntl-D> to quit '))\n except:\n print('\\n Good-bye\\n')\n sys.exit()\n Inc = float(input('Inclination: '))\n Dip_dir = float(input('Dip direction: '))\n Dip = float(input('Dip: '))\n print('%7.1f %7.1f' % pmag.dotilt(Dec, Inc, Dip_dir, Dip))\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n data = numpy.loadtxt(file)\n else:\n data = numpy.loadtxt(sys.stdin, dtype=numpy.float)\n D, I = pmag.dotilt_V(data)\n for k in range(len(D)):\n if ofile == '':\n print('%7.1f %7.1f' % (D[k], I[k]))\n else:\n out.write('%7.1f %7.1f\\n' % (D[k], I[k]))\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() file = sys.argv[1] f = open(file, 'r') Input = f.readlines() f.close() out = open(file, 'w') for line in Input: out.write(line) out.close()
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n file = sys.argv[1]\n f = open(file, 'r')\n Input = f.readlines()\n f.close()\n out = open(file, 'w')\n for line in Input:\n out.write(line)\n out.close()\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): if len(sys.argv) > 0: if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] f = open(file, 'r') data = f.readlines() elif '-i' in sys.argv: file = input('Enter file name with dec, inc data: ') f = open(file, 'r') data = f.readlines() else: data = sys.stdin.readlines() ofile = '' if '-F' in sys.argv: ind = sys.argv.index('-F') ofile = sys.argv[ind + 1] out = open(ofile, 'w + a') DIs = [] for line in data: if '\t' in line: rec = line.split('\t') else: rec = line.split() DIs.append((float(rec[0]), float(rec[1]))) kpars = pmag.dokent(DIs, len(DIs)) output = '%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %i' % (kpars[ 'dec'], kpars['inc'], kpars['Eta'], kpars['Edec'], kpars['Einc'], kpars['Zeta'], kpars['Zdec'], kpars['Zinc'], kpars['n']) if ofile == '': print(output) else: out.write(output + '\n')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if len(sys.argv) > 0:\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n elif '-i' in sys.argv:\n file = input('Enter file name with dec, inc data: ')\n f = open(file, 'r')\n data = f.readlines()\n else:\n data = sys.stdin.readlines()\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n DIs = []\n for line in data:\n if '\\t' in line:\n rec = line.split('\\t')\n else:\n rec = line.split()\n DIs.append((float(rec[0]), float(rec[1])))\n kpars = pmag.dokent(DIs, len(DIs))\n output = '%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %i' % (kpars[\n 'dec'], kpars['inc'], kpars['Eta'], kpars['Edec'], kpars['Einc'],\n kpars['Zeta'], kpars['Zdec'], kpars['Zinc'], kpars['n'])\n if ofile == '':\n print(output)\n else:\n out.write(output + '\\n')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(FIGS): is_win = True if sys.platform in ['win32', 'win64'] else False if not is_win: plt.ion() for fig in list(FIGS.keys()): plt.draw() plt.show() plt.ioff() if is_win: plt.draw() print('You must manually close all plots to continue') plt.show()
draw_figs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(FIGS):\n is_win = True if sys.platform in ['win32', 'win64'] else False\n if not is_win:\n plt.ion()\n for fig in list(FIGS.keys()):\n plt.draw()\n plt.show()\n plt.ioff()\n if is_win:\n plt.draw()\n print('You must manually close all plots to continue')\n plt.show()\n", "role": "user" }, { "content": "draw_figs", "role": "assistant" } ]
def x(fig): locs = fig.xaxis.get_ticklocs() nlocs = np.delete(locs, list(range(0, len(locs), 2))) fig.set_xticks(nlocs)
delticks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fig):\n locs = fig.xaxis.get_ticklocs()\n nlocs = np.delete(locs, list(range(0, len(locs), 2)))\n fig.set_xticks(nlocs)\n", "role": "user" }, { "content": "delticks", "role": "assistant" } ]
def x(fignum, w, h): global fig_x_pos, fig_y_pos, plt_num dpi = 80 if isServer: dpi = 240 plt_num += 1 fig = plt.figure(num=fignum, figsize=(w, h), dpi=dpi) if not isServer and not set_env.IS_NOTEBOOK: plt.get_current_fig_manager().show() fig_x_pos = fig_x_pos + dpi * w + 25 if plt_num == 3: plt_num = 0 fig_x_pos = 25 fig_y_pos = fig_y_pos + dpi * h + 25 plt.figtext(0.02, 0.01, version_num) return fig
plot_init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum, w, h):\n global fig_x_pos, fig_y_pos, plt_num\n dpi = 80\n if isServer:\n dpi = 240\n plt_num += 1\n fig = plt.figure(num=fignum, figsize=(w, h), dpi=dpi)\n if not isServer and not set_env.IS_NOTEBOOK:\n plt.get_current_fig_manager().show()\n fig_x_pos = fig_x_pos + dpi * w + 25\n if plt_num == 3:\n plt_num = 0\n fig_x_pos = 25\n fig_y_pos = fig_y_pos + dpi * h + 25\n plt.figtext(0.02, 0.01, version_num)\n return fig\n", "role": "user" }, { "content": "plot_init", "role": "assistant" } ]
def x(fignum): from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(fignum) ax = fig.add_subplot(111, projection='3d') return ax
plot3d_init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum):\n from mpl_toolkits.mplot3d import Axes3D\n fig = plt.figure(fignum)\n ax = fig.add_subplot(111, projection='3d')\n return ax\n", "role": "user" }, { "content": "plot3d_init", "role": "assistant" } ]
def x(y, ybar, sigma): x = old_div(y - ybar, np.sqrt(2.0) * sigma) t = old_div(1.0, 1.0 + 0.3275911 * abs(x)) erf = 1.0 - np.exp(-x * x) * t * (0.254829592 - t * (0.284496736 - t * (1.421413741 - t * (1.453152027 - t * 1.061405429)))) erf = abs(erf) sign = old_div(x, abs(x)) return 0.5 * (1.0 + sign * erf)
gaussfunc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y, ybar, sigma):\n x = old_div(y - ybar, np.sqrt(2.0) * sigma)\n t = old_div(1.0, 1.0 + 0.3275911 * abs(x))\n erf = 1.0 - np.exp(-x * x) * t * (0.254829592 - t * (0.284496736 - t *\n (1.421413741 - t * (1.453152027 - t * 1.061405429))))\n erf = abs(erf)\n sign = old_div(x, abs(x))\n return 0.5 * (1.0 + sign * erf)\n", "role": "user" }, { "content": "gaussfunc", "role": "assistant" } ]
def x(X): xbar, sigma = pmag.gausspars(X) d, f = 0, 0.0 for i in range(1, len(X) + 1): b = old_div(float(i), float(len(X))) a = gaussfunc(X[i - 1], xbar, sigma) if abs(f - a) > abs(b - a): delta = abs(f - a) else: delta = abs(b - a) if delta > d: d = delta f = b return d, xbar, sigma
k_s
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X):\n xbar, sigma = pmag.gausspars(X)\n d, f = 0, 0.0\n for i in range(1, len(X) + 1):\n b = old_div(float(i), float(len(X)))\n a = gaussfunc(X[i - 1], xbar, sigma)\n if abs(f - a) > abs(b - a):\n delta = abs(f - a)\n else:\n delta = abs(b - a)\n if delta > d:\n d = delta\n f = b\n return d, xbar, sigma\n", "role": "user" }, { "content": "k_s", "role": "assistant" } ]
def x(p): d = p if d < 0.0 or d > 1.0: print('d not in (1,1) ') sys.exit() x = 0.0 if d - 0.5 > 0: d = 1.0 - d if d - 0.5 < 0: t2 = -2.0 * np.log(d) t = np.sqrt(t2) x = t - old_div(2.515517 + 0.802853 * t + 0.010328 * t2, 1.0 + 1.432788 * t + 0.189269 * t2 + 0.001308 * t * t2) if p < 0.5: x = -x return x
qsnorm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p):\n d = p\n if d < 0.0 or d > 1.0:\n print('d not in (1,1) ')\n sys.exit()\n x = 0.0\n if d - 0.5 > 0:\n d = 1.0 - d\n if d - 0.5 < 0:\n t2 = -2.0 * np.log(d)\n t = np.sqrt(t2)\n x = t - old_div(2.515517 + 0.802853 * t + 0.010328 * t2, 1.0 + \n 1.432788 * t + 0.189269 * t2 + 0.001308 * t * t2)\n if p < 0.5:\n x = -x\n return x\n", "role": "user" }, { "content": "qsnorm", "role": "assistant" } ]
def x(fignum, X, Y, **kwargs): plt.figure(num=fignum) if 'sym' in list(kwargs.keys()): sym = kwargs['sym'] else: sym = 'ro' if 'lw' in list(kwargs.keys()): lw = kwargs['lw'] else: lw = 1 if 'xerr' in list(kwargs.keys()): plt.errorbar(X, Y, fmt=sym, xerr=kwargs['xerr']) if 'yerr' in list(kwargs.keys()): plt.errorbar(X, Y, fmt=sym, yerr=kwargs['yerr']) if 'axis' in list(kwargs.keys()): if kwargs['axis'] == 'semilogx': plt.semilogx(X, Y, marker=sym[1], markerfacecolor=sym[0]) if kwargs['axis'] == 'semilogy': plt.semilogy(X, Y, marker=sym[1], markerfacecolor=sym[0]) if kwargs['axis'] == 'loglog': plt.loglog(X, Y, marker=sym[1], markerfacecolor=sym[0]) else: plt.plot(X, Y, sym, linewidth=lw) if 'xlab' in list(kwargs.keys()): plt.xlabel(kwargs['xlab']) if 'ylab' in list(kwargs.keys()): plt.ylabel(kwargs['ylab']) if 'title' in list(kwargs.keys()): plt.title(kwargs['title']) if 'xmin' in list(kwargs.keys()): plt.axis([kwargs['xmin'], kwargs['xmax'], kwargs['ymin'], kwargs[ 'ymax']]) if 'notes' in list(kwargs.keys()): for note in kwargs['notes']: plt.text(note[0], note[1], note[2])
plot_xy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum, X, Y, **kwargs):\n plt.figure(num=fignum)\n if 'sym' in list(kwargs.keys()):\n sym = kwargs['sym']\n else:\n sym = 'ro'\n if 'lw' in list(kwargs.keys()):\n lw = kwargs['lw']\n else:\n lw = 1\n if 'xerr' in list(kwargs.keys()):\n plt.errorbar(X, Y, fmt=sym, xerr=kwargs['xerr'])\n if 'yerr' in list(kwargs.keys()):\n plt.errorbar(X, Y, fmt=sym, yerr=kwargs['yerr'])\n if 'axis' in list(kwargs.keys()):\n if kwargs['axis'] == 'semilogx':\n plt.semilogx(X, Y, marker=sym[1], markerfacecolor=sym[0])\n if kwargs['axis'] == 'semilogy':\n plt.semilogy(X, Y, marker=sym[1], markerfacecolor=sym[0])\n if kwargs['axis'] == 'loglog':\n plt.loglog(X, Y, marker=sym[1], markerfacecolor=sym[0])\n else:\n plt.plot(X, Y, sym, linewidth=lw)\n if 'xlab' in list(kwargs.keys()):\n plt.xlabel(kwargs['xlab'])\n if 'ylab' in list(kwargs.keys()):\n plt.ylabel(kwargs['ylab'])\n if 'title' in list(kwargs.keys()):\n plt.title(kwargs['title'])\n if 'xmin' in list(kwargs.keys()):\n plt.axis([kwargs['xmin'], kwargs['xmax'], kwargs['ymin'], kwargs[\n 'ymax']])\n if 'notes' in list(kwargs.keys()):\n for note in kwargs['notes']:\n plt.text(note[0], note[1], note[2])\n", "role": "user" }, { "content": "plot_xy", "role": "assistant" } ]
def x(fignum, SiteRec, data, key): print('Site mean data: ') print(' dec inc n_lines n_planes kappa R alpha_95 comp coord') print(SiteRec['site_dec'], SiteRec['site_inc'], SiteRec['site_n_lines'], SiteRec['site_n_planes'], SiteRec['site_k'], SiteRec['site_r'], SiteRec['site_alpha95'], SiteRec['site_comp_name'], SiteRec[ 'site_tilt_correction']) print('sample/specimen, dec, inc, n_specs/a95,| method codes ') for i in range(len(data)): print('%s: %s %s %s / %s | %s' % (data[i]['er_' + key + '_name'], data[i][key + '_dec'], data[i][key + '_inc'], data[i][key + '_n'], data[i][key + '_alpha95'], data[i]['magic_method_codes'])) plot_slnp(fignum, SiteRec, data, key) plot = input('s[a]ve plot, [q]uit or <return> to continue: ') if plot == 'q': print('CUL8R') sys.exit() if plot == 'a': files = {} for key in list(EQ.keys()): files[key] = site + '_' + key + '.' + fmt save_plots(EQ, files)
plot_site
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum, SiteRec, data, key):\n print('Site mean data: ')\n print(' dec inc n_lines n_planes kappa R alpha_95 comp coord')\n print(SiteRec['site_dec'], SiteRec['site_inc'], SiteRec['site_n_lines'],\n SiteRec['site_n_planes'], SiteRec['site_k'], SiteRec['site_r'],\n SiteRec['site_alpha95'], SiteRec['site_comp_name'], SiteRec[\n 'site_tilt_correction'])\n print('sample/specimen, dec, inc, n_specs/a95,| method codes ')\n for i in range(len(data)):\n print('%s: %s %s %s / %s | %s' % (data[i]['er_' + key + '_name'],\n data[i][key + '_dec'], data[i][key + '_inc'], data[i][key +\n '_n'], data[i][key + '_alpha95'], data[i]['magic_method_codes']))\n plot_slnp(fignum, SiteRec, data, key)\n plot = input('s[a]ve plot, [q]uit or <return> to continue: ')\n if plot == 'q':\n print('CUL8R')\n sys.exit()\n if plot == 'a':\n files = {}\n for key in list(EQ.keys()):\n files[key] = site + '_' + key + '.' + fmt\n save_plots(EQ, files)\n", "role": "user" }, { "content": "plot_site", "role": "assistant" } ]
def x(fignum, Y, title): plt.figure(num=fignum) if type(Y) == list: Y = np.array(Y) Y = np.sort(Y) n = len(Y) d, mean, sigma = k_s(Y) dc = old_div(0.886, np.sqrt(float(n))) X = [] for i in range(1, n + 1): p = old_div(float(i), float(n + 1)) X.append(qsnorm(p)) plt.plot(X, Y, 'ro') plt.title(title) plt.xlabel('Normal Quantile') plt.ylabel('Data Quantile') bounds = plt.axis() notestr = 'N: ' + '%i' % n plt.text(-0.9 * bounds[1], 0.9 * bounds[3], notestr) notestr = 'mean: ' + '%8.3e' % mean plt.text(-0.9 * bounds[1], 0.8 * bounds[3], notestr) notestr = 'std dev: ' + '%8.3e' % sigma plt.text(-0.9 * bounds[1], 0.7 * bounds[3], notestr) notestr = 'D: ' + '%8.3e' % d plt.text(-0.9 * bounds[1], 0.6 * bounds[3], notestr) notestr = 'Dc: ' + '%8.3e' % dc plt.text(-0.9 * bounds[1], 0.5 * bounds[3], notestr) return d, dc
plot_qq_norm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum, Y, title):\n plt.figure(num=fignum)\n if type(Y) == list:\n Y = np.array(Y)\n Y = np.sort(Y)\n n = len(Y)\n d, mean, sigma = k_s(Y)\n dc = old_div(0.886, np.sqrt(float(n)))\n X = []\n for i in range(1, n + 1):\n p = old_div(float(i), float(n + 1))\n X.append(qsnorm(p))\n plt.plot(X, Y, 'ro')\n plt.title(title)\n plt.xlabel('Normal Quantile')\n plt.ylabel('Data Quantile')\n bounds = plt.axis()\n notestr = 'N: ' + '%i' % n\n plt.text(-0.9 * bounds[1], 0.9 * bounds[3], notestr)\n notestr = 'mean: ' + '%8.3e' % mean\n plt.text(-0.9 * bounds[1], 0.8 * bounds[3], notestr)\n notestr = 'std dev: ' + '%8.3e' % sigma\n plt.text(-0.9 * bounds[1], 0.7 * bounds[3], notestr)\n notestr = 'D: ' + '%8.3e' % d\n plt.text(-0.9 * bounds[1], 0.6 * bounds[3], notestr)\n notestr = 'Dc: ' + '%8.3e' % dc\n plt.text(-0.9 * bounds[1], 0.5 * bounds[3], notestr)\n return d, dc\n", "role": "user" }, { "content": "plot_qq_norm", "role": "assistant" } ]
def x(fignum, D, title, subplot=False, degrees=True): if subplot == True: plt.subplot(1, 2, fignum) else: plt.figure(num=fignum) X, Y, dpos, dneg = [], [], 0.0, 0.0 if degrees: D = np.array(D) % 360 X = D / D.max() X = np.sort(X) n = float(len(D)) i = np.arange(0, len(D)) Y = (i - 0.5) / n ds = i / n - X dpos = ds.max() dneg = ds.min() plt.plot(Y, X, 'ro') v = dneg + dpos Mu = v * (np.sqrt(n) - 0.567 + old_div(1.623, np.sqrt(n))) plt.axis([0, 1.0, 0.0, 1.0]) bounds = plt.axis() notestr = 'N: ' + '%i' % n plt.text(0.1 * bounds[1], 0.9 * bounds[3], notestr) notestr = 'Mu: ' + '%7.3f' % Mu plt.text(0.1 * bounds[1], 0.8 * bounds[3], notestr) if Mu > 1.347: notestr = 'Non-uniform (99%)' elif Mu < 1.207: notestr = 'Uniform (95%)' elif Mu > 1.207: notestr = 'Uniform (99%)' plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr) plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr) plt.title(title) plt.xlabel('Uniform Quantile') plt.ylabel('Data Quantile') return Mu, 1.207
plot_qq_unf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum, D, title, subplot=False, degrees=True):\n if subplot == True:\n plt.subplot(1, 2, fignum)\n else:\n plt.figure(num=fignum)\n X, Y, dpos, dneg = [], [], 0.0, 0.0\n if degrees:\n D = np.array(D) % 360\n X = D / D.max()\n X = np.sort(X)\n n = float(len(D))\n i = np.arange(0, len(D))\n Y = (i - 0.5) / n\n ds = i / n - X\n dpos = ds.max()\n dneg = ds.min()\n plt.plot(Y, X, 'ro')\n v = dneg + dpos\n Mu = v * (np.sqrt(n) - 0.567 + old_div(1.623, np.sqrt(n)))\n plt.axis([0, 1.0, 0.0, 1.0])\n bounds = plt.axis()\n notestr = 'N: ' + '%i' % n\n plt.text(0.1 * bounds[1], 0.9 * bounds[3], notestr)\n notestr = 'Mu: ' + '%7.3f' % Mu\n plt.text(0.1 * bounds[1], 0.8 * bounds[3], notestr)\n if Mu > 1.347:\n notestr = 'Non-uniform (99%)'\n elif Mu < 1.207:\n notestr = 'Uniform (95%)'\n elif Mu > 1.207:\n notestr = 'Uniform (99%)'\n plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr)\n plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr)\n plt.title(title)\n plt.xlabel('Uniform Quantile')\n plt.ylabel('Data Quantile')\n return Mu, 1.207\n", "role": "user" }, { "content": "plot_qq_unf", "role": "assistant" } ]
def x(fignum, I, title, subplot=False): if subplot == True: plt.subplot(1, 2, fignum) else: plt.figure(num=fignum) X, Y, dpos, dneg = [], [], 0.0, 0.0 rad = old_div(np.pi, 180.0) xsum = 0 for i in I: theta = (90.0 - i) * rad X.append(1.0 - np.cos(theta)) xsum += X[-1] X.sort() n = float(len(X)) kappa = old_div(n - 1.0, xsum) for i in range(len(X)): p = old_div(float(i) - 0.5, n) Y.append(-np.log(1.0 - p)) f = 1.0 - np.exp(-kappa * X[i]) ds = old_div(float(i), n) - f if dpos < ds: dpos = ds ds = f - old_div(float(i) - 1.0, n) if dneg < ds: dneg = ds if dneg > dpos: ds = dneg else: ds = dpos Me = (ds - old_div(0.2, n)) * (np.sqrt(n) + 0.26 + old_div(0.5, np.sqrt(n)) ) plt.plot(Y, X, 'ro') bounds = plt.axis() plt.axis([0, bounds[1], 0.0, bounds[3]]) notestr = 'N: ' + '%i' % n plt.text(0.1 * bounds[1], 0.9 * bounds[3], notestr) notestr = 'Me: ' + '%7.3f' % Me plt.text(0.1 * bounds[1], 0.8 * bounds[3], notestr) if Me > 1.094: notestr = 'Not Exponential' else: notestr = 'Exponential (95%)' plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr) plt.title(title) plt.xlabel('Exponential Quantile') plt.ylabel('Data Quantile') return Me, 1.094
plot_qq_exp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum, I, title, subplot=False):\n if subplot == True:\n plt.subplot(1, 2, fignum)\n else:\n plt.figure(num=fignum)\n X, Y, dpos, dneg = [], [], 0.0, 0.0\n rad = old_div(np.pi, 180.0)\n xsum = 0\n for i in I:\n theta = (90.0 - i) * rad\n X.append(1.0 - np.cos(theta))\n xsum += X[-1]\n X.sort()\n n = float(len(X))\n kappa = old_div(n - 1.0, xsum)\n for i in range(len(X)):\n p = old_div(float(i) - 0.5, n)\n Y.append(-np.log(1.0 - p))\n f = 1.0 - np.exp(-kappa * X[i])\n ds = old_div(float(i), n) - f\n if dpos < ds:\n dpos = ds\n ds = f - old_div(float(i) - 1.0, n)\n if dneg < ds:\n dneg = ds\n if dneg > dpos:\n ds = dneg\n else:\n ds = dpos\n Me = (ds - old_div(0.2, n)) * (np.sqrt(n) + 0.26 + old_div(0.5, np.sqrt(n))\n )\n plt.plot(Y, X, 'ro')\n bounds = plt.axis()\n plt.axis([0, bounds[1], 0.0, bounds[3]])\n notestr = 'N: ' + '%i' % n\n plt.text(0.1 * bounds[1], 0.9 * bounds[3], notestr)\n notestr = 'Me: ' + '%7.3f' % Me\n plt.text(0.1 * bounds[1], 0.8 * bounds[3], notestr)\n if Me > 1.094:\n notestr = 'Not Exponential'\n else:\n notestr = 'Exponential (95%)'\n plt.text(0.1 * bounds[1], 0.7 * bounds[3], notestr)\n plt.title(title)\n plt.xlabel('Exponential Quantile')\n plt.ylabel('Data Quantile')\n return Me, 1.094\n", "role": "user" }, { "content": "plot_qq_exp", "role": "assistant" } ]
def x(fignum, DIblock): global globals """ plots directions on equal area net Parameters _________ fignum : matplotlib figure number DIblock : nested list of dec, inc pairs """ X_down, X_up, Y_down, Y_up = [], [], [], [] plt.figure(num=fignum) for rec in DIblock: Up, Down = 0, 0 XY = pmag.dimap(rec[0], rec[1]) if rec[1] >= 0: X_down.append(XY[0]) Y_down.append(XY[1]) else: X_up.append(XY[0]) Y_up.append(XY[1]) if len(X_down) > 0: plt.scatter(X_down, Y_down, marker='o', c='blue') if globals != 0: globals.DIlist = X_down globals.DIlisty = Y_down if len(X_up) > 0: plt.scatter(X_up, Y_up, marker='o', facecolor='white', edgecolor='blue' ) if globals != 0: globals.DIlist = X_up globals.DIlisty = Y_up
plot_di
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum, DIblock):\n global globals\n \"\"\"\n plots directions on equal area net\n Parameters\n _________\n fignum : matplotlib figure number\n DIblock : nested list of dec, inc pairs\n \"\"\"\n X_down, X_up, Y_down, Y_up = [], [], [], []\n plt.figure(num=fignum)\n for rec in DIblock:\n Up, Down = 0, 0\n XY = pmag.dimap(rec[0], rec[1])\n if rec[1] >= 0:\n X_down.append(XY[0])\n Y_down.append(XY[1])\n else:\n X_up.append(XY[0])\n Y_up.append(XY[1])\n if len(X_down) > 0:\n plt.scatter(X_down, Y_down, marker='o', c='blue')\n if globals != 0:\n globals.DIlist = X_down\n globals.DIlisty = Y_down\n if len(X_up) > 0:\n plt.scatter(X_up, Y_up, marker='o', facecolor='white', edgecolor='blue'\n )\n if globals != 0:\n globals.DIlist = X_up\n globals.DIlisty = Y_up\n", "role": "user" }, { "content": "plot_di", "role": "assistant" } ]
def x(fignum, DIblock, sym): global globals """ plots directions on equal area net Parameters _________ fignum : matplotlib figure number DIblock : nested list of dec, inc pairs sym : set matplotlib symbol (e.g., 'bo' for blue circles) """ X_down, X_up, Y_down, Y_up = [], [], [], [] plt.figure(num=fignum) for rec in DIblock: Up, Down = 0, 0 XY = pmag.dimap(rec[0], rec[1]) if rec[1] >= 0: X_down.append(XY[0]) Y_down.append(XY[1]) else: X_up.append(XY[0]) Y_up.append(XY[1]) if 'size' not in list(sym.keys()): size = 50 else: size = sym['size'] if 'edgecolor' not in list(sym.keys()): sym['edgecolor'] = 'k' if len(X_down) > 0: plt.scatter(X_down, Y_down, marker=sym['lower'][0], c=sym['lower'][ 1], s=size, edgecolor=sym['edgecolor']) if globals != 0: globals.DIlist = X_down globals.DIlisty = Y_down if len(X_up) > 0: plt.scatter(X_up, Y_up, marker=sym['upper'][0], c=sym['upper'][1], s=size, edgecolor=sym['edgecolor']) if globals != 0: globals.DIlist = X_up globals.DIlisty = Y_up
plot_di_sym
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum, DIblock, sym):\n global globals\n \"\"\"\n plots directions on equal area net\n Parameters\n _________\n fignum : matplotlib figure number\n DIblock : nested list of dec, inc pairs\n sym : set matplotlib symbol (e.g., 'bo' for blue circles)\n \"\"\"\n X_down, X_up, Y_down, Y_up = [], [], [], []\n plt.figure(num=fignum)\n for rec in DIblock:\n Up, Down = 0, 0\n XY = pmag.dimap(rec[0], rec[1])\n if rec[1] >= 0:\n X_down.append(XY[0])\n Y_down.append(XY[1])\n else:\n X_up.append(XY[0])\n Y_up.append(XY[1])\n if 'size' not in list(sym.keys()):\n size = 50\n else:\n size = sym['size']\n if 'edgecolor' not in list(sym.keys()):\n sym['edgecolor'] = 'k'\n if len(X_down) > 0:\n plt.scatter(X_down, Y_down, marker=sym['lower'][0], c=sym['lower'][\n 1], s=size, edgecolor=sym['edgecolor'])\n if globals != 0:\n globals.DIlist = X_down\n globals.DIlisty = Y_down\n if len(X_up) > 0:\n plt.scatter(X_up, Y_up, marker=sym['upper'][0], c=sym['upper'][1],\n s=size, edgecolor=sym['edgecolor'])\n if globals != 0:\n globals.DIlist = X_up\n globals.DIlisty = Y_up\n", "role": "user" }, { "content": "plot_di_sym", "role": "assistant" } ]
def x(fignum, pole, ang, col): plt.figure(num=fignum) D_c, I_c = pmag.circ(pole[0], pole[1], ang) X_c_up, Y_c_up = [], [] X_c_d, Y_c_d = [], [] for k in range(len(D_c)): XY = pmag.dimap(D_c[k], I_c[k]) if I_c[k] < 0: X_c_up.append(XY[0]) Y_c_up.append(XY[1]) else: X_c_d.append(XY[0]) Y_c_d.append(XY[1]) plt.plot(X_c_d, Y_c_d, col + '.', ms=5) plt.plot(X_c_up, Y_c_up, 'c.', ms=2)
plot_circ
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum, pole, ang, col):\n plt.figure(num=fignum)\n D_c, I_c = pmag.circ(pole[0], pole[1], ang)\n X_c_up, Y_c_up = [], []\n X_c_d, Y_c_d = [], []\n for k in range(len(D_c)):\n XY = pmag.dimap(D_c[k], I_c[k])\n if I_c[k] < 0:\n X_c_up.append(XY[0])\n Y_c_up.append(XY[1])\n else:\n X_c_d.append(XY[0])\n Y_c_d.append(XY[1])\n plt.plot(X_c_d, Y_c_d, col + '.', ms=5)\n plt.plot(X_c_up, Y_c_up, 'c.', ms=2)\n", "role": "user" }, { "content": "plot_circ", "role": "assistant" } ]
def x(fignum, datablock, angle, s, norm=True): global globals plt.figure(num=fignum) plt.clf() if not isServer: plt.figtext(0.02, 0.01, version_num) amin, amax = 0.0, -100.0 if norm == 0: fact = 1.0 else: fact = 1.0 / datablock[0][3] data = pd.DataFrame(datablock) if len(data.columns) == 5: data.columns = ['treat', 'dec', 'inc', 'int', 'quality'] if len(data.columns) == 6: data.columns = ['treat', 'dec', 'inc', 'int', 'type', 'quality'] elif len(data.columns) == 7: data.columns = ['treat', 'dec', 'inc', 'int', 'type', 'quality', 'y'] data['int'] = data['int'] * fact data['dec'] = (data['dec'] - angle) % 360 gdata = data[data['quality'].str.contains('g')] bdata = data[data['quality'].str.contains('b')] forVDS = gdata[['dec', 'inc', 'int']].values gXYZ = pd.DataFrame(pmag.dir2cart(forVDS)) gXYZ.columns = ['X', 'Y', 'Z'] amax = np.maximum(gXYZ.X.max(), gXYZ.Z.max()) amin = np.minimum(gXYZ.X.min(), gXYZ.Z.min()) if amin > 0: amin = 0 bXYZ = pmag.dir2cart(bdata[['dec', 'inc', 'int']].values).transpose() if angle != 0: tempstr = '\n Declination rotated by: ' + str(angle) + '\n' if globals != 0: globals.text.insert(globals.END, tempstr) globals.Zlist = gXYZ['x'].tolist() globals.Zlisty = gXYZ['y'].tolist() globals.Zlistz = gXYZ['z'].tolist() if len(bXYZ) > 0: plt.scatter(bXYZ[0], bXYZ[1], marker='d', c='y', s=30) plt.scatter(bXYZ[0], bXYZ[2], marker='d', c='y', s=30) plt.plot(gXYZ['X'], gXYZ['Y'], 'ro') plt.plot(gXYZ['X'], gXYZ['Z'], 'ws', markeredgecolor='blue') plt.plot(gXYZ['X'], gXYZ['Y'], 'r-') plt.plot(gXYZ['X'], gXYZ['Z'], 'b-') for k in range(len(gXYZ)): plt.annotate(str(k), (gXYZ['X'][k], gXYZ['Z'][k]), ha='left', va= 'bottom') if amin > 0 and amax > 0: amin = 0 if amin < 0 and amax < 0: amax = 0 xline = [amin, amax] yline = [amax, amin] zline = [0, 0] plt.plot(xline, zline, 'k-') plt.plot(zline, xline, 'k-') if angle != 0: xlab = 'X: rotated to Dec = ' + '%7.1f' % angle if angle == 0: xlab = 'X: rotated to Dec = ' + '%7.1f' % angle plt.xlabel(xlab) plt.ylabel('Circles: Y; Squares: Z') tstring = s + ': NRM = ' + '%9.2e' % datablock[0][3] plt.axis([amin, amax, amax, amin]) plt.axis('equal') plt.title(tstring)
plot_zij
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fignum, datablock, angle, s, norm=True):\n global globals\n plt.figure(num=fignum)\n plt.clf()\n if not isServer:\n plt.figtext(0.02, 0.01, version_num)\n amin, amax = 0.0, -100.0\n if norm == 0:\n fact = 1.0\n else:\n fact = 1.0 / datablock[0][3]\n data = pd.DataFrame(datablock)\n if len(data.columns) == 5:\n data.columns = ['treat', 'dec', 'inc', 'int', 'quality']\n if len(data.columns) == 6:\n data.columns = ['treat', 'dec', 'inc', 'int', 'type', 'quality']\n elif len(data.columns) == 7:\n data.columns = ['treat', 'dec', 'inc', 'int', 'type', 'quality', 'y']\n data['int'] = data['int'] * fact\n data['dec'] = (data['dec'] - angle) % 360\n gdata = data[data['quality'].str.contains('g')]\n bdata = data[data['quality'].str.contains('b')]\n forVDS = gdata[['dec', 'inc', 'int']].values\n gXYZ = pd.DataFrame(pmag.dir2cart(forVDS))\n gXYZ.columns = ['X', 'Y', 'Z']\n amax = np.maximum(gXYZ.X.max(), gXYZ.Z.max())\n amin = np.minimum(gXYZ.X.min(), gXYZ.Z.min())\n if amin > 0:\n amin = 0\n bXYZ = pmag.dir2cart(bdata[['dec', 'inc', 'int']].values).transpose()\n if angle != 0:\n tempstr = '\\n Declination rotated by: ' + str(angle) + '\\n'\n if globals != 0:\n globals.text.insert(globals.END, tempstr)\n globals.Zlist = gXYZ['x'].tolist()\n globals.Zlisty = gXYZ['y'].tolist()\n globals.Zlistz = gXYZ['z'].tolist()\n if len(bXYZ) > 0:\n plt.scatter(bXYZ[0], bXYZ[1], marker='d', c='y', s=30)\n plt.scatter(bXYZ[0], bXYZ[2], marker='d', c='y', s=30)\n plt.plot(gXYZ['X'], gXYZ['Y'], 'ro')\n plt.plot(gXYZ['X'], gXYZ['Z'], 'ws', markeredgecolor='blue')\n plt.plot(gXYZ['X'], gXYZ['Y'], 'r-')\n plt.plot(gXYZ['X'], gXYZ['Z'], 'b-')\n for k in range(len(gXYZ)):\n plt.annotate(str(k), (gXYZ['X'][k], gXYZ['Z'][k]), ha='left', va=\n 'bottom')\n if amin > 0 and amax > 0:\n amin = 0\n if amin < 0 and amax < 0:\n amax = 0\n xline = [amin, amax]\n yline = [amax, amin]\n zline = [0, 0]\n plt.plot(xline, zline, 'k-')\n plt.plot(zline, xline, 'k-')\n if angle != 0:\n xlab = 'X: rotated to Dec = ' + '%7.1f' % angle\n if angle == 0:\n xlab = 'X: rotated to Dec = ' + '%7.1f' % angle\n plt.xlabel(xlab)\n plt.ylabel('Circles: Y; Squares: Z')\n tstring = s + ': NRM = ' + '%9.2e' % datablock[0][3]\n plt.axis([amin, amax, amax, amin])\n plt.axis('equal')\n plt.title(tstring)\n", "role": "user" }, { "content": "plot_zij", "role": "assistant" } ]