source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(ls, side): minx, miny, maxx, maxy = ls.bounds points = {'left': [(minx, miny), (minx, maxy)], 'right': [(maxx, miny), (maxx, maxy)], 'bottom': [(minx, miny), (maxx, miny)], 'top': [( minx, maxy), (maxx, maxy)]} return sgeom.LineString(points[side])
find_side
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ls, side):\n minx, miny, maxx, maxy = ls.bounds\n points = {'left': [(minx, miny), (minx, maxy)], 'right': [(maxx, miny),\n (maxx, maxy)], 'bottom': [(minx, miny), (maxx, miny)], 'top': [(\n minx, maxy), (maxx, maxy)]}\n return sgeom.LineString(points[side])\n", "role": "user" }, { "content": "find_side", "role": "assistant" } ]
def x(ax, ticks): te = lambda xy: xy[0] lc = lambda t, n, b: np.vstack((np.zeros(n) + t, np.linspace(b[2], b[3], n))).T xticks, xticklabels = _lambert_ticks(ax, ticks, 'bottom', lc, te) ax.xaxis.tick_bottom() ax.set_xticks(xticks) ax.set_xticklabels([ax.xaxis.get_major_formatter()(xtick) for xtick in xticklabels])
lambert_xticks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ax, ticks):\n te = lambda xy: xy[0]\n lc = lambda t, n, b: np.vstack((np.zeros(n) + t, np.linspace(b[2], b[3],\n n))).T\n xticks, xticklabels = _lambert_ticks(ax, ticks, 'bottom', lc, te)\n ax.xaxis.tick_bottom()\n ax.set_xticks(xticks)\n ax.set_xticklabels([ax.xaxis.get_major_formatter()(xtick) for xtick in\n xticklabels])\n", "role": "user" }, { "content": "lambert_xticks", "role": "assistant" } ]
def x(ax, ticks): te = lambda xy: xy[1] lc = lambda t, n, b: np.vstack((np.linspace(b[0], b[1], n), np.zeros(n) + t)).T yticks, yticklabels = _lambert_ticks(ax, ticks, 'left', lc, te) ax.yaxis.tick_left() ax.set_yticks(yticks) ax.set_yticklabels([ax.yaxis.get_major_formatter()(ytick) for ytick in yticklabels])
lambert_yticks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ax, ticks):\n te = lambda xy: xy[1]\n lc = lambda t, n, b: np.vstack((np.linspace(b[0], b[1], n), np.zeros(n) +\n t)).T\n yticks, yticklabels = _lambert_ticks(ax, ticks, 'left', lc, te)\n ax.yaxis.tick_left()\n ax.set_yticks(yticks)\n ax.set_yticklabels([ax.yaxis.get_major_formatter()(ytick) for ytick in\n yticklabels])\n", "role": "user" }, { "content": "lambert_yticks", "role": "assistant" } ]
def x(ax, ticks, tick_location, line_constructor, tick_extractor): outline_patch = sgeom.LineString(ax.outline_patch.get_path().vertices. tolist()) axis = find_side(outline_patch, tick_location) n_steps = 30 extent = ax.get_extent(ccrs.PlateCarree()) _ticks = [] for t in ticks: xy = line_constructor(t, n_steps, extent) proj_xyz = ax.projection.transform_points(ccrs.Geodetic(), xy[:, 0], xy[:, 1]) xyt = proj_xyz[..., :2] ls = sgeom.LineString(xyt.tolist()) locs = axis.intersection(ls) if not locs: tick = [None] else: tick = tick_extractor(locs.xy) _ticks.append(tick[0]) ticklabels = copy(ticks) while True: try: index = _ticks.index(None) except ValueError: break _ticks.pop(index) ticklabels.pop(index) return _ticks, ticklabels
lambert_ticks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ax, ticks, tick_location, line_constructor, tick_extractor):\n outline_patch = sgeom.LineString(ax.outline_patch.get_path().vertices.\n tolist())\n axis = find_side(outline_patch, tick_location)\n n_steps = 30\n extent = ax.get_extent(ccrs.PlateCarree())\n _ticks = []\n for t in ticks:\n xy = line_constructor(t, n_steps, extent)\n proj_xyz = ax.projection.transform_points(ccrs.Geodetic(), xy[:, 0],\n xy[:, 1])\n xyt = proj_xyz[..., :2]\n ls = sgeom.LineString(xyt.tolist())\n locs = axis.intersection(ls)\n if not locs:\n tick = [None]\n else:\n tick = tick_extractor(locs.xy)\n _ticks.append(tick[0])\n ticklabels = copy(ticks)\n while True:\n try:\n index = _ticks.index(None)\n except ValueError:\n break\n _ticks.pop(index)\n ticklabels.pop(index)\n return _ticks, ticklabels\n", "role": "user" }, { "content": "lambert_ticks", "role": "assistant" } ]
def x(in_file='measurements.txt', dir_path='.', input_dir_path='', spec_file='specimens.txt', samp_file='samples.txt', site_file= 'sites.txt', loc_file='locations.txt', plot_by='loc', LT='AF', norm= True, XLP='', save_plots=True, fmt='svg'): dir_path = os.path.realpath(dir_path) if not input_dir_path: input_dir_path = dir_path input_dir_path = os.path.realpath(input_dir_path) name_dict = {'loc': 'location', 'sit': 'site', 'sam': 'sample', 'spc': 'specimen'} if plot_by not in name_dict.values(): try: plot_key = name_dict[plot_by] except KeyError: print('Unrecognized plot_by {}, falling back to plot by location' .format(plot_by)) plot_key = 'loc' else: plot_key = plot_by LT = 'LT-' + LT + '-Z' print('LT', LT) if LT == 'LT-T-Z': units, dmag_key = 'K', 'treat_temp' elif LT == 'LT-AF-Z': units, dmag_key = 'T', 'treat_ac_field' elif LT == 'LT-M-Z': units, dmag_key = 'J', 'treat_mw_energy' else: units = 'U' FIG = {} FIG['demag'] = 1 fnames = {'specimens': spec_file, 'samples': samp_file, 'sites': site_file, 'locations': loc_file} if not os.path.exists(pmag.resolve_file_name(in_file, input_dir_path)): print('-E- Could not find {}'.format(in_file)) return False, [] contribution = cb.Contribution(input_dir_path, single_file=in_file, custom_filenames=fnames) file_type = list(contribution.tables.keys())[0] print(len(contribution.tables['measurements'].df), ' records read from ', in_file) if plot_key not in contribution.tables['measurements'].df.columns: contribution.propagate_location_to_measurements() data_container = contribution.tables[file_type] data_slice = data_container.get_records_for_code(LT) data = data_container.get_records_for_code(XLP, incl=False, use_slice= True, sli=data_slice, strict_match=False) if 'quality' not in data.columns: data['quality'] = 'g' intlist = ['magn_moment', 'magn_volume', 'magn_mass'] IntMeths = [col_name for col_name in data.columns if col_name in intlist] for col_name in IntMeths: if not data[col_name].any(): data.drop(col_name, axis=1, inplace=True) IntMeths = [col_name for col_name in data.columns if col_name in intlist] if len(IntMeths) == 0: print('-E- No intensity headers found') return False, [] int_key = IntMeths[0] data = data[data[int_key].notnull()] plotlist = data[plot_key].unique() plotlist.sort() pmagplotlib.plot_init(FIG['demag'], 5, 5) last_plot = False for plot in plotlist: if plot == plotlist[-1]: last_plot = True plot_data = data[data[plot_key] == plot].copy() if not save_plots: print(plot, 'plotting by: ', plot_key) if len(plot_data) > 2: title = plot spcs = [] spcs = plot_data['specimen'].unique() for spc in spcs: INTblock = [] spec_data = plot_data[plot_data['specimen'] == spc] for ind, rec in spec_data.iterrows(): INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[ int_key]), 1, rec['quality']]) if len(INTblock) > 2: pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0, units, norm) if save_plots: files = {} for key in list(FIG.keys()): if pmagplotlib.isServer: files[key] = title + '_' + LT + '.' + fmt incl_dir = False else: files[key] = os.path.join(dir_path, title + '_' + LT + '.' + fmt) incl_dir = True pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir) else: pmagplotlib.draw_figs(FIG) prompt = ' S[a]ve to save plot, [q]uit, Return to continue: ' ans = input(prompt) if ans == 'q': return True, [] if ans == 'a': files = {} for key in list(FIG.keys()): if pmagplotlib.isServer: files[key] = title + '_' + LT + '.' + fmt incl_dir = False else: files[key] = os.path.join(dir_path, title + '_' + LT + '.' + fmt) incl_dir = True pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir) pmagplotlib.clearFIG(FIG['demag']) if last_plot: return True, []
dmag_magic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_file='measurements.txt', dir_path='.', input_dir_path='',\n spec_file='specimens.txt', samp_file='samples.txt', site_file=\n 'sites.txt', loc_file='locations.txt', plot_by='loc', LT='AF', norm=\n True, XLP='', save_plots=True, fmt='svg'):\n dir_path = os.path.realpath(dir_path)\n if not input_dir_path:\n input_dir_path = dir_path\n input_dir_path = os.path.realpath(input_dir_path)\n name_dict = {'loc': 'location', 'sit': 'site', 'sam': 'sample', 'spc':\n 'specimen'}\n if plot_by not in name_dict.values():\n try:\n plot_key = name_dict[plot_by]\n except KeyError:\n print('Unrecognized plot_by {}, falling back to plot by location'\n .format(plot_by))\n plot_key = 'loc'\n else:\n plot_key = plot_by\n LT = 'LT-' + LT + '-Z'\n print('LT', LT)\n if LT == 'LT-T-Z':\n units, dmag_key = 'K', 'treat_temp'\n elif LT == 'LT-AF-Z':\n units, dmag_key = 'T', 'treat_ac_field'\n elif LT == 'LT-M-Z':\n units, dmag_key = 'J', 'treat_mw_energy'\n else:\n units = 'U'\n FIG = {}\n FIG['demag'] = 1\n fnames = {'specimens': spec_file, 'samples': samp_file, 'sites':\n site_file, 'locations': loc_file}\n if not os.path.exists(pmag.resolve_file_name(in_file, input_dir_path)):\n print('-E- Could not find {}'.format(in_file))\n return False, []\n contribution = cb.Contribution(input_dir_path, single_file=in_file,\n custom_filenames=fnames)\n file_type = list(contribution.tables.keys())[0]\n print(len(contribution.tables['measurements'].df),\n ' records read from ', in_file)\n if plot_key not in contribution.tables['measurements'].df.columns:\n contribution.propagate_location_to_measurements()\n data_container = contribution.tables[file_type]\n data_slice = data_container.get_records_for_code(LT)\n data = data_container.get_records_for_code(XLP, incl=False, use_slice=\n True, sli=data_slice, strict_match=False)\n if 'quality' not in data.columns:\n data['quality'] = 'g'\n intlist = ['magn_moment', 'magn_volume', 'magn_mass']\n IntMeths = [col_name for col_name in data.columns if col_name in intlist]\n for col_name in IntMeths:\n if not data[col_name].any():\n data.drop(col_name, axis=1, inplace=True)\n IntMeths = [col_name for col_name in data.columns if col_name in intlist]\n if len(IntMeths) == 0:\n print('-E- No intensity headers found')\n return False, []\n int_key = IntMeths[0]\n data = data[data[int_key].notnull()]\n plotlist = data[plot_key].unique()\n plotlist.sort()\n pmagplotlib.plot_init(FIG['demag'], 5, 5)\n last_plot = False\n for plot in plotlist:\n if plot == plotlist[-1]:\n last_plot = True\n plot_data = data[data[plot_key] == plot].copy()\n if not save_plots:\n print(plot, 'plotting by: ', plot_key)\n if len(plot_data) > 2:\n title = plot\n spcs = []\n spcs = plot_data['specimen'].unique()\n for spc in spcs:\n INTblock = []\n spec_data = plot_data[plot_data['specimen'] == spc]\n for ind, rec in spec_data.iterrows():\n INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[\n int_key]), 1, rec['quality']])\n if len(INTblock) > 2:\n pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0,\n units, norm)\n if save_plots:\n files = {}\n for key in list(FIG.keys()):\n if pmagplotlib.isServer:\n files[key] = title + '_' + LT + '.' + fmt\n incl_dir = False\n else:\n files[key] = os.path.join(dir_path, title + '_' +\n LT + '.' + fmt)\n incl_dir = True\n pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir)\n else:\n pmagplotlib.draw_figs(FIG)\n prompt = ' S[a]ve to save plot, [q]uit, Return to continue: '\n ans = input(prompt)\n if ans == 'q':\n return True, []\n if ans == 'a':\n files = {}\n for key in list(FIG.keys()):\n if pmagplotlib.isServer:\n files[key] = title + '_' + LT + '.' + fmt\n incl_dir = False\n else:\n files[key] = os.path.join(dir_path, title + '_' +\n LT + '.' + fmt)\n incl_dir = True\n pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir)\n pmagplotlib.clearFIG(FIG['demag'])\n if last_plot:\n return True, []\n", "role": "user" }, { "content": "dmag_magic", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() dir_path = pmag.get_named_arg('-WD', default_val='.') input_dir_path = pmag.get_named_arg('-ID', '') if not input_dir_path: input_dir_path = dir_path in_file = pmag.get_named_arg('-f', default_val='measurements.txt') in_file = pmag.resolve_file_name(in_file, input_dir_path) if '-ID' not in sys.argv: input_dir_path = os.path.split(in_file)[0] plot_by = pmag.get_named_arg('-obj', default_val='loc') LT = pmag.get_named_arg('-LT', 'AF') no_norm = pmag.get_flag_arg_from_sys('-N') norm = False if no_norm else True save_plots = pmag.get_flag_arg_from_sys('-sav') fmt = pmag.get_named_arg('-fmt', 'svg') XLP = pmag.get_named_arg('-XLP', '') spec_file = pmag.get_named_arg('-fsp', default_val='specimens.txt') samp_file = pmag.get_named_arg('-fsa', default_val='samples.txt') site_file = pmag.get_named_arg('-fsi', default_val='sites.txt') loc_file = pmag.get_named_arg('-flo', default_val='locations.txt') dmag_magic(in_file, dir_path, input_dir_path, spec_file, samp_file, site_file, loc_file, plot_by, LT, norm, XLP, save_plots, fmt)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n dir_path = pmag.get_named_arg('-WD', default_val='.')\n input_dir_path = pmag.get_named_arg('-ID', '')\n if not input_dir_path:\n input_dir_path = dir_path\n in_file = pmag.get_named_arg('-f', default_val='measurements.txt')\n in_file = pmag.resolve_file_name(in_file, input_dir_path)\n if '-ID' not in sys.argv:\n input_dir_path = os.path.split(in_file)[0]\n plot_by = pmag.get_named_arg('-obj', default_val='loc')\n LT = pmag.get_named_arg('-LT', 'AF')\n no_norm = pmag.get_flag_arg_from_sys('-N')\n norm = False if no_norm else True\n save_plots = pmag.get_flag_arg_from_sys('-sav')\n fmt = pmag.get_named_arg('-fmt', 'svg')\n XLP = pmag.get_named_arg('-XLP', '')\n spec_file = pmag.get_named_arg('-fsp', default_val='specimens.txt')\n samp_file = pmag.get_named_arg('-fsa', default_val='samples.txt')\n site_file = pmag.get_named_arg('-fsi', default_val='sites.txt')\n loc_file = pmag.get_named_arg('-flo', default_val='locations.txt')\n dmag_magic(in_file, dir_path, input_dir_path, spec_file, samp_file,\n site_file, loc_file, plot_by, LT, norm, XLP, save_plots, fmt)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): Flip = 0 show, plot = 1, 0 fmt = 'svg' file2 = '' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-ant' in sys.argv: Flip = 1 if '-sav' in sys.argv: show, plot = 0, 1 if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if '-P' in sys.argv: show = 0 if '-f' in sys.argv: ind = sys.argv.index('-f') file1 = sys.argv[ind + 1] data = numpy.loadtxt(file1).transpose() D1 = numpy.array([data[0], data[1]]).transpose() file1_name = os.path.split(file1)[1].split('.')[0] else: print('-f is required') print(main.__doc__) sys.exit() if '-f2' in sys.argv: ind = sys.argv.index('-f2') file2 = sys.argv[ind + 1] data2 = numpy.loadtxt(file2).transpose() D2 = numpy.array([data2[0], data2[1]]).transpose() file2_name = os.path.split(file2)[1].split('.')[0] if Flip == 1: D2, D = pmag.flip(D2) if len(D2) != 0: if len(D) != 0: D2 = numpy.concatenate(D, D2) elif len(D) != 0: D2 = D else: print('length of second file is zero') sys.exit() elif Flip == 1: D2, D1 = pmag.flip(D1) counter, NumSims = 0, 5000 pars_1 = pmag.fisher_mean(D1) pars_2 = pmag.fisher_mean(D2) V = pmag.vfunc(pars_1, pars_2) Vp = [] if show == 1: print('Doing ', NumSims, ' simulations') for k in range(NumSims): counter += 1 if counter == 50: if show == 1: print(k + 1) counter = 0 Dirp = [] for i in range(pars_1['n']): Dirp.append(pmag.fshdev(pars_1['k'])) pars_p1 = pmag.fisher_mean(Dirp) Dirp = [] for i in range(pars_2['n']): Dirp.append(pmag.fshdev(pars_2['k'])) pars_p2 = pmag.fisher_mean(Dirp) Vk = pmag.vfunc(pars_p1, pars_p2) Vp.append(Vk) Vp.sort() k = int(0.95 * NumSims) if show == 1: print("Watson's V, Vcrit: ") print(' %10.1f %10.1f' % (V, Vp[k])) if show == 1 or plot == 1: print("Watson's V, Vcrit: ") print(' %10.1f %10.1f' % (V, Vp[k])) CDF = {'cdf': 1} pmagplotlib.plot_init(CDF['cdf'], 5, 5) pmagplotlib.plot_cdf(CDF['cdf'], Vp, "Watson's V", 'r', '') pmagplotlib.plot_vs(CDF['cdf'], [V], 'g', '-') pmagplotlib.plot_vs(CDF['cdf'], [Vp[k]], 'b', '--') if plot == 0: pmagplotlib.draw_figs(CDF) files = {} if pmagplotlib.isServer: if file2 != '': files['cdf'] = 'watsons_v_' + file1 + '_' + file2 + '.' + fmt else: files['cdf'] = 'watsons_v_' + file1 + '.' + fmt elif file2 != '': files['cdf' ] = 'watsons_v_' + file1_name + '_' + file2_name + '.' + fmt else: files['cdf'] = 'watsons_v_' + file1_name + '.' + fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['cdf'] = 'Cumulative Distribution' CDF = pmagplotlib.add_borders(CDF, titles, black, purple) pmagplotlib.save_plots(CDF, files) elif plot == 0: ans = input(' S[a]ve to save plot, [q]uit without saving: ') if ans == 'a': pmagplotlib.save_plots(CDF, files) if plot == 1: pmagplotlib.save_plots(CDF, files)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n Flip = 0\n show, plot = 1, 0\n fmt = 'svg'\n file2 = ''\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-ant' in sys.argv:\n Flip = 1\n if '-sav' in sys.argv:\n show, plot = 0, 1\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if '-P' in sys.argv:\n show = 0\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file1 = sys.argv[ind + 1]\n data = numpy.loadtxt(file1).transpose()\n D1 = numpy.array([data[0], data[1]]).transpose()\n file1_name = os.path.split(file1)[1].split('.')[0]\n else:\n print('-f is required')\n print(main.__doc__)\n sys.exit()\n if '-f2' in sys.argv:\n ind = sys.argv.index('-f2')\n file2 = sys.argv[ind + 1]\n data2 = numpy.loadtxt(file2).transpose()\n D2 = numpy.array([data2[0], data2[1]]).transpose()\n file2_name = os.path.split(file2)[1].split('.')[0]\n if Flip == 1:\n D2, D = pmag.flip(D2)\n if len(D2) != 0:\n if len(D) != 0:\n D2 = numpy.concatenate(D, D2)\n elif len(D) != 0:\n D2 = D\n else:\n print('length of second file is zero')\n sys.exit()\n elif Flip == 1:\n D2, D1 = pmag.flip(D1)\n counter, NumSims = 0, 5000\n pars_1 = pmag.fisher_mean(D1)\n pars_2 = pmag.fisher_mean(D2)\n V = pmag.vfunc(pars_1, pars_2)\n Vp = []\n if show == 1:\n print('Doing ', NumSims, ' simulations')\n for k in range(NumSims):\n counter += 1\n if counter == 50:\n if show == 1:\n print(k + 1)\n counter = 0\n Dirp = []\n for i in range(pars_1['n']):\n Dirp.append(pmag.fshdev(pars_1['k']))\n pars_p1 = pmag.fisher_mean(Dirp)\n Dirp = []\n for i in range(pars_2['n']):\n Dirp.append(pmag.fshdev(pars_2['k']))\n pars_p2 = pmag.fisher_mean(Dirp)\n Vk = pmag.vfunc(pars_p1, pars_p2)\n Vp.append(Vk)\n Vp.sort()\n k = int(0.95 * NumSims)\n if show == 1:\n print(\"Watson's V, Vcrit: \")\n print(' %10.1f %10.1f' % (V, Vp[k]))\n if show == 1 or plot == 1:\n print(\"Watson's V, Vcrit: \")\n print(' %10.1f %10.1f' % (V, Vp[k]))\n CDF = {'cdf': 1}\n pmagplotlib.plot_init(CDF['cdf'], 5, 5)\n pmagplotlib.plot_cdf(CDF['cdf'], Vp, \"Watson's V\", 'r', '')\n pmagplotlib.plot_vs(CDF['cdf'], [V], 'g', '-')\n pmagplotlib.plot_vs(CDF['cdf'], [Vp[k]], 'b', '--')\n if plot == 0:\n pmagplotlib.draw_figs(CDF)\n files = {}\n if pmagplotlib.isServer:\n if file2 != '':\n files['cdf'] = 'watsons_v_' + file1 + '_' + file2 + '.' + fmt\n else:\n files['cdf'] = 'watsons_v_' + file1 + '.' + fmt\n elif file2 != '':\n files['cdf'\n ] = 'watsons_v_' + file1_name + '_' + file2_name + '.' + fmt\n else:\n files['cdf'] = 'watsons_v_' + file1_name + '.' + fmt\n if pmagplotlib.isServer:\n black = '#000000'\n purple = '#800080'\n titles = {}\n titles['cdf'] = 'Cumulative Distribution'\n CDF = pmagplotlib.add_borders(CDF, titles, black, purple)\n pmagplotlib.save_plots(CDF, files)\n elif plot == 0:\n ans = input(' S[a]ve to save plot, [q]uit without saving: ')\n if ans == 'a':\n pmagplotlib.save_plots(CDF, files)\n if plot == 1:\n pmagplotlib.save_plots(CDF, files)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): norm = 0 if '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] data = np.loadtxt(file) dates = [2000] elif '-d' in sys.argv: ind = sys.argv.index('-d') dates = [float(sys.argv[ind + 1])] elif '-r' in sys.argv: ind = sys.argv.index('-r') dates = np.loadtxt(sys.argv[ind + 1]) if '-n' in sys.argv: norm = 1 if len(sys.argv) != 0 and '-h' in sys.argv: print(main.__doc__) sys.exit() plt.semilogy() plt.xlabel('Degree (l)') plt.ylabel('Power ($\\mu$T$^2$)') labels = [] for date in dates: if date != 2000: gh = pmag.doigrf(0, 0, 0, date, coeffs=1) data = pmag.unpack(gh) Ls, Rs = pmag.lowes(data) labels.append(str(date)) print(date, Rs[0]) if norm == 1: Rs = old_div(np.array(Rs), Rs[0]) plt.plot(Ls, Rs, linewidth=2) plt.legend(labels, 'upper right') plt.draw() input()
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n norm = 0\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n data = np.loadtxt(file)\n dates = [2000]\n elif '-d' in sys.argv:\n ind = sys.argv.index('-d')\n dates = [float(sys.argv[ind + 1])]\n elif '-r' in sys.argv:\n ind = sys.argv.index('-r')\n dates = np.loadtxt(sys.argv[ind + 1])\n if '-n' in sys.argv:\n norm = 1\n if len(sys.argv) != 0 and '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n plt.semilogy()\n plt.xlabel('Degree (l)')\n plt.ylabel('Power ($\\\\mu$T$^2$)')\n labels = []\n for date in dates:\n if date != 2000:\n gh = pmag.doigrf(0, 0, 0, date, coeffs=1)\n data = pmag.unpack(gh)\n Ls, Rs = pmag.lowes(data)\n labels.append(str(date))\n print(date, Rs[0])\n if norm == 1:\n Rs = old_div(np.array(Rs), Rs[0])\n plt.plot(Ls, Rs, linewidth=2)\n plt.legend(labels, 'upper right')\n plt.draw()\n input()\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): import numpy X = arange(0.1, 10.1, 0.2) Y = myfunc(X) for i in range(len(X)): print(X[i], Y[i])
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n import numpy\n X = arange(0.1, 10.1, 0.2)\n Y = myfunc(X)\n for i in range(len(X)):\n print(X[i], Y[i])\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): d, i, file2 = '', '', '' fmt, plot = 'svg', 0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-sav' in sys.argv: plot = 1 if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] if '-f' in sys.argv: ind = sys.argv.index('-f') file1 = sys.argv[ind + 1] if '-f2' in sys.argv: ind = sys.argv.index('-f2') file2 = sys.argv[ind + 1] if '-dir' in sys.argv: ind = sys.argv.index('-dir') d = float(sys.argv[ind + 1]) i = float(sys.argv[ind + 2]) D1 = numpy.loadtxt(file1, dtype=numpy.float) if file2 != '': D2 = numpy.loadtxt(file2, dtype=numpy.float) counter, NumSims = 0, 1000 print('Doing first set of directions, please be patient..') BDI1 = pmag.di_boot(D1) if d == '': print('Doing second set of directions, please be patient..') BDI2 = pmag.di_boot(D2) else: BDI2 = [] CDF = {'X': 1, 'Y': 2, 'Z': 3} pmagplotlib.plot_init(CDF['X'], 4, 4) pmagplotlib.plot_init(CDF['Y'], 4, 4) pmagplotlib.plot_init(CDF['Z'], 4, 4) pmagplotlib.plot_com(CDF, BDI1, BDI2, [d, i]) files = {} files['X'] = 'CD_X.' + fmt files['Y'] = 'CD_Y.' + fmt files['Z'] = 'CD_Z.' + fmt if plot == 0: pmagplotlib.draw_figs(CDF) ans = input('S[a]ve plots, <Return> to quit ') if ans == 'a': pmagplotlib.save_plots(CDF, files) else: sys.exit() else: pmagplotlib.save_plots(CDF, files) sys.exit()
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n d, i, file2 = '', '', ''\n fmt, plot = 'svg', 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-sav' in sys.argv:\n plot = 1\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file1 = sys.argv[ind + 1]\n if '-f2' in sys.argv:\n ind = sys.argv.index('-f2')\n file2 = sys.argv[ind + 1]\n if '-dir' in sys.argv:\n ind = sys.argv.index('-dir')\n d = float(sys.argv[ind + 1])\n i = float(sys.argv[ind + 2])\n D1 = numpy.loadtxt(file1, dtype=numpy.float)\n if file2 != '':\n D2 = numpy.loadtxt(file2, dtype=numpy.float)\n counter, NumSims = 0, 1000\n print('Doing first set of directions, please be patient..')\n BDI1 = pmag.di_boot(D1)\n if d == '':\n print('Doing second set of directions, please be patient..')\n BDI2 = pmag.di_boot(D2)\n else:\n BDI2 = []\n CDF = {'X': 1, 'Y': 2, 'Z': 3}\n pmagplotlib.plot_init(CDF['X'], 4, 4)\n pmagplotlib.plot_init(CDF['Y'], 4, 4)\n pmagplotlib.plot_init(CDF['Z'], 4, 4)\n pmagplotlib.plot_com(CDF, BDI1, BDI2, [d, i])\n files = {}\n files['X'] = 'CD_X.' + fmt\n files['Y'] = 'CD_Y.' + fmt\n files['Z'] = 'CD_Z.' + fmt\n if plot == 0:\n pmagplotlib.draw_figs(CDF)\n ans = input('S[a]ve plots, <Return> to quit ')\n if ans == 'a':\n pmagplotlib.save_plots(CDF, files)\n else:\n sys.exit()\n else:\n pmagplotlib.save_plots(CDF, files)\n sys.exit()\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(x=x, y=y): X = numpy.array(list(map(float, x))) X = old_div(X, max(X)) Y = numpy.array(list(map(float, y))) Y = old_div(Y, max(Y)) XY = numpy.array(list(zip(X, Y))) E1 = TaubinSVD(XY) E2 = LMA(XY, E1) estimates = [E2[2], E2[0], E2[1]] best_a = E2[0] best_b = E2[1] best_r = E2[2] if best_a <= numpy.mean(X) and best_b <= numpy.mean(Y): k = old_div(-1.0, best_r) else: k = old_div(1.0, best_r) SSE = get_SSE(best_a, best_b, best_r, X, Y) return k, best_a, best_b, SSE
AraiCurvature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x=x, y=y):\n X = numpy.array(list(map(float, x)))\n X = old_div(X, max(X))\n Y = numpy.array(list(map(float, y)))\n Y = old_div(Y, max(Y))\n XY = numpy.array(list(zip(X, Y)))\n E1 = TaubinSVD(XY)\n E2 = LMA(XY, E1)\n estimates = [E2[2], E2[0], E2[1]]\n best_a = E2[0]\n best_b = E2[1]\n best_r = E2[2]\n if best_a <= numpy.mean(X) and best_b <= numpy.mean(Y):\n k = old_div(-1.0, best_r)\n else:\n k = old_div(1.0, best_r)\n SSE = get_SSE(best_a, best_b, best_r, X, Y)\n return k, best_a, best_b, SSE\n", "role": "user" }, { "content": "AraiCurvature", "role": "assistant" } ]
def x(XY): XY = numpy.array(XY) X = XY[:, 0] - numpy.mean(XY[:, 0]) Y = XY[:, 1] - numpy.mean(XY[:, 1]) centroid = [numpy.mean(XY[:, 0]), numpy.mean(XY[:, 1])] Z = X * X + Y * Y Zmean = numpy.mean(Z) Z0 = old_div(Z - Zmean, 2.0 * numpy.sqrt(Zmean)) ZXY = numpy.array([Z0, X, Y]).T U, S, V = numpy.linalg.svd(ZXY, full_matrices=False) V = V.transpose() A = V[:, 2] A[0] = old_div(A[0], 2.0 * numpy.sqrt(Zmean)) A = numpy.concatenate([A, [-1.0 * Zmean * A[0]]], axis=0) a, b = -1 * A[1:3] / A[0] / 2 + centroid r = numpy.sqrt(A[1] * A[1] + A[2] * A[2] - 4 * A[0] * A[3]) / abs(A[0]) / 2 return a, b, r
TaubinSVD
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(XY):\n XY = numpy.array(XY)\n X = XY[:, 0] - numpy.mean(XY[:, 0])\n Y = XY[:, 1] - numpy.mean(XY[:, 1])\n centroid = [numpy.mean(XY[:, 0]), numpy.mean(XY[:, 1])]\n Z = X * X + Y * Y\n Zmean = numpy.mean(Z)\n Z0 = old_div(Z - Zmean, 2.0 * numpy.sqrt(Zmean))\n ZXY = numpy.array([Z0, X, Y]).T\n U, S, V = numpy.linalg.svd(ZXY, full_matrices=False)\n V = V.transpose()\n A = V[:, 2]\n A[0] = old_div(A[0], 2.0 * numpy.sqrt(Zmean))\n A = numpy.concatenate([A, [-1.0 * Zmean * A[0]]], axis=0)\n a, b = -1 * A[1:3] / A[0] / 2 + centroid\n r = numpy.sqrt(A[1] * A[1] + A[2] * A[2] - 4 * A[0] * A[3]) / abs(A[0]) / 2\n return a, b, r\n", "role": "user" }, { "content": "TaubinSVD", "role": "assistant" } ]
def x(XY, Par): if type(XY) != numpy.ndarray: XY = numpy.array(XY) n = len(XY) if n < 4: raise Warning( 'Circle cannot be calculated with less than 4 data points. Please include more data' ) Dx = XY[:, 0] - Par[0] Dy = XY[:, 1] - Par[1] D = numpy.sqrt(Dx * Dx + Dy * Dy) - Par[2] result = old_div(numpy.dot(D, D), n - 3) return result
VarCircle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(XY, Par):\n if type(XY) != numpy.ndarray:\n XY = numpy.array(XY)\n n = len(XY)\n if n < 4:\n raise Warning(\n 'Circle cannot be calculated with less than 4 data points. Please include more data'\n )\n Dx = XY[:, 0] - Par[0]\n Dy = XY[:, 1] - Par[1]\n D = numpy.sqrt(Dx * Dx + Dy * Dy) - Par[2]\n result = old_div(numpy.dot(D, D), n - 3)\n return result\n", "role": "user" }, { "content": "VarCircle", "role": "assistant" } ]
def x(a, b, r, x, y): SSE = 0 X = numpy.array(x) Y = numpy.array(y) for i in range(len(X)): x = X[i] y = Y[i] v = (numpy.sqrt((x - a) ** 2 + (y - b) ** 2) - r) ** 2 SSE += v return SSE
get_SSE
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, r, x, y):\n SSE = 0\n X = numpy.array(x)\n Y = numpy.array(y)\n for i in range(len(X)):\n x = X[i]\n y = Y[i]\n v = (numpy.sqrt((x - a) ** 2 + (y - b) ** 2) - r) ** 2\n SSE += v\n return SSE\n", "role": "user" }, { "content": "get_SSE", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] f = open(file, 'r') data = f.readlines() for line in data: dec = spitout(line) sys.exit() if '-i' in sys.argv: while 1: sundata = {} print( 'Time difference between Greenwich Mean Time (hrs to subtract from local time to get GMT): ' ) try: sundata['delta_u'] = input('<cntl-D> to quit ') except: print('\n Good-bye\n') sys.exit() date = '' date = date + input('Year: <cntl-D to quit> ') date = date + ':' + input('Month: ') date = date + ':' + input('Day: ') date = date + ':' + input('hour: ') date = date + ':' + input('minute: ') sundata['date'] = date sundata['lat'] = input( 'Latitude of sampling site (negative in southern hemisphere): ' ) sundata['lon'] = input( 'Longitude of sampling site (negative for western hemisphere): ' ) sundata['shadow_angle'] = input('Shadow angle: ') print('%7.1f' % pmag.dosundec(sundata)) else: data = sys.stdin.readlines() for line in data: dec = spitout(line)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n for line in data:\n dec = spitout(line)\n sys.exit()\n if '-i' in sys.argv:\n while 1:\n sundata = {}\n print(\n 'Time difference between Greenwich Mean Time (hrs to subtract from local time to get GMT): '\n )\n try:\n sundata['delta_u'] = input('<cntl-D> to quit ')\n except:\n print('\\n Good-bye\\n')\n sys.exit()\n date = ''\n date = date + input('Year: <cntl-D to quit> ')\n date = date + ':' + input('Month: ')\n date = date + ':' + input('Day: ')\n date = date + ':' + input('hour: ')\n date = date + ':' + input('minute: ')\n sundata['date'] = date\n sundata['lat'] = input(\n 'Latitude of sampling site (negative in southern hemisphere): '\n )\n sundata['lon'] = input(\n 'Longitude of sampling site (negative for western hemisphere): '\n )\n sundata['shadow_angle'] = input('Shadow angle: ')\n print('%7.1f' % pmag.dosundec(sundata))\n else:\n data = sys.stdin.readlines()\n for line in data:\n dec = spitout(line)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): site_file = 'er_sites.txt' loc_file = 'er_locations.txt' Names, user = [], 'unknown' Done = [] version_num = pmag.get_version() args = sys.argv dir_path = '.' if '-WD' in args: ind = args.index('-WD') dir_path = args[ind + 1] if '-h' in args: print(main.__doc__) sys.exit() if '-f' in args: ind = args.index('-f') site_file = args[ind + 1] if '-F' in args: ind = args.index('-F') loc_file = args[ind + 1] site_file = dir_path + '/' + site_file loc_file = dir_path + '/' + loc_file Sites, file_type = pmag.magic_read(site_file) if file_type != 'er_sites': print(file_type) print(file_type, 'This is not a valid er_sites file ') sys.exit() LocNames, Locations = [], [] for site in Sites: if site['er_location_name'] not in LocNames: LocNames.append(site['er_location_name']) sites_locs = pmag.get_dictitem(Sites, 'er_location_name', site[ 'er_location_name'], 'T') lats = pmag.get_dictkey(sites_locs, 'site_lat', 'f') lons = pmag.get_dictkey(sites_locs, 'site_lon', 'f') LocRec = {'er_citation_names': 'This study', 'er_location_name': site['er_location_name'], 'location_type': ''} LocRec['location_begin_lat'] = str(min(lats)) LocRec['location_end_lat'] = str(max(lats)) LocRec['location_begin_lon'] = str(min(lons)) LocRec['location_end_lon'] = str(max(lons)) Locations.append(LocRec) if len(Locations) > 0: pmag.magic_write(loc_file, Locations, 'er_locations') print('Locations written to: ', loc_file)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n site_file = 'er_sites.txt'\n loc_file = 'er_locations.txt'\n Names, user = [], 'unknown'\n Done = []\n version_num = pmag.get_version()\n args = sys.argv\n dir_path = '.'\n if '-WD' in args:\n ind = args.index('-WD')\n dir_path = args[ind + 1]\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n if '-f' in args:\n ind = args.index('-f')\n site_file = args[ind + 1]\n if '-F' in args:\n ind = args.index('-F')\n loc_file = args[ind + 1]\n site_file = dir_path + '/' + site_file\n loc_file = dir_path + '/' + loc_file\n Sites, file_type = pmag.magic_read(site_file)\n if file_type != 'er_sites':\n print(file_type)\n print(file_type, 'This is not a valid er_sites file ')\n sys.exit()\n LocNames, Locations = [], []\n for site in Sites:\n if site['er_location_name'] not in LocNames:\n LocNames.append(site['er_location_name'])\n sites_locs = pmag.get_dictitem(Sites, 'er_location_name', site[\n 'er_location_name'], 'T')\n lats = pmag.get_dictkey(sites_locs, 'site_lat', 'f')\n lons = pmag.get_dictkey(sites_locs, 'site_lon', 'f')\n LocRec = {'er_citation_names': 'This study', 'er_location_name':\n site['er_location_name'], 'location_type': ''}\n LocRec['location_begin_lat'] = str(min(lats))\n LocRec['location_end_lat'] = str(max(lats))\n LocRec['location_begin_lon'] = str(min(lons))\n LocRec['location_end_lon'] = str(max(lons))\n Locations.append(LocRec)\n if len(Locations) > 0:\n pmag.magic_write(loc_file, Locations, 'er_locations')\n print('Locations written to: ', loc_file)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(self, mtype, method_list): cond = method_list['dtype'] == mtype codes = method_list[cond] return codes
get_one_meth_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mtype, method_list):\n cond = method_list['dtype'] == mtype\n codes = method_list[cond]\n return codes\n", "role": "user" }, { "content": "get_one_meth_type", "role": "assistant" } ]
def x(self, category, all_codes, code_types): categories = Series(code_types[code_types[category] == True].index) cond = all_codes['dtype'].isin(categories) codes = all_codes[cond] return codes
get_one_meth_category
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, category, all_codes, code_types):\n categories = Series(code_types[code_types[category] == True].index)\n cond = all_codes['dtype'].isin(categories)\n codes = all_codes[cond]\n return codes\n", "role": "user" }, { "content": "get_one_meth_category", "role": "assistant" } ]
def x(): args = sys.argv if '-h' in args: print(main.__doc__) sys.exit() dataframe = extractor.command_line_dataframe([['f', False, 'orient.txt' ], ['Fsa', False, 'samples.txt'], ['ncn', False, '1'], ['mcd', False, 'FS-FD'], ['loc', False, 'unknown'], ['app', False, False], ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) (orient_file, samp_file, samp_con, method_codes, location_name, append, output_dir, input_dir, data_model) = (extractor.get_vars(['f', 'Fsa', 'ncn', 'mcd', 'loc', 'app', 'WD', 'ID', 'DM'], checked_args)) if len(str(samp_con)) > 1: samp_con, Z = samp_con.split('-') Z = float(Z) else: Z = 1 ipmag.azdip_magic(orient_file, samp_file, samp_con, Z, method_codes, location_name, append, output_dir, input_dir, data_model)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n dataframe = extractor.command_line_dataframe([['f', False, 'orient.txt'\n ], ['Fsa', False, 'samples.txt'], ['ncn', False, '1'], ['mcd', \n False, 'FS-FD'], ['loc', False, 'unknown'], ['app', False, False],\n ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]])\n checked_args = extractor.extract_and_check_args(args, dataframe)\n (orient_file, samp_file, samp_con, method_codes, location_name, append,\n output_dir, input_dir, data_model) = (extractor.get_vars(['f',\n 'Fsa', 'ncn', 'mcd', 'loc', 'app', 'WD', 'ID', 'DM'], checked_args))\n if len(str(samp_con)) > 1:\n samp_con, Z = samp_con.split('-')\n Z = float(Z)\n else:\n Z = 1\n ipmag.azdip_magic(orient_file, samp_file, samp_con, Z, method_codes,\n location_name, append, output_dir, input_dir, data_model)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): dir_path = '.' names, res, proj, locs, padlon, padlat, fancy, gridspace, details = [ ], 'l', 'lcc', '', 0, 0, 0, 15, 1 Age_bounds = [-5000, 2000] Lat_bounds = [20, 45] Lon_bounds = [15, 55] fmt = 'pdf' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') sites_file = sys.argv[ind + 1] if '-res' in sys.argv: ind = sys.argv.index('-res') res = sys.argv[ind + 1] if '-etp' in sys.argv: fancy = 1 if '-o' in sys.argv: ocean = 1 if '-d' in sys.argv: details = 1 if '-prj' in sys.argv: ind = sys.argv.index('-prj') proj = sys.argv[ind + 1] if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] verbose = pmagplotlib.verbose if '-sav' in sys.argv: verbose = 0 if '-pad' in sys.argv: ind = sys.argv.index('-pad') padlat = float(sys.argv[ind + 1]) padlon = float(sys.argv[ind + 2]) if '-grd' in sys.argv: ind = sys.argv.index('-grd') gridspace = float(sys.argv[ind + 1]) if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] sites_file = dir_path + '/' + sites_file geo_in = open(sites_file, 'r').readlines() Age, AgeErr, Vadm, VadmErr, slats, slons = [], [], [], [], [], [] for line in geo_in[2:]: rec = line.split() if float(rec[0]) > Age_bounds[0] and float(rec[0]) < Age_bounds[1 ] and float(rec[12]) > Lat_bounds[0] and float(rec[12] ) < Lat_bounds[1] and float(rec[13]) > Lon_bounds[0] and float(rec [13]) < Lon_bounds[1]: Age.append(float(rec[0])) AgeErr.append(float(rec[1])) Vadm.append(10.0 * float(rec[6])) VadmErr.append(10.0 * float(rec[7])) slats.append(float(rec[12])) slons.append(float(rec[13])) FIGS = {'map': 1, 'vadms': 2} pmagplotlib.plot_init(FIGS['map'], 6, 6) pmagplotlib.plot_init(FIGS['vadms'], 6, 6) Opts = {'res': res, 'proj': proj, 'loc_name': locs, 'padlon': padlon, 'padlat': padlat, 'latmin': numpy.min(slats) - padlat, 'latmax': numpy.max(slats) + padlat, 'lonmin': numpy.min(slons) - padlon, 'lonmax': numpy.max(slons) + padlon, 'sym': 'ro', 'boundinglat': 0.0, 'pltgrid': 1} Opts['lon_0'] = int(0.5 * (numpy.min(slons) + numpy.max(slons))) Opts['lat_0'] = int(0.5 * (numpy.min(slats) + numpy.max(slats))) Opts['gridspace'] = gridspace if details == 1: Opts['details'] = {'coasts': 1, 'rivers': 0, 'states': 1, 'countries': 1, 'ocean': 1} else: Opts['details'] = {'coasts': 1, 'rivers': 0, 'states': 0, 'countries': 0, 'ocean': 1} Opts['details']['fancy'] = fancy pmagplotlib.plot_map(FIGS['map'], slats, slons, Opts) pmagplotlib.plot_xy(FIGS['vadms'], Age, Vadm, sym='bo', xlab= 'Age (Years CE)', ylab='VADM (ZAm$^2$)') if verbose: pmagplotlib.draw_figs(FIGS) files = {} for key in list(FIGS.keys()): files[key] = key + '.' + fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['map'] = 'Map' titles['vadms'] = 'VADMs' FIG = pmagplotlib.add_borders(FIGS, titles, black, purple) pmagplotlib.save_plots(FIGS, files) elif verbose: ans = input(' S[a]ve to save plot, Return to quit: ') if ans == 'a': pmagplotlib.save_plots(FIGS, files) else: pmagplotlib.save_plots(FIGS, files)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n dir_path = '.'\n names, res, proj, locs, padlon, padlat, fancy, gridspace, details = [\n ], 'l', 'lcc', '', 0, 0, 0, 15, 1\n Age_bounds = [-5000, 2000]\n Lat_bounds = [20, 45]\n Lon_bounds = [15, 55]\n fmt = 'pdf'\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n sites_file = sys.argv[ind + 1]\n if '-res' in sys.argv:\n ind = sys.argv.index('-res')\n res = sys.argv[ind + 1]\n if '-etp' in sys.argv:\n fancy = 1\n if '-o' in sys.argv:\n ocean = 1\n if '-d' in sys.argv:\n details = 1\n if '-prj' in sys.argv:\n ind = sys.argv.index('-prj')\n proj = sys.argv[ind + 1]\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n verbose = pmagplotlib.verbose\n if '-sav' in sys.argv:\n verbose = 0\n if '-pad' in sys.argv:\n ind = sys.argv.index('-pad')\n padlat = float(sys.argv[ind + 1])\n padlon = float(sys.argv[ind + 2])\n if '-grd' in sys.argv:\n ind = sys.argv.index('-grd')\n gridspace = float(sys.argv[ind + 1])\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n sites_file = dir_path + '/' + sites_file\n geo_in = open(sites_file, 'r').readlines()\n Age, AgeErr, Vadm, VadmErr, slats, slons = [], [], [], [], [], []\n for line in geo_in[2:]:\n rec = line.split()\n if float(rec[0]) > Age_bounds[0] and float(rec[0]) < Age_bounds[1\n ] and float(rec[12]) > Lat_bounds[0] and float(rec[12]\n ) < Lat_bounds[1] and float(rec[13]) > Lon_bounds[0] and float(rec\n [13]) < Lon_bounds[1]:\n Age.append(float(rec[0]))\n AgeErr.append(float(rec[1]))\n Vadm.append(10.0 * float(rec[6]))\n VadmErr.append(10.0 * float(rec[7]))\n slats.append(float(rec[12]))\n slons.append(float(rec[13]))\n FIGS = {'map': 1, 'vadms': 2}\n pmagplotlib.plot_init(FIGS['map'], 6, 6)\n pmagplotlib.plot_init(FIGS['vadms'], 6, 6)\n Opts = {'res': res, 'proj': proj, 'loc_name': locs, 'padlon': padlon,\n 'padlat': padlat, 'latmin': numpy.min(slats) - padlat, 'latmax': \n numpy.max(slats) + padlat, 'lonmin': numpy.min(slons) - padlon,\n 'lonmax': numpy.max(slons) + padlon, 'sym': 'ro', 'boundinglat': \n 0.0, 'pltgrid': 1}\n Opts['lon_0'] = int(0.5 * (numpy.min(slons) + numpy.max(slons)))\n Opts['lat_0'] = int(0.5 * (numpy.min(slats) + numpy.max(slats)))\n Opts['gridspace'] = gridspace\n if details == 1:\n Opts['details'] = {'coasts': 1, 'rivers': 0, 'states': 1,\n 'countries': 1, 'ocean': 1}\n else:\n Opts['details'] = {'coasts': 1, 'rivers': 0, 'states': 0,\n 'countries': 0, 'ocean': 1}\n Opts['details']['fancy'] = fancy\n pmagplotlib.plot_map(FIGS['map'], slats, slons, Opts)\n pmagplotlib.plot_xy(FIGS['vadms'], Age, Vadm, sym='bo', xlab=\n 'Age (Years CE)', ylab='VADM (ZAm$^2$)')\n if verbose:\n pmagplotlib.draw_figs(FIGS)\n files = {}\n for key in list(FIGS.keys()):\n files[key] = key + '.' + fmt\n if pmagplotlib.isServer:\n black = '#000000'\n purple = '#800080'\n titles = {}\n titles['map'] = 'Map'\n titles['vadms'] = 'VADMs'\n FIG = pmagplotlib.add_borders(FIGS, titles, black, purple)\n pmagplotlib.save_plots(FIGS, files)\n elif verbose:\n ans = input(' S[a]ve to save plot, Return to quit: ')\n if ans == 'a':\n pmagplotlib.save_plots(FIGS, files)\n else:\n pmagplotlib.save_plots(FIGS, files)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): args = sys.argv if '-h' in args: print(do_help()) sys.exit() dataframe = extractor.command_line_dataframe([['f', True, ''], ['F', False, 'measurements.txt'], ['Fsa', False, 'samples.txt'], ['Fa', False, 'specimens.txt'], ['Fr', False, 'rmag_results.txt'], ['spc', False, 0], ['ncn', False, '1'], ['loc', False, 'unknown'], ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) (k15file, measfile, sampfile, aniso_outfile, result_file, specnum, sample_naming_con, location_name, output_dir_path, input_dir_path, data_model_num) = (extractor.get_vars(['f', 'F', 'Fsa', 'Fa', 'Fr', 'spc', 'ncn', 'loc', 'WD', 'ID', 'DM'], checked_args)) program_ran, error_message = convert.k15(k15file, specnum=specnum, sample_naming_con=sample_naming_con, location=location_name, meas_file=measfile, samp_file=sampfile, aniso_outfile=aniso_outfile, result_file=result_file, input_dir_path=input_dir_path, dir_path= output_dir_path, data_model_num=data_model_num)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n args = sys.argv\n if '-h' in args:\n print(do_help())\n sys.exit()\n dataframe = extractor.command_line_dataframe([['f', True, ''], ['F', \n False, 'measurements.txt'], ['Fsa', False, 'samples.txt'], ['Fa', \n False, 'specimens.txt'], ['Fr', False, 'rmag_results.txt'], ['spc',\n False, 0], ['ncn', False, '1'], ['loc', False, 'unknown'], ['WD', \n False, '.'], ['ID', False, '.'], ['DM', False, 3]])\n checked_args = extractor.extract_and_check_args(args, dataframe)\n (k15file, measfile, sampfile, aniso_outfile, result_file, specnum,\n sample_naming_con, location_name, output_dir_path, input_dir_path,\n data_model_num) = (extractor.get_vars(['f', 'F', 'Fsa', 'Fa', 'Fr',\n 'spc', 'ncn', 'loc', 'WD', 'ID', 'DM'], checked_args))\n program_ran, error_message = convert.k15(k15file, specnum=specnum,\n sample_naming_con=sample_naming_con, location=location_name,\n meas_file=measfile, samp_file=sampfile, aniso_outfile=aniso_outfile,\n result_file=result_file, input_dir_path=input_dir_path, dir_path=\n output_dir_path, data_model_num=data_model_num)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(data, reqd_cols): missing = [] for col in reqd_cols: if col not in data[0]: missing.append(col) return missing
check_for_reqd_cols
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, reqd_cols):\n missing = []\n for col in reqd_cols:\n if col not in data[0]:\n missing.append(col)\n return missing\n", "role": "user" }, { "content": "check_for_reqd_cols", "role": "assistant" } ]
def x(): args = sys.argv if '-h' in args: print(main.__doc__) sys.exit() dataframe = extractor.command_line_dataframe([['f', False, 'measurements.txt'], ['fsum', False, ''], ['fwig', False, ''], [ 'fsa', False, ''], ['fa', False, ''], ['fsp', False, ''], ['fres', False, ''], ['fmt', False, 'svg'], ['LP', False, ''], ['n', False, False], ['d', False, '-1 -1'], ['ts', False, ''], ['WD', False, '.' ], ['L', False, True], ['S', False, True], ['D', False, True], ['I', False, True], ['M', False, True], ['log', False, 0], ['ds', False, 'sample_core_depth'], ['sym', False, 'bo 5'], ['ID', False, '.'], [ 'sav', False, False], ['DM', False, 3]]) checked_args = extractor.extract_and_check_args(args, dataframe) (meas_file, sum_file, wig_file, samp_file, age_file, spc_file, res_file, fmt, meth, norm, depth, timescale, dir_path, pltLine, pltSus, pltDec, pltInc, pltMag, logit, depth_scale, symbol, input_dir, save, data_model_num) = (extractor.get_vars(['f', 'fsum', 'fwig', 'fsa', 'fa', 'fsp', 'fres', 'fmt', 'LP', 'n', 'd', 'ts', 'WD', 'L', 'S', 'D', 'I', 'M', 'log', 'ds', 'sym', 'ID', 'sav', 'DM'], checked_args)) try: sym, size = symbol.split() size = int(size) except: print('you should provide -sym in this format: ro 5') print('using defaults instead') sym, size = 'ro', 5 if res_file: try: res_file, res_sym, res_size = res_file.split() except: print( 'you must provide -fres in this format: -fres filename symbol size' ) print('could not parse {}, defaulting to using no result file'. format(res_file)) res_file, res_sym, res_size = '', '', 0 else: res_file, res_sym, res_size = '', '', 0 if spc_file: try: spc_file, spc_sym, spc_size = spc_file.split() except: print( 'you must provide -fsp in this format: -fsp filename symbol size' ) print('could not parse {}, defaulting to using no specimen file' .format(spc_file)) spc_file, spc_sym, spc_size = '', '', 0 else: spc_file, spc_sym, spc_size = '', '', 0 try: dmin, dmax = depth.split() except: print('you must provide -d in this format: -d dmin dmax') print('could not parse {}, defaulting to plotting all depths'. format(depth)) dmin, dmax = -1, -1 if timescale: try: timescale, amin, amax = timescale.split() pltTime = True except: print( 'you must provide -ts in this format: -ts timescale minimum_age maximum_age' ) print('could not parse {}, defaulting to using no timescale'. format(timescale)) timescale, amin, amax = None, -1, -1 pltTime = False else: timescale, amin, amax = None, -1, -1 pltTime = False if norm and not isinstance(norm, bool): wt_file = norm norm = True else: norm = False wt_file = '' try: method, step = meth.split() except: print( """To use the -LP flag you must provide both the protocol and the step in this format: -LP [AF,T,ARM,IRM, X] step [in mT,C,mT,mT, mass/vol] to plot""" ) print('Defaulting to using no protocol') method, step = 'LT-NO', 0 fig, figname = ipmag.core_depthplot(input_dir, meas_file, spc_file, samp_file, age_file, sum_file, wt_file, depth_scale, dmin, dmax, sym, size, spc_sym, spc_size, method, step, fmt, pltDec, pltInc, pltMag, pltLine, pltSus, logit, pltTime, timescale, amin, amax, norm, data_model_num) if not pmagplotlib.isServer: figname = figname.replace(':', '_') if fig and save: print('-I- Created plot: {}'.format(figname)) plt.savefig(figname) return app = wx.App(redirect=False) if not fig: pw.simple_warning( """No plot was able to be created with the data you provided. Make sure you have given all the required information and try again""" ) return False dpi = fig.get_dpi() pixel_width = dpi * fig.get_figwidth() pixel_height = dpi * fig.get_figheight() figname = os.path.join(dir_path, figname) plot_frame = pmag_menu_dialogs.PlotFrame((int(pixel_width), int( pixel_height + 50)), fig, figname, standalone=True) app.MainLoop()
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n dataframe = extractor.command_line_dataframe([['f', False,\n 'measurements.txt'], ['fsum', False, ''], ['fwig', False, ''], [\n 'fsa', False, ''], ['fa', False, ''], ['fsp', False, ''], ['fres', \n False, ''], ['fmt', False, 'svg'], ['LP', False, ''], ['n', False, \n False], ['d', False, '-1 -1'], ['ts', False, ''], ['WD', False, '.'\n ], ['L', False, True], ['S', False, True], ['D', False, True], ['I',\n False, True], ['M', False, True], ['log', False, 0], ['ds', False,\n 'sample_core_depth'], ['sym', False, 'bo 5'], ['ID', False, '.'], [\n 'sav', False, False], ['DM', False, 3]])\n checked_args = extractor.extract_and_check_args(args, dataframe)\n (meas_file, sum_file, wig_file, samp_file, age_file, spc_file, res_file,\n fmt, meth, norm, depth, timescale, dir_path, pltLine, pltSus,\n pltDec, pltInc, pltMag, logit, depth_scale, symbol, input_dir, save,\n data_model_num) = (extractor.get_vars(['f', 'fsum', 'fwig', 'fsa',\n 'fa', 'fsp', 'fres', 'fmt', 'LP', 'n', 'd', 'ts', 'WD', 'L', 'S',\n 'D', 'I', 'M', 'log', 'ds', 'sym', 'ID', 'sav', 'DM'], checked_args))\n try:\n sym, size = symbol.split()\n size = int(size)\n except:\n print('you should provide -sym in this format: ro 5')\n print('using defaults instead')\n sym, size = 'ro', 5\n if res_file:\n try:\n res_file, res_sym, res_size = res_file.split()\n except:\n print(\n 'you must provide -fres in this format: -fres filename symbol size'\n )\n print('could not parse {}, defaulting to using no result file'.\n format(res_file))\n res_file, res_sym, res_size = '', '', 0\n else:\n res_file, res_sym, res_size = '', '', 0\n if spc_file:\n try:\n spc_file, spc_sym, spc_size = spc_file.split()\n except:\n print(\n 'you must provide -fsp in this format: -fsp filename symbol size'\n )\n print('could not parse {}, defaulting to using no specimen file'\n .format(spc_file))\n spc_file, spc_sym, spc_size = '', '', 0\n else:\n spc_file, spc_sym, spc_size = '', '', 0\n try:\n dmin, dmax = depth.split()\n except:\n print('you must provide -d in this format: -d dmin dmax')\n print('could not parse {}, defaulting to plotting all depths'.\n format(depth))\n dmin, dmax = -1, -1\n if timescale:\n try:\n timescale, amin, amax = timescale.split()\n pltTime = True\n except:\n print(\n 'you must provide -ts in this format: -ts timescale minimum_age maximum_age'\n )\n print('could not parse {}, defaulting to using no timescale'.\n format(timescale))\n timescale, amin, amax = None, -1, -1\n pltTime = False\n else:\n timescale, amin, amax = None, -1, -1\n pltTime = False\n if norm and not isinstance(norm, bool):\n wt_file = norm\n norm = True\n else:\n norm = False\n wt_file = ''\n try:\n method, step = meth.split()\n except:\n print(\n \"\"\"To use the -LP flag you must provide both the protocol and the step in this format:\n-LP [AF,T,ARM,IRM, X] step [in mT,C,mT,mT, mass/vol] to plot\"\"\"\n )\n print('Defaulting to using no protocol')\n method, step = 'LT-NO', 0\n fig, figname = ipmag.core_depthplot(input_dir, meas_file, spc_file,\n samp_file, age_file, sum_file, wt_file, depth_scale, dmin, dmax,\n sym, size, spc_sym, spc_size, method, step, fmt, pltDec, pltInc,\n pltMag, pltLine, pltSus, logit, pltTime, timescale, amin, amax,\n norm, data_model_num)\n if not pmagplotlib.isServer:\n figname = figname.replace(':', '_')\n if fig and save:\n print('-I- Created plot: {}'.format(figname))\n plt.savefig(figname)\n return\n app = wx.App(redirect=False)\n if not fig:\n pw.simple_warning(\n \"\"\"No plot was able to be created with the data you provided.\nMake sure you have given all the required information and try again\"\"\"\n )\n return False\n dpi = fig.get_dpi()\n pixel_width = dpi * fig.get_figwidth()\n pixel_height = dpi * fig.get_figheight()\n figname = os.path.join(dir_path, figname)\n plot_frame = pmag_menu_dialogs.PlotFrame((int(pixel_width), int(\n pixel_height + 50)), fig, figname, standalone=True)\n app.MainLoop()\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] f = open(file, 'r') data = f.readlines() else: data = sys.stdin.readlines() if '-dir' in sys.argv: ind = sys.argv.index('-dir') typ = sys.argv[ind + 1] if typ == 'L': calculation_type = 'DE-BFL' if typ == 'P': calculation_type = 'DE-BFP' if typ == 'F': calculation_type = 'DE-FM' beg_pca = int(sys.argv[ind + 2]) end_pca = int(sys.argv[ind + 3]) datablock = [] s = '' ind = 0 for line in data: rec = line.split() if s == '': s = rec[0] print(s, calculation_type) print(ind, rec[1], rec[3], rec[4], rec[2]) ind += 1 datablock.append([float(rec[1]), float(rec[3]), float(rec[4]), float(rec[2]), '0']) mpars = pmag.domean(datablock, beg_pca, end_pca, calculation_type) if calculation_type == 'DE-FM': print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s, calculation_type, mpars['specimen_n'], mpars[ 'measurement_step_min'], mpars['measurement_step_max'], mpars[ 'specimen_a95'], mpars['specimen_dec'], mpars['specimen_inc'])) else: print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s, calculation_type, mpars['specimen_n'], mpars[ 'measurement_step_min'], mpars['measurement_step_max'], mpars[ 'specimen_mad'], mpars['specimen_dec'], mpars['specimen_inc']))
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n else:\n data = sys.stdin.readlines()\n if '-dir' in sys.argv:\n ind = sys.argv.index('-dir')\n typ = sys.argv[ind + 1]\n if typ == 'L':\n calculation_type = 'DE-BFL'\n if typ == 'P':\n calculation_type = 'DE-BFP'\n if typ == 'F':\n calculation_type = 'DE-FM'\n beg_pca = int(sys.argv[ind + 2])\n end_pca = int(sys.argv[ind + 3])\n datablock = []\n s = ''\n ind = 0\n for line in data:\n rec = line.split()\n if s == '':\n s = rec[0]\n print(s, calculation_type)\n print(ind, rec[1], rec[3], rec[4], rec[2])\n ind += 1\n datablock.append([float(rec[1]), float(rec[3]), float(rec[4]),\n float(rec[2]), '0'])\n mpars = pmag.domean(datablock, beg_pca, end_pca, calculation_type)\n if calculation_type == 'DE-FM':\n print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,\n calculation_type, mpars['specimen_n'], mpars[\n 'measurement_step_min'], mpars['measurement_step_max'], mpars[\n 'specimen_a95'], mpars['specimen_dec'], mpars['specimen_inc']))\n else:\n print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,\n calculation_type, mpars['specimen_n'], mpars[\n 'measurement_step_min'], mpars['measurement_step_max'], mpars[\n 'specimen_mad'], mpars['specimen_dec'], mpars['specimen_inc']))\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): dir_path = '.' PTS = [] ResRecs = [] ofile = '' data_model = 3 Dplates = ['nwaf', 'neaf', 'saf', 'aus', 'eur', 'ind', 'sam', 'ant', 'grn', 'nam'] if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-F' in sys.argv: ind = sys.argv.index('-F') ofile = dir_path + '/' + sys.argv[ind + 1] if '-dm' in sys.argv: ind = sys.argv.index('-dm') data_model = dir_path + '/' + sys.argv[ind + 1] if '-f' in sys.argv: ind = sys.argv.index('-f') file = dir_path + '/' + sys.argv[ind + 1] f = open(file, 'r') data = f.readlines() elif '-ff' in sys.argv: ind = sys.argv.index('-ff') file = dir_path + '/' + sys.argv[ind + 1] f = open(file, 'r') data = f.readlines() Efile = dir_path + '/' + sys.argv[ind + 2] f = open(Efile, 'r') edata = f.readlines() Poles = [] for p in edata: rec = p.split() pole = [float(rec[0]), float(rec[1]), float(rec[2])] Poles.append(pole) else: data = sys.stdin.readlines() polelatkey, polelonkey = 'pole_lat', 'pole_lon' if data_model != 3: polelatkey, polelonkey = 'vgp_lat', 'vgp_lon' for line in data: PtRec = {} rec = line.split() PtRec['site_lon'] = rec[0] PtRec['site_lat'] = rec[1] if '-ff' in sys.argv: pt_lat, pt_lon = float(rec[1]), float(rec[0]) for pole in Poles: ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon]) pt_lat = ptrot[0][0] pt_lon = ptrot[1][0] if ofile == '': print(ptrot[1][0], ptrot[0][0]) else: ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey: '%7.1f' % ptrot[1][0]} ResRecs.append(ResRec) else: PtRec['cont'] = rec[2] if PtRec['cont'] == 'af': PtRec['cont'] = 'saf' PtRec['age'] = rec[3] if len(rec) > 4: PtRec['dcont'] = rec[4] PTS.append(PtRec) if '-ff' not in sys.argv: for pt in PTS: pole = 'not specified' pt_lat = float(pt['site_lat']) pt_lon = float(pt['site_lon']) age = float(pt['age']) ptrot = [[pt_lat], [pt_lon]] if pt['cont'] == 'ib': pole = frp.get_pole(pt['cont'], age) ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon]) pt_lat = ptrot[0][0] pt_lon = ptrot[1][0] pt['cont'] = 'eur' if pt['cont'] != 'saf': pole1 = frp.get_pole(pt['cont'], age) ptrot = pmag.pt_rot(pole1, [pt_lat], [pt_lon]) if 'dcont' in list(pt.keys()): pt_lat = ptrot[0][0] pt_lon = ptrot[1][0] pole = frp.get_pole(pt['dcont'], age) pole[2] = -pole[2] ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon]) if ofile == '': print(ptrot[1][0], ptrot[0][0]) else: ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey: '%7.1f' % ptrot[1][0]} ResRecs.append(ResRec) elif 'dcont' in list(pt.keys()): pole = frp.get_pole(pt['dcont'], age) pole[2] = -pole[2] ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon]) print(ptrot) if ofile == '': print(ptrot[1][0], ptrot[0][0]) else: ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey: '%7.1f' % ptrot[1][0]} ResRecs.append(ResRec) elif ofile == '': print(ptrot[1][0], ptrot[0][0]) else: ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey: '%7.1f' % ptrot[1][0]} ResRecs.append(ResRec) if len(ResRecs) > 0: if data_model == 3: pmag.magic_write(ofile, ResRecs, 'locations') else: pmag.magic_write(ofile, ResRecs, 'pmag_results')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n dir_path = '.'\n PTS = []\n ResRecs = []\n ofile = ''\n data_model = 3\n Dplates = ['nwaf', 'neaf', 'saf', 'aus', 'eur', 'ind', 'sam', 'ant',\n 'grn', 'nam']\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = dir_path + '/' + sys.argv[ind + 1]\n if '-dm' in sys.argv:\n ind = sys.argv.index('-dm')\n data_model = dir_path + '/' + sys.argv[ind + 1]\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = dir_path + '/' + sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n elif '-ff' in sys.argv:\n ind = sys.argv.index('-ff')\n file = dir_path + '/' + sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n Efile = dir_path + '/' + sys.argv[ind + 2]\n f = open(Efile, 'r')\n edata = f.readlines()\n Poles = []\n for p in edata:\n rec = p.split()\n pole = [float(rec[0]), float(rec[1]), float(rec[2])]\n Poles.append(pole)\n else:\n data = sys.stdin.readlines()\n polelatkey, polelonkey = 'pole_lat', 'pole_lon'\n if data_model != 3:\n polelatkey, polelonkey = 'vgp_lat', 'vgp_lon'\n for line in data:\n PtRec = {}\n rec = line.split()\n PtRec['site_lon'] = rec[0]\n PtRec['site_lat'] = rec[1]\n if '-ff' in sys.argv:\n pt_lat, pt_lon = float(rec[1]), float(rec[0])\n for pole in Poles:\n ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])\n pt_lat = ptrot[0][0]\n pt_lon = ptrot[1][0]\n if ofile == '':\n print(ptrot[1][0], ptrot[0][0])\n else:\n ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey: \n '%7.1f' % ptrot[1][0]}\n ResRecs.append(ResRec)\n else:\n PtRec['cont'] = rec[2]\n if PtRec['cont'] == 'af':\n PtRec['cont'] = 'saf'\n PtRec['age'] = rec[3]\n if len(rec) > 4:\n PtRec['dcont'] = rec[4]\n PTS.append(PtRec)\n if '-ff' not in sys.argv:\n for pt in PTS:\n pole = 'not specified'\n pt_lat = float(pt['site_lat'])\n pt_lon = float(pt['site_lon'])\n age = float(pt['age'])\n ptrot = [[pt_lat], [pt_lon]]\n if pt['cont'] == 'ib':\n pole = frp.get_pole(pt['cont'], age)\n ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])\n pt_lat = ptrot[0][0]\n pt_lon = ptrot[1][0]\n pt['cont'] = 'eur'\n if pt['cont'] != 'saf':\n pole1 = frp.get_pole(pt['cont'], age)\n ptrot = pmag.pt_rot(pole1, [pt_lat], [pt_lon])\n if 'dcont' in list(pt.keys()):\n pt_lat = ptrot[0][0]\n pt_lon = ptrot[1][0]\n pole = frp.get_pole(pt['dcont'], age)\n pole[2] = -pole[2]\n ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])\n if ofile == '':\n print(ptrot[1][0], ptrot[0][0])\n else:\n ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey:\n '%7.1f' % ptrot[1][0]}\n ResRecs.append(ResRec)\n elif 'dcont' in list(pt.keys()):\n pole = frp.get_pole(pt['dcont'], age)\n pole[2] = -pole[2]\n ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])\n print(ptrot)\n if ofile == '':\n print(ptrot[1][0], ptrot[0][0])\n else:\n ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey:\n '%7.1f' % ptrot[1][0]}\n ResRecs.append(ResRec)\n elif ofile == '':\n print(ptrot[1][0], ptrot[0][0])\n else:\n ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey: \n '%7.1f' % ptrot[1][0]}\n ResRecs.append(ResRec)\n if len(ResRecs) > 0:\n if data_model == 3:\n pmag.magic_write(ofile, ResRecs, 'locations')\n else:\n pmag.magic_write(ofile, ResRecs, 'pmag_results')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(col_name, arg, dm, df, *args): if col_name in df.columns: return None arg_list = arg.split(',') arg_list = [argument.strip('"') for argument in arg_list] msg = '' for a in arg_list: if '.' in a: continue if a not in df.columns: msg += '{} column is required unless {} is present. '.format( col_name, a) if msg: return msg else: return None return None
requiredUnless
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(col_name, arg, dm, df, *args):\n if col_name in df.columns:\n return None\n arg_list = arg.split(',')\n arg_list = [argument.strip('\"') for argument in arg_list]\n msg = ''\n for a in arg_list:\n if '.' in a:\n continue\n if a not in df.columns:\n msg += '{} column is required unless {} is present. '.format(\n col_name, a)\n if msg:\n return msg\n else:\n return None\n return None\n", "role": "user" }, { "content": "requiredUnless", "role": "assistant" } ]
def x(col_name, arg, dm, df, con=None): table_name = arg if col_name in df.columns: return None elif not con: return None elif table_name in con.tables: return None else: return '{} column is required unless table {} is present'.format( col_name, table_name)
requiredUnlessTable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(col_name, arg, dm, df, con=None):\n table_name = arg\n if col_name in df.columns:\n return None\n elif not con:\n return None\n elif table_name in con.tables:\n return None\n else:\n return '{} column is required unless table {} is present'.format(\n col_name, table_name)\n", "role": "user" }, { "content": "requiredUnlessTable", "role": "assistant" } ]
def x(col_name, arg, dm, df, *args): group_name = arg groups = set() columns = df.columns for col in columns: if col not in dm.index: continue group = dm.loc[col]['group'] groups.add(group) if group_name in groups: if col_name in columns: return None else: return '{} column is required if column group {} is used'.format( col_name, group_name) return None
requiredIfGroup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(col_name, arg, dm, df, *args):\n group_name = arg\n groups = set()\n columns = df.columns\n for col in columns:\n if col not in dm.index:\n continue\n group = dm.loc[col]['group']\n groups.add(group)\n if group_name in groups:\n if col_name in columns:\n return None\n else:\n return '{} column is required if column group {} is used'.format(\n col_name, group_name)\n return None\n", "role": "user" }, { "content": "requiredIfGroup", "role": "assistant" } ]
def x(col_name, arg, dm, df, *args): if col_name in df.columns: return None else: return '"{}" column is required'.format(col_name)
required
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(col_name, arg, dm, df, *args):\n if col_name in df.columns:\n return None\n else:\n return '\"{}\" column is required'.format(col_name)\n", "role": "user" }, { "content": "required", "role": "assistant" } ]
def x(row, col_name, arg, dm, df, con=None): cell_value = row[col_name] cell_value = str(cell_value) if not cell_value: return None elif cell_value == 'None': return None elif cell_value == 'nan': return None elif not con: return None cell_values = [v.strip(' ') for v in cell_value.split(':')] if '.' in arg: table_name, table_col_name = arg.split('.') if table_name not in con.tables: return None if table_col_name not in con.tables[table_name].df.columns: return ( '{} table is missing "{}" column, which is required for validating "{}" column' .format(table_name, table_col_name, col_name)) possible_values = con.tables[table_name].df[table_col_name].unique() for value in cell_values: if value not in possible_values: trunc_possible_values = [val.replace(' ', '') for val in possible_values if val] trunc_cell_value = cell_value.replace(' ', '') if trunc_cell_value not in trunc_possible_values: if trunc_cell_value != value: return ( 'This value (long): "{}" is not found in: {} column in {} table. Also (short): {} is not in {}' .format(value, table_col_name, table_name, trunc_cell_value, arg)) else: return ( 'This value: "{}" is not found in: {} column in {} table' .format(value, table_col_name, table_name)) break else: possible_values = df[arg].unique() for value in cell_values: if value not in possible_values: return 'This value: "{}" is not found in: {} column'.format( value, arg) break return None
isIn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(row, col_name, arg, dm, df, con=None):\n cell_value = row[col_name]\n cell_value = str(cell_value)\n if not cell_value:\n return None\n elif cell_value == 'None':\n return None\n elif cell_value == 'nan':\n return None\n elif not con:\n return None\n cell_values = [v.strip(' ') for v in cell_value.split(':')]\n if '.' in arg:\n table_name, table_col_name = arg.split('.')\n if table_name not in con.tables:\n return None\n if table_col_name not in con.tables[table_name].df.columns:\n return (\n '{} table is missing \"{}\" column, which is required for validating \"{}\" column'\n .format(table_name, table_col_name, col_name))\n possible_values = con.tables[table_name].df[table_col_name].unique()\n for value in cell_values:\n if value not in possible_values:\n trunc_possible_values = [val.replace(' ', '') for val in\n possible_values if val]\n trunc_cell_value = cell_value.replace(' ', '')\n if trunc_cell_value not in trunc_possible_values:\n if trunc_cell_value != value:\n return (\n 'This value (long): \"{}\" is not found in: {} column in {} table. Also (short): {} is not in {}'\n .format(value, table_col_name, table_name,\n trunc_cell_value, arg))\n else:\n return (\n 'This value: \"{}\" is not found in: {} column in {} table'\n .format(value, table_col_name, table_name))\n break\n else:\n possible_values = df[arg].unique()\n for value in cell_values:\n if value not in possible_values:\n return 'This value: \"{}\" is not found in: {} column'.format(\n value, arg)\n break\n return None\n", "role": "user" }, { "content": "isIn", "role": "assistant" } ]
def x(row, col_name, arg, *args): cell_value = row[col_name] if not cell_value: return None elif isinstance(cell_value, float): if np.isnan(cell_value): return None try: arg_val = float(arg) except ValueError: if arg in row.index: arg_val = row[arg] else: return None if cb.is_null(arg_val): return None try: if float(cell_value) <= float(arg_val): return None else: return '{} ({}) must be <= {} ({})'.format(str(cell_value), col_name, str(arg_val), str(arg)) except ValueError: return None
checkMax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(row, col_name, arg, *args):\n cell_value = row[col_name]\n if not cell_value:\n return None\n elif isinstance(cell_value, float):\n if np.isnan(cell_value):\n return None\n try:\n arg_val = float(arg)\n except ValueError:\n if arg in row.index:\n arg_val = row[arg]\n else:\n return None\n if cb.is_null(arg_val):\n return None\n try:\n if float(cell_value) <= float(arg_val):\n return None\n else:\n return '{} ({}) must be <= {} ({})'.format(str(cell_value),\n col_name, str(arg_val), str(arg))\n except ValueError:\n return None\n", "role": "user" }, { "content": "checkMax", "role": "assistant" } ]
def x(row, col_name, arg, current_data_model, df, con): vocabulary = con.vocab.vocabularies cell_value = str(row[col_name]) if not cell_value: return None elif cell_value == 'None': return None cell_values = cell_value.split(':') cell_values = [c.strip() for c in cell_values] possible_values = [] for val in vocabulary[col_name]: try: possible_values.append(str(val).lower()) except UnicodeEncodeError as ex: print(val, ex) for value in cell_values: if str(value).lower() == 'nan': continue elif str(value).lower() in possible_values: continue elif value.lower() == 'none': continue else: try: if str(float(value)) in possible_values: continue except: pass return '"{}" is not in controlled vocabulary for {}'.format(value, arg) return None
cv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(row, col_name, arg, current_data_model, df, con):\n vocabulary = con.vocab.vocabularies\n cell_value = str(row[col_name])\n if not cell_value:\n return None\n elif cell_value == 'None':\n return None\n cell_values = cell_value.split(':')\n cell_values = [c.strip() for c in cell_values]\n possible_values = []\n for val in vocabulary[col_name]:\n try:\n possible_values.append(str(val).lower())\n except UnicodeEncodeError as ex:\n print(val, ex)\n for value in cell_values:\n if str(value).lower() == 'nan':\n continue\n elif str(value).lower() in possible_values:\n continue\n elif value.lower() == 'none':\n continue\n else:\n try:\n if str(float(value)) in possible_values:\n continue\n except:\n pass\n return '\"{}\" is not in controlled vocabulary for {}'.format(value,\n arg)\n return None\n", "role": "user" }, { "content": "cv", "role": "assistant" } ]
def x(col_name, group, dm, df, *args): if col_name in df.columns: return None else: return col_name
requiredOneInGroup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(col_name, group, dm, df, *args):\n if col_name in df.columns:\n return None\n else:\n return col_name\n", "role": "user" }, { "content": "requiredOneInGroup", "role": "assistant" } ]
def x(df, dm, con=None): required_one = {} cols = df.columns invalid_cols = [col for col in cols if col not in dm.index] for validation_name, validation in dm.iterrows(): value_type = validation['type'] if validation_name in df.columns: output = df[validation_name].apply(test_type, args=(value_type,)) df['type_pass' + '_' + validation_name + '_' + value_type] = output val_list = validation['validations'] if not val_list or isinstance(val_list, float): continue for num, val in enumerate(val_list): func_name, arg = split_func(val) if arg == 'magic_table_column': continue if func_name in presence_operations: func = presence_operations[func_name] grade = func(validation_name, arg, dm, df, con) pass_col_name = ('presence_pass_' + validation_name + '_' + func.__name__) df[pass_col_name] = grade elif func_name in value_operations: func = value_operations[func_name] if validation_name in df.columns: grade = df.apply(func, args=(validation_name, arg, dm, df, con), axis=1) col_name = ('value_pass_' + validation_name + '_' + func.__name__) if col_name in df.columns: num_range = list(range(1, 10)) for num in num_range: if col_name + str(num) in df.columns: continue else: col_name = col_name + str(num) break df[col_name] = grade.astype(object) elif func_name in group_operations: func = group_operations[func_name] missing = func(validation_name, arg, dm, df) if arg not in required_one: required_one[arg] = [missing] else: required_one[arg].append(missing) for key, value in list(required_one.items()): if None in value: continue else: df['group_pass_{}'.format(key) ] = 'you must have one column from group {}: {}'.format(key , ', '.join(value)) return df
validate_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, dm, con=None):\n required_one = {}\n cols = df.columns\n invalid_cols = [col for col in cols if col not in dm.index]\n for validation_name, validation in dm.iterrows():\n value_type = validation['type']\n if validation_name in df.columns:\n output = df[validation_name].apply(test_type, args=(value_type,))\n df['type_pass' + '_' + validation_name + '_' + value_type] = output\n val_list = validation['validations']\n if not val_list or isinstance(val_list, float):\n continue\n for num, val in enumerate(val_list):\n func_name, arg = split_func(val)\n if arg == 'magic_table_column':\n continue\n if func_name in presence_operations:\n func = presence_operations[func_name]\n grade = func(validation_name, arg, dm, df, con)\n pass_col_name = ('presence_pass_' + validation_name + '_' +\n func.__name__)\n df[pass_col_name] = grade\n elif func_name in value_operations:\n func = value_operations[func_name]\n if validation_name in df.columns:\n grade = df.apply(func, args=(validation_name, arg, dm,\n df, con), axis=1)\n col_name = ('value_pass_' + validation_name + '_' +\n func.__name__)\n if col_name in df.columns:\n num_range = list(range(1, 10))\n for num in num_range:\n if col_name + str(num) in df.columns:\n continue\n else:\n col_name = col_name + str(num)\n break\n df[col_name] = grade.astype(object)\n elif func_name in group_operations:\n func = group_operations[func_name]\n missing = func(validation_name, arg, dm, df)\n if arg not in required_one:\n required_one[arg] = [missing]\n else:\n required_one[arg].append(missing)\n for key, value in list(required_one.items()):\n if None in value:\n continue\n else:\n df['group_pass_{}'.format(key)\n ] = 'you must have one column from group {}: {}'.format(key\n , ', '.join(value))\n return df\n", "role": "user" }, { "content": "validate_df", "role": "assistant" } ]
def x(df): value_cols = df.columns.str.match('^value_pass_') present_cols = df.columns.str.match('^presence_pass') type_cols = df.columns.str.match('^type_pass_') groups_missing = df.columns.str.match('^group_pass_') value_col_names = df.columns[value_cols] present_col_names = df.columns[present_cols] type_col_names = df.columns[type_cols] group_missing_names = df.columns[groups_missing] validation_cols = np.where(value_cols, value_cols, present_cols) validation_cols = np.where(validation_cols, validation_cols, type_cols) validation_col_names = df.columns[validation_cols] return (value_col_names, present_col_names, type_col_names, group_missing_names, validation_col_names)
get_validation_col_names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n value_cols = df.columns.str.match('^value_pass_')\n present_cols = df.columns.str.match('^presence_pass')\n type_cols = df.columns.str.match('^type_pass_')\n groups_missing = df.columns.str.match('^group_pass_')\n value_col_names = df.columns[value_cols]\n present_col_names = df.columns[present_cols]\n type_col_names = df.columns[type_cols]\n group_missing_names = df.columns[groups_missing]\n validation_cols = np.where(value_cols, value_cols, present_cols)\n validation_cols = np.where(validation_cols, validation_cols, type_cols)\n validation_col_names = df.columns[validation_cols]\n return (value_col_names, present_col_names, type_col_names,\n group_missing_names, validation_col_names)\n", "role": "user" }, { "content": "get_validation_col_names", "role": "assistant" } ]
def x(failing_items, verbose=False, outfile_name=None): if outfile_name: outfile = open(outfile_name, 'w') outfile.write('\t'.join(['name', 'row_number', 'problem_type', 'problem_col', 'error_message'])) outfile.write('\n') else: outfile = None for ind, row in failing_items.iterrows(): issues = row['issues'] string = '{:10} | row number: {}'.format(ind, str(row['num'])) first_string = '\t'.join([str(ind), str(row['num'])]) if verbose: print(first_string) for key, issue in list(issues.items()): issue_type, issue_col = extract_col_name(key) string = '{:10} | {:10} | {}'.format(issue_type, issue_col, issue) string = '\t'.join([issue_type, issue_col, issue]) if verbose: print(string) if outfile: outfile.write(first_string + '\t' + string + '\n') if outfile: outfile.close()
print_row_failures
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(failing_items, verbose=False, outfile_name=None):\n if outfile_name:\n outfile = open(outfile_name, 'w')\n outfile.write('\\t'.join(['name', 'row_number', 'problem_type',\n 'problem_col', 'error_message']))\n outfile.write('\\n')\n else:\n outfile = None\n for ind, row in failing_items.iterrows():\n issues = row['issues']\n string = '{:10} | row number: {}'.format(ind, str(row['num']))\n first_string = '\\t'.join([str(ind), str(row['num'])])\n if verbose:\n print(first_string)\n for key, issue in list(issues.items()):\n issue_type, issue_col = extract_col_name(key)\n string = '{:10} | {:10} | {}'.format(issue_type, issue_col,\n issue)\n string = '\\t'.join([issue_type, issue_col, issue])\n if verbose:\n print(string)\n if outfile:\n outfile.write(first_string + '\\t' + string + '\\n')\n if outfile:\n outfile.close()\n", "role": "user" }, { "content": "print_row_failures", "role": "assistant" } ]
def x(df, value_cols, type_cols, verbose=False, outfile=None): df['num'] = list(range(len(df))) names = value_cols.union(type_cols) value_problems = df[names.union(['num'])] failing_items = value_problems.dropna(how='all', subset=names) if not len(failing_items): if verbose: print('No problems') return [] failing_items = failing_items.dropna(how='all', axis=1) bad_items = list(failing_items.index) bad_indices = list(failing_items['num']) failing_items['issues'] = failing_items.drop('num', axis=1).apply( make_row_dict, axis=1).values print_row_failures(failing_items, verbose, outfile) return failing_items
get_row_failures
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, value_cols, type_cols, verbose=False, outfile=None):\n df['num'] = list(range(len(df)))\n names = value_cols.union(type_cols)\n value_problems = df[names.union(['num'])]\n failing_items = value_problems.dropna(how='all', subset=names)\n if not len(failing_items):\n if verbose:\n print('No problems')\n return []\n failing_items = failing_items.dropna(how='all', axis=1)\n bad_items = list(failing_items.index)\n bad_indices = list(failing_items['num'])\n failing_items['issues'] = failing_items.drop('num', axis=1).apply(\n make_row_dict, axis=1).values\n print_row_failures(failing_items, verbose, outfile)\n return failing_items\n", "role": "user" }, { "content": "get_row_failures", "role": "assistant" } ]
def x(df, validation_names, type_col_names, value_col_names, verbose=False): df['num'] = list(range(len(df))) problems = df[validation_names.union(['num'])] all_problems = problems.dropna(how='all', axis=0, subset=validation_names) value_problems = problems.dropna(how='all', axis=0, subset= type_col_names.union(value_col_names)) all_problems = all_problems.dropna(how='all', axis=1) value_problems = value_problems.dropna(how='all', axis=1) if not len(problems): return None, None, None bad_cols = all_problems.columns prefixes = ['value_pass_', 'type_pass_'] missing_prefix = 'presence_pass_' problem_cols = [] missing_cols = [] long_missing_cols = [] problem_rows = [] for col in bad_cols: pre, stripped_col = extract_col_name(col) for prefix in prefixes: if col.startswith(prefix): problem_cols.append(stripped_col) continue if col.startswith(missing_prefix): missing_cols.append(stripped_col) long_missing_cols.append(col) if len(value_problems): bad_rows = list(zip(list(value_problems['num']), list( value_problems.index))) else: bad_rows = [] if verbose: if bad_rows: formatted_rows = ['row: {}, name: {}'.format(row[0], row[1]) for row in bad_rows] if len(bad_rows) > 5: print('-W- these rows have problems:\n', '\n'.join( formatted_rows[:5]), ' ...') print('(for full error output see error file)') else: print('-W- these rows have problems:', '\n'.join( formatted_rows)) if problem_cols: print('-W- these columns contain bad values:', ', '.join(set( problem_cols))) if missing_cols: print('-W- these required columns are missing:', ', '.join( missing_cols)) return bad_rows, problem_cols, missing_cols
get_bad_rows_and_cols
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, validation_names, type_col_names, value_col_names, verbose=False):\n df['num'] = list(range(len(df)))\n problems = df[validation_names.union(['num'])]\n all_problems = problems.dropna(how='all', axis=0, subset=validation_names)\n value_problems = problems.dropna(how='all', axis=0, subset=\n type_col_names.union(value_col_names))\n all_problems = all_problems.dropna(how='all', axis=1)\n value_problems = value_problems.dropna(how='all', axis=1)\n if not len(problems):\n return None, None, None\n bad_cols = all_problems.columns\n prefixes = ['value_pass_', 'type_pass_']\n missing_prefix = 'presence_pass_'\n problem_cols = []\n missing_cols = []\n long_missing_cols = []\n problem_rows = []\n for col in bad_cols:\n pre, stripped_col = extract_col_name(col)\n for prefix in prefixes:\n if col.startswith(prefix):\n problem_cols.append(stripped_col)\n continue\n if col.startswith(missing_prefix):\n missing_cols.append(stripped_col)\n long_missing_cols.append(col)\n if len(value_problems):\n bad_rows = list(zip(list(value_problems['num']), list(\n value_problems.index)))\n else:\n bad_rows = []\n if verbose:\n if bad_rows:\n formatted_rows = ['row: {}, name: {}'.format(row[0], row[1]) for\n row in bad_rows]\n if len(bad_rows) > 5:\n print('-W- these rows have problems:\\n', '\\n'.join(\n formatted_rows[:5]), ' ...')\n print('(for full error output see error file)')\n else:\n print('-W- these rows have problems:', '\\n'.join(\n formatted_rows))\n if problem_cols:\n print('-W- these columns contain bad values:', ', '.join(set(\n problem_cols)))\n if missing_cols:\n print('-W- these required columns are missing:', ', '.join(\n missing_cols))\n return bad_rows, problem_cols, missing_cols\n", "role": "user" }, { "content": "get_bad_rows_and_cols", "role": "assistant" } ]
def x(the_con, dtype, verbose=False, output_dir='.'): print('-I- Validating {}'.format(dtype)) current_df = the_con.tables[dtype].df current_dm = the_con.tables[dtype].data_model.dm[dtype] current_df = validate_df(current_df, current_dm, the_con) (value_col_names, present_col_names, type_col_names, missing_groups, validation_col_names) = get_validation_col_names(current_df) ofile = os.path.join(output_dir, '{}_errors.txt'.format(dtype)) failing_items = get_row_failures(current_df, value_col_names, type_col_names, verbose, outfile=ofile) bad_rows, bad_cols, missing_cols = get_bad_rows_and_cols(current_df, validation_col_names, value_col_names, type_col_names, verbose=True) current_df.drop(validation_col_names, axis=1, inplace=True) current_df.drop(missing_groups, axis=1, inplace=True) if len(failing_items): print('-I- Complete list of row errors can be found in {}'.format( ofile)) return (dtype, bad_rows, bad_cols, missing_cols, missing_groups, failing_items) elif len(missing_cols) or len(missing_groups): print('-I- You are missing some required headers') if len(missing_cols): print('-I- You are missing these required headers: {}'.format( ', '.join(missing_cols))) if len(missing_groups): formatted_groups = [group[11:] for group in missing_groups] print('-I- You need at least one header from these groups: {}'. format(', '.join(formatted_groups))) else: formatted_groups = [] return (dtype, bad_rows, bad_cols, missing_cols, formatted_groups, failing_items) else: print('-I- No row errors found!') return False
validate_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(the_con, dtype, verbose=False, output_dir='.'):\n print('-I- Validating {}'.format(dtype))\n current_df = the_con.tables[dtype].df\n current_dm = the_con.tables[dtype].data_model.dm[dtype]\n current_df = validate_df(current_df, current_dm, the_con)\n (value_col_names, present_col_names, type_col_names, missing_groups,\n validation_col_names) = get_validation_col_names(current_df)\n ofile = os.path.join(output_dir, '{}_errors.txt'.format(dtype))\n failing_items = get_row_failures(current_df, value_col_names,\n type_col_names, verbose, outfile=ofile)\n bad_rows, bad_cols, missing_cols = get_bad_rows_and_cols(current_df,\n validation_col_names, value_col_names, type_col_names, verbose=True)\n current_df.drop(validation_col_names, axis=1, inplace=True)\n current_df.drop(missing_groups, axis=1, inplace=True)\n if len(failing_items):\n print('-I- Complete list of row errors can be found in {}'.format(\n ofile))\n return (dtype, bad_rows, bad_cols, missing_cols, missing_groups,\n failing_items)\n elif len(missing_cols) or len(missing_groups):\n print('-I- You are missing some required headers')\n if len(missing_cols):\n print('-I- You are missing these required headers: {}'.format(\n ', '.join(missing_cols)))\n if len(missing_groups):\n formatted_groups = [group[11:] for group in missing_groups]\n print('-I- You need at least one header from these groups: {}'.\n format(', '.join(formatted_groups)))\n else:\n formatted_groups = []\n return (dtype, bad_rows, bad_cols, missing_cols, formatted_groups,\n failing_items)\n else:\n print('-I- No row errors found!')\n return False\n", "role": "user" }, { "content": "validate_table", "role": "assistant" } ]
def x(the_con): passing = True for dtype in list(the_con.tables.keys()): print('validating {}'.format(dtype)) fail = validate_table(the_con, dtype) if fail: passing = False print('--')
validate_contribution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(the_con):\n passing = True\n for dtype in list(the_con.tables.keys()):\n print('validating {}'.format(dtype))\n fail = validate_table(the_con, dtype)\n if fail:\n passing = False\n print('--')\n", "role": "user" }, { "content": "validate_contribution", "role": "assistant" } ]
def x(string): ind = string.index('(') return string[:ind], string[ind + 1:-1].strip('"')
split_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string):\n ind = string.index('(')\n return string[:ind], string[ind + 1:-1].strip('\"')\n", "role": "user" }, { "content": "split_func", "role": "assistant" } ]
def x(df): vals = ['lon_w', 'lon_e', 'lat_lon_precision', 'pole_lon', 'paleolon', 'paleolon_sigma', 'lon', 'lon_sigma', 'vgp_lon', 'paleo_lon', 'paleo_lon_sigma', 'azimuth', 'azimuth_dec_correction', 'dir_dec', 'geographic_precision', 'bed_dip_direction'] relevant_cols = list(set(vals).intersection(df.columns)) return relevant_cols
get_degree_cols
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n vals = ['lon_w', 'lon_e', 'lat_lon_precision', 'pole_lon', 'paleolon',\n 'paleolon_sigma', 'lon', 'lon_sigma', 'vgp_lon', 'paleo_lon',\n 'paleo_lon_sigma', 'azimuth', 'azimuth_dec_correction', 'dir_dec',\n 'geographic_precision', 'bed_dip_direction']\n relevant_cols = list(set(vals).intersection(df.columns))\n return relevant_cols\n", "role": "user" }, { "content": "get_degree_cols", "role": "assistant" } ]
def x(string): prefixes = ['presence_pass_', 'value_pass_', 'type_pass_'] end = string.rfind('_') for prefix in prefixes: if string.startswith(prefix): return prefix[:-6], string[len(prefix):end] return string, string
extract_col_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string):\n prefixes = ['presence_pass_', 'value_pass_', 'type_pass_']\n end = string.rfind('_')\n for prefix in prefixes:\n if string.startswith(prefix):\n return prefix[:-6], string[len(prefix):end]\n return string, string\n", "role": "user" }, { "content": "extract_col_name", "role": "assistant" } ]
def x(row): ind = row[row.notnull()].index values = row[row.notnull()].values return dict(list(zip(ind, values)))
make_row_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(row):\n ind = row[row.notnull()].index\n values = row[row.notnull()].values\n return dict(list(zip(ind, values)))\n", "role": "user" }, { "content": "make_row_dict", "role": "assistant" } ]
def x(): out = '' UP = 0 if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: dat = [] ind = sys.argv.index('-f') file = sys.argv[ind + 1] f = open(file, 'r') input = f.readlines() else: input = sys.stdin.readlines() ofile = '' if '-F' in sys.argv: ind = sys.argv.index('-F') ofile = sys.argv[ind + 1] out = open(ofile, 'w + a') if '-up' in sys.argv: UP = 1 for line in input: rec = line.split() x, y = float(rec[1]), float(rec[0]) r = math.sqrt(x ** 2 + y ** 2) z = 1.0 - r ** 2 t = math.asin(z) if UP == 1: t = -t if x == 0.0: if y < 0: p = 3.0 * math.pi / 2.0 else: p = old_div(math.pi, 2.0) else: p = math.atan2(y, x) d, i = p * 180.0 / math.pi, t * 180.0 / math.pi if d < 0: d += 360.0 outstring = '%7.1f %7.1f' % (d, i) if ofile == '': print(outstring) else: out.write(outstring + '\n')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n out = ''\n UP = 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n dat = []\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n input = f.readlines()\n else:\n input = sys.stdin.readlines()\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n if '-up' in sys.argv:\n UP = 1\n for line in input:\n rec = line.split()\n x, y = float(rec[1]), float(rec[0])\n r = math.sqrt(x ** 2 + y ** 2)\n z = 1.0 - r ** 2\n t = math.asin(z)\n if UP == 1:\n t = -t\n if x == 0.0:\n if y < 0:\n p = 3.0 * math.pi / 2.0\n else:\n p = old_div(math.pi, 2.0)\n else:\n p = math.atan2(y, x)\n d, i = p * 180.0 / math.pi, t * 180.0 / math.pi\n if d < 0:\n d += 360.0\n outstring = '%7.1f %7.1f' % (d, i)\n if ofile == '':\n print(outstring)\n else:\n out.write(outstring + '\\n')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): print(main.__doc__) if '-h' in sys.argv: sys.exit() cont, Int, Top = 1, [], [] while cont == 1: try: Int.append(int(input( ' Enter desired treatment step interval: <return> to quit '))) Top.append(int(input(' Enter upper bound for this interval: '))) except: cont = 0 pmag.chart_maker(Int, Top)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n print(main.__doc__)\n if '-h' in sys.argv:\n sys.exit()\n cont, Int, Top = 1, [], []\n while cont == 1:\n try:\n Int.append(int(input(\n ' Enter desired treatment step interval: <return> to quit ')))\n Top.append(int(input(' Enter upper bound for this interval: ')))\n except:\n cont = 0\n pmag.chart_maker(Int, Top)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): if '-h' in sys.argv: print(main.__doc__) sys.exit() data_model_num = pmag.get_named_arg('-DM', 3) data_model_num = int(float(data_model_num)) sfile = pmag.get_named_arg('-f', reqd=True) if data_model_num == 2: anisfile = pmag.get_named_arg('-F', 'rmag_anisotropy.txt') else: anisfile = pmag.get_named_arg('-F', 'specimens.txt') location = pmag.get_named_arg('-loc', 'unknown') user = pmag.get_named_arg('-usr', '') sitename = pmag.get_named_arg('unknown', '') specnum = pmag.get_named_arg('-spc', 0) specnum = -int(specnum) dir_path = pmag.get_named_arg('-WD', '.') name = pmag.get_flag_arg_from_sys('-n') sigma = pmag.get_flag_arg_from_sys('-sig') spec = pmag.get_named_arg('-spn', 'unknown') atype = pmag.get_named_arg('-typ', 'AMS') samp_con = pmag.get_named_arg('-ncn', '1') coord_type = pmag.get_named_arg('-crd', 's') convert.s_magic(sfile, anisfile, dir_path, atype, coord_type, sigma, samp_con, specnum, location, spec, sitename, user, data_model_num, name )
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n data_model_num = pmag.get_named_arg('-DM', 3)\n data_model_num = int(float(data_model_num))\n sfile = pmag.get_named_arg('-f', reqd=True)\n if data_model_num == 2:\n anisfile = pmag.get_named_arg('-F', 'rmag_anisotropy.txt')\n else:\n anisfile = pmag.get_named_arg('-F', 'specimens.txt')\n location = pmag.get_named_arg('-loc', 'unknown')\n user = pmag.get_named_arg('-usr', '')\n sitename = pmag.get_named_arg('unknown', '')\n specnum = pmag.get_named_arg('-spc', 0)\n specnum = -int(specnum)\n dir_path = pmag.get_named_arg('-WD', '.')\n name = pmag.get_flag_arg_from_sys('-n')\n sigma = pmag.get_flag_arg_from_sys('-sig')\n spec = pmag.get_named_arg('-spn', 'unknown')\n atype = pmag.get_named_arg('-typ', 'AMS')\n samp_con = pmag.get_named_arg('-ncn', '1')\n coord_type = pmag.get_named_arg('-crd', 's')\n convert.s_magic(sfile, anisfile, dir_path, atype, coord_type, sigma,\n samp_con, specnum, location, spec, sitename, user, data_model_num, name\n )\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): dir_path = '.' sites_file = 'er_sites.txt' ocean = 0 res = 'i' proj = 'merc' prn_name = 0 prn_loc = 0 fancy = 0 rivers, boundaries = 0, 0 padlon, padlat, gridspace, details = 0.5, 0.5, 0.5, 1 fmt = 'pdf' if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-f' in sys.argv: ind = sys.argv.index('-f') sites_file = sys.argv[ind + 1] if '-res' in sys.argv: ind = sys.argv.index('-res') res = sys.argv[ind + 1] if '-etp' in sys.argv: fancy = 1 if '-n' in sys.argv: prn_name = 1 if '-l' in sys.argv: prn_loc = 1 if '-o' in sys.argv: ocean = 1 if '-R' in sys.argv: rivers = 0 if '-B' in sys.argv: boundaries = 0 if '-prj' in sys.argv: ind = sys.argv.index('-prj') proj = sys.argv[ind + 1] if '-fmt' in sys.argv: ind = sys.argv.index('-fmt') fmt = sys.argv[ind + 1] verbose = pmagplotlib.verbose if '-sav' in sys.argv: verbose = 0 if '-pad' in sys.argv: ind = sys.argv.index('-pad') padlat = float(sys.argv[ind + 1]) padlon = float(sys.argv[ind + 2]) if '-grd' in sys.argv: ind = sys.argv.index('-grd') gridspace = float(sys.argv[ind + 1]) if '-WD' in sys.argv: ind = sys.argv.index('-WD') dir_path = sys.argv[ind + 1] sites_file = dir_path + '/' + sites_file location = '' FIG = {'map': 1} pmagplotlib.plot_init(FIG['map'], 6, 6) Sites, file_type = pmag.magic_read(sites_file) if 'results' in file_type: latkey = 'average_lat' lonkey = 'average_lon' namekey = 'pmag_result_name' lockey = 'er_location_names' else: latkey = 'site_lat' lonkey = 'site_lon' namekey = 'er_site_name' lockey = 'er_location_name' lats, lons = [], [] slats, slons = [], [] names, locs = [], [] for site in Sites: if prn_loc == 1 and location == '': location = site['er_location_name'] lats.append(float(site[latkey])) l = float(site[lonkey]) if l < 0: l = l + 360.0 lons.append(l) if prn_name == 1: names.append(site[namekey]) if prn_loc == 1: locs.append(site[lockey]) for lat in lats: slats.append(lat) for lon in lons: slons.append(lon) Opts = {'res': res, 'proj': proj, 'loc_name': locs, 'padlon': padlon, 'padlat': padlat, 'latmin': numpy.min(slats) - padlat, 'latmax': numpy.max(slats) + padlat, 'lonmin': numpy.min(slons) - padlon, 'lonmax': numpy.max(slons) + padlon, 'sym': 'ro', 'boundinglat': 0.0, 'pltgrid': 1.0} Opts['lon_0'] = 0.5 * (numpy.min(slons) + numpy.max(slons)) Opts['lat_0'] = 0.5 * (numpy.min(slats) + numpy.max(slats)) Opts['names'] = names Opts['gridspace'] = gridspace Opts['details'] = {'coasts': 1, 'rivers': 1, 'states': 1, 'countries': 1, 'ocean': 0} if ocean == 1: Opts['details']['ocean'] = 1 if rivers == 1: Opts['details']['rivers'] = 0 if boundaries == 1: Opts['details']['states'] = 0 Opts['details']['countries'] = 0 Opts['details']['fancy'] = fancy pmagplotlib.plot_map(FIG['map'], lats, lons, Opts) if verbose: pmagplotlib.draw_figs(FIG) files = {} for key in list(FIG.keys()): files[key] = 'Site_map' + '.' + fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles = {} titles['map'] = 'Site Map' FIG = pmagplotlib.add_borders(FIG, titles, black, purple) pmagplotlib.save_plots(FIG, files) elif verbose: ans = input(' S[a]ve to save plot, Return to quit: ') if ans == 'a': pmagplotlib.save_plots(FIG, files) else: pmagplotlib.save_plots(FIG, files)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n dir_path = '.'\n sites_file = 'er_sites.txt'\n ocean = 0\n res = 'i'\n proj = 'merc'\n prn_name = 0\n prn_loc = 0\n fancy = 0\n rivers, boundaries = 0, 0\n padlon, padlat, gridspace, details = 0.5, 0.5, 0.5, 1\n fmt = 'pdf'\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n sites_file = sys.argv[ind + 1]\n if '-res' in sys.argv:\n ind = sys.argv.index('-res')\n res = sys.argv[ind + 1]\n if '-etp' in sys.argv:\n fancy = 1\n if '-n' in sys.argv:\n prn_name = 1\n if '-l' in sys.argv:\n prn_loc = 1\n if '-o' in sys.argv:\n ocean = 1\n if '-R' in sys.argv:\n rivers = 0\n if '-B' in sys.argv:\n boundaries = 0\n if '-prj' in sys.argv:\n ind = sys.argv.index('-prj')\n proj = sys.argv[ind + 1]\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n verbose = pmagplotlib.verbose\n if '-sav' in sys.argv:\n verbose = 0\n if '-pad' in sys.argv:\n ind = sys.argv.index('-pad')\n padlat = float(sys.argv[ind + 1])\n padlon = float(sys.argv[ind + 2])\n if '-grd' in sys.argv:\n ind = sys.argv.index('-grd')\n gridspace = float(sys.argv[ind + 1])\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n sites_file = dir_path + '/' + sites_file\n location = ''\n FIG = {'map': 1}\n pmagplotlib.plot_init(FIG['map'], 6, 6)\n Sites, file_type = pmag.magic_read(sites_file)\n if 'results' in file_type:\n latkey = 'average_lat'\n lonkey = 'average_lon'\n namekey = 'pmag_result_name'\n lockey = 'er_location_names'\n else:\n latkey = 'site_lat'\n lonkey = 'site_lon'\n namekey = 'er_site_name'\n lockey = 'er_location_name'\n lats, lons = [], []\n slats, slons = [], []\n names, locs = [], []\n for site in Sites:\n if prn_loc == 1 and location == '':\n location = site['er_location_name']\n lats.append(float(site[latkey]))\n l = float(site[lonkey])\n if l < 0:\n l = l + 360.0\n lons.append(l)\n if prn_name == 1:\n names.append(site[namekey])\n if prn_loc == 1:\n locs.append(site[lockey])\n for lat in lats:\n slats.append(lat)\n for lon in lons:\n slons.append(lon)\n Opts = {'res': res, 'proj': proj, 'loc_name': locs, 'padlon': padlon,\n 'padlat': padlat, 'latmin': numpy.min(slats) - padlat, 'latmax': \n numpy.max(slats) + padlat, 'lonmin': numpy.min(slons) - padlon,\n 'lonmax': numpy.max(slons) + padlon, 'sym': 'ro', 'boundinglat': \n 0.0, 'pltgrid': 1.0}\n Opts['lon_0'] = 0.5 * (numpy.min(slons) + numpy.max(slons))\n Opts['lat_0'] = 0.5 * (numpy.min(slats) + numpy.max(slats))\n Opts['names'] = names\n Opts['gridspace'] = gridspace\n Opts['details'] = {'coasts': 1, 'rivers': 1, 'states': 1, 'countries': \n 1, 'ocean': 0}\n if ocean == 1:\n Opts['details']['ocean'] = 1\n if rivers == 1:\n Opts['details']['rivers'] = 0\n if boundaries == 1:\n Opts['details']['states'] = 0\n Opts['details']['countries'] = 0\n Opts['details']['fancy'] = fancy\n pmagplotlib.plot_map(FIG['map'], lats, lons, Opts)\n if verbose:\n pmagplotlib.draw_figs(FIG)\n files = {}\n for key in list(FIG.keys()):\n files[key] = 'Site_map' + '.' + fmt\n if pmagplotlib.isServer:\n black = '#000000'\n purple = '#800080'\n titles = {}\n titles['map'] = 'Site Map'\n FIG = pmagplotlib.add_borders(FIG, titles, black, purple)\n pmagplotlib.save_plots(FIG, files)\n elif verbose:\n ans = input(' S[a]ve to save plot, Return to quit: ')\n if ans == 'a':\n pmagplotlib.save_plots(FIG, files)\n else:\n pmagplotlib.save_plots(FIG, files)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(): inc = [] if '-h' in sys.argv: print(main.__doc__) sys.exit() if '-i' in sys.argv: file = input('Enter file name with inc data: ') inc = numpy.loadtxt(file) elif '-f' in sys.argv: ind = sys.argv.index('-f') file = sys.argv[ind + 1] inc = numpy.loadtxt(file) else: inc = numpy.loadtxt(sys.stdin, dtype=numpy.float) ofile = '' if '-F' in sys.argv: ind = sys.argv.index('-F') ofile = sys.argv[ind + 1] out = open(ofile, 'w + a') fpars = pmag.doincfish(inc) outstring = '%7.1f %7.1f %i %8.1f %7.1f %7.1f' % (fpars['ginc'], fpars ['inc'], fpars['n'], fpars['r'], fpars['k'], fpars['alpha95']) if ofile == '': print(outstring) else: out.write(outstring + '\n')
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n inc = []\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-i' in sys.argv:\n file = input('Enter file name with inc data: ')\n inc = numpy.loadtxt(file)\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n inc = numpy.loadtxt(file)\n else:\n inc = numpy.loadtxt(sys.stdin, dtype=numpy.float)\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n fpars = pmag.doincfish(inc)\n outstring = '%7.1f %7.1f %i %8.1f %7.1f %7.1f' % (fpars['ginc'], fpars\n ['inc'], fpars['n'], fpars['r'], fpars['k'], fpars['alpha95'])\n if ofile == '':\n print(outstring)\n else:\n out.write(outstring + '\\n')\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(undecorated, sort_on): decorated = [(len(dict_[sort_on]) if hasattr(dict_[sort_on], '__len__') else dict_[sort_on], index) for index, dict_ in enumerate(undecorated) ] decorated.sort() return [undecorated[index] for key, index in decorated]
sort_diclist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(undecorated, sort_on):\n decorated = [(len(dict_[sort_on]) if hasattr(dict_[sort_on], '__len__')\n else dict_[sort_on], index) for index, dict_ in enumerate(undecorated)\n ]\n decorated.sort()\n return [undecorated[index] for key, index in decorated]\n", "role": "user" }, { "content": "sort_diclist", "role": "assistant" } ]
def x(In, k, v, flag, float_to_int=False): if float_to_int: try: v = str(math.trunc(float(v))) except ValueError: pass except TypeError: pass fixed_In = [] for dictionary in In: if k in dictionary: val = dictionary[k] try: val = str(math.trunc(float(val))) except ValueError: pass except TypeError: pass dictionary[k] = val fixed_In.append(dictionary) In = fixed_In if flag == 'T': return [dictionary for dictionary in In if k in list(dictionary. keys()) and str(dictionary[k]).lower() == str(v).lower()] if flag == 'F': return [dictionary for dictionary in In if k in list(dictionary. keys()) and str(dictionary[k]).lower() != str(v).lower()] if flag == 'has': return [dictionary for dictionary in In if k in list(dictionary. keys()) and str(v).lower() in str(dictionary[k]).lower()] if flag == 'not': return [dictionary for dictionary in In if k in list(dictionary. keys()) and str(v).lower() not in str(dictionary[k]).lower()] if flag == 'eval': A = [dictionary for dictionary in In if k in list(dictionary.keys() ) and dictionary[k] != ''] return [dictionary for dictionary in A if k in list(dictionary.keys ()) and float(dictionary[k]) == float(v)] if flag == 'min': A = [dictionary for dictionary in In if k in list(dictionary.keys() ) and dictionary[k] != ''] return [dictionary for dictionary in A if k in list(dictionary.keys ()) and float(dictionary[k]) >= float(v)] if flag == 'max': A = [dictionary for dictionary in In if k in list(dictionary.keys() ) and dictionary[k] != ''] return [dictionary for dictionary in A if k in list(dictionary.keys ()) and float(dictionary[k]) <= float(v)] if flag == 'not_null': return [dictionary for dictionary in In if dictionary[k]]
get_dictitem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(In, k, v, flag, float_to_int=False):\n if float_to_int:\n try:\n v = str(math.trunc(float(v)))\n except ValueError:\n pass\n except TypeError:\n pass\n fixed_In = []\n for dictionary in In:\n if k in dictionary:\n val = dictionary[k]\n try:\n val = str(math.trunc(float(val)))\n except ValueError:\n pass\n except TypeError:\n pass\n dictionary[k] = val\n fixed_In.append(dictionary)\n In = fixed_In\n if flag == 'T':\n return [dictionary for dictionary in In if k in list(dictionary.\n keys()) and str(dictionary[k]).lower() == str(v).lower()]\n if flag == 'F':\n return [dictionary for dictionary in In if k in list(dictionary.\n keys()) and str(dictionary[k]).lower() != str(v).lower()]\n if flag == 'has':\n return [dictionary for dictionary in In if k in list(dictionary.\n keys()) and str(v).lower() in str(dictionary[k]).lower()]\n if flag == 'not':\n return [dictionary for dictionary in In if k in list(dictionary.\n keys()) and str(v).lower() not in str(dictionary[k]).lower()]\n if flag == 'eval':\n A = [dictionary for dictionary in In if k in list(dictionary.keys()\n ) and dictionary[k] != '']\n return [dictionary for dictionary in A if k in list(dictionary.keys\n ()) and float(dictionary[k]) == float(v)]\n if flag == 'min':\n A = [dictionary for dictionary in In if k in list(dictionary.keys()\n ) and dictionary[k] != '']\n return [dictionary for dictionary in A if k in list(dictionary.keys\n ()) and float(dictionary[k]) >= float(v)]\n if flag == 'max':\n A = [dictionary for dictionary in In if k in list(dictionary.keys()\n ) and dictionary[k] != '']\n return [dictionary for dictionary in A if k in list(dictionary.keys\n ()) and float(dictionary[k]) <= float(v)]\n if flag == 'not_null':\n return [dictionary for dictionary in In if dictionary[k]]\n", "role": "user" }, { "content": "get_dictitem", "role": "assistant" } ]
def x(In, k, dtype): Out = [] for d in In: if dtype == '': Out.append(d[k]) if dtype == 'f': if d[k] == '': Out.append(0) elif d[k] == None: Out.append(0) else: Out.append(float(d[k])) if dtype == 'int': if d[k] == '': Out.append(0) elif d[k] == None: Out.append(0) else: Out.append(int(d[k])) return Out
get_dictkey
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(In, k, dtype):\n Out = []\n for d in In:\n if dtype == '':\n Out.append(d[k])\n if dtype == 'f':\n if d[k] == '':\n Out.append(0)\n elif d[k] == None:\n Out.append(0)\n else:\n Out.append(float(d[k]))\n if dtype == 'int':\n if d[k] == '':\n Out.append(0)\n elif d[k] == None:\n Out.append(0)\n else:\n Out.append(int(d[k]))\n return Out\n", "role": "user" }, { "content": "get_dictkey", "role": "assistant" } ]
def x(samp_data, er_sample_name, **kwargs): if isinstance(samp_data, pd.DataFrame): samp_data = samp_data.T.apply(dict) EX = ['SO-ASC', 'SO-POM'] samp_key, az_key, dip_key = ('er_sample_name', 'sample_azimuth', 'sample_dip') disc_key, or_key, meth_key = ('sample_description', 'sample_orientation_flag', 'magic_method_codes') if 'data_model' in list(kwargs.keys()) and kwargs['data_model'] == 3: samp_key, az_key, dip_key = 'sample', 'azimuth', 'dip' disc_key, or_key, meth_key = ('description', 'orientation_quality', 'method_codes') orient = {samp_key: er_sample_name, az_key: '', dip_key: '', disc_key: ''} orients = get_dictitem(samp_data, samp_key, er_sample_name, 'T') if len(orients) > 0 and or_key in list(orients[0].keys()): orients = get_dictitem(orients, or_key, 'b', 'F') if len(orients) > 0: orient = orients[0] methods = get_dictitem(orients, meth_key, 'SO-', 'has') methods = get_dictkey(methods, meth_key, '') SO_methods = [] for methcode in methods: meths = methcode.split(':') for meth in meths: if meth.strip() not in EX and meth.startswith('SO-'): SO_methods.append(meth.strip()) if len(SO_methods) == 0: print('no orientation data for sample ', er_sample_name) orig_data = get_dictitem(samp_data, samp_key, er_sample_name, 'T') if len(orig_data) > 0: orig_data = orig_data[0] else: orig_data = [] az_type = 'SO-NO' else: SO_priorities = set_priorities(SO_methods, 0) az_type = SO_methods[SO_methods.index(SO_priorities[0])] orient = get_dictitem(orients, meth_key, az_type, 'has')[0] return orient, az_type
get_orient
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samp_data, er_sample_name, **kwargs):\n if isinstance(samp_data, pd.DataFrame):\n samp_data = samp_data.T.apply(dict)\n EX = ['SO-ASC', 'SO-POM']\n samp_key, az_key, dip_key = ('er_sample_name', 'sample_azimuth',\n 'sample_dip')\n disc_key, or_key, meth_key = ('sample_description',\n 'sample_orientation_flag', 'magic_method_codes')\n if 'data_model' in list(kwargs.keys()) and kwargs['data_model'] == 3:\n samp_key, az_key, dip_key = 'sample', 'azimuth', 'dip'\n disc_key, or_key, meth_key = ('description', 'orientation_quality',\n 'method_codes')\n orient = {samp_key: er_sample_name, az_key: '', dip_key: '', disc_key: ''}\n orients = get_dictitem(samp_data, samp_key, er_sample_name, 'T')\n if len(orients) > 0 and or_key in list(orients[0].keys()):\n orients = get_dictitem(orients, or_key, 'b', 'F')\n if len(orients) > 0:\n orient = orients[0]\n methods = get_dictitem(orients, meth_key, 'SO-', 'has')\n methods = get_dictkey(methods, meth_key, '')\n SO_methods = []\n for methcode in methods:\n meths = methcode.split(':')\n for meth in meths:\n if meth.strip() not in EX and meth.startswith('SO-'):\n SO_methods.append(meth.strip())\n if len(SO_methods) == 0:\n print('no orientation data for sample ', er_sample_name)\n orig_data = get_dictitem(samp_data, samp_key, er_sample_name, 'T')\n if len(orig_data) > 0:\n orig_data = orig_data[0]\n else:\n orig_data = []\n az_type = 'SO-NO'\n else:\n SO_priorities = set_priorities(SO_methods, 0)\n az_type = SO_methods[SO_methods.index(SO_priorities[0])]\n orient = get_dictitem(orients, meth_key, az_type, 'has')[0]\n return orient, az_type\n", "role": "user" }, { "content": "get_orient", "role": "assistant" } ]
def x(inc): poly_tk03 = [3.15976125e-06, -0.000352459817, -0.014664109, 2.89538539] return poly_tk03[0] * inc ** 3 + poly_tk03[1] * inc ** 2 + poly_tk03[2 ] * inc + poly_tk03[3]
EI
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inc):\n poly_tk03 = [3.15976125e-06, -0.000352459817, -0.014664109, 2.89538539]\n return poly_tk03[0] * inc ** 3 + poly_tk03[1] * inc ** 2 + poly_tk03[2\n ] * inc + poly_tk03[3]\n", "role": "user" }, { "content": "EI", "role": "assistant" } ]
def x(data): rad = np.pi / 180.0 Es, Is, Fs, V2s = [], [], [], [] ppars = doprinc(data) D = ppars['dec'] Decs, Incs = data.transpose()[0], data.transpose()[1] Tan_Incs = np.tan(Incs * rad) for f in np.arange(1.0, 0.2, -0.01): U = old_div(np.arctan(old_div(1.0, f) * Tan_Incs), rad) fdata = np.array([Decs, U]).transpose() ppars = doprinc(fdata) Fs.append(f) Es.append(old_div(ppars['tau2'], ppars['tau3'])) ang = angle([D, 0], [ppars['V2dec'], 0]) if 180.0 - ang < ang: ang = 180.0 - ang V2s.append(ang) Is.append(abs(ppars['inc'])) if EI(abs(ppars['inc'])) <= Es[-1]: del Es[-1] del Is[-1] del Fs[-1] del V2s[-1] if len(Fs) > 0: for f in np.arange(Fs[-1], 0.2, -0.005): U = old_div(np.arctan(old_div(1.0, f) * Tan_Incs), rad) fdata = np.array([Decs, U]).transpose() ppars = doprinc(fdata) Fs.append(f) Es.append(old_div(ppars['tau2'], ppars['tau3'])) Is.append(abs(ppars['inc'])) ang = angle([D, 0], [ppars['V2dec'], 0]) if 180.0 - ang < ang: ang = 180.0 - ang V2s.append(ang) if EI(abs(ppars['inc'])) <= Es[-1]: return Es, Is, Fs, V2s return [0], [0], [0], [0]
find_f
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n rad = np.pi / 180.0\n Es, Is, Fs, V2s = [], [], [], []\n ppars = doprinc(data)\n D = ppars['dec']\n Decs, Incs = data.transpose()[0], data.transpose()[1]\n Tan_Incs = np.tan(Incs * rad)\n for f in np.arange(1.0, 0.2, -0.01):\n U = old_div(np.arctan(old_div(1.0, f) * Tan_Incs), rad)\n fdata = np.array([Decs, U]).transpose()\n ppars = doprinc(fdata)\n Fs.append(f)\n Es.append(old_div(ppars['tau2'], ppars['tau3']))\n ang = angle([D, 0], [ppars['V2dec'], 0])\n if 180.0 - ang < ang:\n ang = 180.0 - ang\n V2s.append(ang)\n Is.append(abs(ppars['inc']))\n if EI(abs(ppars['inc'])) <= Es[-1]:\n del Es[-1]\n del Is[-1]\n del Fs[-1]\n del V2s[-1]\n if len(Fs) > 0:\n for f in np.arange(Fs[-1], 0.2, -0.005):\n U = old_div(np.arctan(old_div(1.0, f) * Tan_Incs), rad)\n fdata = np.array([Decs, U]).transpose()\n ppars = doprinc(fdata)\n Fs.append(f)\n Es.append(old_div(ppars['tau2'], ppars['tau3']))\n Is.append(abs(ppars['inc']))\n ang = angle([D, 0], [ppars['V2dec'], 0])\n if 180.0 - ang < ang:\n ang = 180.0 - ang\n V2s.append(ang)\n if EI(abs(ppars['inc'])) <= Es[-1]:\n return Es, Is, Fs, V2s\n return [0], [0], [0], [0]\n", "role": "user" }, { "content": "find_f", "role": "assistant" } ]
def x(Recs): New = [] for rec in Recs: if 'model_lat' in list(rec.keys()) and rec['model_lat'] != '': New.append(rec) elif 'average_age' in list(rec.keys()) and rec['average_age' ] != '' and float(rec['average_age']) <= 5.0: if 'site_lat' in list(rec.keys()) and rec['site_lat'] != '': rec['model_lat'] = rec['site_lat'] New.append(rec) elif 'average_inc' in list(rec.keys()) and rec['average_inc'] != '': rec['model_lat'] = '%7.1f' % plat(float(rec['average_inc'])) New.append(rec) return New
convert_lat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Recs):\n New = []\n for rec in Recs:\n if 'model_lat' in list(rec.keys()) and rec['model_lat'] != '':\n New.append(rec)\n elif 'average_age' in list(rec.keys()) and rec['average_age'\n ] != '' and float(rec['average_age']) <= 5.0:\n if 'site_lat' in list(rec.keys()) and rec['site_lat'] != '':\n rec['model_lat'] = rec['site_lat']\n New.append(rec)\n elif 'average_inc' in list(rec.keys()) and rec['average_inc'] != '':\n rec['model_lat'] = '%7.1f' % plat(float(rec['average_inc']))\n New.append(rec)\n return New\n", "role": "user" }, { "content": "convert_lat", "role": "assistant" } ]
def x(Recs, data_model=3): if data_model == 3: site_key = 'site' agekey = 'age' keybase = '' else: site_key = 'er_site_names' agekey = find('age', list(rec.keys())) if agekey != '': keybase = agekey.split('_')[0] + '_' New = [] for rec in Recs: age = '' if rec[keybase + 'age'] != '': age = float(rec[keybase + 'age']) elif rec[keybase + 'age_low'] != '' and rec[keybase + 'age_high' ] != '': age = np.mean([rec[keybase + 'age_high'], rec[keybase + 'age_low']] ) if age != '': rec[keybase + 'age_unit'] if rec[keybase + 'age_unit'] == 'Ma': rec[keybase + 'age'] = '%10.4e' % age elif rec[keybase + 'age_unit'] == 'ka' or rec[keybase + 'age_unit' ] == 'Ka': rec[keybase + 'age'] = '%10.4e' % (age * 0.001) elif rec[keybase + 'age_unit'] == 'Years AD (+/-)': rec[keybase + 'age'] = '%10.4e' % ((2011 - age) * 1e-06) elif rec[keybase + 'age_unit'] == 'Years BP': rec[keybase + 'age'] = '%10.4e' % (age * 1e-06) rec[keybase + 'age_unit'] = 'Ma' New.append(rec) elif 'site_key' in list(rec.keys()): print('problem in convert_ages:', rec['site_key']) elif 'er_site_name' in list(rec.keys()): print('problem in convert_ages:', rec['site_key']) else: print('problem in convert_ages:', rec) if len(New) == 0: print('no age key:', rec) return New
convert_ages
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Recs, data_model=3):\n if data_model == 3:\n site_key = 'site'\n agekey = 'age'\n keybase = ''\n else:\n site_key = 'er_site_names'\n agekey = find('age', list(rec.keys()))\n if agekey != '':\n keybase = agekey.split('_')[0] + '_'\n New = []\n for rec in Recs:\n age = ''\n if rec[keybase + 'age'] != '':\n age = float(rec[keybase + 'age'])\n elif rec[keybase + 'age_low'] != '' and rec[keybase + 'age_high'\n ] != '':\n age = np.mean([rec[keybase + 'age_high'], rec[keybase + 'age_low']]\n )\n if age != '':\n rec[keybase + 'age_unit']\n if rec[keybase + 'age_unit'] == 'Ma':\n rec[keybase + 'age'] = '%10.4e' % age\n elif rec[keybase + 'age_unit'] == 'ka' or rec[keybase + 'age_unit'\n ] == 'Ka':\n rec[keybase + 'age'] = '%10.4e' % (age * 0.001)\n elif rec[keybase + 'age_unit'] == 'Years AD (+/-)':\n rec[keybase + 'age'] = '%10.4e' % ((2011 - age) * 1e-06)\n elif rec[keybase + 'age_unit'] == 'Years BP':\n rec[keybase + 'age'] = '%10.4e' % (age * 1e-06)\n rec[keybase + 'age_unit'] = 'Ma'\n New.append(rec)\n elif 'site_key' in list(rec.keys()):\n print('problem in convert_ages:', rec['site_key'])\n elif 'er_site_name' in list(rec.keys()):\n print('problem in convert_ages:', rec['site_key'])\n else:\n print('problem in convert_ages:', rec)\n if len(New) == 0:\n print('no age key:', rec)\n return New\n", "role": "user" }, { "content": "convert_ages", "role": "assistant" } ]
def x(data, mapping): new_recs = [] for rec in data: new_rec = map_magic.mapping(rec, mapping) new_recs.append(new_rec) return new_recs
convert_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, mapping):\n new_recs = []\n for rec in data:\n new_rec = map_magic.mapping(rec, mapping)\n new_recs.append(new_rec)\n return new_recs\n", "role": "user" }, { "content": "convert_items", "role": "assistant" } ]
def x(meas_fname='magic_measurements.txt', input_dir='.', output_dir='.', meas_only=False, data_model=None): convert = {'specimens': map_magic.spec_magic2_2_magic3_map, 'samples': map_magic.samp_magic2_2_magic3_map, 'sites': map_magic. site_magic2_2_magic3_map, 'locations': map_magic. loc_magic2_2_magic3_map, 'ages': map_magic.age_magic2_2_magic3_map} full_name = os.path.join(input_dir, meas_fname) if not os.path.exists(full_name): print('-W- {} is not a file'.format(full_name)) return False, False, False data2, filetype = magic_read(full_name) NewMeas = convert_items(data2, map_magic.meas_magic2_2_magic3_map) ofile = os.path.join(output_dir, 'measurements.txt') magic_write(ofile, NewMeas, 'measurements') upgraded = [] if os.path.exists(ofile): print('-I- 3.0 format measurements file was successfully created: {}' .format(ofile)) upgraded.append('measurements.txt') else: print('-W- 3.0 format measurements file could not be created') no_upgrade = [] if not meas_only: for dtype in ['specimens', 'samples', 'sites', 'locations', 'ages']: mapping = convert[dtype] res = convert_and_combine_2_to_3(dtype, mapping, input_dir, output_dir, data_model) if res: upgraded.append(res) if os.path.exists(os.path.join(input_dir, 'pmag_criteria.txt')): crit_file = convert_criteria_file_2_to_3(input_dir=input_dir, output_dir=output_dir, data_model=data_model)[0] if crit_file: upgraded.append(crit_file) else: no_upgrade.append('pmag_criteria.txt') for fname in os.listdir(input_dir): if fname in ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt']: continue elif 'rmag' in fname: no_upgrade.append(fname) elif fname in ['pmag_results.txt', 'er_synthetics.txt', 'er_images.txt', 'er_plots.txt']: no_upgrade.append(fname) return NewMeas, upgraded, no_upgrade
convert_directory_2_to_3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(meas_fname='magic_measurements.txt', input_dir='.', output_dir='.',\n meas_only=False, data_model=None):\n convert = {'specimens': map_magic.spec_magic2_2_magic3_map, 'samples':\n map_magic.samp_magic2_2_magic3_map, 'sites': map_magic.\n site_magic2_2_magic3_map, 'locations': map_magic.\n loc_magic2_2_magic3_map, 'ages': map_magic.age_magic2_2_magic3_map}\n full_name = os.path.join(input_dir, meas_fname)\n if not os.path.exists(full_name):\n print('-W- {} is not a file'.format(full_name))\n return False, False, False\n data2, filetype = magic_read(full_name)\n NewMeas = convert_items(data2, map_magic.meas_magic2_2_magic3_map)\n ofile = os.path.join(output_dir, 'measurements.txt')\n magic_write(ofile, NewMeas, 'measurements')\n upgraded = []\n if os.path.exists(ofile):\n print('-I- 3.0 format measurements file was successfully created: {}'\n .format(ofile))\n upgraded.append('measurements.txt')\n else:\n print('-W- 3.0 format measurements file could not be created')\n no_upgrade = []\n if not meas_only:\n for dtype in ['specimens', 'samples', 'sites', 'locations', 'ages']:\n mapping = convert[dtype]\n res = convert_and_combine_2_to_3(dtype, mapping, input_dir,\n output_dir, data_model)\n if res:\n upgraded.append(res)\n if os.path.exists(os.path.join(input_dir, 'pmag_criteria.txt')):\n crit_file = convert_criteria_file_2_to_3(input_dir=input_dir,\n output_dir=output_dir, data_model=data_model)[0]\n if crit_file:\n upgraded.append(crit_file)\n else:\n no_upgrade.append('pmag_criteria.txt')\n for fname in os.listdir(input_dir):\n if fname in ['measurements.txt', 'specimens.txt', 'samples.txt',\n 'sites.txt', 'locations.txt']:\n continue\n elif 'rmag' in fname:\n no_upgrade.append(fname)\n elif fname in ['pmag_results.txt', 'er_synthetics.txt',\n 'er_images.txt', 'er_plots.txt']:\n no_upgrade.append(fname)\n return NewMeas, upgraded, no_upgrade\n", "role": "user" }, { "content": "convert_directory_2_to_3", "role": "assistant" } ]
def x(dtype, map_dict, input_dir='.', output_dir='.', data_model=None): er_file = os.path.join(input_dir, 'er_{}.txt'.format(dtype)) er_data, er_dtype = magic_read(er_file) if len(er_data): er_df = pd.DataFrame(er_data) if dtype == 'ages': pass else: er_df.index = er_df['er_{}_name'.format(dtype[:-1])] else: er_df = pd.DataFrame() if dtype == 'ages': full_df = er_df else: pmag_file = os.path.join(input_dir, 'pmag_{}.txt'.format(dtype)) pmag_data, pmag_dtype = magic_read(pmag_file) if len(pmag_data): pmag_df = pd.DataFrame(pmag_data) pmag_df.index = pmag_df['er_{}_name'.format(dtype[:-1])] else: pmag_df = pd.DataFrame() full_df = pd.concat([er_df, pmag_df], sort=True) full_df.sort_index(inplace=True) full_df.rename(columns=map_dict, inplace=True) new_df = cb.MagicDataFrame(dtype=dtype, df=full_df, dmodel=data_model) if len(new_df.df): new_df.write_magic_file(dir_path=output_dir) return dtype + '.txt' else: print('-I- No {} data found.'.format(dtype)) return None
convert_and_combine_2_to_3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dtype, map_dict, input_dir='.', output_dir='.', data_model=None):\n er_file = os.path.join(input_dir, 'er_{}.txt'.format(dtype))\n er_data, er_dtype = magic_read(er_file)\n if len(er_data):\n er_df = pd.DataFrame(er_data)\n if dtype == 'ages':\n pass\n else:\n er_df.index = er_df['er_{}_name'.format(dtype[:-1])]\n else:\n er_df = pd.DataFrame()\n if dtype == 'ages':\n full_df = er_df\n else:\n pmag_file = os.path.join(input_dir, 'pmag_{}.txt'.format(dtype))\n pmag_data, pmag_dtype = magic_read(pmag_file)\n if len(pmag_data):\n pmag_df = pd.DataFrame(pmag_data)\n pmag_df.index = pmag_df['er_{}_name'.format(dtype[:-1])]\n else:\n pmag_df = pd.DataFrame()\n full_df = pd.concat([er_df, pmag_df], sort=True)\n full_df.sort_index(inplace=True)\n full_df.rename(columns=map_dict, inplace=True)\n new_df = cb.MagicDataFrame(dtype=dtype, df=full_df, dmodel=data_model)\n if len(new_df.df):\n new_df.write_magic_file(dir_path=output_dir)\n return dtype + '.txt'\n else:\n print('-I- No {} data found.'.format(dtype))\n return None\n", "role": "user" }, { "content": "convert_and_combine_2_to_3", "role": "assistant" } ]
def x(fname='pmag_criteria.txt', input_dir='.', output_dir='.', data_model=None ): fname = os.path.join(input_dir, fname) if not os.path.exists(fname): return False, None orig_crit, warnings = read_criteria_from_file(fname, initialize_acceptance_criteria(), data_model=2, return_warnings=True) converted_crit = {} if not data_model: from . import data_model3 as dm3 DM = dm3.DataModel() else: DM = data_model crit_map = DM.crit_map stripped_crit_map = crit_map.dropna(axis='rows') for crit in orig_crit: if orig_crit[crit]['value'] in [-999, '-999', -999.0]: continue if crit in stripped_crit_map.index: criterion_operation = stripped_crit_map.loc[crit]['criteria_map'][ 'criterion_operation'] table_col = stripped_crit_map.loc[crit]['criteria_map'][ 'table_column'] orig_crit[crit]['criterion_operation'] = criterion_operation converted_crit[table_col] = orig_crit[crit] else: print('-W- Could not convert {} to 3.0, skipping'.format(crit)) converted_df = pd.DataFrame(converted_crit).transpose() converted_df.index.name = 'table_column' converted_df.rename(columns={'pmag_criteria_code': 'criterion', 'er_citation_names': 'citations', 'criteria_definition': 'description', 'value': 'criterion_value'}, inplace=True) valid_cols = DM.dm['criteria'].index drop_cols = set(converted_df.columns) - set(valid_cols) converted_df.drop(drop_cols, axis='columns', inplace=True) converted_df['table_column'] = converted_df.index crit_container = cb.MagicDataFrame(dtype='criteria', df=converted_df) crit_container.write_magic_file(dir_path=output_dir) return 'criteria.txt', crit_container
convert_criteria_file_2_to_3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname='pmag_criteria.txt', input_dir='.', output_dir='.', data_model=None\n ):\n fname = os.path.join(input_dir, fname)\n if not os.path.exists(fname):\n return False, None\n orig_crit, warnings = read_criteria_from_file(fname,\n initialize_acceptance_criteria(), data_model=2, return_warnings=True)\n converted_crit = {}\n if not data_model:\n from . import data_model3 as dm3\n DM = dm3.DataModel()\n else:\n DM = data_model\n crit_map = DM.crit_map\n stripped_crit_map = crit_map.dropna(axis='rows')\n for crit in orig_crit:\n if orig_crit[crit]['value'] in [-999, '-999', -999.0]:\n continue\n if crit in stripped_crit_map.index:\n criterion_operation = stripped_crit_map.loc[crit]['criteria_map'][\n 'criterion_operation']\n table_col = stripped_crit_map.loc[crit]['criteria_map'][\n 'table_column']\n orig_crit[crit]['criterion_operation'] = criterion_operation\n converted_crit[table_col] = orig_crit[crit]\n else:\n print('-W- Could not convert {} to 3.0, skipping'.format(crit))\n converted_df = pd.DataFrame(converted_crit).transpose()\n converted_df.index.name = 'table_column'\n converted_df.rename(columns={'pmag_criteria_code': 'criterion',\n 'er_citation_names': 'citations', 'criteria_definition':\n 'description', 'value': 'criterion_value'}, inplace=True)\n valid_cols = DM.dm['criteria'].index\n drop_cols = set(converted_df.columns) - set(valid_cols)\n converted_df.drop(drop_cols, axis='columns', inplace=True)\n converted_df['table_column'] = converted_df.index\n crit_container = cb.MagicDataFrame(dtype='criteria', df=converted_df)\n crit_container.write_magic_file(dir_path=output_dir)\n return 'criteria.txt', crit_container\n", "role": "user" }, { "content": "convert_criteria_file_2_to_3", "role": "assistant" } ]
def x(mag_azimuth, field_dip, or_con): or_con = str(or_con) if mag_azimuth == -999: return '', '' if or_con == '1': return mag_azimuth, -field_dip if or_con == '2': return mag_azimuth - 90.0, -field_dip if or_con == '3': return mag_azimuth, 90.0 - field_dip if or_con == '4': return mag_azimuth, field_dip if or_con == '5': return mag_azimuth, field_dip - 90.0 if or_con == '6': return mag_azimuth - 90.0, 90.0 - field_dip if or_con == '7': return mag_azimuth - 90.0, 90.0 - field_dip print('Error in orientation convention')
orient
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mag_azimuth, field_dip, or_con):\n or_con = str(or_con)\n if mag_azimuth == -999:\n return '', ''\n if or_con == '1':\n return mag_azimuth, -field_dip\n if or_con == '2':\n return mag_azimuth - 90.0, -field_dip\n if or_con == '3':\n return mag_azimuth, 90.0 - field_dip\n if or_con == '4':\n return mag_azimuth, field_dip\n if or_con == '5':\n return mag_azimuth, field_dip - 90.0\n if or_con == '6':\n return mag_azimuth - 90.0, 90.0 - field_dip\n if or_con == '7':\n return mag_azimuth - 90.0, 90.0 - field_dip\n print('Error in orientation convention')\n", "role": "user" }, { "content": "orient", "role": "assistant" } ]
def x(data): Sb, N = 0.0, 0.0 for rec in data: delta = 90.0 - abs(rec['vgp_lat']) if rec['average_k'] != 0: k = rec['average_k'] L = rec['average_lat'] * np.pi / 180.0 Nsi = rec['average_nn'] K = old_div(k, 2.0 * (1.0 + 3.0 * np.sin(L) ** 2) / (5.0 - 3.0 * np.sin(L) ** 2)) Sw = old_div(81.0, np.sqrt(K)) else: Sw, Nsi = 0, 1.0 Sb += delta ** 2.0 - old_div(Sw ** 2, Nsi) N += 1.0 return np.sqrt(old_div(Sb, float(N - 1.0)))
get_Sb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n Sb, N = 0.0, 0.0\n for rec in data:\n delta = 90.0 - abs(rec['vgp_lat'])\n if rec['average_k'] != 0:\n k = rec['average_k']\n L = rec['average_lat'] * np.pi / 180.0\n Nsi = rec['average_nn']\n K = old_div(k, 2.0 * (1.0 + 3.0 * np.sin(L) ** 2) / (5.0 - 3.0 *\n np.sin(L) ** 2))\n Sw = old_div(81.0, np.sqrt(K))\n else:\n Sw, Nsi = 0, 1.0\n Sb += delta ** 2.0 - old_div(Sw ** 2, Nsi)\n N += 1.0\n return np.sqrt(old_div(Sb, float(N - 1.0)))\n", "role": "user" }, { "content": "get_Sb", "role": "assistant" } ]
def x(df, mm97=False): df['delta'] = 90.0 - df.vgp_lat Sp2 = np.sum(df.delta ** 2) / (df.shape[0] - 1) if 'dir_k' in df.columns and mm97: ks = df.dir_k Ns = df.dir_n Ls = np.radians(df.lat) A95s = 140.0 / np.sqrt(ks * Ns) Sw2_n = 0.335 * A95s ** 2 * (2.0 * (1.0 + 3.0 * np.sin(Ls) ** 2) / (5.0 - 3.0 * np.sin(Ls) ** 2)) return np.sqrt(Sp2 - Sw2_n.mean()) else: return np.sqrt(Sp2)
get_sb_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, mm97=False):\n df['delta'] = 90.0 - df.vgp_lat\n Sp2 = np.sum(df.delta ** 2) / (df.shape[0] - 1)\n if 'dir_k' in df.columns and mm97:\n ks = df.dir_k\n Ns = df.dir_n\n Ls = np.radians(df.lat)\n A95s = 140.0 / np.sqrt(ks * Ns)\n Sw2_n = 0.335 * A95s ** 2 * (2.0 * (1.0 + 3.0 * np.sin(Ls) ** 2) /\n (5.0 - 3.0 * np.sin(Ls) ** 2))\n return np.sqrt(Sp2 - Sw2_n.mean())\n else:\n return np.sqrt(Sp2)\n", "role": "user" }, { "content": "get_sb_df", "role": "assistant" } ]
def x(PmagRec, ACCEPT, type, data_model=2.5): GREATERTHAN = ['specimen_q', 'site_k', 'site_n', 'site_n_lines', 'site_int_n', 'measurement_step_min', 'specimen_int_ptrm_n', 'specimen_fvds', 'specimen_frac', 'specimen_f', 'specimen_n', 'specimen_int_n', 'sample_int_n', 'average_age_min', 'average_k', 'average_r', 'specimen_magn_moment', 'specimen_magn_volume', 'specimen_rsc', 'sample_n', 'sample_n_lines', 'sample_n_planes', 'sample_k', 'sample_r', 'site_magn_moment', 'site_magn_volume', 'site_magn_mass', 'site_r'] ISTRUE = ['specimen_scat'] kill = [] sigma_types = ['sample_int_sigma', 'sample_int_sigma_perc', 'site_int_sigma', 'site_int_sigma_perc', 'average_int_sigma', 'average_int_sigma_perc'] sigmas = [] accept = {} if type == 'specimen_int': USEKEYS = ['specimen_q', 'measurement_step_min', 'measurement_step_max', 'specimen_int_ptrm_n', 'specimen_fvds', 'specimen_frac', 'specimen_f', 'specimen_int_n', 'specimen_magn_moment', 'specimen_magn_volume', 'specimen_rsc', 'specimen_scat', 'specimen_drats', 'specimen_int_mad', 'specimen_int_dang', 'specimen_md', 'specimen_b_beta', 'specimen_w', 'specimen_gmax'] if data_model == 3.0: USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'specimen_dir': USEKEYS = ['measurement_step_min', 'measurement_step_max', 'specimen_mad', 'specimen_n', 'specimen_magn_moment', 'specimen_magn_volume'] if data_model == 3.0: USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'sample_int': USEKEYS = ['sample_int_n', 'sample_int_sigma', 'sample_int_sigma_perc'] if data_model == 3.0: USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'sample_dir': USEKEYS = ['sample_alpha95', 'sample_n', 'sample_n_lines', 'sample_n_planes', 'sample_k', 'sample_r'] if data_model == 3.0: USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'site_int': USEKEYS = ['site_int_sigma', 'site_int_sigma_perc', 'site_int_n'] if data_model == 3.0: USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS] elif type == 'site_dir': USEKEYS = ['site_alpha95', 'site_k', 'site_n', 'site_n_lines', 'site_n_planes', 'site_r'] if data_model == 3.0: USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS] for key in list(ACCEPT.keys()): if ACCEPT[key] != '' and key in USEKEYS: if key in ISTRUE and ACCEPT[key] == 'TRUE' or ACCEPT[key ] == 'True': ACCEPT[key] = '1' elif ACCEPT[key] == 'FALSE' or ACCEPT[key] == 'False': ACCEPT[key] = '0' elif eval(ACCEPT[key]) == 0: ACCEPT[key] = '' accept[key] = ACCEPT[key] for key in sigma_types: if key in USEKEYS and key in list(accept.keys()) and key in list( PmagRec.keys()): sigmas.append(key) if len(sigmas) > 1: if PmagRec[sigmas[0]] == '' or PmagRec[sigmas[1]] == '': kill.append(sigmas[0]) kill.append(sigmas[1]) elif eval(PmagRec[sigmas[0]]) > eval(accept[sigmas[0]]) and eval( PmagRec[sigmas[1]]) > eval(accept[sigmas[1]]): kill.append(sigmas[0]) kill.append(sigmas[1]) elif len(sigmas) == 1 and sigmas[0] in list(accept.keys()): if PmagRec[sigmas[0]] > accept[sigmas[0]]: kill.append(sigmas[0]) for key in list(accept.keys()): if accept[key] != '': if key not in list(PmagRec.keys()) or PmagRec[key] == '': kill.append(key) elif key not in sigma_types: if key in ISTRUE: if PmagRec[key] != '1': kill.append(key) if key in GREATERTHAN: if eval(str(PmagRec[key])) < eval(str(accept[key])): kill.append(key) elif eval(str(PmagRec[key])) > eval(str(accept[key])): kill.append(key) return kill
grade
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(PmagRec, ACCEPT, type, data_model=2.5):\n GREATERTHAN = ['specimen_q', 'site_k', 'site_n', 'site_n_lines',\n 'site_int_n', 'measurement_step_min', 'specimen_int_ptrm_n',\n 'specimen_fvds', 'specimen_frac', 'specimen_f', 'specimen_n',\n 'specimen_int_n', 'sample_int_n', 'average_age_min', 'average_k',\n 'average_r', 'specimen_magn_moment', 'specimen_magn_volume',\n 'specimen_rsc', 'sample_n', 'sample_n_lines', 'sample_n_planes',\n 'sample_k', 'sample_r', 'site_magn_moment', 'site_magn_volume',\n 'site_magn_mass', 'site_r']\n ISTRUE = ['specimen_scat']\n kill = []\n sigma_types = ['sample_int_sigma', 'sample_int_sigma_perc',\n 'site_int_sigma', 'site_int_sigma_perc', 'average_int_sigma',\n 'average_int_sigma_perc']\n sigmas = []\n accept = {}\n if type == 'specimen_int':\n USEKEYS = ['specimen_q', 'measurement_step_min',\n 'measurement_step_max', 'specimen_int_ptrm_n', 'specimen_fvds',\n 'specimen_frac', 'specimen_f', 'specimen_int_n',\n 'specimen_magn_moment', 'specimen_magn_volume', 'specimen_rsc',\n 'specimen_scat', 'specimen_drats', 'specimen_int_mad',\n 'specimen_int_dang', 'specimen_md', 'specimen_b_beta',\n 'specimen_w', 'specimen_gmax']\n if data_model == 3.0:\n USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS]\n elif type == 'specimen_dir':\n USEKEYS = ['measurement_step_min', 'measurement_step_max',\n 'specimen_mad', 'specimen_n', 'specimen_magn_moment',\n 'specimen_magn_volume']\n if data_model == 3.0:\n USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS]\n elif type == 'sample_int':\n USEKEYS = ['sample_int_n', 'sample_int_sigma', 'sample_int_sigma_perc']\n if data_model == 3.0:\n USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS]\n elif type == 'sample_dir':\n USEKEYS = ['sample_alpha95', 'sample_n', 'sample_n_lines',\n 'sample_n_planes', 'sample_k', 'sample_r']\n if data_model == 3.0:\n USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS]\n elif type == 'site_int':\n USEKEYS = ['site_int_sigma', 'site_int_sigma_perc', 'site_int_n']\n if data_model == 3.0:\n USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS]\n elif type == 'site_dir':\n USEKEYS = ['site_alpha95', 'site_k', 'site_n', 'site_n_lines',\n 'site_n_planes', 'site_r']\n if data_model == 3.0:\n USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS]\n for key in list(ACCEPT.keys()):\n if ACCEPT[key] != '' and key in USEKEYS:\n if key in ISTRUE and ACCEPT[key] == 'TRUE' or ACCEPT[key\n ] == 'True':\n ACCEPT[key] = '1'\n elif ACCEPT[key] == 'FALSE' or ACCEPT[key] == 'False':\n ACCEPT[key] = '0'\n elif eval(ACCEPT[key]) == 0:\n ACCEPT[key] = ''\n accept[key] = ACCEPT[key]\n for key in sigma_types:\n if key in USEKEYS and key in list(accept.keys()) and key in list(\n PmagRec.keys()):\n sigmas.append(key)\n if len(sigmas) > 1:\n if PmagRec[sigmas[0]] == '' or PmagRec[sigmas[1]] == '':\n kill.append(sigmas[0])\n kill.append(sigmas[1])\n elif eval(PmagRec[sigmas[0]]) > eval(accept[sigmas[0]]) and eval(\n PmagRec[sigmas[1]]) > eval(accept[sigmas[1]]):\n kill.append(sigmas[0])\n kill.append(sigmas[1])\n elif len(sigmas) == 1 and sigmas[0] in list(accept.keys()):\n if PmagRec[sigmas[0]] > accept[sigmas[0]]:\n kill.append(sigmas[0])\n for key in list(accept.keys()):\n if accept[key] != '':\n if key not in list(PmagRec.keys()) or PmagRec[key] == '':\n kill.append(key)\n elif key not in sigma_types:\n if key in ISTRUE:\n if PmagRec[key] != '1':\n kill.append(key)\n if key in GREATERTHAN:\n if eval(str(PmagRec[key])) < eval(str(accept[key])):\n kill.append(key)\n elif eval(str(PmagRec[key])) > eval(str(accept[key])):\n kill.append(key)\n return kill\n", "role": "user" }, { "content": "grade", "role": "assistant" } ]
def x(di_block, combine=False): ppars = doprinc(di_block) if combine: D3 = [] D1, D2 = [], [] for rec in di_block: ang = angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']]) if ang > 90.0: d, i = (rec[0] - 180.0) % 360.0, -rec[1] D2.append([d, i]) if combine: D3.append([d, i]) else: D1.append([rec[0], rec[1]]) if combine: D3.append([rec[0], rec[1]]) if combine: return D3 else: return D1, D2
flip
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(di_block, combine=False):\n ppars = doprinc(di_block)\n if combine:\n D3 = []\n D1, D2 = [], []\n for rec in di_block:\n ang = angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']])\n if ang > 90.0:\n d, i = (rec[0] - 180.0) % 360.0, -rec[1]\n D2.append([d, i])\n if combine:\n D3.append([d, i])\n else:\n D1.append([rec[0], rec[1]])\n if combine:\n D3.append([rec[0], rec[1]])\n if combine:\n return D3\n else:\n return D1, D2\n", "role": "user" }, { "content": "flip", "role": "assistant" } ]
def x(*args): if len(args) == 1: largs = list(args).pop() decs, dips, a95s, slats, slongs = list(zip(*largs)) else: decs, dips, a95s, slats, slongs = args dec, dip, a95, slat, slong = np.array(decs), np.array(dips), np.array(a95s ), np.array(slats), np.array(slongs) rad = old_div(np.pi, 180.0) dec, dip, a95, slat, slong = (dec * rad, dip * rad, a95 * rad, slat * rad, slong * rad) p = np.arctan2(2.0, np.tan(dip)) plat = np.arcsin(np.sin(slat) * np.cos(p) + np.cos(slat) * np.sin(p) * np.cos(dec)) beta = old_div(np.sin(p) * np.sin(dec), np.cos(plat)) boolmask = beta > 1.0 if isinstance(beta, np.ndarray): beta[boolmask] = 1.0 elif boolmask: beta = 1.0 boolmask = beta < -1.0 if isinstance(beta, np.ndarray): beta[boolmask] = -1.0 elif boolmask: beta = -1.0 beta = np.arcsin(beta) plong = slong + np.pi - beta if (np.cos(p) > np.sin(slat) * np.sin(plat)).any(): boolmask = np.cos(p) > np.sin(slat) * np.sin(plat) if isinstance(plong, np.ndarray): plong[boolmask] = (slong + beta)[boolmask] elif boolmask: plong = slong + beta boolmask = plong < 0 if isinstance(plong, np.ndarray): plong[boolmask] = plong[boolmask] + 2 * np.pi elif boolmask: plong = plong + 2 * np.pi boolmask = plong > 2 * np.pi if isinstance(plong, np.ndarray): plong[boolmask] = plong[boolmask] - 2 * np.pi elif boolmask: plong = plong - 2 * np.pi dm = np.rad2deg(a95 * old_div(np.sin(p), np.cos(dip))) dp = np.rad2deg(a95 * old_div(1 + 3 * np.cos(p) ** 2, 2)) plat = np.rad2deg(plat) plong = np.rad2deg(plong) return plong.tolist(), plat.tolist(), dp.tolist(), dm.tolist()
dia_vgp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*args):\n if len(args) == 1:\n largs = list(args).pop()\n decs, dips, a95s, slats, slongs = list(zip(*largs))\n else:\n decs, dips, a95s, slats, slongs = args\n dec, dip, a95, slat, slong = np.array(decs), np.array(dips), np.array(a95s\n ), np.array(slats), np.array(slongs)\n rad = old_div(np.pi, 180.0)\n dec, dip, a95, slat, slong = (dec * rad, dip * rad, a95 * rad, slat *\n rad, slong * rad)\n p = np.arctan2(2.0, np.tan(dip))\n plat = np.arcsin(np.sin(slat) * np.cos(p) + np.cos(slat) * np.sin(p) *\n np.cos(dec))\n beta = old_div(np.sin(p) * np.sin(dec), np.cos(plat))\n boolmask = beta > 1.0\n if isinstance(beta, np.ndarray):\n beta[boolmask] = 1.0\n elif boolmask:\n beta = 1.0\n boolmask = beta < -1.0\n if isinstance(beta, np.ndarray):\n beta[boolmask] = -1.0\n elif boolmask:\n beta = -1.0\n beta = np.arcsin(beta)\n plong = slong + np.pi - beta\n if (np.cos(p) > np.sin(slat) * np.sin(plat)).any():\n boolmask = np.cos(p) > np.sin(slat) * np.sin(plat)\n if isinstance(plong, np.ndarray):\n plong[boolmask] = (slong + beta)[boolmask]\n elif boolmask:\n plong = slong + beta\n boolmask = plong < 0\n if isinstance(plong, np.ndarray):\n plong[boolmask] = plong[boolmask] + 2 * np.pi\n elif boolmask:\n plong = plong + 2 * np.pi\n boolmask = plong > 2 * np.pi\n if isinstance(plong, np.ndarray):\n plong[boolmask] = plong[boolmask] - 2 * np.pi\n elif boolmask:\n plong = plong - 2 * np.pi\n dm = np.rad2deg(a95 * old_div(np.sin(p), np.cos(dip)))\n dp = np.rad2deg(a95 * old_div(1 + 3 * np.cos(p) ** 2, 2))\n plat = np.rad2deg(plat)\n plong = np.rad2deg(plong)\n return plong.tolist(), plat.tolist(), dp.tolist(), dm.tolist()\n", "role": "user" }, { "content": "dia_vgp", "role": "assistant" } ]
def x(x, y, vds, **kwargs): if 'version' in list(kwargs.keys()) and kwargs['version'] == 3: n_key = 'int_n_measurements' b_key = 'int_b' sigma_key = 'int_b_sigma' f_key = 'int_f' fvds_key = 'int_fvds' g_key = 'int_g' q_key = 'int_q' b_beta_key = 'int_b_beta' else: n_key = 'specimen_int_n' b_key = 'specimen_b' sigma_key = 'specimen_b_sigma' f_key = 'specimen_f' fvds_key = 'specimen_fvds' g_key = 'specimen_g' q_key = 'specimen_q' b_beta_key = 'specimen_b_beta' xx, yer, xer, xyer, yy, xsum, ysum, xy = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) xprime, yprime = [], [] pars = {} pars[n_key] = len(x) n = float(len(x)) if n <= 2: print("shouldn't be here at all!") return pars, 1 for i in range(len(x)): xx += x[i] ** 2.0 yy += y[i] ** 2.0 xy += x[i] * y[i] xsum += x[i] ysum += y[i] xsig = np.sqrt(old_div(xx - old_div(xsum ** 2.0, n), n - 1.0)) ysig = np.sqrt(old_div(yy - old_div(ysum ** 2.0, n), n - 1.0)) sum = 0 for i in range(int(n)): yer += (y[i] - old_div(ysum, n)) ** 2.0 xer += (x[i] - old_div(xsum, n)) ** 2.0 xyer += (y[i] - old_div(ysum, n)) * (x[i] - old_div(xsum, n)) slop = -np.sqrt(old_div(yer, xer)) pars[b_key] = slop s1 = 2.0 * yer - 2.0 * slop * xyer s2 = (n - 2.0) * xer sigma = np.sqrt(old_div(s1, s2)) pars[sigma_key] = sigma s = old_div(xy - xsum * ysum / n, xx - old_div(xsum ** 2.0, n)) r = old_div(s * xsig, ysig) pars['specimen_rsc'] = r ** 2.0 ytot = abs(old_div(ysum, n) - slop * xsum / n) for i in range(int(n)): xprime.append(old_div(slop * x[i] + y[i] - ytot, 2.0 * slop)) yprime.append(old_div(slop * x[i] + y[i] - ytot, 2.0) + ytot) sumdy, dy = 0, [] dyt = abs(yprime[0] - yprime[int(n) - 1]) for i in range(int(n) - 1): dy.append(abs(yprime[i + 1] - yprime[i])) sumdy += dy[i] ** 2.0 f = old_div(dyt, ytot) pars[f_key] = f pars['specimen_ytot'] = ytot ff = old_div(dyt, vds) pars[fvds_key] = ff ddy = old_div(1.0, dyt) * sumdy g = 1.0 - old_div(ddy, dyt) pars[g_key] = g q = abs(slop) * f * g / sigma pars[q_key] = q pars[b_beta_key] = old_div(-sigma, slop) return pars, 0
int_pars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, vds, **kwargs):\n if 'version' in list(kwargs.keys()) and kwargs['version'] == 3:\n n_key = 'int_n_measurements'\n b_key = 'int_b'\n sigma_key = 'int_b_sigma'\n f_key = 'int_f'\n fvds_key = 'int_fvds'\n g_key = 'int_g'\n q_key = 'int_q'\n b_beta_key = 'int_b_beta'\n else:\n n_key = 'specimen_int_n'\n b_key = 'specimen_b'\n sigma_key = 'specimen_b_sigma'\n f_key = 'specimen_f'\n fvds_key = 'specimen_fvds'\n g_key = 'specimen_g'\n q_key = 'specimen_q'\n b_beta_key = 'specimen_b_beta'\n xx, yer, xer, xyer, yy, xsum, ysum, xy = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0)\n xprime, yprime = [], []\n pars = {}\n pars[n_key] = len(x)\n n = float(len(x))\n if n <= 2:\n print(\"shouldn't be here at all!\")\n return pars, 1\n for i in range(len(x)):\n xx += x[i] ** 2.0\n yy += y[i] ** 2.0\n xy += x[i] * y[i]\n xsum += x[i]\n ysum += y[i]\n xsig = np.sqrt(old_div(xx - old_div(xsum ** 2.0, n), n - 1.0))\n ysig = np.sqrt(old_div(yy - old_div(ysum ** 2.0, n), n - 1.0))\n sum = 0\n for i in range(int(n)):\n yer += (y[i] - old_div(ysum, n)) ** 2.0\n xer += (x[i] - old_div(xsum, n)) ** 2.0\n xyer += (y[i] - old_div(ysum, n)) * (x[i] - old_div(xsum, n))\n slop = -np.sqrt(old_div(yer, xer))\n pars[b_key] = slop\n s1 = 2.0 * yer - 2.0 * slop * xyer\n s2 = (n - 2.0) * xer\n sigma = np.sqrt(old_div(s1, s2))\n pars[sigma_key] = sigma\n s = old_div(xy - xsum * ysum / n, xx - old_div(xsum ** 2.0, n))\n r = old_div(s * xsig, ysig)\n pars['specimen_rsc'] = r ** 2.0\n ytot = abs(old_div(ysum, n) - slop * xsum / n)\n for i in range(int(n)):\n xprime.append(old_div(slop * x[i] + y[i] - ytot, 2.0 * slop))\n yprime.append(old_div(slop * x[i] + y[i] - ytot, 2.0) + ytot)\n sumdy, dy = 0, []\n dyt = abs(yprime[0] - yprime[int(n) - 1])\n for i in range(int(n) - 1):\n dy.append(abs(yprime[i + 1] - yprime[i]))\n sumdy += dy[i] ** 2.0\n f = old_div(dyt, ytot)\n pars[f_key] = f\n pars['specimen_ytot'] = ytot\n ff = old_div(dyt, vds)\n pars[fvds_key] = ff\n ddy = old_div(1.0, dyt) * sumdy\n g = 1.0 - old_div(ddy, dyt)\n pars[g_key] = g\n q = abs(slop) * f * g / sigma\n pars[q_key] = q\n pars[b_beta_key] = old_div(-sigma, slop)\n return pars, 0\n", "role": "user" }, { "content": "int_pars", "role": "assistant" } ]
def x(data): vds, X = 0, [] for rec in data: X.append(dir2cart(rec)) for k in range(len(X) - 1): xdif = X[k + 1][0] - X[k][0] ydif = X[k + 1][1] - X[k][1] zdif = X[k + 1][2] - X[k][2] vds += np.sqrt(xdif ** 2 + ydif ** 2 + zdif ** 2) vds += np.sqrt(X[-1][0] ** 2 + X[-1][1] ** 2 + X[-1][2] ** 2) return vds
dovds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n vds, X = 0, []\n for rec in data:\n X.append(dir2cart(rec))\n for k in range(len(X) - 1):\n xdif = X[k + 1][0] - X[k][0]\n ydif = X[k + 1][1] - X[k][1]\n zdif = X[k + 1][2] - X[k][2]\n vds += np.sqrt(xdif ** 2 + ydif ** 2 + zdif ** 2)\n vds += np.sqrt(X[-1][0] ** 2 + X[-1][1] ** 2 + X[-1][2] ** 2)\n return vds\n", "role": "user" }, { "content": "dovds", "role": "assistant" } ]
def x(data): vdata, Dirdata, step_meth = [], [], '' if len(data) == 0: return vdata treat_init = ['treatment_temp', 'treatment_temp_decay_rate', 'treatment_temp_dc_on', 'treatment_temp_dc_off', 'treatment_ac_field', 'treatment_ac_field_decay_rate', 'treatment_ac_field_dc_on', 'treatment_ac_field_dc_off', 'treatment_dc_field', 'treatment_dc_field_decay_rate', 'treatment_dc_field_ac_on', 'treatment_dc_field_ac_off', 'treatment_dc_field_phi', 'treatment_dc_field_theta'] treats = [] for key in treat_init: if key in list(data[0].keys()): treats.append(key) stop = {} stop['er_specimen_name'] = 'stop' for key in treats: stop[key] = '' data.append(stop) DataState0, newstate = {}, 0 for key in treats: DataState0[key] = data[0][key] k, R = 1, 0 for i in range(k, len(data)): FDirdata, Dirdata, DataStateCurr, newstate = [], [], {}, 0 for key in treats: DataStateCurr[key] = data[i][key] if DataStateCurr[key].strip() != DataState0[key].strip(): newstate = 1 if newstate == 1: if i == k: vdata.append(data[i - 1]) else: for l in range(k - 1, i): if 'orientation' in data[l]['measurement_description']: data[l]['measurement_description'] = '' Dirdata.append([float(data[l]['measurement_dec']), float(data[l]['measurement_inc']), float(data[l][ 'measurement_magn_moment'])]) FDirdata.append([float(data[l]['measurement_dec']), float(data[l]['measurement_inc'])]) dir, R = vector_mean(Dirdata) Fpars = fisher_mean(FDirdata) vrec = data[i - 1] vrec['measurement_dec'] = '%7.1f' % dir[0] vrec['measurement_inc'] = '%7.1f' % dir[1] vrec['measurement_magn_moment'] = '%8.3e' % old_div(R, i - k + 1) vrec['measurement_csd'] = '%7.1f' % Fpars['csd'] vrec['measurement_positions'] = '%7.1f' % Fpars['n'] vrec['measurement_description' ] = 'average of multiple measurements' if 'magic_method_codes' in list(vrec.keys()): meths = vrec['magic_method_codes'].strip().split(':') if 'DE-VM' not in meths: meths.append('DE-VM') methods = '' for meth in meths: methods = methods + meth + ':' vrec['magic_method_codes'] = methods[:-1] else: vrec['magic_method_codes'] = 'DE-VM' vdata.append(vrec) for key in treats: DataState0[key] = data[i][key] k = i + 1 if data[i]['er_specimen_name'] == 'stop': del data[-1] return vdata, treats
vspec_magic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n vdata, Dirdata, step_meth = [], [], ''\n if len(data) == 0:\n return vdata\n treat_init = ['treatment_temp', 'treatment_temp_decay_rate',\n 'treatment_temp_dc_on', 'treatment_temp_dc_off',\n 'treatment_ac_field', 'treatment_ac_field_decay_rate',\n 'treatment_ac_field_dc_on', 'treatment_ac_field_dc_off',\n 'treatment_dc_field', 'treatment_dc_field_decay_rate',\n 'treatment_dc_field_ac_on', 'treatment_dc_field_ac_off',\n 'treatment_dc_field_phi', 'treatment_dc_field_theta']\n treats = []\n for key in treat_init:\n if key in list(data[0].keys()):\n treats.append(key)\n stop = {}\n stop['er_specimen_name'] = 'stop'\n for key in treats:\n stop[key] = ''\n data.append(stop)\n DataState0, newstate = {}, 0\n for key in treats:\n DataState0[key] = data[0][key]\n k, R = 1, 0\n for i in range(k, len(data)):\n FDirdata, Dirdata, DataStateCurr, newstate = [], [], {}, 0\n for key in treats:\n DataStateCurr[key] = data[i][key]\n if DataStateCurr[key].strip() != DataState0[key].strip():\n newstate = 1\n if newstate == 1:\n if i == k:\n vdata.append(data[i - 1])\n else:\n for l in range(k - 1, i):\n if 'orientation' in data[l]['measurement_description']:\n data[l]['measurement_description'] = ''\n Dirdata.append([float(data[l]['measurement_dec']),\n float(data[l]['measurement_inc']), float(data[l][\n 'measurement_magn_moment'])])\n FDirdata.append([float(data[l]['measurement_dec']),\n float(data[l]['measurement_inc'])])\n dir, R = vector_mean(Dirdata)\n Fpars = fisher_mean(FDirdata)\n vrec = data[i - 1]\n vrec['measurement_dec'] = '%7.1f' % dir[0]\n vrec['measurement_inc'] = '%7.1f' % dir[1]\n vrec['measurement_magn_moment'] = '%8.3e' % old_div(R, i -\n k + 1)\n vrec['measurement_csd'] = '%7.1f' % Fpars['csd']\n vrec['measurement_positions'] = '%7.1f' % Fpars['n']\n vrec['measurement_description'\n ] = 'average of multiple measurements'\n if 'magic_method_codes' in list(vrec.keys()):\n meths = vrec['magic_method_codes'].strip().split(':')\n if 'DE-VM' not in meths:\n meths.append('DE-VM')\n methods = ''\n for meth in meths:\n methods = methods + meth + ':'\n vrec['magic_method_codes'] = methods[:-1]\n else:\n vrec['magic_method_codes'] = 'DE-VM'\n vdata.append(vrec)\n for key in treats:\n DataState0[key] = data[i][key]\n k = i + 1\n if data[i]['er_specimen_name'] == 'stop':\n del data[-1]\n return vdata, treats\n", "role": "user" }, { "content": "vspec_magic", "role": "assistant" } ]
def x(data): speclist = [] for rec in data: try: spec = rec['er_specimen_name'] except KeyError as e: spec = rec['specimen'] if spec not in speclist: speclist.append(spec) speclist.sort() return speclist
get_specs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n speclist = []\n for rec in data:\n try:\n spec = rec['er_specimen_name']\n except KeyError as e:\n spec = rec['specimen']\n if spec not in speclist:\n speclist.append(spec)\n speclist.sort()\n return speclist\n", "role": "user" }, { "content": "get_specs", "role": "assistant" } ]
def x(data): Xbar = np.zeros(3) X = dir2cart(data).transpose() for i in range(3): Xbar[i] = X[i].sum() R = np.sqrt(Xbar[0] ** 2 + Xbar[1] ** 2 + Xbar[2] ** 2) Xbar = Xbar / R dir = cart2dir(Xbar) return dir, R
vector_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n Xbar = np.zeros(3)\n X = dir2cart(data).transpose()\n for i in range(3):\n Xbar[i] = X[i].sum()\n R = np.sqrt(Xbar[0] ** 2 + Xbar[1] ** 2 + Xbar[2] ** 2)\n Xbar = Xbar / R\n dir = cart2dir(Xbar)\n return dir, R\n", "role": "user" }, { "content": "vector_mean", "role": "assistant" } ]
def x(s, ind, data): datablock = [] for rec in data: if rec['er_specimen_name'] == s: meths = rec['magic_method_codes'].split(':') if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths: datablock.append(rec) dmagrec = datablock[ind] for k in range(len(data)): meths = data[k]['magic_method_codes'].split(':') if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths: if data[k]['er_specimen_name'] == s: if data[k]['treatment_temp'] == dmagrec['treatment_temp' ] and data[k]['treatment_ac_field'] == dmagrec[ 'treatment_ac_field']: if data[k]['measurement_dec'] == dmagrec['measurement_dec' ] and data[k]['measurement_inc'] == dmagrec[ 'measurement_inc'] and data[k][ 'measurement_magn_moment'] == dmagrec[ 'measurement_magn_moment']: if data[k]['measurement_flag'] == 'g': flag = 'b' else: flag = 'g' data[k]['measurement_flag'] = flag break return data
mark_dmag_rec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, ind, data):\n datablock = []\n for rec in data:\n if rec['er_specimen_name'] == s:\n meths = rec['magic_method_codes'].split(':')\n if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths:\n datablock.append(rec)\n dmagrec = datablock[ind]\n for k in range(len(data)):\n meths = data[k]['magic_method_codes'].split(':')\n if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths:\n if data[k]['er_specimen_name'] == s:\n if data[k]['treatment_temp'] == dmagrec['treatment_temp'\n ] and data[k]['treatment_ac_field'] == dmagrec[\n 'treatment_ac_field']:\n if data[k]['measurement_dec'] == dmagrec['measurement_dec'\n ] and data[k]['measurement_inc'] == dmagrec[\n 'measurement_inc'] and data[k][\n 'measurement_magn_moment'] == dmagrec[\n 'measurement_magn_moment']:\n if data[k]['measurement_flag'] == 'g':\n flag = 'b'\n else:\n flag = 'g'\n data[k]['measurement_flag'] = flag\n break\n return data\n", "role": "user" }, { "content": "mark_dmag_rec", "role": "assistant" } ]
def x(s, data, **kwargs): if 'version' in list(kwargs.keys()) and kwargs['version'] == 3: data = data.to_dict('records') spec_key, dec_key, inc_key = 'specimen', 'dir_dec', 'dir_inc' flag_key, temp_key, ac_key = 'flag', 'treat_temp', 'treat_ac_field' meth_key = 'method_codes' power_key, time_key = 'treat_mw_power', 'treat_mw_time' Mkeys = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude'] inst_key = 'instrument_codes' else: spec_key, dec_key, inc_key = ('er_specimen_name', 'measurement_dec', 'measurement_inc') flag_key = 'measurement_flag' flag_key, temp_key, ac_key = ('measurement_flag', 'treatment_temp', 'treatment_ac_field') meth_key = 'magic_method_codes' power_key, time_key = 'treatment_mw_power', 'treatment_mw_time' Mkeys = ['measurement_magn_moment', 'measurement_magn_volume', 'measurement_magn_mass', 'measurement_magnitude'] inst_key = 'magic_instrument_codes' EX = ['LP-AN-ARM', 'LP-AN-TRM', 'LP-ARM-AFD', 'LP-ARM2-AFD', 'LP-TRM-AFD', 'LP-TRM', 'LP-TRM-TD', 'LP-X'] INC = ['LT-NO', 'LT-AF-Z', 'LT-T-Z', 'LT-M-Z', 'LP-PI-TRM-IZ', 'LP-PI-M-IZ' ] datablock, tr = [], '' therm_flag, af_flag, mw_flag = 0, 0, 0 units = [] spec_meas = get_dictitem(data, spec_key, s, 'T') for rec in spec_meas: if flag_key not in list(rec.keys()): rec[flag_key] = 'g' skip = 1 tr = '' meths = rec[meth_key].split(':') methods = [] for m in meths: methods.append(m.strip()) for meth in methods: if meth.strip() in INC: skip = 0 for meth in EX: if meth in methods: skip = 1 if skip == 0: if 'LT-NO' in methods: tr = float(rec[temp_key]) if 'LT-AF-Z' in methods: af_flag = 1 try: tr = float(rec[ac_key]) except (KeyError, ValueError): tr = 0 if 'T' not in units: units.append('T') if 'LT-T-Z' in methods: therm_flag = 1 tr = float(rec[temp_key]) if 'K' not in units: units.append('K') if 'LT-M-Z' in methods: mw_flag = 1 tr = float(rec[power_key]) * float(rec[time_key]) if 'J' not in units: units.append('J') if 'LP-PI-TRM-IZ' in methods or 'LP-PI-M-IZ' in methods: ZI = 0 else: ZI = 1 if tr != '': dec, inc, int = '', '', '' if dec_key in list(rec.keys()) and cb.not_null(rec[dec_key], False): dec = float(rec[dec_key]) if inc_key in list(rec.keys()) and cb.not_null(rec[inc_key], False): inc = float(rec[inc_key]) for key in Mkeys: if key in list(rec.keys()) and cb.not_null(rec[key], False ): int = float(rec[key]) if inst_key not in list(rec.keys()): rec[inst_key] = '' datablock.append([tr, dec, inc, int, ZI, rec[flag_key], rec [inst_key]]) if therm_flag == 1: for k in range(len(datablock)): if datablock[k][0] == 0.0: datablock[k][0] = 273.0 if af_flag == 1: for k in range(len(datablock)): if datablock[k][0] >= 273 and datablock[k][0] <= 323: datablock[k][0] = 0.0 meas_units = '' if len(units) > 0: for u in units: meas_units = meas_units + u + ':' meas_units = meas_units[:-1] return datablock, meas_units
find_dmag_rec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, data, **kwargs):\n if 'version' in list(kwargs.keys()) and kwargs['version'] == 3:\n data = data.to_dict('records')\n spec_key, dec_key, inc_key = 'specimen', 'dir_dec', 'dir_inc'\n flag_key, temp_key, ac_key = 'flag', 'treat_temp', 'treat_ac_field'\n meth_key = 'method_codes'\n power_key, time_key = 'treat_mw_power', 'treat_mw_time'\n Mkeys = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']\n inst_key = 'instrument_codes'\n else:\n spec_key, dec_key, inc_key = ('er_specimen_name', 'measurement_dec',\n 'measurement_inc')\n flag_key = 'measurement_flag'\n flag_key, temp_key, ac_key = ('measurement_flag', 'treatment_temp',\n 'treatment_ac_field')\n meth_key = 'magic_method_codes'\n power_key, time_key = 'treatment_mw_power', 'treatment_mw_time'\n Mkeys = ['measurement_magn_moment', 'measurement_magn_volume',\n 'measurement_magn_mass', 'measurement_magnitude']\n inst_key = 'magic_instrument_codes'\n EX = ['LP-AN-ARM', 'LP-AN-TRM', 'LP-ARM-AFD', 'LP-ARM2-AFD',\n 'LP-TRM-AFD', 'LP-TRM', 'LP-TRM-TD', 'LP-X']\n INC = ['LT-NO', 'LT-AF-Z', 'LT-T-Z', 'LT-M-Z', 'LP-PI-TRM-IZ', 'LP-PI-M-IZ'\n ]\n datablock, tr = [], ''\n therm_flag, af_flag, mw_flag = 0, 0, 0\n units = []\n spec_meas = get_dictitem(data, spec_key, s, 'T')\n for rec in spec_meas:\n if flag_key not in list(rec.keys()):\n rec[flag_key] = 'g'\n skip = 1\n tr = ''\n meths = rec[meth_key].split(':')\n methods = []\n for m in meths:\n methods.append(m.strip())\n for meth in methods:\n if meth.strip() in INC:\n skip = 0\n for meth in EX:\n if meth in methods:\n skip = 1\n if skip == 0:\n if 'LT-NO' in methods:\n tr = float(rec[temp_key])\n if 'LT-AF-Z' in methods:\n af_flag = 1\n try:\n tr = float(rec[ac_key])\n except (KeyError, ValueError):\n tr = 0\n if 'T' not in units:\n units.append('T')\n if 'LT-T-Z' in methods:\n therm_flag = 1\n tr = float(rec[temp_key])\n if 'K' not in units:\n units.append('K')\n if 'LT-M-Z' in methods:\n mw_flag = 1\n tr = float(rec[power_key]) * float(rec[time_key])\n if 'J' not in units:\n units.append('J')\n if 'LP-PI-TRM-IZ' in methods or 'LP-PI-M-IZ' in methods:\n ZI = 0\n else:\n ZI = 1\n if tr != '':\n dec, inc, int = '', '', ''\n if dec_key in list(rec.keys()) and cb.not_null(rec[dec_key],\n False):\n dec = float(rec[dec_key])\n if inc_key in list(rec.keys()) and cb.not_null(rec[inc_key],\n False):\n inc = float(rec[inc_key])\n for key in Mkeys:\n if key in list(rec.keys()) and cb.not_null(rec[key], False\n ):\n int = float(rec[key])\n if inst_key not in list(rec.keys()):\n rec[inst_key] = ''\n datablock.append([tr, dec, inc, int, ZI, rec[flag_key], rec\n [inst_key]])\n if therm_flag == 1:\n for k in range(len(datablock)):\n if datablock[k][0] == 0.0:\n datablock[k][0] = 273.0\n if af_flag == 1:\n for k in range(len(datablock)):\n if datablock[k][0] >= 273 and datablock[k][0] <= 323:\n datablock[k][0] = 0.0\n meas_units = ''\n if len(units) > 0:\n for u in units:\n meas_units = meas_units + u + ':'\n meas_units = meas_units[:-1]\n return datablock, meas_units\n", "role": "user" }, { "content": "find_dmag_rec", "role": "assistant" } ]
def x(infile, verbose=True): try: with codecs.open(infile, 'r', 'utf-8') as f: lines = list(f.readlines()) except FileNotFoundError: if verbose: print('-W- You are trying to open a file: {} that does not exist' .format(infile)) return [] except UnicodeDecodeError: try: with codecs.open(infile, 'r', 'Latin-1') as f: print( '-I- Using less strict decoding for {}, output may have formatting errors' .format(infile)) lines = list(f.readlines()) except Exception as ex: print('-W- ', type(ex), ex) return [] except Exception as ex: print('-W- ', type(ex), ex) return [] i = 0 while i < 10: if not len(lines[-1].strip('\n').strip('\t')): lines = lines[:-1] i += 1 else: i = 10 return lines
open_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile, verbose=True):\n try:\n with codecs.open(infile, 'r', 'utf-8') as f:\n lines = list(f.readlines())\n except FileNotFoundError:\n if verbose:\n print('-W- You are trying to open a file: {} that does not exist'\n .format(infile))\n return []\n except UnicodeDecodeError:\n try:\n with codecs.open(infile, 'r', 'Latin-1') as f:\n print(\n '-I- Using less strict decoding for {}, output may have formatting errors'\n .format(infile))\n lines = list(f.readlines())\n except Exception as ex:\n print('-W- ', type(ex), ex)\n return []\n except Exception as ex:\n print('-W- ', type(ex), ex)\n return []\n i = 0\n while i < 10:\n if not len(lines[-1].strip('\\n').strip('\\t')):\n lines = lines[:-1]\n i += 1\n else:\n i = 10\n return lines\n", "role": "user" }, { "content": "open_file", "role": "assistant" } ]
def x(infile, data=None, return_keys=False, verbose=False): if infile: if not os.path.exists(infile): if return_keys: return [], 'empty_file', [] return [], 'empty_file' hold, magic_data, magic_record, magic_keys = [], [], {}, [] if data: lines = list(data) elif not data and not infile: if return_keys: return [], 'empty_file', [] return [], 'empty_file' else: if not os.path.exists(infile): if return_keys: return [], 'bad_file', [] return [], 'bad_file' lines = open_file(infile, verbose=verbose) if not lines: if return_keys: return [], 'bad_file', [] return [], 'bad_file' d_line = lines[0][:-1].strip('\n').strip('\r').strip('\t') if not d_line: if return_keys: return [], 'empty_file', [] return [], 'empty_file' if d_line[0] == 's' or d_line[1] == 's': delim = 'space' elif d_line[0] == 't' or d_line[1] == 't': delim = 'tab' else: print('-W- error reading {}. Check that this is a MagIC-format file' .format(infile)) if return_keys: return [], 'bad_file', [] return [], 'bad_file' if delim == 'space': file_type = d_line.split()[1] if delim == 'tab': file_type = d_line.split('\t')[1] if file_type == 'delimited': if delim == 'space': file_type = d_line.split()[2] if delim == 'tab': file_type = d_line.split('\t')[2] line = lines[1].strip('\n').strip('\r') if delim == 'space': line = line.split() if delim == 'tab': line = line.split('\t') for key in line: magic_keys.append(key) lines = lines[2:] if len(lines) < 1: if return_keys: return [], 'empty_file', [] return [], 'empty_file' for line in lines[:-1]: line.replace('\n', '') if delim == 'space': rec = line[:-1].split() if delim == 'tab': rec = line[:-1].split('\t') hold.append(rec) line = lines[-1].replace('\n', '').replace('\r', '') if delim == 'space': rec = line[:-1].split() if delim == 'tab': rec = line.split('\t') hold.append(rec) for rec in hold: magic_record = {} if len(magic_keys) > len(rec): for i in range(len(magic_keys) - len(rec)): rec.append('') if len(magic_keys) != len(rec): if rec != ['>>>>>>>>>>'] and 'delimited' not in rec[0]: print('Warning: Uneven record lengths detected in {}: '. format(infile)) print('keys:', magic_keys) print('record:', rec) for k in range(min(len(magic_keys), len(rec))): magic_record[magic_keys[k]] = rec[k].strip('\n').strip('\r') magic_data.append(magic_record) magictype = file_type.lower().split('_') Types = ['er', 'magic', 'pmag', 'rmag'] if magictype in Types: file_type = file_type.lower() if return_keys: return magic_data, file_type, magic_keys return magic_data, file_type
magic_read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile, data=None, return_keys=False, verbose=False):\n if infile:\n if not os.path.exists(infile):\n if return_keys:\n return [], 'empty_file', []\n return [], 'empty_file'\n hold, magic_data, magic_record, magic_keys = [], [], {}, []\n if data:\n lines = list(data)\n elif not data and not infile:\n if return_keys:\n return [], 'empty_file', []\n return [], 'empty_file'\n else:\n if not os.path.exists(infile):\n if return_keys:\n return [], 'bad_file', []\n return [], 'bad_file'\n lines = open_file(infile, verbose=verbose)\n if not lines:\n if return_keys:\n return [], 'bad_file', []\n return [], 'bad_file'\n d_line = lines[0][:-1].strip('\\n').strip('\\r').strip('\\t')\n if not d_line:\n if return_keys:\n return [], 'empty_file', []\n return [], 'empty_file'\n if d_line[0] == 's' or d_line[1] == 's':\n delim = 'space'\n elif d_line[0] == 't' or d_line[1] == 't':\n delim = 'tab'\n else:\n print('-W- error reading {}. Check that this is a MagIC-format file'\n .format(infile))\n if return_keys:\n return [], 'bad_file', []\n return [], 'bad_file'\n if delim == 'space':\n file_type = d_line.split()[1]\n if delim == 'tab':\n file_type = d_line.split('\\t')[1]\n if file_type == 'delimited':\n if delim == 'space':\n file_type = d_line.split()[2]\n if delim == 'tab':\n file_type = d_line.split('\\t')[2]\n line = lines[1].strip('\\n').strip('\\r')\n if delim == 'space':\n line = line.split()\n if delim == 'tab':\n line = line.split('\\t')\n for key in line:\n magic_keys.append(key)\n lines = lines[2:]\n if len(lines) < 1:\n if return_keys:\n return [], 'empty_file', []\n return [], 'empty_file'\n for line in lines[:-1]:\n line.replace('\\n', '')\n if delim == 'space':\n rec = line[:-1].split()\n if delim == 'tab':\n rec = line[:-1].split('\\t')\n hold.append(rec)\n line = lines[-1].replace('\\n', '').replace('\\r', '')\n if delim == 'space':\n rec = line[:-1].split()\n if delim == 'tab':\n rec = line.split('\\t')\n hold.append(rec)\n for rec in hold:\n magic_record = {}\n if len(magic_keys) > len(rec):\n for i in range(len(magic_keys) - len(rec)):\n rec.append('')\n if len(magic_keys) != len(rec):\n if rec != ['>>>>>>>>>>'] and 'delimited' not in rec[0]:\n print('Warning: Uneven record lengths detected in {}: '.\n format(infile))\n print('keys:', magic_keys)\n print('record:', rec)\n for k in range(min(len(magic_keys), len(rec))):\n magic_record[magic_keys[k]] = rec[k].strip('\\n').strip('\\r')\n magic_data.append(magic_record)\n magictype = file_type.lower().split('_')\n Types = ['er', 'magic', 'pmag', 'rmag']\n if magictype in Types:\n file_type = file_type.lower()\n if return_keys:\n return magic_data, file_type, magic_keys\n return magic_data, file_type\n", "role": "user" }, { "content": "magic_read", "role": "assistant" } ]
def x(path, data=None, sort_by_this_name=None, return_keys=False): DATA = {} lines = open_file(path) if not lines: if return_keys: return {}, 'empty_file', None else: return {}, 'empty_file' first_line = lines.pop(0) if first_line[0] == 's' or first_line[1] == 's': delim = ' ' elif first_line[0] == 't' or first_line[1] == 't': delim = '\t' else: print('-W- error reading ', path) if return_keys: return {}, 'bad_file', None else: return {}, 'bad_file' file_type = first_line.strip('\n').strip('\r').split(delim)[1] item_type = file_type if sort_by_this_name: pass elif item_type == 'age': sort_by_this_name = 'by_line_number' else: sort_by_this_name = item_type line = lines.pop(0) header = line.strip('\n').strip('\r').split(delim) counter = 0 for line in lines: tmp_data = {} tmp_line = line.strip('\n').strip('\r').split(delim) for i in range(len(header)): if i < len(tmp_line): tmp_data[header[i]] = tmp_line[i].strip() else: tmp_data[header[i]] = '' if sort_by_this_name == 'by_line_number': DATA[counter] = tmp_data counter += 1 elif tmp_data[sort_by_this_name] != '': DATA[tmp_data[sort_by_this_name]] = tmp_data if return_keys: return DATA, file_type, header else: return DATA, file_type
magic_read_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, data=None, sort_by_this_name=None, return_keys=False):\n DATA = {}\n lines = open_file(path)\n if not lines:\n if return_keys:\n return {}, 'empty_file', None\n else:\n return {}, 'empty_file'\n first_line = lines.pop(0)\n if first_line[0] == 's' or first_line[1] == 's':\n delim = ' '\n elif first_line[0] == 't' or first_line[1] == 't':\n delim = '\\t'\n else:\n print('-W- error reading ', path)\n if return_keys:\n return {}, 'bad_file', None\n else:\n return {}, 'bad_file'\n file_type = first_line.strip('\\n').strip('\\r').split(delim)[1]\n item_type = file_type\n if sort_by_this_name:\n pass\n elif item_type == 'age':\n sort_by_this_name = 'by_line_number'\n else:\n sort_by_this_name = item_type\n line = lines.pop(0)\n header = line.strip('\\n').strip('\\r').split(delim)\n counter = 0\n for line in lines:\n tmp_data = {}\n tmp_line = line.strip('\\n').strip('\\r').split(delim)\n for i in range(len(header)):\n if i < len(tmp_line):\n tmp_data[header[i]] = tmp_line[i].strip()\n else:\n tmp_data[header[i]] = ''\n if sort_by_this_name == 'by_line_number':\n DATA[counter] = tmp_data\n counter += 1\n elif tmp_data[sort_by_this_name] != '':\n DATA[tmp_data[sort_by_this_name]] = tmp_data\n if return_keys:\n return DATA, file_type, header\n else:\n return DATA, file_type\n", "role": "user" }, { "content": "magic_read_dict", "role": "assistant" } ]
def x(magic_data, sort_name): magic_data_sorted = {} for rec in magic_data: name = rec[sort_name] if name not in list(magic_data_sorted.keys()): magic_data_sorted[name] = [] magic_data_sorted[name].append(rec) return magic_data_sorted
sort_magic_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(magic_data, sort_name):\n magic_data_sorted = {}\n for rec in magic_data:\n name = rec[sort_name]\n if name not in list(magic_data_sorted.keys()):\n magic_data_sorted[name] = []\n magic_data_sorted[name].append(rec)\n return magic_data_sorted\n", "role": "user" }, { "content": "sort_magic_data", "role": "assistant" } ]
def x(infile, table): delim = 'tab' hold, magic_data, magic_record, magic_keys = [], [], {}, [] f = open(infile, 'r') line = f.readline()[:-1] file_type = line.split('\t')[1] if file_type == 'delimited': file_type = line.split('\t')[2] if delim == 'tab': line = f.readline()[:-1].split('\t') else: f.close() print('only tab delimitted files are supported now') return while file_type != table: while line[0][0:5] in f.readlines() != '>>>>>': pass line = f.readline()[:-1] file_type = line.split('\t')[1] if file_type == 'delimited': file_type = line.split('\t')[2] ine = f.readline()[:-1].split('\t') while line[0][0:5] in f.readlines() != '>>>>>': for key in line: magic_keys.append(key) for line in f.readlines(): rec = line[:-1].split('\t') hold.append(rec) for rec in hold: magic_record = {} if len(magic_keys) != len(rec): print('Uneven record lengths detected: ', rec) input('Return to continue.... ') for k in range(len(magic_keys)): magic_record[magic_keys[k]] = rec[k] magic_data.append(magic_record) f.close() return magic_data
upload_read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile, table):\n delim = 'tab'\n hold, magic_data, magic_record, magic_keys = [], [], {}, []\n f = open(infile, 'r')\n line = f.readline()[:-1]\n file_type = line.split('\\t')[1]\n if file_type == 'delimited':\n file_type = line.split('\\t')[2]\n if delim == 'tab':\n line = f.readline()[:-1].split('\\t')\n else:\n f.close()\n print('only tab delimitted files are supported now')\n return\n while file_type != table:\n while line[0][0:5] in f.readlines() != '>>>>>':\n pass\n line = f.readline()[:-1]\n file_type = line.split('\\t')[1]\n if file_type == 'delimited':\n file_type = line.split('\\t')[2]\n ine = f.readline()[:-1].split('\\t')\n while line[0][0:5] in f.readlines() != '>>>>>':\n for key in line:\n magic_keys.append(key)\n for line in f.readlines():\n rec = line[:-1].split('\\t')\n hold.append(rec)\n for rec in hold:\n magic_record = {}\n if len(magic_keys) != len(rec):\n print('Uneven record lengths detected: ', rec)\n input('Return to continue.... ')\n for k in range(len(magic_keys)):\n magic_record[magic_keys[k]] = rec[k]\n magic_data.append(magic_record)\n f.close()\n return magic_data\n", "role": "user" }, { "content": "upload_read", "role": "assistant" } ]
def x(ofile, keylist, Rec): pmag_out = open(ofile, 'a') outstring = '' for key in keylist: try: outstring = outstring + '\t' + str(Rec[key]).strip() except: print(key, Rec[key]) outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close()
putout
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ofile, keylist, Rec):\n pmag_out = open(ofile, 'a')\n outstring = ''\n for key in keylist:\n try:\n outstring = outstring + '\\t' + str(Rec[key]).strip()\n except:\n print(key, Rec[key])\n outstring = outstring + '\\n'\n pmag_out.write(outstring[1:])\n pmag_out.close()\n", "role": "user" }, { "content": "putout", "role": "assistant" } ]
def x(ofile, Rec, file_type): keylist = [] opened = False while not opened: try: pmag_out = open(ofile, 'w') opened = True except IOError: time.sleep(1) outstring = 'tab \t' + file_type + '\n' pmag_out.write(outstring) keystring = '' for key in list(Rec.keys()): keystring = keystring + '\t' + key.strip() keylist.append(key) keystring = keystring + '\n' pmag_out.write(keystring[1:]) pmag_out.close() return keylist
first_rec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ofile, Rec, file_type):\n keylist = []\n opened = False\n while not opened:\n try:\n pmag_out = open(ofile, 'w')\n opened = True\n except IOError:\n time.sleep(1)\n outstring = 'tab \\t' + file_type + '\\n'\n pmag_out.write(outstring)\n keystring = ''\n for key in list(Rec.keys()):\n keystring = keystring + '\\t' + key.strip()\n keylist.append(key)\n keystring = keystring + '\\n'\n pmag_out.write(keystring[1:])\n pmag_out.close()\n return keylist\n", "role": "user" }, { "content": "first_rec", "role": "assistant" } ]
def x(ofile, Recs, file_type): if len(Recs) < 1: print('nothing to write') return pmag_out = open(ofile, 'w') outstring = 'tab \t' + file_type + '\n' pmag_out.write(outstring) keystring = '' keylist = [] for key in list(Recs[0].keys()): keylist.append(key) keylist.sort() for key in keylist: keystring = keystring + '\t' + key.strip() keystring = keystring + '\n' pmag_out.write(keystring[1:]) for Rec in Recs: outstring = '' for key in keylist: try: outstring = outstring + '\t' + str(Rec[key].strip()) except: if 'er_specimen_name' in list(Rec.keys()): print(Rec['er_specimen_name']) elif 'er_specimen_names' in list(Rec.keys()): print(Rec['er_specimen_names']) print(key, Rec[key]) outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close()
magic_write_old
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ofile, Recs, file_type):\n if len(Recs) < 1:\n print('nothing to write')\n return\n pmag_out = open(ofile, 'w')\n outstring = 'tab \\t' + file_type + '\\n'\n pmag_out.write(outstring)\n keystring = ''\n keylist = []\n for key in list(Recs[0].keys()):\n keylist.append(key)\n keylist.sort()\n for key in keylist:\n keystring = keystring + '\\t' + key.strip()\n keystring = keystring + '\\n'\n pmag_out.write(keystring[1:])\n for Rec in Recs:\n outstring = ''\n for key in keylist:\n try:\n outstring = outstring + '\\t' + str(Rec[key].strip())\n except:\n if 'er_specimen_name' in list(Rec.keys()):\n print(Rec['er_specimen_name'])\n elif 'er_specimen_names' in list(Rec.keys()):\n print(Rec['er_specimen_names'])\n print(key, Rec[key])\n outstring = outstring + '\\n'\n pmag_out.write(outstring[1:])\n pmag_out.close()\n", "role": "user" }, { "content": "magic_write_old", "role": "assistant" } ]
def x(ofile, Recs, file_type): if len(Recs) < 1: print('No records to write to file {}'.format(ofile)) return False, '' if os.path.split(ofile)[0] != '' and not os.path.isdir(os.path.split( ofile)[0]): os.mkdir(os.path.split(ofile)[0]) pmag_out = open(ofile, 'w+', errors='backslashreplace') outstring = 'tab \t' + file_type outstring = outstring.strip('\n').strip('\r') + '\n' pmag_out.write(outstring) keystring = '' keylist = [] for key in list(Recs[0].keys()): keylist.append(key) keylist.sort() for key in keylist: keystring = keystring + '\t' + key.strip() keystring = keystring + '\n' pmag_out.write(keystring[1:]) for Rec in Recs: outstring = '' for key in keylist: try: outstring = outstring + '\t' + str(Rec[key]).strip() except KeyError: if 'er_specimen_name' in list(Rec.keys()): print(Rec['er_specimen_name']) elif 'specimen' in list(Rec.keys()): print(Rec['specimen']) elif 'er_specimen_names' in list(Rec.keys()): print('specimen names:', Rec['er_specimen_names']) print('No data for %s' % key) outstring = outstring + '\t' outstring = outstring + '\n' pmag_out.write(outstring[1:]) pmag_out.close() print(len(Recs), ' records written to file ', ofile) return True, ofile
magic_write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ofile, Recs, file_type):\n if len(Recs) < 1:\n print('No records to write to file {}'.format(ofile))\n return False, ''\n if os.path.split(ofile)[0] != '' and not os.path.isdir(os.path.split(\n ofile)[0]):\n os.mkdir(os.path.split(ofile)[0])\n pmag_out = open(ofile, 'w+', errors='backslashreplace')\n outstring = 'tab \\t' + file_type\n outstring = outstring.strip('\\n').strip('\\r') + '\\n'\n pmag_out.write(outstring)\n keystring = ''\n keylist = []\n for key in list(Recs[0].keys()):\n keylist.append(key)\n keylist.sort()\n for key in keylist:\n keystring = keystring + '\\t' + key.strip()\n keystring = keystring + '\\n'\n pmag_out.write(keystring[1:])\n for Rec in Recs:\n outstring = ''\n for key in keylist:\n try:\n outstring = outstring + '\\t' + str(Rec[key]).strip()\n except KeyError:\n if 'er_specimen_name' in list(Rec.keys()):\n print(Rec['er_specimen_name'])\n elif 'specimen' in list(Rec.keys()):\n print(Rec['specimen'])\n elif 'er_specimen_names' in list(Rec.keys()):\n print('specimen names:', Rec['er_specimen_names'])\n print('No data for %s' % key)\n outstring = outstring + '\\t'\n outstring = outstring + '\\n'\n pmag_out.write(outstring[1:])\n pmag_out.close()\n print(len(Recs), ' records written to file ', ofile)\n return True, ofile\n", "role": "user" }, { "content": "magic_write", "role": "assistant" } ]
def x(dec, inc, bed_az, bed_dip): rad = old_div(np.pi, 180.0) X = dir2cart([dec, inc, 1.0]) sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad) cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad) xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * (ca * sa * (1.0 - cdp)) + X[ 2] * sdp * ca yc = X[0] * ca * sa * (1.0 - cdp) + X[1] * (ca * ca + sa * sa * cdp) - X[2 ] * sa * sdp zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp Dir = cart2dir([xc, yc, -zc]) return Dir[0], Dir[1]
dotilt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec, inc, bed_az, bed_dip):\n rad = old_div(np.pi, 180.0)\n X = dir2cart([dec, inc, 1.0])\n sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad)\n cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad)\n xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * (ca * sa * (1.0 - cdp)) + X[\n 2] * sdp * ca\n yc = X[0] * ca * sa * (1.0 - cdp) + X[1] * (ca * ca + sa * sa * cdp) - X[2\n ] * sa * sdp\n zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp\n Dir = cart2dir([xc, yc, -zc])\n return Dir[0], Dir[1]\n", "role": "user" }, { "content": "dotilt", "role": "assistant" } ]
def x(indat): indat = indat.transpose() dec, inc, bed_az, bed_dip = indat[0], indat[1], indat[2], indat[3] rad = old_div(np.pi, 180.0) Dir = np.array([dec, inc]).transpose() X = dir2cart(Dir).transpose() N = np.size(dec) sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad) cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad) xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * (ca * sa * (1.0 - cdp)) + X[ 2] * sdp * ca yc = X[0] * ca * sa * (1.0 - cdp) + X[1] * (ca * ca + sa * sa * cdp) - X[2 ] * sa * sdp zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp cart = np.array([xc, yc, -zc]).transpose() Dir = cart2dir(cart).transpose() return Dir[0], Dir[1]
dotilt_V
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(indat):\n indat = indat.transpose()\n dec, inc, bed_az, bed_dip = indat[0], indat[1], indat[2], indat[3]\n rad = old_div(np.pi, 180.0)\n Dir = np.array([dec, inc]).transpose()\n X = dir2cart(Dir).transpose()\n N = np.size(dec)\n sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad)\n cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad)\n xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * (ca * sa * (1.0 - cdp)) + X[\n 2] * sdp * ca\n yc = X[0] * ca * sa * (1.0 - cdp) + X[1] * (ca * ca + sa * sa * cdp) - X[2\n ] * sa * sdp\n zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp\n cart = np.array([xc, yc, -zc]).transpose()\n Dir = cart2dir(cart).transpose()\n return Dir[0], Dir[1]\n", "role": "user" }, { "content": "dotilt_V", "role": "assistant" } ]
def x(dec, inc, az, pl): A1, A2, A3 = [], [], [] Dir = [dec, inc, 1.0] X = dir2cart(Dir) A1 = dir2cart([az, pl, 1.0]) A2 = dir2cart([az + 90.0, 0, 1.0]) A3 = dir2cart([az - 180.0, 90.0 - pl, 1.0]) xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2] yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2] zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2] Dir_geo = cart2dir([xp, yp, zp]) return Dir_geo[0], Dir_geo[1]
dogeo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec, inc, az, pl):\n A1, A2, A3 = [], [], []\n Dir = [dec, inc, 1.0]\n X = dir2cart(Dir)\n A1 = dir2cart([az, pl, 1.0])\n A2 = dir2cart([az + 90.0, 0, 1.0])\n A3 = dir2cart([az - 180.0, 90.0 - pl, 1.0])\n xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2]\n yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2]\n zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2]\n Dir_geo = cart2dir([xp, yp, zp])\n return Dir_geo[0], Dir_geo[1]\n", "role": "user" }, { "content": "dogeo", "role": "assistant" } ]
def x(indat): indat = indat.transpose() dec, inc, az, pl = indat[0], indat[1], indat[2], indat[3] Dir = np.array([dec, inc]).transpose() X = dir2cart(Dir).transpose() N = np.size(dec) A1 = dir2cart(np.array([az, pl, np.ones(N)]).transpose()).transpose() A2 = dir2cart(np.array([az + 90.0, np.zeros(N), np.ones(N)]).transpose() ).transpose() A3 = dir2cart(np.array([az - 180.0, 90.0 - pl, np.ones(N)]).transpose() ).transpose() xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2] yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2] zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2] cart = np.array([xp, yp, zp]).transpose() Dir_geo = cart2dir(cart).transpose() return Dir_geo[0], Dir_geo[1]
dogeo_V
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(indat):\n indat = indat.transpose()\n dec, inc, az, pl = indat[0], indat[1], indat[2], indat[3]\n Dir = np.array([dec, inc]).transpose()\n X = dir2cart(Dir).transpose()\n N = np.size(dec)\n A1 = dir2cart(np.array([az, pl, np.ones(N)]).transpose()).transpose()\n A2 = dir2cart(np.array([az + 90.0, np.zeros(N), np.ones(N)]).transpose()\n ).transpose()\n A3 = dir2cart(np.array([az - 180.0, 90.0 - pl, np.ones(N)]).transpose()\n ).transpose()\n xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2]\n yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2]\n zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2]\n cart = np.array([xp, yp, zp]).transpose()\n Dir_geo = cart2dir(cart).transpose()\n return Dir_geo[0], Dir_geo[1]\n", "role": "user" }, { "content": "dogeo_V", "role": "assistant" } ]
def x(D, I, Dbar, Ibar): d, irot = dogeo(D, I, Dbar, 90.0 - Ibar) drot = d - 180.0 if drot < 360.0: drot = drot + 360.0 if drot > 360.0: drot = drot - 360.0 return drot, irot
dodirot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(D, I, Dbar, Ibar):\n d, irot = dogeo(D, I, Dbar, 90.0 - Ibar)\n drot = d - 180.0\n if drot < 360.0:\n drot = drot + 360.0\n if drot > 360.0:\n drot = drot - 360.0\n return drot, irot\n", "role": "user" }, { "content": "dodirot", "role": "assistant" } ]
def x(di_block, Dbar, Ibar): N = di_block.shape[0] DipDir, Dip = np.ones(N, dtype=np.float).transpose() * (Dbar - 180.0 ), np.ones(N, dtype=np.float).transpose() * (90.0 - Ibar) di_block = di_block.transpose() data = np.array([di_block[0], di_block[1], DipDir, Dip]).transpose() drot, irot = dotilt_V(data) drot = (drot - 180.0) % 360.0 return np.column_stack((drot, irot))
dodirot_V
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(di_block, Dbar, Ibar):\n N = di_block.shape[0]\n DipDir, Dip = np.ones(N, dtype=np.float).transpose() * (Dbar - 180.0\n ), np.ones(N, dtype=np.float).transpose() * (90.0 - Ibar)\n di_block = di_block.transpose()\n data = np.array([di_block[0], di_block[1], DipDir, Dip]).transpose()\n drot, irot = dotilt_V(data)\n drot = (drot - 180.0) % 360.0\n return np.column_stack((drot, irot))\n", "role": "user" }, { "content": "dodirot_V", "role": "assistant" } ]
def x(s, data, az_type): datablock, or_error, bed_error = [], 0, 0 orient = {} orient['sample_dip'] = '' orient['sample_azimuth'] = '' orient['sample_description'] = '' for rec in data: if rec['er_sample_name'].lower() == s.lower(): if 'sample_orientation_flag' in list(rec.keys()) and rec[ 'sample_orientation_flag'] == 'b': orient['sample_orientation_flag'] = 'b' return orient if 'magic_method_codes' in list(rec.keys()) and az_type != '0': methods = rec['magic_method_codes'].replace(' ', '').split(':') if az_type in methods and 'sample_azimuth' in list(rec.keys() ) and rec['sample_azimuth'] != '': orient['sample_azimuth'] = float(rec['sample_azimuth']) if 'sample_dip' in list(rec.keys()) and rec['sample_dip' ] != '': orient['sample_dip'] = float(rec['sample_dip']) if 'sample_bed_dip_direction' in list(rec.keys()) and rec[ 'sample_bed_dip_direction'] != '': orient['sample_bed_dip_direction'] = float(rec[ 'sample_bed_dip_direction']) if 'sample_bed_dip' in list(rec.keys()) and rec[ 'sample_bed_dip'] != '': orient['sample_bed_dip'] = float(rec['sample_bed_dip']) else: if 'sample_azimuth' in list(rec.keys()): orient['sample_azimuth'] = float(rec['sample_azimuth']) if 'sample_dip' in list(rec.keys()): orient['sample_dip'] = float(rec['sample_dip']) if 'sample_bed_dip_direction' in list(rec.keys()): orient['sample_bed_dip_direction'] = float(rec[ 'sample_bed_dip_direction']) if 'sample_bed_dip' in list(rec.keys()): orient['sample_bed_dip'] = float(rec['sample_bed_dip']) if 'sample_description' in list(rec.keys()): orient['sample_description'] = rec['sample_description'] if orient['sample_azimuth'] != '': break return orient
find_samp_rec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, data, az_type):\n datablock, or_error, bed_error = [], 0, 0\n orient = {}\n orient['sample_dip'] = ''\n orient['sample_azimuth'] = ''\n orient['sample_description'] = ''\n for rec in data:\n if rec['er_sample_name'].lower() == s.lower():\n if 'sample_orientation_flag' in list(rec.keys()) and rec[\n 'sample_orientation_flag'] == 'b':\n orient['sample_orientation_flag'] = 'b'\n return orient\n if 'magic_method_codes' in list(rec.keys()) and az_type != '0':\n methods = rec['magic_method_codes'].replace(' ', '').split(':')\n if az_type in methods and 'sample_azimuth' in list(rec.keys()\n ) and rec['sample_azimuth'] != '':\n orient['sample_azimuth'] = float(rec['sample_azimuth'])\n if 'sample_dip' in list(rec.keys()) and rec['sample_dip'\n ] != '':\n orient['sample_dip'] = float(rec['sample_dip'])\n if 'sample_bed_dip_direction' in list(rec.keys()) and rec[\n 'sample_bed_dip_direction'] != '':\n orient['sample_bed_dip_direction'] = float(rec[\n 'sample_bed_dip_direction'])\n if 'sample_bed_dip' in list(rec.keys()) and rec[\n 'sample_bed_dip'] != '':\n orient['sample_bed_dip'] = float(rec['sample_bed_dip'])\n else:\n if 'sample_azimuth' in list(rec.keys()):\n orient['sample_azimuth'] = float(rec['sample_azimuth'])\n if 'sample_dip' in list(rec.keys()):\n orient['sample_dip'] = float(rec['sample_dip'])\n if 'sample_bed_dip_direction' in list(rec.keys()):\n orient['sample_bed_dip_direction'] = float(rec[\n 'sample_bed_dip_direction'])\n if 'sample_bed_dip' in list(rec.keys()):\n orient['sample_bed_dip'] = float(rec['sample_bed_dip'])\n if 'sample_description' in list(rec.keys()):\n orient['sample_description'] = rec['sample_description']\n if orient['sample_azimuth'] != '':\n break\n return orient\n", "role": "user" }, { "content": "find_samp_rec", "role": "assistant" } ]
def x(data): vdata, Dirdata, step_meth = [], [], [] tr0 = data[0][0] data.append('Stop') k, R = 1, 0 for i in range(k, len(data)): Dirdata = [] if data[i][0] != tr0: if i == k: vdata.append(data[i - 1]) step_meth.append(' ') else: for l in range(k - 1, i): Dirdata.append([data[l][1], data[l][2], data[l][3]]) dir, R = vector_mean(Dirdata) vdata.append([data[i - 1][0], dir[0], dir[1], old_div(R, i - k + 1), '1', 'g']) step_meth.append('DE-VM') tr0 = data[i][0] k = i + 1 if tr0 == 'stop': break del data[-1] return step_meth, vdata
vspec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n vdata, Dirdata, step_meth = [], [], []\n tr0 = data[0][0]\n data.append('Stop')\n k, R = 1, 0\n for i in range(k, len(data)):\n Dirdata = []\n if data[i][0] != tr0:\n if i == k:\n vdata.append(data[i - 1])\n step_meth.append(' ')\n else:\n for l in range(k - 1, i):\n Dirdata.append([data[l][1], data[l][2], data[l][3]])\n dir, R = vector_mean(Dirdata)\n vdata.append([data[i - 1][0], dir[0], dir[1], old_div(R, i -\n k + 1), '1', 'g'])\n step_meth.append('DE-VM')\n tr0 = data[i][0]\n k = i + 1\n if tr0 == 'stop':\n break\n del data[-1]\n return step_meth, vdata\n", "role": "user" }, { "content": "vspec", "role": "assistant" } ]
def x(D1, D2): A = dir2cart([D1[0], D1[1], 1.0]) B = dir2cart([D2[0], D2[1], 1.0]) C = [] for i in range(3): C.append(A[i] - B[i]) return cart2dir(C)
Vdiff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(D1, D2):\n A = dir2cart([D1[0], D1[1], 1.0])\n B = dir2cart([D2[0], D2[1], 1.0])\n C = []\n for i in range(3):\n C.append(A[i] - B[i])\n return cart2dir(C)\n", "role": "user" }, { "content": "Vdiff", "role": "assistant" } ]
def x(cart): cart = np.array(cart) rad = old_div(np.pi, 180.0) if len(cart.shape) > 1: Xs, Ys, Zs = cart[:, 0], cart[:, 1], cart[:, 2] else: Xs, Ys, Zs = cart[0], cart[1], cart[2] if np.iscomplexobj(Xs): Xs = Xs.real if np.iscomplexobj(Ys): Ys = Ys.real if np.iscomplexobj(Zs): Zs = Zs.real Rs = np.sqrt(Xs ** 2 + Ys ** 2 + Zs ** 2) Decs = old_div(np.arctan2(Ys, Xs), rad) % 360.0 try: Incs = old_div(np.arcsin(old_div(Zs, Rs)), rad) except: print('trouble in cart2dir') return np.zeros(3) return np.array([Decs, Incs, Rs]).transpose()
cart2dir
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cart):\n cart = np.array(cart)\n rad = old_div(np.pi, 180.0)\n if len(cart.shape) > 1:\n Xs, Ys, Zs = cart[:, 0], cart[:, 1], cart[:, 2]\n else:\n Xs, Ys, Zs = cart[0], cart[1], cart[2]\n if np.iscomplexobj(Xs):\n Xs = Xs.real\n if np.iscomplexobj(Ys):\n Ys = Ys.real\n if np.iscomplexobj(Zs):\n Zs = Zs.real\n Rs = np.sqrt(Xs ** 2 + Ys ** 2 + Zs ** 2)\n Decs = old_div(np.arctan2(Ys, Xs), rad) % 360.0\n try:\n Incs = old_div(np.arcsin(old_div(Zs, Rs)), rad)\n except:\n print('trouble in cart2dir')\n return np.zeros(3)\n return np.array([Decs, Incs, Rs]).transpose()\n", "role": "user" }, { "content": "cart2dir", "role": "assistant" } ]
def x(X): T = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] for row in X: for k in range(3): for l in range(3): T[k][l] += row[k] * row[l] return T
Tmatrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X):\n T = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n for row in X:\n for k in range(3):\n for l in range(3):\n T[k][l] += row[k] * row[l]\n return T\n", "role": "user" }, { "content": "Tmatrix", "role": "assistant" } ]
def x(d): ints = np.ones(len(d)).transpose() d = np.array(d) rad = np.pi / 180.0 if len(d.shape) > 1: decs, incs = d[:, 0] * rad, d[:, 1] * rad if d.shape[1] == 3: ints = d[:, 2] else: decs, incs = np.array(float(d[0])) * rad, np.array(float(d[1])) * rad if len(d) == 3: ints = np.array(d[2]) else: ints = np.array([1.0]) cart = np.array([ints * np.cos(decs) * np.cos(incs), ints * np.sin(decs ) * np.cos(incs), ints * np.sin(incs)]).transpose() return cart
dir2cart
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d):\n ints = np.ones(len(d)).transpose()\n d = np.array(d)\n rad = np.pi / 180.0\n if len(d.shape) > 1:\n decs, incs = d[:, 0] * rad, d[:, 1] * rad\n if d.shape[1] == 3:\n ints = d[:, 2]\n else:\n decs, incs = np.array(float(d[0])) * rad, np.array(float(d[1])) * rad\n if len(d) == 3:\n ints = np.array(d[2])\n else:\n ints = np.array([1.0])\n cart = np.array([ints * np.cos(decs) * np.cos(incs), ints * np.sin(decs\n ) * np.cos(incs), ints * np.sin(incs)]).transpose()\n return cart\n", "role": "user" }, { "content": "dir2cart", "role": "assistant" } ]
def x(s, data): datablock = [] for rec in data: if s == rec[0]: datablock.append([rec[1], rec[2], rec[3], rec[4]]) return datablock
findrec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, data):\n datablock = []\n for rec in data:\n if s == rec[0]:\n datablock.append([rec[1], rec[2], rec[3], rec[4]])\n return datablock\n", "role": "user" }, { "content": "findrec", "role": "assistant" } ]
def x(dec, dip, alpha): rad = old_div(np.pi, 180.0) D_out, I_out = [], [] dec, dip, alpha = dec * rad, dip * rad, alpha * rad dec1 = dec + old_div(np.pi, 2.0) isign = 1 if dip != 0: isign = old_div(abs(dip), dip) dip1 = dip - isign * old_div(np.pi, 2.0) t = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] v = [0, 0, 0] t[0][2] = np.cos(dec) * np.cos(dip) t[1][2] = np.sin(dec) * np.cos(dip) t[2][2] = np.sin(dip) t[0][1] = np.cos(dec) * np.cos(dip1) t[1][1] = np.sin(dec) * np.cos(dip1) t[2][1] = np.sin(dip1) t[0][0] = np.cos(dec1) t[1][0] = np.sin(dec1) t[2][0] = 0 for i in range(101): psi = float(i) * np.pi / 50.0 v[0] = np.sin(alpha) * np.cos(psi) v[1] = np.sin(alpha) * np.sin(psi) v[2] = np.sqrt(abs(1.0 - v[0] ** 2 - v[1] ** 2)) elli = [0, 0, 0] for j in range(3): for k in range(3): elli[j] = elli[j] + t[j][k] * v[k] Dir = cart2dir(elli) D_out.append(Dir[0]) I_out.append(Dir[1]) return D_out, I_out
circ
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec, dip, alpha):\n rad = old_div(np.pi, 180.0)\n D_out, I_out = [], []\n dec, dip, alpha = dec * rad, dip * rad, alpha * rad\n dec1 = dec + old_div(np.pi, 2.0)\n isign = 1\n if dip != 0:\n isign = old_div(abs(dip), dip)\n dip1 = dip - isign * old_div(np.pi, 2.0)\n t = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]\n v = [0, 0, 0]\n t[0][2] = np.cos(dec) * np.cos(dip)\n t[1][2] = np.sin(dec) * np.cos(dip)\n t[2][2] = np.sin(dip)\n t[0][1] = np.cos(dec) * np.cos(dip1)\n t[1][1] = np.sin(dec) * np.cos(dip1)\n t[2][1] = np.sin(dip1)\n t[0][0] = np.cos(dec1)\n t[1][0] = np.sin(dec1)\n t[2][0] = 0\n for i in range(101):\n psi = float(i) * np.pi / 50.0\n v[0] = np.sin(alpha) * np.cos(psi)\n v[1] = np.sin(alpha) * np.sin(psi)\n v[2] = np.sqrt(abs(1.0 - v[0] ** 2 - v[1] ** 2))\n elli = [0, 0, 0]\n for j in range(3):\n for k in range(3):\n elli[j] = elli[j] + t[j][k] * v[k]\n Dir = cart2dir(elli)\n D_out.append(Dir[0])\n I_out.append(Dir[1])\n return D_out, I_out\n", "role": "user" }, { "content": "circ", "role": "assistant" } ]
def x(table): keys = [] if table == 'ER_expedition': pass if table == 'ER_citations': keys.append('er_citation_name') keys.append('long_authors') keys.append('year') keys.append('title') keys.append('citation_type') keys.append('doi') keys.append('journal') keys.append('volume') keys.append('pages') keys.append('book_title') keys.append('book_editors') keys.append('publisher') keys.append('city') if table == 'ER_locations': keys.append('er_location_name') keys.append('er_scientist_mail_names') keys.append('location_type') keys.append('location_begin_lat') keys.append('location_begin_lon') keys.append('location_end_lat') keys.append('location_end_lon') keys.append('continent_ocean') keys.append('country') keys.append('region') keys.append('plate_block') keys.append('terrane') keys.append('tectonic_setting') if table == 'ER_Formations': keys.append('er_formation_name') keys.append('formation_class') keys.append('formation_lithology') keys.append('formation_paleo_environment') keys.append('formation_thickness') keys.append('formation_description') if table == 'ER_sections': keys.append('er_section_name') keys.append('er_section_alternatives') keys.append('er_expedition_name') keys.append('er_location_name') keys.append('er_formation_name') keys.append('er_member_name') keys.append('section_definition') keys.append('section_class') keys.append('section_lithology') keys.append('section_type') keys.append('section_n') keys.append('section_begin_lat') keys.append('section_begin_lon') keys.append('section_begin_elevation') keys.append('section_begin_height') keys.append('section_begin_drill_depth') keys.append('section_begin_composite_depth') keys.append('section_end_lat') keys.append('section_end_lon') keys.append('section_end_elevation') keys.append('section_end_height') keys.append('section_end_drill_depth') keys.append('section_end_composite_depth') keys.append('section_azimuth') keys.append('section_dip') keys.append('section_description') keys.append('er_scientist_mail_names') keys.append('er_citation_names') if table == 'ER_sites': keys.append('er_location_name') keys.append('er_site_name') keys.append('er_scientist_mail_names') keys.append('site_class') keys.append('site_lat') keys.append('site_lon') if table == 'ER_samples': keys.append('er_location_name') keys.append('er_site_name') keys.append('sample_azimuth') keys.append('sample_dip') keys.append('sample_bed_dip') keys.append('sample_bed_dip_direction') keys.append('magic_method_codes') if table == 'ER_ages': keys.append('age') keys.append('age_sigma') keys.append('age_unit') keys.append('age_range_low') keys.append('age_range_hi') keys.append('timescale_eon') keys.append('timescale_era') keys.append('timescale_period') keys.append('timescale_epoch') keys.append('timescale_stage') keys.append('biostrat_zone') keys.append('conodont_zone') keys.append('magnetic_reversal_chron') keys.append('astronomical_stage') if table == 'MAGIC_measurements': keys.append('er_location_name') keys.append('er_site_name') keys.append('er_sample_name') keys.append('er_specimen_name') keys.append('measurement_positions') keys.append('treatment_temp') keys.append('treatment_ac_field') keys.append('treatment_dc_field') keys.append('treatment_dc_field_phi') keys.append('treatment_dc_field_theta') keys.append('magic_experiment_name') keys.append('magic_instrument_codes') keys.append('measurement_temp') keys.append('magic_method_codes') keys.append('measurement_inc') keys.append('measurement_dec') keys.append('measurement_magn_moment') keys.append('measurement_csd') return keys
getkeys
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(table):\n keys = []\n if table == 'ER_expedition':\n pass\n if table == 'ER_citations':\n keys.append('er_citation_name')\n keys.append('long_authors')\n keys.append('year')\n keys.append('title')\n keys.append('citation_type')\n keys.append('doi')\n keys.append('journal')\n keys.append('volume')\n keys.append('pages')\n keys.append('book_title')\n keys.append('book_editors')\n keys.append('publisher')\n keys.append('city')\n if table == 'ER_locations':\n keys.append('er_location_name')\n keys.append('er_scientist_mail_names')\n keys.append('location_type')\n keys.append('location_begin_lat')\n keys.append('location_begin_lon')\n keys.append('location_end_lat')\n keys.append('location_end_lon')\n keys.append('continent_ocean')\n keys.append('country')\n keys.append('region')\n keys.append('plate_block')\n keys.append('terrane')\n keys.append('tectonic_setting')\n if table == 'ER_Formations':\n keys.append('er_formation_name')\n keys.append('formation_class')\n keys.append('formation_lithology')\n keys.append('formation_paleo_environment')\n keys.append('formation_thickness')\n keys.append('formation_description')\n if table == 'ER_sections':\n keys.append('er_section_name')\n keys.append('er_section_alternatives')\n keys.append('er_expedition_name')\n keys.append('er_location_name')\n keys.append('er_formation_name')\n keys.append('er_member_name')\n keys.append('section_definition')\n keys.append('section_class')\n keys.append('section_lithology')\n keys.append('section_type')\n keys.append('section_n')\n keys.append('section_begin_lat')\n keys.append('section_begin_lon')\n keys.append('section_begin_elevation')\n keys.append('section_begin_height')\n keys.append('section_begin_drill_depth')\n keys.append('section_begin_composite_depth')\n keys.append('section_end_lat')\n keys.append('section_end_lon')\n keys.append('section_end_elevation')\n keys.append('section_end_height')\n keys.append('section_end_drill_depth')\n keys.append('section_end_composite_depth')\n keys.append('section_azimuth')\n keys.append('section_dip')\n keys.append('section_description')\n keys.append('er_scientist_mail_names')\n keys.append('er_citation_names')\n if table == 'ER_sites':\n keys.append('er_location_name')\n keys.append('er_site_name')\n keys.append('er_scientist_mail_names')\n keys.append('site_class')\n keys.append('site_lat')\n keys.append('site_lon')\n if table == 'ER_samples':\n keys.append('er_location_name')\n keys.append('er_site_name')\n keys.append('sample_azimuth')\n keys.append('sample_dip')\n keys.append('sample_bed_dip')\n keys.append('sample_bed_dip_direction')\n keys.append('magic_method_codes')\n if table == 'ER_ages':\n keys.append('age')\n keys.append('age_sigma')\n keys.append('age_unit')\n keys.append('age_range_low')\n keys.append('age_range_hi')\n keys.append('timescale_eon')\n keys.append('timescale_era')\n keys.append('timescale_period')\n keys.append('timescale_epoch')\n keys.append('timescale_stage')\n keys.append('biostrat_zone')\n keys.append('conodont_zone')\n keys.append('magnetic_reversal_chron')\n keys.append('astronomical_stage')\n if table == 'MAGIC_measurements':\n keys.append('er_location_name')\n keys.append('er_site_name')\n keys.append('er_sample_name')\n keys.append('er_specimen_name')\n keys.append('measurement_positions')\n keys.append('treatment_temp')\n keys.append('treatment_ac_field')\n keys.append('treatment_dc_field')\n keys.append('treatment_dc_field_phi')\n keys.append('treatment_dc_field_theta')\n keys.append('magic_experiment_name')\n keys.append('magic_instrument_codes')\n keys.append('measurement_temp')\n keys.append('magic_method_codes')\n keys.append('measurement_inc')\n keys.append('measurement_dec')\n keys.append('measurement_magn_moment')\n keys.append('measurement_csd')\n return keys\n", "role": "user" }, { "content": "getkeys", "role": "assistant" } ]
def x(): namestring = '' addmore = 1 while addmore: scientist = input('Enter name - <Return> when done ') if scientist != '': namestring = namestring + ':' + scientist else: namestring = namestring[1:] addmore = 0 return namestring
getnames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n namestring = ''\n addmore = 1\n while addmore:\n scientist = input('Enter name - <Return> when done ')\n if scientist != '':\n namestring = namestring + ':' + scientist\n else:\n namestring = namestring[1:]\n addmore = 0\n return namestring\n", "role": "user" }, { "content": "getnames", "role": "assistant" } ]
def x(sundata): iday = 0 timedate = sundata['date'] timedate = timedate.split(':') year = int(timedate[0]) mon = int(timedate[1]) day = int(timedate[2]) hours = float(timedate[3]) min = float(timedate[4]) du = int(sundata['delta_u']) hrs = hours - du if hrs > 24: day += 1 hrs = hrs - 24 if hrs < 0: day = day - 1 hrs = hrs + 24 julian_day = julian(mon, day, year) utd = old_div(hrs + old_div(min, 60.0), 24.0) greenwich_hour_angle, delta = gha(julian_day, utd) H = greenwich_hour_angle + float(sundata['lon']) if H > 360: H = H - 360 lat = float(sundata['lat']) if H > 90 and H < 270: lat = -lat lat = np.radians(lat) delta = np.radians(delta) H = np.radians(H) ctheta = np.sin(lat) * np.sin(delta) + np.cos(lat) * np.cos(delta ) * np.cos(H) theta = np.arccos(ctheta) beta = np.cos(delta) * np.sin(H) / np.sin(theta) beta = np.degrees(np.arcsin(beta)) if delta < lat: beta = 180 - beta sunaz = 180 - beta sunaz = (sunaz + float(sundata['shadow_angle'])) % 360.0 return sunaz
dosundec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sundata):\n iday = 0\n timedate = sundata['date']\n timedate = timedate.split(':')\n year = int(timedate[0])\n mon = int(timedate[1])\n day = int(timedate[2])\n hours = float(timedate[3])\n min = float(timedate[4])\n du = int(sundata['delta_u'])\n hrs = hours - du\n if hrs > 24:\n day += 1\n hrs = hrs - 24\n if hrs < 0:\n day = day - 1\n hrs = hrs + 24\n julian_day = julian(mon, day, year)\n utd = old_div(hrs + old_div(min, 60.0), 24.0)\n greenwich_hour_angle, delta = gha(julian_day, utd)\n H = greenwich_hour_angle + float(sundata['lon'])\n if H > 360:\n H = H - 360\n lat = float(sundata['lat'])\n if H > 90 and H < 270:\n lat = -lat\n lat = np.radians(lat)\n delta = np.radians(delta)\n H = np.radians(H)\n ctheta = np.sin(lat) * np.sin(delta) + np.cos(lat) * np.cos(delta\n ) * np.cos(H)\n theta = np.arccos(ctheta)\n beta = np.cos(delta) * np.sin(H) / np.sin(theta)\n beta = np.degrees(np.arcsin(beta))\n if delta < lat:\n beta = 180 - beta\n sunaz = 180 - beta\n sunaz = (sunaz + float(sundata['shadow_angle'])) % 360.0\n return sunaz\n", "role": "user" }, { "content": "dosundec", "role": "assistant" } ]