source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(julian_day, f):
rad = old_div(np.pi, 180.0)
d = julian_day - 2451545.0 + f
L = 280.46 + 0.9856474 * d
g = 357.528 + 0.9856003 * d
L = L % 360.0
g = g % 360.0
lamb = L + 1.915 * np.sin(g * rad) + 0.02 * np.sin(2 * g * rad)
epsilon = 23.439 - 4e-07 * d
t = np.tan(old_div(epsilon * rad, 2)) ** 2
r = old_div(1, rad)
rl = lamb * rad
alpha = lamb - r * t * np.sin(2 * rl) + old_div(r, 2) * t * t * np.sin(
4 * rl)
delta = np.sin(epsilon * rad) * np.sin(lamb * rad)
delta = old_div(np.arcsin(delta), rad)
eqt = L - alpha
utm = f * 24 * 60
H = old_div(utm, 4) + eqt + 180
H = H % 360.0
return H, delta
|
gha
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(julian_day, f):\n rad = old_div(np.pi, 180.0)\n d = julian_day - 2451545.0 + f\n L = 280.46 + 0.9856474 * d\n g = 357.528 + 0.9856003 * d\n L = L % 360.0\n g = g % 360.0\n lamb = L + 1.915 * np.sin(g * rad) + 0.02 * np.sin(2 * g * rad)\n epsilon = 23.439 - 4e-07 * d\n t = np.tan(old_div(epsilon * rad, 2)) ** 2\n r = old_div(1, rad)\n rl = lamb * rad\n alpha = lamb - r * t * np.sin(2 * rl) + old_div(r, 2) * t * t * np.sin(\n 4 * rl)\n delta = np.sin(epsilon * rad) * np.sin(lamb * rad)\n delta = old_div(np.arcsin(delta), rad)\n eqt = L - alpha\n utm = f * 24 * 60\n H = old_div(utm, 4) + eqt + 180\n H = H % 360.0\n return H, delta\n",
"role": "user"
},
{
"content": "gha",
"role": "assistant"
}
] |
def x(mon, day, year):
ig = 15 + 31 * (10 + 12 * 1582)
if year == 0:
print('Julian no can do')
return
if year < 0:
year = year + 1
if mon > 2:
julian_year = year
julian_month = mon + 1
else:
julian_year = year - 1
julian_month = mon + 13
j1 = int(365.25 * julian_year)
j2 = int(30.6001 * julian_month)
j3 = day + 1720995
julian_day = j1 + j2 + j3
if day + 31 * (mon + 12 * year) >= ig:
jadj = int(0.01 * julian_year)
julian_day = julian_day + 2 - jadj + int(0.25 * jadj)
return julian_day
|
julian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mon, day, year):\n ig = 15 + 31 * (10 + 12 * 1582)\n if year == 0:\n print('Julian no can do')\n return\n if year < 0:\n year = year + 1\n if mon > 2:\n julian_year = year\n julian_month = mon + 1\n else:\n julian_year = year - 1\n julian_month = mon + 13\n j1 = int(365.25 * julian_year)\n j2 = int(30.6001 * julian_month)\n j3 = day + 1720995\n julian_day = j1 + j2 + j3\n if day + 31 * (mon + 12 * year) >= ig:\n jadj = int(0.01 * julian_year)\n julian_day = julian_day + 2 - jadj + int(0.25 * jadj)\n return julian_day\n",
"role": "user"
},
{
"content": "julian",
"role": "assistant"
}
] |
def x(Recs):
keylist, OutRecs = [], []
for rec in Recs:
for key in list(rec.keys()):
if key not in keylist:
keylist.append(key)
for rec in Recs:
for key in keylist:
if key not in list(rec.keys()):
rec[key] = ''
OutRecs.append(rec)
return OutRecs, keylist
|
fillkeys
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Recs):\n keylist, OutRecs = [], []\n for rec in Recs:\n for key in list(rec.keys()):\n if key not in keylist:\n keylist.append(key)\n for rec in Recs:\n for key in keylist:\n if key not in list(rec.keys()):\n rec[key] = ''\n OutRecs.append(rec)\n return OutRecs, keylist\n",
"role": "user"
},
{
"content": "fillkeys",
"role": "assistant"
}
] |
def x(data):
R, Xbar, X, fpars = 0, [0, 0, 0], [], {}
N = len(data)
if N < 2:
return fpars
X = dir2cart(data)
for i in range(len(X)):
for c in range(3):
Xbar[c] += X[i][c]
for c in range(3):
R += Xbar[c] ** 2
R = np.sqrt(R)
for c in range(3):
Xbar[c] = Xbar[c] / R
dir = cart2dir(Xbar)
fpars['dec'] = dir[0]
fpars['inc'] = dir[1]
fpars['n'] = N
fpars['r'] = R
if N != R:
k = (N - 1.0) / (N - R)
fpars['k'] = k
csd = 81.0 / np.sqrt(k)
else:
fpars['k'] = 'inf'
csd = 0.0
b = 20.0 ** (1.0 / (N - 1.0)) - 1
a = 1 - b * (N - R) / R
if a < -1:
a = -1
a95 = np.degrees(np.arccos(a))
fpars['alpha95'] = a95
fpars['csd'] = csd
if a < 0:
fpars['alpha95'] = 180.0
return fpars
|
fisher_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n R, Xbar, X, fpars = 0, [0, 0, 0], [], {}\n N = len(data)\n if N < 2:\n return fpars\n X = dir2cart(data)\n for i in range(len(X)):\n for c in range(3):\n Xbar[c] += X[i][c]\n for c in range(3):\n R += Xbar[c] ** 2\n R = np.sqrt(R)\n for c in range(3):\n Xbar[c] = Xbar[c] / R\n dir = cart2dir(Xbar)\n fpars['dec'] = dir[0]\n fpars['inc'] = dir[1]\n fpars['n'] = N\n fpars['r'] = R\n if N != R:\n k = (N - 1.0) / (N - R)\n fpars['k'] = k\n csd = 81.0 / np.sqrt(k)\n else:\n fpars['k'] = 'inf'\n csd = 0.0\n b = 20.0 ** (1.0 / (N - 1.0)) - 1\n a = 1 - b * (N - R) / R\n if a < -1:\n a = -1\n a95 = np.degrees(np.arccos(a))\n fpars['alpha95'] = a95\n fpars['csd'] = csd\n if a < 0:\n fpars['alpha95'] = 180.0\n return fpars\n",
"role": "user"
},
{
"content": "fisher_mean",
"role": "assistant"
}
] |
def x(data):
N, mean, d = len(data), 0.0, 0.0
if N < 1:
return '', ''
if N == 1:
return data[0], 0
for j in range(N):
mean += old_div(data[j], float(N))
for j in range(N):
d += (data[j] - mean) ** 2
stdev = np.sqrt(d * (1.0 / float(N - 1)))
return mean, stdev
|
gausspars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n N, mean, d = len(data), 0.0, 0.0\n if N < 1:\n return '', ''\n if N == 1:\n return data[0], 0\n for j in range(N):\n mean += old_div(data[j], float(N))\n for j in range(N):\n d += (data[j] - mean) ** 2\n stdev = np.sqrt(d * (1.0 / float(N - 1)))\n return mean, stdev\n",
"role": "user"
},
{
"content": "gausspars",
"role": "assistant"
}
] |
def x(data):
W, N, mean, d = 0, len(data), 0, 0
if N < 1:
return '', ''
if N == 1:
return data[0][0], 0
for x in data:
W += x[1]
for x in data:
mean += old_div(float(x[1]) * float(x[0]), float(W))
for x in data:
d += old_div(float(x[1]), float(W)) * (float(x[0]) - mean) ** 2
stdev = np.sqrt(d * old_div(1.0, float(N - 1)))
return mean, stdev
|
weighted_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n W, N, mean, d = 0, len(data), 0, 0\n if N < 1:\n return '', ''\n if N == 1:\n return data[0][0], 0\n for x in data:\n W += x[1]\n for x in data:\n mean += old_div(float(x[1]) * float(x[0]), float(W))\n for x in data:\n d += old_div(float(x[1]), float(W)) * (float(x[0]) - mean) ** 2\n stdev = np.sqrt(d * old_div(1.0, float(N - 1)))\n return mean, stdev\n",
"role": "user"
},
{
"content": "weighted_mean",
"role": "assistant"
}
] |
def x(data):
FisherByPoles = {}
DIblock, nameblock, locblock = [], [], []
for rec in data:
if 'dec' in list(rec.keys()) and 'inc' in list(rec.keys()):
DIblock.append([float(rec['dec']), float(rec['inc'])])
else:
continue
if 'name' in list(rec.keys()):
nameblock.append(rec['name'])
else:
nameblock.append('')
if 'loc' in list(rec.keys()):
locblock.append(rec['loc'])
else:
locblock.append('')
ppars = doprinc(np.array(DIblock))
reference_DI = [ppars['dec'], ppars['inc']]
if reference_DI[0] > 90 and reference_DI[0] < 270:
reference_DI[0] = (reference_DI[0] + 180.0) % 360
reference_DI[1] = reference_DI[1] * -1.0
nDIs, rDIs, all_DI, npars, rpars = [], [], [], [], []
nlist, rlist, alllist = '', '', ''
nloclist, rloclist, allloclist = '', '', ''
for k in range(len(DIblock)):
if angle([DIblock[k][0], DIblock[k][1]], reference_DI) > 90.0:
rDIs.append(DIblock[k])
rlist = rlist + ':' + nameblock[k]
if locblock[k] not in rloclist:
rloclist = rloclist + ':' + locblock[k]
all_DI.append([(DIblock[k][0] + 180.0) % 360.0, -1.0 * DIblock[
k][1]])
alllist = alllist + ':' + nameblock[k]
if locblock[k] not in allloclist:
allloclist = allloclist + ':' + locblock[k]
else:
nDIs.append(DIblock[k])
nlist = nlist + ':' + nameblock[k]
if locblock[k] not in nloclist:
nloclist = nloclist + ':' + locblock[k]
all_DI.append(DIblock[k])
alllist = alllist + ':' + nameblock[k]
if locblock[k] not in allloclist:
allloclist = allloclist + ':' + locblock[k]
for mode in ['A', 'B', 'All']:
if mode == 'A' and len(nDIs) > 2:
fpars = fisher_mean(nDIs)
fpars['sites'] = nlist.strip(':')
fpars['locs'] = nloclist.strip(':')
FisherByPoles[mode] = fpars
elif mode == 'B' and len(rDIs) > 2:
fpars = fisher_mean(rDIs)
fpars['sites'] = rlist.strip(':')
fpars['locs'] = rloclist.strip(':')
FisherByPoles[mode] = fpars
elif mode == 'All' and len(all_DI) > 2:
fpars = fisher_mean(all_DI)
fpars['sites'] = alllist.strip(':')
fpars['locs'] = allloclist.strip(':')
FisherByPoles[mode] = fpars
return FisherByPoles
|
fisher_by_pol
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n FisherByPoles = {}\n DIblock, nameblock, locblock = [], [], []\n for rec in data:\n if 'dec' in list(rec.keys()) and 'inc' in list(rec.keys()):\n DIblock.append([float(rec['dec']), float(rec['inc'])])\n else:\n continue\n if 'name' in list(rec.keys()):\n nameblock.append(rec['name'])\n else:\n nameblock.append('')\n if 'loc' in list(rec.keys()):\n locblock.append(rec['loc'])\n else:\n locblock.append('')\n ppars = doprinc(np.array(DIblock))\n reference_DI = [ppars['dec'], ppars['inc']]\n if reference_DI[0] > 90 and reference_DI[0] < 270:\n reference_DI[0] = (reference_DI[0] + 180.0) % 360\n reference_DI[1] = reference_DI[1] * -1.0\n nDIs, rDIs, all_DI, npars, rpars = [], [], [], [], []\n nlist, rlist, alllist = '', '', ''\n nloclist, rloclist, allloclist = '', '', ''\n for k in range(len(DIblock)):\n if angle([DIblock[k][0], DIblock[k][1]], reference_DI) > 90.0:\n rDIs.append(DIblock[k])\n rlist = rlist + ':' + nameblock[k]\n if locblock[k] not in rloclist:\n rloclist = rloclist + ':' + locblock[k]\n all_DI.append([(DIblock[k][0] + 180.0) % 360.0, -1.0 * DIblock[\n k][1]])\n alllist = alllist + ':' + nameblock[k]\n if locblock[k] not in allloclist:\n allloclist = allloclist + ':' + locblock[k]\n else:\n nDIs.append(DIblock[k])\n nlist = nlist + ':' + nameblock[k]\n if locblock[k] not in nloclist:\n nloclist = nloclist + ':' + locblock[k]\n all_DI.append(DIblock[k])\n alllist = alllist + ':' + nameblock[k]\n if locblock[k] not in allloclist:\n allloclist = allloclist + ':' + locblock[k]\n for mode in ['A', 'B', 'All']:\n if mode == 'A' and len(nDIs) > 2:\n fpars = fisher_mean(nDIs)\n fpars['sites'] = nlist.strip(':')\n fpars['locs'] = nloclist.strip(':')\n FisherByPoles[mode] = fpars\n elif mode == 'B' and len(rDIs) > 2:\n fpars = fisher_mean(rDIs)\n fpars['sites'] = rlist.strip(':')\n fpars['locs'] = rloclist.strip(':')\n FisherByPoles[mode] = fpars\n elif mode == 'All' and len(all_DI) > 2:\n fpars = fisher_mean(all_DI)\n fpars['sites'] = alllist.strip(':')\n fpars['locs'] = allloclist.strip(':')\n FisherByPoles[mode] = fpars\n return FisherByPoles\n",
"role": "user"
},
{
"content": "fisher_by_pol",
"role": "assistant"
}
] |
def x(Data):
if len(Data) == 0:
print('This function requires input Data have at least 1 entry')
return {}
if len(Data) == 1:
ReturnData = {}
ReturnData['dec'] = Data[0]['dir_dec']
ReturnData['inc'] = Data[0]['dir_inc']
ReturnData['n_total'] = '1'
if 'DE-BFP' in Data[0]['method_codes']:
ReturnData['n_lines'] = '0'
ReturnData['n_planes'] = '1'
else:
ReturnData['n_planes'] = '0'
ReturnData['n_lines'] = '1'
ReturnData['alpha95'] = ''
ReturnData['R'] = ''
ReturnData['K'] = ''
return ReturnData
else:
LnpData = []
for n, d in enumerate(Data):
LnpData.append({})
LnpData[n]['dec'] = d['dir_dec']
LnpData[n]['inc'] = d['dir_inc']
LnpData[n]['tilt_correction'] = d['dir_tilt_correction']
if 'method_codes' in list(d.keys()):
if 'DE-BFP' in d['method_codes']:
LnpData[n]['dir_type'] = 'p'
else:
LnpData[n]['dir_type'] = 'l'
ReturnData = dolnp(LnpData, 'dir_type')
return ReturnData
|
dolnp3_0
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Data):\n if len(Data) == 0:\n print('This function requires input Data have at least 1 entry')\n return {}\n if len(Data) == 1:\n ReturnData = {}\n ReturnData['dec'] = Data[0]['dir_dec']\n ReturnData['inc'] = Data[0]['dir_inc']\n ReturnData['n_total'] = '1'\n if 'DE-BFP' in Data[0]['method_codes']:\n ReturnData['n_lines'] = '0'\n ReturnData['n_planes'] = '1'\n else:\n ReturnData['n_planes'] = '0'\n ReturnData['n_lines'] = '1'\n ReturnData['alpha95'] = ''\n ReturnData['R'] = ''\n ReturnData['K'] = ''\n return ReturnData\n else:\n LnpData = []\n for n, d in enumerate(Data):\n LnpData.append({})\n LnpData[n]['dec'] = d['dir_dec']\n LnpData[n]['inc'] = d['dir_inc']\n LnpData[n]['tilt_correction'] = d['dir_tilt_correction']\n if 'method_codes' in list(d.keys()):\n if 'DE-BFP' in d['method_codes']:\n LnpData[n]['dir_type'] = 'p'\n else:\n LnpData[n]['dir_type'] = 'l'\n ReturnData = dolnp(LnpData, 'dir_type')\n return ReturnData\n",
"role": "user"
},
{
"content": "dolnp3_0",
"role": "assistant"
}
] |
def x(data, direction_type_key):
if 'dir_dec' in data[0].keys():
tilt_key = 'dir_tilt_correction'
else:
tilt_key = 'tilt_correction'
if tilt_key in list(data[0].keys()):
tc = str(data[0][tilt_key])
else:
tc = '-1'
dirV = [0, 0, 0]
fpars = {}
fdata, n_lines, L, n_planes, E = process_data_for_mean(data,
direction_type_key)
V, XV = [], []
if n_planes != 0:
if n_lines == 0:
V = dir2cart([180.0, -45.0, 1.0])
else:
R = np.sqrt(E[0] ** 2 + E[1] ** 2 + E[2] ** 2)
for c in E:
V.append(old_div(c, R))
XV = calculate_best_fit_vectors(L, E, V, n_planes)
U = E[:]
for dir in XV:
for c in range(3):
U[c] = U[c] + dir[c]
R = np.sqrt(U[0] ** 2 + U[1] ** 2 + U[2] ** 2)
for c in range(3):
U[c] = old_div(U[c], R)
dirV = cart2dir(U)
n_total = n_lines + n_planes
NP = n_lines + 0.5 * n_planes
if NP < 1.1:
NP = 1.1
if n_total - R != 0:
K = old_div(NP - 1.0, n_total - R)
fac = 20.0 ** old_div(1.0, NP - 1.0) - 1.0
fac = fac * (NP - 1.0) / K
a = 1.0 - old_div(fac, R)
a95 = a
if abs(a) > 1.0:
a95 = 1.0
if a < 0:
a95 = -a95
a95 = np.arccos(a95) * 180.0 / np.pi
else:
a95 = 0.0
K = 'inf'
else:
fdir = fisher_mean(fdata)
n_total, R, K, a95 = fdir['n'], fdir['r'], fdir['k'], fdir['alpha95']
dirV[0], dirV[1] = fdir['dec'], fdir['inc']
fpars['tilt_correction'] = tc
fpars['n_total'] = '%i ' % n_total
fpars['n_lines'] = '%i ' % n_lines
fpars['n_planes'] = '%i ' % n_planes
fpars['R'] = '%5.4f ' % R
if K != 'inf':
fpars['K'] = '%6.0f ' % K
else:
fpars['K'] = K
fpars['alpha95'] = '%7.1f ' % a95
fpars['dec'] = '%7.1f ' % dirV[0]
fpars['inc'] = '%7.1f ' % dirV[1]
return fpars
|
dolnp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, direction_type_key):\n if 'dir_dec' in data[0].keys():\n tilt_key = 'dir_tilt_correction'\n else:\n tilt_key = 'tilt_correction'\n if tilt_key in list(data[0].keys()):\n tc = str(data[0][tilt_key])\n else:\n tc = '-1'\n dirV = [0, 0, 0]\n fpars = {}\n fdata, n_lines, L, n_planes, E = process_data_for_mean(data,\n direction_type_key)\n V, XV = [], []\n if n_planes != 0:\n if n_lines == 0:\n V = dir2cart([180.0, -45.0, 1.0])\n else:\n R = np.sqrt(E[0] ** 2 + E[1] ** 2 + E[2] ** 2)\n for c in E:\n V.append(old_div(c, R))\n XV = calculate_best_fit_vectors(L, E, V, n_planes)\n U = E[:]\n for dir in XV:\n for c in range(3):\n U[c] = U[c] + dir[c]\n R = np.sqrt(U[0] ** 2 + U[1] ** 2 + U[2] ** 2)\n for c in range(3):\n U[c] = old_div(U[c], R)\n dirV = cart2dir(U)\n n_total = n_lines + n_planes\n NP = n_lines + 0.5 * n_planes\n if NP < 1.1:\n NP = 1.1\n if n_total - R != 0:\n K = old_div(NP - 1.0, n_total - R)\n fac = 20.0 ** old_div(1.0, NP - 1.0) - 1.0\n fac = fac * (NP - 1.0) / K\n a = 1.0 - old_div(fac, R)\n a95 = a\n if abs(a) > 1.0:\n a95 = 1.0\n if a < 0:\n a95 = -a95\n a95 = np.arccos(a95) * 180.0 / np.pi\n else:\n a95 = 0.0\n K = 'inf'\n else:\n fdir = fisher_mean(fdata)\n n_total, R, K, a95 = fdir['n'], fdir['r'], fdir['k'], fdir['alpha95']\n dirV[0], dirV[1] = fdir['dec'], fdir['inc']\n fpars['tilt_correction'] = tc\n fpars['n_total'] = '%i ' % n_total\n fpars['n_lines'] = '%i ' % n_lines\n fpars['n_planes'] = '%i ' % n_planes\n fpars['R'] = '%5.4f ' % R\n if K != 'inf':\n fpars['K'] = '%6.0f ' % K\n else:\n fpars['K'] = K\n fpars['alpha95'] = '%7.1f ' % a95\n fpars['dec'] = '%7.1f ' % dirV[0]\n fpars['inc'] = '%7.1f ' % dirV[1]\n return fpars\n",
"role": "user"
},
{
"content": "dolnp",
"role": "assistant"
}
] |
def x(L, V):
lam, X = 0, []
for k in range(3):
lam = lam + V[k] * L[k]
beta = np.sqrt(1.0 - lam ** 2)
for k in range(3):
X.append(old_div(V[k] - lam * L[k], beta))
return X
|
vclose
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(L, V):\n lam, X = 0, []\n for k in range(3):\n lam = lam + V[k] * L[k]\n beta = np.sqrt(1.0 - lam ** 2)\n for k in range(3):\n X.append(old_div(V[k] - lam * L[k], beta))\n return X\n",
"role": "user"
},
{
"content": "vclose",
"role": "assistant"
}
] |
def x(L, E, V, n_planes):
U, XV = E[:], []
for pole in L:
XV.append(vclose(pole, V))
for c in range(3):
U[c] = U[c] + XV[-1][c]
angle_tol = 1.0
while angle_tol > 0.1:
angles = []
for k in range(n_planes):
for c in range(3):
U[c] = U[c] - XV[k][c]
R = np.sqrt(U[0] ** 2 + U[1] ** 2 + U[2] ** 2)
for c in range(3):
V[c] = old_div(U[c], R)
XX = vclose(L[k], V)
ang = XX[0] * XV[k][0] + XX[1] * XV[k][1] + XX[2] * XV[k][2]
angles.append(np.arccos(ang) * 180.0 / np.pi)
for c in range(3):
XV[k][c] = XX[c]
U[c] = U[c] + XX[c]
amax = -1
for ang in angles:
if ang > amax:
amax = ang
angle_tol = amax
return XV
|
calculate_best_fit_vectors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(L, E, V, n_planes):\n U, XV = E[:], []\n for pole in L:\n XV.append(vclose(pole, V))\n for c in range(3):\n U[c] = U[c] + XV[-1][c]\n angle_tol = 1.0\n while angle_tol > 0.1:\n angles = []\n for k in range(n_planes):\n for c in range(3):\n U[c] = U[c] - XV[k][c]\n R = np.sqrt(U[0] ** 2 + U[1] ** 2 + U[2] ** 2)\n for c in range(3):\n V[c] = old_div(U[c], R)\n XX = vclose(L[k], V)\n ang = XX[0] * XV[k][0] + XX[1] * XV[k][1] + XX[2] * XV[k][2]\n angles.append(np.arccos(ang) * 180.0 / np.pi)\n for c in range(3):\n XV[k][c] = XX[c]\n U[c] = U[c] + XX[c]\n amax = -1\n for ang in angles:\n if ang > amax:\n amax = ang\n angle_tol = amax\n return XV\n",
"role": "user"
},
{
"content": "calculate_best_fit_vectors",
"role": "assistant"
}
] |
def x(data, direction_type_key):
dec_key, inc_key, meth_key = 'dec', 'inc', 'magic_method_codes'
if 'dir_dec' in data[0].keys():
dec_key, inc_key, meth_key = 'dir_dec', 'dir_inc', 'method_codes'
n_lines, n_planes = 0, 0
L, fdata = [], []
E = [0, 0, 0]
for rec in data:
cart = dir2cart([float(rec[dec_key]), float(rec[inc_key])])[0]
if direction_type_key in list(rec.keys()):
if rec[direction_type_key] == 'p':
n_planes += 1
L.append(cart)
else:
n_lines += 1
fdata.append([float(rec[dec_key]), float(rec[inc_key]), 1.0])
E[0] += cart[0]
E[1] += cart[1]
E[2] += cart[2]
elif 'method_codes' in list(rec.keys()):
if 'DE-BFP' in rec[meth_key]:
n_planes += 1
L.append(cart)
else:
n_lines += 1
fdata.append([rec[dec_key], rec[inc_key], 1.0])
E[0] += cart[0]
E[1] += cart[1]
E[2] += cart[2]
elif meth_key in list(rec.keys()):
if 'DE-BFP' in rec[meth_key]:
n_planes += 1
L.append(cart)
else:
n_lines += 1
fdata.append([rec[dec_key], rec[inc_key], 1.0])
E[0] += cart[0]
E[1] += cart[1]
E[2] += cart[2]
else:
n_lines += 1
fdata.append([rec[dec_key], rec[inc_key], 1.0])
E[0] += cart[0]
E[1] += cart[1]
E[2] += cart[2]
return fdata, n_lines, L, n_planes, E
|
process_data_for_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, direction_type_key):\n dec_key, inc_key, meth_key = 'dec', 'inc', 'magic_method_codes'\n if 'dir_dec' in data[0].keys():\n dec_key, inc_key, meth_key = 'dir_dec', 'dir_inc', 'method_codes'\n n_lines, n_planes = 0, 0\n L, fdata = [], []\n E = [0, 0, 0]\n for rec in data:\n cart = dir2cart([float(rec[dec_key]), float(rec[inc_key])])[0]\n if direction_type_key in list(rec.keys()):\n if rec[direction_type_key] == 'p':\n n_planes += 1\n L.append(cart)\n else:\n n_lines += 1\n fdata.append([float(rec[dec_key]), float(rec[inc_key]), 1.0])\n E[0] += cart[0]\n E[1] += cart[1]\n E[2] += cart[2]\n elif 'method_codes' in list(rec.keys()):\n if 'DE-BFP' in rec[meth_key]:\n n_planes += 1\n L.append(cart)\n else:\n n_lines += 1\n fdata.append([rec[dec_key], rec[inc_key], 1.0])\n E[0] += cart[0]\n E[1] += cart[1]\n E[2] += cart[2]\n elif meth_key in list(rec.keys()):\n if 'DE-BFP' in rec[meth_key]:\n n_planes += 1\n L.append(cart)\n else:\n n_lines += 1\n fdata.append([rec[dec_key], rec[inc_key], 1.0])\n E[0] += cart[0]\n E[1] += cart[1]\n E[2] += cart[2]\n else:\n n_lines += 1\n fdata.append([rec[dec_key], rec[inc_key], 1.0])\n E[0] += cart[0]\n E[1] += cart[1]\n E[2] += cart[2]\n return fdata, n_lines, L, n_planes, E\n",
"role": "user"
},
{
"content": "process_data_for_mean",
"role": "assistant"
}
] |
def x(B, lat):
fact = 6371000.0 ** 3 * 10000000.0
colat = np.radians(90.0 - lat)
return fact * B / np.sqrt(1 + 3 * np.cos(colat) ** 2)
|
b_vdm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(B, lat):\n fact = 6371000.0 ** 3 * 10000000.0\n colat = np.radians(90.0 - lat)\n return fact * B / np.sqrt(1 + 3 * np.cos(colat) ** 2)\n",
"role": "user"
},
{
"content": "b_vdm",
"role": "assistant"
}
] |
def x(vdm, lat):
rad = old_div(np.pi, 180.0)
fact = 6371000.0 ** 3 * 10000000.0
colat = (90.0 - lat) * rad
return vdm * np.sqrt(1 + 3 * np.cos(colat) ** 2) / fact
|
vdm_b
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vdm, lat):\n rad = old_div(np.pi, 180.0)\n fact = 6371000.0 ** 3 * 10000000.0\n colat = (90.0 - lat) * rad\n return vdm * np.sqrt(1 + 3 * np.cos(colat) ** 2) / fact\n",
"role": "user"
},
{
"content": "vdm_b",
"role": "assistant"
}
] |
def x(data, file):
f = open(file, 'w')
data.sort()
for j in range(len(data)):
y = old_div(float(j), float(len(data)))
out = str(data[j]) + ' ' + str(y) + '\n'
f.write(out)
f.close()
|
cdfout
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, file):\n f = open(file, 'w')\n data.sort()\n for j in range(len(data)):\n y = old_div(float(j), float(len(data)))\n out = str(data[j]) + ' ' + str(y) + '\\n'\n f.write(out)\n f.close()\n",
"role": "user"
},
{
"content": "cdfout",
"role": "assistant"
}
] |
def x(di_block):
control, X, bpars = [], [], {}
N = len(di_block)
if N < 2:
return bpars
for rec in di_block:
X.append(dir2cart([rec[0], rec[1], 1.0]))
T = np.array(Tmatrix(X))
t, V = tauV(T)
w1, w2, w3 = t[2], t[1], t[0]
k1, k2 = binglookup(w1, w2)
PDir = cart2dir(V[0])
EDir = cart2dir(V[1])
ZDir = cart2dir(V[2])
if PDir[1] < 0:
PDir[0] += 180.0
PDir[1] = -PDir[1]
PDir[0] = PDir[0] % 360.0
bpars['dec'] = PDir[0]
bpars['inc'] = PDir[1]
bpars['Edec'] = EDir[0]
bpars['Einc'] = EDir[1]
bpars['Zdec'] = ZDir[0]
bpars['Zinc'] = ZDir[1]
bpars['n'] = N
fac1, fac2 = -2 * N * k1 * (w3 - w1), -2 * N * k2 * (w3 - w2)
sig31, sig32 = np.sqrt(old_div(1.0, fac1)), np.sqrt(old_div(1.0, fac2))
bpars['Zeta'], bpars['Eta'
] = 2.45 * sig31 * 180.0 / np.pi, 2.45 * sig32 * 180.0 / np.pi
return bpars
|
dobingham
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(di_block):\n control, X, bpars = [], [], {}\n N = len(di_block)\n if N < 2:\n return bpars\n for rec in di_block:\n X.append(dir2cart([rec[0], rec[1], 1.0]))\n T = np.array(Tmatrix(X))\n t, V = tauV(T)\n w1, w2, w3 = t[2], t[1], t[0]\n k1, k2 = binglookup(w1, w2)\n PDir = cart2dir(V[0])\n EDir = cart2dir(V[1])\n ZDir = cart2dir(V[2])\n if PDir[1] < 0:\n PDir[0] += 180.0\n PDir[1] = -PDir[1]\n PDir[0] = PDir[0] % 360.0\n bpars['dec'] = PDir[0]\n bpars['inc'] = PDir[1]\n bpars['Edec'] = EDir[0]\n bpars['Einc'] = EDir[1]\n bpars['Zdec'] = ZDir[0]\n bpars['Zinc'] = ZDir[1]\n bpars['n'] = N\n fac1, fac2 = -2 * N * k1 * (w3 - w1), -2 * N * k2 * (w3 - w2)\n sig31, sig32 = np.sqrt(old_div(1.0, fac1)), np.sqrt(old_div(1.0, fac2))\n bpars['Zeta'], bpars['Eta'\n ] = 2.45 * sig31 * 180.0 / np.pi, 2.45 * sig32 * 180.0 / np.pi\n return bpars\n",
"role": "user"
},
{
"content": "dobingham",
"role": "assistant"
}
] |
def x(dec, inc):
if inc < 0:
inc = -inc
dec = (dec + 180.0) % 360.0
return dec, inc
|
doflip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec, inc):\n if inc < 0:\n inc = -inc\n dec = (dec + 180.0) % 360.0\n return dec, inc\n",
"role": "user"
},
{
"content": "doflip",
"role": "assistant"
}
] |
def x(inc):
rad, SCOi, SSOi = old_div(np.pi, 180.0), 0.0, 0.0
abinc = []
for i in inc:
abinc.append(abs(i))
MI, std = gausspars(abinc)
fpars = {}
N = len(inc)
fpars['n'] = N
fpars['ginc'] = MI
if MI < 30:
fpars['inc'] = MI
fpars['k'] = 0
fpars['alpha95'] = 0
fpars['csd'] = 0
fpars['r'] = 0
print('WARNING: mean inc < 30, returning gaussian mean')
return fpars
for i in inc:
coinc = (90.0 - abs(i)) * rad
SCOi += np.cos(coinc)
SSOi += np.sin(coinc)
Oo = (90.0 - MI) * rad
SCFlag = -1
epsilon = float(N) * np.cos(Oo)
epsilon += (np.sin(Oo) ** 2 - np.cos(Oo) ** 2) * SCOi
epsilon -= 2.0 * np.sin(Oo) * np.cos(Oo) * SSOi
while SCFlag < 0:
if MI > 0:
Oo -= 0.01 * rad
if MI < 0:
Oo += 0.01 * rad
prev = epsilon
epsilon = float(N) * np.cos(Oo)
epsilon += (np.sin(Oo) ** 2.0 - np.cos(Oo) ** 2.0) * SCOi
epsilon -= 2.0 * np.sin(Oo) * np.cos(Oo) * SSOi
if abs(epsilon) > abs(prev):
MI = -1 * MI
if epsilon * prev < 0:
SCFlag = 1
S, C = 0.0, 0.0
for i in inc:
coinc = (90.0 - abs(i)) * rad
S += np.sin(Oo - coinc)
C += np.cos(Oo - coinc)
k = old_div(N - 1.0, 2.0 * (N - C))
Imle = 90.0 - old_div(Oo, rad)
fpars['inc'] = Imle
fpars['r'], R = 2.0 * C - N, 2 * C - N
fpars['k'] = k
f = fcalc(2, N - 1)
a95 = 1.0 - 0.5 * old_div(S, C) ** 2 - old_div(f, 2.0 * C * k)
csd = old_div(81.0, np.sqrt(k))
fpars['alpha95'] = a95
fpars['csd'] = csd
return fpars
|
doincfish
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inc):\n rad, SCOi, SSOi = old_div(np.pi, 180.0), 0.0, 0.0\n abinc = []\n for i in inc:\n abinc.append(abs(i))\n MI, std = gausspars(abinc)\n fpars = {}\n N = len(inc)\n fpars['n'] = N\n fpars['ginc'] = MI\n if MI < 30:\n fpars['inc'] = MI\n fpars['k'] = 0\n fpars['alpha95'] = 0\n fpars['csd'] = 0\n fpars['r'] = 0\n print('WARNING: mean inc < 30, returning gaussian mean')\n return fpars\n for i in inc:\n coinc = (90.0 - abs(i)) * rad\n SCOi += np.cos(coinc)\n SSOi += np.sin(coinc)\n Oo = (90.0 - MI) * rad\n SCFlag = -1\n epsilon = float(N) * np.cos(Oo)\n epsilon += (np.sin(Oo) ** 2 - np.cos(Oo) ** 2) * SCOi\n epsilon -= 2.0 * np.sin(Oo) * np.cos(Oo) * SSOi\n while SCFlag < 0:\n if MI > 0:\n Oo -= 0.01 * rad\n if MI < 0:\n Oo += 0.01 * rad\n prev = epsilon\n epsilon = float(N) * np.cos(Oo)\n epsilon += (np.sin(Oo) ** 2.0 - np.cos(Oo) ** 2.0) * SCOi\n epsilon -= 2.0 * np.sin(Oo) * np.cos(Oo) * SSOi\n if abs(epsilon) > abs(prev):\n MI = -1 * MI\n if epsilon * prev < 0:\n SCFlag = 1\n S, C = 0.0, 0.0\n for i in inc:\n coinc = (90.0 - abs(i)) * rad\n S += np.sin(Oo - coinc)\n C += np.cos(Oo - coinc)\n k = old_div(N - 1.0, 2.0 * (N - C))\n Imle = 90.0 - old_div(Oo, rad)\n fpars['inc'] = Imle\n fpars['r'], R = 2.0 * C - N, 2 * C - N\n fpars['k'] = k\n f = fcalc(2, N - 1)\n a95 = 1.0 - 0.5 * old_div(S, C) ** 2 - old_div(f, 2.0 * C * k)\n csd = old_div(81.0, np.sqrt(k))\n fpars['alpha95'] = a95\n fpars['csd'] = csd\n return fpars\n",
"role": "user"
},
{
"content": "doincfish",
"role": "assistant"
}
] |
def x(data, NN):
X, kpars = [], {}
N = len(data)
if N < 2:
return kpars
fpars = fisher_mean(data)
pbar = fpars['dec'] * np.pi / 180.0
tbar = (90.0 - fpars['inc']) * np.pi / 180.0
H = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
w = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
b = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
gam = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
xg = []
H = [[np.cos(tbar) * np.cos(pbar), -np.sin(pbar), np.sin(tbar) * np.cos
(pbar)], [np.cos(tbar) * np.sin(pbar), np.cos(pbar), np.sin(pbar) *
np.sin(tbar)], [-np.sin(tbar), 0.0, np.cos(tbar)]]
for rec in data:
X.append(dir2cart([rec[0], rec[1], 1.0]))
T = Tmatrix(X)
for i in range(3):
for j in range(3):
T[i][j] = old_div(T[i][j], float(NN))
for i in range(3):
for j in range(3):
for k in range(3):
w[i][j] += T[i][k] * H[k][j]
for i in range(3):
for j in range(3):
for k in range(3):
b[i][j] += H[k][i] * w[k][j]
psi = 0.5 * np.arctan(2.0 * b[0][1] / (b[0][0] - b[1][1]))
w = [[np.cos(psi), -np.sin(psi), 0], [np.sin(psi), np.cos(psi), 0], [
0.0, 0.0, 1.0]]
for i in range(3):
for j in range(3):
gamtmp = 0.0
for k in range(3):
gamtmp += H[i][k] * w[k][j]
gam[i][j] = gamtmp
for i in range(N):
xg.append([0.0, 0.0, 0.0])
for k in range(3):
xgtmp = 0.0
for j in range(3):
xgtmp += gam[j][k] * X[i][j]
xg[i][k] = xgtmp
xmu, sigma1, sigma2 = 0.0, 0.0, 0.0
for i in range(N):
xmu += xg[i][2]
sigma1 = sigma1 + xg[i][0] ** 2
sigma2 = sigma2 + xg[i][1] ** 2
xmu = old_div(xmu, float(N))
sigma1 = old_div(sigma1, float(N))
sigma2 = old_div(sigma2, float(N))
g = -2.0 * np.log(0.05) / (float(NN) * xmu ** 2)
if np.sqrt(sigma1 * g) < 1:
eta = np.arcsin(np.sqrt(sigma1 * g))
if np.sqrt(sigma2 * g) < 1:
zeta = np.arcsin(np.sqrt(sigma2 * g))
if np.sqrt(sigma1 * g) >= 1.0:
eta = old_div(np.pi, 2.0)
if np.sqrt(sigma2 * g) >= 1.0:
zeta = old_div(np.pi, 2.0)
kpars['dec'] = fpars['dec']
kpars['inc'] = fpars['inc']
kpars['n'] = NN
ZDir = cart2dir([gam[0][1], gam[1][1], gam[2][1]])
EDir = cart2dir([gam[0][0], gam[1][0], gam[2][0]])
kpars['Zdec'] = ZDir[0]
kpars['Zinc'] = ZDir[1]
kpars['Edec'] = EDir[0]
kpars['Einc'] = EDir[1]
if kpars['Zinc'] < 0:
kpars['Zinc'] = -kpars['Zinc']
kpars['Zdec'] = (kpars['Zdec'] + 180.0) % 360.0
if kpars['Einc'] < 0:
kpars['Einc'] = -kpars['Einc']
kpars['Edec'] = (kpars['Edec'] + 180.0) % 360.0
kpars['Zeta'] = zeta * 180.0 / np.pi
kpars['Eta'] = eta * 180.0 / np.pi
return kpars
|
dokent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, NN):\n X, kpars = [], {}\n N = len(data)\n if N < 2:\n return kpars\n fpars = fisher_mean(data)\n pbar = fpars['dec'] * np.pi / 180.0\n tbar = (90.0 - fpars['inc']) * np.pi / 180.0\n H = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n w = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n b = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n gam = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n xg = []\n H = [[np.cos(tbar) * np.cos(pbar), -np.sin(pbar), np.sin(tbar) * np.cos\n (pbar)], [np.cos(tbar) * np.sin(pbar), np.cos(pbar), np.sin(pbar) *\n np.sin(tbar)], [-np.sin(tbar), 0.0, np.cos(tbar)]]\n for rec in data:\n X.append(dir2cart([rec[0], rec[1], 1.0]))\n T = Tmatrix(X)\n for i in range(3):\n for j in range(3):\n T[i][j] = old_div(T[i][j], float(NN))\n for i in range(3):\n for j in range(3):\n for k in range(3):\n w[i][j] += T[i][k] * H[k][j]\n for i in range(3):\n for j in range(3):\n for k in range(3):\n b[i][j] += H[k][i] * w[k][j]\n psi = 0.5 * np.arctan(2.0 * b[0][1] / (b[0][0] - b[1][1]))\n w = [[np.cos(psi), -np.sin(psi), 0], [np.sin(psi), np.cos(psi), 0], [\n 0.0, 0.0, 1.0]]\n for i in range(3):\n for j in range(3):\n gamtmp = 0.0\n for k in range(3):\n gamtmp += H[i][k] * w[k][j]\n gam[i][j] = gamtmp\n for i in range(N):\n xg.append([0.0, 0.0, 0.0])\n for k in range(3):\n xgtmp = 0.0\n for j in range(3):\n xgtmp += gam[j][k] * X[i][j]\n xg[i][k] = xgtmp\n xmu, sigma1, sigma2 = 0.0, 0.0, 0.0\n for i in range(N):\n xmu += xg[i][2]\n sigma1 = sigma1 + xg[i][0] ** 2\n sigma2 = sigma2 + xg[i][1] ** 2\n xmu = old_div(xmu, float(N))\n sigma1 = old_div(sigma1, float(N))\n sigma2 = old_div(sigma2, float(N))\n g = -2.0 * np.log(0.05) / (float(NN) * xmu ** 2)\n if np.sqrt(sigma1 * g) < 1:\n eta = np.arcsin(np.sqrt(sigma1 * g))\n if np.sqrt(sigma2 * g) < 1:\n zeta = np.arcsin(np.sqrt(sigma2 * g))\n if np.sqrt(sigma1 * g) >= 1.0:\n eta = old_div(np.pi, 2.0)\n if np.sqrt(sigma2 * g) >= 1.0:\n zeta = old_div(np.pi, 2.0)\n kpars['dec'] = fpars['dec']\n kpars['inc'] = fpars['inc']\n kpars['n'] = NN\n ZDir = cart2dir([gam[0][1], gam[1][1], gam[2][1]])\n EDir = cart2dir([gam[0][0], gam[1][0], gam[2][0]])\n kpars['Zdec'] = ZDir[0]\n kpars['Zinc'] = ZDir[1]\n kpars['Edec'] = EDir[0]\n kpars['Einc'] = EDir[1]\n if kpars['Zinc'] < 0:\n kpars['Zinc'] = -kpars['Zinc']\n kpars['Zdec'] = (kpars['Zdec'] + 180.0) % 360.0\n if kpars['Einc'] < 0:\n kpars['Einc'] = -kpars['Einc']\n kpars['Edec'] = (kpars['Edec'] + 180.0) % 360.0\n kpars['Zeta'] = zeta * 180.0 / np.pi\n kpars['Eta'] = eta * 180.0 / np.pi\n return kpars\n",
"role": "user"
},
{
"content": "dokent",
"role": "assistant"
}
] |
def x(data):
ppars = {}
rad = old_div(np.pi, 180.0)
X = dir2cart(data)
T = np.array(Tmatrix(X))
t, V = tauV(T)
Pdir = cart2dir(V[0])
ppars['Edir'] = cart2dir(V[1])
dec, inc = doflip(Pdir[0], Pdir[1])
ppars['dec'] = dec
ppars['inc'] = inc
ppars['N'] = len(data)
ppars['tau1'] = t[0]
ppars['tau2'] = t[1]
ppars['tau3'] = t[2]
Pdir = cart2dir(V[1])
dec, inc = doflip(Pdir[0], Pdir[1])
ppars['V2dec'] = dec
ppars['V2inc'] = inc
Pdir = cart2dir(V[2])
dec, inc = doflip(Pdir[0], Pdir[1])
ppars['V3dec'] = dec
ppars['V3inc'] = inc
return ppars
|
doprinc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n ppars = {}\n rad = old_div(np.pi, 180.0)\n X = dir2cart(data)\n T = np.array(Tmatrix(X))\n t, V = tauV(T)\n Pdir = cart2dir(V[0])\n ppars['Edir'] = cart2dir(V[1])\n dec, inc = doflip(Pdir[0], Pdir[1])\n ppars['dec'] = dec\n ppars['inc'] = inc\n ppars['N'] = len(data)\n ppars['tau1'] = t[0]\n ppars['tau2'] = t[1]\n ppars['tau3'] = t[2]\n Pdir = cart2dir(V[1])\n dec, inc = doflip(Pdir[0], Pdir[1])\n ppars['V2dec'] = dec\n ppars['V2inc'] = inc\n Pdir = cart2dir(V[2])\n dec, inc = doflip(Pdir[0], Pdir[1])\n ppars['V3dec'] = dec\n ppars['V3inc'] = inc\n return ppars\n",
"role": "user"
},
{
"content": "doprinc",
"role": "assistant"
}
] |
def x(EP, Lats, Lons):
E = dir2cart([EP[1], EP[0], 1.0])
omega = EP[2] * np.pi / 180.0
RLats, RLons = [], []
for k in range(len(Lats)):
if Lats[k] <= 90.0:
A = dir2cart([Lons[k], Lats[k], 1.0])
R = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
R[0][0] = E[0] * E[0] * (1 - np.cos(omega)) + np.cos(omega)
R[0][1] = E[0] * E[1] * (1 - np.cos(omega)) - E[2] * np.sin(omega)
R[0][2] = E[0] * E[2] * (1 - np.cos(omega)) + E[1] * np.sin(omega)
R[1][0] = E[1] * E[0] * (1 - np.cos(omega)) + E[2] * np.sin(omega)
R[1][1] = E[1] * E[1] * (1 - np.cos(omega)) + np.cos(omega)
R[1][2] = E[1] * E[2] * (1 - np.cos(omega)) - E[0] * np.sin(omega)
R[2][0] = E[2] * E[0] * (1 - np.cos(omega)) - E[1] * np.sin(omega)
R[2][1] = E[2] * E[1] * (1 - np.cos(omega)) + E[0] * np.sin(omega)
R[2][2] = E[2] * E[2] * (1 - np.cos(omega)) + np.cos(omega)
Ap = [0, 0, 0]
for i in range(3):
for j in range(3):
Ap[i] += R[i][j] * A[j]
Prot = cart2dir(Ap)
RLats.append(Prot[1])
RLons.append(Prot[0])
else:
RLats.append(Lats[k])
RLons.append(Lons[k])
return RLats, RLons
|
pt_rot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(EP, Lats, Lons):\n E = dir2cart([EP[1], EP[0], 1.0])\n omega = EP[2] * np.pi / 180.0\n RLats, RLons = [], []\n for k in range(len(Lats)):\n if Lats[k] <= 90.0:\n A = dir2cart([Lons[k], Lats[k], 1.0])\n R = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n R[0][0] = E[0] * E[0] * (1 - np.cos(omega)) + np.cos(omega)\n R[0][1] = E[0] * E[1] * (1 - np.cos(omega)) - E[2] * np.sin(omega)\n R[0][2] = E[0] * E[2] * (1 - np.cos(omega)) + E[1] * np.sin(omega)\n R[1][0] = E[1] * E[0] * (1 - np.cos(omega)) + E[2] * np.sin(omega)\n R[1][1] = E[1] * E[1] * (1 - np.cos(omega)) + np.cos(omega)\n R[1][2] = E[1] * E[2] * (1 - np.cos(omega)) - E[0] * np.sin(omega)\n R[2][0] = E[2] * E[0] * (1 - np.cos(omega)) - E[1] * np.sin(omega)\n R[2][1] = E[2] * E[1] * (1 - np.cos(omega)) + E[0] * np.sin(omega)\n R[2][2] = E[2] * E[2] * (1 - np.cos(omega)) + np.cos(omega)\n Ap = [0, 0, 0]\n for i in range(3):\n for j in range(3):\n Ap[i] += R[i][j] * A[j]\n Prot = cart2dir(Ap)\n RLats.append(Prot[1])\n RLons.append(Prot[0])\n else:\n RLats.append(Lats[k])\n RLons.append(Lons[k])\n return RLats, RLons\n",
"role": "user"
},
{
"content": "pt_rot",
"role": "assistant"
}
] |
def x(infile, cols):
data = []
f = open(infile, 'r')
for line in f.readlines():
tmp = line.split()
rec = tmp[0], float(tmp[cols[0]]), float(tmp[cols[1]]), float(tmp[
cols[2]]), float(tmp[cols[3]])
data.append(rec)
f.close()
return data
|
dread
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile, cols):\n data = []\n f = open(infile, 'r')\n for line in f.readlines():\n tmp = line.split()\n rec = tmp[0], float(tmp[cols[0]]), float(tmp[cols[1]]), float(tmp[\n cols[2]]), float(tmp[cols[3]])\n data.append(rec)\n f.close()\n return data\n",
"role": "user"
},
{
"content": "dread",
"role": "assistant"
}
] |
def x(k):
k = np.array(k)
if len(k.shape) != 0:
n = k.shape[0]
else:
n = 1
R1 = random.random(size=n)
R2 = random.random(size=n)
L = np.exp(-2 * k)
a = R1 * (1 - L) + L
fac = np.sqrt(-np.log(a) / (2 * k))
inc = 90.0 - np.degrees(2 * np.arcsin(fac))
dec = np.degrees(2 * np.pi * R2)
if n == 1:
return dec[0], inc[0]
else:
return dec, inc
|
fshdev
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(k):\n k = np.array(k)\n if len(k.shape) != 0:\n n = k.shape[0]\n else:\n n = 1\n R1 = random.random(size=n)\n R2 = random.random(size=n)\n L = np.exp(-2 * k)\n a = R1 * (1 - L) + L\n fac = np.sqrt(-np.log(a) / (2 * k))\n inc = 90.0 - np.degrees(2 * np.arcsin(fac))\n dec = np.degrees(2 * np.pi * R2)\n if n == 1:\n return dec[0], inc[0]\n else:\n return dec, inc\n",
"role": "user"
},
{
"content": "fshdev",
"role": "assistant"
}
] |
def x(data):
lmax = data[-1][0]
Ls = list(range(1, lmax + 1))
Rs = []
recno = 0
for l in Ls:
pow = 0
for m in range(0, l + 1):
pow += (l + 1) * ((0.001 * data[recno][2]) ** 2 + (0.001 * data
[recno][3]) ** 2)
recno += 1
Rs.append(pow)
return Ls, Rs
|
lowes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n lmax = data[-1][0]\n Ls = list(range(1, lmax + 1))\n Rs = []\n recno = 0\n for l in Ls:\n pow = 0\n for m in range(0, l + 1):\n pow += (l + 1) * ((0.001 * data[recno][2]) ** 2 + (0.001 * data\n [recno][3]) ** 2)\n recno += 1\n Rs.append(pow)\n return Ls, Rs\n",
"role": "user"
},
{
"content": "lowes",
"role": "assistant"
}
] |
def x(inc):
rad = old_div(np.pi, 180.0)
paleo_lat = old_div(np.arctan(0.5 * np.tan(inc * rad)), rad)
return paleo_lat
|
magnetic_lat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inc):\n rad = old_div(np.pi, 180.0)\n paleo_lat = old_div(np.arctan(0.5 * np.tan(inc * rad)), rad)\n return paleo_lat\n",
"role": "user"
},
{
"content": "magnetic_lat",
"role": "assistant"
}
] |
def x(InDir, AniSpec):
Dir = np.zeros(3, 'f')
Dir[0] = InDir[0]
Dir[1] = InDir[1]
Dir[2] = 1.0
chi, chi_inv = check_F(AniSpec)
if chi[0][0] == 1.0:
return Dir
X = dir2cart(Dir)
M = np.array(X)
H = np.dot(M, chi_inv)
return cart2dir(H)
|
Dir_anis_corr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(InDir, AniSpec):\n Dir = np.zeros(3, 'f')\n Dir[0] = InDir[0]\n Dir[1] = InDir[1]\n Dir[2] = 1.0\n chi, chi_inv = check_F(AniSpec)\n if chi[0][0] == 1.0:\n return Dir\n X = dir2cart(Dir)\n M = np.array(X)\n H = np.dot(M, chi_inv)\n return cart2dir(H)\n",
"role": "user"
},
{
"content": "Dir_anis_corr",
"role": "assistant"
}
] |
def x(PmagSpecRec, AniSpec):
AniSpecRec = {}
for key in list(PmagSpecRec.keys()):
AniSpecRec[key] = PmagSpecRec[key]
Dir = np.zeros(3, 'f')
Dir[0] = float(PmagSpecRec['specimen_dec'])
Dir[1] = float(PmagSpecRec['specimen_inc'])
Dir[2] = float(PmagSpecRec['specimen_int'])
chi, chi_inv = check_F(AniSpec)
if chi[0][0] == 1.0:
cDir = [Dir[0], Dir[1]]
newint = Dir[2]
else:
X = dir2cart(Dir)
M = np.array(X)
H = np.dot(M, chi_inv)
cDir = cart2dir(H)
Hunit = [old_div(H[0], cDir[2]), old_div(H[1], cDir[2]), old_div(H[
2], cDir[2])]
Zunit = [0, 0, -1.0]
Hpar = np.dot(chi, Hunit)
Zpar = np.dot(chi, Zunit)
HparInt = cart2dir(Hpar)[2]
ZparInt = cart2dir(Zpar)[2]
newint = Dir[2] * ZparInt / HparInt
if cDir[0] - Dir[0] > 90:
cDir[1] = -cDir[1]
cDir[0] = (cDir[0] - 180.0) % 360.0
AniSpecRec['specimen_dec'] = '%7.1f' % cDir[0]
AniSpecRec['specimen_inc'] = '%7.1f' % cDir[1]
AniSpecRec['specimen_int'] = '%9.4e' % newint
AniSpecRec['specimen_correction'] = 'c'
if 'magic_method_codes' in list(AniSpecRec.keys()):
methcodes = AniSpecRec['magic_method_codes']
else:
methcodes = ''
if methcodes == '':
methcodes = 'DA-AC-' + AniSpec['anisotropy_type']
if methcodes != '':
methcodes = methcodes + ':DA-AC-' + AniSpec['anisotropy_type']
if chi[0][0] == 1.0:
methcodes = methcodes + ':DA-AC-ISO'
AniSpecRec['magic_method_codes'] = methcodes.strip(':')
return AniSpecRec
|
doaniscorr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(PmagSpecRec, AniSpec):\n AniSpecRec = {}\n for key in list(PmagSpecRec.keys()):\n AniSpecRec[key] = PmagSpecRec[key]\n Dir = np.zeros(3, 'f')\n Dir[0] = float(PmagSpecRec['specimen_dec'])\n Dir[1] = float(PmagSpecRec['specimen_inc'])\n Dir[2] = float(PmagSpecRec['specimen_int'])\n chi, chi_inv = check_F(AniSpec)\n if chi[0][0] == 1.0:\n cDir = [Dir[0], Dir[1]]\n newint = Dir[2]\n else:\n X = dir2cart(Dir)\n M = np.array(X)\n H = np.dot(M, chi_inv)\n cDir = cart2dir(H)\n Hunit = [old_div(H[0], cDir[2]), old_div(H[1], cDir[2]), old_div(H[\n 2], cDir[2])]\n Zunit = [0, 0, -1.0]\n Hpar = np.dot(chi, Hunit)\n Zpar = np.dot(chi, Zunit)\n HparInt = cart2dir(Hpar)[2]\n ZparInt = cart2dir(Zpar)[2]\n newint = Dir[2] * ZparInt / HparInt\n if cDir[0] - Dir[0] > 90:\n cDir[1] = -cDir[1]\n cDir[0] = (cDir[0] - 180.0) % 360.0\n AniSpecRec['specimen_dec'] = '%7.1f' % cDir[0]\n AniSpecRec['specimen_inc'] = '%7.1f' % cDir[1]\n AniSpecRec['specimen_int'] = '%9.4e' % newint\n AniSpecRec['specimen_correction'] = 'c'\n if 'magic_method_codes' in list(AniSpecRec.keys()):\n methcodes = AniSpecRec['magic_method_codes']\n else:\n methcodes = ''\n if methcodes == '':\n methcodes = 'DA-AC-' + AniSpec['anisotropy_type']\n if methcodes != '':\n methcodes = methcodes + ':DA-AC-' + AniSpec['anisotropy_type']\n if chi[0][0] == 1.0:\n methcodes = methcodes + ':DA-AC-ISO'\n AniSpecRec['magic_method_codes'] = methcodes.strip(':')\n return AniSpecRec\n",
"role": "user"
},
{
"content": "doaniscorr",
"role": "assistant"
}
] |
def x(pars_1, pars_2):
cart_1 = dir2cart([pars_1['dec'], pars_1['inc'], pars_1['r']])
cart_2 = dir2cart([pars_2['dec'], pars_2['inc'], pars_2['r']])
Sw = pars_1['k'] * pars_1['r'] + pars_2['k'] * pars_2['r']
xhat_1 = pars_1['k'] * cart_1[0] + pars_2['k'] * cart_2[0]
xhat_2 = pars_1['k'] * cart_1[1] + pars_2['k'] * cart_2[1]
xhat_3 = pars_1['k'] * cart_1[2] + pars_2['k'] * cart_2[2]
Rw = np.sqrt(xhat_1 ** 2 + xhat_2 ** 2 + xhat_3 ** 2)
return 2 * (Sw - Rw)
|
vfunc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pars_1, pars_2):\n cart_1 = dir2cart([pars_1['dec'], pars_1['inc'], pars_1['r']])\n cart_2 = dir2cart([pars_2['dec'], pars_2['inc'], pars_2['r']])\n Sw = pars_1['k'] * pars_1['r'] + pars_2['k'] * pars_2['r']\n xhat_1 = pars_1['k'] * cart_1[0] + pars_2['k'] * cart_2[0]\n xhat_2 = pars_1['k'] * cart_1[1] + pars_2['k'] * cart_2[1]\n xhat_3 = pars_1['k'] * cart_1[2] + pars_2['k'] * cart_2[2]\n Rw = np.sqrt(xhat_1 ** 2 + xhat_2 ** 2 + xhat_3 ** 2)\n return 2 * (Sw - Rw)\n",
"role": "user"
},
{
"content": "vfunc",
"role": "assistant"
}
] |
def x(plat, plong, slat, slong):
plong = plong % 360
slong = slong % 360
signdec = 1.0
delphi = abs(plong - slong)
if delphi != 0:
signdec = (plong - slong) / delphi
if slat == 90.0:
slat = 89.99
thetaS = np.radians(90.0 - slat)
thetaP = np.radians(90.0 - plat)
delphi = np.radians(delphi)
cosp = np.cos(thetaS) * np.cos(thetaP) + np.sin(thetaS) * np.sin(thetaP
) * np.cos(delphi)
thetaM = np.arccos(cosp)
cosd = old_div(np.cos(thetaP) - np.cos(thetaM) * np.cos(thetaS), np.sin
(thetaM) * np.sin(thetaS))
C = abs(1.0 - cosd ** 2)
if C != 0:
dec = -np.arctan(cosd / np.sqrt(abs(C))) + np.pi / 2.0
else:
dec = np.arccos(cosd)
if -np.pi < signdec * delphi and signdec < 0:
dec = 2.0 * np.pi - dec
if signdec * delphi > np.pi:
dec = 2.0 * np.pi - dec
dec = np.degrees(dec) % 360.0
inc = np.degrees(np.arctan2(2.0 * np.cos(thetaM), np.sin(thetaM)))
return dec, inc
|
vgp_di
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(plat, plong, slat, slong):\n plong = plong % 360\n slong = slong % 360\n signdec = 1.0\n delphi = abs(plong - slong)\n if delphi != 0:\n signdec = (plong - slong) / delphi\n if slat == 90.0:\n slat = 89.99\n thetaS = np.radians(90.0 - slat)\n thetaP = np.radians(90.0 - plat)\n delphi = np.radians(delphi)\n cosp = np.cos(thetaS) * np.cos(thetaP) + np.sin(thetaS) * np.sin(thetaP\n ) * np.cos(delphi)\n thetaM = np.arccos(cosp)\n cosd = old_div(np.cos(thetaP) - np.cos(thetaM) * np.cos(thetaS), np.sin\n (thetaM) * np.sin(thetaS))\n C = abs(1.0 - cosd ** 2)\n if C != 0:\n dec = -np.arctan(cosd / np.sqrt(abs(C))) + np.pi / 2.0\n else:\n dec = np.arccos(cosd)\n if -np.pi < signdec * delphi and signdec < 0:\n dec = 2.0 * np.pi - dec\n if signdec * delphi > np.pi:\n dec = 2.0 * np.pi - dec\n dec = np.degrees(dec) % 360.0\n inc = np.degrees(np.arctan2(2.0 * np.cos(thetaM), np.sin(thetaM)))\n return dec, inc\n",
"role": "user"
},
{
"content": "vgp_di",
"role": "assistant"
}
] |
def x(Dir1, Dir2):
counter, NumSims = 0, 500
pars_1 = fisher_mean(Dir1)
pars_2 = fisher_mean(Dir2)
V = vfunc(pars_1, pars_2)
Vp = []
print('Doing ', NumSims, ' simulations')
for k in range(NumSims):
counter += 1
if counter == 50:
print(k + 1)
counter = 0
Dirp = []
for i in range(pars_1['n']):
Dirp.append(fshdev(pars_1['k']))
pars_p1 = fisher_mean(Dirp)
Dirp = []
for i in range(pars_2['n']):
Dirp.append(fshdev(pars_2['k']))
pars_p2 = fisher_mean(Dirp)
Vk = vfunc(pars_p1, pars_p2)
Vp.append(Vk)
Vp.sort()
k = int(0.95 * NumSims)
return V, Vp[k]
|
watsonsV
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Dir1, Dir2):\n counter, NumSims = 0, 500\n pars_1 = fisher_mean(Dir1)\n pars_2 = fisher_mean(Dir2)\n V = vfunc(pars_1, pars_2)\n Vp = []\n print('Doing ', NumSims, ' simulations')\n for k in range(NumSims):\n counter += 1\n if counter == 50:\n print(k + 1)\n counter = 0\n Dirp = []\n for i in range(pars_1['n']):\n Dirp.append(fshdev(pars_1['k']))\n pars_p1 = fisher_mean(Dirp)\n Dirp = []\n for i in range(pars_2['n']):\n Dirp.append(fshdev(pars_2['k']))\n pars_p2 = fisher_mean(Dirp)\n Vk = vfunc(pars_p1, pars_p2)\n Vp.append(Vk)\n Vp.sort()\n k = int(0.95 * NumSims)\n return V, Vp[k]\n",
"role": "user"
},
{
"content": "watsonsV",
"role": "assistant"
}
] |
def x(D, I):
try:
D = float(D)
I = float(I)
except TypeError:
return dimap_V(D, I)
XY = [0.0, 0.0]
X = dir2cart([D, I, 1.0])
if X[2] == 1.0:
return XY
if X[2] < 0:
X[2] = -X[2]
R = old_div(np.sqrt(1.0 - X[2]), np.sqrt(X[0] ** 2 + X[1] ** 2))
XY[1], XY[0] = X[0] * R, X[1] * R
return XY
|
dimap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(D, I):\n try:\n D = float(D)\n I = float(I)\n except TypeError:\n return dimap_V(D, I)\n XY = [0.0, 0.0]\n X = dir2cart([D, I, 1.0])\n if X[2] == 1.0:\n return XY\n if X[2] < 0:\n X[2] = -X[2]\n R = old_div(np.sqrt(1.0 - X[2]), np.sqrt(X[0] ** 2 + X[1] ** 2))\n XY[1], XY[0] = X[0] * R, X[1] * R\n return XY\n",
"role": "user"
},
{
"content": "dimap",
"role": "assistant"
}
] |
def x(D, I):
DI = np.array([D, I]).transpose()
X = dir2cart(DI).transpose()
R = np.sqrt(1.0 - abs(X[2])) / np.sqrt(X[0] ** 2 + X[1] ** 2)
XY = np.array([X[1] * R, X[0] * R]).transpose()
return XY
|
dimap_V
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(D, I):\n DI = np.array([D, I]).transpose()\n X = dir2cart(DI).transpose()\n R = np.sqrt(1.0 - abs(X[2])) / np.sqrt(X[0] ** 2 + X[1] ** 2)\n XY = np.array([X[1] * R, X[0] * R]).transpose()\n return XY\n",
"role": "user"
},
{
"content": "dimap_V",
"role": "assistant"
}
] |
def x(method_type):
meths = []
if method_type == 'GM':
meths.append('GM-PMAG-APWP')
meths.append('GM-ARAR')
meths.append('GM-ARAR-AP')
meths.append('GM-ARAR-II')
meths.append('GM-ARAR-NI')
meths.append('GM-ARAR-TF')
meths.append('GM-CC-ARCH')
meths.append('GM-CC-ARCHMAG')
meths.append('GM-C14')
meths.append('GM-FOSSIL')
meths.append('GM-FT')
meths.append('GM-INT-L')
meths.append('GM-INT-S')
meths.append('GM-ISO')
meths.append('GM-KAR')
meths.append('GM-PMAG-ANOM')
meths.append('GM-PMAG-POL')
meths.append('GM-PBPB')
meths.append('GM-RATH')
meths.append('GM-RBSR')
meths.append('GM-RBSR-I')
meths.append('GM-RBSR-MA')
meths.append('GM-SMND')
meths.append('GM-SMND-I')
meths.append('GM-SMND-MA')
meths.append('GM-CC-STRAT')
meths.append('GM-LUM-TH')
meths.append('GM-UPA')
meths.append('GM-UPB')
meths.append('GM-UTH')
meths.append('GM-UTHHE')
else:
pass
return meths
|
getmeths
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(method_type):\n meths = []\n if method_type == 'GM':\n meths.append('GM-PMAG-APWP')\n meths.append('GM-ARAR')\n meths.append('GM-ARAR-AP')\n meths.append('GM-ARAR-II')\n meths.append('GM-ARAR-NI')\n meths.append('GM-ARAR-TF')\n meths.append('GM-CC-ARCH')\n meths.append('GM-CC-ARCHMAG')\n meths.append('GM-C14')\n meths.append('GM-FOSSIL')\n meths.append('GM-FT')\n meths.append('GM-INT-L')\n meths.append('GM-INT-S')\n meths.append('GM-ISO')\n meths.append('GM-KAR')\n meths.append('GM-PMAG-ANOM')\n meths.append('GM-PMAG-POL')\n meths.append('GM-PBPB')\n meths.append('GM-RATH')\n meths.append('GM-RBSR')\n meths.append('GM-RBSR-I')\n meths.append('GM-RBSR-MA')\n meths.append('GM-SMND')\n meths.append('GM-SMND-I')\n meths.append('GM-SMND-MA')\n meths.append('GM-CC-STRAT')\n meths.append('GM-LUM-TH')\n meths.append('GM-UPA')\n meths.append('GM-UPB')\n meths.append('GM-UTH')\n meths.append('GM-UTHHE')\n else:\n pass\n return meths\n",
"role": "user"
},
{
"content": "getmeths",
"role": "assistant"
}
] |
def x(ofile, Rec, file_type):
keylist = []
pmag_out = open(ofile, 'a')
outstring = 'tab \t' + file_type + '\n'
pmag_out.write(outstring)
keystring = ''
for key in list(Rec.keys()):
keystring = keystring + '\t' + key
keylist.append(key)
keystring = keystring + '\n'
pmag_out.write(keystring[1:])
pmag_out.close()
return keylist
|
first_up
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ofile, Rec, file_type):\n keylist = []\n pmag_out = open(ofile, 'a')\n outstring = 'tab \\t' + file_type + '\\n'\n pmag_out.write(outstring)\n keystring = ''\n for key in list(Rec.keys()):\n keystring = keystring + '\\t' + key\n keylist.append(key)\n keystring = keystring + '\\n'\n pmag_out.write(keystring[1:])\n pmag_out.close()\n return keylist\n",
"role": "user"
},
{
"content": "first_up",
"role": "assistant"
}
] |
def x(Rec, sitekey, keybase, Ages, DefaultAge):
site = Rec[sitekey]
gotone = 0
if len(Ages) > 0:
for agerec in Ages:
if agerec['er_site_name'] == site:
if 'age' in list(agerec.keys()) and agerec['age'] != '':
Rec[keybase + 'age'] = agerec['age']
gotone = 1
if 'age_unit' in list(agerec.keys()):
Rec[keybase + 'age_unit'] = agerec['age_unit']
if 'age_sigma' in list(agerec.keys()):
Rec[keybase + 'age_sigma'] = agerec['age_sigma']
if gotone == 0 and len(DefaultAge) > 1:
sigma = 0.5 * (float(DefaultAge[1]) - float(DefaultAge[0]))
age = float(DefaultAge[0]) + sigma
Rec[keybase + 'age'] = '%10.4e' % age
Rec[keybase + 'age_sigma'] = '%10.4e' % sigma
Rec[keybase + 'age_unit'] = DefaultAge[2]
return Rec
|
get_age
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Rec, sitekey, keybase, Ages, DefaultAge):\n site = Rec[sitekey]\n gotone = 0\n if len(Ages) > 0:\n for agerec in Ages:\n if agerec['er_site_name'] == site:\n if 'age' in list(agerec.keys()) and agerec['age'] != '':\n Rec[keybase + 'age'] = agerec['age']\n gotone = 1\n if 'age_unit' in list(agerec.keys()):\n Rec[keybase + 'age_unit'] = agerec['age_unit']\n if 'age_sigma' in list(agerec.keys()):\n Rec[keybase + 'age_sigma'] = agerec['age_sigma']\n if gotone == 0 and len(DefaultAge) > 1:\n sigma = 0.5 * (float(DefaultAge[1]) - float(DefaultAge[0]))\n age = float(DefaultAge[0]) + sigma\n Rec[keybase + 'age'] = '%10.4e' % age\n Rec[keybase + 'age_sigma'] = '%10.4e' % sigma\n Rec[keybase + 'age_unit'] = DefaultAge[2]\n return Rec\n",
"role": "user"
},
{
"content": "get_age",
"role": "assistant"
}
] |
def x(AgesIn):
age_units, AgesOut, factors, factor, maxunit, age_unit = [], [], [
], 1, 1, 'Ma'
for agerec in AgesIn:
if agerec[1] not in age_units:
age_units.append(agerec[1])
if agerec[1] == 'Ga':
factors.append(1000000000.0)
maxunit, age_unit, factor = 1000000000.0, 'Ga', 1000000000.0
if agerec[1] == 'Ma':
if maxunit == 1:
maxunit, age_unt, factor = 1000000.0, 'Ma', 1000000.0
factors.append(1000000.0)
if agerec[1] == 'Ka':
factors.append(1000.0)
if maxunit == 1:
maxunit, age_unit, factor = 1000.0, 'Ka', 1000.0
if 'Years' in agerec[1].split():
factors.append(1)
if len(age_units) == 1:
for agerec in AgesIn:
AgesOut.append(agerec[0])
elif len(age_units) > 1:
for agerec in AgesIn:
if agerec[1] == 'Ga':
AgesOut.append(agerec[0] * 1000000000.0 / factor)
if agerec[1] == 'Ma':
AgesOut.append(agerec[0] * 1000000.0 / factor)
if agerec[1] == 'Ka':
AgesOut.append(agerec[0] * 1000.0 / factor)
if 'Years' in agerec[1].split():
if agerec[1] == 'Years BP':
AgesOut.append(old_div(agerec[0], factor))
if agerec[1] == 'Years Cal BP':
AgesOut.append(old_div(agerec[0], factor))
if agerec[1] == 'Years AD (+/-)':
AgesOut.append(old_div(1950 - agerec[0], factor))
if agerec[1] == 'Years Cal AD (+/-)':
AgesOut.append(old_div(1950 - agerec[0], factor))
return AgesOut, age_unit
|
adjust_ages
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(AgesIn):\n age_units, AgesOut, factors, factor, maxunit, age_unit = [], [], [\n ], 1, 1, 'Ma'\n for agerec in AgesIn:\n if agerec[1] not in age_units:\n age_units.append(agerec[1])\n if agerec[1] == 'Ga':\n factors.append(1000000000.0)\n maxunit, age_unit, factor = 1000000000.0, 'Ga', 1000000000.0\n if agerec[1] == 'Ma':\n if maxunit == 1:\n maxunit, age_unt, factor = 1000000.0, 'Ma', 1000000.0\n factors.append(1000000.0)\n if agerec[1] == 'Ka':\n factors.append(1000.0)\n if maxunit == 1:\n maxunit, age_unit, factor = 1000.0, 'Ka', 1000.0\n if 'Years' in agerec[1].split():\n factors.append(1)\n if len(age_units) == 1:\n for agerec in AgesIn:\n AgesOut.append(agerec[0])\n elif len(age_units) > 1:\n for agerec in AgesIn:\n if agerec[1] == 'Ga':\n AgesOut.append(agerec[0] * 1000000000.0 / factor)\n if agerec[1] == 'Ma':\n AgesOut.append(agerec[0] * 1000000.0 / factor)\n if agerec[1] == 'Ka':\n AgesOut.append(agerec[0] * 1000.0 / factor)\n if 'Years' in agerec[1].split():\n if agerec[1] == 'Years BP':\n AgesOut.append(old_div(agerec[0], factor))\n if agerec[1] == 'Years Cal BP':\n AgesOut.append(old_div(agerec[0], factor))\n if agerec[1] == 'Years AD (+/-)':\n AgesOut.append(old_div(1950 - agerec[0], factor))\n if agerec[1] == 'Years Cal AD (+/-)':\n AgesOut.append(old_div(1950 - agerec[0], factor))\n return AgesOut, age_unit\n",
"role": "user"
},
{
"content": "adjust_ages",
"role": "assistant"
}
] |
def x(N=100):
z = random.uniform(-1.0, 1.0, size=N)
t = random.uniform(0.0, 360.0, size=N)
i = np.arcsin(z) * 180.0 / np.pi
return np.array([t, i]).transpose()
"""
subroutine to retrieve N uniformly distributed directions
"""
|
get_unf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(N=100):\n z = random.uniform(-1.0, 1.0, size=N)\n t = random.uniform(0.0, 360.0, size=N)\n i = np.arcsin(z) * 180.0 / np.pi\n return np.array([t, i]).transpose()\n \"\"\"\n subroutine to retrieve N uniformly distributed directions\n \"\"\"\n",
"role": "user"
},
{
"content": "get_unf",
"role": "assistant"
}
] |
def x(s):
a = np.zeros((3, 3), 'f')
for i in range(3):
a[i][i] = s[i]
a[0][1], a[1][0] = s[3], s[3]
a[1][2], a[2][1] = s[4], s[4]
a[0][2], a[2][0] = s[5], s[5]
return a
|
s2a
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n a = np.zeros((3, 3), 'f')\n for i in range(3):\n a[i][i] = s[i]\n a[0][1], a[1][0] = s[3], s[3]\n a[1][2], a[2][1] = s[4], s[4]\n a[0][2], a[2][0] = s[5], s[5]\n return a\n",
"role": "user"
},
{
"content": "s2a",
"role": "assistant"
}
] |
def x(a):
s = np.zeros((6,), 'f')
for i in range(3):
s[i] = a[i][i]
s[3] = a[0][1]
s[4] = a[1][2]
s[5] = a[0][2]
return s
|
a2s
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a):\n s = np.zeros((6,), 'f')\n for i in range(3):\n s[i] = a[i][i]\n s[3] = a[0][1]\n s[4] = a[1][2]\n s[5] = a[0][2]\n return s\n",
"role": "user"
},
{
"content": "a2s",
"role": "assistant"
}
] |
def x(s):
A = s2a(s)
tau, V = tauV(A)
Vdirs = []
for v in V:
Vdir = cart2dir(v)
if Vdir[1] < 0:
Vdir[1] = -Vdir[1]
Vdir[0] = (Vdir[0] + 180.0) % 360.0
Vdirs.append([Vdir[0], Vdir[1]])
return tau, Vdirs
|
doseigs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n A = s2a(s)\n tau, V = tauV(A)\n Vdirs = []\n for v in V:\n Vdir = cart2dir(v)\n if Vdir[1] < 0:\n Vdir[1] = -Vdir[1]\n Vdir[0] = (Vdir[0] + 180.0) % 360.0\n Vdirs.append([Vdir[0], Vdir[1]])\n return tau, Vdirs\n",
"role": "user"
},
{
"content": "doseigs",
"role": "assistant"
}
] |
def x(tau, Vdirs):
t = np.zeros((3, 3), 'f')
V = []
for j in range(3):
t[j][j] = tau[j]
for k in range(3):
V.append(dir2cart([Vdirs[k][0], Vdirs[k][1], 1.0]))
V = np.transpose(V)
tmp = np.dot(V, t)
chi = np.dot(tmp, np.transpose(V))
return a2s(chi)
|
doeigs_s
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tau, Vdirs):\n t = np.zeros((3, 3), 'f')\n V = []\n for j in range(3):\n t[j][j] = tau[j]\n for k in range(3):\n V.append(dir2cart([Vdirs[k][0], Vdirs[k][1], 1.0]))\n V = np.transpose(V)\n tmp = np.dot(V, t)\n chi = np.dot(tmp, np.transpose(V))\n return a2s(chi)\n",
"role": "user"
},
{
"content": "doeigs_s",
"role": "assistant"
}
] |
def x(Ss):
if type(Ss) == list:
Ss = np.array(Ss)
npts = Ss.shape[0]
Ss = Ss.transpose()
avd, avs = [], []
D = np.array([Ss[0], Ss[1], Ss[2], Ss[3] + 0.5 * (Ss[0] + Ss[1]), Ss[4] +
0.5 * (Ss[1] + Ss[2]), Ss[5] + 0.5 * (Ss[0] + Ss[2])])
for j in range(6):
avd.append(np.average(D[j]))
avs.append(np.average(Ss[j]))
D = D.transpose()
nf = (npts - 1) * 6
s0 = 0
Dels = (D - avd) ** 2
s0 = np.sum(Dels)
sigma = np.sqrt(s0 / float(nf))
return nf, sigma, avs
|
sbar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Ss):\n if type(Ss) == list:\n Ss = np.array(Ss)\n npts = Ss.shape[0]\n Ss = Ss.transpose()\n avd, avs = [], []\n D = np.array([Ss[0], Ss[1], Ss[2], Ss[3] + 0.5 * (Ss[0] + Ss[1]), Ss[4] +\n 0.5 * (Ss[1] + Ss[2]), Ss[5] + 0.5 * (Ss[0] + Ss[2])])\n for j in range(6):\n avd.append(np.average(D[j]))\n avs.append(np.average(Ss[j]))\n D = D.transpose()\n nf = (npts - 1) * 6\n s0 = 0\n Dels = (D - avd) ** 2\n s0 = np.sum(Dels)\n sigma = np.sqrt(s0 / float(nf))\n return nf, sigma, avs\n",
"role": "user"
},
{
"content": "sbar",
"role": "assistant"
}
] |
def x(nf, sigma, s):
hpars = {}
hpars['F_crit'] = '0'
hpars['F12_crit'] = '0'
hpars['F'] = 0
hpars['F12'] = 0
hpars['F23'] = 0
hpars['v1_dec'] = -1
hpars['v1_inc'] = -1
hpars['v2_dec'] = -1
hpars['v2_inc'] = -1
hpars['v3_dec'] = -1
hpars['v3_inc'] = -1
hpars['t1'] = -1
hpars['t2'] = -1
hpars['t3'] = -1
hpars['e12'] = -1
hpars['e23'] = -1
hpars['e13'] = -1
if nf < 0 or sigma == 0:
return hpars
f = np.sqrt(2.0 * fcalc(2, nf))
t2sum = 0
tau, Vdir = doseigs(s)
for i in range(3):
t2sum += tau[i] ** 2
chibar = old_div(s[0] + s[1] + s[2], 3.0)
hpars['F_crit'] = '%s' % fcalc(5, nf)
hpars['F12_crit'] = '%s' % fcalc(2, nf)
hpars['F'] = 0.4 * (t2sum - 3 * chibar ** 2) / sigma ** 2
hpars['F12'] = 0.5 * old_div(tau[0] - tau[1], sigma) ** 2
hpars['F23'] = 0.5 * old_div(tau[1] - tau[2], sigma) ** 2
hpars['v1_dec'] = Vdir[0][0]
hpars['v1_inc'] = Vdir[0][1]
hpars['v2_dec'] = Vdir[1][0]
hpars['v2_inc'] = Vdir[1][1]
hpars['v3_dec'] = Vdir[2][0]
hpars['v3_inc'] = Vdir[2][1]
hpars['t1'] = tau[0]
hpars['t2'] = tau[1]
hpars['t3'] = tau[2]
hpars['e12'] = np.arctan(old_div(f * sigma, 2 * abs(tau[0] - tau[1]))
) * 180.0 / np.pi
hpars['e23'] = np.arctan(old_div(f * sigma, 2 * abs(tau[1] - tau[2]))
) * 180.0 / np.pi
hpars['e13'] = np.arctan(old_div(f * sigma, 2 * abs(tau[0] - tau[2]))
) * 180.0 / np.pi
return hpars
|
dohext
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nf, sigma, s):\n hpars = {}\n hpars['F_crit'] = '0'\n hpars['F12_crit'] = '0'\n hpars['F'] = 0\n hpars['F12'] = 0\n hpars['F23'] = 0\n hpars['v1_dec'] = -1\n hpars['v1_inc'] = -1\n hpars['v2_dec'] = -1\n hpars['v2_inc'] = -1\n hpars['v3_dec'] = -1\n hpars['v3_inc'] = -1\n hpars['t1'] = -1\n hpars['t2'] = -1\n hpars['t3'] = -1\n hpars['e12'] = -1\n hpars['e23'] = -1\n hpars['e13'] = -1\n if nf < 0 or sigma == 0:\n return hpars\n f = np.sqrt(2.0 * fcalc(2, nf))\n t2sum = 0\n tau, Vdir = doseigs(s)\n for i in range(3):\n t2sum += tau[i] ** 2\n chibar = old_div(s[0] + s[1] + s[2], 3.0)\n hpars['F_crit'] = '%s' % fcalc(5, nf)\n hpars['F12_crit'] = '%s' % fcalc(2, nf)\n hpars['F'] = 0.4 * (t2sum - 3 * chibar ** 2) / sigma ** 2\n hpars['F12'] = 0.5 * old_div(tau[0] - tau[1], sigma) ** 2\n hpars['F23'] = 0.5 * old_div(tau[1] - tau[2], sigma) ** 2\n hpars['v1_dec'] = Vdir[0][0]\n hpars['v1_inc'] = Vdir[0][1]\n hpars['v2_dec'] = Vdir[1][0]\n hpars['v2_inc'] = Vdir[1][1]\n hpars['v3_dec'] = Vdir[2][0]\n hpars['v3_inc'] = Vdir[2][1]\n hpars['t1'] = tau[0]\n hpars['t2'] = tau[1]\n hpars['t3'] = tau[2]\n hpars['e12'] = np.arctan(old_div(f * sigma, 2 * abs(tau[0] - tau[1]))\n ) * 180.0 / np.pi\n hpars['e23'] = np.arctan(old_div(f * sigma, 2 * abs(tau[1] - tau[2]))\n ) * 180.0 / np.pi\n hpars['e13'] = np.arctan(old_div(f * sigma, 2 * abs(tau[0] - tau[2]))\n ) * 180.0 / np.pi\n return hpars\n",
"role": "user"
},
{
"content": "dohext",
"role": "assistant"
}
] |
def x(npos):
if npos == 15:
A = np.array([[0.5, 0.5, 0, -1.0, 0, 0], [0.5, 0.5, 0, 1.0, 0, 0],
[1, 0.0, 0, 0, 0, 0], [0.5, 0.5, 0, -1.0, 0, 0], [0.5, 0.5, 0,
1.0, 0, 0], [0, 0.5, 0.5, 0, -1.0, 0], [0, 0.5, 0.5, 0, 1.0, 0],
[0, 1.0, 0, 0, 0, 0], [0, 0.5, 0.5, 0, -1.0, 0], [0, 0.5, 0.5,
0, 1.0, 0], [0.5, 0, 0.5, 0, 0, -1.0], [0.5, 0, 0.5, 0, 0, 1.0],
[0, 0, 1.0, 0, 0, 0], [0.5, 0, 0.5, 0, 0, -1.0], [0.5, 0, 0.5,
0, 0, 1.0]])
elif npos == 6:
A = np.array([[1.0, 0, 0, 0, 0, 0], [0, 1.0, 0, 0, 0, 0], [0, 0,
1.0, 0, 0, 0], [0.5, 0.5, 0, 1.0, 0, 0], [0, 0.5, 0.5, 0, 1.0,
0], [0.5, 0, 0.5, 0, 0, 1.0]])
else:
print('measurement protocol not supported yet ')
return
B = np.dot(np.transpose(A), A)
B = linalg.inv(B)
B = np.dot(B, np.transpose(A))
return A, B
|
design
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(npos):\n if npos == 15:\n A = np.array([[0.5, 0.5, 0, -1.0, 0, 0], [0.5, 0.5, 0, 1.0, 0, 0],\n [1, 0.0, 0, 0, 0, 0], [0.5, 0.5, 0, -1.0, 0, 0], [0.5, 0.5, 0, \n 1.0, 0, 0], [0, 0.5, 0.5, 0, -1.0, 0], [0, 0.5, 0.5, 0, 1.0, 0],\n [0, 1.0, 0, 0, 0, 0], [0, 0.5, 0.5, 0, -1.0, 0], [0, 0.5, 0.5, \n 0, 1.0, 0], [0.5, 0, 0.5, 0, 0, -1.0], [0.5, 0, 0.5, 0, 0, 1.0],\n [0, 0, 1.0, 0, 0, 0], [0.5, 0, 0.5, 0, 0, -1.0], [0.5, 0, 0.5, \n 0, 0, 1.0]])\n elif npos == 6:\n A = np.array([[1.0, 0, 0, 0, 0, 0], [0, 1.0, 0, 0, 0, 0], [0, 0, \n 1.0, 0, 0, 0], [0.5, 0.5, 0, 1.0, 0, 0], [0, 0.5, 0.5, 0, 1.0, \n 0], [0.5, 0, 0.5, 0, 0, 1.0]])\n else:\n print('measurement protocol not supported yet ')\n return\n B = np.dot(np.transpose(A), A)\n B = linalg.inv(B)\n B = np.dot(B, np.transpose(A))\n return A, B\n",
"role": "user"
},
{
"content": "design",
"role": "assistant"
}
] |
def x(k15):
A, B = design(15)
sbar = np.dot(B, k15)
t = sbar[0] + sbar[1] + sbar[2]
bulk = old_div(t, 3.0)
Kbar = np.dot(A, sbar)
dels = k15 - Kbar
dels, sbar = old_div(dels, t), old_div(sbar, t)
So = sum(dels ** 2)
sigma = np.sqrt(old_div(So, 9.0))
return sbar, sigma, bulk
|
dok15_s
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(k15):\n A, B = design(15)\n sbar = np.dot(B, k15)\n t = sbar[0] + sbar[1] + sbar[2]\n bulk = old_div(t, 3.0)\n Kbar = np.dot(A, sbar)\n dels = k15 - Kbar\n dels, sbar = old_div(dels, t), old_div(sbar, t)\n So = sum(dels ** 2)\n sigma = np.sqrt(old_div(So, 9.0))\n return sbar, sigma, bulk\n",
"role": "user"
},
{
"content": "dok15_s",
"role": "assistant"
}
] |
def x(v, w):
x = v[1] * w[2] - v[2] * w[1]
y = v[2] * w[0] - v[0] * w[2]
z = v[0] * w[1] - v[1] * w[0]
return [x, y, z]
|
cross
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(v, w):\n x = v[1] * w[2] - v[2] * w[1]\n y = v[2] * w[0] - v[0] * w[2]\n z = v[0] * w[1] - v[1] * w[0]\n return [x, y, z]\n",
"role": "user"
},
{
"content": "cross",
"role": "assistant"
}
] |
def x(s, az, pl):
a = s2a(s)
X1 = dir2cart((az, pl, 1.0))
X2 = dir2cart((az + 90, 0.0, 1.0))
X3 = cross(X1, X2)
A = np.transpose([X1, X2, X3])
b = np.zeros((3, 3), 'f')
for i in range(3):
for j in range(3):
dum = 0
for k in range(3):
for l in range(3):
dum += A[i][k] * A[j][l] * a[k][l]
b[i][j] = dum
s_rot = a2s(b)
return s_rot
|
dosgeo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, az, pl):\n a = s2a(s)\n X1 = dir2cart((az, pl, 1.0))\n X2 = dir2cart((az + 90, 0.0, 1.0))\n X3 = cross(X1, X2)\n A = np.transpose([X1, X2, X3])\n b = np.zeros((3, 3), 'f')\n for i in range(3):\n for j in range(3):\n dum = 0\n for k in range(3):\n for l in range(3):\n dum += A[i][k] * A[j][l] * a[k][l]\n b[i][j] = dum\n s_rot = a2s(b)\n return s_rot\n",
"role": "user"
},
{
"content": "dosgeo",
"role": "assistant"
}
] |
def x(s, bed_az, bed_dip):
tau, Vdirs = doseigs(s)
Vrot = []
for evec in Vdirs:
d, i = dotilt(evec[0], evec[1], bed_az, bed_dip)
Vrot.append([d, i])
s_rot = doeigs_s(tau, Vrot)
return s_rot
|
dostilt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, bed_az, bed_dip):\n tau, Vdirs = doseigs(s)\n Vrot = []\n for evec in Vdirs:\n d, i = dotilt(evec[0], evec[1], bed_az, bed_dip)\n Vrot.append([d, i])\n s_rot = doeigs_s(tau, Vrot)\n return s_rot\n",
"role": "user"
},
{
"content": "dostilt",
"role": "assistant"
}
] |
def x(Ss, ipar, sigma):
Is = random.randint(0, len(Ss) - 1, size=len(Ss))
if not ipar:
BSs = Ss[Is]
else:
A, B = design(6)
K, BSs = [], []
for k in range(len(Ss)):
K.append(np.dot(A, Ss[k][0:6]))
Pars = np.random.normal(K, sigma)
for k in range(len(Ss)):
BSs.append(np.dot(B, Pars[k]))
return np.array(BSs)
|
apseudo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Ss, ipar, sigma):\n Is = random.randint(0, len(Ss) - 1, size=len(Ss))\n if not ipar:\n BSs = Ss[Is]\n else:\n A, B = design(6)\n K, BSs = [], []\n for k in range(len(Ss)):\n K.append(np.dot(A, Ss[k][0:6]))\n Pars = np.random.normal(K, sigma)\n for k in range(len(Ss)):\n BSs.append(np.dot(B, Pars[k]))\n return np.array(BSs)\n",
"role": "user"
},
{
"content": "apseudo",
"role": "assistant"
}
] |
def x(Taus, Vs):
Tau1s, Tau2s, Tau3s = [], [], []
V1s, V2s, V3s = [], [], []
nb = len(Taus)
bpars = {}
for k in range(nb):
Tau1s.append(Taus[k][0])
Tau2s.append(Taus[k][1])
Tau3s.append(Taus[k][2])
V1s.append(Vs[k][0])
V2s.append(Vs[k][1])
V3s.append(Vs[k][2])
x, sig = gausspars(Tau1s)
bpars['t1_sigma'] = sig
x, sig = gausspars(Tau2s)
bpars['t2_sigma'] = sig
x, sig = gausspars(Tau3s)
bpars['t3_sigma'] = sig
V1s = flip(V1s, combine=True)
kpars = dokent(V1s, len(V1s))
bpars['v1_dec'] = kpars['dec']
bpars['v1_inc'] = kpars['inc']
bpars['v1_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0
bpars['v1_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0
bpars['v1_zeta_dec'] = kpars['Zdec']
bpars['v1_zeta_inc'] = kpars['Zinc']
bpars['v1_eta_dec'] = kpars['Edec']
bpars['v1_eta_inc'] = kpars['Einc']
V2s = flip(V2s, combine=True)
kpars = dokent(V2s, len(V2s))
bpars['v2_dec'] = kpars['dec']
bpars['v2_inc'] = kpars['inc']
bpars['v2_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0
bpars['v2_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0
bpars['v2_zeta_dec'] = kpars['Zdec']
bpars['v2_zeta_inc'] = kpars['Zinc']
bpars['v2_eta_dec'] = kpars['Edec']
bpars['v2_eta_inc'] = kpars['Einc']
V3s = flip(V3s, combine=True)
kpars = dokent(V3s, len(V3s))
bpars['v3_dec'] = kpars['dec']
bpars['v3_inc'] = kpars['inc']
bpars['v3_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0
bpars['v3_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0
bpars['v3_zeta_dec'] = kpars['Zdec']
bpars['v3_zeta_inc'] = kpars['Zinc']
bpars['v3_eta_dec'] = kpars['Edec']
bpars['v3_eta_inc'] = kpars['Einc']
return bpars
|
sbootpars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Taus, Vs):\n Tau1s, Tau2s, Tau3s = [], [], []\n V1s, V2s, V3s = [], [], []\n nb = len(Taus)\n bpars = {}\n for k in range(nb):\n Tau1s.append(Taus[k][0])\n Tau2s.append(Taus[k][1])\n Tau3s.append(Taus[k][2])\n V1s.append(Vs[k][0])\n V2s.append(Vs[k][1])\n V3s.append(Vs[k][2])\n x, sig = gausspars(Tau1s)\n bpars['t1_sigma'] = sig\n x, sig = gausspars(Tau2s)\n bpars['t2_sigma'] = sig\n x, sig = gausspars(Tau3s)\n bpars['t3_sigma'] = sig\n V1s = flip(V1s, combine=True)\n kpars = dokent(V1s, len(V1s))\n bpars['v1_dec'] = kpars['dec']\n bpars['v1_inc'] = kpars['inc']\n bpars['v1_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0\n bpars['v1_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0\n bpars['v1_zeta_dec'] = kpars['Zdec']\n bpars['v1_zeta_inc'] = kpars['Zinc']\n bpars['v1_eta_dec'] = kpars['Edec']\n bpars['v1_eta_inc'] = kpars['Einc']\n V2s = flip(V2s, combine=True)\n kpars = dokent(V2s, len(V2s))\n bpars['v2_dec'] = kpars['dec']\n bpars['v2_inc'] = kpars['inc']\n bpars['v2_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0\n bpars['v2_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0\n bpars['v2_zeta_dec'] = kpars['Zdec']\n bpars['v2_zeta_inc'] = kpars['Zinc']\n bpars['v2_eta_dec'] = kpars['Edec']\n bpars['v2_eta_inc'] = kpars['Einc']\n V3s = flip(V3s, combine=True)\n kpars = dokent(V3s, len(V3s))\n bpars['v3_dec'] = kpars['dec']\n bpars['v3_inc'] = kpars['inc']\n bpars['v3_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0\n bpars['v3_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0\n bpars['v3_zeta_dec'] = kpars['Zdec']\n bpars['v3_zeta_inc'] = kpars['Zinc']\n bpars['v3_eta_dec'] = kpars['Edec']\n bpars['v3_eta_inc'] = kpars['Einc']\n return bpars\n",
"role": "user"
},
{
"content": "sbootpars",
"role": "assistant"
}
] |
def x(Ss, ipar=0, nb=1000):
Ss = np.array(Ss)
npts = Ss.shape[0]
nf, Sigma, avs = sbar(Ss)
Tmean, Vmean = doseigs(avs)
Taus, Vs = [], []
for k in range(int(float(nb))):
BSs = apseudo(Ss, ipar, Sigma)
nf, sigma, avbs = sbar(BSs)
tau, Vdirs = doseigs(avbs)
Taus.append(tau)
Vs.append(Vdirs)
return Tmean, Vmean, Taus, Vs
|
s_boot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Ss, ipar=0, nb=1000):\n Ss = np.array(Ss)\n npts = Ss.shape[0]\n nf, Sigma, avs = sbar(Ss)\n Tmean, Vmean = doseigs(avs)\n Taus, Vs = [], []\n for k in range(int(float(nb))):\n BSs = apseudo(Ss, ipar, Sigma)\n nf, sigma, avbs = sbar(BSs)\n tau, Vdirs = doseigs(avbs)\n Taus.append(tau)\n Vs.append(Vdirs)\n return Tmean, Vmean, Taus, Vs\n",
"role": "user"
},
{
"content": "s_boot",
"role": "assistant"
}
] |
def x(npos):
if npos != 9:
print('Sorry - only 9 positions available')
return
Dec = [315.0, 225.0, 180.0, 135.0, 45.0, 90.0, 270.0, 270.0, 270.0,
90.0, 0.0, 0.0, 0.0, 180.0, 180.0]
Dip = [0.0, 0.0, 0.0, 0.0, 0.0, -45.0, -45.0, 0.0, 45.0, 45.0, 45.0, -
45.0, -90.0, -45.0, 45.0]
index9 = [0, 1, 2, 5, 6, 7, 10, 11, 12]
H = []
for ind in range(15):
Dir = [Dec[ind], Dip[ind], 1.0]
H.append(dir2cart(Dir))
A = np.zeros((npos * 3, 6), 'f')
tmpH = np.zeros((npos, 3), 'f')
if npos == 9:
for i in range(9):
k = index9[i]
ind = i * 3
A[ind][0] = H[k][0]
A[ind][3] = H[k][1]
A[ind][5] = H[k][2]
ind = i * 3 + 1
A[ind][3] = H[k][0]
A[ind][1] = H[k][1]
A[ind][4] = H[k][2]
ind = i * 3 + 2
A[ind][5] = H[k][0]
A[ind][4] = H[k][1]
A[ind][2] = H[k][2]
for j in range(3):
tmpH[i][j] = H[k][j]
At = np.transpose(A)
ATA = np.dot(At, A)
ATAI = linalg.inv(ATA)
B = np.dot(ATAI, At)
else:
print('B matrix not yet supported')
return
return B, H, tmpH
|
designAARM
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(npos):\n if npos != 9:\n print('Sorry - only 9 positions available')\n return\n Dec = [315.0, 225.0, 180.0, 135.0, 45.0, 90.0, 270.0, 270.0, 270.0, \n 90.0, 0.0, 0.0, 0.0, 180.0, 180.0]\n Dip = [0.0, 0.0, 0.0, 0.0, 0.0, -45.0, -45.0, 0.0, 45.0, 45.0, 45.0, -\n 45.0, -90.0, -45.0, 45.0]\n index9 = [0, 1, 2, 5, 6, 7, 10, 11, 12]\n H = []\n for ind in range(15):\n Dir = [Dec[ind], Dip[ind], 1.0]\n H.append(dir2cart(Dir))\n A = np.zeros((npos * 3, 6), 'f')\n tmpH = np.zeros((npos, 3), 'f')\n if npos == 9:\n for i in range(9):\n k = index9[i]\n ind = i * 3\n A[ind][0] = H[k][0]\n A[ind][3] = H[k][1]\n A[ind][5] = H[k][2]\n ind = i * 3 + 1\n A[ind][3] = H[k][0]\n A[ind][1] = H[k][1]\n A[ind][4] = H[k][2]\n ind = i * 3 + 2\n A[ind][5] = H[k][0]\n A[ind][4] = H[k][1]\n A[ind][2] = H[k][2]\n for j in range(3):\n tmpH[i][j] = H[k][j]\n At = np.transpose(A)\n ATA = np.dot(At, A)\n ATAI = linalg.inv(ATA)\n B = np.dot(ATAI, At)\n else:\n print('B matrix not yet supported')\n return\n return B, H, tmpH\n",
"role": "user"
},
{
"content": "designAARM",
"role": "assistant"
}
] |
def x(file, Recs):
for rec in Recs:
type = '.0'
meths = []
tmp = rec['magic_method_codes'].split(':')
for meth in tmp:
meths.append(meth.strip())
if 'LT-T-I' in meths:
type = '.1'
if 'LT-PTRM-I' in meths:
type = '.2'
if 'LT-PTRM-MD' in meths:
type = '.3'
treatment = float(rec['treatment_temp']) - 273
tr = '%i' % treatment + type
inten = '%8.7e ' % (float(rec['measurement_magn_moment']) * 1000.0)
outstring = rec['er_specimen_name'] + ' ' + tr + ' ' + rec[
'measurement_csd'] + ' ' + inten + ' ' + rec['measurement_dec'
] + ' ' + rec['measurement_inc'] + '\n'
file.write(outstring)
|
domagicmag
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file, Recs):\n for rec in Recs:\n type = '.0'\n meths = []\n tmp = rec['magic_method_codes'].split(':')\n for meth in tmp:\n meths.append(meth.strip())\n if 'LT-T-I' in meths:\n type = '.1'\n if 'LT-PTRM-I' in meths:\n type = '.2'\n if 'LT-PTRM-MD' in meths:\n type = '.3'\n treatment = float(rec['treatment_temp']) - 273\n tr = '%i' % treatment + type\n inten = '%8.7e ' % (float(rec['measurement_magn_moment']) * 1000.0)\n outstring = rec['er_specimen_name'] + ' ' + tr + ' ' + rec[\n 'measurement_csd'] + ' ' + inten + ' ' + rec['measurement_dec'\n ] + ' ' + rec['measurement_inc'] + '\\n'\n file.write(outstring)\n",
"role": "user"
},
{
"content": "domagicmag",
"role": "assistant"
}
] |
def x(first_I, first_Z):
cont = 0
Nmin = len(first_I)
if len(first_Z) < Nmin:
Nmin = len(first_Z)
for kk in range(Nmin):
if first_I[kk][0] != first_Z[kk][0]:
print('\n WARNING: ')
if first_I[kk] < first_Z[kk]:
del first_I[kk]
else:
del first_Z[kk]
print('Unmatched step number: ', kk + 1, ' ignored')
cont = 1
if cont == 1:
return first_I, first_Z, cont
return first_I, first_Z, cont
|
cleanup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(first_I, first_Z):\n cont = 0\n Nmin = len(first_I)\n if len(first_Z) < Nmin:\n Nmin = len(first_Z)\n for kk in range(Nmin):\n if first_I[kk][0] != first_Z[kk][0]:\n print('\\n WARNING: ')\n if first_I[kk] < first_Z[kk]:\n del first_I[kk]\n else:\n del first_Z[kk]\n print('Unmatched step number: ', kk + 1, ' ignored')\n cont = 1\n if cont == 1:\n return first_I, first_Z, cont\n return first_I, first_Z, cont\n",
"role": "user"
},
{
"content": "cleanup",
"role": "assistant"
}
] |
def x(lon, lat, alt, gh):
model, date, itype = 0, 0, 1
sv = np.zeros(len(gh))
colat = 90.0 - lat
x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)
return x, y, z, f
|
docustom
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lon, lat, alt, gh):\n model, date, itype = 0, 0, 1\n sv = np.zeros(len(gh))\n colat = 90.0 - lat\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n return x, y, z, f\n",
"role": "user"
},
{
"content": "docustom",
"role": "assistant"
}
] |
def x(lon, lat, alt, date, **kwargs):
from . import coefficients as cf
gh, sv = [], []
colat = 90.0 - lat
if lon < 0:
lon = lon + 360.0
itype = 1
models, igrf12coeffs = cf.get_igrf12()
if 'mod' in list(kwargs.keys()):
if kwargs['mod'] == 'arch3k':
psvmodels, psvcoeffs = cf.get_arch3k()
elif kwargs['mod'] == 'cals3k':
psvmodels, psvcoeffs = cf.get_cals3k()
elif kwargs['mod'] == 'pfm9k':
psvmodels, psvcoeffs = cf.get_pfm9k()
elif kwargs['mod'] == 'hfm10k':
psvmodels, psvcoeffs = cf.get_hfm10k()
elif kwargs['mod'] == 'cals10k.2':
psvmodels, psvcoeffs = cf.get_cals10k_2()
elif kwargs['mod'] == 'shadif14k':
psvmodels, psvcoeffs = cf.get_shadif14k()
else:
psvmodels, psvcoeffs = cf.get_cals10k()
if 'models' in kwargs:
if 'mod' in list(kwargs.keys()):
return psvmodels, psvcoeffs
else:
return models, igrf12coeffs
if date < -12000:
print('too old')
return
if 'mod' in list(kwargs.keys()) and kwargs['mod'] == 'shadif14k':
if date < -10000:
incr = 100
else:
incr = 50
model = date - date % incr
gh = psvcoeffs[psvmodels.index(int(model))]
sv = old_div(psvcoeffs[psvmodels.index(int(model + incr))] - gh,
float(incr))
x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)
elif date < -1000:
incr = 10
model = date - date % incr
gh = psvcoeffs[psvmodels.index(int(model))]
sv = old_div(psvcoeffs[psvmodels.index(int(model + incr))] - gh,
float(incr))
x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)
elif date < 1900:
if kwargs['mod'] == 'cals10k':
incr = 50
else:
incr = 10
model = date - date % incr
gh = psvcoeffs[psvmodels.index(model)]
if model + incr < 1900:
sv = old_div(psvcoeffs[psvmodels.index(model + incr)] - gh,
float(incr))
else:
field2 = igrf12coeffs[models.index(1940)][0:120]
sv = old_div(field2 - gh, float(1940 - model))
x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)
else:
model = date - date % 5
if date < 2015:
gh = igrf12coeffs[models.index(model)]
sv = old_div(igrf12coeffs[models.index(model + 5)] - gh, 5.0)
x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)
else:
gh = igrf12coeffs[models.index(2015)]
sv = igrf12coeffs[models.index(2015.2)]
x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)
if 'coeffs' in list(kwargs.keys()):
return gh
else:
return x, y, z, f
|
doigrf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lon, lat, alt, date, **kwargs):\n from . import coefficients as cf\n gh, sv = [], []\n colat = 90.0 - lat\n if lon < 0:\n lon = lon + 360.0\n itype = 1\n models, igrf12coeffs = cf.get_igrf12()\n if 'mod' in list(kwargs.keys()):\n if kwargs['mod'] == 'arch3k':\n psvmodels, psvcoeffs = cf.get_arch3k()\n elif kwargs['mod'] == 'cals3k':\n psvmodels, psvcoeffs = cf.get_cals3k()\n elif kwargs['mod'] == 'pfm9k':\n psvmodels, psvcoeffs = cf.get_pfm9k()\n elif kwargs['mod'] == 'hfm10k':\n psvmodels, psvcoeffs = cf.get_hfm10k()\n elif kwargs['mod'] == 'cals10k.2':\n psvmodels, psvcoeffs = cf.get_cals10k_2()\n elif kwargs['mod'] == 'shadif14k':\n psvmodels, psvcoeffs = cf.get_shadif14k()\n else:\n psvmodels, psvcoeffs = cf.get_cals10k()\n if 'models' in kwargs:\n if 'mod' in list(kwargs.keys()):\n return psvmodels, psvcoeffs\n else:\n return models, igrf12coeffs\n if date < -12000:\n print('too old')\n return\n if 'mod' in list(kwargs.keys()) and kwargs['mod'] == 'shadif14k':\n if date < -10000:\n incr = 100\n else:\n incr = 50\n model = date - date % incr\n gh = psvcoeffs[psvmodels.index(int(model))]\n sv = old_div(psvcoeffs[psvmodels.index(int(model + incr))] - gh,\n float(incr))\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n elif date < -1000:\n incr = 10\n model = date - date % incr\n gh = psvcoeffs[psvmodels.index(int(model))]\n sv = old_div(psvcoeffs[psvmodels.index(int(model + incr))] - gh,\n float(incr))\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n elif date < 1900:\n if kwargs['mod'] == 'cals10k':\n incr = 50\n else:\n incr = 10\n model = date - date % incr\n gh = psvcoeffs[psvmodels.index(model)]\n if model + incr < 1900:\n sv = old_div(psvcoeffs[psvmodels.index(model + incr)] - gh,\n float(incr))\n else:\n field2 = igrf12coeffs[models.index(1940)][0:120]\n sv = old_div(field2 - gh, float(1940 - model))\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n else:\n model = date - date % 5\n if date < 2015:\n gh = igrf12coeffs[models.index(model)]\n sv = old_div(igrf12coeffs[models.index(model + 5)] - gh, 5.0)\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n else:\n gh = igrf12coeffs[models.index(2015)]\n sv = igrf12coeffs[models.index(2015.2)]\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n if 'coeffs' in list(kwargs.keys()):\n return gh\n else:\n return x, y, z, f\n",
"role": "user"
},
{
"content": "doigrf",
"role": "assistant"
}
] |
def x(gh):
data = []
k, l = 0, 1
while k + 1 < len(gh):
for m in range(l + 1):
if m == 0:
data.append([l, m, gh[k], 0])
k += 1
else:
data.append([l, m, gh[k], gh[k + 1]])
k += 2
l += 1
return data
|
unpack
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(gh):\n data = []\n k, l = 0, 1\n while k + 1 < len(gh):\n for m in range(l + 1):\n if m == 0:\n data.append([l, m, gh[k], 0])\n k += 1\n else:\n data.append([l, m, gh[k], gh[k + 1]])\n k += 2\n l += 1\n return data\n",
"role": "user"
},
{
"content": "unpack",
"role": "assistant"
}
] |
def x(gh, sv, b, date, itype, alt, colat, elong):
p = np.zeros(66, 'f')
q = np.zeros(66, 'f')
cl = np.zeros(10, 'f')
sl = np.zeros(10, 'f')
begin = b
t = date - begin
r = alt
one = colat * 0.0174532925
ct = np.cos(one)
st = np.sin(one)
one = elong * 0.0174532925
cl[0] = np.cos(one)
sl[0] = np.sin(one)
x, y, z = 0.0, 0.0, 0.0
cd, sd = 1.0, 0.0
l, ll, m, n = 1, 0, 1, 0
if itype != 2:
a2 = 40680925.0
b2 = 40408585.0
one = a2 * st * st
two = b2 * ct * ct
three = one + two
rho = np.sqrt(three)
r = np.sqrt(alt * (alt + 2.0 * rho) + old_div(a2 * one + b2 * two,
three))
cd = old_div(alt + rho, r)
sd = (a2 - b2) / rho * ct * st / r
one = ct
ct = ct * cd - st * sd
st = st * cd + one * sd
ratio = old_div(6371.2, r)
rr = ratio * ratio
p[0] = 1.0
p[2] = st
q[0] = 0.0
q[2] = ct
for k in range(1, 66):
if n < m:
m = 0
n = n + 1
rr = rr * ratio
fn = n
gn = n - 1
fm = m
if k != 2:
if m == n:
one = np.sqrt(1.0 - old_div(0.5, fm))
j = k - n - 1
p[k] = one * st * p[j]
q[k] = one * (st * q[j] + ct * p[j])
cl[m - 1] = cl[m - 2] * cl[0] - sl[m - 2] * sl[0]
sl[m - 1] = sl[m - 2] * cl[0] + cl[m - 2] * sl[0]
else:
gm = m * m
one = np.sqrt(fn * fn - gm)
two = old_div(np.sqrt(gn * gn - gm), one)
three = old_div(fn + gn, one)
i = k - n
j = i - n + 1
p[k] = three * ct * p[i] - two * p[j]
q[k] = three * (ct * q[i] - st * p[i]) - two * q[j]
one = (gh[l - 1] + sv[ll + l - 1] * t) * rr
if m != 0:
two = (gh[l] + sv[ll + l] * t) * rr
three = one * cl[m - 1] + two * sl[m - 1]
x = x + three * q[k]
z = z - (fn + 1.0) * three * p[k]
if st != 0.0:
y = y + (one * sl[m - 1] - two * cl[m - 1]) * fm * p[k] / st
else:
y = y + (one * sl[m - 1] - two * cl[m - 1]) * q[k] * ct
l = l + 2
else:
x = x + one * q[k]
z = z - (fn + 1.0) * one * p[k]
l = l + 1
m = m + 1
one = x
x = x * cd + z * sd
z = z * cd - one * sd
f = np.sqrt(x * x + y * y + z * z)
return x, y, z, f
|
magsyn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(gh, sv, b, date, itype, alt, colat, elong):\n p = np.zeros(66, 'f')\n q = np.zeros(66, 'f')\n cl = np.zeros(10, 'f')\n sl = np.zeros(10, 'f')\n begin = b\n t = date - begin\n r = alt\n one = colat * 0.0174532925\n ct = np.cos(one)\n st = np.sin(one)\n one = elong * 0.0174532925\n cl[0] = np.cos(one)\n sl[0] = np.sin(one)\n x, y, z = 0.0, 0.0, 0.0\n cd, sd = 1.0, 0.0\n l, ll, m, n = 1, 0, 1, 0\n if itype != 2:\n a2 = 40680925.0\n b2 = 40408585.0\n one = a2 * st * st\n two = b2 * ct * ct\n three = one + two\n rho = np.sqrt(three)\n r = np.sqrt(alt * (alt + 2.0 * rho) + old_div(a2 * one + b2 * two,\n three))\n cd = old_div(alt + rho, r)\n sd = (a2 - b2) / rho * ct * st / r\n one = ct\n ct = ct * cd - st * sd\n st = st * cd + one * sd\n ratio = old_div(6371.2, r)\n rr = ratio * ratio\n p[0] = 1.0\n p[2] = st\n q[0] = 0.0\n q[2] = ct\n for k in range(1, 66):\n if n < m:\n m = 0\n n = n + 1\n rr = rr * ratio\n fn = n\n gn = n - 1\n fm = m\n if k != 2:\n if m == n:\n one = np.sqrt(1.0 - old_div(0.5, fm))\n j = k - n - 1\n p[k] = one * st * p[j]\n q[k] = one * (st * q[j] + ct * p[j])\n cl[m - 1] = cl[m - 2] * cl[0] - sl[m - 2] * sl[0]\n sl[m - 1] = sl[m - 2] * cl[0] + cl[m - 2] * sl[0]\n else:\n gm = m * m\n one = np.sqrt(fn * fn - gm)\n two = old_div(np.sqrt(gn * gn - gm), one)\n three = old_div(fn + gn, one)\n i = k - n\n j = i - n + 1\n p[k] = three * ct * p[i] - two * p[j]\n q[k] = three * (ct * q[i] - st * p[i]) - two * q[j]\n one = (gh[l - 1] + sv[ll + l - 1] * t) * rr\n if m != 0:\n two = (gh[l] + sv[ll + l] * t) * rr\n three = one * cl[m - 1] + two * sl[m - 1]\n x = x + three * q[k]\n z = z - (fn + 1.0) * three * p[k]\n if st != 0.0:\n y = y + (one * sl[m - 1] - two * cl[m - 1]) * fm * p[k] / st\n else:\n y = y + (one * sl[m - 1] - two * cl[m - 1]) * q[k] * ct\n l = l + 2\n else:\n x = x + one * q[k]\n z = z - (fn + 1.0) * one * p[k]\n l = l + 1\n m = m + 1\n one = x\n x = x * cd + z * sd\n z = z * cd - one * sd\n f = np.sqrt(x * x + y * y + z * z)\n return x, y, z, f\n",
"role": "user"
},
{
"content": "magsyn",
"role": "assistant"
}
] |
def x(sample, convention, Z):
convention = str(convention)
site = sample
if convention == '1':
return sample[:-1]
if convention == '2':
parts = sample.strip('-').split('-')
return parts[0]
if convention == '3':
parts = sample.split('.')
return parts[0]
if convention == '4':
k = int(Z) - 1
return sample[0:-k]
if convention == '5':
return sample
if convention == '6':
print('-W- Finding names in orient.txt is not currently supported')
if convention == '7':
k = int(Z)
return sample[0:k]
if convention == '8':
return ''
if convention == '9':
return sample
print('Error in site parsing routine')
return
|
parse_site
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sample, convention, Z):\n convention = str(convention)\n site = sample\n if convention == '1':\n return sample[:-1]\n if convention == '2':\n parts = sample.strip('-').split('-')\n return parts[0]\n if convention == '3':\n parts = sample.split('.')\n return parts[0]\n if convention == '4':\n k = int(Z) - 1\n return sample[0:-k]\n if convention == '5':\n return sample\n if convention == '6':\n print('-W- Finding names in orient.txt is not currently supported')\n if convention == '7':\n k = int(Z)\n return sample[0:k]\n if convention == '8':\n return ''\n if convention == '9':\n return sample\n print('Error in site parsing routine')\n return\n",
"role": "user"
},
{
"content": "parse_site",
"role": "assistant"
}
] |
def x():
samp_con, Z = '', ''
while samp_con == '':
samp_con = input(
"""
Sample naming convention:
[1] XXXXY: where XXXX is an arbitrary length site designation and Y
is the single character sample designation. e.g., TG001a is the
first sample from site TG001. [default]
[2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length)
[3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length)
[4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX
[5] site name same as sample
[6] site is entered under a separate column
[7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY
NB: all others you will have to customize your self
or e-mail ltauxe@ucsd.edu for help.
select one:
"""
)
if samp_con == '' or samp_con == '1':
samp_con, Z = '1', 1
if '4' in samp_con:
if '-' not in samp_con:
print('option [4] must be in form 4-Z where Z is an integer')
samp_con = ''
else:
Z = samp_con.split('-')[1]
samp_con = '4'
if '7' in samp_con:
if '-' not in samp_con:
print('option [7] must be in form 7-Z where Z is an integer')
samp_con = ''
else:
Z = samp_con.split('-')[1]
samp_con = '7'
if samp_con.isdigit() == False or int(samp_con) > 7:
print('Try again\n ')
samp_con = ''
return samp_con, Z
|
get_samp_con
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n samp_con, Z = '', ''\n while samp_con == '':\n samp_con = input(\n \"\"\"\n Sample naming convention:\n [1] XXXXY: where XXXX is an arbitrary length site designation and Y\n is the single character sample designation. e.g., TG001a is the\n first sample from site TG001. [default]\n [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length)\n [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length)\n [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX\n [5] site name same as sample\n [6] site is entered under a separate column\n [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY\n NB: all others you will have to customize your self\n or e-mail ltauxe@ucsd.edu for help.\n select one:\n\"\"\"\n )\n if samp_con == '' or samp_con == '1':\n samp_con, Z = '1', 1\n if '4' in samp_con:\n if '-' not in samp_con:\n print('option [4] must be in form 4-Z where Z is an integer')\n samp_con = ''\n else:\n Z = samp_con.split('-')[1]\n samp_con = '4'\n if '7' in samp_con:\n if '-' not in samp_con:\n print('option [7] must be in form 7-Z where Z is an integer')\n samp_con = ''\n else:\n Z = samp_con.split('-')[1]\n samp_con = '7'\n if samp_con.isdigit() == False or int(samp_con) > 7:\n print('Try again\\n ')\n samp_con = ''\n return samp_con, Z\n",
"role": "user"
},
{
"content": "get_samp_con",
"role": "assistant"
}
] |
def x(dec_geo, inc_geo, dec_tilt, inc_tilt):
SCart = [0, 0, 0]
SCart[2] = 0.0
GCart = dir2cart([dec_geo, inc_geo, 1.0])
TCart = dir2cart([dec_tilt, inc_tilt, 1.0])
X = old_div(TCart[1] - GCart[1], GCart[0] - TCart[0])
SCart[1] = np.sqrt(old_div(1, X ** 2 + 1.0))
SCart[0] = SCart[1] * X
SDir = cart2dir(SCart)
DipDir = (SDir[0] - 90.0) % 360.0
DipDir = (SDir[0] + 90.0) % 360.0
cosd = GCart[0] * SCart[0] + GCart[1] * SCart[1]
d = np.arccos(cosd)
cosTheta = GCart[0] * TCart[0] + GCart[1] * TCart[1] + GCart[2] * TCart[2]
Dip = old_div(180.0, np.pi) * np.arccos(-old_div(cosd ** 2 - cosTheta,
np.sin(d) ** 2))
if Dip > 90:
Dip = -Dip
return DipDir, Dip
|
get_tilt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec_geo, inc_geo, dec_tilt, inc_tilt):\n SCart = [0, 0, 0]\n SCart[2] = 0.0\n GCart = dir2cart([dec_geo, inc_geo, 1.0])\n TCart = dir2cart([dec_tilt, inc_tilt, 1.0])\n X = old_div(TCart[1] - GCart[1], GCart[0] - TCart[0])\n SCart[1] = np.sqrt(old_div(1, X ** 2 + 1.0))\n SCart[0] = SCart[1] * X\n SDir = cart2dir(SCart)\n DipDir = (SDir[0] - 90.0) % 360.0\n DipDir = (SDir[0] + 90.0) % 360.0\n cosd = GCart[0] * SCart[0] + GCart[1] * SCart[1]\n d = np.arccos(cosd)\n cosTheta = GCart[0] * TCart[0] + GCart[1] * TCart[1] + GCart[2] * TCart[2]\n Dip = old_div(180.0, np.pi) * np.arccos(-old_div(cosd ** 2 - cosTheta, \n np.sin(d) ** 2))\n if Dip > 90:\n Dip = -Dip\n return DipDir, Dip\n",
"role": "user"
},
{
"content": "get_tilt",
"role": "assistant"
}
] |
def x(cdec, cinc, gdec, ginc):
TOL = 0.0001
rad = old_div(np.pi, 180.0)
Xp = dir2cart([gdec, ginc, 1.0])
X = dir2cart([cdec, cinc, 1.0])
az, pl, zdif, ang = 0.0, -90.0, 1.0, 360.0
while zdif > TOL and pl < 180.0:
znew = X[0] * np.sin(pl * rad) + X[2] * np.cos(pl * rad)
zdif = abs(Xp[2] - znew)
pl += 0.01
while ang > 0.1 and az < 360.0:
d, i = dogeo(cdec, cinc, az, pl)
ang = angle([gdec, ginc], [d, i])
az += 0.01
return az - 0.01, pl - 0.01
|
get_azpl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cdec, cinc, gdec, ginc):\n TOL = 0.0001\n rad = old_div(np.pi, 180.0)\n Xp = dir2cart([gdec, ginc, 1.0])\n X = dir2cart([cdec, cinc, 1.0])\n az, pl, zdif, ang = 0.0, -90.0, 1.0, 360.0\n while zdif > TOL and pl < 180.0:\n znew = X[0] * np.sin(pl * rad) + X[2] * np.cos(pl * rad)\n zdif = abs(Xp[2] - znew)\n pl += 0.01\n while ang > 0.1 and az < 360.0:\n d, i = dogeo(cdec, cinc, az, pl)\n ang = angle([gdec, ginc], [d, i])\n az += 0.01\n return az - 0.01, pl - 0.01\n",
"role": "user"
},
{
"content": "get_azpl",
"role": "assistant"
}
] |
def x(SO_methods, ask):
SO_methods = [meth.strip() for meth in SO_methods]
SO_defaults = ['SO-SUN', 'SO-GPS-DIFF', 'SO-SUN-SIGHT', 'SO-SIGHT',
'SO-SIGHT-BS', 'SO-CMD-NORTH', 'SO-MAG', 'SO-SM', 'SO-REC', 'SO-V',
'SO-CORE', 'SO-NO']
SO_priorities, prior_list = [], []
if len(SO_methods) >= 1:
for l in range(len(SO_defaults)):
if SO_defaults[l] in SO_methods:
SO_priorities.append(SO_defaults[l])
pri, change = 0, '1'
if ask == 1:
print(
"""These methods of sample orientation were found:
They have been assigned a provisional priority (top = zero, last = highest number) """
)
for m in range(len(SO_defaults)):
if SO_defaults[m] in SO_methods:
SO_priorities[SO_methods.index(SO_defaults[m])] = pri
pri += 1
while change == '1':
prior_list = SO_priorities
for m in range(len(SO_methods)):
print(SO_methods[m], SO_priorities[m])
change = input('Change these? 1/[0] ')
if change != '1':
break
SO_priorities = []
for l in range(len(SO_methods)):
print(SO_methods[l])
print(' Priority? ', prior_list)
pri = int(input())
SO_priorities.append(pri)
del prior_list[prior_list.index(pri)]
return SO_priorities
|
set_priorities
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(SO_methods, ask):\n SO_methods = [meth.strip() for meth in SO_methods]\n SO_defaults = ['SO-SUN', 'SO-GPS-DIFF', 'SO-SUN-SIGHT', 'SO-SIGHT',\n 'SO-SIGHT-BS', 'SO-CMD-NORTH', 'SO-MAG', 'SO-SM', 'SO-REC', 'SO-V',\n 'SO-CORE', 'SO-NO']\n SO_priorities, prior_list = [], []\n if len(SO_methods) >= 1:\n for l in range(len(SO_defaults)):\n if SO_defaults[l] in SO_methods:\n SO_priorities.append(SO_defaults[l])\n pri, change = 0, '1'\n if ask == 1:\n print(\n \"\"\"These methods of sample orientation were found:\n They have been assigned a provisional priority (top = zero, last = highest number) \"\"\"\n )\n for m in range(len(SO_defaults)):\n if SO_defaults[m] in SO_methods:\n SO_priorities[SO_methods.index(SO_defaults[m])] = pri\n pri += 1\n while change == '1':\n prior_list = SO_priorities\n for m in range(len(SO_methods)):\n print(SO_methods[m], SO_priorities[m])\n change = input('Change these? 1/[0] ')\n if change != '1':\n break\n SO_priorities = []\n for l in range(len(SO_methods)):\n print(SO_methods[l])\n print(' Priority? ', prior_list)\n pri = int(input())\n SO_priorities.append(pri)\n del prior_list[prior_list.index(pri)]\n return SO_priorities\n",
"role": "user"
},
{
"content": "set_priorities",
"role": "assistant"
}
] |
def x(file):
f = open(file, 'r')
firstline = f.read(350)
EOL = ''
for k in range(350):
if firstline[k:k + 2] == '\r\n':
print(file, ' appears to be a dos file')
EOL = '\r\n'
break
if EOL == '':
for k in range(350):
if firstline[k] == '\r':
print(file, ' appears to be a mac file')
EOL = '\r'
if EOL == '':
print(file, ' appears to be a unix file')
EOL = '\n'
f.close()
return EOL
|
get_EOL
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file):\n f = open(file, 'r')\n firstline = f.read(350)\n EOL = ''\n for k in range(350):\n if firstline[k:k + 2] == '\\r\\n':\n print(file, ' appears to be a dos file')\n EOL = '\\r\\n'\n break\n if EOL == '':\n for k in range(350):\n if firstline[k] == '\\r':\n print(file, ' appears to be a mac file')\n EOL = '\\r'\n if EOL == '':\n print(file, ' appears to be a unix file')\n EOL = '\\n'\n f.close()\n return EOL\n",
"role": "user"
},
{
"content": "get_EOL",
"role": "assistant"
}
] |
def x(s, datablock):
for rec in datablock:
methcodes = rec['magic_method_codes'].split(':')
step = float(rec['treatment_ac_field'])
str = float(rec['measurement_magn_moment'])
if 'LT-NO' in methcodes:
NRM.append([0, str])
if 'LT-T-I' in methcodes:
TRM.append([0, str])
field = float(rec['treatment_dc_field'])
if 'LT-AF-I' in methcodes:
ARM1.append([0, str])
if 'LT-AF-I-2' in methcodes:
ARM2.append([0, str])
if 'LT-AF-Z' in methcodes:
if 'LP-ARM-AFD' in methcodes:
ARM1.append([step, str])
elif 'LP-TRM-AFD' in methcodes:
TRM.append([step, str])
elif 'LP-ARM2-AFD' in methcodes:
ARM2.append([step, str])
else:
NRM.append([step, str])
cont = 1
while cont == 1:
if len(NRM) != len(TRM):
print('Uneven NRM/TRM steps: ')
NRM, TRM, cont = cleanup(TRM, NRM)
else:
cont = 0
cont = 1
while cont == 1:
if len(ARM1) != len(ARM2):
print('Uneven ARM1/ARM2 steps: ')
ARM1, ARM2, cont = cleanup(ARM2, ARM1)
else:
cont = 0
if len(NRM) != len(TRM) or len(ARM1) != len(ARM2):
print(len(NRM), len(TRM), len(ARM1), len(ARM2))
print(
' Something wrong with this specimen! Better fix it or delete it ')
input(' press return to acknowledge message')
TRM_ADJ = []
for kk in range(len(TRM)):
step = TRM[kk][0]
for k in range(len(ARM1)):
if ARM1[k][0] == step:
TRM_ADJ.append([step, TRM[kk][1] * ARM1[k][1] / ARM2[k][1]])
break
shawblock = NRM, TRM, ARM1, ARM2, TRM_ADJ
return shawblock, field
|
sortshaw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, datablock):\n for rec in datablock:\n methcodes = rec['magic_method_codes'].split(':')\n step = float(rec['treatment_ac_field'])\n str = float(rec['measurement_magn_moment'])\n if 'LT-NO' in methcodes:\n NRM.append([0, str])\n if 'LT-T-I' in methcodes:\n TRM.append([0, str])\n field = float(rec['treatment_dc_field'])\n if 'LT-AF-I' in methcodes:\n ARM1.append([0, str])\n if 'LT-AF-I-2' in methcodes:\n ARM2.append([0, str])\n if 'LT-AF-Z' in methcodes:\n if 'LP-ARM-AFD' in methcodes:\n ARM1.append([step, str])\n elif 'LP-TRM-AFD' in methcodes:\n TRM.append([step, str])\n elif 'LP-ARM2-AFD' in methcodes:\n ARM2.append([step, str])\n else:\n NRM.append([step, str])\n cont = 1\n while cont == 1:\n if len(NRM) != len(TRM):\n print('Uneven NRM/TRM steps: ')\n NRM, TRM, cont = cleanup(TRM, NRM)\n else:\n cont = 0\n cont = 1\n while cont == 1:\n if len(ARM1) != len(ARM2):\n print('Uneven ARM1/ARM2 steps: ')\n ARM1, ARM2, cont = cleanup(ARM2, ARM1)\n else:\n cont = 0\n if len(NRM) != len(TRM) or len(ARM1) != len(ARM2):\n print(len(NRM), len(TRM), len(ARM1), len(ARM2))\n print(\n ' Something wrong with this specimen! Better fix it or delete it ')\n input(' press return to acknowledge message')\n TRM_ADJ = []\n for kk in range(len(TRM)):\n step = TRM[kk][0]\n for k in range(len(ARM1)):\n if ARM1[k][0] == step:\n TRM_ADJ.append([step, TRM[kk][1] * ARM1[k][1] / ARM2[k][1]])\n break\n shawblock = NRM, TRM, ARM1, ARM2, TRM_ADJ\n return shawblock, field\n",
"role": "user"
},
{
"content": "sortshaw",
"role": "assistant"
}
] |
def x(gh, lat, lon):
sv = []
pad = 120 - len(gh)
for x in range(pad):
gh.append(0.0)
for x in range(len(gh)):
sv.append(0.0)
itype = 1
colat = 90.0 - lat
date, alt = 2000.0, 0.0
x, y, z, f = magsyn(gh, sv, date, date, itype, alt, colat, lon)
vec = cart2dir([x, y, z])
vec[2] = f
return vec
|
getvec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(gh, lat, lon):\n sv = []\n pad = 120 - len(gh)\n for x in range(pad):\n gh.append(0.0)\n for x in range(len(gh)):\n sv.append(0.0)\n itype = 1\n colat = 90.0 - lat\n date, alt = 2000.0, 0.0\n x, y, z, f = magsyn(gh, sv, date, date, itype, alt, colat, lon)\n vec = cart2dir([x, y, z])\n vec[2] = f\n return vec\n",
"role": "user"
},
{
"content": "getvec",
"role": "assistant"
}
] |
def x(l, alpha):
a2 = alpha ** 2
c_a = 0.547
s_l = np.sqrt(old_div(c_a ** (2.0 * l) * a2, (l + 1.0) * (2.0 * l + 1.0)))
return s_l
|
s_l
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l, alpha):\n a2 = alpha ** 2\n c_a = 0.547\n s_l = np.sqrt(old_div(c_a ** (2.0 * l) * a2, (l + 1.0) * (2.0 * l + 1.0)))\n return s_l\n",
"role": "user"
},
{
"content": "s_l",
"role": "assistant"
}
] |
def x(terms, seed, G2, G3):
p = 0
n = seed
gh = []
g10, sfact, afact = -18000.0, 3.8, 2.4
g20 = G2 * g10
g30 = G3 * g10
alpha = g10 / afact
s1 = s_l(1, alpha)
s10 = sfact * s1
gnew = random.normal(g10, s10)
if p == 1:
print(1, 0, gnew, 0)
gh.append(gnew)
gh.append(random.normal(0, s1))
gnew = gh[-1]
gh.append(random.normal(0, s1))
hnew = gh[-1]
if p == 1:
print(1, 1, gnew, hnew)
for l in range(2, terms + 1):
for m in range(l + 1):
OFF = 0.0
if l == 2 and m == 0:
OFF = g20
if l == 3 and m == 0:
OFF = g30
s = s_l(l, alpha)
j = (l - m) % 2
if j == 1:
s = s * sfact
gh.append(random.normal(OFF, s))
gnew = gh[-1]
if m == 0:
hnew = 0
else:
gh.append(random.normal(0, s))
hnew = gh[-1]
if p == 1:
print(l, m, gnew, hnew)
return gh
|
mktk03
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(terms, seed, G2, G3):\n p = 0\n n = seed\n gh = []\n g10, sfact, afact = -18000.0, 3.8, 2.4\n g20 = G2 * g10\n g30 = G3 * g10\n alpha = g10 / afact\n s1 = s_l(1, alpha)\n s10 = sfact * s1\n gnew = random.normal(g10, s10)\n if p == 1:\n print(1, 0, gnew, 0)\n gh.append(gnew)\n gh.append(random.normal(0, s1))\n gnew = gh[-1]\n gh.append(random.normal(0, s1))\n hnew = gh[-1]\n if p == 1:\n print(1, 1, gnew, hnew)\n for l in range(2, terms + 1):\n for m in range(l + 1):\n OFF = 0.0\n if l == 2 and m == 0:\n OFF = g20\n if l == 3 and m == 0:\n OFF = g30\n s = s_l(l, alpha)\n j = (l - m) % 2\n if j == 1:\n s = s * sfact\n gh.append(random.normal(OFF, s))\n gnew = gh[-1]\n if m == 0:\n hnew = 0\n else:\n gh.append(random.normal(0, s))\n hnew = gh[-1]\n if p == 1:\n print(l, m, gnew, hnew)\n return gh\n",
"role": "user"
},
{
"content": "mktk03",
"role": "assistant"
}
] |
def x(lat):
tanl = np.tan(np.radians(lat))
inc = np.arctan(2.0 * tanl)
return np.degrees(inc)
|
pinc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lat):\n tanl = np.tan(np.radians(lat))\n inc = np.arctan(2.0 * tanl)\n return np.degrees(inc)\n",
"role": "user"
},
{
"content": "pinc",
"role": "assistant"
}
] |
def x(inc):
tani = np.tan(np.radians(inc))
lat = np.arctan(tani / 2.0)
return np.degrees(lat)
|
plat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inc):\n tani = np.tan(np.radians(inc))\n lat = np.arctan(tani / 2.0)\n return np.degrees(lat)\n",
"role": "user"
},
{
"content": "plat",
"role": "assistant"
}
] |
def x(DIs, random_seed=None):
if random_seed != None:
np.random.seed(random_seed)
Inds = np.random.randint(len(DIs), size=len(DIs))
D = np.array(DIs)
return D[Inds]
|
pseudo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(DIs, random_seed=None):\n if random_seed != None:\n np.random.seed(random_seed)\n Inds = np.random.randint(len(DIs), size=len(DIs))\n D = np.array(DIs)\n return D[Inds]\n",
"role": "user"
},
{
"content": "pseudo",
"role": "assistant"
}
] |
def x(DIs, nb=5000):
BDIs = []
for k in range(nb):
pDIs = pseudo(DIs)
bfpars = fisher_mean(pDIs)
BDIs.append([bfpars['dec'], bfpars['inc']])
return BDIs
|
di_boot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(DIs, nb=5000):\n BDIs = []\n for k in range(nb):\n pDIs = pseudo(DIs)\n bfpars = fisher_mean(pDIs)\n BDIs.append([bfpars['dec'], bfpars['inc']])\n return BDIs\n",
"role": "user"
},
{
"content": "di_boot",
"role": "assistant"
}
] |
def x(dir_df, nb=5000, par=False):
N = dir_df.dir_dec.values.shape[0]
BDIs = []
for k in range(nb):
pdir_df = dir_df.sample(n=N, replace=True)
pdir_df.reset_index(inplace=True)
if par:
for i in pdir_df.index:
n = pdir_df.loc[i, 'dir_n']
ks = np.ones(shape=n) * pdir_df.loc[i, 'dir_k']
decs, incs = fshdev(ks)
di_block = np.column_stack((decs, incs))
di_block = dodirot_V(di_block, pdir_df.loc[i, 'dir_dec'],
pdir_df.loc[i, 'dir_inc'])
fpars = fisher_mean(di_block)
pdir_df.loc[i, 'dir_dec'] = fpars['dec']
pdir_df.loc[i, 'dir_inc'] = fpars['inc']
bfpars = dir_df_fisher_mean(pdir_df)
BDIs.append([bfpars['dec'], bfpars['inc']])
return BDIs
|
dir_df_boot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dir_df, nb=5000, par=False):\n N = dir_df.dir_dec.values.shape[0]\n BDIs = []\n for k in range(nb):\n pdir_df = dir_df.sample(n=N, replace=True)\n pdir_df.reset_index(inplace=True)\n if par:\n for i in pdir_df.index:\n n = pdir_df.loc[i, 'dir_n']\n ks = np.ones(shape=n) * pdir_df.loc[i, 'dir_k']\n decs, incs = fshdev(ks)\n di_block = np.column_stack((decs, incs))\n di_block = dodirot_V(di_block, pdir_df.loc[i, 'dir_dec'],\n pdir_df.loc[i, 'dir_inc'])\n fpars = fisher_mean(di_block)\n pdir_df.loc[i, 'dir_dec'] = fpars['dec']\n pdir_df.loc[i, 'dir_inc'] = fpars['inc']\n bfpars = dir_df_fisher_mean(pdir_df)\n BDIs.append([bfpars['dec'], bfpars['inc']])\n return BDIs\n",
"role": "user"
},
{
"content": "dir_df_boot",
"role": "assistant"
}
] |
def x(dir_df):
N = dir_df.dir_dec.values.shape[0]
fpars = {}
if N < 2:
return fpars
dirs = dir_df[['dir_dec', 'dir_inc']].values
X = dir2cart(dirs).transpose()
Xbar = np.array([X[0].sum(), X[1].sum(), X[2].sum()])
R = np.sqrt(Xbar[0] ** 2 + Xbar[1] ** 2 + Xbar[2] ** 2)
Xbar = Xbar / R
dir = cart2dir(Xbar)
fpars['dec'] = dir[0]
fpars['inc'] = dir[1]
fpars['n'] = N
fpars['r'] = R
if N != R:
k = (N - 1.0) / (N - R)
fpars['k'] = k
csd = 81.0 / np.sqrt(k)
else:
fpars['k'] = 'inf'
csd = 0.0
b = 20.0 ** (1.0 / (N - 1.0)) - 1
a = 1 - b * (N - R) / R
if a < -1:
a = -1
a95 = np.degrees(np.arccos(a))
fpars['alpha95'] = a95
fpars['csd'] = csd
if a < 0:
fpars['alpha95'] = 180.0
return fpars
|
dir_df_fisher_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dir_df):\n N = dir_df.dir_dec.values.shape[0]\n fpars = {}\n if N < 2:\n return fpars\n dirs = dir_df[['dir_dec', 'dir_inc']].values\n X = dir2cart(dirs).transpose()\n Xbar = np.array([X[0].sum(), X[1].sum(), X[2].sum()])\n R = np.sqrt(Xbar[0] ** 2 + Xbar[1] ** 2 + Xbar[2] ** 2)\n Xbar = Xbar / R\n dir = cart2dir(Xbar)\n fpars['dec'] = dir[0]\n fpars['inc'] = dir[1]\n fpars['n'] = N\n fpars['r'] = R\n if N != R:\n k = (N - 1.0) / (N - R)\n fpars['k'] = k\n csd = 81.0 / np.sqrt(k)\n else:\n fpars['k'] = 'inf'\n csd = 0.0\n b = 20.0 ** (1.0 / (N - 1.0)) - 1\n a = 1 - b * (N - R) / R\n if a < -1:\n a = -1\n a95 = np.degrees(np.arccos(a))\n fpars['alpha95'] = a95\n fpars['csd'] = csd\n if a < 0:\n fpars['alpha95'] = 180.0\n return fpars\n",
"role": "user"
},
{
"content": "dir_df_fisher_mean",
"role": "assistant"
}
] |
def x(x):
BXs = []
for k in range(len(x)):
ind = random.randint(0, len(x) - 1)
BXs.append(x[ind])
return BXs
|
pseudosample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n BXs = []\n for k in range(len(x)):\n ind = random.randint(0, len(x) - 1)\n BXs.append(x[ind])\n return BXs\n",
"role": "user"
},
{
"content": "pseudosample",
"role": "assistant"
}
] |
def x(data):
plate, site_lat, site_lon, age = data[0], data[1], data[2], data[3]
apwp = get_plate_data(plate)
recs = apwp.split()
k, plate_data = 0, []
while k < len(recs) - 3:
rec = [float(recs[k]), float(recs[k + 1]), float(recs[k + 2])]
plate_data.append(rec)
k = k + 3
for i in range(len(plate_data)):
if age >= plate_data[i][0] and age <= plate_data[i + 1][0]:
if age - plate_data[i][0] < plate_data[i][0] - age:
rec = i
else:
rec = i + 1
break
pole_lat = plate_data[rec][1]
pole_lon = plate_data[rec][2]
return pole_lat, pole_lon
|
bc02
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n plate, site_lat, site_lon, age = data[0], data[1], data[2], data[3]\n apwp = get_plate_data(plate)\n recs = apwp.split()\n k, plate_data = 0, []\n while k < len(recs) - 3:\n rec = [float(recs[k]), float(recs[k + 1]), float(recs[k + 2])]\n plate_data.append(rec)\n k = k + 3\n for i in range(len(plate_data)):\n if age >= plate_data[i][0] and age <= plate_data[i + 1][0]:\n if age - plate_data[i][0] < plate_data[i][0] - age:\n rec = i\n else:\n rec = i + 1\n break\n pole_lat = plate_data[rec][1]\n pole_lon = plate_data[rec][2]\n return pole_lat, pole_lon\n",
"role": "user"
},
{
"content": "bc02",
"role": "assistant"
}
] |
def x(x, y):
if len(x) != len(y):
print('x and y must be same length')
return
xx, yy, xsum, ysum, xy, n, sum = 0, 0, 0, 0, 0, len(x), 0
linpars = {}
for i in range(n):
xx += x[i] * x[i]
yy += y[i] * y[i]
xy += x[i] * y[i]
xsum += x[i]
ysum += y[i]
xsig = np.sqrt(old_div(xx - old_div(xsum ** 2, n), n - 1.0))
ysig = np.sqrt(old_div(yy - old_div(ysum ** 2, n), n - 1.0))
linpars['slope'] = old_div(xy - xsum * ysum / n, xx - old_div(xsum ** 2, n)
)
linpars['b'] = old_div(ysum - linpars['slope'] * xsum, n)
linpars['r'] = old_div(linpars['slope'] * xsig, ysig)
for i in range(n):
a = y[i] - linpars['b'] - linpars['slope'] * x[i]
sum += a
linpars['sigma'] = old_div(sum, n - 2.0)
linpars['n'] = n
return linpars
|
linreg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y):\n if len(x) != len(y):\n print('x and y must be same length')\n return\n xx, yy, xsum, ysum, xy, n, sum = 0, 0, 0, 0, 0, len(x), 0\n linpars = {}\n for i in range(n):\n xx += x[i] * x[i]\n yy += y[i] * y[i]\n xy += x[i] * y[i]\n xsum += x[i]\n ysum += y[i]\n xsig = np.sqrt(old_div(xx - old_div(xsum ** 2, n), n - 1.0))\n ysig = np.sqrt(old_div(yy - old_div(ysum ** 2, n), n - 1.0))\n linpars['slope'] = old_div(xy - xsum * ysum / n, xx - old_div(xsum ** 2, n)\n )\n linpars['b'] = old_div(ysum - linpars['slope'] * xsum, n)\n linpars['r'] = old_div(linpars['slope'] * xsig, ysig)\n for i in range(n):\n a = y[i] - linpars['b'] - linpars['slope'] * x[i]\n sum += a\n linpars['sigma'] = old_div(sum, n - 2.0)\n linpars['n'] = n\n return linpars\n",
"role": "user"
},
{
"content": "linreg",
"role": "assistant"
}
] |
def x(incs, f):
incs = np.radians(incs)
I_o = f * np.tan(incs)
return np.degrees(np.arctan(I_o))
|
squish
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(incs, f):\n incs = np.radians(incs)\n I_o = f * np.tan(incs)\n return np.degrees(np.arctan(I_o))\n",
"role": "user"
},
{
"content": "squish",
"role": "assistant"
}
] |
def x(st, **kwargs):
namespace = kwargs
exec('b = {}'.format(st), namespace)
return namespace['b']
|
execute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(st, **kwargs):\n namespace = kwargs\n exec('b = {}'.format(st), namespace)\n return namespace['b']\n",
"role": "user"
},
{
"content": "execute",
"role": "assistant"
}
] |
def x(path, acceptance_criteria, **kwargs):
warnings = []
acceptance_criteria_list = list(acceptance_criteria.keys())
if 'data_model' in list(kwargs.keys()) and kwargs['data_model'] == 3:
crit_data = acceptance_criteria
else:
crit_data, file_type = magic_read(path)
if 'criteria' not in file_type:
if 'empty' in file_type:
print('-W- No criteria found: {} '.format(path))
else:
print(
'-W- {} could not be read and may be improperly formatted...'
.format(path))
for rec in crit_data:
metadata_dict = {'pmag_criteria_code': '', 'criteria_definition':
'', 'er_citation_names': ''}
for metadata in metadata_dict:
if metadata in rec:
metadata_dict[metadata] = rec[metadata]
for crit in list(rec.keys()):
if crit == 'anisotropy_ftest_flag' and crit not in list(rec.keys()
):
crit = 'specimen_aniso_ftest_flag'
rec[crit] = rec[crit].strip('\n')
if crit in ['pmag_criteria_code', 'criteria_definition',
'magic_experiment_names', 'er_citation_names']:
continue
elif rec[crit] == '':
continue
if crit in acceptance_criteria:
if acceptance_criteria[crit]['value'] not in [-999, '-999',
-999]:
print(
"""-W- You have multiple different criteria that both use column: {}.
The last will be used:
{}."""
.format(crit, rec))
warn_string = (
'multiple criteria for column: {} (only last will be used)'
.format(crit))
if warn_string not in warnings:
warnings.append(warn_string)
if crit == 'specimen_dang' and 'pmag_criteria_code' in list(rec
.keys()) and 'IE-SPEC' in rec['pmag_criteria_code']:
crit = 'specimen_int_dang'
print(
'-W- Found backward compatibility problem with selection criteria specimen_dang. Cannot be associated with IE-SPEC. Program assumes that the statistic is specimen_int_dang'
)
if 'specimen_int_dang' not in acceptance_criteria:
acceptance_criteria['specimen_int_dang'] = {}
acceptance_criteria['specimen_int_dang']['value'] = float(rec
['specimen_dang'])
elif crit not in acceptance_criteria_list:
print(
'-W- WARNING: criteria code %s is not supported by PmagPy GUI. please check'
% crit)
acceptance_criteria[crit] = {}
acceptance_criteria[crit]['value'] = rec[crit]
acceptance_criteria[crit]['threshold_type'] = 'inherited'
acceptance_criteria[crit]['decimal_points'] = -999
acceptance_criteria[crit]['category'] = None
elif acceptance_criteria[crit]['threshold_type'] == 'bool':
if str(rec[crit]) in ['1', 'g', 'True', 'TRUE']:
acceptance_criteria[crit]['value'] = True
else:
acceptance_criteria[crit]['value'] = False
elif type(acceptance_criteria[crit]['threshold_type']) == list:
if str(rec[crit]) in acceptance_criteria[crit]['threshold_type'
]:
acceptance_criteria[crit]['value'] = str(rec[crit])
else:
print(
'-W- WARNING: data %s from criteria code %s and is not supported by PmagPy GUI. please check'
% (crit, rec[crit]))
elif float(rec[crit]) == -999:
pass
else:
acceptance_criteria[crit]['value'] = float(rec[crit])
acceptance_criteria[crit].update(metadata_dict)
if 'return_warnings' in kwargs:
return acceptance_criteria, warnings
else:
return acceptance_criteria
|
read_criteria_from_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, acceptance_criteria, **kwargs):\n warnings = []\n acceptance_criteria_list = list(acceptance_criteria.keys())\n if 'data_model' in list(kwargs.keys()) and kwargs['data_model'] == 3:\n crit_data = acceptance_criteria\n else:\n crit_data, file_type = magic_read(path)\n if 'criteria' not in file_type:\n if 'empty' in file_type:\n print('-W- No criteria found: {} '.format(path))\n else:\n print(\n '-W- {} could not be read and may be improperly formatted...'\n .format(path))\n for rec in crit_data:\n metadata_dict = {'pmag_criteria_code': '', 'criteria_definition':\n '', 'er_citation_names': ''}\n for metadata in metadata_dict:\n if metadata in rec:\n metadata_dict[metadata] = rec[metadata]\n for crit in list(rec.keys()):\n if crit == 'anisotropy_ftest_flag' and crit not in list(rec.keys()\n ):\n crit = 'specimen_aniso_ftest_flag'\n rec[crit] = rec[crit].strip('\\n')\n if crit in ['pmag_criteria_code', 'criteria_definition',\n 'magic_experiment_names', 'er_citation_names']:\n continue\n elif rec[crit] == '':\n continue\n if crit in acceptance_criteria:\n if acceptance_criteria[crit]['value'] not in [-999, '-999',\n -999]:\n print(\n \"\"\"-W- You have multiple different criteria that both use column: {}.\nThe last will be used:\n{}.\"\"\"\n .format(crit, rec))\n warn_string = (\n 'multiple criteria for column: {} (only last will be used)'\n .format(crit))\n if warn_string not in warnings:\n warnings.append(warn_string)\n if crit == 'specimen_dang' and 'pmag_criteria_code' in list(rec\n .keys()) and 'IE-SPEC' in rec['pmag_criteria_code']:\n crit = 'specimen_int_dang'\n print(\n '-W- Found backward compatibility problem with selection criteria specimen_dang. Cannot be associated with IE-SPEC. Program assumes that the statistic is specimen_int_dang'\n )\n if 'specimen_int_dang' not in acceptance_criteria:\n acceptance_criteria['specimen_int_dang'] = {}\n acceptance_criteria['specimen_int_dang']['value'] = float(rec\n ['specimen_dang'])\n elif crit not in acceptance_criteria_list:\n print(\n '-W- WARNING: criteria code %s is not supported by PmagPy GUI. please check'\n % crit)\n acceptance_criteria[crit] = {}\n acceptance_criteria[crit]['value'] = rec[crit]\n acceptance_criteria[crit]['threshold_type'] = 'inherited'\n acceptance_criteria[crit]['decimal_points'] = -999\n acceptance_criteria[crit]['category'] = None\n elif acceptance_criteria[crit]['threshold_type'] == 'bool':\n if str(rec[crit]) in ['1', 'g', 'True', 'TRUE']:\n acceptance_criteria[crit]['value'] = True\n else:\n acceptance_criteria[crit]['value'] = False\n elif type(acceptance_criteria[crit]['threshold_type']) == list:\n if str(rec[crit]) in acceptance_criteria[crit]['threshold_type'\n ]:\n acceptance_criteria[crit]['value'] = str(rec[crit])\n else:\n print(\n '-W- WARNING: data %s from criteria code %s and is not supported by PmagPy GUI. please check'\n % (crit, rec[crit]))\n elif float(rec[crit]) == -999:\n pass\n else:\n acceptance_criteria[crit]['value'] = float(rec[crit])\n acceptance_criteria[crit].update(metadata_dict)\n if 'return_warnings' in kwargs:\n return acceptance_criteria, warnings\n else:\n return acceptance_criteria\n",
"role": "user"
},
{
"content": "read_criteria_from_file",
"role": "assistant"
}
] |
def x(var, flag):
if var:
var = flag + ' ' + str(var)
else:
var = ''
return var
|
add_flag
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(var, flag):\n if var:\n var = flag + ' ' + str(var)\n else:\n var = ''\n return var\n",
"role": "user"
},
{
"content": "add_flag",
"role": "assistant"
}
] |
def x(name, default_val=None, reqd=False):
if name in sys.argv:
ind = sys.argv.index(name)
return sys.argv[ind + 1]
if reqd:
raise MissingCommandLineArgException(name)
return default_val
|
get_named_arg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, default_val=None, reqd=False):\n if name in sys.argv:\n ind = sys.argv.index(name)\n return sys.argv[ind + 1]\n if reqd:\n raise MissingCommandLineArgException(name)\n return default_val\n",
"role": "user"
},
{
"content": "get_named_arg",
"role": "assistant"
}
] |
def x(recs):
headers = []
for rec in recs:
keys = list(rec.keys())
for key in keys:
if key not in headers:
headers.append(key)
for rec in recs:
for header in headers:
if header not in list(rec.keys()):
rec[header] = ''
return recs
|
merge_recs_headers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(recs):\n headers = []\n for rec in recs:\n keys = list(rec.keys())\n for key in keys:\n if key not in headers:\n headers.append(key)\n for rec in recs:\n for header in headers:\n if header not in list(rec.keys()):\n rec[header] = ''\n return recs\n",
"role": "user"
},
{
"content": "merge_recs_headers",
"role": "assistant"
}
] |
def x(fname, dir_path='.'):
if not fname:
return ''
file_dir_path, file_name = os.path.split(fname)
if not file_dir_path or file_dir_path == '.':
full_file = os.path.join(dir_path, fname)
else:
full_file = fname
return os.path.realpath(full_file)
|
resolve_file_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname, dir_path='.'):\n if not fname:\n return ''\n file_dir_path, file_name = os.path.split(fname)\n if not file_dir_path or file_dir_path == '.':\n full_file = os.path.join(dir_path, fname)\n else:\n full_file = fname\n return os.path.realpath(full_file)\n",
"role": "user"
},
{
"content": "resolve_file_name",
"role": "assistant"
}
] |
def x(val, key):
CheckDec = ['_dec', '_lon', '_azimuth', 'dip_direction']
adjust = False
for dec_key in CheckDec:
if dec_key in key:
if key.endswith(dec_key) or key.endswith('_'):
adjust = True
if not val:
return ''
elif not adjust:
return val
elif adjust:
new_val = float(val) % 360
if new_val != float(val):
print('-I- adjusted {} {} to 0=>360.: {}'.format(key, val, new_val)
)
return new_val
|
adjust_to_360
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(val, key):\n CheckDec = ['_dec', '_lon', '_azimuth', 'dip_direction']\n adjust = False\n for dec_key in CheckDec:\n if dec_key in key:\n if key.endswith(dec_key) or key.endswith('_'):\n adjust = True\n if not val:\n return ''\n elif not adjust:\n return val\n elif adjust:\n new_val = float(val) % 360\n if new_val != float(val):\n print('-I- adjusted {} {} to 0=>360.: {}'.format(key, val, new_val)\n )\n return new_val\n",
"role": "user"
},
{
"content": "adjust_to_360",
"role": "assistant"
}
] |
def x(dictionary):
for key in dictionary:
dictionary[key] = adjust_to_360(dictionary[key], key)
return dictionary
|
adjust_all_to_360
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dictionary):\n for key in dictionary:\n dictionary[key] = adjust_to_360(dictionary[key], key)\n return dictionary\n",
"role": "user"
},
{
"content": "adjust_all_to_360",
"role": "assistant"
}
] |
def x(date, lon_0=0, alt=0, file='', mod='cals10k', resolution='low'):
if resolution == 'low':
incr = 10
elif resolution == 'high':
incr = 2
if lon_0 == 180:
lon_0 = 179.99
if lon_0 > 180:
lon_0 = lon_0 - 360.0
lonmax = (lon_0 + 180.0) % 360 + incr
lonmin = lon_0 - 180.0
latmax = 90 + incr
lons = np.arange(lonmin, lonmax, incr)
lats = np.arange(-90, latmax, incr)
B = np.zeros((len(lats), len(lons)))
Binc = np.zeros((len(lats), len(lons)))
Bdec = np.zeros((len(lats), len(lons)))
Brad = np.zeros((len(lats), len(lons)))
if mod == 'custom' and file != '':
gh = []
lmgh = np.loadtxt(file).transpose()
gh.append(lmgh[2][0])
for i in range(1, lmgh.shape[1]):
gh.append(lmgh[2][i])
if lmgh[1][i] != 0:
gh.append(lmgh[3][i])
for j in range(len(lats)):
for i in range(len(lons)):
if mod == 'custom':
x, y, z, f = docustom(lons[i], lats[j], alt, gh)
else:
x, y, z, f = doigrf(lons[i], lats[j], alt, date, mod=mod,
file=file)
Dec, Inc, Int = cart2dir([x, y, z])
if mod != 'custom':
B[j][i] = Int * 0.001
else:
B[j][i] = Int
Binc[j][i] = Inc
if Dec > 180:
Dec = Dec - 360.0
Bdec[j][i] = Dec
if mod != 'custom':
Brad[j][i] = z * 0.001
else:
Brad[j][i] = z
return Bdec, Binc, B, Brad, lons, lats
|
do_mag_map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(date, lon_0=0, alt=0, file='', mod='cals10k', resolution='low'):\n if resolution == 'low':\n incr = 10\n elif resolution == 'high':\n incr = 2\n if lon_0 == 180:\n lon_0 = 179.99\n if lon_0 > 180:\n lon_0 = lon_0 - 360.0\n lonmax = (lon_0 + 180.0) % 360 + incr\n lonmin = lon_0 - 180.0\n latmax = 90 + incr\n lons = np.arange(lonmin, lonmax, incr)\n lats = np.arange(-90, latmax, incr)\n B = np.zeros((len(lats), len(lons)))\n Binc = np.zeros((len(lats), len(lons)))\n Bdec = np.zeros((len(lats), len(lons)))\n Brad = np.zeros((len(lats), len(lons)))\n if mod == 'custom' and file != '':\n gh = []\n lmgh = np.loadtxt(file).transpose()\n gh.append(lmgh[2][0])\n for i in range(1, lmgh.shape[1]):\n gh.append(lmgh[2][i])\n if lmgh[1][i] != 0:\n gh.append(lmgh[3][i])\n for j in range(len(lats)):\n for i in range(len(lons)):\n if mod == 'custom':\n x, y, z, f = docustom(lons[i], lats[j], alt, gh)\n else:\n x, y, z, f = doigrf(lons[i], lats[j], alt, date, mod=mod,\n file=file)\n Dec, Inc, Int = cart2dir([x, y, z])\n if mod != 'custom':\n B[j][i] = Int * 0.001\n else:\n B[j][i] = Int\n Binc[j][i] = Inc\n if Dec > 180:\n Dec = Dec - 360.0\n Bdec[j][i] = Dec\n if mod != 'custom':\n Brad[j][i] = z * 0.001\n else:\n Brad[j][i] = z\n return Bdec, Binc, B, Brad, lons, lats\n",
"role": "user"
},
{
"content": "do_mag_map",
"role": "assistant"
}
] |
def x(x, y, UP=False):
xp, yp = y, x
r = np.sqrt(xp ** 2 + yp ** 2)
z = 1.0 - r ** 2
t = np.arcsin(z)
if UP == 1:
t = -t
p = np.arctan2(yp, xp)
dec, inc = np.degrees(p) % 360, np.degrees(t)
return dec, inc
|
doeqdi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, UP=False):\n xp, yp = y, x\n r = np.sqrt(xp ** 2 + yp ** 2)\n z = 1.0 - r ** 2\n t = np.arcsin(z)\n if UP == 1:\n t = -t\n p = np.arctan2(yp, xp)\n dec, inc = np.degrees(p) % 360, np.degrees(t)\n return dec, inc\n",
"role": "user"
},
{
"content": "doeqdi",
"role": "assistant"
}
] |
def x(di_block):
ppars = doprinc(di_block)
di_df = pd.DataFrame(di_block)
di_df.columns = ['dec', 'inc']
di_df['pdec'] = ppars['dec']
di_df['pinc'] = ppars['inc']
di_df['angle'] = angle(di_df[['dec', 'inc']].values, di_df[['pdec',
'pinc']].values)
mode1_df = di_df[di_df['angle'] <= 90]
mode2_df = di_df[di_df['angle'] > 90]
mode1 = mode1_df[['dec', 'inc']].values.tolist()
mode2 = mode2_df[['dec', 'inc']].values.tolist()
return mode1, mode2
|
separate_directions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(di_block):\n ppars = doprinc(di_block)\n di_df = pd.DataFrame(di_block)\n di_df.columns = ['dec', 'inc']\n di_df['pdec'] = ppars['dec']\n di_df['pinc'] = ppars['inc']\n di_df['angle'] = angle(di_df[['dec', 'inc']].values, di_df[['pdec',\n 'pinc']].values)\n mode1_df = di_df[di_df['angle'] <= 90]\n mode2_df = di_df[di_df['angle'] > 90]\n mode1 = mode1_df[['dec', 'inc']].values.tolist()\n mode2 = mode2_df[['dec', 'inc']].values.tolist()\n return mode1, mode2\n",
"role": "user"
},
{
"content": "separate_directions",
"role": "assistant"
}
] |
def x(vgp_df):
vgp_df['delta'] = 90.0 - vgp_df['vgp_lat'].values
ASD = np.sqrt(np.sum(vgp_df.delta ** 2) / (vgp_df.shape[0] - 1))
A = 1.8 * ASD + 5.0
delta_max = vgp_df.delta.max()
while delta_max > A:
delta_max = vgp_df.delta.max()
if delta_max < A:
return vgp_df, A, ASD
vgp_df = vgp_df[vgp_df.delta < delta_max]
ASD = np.sqrt(np.sum(vgp_df.delta ** 2) / (vgp_df.shape[0] - 1))
A = 1.8 * ASD + 5.0
|
dovandamme
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vgp_df):\n vgp_df['delta'] = 90.0 - vgp_df['vgp_lat'].values\n ASD = np.sqrt(np.sum(vgp_df.delta ** 2) / (vgp_df.shape[0] - 1))\n A = 1.8 * ASD + 5.0\n delta_max = vgp_df.delta.max()\n while delta_max > A:\n delta_max = vgp_df.delta.max()\n if delta_max < A:\n return vgp_df, A, ASD\n vgp_df = vgp_df[vgp_df.delta < delta_max]\n ASD = np.sqrt(np.sum(vgp_df.delta ** 2) / (vgp_df.shape[0] - 1))\n A = 1.8 * ASD + 5.0\n",
"role": "user"
},
{
"content": "dovandamme",
"role": "assistant"
}
] |
def x(vgp_df, anti=0, rev=0, cutoff=180.0, kappa=0, n=0, spin=0, v=0, boot=
0, mm97=0, nb=1000):
vgp_df['delta'] = 90.0 - vgp_df.vgp_lat.values
vgp_df = vgp_df[vgp_df.delta <= cutoff]
vgp_df = vgp_df[vgp_df.dir_k >= kappa]
vgp_df = vgp_df[vgp_df.dir_n_samples >= n]
if spin:
Pvgps = vgp_df[['vgp_lon', 'vgp_lat']].values
ppars = doprinc(Pvgps)
Bdirs = np.full(Pvgps.shape[0], ppars['dec'] - 180.0)
Bdips = np.full(Pvgps.shape[0], 90.0 - ppars['inc'])
Pvgps = np.column_stack((Pvgps, Bdirs, Bdips))
lons, lats = dotilt_V(Pvgps)
vgp_df['vgp_lon'] = lons
vgp_df['vgp_lat'] = lats
vgp_df['delta'] = 90.0 - vgp_df.vgp_lat
if anti:
print('flipping reverse')
vgp_rev = vgp_df[vgp_df.vgp_lat < 0]
vgp_norm = vgp_df[vgp_df.vgp_lat >= 0]
vgp_anti = vgp_rev
vgp_anti['vgp_lat'] = -vgp_anti['vgp_lat']
vgp_anti['vgp_lon'] = (vgp_anti['vgp_lon'] - 180) % 360
vgp_df = pd.concat([vgp_norm, vgp_anti], sort=True)
if rev:
vgp_df = vgp_df[vgp_df.vgp_lat < 0]
if v:
vgp_df, cutoff, S_v = dovandamme(vgp_df)
S_B = get_sb_df(vgp_df, mm97=mm97)
N = vgp_df.shape[0]
SBs, low, high = [], 0, 0
if boot:
for i in range(nb):
bs_df = vgp_df.sample(n=N, replace=True)
Sb_bs = get_sb_df(bs_df)
SBs.append(Sb_bs)
SBs.sort()
low = SBs[int(0.025 * nb)]
high = SBs[int(0.975 * nb)]
return N, S_B, low, high, cutoff
|
scalc_vgp_df
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vgp_df, anti=0, rev=0, cutoff=180.0, kappa=0, n=0, spin=0, v=0, boot=\n 0, mm97=0, nb=1000):\n vgp_df['delta'] = 90.0 - vgp_df.vgp_lat.values\n vgp_df = vgp_df[vgp_df.delta <= cutoff]\n vgp_df = vgp_df[vgp_df.dir_k >= kappa]\n vgp_df = vgp_df[vgp_df.dir_n_samples >= n]\n if spin:\n Pvgps = vgp_df[['vgp_lon', 'vgp_lat']].values\n ppars = doprinc(Pvgps)\n Bdirs = np.full(Pvgps.shape[0], ppars['dec'] - 180.0)\n Bdips = np.full(Pvgps.shape[0], 90.0 - ppars['inc'])\n Pvgps = np.column_stack((Pvgps, Bdirs, Bdips))\n lons, lats = dotilt_V(Pvgps)\n vgp_df['vgp_lon'] = lons\n vgp_df['vgp_lat'] = lats\n vgp_df['delta'] = 90.0 - vgp_df.vgp_lat\n if anti:\n print('flipping reverse')\n vgp_rev = vgp_df[vgp_df.vgp_lat < 0]\n vgp_norm = vgp_df[vgp_df.vgp_lat >= 0]\n vgp_anti = vgp_rev\n vgp_anti['vgp_lat'] = -vgp_anti['vgp_lat']\n vgp_anti['vgp_lon'] = (vgp_anti['vgp_lon'] - 180) % 360\n vgp_df = pd.concat([vgp_norm, vgp_anti], sort=True)\n if rev:\n vgp_df = vgp_df[vgp_df.vgp_lat < 0]\n if v:\n vgp_df, cutoff, S_v = dovandamme(vgp_df)\n S_B = get_sb_df(vgp_df, mm97=mm97)\n N = vgp_df.shape[0]\n SBs, low, high = [], 0, 0\n if boot:\n for i in range(nb):\n bs_df = vgp_df.sample(n=N, replace=True)\n Sb_bs = get_sb_df(bs_df)\n SBs.append(Sb_bs)\n SBs.sort()\n low = SBs[int(0.025 * nb)]\n high = SBs[int(0.975 * nb)]\n return N, S_B, low, high, cutoff\n",
"role": "user"
},
{
"content": "scalc_vgp_df",
"role": "assistant"
}
] |
def x(DI1, DI2):
DI = np.concatenate((DI1, DI2), axis=0)
fpars = fisher_mean(DI)
fpars1 = fisher_mean(DI1)
fpars2 = fisher_mean(DI2)
N = fpars['n']
R = fpars['r']
R1 = fpars1['r']
R2 = fpars2['r']
F = (N - 2.0) * ((R1 + R2 - R) / (N - R1 - R2))
Fcrit = fcalc(2, 2 * (N - 2))
return F, Fcrit
|
watsons_f
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(DI1, DI2):\n DI = np.concatenate((DI1, DI2), axis=0)\n fpars = fisher_mean(DI)\n fpars1 = fisher_mean(DI1)\n fpars2 = fisher_mean(DI2)\n N = fpars['n']\n R = fpars['r']\n R1 = fpars1['r']\n R2 = fpars2['r']\n F = (N - 2.0) * ((R1 + R2 - R) / (N - R1 - R2))\n Fcrit = fcalc(2, 2 * (N - 2))\n return F, Fcrit\n",
"role": "user"
},
{
"content": "watsons_f",
"role": "assistant"
}
] |
def x(data, print_results=False):
pole_lat, pole_lon = bc02(data)
ExpDec, ExpInc = vgp_di(pole_lat, pole_lon, data[1], data[2])
paleo_lat = magnetic_lat(ExpInc)
if print_results:
print(' Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.')
print('%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f\n' % (data[3],
paleo_lat, ExpDec, ExpInc, pole_lat, pole_lon))
else:
return [data[3], paleo_lat, ExpDec, ExpInc, pole_lat, pole_lon]
|
apwp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, print_results=False):\n pole_lat, pole_lon = bc02(data)\n ExpDec, ExpInc = vgp_di(pole_lat, pole_lon, data[1], data[2])\n paleo_lat = magnetic_lat(ExpInc)\n if print_results:\n print(' Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.')\n print('%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f\\n' % (data[3],\n paleo_lat, ExpDec, ExpInc, pole_lat, pole_lon))\n else:\n return [data[3], paleo_lat, ExpDec, ExpInc, pole_lat, pole_lon]\n",
"role": "user"
},
{
"content": "apwp",
"role": "assistant"
}
] |
def x(Int, Top, start=100, outfile='chart.txt'):
low, k, iz = start, 0, 0
Tzero = []
f = open('chart.txt', 'w')
vline = ('\t%s\n' %
' | | | | | | | |')
hline = (
'______________________________________________________________________________\n'
)
f.write('file:_________________ field:___________uT\n\n\n')
f.write('%s\n' %
' date | run# | zone I | zone II | zone III | start | sp | cool|'
)
f.write(hline)
f.write('\t%s' % ' 0.0')
f.write(vline)
f.write(hline)
for k in range(len(Top)):
for t in range(low, Top[k] + Int[k], Int[k]):
if iz == 0:
Tzero.append(t)
f.write('%s \t %s' % ('Z', str(t) + '.' + str(iz)))
f.write(vline)
f.write(hline)
if len(Tzero) > 1:
f.write('%s \t %s' % ('P', str(Tzero[-2]) + '.' + str(2)))
f.write(vline)
f.write(hline)
iz = 1
f.write('%s \t %s' % ('I', str(t) + '.' + str(iz)))
f.write(vline)
f.write(hline)
elif iz == 1:
f.write('%s \t %s' % ('I', str(t) + '.' + str(iz)))
f.write(vline)
f.write(hline)
iz = 0
f.write('%s \t %s' % ('Z', str(t) + '.' + str(iz)))
f.write(vline)
f.write(hline)
try:
low = Top[k] + Int[k + 1]
except:
f.close()
print('output stored in: chart.txt')
|
chart_maker
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Int, Top, start=100, outfile='chart.txt'):\n low, k, iz = start, 0, 0\n Tzero = []\n f = open('chart.txt', 'w')\n vline = ('\\t%s\\n' %\n ' | | | | | | | |')\n hline = (\n '______________________________________________________________________________\\n'\n )\n f.write('file:_________________ field:___________uT\\n\\n\\n')\n f.write('%s\\n' %\n ' date | run# | zone I | zone II | zone III | start | sp | cool|'\n )\n f.write(hline)\n f.write('\\t%s' % ' 0.0')\n f.write(vline)\n f.write(hline)\n for k in range(len(Top)):\n for t in range(low, Top[k] + Int[k], Int[k]):\n if iz == 0:\n Tzero.append(t)\n f.write('%s \\t %s' % ('Z', str(t) + '.' + str(iz)))\n f.write(vline)\n f.write(hline)\n if len(Tzero) > 1:\n f.write('%s \\t %s' % ('P', str(Tzero[-2]) + '.' + str(2)))\n f.write(vline)\n f.write(hline)\n iz = 1\n f.write('%s \\t %s' % ('I', str(t) + '.' + str(iz)))\n f.write(vline)\n f.write(hline)\n elif iz == 1:\n f.write('%s \\t %s' % ('I', str(t) + '.' + str(iz)))\n f.write(vline)\n f.write(hline)\n iz = 0\n f.write('%s \\t %s' % ('Z', str(t) + '.' + str(iz)))\n f.write(vline)\n f.write(hline)\n try:\n low = Top[k] + Int[k + 1]\n except:\n f.close()\n print('output stored in: chart.txt')\n",
"role": "user"
},
{
"content": "chart_maker",
"role": "assistant"
}
] |
def x():
Basemap = None
has_basemap = True
has_cartopy = import_cartopy()[0]
try:
from mpl_toolkits.basemap import Basemap
WARNINGS['has_basemap'] = True
except ImportError:
has_basemap = False
if has_cartopy:
return has_basemap, False
if not WARNINGS['basemap']:
print(
"-W- You haven't installed a module for plotting maps (cartopy or Basemap)"
)
print(' Recommended: install cartopy. With conda:')
print(' conda install cartopy')
print(
' For more information, see http://earthref.org/PmagPy/Cookbook#getting_python'
)
except (KeyError, FileNotFoundError):
has_basemap = False
if has_cartopy:
return has_basemap, False
if not WARNINGS['basemap']:
print('-W- Basemap is installed but could not be imported.')
print(
' You are probably missing a required environment variable')
print(
' If you need to use Basemap, you will need to run this program or notebook in a conda env.'
)
print(
' For more on how to create a conda env, see: https://conda.io/docs/user-guide/tasks/manage-environments.html'
)
print(
' Recommended alternative: install cartopy for plotting maps. With conda:'
)
print(' conda install cartopy')
if has_basemap and not has_cartopy:
print('-W- You have installed Basemap but not cartopy.')
print(' In the future, Basemap will no longer be supported.')
print(' To continue to make maps, install using conda:')
print(' conda install cartopy')
WARNINGS['basemap'] = True
return has_basemap, Basemap
|
import_basemap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n Basemap = None\n has_basemap = True\n has_cartopy = import_cartopy()[0]\n try:\n from mpl_toolkits.basemap import Basemap\n WARNINGS['has_basemap'] = True\n except ImportError:\n has_basemap = False\n if has_cartopy:\n return has_basemap, False\n if not WARNINGS['basemap']:\n print(\n \"-W- You haven't installed a module for plotting maps (cartopy or Basemap)\"\n )\n print(' Recommended: install cartopy. With conda:')\n print(' conda install cartopy')\n print(\n ' For more information, see http://earthref.org/PmagPy/Cookbook#getting_python'\n )\n except (KeyError, FileNotFoundError):\n has_basemap = False\n if has_cartopy:\n return has_basemap, False\n if not WARNINGS['basemap']:\n print('-W- Basemap is installed but could not be imported.')\n print(\n ' You are probably missing a required environment variable')\n print(\n ' If you need to use Basemap, you will need to run this program or notebook in a conda env.'\n )\n print(\n ' For more on how to create a conda env, see: https://conda.io/docs/user-guide/tasks/manage-environments.html'\n )\n print(\n ' Recommended alternative: install cartopy for plotting maps. With conda:'\n )\n print(' conda install cartopy')\n if has_basemap and not has_cartopy:\n print('-W- You have installed Basemap but not cartopy.')\n print(' In the future, Basemap will no longer be supported.')\n print(' To continue to make maps, install using conda:')\n print(' conda install cartopy')\n WARNINGS['basemap'] = True\n return has_basemap, Basemap\n",
"role": "user"
},
{
"content": "import_basemap",
"role": "assistant"
}
] |
def x():
cartopy = None
has_cartopy = True
try:
import cartopy
WARNINGS['has_cartopy'] = True
except ImportError:
has_cartopy = False
if not WARNINGS['cartopy']:
print('-W- cartopy is not installed')
print(' If you want to make maps, install using conda:')
print(' conda install cartopy')
WARNINGS['cartopy'] = True
return has_cartopy, cartopy
|
import_cartopy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n cartopy = None\n has_cartopy = True\n try:\n import cartopy\n WARNINGS['has_cartopy'] = True\n except ImportError:\n has_cartopy = False\n if not WARNINGS['cartopy']:\n print('-W- cartopy is not installed')\n print(' If you want to make maps, install using conda:')\n print(' conda install cartopy')\n WARNINGS['cartopy'] = True\n return has_cartopy, cartopy\n",
"role": "user"
},
{
"content": "import_cartopy",
"role": "assistant"
}
] |
def x(age, age_unit):
ageBP = -1000000000.0
if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)':
if age < 0:
age = age + 1
ageBP = 1950 - age
elif age_unit == 'Years BP' or age_unit == 'Years Cal BP':
ageBP = age
elif age_unit == 'ka':
ageBP = age * 1000
elif age_unit == 'Ma':
ageBP = age * 1000000.0
elif age_unit == 'Ga':
ageBP = age * 1000000000.0
else:
print('Age unit invalid. Age set to -1.0e9')
return ageBP
|
age_to_BP
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(age, age_unit):\n ageBP = -1000000000.0\n if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)':\n if age < 0:\n age = age + 1\n ageBP = 1950 - age\n elif age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n ageBP = age\n elif age_unit == 'ka':\n ageBP = age * 1000\n elif age_unit == 'Ma':\n ageBP = age * 1000000.0\n elif age_unit == 'Ga':\n ageBP = age * 1000000000.0\n else:\n print('Age unit invalid. Age set to -1.0e9')\n return ageBP\n",
"role": "user"
},
{
"content": "age_to_BP",
"role": "assistant"
}
] |
def x(input_dir_path, output_dir_path):
if not input_dir_path:
input_dir_path = output_dir_path
input_dir_path = os.path.realpath(input_dir_path)
output_dir_path = os.path.realpath(output_dir_path)
return input_dir_path, output_dir_path
|
fix_directories
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_dir_path, output_dir_path):\n if not input_dir_path:\n input_dir_path = output_dir_path\n input_dir_path = os.path.realpath(input_dir_path)\n output_dir_path = os.path.realpath(output_dir_path)\n return input_dir_path, output_dir_path\n",
"role": "user"
},
{
"content": "fix_directories",
"role": "assistant"
}
] |
def x(magic_method_codes, geomagia_table):
codes = magic_method_codes
geomagia = geomagia_table.lower()
geomagia_code = '0'
if geomagia == 'alteration_monit_corr':
if 'DA-ALT-V' or 'LP-PI-ALT-PTRM' or 'LP-PI-ALT-PMRM' in codes:
geomagia_code = '1'
elif 'LP-PI-ALT-SUSC' in codes:
geomagia_code = '2'
elif 'DA-ALT-RS' or 'LP-PI-ALT-AFARM' in codes:
geomagia_code = '3'
elif 'LP-PI-ALT-WALTON' in codes:
geomagia_code = '4'
elif 'LP-PI-ALT-TANGUY' in codes:
geomagia_code = '5'
elif 'DA-ALT' in codes:
geomagia_code = '6'
elif 'LP-PI-ALT-FABIAN' in codes:
geomagia_code = '7'
if geomagia == 'md_checks':
if 'LT-PTRM-MD' in codes or 'LT-PMRM-MD' in codes:
geomagia_code = '1:'
if 'LP-PI-BT-LT' in codes or 'LT-LT-Z' in codes:
if '0' in geomagia_code:
geomagia_code = '23:'
else:
geomagia_code += '2:'
geomagia_code = geomagia_code[:-1]
if geomagia == 'anisotropy_correction':
if 'DA-AC-AMS' in codes:
geomagia_code = '1'
elif 'DA-AC-AARM' in codes:
geomagia_code = '2'
elif 'DA-AC-ATRM' in codes:
geomagia_code = '3'
elif 'LT-NRM-PAR' in codes:
geomagia_code = '4'
elif 'DA-AC-AIRM' in codes:
geomagia_code = '6'
elif 'DA-AC' in codes:
geomagia_code = '5'
if geomagia == 'cooling_rate':
if 'DA-CR' in codes:
geomagia_code = '1'
if 'DA-CR-EG' in codes:
geomagia_code = '2'
if geomagia == 'dm_methods':
if 'LP-DIR-AF' in codes:
geomagia_code = '1'
elif 'LT-AF-D' in codes:
geomagia_code = '1'
elif 'LT-AF-G' in codes:
geomagia_code = '1'
elif 'LT-AF-Z' in codes:
geomagia_code = '1'
elif 'LP-DIR-T' in codes:
geomagia_code = '2'
elif 'LT-AF-Z' in codes:
geomagia_code = '2'
elif 'LP-DIR-M' in codes:
geomagia_code = '5'
elif 'LT-M-Z' in codes:
geomagia_code = '5'
if geomagia == 'dm_analysis':
if 'DE-BFL' in codes:
geomagia_code = '1'
elif 'DE-BLANKET' in codes:
geomagia_code = '2'
elif 'DE-FM' in codes:
geomagia_code = '3'
elif 'DE-NRM' in codes:
geomagia_code = '6'
if geomagia == 'specimen_type_id':
if 'SC-TYPE-CYC' in codes:
geomagia_code = '1'
elif 'SC-TYPE-CUBE' in codes:
geomagia_code = '2'
elif 'SC-TYPE-MINI' in codes:
geomagia_code = '3'
elif 'SC-TYPE-SC' in codes:
geomagia_code = '4'
elif 'SC-TYPE-UC' in codes:
geomagia_code = '5'
elif 'SC-TYPE-LARGE' in codes:
geomagia_code = '6'
return geomagia_code
|
method_codes_to_geomagia
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(magic_method_codes, geomagia_table):\n codes = magic_method_codes\n geomagia = geomagia_table.lower()\n geomagia_code = '0'\n if geomagia == 'alteration_monit_corr':\n if 'DA-ALT-V' or 'LP-PI-ALT-PTRM' or 'LP-PI-ALT-PMRM' in codes:\n geomagia_code = '1'\n elif 'LP-PI-ALT-SUSC' in codes:\n geomagia_code = '2'\n elif 'DA-ALT-RS' or 'LP-PI-ALT-AFARM' in codes:\n geomagia_code = '3'\n elif 'LP-PI-ALT-WALTON' in codes:\n geomagia_code = '4'\n elif 'LP-PI-ALT-TANGUY' in codes:\n geomagia_code = '5'\n elif 'DA-ALT' in codes:\n geomagia_code = '6'\n elif 'LP-PI-ALT-FABIAN' in codes:\n geomagia_code = '7'\n if geomagia == 'md_checks':\n if 'LT-PTRM-MD' in codes or 'LT-PMRM-MD' in codes:\n geomagia_code = '1:'\n if 'LP-PI-BT-LT' in codes or 'LT-LT-Z' in codes:\n if '0' in geomagia_code:\n geomagia_code = '23:'\n else:\n geomagia_code += '2:'\n geomagia_code = geomagia_code[:-1]\n if geomagia == 'anisotropy_correction':\n if 'DA-AC-AMS' in codes:\n geomagia_code = '1'\n elif 'DA-AC-AARM' in codes:\n geomagia_code = '2'\n elif 'DA-AC-ATRM' in codes:\n geomagia_code = '3'\n elif 'LT-NRM-PAR' in codes:\n geomagia_code = '4'\n elif 'DA-AC-AIRM' in codes:\n geomagia_code = '6'\n elif 'DA-AC' in codes:\n geomagia_code = '5'\n if geomagia == 'cooling_rate':\n if 'DA-CR' in codes:\n geomagia_code = '1'\n if 'DA-CR-EG' in codes:\n geomagia_code = '2'\n if geomagia == 'dm_methods':\n if 'LP-DIR-AF' in codes:\n geomagia_code = '1'\n elif 'LT-AF-D' in codes:\n geomagia_code = '1'\n elif 'LT-AF-G' in codes:\n geomagia_code = '1'\n elif 'LT-AF-Z' in codes:\n geomagia_code = '1'\n elif 'LP-DIR-T' in codes:\n geomagia_code = '2'\n elif 'LT-AF-Z' in codes:\n geomagia_code = '2'\n elif 'LP-DIR-M' in codes:\n geomagia_code = '5'\n elif 'LT-M-Z' in codes:\n geomagia_code = '5'\n if geomagia == 'dm_analysis':\n if 'DE-BFL' in codes:\n geomagia_code = '1'\n elif 'DE-BLANKET' in codes:\n geomagia_code = '2'\n elif 'DE-FM' in codes:\n geomagia_code = '3'\n elif 'DE-NRM' in codes:\n geomagia_code = '6'\n if geomagia == 'specimen_type_id':\n if 'SC-TYPE-CYC' in codes:\n geomagia_code = '1'\n elif 'SC-TYPE-CUBE' in codes:\n geomagia_code = '2'\n elif 'SC-TYPE-MINI' in codes:\n geomagia_code = '3'\n elif 'SC-TYPE-SC' in codes:\n geomagia_code = '4'\n elif 'SC-TYPE-UC' in codes:\n geomagia_code = '5'\n elif 'SC-TYPE-LARGE' in codes:\n geomagia_code = '6'\n return geomagia_code\n",
"role": "user"
},
{
"content": "method_codes_to_geomagia",
"role": "assistant"
}
] |
def x():
noave = 0
methcode, inst = '', ''
phi, theta, peakfield, labfield = 0, 0, 0, 0
dec = [315, 225, 180, 135, 45, 90, 270, 270, 270, 90, 180, 180, 0, 0, 0]
inc = [0, 0, 0, 0, 0, -45, -45, 0, 45, 45, 45, -45, -90, -45, 45]
missing = 1
demag = 'N'
er_location_name = ''
citation = 'This study'
args = sys.argv
methcode = 'LP-NO'
trm = 0
irm = 0
dc = '0'
dir_path = '.'
meas_file = 'magic_measurements.txt'
user = ''
if '-WD' in args:
ind = args.index('-WD')
dir_path = args[ind + 1]
samp_file = dir_path + '/' + 'er_samples.txt'
if '-h' in args:
print(main.__doc__)
sys.exit()
if '-F' in args:
ind = args.index('-F')
meas_file = args[ind + 1]
if '-f' in args:
ind = args.index('-f')
mag_file = dir_path + '/' + args[ind + 1]
try:
input = open(mag_file, 'r')
except:
print('bad mag file name')
sys.exit()
else:
print('spn_file field is required option')
print(main.__doc__)
sys.exit()
vol = 1.05e-05
if '-V' in args:
ind = args.index('-V')
vol = float(args[ind + 1]) * 1e-06
if '-A' in args:
noave = 1
if '-LP' in args:
ind = args.index('-LP')
codelist = args[ind + 1]
codes = codelist.split(':')
if 'AF' in codes:
demag = 'AF'
methcode = 'LT-AF-Z'
if 'T' in codes:
demag = 'T'
methcode = 'LT-T-Z'
if 'I' in codes:
methcode = 'LP-IRM'
if 'A' in codes:
methcode = 'LT-AF-I'
dc = '%10.3e' % (0.001 * float(args[ind + 1]))
MagRecs = []
version_num = pmag.get_version()
meas_file = dir_path + '/' + meas_file
for line in input.readlines():
instcode = 'ODP-MSPN'
rec = line.split()
if len(rec) > 2 and 'Leg' not in line:
MagRec = {}
MagRec['er_expedition_name'] = rec[0]
MagRec['er_location_name'] = rec[1] + rec[2]
MagRec['er_specimen_name'] = rec[0] + '-' + 'U' + rec[1] + rec[2
].upper() + '-' + rec[3] + rec[4].upper() + '-' + rec[5
] + '-' + 'W' + '-' + rec[6]
MagRec['er_site_name'] = MagRec['er_specimen_name']
MagRec['er_sample_name'] = MagRec['er_specimen_name']
MagRec['magic_software_packages'] = version_num
MagRec['treatment_temp'] = '%8.3e' % 273
MagRec['measurement_temp'] = '%8.3e' % 273
MagRec['treatment_ac_field'] = '0'
MagRec['treatment_dc_field'] = dc
MagRec['treatment_dc_field_phi'] = '0'
MagRec['treatment_dc_field_theta'] = '0'
meas_type = 'LT-NO'
if float(rec[11]) == 0:
pass
elif demag == 'AF':
MagRec['treatment_ac_field'] = '%8.3e' % (float(rec[11]) *
0.001)
meas_type = 'LT-AF-Z'
MagRec['treatment_dc_field'] = '0'
else:
MagRec['treatment_temp'] = '%8.3e' % (float(rec[11]) + 273.0)
meas_type = 'LT-T-Z'
intens = 0.001 * float(rec[10]) * vol
MagRec['measurement_magn_moment'] = '%10.3e' % intens
MagRec['measurement_dec'] = rec[8]
MagRec['measurement_inc'] = rec[9]
MagRec['magic_instrument_codes'] = 'ODP-MSPN'
MagRec['er_analyst_mail_names'] = user
MagRec['er_citation_names'] = citation
MagRec['magic_method_codes'] = meas_type
MagRec['measurement_flag'] = 'g'
MagRec['measurement_csd'] = ''
MagRec['measurement_number'] = '1'
MagRecs.append(MagRec)
MagOuts = pmag.measurements_methods(MagRecs, noave)
pmag.magic_write(meas_file, MagOuts, 'magic_measurements')
print('results put in ', meas_file)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n noave = 0\n methcode, inst = '', ''\n phi, theta, peakfield, labfield = 0, 0, 0, 0\n dec = [315, 225, 180, 135, 45, 90, 270, 270, 270, 90, 180, 180, 0, 0, 0]\n inc = [0, 0, 0, 0, 0, -45, -45, 0, 45, 45, 45, -45, -90, -45, 45]\n missing = 1\n demag = 'N'\n er_location_name = ''\n citation = 'This study'\n args = sys.argv\n methcode = 'LP-NO'\n trm = 0\n irm = 0\n dc = '0'\n dir_path = '.'\n meas_file = 'magic_measurements.txt'\n user = ''\n if '-WD' in args:\n ind = args.index('-WD')\n dir_path = args[ind + 1]\n samp_file = dir_path + '/' + 'er_samples.txt'\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n if '-F' in args:\n ind = args.index('-F')\n meas_file = args[ind + 1]\n if '-f' in args:\n ind = args.index('-f')\n mag_file = dir_path + '/' + args[ind + 1]\n try:\n input = open(mag_file, 'r')\n except:\n print('bad mag file name')\n sys.exit()\n else:\n print('spn_file field is required option')\n print(main.__doc__)\n sys.exit()\n vol = 1.05e-05\n if '-V' in args:\n ind = args.index('-V')\n vol = float(args[ind + 1]) * 1e-06\n if '-A' in args:\n noave = 1\n if '-LP' in args:\n ind = args.index('-LP')\n codelist = args[ind + 1]\n codes = codelist.split(':')\n if 'AF' in codes:\n demag = 'AF'\n methcode = 'LT-AF-Z'\n if 'T' in codes:\n demag = 'T'\n methcode = 'LT-T-Z'\n if 'I' in codes:\n methcode = 'LP-IRM'\n if 'A' in codes:\n methcode = 'LT-AF-I'\n dc = '%10.3e' % (0.001 * float(args[ind + 1]))\n MagRecs = []\n version_num = pmag.get_version()\n meas_file = dir_path + '/' + meas_file\n for line in input.readlines():\n instcode = 'ODP-MSPN'\n rec = line.split()\n if len(rec) > 2 and 'Leg' not in line:\n MagRec = {}\n MagRec['er_expedition_name'] = rec[0]\n MagRec['er_location_name'] = rec[1] + rec[2]\n MagRec['er_specimen_name'] = rec[0] + '-' + 'U' + rec[1] + rec[2\n ].upper() + '-' + rec[3] + rec[4].upper() + '-' + rec[5\n ] + '-' + 'W' + '-' + rec[6]\n MagRec['er_site_name'] = MagRec['er_specimen_name']\n MagRec['er_sample_name'] = MagRec['er_specimen_name']\n MagRec['magic_software_packages'] = version_num\n MagRec['treatment_temp'] = '%8.3e' % 273\n MagRec['measurement_temp'] = '%8.3e' % 273\n MagRec['treatment_ac_field'] = '0'\n MagRec['treatment_dc_field'] = dc\n MagRec['treatment_dc_field_phi'] = '0'\n MagRec['treatment_dc_field_theta'] = '0'\n meas_type = 'LT-NO'\n if float(rec[11]) == 0:\n pass\n elif demag == 'AF':\n MagRec['treatment_ac_field'] = '%8.3e' % (float(rec[11]) * \n 0.001)\n meas_type = 'LT-AF-Z'\n MagRec['treatment_dc_field'] = '0'\n else:\n MagRec['treatment_temp'] = '%8.3e' % (float(rec[11]) + 273.0)\n meas_type = 'LT-T-Z'\n intens = 0.001 * float(rec[10]) * vol\n MagRec['measurement_magn_moment'] = '%10.3e' % intens\n MagRec['measurement_dec'] = rec[8]\n MagRec['measurement_inc'] = rec[9]\n MagRec['magic_instrument_codes'] = 'ODP-MSPN'\n MagRec['er_analyst_mail_names'] = user\n MagRec['er_citation_names'] = citation\n MagRec['magic_method_codes'] = meas_type\n MagRec['measurement_flag'] = 'g'\n MagRec['measurement_csd'] = ''\n MagRec['measurement_number'] = '1'\n MagRecs.append(MagRec)\n MagOuts = pmag.measurements_methods(MagRecs, noave)\n pmag.magic_write(meas_file, MagOuts, 'magic_measurements')\n print('results put in ', meas_file)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.