source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(ls, side):
minx, miny, maxx, maxy = ls.bounds
points = {'left': [(minx, miny), (minx, maxy)], 'right': [(maxx, miny),
(maxx, maxy)], 'bottom': [(minx, miny), (maxx, miny)], 'top': [(
minx, maxy), (maxx, maxy)]}
return sgeom.LineString(points[side])
|
find_side
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ls, side):\n minx, miny, maxx, maxy = ls.bounds\n points = {'left': [(minx, miny), (minx, maxy)], 'right': [(maxx, miny),\n (maxx, maxy)], 'bottom': [(minx, miny), (maxx, miny)], 'top': [(\n minx, maxy), (maxx, maxy)]}\n return sgeom.LineString(points[side])\n",
"role": "user"
},
{
"content": "find_side",
"role": "assistant"
}
] |
def x(ax, ticks):
te = lambda xy: xy[0]
lc = lambda t, n, b: np.vstack((np.zeros(n) + t, np.linspace(b[2], b[3],
n))).T
xticks, xticklabels = _lambert_ticks(ax, ticks, 'bottom', lc, te)
ax.xaxis.tick_bottom()
ax.set_xticks(xticks)
ax.set_xticklabels([ax.xaxis.get_major_formatter()(xtick) for xtick in
xticklabels])
|
lambert_xticks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ax, ticks):\n te = lambda xy: xy[0]\n lc = lambda t, n, b: np.vstack((np.zeros(n) + t, np.linspace(b[2], b[3],\n n))).T\n xticks, xticklabels = _lambert_ticks(ax, ticks, 'bottom', lc, te)\n ax.xaxis.tick_bottom()\n ax.set_xticks(xticks)\n ax.set_xticklabels([ax.xaxis.get_major_formatter()(xtick) for xtick in\n xticklabels])\n",
"role": "user"
},
{
"content": "lambert_xticks",
"role": "assistant"
}
] |
def x(ax, ticks):
te = lambda xy: xy[1]
lc = lambda t, n, b: np.vstack((np.linspace(b[0], b[1], n), np.zeros(n) +
t)).T
yticks, yticklabels = _lambert_ticks(ax, ticks, 'left', lc, te)
ax.yaxis.tick_left()
ax.set_yticks(yticks)
ax.set_yticklabels([ax.yaxis.get_major_formatter()(ytick) for ytick in
yticklabels])
|
lambert_yticks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ax, ticks):\n te = lambda xy: xy[1]\n lc = lambda t, n, b: np.vstack((np.linspace(b[0], b[1], n), np.zeros(n) +\n t)).T\n yticks, yticklabels = _lambert_ticks(ax, ticks, 'left', lc, te)\n ax.yaxis.tick_left()\n ax.set_yticks(yticks)\n ax.set_yticklabels([ax.yaxis.get_major_formatter()(ytick) for ytick in\n yticklabels])\n",
"role": "user"
},
{
"content": "lambert_yticks",
"role": "assistant"
}
] |
def x(ax, ticks, tick_location, line_constructor, tick_extractor):
outline_patch = sgeom.LineString(ax.outline_patch.get_path().vertices.
tolist())
axis = find_side(outline_patch, tick_location)
n_steps = 30
extent = ax.get_extent(ccrs.PlateCarree())
_ticks = []
for t in ticks:
xy = line_constructor(t, n_steps, extent)
proj_xyz = ax.projection.transform_points(ccrs.Geodetic(), xy[:, 0],
xy[:, 1])
xyt = proj_xyz[..., :2]
ls = sgeom.LineString(xyt.tolist())
locs = axis.intersection(ls)
if not locs:
tick = [None]
else:
tick = tick_extractor(locs.xy)
_ticks.append(tick[0])
ticklabels = copy(ticks)
while True:
try:
index = _ticks.index(None)
except ValueError:
break
_ticks.pop(index)
ticklabels.pop(index)
return _ticks, ticklabels
|
lambert_ticks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ax, ticks, tick_location, line_constructor, tick_extractor):\n outline_patch = sgeom.LineString(ax.outline_patch.get_path().vertices.\n tolist())\n axis = find_side(outline_patch, tick_location)\n n_steps = 30\n extent = ax.get_extent(ccrs.PlateCarree())\n _ticks = []\n for t in ticks:\n xy = line_constructor(t, n_steps, extent)\n proj_xyz = ax.projection.transform_points(ccrs.Geodetic(), xy[:, 0],\n xy[:, 1])\n xyt = proj_xyz[..., :2]\n ls = sgeom.LineString(xyt.tolist())\n locs = axis.intersection(ls)\n if not locs:\n tick = [None]\n else:\n tick = tick_extractor(locs.xy)\n _ticks.append(tick[0])\n ticklabels = copy(ticks)\n while True:\n try:\n index = _ticks.index(None)\n except ValueError:\n break\n _ticks.pop(index)\n ticklabels.pop(index)\n return _ticks, ticklabels\n",
"role": "user"
},
{
"content": "lambert_ticks",
"role": "assistant"
}
] |
def x(in_file='measurements.txt', dir_path='.', input_dir_path='',
spec_file='specimens.txt', samp_file='samples.txt', site_file=
'sites.txt', loc_file='locations.txt', plot_by='loc', LT='AF', norm=
True, XLP='', save_plots=True, fmt='svg'):
dir_path = os.path.realpath(dir_path)
if not input_dir_path:
input_dir_path = dir_path
input_dir_path = os.path.realpath(input_dir_path)
name_dict = {'loc': 'location', 'sit': 'site', 'sam': 'sample', 'spc':
'specimen'}
if plot_by not in name_dict.values():
try:
plot_key = name_dict[plot_by]
except KeyError:
print('Unrecognized plot_by {}, falling back to plot by location'
.format(plot_by))
plot_key = 'loc'
else:
plot_key = plot_by
LT = 'LT-' + LT + '-Z'
print('LT', LT)
if LT == 'LT-T-Z':
units, dmag_key = 'K', 'treat_temp'
elif LT == 'LT-AF-Z':
units, dmag_key = 'T', 'treat_ac_field'
elif LT == 'LT-M-Z':
units, dmag_key = 'J', 'treat_mw_energy'
else:
units = 'U'
FIG = {}
FIG['demag'] = 1
fnames = {'specimens': spec_file, 'samples': samp_file, 'sites':
site_file, 'locations': loc_file}
if not os.path.exists(pmag.resolve_file_name(in_file, input_dir_path)):
print('-E- Could not find {}'.format(in_file))
return False, []
contribution = cb.Contribution(input_dir_path, single_file=in_file,
custom_filenames=fnames)
file_type = list(contribution.tables.keys())[0]
print(len(contribution.tables['measurements'].df),
' records read from ', in_file)
if plot_key not in contribution.tables['measurements'].df.columns:
contribution.propagate_location_to_measurements()
data_container = contribution.tables[file_type]
data_slice = data_container.get_records_for_code(LT)
data = data_container.get_records_for_code(XLP, incl=False, use_slice=
True, sli=data_slice, strict_match=False)
if 'quality' not in data.columns:
data['quality'] = 'g'
intlist = ['magn_moment', 'magn_volume', 'magn_mass']
IntMeths = [col_name for col_name in data.columns if col_name in intlist]
for col_name in IntMeths:
if not data[col_name].any():
data.drop(col_name, axis=1, inplace=True)
IntMeths = [col_name for col_name in data.columns if col_name in intlist]
if len(IntMeths) == 0:
print('-E- No intensity headers found')
return False, []
int_key = IntMeths[0]
data = data[data[int_key].notnull()]
plotlist = data[plot_key].unique()
plotlist.sort()
pmagplotlib.plot_init(FIG['demag'], 5, 5)
last_plot = False
for plot in plotlist:
if plot == plotlist[-1]:
last_plot = True
plot_data = data[data[plot_key] == plot].copy()
if not save_plots:
print(plot, 'plotting by: ', plot_key)
if len(plot_data) > 2:
title = plot
spcs = []
spcs = plot_data['specimen'].unique()
for spc in spcs:
INTblock = []
spec_data = plot_data[plot_data['specimen'] == spc]
for ind, rec in spec_data.iterrows():
INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[
int_key]), 1, rec['quality']])
if len(INTblock) > 2:
pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0,
units, norm)
if save_plots:
files = {}
for key in list(FIG.keys()):
if pmagplotlib.isServer:
files[key] = title + '_' + LT + '.' + fmt
incl_dir = False
else:
files[key] = os.path.join(dir_path, title + '_' +
LT + '.' + fmt)
incl_dir = True
pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir)
else:
pmagplotlib.draw_figs(FIG)
prompt = ' S[a]ve to save plot, [q]uit, Return to continue: '
ans = input(prompt)
if ans == 'q':
return True, []
if ans == 'a':
files = {}
for key in list(FIG.keys()):
if pmagplotlib.isServer:
files[key] = title + '_' + LT + '.' + fmt
incl_dir = False
else:
files[key] = os.path.join(dir_path, title + '_' +
LT + '.' + fmt)
incl_dir = True
pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir)
pmagplotlib.clearFIG(FIG['demag'])
if last_plot:
return True, []
|
dmag_magic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_file='measurements.txt', dir_path='.', input_dir_path='',\n spec_file='specimens.txt', samp_file='samples.txt', site_file=\n 'sites.txt', loc_file='locations.txt', plot_by='loc', LT='AF', norm=\n True, XLP='', save_plots=True, fmt='svg'):\n dir_path = os.path.realpath(dir_path)\n if not input_dir_path:\n input_dir_path = dir_path\n input_dir_path = os.path.realpath(input_dir_path)\n name_dict = {'loc': 'location', 'sit': 'site', 'sam': 'sample', 'spc':\n 'specimen'}\n if plot_by not in name_dict.values():\n try:\n plot_key = name_dict[plot_by]\n except KeyError:\n print('Unrecognized plot_by {}, falling back to plot by location'\n .format(plot_by))\n plot_key = 'loc'\n else:\n plot_key = plot_by\n LT = 'LT-' + LT + '-Z'\n print('LT', LT)\n if LT == 'LT-T-Z':\n units, dmag_key = 'K', 'treat_temp'\n elif LT == 'LT-AF-Z':\n units, dmag_key = 'T', 'treat_ac_field'\n elif LT == 'LT-M-Z':\n units, dmag_key = 'J', 'treat_mw_energy'\n else:\n units = 'U'\n FIG = {}\n FIG['demag'] = 1\n fnames = {'specimens': spec_file, 'samples': samp_file, 'sites':\n site_file, 'locations': loc_file}\n if not os.path.exists(pmag.resolve_file_name(in_file, input_dir_path)):\n print('-E- Could not find {}'.format(in_file))\n return False, []\n contribution = cb.Contribution(input_dir_path, single_file=in_file,\n custom_filenames=fnames)\n file_type = list(contribution.tables.keys())[0]\n print(len(contribution.tables['measurements'].df),\n ' records read from ', in_file)\n if plot_key not in contribution.tables['measurements'].df.columns:\n contribution.propagate_location_to_measurements()\n data_container = contribution.tables[file_type]\n data_slice = data_container.get_records_for_code(LT)\n data = data_container.get_records_for_code(XLP, incl=False, use_slice=\n True, sli=data_slice, strict_match=False)\n if 'quality' not in data.columns:\n data['quality'] = 'g'\n intlist = ['magn_moment', 'magn_volume', 'magn_mass']\n IntMeths = [col_name for col_name in data.columns if col_name in intlist]\n for col_name in IntMeths:\n if not data[col_name].any():\n data.drop(col_name, axis=1, inplace=True)\n IntMeths = [col_name for col_name in data.columns if col_name in intlist]\n if len(IntMeths) == 0:\n print('-E- No intensity headers found')\n return False, []\n int_key = IntMeths[0]\n data = data[data[int_key].notnull()]\n plotlist = data[plot_key].unique()\n plotlist.sort()\n pmagplotlib.plot_init(FIG['demag'], 5, 5)\n last_plot = False\n for plot in plotlist:\n if plot == plotlist[-1]:\n last_plot = True\n plot_data = data[data[plot_key] == plot].copy()\n if not save_plots:\n print(plot, 'plotting by: ', plot_key)\n if len(plot_data) > 2:\n title = plot\n spcs = []\n spcs = plot_data['specimen'].unique()\n for spc in spcs:\n INTblock = []\n spec_data = plot_data[plot_data['specimen'] == spc]\n for ind, rec in spec_data.iterrows():\n INTblock.append([float(rec[dmag_key]), 0, 0, float(rec[\n int_key]), 1, rec['quality']])\n if len(INTblock) > 2:\n pmagplotlib.plot_mag(FIG['demag'], INTblock, title, 0,\n units, norm)\n if save_plots:\n files = {}\n for key in list(FIG.keys()):\n if pmagplotlib.isServer:\n files[key] = title + '_' + LT + '.' + fmt\n incl_dir = False\n else:\n files[key] = os.path.join(dir_path, title + '_' +\n LT + '.' + fmt)\n incl_dir = True\n pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir)\n else:\n pmagplotlib.draw_figs(FIG)\n prompt = ' S[a]ve to save plot, [q]uit, Return to continue: '\n ans = input(prompt)\n if ans == 'q':\n return True, []\n if ans == 'a':\n files = {}\n for key in list(FIG.keys()):\n if pmagplotlib.isServer:\n files[key] = title + '_' + LT + '.' + fmt\n incl_dir = False\n else:\n files[key] = os.path.join(dir_path, title + '_' +\n LT + '.' + fmt)\n incl_dir = True\n pmagplotlib.save_plots(FIG, files, incl_directory=incl_dir)\n pmagplotlib.clearFIG(FIG['demag'])\n if last_plot:\n return True, []\n",
"role": "user"
},
{
"content": "dmag_magic",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
dir_path = pmag.get_named_arg('-WD', default_val='.')
input_dir_path = pmag.get_named_arg('-ID', '')
if not input_dir_path:
input_dir_path = dir_path
in_file = pmag.get_named_arg('-f', default_val='measurements.txt')
in_file = pmag.resolve_file_name(in_file, input_dir_path)
if '-ID' not in sys.argv:
input_dir_path = os.path.split(in_file)[0]
plot_by = pmag.get_named_arg('-obj', default_val='loc')
LT = pmag.get_named_arg('-LT', 'AF')
no_norm = pmag.get_flag_arg_from_sys('-N')
norm = False if no_norm else True
save_plots = pmag.get_flag_arg_from_sys('-sav')
fmt = pmag.get_named_arg('-fmt', 'svg')
XLP = pmag.get_named_arg('-XLP', '')
spec_file = pmag.get_named_arg('-fsp', default_val='specimens.txt')
samp_file = pmag.get_named_arg('-fsa', default_val='samples.txt')
site_file = pmag.get_named_arg('-fsi', default_val='sites.txt')
loc_file = pmag.get_named_arg('-flo', default_val='locations.txt')
dmag_magic(in_file, dir_path, input_dir_path, spec_file, samp_file,
site_file, loc_file, plot_by, LT, norm, XLP, save_plots, fmt)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n dir_path = pmag.get_named_arg('-WD', default_val='.')\n input_dir_path = pmag.get_named_arg('-ID', '')\n if not input_dir_path:\n input_dir_path = dir_path\n in_file = pmag.get_named_arg('-f', default_val='measurements.txt')\n in_file = pmag.resolve_file_name(in_file, input_dir_path)\n if '-ID' not in sys.argv:\n input_dir_path = os.path.split(in_file)[0]\n plot_by = pmag.get_named_arg('-obj', default_val='loc')\n LT = pmag.get_named_arg('-LT', 'AF')\n no_norm = pmag.get_flag_arg_from_sys('-N')\n norm = False if no_norm else True\n save_plots = pmag.get_flag_arg_from_sys('-sav')\n fmt = pmag.get_named_arg('-fmt', 'svg')\n XLP = pmag.get_named_arg('-XLP', '')\n spec_file = pmag.get_named_arg('-fsp', default_val='specimens.txt')\n samp_file = pmag.get_named_arg('-fsa', default_val='samples.txt')\n site_file = pmag.get_named_arg('-fsi', default_val='sites.txt')\n loc_file = pmag.get_named_arg('-flo', default_val='locations.txt')\n dmag_magic(in_file, dir_path, input_dir_path, spec_file, samp_file,\n site_file, loc_file, plot_by, LT, norm, XLP, save_plots, fmt)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
Flip = 0
show, plot = 1, 0
fmt = 'svg'
file2 = ''
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-ant' in sys.argv:
Flip = 1
if '-sav' in sys.argv:
show, plot = 0, 1
if '-fmt' in sys.argv:
ind = sys.argv.index('-fmt')
fmt = sys.argv[ind + 1]
if '-P' in sys.argv:
show = 0
if '-f' in sys.argv:
ind = sys.argv.index('-f')
file1 = sys.argv[ind + 1]
data = numpy.loadtxt(file1).transpose()
D1 = numpy.array([data[0], data[1]]).transpose()
file1_name = os.path.split(file1)[1].split('.')[0]
else:
print('-f is required')
print(main.__doc__)
sys.exit()
if '-f2' in sys.argv:
ind = sys.argv.index('-f2')
file2 = sys.argv[ind + 1]
data2 = numpy.loadtxt(file2).transpose()
D2 = numpy.array([data2[0], data2[1]]).transpose()
file2_name = os.path.split(file2)[1].split('.')[0]
if Flip == 1:
D2, D = pmag.flip(D2)
if len(D2) != 0:
if len(D) != 0:
D2 = numpy.concatenate(D, D2)
elif len(D) != 0:
D2 = D
else:
print('length of second file is zero')
sys.exit()
elif Flip == 1:
D2, D1 = pmag.flip(D1)
counter, NumSims = 0, 5000
pars_1 = pmag.fisher_mean(D1)
pars_2 = pmag.fisher_mean(D2)
V = pmag.vfunc(pars_1, pars_2)
Vp = []
if show == 1:
print('Doing ', NumSims, ' simulations')
for k in range(NumSims):
counter += 1
if counter == 50:
if show == 1:
print(k + 1)
counter = 0
Dirp = []
for i in range(pars_1['n']):
Dirp.append(pmag.fshdev(pars_1['k']))
pars_p1 = pmag.fisher_mean(Dirp)
Dirp = []
for i in range(pars_2['n']):
Dirp.append(pmag.fshdev(pars_2['k']))
pars_p2 = pmag.fisher_mean(Dirp)
Vk = pmag.vfunc(pars_p1, pars_p2)
Vp.append(Vk)
Vp.sort()
k = int(0.95 * NumSims)
if show == 1:
print("Watson's V, Vcrit: ")
print(' %10.1f %10.1f' % (V, Vp[k]))
if show == 1 or plot == 1:
print("Watson's V, Vcrit: ")
print(' %10.1f %10.1f' % (V, Vp[k]))
CDF = {'cdf': 1}
pmagplotlib.plot_init(CDF['cdf'], 5, 5)
pmagplotlib.plot_cdf(CDF['cdf'], Vp, "Watson's V", 'r', '')
pmagplotlib.plot_vs(CDF['cdf'], [V], 'g', '-')
pmagplotlib.plot_vs(CDF['cdf'], [Vp[k]], 'b', '--')
if plot == 0:
pmagplotlib.draw_figs(CDF)
files = {}
if pmagplotlib.isServer:
if file2 != '':
files['cdf'] = 'watsons_v_' + file1 + '_' + file2 + '.' + fmt
else:
files['cdf'] = 'watsons_v_' + file1 + '.' + fmt
elif file2 != '':
files['cdf'
] = 'watsons_v_' + file1_name + '_' + file2_name + '.' + fmt
else:
files['cdf'] = 'watsons_v_' + file1_name + '.' + fmt
if pmagplotlib.isServer:
black = '#000000'
purple = '#800080'
titles = {}
titles['cdf'] = 'Cumulative Distribution'
CDF = pmagplotlib.add_borders(CDF, titles, black, purple)
pmagplotlib.save_plots(CDF, files)
elif plot == 0:
ans = input(' S[a]ve to save plot, [q]uit without saving: ')
if ans == 'a':
pmagplotlib.save_plots(CDF, files)
if plot == 1:
pmagplotlib.save_plots(CDF, files)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n Flip = 0\n show, plot = 1, 0\n fmt = 'svg'\n file2 = ''\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-ant' in sys.argv:\n Flip = 1\n if '-sav' in sys.argv:\n show, plot = 0, 1\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if '-P' in sys.argv:\n show = 0\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file1 = sys.argv[ind + 1]\n data = numpy.loadtxt(file1).transpose()\n D1 = numpy.array([data[0], data[1]]).transpose()\n file1_name = os.path.split(file1)[1].split('.')[0]\n else:\n print('-f is required')\n print(main.__doc__)\n sys.exit()\n if '-f2' in sys.argv:\n ind = sys.argv.index('-f2')\n file2 = sys.argv[ind + 1]\n data2 = numpy.loadtxt(file2).transpose()\n D2 = numpy.array([data2[0], data2[1]]).transpose()\n file2_name = os.path.split(file2)[1].split('.')[0]\n if Flip == 1:\n D2, D = pmag.flip(D2)\n if len(D2) != 0:\n if len(D) != 0:\n D2 = numpy.concatenate(D, D2)\n elif len(D) != 0:\n D2 = D\n else:\n print('length of second file is zero')\n sys.exit()\n elif Flip == 1:\n D2, D1 = pmag.flip(D1)\n counter, NumSims = 0, 5000\n pars_1 = pmag.fisher_mean(D1)\n pars_2 = pmag.fisher_mean(D2)\n V = pmag.vfunc(pars_1, pars_2)\n Vp = []\n if show == 1:\n print('Doing ', NumSims, ' simulations')\n for k in range(NumSims):\n counter += 1\n if counter == 50:\n if show == 1:\n print(k + 1)\n counter = 0\n Dirp = []\n for i in range(pars_1['n']):\n Dirp.append(pmag.fshdev(pars_1['k']))\n pars_p1 = pmag.fisher_mean(Dirp)\n Dirp = []\n for i in range(pars_2['n']):\n Dirp.append(pmag.fshdev(pars_2['k']))\n pars_p2 = pmag.fisher_mean(Dirp)\n Vk = pmag.vfunc(pars_p1, pars_p2)\n Vp.append(Vk)\n Vp.sort()\n k = int(0.95 * NumSims)\n if show == 1:\n print(\"Watson's V, Vcrit: \")\n print(' %10.1f %10.1f' % (V, Vp[k]))\n if show == 1 or plot == 1:\n print(\"Watson's V, Vcrit: \")\n print(' %10.1f %10.1f' % (V, Vp[k]))\n CDF = {'cdf': 1}\n pmagplotlib.plot_init(CDF['cdf'], 5, 5)\n pmagplotlib.plot_cdf(CDF['cdf'], Vp, \"Watson's V\", 'r', '')\n pmagplotlib.plot_vs(CDF['cdf'], [V], 'g', '-')\n pmagplotlib.plot_vs(CDF['cdf'], [Vp[k]], 'b', '--')\n if plot == 0:\n pmagplotlib.draw_figs(CDF)\n files = {}\n if pmagplotlib.isServer:\n if file2 != '':\n files['cdf'] = 'watsons_v_' + file1 + '_' + file2 + '.' + fmt\n else:\n files['cdf'] = 'watsons_v_' + file1 + '.' + fmt\n elif file2 != '':\n files['cdf'\n ] = 'watsons_v_' + file1_name + '_' + file2_name + '.' + fmt\n else:\n files['cdf'] = 'watsons_v_' + file1_name + '.' + fmt\n if pmagplotlib.isServer:\n black = '#000000'\n purple = '#800080'\n titles = {}\n titles['cdf'] = 'Cumulative Distribution'\n CDF = pmagplotlib.add_borders(CDF, titles, black, purple)\n pmagplotlib.save_plots(CDF, files)\n elif plot == 0:\n ans = input(' S[a]ve to save plot, [q]uit without saving: ')\n if ans == 'a':\n pmagplotlib.save_plots(CDF, files)\n if plot == 1:\n pmagplotlib.save_plots(CDF, files)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
norm = 0
if '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
data = np.loadtxt(file)
dates = [2000]
elif '-d' in sys.argv:
ind = sys.argv.index('-d')
dates = [float(sys.argv[ind + 1])]
elif '-r' in sys.argv:
ind = sys.argv.index('-r')
dates = np.loadtxt(sys.argv[ind + 1])
if '-n' in sys.argv:
norm = 1
if len(sys.argv) != 0 and '-h' in sys.argv:
print(main.__doc__)
sys.exit()
plt.semilogy()
plt.xlabel('Degree (l)')
plt.ylabel('Power ($\\mu$T$^2$)')
labels = []
for date in dates:
if date != 2000:
gh = pmag.doigrf(0, 0, 0, date, coeffs=1)
data = pmag.unpack(gh)
Ls, Rs = pmag.lowes(data)
labels.append(str(date))
print(date, Rs[0])
if norm == 1:
Rs = old_div(np.array(Rs), Rs[0])
plt.plot(Ls, Rs, linewidth=2)
plt.legend(labels, 'upper right')
plt.draw()
input()
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n norm = 0\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n data = np.loadtxt(file)\n dates = [2000]\n elif '-d' in sys.argv:\n ind = sys.argv.index('-d')\n dates = [float(sys.argv[ind + 1])]\n elif '-r' in sys.argv:\n ind = sys.argv.index('-r')\n dates = np.loadtxt(sys.argv[ind + 1])\n if '-n' in sys.argv:\n norm = 1\n if len(sys.argv) != 0 and '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n plt.semilogy()\n plt.xlabel('Degree (l)')\n plt.ylabel('Power ($\\\\mu$T$^2$)')\n labels = []\n for date in dates:\n if date != 2000:\n gh = pmag.doigrf(0, 0, 0, date, coeffs=1)\n data = pmag.unpack(gh)\n Ls, Rs = pmag.lowes(data)\n labels.append(str(date))\n print(date, Rs[0])\n if norm == 1:\n Rs = old_div(np.array(Rs), Rs[0])\n plt.plot(Ls, Rs, linewidth=2)\n plt.legend(labels, 'upper right')\n plt.draw()\n input()\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
import numpy
X = arange(0.1, 10.1, 0.2)
Y = myfunc(X)
for i in range(len(X)):
print(X[i], Y[i])
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n import numpy\n X = arange(0.1, 10.1, 0.2)\n Y = myfunc(X)\n for i in range(len(X)):\n print(X[i], Y[i])\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
d, i, file2 = '', '', ''
fmt, plot = 'svg', 0
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-sav' in sys.argv:
plot = 1
if '-fmt' in sys.argv:
ind = sys.argv.index('-fmt')
fmt = sys.argv[ind + 1]
if '-f' in sys.argv:
ind = sys.argv.index('-f')
file1 = sys.argv[ind + 1]
if '-f2' in sys.argv:
ind = sys.argv.index('-f2')
file2 = sys.argv[ind + 1]
if '-dir' in sys.argv:
ind = sys.argv.index('-dir')
d = float(sys.argv[ind + 1])
i = float(sys.argv[ind + 2])
D1 = numpy.loadtxt(file1, dtype=numpy.float)
if file2 != '':
D2 = numpy.loadtxt(file2, dtype=numpy.float)
counter, NumSims = 0, 1000
print('Doing first set of directions, please be patient..')
BDI1 = pmag.di_boot(D1)
if d == '':
print('Doing second set of directions, please be patient..')
BDI2 = pmag.di_boot(D2)
else:
BDI2 = []
CDF = {'X': 1, 'Y': 2, 'Z': 3}
pmagplotlib.plot_init(CDF['X'], 4, 4)
pmagplotlib.plot_init(CDF['Y'], 4, 4)
pmagplotlib.plot_init(CDF['Z'], 4, 4)
pmagplotlib.plot_com(CDF, BDI1, BDI2, [d, i])
files = {}
files['X'] = 'CD_X.' + fmt
files['Y'] = 'CD_Y.' + fmt
files['Z'] = 'CD_Z.' + fmt
if plot == 0:
pmagplotlib.draw_figs(CDF)
ans = input('S[a]ve plots, <Return> to quit ')
if ans == 'a':
pmagplotlib.save_plots(CDF, files)
else:
sys.exit()
else:
pmagplotlib.save_plots(CDF, files)
sys.exit()
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n d, i, file2 = '', '', ''\n fmt, plot = 'svg', 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-sav' in sys.argv:\n plot = 1\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file1 = sys.argv[ind + 1]\n if '-f2' in sys.argv:\n ind = sys.argv.index('-f2')\n file2 = sys.argv[ind + 1]\n if '-dir' in sys.argv:\n ind = sys.argv.index('-dir')\n d = float(sys.argv[ind + 1])\n i = float(sys.argv[ind + 2])\n D1 = numpy.loadtxt(file1, dtype=numpy.float)\n if file2 != '':\n D2 = numpy.loadtxt(file2, dtype=numpy.float)\n counter, NumSims = 0, 1000\n print('Doing first set of directions, please be patient..')\n BDI1 = pmag.di_boot(D1)\n if d == '':\n print('Doing second set of directions, please be patient..')\n BDI2 = pmag.di_boot(D2)\n else:\n BDI2 = []\n CDF = {'X': 1, 'Y': 2, 'Z': 3}\n pmagplotlib.plot_init(CDF['X'], 4, 4)\n pmagplotlib.plot_init(CDF['Y'], 4, 4)\n pmagplotlib.plot_init(CDF['Z'], 4, 4)\n pmagplotlib.plot_com(CDF, BDI1, BDI2, [d, i])\n files = {}\n files['X'] = 'CD_X.' + fmt\n files['Y'] = 'CD_Y.' + fmt\n files['Z'] = 'CD_Z.' + fmt\n if plot == 0:\n pmagplotlib.draw_figs(CDF)\n ans = input('S[a]ve plots, <Return> to quit ')\n if ans == 'a':\n pmagplotlib.save_plots(CDF, files)\n else:\n sys.exit()\n else:\n pmagplotlib.save_plots(CDF, files)\n sys.exit()\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(x=x, y=y):
X = numpy.array(list(map(float, x)))
X = old_div(X, max(X))
Y = numpy.array(list(map(float, y)))
Y = old_div(Y, max(Y))
XY = numpy.array(list(zip(X, Y)))
E1 = TaubinSVD(XY)
E2 = LMA(XY, E1)
estimates = [E2[2], E2[0], E2[1]]
best_a = E2[0]
best_b = E2[1]
best_r = E2[2]
if best_a <= numpy.mean(X) and best_b <= numpy.mean(Y):
k = old_div(-1.0, best_r)
else:
k = old_div(1.0, best_r)
SSE = get_SSE(best_a, best_b, best_r, X, Y)
return k, best_a, best_b, SSE
|
AraiCurvature
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x=x, y=y):\n X = numpy.array(list(map(float, x)))\n X = old_div(X, max(X))\n Y = numpy.array(list(map(float, y)))\n Y = old_div(Y, max(Y))\n XY = numpy.array(list(zip(X, Y)))\n E1 = TaubinSVD(XY)\n E2 = LMA(XY, E1)\n estimates = [E2[2], E2[0], E2[1]]\n best_a = E2[0]\n best_b = E2[1]\n best_r = E2[2]\n if best_a <= numpy.mean(X) and best_b <= numpy.mean(Y):\n k = old_div(-1.0, best_r)\n else:\n k = old_div(1.0, best_r)\n SSE = get_SSE(best_a, best_b, best_r, X, Y)\n return k, best_a, best_b, SSE\n",
"role": "user"
},
{
"content": "AraiCurvature",
"role": "assistant"
}
] |
def x(XY):
XY = numpy.array(XY)
X = XY[:, 0] - numpy.mean(XY[:, 0])
Y = XY[:, 1] - numpy.mean(XY[:, 1])
centroid = [numpy.mean(XY[:, 0]), numpy.mean(XY[:, 1])]
Z = X * X + Y * Y
Zmean = numpy.mean(Z)
Z0 = old_div(Z - Zmean, 2.0 * numpy.sqrt(Zmean))
ZXY = numpy.array([Z0, X, Y]).T
U, S, V = numpy.linalg.svd(ZXY, full_matrices=False)
V = V.transpose()
A = V[:, 2]
A[0] = old_div(A[0], 2.0 * numpy.sqrt(Zmean))
A = numpy.concatenate([A, [-1.0 * Zmean * A[0]]], axis=0)
a, b = -1 * A[1:3] / A[0] / 2 + centroid
r = numpy.sqrt(A[1] * A[1] + A[2] * A[2] - 4 * A[0] * A[3]) / abs(A[0]) / 2
return a, b, r
|
TaubinSVD
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(XY):\n XY = numpy.array(XY)\n X = XY[:, 0] - numpy.mean(XY[:, 0])\n Y = XY[:, 1] - numpy.mean(XY[:, 1])\n centroid = [numpy.mean(XY[:, 0]), numpy.mean(XY[:, 1])]\n Z = X * X + Y * Y\n Zmean = numpy.mean(Z)\n Z0 = old_div(Z - Zmean, 2.0 * numpy.sqrt(Zmean))\n ZXY = numpy.array([Z0, X, Y]).T\n U, S, V = numpy.linalg.svd(ZXY, full_matrices=False)\n V = V.transpose()\n A = V[:, 2]\n A[0] = old_div(A[0], 2.0 * numpy.sqrt(Zmean))\n A = numpy.concatenate([A, [-1.0 * Zmean * A[0]]], axis=0)\n a, b = -1 * A[1:3] / A[0] / 2 + centroid\n r = numpy.sqrt(A[1] * A[1] + A[2] * A[2] - 4 * A[0] * A[3]) / abs(A[0]) / 2\n return a, b, r\n",
"role": "user"
},
{
"content": "TaubinSVD",
"role": "assistant"
}
] |
def x(XY, Par):
if type(XY) != numpy.ndarray:
XY = numpy.array(XY)
n = len(XY)
if n < 4:
raise Warning(
'Circle cannot be calculated with less than 4 data points. Please include more data'
)
Dx = XY[:, 0] - Par[0]
Dy = XY[:, 1] - Par[1]
D = numpy.sqrt(Dx * Dx + Dy * Dy) - Par[2]
result = old_div(numpy.dot(D, D), n - 3)
return result
|
VarCircle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(XY, Par):\n if type(XY) != numpy.ndarray:\n XY = numpy.array(XY)\n n = len(XY)\n if n < 4:\n raise Warning(\n 'Circle cannot be calculated with less than 4 data points. Please include more data'\n )\n Dx = XY[:, 0] - Par[0]\n Dy = XY[:, 1] - Par[1]\n D = numpy.sqrt(Dx * Dx + Dy * Dy) - Par[2]\n result = old_div(numpy.dot(D, D), n - 3)\n return result\n",
"role": "user"
},
{
"content": "VarCircle",
"role": "assistant"
}
] |
def x(a, b, r, x, y):
SSE = 0
X = numpy.array(x)
Y = numpy.array(y)
for i in range(len(X)):
x = X[i]
y = Y[i]
v = (numpy.sqrt((x - a) ** 2 + (y - b) ** 2) - r) ** 2
SSE += v
return SSE
|
get_SSE
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, r, x, y):\n SSE = 0\n X = numpy.array(x)\n Y = numpy.array(y)\n for i in range(len(X)):\n x = X[i]\n y = Y[i]\n v = (numpy.sqrt((x - a) ** 2 + (y - b) ** 2) - r) ** 2\n SSE += v\n return SSE\n",
"role": "user"
},
{
"content": "get_SSE",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
f = open(file, 'r')
data = f.readlines()
for line in data:
dec = spitout(line)
sys.exit()
if '-i' in sys.argv:
while 1:
sundata = {}
print(
'Time difference between Greenwich Mean Time (hrs to subtract from local time to get GMT): '
)
try:
sundata['delta_u'] = input('<cntl-D> to quit ')
except:
print('\n Good-bye\n')
sys.exit()
date = ''
date = date + input('Year: <cntl-D to quit> ')
date = date + ':' + input('Month: ')
date = date + ':' + input('Day: ')
date = date + ':' + input('hour: ')
date = date + ':' + input('minute: ')
sundata['date'] = date
sundata['lat'] = input(
'Latitude of sampling site (negative in southern hemisphere): '
)
sundata['lon'] = input(
'Longitude of sampling site (negative for western hemisphere): '
)
sundata['shadow_angle'] = input('Shadow angle: ')
print('%7.1f' % pmag.dosundec(sundata))
else:
data = sys.stdin.readlines()
for line in data:
dec = spitout(line)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n for line in data:\n dec = spitout(line)\n sys.exit()\n if '-i' in sys.argv:\n while 1:\n sundata = {}\n print(\n 'Time difference between Greenwich Mean Time (hrs to subtract from local time to get GMT): '\n )\n try:\n sundata['delta_u'] = input('<cntl-D> to quit ')\n except:\n print('\\n Good-bye\\n')\n sys.exit()\n date = ''\n date = date + input('Year: <cntl-D to quit> ')\n date = date + ':' + input('Month: ')\n date = date + ':' + input('Day: ')\n date = date + ':' + input('hour: ')\n date = date + ':' + input('minute: ')\n sundata['date'] = date\n sundata['lat'] = input(\n 'Latitude of sampling site (negative in southern hemisphere): '\n )\n sundata['lon'] = input(\n 'Longitude of sampling site (negative for western hemisphere): '\n )\n sundata['shadow_angle'] = input('Shadow angle: ')\n print('%7.1f' % pmag.dosundec(sundata))\n else:\n data = sys.stdin.readlines()\n for line in data:\n dec = spitout(line)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
site_file = 'er_sites.txt'
loc_file = 'er_locations.txt'
Names, user = [], 'unknown'
Done = []
version_num = pmag.get_version()
args = sys.argv
dir_path = '.'
if '-WD' in args:
ind = args.index('-WD')
dir_path = args[ind + 1]
if '-h' in args:
print(main.__doc__)
sys.exit()
if '-f' in args:
ind = args.index('-f')
site_file = args[ind + 1]
if '-F' in args:
ind = args.index('-F')
loc_file = args[ind + 1]
site_file = dir_path + '/' + site_file
loc_file = dir_path + '/' + loc_file
Sites, file_type = pmag.magic_read(site_file)
if file_type != 'er_sites':
print(file_type)
print(file_type, 'This is not a valid er_sites file ')
sys.exit()
LocNames, Locations = [], []
for site in Sites:
if site['er_location_name'] not in LocNames:
LocNames.append(site['er_location_name'])
sites_locs = pmag.get_dictitem(Sites, 'er_location_name', site[
'er_location_name'], 'T')
lats = pmag.get_dictkey(sites_locs, 'site_lat', 'f')
lons = pmag.get_dictkey(sites_locs, 'site_lon', 'f')
LocRec = {'er_citation_names': 'This study', 'er_location_name':
site['er_location_name'], 'location_type': ''}
LocRec['location_begin_lat'] = str(min(lats))
LocRec['location_end_lat'] = str(max(lats))
LocRec['location_begin_lon'] = str(min(lons))
LocRec['location_end_lon'] = str(max(lons))
Locations.append(LocRec)
if len(Locations) > 0:
pmag.magic_write(loc_file, Locations, 'er_locations')
print('Locations written to: ', loc_file)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n site_file = 'er_sites.txt'\n loc_file = 'er_locations.txt'\n Names, user = [], 'unknown'\n Done = []\n version_num = pmag.get_version()\n args = sys.argv\n dir_path = '.'\n if '-WD' in args:\n ind = args.index('-WD')\n dir_path = args[ind + 1]\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n if '-f' in args:\n ind = args.index('-f')\n site_file = args[ind + 1]\n if '-F' in args:\n ind = args.index('-F')\n loc_file = args[ind + 1]\n site_file = dir_path + '/' + site_file\n loc_file = dir_path + '/' + loc_file\n Sites, file_type = pmag.magic_read(site_file)\n if file_type != 'er_sites':\n print(file_type)\n print(file_type, 'This is not a valid er_sites file ')\n sys.exit()\n LocNames, Locations = [], []\n for site in Sites:\n if site['er_location_name'] not in LocNames:\n LocNames.append(site['er_location_name'])\n sites_locs = pmag.get_dictitem(Sites, 'er_location_name', site[\n 'er_location_name'], 'T')\n lats = pmag.get_dictkey(sites_locs, 'site_lat', 'f')\n lons = pmag.get_dictkey(sites_locs, 'site_lon', 'f')\n LocRec = {'er_citation_names': 'This study', 'er_location_name':\n site['er_location_name'], 'location_type': ''}\n LocRec['location_begin_lat'] = str(min(lats))\n LocRec['location_end_lat'] = str(max(lats))\n LocRec['location_begin_lon'] = str(min(lons))\n LocRec['location_end_lon'] = str(max(lons))\n Locations.append(LocRec)\n if len(Locations) > 0:\n pmag.magic_write(loc_file, Locations, 'er_locations')\n print('Locations written to: ', loc_file)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self, mtype, method_list):
cond = method_list['dtype'] == mtype
codes = method_list[cond]
return codes
|
get_one_meth_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mtype, method_list):\n cond = method_list['dtype'] == mtype\n codes = method_list[cond]\n return codes\n",
"role": "user"
},
{
"content": "get_one_meth_type",
"role": "assistant"
}
] |
def x(self, category, all_codes, code_types):
categories = Series(code_types[code_types[category] == True].index)
cond = all_codes['dtype'].isin(categories)
codes = all_codes[cond]
return codes
|
get_one_meth_category
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, category, all_codes, code_types):\n categories = Series(code_types[code_types[category] == True].index)\n cond = all_codes['dtype'].isin(categories)\n codes = all_codes[cond]\n return codes\n",
"role": "user"
},
{
"content": "get_one_meth_category",
"role": "assistant"
}
] |
def x():
args = sys.argv
if '-h' in args:
print(main.__doc__)
sys.exit()
dataframe = extractor.command_line_dataframe([['f', False, 'orient.txt'
], ['Fsa', False, 'samples.txt'], ['ncn', False, '1'], ['mcd',
False, 'FS-FD'], ['loc', False, 'unknown'], ['app', False, False],
['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]])
checked_args = extractor.extract_and_check_args(args, dataframe)
(orient_file, samp_file, samp_con, method_codes, location_name, append,
output_dir, input_dir, data_model) = (extractor.get_vars(['f',
'Fsa', 'ncn', 'mcd', 'loc', 'app', 'WD', 'ID', 'DM'], checked_args))
if len(str(samp_con)) > 1:
samp_con, Z = samp_con.split('-')
Z = float(Z)
else:
Z = 1
ipmag.azdip_magic(orient_file, samp_file, samp_con, Z, method_codes,
location_name, append, output_dir, input_dir, data_model)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n dataframe = extractor.command_line_dataframe([['f', False, 'orient.txt'\n ], ['Fsa', False, 'samples.txt'], ['ncn', False, '1'], ['mcd', \n False, 'FS-FD'], ['loc', False, 'unknown'], ['app', False, False],\n ['WD', False, '.'], ['ID', False, '.'], ['DM', False, 3]])\n checked_args = extractor.extract_and_check_args(args, dataframe)\n (orient_file, samp_file, samp_con, method_codes, location_name, append,\n output_dir, input_dir, data_model) = (extractor.get_vars(['f',\n 'Fsa', 'ncn', 'mcd', 'loc', 'app', 'WD', 'ID', 'DM'], checked_args))\n if len(str(samp_con)) > 1:\n samp_con, Z = samp_con.split('-')\n Z = float(Z)\n else:\n Z = 1\n ipmag.azdip_magic(orient_file, samp_file, samp_con, Z, method_codes,\n location_name, append, output_dir, input_dir, data_model)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
dir_path = '.'
names, res, proj, locs, padlon, padlat, fancy, gridspace, details = [
], 'l', 'lcc', '', 0, 0, 0, 15, 1
Age_bounds = [-5000, 2000]
Lat_bounds = [20, 45]
Lon_bounds = [15, 55]
fmt = 'pdf'
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
sites_file = sys.argv[ind + 1]
if '-res' in sys.argv:
ind = sys.argv.index('-res')
res = sys.argv[ind + 1]
if '-etp' in sys.argv:
fancy = 1
if '-o' in sys.argv:
ocean = 1
if '-d' in sys.argv:
details = 1
if '-prj' in sys.argv:
ind = sys.argv.index('-prj')
proj = sys.argv[ind + 1]
if '-fmt' in sys.argv:
ind = sys.argv.index('-fmt')
fmt = sys.argv[ind + 1]
verbose = pmagplotlib.verbose
if '-sav' in sys.argv:
verbose = 0
if '-pad' in sys.argv:
ind = sys.argv.index('-pad')
padlat = float(sys.argv[ind + 1])
padlon = float(sys.argv[ind + 2])
if '-grd' in sys.argv:
ind = sys.argv.index('-grd')
gridspace = float(sys.argv[ind + 1])
if '-WD' in sys.argv:
ind = sys.argv.index('-WD')
dir_path = sys.argv[ind + 1]
sites_file = dir_path + '/' + sites_file
geo_in = open(sites_file, 'r').readlines()
Age, AgeErr, Vadm, VadmErr, slats, slons = [], [], [], [], [], []
for line in geo_in[2:]:
rec = line.split()
if float(rec[0]) > Age_bounds[0] and float(rec[0]) < Age_bounds[1
] and float(rec[12]) > Lat_bounds[0] and float(rec[12]
) < Lat_bounds[1] and float(rec[13]) > Lon_bounds[0] and float(rec
[13]) < Lon_bounds[1]:
Age.append(float(rec[0]))
AgeErr.append(float(rec[1]))
Vadm.append(10.0 * float(rec[6]))
VadmErr.append(10.0 * float(rec[7]))
slats.append(float(rec[12]))
slons.append(float(rec[13]))
FIGS = {'map': 1, 'vadms': 2}
pmagplotlib.plot_init(FIGS['map'], 6, 6)
pmagplotlib.plot_init(FIGS['vadms'], 6, 6)
Opts = {'res': res, 'proj': proj, 'loc_name': locs, 'padlon': padlon,
'padlat': padlat, 'latmin': numpy.min(slats) - padlat, 'latmax':
numpy.max(slats) + padlat, 'lonmin': numpy.min(slons) - padlon,
'lonmax': numpy.max(slons) + padlon, 'sym': 'ro', 'boundinglat':
0.0, 'pltgrid': 1}
Opts['lon_0'] = int(0.5 * (numpy.min(slons) + numpy.max(slons)))
Opts['lat_0'] = int(0.5 * (numpy.min(slats) + numpy.max(slats)))
Opts['gridspace'] = gridspace
if details == 1:
Opts['details'] = {'coasts': 1, 'rivers': 0, 'states': 1,
'countries': 1, 'ocean': 1}
else:
Opts['details'] = {'coasts': 1, 'rivers': 0, 'states': 0,
'countries': 0, 'ocean': 1}
Opts['details']['fancy'] = fancy
pmagplotlib.plot_map(FIGS['map'], slats, slons, Opts)
pmagplotlib.plot_xy(FIGS['vadms'], Age, Vadm, sym='bo', xlab=
'Age (Years CE)', ylab='VADM (ZAm$^2$)')
if verbose:
pmagplotlib.draw_figs(FIGS)
files = {}
for key in list(FIGS.keys()):
files[key] = key + '.' + fmt
if pmagplotlib.isServer:
black = '#000000'
purple = '#800080'
titles = {}
titles['map'] = 'Map'
titles['vadms'] = 'VADMs'
FIG = pmagplotlib.add_borders(FIGS, titles, black, purple)
pmagplotlib.save_plots(FIGS, files)
elif verbose:
ans = input(' S[a]ve to save plot, Return to quit: ')
if ans == 'a':
pmagplotlib.save_plots(FIGS, files)
else:
pmagplotlib.save_plots(FIGS, files)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n dir_path = '.'\n names, res, proj, locs, padlon, padlat, fancy, gridspace, details = [\n ], 'l', 'lcc', '', 0, 0, 0, 15, 1\n Age_bounds = [-5000, 2000]\n Lat_bounds = [20, 45]\n Lon_bounds = [15, 55]\n fmt = 'pdf'\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n sites_file = sys.argv[ind + 1]\n if '-res' in sys.argv:\n ind = sys.argv.index('-res')\n res = sys.argv[ind + 1]\n if '-etp' in sys.argv:\n fancy = 1\n if '-o' in sys.argv:\n ocean = 1\n if '-d' in sys.argv:\n details = 1\n if '-prj' in sys.argv:\n ind = sys.argv.index('-prj')\n proj = sys.argv[ind + 1]\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n verbose = pmagplotlib.verbose\n if '-sav' in sys.argv:\n verbose = 0\n if '-pad' in sys.argv:\n ind = sys.argv.index('-pad')\n padlat = float(sys.argv[ind + 1])\n padlon = float(sys.argv[ind + 2])\n if '-grd' in sys.argv:\n ind = sys.argv.index('-grd')\n gridspace = float(sys.argv[ind + 1])\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n sites_file = dir_path + '/' + sites_file\n geo_in = open(sites_file, 'r').readlines()\n Age, AgeErr, Vadm, VadmErr, slats, slons = [], [], [], [], [], []\n for line in geo_in[2:]:\n rec = line.split()\n if float(rec[0]) > Age_bounds[0] and float(rec[0]) < Age_bounds[1\n ] and float(rec[12]) > Lat_bounds[0] and float(rec[12]\n ) < Lat_bounds[1] and float(rec[13]) > Lon_bounds[0] and float(rec\n [13]) < Lon_bounds[1]:\n Age.append(float(rec[0]))\n AgeErr.append(float(rec[1]))\n Vadm.append(10.0 * float(rec[6]))\n VadmErr.append(10.0 * float(rec[7]))\n slats.append(float(rec[12]))\n slons.append(float(rec[13]))\n FIGS = {'map': 1, 'vadms': 2}\n pmagplotlib.plot_init(FIGS['map'], 6, 6)\n pmagplotlib.plot_init(FIGS['vadms'], 6, 6)\n Opts = {'res': res, 'proj': proj, 'loc_name': locs, 'padlon': padlon,\n 'padlat': padlat, 'latmin': numpy.min(slats) - padlat, 'latmax': \n numpy.max(slats) + padlat, 'lonmin': numpy.min(slons) - padlon,\n 'lonmax': numpy.max(slons) + padlon, 'sym': 'ro', 'boundinglat': \n 0.0, 'pltgrid': 1}\n Opts['lon_0'] = int(0.5 * (numpy.min(slons) + numpy.max(slons)))\n Opts['lat_0'] = int(0.5 * (numpy.min(slats) + numpy.max(slats)))\n Opts['gridspace'] = gridspace\n if details == 1:\n Opts['details'] = {'coasts': 1, 'rivers': 0, 'states': 1,\n 'countries': 1, 'ocean': 1}\n else:\n Opts['details'] = {'coasts': 1, 'rivers': 0, 'states': 0,\n 'countries': 0, 'ocean': 1}\n Opts['details']['fancy'] = fancy\n pmagplotlib.plot_map(FIGS['map'], slats, slons, Opts)\n pmagplotlib.plot_xy(FIGS['vadms'], Age, Vadm, sym='bo', xlab=\n 'Age (Years CE)', ylab='VADM (ZAm$^2$)')\n if verbose:\n pmagplotlib.draw_figs(FIGS)\n files = {}\n for key in list(FIGS.keys()):\n files[key] = key + '.' + fmt\n if pmagplotlib.isServer:\n black = '#000000'\n purple = '#800080'\n titles = {}\n titles['map'] = 'Map'\n titles['vadms'] = 'VADMs'\n FIG = pmagplotlib.add_borders(FIGS, titles, black, purple)\n pmagplotlib.save_plots(FIGS, files)\n elif verbose:\n ans = input(' S[a]ve to save plot, Return to quit: ')\n if ans == 'a':\n pmagplotlib.save_plots(FIGS, files)\n else:\n pmagplotlib.save_plots(FIGS, files)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
args = sys.argv
if '-h' in args:
print(do_help())
sys.exit()
dataframe = extractor.command_line_dataframe([['f', True, ''], ['F',
False, 'measurements.txt'], ['Fsa', False, 'samples.txt'], ['Fa',
False, 'specimens.txt'], ['Fr', False, 'rmag_results.txt'], ['spc',
False, 0], ['ncn', False, '1'], ['loc', False, 'unknown'], ['WD',
False, '.'], ['ID', False, '.'], ['DM', False, 3]])
checked_args = extractor.extract_and_check_args(args, dataframe)
(k15file, measfile, sampfile, aniso_outfile, result_file, specnum,
sample_naming_con, location_name, output_dir_path, input_dir_path,
data_model_num) = (extractor.get_vars(['f', 'F', 'Fsa', 'Fa', 'Fr',
'spc', 'ncn', 'loc', 'WD', 'ID', 'DM'], checked_args))
program_ran, error_message = convert.k15(k15file, specnum=specnum,
sample_naming_con=sample_naming_con, location=location_name,
meas_file=measfile, samp_file=sampfile, aniso_outfile=aniso_outfile,
result_file=result_file, input_dir_path=input_dir_path, dir_path=
output_dir_path, data_model_num=data_model_num)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n args = sys.argv\n if '-h' in args:\n print(do_help())\n sys.exit()\n dataframe = extractor.command_line_dataframe([['f', True, ''], ['F', \n False, 'measurements.txt'], ['Fsa', False, 'samples.txt'], ['Fa', \n False, 'specimens.txt'], ['Fr', False, 'rmag_results.txt'], ['spc',\n False, 0], ['ncn', False, '1'], ['loc', False, 'unknown'], ['WD', \n False, '.'], ['ID', False, '.'], ['DM', False, 3]])\n checked_args = extractor.extract_and_check_args(args, dataframe)\n (k15file, measfile, sampfile, aniso_outfile, result_file, specnum,\n sample_naming_con, location_name, output_dir_path, input_dir_path,\n data_model_num) = (extractor.get_vars(['f', 'F', 'Fsa', 'Fa', 'Fr',\n 'spc', 'ncn', 'loc', 'WD', 'ID', 'DM'], checked_args))\n program_ran, error_message = convert.k15(k15file, specnum=specnum,\n sample_naming_con=sample_naming_con, location=location_name,\n meas_file=measfile, samp_file=sampfile, aniso_outfile=aniso_outfile,\n result_file=result_file, input_dir_path=input_dir_path, dir_path=\n output_dir_path, data_model_num=data_model_num)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(data, reqd_cols):
missing = []
for col in reqd_cols:
if col not in data[0]:
missing.append(col)
return missing
|
check_for_reqd_cols
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, reqd_cols):\n missing = []\n for col in reqd_cols:\n if col not in data[0]:\n missing.append(col)\n return missing\n",
"role": "user"
},
{
"content": "check_for_reqd_cols",
"role": "assistant"
}
] |
def x():
args = sys.argv
if '-h' in args:
print(main.__doc__)
sys.exit()
dataframe = extractor.command_line_dataframe([['f', False,
'measurements.txt'], ['fsum', False, ''], ['fwig', False, ''], [
'fsa', False, ''], ['fa', False, ''], ['fsp', False, ''], ['fres',
False, ''], ['fmt', False, 'svg'], ['LP', False, ''], ['n', False,
False], ['d', False, '-1 -1'], ['ts', False, ''], ['WD', False, '.'
], ['L', False, True], ['S', False, True], ['D', False, True], ['I',
False, True], ['M', False, True], ['log', False, 0], ['ds', False,
'sample_core_depth'], ['sym', False, 'bo 5'], ['ID', False, '.'], [
'sav', False, False], ['DM', False, 3]])
checked_args = extractor.extract_and_check_args(args, dataframe)
(meas_file, sum_file, wig_file, samp_file, age_file, spc_file, res_file,
fmt, meth, norm, depth, timescale, dir_path, pltLine, pltSus,
pltDec, pltInc, pltMag, logit, depth_scale, symbol, input_dir, save,
data_model_num) = (extractor.get_vars(['f', 'fsum', 'fwig', 'fsa',
'fa', 'fsp', 'fres', 'fmt', 'LP', 'n', 'd', 'ts', 'WD', 'L', 'S',
'D', 'I', 'M', 'log', 'ds', 'sym', 'ID', 'sav', 'DM'], checked_args))
try:
sym, size = symbol.split()
size = int(size)
except:
print('you should provide -sym in this format: ro 5')
print('using defaults instead')
sym, size = 'ro', 5
if res_file:
try:
res_file, res_sym, res_size = res_file.split()
except:
print(
'you must provide -fres in this format: -fres filename symbol size'
)
print('could not parse {}, defaulting to using no result file'.
format(res_file))
res_file, res_sym, res_size = '', '', 0
else:
res_file, res_sym, res_size = '', '', 0
if spc_file:
try:
spc_file, spc_sym, spc_size = spc_file.split()
except:
print(
'you must provide -fsp in this format: -fsp filename symbol size'
)
print('could not parse {}, defaulting to using no specimen file'
.format(spc_file))
spc_file, spc_sym, spc_size = '', '', 0
else:
spc_file, spc_sym, spc_size = '', '', 0
try:
dmin, dmax = depth.split()
except:
print('you must provide -d in this format: -d dmin dmax')
print('could not parse {}, defaulting to plotting all depths'.
format(depth))
dmin, dmax = -1, -1
if timescale:
try:
timescale, amin, amax = timescale.split()
pltTime = True
except:
print(
'you must provide -ts in this format: -ts timescale minimum_age maximum_age'
)
print('could not parse {}, defaulting to using no timescale'.
format(timescale))
timescale, amin, amax = None, -1, -1
pltTime = False
else:
timescale, amin, amax = None, -1, -1
pltTime = False
if norm and not isinstance(norm, bool):
wt_file = norm
norm = True
else:
norm = False
wt_file = ''
try:
method, step = meth.split()
except:
print(
"""To use the -LP flag you must provide both the protocol and the step in this format:
-LP [AF,T,ARM,IRM, X] step [in mT,C,mT,mT, mass/vol] to plot"""
)
print('Defaulting to using no protocol')
method, step = 'LT-NO', 0
fig, figname = ipmag.core_depthplot(input_dir, meas_file, spc_file,
samp_file, age_file, sum_file, wt_file, depth_scale, dmin, dmax,
sym, size, spc_sym, spc_size, method, step, fmt, pltDec, pltInc,
pltMag, pltLine, pltSus, logit, pltTime, timescale, amin, amax,
norm, data_model_num)
if not pmagplotlib.isServer:
figname = figname.replace(':', '_')
if fig and save:
print('-I- Created plot: {}'.format(figname))
plt.savefig(figname)
return
app = wx.App(redirect=False)
if not fig:
pw.simple_warning(
"""No plot was able to be created with the data you provided.
Make sure you have given all the required information and try again"""
)
return False
dpi = fig.get_dpi()
pixel_width = dpi * fig.get_figwidth()
pixel_height = dpi * fig.get_figheight()
figname = os.path.join(dir_path, figname)
plot_frame = pmag_menu_dialogs.PlotFrame((int(pixel_width), int(
pixel_height + 50)), fig, figname, standalone=True)
app.MainLoop()
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n args = sys.argv\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n dataframe = extractor.command_line_dataframe([['f', False,\n 'measurements.txt'], ['fsum', False, ''], ['fwig', False, ''], [\n 'fsa', False, ''], ['fa', False, ''], ['fsp', False, ''], ['fres', \n False, ''], ['fmt', False, 'svg'], ['LP', False, ''], ['n', False, \n False], ['d', False, '-1 -1'], ['ts', False, ''], ['WD', False, '.'\n ], ['L', False, True], ['S', False, True], ['D', False, True], ['I',\n False, True], ['M', False, True], ['log', False, 0], ['ds', False,\n 'sample_core_depth'], ['sym', False, 'bo 5'], ['ID', False, '.'], [\n 'sav', False, False], ['DM', False, 3]])\n checked_args = extractor.extract_and_check_args(args, dataframe)\n (meas_file, sum_file, wig_file, samp_file, age_file, spc_file, res_file,\n fmt, meth, norm, depth, timescale, dir_path, pltLine, pltSus,\n pltDec, pltInc, pltMag, logit, depth_scale, symbol, input_dir, save,\n data_model_num) = (extractor.get_vars(['f', 'fsum', 'fwig', 'fsa',\n 'fa', 'fsp', 'fres', 'fmt', 'LP', 'n', 'd', 'ts', 'WD', 'L', 'S',\n 'D', 'I', 'M', 'log', 'ds', 'sym', 'ID', 'sav', 'DM'], checked_args))\n try:\n sym, size = symbol.split()\n size = int(size)\n except:\n print('you should provide -sym in this format: ro 5')\n print('using defaults instead')\n sym, size = 'ro', 5\n if res_file:\n try:\n res_file, res_sym, res_size = res_file.split()\n except:\n print(\n 'you must provide -fres in this format: -fres filename symbol size'\n )\n print('could not parse {}, defaulting to using no result file'.\n format(res_file))\n res_file, res_sym, res_size = '', '', 0\n else:\n res_file, res_sym, res_size = '', '', 0\n if spc_file:\n try:\n spc_file, spc_sym, spc_size = spc_file.split()\n except:\n print(\n 'you must provide -fsp in this format: -fsp filename symbol size'\n )\n print('could not parse {}, defaulting to using no specimen file'\n .format(spc_file))\n spc_file, spc_sym, spc_size = '', '', 0\n else:\n spc_file, spc_sym, spc_size = '', '', 0\n try:\n dmin, dmax = depth.split()\n except:\n print('you must provide -d in this format: -d dmin dmax')\n print('could not parse {}, defaulting to plotting all depths'.\n format(depth))\n dmin, dmax = -1, -1\n if timescale:\n try:\n timescale, amin, amax = timescale.split()\n pltTime = True\n except:\n print(\n 'you must provide -ts in this format: -ts timescale minimum_age maximum_age'\n )\n print('could not parse {}, defaulting to using no timescale'.\n format(timescale))\n timescale, amin, amax = None, -1, -1\n pltTime = False\n else:\n timescale, amin, amax = None, -1, -1\n pltTime = False\n if norm and not isinstance(norm, bool):\n wt_file = norm\n norm = True\n else:\n norm = False\n wt_file = ''\n try:\n method, step = meth.split()\n except:\n print(\n \"\"\"To use the -LP flag you must provide both the protocol and the step in this format:\n-LP [AF,T,ARM,IRM, X] step [in mT,C,mT,mT, mass/vol] to plot\"\"\"\n )\n print('Defaulting to using no protocol')\n method, step = 'LT-NO', 0\n fig, figname = ipmag.core_depthplot(input_dir, meas_file, spc_file,\n samp_file, age_file, sum_file, wt_file, depth_scale, dmin, dmax,\n sym, size, spc_sym, spc_size, method, step, fmt, pltDec, pltInc,\n pltMag, pltLine, pltSus, logit, pltTime, timescale, amin, amax,\n norm, data_model_num)\n if not pmagplotlib.isServer:\n figname = figname.replace(':', '_')\n if fig and save:\n print('-I- Created plot: {}'.format(figname))\n plt.savefig(figname)\n return\n app = wx.App(redirect=False)\n if not fig:\n pw.simple_warning(\n \"\"\"No plot was able to be created with the data you provided.\nMake sure you have given all the required information and try again\"\"\"\n )\n return False\n dpi = fig.get_dpi()\n pixel_width = dpi * fig.get_figwidth()\n pixel_height = dpi * fig.get_figheight()\n figname = os.path.join(dir_path, figname)\n plot_frame = pmag_menu_dialogs.PlotFrame((int(pixel_width), int(\n pixel_height + 50)), fig, figname, standalone=True)\n app.MainLoop()\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
f = open(file, 'r')
data = f.readlines()
else:
data = sys.stdin.readlines()
if '-dir' in sys.argv:
ind = sys.argv.index('-dir')
typ = sys.argv[ind + 1]
if typ == 'L':
calculation_type = 'DE-BFL'
if typ == 'P':
calculation_type = 'DE-BFP'
if typ == 'F':
calculation_type = 'DE-FM'
beg_pca = int(sys.argv[ind + 2])
end_pca = int(sys.argv[ind + 3])
datablock = []
s = ''
ind = 0
for line in data:
rec = line.split()
if s == '':
s = rec[0]
print(s, calculation_type)
print(ind, rec[1], rec[3], rec[4], rec[2])
ind += 1
datablock.append([float(rec[1]), float(rec[3]), float(rec[4]),
float(rec[2]), '0'])
mpars = pmag.domean(datablock, beg_pca, end_pca, calculation_type)
if calculation_type == 'DE-FM':
print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,
calculation_type, mpars['specimen_n'], mpars[
'measurement_step_min'], mpars['measurement_step_max'], mpars[
'specimen_a95'], mpars['specimen_dec'], mpars['specimen_inc']))
else:
print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,
calculation_type, mpars['specimen_n'], mpars[
'measurement_step_min'], mpars['measurement_step_max'], mpars[
'specimen_mad'], mpars['specimen_dec'], mpars['specimen_inc']))
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n else:\n data = sys.stdin.readlines()\n if '-dir' in sys.argv:\n ind = sys.argv.index('-dir')\n typ = sys.argv[ind + 1]\n if typ == 'L':\n calculation_type = 'DE-BFL'\n if typ == 'P':\n calculation_type = 'DE-BFP'\n if typ == 'F':\n calculation_type = 'DE-FM'\n beg_pca = int(sys.argv[ind + 2])\n end_pca = int(sys.argv[ind + 3])\n datablock = []\n s = ''\n ind = 0\n for line in data:\n rec = line.split()\n if s == '':\n s = rec[0]\n print(s, calculation_type)\n print(ind, rec[1], rec[3], rec[4], rec[2])\n ind += 1\n datablock.append([float(rec[1]), float(rec[3]), float(rec[4]),\n float(rec[2]), '0'])\n mpars = pmag.domean(datablock, beg_pca, end_pca, calculation_type)\n if calculation_type == 'DE-FM':\n print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,\n calculation_type, mpars['specimen_n'], mpars[\n 'measurement_step_min'], mpars['measurement_step_max'], mpars[\n 'specimen_a95'], mpars['specimen_dec'], mpars['specimen_inc']))\n else:\n print('%s %s %i %6.2f %6.2f %6.1f %7.1f %7.1f' % (s,\n calculation_type, mpars['specimen_n'], mpars[\n 'measurement_step_min'], mpars['measurement_step_max'], mpars[\n 'specimen_mad'], mpars['specimen_dec'], mpars['specimen_inc']))\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
dir_path = '.'
PTS = []
ResRecs = []
ofile = ''
data_model = 3
Dplates = ['nwaf', 'neaf', 'saf', 'aus', 'eur', 'ind', 'sam', 'ant',
'grn', 'nam']
if '-WD' in sys.argv:
ind = sys.argv.index('-WD')
dir_path = sys.argv[ind + 1]
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-F' in sys.argv:
ind = sys.argv.index('-F')
ofile = dir_path + '/' + sys.argv[ind + 1]
if '-dm' in sys.argv:
ind = sys.argv.index('-dm')
data_model = dir_path + '/' + sys.argv[ind + 1]
if '-f' in sys.argv:
ind = sys.argv.index('-f')
file = dir_path + '/' + sys.argv[ind + 1]
f = open(file, 'r')
data = f.readlines()
elif '-ff' in sys.argv:
ind = sys.argv.index('-ff')
file = dir_path + '/' + sys.argv[ind + 1]
f = open(file, 'r')
data = f.readlines()
Efile = dir_path + '/' + sys.argv[ind + 2]
f = open(Efile, 'r')
edata = f.readlines()
Poles = []
for p in edata:
rec = p.split()
pole = [float(rec[0]), float(rec[1]), float(rec[2])]
Poles.append(pole)
else:
data = sys.stdin.readlines()
polelatkey, polelonkey = 'pole_lat', 'pole_lon'
if data_model != 3:
polelatkey, polelonkey = 'vgp_lat', 'vgp_lon'
for line in data:
PtRec = {}
rec = line.split()
PtRec['site_lon'] = rec[0]
PtRec['site_lat'] = rec[1]
if '-ff' in sys.argv:
pt_lat, pt_lon = float(rec[1]), float(rec[0])
for pole in Poles:
ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])
pt_lat = ptrot[0][0]
pt_lon = ptrot[1][0]
if ofile == '':
print(ptrot[1][0], ptrot[0][0])
else:
ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey:
'%7.1f' % ptrot[1][0]}
ResRecs.append(ResRec)
else:
PtRec['cont'] = rec[2]
if PtRec['cont'] == 'af':
PtRec['cont'] = 'saf'
PtRec['age'] = rec[3]
if len(rec) > 4:
PtRec['dcont'] = rec[4]
PTS.append(PtRec)
if '-ff' not in sys.argv:
for pt in PTS:
pole = 'not specified'
pt_lat = float(pt['site_lat'])
pt_lon = float(pt['site_lon'])
age = float(pt['age'])
ptrot = [[pt_lat], [pt_lon]]
if pt['cont'] == 'ib':
pole = frp.get_pole(pt['cont'], age)
ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])
pt_lat = ptrot[0][0]
pt_lon = ptrot[1][0]
pt['cont'] = 'eur'
if pt['cont'] != 'saf':
pole1 = frp.get_pole(pt['cont'], age)
ptrot = pmag.pt_rot(pole1, [pt_lat], [pt_lon])
if 'dcont' in list(pt.keys()):
pt_lat = ptrot[0][0]
pt_lon = ptrot[1][0]
pole = frp.get_pole(pt['dcont'], age)
pole[2] = -pole[2]
ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])
if ofile == '':
print(ptrot[1][0], ptrot[0][0])
else:
ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey:
'%7.1f' % ptrot[1][0]}
ResRecs.append(ResRec)
elif 'dcont' in list(pt.keys()):
pole = frp.get_pole(pt['dcont'], age)
pole[2] = -pole[2]
ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])
print(ptrot)
if ofile == '':
print(ptrot[1][0], ptrot[0][0])
else:
ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey:
'%7.1f' % ptrot[1][0]}
ResRecs.append(ResRec)
elif ofile == '':
print(ptrot[1][0], ptrot[0][0])
else:
ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey:
'%7.1f' % ptrot[1][0]}
ResRecs.append(ResRec)
if len(ResRecs) > 0:
if data_model == 3:
pmag.magic_write(ofile, ResRecs, 'locations')
else:
pmag.magic_write(ofile, ResRecs, 'pmag_results')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n dir_path = '.'\n PTS = []\n ResRecs = []\n ofile = ''\n data_model = 3\n Dplates = ['nwaf', 'neaf', 'saf', 'aus', 'eur', 'ind', 'sam', 'ant',\n 'grn', 'nam']\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = dir_path + '/' + sys.argv[ind + 1]\n if '-dm' in sys.argv:\n ind = sys.argv.index('-dm')\n data_model = dir_path + '/' + sys.argv[ind + 1]\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = dir_path + '/' + sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n elif '-ff' in sys.argv:\n ind = sys.argv.index('-ff')\n file = dir_path + '/' + sys.argv[ind + 1]\n f = open(file, 'r')\n data = f.readlines()\n Efile = dir_path + '/' + sys.argv[ind + 2]\n f = open(Efile, 'r')\n edata = f.readlines()\n Poles = []\n for p in edata:\n rec = p.split()\n pole = [float(rec[0]), float(rec[1]), float(rec[2])]\n Poles.append(pole)\n else:\n data = sys.stdin.readlines()\n polelatkey, polelonkey = 'pole_lat', 'pole_lon'\n if data_model != 3:\n polelatkey, polelonkey = 'vgp_lat', 'vgp_lon'\n for line in data:\n PtRec = {}\n rec = line.split()\n PtRec['site_lon'] = rec[0]\n PtRec['site_lat'] = rec[1]\n if '-ff' in sys.argv:\n pt_lat, pt_lon = float(rec[1]), float(rec[0])\n for pole in Poles:\n ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])\n pt_lat = ptrot[0][0]\n pt_lon = ptrot[1][0]\n if ofile == '':\n print(ptrot[1][0], ptrot[0][0])\n else:\n ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey: \n '%7.1f' % ptrot[1][0]}\n ResRecs.append(ResRec)\n else:\n PtRec['cont'] = rec[2]\n if PtRec['cont'] == 'af':\n PtRec['cont'] = 'saf'\n PtRec['age'] = rec[3]\n if len(rec) > 4:\n PtRec['dcont'] = rec[4]\n PTS.append(PtRec)\n if '-ff' not in sys.argv:\n for pt in PTS:\n pole = 'not specified'\n pt_lat = float(pt['site_lat'])\n pt_lon = float(pt['site_lon'])\n age = float(pt['age'])\n ptrot = [[pt_lat], [pt_lon]]\n if pt['cont'] == 'ib':\n pole = frp.get_pole(pt['cont'], age)\n ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])\n pt_lat = ptrot[0][0]\n pt_lon = ptrot[1][0]\n pt['cont'] = 'eur'\n if pt['cont'] != 'saf':\n pole1 = frp.get_pole(pt['cont'], age)\n ptrot = pmag.pt_rot(pole1, [pt_lat], [pt_lon])\n if 'dcont' in list(pt.keys()):\n pt_lat = ptrot[0][0]\n pt_lon = ptrot[1][0]\n pole = frp.get_pole(pt['dcont'], age)\n pole[2] = -pole[2]\n ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])\n if ofile == '':\n print(ptrot[1][0], ptrot[0][0])\n else:\n ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey:\n '%7.1f' % ptrot[1][0]}\n ResRecs.append(ResRec)\n elif 'dcont' in list(pt.keys()):\n pole = frp.get_pole(pt['dcont'], age)\n pole[2] = -pole[2]\n ptrot = pmag.pt_rot(pole, [pt_lat], [pt_lon])\n print(ptrot)\n if ofile == '':\n print(ptrot[1][0], ptrot[0][0])\n else:\n ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey:\n '%7.1f' % ptrot[1][0]}\n ResRecs.append(ResRec)\n elif ofile == '':\n print(ptrot[1][0], ptrot[0][0])\n else:\n ResRec = {polelonkey: '%7.1f' % ptrot[0][0], polelatkey: \n '%7.1f' % ptrot[1][0]}\n ResRecs.append(ResRec)\n if len(ResRecs) > 0:\n if data_model == 3:\n pmag.magic_write(ofile, ResRecs, 'locations')\n else:\n pmag.magic_write(ofile, ResRecs, 'pmag_results')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(col_name, arg, dm, df, *args):
if col_name in df.columns:
return None
arg_list = arg.split(',')
arg_list = [argument.strip('"') for argument in arg_list]
msg = ''
for a in arg_list:
if '.' in a:
continue
if a not in df.columns:
msg += '{} column is required unless {} is present. '.format(
col_name, a)
if msg:
return msg
else:
return None
return None
|
requiredUnless
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(col_name, arg, dm, df, *args):\n if col_name in df.columns:\n return None\n arg_list = arg.split(',')\n arg_list = [argument.strip('\"') for argument in arg_list]\n msg = ''\n for a in arg_list:\n if '.' in a:\n continue\n if a not in df.columns:\n msg += '{} column is required unless {} is present. '.format(\n col_name, a)\n if msg:\n return msg\n else:\n return None\n return None\n",
"role": "user"
},
{
"content": "requiredUnless",
"role": "assistant"
}
] |
def x(col_name, arg, dm, df, con=None):
table_name = arg
if col_name in df.columns:
return None
elif not con:
return None
elif table_name in con.tables:
return None
else:
return '{} column is required unless table {} is present'.format(
col_name, table_name)
|
requiredUnlessTable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(col_name, arg, dm, df, con=None):\n table_name = arg\n if col_name in df.columns:\n return None\n elif not con:\n return None\n elif table_name in con.tables:\n return None\n else:\n return '{} column is required unless table {} is present'.format(\n col_name, table_name)\n",
"role": "user"
},
{
"content": "requiredUnlessTable",
"role": "assistant"
}
] |
def x(col_name, arg, dm, df, *args):
group_name = arg
groups = set()
columns = df.columns
for col in columns:
if col not in dm.index:
continue
group = dm.loc[col]['group']
groups.add(group)
if group_name in groups:
if col_name in columns:
return None
else:
return '{} column is required if column group {} is used'.format(
col_name, group_name)
return None
|
requiredIfGroup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(col_name, arg, dm, df, *args):\n group_name = arg\n groups = set()\n columns = df.columns\n for col in columns:\n if col not in dm.index:\n continue\n group = dm.loc[col]['group']\n groups.add(group)\n if group_name in groups:\n if col_name in columns:\n return None\n else:\n return '{} column is required if column group {} is used'.format(\n col_name, group_name)\n return None\n",
"role": "user"
},
{
"content": "requiredIfGroup",
"role": "assistant"
}
] |
def x(col_name, arg, dm, df, *args):
if col_name in df.columns:
return None
else:
return '"{}" column is required'.format(col_name)
|
required
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(col_name, arg, dm, df, *args):\n if col_name in df.columns:\n return None\n else:\n return '\"{}\" column is required'.format(col_name)\n",
"role": "user"
},
{
"content": "required",
"role": "assistant"
}
] |
def x(row, col_name, arg, dm, df, con=None):
cell_value = row[col_name]
cell_value = str(cell_value)
if not cell_value:
return None
elif cell_value == 'None':
return None
elif cell_value == 'nan':
return None
elif not con:
return None
cell_values = [v.strip(' ') for v in cell_value.split(':')]
if '.' in arg:
table_name, table_col_name = arg.split('.')
if table_name not in con.tables:
return None
if table_col_name not in con.tables[table_name].df.columns:
return (
'{} table is missing "{}" column, which is required for validating "{}" column'
.format(table_name, table_col_name, col_name))
possible_values = con.tables[table_name].df[table_col_name].unique()
for value in cell_values:
if value not in possible_values:
trunc_possible_values = [val.replace(' ', '') for val in
possible_values if val]
trunc_cell_value = cell_value.replace(' ', '')
if trunc_cell_value not in trunc_possible_values:
if trunc_cell_value != value:
return (
'This value (long): "{}" is not found in: {} column in {} table. Also (short): {} is not in {}'
.format(value, table_col_name, table_name,
trunc_cell_value, arg))
else:
return (
'This value: "{}" is not found in: {} column in {} table'
.format(value, table_col_name, table_name))
break
else:
possible_values = df[arg].unique()
for value in cell_values:
if value not in possible_values:
return 'This value: "{}" is not found in: {} column'.format(
value, arg)
break
return None
|
isIn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(row, col_name, arg, dm, df, con=None):\n cell_value = row[col_name]\n cell_value = str(cell_value)\n if not cell_value:\n return None\n elif cell_value == 'None':\n return None\n elif cell_value == 'nan':\n return None\n elif not con:\n return None\n cell_values = [v.strip(' ') for v in cell_value.split(':')]\n if '.' in arg:\n table_name, table_col_name = arg.split('.')\n if table_name not in con.tables:\n return None\n if table_col_name not in con.tables[table_name].df.columns:\n return (\n '{} table is missing \"{}\" column, which is required for validating \"{}\" column'\n .format(table_name, table_col_name, col_name))\n possible_values = con.tables[table_name].df[table_col_name].unique()\n for value in cell_values:\n if value not in possible_values:\n trunc_possible_values = [val.replace(' ', '') for val in\n possible_values if val]\n trunc_cell_value = cell_value.replace(' ', '')\n if trunc_cell_value not in trunc_possible_values:\n if trunc_cell_value != value:\n return (\n 'This value (long): \"{}\" is not found in: {} column in {} table. Also (short): {} is not in {}'\n .format(value, table_col_name, table_name,\n trunc_cell_value, arg))\n else:\n return (\n 'This value: \"{}\" is not found in: {} column in {} table'\n .format(value, table_col_name, table_name))\n break\n else:\n possible_values = df[arg].unique()\n for value in cell_values:\n if value not in possible_values:\n return 'This value: \"{}\" is not found in: {} column'.format(\n value, arg)\n break\n return None\n",
"role": "user"
},
{
"content": "isIn",
"role": "assistant"
}
] |
def x(row, col_name, arg, *args):
cell_value = row[col_name]
if not cell_value:
return None
elif isinstance(cell_value, float):
if np.isnan(cell_value):
return None
try:
arg_val = float(arg)
except ValueError:
if arg in row.index:
arg_val = row[arg]
else:
return None
if cb.is_null(arg_val):
return None
try:
if float(cell_value) <= float(arg_val):
return None
else:
return '{} ({}) must be <= {} ({})'.format(str(cell_value),
col_name, str(arg_val), str(arg))
except ValueError:
return None
|
checkMax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(row, col_name, arg, *args):\n cell_value = row[col_name]\n if not cell_value:\n return None\n elif isinstance(cell_value, float):\n if np.isnan(cell_value):\n return None\n try:\n arg_val = float(arg)\n except ValueError:\n if arg in row.index:\n arg_val = row[arg]\n else:\n return None\n if cb.is_null(arg_val):\n return None\n try:\n if float(cell_value) <= float(arg_val):\n return None\n else:\n return '{} ({}) must be <= {} ({})'.format(str(cell_value),\n col_name, str(arg_val), str(arg))\n except ValueError:\n return None\n",
"role": "user"
},
{
"content": "checkMax",
"role": "assistant"
}
] |
def x(row, col_name, arg, current_data_model, df, con):
vocabulary = con.vocab.vocabularies
cell_value = str(row[col_name])
if not cell_value:
return None
elif cell_value == 'None':
return None
cell_values = cell_value.split(':')
cell_values = [c.strip() for c in cell_values]
possible_values = []
for val in vocabulary[col_name]:
try:
possible_values.append(str(val).lower())
except UnicodeEncodeError as ex:
print(val, ex)
for value in cell_values:
if str(value).lower() == 'nan':
continue
elif str(value).lower() in possible_values:
continue
elif value.lower() == 'none':
continue
else:
try:
if str(float(value)) in possible_values:
continue
except:
pass
return '"{}" is not in controlled vocabulary for {}'.format(value,
arg)
return None
|
cv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(row, col_name, arg, current_data_model, df, con):\n vocabulary = con.vocab.vocabularies\n cell_value = str(row[col_name])\n if not cell_value:\n return None\n elif cell_value == 'None':\n return None\n cell_values = cell_value.split(':')\n cell_values = [c.strip() for c in cell_values]\n possible_values = []\n for val in vocabulary[col_name]:\n try:\n possible_values.append(str(val).lower())\n except UnicodeEncodeError as ex:\n print(val, ex)\n for value in cell_values:\n if str(value).lower() == 'nan':\n continue\n elif str(value).lower() in possible_values:\n continue\n elif value.lower() == 'none':\n continue\n else:\n try:\n if str(float(value)) in possible_values:\n continue\n except:\n pass\n return '\"{}\" is not in controlled vocabulary for {}'.format(value,\n arg)\n return None\n",
"role": "user"
},
{
"content": "cv",
"role": "assistant"
}
] |
def x(col_name, group, dm, df, *args):
if col_name in df.columns:
return None
else:
return col_name
|
requiredOneInGroup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(col_name, group, dm, df, *args):\n if col_name in df.columns:\n return None\n else:\n return col_name\n",
"role": "user"
},
{
"content": "requiredOneInGroup",
"role": "assistant"
}
] |
def x(df, dm, con=None):
required_one = {}
cols = df.columns
invalid_cols = [col for col in cols if col not in dm.index]
for validation_name, validation in dm.iterrows():
value_type = validation['type']
if validation_name in df.columns:
output = df[validation_name].apply(test_type, args=(value_type,))
df['type_pass' + '_' + validation_name + '_' + value_type] = output
val_list = validation['validations']
if not val_list or isinstance(val_list, float):
continue
for num, val in enumerate(val_list):
func_name, arg = split_func(val)
if arg == 'magic_table_column':
continue
if func_name in presence_operations:
func = presence_operations[func_name]
grade = func(validation_name, arg, dm, df, con)
pass_col_name = ('presence_pass_' + validation_name + '_' +
func.__name__)
df[pass_col_name] = grade
elif func_name in value_operations:
func = value_operations[func_name]
if validation_name in df.columns:
grade = df.apply(func, args=(validation_name, arg, dm,
df, con), axis=1)
col_name = ('value_pass_' + validation_name + '_' +
func.__name__)
if col_name in df.columns:
num_range = list(range(1, 10))
for num in num_range:
if col_name + str(num) in df.columns:
continue
else:
col_name = col_name + str(num)
break
df[col_name] = grade.astype(object)
elif func_name in group_operations:
func = group_operations[func_name]
missing = func(validation_name, arg, dm, df)
if arg not in required_one:
required_one[arg] = [missing]
else:
required_one[arg].append(missing)
for key, value in list(required_one.items()):
if None in value:
continue
else:
df['group_pass_{}'.format(key)
] = 'you must have one column from group {}: {}'.format(key
, ', '.join(value))
return df
|
validate_df
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, dm, con=None):\n required_one = {}\n cols = df.columns\n invalid_cols = [col for col in cols if col not in dm.index]\n for validation_name, validation in dm.iterrows():\n value_type = validation['type']\n if validation_name in df.columns:\n output = df[validation_name].apply(test_type, args=(value_type,))\n df['type_pass' + '_' + validation_name + '_' + value_type] = output\n val_list = validation['validations']\n if not val_list or isinstance(val_list, float):\n continue\n for num, val in enumerate(val_list):\n func_name, arg = split_func(val)\n if arg == 'magic_table_column':\n continue\n if func_name in presence_operations:\n func = presence_operations[func_name]\n grade = func(validation_name, arg, dm, df, con)\n pass_col_name = ('presence_pass_' + validation_name + '_' +\n func.__name__)\n df[pass_col_name] = grade\n elif func_name in value_operations:\n func = value_operations[func_name]\n if validation_name in df.columns:\n grade = df.apply(func, args=(validation_name, arg, dm,\n df, con), axis=1)\n col_name = ('value_pass_' + validation_name + '_' +\n func.__name__)\n if col_name in df.columns:\n num_range = list(range(1, 10))\n for num in num_range:\n if col_name + str(num) in df.columns:\n continue\n else:\n col_name = col_name + str(num)\n break\n df[col_name] = grade.astype(object)\n elif func_name in group_operations:\n func = group_operations[func_name]\n missing = func(validation_name, arg, dm, df)\n if arg not in required_one:\n required_one[arg] = [missing]\n else:\n required_one[arg].append(missing)\n for key, value in list(required_one.items()):\n if None in value:\n continue\n else:\n df['group_pass_{}'.format(key)\n ] = 'you must have one column from group {}: {}'.format(key\n , ', '.join(value))\n return df\n",
"role": "user"
},
{
"content": "validate_df",
"role": "assistant"
}
] |
def x(df):
value_cols = df.columns.str.match('^value_pass_')
present_cols = df.columns.str.match('^presence_pass')
type_cols = df.columns.str.match('^type_pass_')
groups_missing = df.columns.str.match('^group_pass_')
value_col_names = df.columns[value_cols]
present_col_names = df.columns[present_cols]
type_col_names = df.columns[type_cols]
group_missing_names = df.columns[groups_missing]
validation_cols = np.where(value_cols, value_cols, present_cols)
validation_cols = np.where(validation_cols, validation_cols, type_cols)
validation_col_names = df.columns[validation_cols]
return (value_col_names, present_col_names, type_col_names,
group_missing_names, validation_col_names)
|
get_validation_col_names
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n value_cols = df.columns.str.match('^value_pass_')\n present_cols = df.columns.str.match('^presence_pass')\n type_cols = df.columns.str.match('^type_pass_')\n groups_missing = df.columns.str.match('^group_pass_')\n value_col_names = df.columns[value_cols]\n present_col_names = df.columns[present_cols]\n type_col_names = df.columns[type_cols]\n group_missing_names = df.columns[groups_missing]\n validation_cols = np.where(value_cols, value_cols, present_cols)\n validation_cols = np.where(validation_cols, validation_cols, type_cols)\n validation_col_names = df.columns[validation_cols]\n return (value_col_names, present_col_names, type_col_names,\n group_missing_names, validation_col_names)\n",
"role": "user"
},
{
"content": "get_validation_col_names",
"role": "assistant"
}
] |
def x(failing_items, verbose=False, outfile_name=None):
if outfile_name:
outfile = open(outfile_name, 'w')
outfile.write('\t'.join(['name', 'row_number', 'problem_type',
'problem_col', 'error_message']))
outfile.write('\n')
else:
outfile = None
for ind, row in failing_items.iterrows():
issues = row['issues']
string = '{:10} | row number: {}'.format(ind, str(row['num']))
first_string = '\t'.join([str(ind), str(row['num'])])
if verbose:
print(first_string)
for key, issue in list(issues.items()):
issue_type, issue_col = extract_col_name(key)
string = '{:10} | {:10} | {}'.format(issue_type, issue_col,
issue)
string = '\t'.join([issue_type, issue_col, issue])
if verbose:
print(string)
if outfile:
outfile.write(first_string + '\t' + string + '\n')
if outfile:
outfile.close()
|
print_row_failures
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(failing_items, verbose=False, outfile_name=None):\n if outfile_name:\n outfile = open(outfile_name, 'w')\n outfile.write('\\t'.join(['name', 'row_number', 'problem_type',\n 'problem_col', 'error_message']))\n outfile.write('\\n')\n else:\n outfile = None\n for ind, row in failing_items.iterrows():\n issues = row['issues']\n string = '{:10} | row number: {}'.format(ind, str(row['num']))\n first_string = '\\t'.join([str(ind), str(row['num'])])\n if verbose:\n print(first_string)\n for key, issue in list(issues.items()):\n issue_type, issue_col = extract_col_name(key)\n string = '{:10} | {:10} | {}'.format(issue_type, issue_col,\n issue)\n string = '\\t'.join([issue_type, issue_col, issue])\n if verbose:\n print(string)\n if outfile:\n outfile.write(first_string + '\\t' + string + '\\n')\n if outfile:\n outfile.close()\n",
"role": "user"
},
{
"content": "print_row_failures",
"role": "assistant"
}
] |
def x(df, value_cols, type_cols, verbose=False, outfile=None):
df['num'] = list(range(len(df)))
names = value_cols.union(type_cols)
value_problems = df[names.union(['num'])]
failing_items = value_problems.dropna(how='all', subset=names)
if not len(failing_items):
if verbose:
print('No problems')
return []
failing_items = failing_items.dropna(how='all', axis=1)
bad_items = list(failing_items.index)
bad_indices = list(failing_items['num'])
failing_items['issues'] = failing_items.drop('num', axis=1).apply(
make_row_dict, axis=1).values
print_row_failures(failing_items, verbose, outfile)
return failing_items
|
get_row_failures
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, value_cols, type_cols, verbose=False, outfile=None):\n df['num'] = list(range(len(df)))\n names = value_cols.union(type_cols)\n value_problems = df[names.union(['num'])]\n failing_items = value_problems.dropna(how='all', subset=names)\n if not len(failing_items):\n if verbose:\n print('No problems')\n return []\n failing_items = failing_items.dropna(how='all', axis=1)\n bad_items = list(failing_items.index)\n bad_indices = list(failing_items['num'])\n failing_items['issues'] = failing_items.drop('num', axis=1).apply(\n make_row_dict, axis=1).values\n print_row_failures(failing_items, verbose, outfile)\n return failing_items\n",
"role": "user"
},
{
"content": "get_row_failures",
"role": "assistant"
}
] |
def x(df, validation_names, type_col_names, value_col_names, verbose=False):
df['num'] = list(range(len(df)))
problems = df[validation_names.union(['num'])]
all_problems = problems.dropna(how='all', axis=0, subset=validation_names)
value_problems = problems.dropna(how='all', axis=0, subset=
type_col_names.union(value_col_names))
all_problems = all_problems.dropna(how='all', axis=1)
value_problems = value_problems.dropna(how='all', axis=1)
if not len(problems):
return None, None, None
bad_cols = all_problems.columns
prefixes = ['value_pass_', 'type_pass_']
missing_prefix = 'presence_pass_'
problem_cols = []
missing_cols = []
long_missing_cols = []
problem_rows = []
for col in bad_cols:
pre, stripped_col = extract_col_name(col)
for prefix in prefixes:
if col.startswith(prefix):
problem_cols.append(stripped_col)
continue
if col.startswith(missing_prefix):
missing_cols.append(stripped_col)
long_missing_cols.append(col)
if len(value_problems):
bad_rows = list(zip(list(value_problems['num']), list(
value_problems.index)))
else:
bad_rows = []
if verbose:
if bad_rows:
formatted_rows = ['row: {}, name: {}'.format(row[0], row[1]) for
row in bad_rows]
if len(bad_rows) > 5:
print('-W- these rows have problems:\n', '\n'.join(
formatted_rows[:5]), ' ...')
print('(for full error output see error file)')
else:
print('-W- these rows have problems:', '\n'.join(
formatted_rows))
if problem_cols:
print('-W- these columns contain bad values:', ', '.join(set(
problem_cols)))
if missing_cols:
print('-W- these required columns are missing:', ', '.join(
missing_cols))
return bad_rows, problem_cols, missing_cols
|
get_bad_rows_and_cols
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, validation_names, type_col_names, value_col_names, verbose=False):\n df['num'] = list(range(len(df)))\n problems = df[validation_names.union(['num'])]\n all_problems = problems.dropna(how='all', axis=0, subset=validation_names)\n value_problems = problems.dropna(how='all', axis=0, subset=\n type_col_names.union(value_col_names))\n all_problems = all_problems.dropna(how='all', axis=1)\n value_problems = value_problems.dropna(how='all', axis=1)\n if not len(problems):\n return None, None, None\n bad_cols = all_problems.columns\n prefixes = ['value_pass_', 'type_pass_']\n missing_prefix = 'presence_pass_'\n problem_cols = []\n missing_cols = []\n long_missing_cols = []\n problem_rows = []\n for col in bad_cols:\n pre, stripped_col = extract_col_name(col)\n for prefix in prefixes:\n if col.startswith(prefix):\n problem_cols.append(stripped_col)\n continue\n if col.startswith(missing_prefix):\n missing_cols.append(stripped_col)\n long_missing_cols.append(col)\n if len(value_problems):\n bad_rows = list(zip(list(value_problems['num']), list(\n value_problems.index)))\n else:\n bad_rows = []\n if verbose:\n if bad_rows:\n formatted_rows = ['row: {}, name: {}'.format(row[0], row[1]) for\n row in bad_rows]\n if len(bad_rows) > 5:\n print('-W- these rows have problems:\\n', '\\n'.join(\n formatted_rows[:5]), ' ...')\n print('(for full error output see error file)')\n else:\n print('-W- these rows have problems:', '\\n'.join(\n formatted_rows))\n if problem_cols:\n print('-W- these columns contain bad values:', ', '.join(set(\n problem_cols)))\n if missing_cols:\n print('-W- these required columns are missing:', ', '.join(\n missing_cols))\n return bad_rows, problem_cols, missing_cols\n",
"role": "user"
},
{
"content": "get_bad_rows_and_cols",
"role": "assistant"
}
] |
def x(the_con, dtype, verbose=False, output_dir='.'):
print('-I- Validating {}'.format(dtype))
current_df = the_con.tables[dtype].df
current_dm = the_con.tables[dtype].data_model.dm[dtype]
current_df = validate_df(current_df, current_dm, the_con)
(value_col_names, present_col_names, type_col_names, missing_groups,
validation_col_names) = get_validation_col_names(current_df)
ofile = os.path.join(output_dir, '{}_errors.txt'.format(dtype))
failing_items = get_row_failures(current_df, value_col_names,
type_col_names, verbose, outfile=ofile)
bad_rows, bad_cols, missing_cols = get_bad_rows_and_cols(current_df,
validation_col_names, value_col_names, type_col_names, verbose=True)
current_df.drop(validation_col_names, axis=1, inplace=True)
current_df.drop(missing_groups, axis=1, inplace=True)
if len(failing_items):
print('-I- Complete list of row errors can be found in {}'.format(
ofile))
return (dtype, bad_rows, bad_cols, missing_cols, missing_groups,
failing_items)
elif len(missing_cols) or len(missing_groups):
print('-I- You are missing some required headers')
if len(missing_cols):
print('-I- You are missing these required headers: {}'.format(
', '.join(missing_cols)))
if len(missing_groups):
formatted_groups = [group[11:] for group in missing_groups]
print('-I- You need at least one header from these groups: {}'.
format(', '.join(formatted_groups)))
else:
formatted_groups = []
return (dtype, bad_rows, bad_cols, missing_cols, formatted_groups,
failing_items)
else:
print('-I- No row errors found!')
return False
|
validate_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(the_con, dtype, verbose=False, output_dir='.'):\n print('-I- Validating {}'.format(dtype))\n current_df = the_con.tables[dtype].df\n current_dm = the_con.tables[dtype].data_model.dm[dtype]\n current_df = validate_df(current_df, current_dm, the_con)\n (value_col_names, present_col_names, type_col_names, missing_groups,\n validation_col_names) = get_validation_col_names(current_df)\n ofile = os.path.join(output_dir, '{}_errors.txt'.format(dtype))\n failing_items = get_row_failures(current_df, value_col_names,\n type_col_names, verbose, outfile=ofile)\n bad_rows, bad_cols, missing_cols = get_bad_rows_and_cols(current_df,\n validation_col_names, value_col_names, type_col_names, verbose=True)\n current_df.drop(validation_col_names, axis=1, inplace=True)\n current_df.drop(missing_groups, axis=1, inplace=True)\n if len(failing_items):\n print('-I- Complete list of row errors can be found in {}'.format(\n ofile))\n return (dtype, bad_rows, bad_cols, missing_cols, missing_groups,\n failing_items)\n elif len(missing_cols) or len(missing_groups):\n print('-I- You are missing some required headers')\n if len(missing_cols):\n print('-I- You are missing these required headers: {}'.format(\n ', '.join(missing_cols)))\n if len(missing_groups):\n formatted_groups = [group[11:] for group in missing_groups]\n print('-I- You need at least one header from these groups: {}'.\n format(', '.join(formatted_groups)))\n else:\n formatted_groups = []\n return (dtype, bad_rows, bad_cols, missing_cols, formatted_groups,\n failing_items)\n else:\n print('-I- No row errors found!')\n return False\n",
"role": "user"
},
{
"content": "validate_table",
"role": "assistant"
}
] |
def x(the_con):
passing = True
for dtype in list(the_con.tables.keys()):
print('validating {}'.format(dtype))
fail = validate_table(the_con, dtype)
if fail:
passing = False
print('--')
|
validate_contribution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(the_con):\n passing = True\n for dtype in list(the_con.tables.keys()):\n print('validating {}'.format(dtype))\n fail = validate_table(the_con, dtype)\n if fail:\n passing = False\n print('--')\n",
"role": "user"
},
{
"content": "validate_contribution",
"role": "assistant"
}
] |
def x(string):
ind = string.index('(')
return string[:ind], string[ind + 1:-1].strip('"')
|
split_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string):\n ind = string.index('(')\n return string[:ind], string[ind + 1:-1].strip('\"')\n",
"role": "user"
},
{
"content": "split_func",
"role": "assistant"
}
] |
def x(df):
vals = ['lon_w', 'lon_e', 'lat_lon_precision', 'pole_lon', 'paleolon',
'paleolon_sigma', 'lon', 'lon_sigma', 'vgp_lon', 'paleo_lon',
'paleo_lon_sigma', 'azimuth', 'azimuth_dec_correction', 'dir_dec',
'geographic_precision', 'bed_dip_direction']
relevant_cols = list(set(vals).intersection(df.columns))
return relevant_cols
|
get_degree_cols
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n vals = ['lon_w', 'lon_e', 'lat_lon_precision', 'pole_lon', 'paleolon',\n 'paleolon_sigma', 'lon', 'lon_sigma', 'vgp_lon', 'paleo_lon',\n 'paleo_lon_sigma', 'azimuth', 'azimuth_dec_correction', 'dir_dec',\n 'geographic_precision', 'bed_dip_direction']\n relevant_cols = list(set(vals).intersection(df.columns))\n return relevant_cols\n",
"role": "user"
},
{
"content": "get_degree_cols",
"role": "assistant"
}
] |
def x(string):
prefixes = ['presence_pass_', 'value_pass_', 'type_pass_']
end = string.rfind('_')
for prefix in prefixes:
if string.startswith(prefix):
return prefix[:-6], string[len(prefix):end]
return string, string
|
extract_col_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string):\n prefixes = ['presence_pass_', 'value_pass_', 'type_pass_']\n end = string.rfind('_')\n for prefix in prefixes:\n if string.startswith(prefix):\n return prefix[:-6], string[len(prefix):end]\n return string, string\n",
"role": "user"
},
{
"content": "extract_col_name",
"role": "assistant"
}
] |
def x(row):
ind = row[row.notnull()].index
values = row[row.notnull()].values
return dict(list(zip(ind, values)))
|
make_row_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(row):\n ind = row[row.notnull()].index\n values = row[row.notnull()].values\n return dict(list(zip(ind, values)))\n",
"role": "user"
},
{
"content": "make_row_dict",
"role": "assistant"
}
] |
def x():
out = ''
UP = 0
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
dat = []
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
f = open(file, 'r')
input = f.readlines()
else:
input = sys.stdin.readlines()
ofile = ''
if '-F' in sys.argv:
ind = sys.argv.index('-F')
ofile = sys.argv[ind + 1]
out = open(ofile, 'w + a')
if '-up' in sys.argv:
UP = 1
for line in input:
rec = line.split()
x, y = float(rec[1]), float(rec[0])
r = math.sqrt(x ** 2 + y ** 2)
z = 1.0 - r ** 2
t = math.asin(z)
if UP == 1:
t = -t
if x == 0.0:
if y < 0:
p = 3.0 * math.pi / 2.0
else:
p = old_div(math.pi, 2.0)
else:
p = math.atan2(y, x)
d, i = p * 180.0 / math.pi, t * 180.0 / math.pi
if d < 0:
d += 360.0
outstring = '%7.1f %7.1f' % (d, i)
if ofile == '':
print(outstring)
else:
out.write(outstring + '\n')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n out = ''\n UP = 0\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n dat = []\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n f = open(file, 'r')\n input = f.readlines()\n else:\n input = sys.stdin.readlines()\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n if '-up' in sys.argv:\n UP = 1\n for line in input:\n rec = line.split()\n x, y = float(rec[1]), float(rec[0])\n r = math.sqrt(x ** 2 + y ** 2)\n z = 1.0 - r ** 2\n t = math.asin(z)\n if UP == 1:\n t = -t\n if x == 0.0:\n if y < 0:\n p = 3.0 * math.pi / 2.0\n else:\n p = old_div(math.pi, 2.0)\n else:\n p = math.atan2(y, x)\n d, i = p * 180.0 / math.pi, t * 180.0 / math.pi\n if d < 0:\n d += 360.0\n outstring = '%7.1f %7.1f' % (d, i)\n if ofile == '':\n print(outstring)\n else:\n out.write(outstring + '\\n')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
print(main.__doc__)
if '-h' in sys.argv:
sys.exit()
cont, Int, Top = 1, [], []
while cont == 1:
try:
Int.append(int(input(
' Enter desired treatment step interval: <return> to quit ')))
Top.append(int(input(' Enter upper bound for this interval: ')))
except:
cont = 0
pmag.chart_maker(Int, Top)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n print(main.__doc__)\n if '-h' in sys.argv:\n sys.exit()\n cont, Int, Top = 1, [], []\n while cont == 1:\n try:\n Int.append(int(input(\n ' Enter desired treatment step interval: <return> to quit ')))\n Top.append(int(input(' Enter upper bound for this interval: ')))\n except:\n cont = 0\n pmag.chart_maker(Int, Top)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
data_model_num = pmag.get_named_arg('-DM', 3)
data_model_num = int(float(data_model_num))
sfile = pmag.get_named_arg('-f', reqd=True)
if data_model_num == 2:
anisfile = pmag.get_named_arg('-F', 'rmag_anisotropy.txt')
else:
anisfile = pmag.get_named_arg('-F', 'specimens.txt')
location = pmag.get_named_arg('-loc', 'unknown')
user = pmag.get_named_arg('-usr', '')
sitename = pmag.get_named_arg('unknown', '')
specnum = pmag.get_named_arg('-spc', 0)
specnum = -int(specnum)
dir_path = pmag.get_named_arg('-WD', '.')
name = pmag.get_flag_arg_from_sys('-n')
sigma = pmag.get_flag_arg_from_sys('-sig')
spec = pmag.get_named_arg('-spn', 'unknown')
atype = pmag.get_named_arg('-typ', 'AMS')
samp_con = pmag.get_named_arg('-ncn', '1')
coord_type = pmag.get_named_arg('-crd', 's')
convert.s_magic(sfile, anisfile, dir_path, atype, coord_type, sigma,
samp_con, specnum, location, spec, sitename, user, data_model_num, name
)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n data_model_num = pmag.get_named_arg('-DM', 3)\n data_model_num = int(float(data_model_num))\n sfile = pmag.get_named_arg('-f', reqd=True)\n if data_model_num == 2:\n anisfile = pmag.get_named_arg('-F', 'rmag_anisotropy.txt')\n else:\n anisfile = pmag.get_named_arg('-F', 'specimens.txt')\n location = pmag.get_named_arg('-loc', 'unknown')\n user = pmag.get_named_arg('-usr', '')\n sitename = pmag.get_named_arg('unknown', '')\n specnum = pmag.get_named_arg('-spc', 0)\n specnum = -int(specnum)\n dir_path = pmag.get_named_arg('-WD', '.')\n name = pmag.get_flag_arg_from_sys('-n')\n sigma = pmag.get_flag_arg_from_sys('-sig')\n spec = pmag.get_named_arg('-spn', 'unknown')\n atype = pmag.get_named_arg('-typ', 'AMS')\n samp_con = pmag.get_named_arg('-ncn', '1')\n coord_type = pmag.get_named_arg('-crd', 's')\n convert.s_magic(sfile, anisfile, dir_path, atype, coord_type, sigma,\n samp_con, specnum, location, spec, sitename, user, data_model_num, name\n )\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
dir_path = '.'
sites_file = 'er_sites.txt'
ocean = 0
res = 'i'
proj = 'merc'
prn_name = 0
prn_loc = 0
fancy = 0
rivers, boundaries = 0, 0
padlon, padlat, gridspace, details = 0.5, 0.5, 0.5, 1
fmt = 'pdf'
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-f' in sys.argv:
ind = sys.argv.index('-f')
sites_file = sys.argv[ind + 1]
if '-res' in sys.argv:
ind = sys.argv.index('-res')
res = sys.argv[ind + 1]
if '-etp' in sys.argv:
fancy = 1
if '-n' in sys.argv:
prn_name = 1
if '-l' in sys.argv:
prn_loc = 1
if '-o' in sys.argv:
ocean = 1
if '-R' in sys.argv:
rivers = 0
if '-B' in sys.argv:
boundaries = 0
if '-prj' in sys.argv:
ind = sys.argv.index('-prj')
proj = sys.argv[ind + 1]
if '-fmt' in sys.argv:
ind = sys.argv.index('-fmt')
fmt = sys.argv[ind + 1]
verbose = pmagplotlib.verbose
if '-sav' in sys.argv:
verbose = 0
if '-pad' in sys.argv:
ind = sys.argv.index('-pad')
padlat = float(sys.argv[ind + 1])
padlon = float(sys.argv[ind + 2])
if '-grd' in sys.argv:
ind = sys.argv.index('-grd')
gridspace = float(sys.argv[ind + 1])
if '-WD' in sys.argv:
ind = sys.argv.index('-WD')
dir_path = sys.argv[ind + 1]
sites_file = dir_path + '/' + sites_file
location = ''
FIG = {'map': 1}
pmagplotlib.plot_init(FIG['map'], 6, 6)
Sites, file_type = pmag.magic_read(sites_file)
if 'results' in file_type:
latkey = 'average_lat'
lonkey = 'average_lon'
namekey = 'pmag_result_name'
lockey = 'er_location_names'
else:
latkey = 'site_lat'
lonkey = 'site_lon'
namekey = 'er_site_name'
lockey = 'er_location_name'
lats, lons = [], []
slats, slons = [], []
names, locs = [], []
for site in Sites:
if prn_loc == 1 and location == '':
location = site['er_location_name']
lats.append(float(site[latkey]))
l = float(site[lonkey])
if l < 0:
l = l + 360.0
lons.append(l)
if prn_name == 1:
names.append(site[namekey])
if prn_loc == 1:
locs.append(site[lockey])
for lat in lats:
slats.append(lat)
for lon in lons:
slons.append(lon)
Opts = {'res': res, 'proj': proj, 'loc_name': locs, 'padlon': padlon,
'padlat': padlat, 'latmin': numpy.min(slats) - padlat, 'latmax':
numpy.max(slats) + padlat, 'lonmin': numpy.min(slons) - padlon,
'lonmax': numpy.max(slons) + padlon, 'sym': 'ro', 'boundinglat':
0.0, 'pltgrid': 1.0}
Opts['lon_0'] = 0.5 * (numpy.min(slons) + numpy.max(slons))
Opts['lat_0'] = 0.5 * (numpy.min(slats) + numpy.max(slats))
Opts['names'] = names
Opts['gridspace'] = gridspace
Opts['details'] = {'coasts': 1, 'rivers': 1, 'states': 1, 'countries':
1, 'ocean': 0}
if ocean == 1:
Opts['details']['ocean'] = 1
if rivers == 1:
Opts['details']['rivers'] = 0
if boundaries == 1:
Opts['details']['states'] = 0
Opts['details']['countries'] = 0
Opts['details']['fancy'] = fancy
pmagplotlib.plot_map(FIG['map'], lats, lons, Opts)
if verbose:
pmagplotlib.draw_figs(FIG)
files = {}
for key in list(FIG.keys()):
files[key] = 'Site_map' + '.' + fmt
if pmagplotlib.isServer:
black = '#000000'
purple = '#800080'
titles = {}
titles['map'] = 'Site Map'
FIG = pmagplotlib.add_borders(FIG, titles, black, purple)
pmagplotlib.save_plots(FIG, files)
elif verbose:
ans = input(' S[a]ve to save plot, Return to quit: ')
if ans == 'a':
pmagplotlib.save_plots(FIG, files)
else:
pmagplotlib.save_plots(FIG, files)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n dir_path = '.'\n sites_file = 'er_sites.txt'\n ocean = 0\n res = 'i'\n proj = 'merc'\n prn_name = 0\n prn_loc = 0\n fancy = 0\n rivers, boundaries = 0, 0\n padlon, padlat, gridspace, details = 0.5, 0.5, 0.5, 1\n fmt = 'pdf'\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-f' in sys.argv:\n ind = sys.argv.index('-f')\n sites_file = sys.argv[ind + 1]\n if '-res' in sys.argv:\n ind = sys.argv.index('-res')\n res = sys.argv[ind + 1]\n if '-etp' in sys.argv:\n fancy = 1\n if '-n' in sys.argv:\n prn_name = 1\n if '-l' in sys.argv:\n prn_loc = 1\n if '-o' in sys.argv:\n ocean = 1\n if '-R' in sys.argv:\n rivers = 0\n if '-B' in sys.argv:\n boundaries = 0\n if '-prj' in sys.argv:\n ind = sys.argv.index('-prj')\n proj = sys.argv[ind + 1]\n if '-fmt' in sys.argv:\n ind = sys.argv.index('-fmt')\n fmt = sys.argv[ind + 1]\n verbose = pmagplotlib.verbose\n if '-sav' in sys.argv:\n verbose = 0\n if '-pad' in sys.argv:\n ind = sys.argv.index('-pad')\n padlat = float(sys.argv[ind + 1])\n padlon = float(sys.argv[ind + 2])\n if '-grd' in sys.argv:\n ind = sys.argv.index('-grd')\n gridspace = float(sys.argv[ind + 1])\n if '-WD' in sys.argv:\n ind = sys.argv.index('-WD')\n dir_path = sys.argv[ind + 1]\n sites_file = dir_path + '/' + sites_file\n location = ''\n FIG = {'map': 1}\n pmagplotlib.plot_init(FIG['map'], 6, 6)\n Sites, file_type = pmag.magic_read(sites_file)\n if 'results' in file_type:\n latkey = 'average_lat'\n lonkey = 'average_lon'\n namekey = 'pmag_result_name'\n lockey = 'er_location_names'\n else:\n latkey = 'site_lat'\n lonkey = 'site_lon'\n namekey = 'er_site_name'\n lockey = 'er_location_name'\n lats, lons = [], []\n slats, slons = [], []\n names, locs = [], []\n for site in Sites:\n if prn_loc == 1 and location == '':\n location = site['er_location_name']\n lats.append(float(site[latkey]))\n l = float(site[lonkey])\n if l < 0:\n l = l + 360.0\n lons.append(l)\n if prn_name == 1:\n names.append(site[namekey])\n if prn_loc == 1:\n locs.append(site[lockey])\n for lat in lats:\n slats.append(lat)\n for lon in lons:\n slons.append(lon)\n Opts = {'res': res, 'proj': proj, 'loc_name': locs, 'padlon': padlon,\n 'padlat': padlat, 'latmin': numpy.min(slats) - padlat, 'latmax': \n numpy.max(slats) + padlat, 'lonmin': numpy.min(slons) - padlon,\n 'lonmax': numpy.max(slons) + padlon, 'sym': 'ro', 'boundinglat': \n 0.0, 'pltgrid': 1.0}\n Opts['lon_0'] = 0.5 * (numpy.min(slons) + numpy.max(slons))\n Opts['lat_0'] = 0.5 * (numpy.min(slats) + numpy.max(slats))\n Opts['names'] = names\n Opts['gridspace'] = gridspace\n Opts['details'] = {'coasts': 1, 'rivers': 1, 'states': 1, 'countries': \n 1, 'ocean': 0}\n if ocean == 1:\n Opts['details']['ocean'] = 1\n if rivers == 1:\n Opts['details']['rivers'] = 0\n if boundaries == 1:\n Opts['details']['states'] = 0\n Opts['details']['countries'] = 0\n Opts['details']['fancy'] = fancy\n pmagplotlib.plot_map(FIG['map'], lats, lons, Opts)\n if verbose:\n pmagplotlib.draw_figs(FIG)\n files = {}\n for key in list(FIG.keys()):\n files[key] = 'Site_map' + '.' + fmt\n if pmagplotlib.isServer:\n black = '#000000'\n purple = '#800080'\n titles = {}\n titles['map'] = 'Site Map'\n FIG = pmagplotlib.add_borders(FIG, titles, black, purple)\n pmagplotlib.save_plots(FIG, files)\n elif verbose:\n ans = input(' S[a]ve to save plot, Return to quit: ')\n if ans == 'a':\n pmagplotlib.save_plots(FIG, files)\n else:\n pmagplotlib.save_plots(FIG, files)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x():
inc = []
if '-h' in sys.argv:
print(main.__doc__)
sys.exit()
if '-i' in sys.argv:
file = input('Enter file name with inc data: ')
inc = numpy.loadtxt(file)
elif '-f' in sys.argv:
ind = sys.argv.index('-f')
file = sys.argv[ind + 1]
inc = numpy.loadtxt(file)
else:
inc = numpy.loadtxt(sys.stdin, dtype=numpy.float)
ofile = ''
if '-F' in sys.argv:
ind = sys.argv.index('-F')
ofile = sys.argv[ind + 1]
out = open(ofile, 'w + a')
fpars = pmag.doincfish(inc)
outstring = '%7.1f %7.1f %i %8.1f %7.1f %7.1f' % (fpars['ginc'], fpars
['inc'], fpars['n'], fpars['r'], fpars['k'], fpars['alpha95'])
if ofile == '':
print(outstring)
else:
out.write(outstring + '\n')
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n inc = []\n if '-h' in sys.argv:\n print(main.__doc__)\n sys.exit()\n if '-i' in sys.argv:\n file = input('Enter file name with inc data: ')\n inc = numpy.loadtxt(file)\n elif '-f' in sys.argv:\n ind = sys.argv.index('-f')\n file = sys.argv[ind + 1]\n inc = numpy.loadtxt(file)\n else:\n inc = numpy.loadtxt(sys.stdin, dtype=numpy.float)\n ofile = ''\n if '-F' in sys.argv:\n ind = sys.argv.index('-F')\n ofile = sys.argv[ind + 1]\n out = open(ofile, 'w + a')\n fpars = pmag.doincfish(inc)\n outstring = '%7.1f %7.1f %i %8.1f %7.1f %7.1f' % (fpars['ginc'], fpars\n ['inc'], fpars['n'], fpars['r'], fpars['k'], fpars['alpha95'])\n if ofile == '':\n print(outstring)\n else:\n out.write(outstring + '\\n')\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(undecorated, sort_on):
decorated = [(len(dict_[sort_on]) if hasattr(dict_[sort_on], '__len__')
else dict_[sort_on], index) for index, dict_ in enumerate(undecorated)
]
decorated.sort()
return [undecorated[index] for key, index in decorated]
|
sort_diclist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(undecorated, sort_on):\n decorated = [(len(dict_[sort_on]) if hasattr(dict_[sort_on], '__len__')\n else dict_[sort_on], index) for index, dict_ in enumerate(undecorated)\n ]\n decorated.sort()\n return [undecorated[index] for key, index in decorated]\n",
"role": "user"
},
{
"content": "sort_diclist",
"role": "assistant"
}
] |
def x(In, k, v, flag, float_to_int=False):
if float_to_int:
try:
v = str(math.trunc(float(v)))
except ValueError:
pass
except TypeError:
pass
fixed_In = []
for dictionary in In:
if k in dictionary:
val = dictionary[k]
try:
val = str(math.trunc(float(val)))
except ValueError:
pass
except TypeError:
pass
dictionary[k] = val
fixed_In.append(dictionary)
In = fixed_In
if flag == 'T':
return [dictionary for dictionary in In if k in list(dictionary.
keys()) and str(dictionary[k]).lower() == str(v).lower()]
if flag == 'F':
return [dictionary for dictionary in In if k in list(dictionary.
keys()) and str(dictionary[k]).lower() != str(v).lower()]
if flag == 'has':
return [dictionary for dictionary in In if k in list(dictionary.
keys()) and str(v).lower() in str(dictionary[k]).lower()]
if flag == 'not':
return [dictionary for dictionary in In if k in list(dictionary.
keys()) and str(v).lower() not in str(dictionary[k]).lower()]
if flag == 'eval':
A = [dictionary for dictionary in In if k in list(dictionary.keys()
) and dictionary[k] != '']
return [dictionary for dictionary in A if k in list(dictionary.keys
()) and float(dictionary[k]) == float(v)]
if flag == 'min':
A = [dictionary for dictionary in In if k in list(dictionary.keys()
) and dictionary[k] != '']
return [dictionary for dictionary in A if k in list(dictionary.keys
()) and float(dictionary[k]) >= float(v)]
if flag == 'max':
A = [dictionary for dictionary in In if k in list(dictionary.keys()
) and dictionary[k] != '']
return [dictionary for dictionary in A if k in list(dictionary.keys
()) and float(dictionary[k]) <= float(v)]
if flag == 'not_null':
return [dictionary for dictionary in In if dictionary[k]]
|
get_dictitem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(In, k, v, flag, float_to_int=False):\n if float_to_int:\n try:\n v = str(math.trunc(float(v)))\n except ValueError:\n pass\n except TypeError:\n pass\n fixed_In = []\n for dictionary in In:\n if k in dictionary:\n val = dictionary[k]\n try:\n val = str(math.trunc(float(val)))\n except ValueError:\n pass\n except TypeError:\n pass\n dictionary[k] = val\n fixed_In.append(dictionary)\n In = fixed_In\n if flag == 'T':\n return [dictionary for dictionary in In if k in list(dictionary.\n keys()) and str(dictionary[k]).lower() == str(v).lower()]\n if flag == 'F':\n return [dictionary for dictionary in In if k in list(dictionary.\n keys()) and str(dictionary[k]).lower() != str(v).lower()]\n if flag == 'has':\n return [dictionary for dictionary in In if k in list(dictionary.\n keys()) and str(v).lower() in str(dictionary[k]).lower()]\n if flag == 'not':\n return [dictionary for dictionary in In if k in list(dictionary.\n keys()) and str(v).lower() not in str(dictionary[k]).lower()]\n if flag == 'eval':\n A = [dictionary for dictionary in In if k in list(dictionary.keys()\n ) and dictionary[k] != '']\n return [dictionary for dictionary in A if k in list(dictionary.keys\n ()) and float(dictionary[k]) == float(v)]\n if flag == 'min':\n A = [dictionary for dictionary in In if k in list(dictionary.keys()\n ) and dictionary[k] != '']\n return [dictionary for dictionary in A if k in list(dictionary.keys\n ()) and float(dictionary[k]) >= float(v)]\n if flag == 'max':\n A = [dictionary for dictionary in In if k in list(dictionary.keys()\n ) and dictionary[k] != '']\n return [dictionary for dictionary in A if k in list(dictionary.keys\n ()) and float(dictionary[k]) <= float(v)]\n if flag == 'not_null':\n return [dictionary for dictionary in In if dictionary[k]]\n",
"role": "user"
},
{
"content": "get_dictitem",
"role": "assistant"
}
] |
def x(In, k, dtype):
Out = []
for d in In:
if dtype == '':
Out.append(d[k])
if dtype == 'f':
if d[k] == '':
Out.append(0)
elif d[k] == None:
Out.append(0)
else:
Out.append(float(d[k]))
if dtype == 'int':
if d[k] == '':
Out.append(0)
elif d[k] == None:
Out.append(0)
else:
Out.append(int(d[k]))
return Out
|
get_dictkey
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(In, k, dtype):\n Out = []\n for d in In:\n if dtype == '':\n Out.append(d[k])\n if dtype == 'f':\n if d[k] == '':\n Out.append(0)\n elif d[k] == None:\n Out.append(0)\n else:\n Out.append(float(d[k]))\n if dtype == 'int':\n if d[k] == '':\n Out.append(0)\n elif d[k] == None:\n Out.append(0)\n else:\n Out.append(int(d[k]))\n return Out\n",
"role": "user"
},
{
"content": "get_dictkey",
"role": "assistant"
}
] |
def x(samp_data, er_sample_name, **kwargs):
if isinstance(samp_data, pd.DataFrame):
samp_data = samp_data.T.apply(dict)
EX = ['SO-ASC', 'SO-POM']
samp_key, az_key, dip_key = ('er_sample_name', 'sample_azimuth',
'sample_dip')
disc_key, or_key, meth_key = ('sample_description',
'sample_orientation_flag', 'magic_method_codes')
if 'data_model' in list(kwargs.keys()) and kwargs['data_model'] == 3:
samp_key, az_key, dip_key = 'sample', 'azimuth', 'dip'
disc_key, or_key, meth_key = ('description', 'orientation_quality',
'method_codes')
orient = {samp_key: er_sample_name, az_key: '', dip_key: '', disc_key: ''}
orients = get_dictitem(samp_data, samp_key, er_sample_name, 'T')
if len(orients) > 0 and or_key in list(orients[0].keys()):
orients = get_dictitem(orients, or_key, 'b', 'F')
if len(orients) > 0:
orient = orients[0]
methods = get_dictitem(orients, meth_key, 'SO-', 'has')
methods = get_dictkey(methods, meth_key, '')
SO_methods = []
for methcode in methods:
meths = methcode.split(':')
for meth in meths:
if meth.strip() not in EX and meth.startswith('SO-'):
SO_methods.append(meth.strip())
if len(SO_methods) == 0:
print('no orientation data for sample ', er_sample_name)
orig_data = get_dictitem(samp_data, samp_key, er_sample_name, 'T')
if len(orig_data) > 0:
orig_data = orig_data[0]
else:
orig_data = []
az_type = 'SO-NO'
else:
SO_priorities = set_priorities(SO_methods, 0)
az_type = SO_methods[SO_methods.index(SO_priorities[0])]
orient = get_dictitem(orients, meth_key, az_type, 'has')[0]
return orient, az_type
|
get_orient
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samp_data, er_sample_name, **kwargs):\n if isinstance(samp_data, pd.DataFrame):\n samp_data = samp_data.T.apply(dict)\n EX = ['SO-ASC', 'SO-POM']\n samp_key, az_key, dip_key = ('er_sample_name', 'sample_azimuth',\n 'sample_dip')\n disc_key, or_key, meth_key = ('sample_description',\n 'sample_orientation_flag', 'magic_method_codes')\n if 'data_model' in list(kwargs.keys()) and kwargs['data_model'] == 3:\n samp_key, az_key, dip_key = 'sample', 'azimuth', 'dip'\n disc_key, or_key, meth_key = ('description', 'orientation_quality',\n 'method_codes')\n orient = {samp_key: er_sample_name, az_key: '', dip_key: '', disc_key: ''}\n orients = get_dictitem(samp_data, samp_key, er_sample_name, 'T')\n if len(orients) > 0 and or_key in list(orients[0].keys()):\n orients = get_dictitem(orients, or_key, 'b', 'F')\n if len(orients) > 0:\n orient = orients[0]\n methods = get_dictitem(orients, meth_key, 'SO-', 'has')\n methods = get_dictkey(methods, meth_key, '')\n SO_methods = []\n for methcode in methods:\n meths = methcode.split(':')\n for meth in meths:\n if meth.strip() not in EX and meth.startswith('SO-'):\n SO_methods.append(meth.strip())\n if len(SO_methods) == 0:\n print('no orientation data for sample ', er_sample_name)\n orig_data = get_dictitem(samp_data, samp_key, er_sample_name, 'T')\n if len(orig_data) > 0:\n orig_data = orig_data[0]\n else:\n orig_data = []\n az_type = 'SO-NO'\n else:\n SO_priorities = set_priorities(SO_methods, 0)\n az_type = SO_methods[SO_methods.index(SO_priorities[0])]\n orient = get_dictitem(orients, meth_key, az_type, 'has')[0]\n return orient, az_type\n",
"role": "user"
},
{
"content": "get_orient",
"role": "assistant"
}
] |
def x(inc):
poly_tk03 = [3.15976125e-06, -0.000352459817, -0.014664109, 2.89538539]
return poly_tk03[0] * inc ** 3 + poly_tk03[1] * inc ** 2 + poly_tk03[2
] * inc + poly_tk03[3]
|
EI
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inc):\n poly_tk03 = [3.15976125e-06, -0.000352459817, -0.014664109, 2.89538539]\n return poly_tk03[0] * inc ** 3 + poly_tk03[1] * inc ** 2 + poly_tk03[2\n ] * inc + poly_tk03[3]\n",
"role": "user"
},
{
"content": "EI",
"role": "assistant"
}
] |
def x(data):
rad = np.pi / 180.0
Es, Is, Fs, V2s = [], [], [], []
ppars = doprinc(data)
D = ppars['dec']
Decs, Incs = data.transpose()[0], data.transpose()[1]
Tan_Incs = np.tan(Incs * rad)
for f in np.arange(1.0, 0.2, -0.01):
U = old_div(np.arctan(old_div(1.0, f) * Tan_Incs), rad)
fdata = np.array([Decs, U]).transpose()
ppars = doprinc(fdata)
Fs.append(f)
Es.append(old_div(ppars['tau2'], ppars['tau3']))
ang = angle([D, 0], [ppars['V2dec'], 0])
if 180.0 - ang < ang:
ang = 180.0 - ang
V2s.append(ang)
Is.append(abs(ppars['inc']))
if EI(abs(ppars['inc'])) <= Es[-1]:
del Es[-1]
del Is[-1]
del Fs[-1]
del V2s[-1]
if len(Fs) > 0:
for f in np.arange(Fs[-1], 0.2, -0.005):
U = old_div(np.arctan(old_div(1.0, f) * Tan_Incs), rad)
fdata = np.array([Decs, U]).transpose()
ppars = doprinc(fdata)
Fs.append(f)
Es.append(old_div(ppars['tau2'], ppars['tau3']))
Is.append(abs(ppars['inc']))
ang = angle([D, 0], [ppars['V2dec'], 0])
if 180.0 - ang < ang:
ang = 180.0 - ang
V2s.append(ang)
if EI(abs(ppars['inc'])) <= Es[-1]:
return Es, Is, Fs, V2s
return [0], [0], [0], [0]
|
find_f
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n rad = np.pi / 180.0\n Es, Is, Fs, V2s = [], [], [], []\n ppars = doprinc(data)\n D = ppars['dec']\n Decs, Incs = data.transpose()[0], data.transpose()[1]\n Tan_Incs = np.tan(Incs * rad)\n for f in np.arange(1.0, 0.2, -0.01):\n U = old_div(np.arctan(old_div(1.0, f) * Tan_Incs), rad)\n fdata = np.array([Decs, U]).transpose()\n ppars = doprinc(fdata)\n Fs.append(f)\n Es.append(old_div(ppars['tau2'], ppars['tau3']))\n ang = angle([D, 0], [ppars['V2dec'], 0])\n if 180.0 - ang < ang:\n ang = 180.0 - ang\n V2s.append(ang)\n Is.append(abs(ppars['inc']))\n if EI(abs(ppars['inc'])) <= Es[-1]:\n del Es[-1]\n del Is[-1]\n del Fs[-1]\n del V2s[-1]\n if len(Fs) > 0:\n for f in np.arange(Fs[-1], 0.2, -0.005):\n U = old_div(np.arctan(old_div(1.0, f) * Tan_Incs), rad)\n fdata = np.array([Decs, U]).transpose()\n ppars = doprinc(fdata)\n Fs.append(f)\n Es.append(old_div(ppars['tau2'], ppars['tau3']))\n Is.append(abs(ppars['inc']))\n ang = angle([D, 0], [ppars['V2dec'], 0])\n if 180.0 - ang < ang:\n ang = 180.0 - ang\n V2s.append(ang)\n if EI(abs(ppars['inc'])) <= Es[-1]:\n return Es, Is, Fs, V2s\n return [0], [0], [0], [0]\n",
"role": "user"
},
{
"content": "find_f",
"role": "assistant"
}
] |
def x(Recs):
New = []
for rec in Recs:
if 'model_lat' in list(rec.keys()) and rec['model_lat'] != '':
New.append(rec)
elif 'average_age' in list(rec.keys()) and rec['average_age'
] != '' and float(rec['average_age']) <= 5.0:
if 'site_lat' in list(rec.keys()) and rec['site_lat'] != '':
rec['model_lat'] = rec['site_lat']
New.append(rec)
elif 'average_inc' in list(rec.keys()) and rec['average_inc'] != '':
rec['model_lat'] = '%7.1f' % plat(float(rec['average_inc']))
New.append(rec)
return New
|
convert_lat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Recs):\n New = []\n for rec in Recs:\n if 'model_lat' in list(rec.keys()) and rec['model_lat'] != '':\n New.append(rec)\n elif 'average_age' in list(rec.keys()) and rec['average_age'\n ] != '' and float(rec['average_age']) <= 5.0:\n if 'site_lat' in list(rec.keys()) and rec['site_lat'] != '':\n rec['model_lat'] = rec['site_lat']\n New.append(rec)\n elif 'average_inc' in list(rec.keys()) and rec['average_inc'] != '':\n rec['model_lat'] = '%7.1f' % plat(float(rec['average_inc']))\n New.append(rec)\n return New\n",
"role": "user"
},
{
"content": "convert_lat",
"role": "assistant"
}
] |
def x(Recs, data_model=3):
if data_model == 3:
site_key = 'site'
agekey = 'age'
keybase = ''
else:
site_key = 'er_site_names'
agekey = find('age', list(rec.keys()))
if agekey != '':
keybase = agekey.split('_')[0] + '_'
New = []
for rec in Recs:
age = ''
if rec[keybase + 'age'] != '':
age = float(rec[keybase + 'age'])
elif rec[keybase + 'age_low'] != '' and rec[keybase + 'age_high'
] != '':
age = np.mean([rec[keybase + 'age_high'], rec[keybase + 'age_low']]
)
if age != '':
rec[keybase + 'age_unit']
if rec[keybase + 'age_unit'] == 'Ma':
rec[keybase + 'age'] = '%10.4e' % age
elif rec[keybase + 'age_unit'] == 'ka' or rec[keybase + 'age_unit'
] == 'Ka':
rec[keybase + 'age'] = '%10.4e' % (age * 0.001)
elif rec[keybase + 'age_unit'] == 'Years AD (+/-)':
rec[keybase + 'age'] = '%10.4e' % ((2011 - age) * 1e-06)
elif rec[keybase + 'age_unit'] == 'Years BP':
rec[keybase + 'age'] = '%10.4e' % (age * 1e-06)
rec[keybase + 'age_unit'] = 'Ma'
New.append(rec)
elif 'site_key' in list(rec.keys()):
print('problem in convert_ages:', rec['site_key'])
elif 'er_site_name' in list(rec.keys()):
print('problem in convert_ages:', rec['site_key'])
else:
print('problem in convert_ages:', rec)
if len(New) == 0:
print('no age key:', rec)
return New
|
convert_ages
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Recs, data_model=3):\n if data_model == 3:\n site_key = 'site'\n agekey = 'age'\n keybase = ''\n else:\n site_key = 'er_site_names'\n agekey = find('age', list(rec.keys()))\n if agekey != '':\n keybase = agekey.split('_')[0] + '_'\n New = []\n for rec in Recs:\n age = ''\n if rec[keybase + 'age'] != '':\n age = float(rec[keybase + 'age'])\n elif rec[keybase + 'age_low'] != '' and rec[keybase + 'age_high'\n ] != '':\n age = np.mean([rec[keybase + 'age_high'], rec[keybase + 'age_low']]\n )\n if age != '':\n rec[keybase + 'age_unit']\n if rec[keybase + 'age_unit'] == 'Ma':\n rec[keybase + 'age'] = '%10.4e' % age\n elif rec[keybase + 'age_unit'] == 'ka' or rec[keybase + 'age_unit'\n ] == 'Ka':\n rec[keybase + 'age'] = '%10.4e' % (age * 0.001)\n elif rec[keybase + 'age_unit'] == 'Years AD (+/-)':\n rec[keybase + 'age'] = '%10.4e' % ((2011 - age) * 1e-06)\n elif rec[keybase + 'age_unit'] == 'Years BP':\n rec[keybase + 'age'] = '%10.4e' % (age * 1e-06)\n rec[keybase + 'age_unit'] = 'Ma'\n New.append(rec)\n elif 'site_key' in list(rec.keys()):\n print('problem in convert_ages:', rec['site_key'])\n elif 'er_site_name' in list(rec.keys()):\n print('problem in convert_ages:', rec['site_key'])\n else:\n print('problem in convert_ages:', rec)\n if len(New) == 0:\n print('no age key:', rec)\n return New\n",
"role": "user"
},
{
"content": "convert_ages",
"role": "assistant"
}
] |
def x(data, mapping):
new_recs = []
for rec in data:
new_rec = map_magic.mapping(rec, mapping)
new_recs.append(new_rec)
return new_recs
|
convert_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, mapping):\n new_recs = []\n for rec in data:\n new_rec = map_magic.mapping(rec, mapping)\n new_recs.append(new_rec)\n return new_recs\n",
"role": "user"
},
{
"content": "convert_items",
"role": "assistant"
}
] |
def x(meas_fname='magic_measurements.txt', input_dir='.', output_dir='.',
meas_only=False, data_model=None):
convert = {'specimens': map_magic.spec_magic2_2_magic3_map, 'samples':
map_magic.samp_magic2_2_magic3_map, 'sites': map_magic.
site_magic2_2_magic3_map, 'locations': map_magic.
loc_magic2_2_magic3_map, 'ages': map_magic.age_magic2_2_magic3_map}
full_name = os.path.join(input_dir, meas_fname)
if not os.path.exists(full_name):
print('-W- {} is not a file'.format(full_name))
return False, False, False
data2, filetype = magic_read(full_name)
NewMeas = convert_items(data2, map_magic.meas_magic2_2_magic3_map)
ofile = os.path.join(output_dir, 'measurements.txt')
magic_write(ofile, NewMeas, 'measurements')
upgraded = []
if os.path.exists(ofile):
print('-I- 3.0 format measurements file was successfully created: {}'
.format(ofile))
upgraded.append('measurements.txt')
else:
print('-W- 3.0 format measurements file could not be created')
no_upgrade = []
if not meas_only:
for dtype in ['specimens', 'samples', 'sites', 'locations', 'ages']:
mapping = convert[dtype]
res = convert_and_combine_2_to_3(dtype, mapping, input_dir,
output_dir, data_model)
if res:
upgraded.append(res)
if os.path.exists(os.path.join(input_dir, 'pmag_criteria.txt')):
crit_file = convert_criteria_file_2_to_3(input_dir=input_dir,
output_dir=output_dir, data_model=data_model)[0]
if crit_file:
upgraded.append(crit_file)
else:
no_upgrade.append('pmag_criteria.txt')
for fname in os.listdir(input_dir):
if fname in ['measurements.txt', 'specimens.txt', 'samples.txt',
'sites.txt', 'locations.txt']:
continue
elif 'rmag' in fname:
no_upgrade.append(fname)
elif fname in ['pmag_results.txt', 'er_synthetics.txt',
'er_images.txt', 'er_plots.txt']:
no_upgrade.append(fname)
return NewMeas, upgraded, no_upgrade
|
convert_directory_2_to_3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(meas_fname='magic_measurements.txt', input_dir='.', output_dir='.',\n meas_only=False, data_model=None):\n convert = {'specimens': map_magic.spec_magic2_2_magic3_map, 'samples':\n map_magic.samp_magic2_2_magic3_map, 'sites': map_magic.\n site_magic2_2_magic3_map, 'locations': map_magic.\n loc_magic2_2_magic3_map, 'ages': map_magic.age_magic2_2_magic3_map}\n full_name = os.path.join(input_dir, meas_fname)\n if not os.path.exists(full_name):\n print('-W- {} is not a file'.format(full_name))\n return False, False, False\n data2, filetype = magic_read(full_name)\n NewMeas = convert_items(data2, map_magic.meas_magic2_2_magic3_map)\n ofile = os.path.join(output_dir, 'measurements.txt')\n magic_write(ofile, NewMeas, 'measurements')\n upgraded = []\n if os.path.exists(ofile):\n print('-I- 3.0 format measurements file was successfully created: {}'\n .format(ofile))\n upgraded.append('measurements.txt')\n else:\n print('-W- 3.0 format measurements file could not be created')\n no_upgrade = []\n if not meas_only:\n for dtype in ['specimens', 'samples', 'sites', 'locations', 'ages']:\n mapping = convert[dtype]\n res = convert_and_combine_2_to_3(dtype, mapping, input_dir,\n output_dir, data_model)\n if res:\n upgraded.append(res)\n if os.path.exists(os.path.join(input_dir, 'pmag_criteria.txt')):\n crit_file = convert_criteria_file_2_to_3(input_dir=input_dir,\n output_dir=output_dir, data_model=data_model)[0]\n if crit_file:\n upgraded.append(crit_file)\n else:\n no_upgrade.append('pmag_criteria.txt')\n for fname in os.listdir(input_dir):\n if fname in ['measurements.txt', 'specimens.txt', 'samples.txt',\n 'sites.txt', 'locations.txt']:\n continue\n elif 'rmag' in fname:\n no_upgrade.append(fname)\n elif fname in ['pmag_results.txt', 'er_synthetics.txt',\n 'er_images.txt', 'er_plots.txt']:\n no_upgrade.append(fname)\n return NewMeas, upgraded, no_upgrade\n",
"role": "user"
},
{
"content": "convert_directory_2_to_3",
"role": "assistant"
}
] |
def x(dtype, map_dict, input_dir='.', output_dir='.', data_model=None):
er_file = os.path.join(input_dir, 'er_{}.txt'.format(dtype))
er_data, er_dtype = magic_read(er_file)
if len(er_data):
er_df = pd.DataFrame(er_data)
if dtype == 'ages':
pass
else:
er_df.index = er_df['er_{}_name'.format(dtype[:-1])]
else:
er_df = pd.DataFrame()
if dtype == 'ages':
full_df = er_df
else:
pmag_file = os.path.join(input_dir, 'pmag_{}.txt'.format(dtype))
pmag_data, pmag_dtype = magic_read(pmag_file)
if len(pmag_data):
pmag_df = pd.DataFrame(pmag_data)
pmag_df.index = pmag_df['er_{}_name'.format(dtype[:-1])]
else:
pmag_df = pd.DataFrame()
full_df = pd.concat([er_df, pmag_df], sort=True)
full_df.sort_index(inplace=True)
full_df.rename(columns=map_dict, inplace=True)
new_df = cb.MagicDataFrame(dtype=dtype, df=full_df, dmodel=data_model)
if len(new_df.df):
new_df.write_magic_file(dir_path=output_dir)
return dtype + '.txt'
else:
print('-I- No {} data found.'.format(dtype))
return None
|
convert_and_combine_2_to_3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dtype, map_dict, input_dir='.', output_dir='.', data_model=None):\n er_file = os.path.join(input_dir, 'er_{}.txt'.format(dtype))\n er_data, er_dtype = magic_read(er_file)\n if len(er_data):\n er_df = pd.DataFrame(er_data)\n if dtype == 'ages':\n pass\n else:\n er_df.index = er_df['er_{}_name'.format(dtype[:-1])]\n else:\n er_df = pd.DataFrame()\n if dtype == 'ages':\n full_df = er_df\n else:\n pmag_file = os.path.join(input_dir, 'pmag_{}.txt'.format(dtype))\n pmag_data, pmag_dtype = magic_read(pmag_file)\n if len(pmag_data):\n pmag_df = pd.DataFrame(pmag_data)\n pmag_df.index = pmag_df['er_{}_name'.format(dtype[:-1])]\n else:\n pmag_df = pd.DataFrame()\n full_df = pd.concat([er_df, pmag_df], sort=True)\n full_df.sort_index(inplace=True)\n full_df.rename(columns=map_dict, inplace=True)\n new_df = cb.MagicDataFrame(dtype=dtype, df=full_df, dmodel=data_model)\n if len(new_df.df):\n new_df.write_magic_file(dir_path=output_dir)\n return dtype + '.txt'\n else:\n print('-I- No {} data found.'.format(dtype))\n return None\n",
"role": "user"
},
{
"content": "convert_and_combine_2_to_3",
"role": "assistant"
}
] |
def x(fname='pmag_criteria.txt', input_dir='.', output_dir='.', data_model=None
):
fname = os.path.join(input_dir, fname)
if not os.path.exists(fname):
return False, None
orig_crit, warnings = read_criteria_from_file(fname,
initialize_acceptance_criteria(), data_model=2, return_warnings=True)
converted_crit = {}
if not data_model:
from . import data_model3 as dm3
DM = dm3.DataModel()
else:
DM = data_model
crit_map = DM.crit_map
stripped_crit_map = crit_map.dropna(axis='rows')
for crit in orig_crit:
if orig_crit[crit]['value'] in [-999, '-999', -999.0]:
continue
if crit in stripped_crit_map.index:
criterion_operation = stripped_crit_map.loc[crit]['criteria_map'][
'criterion_operation']
table_col = stripped_crit_map.loc[crit]['criteria_map'][
'table_column']
orig_crit[crit]['criterion_operation'] = criterion_operation
converted_crit[table_col] = orig_crit[crit]
else:
print('-W- Could not convert {} to 3.0, skipping'.format(crit))
converted_df = pd.DataFrame(converted_crit).transpose()
converted_df.index.name = 'table_column'
converted_df.rename(columns={'pmag_criteria_code': 'criterion',
'er_citation_names': 'citations', 'criteria_definition':
'description', 'value': 'criterion_value'}, inplace=True)
valid_cols = DM.dm['criteria'].index
drop_cols = set(converted_df.columns) - set(valid_cols)
converted_df.drop(drop_cols, axis='columns', inplace=True)
converted_df['table_column'] = converted_df.index
crit_container = cb.MagicDataFrame(dtype='criteria', df=converted_df)
crit_container.write_magic_file(dir_path=output_dir)
return 'criteria.txt', crit_container
|
convert_criteria_file_2_to_3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname='pmag_criteria.txt', input_dir='.', output_dir='.', data_model=None\n ):\n fname = os.path.join(input_dir, fname)\n if not os.path.exists(fname):\n return False, None\n orig_crit, warnings = read_criteria_from_file(fname,\n initialize_acceptance_criteria(), data_model=2, return_warnings=True)\n converted_crit = {}\n if not data_model:\n from . import data_model3 as dm3\n DM = dm3.DataModel()\n else:\n DM = data_model\n crit_map = DM.crit_map\n stripped_crit_map = crit_map.dropna(axis='rows')\n for crit in orig_crit:\n if orig_crit[crit]['value'] in [-999, '-999', -999.0]:\n continue\n if crit in stripped_crit_map.index:\n criterion_operation = stripped_crit_map.loc[crit]['criteria_map'][\n 'criterion_operation']\n table_col = stripped_crit_map.loc[crit]['criteria_map'][\n 'table_column']\n orig_crit[crit]['criterion_operation'] = criterion_operation\n converted_crit[table_col] = orig_crit[crit]\n else:\n print('-W- Could not convert {} to 3.0, skipping'.format(crit))\n converted_df = pd.DataFrame(converted_crit).transpose()\n converted_df.index.name = 'table_column'\n converted_df.rename(columns={'pmag_criteria_code': 'criterion',\n 'er_citation_names': 'citations', 'criteria_definition':\n 'description', 'value': 'criterion_value'}, inplace=True)\n valid_cols = DM.dm['criteria'].index\n drop_cols = set(converted_df.columns) - set(valid_cols)\n converted_df.drop(drop_cols, axis='columns', inplace=True)\n converted_df['table_column'] = converted_df.index\n crit_container = cb.MagicDataFrame(dtype='criteria', df=converted_df)\n crit_container.write_magic_file(dir_path=output_dir)\n return 'criteria.txt', crit_container\n",
"role": "user"
},
{
"content": "convert_criteria_file_2_to_3",
"role": "assistant"
}
] |
def x(mag_azimuth, field_dip, or_con):
or_con = str(or_con)
if mag_azimuth == -999:
return '', ''
if or_con == '1':
return mag_azimuth, -field_dip
if or_con == '2':
return mag_azimuth - 90.0, -field_dip
if or_con == '3':
return mag_azimuth, 90.0 - field_dip
if or_con == '4':
return mag_azimuth, field_dip
if or_con == '5':
return mag_azimuth, field_dip - 90.0
if or_con == '6':
return mag_azimuth - 90.0, 90.0 - field_dip
if or_con == '7':
return mag_azimuth - 90.0, 90.0 - field_dip
print('Error in orientation convention')
|
orient
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mag_azimuth, field_dip, or_con):\n or_con = str(or_con)\n if mag_azimuth == -999:\n return '', ''\n if or_con == '1':\n return mag_azimuth, -field_dip\n if or_con == '2':\n return mag_azimuth - 90.0, -field_dip\n if or_con == '3':\n return mag_azimuth, 90.0 - field_dip\n if or_con == '4':\n return mag_azimuth, field_dip\n if or_con == '5':\n return mag_azimuth, field_dip - 90.0\n if or_con == '6':\n return mag_azimuth - 90.0, 90.0 - field_dip\n if or_con == '7':\n return mag_azimuth - 90.0, 90.0 - field_dip\n print('Error in orientation convention')\n",
"role": "user"
},
{
"content": "orient",
"role": "assistant"
}
] |
def x(data):
Sb, N = 0.0, 0.0
for rec in data:
delta = 90.0 - abs(rec['vgp_lat'])
if rec['average_k'] != 0:
k = rec['average_k']
L = rec['average_lat'] * np.pi / 180.0
Nsi = rec['average_nn']
K = old_div(k, 2.0 * (1.0 + 3.0 * np.sin(L) ** 2) / (5.0 - 3.0 *
np.sin(L) ** 2))
Sw = old_div(81.0, np.sqrt(K))
else:
Sw, Nsi = 0, 1.0
Sb += delta ** 2.0 - old_div(Sw ** 2, Nsi)
N += 1.0
return np.sqrt(old_div(Sb, float(N - 1.0)))
|
get_Sb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n Sb, N = 0.0, 0.0\n for rec in data:\n delta = 90.0 - abs(rec['vgp_lat'])\n if rec['average_k'] != 0:\n k = rec['average_k']\n L = rec['average_lat'] * np.pi / 180.0\n Nsi = rec['average_nn']\n K = old_div(k, 2.0 * (1.0 + 3.0 * np.sin(L) ** 2) / (5.0 - 3.0 *\n np.sin(L) ** 2))\n Sw = old_div(81.0, np.sqrt(K))\n else:\n Sw, Nsi = 0, 1.0\n Sb += delta ** 2.0 - old_div(Sw ** 2, Nsi)\n N += 1.0\n return np.sqrt(old_div(Sb, float(N - 1.0)))\n",
"role": "user"
},
{
"content": "get_Sb",
"role": "assistant"
}
] |
def x(df, mm97=False):
df['delta'] = 90.0 - df.vgp_lat
Sp2 = np.sum(df.delta ** 2) / (df.shape[0] - 1)
if 'dir_k' in df.columns and mm97:
ks = df.dir_k
Ns = df.dir_n
Ls = np.radians(df.lat)
A95s = 140.0 / np.sqrt(ks * Ns)
Sw2_n = 0.335 * A95s ** 2 * (2.0 * (1.0 + 3.0 * np.sin(Ls) ** 2) /
(5.0 - 3.0 * np.sin(Ls) ** 2))
return np.sqrt(Sp2 - Sw2_n.mean())
else:
return np.sqrt(Sp2)
|
get_sb_df
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, mm97=False):\n df['delta'] = 90.0 - df.vgp_lat\n Sp2 = np.sum(df.delta ** 2) / (df.shape[0] - 1)\n if 'dir_k' in df.columns and mm97:\n ks = df.dir_k\n Ns = df.dir_n\n Ls = np.radians(df.lat)\n A95s = 140.0 / np.sqrt(ks * Ns)\n Sw2_n = 0.335 * A95s ** 2 * (2.0 * (1.0 + 3.0 * np.sin(Ls) ** 2) /\n (5.0 - 3.0 * np.sin(Ls) ** 2))\n return np.sqrt(Sp2 - Sw2_n.mean())\n else:\n return np.sqrt(Sp2)\n",
"role": "user"
},
{
"content": "get_sb_df",
"role": "assistant"
}
] |
def x(PmagRec, ACCEPT, type, data_model=2.5):
GREATERTHAN = ['specimen_q', 'site_k', 'site_n', 'site_n_lines',
'site_int_n', 'measurement_step_min', 'specimen_int_ptrm_n',
'specimen_fvds', 'specimen_frac', 'specimen_f', 'specimen_n',
'specimen_int_n', 'sample_int_n', 'average_age_min', 'average_k',
'average_r', 'specimen_magn_moment', 'specimen_magn_volume',
'specimen_rsc', 'sample_n', 'sample_n_lines', 'sample_n_planes',
'sample_k', 'sample_r', 'site_magn_moment', 'site_magn_volume',
'site_magn_mass', 'site_r']
ISTRUE = ['specimen_scat']
kill = []
sigma_types = ['sample_int_sigma', 'sample_int_sigma_perc',
'site_int_sigma', 'site_int_sigma_perc', 'average_int_sigma',
'average_int_sigma_perc']
sigmas = []
accept = {}
if type == 'specimen_int':
USEKEYS = ['specimen_q', 'measurement_step_min',
'measurement_step_max', 'specimen_int_ptrm_n', 'specimen_fvds',
'specimen_frac', 'specimen_f', 'specimen_int_n',
'specimen_magn_moment', 'specimen_magn_volume', 'specimen_rsc',
'specimen_scat', 'specimen_drats', 'specimen_int_mad',
'specimen_int_dang', 'specimen_md', 'specimen_b_beta',
'specimen_w', 'specimen_gmax']
if data_model == 3.0:
USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS]
elif type == 'specimen_dir':
USEKEYS = ['measurement_step_min', 'measurement_step_max',
'specimen_mad', 'specimen_n', 'specimen_magn_moment',
'specimen_magn_volume']
if data_model == 3.0:
USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS]
elif type == 'sample_int':
USEKEYS = ['sample_int_n', 'sample_int_sigma', 'sample_int_sigma_perc']
if data_model == 3.0:
USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS]
elif type == 'sample_dir':
USEKEYS = ['sample_alpha95', 'sample_n', 'sample_n_lines',
'sample_n_planes', 'sample_k', 'sample_r']
if data_model == 3.0:
USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS]
elif type == 'site_int':
USEKEYS = ['site_int_sigma', 'site_int_sigma_perc', 'site_int_n']
if data_model == 3.0:
USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS]
elif type == 'site_dir':
USEKEYS = ['site_alpha95', 'site_k', 'site_n', 'site_n_lines',
'site_n_planes', 'site_r']
if data_model == 3.0:
USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS]
for key in list(ACCEPT.keys()):
if ACCEPT[key] != '' and key in USEKEYS:
if key in ISTRUE and ACCEPT[key] == 'TRUE' or ACCEPT[key
] == 'True':
ACCEPT[key] = '1'
elif ACCEPT[key] == 'FALSE' or ACCEPT[key] == 'False':
ACCEPT[key] = '0'
elif eval(ACCEPT[key]) == 0:
ACCEPT[key] = ''
accept[key] = ACCEPT[key]
for key in sigma_types:
if key in USEKEYS and key in list(accept.keys()) and key in list(
PmagRec.keys()):
sigmas.append(key)
if len(sigmas) > 1:
if PmagRec[sigmas[0]] == '' or PmagRec[sigmas[1]] == '':
kill.append(sigmas[0])
kill.append(sigmas[1])
elif eval(PmagRec[sigmas[0]]) > eval(accept[sigmas[0]]) and eval(
PmagRec[sigmas[1]]) > eval(accept[sigmas[1]]):
kill.append(sigmas[0])
kill.append(sigmas[1])
elif len(sigmas) == 1 and sigmas[0] in list(accept.keys()):
if PmagRec[sigmas[0]] > accept[sigmas[0]]:
kill.append(sigmas[0])
for key in list(accept.keys()):
if accept[key] != '':
if key not in list(PmagRec.keys()) or PmagRec[key] == '':
kill.append(key)
elif key not in sigma_types:
if key in ISTRUE:
if PmagRec[key] != '1':
kill.append(key)
if key in GREATERTHAN:
if eval(str(PmagRec[key])) < eval(str(accept[key])):
kill.append(key)
elif eval(str(PmagRec[key])) > eval(str(accept[key])):
kill.append(key)
return kill
|
grade
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(PmagRec, ACCEPT, type, data_model=2.5):\n GREATERTHAN = ['specimen_q', 'site_k', 'site_n', 'site_n_lines',\n 'site_int_n', 'measurement_step_min', 'specimen_int_ptrm_n',\n 'specimen_fvds', 'specimen_frac', 'specimen_f', 'specimen_n',\n 'specimen_int_n', 'sample_int_n', 'average_age_min', 'average_k',\n 'average_r', 'specimen_magn_moment', 'specimen_magn_volume',\n 'specimen_rsc', 'sample_n', 'sample_n_lines', 'sample_n_planes',\n 'sample_k', 'sample_r', 'site_magn_moment', 'site_magn_volume',\n 'site_magn_mass', 'site_r']\n ISTRUE = ['specimen_scat']\n kill = []\n sigma_types = ['sample_int_sigma', 'sample_int_sigma_perc',\n 'site_int_sigma', 'site_int_sigma_perc', 'average_int_sigma',\n 'average_int_sigma_perc']\n sigmas = []\n accept = {}\n if type == 'specimen_int':\n USEKEYS = ['specimen_q', 'measurement_step_min',\n 'measurement_step_max', 'specimen_int_ptrm_n', 'specimen_fvds',\n 'specimen_frac', 'specimen_f', 'specimen_int_n',\n 'specimen_magn_moment', 'specimen_magn_volume', 'specimen_rsc',\n 'specimen_scat', 'specimen_drats', 'specimen_int_mad',\n 'specimen_int_dang', 'specimen_md', 'specimen_b_beta',\n 'specimen_w', 'specimen_gmax']\n if data_model == 3.0:\n USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS]\n elif type == 'specimen_dir':\n USEKEYS = ['measurement_step_min', 'measurement_step_max',\n 'specimen_mad', 'specimen_n', 'specimen_magn_moment',\n 'specimen_magn_volume']\n if data_model == 3.0:\n USEKEYS = [map_magic.spec_magic2_2_magic3_map[k] for k in USEKEYS]\n elif type == 'sample_int':\n USEKEYS = ['sample_int_n', 'sample_int_sigma', 'sample_int_sigma_perc']\n if data_model == 3.0:\n USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS]\n elif type == 'sample_dir':\n USEKEYS = ['sample_alpha95', 'sample_n', 'sample_n_lines',\n 'sample_n_planes', 'sample_k', 'sample_r']\n if data_model == 3.0:\n USEKEYS = [map_magic.samp_magic2_2_magic3_map[k] for k in USEKEYS]\n elif type == 'site_int':\n USEKEYS = ['site_int_sigma', 'site_int_sigma_perc', 'site_int_n']\n if data_model == 3.0:\n USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS]\n elif type == 'site_dir':\n USEKEYS = ['site_alpha95', 'site_k', 'site_n', 'site_n_lines',\n 'site_n_planes', 'site_r']\n if data_model == 3.0:\n USEKEYS = [map_magic.site_magic2_2_magic3_map[k] for k in USEKEYS]\n for key in list(ACCEPT.keys()):\n if ACCEPT[key] != '' and key in USEKEYS:\n if key in ISTRUE and ACCEPT[key] == 'TRUE' or ACCEPT[key\n ] == 'True':\n ACCEPT[key] = '1'\n elif ACCEPT[key] == 'FALSE' or ACCEPT[key] == 'False':\n ACCEPT[key] = '0'\n elif eval(ACCEPT[key]) == 0:\n ACCEPT[key] = ''\n accept[key] = ACCEPT[key]\n for key in sigma_types:\n if key in USEKEYS and key in list(accept.keys()) and key in list(\n PmagRec.keys()):\n sigmas.append(key)\n if len(sigmas) > 1:\n if PmagRec[sigmas[0]] == '' or PmagRec[sigmas[1]] == '':\n kill.append(sigmas[0])\n kill.append(sigmas[1])\n elif eval(PmagRec[sigmas[0]]) > eval(accept[sigmas[0]]) and eval(\n PmagRec[sigmas[1]]) > eval(accept[sigmas[1]]):\n kill.append(sigmas[0])\n kill.append(sigmas[1])\n elif len(sigmas) == 1 and sigmas[0] in list(accept.keys()):\n if PmagRec[sigmas[0]] > accept[sigmas[0]]:\n kill.append(sigmas[0])\n for key in list(accept.keys()):\n if accept[key] != '':\n if key not in list(PmagRec.keys()) or PmagRec[key] == '':\n kill.append(key)\n elif key not in sigma_types:\n if key in ISTRUE:\n if PmagRec[key] != '1':\n kill.append(key)\n if key in GREATERTHAN:\n if eval(str(PmagRec[key])) < eval(str(accept[key])):\n kill.append(key)\n elif eval(str(PmagRec[key])) > eval(str(accept[key])):\n kill.append(key)\n return kill\n",
"role": "user"
},
{
"content": "grade",
"role": "assistant"
}
] |
def x(di_block, combine=False):
ppars = doprinc(di_block)
if combine:
D3 = []
D1, D2 = [], []
for rec in di_block:
ang = angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']])
if ang > 90.0:
d, i = (rec[0] - 180.0) % 360.0, -rec[1]
D2.append([d, i])
if combine:
D3.append([d, i])
else:
D1.append([rec[0], rec[1]])
if combine:
D3.append([rec[0], rec[1]])
if combine:
return D3
else:
return D1, D2
|
flip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(di_block, combine=False):\n ppars = doprinc(di_block)\n if combine:\n D3 = []\n D1, D2 = [], []\n for rec in di_block:\n ang = angle([rec[0], rec[1]], [ppars['dec'], ppars['inc']])\n if ang > 90.0:\n d, i = (rec[0] - 180.0) % 360.0, -rec[1]\n D2.append([d, i])\n if combine:\n D3.append([d, i])\n else:\n D1.append([rec[0], rec[1]])\n if combine:\n D3.append([rec[0], rec[1]])\n if combine:\n return D3\n else:\n return D1, D2\n",
"role": "user"
},
{
"content": "flip",
"role": "assistant"
}
] |
def x(*args):
if len(args) == 1:
largs = list(args).pop()
decs, dips, a95s, slats, slongs = list(zip(*largs))
else:
decs, dips, a95s, slats, slongs = args
dec, dip, a95, slat, slong = np.array(decs), np.array(dips), np.array(a95s
), np.array(slats), np.array(slongs)
rad = old_div(np.pi, 180.0)
dec, dip, a95, slat, slong = (dec * rad, dip * rad, a95 * rad, slat *
rad, slong * rad)
p = np.arctan2(2.0, np.tan(dip))
plat = np.arcsin(np.sin(slat) * np.cos(p) + np.cos(slat) * np.sin(p) *
np.cos(dec))
beta = old_div(np.sin(p) * np.sin(dec), np.cos(plat))
boolmask = beta > 1.0
if isinstance(beta, np.ndarray):
beta[boolmask] = 1.0
elif boolmask:
beta = 1.0
boolmask = beta < -1.0
if isinstance(beta, np.ndarray):
beta[boolmask] = -1.0
elif boolmask:
beta = -1.0
beta = np.arcsin(beta)
plong = slong + np.pi - beta
if (np.cos(p) > np.sin(slat) * np.sin(plat)).any():
boolmask = np.cos(p) > np.sin(slat) * np.sin(plat)
if isinstance(plong, np.ndarray):
plong[boolmask] = (slong + beta)[boolmask]
elif boolmask:
plong = slong + beta
boolmask = plong < 0
if isinstance(plong, np.ndarray):
plong[boolmask] = plong[boolmask] + 2 * np.pi
elif boolmask:
plong = plong + 2 * np.pi
boolmask = plong > 2 * np.pi
if isinstance(plong, np.ndarray):
plong[boolmask] = plong[boolmask] - 2 * np.pi
elif boolmask:
plong = plong - 2 * np.pi
dm = np.rad2deg(a95 * old_div(np.sin(p), np.cos(dip)))
dp = np.rad2deg(a95 * old_div(1 + 3 * np.cos(p) ** 2, 2))
plat = np.rad2deg(plat)
plong = np.rad2deg(plong)
return plong.tolist(), plat.tolist(), dp.tolist(), dm.tolist()
|
dia_vgp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*args):\n if len(args) == 1:\n largs = list(args).pop()\n decs, dips, a95s, slats, slongs = list(zip(*largs))\n else:\n decs, dips, a95s, slats, slongs = args\n dec, dip, a95, slat, slong = np.array(decs), np.array(dips), np.array(a95s\n ), np.array(slats), np.array(slongs)\n rad = old_div(np.pi, 180.0)\n dec, dip, a95, slat, slong = (dec * rad, dip * rad, a95 * rad, slat *\n rad, slong * rad)\n p = np.arctan2(2.0, np.tan(dip))\n plat = np.arcsin(np.sin(slat) * np.cos(p) + np.cos(slat) * np.sin(p) *\n np.cos(dec))\n beta = old_div(np.sin(p) * np.sin(dec), np.cos(plat))\n boolmask = beta > 1.0\n if isinstance(beta, np.ndarray):\n beta[boolmask] = 1.0\n elif boolmask:\n beta = 1.0\n boolmask = beta < -1.0\n if isinstance(beta, np.ndarray):\n beta[boolmask] = -1.0\n elif boolmask:\n beta = -1.0\n beta = np.arcsin(beta)\n plong = slong + np.pi - beta\n if (np.cos(p) > np.sin(slat) * np.sin(plat)).any():\n boolmask = np.cos(p) > np.sin(slat) * np.sin(plat)\n if isinstance(plong, np.ndarray):\n plong[boolmask] = (slong + beta)[boolmask]\n elif boolmask:\n plong = slong + beta\n boolmask = plong < 0\n if isinstance(plong, np.ndarray):\n plong[boolmask] = plong[boolmask] + 2 * np.pi\n elif boolmask:\n plong = plong + 2 * np.pi\n boolmask = plong > 2 * np.pi\n if isinstance(plong, np.ndarray):\n plong[boolmask] = plong[boolmask] - 2 * np.pi\n elif boolmask:\n plong = plong - 2 * np.pi\n dm = np.rad2deg(a95 * old_div(np.sin(p), np.cos(dip)))\n dp = np.rad2deg(a95 * old_div(1 + 3 * np.cos(p) ** 2, 2))\n plat = np.rad2deg(plat)\n plong = np.rad2deg(plong)\n return plong.tolist(), plat.tolist(), dp.tolist(), dm.tolist()\n",
"role": "user"
},
{
"content": "dia_vgp",
"role": "assistant"
}
] |
def x(x, y, vds, **kwargs):
if 'version' in list(kwargs.keys()) and kwargs['version'] == 3:
n_key = 'int_n_measurements'
b_key = 'int_b'
sigma_key = 'int_b_sigma'
f_key = 'int_f'
fvds_key = 'int_fvds'
g_key = 'int_g'
q_key = 'int_q'
b_beta_key = 'int_b_beta'
else:
n_key = 'specimen_int_n'
b_key = 'specimen_b'
sigma_key = 'specimen_b_sigma'
f_key = 'specimen_f'
fvds_key = 'specimen_fvds'
g_key = 'specimen_g'
q_key = 'specimen_q'
b_beta_key = 'specimen_b_beta'
xx, yer, xer, xyer, yy, xsum, ysum, xy = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0)
xprime, yprime = [], []
pars = {}
pars[n_key] = len(x)
n = float(len(x))
if n <= 2:
print("shouldn't be here at all!")
return pars, 1
for i in range(len(x)):
xx += x[i] ** 2.0
yy += y[i] ** 2.0
xy += x[i] * y[i]
xsum += x[i]
ysum += y[i]
xsig = np.sqrt(old_div(xx - old_div(xsum ** 2.0, n), n - 1.0))
ysig = np.sqrt(old_div(yy - old_div(ysum ** 2.0, n), n - 1.0))
sum = 0
for i in range(int(n)):
yer += (y[i] - old_div(ysum, n)) ** 2.0
xer += (x[i] - old_div(xsum, n)) ** 2.0
xyer += (y[i] - old_div(ysum, n)) * (x[i] - old_div(xsum, n))
slop = -np.sqrt(old_div(yer, xer))
pars[b_key] = slop
s1 = 2.0 * yer - 2.0 * slop * xyer
s2 = (n - 2.0) * xer
sigma = np.sqrt(old_div(s1, s2))
pars[sigma_key] = sigma
s = old_div(xy - xsum * ysum / n, xx - old_div(xsum ** 2.0, n))
r = old_div(s * xsig, ysig)
pars['specimen_rsc'] = r ** 2.0
ytot = abs(old_div(ysum, n) - slop * xsum / n)
for i in range(int(n)):
xprime.append(old_div(slop * x[i] + y[i] - ytot, 2.0 * slop))
yprime.append(old_div(slop * x[i] + y[i] - ytot, 2.0) + ytot)
sumdy, dy = 0, []
dyt = abs(yprime[0] - yprime[int(n) - 1])
for i in range(int(n) - 1):
dy.append(abs(yprime[i + 1] - yprime[i]))
sumdy += dy[i] ** 2.0
f = old_div(dyt, ytot)
pars[f_key] = f
pars['specimen_ytot'] = ytot
ff = old_div(dyt, vds)
pars[fvds_key] = ff
ddy = old_div(1.0, dyt) * sumdy
g = 1.0 - old_div(ddy, dyt)
pars[g_key] = g
q = abs(slop) * f * g / sigma
pars[q_key] = q
pars[b_beta_key] = old_div(-sigma, slop)
return pars, 0
|
int_pars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, vds, **kwargs):\n if 'version' in list(kwargs.keys()) and kwargs['version'] == 3:\n n_key = 'int_n_measurements'\n b_key = 'int_b'\n sigma_key = 'int_b_sigma'\n f_key = 'int_f'\n fvds_key = 'int_fvds'\n g_key = 'int_g'\n q_key = 'int_q'\n b_beta_key = 'int_b_beta'\n else:\n n_key = 'specimen_int_n'\n b_key = 'specimen_b'\n sigma_key = 'specimen_b_sigma'\n f_key = 'specimen_f'\n fvds_key = 'specimen_fvds'\n g_key = 'specimen_g'\n q_key = 'specimen_q'\n b_beta_key = 'specimen_b_beta'\n xx, yer, xer, xyer, yy, xsum, ysum, xy = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0)\n xprime, yprime = [], []\n pars = {}\n pars[n_key] = len(x)\n n = float(len(x))\n if n <= 2:\n print(\"shouldn't be here at all!\")\n return pars, 1\n for i in range(len(x)):\n xx += x[i] ** 2.0\n yy += y[i] ** 2.0\n xy += x[i] * y[i]\n xsum += x[i]\n ysum += y[i]\n xsig = np.sqrt(old_div(xx - old_div(xsum ** 2.0, n), n - 1.0))\n ysig = np.sqrt(old_div(yy - old_div(ysum ** 2.0, n), n - 1.0))\n sum = 0\n for i in range(int(n)):\n yer += (y[i] - old_div(ysum, n)) ** 2.0\n xer += (x[i] - old_div(xsum, n)) ** 2.0\n xyer += (y[i] - old_div(ysum, n)) * (x[i] - old_div(xsum, n))\n slop = -np.sqrt(old_div(yer, xer))\n pars[b_key] = slop\n s1 = 2.0 * yer - 2.0 * slop * xyer\n s2 = (n - 2.0) * xer\n sigma = np.sqrt(old_div(s1, s2))\n pars[sigma_key] = sigma\n s = old_div(xy - xsum * ysum / n, xx - old_div(xsum ** 2.0, n))\n r = old_div(s * xsig, ysig)\n pars['specimen_rsc'] = r ** 2.0\n ytot = abs(old_div(ysum, n) - slop * xsum / n)\n for i in range(int(n)):\n xprime.append(old_div(slop * x[i] + y[i] - ytot, 2.0 * slop))\n yprime.append(old_div(slop * x[i] + y[i] - ytot, 2.0) + ytot)\n sumdy, dy = 0, []\n dyt = abs(yprime[0] - yprime[int(n) - 1])\n for i in range(int(n) - 1):\n dy.append(abs(yprime[i + 1] - yprime[i]))\n sumdy += dy[i] ** 2.0\n f = old_div(dyt, ytot)\n pars[f_key] = f\n pars['specimen_ytot'] = ytot\n ff = old_div(dyt, vds)\n pars[fvds_key] = ff\n ddy = old_div(1.0, dyt) * sumdy\n g = 1.0 - old_div(ddy, dyt)\n pars[g_key] = g\n q = abs(slop) * f * g / sigma\n pars[q_key] = q\n pars[b_beta_key] = old_div(-sigma, slop)\n return pars, 0\n",
"role": "user"
},
{
"content": "int_pars",
"role": "assistant"
}
] |
def x(data):
vds, X = 0, []
for rec in data:
X.append(dir2cart(rec))
for k in range(len(X) - 1):
xdif = X[k + 1][0] - X[k][0]
ydif = X[k + 1][1] - X[k][1]
zdif = X[k + 1][2] - X[k][2]
vds += np.sqrt(xdif ** 2 + ydif ** 2 + zdif ** 2)
vds += np.sqrt(X[-1][0] ** 2 + X[-1][1] ** 2 + X[-1][2] ** 2)
return vds
|
dovds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n vds, X = 0, []\n for rec in data:\n X.append(dir2cart(rec))\n for k in range(len(X) - 1):\n xdif = X[k + 1][0] - X[k][0]\n ydif = X[k + 1][1] - X[k][1]\n zdif = X[k + 1][2] - X[k][2]\n vds += np.sqrt(xdif ** 2 + ydif ** 2 + zdif ** 2)\n vds += np.sqrt(X[-1][0] ** 2 + X[-1][1] ** 2 + X[-1][2] ** 2)\n return vds\n",
"role": "user"
},
{
"content": "dovds",
"role": "assistant"
}
] |
def x(data):
vdata, Dirdata, step_meth = [], [], ''
if len(data) == 0:
return vdata
treat_init = ['treatment_temp', 'treatment_temp_decay_rate',
'treatment_temp_dc_on', 'treatment_temp_dc_off',
'treatment_ac_field', 'treatment_ac_field_decay_rate',
'treatment_ac_field_dc_on', 'treatment_ac_field_dc_off',
'treatment_dc_field', 'treatment_dc_field_decay_rate',
'treatment_dc_field_ac_on', 'treatment_dc_field_ac_off',
'treatment_dc_field_phi', 'treatment_dc_field_theta']
treats = []
for key in treat_init:
if key in list(data[0].keys()):
treats.append(key)
stop = {}
stop['er_specimen_name'] = 'stop'
for key in treats:
stop[key] = ''
data.append(stop)
DataState0, newstate = {}, 0
for key in treats:
DataState0[key] = data[0][key]
k, R = 1, 0
for i in range(k, len(data)):
FDirdata, Dirdata, DataStateCurr, newstate = [], [], {}, 0
for key in treats:
DataStateCurr[key] = data[i][key]
if DataStateCurr[key].strip() != DataState0[key].strip():
newstate = 1
if newstate == 1:
if i == k:
vdata.append(data[i - 1])
else:
for l in range(k - 1, i):
if 'orientation' in data[l]['measurement_description']:
data[l]['measurement_description'] = ''
Dirdata.append([float(data[l]['measurement_dec']),
float(data[l]['measurement_inc']), float(data[l][
'measurement_magn_moment'])])
FDirdata.append([float(data[l]['measurement_dec']),
float(data[l]['measurement_inc'])])
dir, R = vector_mean(Dirdata)
Fpars = fisher_mean(FDirdata)
vrec = data[i - 1]
vrec['measurement_dec'] = '%7.1f' % dir[0]
vrec['measurement_inc'] = '%7.1f' % dir[1]
vrec['measurement_magn_moment'] = '%8.3e' % old_div(R, i -
k + 1)
vrec['measurement_csd'] = '%7.1f' % Fpars['csd']
vrec['measurement_positions'] = '%7.1f' % Fpars['n']
vrec['measurement_description'
] = 'average of multiple measurements'
if 'magic_method_codes' in list(vrec.keys()):
meths = vrec['magic_method_codes'].strip().split(':')
if 'DE-VM' not in meths:
meths.append('DE-VM')
methods = ''
for meth in meths:
methods = methods + meth + ':'
vrec['magic_method_codes'] = methods[:-1]
else:
vrec['magic_method_codes'] = 'DE-VM'
vdata.append(vrec)
for key in treats:
DataState0[key] = data[i][key]
k = i + 1
if data[i]['er_specimen_name'] == 'stop':
del data[-1]
return vdata, treats
|
vspec_magic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n vdata, Dirdata, step_meth = [], [], ''\n if len(data) == 0:\n return vdata\n treat_init = ['treatment_temp', 'treatment_temp_decay_rate',\n 'treatment_temp_dc_on', 'treatment_temp_dc_off',\n 'treatment_ac_field', 'treatment_ac_field_decay_rate',\n 'treatment_ac_field_dc_on', 'treatment_ac_field_dc_off',\n 'treatment_dc_field', 'treatment_dc_field_decay_rate',\n 'treatment_dc_field_ac_on', 'treatment_dc_field_ac_off',\n 'treatment_dc_field_phi', 'treatment_dc_field_theta']\n treats = []\n for key in treat_init:\n if key in list(data[0].keys()):\n treats.append(key)\n stop = {}\n stop['er_specimen_name'] = 'stop'\n for key in treats:\n stop[key] = ''\n data.append(stop)\n DataState0, newstate = {}, 0\n for key in treats:\n DataState0[key] = data[0][key]\n k, R = 1, 0\n for i in range(k, len(data)):\n FDirdata, Dirdata, DataStateCurr, newstate = [], [], {}, 0\n for key in treats:\n DataStateCurr[key] = data[i][key]\n if DataStateCurr[key].strip() != DataState0[key].strip():\n newstate = 1\n if newstate == 1:\n if i == k:\n vdata.append(data[i - 1])\n else:\n for l in range(k - 1, i):\n if 'orientation' in data[l]['measurement_description']:\n data[l]['measurement_description'] = ''\n Dirdata.append([float(data[l]['measurement_dec']),\n float(data[l]['measurement_inc']), float(data[l][\n 'measurement_magn_moment'])])\n FDirdata.append([float(data[l]['measurement_dec']),\n float(data[l]['measurement_inc'])])\n dir, R = vector_mean(Dirdata)\n Fpars = fisher_mean(FDirdata)\n vrec = data[i - 1]\n vrec['measurement_dec'] = '%7.1f' % dir[0]\n vrec['measurement_inc'] = '%7.1f' % dir[1]\n vrec['measurement_magn_moment'] = '%8.3e' % old_div(R, i -\n k + 1)\n vrec['measurement_csd'] = '%7.1f' % Fpars['csd']\n vrec['measurement_positions'] = '%7.1f' % Fpars['n']\n vrec['measurement_description'\n ] = 'average of multiple measurements'\n if 'magic_method_codes' in list(vrec.keys()):\n meths = vrec['magic_method_codes'].strip().split(':')\n if 'DE-VM' not in meths:\n meths.append('DE-VM')\n methods = ''\n for meth in meths:\n methods = methods + meth + ':'\n vrec['magic_method_codes'] = methods[:-1]\n else:\n vrec['magic_method_codes'] = 'DE-VM'\n vdata.append(vrec)\n for key in treats:\n DataState0[key] = data[i][key]\n k = i + 1\n if data[i]['er_specimen_name'] == 'stop':\n del data[-1]\n return vdata, treats\n",
"role": "user"
},
{
"content": "vspec_magic",
"role": "assistant"
}
] |
def x(data):
speclist = []
for rec in data:
try:
spec = rec['er_specimen_name']
except KeyError as e:
spec = rec['specimen']
if spec not in speclist:
speclist.append(spec)
speclist.sort()
return speclist
|
get_specs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n speclist = []\n for rec in data:\n try:\n spec = rec['er_specimen_name']\n except KeyError as e:\n spec = rec['specimen']\n if spec not in speclist:\n speclist.append(spec)\n speclist.sort()\n return speclist\n",
"role": "user"
},
{
"content": "get_specs",
"role": "assistant"
}
] |
def x(data):
Xbar = np.zeros(3)
X = dir2cart(data).transpose()
for i in range(3):
Xbar[i] = X[i].sum()
R = np.sqrt(Xbar[0] ** 2 + Xbar[1] ** 2 + Xbar[2] ** 2)
Xbar = Xbar / R
dir = cart2dir(Xbar)
return dir, R
|
vector_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n Xbar = np.zeros(3)\n X = dir2cart(data).transpose()\n for i in range(3):\n Xbar[i] = X[i].sum()\n R = np.sqrt(Xbar[0] ** 2 + Xbar[1] ** 2 + Xbar[2] ** 2)\n Xbar = Xbar / R\n dir = cart2dir(Xbar)\n return dir, R\n",
"role": "user"
},
{
"content": "vector_mean",
"role": "assistant"
}
] |
def x(s, ind, data):
datablock = []
for rec in data:
if rec['er_specimen_name'] == s:
meths = rec['magic_method_codes'].split(':')
if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths:
datablock.append(rec)
dmagrec = datablock[ind]
for k in range(len(data)):
meths = data[k]['magic_method_codes'].split(':')
if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths:
if data[k]['er_specimen_name'] == s:
if data[k]['treatment_temp'] == dmagrec['treatment_temp'
] and data[k]['treatment_ac_field'] == dmagrec[
'treatment_ac_field']:
if data[k]['measurement_dec'] == dmagrec['measurement_dec'
] and data[k]['measurement_inc'] == dmagrec[
'measurement_inc'] and data[k][
'measurement_magn_moment'] == dmagrec[
'measurement_magn_moment']:
if data[k]['measurement_flag'] == 'g':
flag = 'b'
else:
flag = 'g'
data[k]['measurement_flag'] = flag
break
return data
|
mark_dmag_rec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, ind, data):\n datablock = []\n for rec in data:\n if rec['er_specimen_name'] == s:\n meths = rec['magic_method_codes'].split(':')\n if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths:\n datablock.append(rec)\n dmagrec = datablock[ind]\n for k in range(len(data)):\n meths = data[k]['magic_method_codes'].split(':')\n if 'LT-NO' in meths or 'LT-AF-Z' in meths or 'LT-T-Z' in meths:\n if data[k]['er_specimen_name'] == s:\n if data[k]['treatment_temp'] == dmagrec['treatment_temp'\n ] and data[k]['treatment_ac_field'] == dmagrec[\n 'treatment_ac_field']:\n if data[k]['measurement_dec'] == dmagrec['measurement_dec'\n ] and data[k]['measurement_inc'] == dmagrec[\n 'measurement_inc'] and data[k][\n 'measurement_magn_moment'] == dmagrec[\n 'measurement_magn_moment']:\n if data[k]['measurement_flag'] == 'g':\n flag = 'b'\n else:\n flag = 'g'\n data[k]['measurement_flag'] = flag\n break\n return data\n",
"role": "user"
},
{
"content": "mark_dmag_rec",
"role": "assistant"
}
] |
def x(s, data, **kwargs):
if 'version' in list(kwargs.keys()) and kwargs['version'] == 3:
data = data.to_dict('records')
spec_key, dec_key, inc_key = 'specimen', 'dir_dec', 'dir_inc'
flag_key, temp_key, ac_key = 'flag', 'treat_temp', 'treat_ac_field'
meth_key = 'method_codes'
power_key, time_key = 'treat_mw_power', 'treat_mw_time'
Mkeys = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']
inst_key = 'instrument_codes'
else:
spec_key, dec_key, inc_key = ('er_specimen_name', 'measurement_dec',
'measurement_inc')
flag_key = 'measurement_flag'
flag_key, temp_key, ac_key = ('measurement_flag', 'treatment_temp',
'treatment_ac_field')
meth_key = 'magic_method_codes'
power_key, time_key = 'treatment_mw_power', 'treatment_mw_time'
Mkeys = ['measurement_magn_moment', 'measurement_magn_volume',
'measurement_magn_mass', 'measurement_magnitude']
inst_key = 'magic_instrument_codes'
EX = ['LP-AN-ARM', 'LP-AN-TRM', 'LP-ARM-AFD', 'LP-ARM2-AFD',
'LP-TRM-AFD', 'LP-TRM', 'LP-TRM-TD', 'LP-X']
INC = ['LT-NO', 'LT-AF-Z', 'LT-T-Z', 'LT-M-Z', 'LP-PI-TRM-IZ', 'LP-PI-M-IZ'
]
datablock, tr = [], ''
therm_flag, af_flag, mw_flag = 0, 0, 0
units = []
spec_meas = get_dictitem(data, spec_key, s, 'T')
for rec in spec_meas:
if flag_key not in list(rec.keys()):
rec[flag_key] = 'g'
skip = 1
tr = ''
meths = rec[meth_key].split(':')
methods = []
for m in meths:
methods.append(m.strip())
for meth in methods:
if meth.strip() in INC:
skip = 0
for meth in EX:
if meth in methods:
skip = 1
if skip == 0:
if 'LT-NO' in methods:
tr = float(rec[temp_key])
if 'LT-AF-Z' in methods:
af_flag = 1
try:
tr = float(rec[ac_key])
except (KeyError, ValueError):
tr = 0
if 'T' not in units:
units.append('T')
if 'LT-T-Z' in methods:
therm_flag = 1
tr = float(rec[temp_key])
if 'K' not in units:
units.append('K')
if 'LT-M-Z' in methods:
mw_flag = 1
tr = float(rec[power_key]) * float(rec[time_key])
if 'J' not in units:
units.append('J')
if 'LP-PI-TRM-IZ' in methods or 'LP-PI-M-IZ' in methods:
ZI = 0
else:
ZI = 1
if tr != '':
dec, inc, int = '', '', ''
if dec_key in list(rec.keys()) and cb.not_null(rec[dec_key],
False):
dec = float(rec[dec_key])
if inc_key in list(rec.keys()) and cb.not_null(rec[inc_key],
False):
inc = float(rec[inc_key])
for key in Mkeys:
if key in list(rec.keys()) and cb.not_null(rec[key], False
):
int = float(rec[key])
if inst_key not in list(rec.keys()):
rec[inst_key] = ''
datablock.append([tr, dec, inc, int, ZI, rec[flag_key], rec
[inst_key]])
if therm_flag == 1:
for k in range(len(datablock)):
if datablock[k][0] == 0.0:
datablock[k][0] = 273.0
if af_flag == 1:
for k in range(len(datablock)):
if datablock[k][0] >= 273 and datablock[k][0] <= 323:
datablock[k][0] = 0.0
meas_units = ''
if len(units) > 0:
for u in units:
meas_units = meas_units + u + ':'
meas_units = meas_units[:-1]
return datablock, meas_units
|
find_dmag_rec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, data, **kwargs):\n if 'version' in list(kwargs.keys()) and kwargs['version'] == 3:\n data = data.to_dict('records')\n spec_key, dec_key, inc_key = 'specimen', 'dir_dec', 'dir_inc'\n flag_key, temp_key, ac_key = 'flag', 'treat_temp', 'treat_ac_field'\n meth_key = 'method_codes'\n power_key, time_key = 'treat_mw_power', 'treat_mw_time'\n Mkeys = ['magn_moment', 'magn_volume', 'magn_mass', 'magnitude']\n inst_key = 'instrument_codes'\n else:\n spec_key, dec_key, inc_key = ('er_specimen_name', 'measurement_dec',\n 'measurement_inc')\n flag_key = 'measurement_flag'\n flag_key, temp_key, ac_key = ('measurement_flag', 'treatment_temp',\n 'treatment_ac_field')\n meth_key = 'magic_method_codes'\n power_key, time_key = 'treatment_mw_power', 'treatment_mw_time'\n Mkeys = ['measurement_magn_moment', 'measurement_magn_volume',\n 'measurement_magn_mass', 'measurement_magnitude']\n inst_key = 'magic_instrument_codes'\n EX = ['LP-AN-ARM', 'LP-AN-TRM', 'LP-ARM-AFD', 'LP-ARM2-AFD',\n 'LP-TRM-AFD', 'LP-TRM', 'LP-TRM-TD', 'LP-X']\n INC = ['LT-NO', 'LT-AF-Z', 'LT-T-Z', 'LT-M-Z', 'LP-PI-TRM-IZ', 'LP-PI-M-IZ'\n ]\n datablock, tr = [], ''\n therm_flag, af_flag, mw_flag = 0, 0, 0\n units = []\n spec_meas = get_dictitem(data, spec_key, s, 'T')\n for rec in spec_meas:\n if flag_key not in list(rec.keys()):\n rec[flag_key] = 'g'\n skip = 1\n tr = ''\n meths = rec[meth_key].split(':')\n methods = []\n for m in meths:\n methods.append(m.strip())\n for meth in methods:\n if meth.strip() in INC:\n skip = 0\n for meth in EX:\n if meth in methods:\n skip = 1\n if skip == 0:\n if 'LT-NO' in methods:\n tr = float(rec[temp_key])\n if 'LT-AF-Z' in methods:\n af_flag = 1\n try:\n tr = float(rec[ac_key])\n except (KeyError, ValueError):\n tr = 0\n if 'T' not in units:\n units.append('T')\n if 'LT-T-Z' in methods:\n therm_flag = 1\n tr = float(rec[temp_key])\n if 'K' not in units:\n units.append('K')\n if 'LT-M-Z' in methods:\n mw_flag = 1\n tr = float(rec[power_key]) * float(rec[time_key])\n if 'J' not in units:\n units.append('J')\n if 'LP-PI-TRM-IZ' in methods or 'LP-PI-M-IZ' in methods:\n ZI = 0\n else:\n ZI = 1\n if tr != '':\n dec, inc, int = '', '', ''\n if dec_key in list(rec.keys()) and cb.not_null(rec[dec_key],\n False):\n dec = float(rec[dec_key])\n if inc_key in list(rec.keys()) and cb.not_null(rec[inc_key],\n False):\n inc = float(rec[inc_key])\n for key in Mkeys:\n if key in list(rec.keys()) and cb.not_null(rec[key], False\n ):\n int = float(rec[key])\n if inst_key not in list(rec.keys()):\n rec[inst_key] = ''\n datablock.append([tr, dec, inc, int, ZI, rec[flag_key], rec\n [inst_key]])\n if therm_flag == 1:\n for k in range(len(datablock)):\n if datablock[k][0] == 0.0:\n datablock[k][0] = 273.0\n if af_flag == 1:\n for k in range(len(datablock)):\n if datablock[k][0] >= 273 and datablock[k][0] <= 323:\n datablock[k][0] = 0.0\n meas_units = ''\n if len(units) > 0:\n for u in units:\n meas_units = meas_units + u + ':'\n meas_units = meas_units[:-1]\n return datablock, meas_units\n",
"role": "user"
},
{
"content": "find_dmag_rec",
"role": "assistant"
}
] |
def x(infile, verbose=True):
try:
with codecs.open(infile, 'r', 'utf-8') as f:
lines = list(f.readlines())
except FileNotFoundError:
if verbose:
print('-W- You are trying to open a file: {} that does not exist'
.format(infile))
return []
except UnicodeDecodeError:
try:
with codecs.open(infile, 'r', 'Latin-1') as f:
print(
'-I- Using less strict decoding for {}, output may have formatting errors'
.format(infile))
lines = list(f.readlines())
except Exception as ex:
print('-W- ', type(ex), ex)
return []
except Exception as ex:
print('-W- ', type(ex), ex)
return []
i = 0
while i < 10:
if not len(lines[-1].strip('\n').strip('\t')):
lines = lines[:-1]
i += 1
else:
i = 10
return lines
|
open_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile, verbose=True):\n try:\n with codecs.open(infile, 'r', 'utf-8') as f:\n lines = list(f.readlines())\n except FileNotFoundError:\n if verbose:\n print('-W- You are trying to open a file: {} that does not exist'\n .format(infile))\n return []\n except UnicodeDecodeError:\n try:\n with codecs.open(infile, 'r', 'Latin-1') as f:\n print(\n '-I- Using less strict decoding for {}, output may have formatting errors'\n .format(infile))\n lines = list(f.readlines())\n except Exception as ex:\n print('-W- ', type(ex), ex)\n return []\n except Exception as ex:\n print('-W- ', type(ex), ex)\n return []\n i = 0\n while i < 10:\n if not len(lines[-1].strip('\\n').strip('\\t')):\n lines = lines[:-1]\n i += 1\n else:\n i = 10\n return lines\n",
"role": "user"
},
{
"content": "open_file",
"role": "assistant"
}
] |
def x(infile, data=None, return_keys=False, verbose=False):
if infile:
if not os.path.exists(infile):
if return_keys:
return [], 'empty_file', []
return [], 'empty_file'
hold, magic_data, magic_record, magic_keys = [], [], {}, []
if data:
lines = list(data)
elif not data and not infile:
if return_keys:
return [], 'empty_file', []
return [], 'empty_file'
else:
if not os.path.exists(infile):
if return_keys:
return [], 'bad_file', []
return [], 'bad_file'
lines = open_file(infile, verbose=verbose)
if not lines:
if return_keys:
return [], 'bad_file', []
return [], 'bad_file'
d_line = lines[0][:-1].strip('\n').strip('\r').strip('\t')
if not d_line:
if return_keys:
return [], 'empty_file', []
return [], 'empty_file'
if d_line[0] == 's' or d_line[1] == 's':
delim = 'space'
elif d_line[0] == 't' or d_line[1] == 't':
delim = 'tab'
else:
print('-W- error reading {}. Check that this is a MagIC-format file'
.format(infile))
if return_keys:
return [], 'bad_file', []
return [], 'bad_file'
if delim == 'space':
file_type = d_line.split()[1]
if delim == 'tab':
file_type = d_line.split('\t')[1]
if file_type == 'delimited':
if delim == 'space':
file_type = d_line.split()[2]
if delim == 'tab':
file_type = d_line.split('\t')[2]
line = lines[1].strip('\n').strip('\r')
if delim == 'space':
line = line.split()
if delim == 'tab':
line = line.split('\t')
for key in line:
magic_keys.append(key)
lines = lines[2:]
if len(lines) < 1:
if return_keys:
return [], 'empty_file', []
return [], 'empty_file'
for line in lines[:-1]:
line.replace('\n', '')
if delim == 'space':
rec = line[:-1].split()
if delim == 'tab':
rec = line[:-1].split('\t')
hold.append(rec)
line = lines[-1].replace('\n', '').replace('\r', '')
if delim == 'space':
rec = line[:-1].split()
if delim == 'tab':
rec = line.split('\t')
hold.append(rec)
for rec in hold:
magic_record = {}
if len(magic_keys) > len(rec):
for i in range(len(magic_keys) - len(rec)):
rec.append('')
if len(magic_keys) != len(rec):
if rec != ['>>>>>>>>>>'] and 'delimited' not in rec[0]:
print('Warning: Uneven record lengths detected in {}: '.
format(infile))
print('keys:', magic_keys)
print('record:', rec)
for k in range(min(len(magic_keys), len(rec))):
magic_record[magic_keys[k]] = rec[k].strip('\n').strip('\r')
magic_data.append(magic_record)
magictype = file_type.lower().split('_')
Types = ['er', 'magic', 'pmag', 'rmag']
if magictype in Types:
file_type = file_type.lower()
if return_keys:
return magic_data, file_type, magic_keys
return magic_data, file_type
|
magic_read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile, data=None, return_keys=False, verbose=False):\n if infile:\n if not os.path.exists(infile):\n if return_keys:\n return [], 'empty_file', []\n return [], 'empty_file'\n hold, magic_data, magic_record, magic_keys = [], [], {}, []\n if data:\n lines = list(data)\n elif not data and not infile:\n if return_keys:\n return [], 'empty_file', []\n return [], 'empty_file'\n else:\n if not os.path.exists(infile):\n if return_keys:\n return [], 'bad_file', []\n return [], 'bad_file'\n lines = open_file(infile, verbose=verbose)\n if not lines:\n if return_keys:\n return [], 'bad_file', []\n return [], 'bad_file'\n d_line = lines[0][:-1].strip('\\n').strip('\\r').strip('\\t')\n if not d_line:\n if return_keys:\n return [], 'empty_file', []\n return [], 'empty_file'\n if d_line[0] == 's' or d_line[1] == 's':\n delim = 'space'\n elif d_line[0] == 't' or d_line[1] == 't':\n delim = 'tab'\n else:\n print('-W- error reading {}. Check that this is a MagIC-format file'\n .format(infile))\n if return_keys:\n return [], 'bad_file', []\n return [], 'bad_file'\n if delim == 'space':\n file_type = d_line.split()[1]\n if delim == 'tab':\n file_type = d_line.split('\\t')[1]\n if file_type == 'delimited':\n if delim == 'space':\n file_type = d_line.split()[2]\n if delim == 'tab':\n file_type = d_line.split('\\t')[2]\n line = lines[1].strip('\\n').strip('\\r')\n if delim == 'space':\n line = line.split()\n if delim == 'tab':\n line = line.split('\\t')\n for key in line:\n magic_keys.append(key)\n lines = lines[2:]\n if len(lines) < 1:\n if return_keys:\n return [], 'empty_file', []\n return [], 'empty_file'\n for line in lines[:-1]:\n line.replace('\\n', '')\n if delim == 'space':\n rec = line[:-1].split()\n if delim == 'tab':\n rec = line[:-1].split('\\t')\n hold.append(rec)\n line = lines[-1].replace('\\n', '').replace('\\r', '')\n if delim == 'space':\n rec = line[:-1].split()\n if delim == 'tab':\n rec = line.split('\\t')\n hold.append(rec)\n for rec in hold:\n magic_record = {}\n if len(magic_keys) > len(rec):\n for i in range(len(magic_keys) - len(rec)):\n rec.append('')\n if len(magic_keys) != len(rec):\n if rec != ['>>>>>>>>>>'] and 'delimited' not in rec[0]:\n print('Warning: Uneven record lengths detected in {}: '.\n format(infile))\n print('keys:', magic_keys)\n print('record:', rec)\n for k in range(min(len(magic_keys), len(rec))):\n magic_record[magic_keys[k]] = rec[k].strip('\\n').strip('\\r')\n magic_data.append(magic_record)\n magictype = file_type.lower().split('_')\n Types = ['er', 'magic', 'pmag', 'rmag']\n if magictype in Types:\n file_type = file_type.lower()\n if return_keys:\n return magic_data, file_type, magic_keys\n return magic_data, file_type\n",
"role": "user"
},
{
"content": "magic_read",
"role": "assistant"
}
] |
def x(path, data=None, sort_by_this_name=None, return_keys=False):
DATA = {}
lines = open_file(path)
if not lines:
if return_keys:
return {}, 'empty_file', None
else:
return {}, 'empty_file'
first_line = lines.pop(0)
if first_line[0] == 's' or first_line[1] == 's':
delim = ' '
elif first_line[0] == 't' or first_line[1] == 't':
delim = '\t'
else:
print('-W- error reading ', path)
if return_keys:
return {}, 'bad_file', None
else:
return {}, 'bad_file'
file_type = first_line.strip('\n').strip('\r').split(delim)[1]
item_type = file_type
if sort_by_this_name:
pass
elif item_type == 'age':
sort_by_this_name = 'by_line_number'
else:
sort_by_this_name = item_type
line = lines.pop(0)
header = line.strip('\n').strip('\r').split(delim)
counter = 0
for line in lines:
tmp_data = {}
tmp_line = line.strip('\n').strip('\r').split(delim)
for i in range(len(header)):
if i < len(tmp_line):
tmp_data[header[i]] = tmp_line[i].strip()
else:
tmp_data[header[i]] = ''
if sort_by_this_name == 'by_line_number':
DATA[counter] = tmp_data
counter += 1
elif tmp_data[sort_by_this_name] != '':
DATA[tmp_data[sort_by_this_name]] = tmp_data
if return_keys:
return DATA, file_type, header
else:
return DATA, file_type
|
magic_read_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, data=None, sort_by_this_name=None, return_keys=False):\n DATA = {}\n lines = open_file(path)\n if not lines:\n if return_keys:\n return {}, 'empty_file', None\n else:\n return {}, 'empty_file'\n first_line = lines.pop(0)\n if first_line[0] == 's' or first_line[1] == 's':\n delim = ' '\n elif first_line[0] == 't' or first_line[1] == 't':\n delim = '\\t'\n else:\n print('-W- error reading ', path)\n if return_keys:\n return {}, 'bad_file', None\n else:\n return {}, 'bad_file'\n file_type = first_line.strip('\\n').strip('\\r').split(delim)[1]\n item_type = file_type\n if sort_by_this_name:\n pass\n elif item_type == 'age':\n sort_by_this_name = 'by_line_number'\n else:\n sort_by_this_name = item_type\n line = lines.pop(0)\n header = line.strip('\\n').strip('\\r').split(delim)\n counter = 0\n for line in lines:\n tmp_data = {}\n tmp_line = line.strip('\\n').strip('\\r').split(delim)\n for i in range(len(header)):\n if i < len(tmp_line):\n tmp_data[header[i]] = tmp_line[i].strip()\n else:\n tmp_data[header[i]] = ''\n if sort_by_this_name == 'by_line_number':\n DATA[counter] = tmp_data\n counter += 1\n elif tmp_data[sort_by_this_name] != '':\n DATA[tmp_data[sort_by_this_name]] = tmp_data\n if return_keys:\n return DATA, file_type, header\n else:\n return DATA, file_type\n",
"role": "user"
},
{
"content": "magic_read_dict",
"role": "assistant"
}
] |
def x(magic_data, sort_name):
magic_data_sorted = {}
for rec in magic_data:
name = rec[sort_name]
if name not in list(magic_data_sorted.keys()):
magic_data_sorted[name] = []
magic_data_sorted[name].append(rec)
return magic_data_sorted
|
sort_magic_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(magic_data, sort_name):\n magic_data_sorted = {}\n for rec in magic_data:\n name = rec[sort_name]\n if name not in list(magic_data_sorted.keys()):\n magic_data_sorted[name] = []\n magic_data_sorted[name].append(rec)\n return magic_data_sorted\n",
"role": "user"
},
{
"content": "sort_magic_data",
"role": "assistant"
}
] |
def x(infile, table):
delim = 'tab'
hold, magic_data, magic_record, magic_keys = [], [], {}, []
f = open(infile, 'r')
line = f.readline()[:-1]
file_type = line.split('\t')[1]
if file_type == 'delimited':
file_type = line.split('\t')[2]
if delim == 'tab':
line = f.readline()[:-1].split('\t')
else:
f.close()
print('only tab delimitted files are supported now')
return
while file_type != table:
while line[0][0:5] in f.readlines() != '>>>>>':
pass
line = f.readline()[:-1]
file_type = line.split('\t')[1]
if file_type == 'delimited':
file_type = line.split('\t')[2]
ine = f.readline()[:-1].split('\t')
while line[0][0:5] in f.readlines() != '>>>>>':
for key in line:
magic_keys.append(key)
for line in f.readlines():
rec = line[:-1].split('\t')
hold.append(rec)
for rec in hold:
magic_record = {}
if len(magic_keys) != len(rec):
print('Uneven record lengths detected: ', rec)
input('Return to continue.... ')
for k in range(len(magic_keys)):
magic_record[magic_keys[k]] = rec[k]
magic_data.append(magic_record)
f.close()
return magic_data
|
upload_read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile, table):\n delim = 'tab'\n hold, magic_data, magic_record, magic_keys = [], [], {}, []\n f = open(infile, 'r')\n line = f.readline()[:-1]\n file_type = line.split('\\t')[1]\n if file_type == 'delimited':\n file_type = line.split('\\t')[2]\n if delim == 'tab':\n line = f.readline()[:-1].split('\\t')\n else:\n f.close()\n print('only tab delimitted files are supported now')\n return\n while file_type != table:\n while line[0][0:5] in f.readlines() != '>>>>>':\n pass\n line = f.readline()[:-1]\n file_type = line.split('\\t')[1]\n if file_type == 'delimited':\n file_type = line.split('\\t')[2]\n ine = f.readline()[:-1].split('\\t')\n while line[0][0:5] in f.readlines() != '>>>>>':\n for key in line:\n magic_keys.append(key)\n for line in f.readlines():\n rec = line[:-1].split('\\t')\n hold.append(rec)\n for rec in hold:\n magic_record = {}\n if len(magic_keys) != len(rec):\n print('Uneven record lengths detected: ', rec)\n input('Return to continue.... ')\n for k in range(len(magic_keys)):\n magic_record[magic_keys[k]] = rec[k]\n magic_data.append(magic_record)\n f.close()\n return magic_data\n",
"role": "user"
},
{
"content": "upload_read",
"role": "assistant"
}
] |
def x(ofile, keylist, Rec):
pmag_out = open(ofile, 'a')
outstring = ''
for key in keylist:
try:
outstring = outstring + '\t' + str(Rec[key]).strip()
except:
print(key, Rec[key])
outstring = outstring + '\n'
pmag_out.write(outstring[1:])
pmag_out.close()
|
putout
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ofile, keylist, Rec):\n pmag_out = open(ofile, 'a')\n outstring = ''\n for key in keylist:\n try:\n outstring = outstring + '\\t' + str(Rec[key]).strip()\n except:\n print(key, Rec[key])\n outstring = outstring + '\\n'\n pmag_out.write(outstring[1:])\n pmag_out.close()\n",
"role": "user"
},
{
"content": "putout",
"role": "assistant"
}
] |
def x(ofile, Rec, file_type):
keylist = []
opened = False
while not opened:
try:
pmag_out = open(ofile, 'w')
opened = True
except IOError:
time.sleep(1)
outstring = 'tab \t' + file_type + '\n'
pmag_out.write(outstring)
keystring = ''
for key in list(Rec.keys()):
keystring = keystring + '\t' + key.strip()
keylist.append(key)
keystring = keystring + '\n'
pmag_out.write(keystring[1:])
pmag_out.close()
return keylist
|
first_rec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ofile, Rec, file_type):\n keylist = []\n opened = False\n while not opened:\n try:\n pmag_out = open(ofile, 'w')\n opened = True\n except IOError:\n time.sleep(1)\n outstring = 'tab \\t' + file_type + '\\n'\n pmag_out.write(outstring)\n keystring = ''\n for key in list(Rec.keys()):\n keystring = keystring + '\\t' + key.strip()\n keylist.append(key)\n keystring = keystring + '\\n'\n pmag_out.write(keystring[1:])\n pmag_out.close()\n return keylist\n",
"role": "user"
},
{
"content": "first_rec",
"role": "assistant"
}
] |
def x(ofile, Recs, file_type):
if len(Recs) < 1:
print('nothing to write')
return
pmag_out = open(ofile, 'w')
outstring = 'tab \t' + file_type + '\n'
pmag_out.write(outstring)
keystring = ''
keylist = []
for key in list(Recs[0].keys()):
keylist.append(key)
keylist.sort()
for key in keylist:
keystring = keystring + '\t' + key.strip()
keystring = keystring + '\n'
pmag_out.write(keystring[1:])
for Rec in Recs:
outstring = ''
for key in keylist:
try:
outstring = outstring + '\t' + str(Rec[key].strip())
except:
if 'er_specimen_name' in list(Rec.keys()):
print(Rec['er_specimen_name'])
elif 'er_specimen_names' in list(Rec.keys()):
print(Rec['er_specimen_names'])
print(key, Rec[key])
outstring = outstring + '\n'
pmag_out.write(outstring[1:])
pmag_out.close()
|
magic_write_old
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ofile, Recs, file_type):\n if len(Recs) < 1:\n print('nothing to write')\n return\n pmag_out = open(ofile, 'w')\n outstring = 'tab \\t' + file_type + '\\n'\n pmag_out.write(outstring)\n keystring = ''\n keylist = []\n for key in list(Recs[0].keys()):\n keylist.append(key)\n keylist.sort()\n for key in keylist:\n keystring = keystring + '\\t' + key.strip()\n keystring = keystring + '\\n'\n pmag_out.write(keystring[1:])\n for Rec in Recs:\n outstring = ''\n for key in keylist:\n try:\n outstring = outstring + '\\t' + str(Rec[key].strip())\n except:\n if 'er_specimen_name' in list(Rec.keys()):\n print(Rec['er_specimen_name'])\n elif 'er_specimen_names' in list(Rec.keys()):\n print(Rec['er_specimen_names'])\n print(key, Rec[key])\n outstring = outstring + '\\n'\n pmag_out.write(outstring[1:])\n pmag_out.close()\n",
"role": "user"
},
{
"content": "magic_write_old",
"role": "assistant"
}
] |
def x(ofile, Recs, file_type):
if len(Recs) < 1:
print('No records to write to file {}'.format(ofile))
return False, ''
if os.path.split(ofile)[0] != '' and not os.path.isdir(os.path.split(
ofile)[0]):
os.mkdir(os.path.split(ofile)[0])
pmag_out = open(ofile, 'w+', errors='backslashreplace')
outstring = 'tab \t' + file_type
outstring = outstring.strip('\n').strip('\r') + '\n'
pmag_out.write(outstring)
keystring = ''
keylist = []
for key in list(Recs[0].keys()):
keylist.append(key)
keylist.sort()
for key in keylist:
keystring = keystring + '\t' + key.strip()
keystring = keystring + '\n'
pmag_out.write(keystring[1:])
for Rec in Recs:
outstring = ''
for key in keylist:
try:
outstring = outstring + '\t' + str(Rec[key]).strip()
except KeyError:
if 'er_specimen_name' in list(Rec.keys()):
print(Rec['er_specimen_name'])
elif 'specimen' in list(Rec.keys()):
print(Rec['specimen'])
elif 'er_specimen_names' in list(Rec.keys()):
print('specimen names:', Rec['er_specimen_names'])
print('No data for %s' % key)
outstring = outstring + '\t'
outstring = outstring + '\n'
pmag_out.write(outstring[1:])
pmag_out.close()
print(len(Recs), ' records written to file ', ofile)
return True, ofile
|
magic_write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ofile, Recs, file_type):\n if len(Recs) < 1:\n print('No records to write to file {}'.format(ofile))\n return False, ''\n if os.path.split(ofile)[0] != '' and not os.path.isdir(os.path.split(\n ofile)[0]):\n os.mkdir(os.path.split(ofile)[0])\n pmag_out = open(ofile, 'w+', errors='backslashreplace')\n outstring = 'tab \\t' + file_type\n outstring = outstring.strip('\\n').strip('\\r') + '\\n'\n pmag_out.write(outstring)\n keystring = ''\n keylist = []\n for key in list(Recs[0].keys()):\n keylist.append(key)\n keylist.sort()\n for key in keylist:\n keystring = keystring + '\\t' + key.strip()\n keystring = keystring + '\\n'\n pmag_out.write(keystring[1:])\n for Rec in Recs:\n outstring = ''\n for key in keylist:\n try:\n outstring = outstring + '\\t' + str(Rec[key]).strip()\n except KeyError:\n if 'er_specimen_name' in list(Rec.keys()):\n print(Rec['er_specimen_name'])\n elif 'specimen' in list(Rec.keys()):\n print(Rec['specimen'])\n elif 'er_specimen_names' in list(Rec.keys()):\n print('specimen names:', Rec['er_specimen_names'])\n print('No data for %s' % key)\n outstring = outstring + '\\t'\n outstring = outstring + '\\n'\n pmag_out.write(outstring[1:])\n pmag_out.close()\n print(len(Recs), ' records written to file ', ofile)\n return True, ofile\n",
"role": "user"
},
{
"content": "magic_write",
"role": "assistant"
}
] |
def x(dec, inc, bed_az, bed_dip):
rad = old_div(np.pi, 180.0)
X = dir2cart([dec, inc, 1.0])
sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad)
cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad)
xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * (ca * sa * (1.0 - cdp)) + X[
2] * sdp * ca
yc = X[0] * ca * sa * (1.0 - cdp) + X[1] * (ca * ca + sa * sa * cdp) - X[2
] * sa * sdp
zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp
Dir = cart2dir([xc, yc, -zc])
return Dir[0], Dir[1]
|
dotilt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec, inc, bed_az, bed_dip):\n rad = old_div(np.pi, 180.0)\n X = dir2cart([dec, inc, 1.0])\n sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad)\n cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad)\n xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * (ca * sa * (1.0 - cdp)) + X[\n 2] * sdp * ca\n yc = X[0] * ca * sa * (1.0 - cdp) + X[1] * (ca * ca + sa * sa * cdp) - X[2\n ] * sa * sdp\n zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp\n Dir = cart2dir([xc, yc, -zc])\n return Dir[0], Dir[1]\n",
"role": "user"
},
{
"content": "dotilt",
"role": "assistant"
}
] |
def x(indat):
indat = indat.transpose()
dec, inc, bed_az, bed_dip = indat[0], indat[1], indat[2], indat[3]
rad = old_div(np.pi, 180.0)
Dir = np.array([dec, inc]).transpose()
X = dir2cart(Dir).transpose()
N = np.size(dec)
sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad)
cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad)
xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * (ca * sa * (1.0 - cdp)) + X[
2] * sdp * ca
yc = X[0] * ca * sa * (1.0 - cdp) + X[1] * (ca * ca + sa * sa * cdp) - X[2
] * sa * sdp
zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp
cart = np.array([xc, yc, -zc]).transpose()
Dir = cart2dir(cart).transpose()
return Dir[0], Dir[1]
|
dotilt_V
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(indat):\n indat = indat.transpose()\n dec, inc, bed_az, bed_dip = indat[0], indat[1], indat[2], indat[3]\n rad = old_div(np.pi, 180.0)\n Dir = np.array([dec, inc]).transpose()\n X = dir2cart(Dir).transpose()\n N = np.size(dec)\n sa, ca = -np.sin(bed_az * rad), np.cos(bed_az * rad)\n cdp, sdp = np.cos(bed_dip * rad), np.sin(bed_dip * rad)\n xc = X[0] * (sa * sa + ca * ca * cdp) + X[1] * (ca * sa * (1.0 - cdp)) + X[\n 2] * sdp * ca\n yc = X[0] * ca * sa * (1.0 - cdp) + X[1] * (ca * ca + sa * sa * cdp) - X[2\n ] * sa * sdp\n zc = X[0] * ca * sdp - X[1] * sdp * sa - X[2] * cdp\n cart = np.array([xc, yc, -zc]).transpose()\n Dir = cart2dir(cart).transpose()\n return Dir[0], Dir[1]\n",
"role": "user"
},
{
"content": "dotilt_V",
"role": "assistant"
}
] |
def x(dec, inc, az, pl):
A1, A2, A3 = [], [], []
Dir = [dec, inc, 1.0]
X = dir2cart(Dir)
A1 = dir2cart([az, pl, 1.0])
A2 = dir2cart([az + 90.0, 0, 1.0])
A3 = dir2cart([az - 180.0, 90.0 - pl, 1.0])
xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2]
yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2]
zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2]
Dir_geo = cart2dir([xp, yp, zp])
return Dir_geo[0], Dir_geo[1]
|
dogeo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec, inc, az, pl):\n A1, A2, A3 = [], [], []\n Dir = [dec, inc, 1.0]\n X = dir2cart(Dir)\n A1 = dir2cart([az, pl, 1.0])\n A2 = dir2cart([az + 90.0, 0, 1.0])\n A3 = dir2cart([az - 180.0, 90.0 - pl, 1.0])\n xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2]\n yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2]\n zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2]\n Dir_geo = cart2dir([xp, yp, zp])\n return Dir_geo[0], Dir_geo[1]\n",
"role": "user"
},
{
"content": "dogeo",
"role": "assistant"
}
] |
def x(indat):
indat = indat.transpose()
dec, inc, az, pl = indat[0], indat[1], indat[2], indat[3]
Dir = np.array([dec, inc]).transpose()
X = dir2cart(Dir).transpose()
N = np.size(dec)
A1 = dir2cart(np.array([az, pl, np.ones(N)]).transpose()).transpose()
A2 = dir2cart(np.array([az + 90.0, np.zeros(N), np.ones(N)]).transpose()
).transpose()
A3 = dir2cart(np.array([az - 180.0, 90.0 - pl, np.ones(N)]).transpose()
).transpose()
xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2]
yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2]
zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2]
cart = np.array([xp, yp, zp]).transpose()
Dir_geo = cart2dir(cart).transpose()
return Dir_geo[0], Dir_geo[1]
|
dogeo_V
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(indat):\n indat = indat.transpose()\n dec, inc, az, pl = indat[0], indat[1], indat[2], indat[3]\n Dir = np.array([dec, inc]).transpose()\n X = dir2cart(Dir).transpose()\n N = np.size(dec)\n A1 = dir2cart(np.array([az, pl, np.ones(N)]).transpose()).transpose()\n A2 = dir2cart(np.array([az + 90.0, np.zeros(N), np.ones(N)]).transpose()\n ).transpose()\n A3 = dir2cart(np.array([az - 180.0, 90.0 - pl, np.ones(N)]).transpose()\n ).transpose()\n xp = A1[0] * X[0] + A2[0] * X[1] + A3[0] * X[2]\n yp = A1[1] * X[0] + A2[1] * X[1] + A3[1] * X[2]\n zp = A1[2] * X[0] + A2[2] * X[1] + A3[2] * X[2]\n cart = np.array([xp, yp, zp]).transpose()\n Dir_geo = cart2dir(cart).transpose()\n return Dir_geo[0], Dir_geo[1]\n",
"role": "user"
},
{
"content": "dogeo_V",
"role": "assistant"
}
] |
def x(D, I, Dbar, Ibar):
d, irot = dogeo(D, I, Dbar, 90.0 - Ibar)
drot = d - 180.0
if drot < 360.0:
drot = drot + 360.0
if drot > 360.0:
drot = drot - 360.0
return drot, irot
|
dodirot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(D, I, Dbar, Ibar):\n d, irot = dogeo(D, I, Dbar, 90.0 - Ibar)\n drot = d - 180.0\n if drot < 360.0:\n drot = drot + 360.0\n if drot > 360.0:\n drot = drot - 360.0\n return drot, irot\n",
"role": "user"
},
{
"content": "dodirot",
"role": "assistant"
}
] |
def x(di_block, Dbar, Ibar):
N = di_block.shape[0]
DipDir, Dip = np.ones(N, dtype=np.float).transpose() * (Dbar - 180.0
), np.ones(N, dtype=np.float).transpose() * (90.0 - Ibar)
di_block = di_block.transpose()
data = np.array([di_block[0], di_block[1], DipDir, Dip]).transpose()
drot, irot = dotilt_V(data)
drot = (drot - 180.0) % 360.0
return np.column_stack((drot, irot))
|
dodirot_V
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(di_block, Dbar, Ibar):\n N = di_block.shape[0]\n DipDir, Dip = np.ones(N, dtype=np.float).transpose() * (Dbar - 180.0\n ), np.ones(N, dtype=np.float).transpose() * (90.0 - Ibar)\n di_block = di_block.transpose()\n data = np.array([di_block[0], di_block[1], DipDir, Dip]).transpose()\n drot, irot = dotilt_V(data)\n drot = (drot - 180.0) % 360.0\n return np.column_stack((drot, irot))\n",
"role": "user"
},
{
"content": "dodirot_V",
"role": "assistant"
}
] |
def x(s, data, az_type):
datablock, or_error, bed_error = [], 0, 0
orient = {}
orient['sample_dip'] = ''
orient['sample_azimuth'] = ''
orient['sample_description'] = ''
for rec in data:
if rec['er_sample_name'].lower() == s.lower():
if 'sample_orientation_flag' in list(rec.keys()) and rec[
'sample_orientation_flag'] == 'b':
orient['sample_orientation_flag'] = 'b'
return orient
if 'magic_method_codes' in list(rec.keys()) and az_type != '0':
methods = rec['magic_method_codes'].replace(' ', '').split(':')
if az_type in methods and 'sample_azimuth' in list(rec.keys()
) and rec['sample_azimuth'] != '':
orient['sample_azimuth'] = float(rec['sample_azimuth'])
if 'sample_dip' in list(rec.keys()) and rec['sample_dip'
] != '':
orient['sample_dip'] = float(rec['sample_dip'])
if 'sample_bed_dip_direction' in list(rec.keys()) and rec[
'sample_bed_dip_direction'] != '':
orient['sample_bed_dip_direction'] = float(rec[
'sample_bed_dip_direction'])
if 'sample_bed_dip' in list(rec.keys()) and rec[
'sample_bed_dip'] != '':
orient['sample_bed_dip'] = float(rec['sample_bed_dip'])
else:
if 'sample_azimuth' in list(rec.keys()):
orient['sample_azimuth'] = float(rec['sample_azimuth'])
if 'sample_dip' in list(rec.keys()):
orient['sample_dip'] = float(rec['sample_dip'])
if 'sample_bed_dip_direction' in list(rec.keys()):
orient['sample_bed_dip_direction'] = float(rec[
'sample_bed_dip_direction'])
if 'sample_bed_dip' in list(rec.keys()):
orient['sample_bed_dip'] = float(rec['sample_bed_dip'])
if 'sample_description' in list(rec.keys()):
orient['sample_description'] = rec['sample_description']
if orient['sample_azimuth'] != '':
break
return orient
|
find_samp_rec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, data, az_type):\n datablock, or_error, bed_error = [], 0, 0\n orient = {}\n orient['sample_dip'] = ''\n orient['sample_azimuth'] = ''\n orient['sample_description'] = ''\n for rec in data:\n if rec['er_sample_name'].lower() == s.lower():\n if 'sample_orientation_flag' in list(rec.keys()) and rec[\n 'sample_orientation_flag'] == 'b':\n orient['sample_orientation_flag'] = 'b'\n return orient\n if 'magic_method_codes' in list(rec.keys()) and az_type != '0':\n methods = rec['magic_method_codes'].replace(' ', '').split(':')\n if az_type in methods and 'sample_azimuth' in list(rec.keys()\n ) and rec['sample_azimuth'] != '':\n orient['sample_azimuth'] = float(rec['sample_azimuth'])\n if 'sample_dip' in list(rec.keys()) and rec['sample_dip'\n ] != '':\n orient['sample_dip'] = float(rec['sample_dip'])\n if 'sample_bed_dip_direction' in list(rec.keys()) and rec[\n 'sample_bed_dip_direction'] != '':\n orient['sample_bed_dip_direction'] = float(rec[\n 'sample_bed_dip_direction'])\n if 'sample_bed_dip' in list(rec.keys()) and rec[\n 'sample_bed_dip'] != '':\n orient['sample_bed_dip'] = float(rec['sample_bed_dip'])\n else:\n if 'sample_azimuth' in list(rec.keys()):\n orient['sample_azimuth'] = float(rec['sample_azimuth'])\n if 'sample_dip' in list(rec.keys()):\n orient['sample_dip'] = float(rec['sample_dip'])\n if 'sample_bed_dip_direction' in list(rec.keys()):\n orient['sample_bed_dip_direction'] = float(rec[\n 'sample_bed_dip_direction'])\n if 'sample_bed_dip' in list(rec.keys()):\n orient['sample_bed_dip'] = float(rec['sample_bed_dip'])\n if 'sample_description' in list(rec.keys()):\n orient['sample_description'] = rec['sample_description']\n if orient['sample_azimuth'] != '':\n break\n return orient\n",
"role": "user"
},
{
"content": "find_samp_rec",
"role": "assistant"
}
] |
def x(data):
vdata, Dirdata, step_meth = [], [], []
tr0 = data[0][0]
data.append('Stop')
k, R = 1, 0
for i in range(k, len(data)):
Dirdata = []
if data[i][0] != tr0:
if i == k:
vdata.append(data[i - 1])
step_meth.append(' ')
else:
for l in range(k - 1, i):
Dirdata.append([data[l][1], data[l][2], data[l][3]])
dir, R = vector_mean(Dirdata)
vdata.append([data[i - 1][0], dir[0], dir[1], old_div(R, i -
k + 1), '1', 'g'])
step_meth.append('DE-VM')
tr0 = data[i][0]
k = i + 1
if tr0 == 'stop':
break
del data[-1]
return step_meth, vdata
|
vspec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n vdata, Dirdata, step_meth = [], [], []\n tr0 = data[0][0]\n data.append('Stop')\n k, R = 1, 0\n for i in range(k, len(data)):\n Dirdata = []\n if data[i][0] != tr0:\n if i == k:\n vdata.append(data[i - 1])\n step_meth.append(' ')\n else:\n for l in range(k - 1, i):\n Dirdata.append([data[l][1], data[l][2], data[l][3]])\n dir, R = vector_mean(Dirdata)\n vdata.append([data[i - 1][0], dir[0], dir[1], old_div(R, i -\n k + 1), '1', 'g'])\n step_meth.append('DE-VM')\n tr0 = data[i][0]\n k = i + 1\n if tr0 == 'stop':\n break\n del data[-1]\n return step_meth, vdata\n",
"role": "user"
},
{
"content": "vspec",
"role": "assistant"
}
] |
def x(D1, D2):
A = dir2cart([D1[0], D1[1], 1.0])
B = dir2cart([D2[0], D2[1], 1.0])
C = []
for i in range(3):
C.append(A[i] - B[i])
return cart2dir(C)
|
Vdiff
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(D1, D2):\n A = dir2cart([D1[0], D1[1], 1.0])\n B = dir2cart([D2[0], D2[1], 1.0])\n C = []\n for i in range(3):\n C.append(A[i] - B[i])\n return cart2dir(C)\n",
"role": "user"
},
{
"content": "Vdiff",
"role": "assistant"
}
] |
def x(cart):
cart = np.array(cart)
rad = old_div(np.pi, 180.0)
if len(cart.shape) > 1:
Xs, Ys, Zs = cart[:, 0], cart[:, 1], cart[:, 2]
else:
Xs, Ys, Zs = cart[0], cart[1], cart[2]
if np.iscomplexobj(Xs):
Xs = Xs.real
if np.iscomplexobj(Ys):
Ys = Ys.real
if np.iscomplexobj(Zs):
Zs = Zs.real
Rs = np.sqrt(Xs ** 2 + Ys ** 2 + Zs ** 2)
Decs = old_div(np.arctan2(Ys, Xs), rad) % 360.0
try:
Incs = old_div(np.arcsin(old_div(Zs, Rs)), rad)
except:
print('trouble in cart2dir')
return np.zeros(3)
return np.array([Decs, Incs, Rs]).transpose()
|
cart2dir
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cart):\n cart = np.array(cart)\n rad = old_div(np.pi, 180.0)\n if len(cart.shape) > 1:\n Xs, Ys, Zs = cart[:, 0], cart[:, 1], cart[:, 2]\n else:\n Xs, Ys, Zs = cart[0], cart[1], cart[2]\n if np.iscomplexobj(Xs):\n Xs = Xs.real\n if np.iscomplexobj(Ys):\n Ys = Ys.real\n if np.iscomplexobj(Zs):\n Zs = Zs.real\n Rs = np.sqrt(Xs ** 2 + Ys ** 2 + Zs ** 2)\n Decs = old_div(np.arctan2(Ys, Xs), rad) % 360.0\n try:\n Incs = old_div(np.arcsin(old_div(Zs, Rs)), rad)\n except:\n print('trouble in cart2dir')\n return np.zeros(3)\n return np.array([Decs, Incs, Rs]).transpose()\n",
"role": "user"
},
{
"content": "cart2dir",
"role": "assistant"
}
] |
def x(X):
T = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
for row in X:
for k in range(3):
for l in range(3):
T[k][l] += row[k] * row[l]
return T
|
Tmatrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X):\n T = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n for row in X:\n for k in range(3):\n for l in range(3):\n T[k][l] += row[k] * row[l]\n return T\n",
"role": "user"
},
{
"content": "Tmatrix",
"role": "assistant"
}
] |
def x(d):
ints = np.ones(len(d)).transpose()
d = np.array(d)
rad = np.pi / 180.0
if len(d.shape) > 1:
decs, incs = d[:, 0] * rad, d[:, 1] * rad
if d.shape[1] == 3:
ints = d[:, 2]
else:
decs, incs = np.array(float(d[0])) * rad, np.array(float(d[1])) * rad
if len(d) == 3:
ints = np.array(d[2])
else:
ints = np.array([1.0])
cart = np.array([ints * np.cos(decs) * np.cos(incs), ints * np.sin(decs
) * np.cos(incs), ints * np.sin(incs)]).transpose()
return cart
|
dir2cart
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d):\n ints = np.ones(len(d)).transpose()\n d = np.array(d)\n rad = np.pi / 180.0\n if len(d.shape) > 1:\n decs, incs = d[:, 0] * rad, d[:, 1] * rad\n if d.shape[1] == 3:\n ints = d[:, 2]\n else:\n decs, incs = np.array(float(d[0])) * rad, np.array(float(d[1])) * rad\n if len(d) == 3:\n ints = np.array(d[2])\n else:\n ints = np.array([1.0])\n cart = np.array([ints * np.cos(decs) * np.cos(incs), ints * np.sin(decs\n ) * np.cos(incs), ints * np.sin(incs)]).transpose()\n return cart\n",
"role": "user"
},
{
"content": "dir2cart",
"role": "assistant"
}
] |
def x(s, data):
datablock = []
for rec in data:
if s == rec[0]:
datablock.append([rec[1], rec[2], rec[3], rec[4]])
return datablock
|
findrec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, data):\n datablock = []\n for rec in data:\n if s == rec[0]:\n datablock.append([rec[1], rec[2], rec[3], rec[4]])\n return datablock\n",
"role": "user"
},
{
"content": "findrec",
"role": "assistant"
}
] |
def x(dec, dip, alpha):
rad = old_div(np.pi, 180.0)
D_out, I_out = [], []
dec, dip, alpha = dec * rad, dip * rad, alpha * rad
dec1 = dec + old_div(np.pi, 2.0)
isign = 1
if dip != 0:
isign = old_div(abs(dip), dip)
dip1 = dip - isign * old_div(np.pi, 2.0)
t = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
v = [0, 0, 0]
t[0][2] = np.cos(dec) * np.cos(dip)
t[1][2] = np.sin(dec) * np.cos(dip)
t[2][2] = np.sin(dip)
t[0][1] = np.cos(dec) * np.cos(dip1)
t[1][1] = np.sin(dec) * np.cos(dip1)
t[2][1] = np.sin(dip1)
t[0][0] = np.cos(dec1)
t[1][0] = np.sin(dec1)
t[2][0] = 0
for i in range(101):
psi = float(i) * np.pi / 50.0
v[0] = np.sin(alpha) * np.cos(psi)
v[1] = np.sin(alpha) * np.sin(psi)
v[2] = np.sqrt(abs(1.0 - v[0] ** 2 - v[1] ** 2))
elli = [0, 0, 0]
for j in range(3):
for k in range(3):
elli[j] = elli[j] + t[j][k] * v[k]
Dir = cart2dir(elli)
D_out.append(Dir[0])
I_out.append(Dir[1])
return D_out, I_out
|
circ
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec, dip, alpha):\n rad = old_div(np.pi, 180.0)\n D_out, I_out = [], []\n dec, dip, alpha = dec * rad, dip * rad, alpha * rad\n dec1 = dec + old_div(np.pi, 2.0)\n isign = 1\n if dip != 0:\n isign = old_div(abs(dip), dip)\n dip1 = dip - isign * old_div(np.pi, 2.0)\n t = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]\n v = [0, 0, 0]\n t[0][2] = np.cos(dec) * np.cos(dip)\n t[1][2] = np.sin(dec) * np.cos(dip)\n t[2][2] = np.sin(dip)\n t[0][1] = np.cos(dec) * np.cos(dip1)\n t[1][1] = np.sin(dec) * np.cos(dip1)\n t[2][1] = np.sin(dip1)\n t[0][0] = np.cos(dec1)\n t[1][0] = np.sin(dec1)\n t[2][0] = 0\n for i in range(101):\n psi = float(i) * np.pi / 50.0\n v[0] = np.sin(alpha) * np.cos(psi)\n v[1] = np.sin(alpha) * np.sin(psi)\n v[2] = np.sqrt(abs(1.0 - v[0] ** 2 - v[1] ** 2))\n elli = [0, 0, 0]\n for j in range(3):\n for k in range(3):\n elli[j] = elli[j] + t[j][k] * v[k]\n Dir = cart2dir(elli)\n D_out.append(Dir[0])\n I_out.append(Dir[1])\n return D_out, I_out\n",
"role": "user"
},
{
"content": "circ",
"role": "assistant"
}
] |
def x(table):
keys = []
if table == 'ER_expedition':
pass
if table == 'ER_citations':
keys.append('er_citation_name')
keys.append('long_authors')
keys.append('year')
keys.append('title')
keys.append('citation_type')
keys.append('doi')
keys.append('journal')
keys.append('volume')
keys.append('pages')
keys.append('book_title')
keys.append('book_editors')
keys.append('publisher')
keys.append('city')
if table == 'ER_locations':
keys.append('er_location_name')
keys.append('er_scientist_mail_names')
keys.append('location_type')
keys.append('location_begin_lat')
keys.append('location_begin_lon')
keys.append('location_end_lat')
keys.append('location_end_lon')
keys.append('continent_ocean')
keys.append('country')
keys.append('region')
keys.append('plate_block')
keys.append('terrane')
keys.append('tectonic_setting')
if table == 'ER_Formations':
keys.append('er_formation_name')
keys.append('formation_class')
keys.append('formation_lithology')
keys.append('formation_paleo_environment')
keys.append('formation_thickness')
keys.append('formation_description')
if table == 'ER_sections':
keys.append('er_section_name')
keys.append('er_section_alternatives')
keys.append('er_expedition_name')
keys.append('er_location_name')
keys.append('er_formation_name')
keys.append('er_member_name')
keys.append('section_definition')
keys.append('section_class')
keys.append('section_lithology')
keys.append('section_type')
keys.append('section_n')
keys.append('section_begin_lat')
keys.append('section_begin_lon')
keys.append('section_begin_elevation')
keys.append('section_begin_height')
keys.append('section_begin_drill_depth')
keys.append('section_begin_composite_depth')
keys.append('section_end_lat')
keys.append('section_end_lon')
keys.append('section_end_elevation')
keys.append('section_end_height')
keys.append('section_end_drill_depth')
keys.append('section_end_composite_depth')
keys.append('section_azimuth')
keys.append('section_dip')
keys.append('section_description')
keys.append('er_scientist_mail_names')
keys.append('er_citation_names')
if table == 'ER_sites':
keys.append('er_location_name')
keys.append('er_site_name')
keys.append('er_scientist_mail_names')
keys.append('site_class')
keys.append('site_lat')
keys.append('site_lon')
if table == 'ER_samples':
keys.append('er_location_name')
keys.append('er_site_name')
keys.append('sample_azimuth')
keys.append('sample_dip')
keys.append('sample_bed_dip')
keys.append('sample_bed_dip_direction')
keys.append('magic_method_codes')
if table == 'ER_ages':
keys.append('age')
keys.append('age_sigma')
keys.append('age_unit')
keys.append('age_range_low')
keys.append('age_range_hi')
keys.append('timescale_eon')
keys.append('timescale_era')
keys.append('timescale_period')
keys.append('timescale_epoch')
keys.append('timescale_stage')
keys.append('biostrat_zone')
keys.append('conodont_zone')
keys.append('magnetic_reversal_chron')
keys.append('astronomical_stage')
if table == 'MAGIC_measurements':
keys.append('er_location_name')
keys.append('er_site_name')
keys.append('er_sample_name')
keys.append('er_specimen_name')
keys.append('measurement_positions')
keys.append('treatment_temp')
keys.append('treatment_ac_field')
keys.append('treatment_dc_field')
keys.append('treatment_dc_field_phi')
keys.append('treatment_dc_field_theta')
keys.append('magic_experiment_name')
keys.append('magic_instrument_codes')
keys.append('measurement_temp')
keys.append('magic_method_codes')
keys.append('measurement_inc')
keys.append('measurement_dec')
keys.append('measurement_magn_moment')
keys.append('measurement_csd')
return keys
|
getkeys
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(table):\n keys = []\n if table == 'ER_expedition':\n pass\n if table == 'ER_citations':\n keys.append('er_citation_name')\n keys.append('long_authors')\n keys.append('year')\n keys.append('title')\n keys.append('citation_type')\n keys.append('doi')\n keys.append('journal')\n keys.append('volume')\n keys.append('pages')\n keys.append('book_title')\n keys.append('book_editors')\n keys.append('publisher')\n keys.append('city')\n if table == 'ER_locations':\n keys.append('er_location_name')\n keys.append('er_scientist_mail_names')\n keys.append('location_type')\n keys.append('location_begin_lat')\n keys.append('location_begin_lon')\n keys.append('location_end_lat')\n keys.append('location_end_lon')\n keys.append('continent_ocean')\n keys.append('country')\n keys.append('region')\n keys.append('plate_block')\n keys.append('terrane')\n keys.append('tectonic_setting')\n if table == 'ER_Formations':\n keys.append('er_formation_name')\n keys.append('formation_class')\n keys.append('formation_lithology')\n keys.append('formation_paleo_environment')\n keys.append('formation_thickness')\n keys.append('formation_description')\n if table == 'ER_sections':\n keys.append('er_section_name')\n keys.append('er_section_alternatives')\n keys.append('er_expedition_name')\n keys.append('er_location_name')\n keys.append('er_formation_name')\n keys.append('er_member_name')\n keys.append('section_definition')\n keys.append('section_class')\n keys.append('section_lithology')\n keys.append('section_type')\n keys.append('section_n')\n keys.append('section_begin_lat')\n keys.append('section_begin_lon')\n keys.append('section_begin_elevation')\n keys.append('section_begin_height')\n keys.append('section_begin_drill_depth')\n keys.append('section_begin_composite_depth')\n keys.append('section_end_lat')\n keys.append('section_end_lon')\n keys.append('section_end_elevation')\n keys.append('section_end_height')\n keys.append('section_end_drill_depth')\n keys.append('section_end_composite_depth')\n keys.append('section_azimuth')\n keys.append('section_dip')\n keys.append('section_description')\n keys.append('er_scientist_mail_names')\n keys.append('er_citation_names')\n if table == 'ER_sites':\n keys.append('er_location_name')\n keys.append('er_site_name')\n keys.append('er_scientist_mail_names')\n keys.append('site_class')\n keys.append('site_lat')\n keys.append('site_lon')\n if table == 'ER_samples':\n keys.append('er_location_name')\n keys.append('er_site_name')\n keys.append('sample_azimuth')\n keys.append('sample_dip')\n keys.append('sample_bed_dip')\n keys.append('sample_bed_dip_direction')\n keys.append('magic_method_codes')\n if table == 'ER_ages':\n keys.append('age')\n keys.append('age_sigma')\n keys.append('age_unit')\n keys.append('age_range_low')\n keys.append('age_range_hi')\n keys.append('timescale_eon')\n keys.append('timescale_era')\n keys.append('timescale_period')\n keys.append('timescale_epoch')\n keys.append('timescale_stage')\n keys.append('biostrat_zone')\n keys.append('conodont_zone')\n keys.append('magnetic_reversal_chron')\n keys.append('astronomical_stage')\n if table == 'MAGIC_measurements':\n keys.append('er_location_name')\n keys.append('er_site_name')\n keys.append('er_sample_name')\n keys.append('er_specimen_name')\n keys.append('measurement_positions')\n keys.append('treatment_temp')\n keys.append('treatment_ac_field')\n keys.append('treatment_dc_field')\n keys.append('treatment_dc_field_phi')\n keys.append('treatment_dc_field_theta')\n keys.append('magic_experiment_name')\n keys.append('magic_instrument_codes')\n keys.append('measurement_temp')\n keys.append('magic_method_codes')\n keys.append('measurement_inc')\n keys.append('measurement_dec')\n keys.append('measurement_magn_moment')\n keys.append('measurement_csd')\n return keys\n",
"role": "user"
},
{
"content": "getkeys",
"role": "assistant"
}
] |
def x():
namestring = ''
addmore = 1
while addmore:
scientist = input('Enter name - <Return> when done ')
if scientist != '':
namestring = namestring + ':' + scientist
else:
namestring = namestring[1:]
addmore = 0
return namestring
|
getnames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n namestring = ''\n addmore = 1\n while addmore:\n scientist = input('Enter name - <Return> when done ')\n if scientist != '':\n namestring = namestring + ':' + scientist\n else:\n namestring = namestring[1:]\n addmore = 0\n return namestring\n",
"role": "user"
},
{
"content": "getnames",
"role": "assistant"
}
] |
def x(sundata):
iday = 0
timedate = sundata['date']
timedate = timedate.split(':')
year = int(timedate[0])
mon = int(timedate[1])
day = int(timedate[2])
hours = float(timedate[3])
min = float(timedate[4])
du = int(sundata['delta_u'])
hrs = hours - du
if hrs > 24:
day += 1
hrs = hrs - 24
if hrs < 0:
day = day - 1
hrs = hrs + 24
julian_day = julian(mon, day, year)
utd = old_div(hrs + old_div(min, 60.0), 24.0)
greenwich_hour_angle, delta = gha(julian_day, utd)
H = greenwich_hour_angle + float(sundata['lon'])
if H > 360:
H = H - 360
lat = float(sundata['lat'])
if H > 90 and H < 270:
lat = -lat
lat = np.radians(lat)
delta = np.radians(delta)
H = np.radians(H)
ctheta = np.sin(lat) * np.sin(delta) + np.cos(lat) * np.cos(delta
) * np.cos(H)
theta = np.arccos(ctheta)
beta = np.cos(delta) * np.sin(H) / np.sin(theta)
beta = np.degrees(np.arcsin(beta))
if delta < lat:
beta = 180 - beta
sunaz = 180 - beta
sunaz = (sunaz + float(sundata['shadow_angle'])) % 360.0
return sunaz
|
dosundec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sundata):\n iday = 0\n timedate = sundata['date']\n timedate = timedate.split(':')\n year = int(timedate[0])\n mon = int(timedate[1])\n day = int(timedate[2])\n hours = float(timedate[3])\n min = float(timedate[4])\n du = int(sundata['delta_u'])\n hrs = hours - du\n if hrs > 24:\n day += 1\n hrs = hrs - 24\n if hrs < 0:\n day = day - 1\n hrs = hrs + 24\n julian_day = julian(mon, day, year)\n utd = old_div(hrs + old_div(min, 60.0), 24.0)\n greenwich_hour_angle, delta = gha(julian_day, utd)\n H = greenwich_hour_angle + float(sundata['lon'])\n if H > 360:\n H = H - 360\n lat = float(sundata['lat'])\n if H > 90 and H < 270:\n lat = -lat\n lat = np.radians(lat)\n delta = np.radians(delta)\n H = np.radians(H)\n ctheta = np.sin(lat) * np.sin(delta) + np.cos(lat) * np.cos(delta\n ) * np.cos(H)\n theta = np.arccos(ctheta)\n beta = np.cos(delta) * np.sin(H) / np.sin(theta)\n beta = np.degrees(np.arcsin(beta))\n if delta < lat:\n beta = 180 - beta\n sunaz = 180 - beta\n sunaz = (sunaz + float(sundata['shadow_angle'])) % 360.0\n return sunaz\n",
"role": "user"
},
{
"content": "dosundec",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.