source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(julian_day, f): rad = old_div(np.pi, 180.0) d = julian_day - 2451545.0 + f L = 280.46 + 0.9856474 * d g = 357.528 + 0.9856003 * d L = L % 360.0 g = g % 360.0 lamb = L + 1.915 * np.sin(g * rad) + 0.02 * np.sin(2 * g * rad) epsilon = 23.439 - 4e-07 * d t = np.tan(old_div(epsilon * rad, 2)) ** 2 r = old_div(1, rad) rl = lamb * rad alpha = lamb - r * t * np.sin(2 * rl) + old_div(r, 2) * t * t * np.sin( 4 * rl) delta = np.sin(epsilon * rad) * np.sin(lamb * rad) delta = old_div(np.arcsin(delta), rad) eqt = L - alpha utm = f * 24 * 60 H = old_div(utm, 4) + eqt + 180 H = H % 360.0 return H, delta
gha
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(julian_day, f):\n rad = old_div(np.pi, 180.0)\n d = julian_day - 2451545.0 + f\n L = 280.46 + 0.9856474 * d\n g = 357.528 + 0.9856003 * d\n L = L % 360.0\n g = g % 360.0\n lamb = L + 1.915 * np.sin(g * rad) + 0.02 * np.sin(2 * g * rad)\n epsilon = 23.439 - 4e-07 * d\n t = np.tan(old_div(epsilon * rad, 2)) ** 2\n r = old_div(1, rad)\n rl = lamb * rad\n alpha = lamb - r * t * np.sin(2 * rl) + old_div(r, 2) * t * t * np.sin(\n 4 * rl)\n delta = np.sin(epsilon * rad) * np.sin(lamb * rad)\n delta = old_div(np.arcsin(delta), rad)\n eqt = L - alpha\n utm = f * 24 * 60\n H = old_div(utm, 4) + eqt + 180\n H = H % 360.0\n return H, delta\n", "role": "user" }, { "content": "gha", "role": "assistant" } ]
def x(mon, day, year): ig = 15 + 31 * (10 + 12 * 1582) if year == 0: print('Julian no can do') return if year < 0: year = year + 1 if mon > 2: julian_year = year julian_month = mon + 1 else: julian_year = year - 1 julian_month = mon + 13 j1 = int(365.25 * julian_year) j2 = int(30.6001 * julian_month) j3 = day + 1720995 julian_day = j1 + j2 + j3 if day + 31 * (mon + 12 * year) >= ig: jadj = int(0.01 * julian_year) julian_day = julian_day + 2 - jadj + int(0.25 * jadj) return julian_day
julian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mon, day, year):\n ig = 15 + 31 * (10 + 12 * 1582)\n if year == 0:\n print('Julian no can do')\n return\n if year < 0:\n year = year + 1\n if mon > 2:\n julian_year = year\n julian_month = mon + 1\n else:\n julian_year = year - 1\n julian_month = mon + 13\n j1 = int(365.25 * julian_year)\n j2 = int(30.6001 * julian_month)\n j3 = day + 1720995\n julian_day = j1 + j2 + j3\n if day + 31 * (mon + 12 * year) >= ig:\n jadj = int(0.01 * julian_year)\n julian_day = julian_day + 2 - jadj + int(0.25 * jadj)\n return julian_day\n", "role": "user" }, { "content": "julian", "role": "assistant" } ]
def x(Recs): keylist, OutRecs = [], [] for rec in Recs: for key in list(rec.keys()): if key not in keylist: keylist.append(key) for rec in Recs: for key in keylist: if key not in list(rec.keys()): rec[key] = '' OutRecs.append(rec) return OutRecs, keylist
fillkeys
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Recs):\n keylist, OutRecs = [], []\n for rec in Recs:\n for key in list(rec.keys()):\n if key not in keylist:\n keylist.append(key)\n for rec in Recs:\n for key in keylist:\n if key not in list(rec.keys()):\n rec[key] = ''\n OutRecs.append(rec)\n return OutRecs, keylist\n", "role": "user" }, { "content": "fillkeys", "role": "assistant" } ]
def x(data): R, Xbar, X, fpars = 0, [0, 0, 0], [], {} N = len(data) if N < 2: return fpars X = dir2cart(data) for i in range(len(X)): for c in range(3): Xbar[c] += X[i][c] for c in range(3): R += Xbar[c] ** 2 R = np.sqrt(R) for c in range(3): Xbar[c] = Xbar[c] / R dir = cart2dir(Xbar) fpars['dec'] = dir[0] fpars['inc'] = dir[1] fpars['n'] = N fpars['r'] = R if N != R: k = (N - 1.0) / (N - R) fpars['k'] = k csd = 81.0 / np.sqrt(k) else: fpars['k'] = 'inf' csd = 0.0 b = 20.0 ** (1.0 / (N - 1.0)) - 1 a = 1 - b * (N - R) / R if a < -1: a = -1 a95 = np.degrees(np.arccos(a)) fpars['alpha95'] = a95 fpars['csd'] = csd if a < 0: fpars['alpha95'] = 180.0 return fpars
fisher_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n R, Xbar, X, fpars = 0, [0, 0, 0], [], {}\n N = len(data)\n if N < 2:\n return fpars\n X = dir2cart(data)\n for i in range(len(X)):\n for c in range(3):\n Xbar[c] += X[i][c]\n for c in range(3):\n R += Xbar[c] ** 2\n R = np.sqrt(R)\n for c in range(3):\n Xbar[c] = Xbar[c] / R\n dir = cart2dir(Xbar)\n fpars['dec'] = dir[0]\n fpars['inc'] = dir[1]\n fpars['n'] = N\n fpars['r'] = R\n if N != R:\n k = (N - 1.0) / (N - R)\n fpars['k'] = k\n csd = 81.0 / np.sqrt(k)\n else:\n fpars['k'] = 'inf'\n csd = 0.0\n b = 20.0 ** (1.0 / (N - 1.0)) - 1\n a = 1 - b * (N - R) / R\n if a < -1:\n a = -1\n a95 = np.degrees(np.arccos(a))\n fpars['alpha95'] = a95\n fpars['csd'] = csd\n if a < 0:\n fpars['alpha95'] = 180.0\n return fpars\n", "role": "user" }, { "content": "fisher_mean", "role": "assistant" } ]
def x(data): N, mean, d = len(data), 0.0, 0.0 if N < 1: return '', '' if N == 1: return data[0], 0 for j in range(N): mean += old_div(data[j], float(N)) for j in range(N): d += (data[j] - mean) ** 2 stdev = np.sqrt(d * (1.0 / float(N - 1))) return mean, stdev
gausspars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n N, mean, d = len(data), 0.0, 0.0\n if N < 1:\n return '', ''\n if N == 1:\n return data[0], 0\n for j in range(N):\n mean += old_div(data[j], float(N))\n for j in range(N):\n d += (data[j] - mean) ** 2\n stdev = np.sqrt(d * (1.0 / float(N - 1)))\n return mean, stdev\n", "role": "user" }, { "content": "gausspars", "role": "assistant" } ]
def x(data): W, N, mean, d = 0, len(data), 0, 0 if N < 1: return '', '' if N == 1: return data[0][0], 0 for x in data: W += x[1] for x in data: mean += old_div(float(x[1]) * float(x[0]), float(W)) for x in data: d += old_div(float(x[1]), float(W)) * (float(x[0]) - mean) ** 2 stdev = np.sqrt(d * old_div(1.0, float(N - 1))) return mean, stdev
weighted_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n W, N, mean, d = 0, len(data), 0, 0\n if N < 1:\n return '', ''\n if N == 1:\n return data[0][0], 0\n for x in data:\n W += x[1]\n for x in data:\n mean += old_div(float(x[1]) * float(x[0]), float(W))\n for x in data:\n d += old_div(float(x[1]), float(W)) * (float(x[0]) - mean) ** 2\n stdev = np.sqrt(d * old_div(1.0, float(N - 1)))\n return mean, stdev\n", "role": "user" }, { "content": "weighted_mean", "role": "assistant" } ]
def x(data): FisherByPoles = {} DIblock, nameblock, locblock = [], [], [] for rec in data: if 'dec' in list(rec.keys()) and 'inc' in list(rec.keys()): DIblock.append([float(rec['dec']), float(rec['inc'])]) else: continue if 'name' in list(rec.keys()): nameblock.append(rec['name']) else: nameblock.append('') if 'loc' in list(rec.keys()): locblock.append(rec['loc']) else: locblock.append('') ppars = doprinc(np.array(DIblock)) reference_DI = [ppars['dec'], ppars['inc']] if reference_DI[0] > 90 and reference_DI[0] < 270: reference_DI[0] = (reference_DI[0] + 180.0) % 360 reference_DI[1] = reference_DI[1] * -1.0 nDIs, rDIs, all_DI, npars, rpars = [], [], [], [], [] nlist, rlist, alllist = '', '', '' nloclist, rloclist, allloclist = '', '', '' for k in range(len(DIblock)): if angle([DIblock[k][0], DIblock[k][1]], reference_DI) > 90.0: rDIs.append(DIblock[k]) rlist = rlist + ':' + nameblock[k] if locblock[k] not in rloclist: rloclist = rloclist + ':' + locblock[k] all_DI.append([(DIblock[k][0] + 180.0) % 360.0, -1.0 * DIblock[ k][1]]) alllist = alllist + ':' + nameblock[k] if locblock[k] not in allloclist: allloclist = allloclist + ':' + locblock[k] else: nDIs.append(DIblock[k]) nlist = nlist + ':' + nameblock[k] if locblock[k] not in nloclist: nloclist = nloclist + ':' + locblock[k] all_DI.append(DIblock[k]) alllist = alllist + ':' + nameblock[k] if locblock[k] not in allloclist: allloclist = allloclist + ':' + locblock[k] for mode in ['A', 'B', 'All']: if mode == 'A' and len(nDIs) > 2: fpars = fisher_mean(nDIs) fpars['sites'] = nlist.strip(':') fpars['locs'] = nloclist.strip(':') FisherByPoles[mode] = fpars elif mode == 'B' and len(rDIs) > 2: fpars = fisher_mean(rDIs) fpars['sites'] = rlist.strip(':') fpars['locs'] = rloclist.strip(':') FisherByPoles[mode] = fpars elif mode == 'All' and len(all_DI) > 2: fpars = fisher_mean(all_DI) fpars['sites'] = alllist.strip(':') fpars['locs'] = allloclist.strip(':') FisherByPoles[mode] = fpars return FisherByPoles
fisher_by_pol
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n FisherByPoles = {}\n DIblock, nameblock, locblock = [], [], []\n for rec in data:\n if 'dec' in list(rec.keys()) and 'inc' in list(rec.keys()):\n DIblock.append([float(rec['dec']), float(rec['inc'])])\n else:\n continue\n if 'name' in list(rec.keys()):\n nameblock.append(rec['name'])\n else:\n nameblock.append('')\n if 'loc' in list(rec.keys()):\n locblock.append(rec['loc'])\n else:\n locblock.append('')\n ppars = doprinc(np.array(DIblock))\n reference_DI = [ppars['dec'], ppars['inc']]\n if reference_DI[0] > 90 and reference_DI[0] < 270:\n reference_DI[0] = (reference_DI[0] + 180.0) % 360\n reference_DI[1] = reference_DI[1] * -1.0\n nDIs, rDIs, all_DI, npars, rpars = [], [], [], [], []\n nlist, rlist, alllist = '', '', ''\n nloclist, rloclist, allloclist = '', '', ''\n for k in range(len(DIblock)):\n if angle([DIblock[k][0], DIblock[k][1]], reference_DI) > 90.0:\n rDIs.append(DIblock[k])\n rlist = rlist + ':' + nameblock[k]\n if locblock[k] not in rloclist:\n rloclist = rloclist + ':' + locblock[k]\n all_DI.append([(DIblock[k][0] + 180.0) % 360.0, -1.0 * DIblock[\n k][1]])\n alllist = alllist + ':' + nameblock[k]\n if locblock[k] not in allloclist:\n allloclist = allloclist + ':' + locblock[k]\n else:\n nDIs.append(DIblock[k])\n nlist = nlist + ':' + nameblock[k]\n if locblock[k] not in nloclist:\n nloclist = nloclist + ':' + locblock[k]\n all_DI.append(DIblock[k])\n alllist = alllist + ':' + nameblock[k]\n if locblock[k] not in allloclist:\n allloclist = allloclist + ':' + locblock[k]\n for mode in ['A', 'B', 'All']:\n if mode == 'A' and len(nDIs) > 2:\n fpars = fisher_mean(nDIs)\n fpars['sites'] = nlist.strip(':')\n fpars['locs'] = nloclist.strip(':')\n FisherByPoles[mode] = fpars\n elif mode == 'B' and len(rDIs) > 2:\n fpars = fisher_mean(rDIs)\n fpars['sites'] = rlist.strip(':')\n fpars['locs'] = rloclist.strip(':')\n FisherByPoles[mode] = fpars\n elif mode == 'All' and len(all_DI) > 2:\n fpars = fisher_mean(all_DI)\n fpars['sites'] = alllist.strip(':')\n fpars['locs'] = allloclist.strip(':')\n FisherByPoles[mode] = fpars\n return FisherByPoles\n", "role": "user" }, { "content": "fisher_by_pol", "role": "assistant" } ]
def x(Data): if len(Data) == 0: print('This function requires input Data have at least 1 entry') return {} if len(Data) == 1: ReturnData = {} ReturnData['dec'] = Data[0]['dir_dec'] ReturnData['inc'] = Data[0]['dir_inc'] ReturnData['n_total'] = '1' if 'DE-BFP' in Data[0]['method_codes']: ReturnData['n_lines'] = '0' ReturnData['n_planes'] = '1' else: ReturnData['n_planes'] = '0' ReturnData['n_lines'] = '1' ReturnData['alpha95'] = '' ReturnData['R'] = '' ReturnData['K'] = '' return ReturnData else: LnpData = [] for n, d in enumerate(Data): LnpData.append({}) LnpData[n]['dec'] = d['dir_dec'] LnpData[n]['inc'] = d['dir_inc'] LnpData[n]['tilt_correction'] = d['dir_tilt_correction'] if 'method_codes' in list(d.keys()): if 'DE-BFP' in d['method_codes']: LnpData[n]['dir_type'] = 'p' else: LnpData[n]['dir_type'] = 'l' ReturnData = dolnp(LnpData, 'dir_type') return ReturnData
dolnp3_0
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Data):\n if len(Data) == 0:\n print('This function requires input Data have at least 1 entry')\n return {}\n if len(Data) == 1:\n ReturnData = {}\n ReturnData['dec'] = Data[0]['dir_dec']\n ReturnData['inc'] = Data[0]['dir_inc']\n ReturnData['n_total'] = '1'\n if 'DE-BFP' in Data[0]['method_codes']:\n ReturnData['n_lines'] = '0'\n ReturnData['n_planes'] = '1'\n else:\n ReturnData['n_planes'] = '0'\n ReturnData['n_lines'] = '1'\n ReturnData['alpha95'] = ''\n ReturnData['R'] = ''\n ReturnData['K'] = ''\n return ReturnData\n else:\n LnpData = []\n for n, d in enumerate(Data):\n LnpData.append({})\n LnpData[n]['dec'] = d['dir_dec']\n LnpData[n]['inc'] = d['dir_inc']\n LnpData[n]['tilt_correction'] = d['dir_tilt_correction']\n if 'method_codes' in list(d.keys()):\n if 'DE-BFP' in d['method_codes']:\n LnpData[n]['dir_type'] = 'p'\n else:\n LnpData[n]['dir_type'] = 'l'\n ReturnData = dolnp(LnpData, 'dir_type')\n return ReturnData\n", "role": "user" }, { "content": "dolnp3_0", "role": "assistant" } ]
def x(data, direction_type_key): if 'dir_dec' in data[0].keys(): tilt_key = 'dir_tilt_correction' else: tilt_key = 'tilt_correction' if tilt_key in list(data[0].keys()): tc = str(data[0][tilt_key]) else: tc = '-1' dirV = [0, 0, 0] fpars = {} fdata, n_lines, L, n_planes, E = process_data_for_mean(data, direction_type_key) V, XV = [], [] if n_planes != 0: if n_lines == 0: V = dir2cart([180.0, -45.0, 1.0]) else: R = np.sqrt(E[0] ** 2 + E[1] ** 2 + E[2] ** 2) for c in E: V.append(old_div(c, R)) XV = calculate_best_fit_vectors(L, E, V, n_planes) U = E[:] for dir in XV: for c in range(3): U[c] = U[c] + dir[c] R = np.sqrt(U[0] ** 2 + U[1] ** 2 + U[2] ** 2) for c in range(3): U[c] = old_div(U[c], R) dirV = cart2dir(U) n_total = n_lines + n_planes NP = n_lines + 0.5 * n_planes if NP < 1.1: NP = 1.1 if n_total - R != 0: K = old_div(NP - 1.0, n_total - R) fac = 20.0 ** old_div(1.0, NP - 1.0) - 1.0 fac = fac * (NP - 1.0) / K a = 1.0 - old_div(fac, R) a95 = a if abs(a) > 1.0: a95 = 1.0 if a < 0: a95 = -a95 a95 = np.arccos(a95) * 180.0 / np.pi else: a95 = 0.0 K = 'inf' else: fdir = fisher_mean(fdata) n_total, R, K, a95 = fdir['n'], fdir['r'], fdir['k'], fdir['alpha95'] dirV[0], dirV[1] = fdir['dec'], fdir['inc'] fpars['tilt_correction'] = tc fpars['n_total'] = '%i ' % n_total fpars['n_lines'] = '%i ' % n_lines fpars['n_planes'] = '%i ' % n_planes fpars['R'] = '%5.4f ' % R if K != 'inf': fpars['K'] = '%6.0f ' % K else: fpars['K'] = K fpars['alpha95'] = '%7.1f ' % a95 fpars['dec'] = '%7.1f ' % dirV[0] fpars['inc'] = '%7.1f ' % dirV[1] return fpars
dolnp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, direction_type_key):\n if 'dir_dec' in data[0].keys():\n tilt_key = 'dir_tilt_correction'\n else:\n tilt_key = 'tilt_correction'\n if tilt_key in list(data[0].keys()):\n tc = str(data[0][tilt_key])\n else:\n tc = '-1'\n dirV = [0, 0, 0]\n fpars = {}\n fdata, n_lines, L, n_planes, E = process_data_for_mean(data,\n direction_type_key)\n V, XV = [], []\n if n_planes != 0:\n if n_lines == 0:\n V = dir2cart([180.0, -45.0, 1.0])\n else:\n R = np.sqrt(E[0] ** 2 + E[1] ** 2 + E[2] ** 2)\n for c in E:\n V.append(old_div(c, R))\n XV = calculate_best_fit_vectors(L, E, V, n_planes)\n U = E[:]\n for dir in XV:\n for c in range(3):\n U[c] = U[c] + dir[c]\n R = np.sqrt(U[0] ** 2 + U[1] ** 2 + U[2] ** 2)\n for c in range(3):\n U[c] = old_div(U[c], R)\n dirV = cart2dir(U)\n n_total = n_lines + n_planes\n NP = n_lines + 0.5 * n_planes\n if NP < 1.1:\n NP = 1.1\n if n_total - R != 0:\n K = old_div(NP - 1.0, n_total - R)\n fac = 20.0 ** old_div(1.0, NP - 1.0) - 1.0\n fac = fac * (NP - 1.0) / K\n a = 1.0 - old_div(fac, R)\n a95 = a\n if abs(a) > 1.0:\n a95 = 1.0\n if a < 0:\n a95 = -a95\n a95 = np.arccos(a95) * 180.0 / np.pi\n else:\n a95 = 0.0\n K = 'inf'\n else:\n fdir = fisher_mean(fdata)\n n_total, R, K, a95 = fdir['n'], fdir['r'], fdir['k'], fdir['alpha95']\n dirV[0], dirV[1] = fdir['dec'], fdir['inc']\n fpars['tilt_correction'] = tc\n fpars['n_total'] = '%i ' % n_total\n fpars['n_lines'] = '%i ' % n_lines\n fpars['n_planes'] = '%i ' % n_planes\n fpars['R'] = '%5.4f ' % R\n if K != 'inf':\n fpars['K'] = '%6.0f ' % K\n else:\n fpars['K'] = K\n fpars['alpha95'] = '%7.1f ' % a95\n fpars['dec'] = '%7.1f ' % dirV[0]\n fpars['inc'] = '%7.1f ' % dirV[1]\n return fpars\n", "role": "user" }, { "content": "dolnp", "role": "assistant" } ]
def x(L, V): lam, X = 0, [] for k in range(3): lam = lam + V[k] * L[k] beta = np.sqrt(1.0 - lam ** 2) for k in range(3): X.append(old_div(V[k] - lam * L[k], beta)) return X
vclose
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(L, V):\n lam, X = 0, []\n for k in range(3):\n lam = lam + V[k] * L[k]\n beta = np.sqrt(1.0 - lam ** 2)\n for k in range(3):\n X.append(old_div(V[k] - lam * L[k], beta))\n return X\n", "role": "user" }, { "content": "vclose", "role": "assistant" } ]
def x(L, E, V, n_planes): U, XV = E[:], [] for pole in L: XV.append(vclose(pole, V)) for c in range(3): U[c] = U[c] + XV[-1][c] angle_tol = 1.0 while angle_tol > 0.1: angles = [] for k in range(n_planes): for c in range(3): U[c] = U[c] - XV[k][c] R = np.sqrt(U[0] ** 2 + U[1] ** 2 + U[2] ** 2) for c in range(3): V[c] = old_div(U[c], R) XX = vclose(L[k], V) ang = XX[0] * XV[k][0] + XX[1] * XV[k][1] + XX[2] * XV[k][2] angles.append(np.arccos(ang) * 180.0 / np.pi) for c in range(3): XV[k][c] = XX[c] U[c] = U[c] + XX[c] amax = -1 for ang in angles: if ang > amax: amax = ang angle_tol = amax return XV
calculate_best_fit_vectors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(L, E, V, n_planes):\n U, XV = E[:], []\n for pole in L:\n XV.append(vclose(pole, V))\n for c in range(3):\n U[c] = U[c] + XV[-1][c]\n angle_tol = 1.0\n while angle_tol > 0.1:\n angles = []\n for k in range(n_planes):\n for c in range(3):\n U[c] = U[c] - XV[k][c]\n R = np.sqrt(U[0] ** 2 + U[1] ** 2 + U[2] ** 2)\n for c in range(3):\n V[c] = old_div(U[c], R)\n XX = vclose(L[k], V)\n ang = XX[0] * XV[k][0] + XX[1] * XV[k][1] + XX[2] * XV[k][2]\n angles.append(np.arccos(ang) * 180.0 / np.pi)\n for c in range(3):\n XV[k][c] = XX[c]\n U[c] = U[c] + XX[c]\n amax = -1\n for ang in angles:\n if ang > amax:\n amax = ang\n angle_tol = amax\n return XV\n", "role": "user" }, { "content": "calculate_best_fit_vectors", "role": "assistant" } ]
def x(data, direction_type_key): dec_key, inc_key, meth_key = 'dec', 'inc', 'magic_method_codes' if 'dir_dec' in data[0].keys(): dec_key, inc_key, meth_key = 'dir_dec', 'dir_inc', 'method_codes' n_lines, n_planes = 0, 0 L, fdata = [], [] E = [0, 0, 0] for rec in data: cart = dir2cart([float(rec[dec_key]), float(rec[inc_key])])[0] if direction_type_key in list(rec.keys()): if rec[direction_type_key] == 'p': n_planes += 1 L.append(cart) else: n_lines += 1 fdata.append([float(rec[dec_key]), float(rec[inc_key]), 1.0]) E[0] += cart[0] E[1] += cart[1] E[2] += cart[2] elif 'method_codes' in list(rec.keys()): if 'DE-BFP' in rec[meth_key]: n_planes += 1 L.append(cart) else: n_lines += 1 fdata.append([rec[dec_key], rec[inc_key], 1.0]) E[0] += cart[0] E[1] += cart[1] E[2] += cart[2] elif meth_key in list(rec.keys()): if 'DE-BFP' in rec[meth_key]: n_planes += 1 L.append(cart) else: n_lines += 1 fdata.append([rec[dec_key], rec[inc_key], 1.0]) E[0] += cart[0] E[1] += cart[1] E[2] += cart[2] else: n_lines += 1 fdata.append([rec[dec_key], rec[inc_key], 1.0]) E[0] += cart[0] E[1] += cart[1] E[2] += cart[2] return fdata, n_lines, L, n_planes, E
process_data_for_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, direction_type_key):\n dec_key, inc_key, meth_key = 'dec', 'inc', 'magic_method_codes'\n if 'dir_dec' in data[0].keys():\n dec_key, inc_key, meth_key = 'dir_dec', 'dir_inc', 'method_codes'\n n_lines, n_planes = 0, 0\n L, fdata = [], []\n E = [0, 0, 0]\n for rec in data:\n cart = dir2cart([float(rec[dec_key]), float(rec[inc_key])])[0]\n if direction_type_key in list(rec.keys()):\n if rec[direction_type_key] == 'p':\n n_planes += 1\n L.append(cart)\n else:\n n_lines += 1\n fdata.append([float(rec[dec_key]), float(rec[inc_key]), 1.0])\n E[0] += cart[0]\n E[1] += cart[1]\n E[2] += cart[2]\n elif 'method_codes' in list(rec.keys()):\n if 'DE-BFP' in rec[meth_key]:\n n_planes += 1\n L.append(cart)\n else:\n n_lines += 1\n fdata.append([rec[dec_key], rec[inc_key], 1.0])\n E[0] += cart[0]\n E[1] += cart[1]\n E[2] += cart[2]\n elif meth_key in list(rec.keys()):\n if 'DE-BFP' in rec[meth_key]:\n n_planes += 1\n L.append(cart)\n else:\n n_lines += 1\n fdata.append([rec[dec_key], rec[inc_key], 1.0])\n E[0] += cart[0]\n E[1] += cart[1]\n E[2] += cart[2]\n else:\n n_lines += 1\n fdata.append([rec[dec_key], rec[inc_key], 1.0])\n E[0] += cart[0]\n E[1] += cart[1]\n E[2] += cart[2]\n return fdata, n_lines, L, n_planes, E\n", "role": "user" }, { "content": "process_data_for_mean", "role": "assistant" } ]
def x(B, lat): fact = 6371000.0 ** 3 * 10000000.0 colat = np.radians(90.0 - lat) return fact * B / np.sqrt(1 + 3 * np.cos(colat) ** 2)
b_vdm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(B, lat):\n fact = 6371000.0 ** 3 * 10000000.0\n colat = np.radians(90.0 - lat)\n return fact * B / np.sqrt(1 + 3 * np.cos(colat) ** 2)\n", "role": "user" }, { "content": "b_vdm", "role": "assistant" } ]
def x(vdm, lat): rad = old_div(np.pi, 180.0) fact = 6371000.0 ** 3 * 10000000.0 colat = (90.0 - lat) * rad return vdm * np.sqrt(1 + 3 * np.cos(colat) ** 2) / fact
vdm_b
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vdm, lat):\n rad = old_div(np.pi, 180.0)\n fact = 6371000.0 ** 3 * 10000000.0\n colat = (90.0 - lat) * rad\n return vdm * np.sqrt(1 + 3 * np.cos(colat) ** 2) / fact\n", "role": "user" }, { "content": "vdm_b", "role": "assistant" } ]
def x(data, file): f = open(file, 'w') data.sort() for j in range(len(data)): y = old_div(float(j), float(len(data))) out = str(data[j]) + ' ' + str(y) + '\n' f.write(out) f.close()
cdfout
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, file):\n f = open(file, 'w')\n data.sort()\n for j in range(len(data)):\n y = old_div(float(j), float(len(data)))\n out = str(data[j]) + ' ' + str(y) + '\\n'\n f.write(out)\n f.close()\n", "role": "user" }, { "content": "cdfout", "role": "assistant" } ]
def x(di_block): control, X, bpars = [], [], {} N = len(di_block) if N < 2: return bpars for rec in di_block: X.append(dir2cart([rec[0], rec[1], 1.0])) T = np.array(Tmatrix(X)) t, V = tauV(T) w1, w2, w3 = t[2], t[1], t[0] k1, k2 = binglookup(w1, w2) PDir = cart2dir(V[0]) EDir = cart2dir(V[1]) ZDir = cart2dir(V[2]) if PDir[1] < 0: PDir[0] += 180.0 PDir[1] = -PDir[1] PDir[0] = PDir[0] % 360.0 bpars['dec'] = PDir[0] bpars['inc'] = PDir[1] bpars['Edec'] = EDir[0] bpars['Einc'] = EDir[1] bpars['Zdec'] = ZDir[0] bpars['Zinc'] = ZDir[1] bpars['n'] = N fac1, fac2 = -2 * N * k1 * (w3 - w1), -2 * N * k2 * (w3 - w2) sig31, sig32 = np.sqrt(old_div(1.0, fac1)), np.sqrt(old_div(1.0, fac2)) bpars['Zeta'], bpars['Eta' ] = 2.45 * sig31 * 180.0 / np.pi, 2.45 * sig32 * 180.0 / np.pi return bpars
dobingham
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(di_block):\n control, X, bpars = [], [], {}\n N = len(di_block)\n if N < 2:\n return bpars\n for rec in di_block:\n X.append(dir2cart([rec[0], rec[1], 1.0]))\n T = np.array(Tmatrix(X))\n t, V = tauV(T)\n w1, w2, w3 = t[2], t[1], t[0]\n k1, k2 = binglookup(w1, w2)\n PDir = cart2dir(V[0])\n EDir = cart2dir(V[1])\n ZDir = cart2dir(V[2])\n if PDir[1] < 0:\n PDir[0] += 180.0\n PDir[1] = -PDir[1]\n PDir[0] = PDir[0] % 360.0\n bpars['dec'] = PDir[0]\n bpars['inc'] = PDir[1]\n bpars['Edec'] = EDir[0]\n bpars['Einc'] = EDir[1]\n bpars['Zdec'] = ZDir[0]\n bpars['Zinc'] = ZDir[1]\n bpars['n'] = N\n fac1, fac2 = -2 * N * k1 * (w3 - w1), -2 * N * k2 * (w3 - w2)\n sig31, sig32 = np.sqrt(old_div(1.0, fac1)), np.sqrt(old_div(1.0, fac2))\n bpars['Zeta'], bpars['Eta'\n ] = 2.45 * sig31 * 180.0 / np.pi, 2.45 * sig32 * 180.0 / np.pi\n return bpars\n", "role": "user" }, { "content": "dobingham", "role": "assistant" } ]
def x(dec, inc): if inc < 0: inc = -inc dec = (dec + 180.0) % 360.0 return dec, inc
doflip
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec, inc):\n if inc < 0:\n inc = -inc\n dec = (dec + 180.0) % 360.0\n return dec, inc\n", "role": "user" }, { "content": "doflip", "role": "assistant" } ]
def x(inc): rad, SCOi, SSOi = old_div(np.pi, 180.0), 0.0, 0.0 abinc = [] for i in inc: abinc.append(abs(i)) MI, std = gausspars(abinc) fpars = {} N = len(inc) fpars['n'] = N fpars['ginc'] = MI if MI < 30: fpars['inc'] = MI fpars['k'] = 0 fpars['alpha95'] = 0 fpars['csd'] = 0 fpars['r'] = 0 print('WARNING: mean inc < 30, returning gaussian mean') return fpars for i in inc: coinc = (90.0 - abs(i)) * rad SCOi += np.cos(coinc) SSOi += np.sin(coinc) Oo = (90.0 - MI) * rad SCFlag = -1 epsilon = float(N) * np.cos(Oo) epsilon += (np.sin(Oo) ** 2 - np.cos(Oo) ** 2) * SCOi epsilon -= 2.0 * np.sin(Oo) * np.cos(Oo) * SSOi while SCFlag < 0: if MI > 0: Oo -= 0.01 * rad if MI < 0: Oo += 0.01 * rad prev = epsilon epsilon = float(N) * np.cos(Oo) epsilon += (np.sin(Oo) ** 2.0 - np.cos(Oo) ** 2.0) * SCOi epsilon -= 2.0 * np.sin(Oo) * np.cos(Oo) * SSOi if abs(epsilon) > abs(prev): MI = -1 * MI if epsilon * prev < 0: SCFlag = 1 S, C = 0.0, 0.0 for i in inc: coinc = (90.0 - abs(i)) * rad S += np.sin(Oo - coinc) C += np.cos(Oo - coinc) k = old_div(N - 1.0, 2.0 * (N - C)) Imle = 90.0 - old_div(Oo, rad) fpars['inc'] = Imle fpars['r'], R = 2.0 * C - N, 2 * C - N fpars['k'] = k f = fcalc(2, N - 1) a95 = 1.0 - 0.5 * old_div(S, C) ** 2 - old_div(f, 2.0 * C * k) csd = old_div(81.0, np.sqrt(k)) fpars['alpha95'] = a95 fpars['csd'] = csd return fpars
doincfish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inc):\n rad, SCOi, SSOi = old_div(np.pi, 180.0), 0.0, 0.0\n abinc = []\n for i in inc:\n abinc.append(abs(i))\n MI, std = gausspars(abinc)\n fpars = {}\n N = len(inc)\n fpars['n'] = N\n fpars['ginc'] = MI\n if MI < 30:\n fpars['inc'] = MI\n fpars['k'] = 0\n fpars['alpha95'] = 0\n fpars['csd'] = 0\n fpars['r'] = 0\n print('WARNING: mean inc < 30, returning gaussian mean')\n return fpars\n for i in inc:\n coinc = (90.0 - abs(i)) * rad\n SCOi += np.cos(coinc)\n SSOi += np.sin(coinc)\n Oo = (90.0 - MI) * rad\n SCFlag = -1\n epsilon = float(N) * np.cos(Oo)\n epsilon += (np.sin(Oo) ** 2 - np.cos(Oo) ** 2) * SCOi\n epsilon -= 2.0 * np.sin(Oo) * np.cos(Oo) * SSOi\n while SCFlag < 0:\n if MI > 0:\n Oo -= 0.01 * rad\n if MI < 0:\n Oo += 0.01 * rad\n prev = epsilon\n epsilon = float(N) * np.cos(Oo)\n epsilon += (np.sin(Oo) ** 2.0 - np.cos(Oo) ** 2.0) * SCOi\n epsilon -= 2.0 * np.sin(Oo) * np.cos(Oo) * SSOi\n if abs(epsilon) > abs(prev):\n MI = -1 * MI\n if epsilon * prev < 0:\n SCFlag = 1\n S, C = 0.0, 0.0\n for i in inc:\n coinc = (90.0 - abs(i)) * rad\n S += np.sin(Oo - coinc)\n C += np.cos(Oo - coinc)\n k = old_div(N - 1.0, 2.0 * (N - C))\n Imle = 90.0 - old_div(Oo, rad)\n fpars['inc'] = Imle\n fpars['r'], R = 2.0 * C - N, 2 * C - N\n fpars['k'] = k\n f = fcalc(2, N - 1)\n a95 = 1.0 - 0.5 * old_div(S, C) ** 2 - old_div(f, 2.0 * C * k)\n csd = old_div(81.0, np.sqrt(k))\n fpars['alpha95'] = a95\n fpars['csd'] = csd\n return fpars\n", "role": "user" }, { "content": "doincfish", "role": "assistant" } ]
def x(data, NN): X, kpars = [], {} N = len(data) if N < 2: return kpars fpars = fisher_mean(data) pbar = fpars['dec'] * np.pi / 180.0 tbar = (90.0 - fpars['inc']) * np.pi / 180.0 H = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] w = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] b = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] gam = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] xg = [] H = [[np.cos(tbar) * np.cos(pbar), -np.sin(pbar), np.sin(tbar) * np.cos (pbar)], [np.cos(tbar) * np.sin(pbar), np.cos(pbar), np.sin(pbar) * np.sin(tbar)], [-np.sin(tbar), 0.0, np.cos(tbar)]] for rec in data: X.append(dir2cart([rec[0], rec[1], 1.0])) T = Tmatrix(X) for i in range(3): for j in range(3): T[i][j] = old_div(T[i][j], float(NN)) for i in range(3): for j in range(3): for k in range(3): w[i][j] += T[i][k] * H[k][j] for i in range(3): for j in range(3): for k in range(3): b[i][j] += H[k][i] * w[k][j] psi = 0.5 * np.arctan(2.0 * b[0][1] / (b[0][0] - b[1][1])) w = [[np.cos(psi), -np.sin(psi), 0], [np.sin(psi), np.cos(psi), 0], [ 0.0, 0.0, 1.0]] for i in range(3): for j in range(3): gamtmp = 0.0 for k in range(3): gamtmp += H[i][k] * w[k][j] gam[i][j] = gamtmp for i in range(N): xg.append([0.0, 0.0, 0.0]) for k in range(3): xgtmp = 0.0 for j in range(3): xgtmp += gam[j][k] * X[i][j] xg[i][k] = xgtmp xmu, sigma1, sigma2 = 0.0, 0.0, 0.0 for i in range(N): xmu += xg[i][2] sigma1 = sigma1 + xg[i][0] ** 2 sigma2 = sigma2 + xg[i][1] ** 2 xmu = old_div(xmu, float(N)) sigma1 = old_div(sigma1, float(N)) sigma2 = old_div(sigma2, float(N)) g = -2.0 * np.log(0.05) / (float(NN) * xmu ** 2) if np.sqrt(sigma1 * g) < 1: eta = np.arcsin(np.sqrt(sigma1 * g)) if np.sqrt(sigma2 * g) < 1: zeta = np.arcsin(np.sqrt(sigma2 * g)) if np.sqrt(sigma1 * g) >= 1.0: eta = old_div(np.pi, 2.0) if np.sqrt(sigma2 * g) >= 1.0: zeta = old_div(np.pi, 2.0) kpars['dec'] = fpars['dec'] kpars['inc'] = fpars['inc'] kpars['n'] = NN ZDir = cart2dir([gam[0][1], gam[1][1], gam[2][1]]) EDir = cart2dir([gam[0][0], gam[1][0], gam[2][0]]) kpars['Zdec'] = ZDir[0] kpars['Zinc'] = ZDir[1] kpars['Edec'] = EDir[0] kpars['Einc'] = EDir[1] if kpars['Zinc'] < 0: kpars['Zinc'] = -kpars['Zinc'] kpars['Zdec'] = (kpars['Zdec'] + 180.0) % 360.0 if kpars['Einc'] < 0: kpars['Einc'] = -kpars['Einc'] kpars['Edec'] = (kpars['Edec'] + 180.0) % 360.0 kpars['Zeta'] = zeta * 180.0 / np.pi kpars['Eta'] = eta * 180.0 / np.pi return kpars
dokent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, NN):\n X, kpars = [], {}\n N = len(data)\n if N < 2:\n return kpars\n fpars = fisher_mean(data)\n pbar = fpars['dec'] * np.pi / 180.0\n tbar = (90.0 - fpars['inc']) * np.pi / 180.0\n H = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n w = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n b = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n gam = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n xg = []\n H = [[np.cos(tbar) * np.cos(pbar), -np.sin(pbar), np.sin(tbar) * np.cos\n (pbar)], [np.cos(tbar) * np.sin(pbar), np.cos(pbar), np.sin(pbar) *\n np.sin(tbar)], [-np.sin(tbar), 0.0, np.cos(tbar)]]\n for rec in data:\n X.append(dir2cart([rec[0], rec[1], 1.0]))\n T = Tmatrix(X)\n for i in range(3):\n for j in range(3):\n T[i][j] = old_div(T[i][j], float(NN))\n for i in range(3):\n for j in range(3):\n for k in range(3):\n w[i][j] += T[i][k] * H[k][j]\n for i in range(3):\n for j in range(3):\n for k in range(3):\n b[i][j] += H[k][i] * w[k][j]\n psi = 0.5 * np.arctan(2.0 * b[0][1] / (b[0][0] - b[1][1]))\n w = [[np.cos(psi), -np.sin(psi), 0], [np.sin(psi), np.cos(psi), 0], [\n 0.0, 0.0, 1.0]]\n for i in range(3):\n for j in range(3):\n gamtmp = 0.0\n for k in range(3):\n gamtmp += H[i][k] * w[k][j]\n gam[i][j] = gamtmp\n for i in range(N):\n xg.append([0.0, 0.0, 0.0])\n for k in range(3):\n xgtmp = 0.0\n for j in range(3):\n xgtmp += gam[j][k] * X[i][j]\n xg[i][k] = xgtmp\n xmu, sigma1, sigma2 = 0.0, 0.0, 0.0\n for i in range(N):\n xmu += xg[i][2]\n sigma1 = sigma1 + xg[i][0] ** 2\n sigma2 = sigma2 + xg[i][1] ** 2\n xmu = old_div(xmu, float(N))\n sigma1 = old_div(sigma1, float(N))\n sigma2 = old_div(sigma2, float(N))\n g = -2.0 * np.log(0.05) / (float(NN) * xmu ** 2)\n if np.sqrt(sigma1 * g) < 1:\n eta = np.arcsin(np.sqrt(sigma1 * g))\n if np.sqrt(sigma2 * g) < 1:\n zeta = np.arcsin(np.sqrt(sigma2 * g))\n if np.sqrt(sigma1 * g) >= 1.0:\n eta = old_div(np.pi, 2.0)\n if np.sqrt(sigma2 * g) >= 1.0:\n zeta = old_div(np.pi, 2.0)\n kpars['dec'] = fpars['dec']\n kpars['inc'] = fpars['inc']\n kpars['n'] = NN\n ZDir = cart2dir([gam[0][1], gam[1][1], gam[2][1]])\n EDir = cart2dir([gam[0][0], gam[1][0], gam[2][0]])\n kpars['Zdec'] = ZDir[0]\n kpars['Zinc'] = ZDir[1]\n kpars['Edec'] = EDir[0]\n kpars['Einc'] = EDir[1]\n if kpars['Zinc'] < 0:\n kpars['Zinc'] = -kpars['Zinc']\n kpars['Zdec'] = (kpars['Zdec'] + 180.0) % 360.0\n if kpars['Einc'] < 0:\n kpars['Einc'] = -kpars['Einc']\n kpars['Edec'] = (kpars['Edec'] + 180.0) % 360.0\n kpars['Zeta'] = zeta * 180.0 / np.pi\n kpars['Eta'] = eta * 180.0 / np.pi\n return kpars\n", "role": "user" }, { "content": "dokent", "role": "assistant" } ]
def x(data): ppars = {} rad = old_div(np.pi, 180.0) X = dir2cart(data) T = np.array(Tmatrix(X)) t, V = tauV(T) Pdir = cart2dir(V[0]) ppars['Edir'] = cart2dir(V[1]) dec, inc = doflip(Pdir[0], Pdir[1]) ppars['dec'] = dec ppars['inc'] = inc ppars['N'] = len(data) ppars['tau1'] = t[0] ppars['tau2'] = t[1] ppars['tau3'] = t[2] Pdir = cart2dir(V[1]) dec, inc = doflip(Pdir[0], Pdir[1]) ppars['V2dec'] = dec ppars['V2inc'] = inc Pdir = cart2dir(V[2]) dec, inc = doflip(Pdir[0], Pdir[1]) ppars['V3dec'] = dec ppars['V3inc'] = inc return ppars
doprinc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n ppars = {}\n rad = old_div(np.pi, 180.0)\n X = dir2cart(data)\n T = np.array(Tmatrix(X))\n t, V = tauV(T)\n Pdir = cart2dir(V[0])\n ppars['Edir'] = cart2dir(V[1])\n dec, inc = doflip(Pdir[0], Pdir[1])\n ppars['dec'] = dec\n ppars['inc'] = inc\n ppars['N'] = len(data)\n ppars['tau1'] = t[0]\n ppars['tau2'] = t[1]\n ppars['tau3'] = t[2]\n Pdir = cart2dir(V[1])\n dec, inc = doflip(Pdir[0], Pdir[1])\n ppars['V2dec'] = dec\n ppars['V2inc'] = inc\n Pdir = cart2dir(V[2])\n dec, inc = doflip(Pdir[0], Pdir[1])\n ppars['V3dec'] = dec\n ppars['V3inc'] = inc\n return ppars\n", "role": "user" }, { "content": "doprinc", "role": "assistant" } ]
def x(EP, Lats, Lons): E = dir2cart([EP[1], EP[0], 1.0]) omega = EP[2] * np.pi / 180.0 RLats, RLons = [], [] for k in range(len(Lats)): if Lats[k] <= 90.0: A = dir2cart([Lons[k], Lats[k], 1.0]) R = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] R[0][0] = E[0] * E[0] * (1 - np.cos(omega)) + np.cos(omega) R[0][1] = E[0] * E[1] * (1 - np.cos(omega)) - E[2] * np.sin(omega) R[0][2] = E[0] * E[2] * (1 - np.cos(omega)) + E[1] * np.sin(omega) R[1][0] = E[1] * E[0] * (1 - np.cos(omega)) + E[2] * np.sin(omega) R[1][1] = E[1] * E[1] * (1 - np.cos(omega)) + np.cos(omega) R[1][2] = E[1] * E[2] * (1 - np.cos(omega)) - E[0] * np.sin(omega) R[2][0] = E[2] * E[0] * (1 - np.cos(omega)) - E[1] * np.sin(omega) R[2][1] = E[2] * E[1] * (1 - np.cos(omega)) + E[0] * np.sin(omega) R[2][2] = E[2] * E[2] * (1 - np.cos(omega)) + np.cos(omega) Ap = [0, 0, 0] for i in range(3): for j in range(3): Ap[i] += R[i][j] * A[j] Prot = cart2dir(Ap) RLats.append(Prot[1]) RLons.append(Prot[0]) else: RLats.append(Lats[k]) RLons.append(Lons[k]) return RLats, RLons
pt_rot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(EP, Lats, Lons):\n E = dir2cart([EP[1], EP[0], 1.0])\n omega = EP[2] * np.pi / 180.0\n RLats, RLons = [], []\n for k in range(len(Lats)):\n if Lats[k] <= 90.0:\n A = dir2cart([Lons[k], Lats[k], 1.0])\n R = [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]\n R[0][0] = E[0] * E[0] * (1 - np.cos(omega)) + np.cos(omega)\n R[0][1] = E[0] * E[1] * (1 - np.cos(omega)) - E[2] * np.sin(omega)\n R[0][2] = E[0] * E[2] * (1 - np.cos(omega)) + E[1] * np.sin(omega)\n R[1][0] = E[1] * E[0] * (1 - np.cos(omega)) + E[2] * np.sin(omega)\n R[1][1] = E[1] * E[1] * (1 - np.cos(omega)) + np.cos(omega)\n R[1][2] = E[1] * E[2] * (1 - np.cos(omega)) - E[0] * np.sin(omega)\n R[2][0] = E[2] * E[0] * (1 - np.cos(omega)) - E[1] * np.sin(omega)\n R[2][1] = E[2] * E[1] * (1 - np.cos(omega)) + E[0] * np.sin(omega)\n R[2][2] = E[2] * E[2] * (1 - np.cos(omega)) + np.cos(omega)\n Ap = [0, 0, 0]\n for i in range(3):\n for j in range(3):\n Ap[i] += R[i][j] * A[j]\n Prot = cart2dir(Ap)\n RLats.append(Prot[1])\n RLons.append(Prot[0])\n else:\n RLats.append(Lats[k])\n RLons.append(Lons[k])\n return RLats, RLons\n", "role": "user" }, { "content": "pt_rot", "role": "assistant" } ]
def x(infile, cols): data = [] f = open(infile, 'r') for line in f.readlines(): tmp = line.split() rec = tmp[0], float(tmp[cols[0]]), float(tmp[cols[1]]), float(tmp[ cols[2]]), float(tmp[cols[3]]) data.append(rec) f.close() return data
dread
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile, cols):\n data = []\n f = open(infile, 'r')\n for line in f.readlines():\n tmp = line.split()\n rec = tmp[0], float(tmp[cols[0]]), float(tmp[cols[1]]), float(tmp[\n cols[2]]), float(tmp[cols[3]])\n data.append(rec)\n f.close()\n return data\n", "role": "user" }, { "content": "dread", "role": "assistant" } ]
def x(k): k = np.array(k) if len(k.shape) != 0: n = k.shape[0] else: n = 1 R1 = random.random(size=n) R2 = random.random(size=n) L = np.exp(-2 * k) a = R1 * (1 - L) + L fac = np.sqrt(-np.log(a) / (2 * k)) inc = 90.0 - np.degrees(2 * np.arcsin(fac)) dec = np.degrees(2 * np.pi * R2) if n == 1: return dec[0], inc[0] else: return dec, inc
fshdev
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(k):\n k = np.array(k)\n if len(k.shape) != 0:\n n = k.shape[0]\n else:\n n = 1\n R1 = random.random(size=n)\n R2 = random.random(size=n)\n L = np.exp(-2 * k)\n a = R1 * (1 - L) + L\n fac = np.sqrt(-np.log(a) / (2 * k))\n inc = 90.0 - np.degrees(2 * np.arcsin(fac))\n dec = np.degrees(2 * np.pi * R2)\n if n == 1:\n return dec[0], inc[0]\n else:\n return dec, inc\n", "role": "user" }, { "content": "fshdev", "role": "assistant" } ]
def x(data): lmax = data[-1][0] Ls = list(range(1, lmax + 1)) Rs = [] recno = 0 for l in Ls: pow = 0 for m in range(0, l + 1): pow += (l + 1) * ((0.001 * data[recno][2]) ** 2 + (0.001 * data [recno][3]) ** 2) recno += 1 Rs.append(pow) return Ls, Rs
lowes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n lmax = data[-1][0]\n Ls = list(range(1, lmax + 1))\n Rs = []\n recno = 0\n for l in Ls:\n pow = 0\n for m in range(0, l + 1):\n pow += (l + 1) * ((0.001 * data[recno][2]) ** 2 + (0.001 * data\n [recno][3]) ** 2)\n recno += 1\n Rs.append(pow)\n return Ls, Rs\n", "role": "user" }, { "content": "lowes", "role": "assistant" } ]
def x(inc): rad = old_div(np.pi, 180.0) paleo_lat = old_div(np.arctan(0.5 * np.tan(inc * rad)), rad) return paleo_lat
magnetic_lat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inc):\n rad = old_div(np.pi, 180.0)\n paleo_lat = old_div(np.arctan(0.5 * np.tan(inc * rad)), rad)\n return paleo_lat\n", "role": "user" }, { "content": "magnetic_lat", "role": "assistant" } ]
def x(InDir, AniSpec): Dir = np.zeros(3, 'f') Dir[0] = InDir[0] Dir[1] = InDir[1] Dir[2] = 1.0 chi, chi_inv = check_F(AniSpec) if chi[0][0] == 1.0: return Dir X = dir2cart(Dir) M = np.array(X) H = np.dot(M, chi_inv) return cart2dir(H)
Dir_anis_corr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(InDir, AniSpec):\n Dir = np.zeros(3, 'f')\n Dir[0] = InDir[0]\n Dir[1] = InDir[1]\n Dir[2] = 1.0\n chi, chi_inv = check_F(AniSpec)\n if chi[0][0] == 1.0:\n return Dir\n X = dir2cart(Dir)\n M = np.array(X)\n H = np.dot(M, chi_inv)\n return cart2dir(H)\n", "role": "user" }, { "content": "Dir_anis_corr", "role": "assistant" } ]
def x(PmagSpecRec, AniSpec): AniSpecRec = {} for key in list(PmagSpecRec.keys()): AniSpecRec[key] = PmagSpecRec[key] Dir = np.zeros(3, 'f') Dir[0] = float(PmagSpecRec['specimen_dec']) Dir[1] = float(PmagSpecRec['specimen_inc']) Dir[2] = float(PmagSpecRec['specimen_int']) chi, chi_inv = check_F(AniSpec) if chi[0][0] == 1.0: cDir = [Dir[0], Dir[1]] newint = Dir[2] else: X = dir2cart(Dir) M = np.array(X) H = np.dot(M, chi_inv) cDir = cart2dir(H) Hunit = [old_div(H[0], cDir[2]), old_div(H[1], cDir[2]), old_div(H[ 2], cDir[2])] Zunit = [0, 0, -1.0] Hpar = np.dot(chi, Hunit) Zpar = np.dot(chi, Zunit) HparInt = cart2dir(Hpar)[2] ZparInt = cart2dir(Zpar)[2] newint = Dir[2] * ZparInt / HparInt if cDir[0] - Dir[0] > 90: cDir[1] = -cDir[1] cDir[0] = (cDir[0] - 180.0) % 360.0 AniSpecRec['specimen_dec'] = '%7.1f' % cDir[0] AniSpecRec['specimen_inc'] = '%7.1f' % cDir[1] AniSpecRec['specimen_int'] = '%9.4e' % newint AniSpecRec['specimen_correction'] = 'c' if 'magic_method_codes' in list(AniSpecRec.keys()): methcodes = AniSpecRec['magic_method_codes'] else: methcodes = '' if methcodes == '': methcodes = 'DA-AC-' + AniSpec['anisotropy_type'] if methcodes != '': methcodes = methcodes + ':DA-AC-' + AniSpec['anisotropy_type'] if chi[0][0] == 1.0: methcodes = methcodes + ':DA-AC-ISO' AniSpecRec['magic_method_codes'] = methcodes.strip(':') return AniSpecRec
doaniscorr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(PmagSpecRec, AniSpec):\n AniSpecRec = {}\n for key in list(PmagSpecRec.keys()):\n AniSpecRec[key] = PmagSpecRec[key]\n Dir = np.zeros(3, 'f')\n Dir[0] = float(PmagSpecRec['specimen_dec'])\n Dir[1] = float(PmagSpecRec['specimen_inc'])\n Dir[2] = float(PmagSpecRec['specimen_int'])\n chi, chi_inv = check_F(AniSpec)\n if chi[0][0] == 1.0:\n cDir = [Dir[0], Dir[1]]\n newint = Dir[2]\n else:\n X = dir2cart(Dir)\n M = np.array(X)\n H = np.dot(M, chi_inv)\n cDir = cart2dir(H)\n Hunit = [old_div(H[0], cDir[2]), old_div(H[1], cDir[2]), old_div(H[\n 2], cDir[2])]\n Zunit = [0, 0, -1.0]\n Hpar = np.dot(chi, Hunit)\n Zpar = np.dot(chi, Zunit)\n HparInt = cart2dir(Hpar)[2]\n ZparInt = cart2dir(Zpar)[2]\n newint = Dir[2] * ZparInt / HparInt\n if cDir[0] - Dir[0] > 90:\n cDir[1] = -cDir[1]\n cDir[0] = (cDir[0] - 180.0) % 360.0\n AniSpecRec['specimen_dec'] = '%7.1f' % cDir[0]\n AniSpecRec['specimen_inc'] = '%7.1f' % cDir[1]\n AniSpecRec['specimen_int'] = '%9.4e' % newint\n AniSpecRec['specimen_correction'] = 'c'\n if 'magic_method_codes' in list(AniSpecRec.keys()):\n methcodes = AniSpecRec['magic_method_codes']\n else:\n methcodes = ''\n if methcodes == '':\n methcodes = 'DA-AC-' + AniSpec['anisotropy_type']\n if methcodes != '':\n methcodes = methcodes + ':DA-AC-' + AniSpec['anisotropy_type']\n if chi[0][0] == 1.0:\n methcodes = methcodes + ':DA-AC-ISO'\n AniSpecRec['magic_method_codes'] = methcodes.strip(':')\n return AniSpecRec\n", "role": "user" }, { "content": "doaniscorr", "role": "assistant" } ]
def x(pars_1, pars_2): cart_1 = dir2cart([pars_1['dec'], pars_1['inc'], pars_1['r']]) cart_2 = dir2cart([pars_2['dec'], pars_2['inc'], pars_2['r']]) Sw = pars_1['k'] * pars_1['r'] + pars_2['k'] * pars_2['r'] xhat_1 = pars_1['k'] * cart_1[0] + pars_2['k'] * cart_2[0] xhat_2 = pars_1['k'] * cart_1[1] + pars_2['k'] * cart_2[1] xhat_3 = pars_1['k'] * cart_1[2] + pars_2['k'] * cart_2[2] Rw = np.sqrt(xhat_1 ** 2 + xhat_2 ** 2 + xhat_3 ** 2) return 2 * (Sw - Rw)
vfunc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pars_1, pars_2):\n cart_1 = dir2cart([pars_1['dec'], pars_1['inc'], pars_1['r']])\n cart_2 = dir2cart([pars_2['dec'], pars_2['inc'], pars_2['r']])\n Sw = pars_1['k'] * pars_1['r'] + pars_2['k'] * pars_2['r']\n xhat_1 = pars_1['k'] * cart_1[0] + pars_2['k'] * cart_2[0]\n xhat_2 = pars_1['k'] * cart_1[1] + pars_2['k'] * cart_2[1]\n xhat_3 = pars_1['k'] * cart_1[2] + pars_2['k'] * cart_2[2]\n Rw = np.sqrt(xhat_1 ** 2 + xhat_2 ** 2 + xhat_3 ** 2)\n return 2 * (Sw - Rw)\n", "role": "user" }, { "content": "vfunc", "role": "assistant" } ]
def x(plat, plong, slat, slong): plong = plong % 360 slong = slong % 360 signdec = 1.0 delphi = abs(plong - slong) if delphi != 0: signdec = (plong - slong) / delphi if slat == 90.0: slat = 89.99 thetaS = np.radians(90.0 - slat) thetaP = np.radians(90.0 - plat) delphi = np.radians(delphi) cosp = np.cos(thetaS) * np.cos(thetaP) + np.sin(thetaS) * np.sin(thetaP ) * np.cos(delphi) thetaM = np.arccos(cosp) cosd = old_div(np.cos(thetaP) - np.cos(thetaM) * np.cos(thetaS), np.sin (thetaM) * np.sin(thetaS)) C = abs(1.0 - cosd ** 2) if C != 0: dec = -np.arctan(cosd / np.sqrt(abs(C))) + np.pi / 2.0 else: dec = np.arccos(cosd) if -np.pi < signdec * delphi and signdec < 0: dec = 2.0 * np.pi - dec if signdec * delphi > np.pi: dec = 2.0 * np.pi - dec dec = np.degrees(dec) % 360.0 inc = np.degrees(np.arctan2(2.0 * np.cos(thetaM), np.sin(thetaM))) return dec, inc
vgp_di
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(plat, plong, slat, slong):\n plong = plong % 360\n slong = slong % 360\n signdec = 1.0\n delphi = abs(plong - slong)\n if delphi != 0:\n signdec = (plong - slong) / delphi\n if slat == 90.0:\n slat = 89.99\n thetaS = np.radians(90.0 - slat)\n thetaP = np.radians(90.0 - plat)\n delphi = np.radians(delphi)\n cosp = np.cos(thetaS) * np.cos(thetaP) + np.sin(thetaS) * np.sin(thetaP\n ) * np.cos(delphi)\n thetaM = np.arccos(cosp)\n cosd = old_div(np.cos(thetaP) - np.cos(thetaM) * np.cos(thetaS), np.sin\n (thetaM) * np.sin(thetaS))\n C = abs(1.0 - cosd ** 2)\n if C != 0:\n dec = -np.arctan(cosd / np.sqrt(abs(C))) + np.pi / 2.0\n else:\n dec = np.arccos(cosd)\n if -np.pi < signdec * delphi and signdec < 0:\n dec = 2.0 * np.pi - dec\n if signdec * delphi > np.pi:\n dec = 2.0 * np.pi - dec\n dec = np.degrees(dec) % 360.0\n inc = np.degrees(np.arctan2(2.0 * np.cos(thetaM), np.sin(thetaM)))\n return dec, inc\n", "role": "user" }, { "content": "vgp_di", "role": "assistant" } ]
def x(Dir1, Dir2): counter, NumSims = 0, 500 pars_1 = fisher_mean(Dir1) pars_2 = fisher_mean(Dir2) V = vfunc(pars_1, pars_2) Vp = [] print('Doing ', NumSims, ' simulations') for k in range(NumSims): counter += 1 if counter == 50: print(k + 1) counter = 0 Dirp = [] for i in range(pars_1['n']): Dirp.append(fshdev(pars_1['k'])) pars_p1 = fisher_mean(Dirp) Dirp = [] for i in range(pars_2['n']): Dirp.append(fshdev(pars_2['k'])) pars_p2 = fisher_mean(Dirp) Vk = vfunc(pars_p1, pars_p2) Vp.append(Vk) Vp.sort() k = int(0.95 * NumSims) return V, Vp[k]
watsonsV
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Dir1, Dir2):\n counter, NumSims = 0, 500\n pars_1 = fisher_mean(Dir1)\n pars_2 = fisher_mean(Dir2)\n V = vfunc(pars_1, pars_2)\n Vp = []\n print('Doing ', NumSims, ' simulations')\n for k in range(NumSims):\n counter += 1\n if counter == 50:\n print(k + 1)\n counter = 0\n Dirp = []\n for i in range(pars_1['n']):\n Dirp.append(fshdev(pars_1['k']))\n pars_p1 = fisher_mean(Dirp)\n Dirp = []\n for i in range(pars_2['n']):\n Dirp.append(fshdev(pars_2['k']))\n pars_p2 = fisher_mean(Dirp)\n Vk = vfunc(pars_p1, pars_p2)\n Vp.append(Vk)\n Vp.sort()\n k = int(0.95 * NumSims)\n return V, Vp[k]\n", "role": "user" }, { "content": "watsonsV", "role": "assistant" } ]
def x(D, I): try: D = float(D) I = float(I) except TypeError: return dimap_V(D, I) XY = [0.0, 0.0] X = dir2cart([D, I, 1.0]) if X[2] == 1.0: return XY if X[2] < 0: X[2] = -X[2] R = old_div(np.sqrt(1.0 - X[2]), np.sqrt(X[0] ** 2 + X[1] ** 2)) XY[1], XY[0] = X[0] * R, X[1] * R return XY
dimap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(D, I):\n try:\n D = float(D)\n I = float(I)\n except TypeError:\n return dimap_V(D, I)\n XY = [0.0, 0.0]\n X = dir2cart([D, I, 1.0])\n if X[2] == 1.0:\n return XY\n if X[2] < 0:\n X[2] = -X[2]\n R = old_div(np.sqrt(1.0 - X[2]), np.sqrt(X[0] ** 2 + X[1] ** 2))\n XY[1], XY[0] = X[0] * R, X[1] * R\n return XY\n", "role": "user" }, { "content": "dimap", "role": "assistant" } ]
def x(D, I): DI = np.array([D, I]).transpose() X = dir2cart(DI).transpose() R = np.sqrt(1.0 - abs(X[2])) / np.sqrt(X[0] ** 2 + X[1] ** 2) XY = np.array([X[1] * R, X[0] * R]).transpose() return XY
dimap_V
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(D, I):\n DI = np.array([D, I]).transpose()\n X = dir2cart(DI).transpose()\n R = np.sqrt(1.0 - abs(X[2])) / np.sqrt(X[0] ** 2 + X[1] ** 2)\n XY = np.array([X[1] * R, X[0] * R]).transpose()\n return XY\n", "role": "user" }, { "content": "dimap_V", "role": "assistant" } ]
def x(method_type): meths = [] if method_type == 'GM': meths.append('GM-PMAG-APWP') meths.append('GM-ARAR') meths.append('GM-ARAR-AP') meths.append('GM-ARAR-II') meths.append('GM-ARAR-NI') meths.append('GM-ARAR-TF') meths.append('GM-CC-ARCH') meths.append('GM-CC-ARCHMAG') meths.append('GM-C14') meths.append('GM-FOSSIL') meths.append('GM-FT') meths.append('GM-INT-L') meths.append('GM-INT-S') meths.append('GM-ISO') meths.append('GM-KAR') meths.append('GM-PMAG-ANOM') meths.append('GM-PMAG-POL') meths.append('GM-PBPB') meths.append('GM-RATH') meths.append('GM-RBSR') meths.append('GM-RBSR-I') meths.append('GM-RBSR-MA') meths.append('GM-SMND') meths.append('GM-SMND-I') meths.append('GM-SMND-MA') meths.append('GM-CC-STRAT') meths.append('GM-LUM-TH') meths.append('GM-UPA') meths.append('GM-UPB') meths.append('GM-UTH') meths.append('GM-UTHHE') else: pass return meths
getmeths
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method_type):\n meths = []\n if method_type == 'GM':\n meths.append('GM-PMAG-APWP')\n meths.append('GM-ARAR')\n meths.append('GM-ARAR-AP')\n meths.append('GM-ARAR-II')\n meths.append('GM-ARAR-NI')\n meths.append('GM-ARAR-TF')\n meths.append('GM-CC-ARCH')\n meths.append('GM-CC-ARCHMAG')\n meths.append('GM-C14')\n meths.append('GM-FOSSIL')\n meths.append('GM-FT')\n meths.append('GM-INT-L')\n meths.append('GM-INT-S')\n meths.append('GM-ISO')\n meths.append('GM-KAR')\n meths.append('GM-PMAG-ANOM')\n meths.append('GM-PMAG-POL')\n meths.append('GM-PBPB')\n meths.append('GM-RATH')\n meths.append('GM-RBSR')\n meths.append('GM-RBSR-I')\n meths.append('GM-RBSR-MA')\n meths.append('GM-SMND')\n meths.append('GM-SMND-I')\n meths.append('GM-SMND-MA')\n meths.append('GM-CC-STRAT')\n meths.append('GM-LUM-TH')\n meths.append('GM-UPA')\n meths.append('GM-UPB')\n meths.append('GM-UTH')\n meths.append('GM-UTHHE')\n else:\n pass\n return meths\n", "role": "user" }, { "content": "getmeths", "role": "assistant" } ]
def x(ofile, Rec, file_type): keylist = [] pmag_out = open(ofile, 'a') outstring = 'tab \t' + file_type + '\n' pmag_out.write(outstring) keystring = '' for key in list(Rec.keys()): keystring = keystring + '\t' + key keylist.append(key) keystring = keystring + '\n' pmag_out.write(keystring[1:]) pmag_out.close() return keylist
first_up
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ofile, Rec, file_type):\n keylist = []\n pmag_out = open(ofile, 'a')\n outstring = 'tab \\t' + file_type + '\\n'\n pmag_out.write(outstring)\n keystring = ''\n for key in list(Rec.keys()):\n keystring = keystring + '\\t' + key\n keylist.append(key)\n keystring = keystring + '\\n'\n pmag_out.write(keystring[1:])\n pmag_out.close()\n return keylist\n", "role": "user" }, { "content": "first_up", "role": "assistant" } ]
def x(Rec, sitekey, keybase, Ages, DefaultAge): site = Rec[sitekey] gotone = 0 if len(Ages) > 0: for agerec in Ages: if agerec['er_site_name'] == site: if 'age' in list(agerec.keys()) and agerec['age'] != '': Rec[keybase + 'age'] = agerec['age'] gotone = 1 if 'age_unit' in list(agerec.keys()): Rec[keybase + 'age_unit'] = agerec['age_unit'] if 'age_sigma' in list(agerec.keys()): Rec[keybase + 'age_sigma'] = agerec['age_sigma'] if gotone == 0 and len(DefaultAge) > 1: sigma = 0.5 * (float(DefaultAge[1]) - float(DefaultAge[0])) age = float(DefaultAge[0]) + sigma Rec[keybase + 'age'] = '%10.4e' % age Rec[keybase + 'age_sigma'] = '%10.4e' % sigma Rec[keybase + 'age_unit'] = DefaultAge[2] return Rec
get_age
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Rec, sitekey, keybase, Ages, DefaultAge):\n site = Rec[sitekey]\n gotone = 0\n if len(Ages) > 0:\n for agerec in Ages:\n if agerec['er_site_name'] == site:\n if 'age' in list(agerec.keys()) and agerec['age'] != '':\n Rec[keybase + 'age'] = agerec['age']\n gotone = 1\n if 'age_unit' in list(agerec.keys()):\n Rec[keybase + 'age_unit'] = agerec['age_unit']\n if 'age_sigma' in list(agerec.keys()):\n Rec[keybase + 'age_sigma'] = agerec['age_sigma']\n if gotone == 0 and len(DefaultAge) > 1:\n sigma = 0.5 * (float(DefaultAge[1]) - float(DefaultAge[0]))\n age = float(DefaultAge[0]) + sigma\n Rec[keybase + 'age'] = '%10.4e' % age\n Rec[keybase + 'age_sigma'] = '%10.4e' % sigma\n Rec[keybase + 'age_unit'] = DefaultAge[2]\n return Rec\n", "role": "user" }, { "content": "get_age", "role": "assistant" } ]
def x(AgesIn): age_units, AgesOut, factors, factor, maxunit, age_unit = [], [], [ ], 1, 1, 'Ma' for agerec in AgesIn: if agerec[1] not in age_units: age_units.append(agerec[1]) if agerec[1] == 'Ga': factors.append(1000000000.0) maxunit, age_unit, factor = 1000000000.0, 'Ga', 1000000000.0 if agerec[1] == 'Ma': if maxunit == 1: maxunit, age_unt, factor = 1000000.0, 'Ma', 1000000.0 factors.append(1000000.0) if agerec[1] == 'Ka': factors.append(1000.0) if maxunit == 1: maxunit, age_unit, factor = 1000.0, 'Ka', 1000.0 if 'Years' in agerec[1].split(): factors.append(1) if len(age_units) == 1: for agerec in AgesIn: AgesOut.append(agerec[0]) elif len(age_units) > 1: for agerec in AgesIn: if agerec[1] == 'Ga': AgesOut.append(agerec[0] * 1000000000.0 / factor) if agerec[1] == 'Ma': AgesOut.append(agerec[0] * 1000000.0 / factor) if agerec[1] == 'Ka': AgesOut.append(agerec[0] * 1000.0 / factor) if 'Years' in agerec[1].split(): if agerec[1] == 'Years BP': AgesOut.append(old_div(agerec[0], factor)) if agerec[1] == 'Years Cal BP': AgesOut.append(old_div(agerec[0], factor)) if agerec[1] == 'Years AD (+/-)': AgesOut.append(old_div(1950 - agerec[0], factor)) if agerec[1] == 'Years Cal AD (+/-)': AgesOut.append(old_div(1950 - agerec[0], factor)) return AgesOut, age_unit
adjust_ages
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(AgesIn):\n age_units, AgesOut, factors, factor, maxunit, age_unit = [], [], [\n ], 1, 1, 'Ma'\n for agerec in AgesIn:\n if agerec[1] not in age_units:\n age_units.append(agerec[1])\n if agerec[1] == 'Ga':\n factors.append(1000000000.0)\n maxunit, age_unit, factor = 1000000000.0, 'Ga', 1000000000.0\n if agerec[1] == 'Ma':\n if maxunit == 1:\n maxunit, age_unt, factor = 1000000.0, 'Ma', 1000000.0\n factors.append(1000000.0)\n if agerec[1] == 'Ka':\n factors.append(1000.0)\n if maxunit == 1:\n maxunit, age_unit, factor = 1000.0, 'Ka', 1000.0\n if 'Years' in agerec[1].split():\n factors.append(1)\n if len(age_units) == 1:\n for agerec in AgesIn:\n AgesOut.append(agerec[0])\n elif len(age_units) > 1:\n for agerec in AgesIn:\n if agerec[1] == 'Ga':\n AgesOut.append(agerec[0] * 1000000000.0 / factor)\n if agerec[1] == 'Ma':\n AgesOut.append(agerec[0] * 1000000.0 / factor)\n if agerec[1] == 'Ka':\n AgesOut.append(agerec[0] * 1000.0 / factor)\n if 'Years' in agerec[1].split():\n if agerec[1] == 'Years BP':\n AgesOut.append(old_div(agerec[0], factor))\n if agerec[1] == 'Years Cal BP':\n AgesOut.append(old_div(agerec[0], factor))\n if agerec[1] == 'Years AD (+/-)':\n AgesOut.append(old_div(1950 - agerec[0], factor))\n if agerec[1] == 'Years Cal AD (+/-)':\n AgesOut.append(old_div(1950 - agerec[0], factor))\n return AgesOut, age_unit\n", "role": "user" }, { "content": "adjust_ages", "role": "assistant" } ]
def x(N=100): z = random.uniform(-1.0, 1.0, size=N) t = random.uniform(0.0, 360.0, size=N) i = np.arcsin(z) * 180.0 / np.pi return np.array([t, i]).transpose() """ subroutine to retrieve N uniformly distributed directions """
get_unf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(N=100):\n z = random.uniform(-1.0, 1.0, size=N)\n t = random.uniform(0.0, 360.0, size=N)\n i = np.arcsin(z) * 180.0 / np.pi\n return np.array([t, i]).transpose()\n \"\"\"\n subroutine to retrieve N uniformly distributed directions\n \"\"\"\n", "role": "user" }, { "content": "get_unf", "role": "assistant" } ]
def x(s): a = np.zeros((3, 3), 'f') for i in range(3): a[i][i] = s[i] a[0][1], a[1][0] = s[3], s[3] a[1][2], a[2][1] = s[4], s[4] a[0][2], a[2][0] = s[5], s[5] return a
s2a
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s):\n a = np.zeros((3, 3), 'f')\n for i in range(3):\n a[i][i] = s[i]\n a[0][1], a[1][0] = s[3], s[3]\n a[1][2], a[2][1] = s[4], s[4]\n a[0][2], a[2][0] = s[5], s[5]\n return a\n", "role": "user" }, { "content": "s2a", "role": "assistant" } ]
def x(a): s = np.zeros((6,), 'f') for i in range(3): s[i] = a[i][i] s[3] = a[0][1] s[4] = a[1][2] s[5] = a[0][2] return s
a2s
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a):\n s = np.zeros((6,), 'f')\n for i in range(3):\n s[i] = a[i][i]\n s[3] = a[0][1]\n s[4] = a[1][2]\n s[5] = a[0][2]\n return s\n", "role": "user" }, { "content": "a2s", "role": "assistant" } ]
def x(s): A = s2a(s) tau, V = tauV(A) Vdirs = [] for v in V: Vdir = cart2dir(v) if Vdir[1] < 0: Vdir[1] = -Vdir[1] Vdir[0] = (Vdir[0] + 180.0) % 360.0 Vdirs.append([Vdir[0], Vdir[1]]) return tau, Vdirs
doseigs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s):\n A = s2a(s)\n tau, V = tauV(A)\n Vdirs = []\n for v in V:\n Vdir = cart2dir(v)\n if Vdir[1] < 0:\n Vdir[1] = -Vdir[1]\n Vdir[0] = (Vdir[0] + 180.0) % 360.0\n Vdirs.append([Vdir[0], Vdir[1]])\n return tau, Vdirs\n", "role": "user" }, { "content": "doseigs", "role": "assistant" } ]
def x(tau, Vdirs): t = np.zeros((3, 3), 'f') V = [] for j in range(3): t[j][j] = tau[j] for k in range(3): V.append(dir2cart([Vdirs[k][0], Vdirs[k][1], 1.0])) V = np.transpose(V) tmp = np.dot(V, t) chi = np.dot(tmp, np.transpose(V)) return a2s(chi)
doeigs_s
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tau, Vdirs):\n t = np.zeros((3, 3), 'f')\n V = []\n for j in range(3):\n t[j][j] = tau[j]\n for k in range(3):\n V.append(dir2cart([Vdirs[k][0], Vdirs[k][1], 1.0]))\n V = np.transpose(V)\n tmp = np.dot(V, t)\n chi = np.dot(tmp, np.transpose(V))\n return a2s(chi)\n", "role": "user" }, { "content": "doeigs_s", "role": "assistant" } ]
def x(Ss): if type(Ss) == list: Ss = np.array(Ss) npts = Ss.shape[0] Ss = Ss.transpose() avd, avs = [], [] D = np.array([Ss[0], Ss[1], Ss[2], Ss[3] + 0.5 * (Ss[0] + Ss[1]), Ss[4] + 0.5 * (Ss[1] + Ss[2]), Ss[5] + 0.5 * (Ss[0] + Ss[2])]) for j in range(6): avd.append(np.average(D[j])) avs.append(np.average(Ss[j])) D = D.transpose() nf = (npts - 1) * 6 s0 = 0 Dels = (D - avd) ** 2 s0 = np.sum(Dels) sigma = np.sqrt(s0 / float(nf)) return nf, sigma, avs
sbar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Ss):\n if type(Ss) == list:\n Ss = np.array(Ss)\n npts = Ss.shape[0]\n Ss = Ss.transpose()\n avd, avs = [], []\n D = np.array([Ss[0], Ss[1], Ss[2], Ss[3] + 0.5 * (Ss[0] + Ss[1]), Ss[4] +\n 0.5 * (Ss[1] + Ss[2]), Ss[5] + 0.5 * (Ss[0] + Ss[2])])\n for j in range(6):\n avd.append(np.average(D[j]))\n avs.append(np.average(Ss[j]))\n D = D.transpose()\n nf = (npts - 1) * 6\n s0 = 0\n Dels = (D - avd) ** 2\n s0 = np.sum(Dels)\n sigma = np.sqrt(s0 / float(nf))\n return nf, sigma, avs\n", "role": "user" }, { "content": "sbar", "role": "assistant" } ]
def x(nf, sigma, s): hpars = {} hpars['F_crit'] = '0' hpars['F12_crit'] = '0' hpars['F'] = 0 hpars['F12'] = 0 hpars['F23'] = 0 hpars['v1_dec'] = -1 hpars['v1_inc'] = -1 hpars['v2_dec'] = -1 hpars['v2_inc'] = -1 hpars['v3_dec'] = -1 hpars['v3_inc'] = -1 hpars['t1'] = -1 hpars['t2'] = -1 hpars['t3'] = -1 hpars['e12'] = -1 hpars['e23'] = -1 hpars['e13'] = -1 if nf < 0 or sigma == 0: return hpars f = np.sqrt(2.0 * fcalc(2, nf)) t2sum = 0 tau, Vdir = doseigs(s) for i in range(3): t2sum += tau[i] ** 2 chibar = old_div(s[0] + s[1] + s[2], 3.0) hpars['F_crit'] = '%s' % fcalc(5, nf) hpars['F12_crit'] = '%s' % fcalc(2, nf) hpars['F'] = 0.4 * (t2sum - 3 * chibar ** 2) / sigma ** 2 hpars['F12'] = 0.5 * old_div(tau[0] - tau[1], sigma) ** 2 hpars['F23'] = 0.5 * old_div(tau[1] - tau[2], sigma) ** 2 hpars['v1_dec'] = Vdir[0][0] hpars['v1_inc'] = Vdir[0][1] hpars['v2_dec'] = Vdir[1][0] hpars['v2_inc'] = Vdir[1][1] hpars['v3_dec'] = Vdir[2][0] hpars['v3_inc'] = Vdir[2][1] hpars['t1'] = tau[0] hpars['t2'] = tau[1] hpars['t3'] = tau[2] hpars['e12'] = np.arctan(old_div(f * sigma, 2 * abs(tau[0] - tau[1])) ) * 180.0 / np.pi hpars['e23'] = np.arctan(old_div(f * sigma, 2 * abs(tau[1] - tau[2])) ) * 180.0 / np.pi hpars['e13'] = np.arctan(old_div(f * sigma, 2 * abs(tau[0] - tau[2])) ) * 180.0 / np.pi return hpars
dohext
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nf, sigma, s):\n hpars = {}\n hpars['F_crit'] = '0'\n hpars['F12_crit'] = '0'\n hpars['F'] = 0\n hpars['F12'] = 0\n hpars['F23'] = 0\n hpars['v1_dec'] = -1\n hpars['v1_inc'] = -1\n hpars['v2_dec'] = -1\n hpars['v2_inc'] = -1\n hpars['v3_dec'] = -1\n hpars['v3_inc'] = -1\n hpars['t1'] = -1\n hpars['t2'] = -1\n hpars['t3'] = -1\n hpars['e12'] = -1\n hpars['e23'] = -1\n hpars['e13'] = -1\n if nf < 0 or sigma == 0:\n return hpars\n f = np.sqrt(2.0 * fcalc(2, nf))\n t2sum = 0\n tau, Vdir = doseigs(s)\n for i in range(3):\n t2sum += tau[i] ** 2\n chibar = old_div(s[0] + s[1] + s[2], 3.0)\n hpars['F_crit'] = '%s' % fcalc(5, nf)\n hpars['F12_crit'] = '%s' % fcalc(2, nf)\n hpars['F'] = 0.4 * (t2sum - 3 * chibar ** 2) / sigma ** 2\n hpars['F12'] = 0.5 * old_div(tau[0] - tau[1], sigma) ** 2\n hpars['F23'] = 0.5 * old_div(tau[1] - tau[2], sigma) ** 2\n hpars['v1_dec'] = Vdir[0][0]\n hpars['v1_inc'] = Vdir[0][1]\n hpars['v2_dec'] = Vdir[1][0]\n hpars['v2_inc'] = Vdir[1][1]\n hpars['v3_dec'] = Vdir[2][0]\n hpars['v3_inc'] = Vdir[2][1]\n hpars['t1'] = tau[0]\n hpars['t2'] = tau[1]\n hpars['t3'] = tau[2]\n hpars['e12'] = np.arctan(old_div(f * sigma, 2 * abs(tau[0] - tau[1]))\n ) * 180.0 / np.pi\n hpars['e23'] = np.arctan(old_div(f * sigma, 2 * abs(tau[1] - tau[2]))\n ) * 180.0 / np.pi\n hpars['e13'] = np.arctan(old_div(f * sigma, 2 * abs(tau[0] - tau[2]))\n ) * 180.0 / np.pi\n return hpars\n", "role": "user" }, { "content": "dohext", "role": "assistant" } ]
def x(npos): if npos == 15: A = np.array([[0.5, 0.5, 0, -1.0, 0, 0], [0.5, 0.5, 0, 1.0, 0, 0], [1, 0.0, 0, 0, 0, 0], [0.5, 0.5, 0, -1.0, 0, 0], [0.5, 0.5, 0, 1.0, 0, 0], [0, 0.5, 0.5, 0, -1.0, 0], [0, 0.5, 0.5, 0, 1.0, 0], [0, 1.0, 0, 0, 0, 0], [0, 0.5, 0.5, 0, -1.0, 0], [0, 0.5, 0.5, 0, 1.0, 0], [0.5, 0, 0.5, 0, 0, -1.0], [0.5, 0, 0.5, 0, 0, 1.0], [0, 0, 1.0, 0, 0, 0], [0.5, 0, 0.5, 0, 0, -1.0], [0.5, 0, 0.5, 0, 0, 1.0]]) elif npos == 6: A = np.array([[1.0, 0, 0, 0, 0, 0], [0, 1.0, 0, 0, 0, 0], [0, 0, 1.0, 0, 0, 0], [0.5, 0.5, 0, 1.0, 0, 0], [0, 0.5, 0.5, 0, 1.0, 0], [0.5, 0, 0.5, 0, 0, 1.0]]) else: print('measurement protocol not supported yet ') return B = np.dot(np.transpose(A), A) B = linalg.inv(B) B = np.dot(B, np.transpose(A)) return A, B
design
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(npos):\n if npos == 15:\n A = np.array([[0.5, 0.5, 0, -1.0, 0, 0], [0.5, 0.5, 0, 1.0, 0, 0],\n [1, 0.0, 0, 0, 0, 0], [0.5, 0.5, 0, -1.0, 0, 0], [0.5, 0.5, 0, \n 1.0, 0, 0], [0, 0.5, 0.5, 0, -1.0, 0], [0, 0.5, 0.5, 0, 1.0, 0],\n [0, 1.0, 0, 0, 0, 0], [0, 0.5, 0.5, 0, -1.0, 0], [0, 0.5, 0.5, \n 0, 1.0, 0], [0.5, 0, 0.5, 0, 0, -1.0], [0.5, 0, 0.5, 0, 0, 1.0],\n [0, 0, 1.0, 0, 0, 0], [0.5, 0, 0.5, 0, 0, -1.0], [0.5, 0, 0.5, \n 0, 0, 1.0]])\n elif npos == 6:\n A = np.array([[1.0, 0, 0, 0, 0, 0], [0, 1.0, 0, 0, 0, 0], [0, 0, \n 1.0, 0, 0, 0], [0.5, 0.5, 0, 1.0, 0, 0], [0, 0.5, 0.5, 0, 1.0, \n 0], [0.5, 0, 0.5, 0, 0, 1.0]])\n else:\n print('measurement protocol not supported yet ')\n return\n B = np.dot(np.transpose(A), A)\n B = linalg.inv(B)\n B = np.dot(B, np.transpose(A))\n return A, B\n", "role": "user" }, { "content": "design", "role": "assistant" } ]
def x(k15): A, B = design(15) sbar = np.dot(B, k15) t = sbar[0] + sbar[1] + sbar[2] bulk = old_div(t, 3.0) Kbar = np.dot(A, sbar) dels = k15 - Kbar dels, sbar = old_div(dels, t), old_div(sbar, t) So = sum(dels ** 2) sigma = np.sqrt(old_div(So, 9.0)) return sbar, sigma, bulk
dok15_s
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(k15):\n A, B = design(15)\n sbar = np.dot(B, k15)\n t = sbar[0] + sbar[1] + sbar[2]\n bulk = old_div(t, 3.0)\n Kbar = np.dot(A, sbar)\n dels = k15 - Kbar\n dels, sbar = old_div(dels, t), old_div(sbar, t)\n So = sum(dels ** 2)\n sigma = np.sqrt(old_div(So, 9.0))\n return sbar, sigma, bulk\n", "role": "user" }, { "content": "dok15_s", "role": "assistant" } ]
def x(v, w): x = v[1] * w[2] - v[2] * w[1] y = v[2] * w[0] - v[0] * w[2] z = v[0] * w[1] - v[1] * w[0] return [x, y, z]
cross
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(v, w):\n x = v[1] * w[2] - v[2] * w[1]\n y = v[2] * w[0] - v[0] * w[2]\n z = v[0] * w[1] - v[1] * w[0]\n return [x, y, z]\n", "role": "user" }, { "content": "cross", "role": "assistant" } ]
def x(s, az, pl): a = s2a(s) X1 = dir2cart((az, pl, 1.0)) X2 = dir2cart((az + 90, 0.0, 1.0)) X3 = cross(X1, X2) A = np.transpose([X1, X2, X3]) b = np.zeros((3, 3), 'f') for i in range(3): for j in range(3): dum = 0 for k in range(3): for l in range(3): dum += A[i][k] * A[j][l] * a[k][l] b[i][j] = dum s_rot = a2s(b) return s_rot
dosgeo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, az, pl):\n a = s2a(s)\n X1 = dir2cart((az, pl, 1.0))\n X2 = dir2cart((az + 90, 0.0, 1.0))\n X3 = cross(X1, X2)\n A = np.transpose([X1, X2, X3])\n b = np.zeros((3, 3), 'f')\n for i in range(3):\n for j in range(3):\n dum = 0\n for k in range(3):\n for l in range(3):\n dum += A[i][k] * A[j][l] * a[k][l]\n b[i][j] = dum\n s_rot = a2s(b)\n return s_rot\n", "role": "user" }, { "content": "dosgeo", "role": "assistant" } ]
def x(s, bed_az, bed_dip): tau, Vdirs = doseigs(s) Vrot = [] for evec in Vdirs: d, i = dotilt(evec[0], evec[1], bed_az, bed_dip) Vrot.append([d, i]) s_rot = doeigs_s(tau, Vrot) return s_rot
dostilt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, bed_az, bed_dip):\n tau, Vdirs = doseigs(s)\n Vrot = []\n for evec in Vdirs:\n d, i = dotilt(evec[0], evec[1], bed_az, bed_dip)\n Vrot.append([d, i])\n s_rot = doeigs_s(tau, Vrot)\n return s_rot\n", "role": "user" }, { "content": "dostilt", "role": "assistant" } ]
def x(Ss, ipar, sigma): Is = random.randint(0, len(Ss) - 1, size=len(Ss)) if not ipar: BSs = Ss[Is] else: A, B = design(6) K, BSs = [], [] for k in range(len(Ss)): K.append(np.dot(A, Ss[k][0:6])) Pars = np.random.normal(K, sigma) for k in range(len(Ss)): BSs.append(np.dot(B, Pars[k])) return np.array(BSs)
apseudo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Ss, ipar, sigma):\n Is = random.randint(0, len(Ss) - 1, size=len(Ss))\n if not ipar:\n BSs = Ss[Is]\n else:\n A, B = design(6)\n K, BSs = [], []\n for k in range(len(Ss)):\n K.append(np.dot(A, Ss[k][0:6]))\n Pars = np.random.normal(K, sigma)\n for k in range(len(Ss)):\n BSs.append(np.dot(B, Pars[k]))\n return np.array(BSs)\n", "role": "user" }, { "content": "apseudo", "role": "assistant" } ]
def x(Taus, Vs): Tau1s, Tau2s, Tau3s = [], [], [] V1s, V2s, V3s = [], [], [] nb = len(Taus) bpars = {} for k in range(nb): Tau1s.append(Taus[k][0]) Tau2s.append(Taus[k][1]) Tau3s.append(Taus[k][2]) V1s.append(Vs[k][0]) V2s.append(Vs[k][1]) V3s.append(Vs[k][2]) x, sig = gausspars(Tau1s) bpars['t1_sigma'] = sig x, sig = gausspars(Tau2s) bpars['t2_sigma'] = sig x, sig = gausspars(Tau3s) bpars['t3_sigma'] = sig V1s = flip(V1s, combine=True) kpars = dokent(V1s, len(V1s)) bpars['v1_dec'] = kpars['dec'] bpars['v1_inc'] = kpars['inc'] bpars['v1_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0 bpars['v1_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0 bpars['v1_zeta_dec'] = kpars['Zdec'] bpars['v1_zeta_inc'] = kpars['Zinc'] bpars['v1_eta_dec'] = kpars['Edec'] bpars['v1_eta_inc'] = kpars['Einc'] V2s = flip(V2s, combine=True) kpars = dokent(V2s, len(V2s)) bpars['v2_dec'] = kpars['dec'] bpars['v2_inc'] = kpars['inc'] bpars['v2_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0 bpars['v2_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0 bpars['v2_zeta_dec'] = kpars['Zdec'] bpars['v2_zeta_inc'] = kpars['Zinc'] bpars['v2_eta_dec'] = kpars['Edec'] bpars['v2_eta_inc'] = kpars['Einc'] V3s = flip(V3s, combine=True) kpars = dokent(V3s, len(V3s)) bpars['v3_dec'] = kpars['dec'] bpars['v3_inc'] = kpars['inc'] bpars['v3_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0 bpars['v3_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0 bpars['v3_zeta_dec'] = kpars['Zdec'] bpars['v3_zeta_inc'] = kpars['Zinc'] bpars['v3_eta_dec'] = kpars['Edec'] bpars['v3_eta_inc'] = kpars['Einc'] return bpars
sbootpars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Taus, Vs):\n Tau1s, Tau2s, Tau3s = [], [], []\n V1s, V2s, V3s = [], [], []\n nb = len(Taus)\n bpars = {}\n for k in range(nb):\n Tau1s.append(Taus[k][0])\n Tau2s.append(Taus[k][1])\n Tau3s.append(Taus[k][2])\n V1s.append(Vs[k][0])\n V2s.append(Vs[k][1])\n V3s.append(Vs[k][2])\n x, sig = gausspars(Tau1s)\n bpars['t1_sigma'] = sig\n x, sig = gausspars(Tau2s)\n bpars['t2_sigma'] = sig\n x, sig = gausspars(Tau3s)\n bpars['t3_sigma'] = sig\n V1s = flip(V1s, combine=True)\n kpars = dokent(V1s, len(V1s))\n bpars['v1_dec'] = kpars['dec']\n bpars['v1_inc'] = kpars['inc']\n bpars['v1_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0\n bpars['v1_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0\n bpars['v1_zeta_dec'] = kpars['Zdec']\n bpars['v1_zeta_inc'] = kpars['Zinc']\n bpars['v1_eta_dec'] = kpars['Edec']\n bpars['v1_eta_inc'] = kpars['Einc']\n V2s = flip(V2s, combine=True)\n kpars = dokent(V2s, len(V2s))\n bpars['v2_dec'] = kpars['dec']\n bpars['v2_inc'] = kpars['inc']\n bpars['v2_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0\n bpars['v2_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0\n bpars['v2_zeta_dec'] = kpars['Zdec']\n bpars['v2_zeta_inc'] = kpars['Zinc']\n bpars['v2_eta_dec'] = kpars['Edec']\n bpars['v2_eta_inc'] = kpars['Einc']\n V3s = flip(V3s, combine=True)\n kpars = dokent(V3s, len(V3s))\n bpars['v3_dec'] = kpars['dec']\n bpars['v3_inc'] = kpars['inc']\n bpars['v3_zeta'] = kpars['Zeta'] * np.sqrt(nb) % 360.0\n bpars['v3_eta'] = kpars['Eta'] * np.sqrt(nb) % 360.0\n bpars['v3_zeta_dec'] = kpars['Zdec']\n bpars['v3_zeta_inc'] = kpars['Zinc']\n bpars['v3_eta_dec'] = kpars['Edec']\n bpars['v3_eta_inc'] = kpars['Einc']\n return bpars\n", "role": "user" }, { "content": "sbootpars", "role": "assistant" } ]
def x(Ss, ipar=0, nb=1000): Ss = np.array(Ss) npts = Ss.shape[0] nf, Sigma, avs = sbar(Ss) Tmean, Vmean = doseigs(avs) Taus, Vs = [], [] for k in range(int(float(nb))): BSs = apseudo(Ss, ipar, Sigma) nf, sigma, avbs = sbar(BSs) tau, Vdirs = doseigs(avbs) Taus.append(tau) Vs.append(Vdirs) return Tmean, Vmean, Taus, Vs
s_boot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Ss, ipar=0, nb=1000):\n Ss = np.array(Ss)\n npts = Ss.shape[0]\n nf, Sigma, avs = sbar(Ss)\n Tmean, Vmean = doseigs(avs)\n Taus, Vs = [], []\n for k in range(int(float(nb))):\n BSs = apseudo(Ss, ipar, Sigma)\n nf, sigma, avbs = sbar(BSs)\n tau, Vdirs = doseigs(avbs)\n Taus.append(tau)\n Vs.append(Vdirs)\n return Tmean, Vmean, Taus, Vs\n", "role": "user" }, { "content": "s_boot", "role": "assistant" } ]
def x(npos): if npos != 9: print('Sorry - only 9 positions available') return Dec = [315.0, 225.0, 180.0, 135.0, 45.0, 90.0, 270.0, 270.0, 270.0, 90.0, 0.0, 0.0, 0.0, 180.0, 180.0] Dip = [0.0, 0.0, 0.0, 0.0, 0.0, -45.0, -45.0, 0.0, 45.0, 45.0, 45.0, - 45.0, -90.0, -45.0, 45.0] index9 = [0, 1, 2, 5, 6, 7, 10, 11, 12] H = [] for ind in range(15): Dir = [Dec[ind], Dip[ind], 1.0] H.append(dir2cart(Dir)) A = np.zeros((npos * 3, 6), 'f') tmpH = np.zeros((npos, 3), 'f') if npos == 9: for i in range(9): k = index9[i] ind = i * 3 A[ind][0] = H[k][0] A[ind][3] = H[k][1] A[ind][5] = H[k][2] ind = i * 3 + 1 A[ind][3] = H[k][0] A[ind][1] = H[k][1] A[ind][4] = H[k][2] ind = i * 3 + 2 A[ind][5] = H[k][0] A[ind][4] = H[k][1] A[ind][2] = H[k][2] for j in range(3): tmpH[i][j] = H[k][j] At = np.transpose(A) ATA = np.dot(At, A) ATAI = linalg.inv(ATA) B = np.dot(ATAI, At) else: print('B matrix not yet supported') return return B, H, tmpH
designAARM
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(npos):\n if npos != 9:\n print('Sorry - only 9 positions available')\n return\n Dec = [315.0, 225.0, 180.0, 135.0, 45.0, 90.0, 270.0, 270.0, 270.0, \n 90.0, 0.0, 0.0, 0.0, 180.0, 180.0]\n Dip = [0.0, 0.0, 0.0, 0.0, 0.0, -45.0, -45.0, 0.0, 45.0, 45.0, 45.0, -\n 45.0, -90.0, -45.0, 45.0]\n index9 = [0, 1, 2, 5, 6, 7, 10, 11, 12]\n H = []\n for ind in range(15):\n Dir = [Dec[ind], Dip[ind], 1.0]\n H.append(dir2cart(Dir))\n A = np.zeros((npos * 3, 6), 'f')\n tmpH = np.zeros((npos, 3), 'f')\n if npos == 9:\n for i in range(9):\n k = index9[i]\n ind = i * 3\n A[ind][0] = H[k][0]\n A[ind][3] = H[k][1]\n A[ind][5] = H[k][2]\n ind = i * 3 + 1\n A[ind][3] = H[k][0]\n A[ind][1] = H[k][1]\n A[ind][4] = H[k][2]\n ind = i * 3 + 2\n A[ind][5] = H[k][0]\n A[ind][4] = H[k][1]\n A[ind][2] = H[k][2]\n for j in range(3):\n tmpH[i][j] = H[k][j]\n At = np.transpose(A)\n ATA = np.dot(At, A)\n ATAI = linalg.inv(ATA)\n B = np.dot(ATAI, At)\n else:\n print('B matrix not yet supported')\n return\n return B, H, tmpH\n", "role": "user" }, { "content": "designAARM", "role": "assistant" } ]
def x(file, Recs): for rec in Recs: type = '.0' meths = [] tmp = rec['magic_method_codes'].split(':') for meth in tmp: meths.append(meth.strip()) if 'LT-T-I' in meths: type = '.1' if 'LT-PTRM-I' in meths: type = '.2' if 'LT-PTRM-MD' in meths: type = '.3' treatment = float(rec['treatment_temp']) - 273 tr = '%i' % treatment + type inten = '%8.7e ' % (float(rec['measurement_magn_moment']) * 1000.0) outstring = rec['er_specimen_name'] + ' ' + tr + ' ' + rec[ 'measurement_csd'] + ' ' + inten + ' ' + rec['measurement_dec' ] + ' ' + rec['measurement_inc'] + '\n' file.write(outstring)
domagicmag
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file, Recs):\n for rec in Recs:\n type = '.0'\n meths = []\n tmp = rec['magic_method_codes'].split(':')\n for meth in tmp:\n meths.append(meth.strip())\n if 'LT-T-I' in meths:\n type = '.1'\n if 'LT-PTRM-I' in meths:\n type = '.2'\n if 'LT-PTRM-MD' in meths:\n type = '.3'\n treatment = float(rec['treatment_temp']) - 273\n tr = '%i' % treatment + type\n inten = '%8.7e ' % (float(rec['measurement_magn_moment']) * 1000.0)\n outstring = rec['er_specimen_name'] + ' ' + tr + ' ' + rec[\n 'measurement_csd'] + ' ' + inten + ' ' + rec['measurement_dec'\n ] + ' ' + rec['measurement_inc'] + '\\n'\n file.write(outstring)\n", "role": "user" }, { "content": "domagicmag", "role": "assistant" } ]
def x(first_I, first_Z): cont = 0 Nmin = len(first_I) if len(first_Z) < Nmin: Nmin = len(first_Z) for kk in range(Nmin): if first_I[kk][0] != first_Z[kk][0]: print('\n WARNING: ') if first_I[kk] < first_Z[kk]: del first_I[kk] else: del first_Z[kk] print('Unmatched step number: ', kk + 1, ' ignored') cont = 1 if cont == 1: return first_I, first_Z, cont return first_I, first_Z, cont
cleanup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(first_I, first_Z):\n cont = 0\n Nmin = len(first_I)\n if len(first_Z) < Nmin:\n Nmin = len(first_Z)\n for kk in range(Nmin):\n if first_I[kk][0] != first_Z[kk][0]:\n print('\\n WARNING: ')\n if first_I[kk] < first_Z[kk]:\n del first_I[kk]\n else:\n del first_Z[kk]\n print('Unmatched step number: ', kk + 1, ' ignored')\n cont = 1\n if cont == 1:\n return first_I, first_Z, cont\n return first_I, first_Z, cont\n", "role": "user" }, { "content": "cleanup", "role": "assistant" } ]
def x(lon, lat, alt, gh): model, date, itype = 0, 0, 1 sv = np.zeros(len(gh)) colat = 90.0 - lat x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) return x, y, z, f
docustom
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lon, lat, alt, gh):\n model, date, itype = 0, 0, 1\n sv = np.zeros(len(gh))\n colat = 90.0 - lat\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n return x, y, z, f\n", "role": "user" }, { "content": "docustom", "role": "assistant" } ]
def x(lon, lat, alt, date, **kwargs): from . import coefficients as cf gh, sv = [], [] colat = 90.0 - lat if lon < 0: lon = lon + 360.0 itype = 1 models, igrf12coeffs = cf.get_igrf12() if 'mod' in list(kwargs.keys()): if kwargs['mod'] == 'arch3k': psvmodels, psvcoeffs = cf.get_arch3k() elif kwargs['mod'] == 'cals3k': psvmodels, psvcoeffs = cf.get_cals3k() elif kwargs['mod'] == 'pfm9k': psvmodels, psvcoeffs = cf.get_pfm9k() elif kwargs['mod'] == 'hfm10k': psvmodels, psvcoeffs = cf.get_hfm10k() elif kwargs['mod'] == 'cals10k.2': psvmodels, psvcoeffs = cf.get_cals10k_2() elif kwargs['mod'] == 'shadif14k': psvmodels, psvcoeffs = cf.get_shadif14k() else: psvmodels, psvcoeffs = cf.get_cals10k() if 'models' in kwargs: if 'mod' in list(kwargs.keys()): return psvmodels, psvcoeffs else: return models, igrf12coeffs if date < -12000: print('too old') return if 'mod' in list(kwargs.keys()) and kwargs['mod'] == 'shadif14k': if date < -10000: incr = 100 else: incr = 50 model = date - date % incr gh = psvcoeffs[psvmodels.index(int(model))] sv = old_div(psvcoeffs[psvmodels.index(int(model + incr))] - gh, float(incr)) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) elif date < -1000: incr = 10 model = date - date % incr gh = psvcoeffs[psvmodels.index(int(model))] sv = old_div(psvcoeffs[psvmodels.index(int(model + incr))] - gh, float(incr)) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) elif date < 1900: if kwargs['mod'] == 'cals10k': incr = 50 else: incr = 10 model = date - date % incr gh = psvcoeffs[psvmodels.index(model)] if model + incr < 1900: sv = old_div(psvcoeffs[psvmodels.index(model + incr)] - gh, float(incr)) else: field2 = igrf12coeffs[models.index(1940)][0:120] sv = old_div(field2 - gh, float(1940 - model)) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) else: model = date - date % 5 if date < 2015: gh = igrf12coeffs[models.index(model)] sv = old_div(igrf12coeffs[models.index(model + 5)] - gh, 5.0) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) else: gh = igrf12coeffs[models.index(2015)] sv = igrf12coeffs[models.index(2015.2)] x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) if 'coeffs' in list(kwargs.keys()): return gh else: return x, y, z, f
doigrf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lon, lat, alt, date, **kwargs):\n from . import coefficients as cf\n gh, sv = [], []\n colat = 90.0 - lat\n if lon < 0:\n lon = lon + 360.0\n itype = 1\n models, igrf12coeffs = cf.get_igrf12()\n if 'mod' in list(kwargs.keys()):\n if kwargs['mod'] == 'arch3k':\n psvmodels, psvcoeffs = cf.get_arch3k()\n elif kwargs['mod'] == 'cals3k':\n psvmodels, psvcoeffs = cf.get_cals3k()\n elif kwargs['mod'] == 'pfm9k':\n psvmodels, psvcoeffs = cf.get_pfm9k()\n elif kwargs['mod'] == 'hfm10k':\n psvmodels, psvcoeffs = cf.get_hfm10k()\n elif kwargs['mod'] == 'cals10k.2':\n psvmodels, psvcoeffs = cf.get_cals10k_2()\n elif kwargs['mod'] == 'shadif14k':\n psvmodels, psvcoeffs = cf.get_shadif14k()\n else:\n psvmodels, psvcoeffs = cf.get_cals10k()\n if 'models' in kwargs:\n if 'mod' in list(kwargs.keys()):\n return psvmodels, psvcoeffs\n else:\n return models, igrf12coeffs\n if date < -12000:\n print('too old')\n return\n if 'mod' in list(kwargs.keys()) and kwargs['mod'] == 'shadif14k':\n if date < -10000:\n incr = 100\n else:\n incr = 50\n model = date - date % incr\n gh = psvcoeffs[psvmodels.index(int(model))]\n sv = old_div(psvcoeffs[psvmodels.index(int(model + incr))] - gh,\n float(incr))\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n elif date < -1000:\n incr = 10\n model = date - date % incr\n gh = psvcoeffs[psvmodels.index(int(model))]\n sv = old_div(psvcoeffs[psvmodels.index(int(model + incr))] - gh,\n float(incr))\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n elif date < 1900:\n if kwargs['mod'] == 'cals10k':\n incr = 50\n else:\n incr = 10\n model = date - date % incr\n gh = psvcoeffs[psvmodels.index(model)]\n if model + incr < 1900:\n sv = old_div(psvcoeffs[psvmodels.index(model + incr)] - gh,\n float(incr))\n else:\n field2 = igrf12coeffs[models.index(1940)][0:120]\n sv = old_div(field2 - gh, float(1940 - model))\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n else:\n model = date - date % 5\n if date < 2015:\n gh = igrf12coeffs[models.index(model)]\n sv = old_div(igrf12coeffs[models.index(model + 5)] - gh, 5.0)\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n else:\n gh = igrf12coeffs[models.index(2015)]\n sv = igrf12coeffs[models.index(2015.2)]\n x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon)\n if 'coeffs' in list(kwargs.keys()):\n return gh\n else:\n return x, y, z, f\n", "role": "user" }, { "content": "doigrf", "role": "assistant" } ]
def x(gh): data = [] k, l = 0, 1 while k + 1 < len(gh): for m in range(l + 1): if m == 0: data.append([l, m, gh[k], 0]) k += 1 else: data.append([l, m, gh[k], gh[k + 1]]) k += 2 l += 1 return data
unpack
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gh):\n data = []\n k, l = 0, 1\n while k + 1 < len(gh):\n for m in range(l + 1):\n if m == 0:\n data.append([l, m, gh[k], 0])\n k += 1\n else:\n data.append([l, m, gh[k], gh[k + 1]])\n k += 2\n l += 1\n return data\n", "role": "user" }, { "content": "unpack", "role": "assistant" } ]
def x(gh, sv, b, date, itype, alt, colat, elong): p = np.zeros(66, 'f') q = np.zeros(66, 'f') cl = np.zeros(10, 'f') sl = np.zeros(10, 'f') begin = b t = date - begin r = alt one = colat * 0.0174532925 ct = np.cos(one) st = np.sin(one) one = elong * 0.0174532925 cl[0] = np.cos(one) sl[0] = np.sin(one) x, y, z = 0.0, 0.0, 0.0 cd, sd = 1.0, 0.0 l, ll, m, n = 1, 0, 1, 0 if itype != 2: a2 = 40680925.0 b2 = 40408585.0 one = a2 * st * st two = b2 * ct * ct three = one + two rho = np.sqrt(three) r = np.sqrt(alt * (alt + 2.0 * rho) + old_div(a2 * one + b2 * two, three)) cd = old_div(alt + rho, r) sd = (a2 - b2) / rho * ct * st / r one = ct ct = ct * cd - st * sd st = st * cd + one * sd ratio = old_div(6371.2, r) rr = ratio * ratio p[0] = 1.0 p[2] = st q[0] = 0.0 q[2] = ct for k in range(1, 66): if n < m: m = 0 n = n + 1 rr = rr * ratio fn = n gn = n - 1 fm = m if k != 2: if m == n: one = np.sqrt(1.0 - old_div(0.5, fm)) j = k - n - 1 p[k] = one * st * p[j] q[k] = one * (st * q[j] + ct * p[j]) cl[m - 1] = cl[m - 2] * cl[0] - sl[m - 2] * sl[0] sl[m - 1] = sl[m - 2] * cl[0] + cl[m - 2] * sl[0] else: gm = m * m one = np.sqrt(fn * fn - gm) two = old_div(np.sqrt(gn * gn - gm), one) three = old_div(fn + gn, one) i = k - n j = i - n + 1 p[k] = three * ct * p[i] - two * p[j] q[k] = three * (ct * q[i] - st * p[i]) - two * q[j] one = (gh[l - 1] + sv[ll + l - 1] * t) * rr if m != 0: two = (gh[l] + sv[ll + l] * t) * rr three = one * cl[m - 1] + two * sl[m - 1] x = x + three * q[k] z = z - (fn + 1.0) * three * p[k] if st != 0.0: y = y + (one * sl[m - 1] - two * cl[m - 1]) * fm * p[k] / st else: y = y + (one * sl[m - 1] - two * cl[m - 1]) * q[k] * ct l = l + 2 else: x = x + one * q[k] z = z - (fn + 1.0) * one * p[k] l = l + 1 m = m + 1 one = x x = x * cd + z * sd z = z * cd - one * sd f = np.sqrt(x * x + y * y + z * z) return x, y, z, f
magsyn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gh, sv, b, date, itype, alt, colat, elong):\n p = np.zeros(66, 'f')\n q = np.zeros(66, 'f')\n cl = np.zeros(10, 'f')\n sl = np.zeros(10, 'f')\n begin = b\n t = date - begin\n r = alt\n one = colat * 0.0174532925\n ct = np.cos(one)\n st = np.sin(one)\n one = elong * 0.0174532925\n cl[0] = np.cos(one)\n sl[0] = np.sin(one)\n x, y, z = 0.0, 0.0, 0.0\n cd, sd = 1.0, 0.0\n l, ll, m, n = 1, 0, 1, 0\n if itype != 2:\n a2 = 40680925.0\n b2 = 40408585.0\n one = a2 * st * st\n two = b2 * ct * ct\n three = one + two\n rho = np.sqrt(three)\n r = np.sqrt(alt * (alt + 2.0 * rho) + old_div(a2 * one + b2 * two,\n three))\n cd = old_div(alt + rho, r)\n sd = (a2 - b2) / rho * ct * st / r\n one = ct\n ct = ct * cd - st * sd\n st = st * cd + one * sd\n ratio = old_div(6371.2, r)\n rr = ratio * ratio\n p[0] = 1.0\n p[2] = st\n q[0] = 0.0\n q[2] = ct\n for k in range(1, 66):\n if n < m:\n m = 0\n n = n + 1\n rr = rr * ratio\n fn = n\n gn = n - 1\n fm = m\n if k != 2:\n if m == n:\n one = np.sqrt(1.0 - old_div(0.5, fm))\n j = k - n - 1\n p[k] = one * st * p[j]\n q[k] = one * (st * q[j] + ct * p[j])\n cl[m - 1] = cl[m - 2] * cl[0] - sl[m - 2] * sl[0]\n sl[m - 1] = sl[m - 2] * cl[0] + cl[m - 2] * sl[0]\n else:\n gm = m * m\n one = np.sqrt(fn * fn - gm)\n two = old_div(np.sqrt(gn * gn - gm), one)\n three = old_div(fn + gn, one)\n i = k - n\n j = i - n + 1\n p[k] = three * ct * p[i] - two * p[j]\n q[k] = three * (ct * q[i] - st * p[i]) - two * q[j]\n one = (gh[l - 1] + sv[ll + l - 1] * t) * rr\n if m != 0:\n two = (gh[l] + sv[ll + l] * t) * rr\n three = one * cl[m - 1] + two * sl[m - 1]\n x = x + three * q[k]\n z = z - (fn + 1.0) * three * p[k]\n if st != 0.0:\n y = y + (one * sl[m - 1] - two * cl[m - 1]) * fm * p[k] / st\n else:\n y = y + (one * sl[m - 1] - two * cl[m - 1]) * q[k] * ct\n l = l + 2\n else:\n x = x + one * q[k]\n z = z - (fn + 1.0) * one * p[k]\n l = l + 1\n m = m + 1\n one = x\n x = x * cd + z * sd\n z = z * cd - one * sd\n f = np.sqrt(x * x + y * y + z * z)\n return x, y, z, f\n", "role": "user" }, { "content": "magsyn", "role": "assistant" } ]
def x(sample, convention, Z): convention = str(convention) site = sample if convention == '1': return sample[:-1] if convention == '2': parts = sample.strip('-').split('-') return parts[0] if convention == '3': parts = sample.split('.') return parts[0] if convention == '4': k = int(Z) - 1 return sample[0:-k] if convention == '5': return sample if convention == '6': print('-W- Finding names in orient.txt is not currently supported') if convention == '7': k = int(Z) return sample[0:k] if convention == '8': return '' if convention == '9': return sample print('Error in site parsing routine') return
parse_site
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sample, convention, Z):\n convention = str(convention)\n site = sample\n if convention == '1':\n return sample[:-1]\n if convention == '2':\n parts = sample.strip('-').split('-')\n return parts[0]\n if convention == '3':\n parts = sample.split('.')\n return parts[0]\n if convention == '4':\n k = int(Z) - 1\n return sample[0:-k]\n if convention == '5':\n return sample\n if convention == '6':\n print('-W- Finding names in orient.txt is not currently supported')\n if convention == '7':\n k = int(Z)\n return sample[0:k]\n if convention == '8':\n return ''\n if convention == '9':\n return sample\n print('Error in site parsing routine')\n return\n", "role": "user" }, { "content": "parse_site", "role": "assistant" } ]
def x(): samp_con, Z = '', '' while samp_con == '': samp_con = input( """ Sample naming convention: [1] XXXXY: where XXXX is an arbitrary length site designation and Y is the single character sample designation. e.g., TG001a is the first sample from site TG001. [default] [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length) [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length) [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX [5] site name same as sample [6] site is entered under a separate column [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY NB: all others you will have to customize your self or e-mail ltauxe@ucsd.edu for help. select one: """ ) if samp_con == '' or samp_con == '1': samp_con, Z = '1', 1 if '4' in samp_con: if '-' not in samp_con: print('option [4] must be in form 4-Z where Z is an integer') samp_con = '' else: Z = samp_con.split('-')[1] samp_con = '4' if '7' in samp_con: if '-' not in samp_con: print('option [7] must be in form 7-Z where Z is an integer') samp_con = '' else: Z = samp_con.split('-')[1] samp_con = '7' if samp_con.isdigit() == False or int(samp_con) > 7: print('Try again\n ') samp_con = '' return samp_con, Z
get_samp_con
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n samp_con, Z = '', ''\n while samp_con == '':\n samp_con = input(\n \"\"\"\n Sample naming convention:\n [1] XXXXY: where XXXX is an arbitrary length site designation and Y\n is the single character sample designation. e.g., TG001a is the\n first sample from site TG001. [default]\n [2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length)\n [3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length)\n [4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX\n [5] site name same as sample\n [6] site is entered under a separate column\n [7-Z] [XXXX]YYY: XXXX is site designation with Z characters with sample name XXXXYYYY\n NB: all others you will have to customize your self\n or e-mail ltauxe@ucsd.edu for help.\n select one:\n\"\"\"\n )\n if samp_con == '' or samp_con == '1':\n samp_con, Z = '1', 1\n if '4' in samp_con:\n if '-' not in samp_con:\n print('option [4] must be in form 4-Z where Z is an integer')\n samp_con = ''\n else:\n Z = samp_con.split('-')[1]\n samp_con = '4'\n if '7' in samp_con:\n if '-' not in samp_con:\n print('option [7] must be in form 7-Z where Z is an integer')\n samp_con = ''\n else:\n Z = samp_con.split('-')[1]\n samp_con = '7'\n if samp_con.isdigit() == False or int(samp_con) > 7:\n print('Try again\\n ')\n samp_con = ''\n return samp_con, Z\n", "role": "user" }, { "content": "get_samp_con", "role": "assistant" } ]
def x(dec_geo, inc_geo, dec_tilt, inc_tilt): SCart = [0, 0, 0] SCart[2] = 0.0 GCart = dir2cart([dec_geo, inc_geo, 1.0]) TCart = dir2cart([dec_tilt, inc_tilt, 1.0]) X = old_div(TCart[1] - GCart[1], GCart[0] - TCart[0]) SCart[1] = np.sqrt(old_div(1, X ** 2 + 1.0)) SCart[0] = SCart[1] * X SDir = cart2dir(SCart) DipDir = (SDir[0] - 90.0) % 360.0 DipDir = (SDir[0] + 90.0) % 360.0 cosd = GCart[0] * SCart[0] + GCart[1] * SCart[1] d = np.arccos(cosd) cosTheta = GCart[0] * TCart[0] + GCart[1] * TCart[1] + GCart[2] * TCart[2] Dip = old_div(180.0, np.pi) * np.arccos(-old_div(cosd ** 2 - cosTheta, np.sin(d) ** 2)) if Dip > 90: Dip = -Dip return DipDir, Dip
get_tilt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec_geo, inc_geo, dec_tilt, inc_tilt):\n SCart = [0, 0, 0]\n SCart[2] = 0.0\n GCart = dir2cart([dec_geo, inc_geo, 1.0])\n TCart = dir2cart([dec_tilt, inc_tilt, 1.0])\n X = old_div(TCart[1] - GCart[1], GCart[0] - TCart[0])\n SCart[1] = np.sqrt(old_div(1, X ** 2 + 1.0))\n SCart[0] = SCart[1] * X\n SDir = cart2dir(SCart)\n DipDir = (SDir[0] - 90.0) % 360.0\n DipDir = (SDir[0] + 90.0) % 360.0\n cosd = GCart[0] * SCart[0] + GCart[1] * SCart[1]\n d = np.arccos(cosd)\n cosTheta = GCart[0] * TCart[0] + GCart[1] * TCart[1] + GCart[2] * TCart[2]\n Dip = old_div(180.0, np.pi) * np.arccos(-old_div(cosd ** 2 - cosTheta, \n np.sin(d) ** 2))\n if Dip > 90:\n Dip = -Dip\n return DipDir, Dip\n", "role": "user" }, { "content": "get_tilt", "role": "assistant" } ]
def x(cdec, cinc, gdec, ginc): TOL = 0.0001 rad = old_div(np.pi, 180.0) Xp = dir2cart([gdec, ginc, 1.0]) X = dir2cart([cdec, cinc, 1.0]) az, pl, zdif, ang = 0.0, -90.0, 1.0, 360.0 while zdif > TOL and pl < 180.0: znew = X[0] * np.sin(pl * rad) + X[2] * np.cos(pl * rad) zdif = abs(Xp[2] - znew) pl += 0.01 while ang > 0.1 and az < 360.0: d, i = dogeo(cdec, cinc, az, pl) ang = angle([gdec, ginc], [d, i]) az += 0.01 return az - 0.01, pl - 0.01
get_azpl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cdec, cinc, gdec, ginc):\n TOL = 0.0001\n rad = old_div(np.pi, 180.0)\n Xp = dir2cart([gdec, ginc, 1.0])\n X = dir2cart([cdec, cinc, 1.0])\n az, pl, zdif, ang = 0.0, -90.0, 1.0, 360.0\n while zdif > TOL and pl < 180.0:\n znew = X[0] * np.sin(pl * rad) + X[2] * np.cos(pl * rad)\n zdif = abs(Xp[2] - znew)\n pl += 0.01\n while ang > 0.1 and az < 360.0:\n d, i = dogeo(cdec, cinc, az, pl)\n ang = angle([gdec, ginc], [d, i])\n az += 0.01\n return az - 0.01, pl - 0.01\n", "role": "user" }, { "content": "get_azpl", "role": "assistant" } ]
def x(SO_methods, ask): SO_methods = [meth.strip() for meth in SO_methods] SO_defaults = ['SO-SUN', 'SO-GPS-DIFF', 'SO-SUN-SIGHT', 'SO-SIGHT', 'SO-SIGHT-BS', 'SO-CMD-NORTH', 'SO-MAG', 'SO-SM', 'SO-REC', 'SO-V', 'SO-CORE', 'SO-NO'] SO_priorities, prior_list = [], [] if len(SO_methods) >= 1: for l in range(len(SO_defaults)): if SO_defaults[l] in SO_methods: SO_priorities.append(SO_defaults[l]) pri, change = 0, '1' if ask == 1: print( """These methods of sample orientation were found: They have been assigned a provisional priority (top = zero, last = highest number) """ ) for m in range(len(SO_defaults)): if SO_defaults[m] in SO_methods: SO_priorities[SO_methods.index(SO_defaults[m])] = pri pri += 1 while change == '1': prior_list = SO_priorities for m in range(len(SO_methods)): print(SO_methods[m], SO_priorities[m]) change = input('Change these? 1/[0] ') if change != '1': break SO_priorities = [] for l in range(len(SO_methods)): print(SO_methods[l]) print(' Priority? ', prior_list) pri = int(input()) SO_priorities.append(pri) del prior_list[prior_list.index(pri)] return SO_priorities
set_priorities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(SO_methods, ask):\n SO_methods = [meth.strip() for meth in SO_methods]\n SO_defaults = ['SO-SUN', 'SO-GPS-DIFF', 'SO-SUN-SIGHT', 'SO-SIGHT',\n 'SO-SIGHT-BS', 'SO-CMD-NORTH', 'SO-MAG', 'SO-SM', 'SO-REC', 'SO-V',\n 'SO-CORE', 'SO-NO']\n SO_priorities, prior_list = [], []\n if len(SO_methods) >= 1:\n for l in range(len(SO_defaults)):\n if SO_defaults[l] in SO_methods:\n SO_priorities.append(SO_defaults[l])\n pri, change = 0, '1'\n if ask == 1:\n print(\n \"\"\"These methods of sample orientation were found:\n They have been assigned a provisional priority (top = zero, last = highest number) \"\"\"\n )\n for m in range(len(SO_defaults)):\n if SO_defaults[m] in SO_methods:\n SO_priorities[SO_methods.index(SO_defaults[m])] = pri\n pri += 1\n while change == '1':\n prior_list = SO_priorities\n for m in range(len(SO_methods)):\n print(SO_methods[m], SO_priorities[m])\n change = input('Change these? 1/[0] ')\n if change != '1':\n break\n SO_priorities = []\n for l in range(len(SO_methods)):\n print(SO_methods[l])\n print(' Priority? ', prior_list)\n pri = int(input())\n SO_priorities.append(pri)\n del prior_list[prior_list.index(pri)]\n return SO_priorities\n", "role": "user" }, { "content": "set_priorities", "role": "assistant" } ]
def x(file): f = open(file, 'r') firstline = f.read(350) EOL = '' for k in range(350): if firstline[k:k + 2] == '\r\n': print(file, ' appears to be a dos file') EOL = '\r\n' break if EOL == '': for k in range(350): if firstline[k] == '\r': print(file, ' appears to be a mac file') EOL = '\r' if EOL == '': print(file, ' appears to be a unix file') EOL = '\n' f.close() return EOL
get_EOL
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file):\n f = open(file, 'r')\n firstline = f.read(350)\n EOL = ''\n for k in range(350):\n if firstline[k:k + 2] == '\\r\\n':\n print(file, ' appears to be a dos file')\n EOL = '\\r\\n'\n break\n if EOL == '':\n for k in range(350):\n if firstline[k] == '\\r':\n print(file, ' appears to be a mac file')\n EOL = '\\r'\n if EOL == '':\n print(file, ' appears to be a unix file')\n EOL = '\\n'\n f.close()\n return EOL\n", "role": "user" }, { "content": "get_EOL", "role": "assistant" } ]
def x(s, datablock): for rec in datablock: methcodes = rec['magic_method_codes'].split(':') step = float(rec['treatment_ac_field']) str = float(rec['measurement_magn_moment']) if 'LT-NO' in methcodes: NRM.append([0, str]) if 'LT-T-I' in methcodes: TRM.append([0, str]) field = float(rec['treatment_dc_field']) if 'LT-AF-I' in methcodes: ARM1.append([0, str]) if 'LT-AF-I-2' in methcodes: ARM2.append([0, str]) if 'LT-AF-Z' in methcodes: if 'LP-ARM-AFD' in methcodes: ARM1.append([step, str]) elif 'LP-TRM-AFD' in methcodes: TRM.append([step, str]) elif 'LP-ARM2-AFD' in methcodes: ARM2.append([step, str]) else: NRM.append([step, str]) cont = 1 while cont == 1: if len(NRM) != len(TRM): print('Uneven NRM/TRM steps: ') NRM, TRM, cont = cleanup(TRM, NRM) else: cont = 0 cont = 1 while cont == 1: if len(ARM1) != len(ARM2): print('Uneven ARM1/ARM2 steps: ') ARM1, ARM2, cont = cleanup(ARM2, ARM1) else: cont = 0 if len(NRM) != len(TRM) or len(ARM1) != len(ARM2): print(len(NRM), len(TRM), len(ARM1), len(ARM2)) print( ' Something wrong with this specimen! Better fix it or delete it ') input(' press return to acknowledge message') TRM_ADJ = [] for kk in range(len(TRM)): step = TRM[kk][0] for k in range(len(ARM1)): if ARM1[k][0] == step: TRM_ADJ.append([step, TRM[kk][1] * ARM1[k][1] / ARM2[k][1]]) break shawblock = NRM, TRM, ARM1, ARM2, TRM_ADJ return shawblock, field
sortshaw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, datablock):\n for rec in datablock:\n methcodes = rec['magic_method_codes'].split(':')\n step = float(rec['treatment_ac_field'])\n str = float(rec['measurement_magn_moment'])\n if 'LT-NO' in methcodes:\n NRM.append([0, str])\n if 'LT-T-I' in methcodes:\n TRM.append([0, str])\n field = float(rec['treatment_dc_field'])\n if 'LT-AF-I' in methcodes:\n ARM1.append([0, str])\n if 'LT-AF-I-2' in methcodes:\n ARM2.append([0, str])\n if 'LT-AF-Z' in methcodes:\n if 'LP-ARM-AFD' in methcodes:\n ARM1.append([step, str])\n elif 'LP-TRM-AFD' in methcodes:\n TRM.append([step, str])\n elif 'LP-ARM2-AFD' in methcodes:\n ARM2.append([step, str])\n else:\n NRM.append([step, str])\n cont = 1\n while cont == 1:\n if len(NRM) != len(TRM):\n print('Uneven NRM/TRM steps: ')\n NRM, TRM, cont = cleanup(TRM, NRM)\n else:\n cont = 0\n cont = 1\n while cont == 1:\n if len(ARM1) != len(ARM2):\n print('Uneven ARM1/ARM2 steps: ')\n ARM1, ARM2, cont = cleanup(ARM2, ARM1)\n else:\n cont = 0\n if len(NRM) != len(TRM) or len(ARM1) != len(ARM2):\n print(len(NRM), len(TRM), len(ARM1), len(ARM2))\n print(\n ' Something wrong with this specimen! Better fix it or delete it ')\n input(' press return to acknowledge message')\n TRM_ADJ = []\n for kk in range(len(TRM)):\n step = TRM[kk][0]\n for k in range(len(ARM1)):\n if ARM1[k][0] == step:\n TRM_ADJ.append([step, TRM[kk][1] * ARM1[k][1] / ARM2[k][1]])\n break\n shawblock = NRM, TRM, ARM1, ARM2, TRM_ADJ\n return shawblock, field\n", "role": "user" }, { "content": "sortshaw", "role": "assistant" } ]
def x(gh, lat, lon): sv = [] pad = 120 - len(gh) for x in range(pad): gh.append(0.0) for x in range(len(gh)): sv.append(0.0) itype = 1 colat = 90.0 - lat date, alt = 2000.0, 0.0 x, y, z, f = magsyn(gh, sv, date, date, itype, alt, colat, lon) vec = cart2dir([x, y, z]) vec[2] = f return vec
getvec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gh, lat, lon):\n sv = []\n pad = 120 - len(gh)\n for x in range(pad):\n gh.append(0.0)\n for x in range(len(gh)):\n sv.append(0.0)\n itype = 1\n colat = 90.0 - lat\n date, alt = 2000.0, 0.0\n x, y, z, f = magsyn(gh, sv, date, date, itype, alt, colat, lon)\n vec = cart2dir([x, y, z])\n vec[2] = f\n return vec\n", "role": "user" }, { "content": "getvec", "role": "assistant" } ]
def x(l, alpha): a2 = alpha ** 2 c_a = 0.547 s_l = np.sqrt(old_div(c_a ** (2.0 * l) * a2, (l + 1.0) * (2.0 * l + 1.0))) return s_l
s_l
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(l, alpha):\n a2 = alpha ** 2\n c_a = 0.547\n s_l = np.sqrt(old_div(c_a ** (2.0 * l) * a2, (l + 1.0) * (2.0 * l + 1.0)))\n return s_l\n", "role": "user" }, { "content": "s_l", "role": "assistant" } ]
def x(terms, seed, G2, G3): p = 0 n = seed gh = [] g10, sfact, afact = -18000.0, 3.8, 2.4 g20 = G2 * g10 g30 = G3 * g10 alpha = g10 / afact s1 = s_l(1, alpha) s10 = sfact * s1 gnew = random.normal(g10, s10) if p == 1: print(1, 0, gnew, 0) gh.append(gnew) gh.append(random.normal(0, s1)) gnew = gh[-1] gh.append(random.normal(0, s1)) hnew = gh[-1] if p == 1: print(1, 1, gnew, hnew) for l in range(2, terms + 1): for m in range(l + 1): OFF = 0.0 if l == 2 and m == 0: OFF = g20 if l == 3 and m == 0: OFF = g30 s = s_l(l, alpha) j = (l - m) % 2 if j == 1: s = s * sfact gh.append(random.normal(OFF, s)) gnew = gh[-1] if m == 0: hnew = 0 else: gh.append(random.normal(0, s)) hnew = gh[-1] if p == 1: print(l, m, gnew, hnew) return gh
mktk03
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(terms, seed, G2, G3):\n p = 0\n n = seed\n gh = []\n g10, sfact, afact = -18000.0, 3.8, 2.4\n g20 = G2 * g10\n g30 = G3 * g10\n alpha = g10 / afact\n s1 = s_l(1, alpha)\n s10 = sfact * s1\n gnew = random.normal(g10, s10)\n if p == 1:\n print(1, 0, gnew, 0)\n gh.append(gnew)\n gh.append(random.normal(0, s1))\n gnew = gh[-1]\n gh.append(random.normal(0, s1))\n hnew = gh[-1]\n if p == 1:\n print(1, 1, gnew, hnew)\n for l in range(2, terms + 1):\n for m in range(l + 1):\n OFF = 0.0\n if l == 2 and m == 0:\n OFF = g20\n if l == 3 and m == 0:\n OFF = g30\n s = s_l(l, alpha)\n j = (l - m) % 2\n if j == 1:\n s = s * sfact\n gh.append(random.normal(OFF, s))\n gnew = gh[-1]\n if m == 0:\n hnew = 0\n else:\n gh.append(random.normal(0, s))\n hnew = gh[-1]\n if p == 1:\n print(l, m, gnew, hnew)\n return gh\n", "role": "user" }, { "content": "mktk03", "role": "assistant" } ]
def x(lat): tanl = np.tan(np.radians(lat)) inc = np.arctan(2.0 * tanl) return np.degrees(inc)
pinc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lat):\n tanl = np.tan(np.radians(lat))\n inc = np.arctan(2.0 * tanl)\n return np.degrees(inc)\n", "role": "user" }, { "content": "pinc", "role": "assistant" } ]
def x(inc): tani = np.tan(np.radians(inc)) lat = np.arctan(tani / 2.0) return np.degrees(lat)
plat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inc):\n tani = np.tan(np.radians(inc))\n lat = np.arctan(tani / 2.0)\n return np.degrees(lat)\n", "role": "user" }, { "content": "plat", "role": "assistant" } ]
def x(DIs, random_seed=None): if random_seed != None: np.random.seed(random_seed) Inds = np.random.randint(len(DIs), size=len(DIs)) D = np.array(DIs) return D[Inds]
pseudo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(DIs, random_seed=None):\n if random_seed != None:\n np.random.seed(random_seed)\n Inds = np.random.randint(len(DIs), size=len(DIs))\n D = np.array(DIs)\n return D[Inds]\n", "role": "user" }, { "content": "pseudo", "role": "assistant" } ]
def x(DIs, nb=5000): BDIs = [] for k in range(nb): pDIs = pseudo(DIs) bfpars = fisher_mean(pDIs) BDIs.append([bfpars['dec'], bfpars['inc']]) return BDIs
di_boot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(DIs, nb=5000):\n BDIs = []\n for k in range(nb):\n pDIs = pseudo(DIs)\n bfpars = fisher_mean(pDIs)\n BDIs.append([bfpars['dec'], bfpars['inc']])\n return BDIs\n", "role": "user" }, { "content": "di_boot", "role": "assistant" } ]
def x(dir_df, nb=5000, par=False): N = dir_df.dir_dec.values.shape[0] BDIs = [] for k in range(nb): pdir_df = dir_df.sample(n=N, replace=True) pdir_df.reset_index(inplace=True) if par: for i in pdir_df.index: n = pdir_df.loc[i, 'dir_n'] ks = np.ones(shape=n) * pdir_df.loc[i, 'dir_k'] decs, incs = fshdev(ks) di_block = np.column_stack((decs, incs)) di_block = dodirot_V(di_block, pdir_df.loc[i, 'dir_dec'], pdir_df.loc[i, 'dir_inc']) fpars = fisher_mean(di_block) pdir_df.loc[i, 'dir_dec'] = fpars['dec'] pdir_df.loc[i, 'dir_inc'] = fpars['inc'] bfpars = dir_df_fisher_mean(pdir_df) BDIs.append([bfpars['dec'], bfpars['inc']]) return BDIs
dir_df_boot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dir_df, nb=5000, par=False):\n N = dir_df.dir_dec.values.shape[0]\n BDIs = []\n for k in range(nb):\n pdir_df = dir_df.sample(n=N, replace=True)\n pdir_df.reset_index(inplace=True)\n if par:\n for i in pdir_df.index:\n n = pdir_df.loc[i, 'dir_n']\n ks = np.ones(shape=n) * pdir_df.loc[i, 'dir_k']\n decs, incs = fshdev(ks)\n di_block = np.column_stack((decs, incs))\n di_block = dodirot_V(di_block, pdir_df.loc[i, 'dir_dec'],\n pdir_df.loc[i, 'dir_inc'])\n fpars = fisher_mean(di_block)\n pdir_df.loc[i, 'dir_dec'] = fpars['dec']\n pdir_df.loc[i, 'dir_inc'] = fpars['inc']\n bfpars = dir_df_fisher_mean(pdir_df)\n BDIs.append([bfpars['dec'], bfpars['inc']])\n return BDIs\n", "role": "user" }, { "content": "dir_df_boot", "role": "assistant" } ]
def x(dir_df): N = dir_df.dir_dec.values.shape[0] fpars = {} if N < 2: return fpars dirs = dir_df[['dir_dec', 'dir_inc']].values X = dir2cart(dirs).transpose() Xbar = np.array([X[0].sum(), X[1].sum(), X[2].sum()]) R = np.sqrt(Xbar[0] ** 2 + Xbar[1] ** 2 + Xbar[2] ** 2) Xbar = Xbar / R dir = cart2dir(Xbar) fpars['dec'] = dir[0] fpars['inc'] = dir[1] fpars['n'] = N fpars['r'] = R if N != R: k = (N - 1.0) / (N - R) fpars['k'] = k csd = 81.0 / np.sqrt(k) else: fpars['k'] = 'inf' csd = 0.0 b = 20.0 ** (1.0 / (N - 1.0)) - 1 a = 1 - b * (N - R) / R if a < -1: a = -1 a95 = np.degrees(np.arccos(a)) fpars['alpha95'] = a95 fpars['csd'] = csd if a < 0: fpars['alpha95'] = 180.0 return fpars
dir_df_fisher_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dir_df):\n N = dir_df.dir_dec.values.shape[0]\n fpars = {}\n if N < 2:\n return fpars\n dirs = dir_df[['dir_dec', 'dir_inc']].values\n X = dir2cart(dirs).transpose()\n Xbar = np.array([X[0].sum(), X[1].sum(), X[2].sum()])\n R = np.sqrt(Xbar[0] ** 2 + Xbar[1] ** 2 + Xbar[2] ** 2)\n Xbar = Xbar / R\n dir = cart2dir(Xbar)\n fpars['dec'] = dir[0]\n fpars['inc'] = dir[1]\n fpars['n'] = N\n fpars['r'] = R\n if N != R:\n k = (N - 1.0) / (N - R)\n fpars['k'] = k\n csd = 81.0 / np.sqrt(k)\n else:\n fpars['k'] = 'inf'\n csd = 0.0\n b = 20.0 ** (1.0 / (N - 1.0)) - 1\n a = 1 - b * (N - R) / R\n if a < -1:\n a = -1\n a95 = np.degrees(np.arccos(a))\n fpars['alpha95'] = a95\n fpars['csd'] = csd\n if a < 0:\n fpars['alpha95'] = 180.0\n return fpars\n", "role": "user" }, { "content": "dir_df_fisher_mean", "role": "assistant" } ]
def x(x): BXs = [] for k in range(len(x)): ind = random.randint(0, len(x) - 1) BXs.append(x[ind]) return BXs
pseudosample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n BXs = []\n for k in range(len(x)):\n ind = random.randint(0, len(x) - 1)\n BXs.append(x[ind])\n return BXs\n", "role": "user" }, { "content": "pseudosample", "role": "assistant" } ]
def x(data): plate, site_lat, site_lon, age = data[0], data[1], data[2], data[3] apwp = get_plate_data(plate) recs = apwp.split() k, plate_data = 0, [] while k < len(recs) - 3: rec = [float(recs[k]), float(recs[k + 1]), float(recs[k + 2])] plate_data.append(rec) k = k + 3 for i in range(len(plate_data)): if age >= plate_data[i][0] and age <= plate_data[i + 1][0]: if age - plate_data[i][0] < plate_data[i][0] - age: rec = i else: rec = i + 1 break pole_lat = plate_data[rec][1] pole_lon = plate_data[rec][2] return pole_lat, pole_lon
bc02
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n plate, site_lat, site_lon, age = data[0], data[1], data[2], data[3]\n apwp = get_plate_data(plate)\n recs = apwp.split()\n k, plate_data = 0, []\n while k < len(recs) - 3:\n rec = [float(recs[k]), float(recs[k + 1]), float(recs[k + 2])]\n plate_data.append(rec)\n k = k + 3\n for i in range(len(plate_data)):\n if age >= plate_data[i][0] and age <= plate_data[i + 1][0]:\n if age - plate_data[i][0] < plate_data[i][0] - age:\n rec = i\n else:\n rec = i + 1\n break\n pole_lat = plate_data[rec][1]\n pole_lon = plate_data[rec][2]\n return pole_lat, pole_lon\n", "role": "user" }, { "content": "bc02", "role": "assistant" } ]
def x(x, y): if len(x) != len(y): print('x and y must be same length') return xx, yy, xsum, ysum, xy, n, sum = 0, 0, 0, 0, 0, len(x), 0 linpars = {} for i in range(n): xx += x[i] * x[i] yy += y[i] * y[i] xy += x[i] * y[i] xsum += x[i] ysum += y[i] xsig = np.sqrt(old_div(xx - old_div(xsum ** 2, n), n - 1.0)) ysig = np.sqrt(old_div(yy - old_div(ysum ** 2, n), n - 1.0)) linpars['slope'] = old_div(xy - xsum * ysum / n, xx - old_div(xsum ** 2, n) ) linpars['b'] = old_div(ysum - linpars['slope'] * xsum, n) linpars['r'] = old_div(linpars['slope'] * xsig, ysig) for i in range(n): a = y[i] - linpars['b'] - linpars['slope'] * x[i] sum += a linpars['sigma'] = old_div(sum, n - 2.0) linpars['n'] = n return linpars
linreg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y):\n if len(x) != len(y):\n print('x and y must be same length')\n return\n xx, yy, xsum, ysum, xy, n, sum = 0, 0, 0, 0, 0, len(x), 0\n linpars = {}\n for i in range(n):\n xx += x[i] * x[i]\n yy += y[i] * y[i]\n xy += x[i] * y[i]\n xsum += x[i]\n ysum += y[i]\n xsig = np.sqrt(old_div(xx - old_div(xsum ** 2, n), n - 1.0))\n ysig = np.sqrt(old_div(yy - old_div(ysum ** 2, n), n - 1.0))\n linpars['slope'] = old_div(xy - xsum * ysum / n, xx - old_div(xsum ** 2, n)\n )\n linpars['b'] = old_div(ysum - linpars['slope'] * xsum, n)\n linpars['r'] = old_div(linpars['slope'] * xsig, ysig)\n for i in range(n):\n a = y[i] - linpars['b'] - linpars['slope'] * x[i]\n sum += a\n linpars['sigma'] = old_div(sum, n - 2.0)\n linpars['n'] = n\n return linpars\n", "role": "user" }, { "content": "linreg", "role": "assistant" } ]
def x(incs, f): incs = np.radians(incs) I_o = f * np.tan(incs) return np.degrees(np.arctan(I_o))
squish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(incs, f):\n incs = np.radians(incs)\n I_o = f * np.tan(incs)\n return np.degrees(np.arctan(I_o))\n", "role": "user" }, { "content": "squish", "role": "assistant" } ]
def x(st, **kwargs): namespace = kwargs exec('b = {}'.format(st), namespace) return namespace['b']
execute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(st, **kwargs):\n namespace = kwargs\n exec('b = {}'.format(st), namespace)\n return namespace['b']\n", "role": "user" }, { "content": "execute", "role": "assistant" } ]
def x(path, acceptance_criteria, **kwargs): warnings = [] acceptance_criteria_list = list(acceptance_criteria.keys()) if 'data_model' in list(kwargs.keys()) and kwargs['data_model'] == 3: crit_data = acceptance_criteria else: crit_data, file_type = magic_read(path) if 'criteria' not in file_type: if 'empty' in file_type: print('-W- No criteria found: {} '.format(path)) else: print( '-W- {} could not be read and may be improperly formatted...' .format(path)) for rec in crit_data: metadata_dict = {'pmag_criteria_code': '', 'criteria_definition': '', 'er_citation_names': ''} for metadata in metadata_dict: if metadata in rec: metadata_dict[metadata] = rec[metadata] for crit in list(rec.keys()): if crit == 'anisotropy_ftest_flag' and crit not in list(rec.keys() ): crit = 'specimen_aniso_ftest_flag' rec[crit] = rec[crit].strip('\n') if crit in ['pmag_criteria_code', 'criteria_definition', 'magic_experiment_names', 'er_citation_names']: continue elif rec[crit] == '': continue if crit in acceptance_criteria: if acceptance_criteria[crit]['value'] not in [-999, '-999', -999]: print( """-W- You have multiple different criteria that both use column: {}. The last will be used: {}.""" .format(crit, rec)) warn_string = ( 'multiple criteria for column: {} (only last will be used)' .format(crit)) if warn_string not in warnings: warnings.append(warn_string) if crit == 'specimen_dang' and 'pmag_criteria_code' in list(rec .keys()) and 'IE-SPEC' in rec['pmag_criteria_code']: crit = 'specimen_int_dang' print( '-W- Found backward compatibility problem with selection criteria specimen_dang. Cannot be associated with IE-SPEC. Program assumes that the statistic is specimen_int_dang' ) if 'specimen_int_dang' not in acceptance_criteria: acceptance_criteria['specimen_int_dang'] = {} acceptance_criteria['specimen_int_dang']['value'] = float(rec ['specimen_dang']) elif crit not in acceptance_criteria_list: print( '-W- WARNING: criteria code %s is not supported by PmagPy GUI. please check' % crit) acceptance_criteria[crit] = {} acceptance_criteria[crit]['value'] = rec[crit] acceptance_criteria[crit]['threshold_type'] = 'inherited' acceptance_criteria[crit]['decimal_points'] = -999 acceptance_criteria[crit]['category'] = None elif acceptance_criteria[crit]['threshold_type'] == 'bool': if str(rec[crit]) in ['1', 'g', 'True', 'TRUE']: acceptance_criteria[crit]['value'] = True else: acceptance_criteria[crit]['value'] = False elif type(acceptance_criteria[crit]['threshold_type']) == list: if str(rec[crit]) in acceptance_criteria[crit]['threshold_type' ]: acceptance_criteria[crit]['value'] = str(rec[crit]) else: print( '-W- WARNING: data %s from criteria code %s and is not supported by PmagPy GUI. please check' % (crit, rec[crit])) elif float(rec[crit]) == -999: pass else: acceptance_criteria[crit]['value'] = float(rec[crit]) acceptance_criteria[crit].update(metadata_dict) if 'return_warnings' in kwargs: return acceptance_criteria, warnings else: return acceptance_criteria
read_criteria_from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, acceptance_criteria, **kwargs):\n warnings = []\n acceptance_criteria_list = list(acceptance_criteria.keys())\n if 'data_model' in list(kwargs.keys()) and kwargs['data_model'] == 3:\n crit_data = acceptance_criteria\n else:\n crit_data, file_type = magic_read(path)\n if 'criteria' not in file_type:\n if 'empty' in file_type:\n print('-W- No criteria found: {} '.format(path))\n else:\n print(\n '-W- {} could not be read and may be improperly formatted...'\n .format(path))\n for rec in crit_data:\n metadata_dict = {'pmag_criteria_code': '', 'criteria_definition':\n '', 'er_citation_names': ''}\n for metadata in metadata_dict:\n if metadata in rec:\n metadata_dict[metadata] = rec[metadata]\n for crit in list(rec.keys()):\n if crit == 'anisotropy_ftest_flag' and crit not in list(rec.keys()\n ):\n crit = 'specimen_aniso_ftest_flag'\n rec[crit] = rec[crit].strip('\\n')\n if crit in ['pmag_criteria_code', 'criteria_definition',\n 'magic_experiment_names', 'er_citation_names']:\n continue\n elif rec[crit] == '':\n continue\n if crit in acceptance_criteria:\n if acceptance_criteria[crit]['value'] not in [-999, '-999',\n -999]:\n print(\n \"\"\"-W- You have multiple different criteria that both use column: {}.\nThe last will be used:\n{}.\"\"\"\n .format(crit, rec))\n warn_string = (\n 'multiple criteria for column: {} (only last will be used)'\n .format(crit))\n if warn_string not in warnings:\n warnings.append(warn_string)\n if crit == 'specimen_dang' and 'pmag_criteria_code' in list(rec\n .keys()) and 'IE-SPEC' in rec['pmag_criteria_code']:\n crit = 'specimen_int_dang'\n print(\n '-W- Found backward compatibility problem with selection criteria specimen_dang. Cannot be associated with IE-SPEC. Program assumes that the statistic is specimen_int_dang'\n )\n if 'specimen_int_dang' not in acceptance_criteria:\n acceptance_criteria['specimen_int_dang'] = {}\n acceptance_criteria['specimen_int_dang']['value'] = float(rec\n ['specimen_dang'])\n elif crit not in acceptance_criteria_list:\n print(\n '-W- WARNING: criteria code %s is not supported by PmagPy GUI. please check'\n % crit)\n acceptance_criteria[crit] = {}\n acceptance_criteria[crit]['value'] = rec[crit]\n acceptance_criteria[crit]['threshold_type'] = 'inherited'\n acceptance_criteria[crit]['decimal_points'] = -999\n acceptance_criteria[crit]['category'] = None\n elif acceptance_criteria[crit]['threshold_type'] == 'bool':\n if str(rec[crit]) in ['1', 'g', 'True', 'TRUE']:\n acceptance_criteria[crit]['value'] = True\n else:\n acceptance_criteria[crit]['value'] = False\n elif type(acceptance_criteria[crit]['threshold_type']) == list:\n if str(rec[crit]) in acceptance_criteria[crit]['threshold_type'\n ]:\n acceptance_criteria[crit]['value'] = str(rec[crit])\n else:\n print(\n '-W- WARNING: data %s from criteria code %s and is not supported by PmagPy GUI. please check'\n % (crit, rec[crit]))\n elif float(rec[crit]) == -999:\n pass\n else:\n acceptance_criteria[crit]['value'] = float(rec[crit])\n acceptance_criteria[crit].update(metadata_dict)\n if 'return_warnings' in kwargs:\n return acceptance_criteria, warnings\n else:\n return acceptance_criteria\n", "role": "user" }, { "content": "read_criteria_from_file", "role": "assistant" } ]
def x(var, flag): if var: var = flag + ' ' + str(var) else: var = '' return var
add_flag
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(var, flag):\n if var:\n var = flag + ' ' + str(var)\n else:\n var = ''\n return var\n", "role": "user" }, { "content": "add_flag", "role": "assistant" } ]
def x(name, default_val=None, reqd=False): if name in sys.argv: ind = sys.argv.index(name) return sys.argv[ind + 1] if reqd: raise MissingCommandLineArgException(name) return default_val
get_named_arg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, default_val=None, reqd=False):\n if name in sys.argv:\n ind = sys.argv.index(name)\n return sys.argv[ind + 1]\n if reqd:\n raise MissingCommandLineArgException(name)\n return default_val\n", "role": "user" }, { "content": "get_named_arg", "role": "assistant" } ]
def x(recs): headers = [] for rec in recs: keys = list(rec.keys()) for key in keys: if key not in headers: headers.append(key) for rec in recs: for header in headers: if header not in list(rec.keys()): rec[header] = '' return recs
merge_recs_headers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(recs):\n headers = []\n for rec in recs:\n keys = list(rec.keys())\n for key in keys:\n if key not in headers:\n headers.append(key)\n for rec in recs:\n for header in headers:\n if header not in list(rec.keys()):\n rec[header] = ''\n return recs\n", "role": "user" }, { "content": "merge_recs_headers", "role": "assistant" } ]
def x(fname, dir_path='.'): if not fname: return '' file_dir_path, file_name = os.path.split(fname) if not file_dir_path or file_dir_path == '.': full_file = os.path.join(dir_path, fname) else: full_file = fname return os.path.realpath(full_file)
resolve_file_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname, dir_path='.'):\n if not fname:\n return ''\n file_dir_path, file_name = os.path.split(fname)\n if not file_dir_path or file_dir_path == '.':\n full_file = os.path.join(dir_path, fname)\n else:\n full_file = fname\n return os.path.realpath(full_file)\n", "role": "user" }, { "content": "resolve_file_name", "role": "assistant" } ]
def x(val, key): CheckDec = ['_dec', '_lon', '_azimuth', 'dip_direction'] adjust = False for dec_key in CheckDec: if dec_key in key: if key.endswith(dec_key) or key.endswith('_'): adjust = True if not val: return '' elif not adjust: return val elif adjust: new_val = float(val) % 360 if new_val != float(val): print('-I- adjusted {} {} to 0=>360.: {}'.format(key, val, new_val) ) return new_val
adjust_to_360
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(val, key):\n CheckDec = ['_dec', '_lon', '_azimuth', 'dip_direction']\n adjust = False\n for dec_key in CheckDec:\n if dec_key in key:\n if key.endswith(dec_key) or key.endswith('_'):\n adjust = True\n if not val:\n return ''\n elif not adjust:\n return val\n elif adjust:\n new_val = float(val) % 360\n if new_val != float(val):\n print('-I- adjusted {} {} to 0=>360.: {}'.format(key, val, new_val)\n )\n return new_val\n", "role": "user" }, { "content": "adjust_to_360", "role": "assistant" } ]
def x(dictionary): for key in dictionary: dictionary[key] = adjust_to_360(dictionary[key], key) return dictionary
adjust_all_to_360
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dictionary):\n for key in dictionary:\n dictionary[key] = adjust_to_360(dictionary[key], key)\n return dictionary\n", "role": "user" }, { "content": "adjust_all_to_360", "role": "assistant" } ]
def x(date, lon_0=0, alt=0, file='', mod='cals10k', resolution='low'): if resolution == 'low': incr = 10 elif resolution == 'high': incr = 2 if lon_0 == 180: lon_0 = 179.99 if lon_0 > 180: lon_0 = lon_0 - 360.0 lonmax = (lon_0 + 180.0) % 360 + incr lonmin = lon_0 - 180.0 latmax = 90 + incr lons = np.arange(lonmin, lonmax, incr) lats = np.arange(-90, latmax, incr) B = np.zeros((len(lats), len(lons))) Binc = np.zeros((len(lats), len(lons))) Bdec = np.zeros((len(lats), len(lons))) Brad = np.zeros((len(lats), len(lons))) if mod == 'custom' and file != '': gh = [] lmgh = np.loadtxt(file).transpose() gh.append(lmgh[2][0]) for i in range(1, lmgh.shape[1]): gh.append(lmgh[2][i]) if lmgh[1][i] != 0: gh.append(lmgh[3][i]) for j in range(len(lats)): for i in range(len(lons)): if mod == 'custom': x, y, z, f = docustom(lons[i], lats[j], alt, gh) else: x, y, z, f = doigrf(lons[i], lats[j], alt, date, mod=mod, file=file) Dec, Inc, Int = cart2dir([x, y, z]) if mod != 'custom': B[j][i] = Int * 0.001 else: B[j][i] = Int Binc[j][i] = Inc if Dec > 180: Dec = Dec - 360.0 Bdec[j][i] = Dec if mod != 'custom': Brad[j][i] = z * 0.001 else: Brad[j][i] = z return Bdec, Binc, B, Brad, lons, lats
do_mag_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date, lon_0=0, alt=0, file='', mod='cals10k', resolution='low'):\n if resolution == 'low':\n incr = 10\n elif resolution == 'high':\n incr = 2\n if lon_0 == 180:\n lon_0 = 179.99\n if lon_0 > 180:\n lon_0 = lon_0 - 360.0\n lonmax = (lon_0 + 180.0) % 360 + incr\n lonmin = lon_0 - 180.0\n latmax = 90 + incr\n lons = np.arange(lonmin, lonmax, incr)\n lats = np.arange(-90, latmax, incr)\n B = np.zeros((len(lats), len(lons)))\n Binc = np.zeros((len(lats), len(lons)))\n Bdec = np.zeros((len(lats), len(lons)))\n Brad = np.zeros((len(lats), len(lons)))\n if mod == 'custom' and file != '':\n gh = []\n lmgh = np.loadtxt(file).transpose()\n gh.append(lmgh[2][0])\n for i in range(1, lmgh.shape[1]):\n gh.append(lmgh[2][i])\n if lmgh[1][i] != 0:\n gh.append(lmgh[3][i])\n for j in range(len(lats)):\n for i in range(len(lons)):\n if mod == 'custom':\n x, y, z, f = docustom(lons[i], lats[j], alt, gh)\n else:\n x, y, z, f = doigrf(lons[i], lats[j], alt, date, mod=mod,\n file=file)\n Dec, Inc, Int = cart2dir([x, y, z])\n if mod != 'custom':\n B[j][i] = Int * 0.001\n else:\n B[j][i] = Int\n Binc[j][i] = Inc\n if Dec > 180:\n Dec = Dec - 360.0\n Bdec[j][i] = Dec\n if mod != 'custom':\n Brad[j][i] = z * 0.001\n else:\n Brad[j][i] = z\n return Bdec, Binc, B, Brad, lons, lats\n", "role": "user" }, { "content": "do_mag_map", "role": "assistant" } ]
def x(x, y, UP=False): xp, yp = y, x r = np.sqrt(xp ** 2 + yp ** 2) z = 1.0 - r ** 2 t = np.arcsin(z) if UP == 1: t = -t p = np.arctan2(yp, xp) dec, inc = np.degrees(p) % 360, np.degrees(t) return dec, inc
doeqdi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, UP=False):\n xp, yp = y, x\n r = np.sqrt(xp ** 2 + yp ** 2)\n z = 1.0 - r ** 2\n t = np.arcsin(z)\n if UP == 1:\n t = -t\n p = np.arctan2(yp, xp)\n dec, inc = np.degrees(p) % 360, np.degrees(t)\n return dec, inc\n", "role": "user" }, { "content": "doeqdi", "role": "assistant" } ]
def x(di_block): ppars = doprinc(di_block) di_df = pd.DataFrame(di_block) di_df.columns = ['dec', 'inc'] di_df['pdec'] = ppars['dec'] di_df['pinc'] = ppars['inc'] di_df['angle'] = angle(di_df[['dec', 'inc']].values, di_df[['pdec', 'pinc']].values) mode1_df = di_df[di_df['angle'] <= 90] mode2_df = di_df[di_df['angle'] > 90] mode1 = mode1_df[['dec', 'inc']].values.tolist() mode2 = mode2_df[['dec', 'inc']].values.tolist() return mode1, mode2
separate_directions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(di_block):\n ppars = doprinc(di_block)\n di_df = pd.DataFrame(di_block)\n di_df.columns = ['dec', 'inc']\n di_df['pdec'] = ppars['dec']\n di_df['pinc'] = ppars['inc']\n di_df['angle'] = angle(di_df[['dec', 'inc']].values, di_df[['pdec',\n 'pinc']].values)\n mode1_df = di_df[di_df['angle'] <= 90]\n mode2_df = di_df[di_df['angle'] > 90]\n mode1 = mode1_df[['dec', 'inc']].values.tolist()\n mode2 = mode2_df[['dec', 'inc']].values.tolist()\n return mode1, mode2\n", "role": "user" }, { "content": "separate_directions", "role": "assistant" } ]
def x(vgp_df): vgp_df['delta'] = 90.0 - vgp_df['vgp_lat'].values ASD = np.sqrt(np.sum(vgp_df.delta ** 2) / (vgp_df.shape[0] - 1)) A = 1.8 * ASD + 5.0 delta_max = vgp_df.delta.max() while delta_max > A: delta_max = vgp_df.delta.max() if delta_max < A: return vgp_df, A, ASD vgp_df = vgp_df[vgp_df.delta < delta_max] ASD = np.sqrt(np.sum(vgp_df.delta ** 2) / (vgp_df.shape[0] - 1)) A = 1.8 * ASD + 5.0
dovandamme
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vgp_df):\n vgp_df['delta'] = 90.0 - vgp_df['vgp_lat'].values\n ASD = np.sqrt(np.sum(vgp_df.delta ** 2) / (vgp_df.shape[0] - 1))\n A = 1.8 * ASD + 5.0\n delta_max = vgp_df.delta.max()\n while delta_max > A:\n delta_max = vgp_df.delta.max()\n if delta_max < A:\n return vgp_df, A, ASD\n vgp_df = vgp_df[vgp_df.delta < delta_max]\n ASD = np.sqrt(np.sum(vgp_df.delta ** 2) / (vgp_df.shape[0] - 1))\n A = 1.8 * ASD + 5.0\n", "role": "user" }, { "content": "dovandamme", "role": "assistant" } ]
def x(vgp_df, anti=0, rev=0, cutoff=180.0, kappa=0, n=0, spin=0, v=0, boot= 0, mm97=0, nb=1000): vgp_df['delta'] = 90.0 - vgp_df.vgp_lat.values vgp_df = vgp_df[vgp_df.delta <= cutoff] vgp_df = vgp_df[vgp_df.dir_k >= kappa] vgp_df = vgp_df[vgp_df.dir_n_samples >= n] if spin: Pvgps = vgp_df[['vgp_lon', 'vgp_lat']].values ppars = doprinc(Pvgps) Bdirs = np.full(Pvgps.shape[0], ppars['dec'] - 180.0) Bdips = np.full(Pvgps.shape[0], 90.0 - ppars['inc']) Pvgps = np.column_stack((Pvgps, Bdirs, Bdips)) lons, lats = dotilt_V(Pvgps) vgp_df['vgp_lon'] = lons vgp_df['vgp_lat'] = lats vgp_df['delta'] = 90.0 - vgp_df.vgp_lat if anti: print('flipping reverse') vgp_rev = vgp_df[vgp_df.vgp_lat < 0] vgp_norm = vgp_df[vgp_df.vgp_lat >= 0] vgp_anti = vgp_rev vgp_anti['vgp_lat'] = -vgp_anti['vgp_lat'] vgp_anti['vgp_lon'] = (vgp_anti['vgp_lon'] - 180) % 360 vgp_df = pd.concat([vgp_norm, vgp_anti], sort=True) if rev: vgp_df = vgp_df[vgp_df.vgp_lat < 0] if v: vgp_df, cutoff, S_v = dovandamme(vgp_df) S_B = get_sb_df(vgp_df, mm97=mm97) N = vgp_df.shape[0] SBs, low, high = [], 0, 0 if boot: for i in range(nb): bs_df = vgp_df.sample(n=N, replace=True) Sb_bs = get_sb_df(bs_df) SBs.append(Sb_bs) SBs.sort() low = SBs[int(0.025 * nb)] high = SBs[int(0.975 * nb)] return N, S_B, low, high, cutoff
scalc_vgp_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vgp_df, anti=0, rev=0, cutoff=180.0, kappa=0, n=0, spin=0, v=0, boot=\n 0, mm97=0, nb=1000):\n vgp_df['delta'] = 90.0 - vgp_df.vgp_lat.values\n vgp_df = vgp_df[vgp_df.delta <= cutoff]\n vgp_df = vgp_df[vgp_df.dir_k >= kappa]\n vgp_df = vgp_df[vgp_df.dir_n_samples >= n]\n if spin:\n Pvgps = vgp_df[['vgp_lon', 'vgp_lat']].values\n ppars = doprinc(Pvgps)\n Bdirs = np.full(Pvgps.shape[0], ppars['dec'] - 180.0)\n Bdips = np.full(Pvgps.shape[0], 90.0 - ppars['inc'])\n Pvgps = np.column_stack((Pvgps, Bdirs, Bdips))\n lons, lats = dotilt_V(Pvgps)\n vgp_df['vgp_lon'] = lons\n vgp_df['vgp_lat'] = lats\n vgp_df['delta'] = 90.0 - vgp_df.vgp_lat\n if anti:\n print('flipping reverse')\n vgp_rev = vgp_df[vgp_df.vgp_lat < 0]\n vgp_norm = vgp_df[vgp_df.vgp_lat >= 0]\n vgp_anti = vgp_rev\n vgp_anti['vgp_lat'] = -vgp_anti['vgp_lat']\n vgp_anti['vgp_lon'] = (vgp_anti['vgp_lon'] - 180) % 360\n vgp_df = pd.concat([vgp_norm, vgp_anti], sort=True)\n if rev:\n vgp_df = vgp_df[vgp_df.vgp_lat < 0]\n if v:\n vgp_df, cutoff, S_v = dovandamme(vgp_df)\n S_B = get_sb_df(vgp_df, mm97=mm97)\n N = vgp_df.shape[0]\n SBs, low, high = [], 0, 0\n if boot:\n for i in range(nb):\n bs_df = vgp_df.sample(n=N, replace=True)\n Sb_bs = get_sb_df(bs_df)\n SBs.append(Sb_bs)\n SBs.sort()\n low = SBs[int(0.025 * nb)]\n high = SBs[int(0.975 * nb)]\n return N, S_B, low, high, cutoff\n", "role": "user" }, { "content": "scalc_vgp_df", "role": "assistant" } ]
def x(DI1, DI2): DI = np.concatenate((DI1, DI2), axis=0) fpars = fisher_mean(DI) fpars1 = fisher_mean(DI1) fpars2 = fisher_mean(DI2) N = fpars['n'] R = fpars['r'] R1 = fpars1['r'] R2 = fpars2['r'] F = (N - 2.0) * ((R1 + R2 - R) / (N - R1 - R2)) Fcrit = fcalc(2, 2 * (N - 2)) return F, Fcrit
watsons_f
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(DI1, DI2):\n DI = np.concatenate((DI1, DI2), axis=0)\n fpars = fisher_mean(DI)\n fpars1 = fisher_mean(DI1)\n fpars2 = fisher_mean(DI2)\n N = fpars['n']\n R = fpars['r']\n R1 = fpars1['r']\n R2 = fpars2['r']\n F = (N - 2.0) * ((R1 + R2 - R) / (N - R1 - R2))\n Fcrit = fcalc(2, 2 * (N - 2))\n return F, Fcrit\n", "role": "user" }, { "content": "watsons_f", "role": "assistant" } ]
def x(data, print_results=False): pole_lat, pole_lon = bc02(data) ExpDec, ExpInc = vgp_di(pole_lat, pole_lon, data[1], data[2]) paleo_lat = magnetic_lat(ExpInc) if print_results: print(' Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.') print('%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f\n' % (data[3], paleo_lat, ExpDec, ExpInc, pole_lat, pole_lon)) else: return [data[3], paleo_lat, ExpDec, ExpInc, pole_lat, pole_lon]
apwp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, print_results=False):\n pole_lat, pole_lon = bc02(data)\n ExpDec, ExpInc = vgp_di(pole_lat, pole_lon, data[1], data[2])\n paleo_lat = magnetic_lat(ExpInc)\n if print_results:\n print(' Age Paleolat. Dec. Inc. Pole_lat. Pole_Long.')\n print('%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f\\n' % (data[3],\n paleo_lat, ExpDec, ExpInc, pole_lat, pole_lon))\n else:\n return [data[3], paleo_lat, ExpDec, ExpInc, pole_lat, pole_lon]\n", "role": "user" }, { "content": "apwp", "role": "assistant" } ]
def x(Int, Top, start=100, outfile='chart.txt'): low, k, iz = start, 0, 0 Tzero = [] f = open('chart.txt', 'w') vline = ('\t%s\n' % ' | | | | | | | |') hline = ( '______________________________________________________________________________\n' ) f.write('file:_________________ field:___________uT\n\n\n') f.write('%s\n' % ' date | run# | zone I | zone II | zone III | start | sp | cool|' ) f.write(hline) f.write('\t%s' % ' 0.0') f.write(vline) f.write(hline) for k in range(len(Top)): for t in range(low, Top[k] + Int[k], Int[k]): if iz == 0: Tzero.append(t) f.write('%s \t %s' % ('Z', str(t) + '.' + str(iz))) f.write(vline) f.write(hline) if len(Tzero) > 1: f.write('%s \t %s' % ('P', str(Tzero[-2]) + '.' + str(2))) f.write(vline) f.write(hline) iz = 1 f.write('%s \t %s' % ('I', str(t) + '.' + str(iz))) f.write(vline) f.write(hline) elif iz == 1: f.write('%s \t %s' % ('I', str(t) + '.' + str(iz))) f.write(vline) f.write(hline) iz = 0 f.write('%s \t %s' % ('Z', str(t) + '.' + str(iz))) f.write(vline) f.write(hline) try: low = Top[k] + Int[k + 1] except: f.close() print('output stored in: chart.txt')
chart_maker
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Int, Top, start=100, outfile='chart.txt'):\n low, k, iz = start, 0, 0\n Tzero = []\n f = open('chart.txt', 'w')\n vline = ('\\t%s\\n' %\n ' | | | | | | | |')\n hline = (\n '______________________________________________________________________________\\n'\n )\n f.write('file:_________________ field:___________uT\\n\\n\\n')\n f.write('%s\\n' %\n ' date | run# | zone I | zone II | zone III | start | sp | cool|'\n )\n f.write(hline)\n f.write('\\t%s' % ' 0.0')\n f.write(vline)\n f.write(hline)\n for k in range(len(Top)):\n for t in range(low, Top[k] + Int[k], Int[k]):\n if iz == 0:\n Tzero.append(t)\n f.write('%s \\t %s' % ('Z', str(t) + '.' + str(iz)))\n f.write(vline)\n f.write(hline)\n if len(Tzero) > 1:\n f.write('%s \\t %s' % ('P', str(Tzero[-2]) + '.' + str(2)))\n f.write(vline)\n f.write(hline)\n iz = 1\n f.write('%s \\t %s' % ('I', str(t) + '.' + str(iz)))\n f.write(vline)\n f.write(hline)\n elif iz == 1:\n f.write('%s \\t %s' % ('I', str(t) + '.' + str(iz)))\n f.write(vline)\n f.write(hline)\n iz = 0\n f.write('%s \\t %s' % ('Z', str(t) + '.' + str(iz)))\n f.write(vline)\n f.write(hline)\n try:\n low = Top[k] + Int[k + 1]\n except:\n f.close()\n print('output stored in: chart.txt')\n", "role": "user" }, { "content": "chart_maker", "role": "assistant" } ]
def x(): Basemap = None has_basemap = True has_cartopy = import_cartopy()[0] try: from mpl_toolkits.basemap import Basemap WARNINGS['has_basemap'] = True except ImportError: has_basemap = False if has_cartopy: return has_basemap, False if not WARNINGS['basemap']: print( "-W- You haven't installed a module for plotting maps (cartopy or Basemap)" ) print(' Recommended: install cartopy. With conda:') print(' conda install cartopy') print( ' For more information, see http://earthref.org/PmagPy/Cookbook#getting_python' ) except (KeyError, FileNotFoundError): has_basemap = False if has_cartopy: return has_basemap, False if not WARNINGS['basemap']: print('-W- Basemap is installed but could not be imported.') print( ' You are probably missing a required environment variable') print( ' If you need to use Basemap, you will need to run this program or notebook in a conda env.' ) print( ' For more on how to create a conda env, see: https://conda.io/docs/user-guide/tasks/manage-environments.html' ) print( ' Recommended alternative: install cartopy for plotting maps. With conda:' ) print(' conda install cartopy') if has_basemap and not has_cartopy: print('-W- You have installed Basemap but not cartopy.') print(' In the future, Basemap will no longer be supported.') print(' To continue to make maps, install using conda:') print(' conda install cartopy') WARNINGS['basemap'] = True return has_basemap, Basemap
import_basemap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n Basemap = None\n has_basemap = True\n has_cartopy = import_cartopy()[0]\n try:\n from mpl_toolkits.basemap import Basemap\n WARNINGS['has_basemap'] = True\n except ImportError:\n has_basemap = False\n if has_cartopy:\n return has_basemap, False\n if not WARNINGS['basemap']:\n print(\n \"-W- You haven't installed a module for plotting maps (cartopy or Basemap)\"\n )\n print(' Recommended: install cartopy. With conda:')\n print(' conda install cartopy')\n print(\n ' For more information, see http://earthref.org/PmagPy/Cookbook#getting_python'\n )\n except (KeyError, FileNotFoundError):\n has_basemap = False\n if has_cartopy:\n return has_basemap, False\n if not WARNINGS['basemap']:\n print('-W- Basemap is installed but could not be imported.')\n print(\n ' You are probably missing a required environment variable')\n print(\n ' If you need to use Basemap, you will need to run this program or notebook in a conda env.'\n )\n print(\n ' For more on how to create a conda env, see: https://conda.io/docs/user-guide/tasks/manage-environments.html'\n )\n print(\n ' Recommended alternative: install cartopy for plotting maps. With conda:'\n )\n print(' conda install cartopy')\n if has_basemap and not has_cartopy:\n print('-W- You have installed Basemap but not cartopy.')\n print(' In the future, Basemap will no longer be supported.')\n print(' To continue to make maps, install using conda:')\n print(' conda install cartopy')\n WARNINGS['basemap'] = True\n return has_basemap, Basemap\n", "role": "user" }, { "content": "import_basemap", "role": "assistant" } ]
def x(): cartopy = None has_cartopy = True try: import cartopy WARNINGS['has_cartopy'] = True except ImportError: has_cartopy = False if not WARNINGS['cartopy']: print('-W- cartopy is not installed') print(' If you want to make maps, install using conda:') print(' conda install cartopy') WARNINGS['cartopy'] = True return has_cartopy, cartopy
import_cartopy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n cartopy = None\n has_cartopy = True\n try:\n import cartopy\n WARNINGS['has_cartopy'] = True\n except ImportError:\n has_cartopy = False\n if not WARNINGS['cartopy']:\n print('-W- cartopy is not installed')\n print(' If you want to make maps, install using conda:')\n print(' conda install cartopy')\n WARNINGS['cartopy'] = True\n return has_cartopy, cartopy\n", "role": "user" }, { "content": "import_cartopy", "role": "assistant" } ]
def x(age, age_unit): ageBP = -1000000000.0 if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)': if age < 0: age = age + 1 ageBP = 1950 - age elif age_unit == 'Years BP' or age_unit == 'Years Cal BP': ageBP = age elif age_unit == 'ka': ageBP = age * 1000 elif age_unit == 'Ma': ageBP = age * 1000000.0 elif age_unit == 'Ga': ageBP = age * 1000000000.0 else: print('Age unit invalid. Age set to -1.0e9') return ageBP
age_to_BP
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(age, age_unit):\n ageBP = -1000000000.0\n if age_unit == 'Years AD (+/-)' or age_unit == 'Years Cal AD (+/-)':\n if age < 0:\n age = age + 1\n ageBP = 1950 - age\n elif age_unit == 'Years BP' or age_unit == 'Years Cal BP':\n ageBP = age\n elif age_unit == 'ka':\n ageBP = age * 1000\n elif age_unit == 'Ma':\n ageBP = age * 1000000.0\n elif age_unit == 'Ga':\n ageBP = age * 1000000000.0\n else:\n print('Age unit invalid. Age set to -1.0e9')\n return ageBP\n", "role": "user" }, { "content": "age_to_BP", "role": "assistant" } ]
def x(input_dir_path, output_dir_path): if not input_dir_path: input_dir_path = output_dir_path input_dir_path = os.path.realpath(input_dir_path) output_dir_path = os.path.realpath(output_dir_path) return input_dir_path, output_dir_path
fix_directories
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_dir_path, output_dir_path):\n if not input_dir_path:\n input_dir_path = output_dir_path\n input_dir_path = os.path.realpath(input_dir_path)\n output_dir_path = os.path.realpath(output_dir_path)\n return input_dir_path, output_dir_path\n", "role": "user" }, { "content": "fix_directories", "role": "assistant" } ]
def x(magic_method_codes, geomagia_table): codes = magic_method_codes geomagia = geomagia_table.lower() geomagia_code = '0' if geomagia == 'alteration_monit_corr': if 'DA-ALT-V' or 'LP-PI-ALT-PTRM' or 'LP-PI-ALT-PMRM' in codes: geomagia_code = '1' elif 'LP-PI-ALT-SUSC' in codes: geomagia_code = '2' elif 'DA-ALT-RS' or 'LP-PI-ALT-AFARM' in codes: geomagia_code = '3' elif 'LP-PI-ALT-WALTON' in codes: geomagia_code = '4' elif 'LP-PI-ALT-TANGUY' in codes: geomagia_code = '5' elif 'DA-ALT' in codes: geomagia_code = '6' elif 'LP-PI-ALT-FABIAN' in codes: geomagia_code = '7' if geomagia == 'md_checks': if 'LT-PTRM-MD' in codes or 'LT-PMRM-MD' in codes: geomagia_code = '1:' if 'LP-PI-BT-LT' in codes or 'LT-LT-Z' in codes: if '0' in geomagia_code: geomagia_code = '23:' else: geomagia_code += '2:' geomagia_code = geomagia_code[:-1] if geomagia == 'anisotropy_correction': if 'DA-AC-AMS' in codes: geomagia_code = '1' elif 'DA-AC-AARM' in codes: geomagia_code = '2' elif 'DA-AC-ATRM' in codes: geomagia_code = '3' elif 'LT-NRM-PAR' in codes: geomagia_code = '4' elif 'DA-AC-AIRM' in codes: geomagia_code = '6' elif 'DA-AC' in codes: geomagia_code = '5' if geomagia == 'cooling_rate': if 'DA-CR' in codes: geomagia_code = '1' if 'DA-CR-EG' in codes: geomagia_code = '2' if geomagia == 'dm_methods': if 'LP-DIR-AF' in codes: geomagia_code = '1' elif 'LT-AF-D' in codes: geomagia_code = '1' elif 'LT-AF-G' in codes: geomagia_code = '1' elif 'LT-AF-Z' in codes: geomagia_code = '1' elif 'LP-DIR-T' in codes: geomagia_code = '2' elif 'LT-AF-Z' in codes: geomagia_code = '2' elif 'LP-DIR-M' in codes: geomagia_code = '5' elif 'LT-M-Z' in codes: geomagia_code = '5' if geomagia == 'dm_analysis': if 'DE-BFL' in codes: geomagia_code = '1' elif 'DE-BLANKET' in codes: geomagia_code = '2' elif 'DE-FM' in codes: geomagia_code = '3' elif 'DE-NRM' in codes: geomagia_code = '6' if geomagia == 'specimen_type_id': if 'SC-TYPE-CYC' in codes: geomagia_code = '1' elif 'SC-TYPE-CUBE' in codes: geomagia_code = '2' elif 'SC-TYPE-MINI' in codes: geomagia_code = '3' elif 'SC-TYPE-SC' in codes: geomagia_code = '4' elif 'SC-TYPE-UC' in codes: geomagia_code = '5' elif 'SC-TYPE-LARGE' in codes: geomagia_code = '6' return geomagia_code
method_codes_to_geomagia
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(magic_method_codes, geomagia_table):\n codes = magic_method_codes\n geomagia = geomagia_table.lower()\n geomagia_code = '0'\n if geomagia == 'alteration_monit_corr':\n if 'DA-ALT-V' or 'LP-PI-ALT-PTRM' or 'LP-PI-ALT-PMRM' in codes:\n geomagia_code = '1'\n elif 'LP-PI-ALT-SUSC' in codes:\n geomagia_code = '2'\n elif 'DA-ALT-RS' or 'LP-PI-ALT-AFARM' in codes:\n geomagia_code = '3'\n elif 'LP-PI-ALT-WALTON' in codes:\n geomagia_code = '4'\n elif 'LP-PI-ALT-TANGUY' in codes:\n geomagia_code = '5'\n elif 'DA-ALT' in codes:\n geomagia_code = '6'\n elif 'LP-PI-ALT-FABIAN' in codes:\n geomagia_code = '7'\n if geomagia == 'md_checks':\n if 'LT-PTRM-MD' in codes or 'LT-PMRM-MD' in codes:\n geomagia_code = '1:'\n if 'LP-PI-BT-LT' in codes or 'LT-LT-Z' in codes:\n if '0' in geomagia_code:\n geomagia_code = '23:'\n else:\n geomagia_code += '2:'\n geomagia_code = geomagia_code[:-1]\n if geomagia == 'anisotropy_correction':\n if 'DA-AC-AMS' in codes:\n geomagia_code = '1'\n elif 'DA-AC-AARM' in codes:\n geomagia_code = '2'\n elif 'DA-AC-ATRM' in codes:\n geomagia_code = '3'\n elif 'LT-NRM-PAR' in codes:\n geomagia_code = '4'\n elif 'DA-AC-AIRM' in codes:\n geomagia_code = '6'\n elif 'DA-AC' in codes:\n geomagia_code = '5'\n if geomagia == 'cooling_rate':\n if 'DA-CR' in codes:\n geomagia_code = '1'\n if 'DA-CR-EG' in codes:\n geomagia_code = '2'\n if geomagia == 'dm_methods':\n if 'LP-DIR-AF' in codes:\n geomagia_code = '1'\n elif 'LT-AF-D' in codes:\n geomagia_code = '1'\n elif 'LT-AF-G' in codes:\n geomagia_code = '1'\n elif 'LT-AF-Z' in codes:\n geomagia_code = '1'\n elif 'LP-DIR-T' in codes:\n geomagia_code = '2'\n elif 'LT-AF-Z' in codes:\n geomagia_code = '2'\n elif 'LP-DIR-M' in codes:\n geomagia_code = '5'\n elif 'LT-M-Z' in codes:\n geomagia_code = '5'\n if geomagia == 'dm_analysis':\n if 'DE-BFL' in codes:\n geomagia_code = '1'\n elif 'DE-BLANKET' in codes:\n geomagia_code = '2'\n elif 'DE-FM' in codes:\n geomagia_code = '3'\n elif 'DE-NRM' in codes:\n geomagia_code = '6'\n if geomagia == 'specimen_type_id':\n if 'SC-TYPE-CYC' in codes:\n geomagia_code = '1'\n elif 'SC-TYPE-CUBE' in codes:\n geomagia_code = '2'\n elif 'SC-TYPE-MINI' in codes:\n geomagia_code = '3'\n elif 'SC-TYPE-SC' in codes:\n geomagia_code = '4'\n elif 'SC-TYPE-UC' in codes:\n geomagia_code = '5'\n elif 'SC-TYPE-LARGE' in codes:\n geomagia_code = '6'\n return geomagia_code\n", "role": "user" }, { "content": "method_codes_to_geomagia", "role": "assistant" } ]
def x(): noave = 0 methcode, inst = '', '' phi, theta, peakfield, labfield = 0, 0, 0, 0 dec = [315, 225, 180, 135, 45, 90, 270, 270, 270, 90, 180, 180, 0, 0, 0] inc = [0, 0, 0, 0, 0, -45, -45, 0, 45, 45, 45, -45, -90, -45, 45] missing = 1 demag = 'N' er_location_name = '' citation = 'This study' args = sys.argv methcode = 'LP-NO' trm = 0 irm = 0 dc = '0' dir_path = '.' meas_file = 'magic_measurements.txt' user = '' if '-WD' in args: ind = args.index('-WD') dir_path = args[ind + 1] samp_file = dir_path + '/' + 'er_samples.txt' if '-h' in args: print(main.__doc__) sys.exit() if '-F' in args: ind = args.index('-F') meas_file = args[ind + 1] if '-f' in args: ind = args.index('-f') mag_file = dir_path + '/' + args[ind + 1] try: input = open(mag_file, 'r') except: print('bad mag file name') sys.exit() else: print('spn_file field is required option') print(main.__doc__) sys.exit() vol = 1.05e-05 if '-V' in args: ind = args.index('-V') vol = float(args[ind + 1]) * 1e-06 if '-A' in args: noave = 1 if '-LP' in args: ind = args.index('-LP') codelist = args[ind + 1] codes = codelist.split(':') if 'AF' in codes: demag = 'AF' methcode = 'LT-AF-Z' if 'T' in codes: demag = 'T' methcode = 'LT-T-Z' if 'I' in codes: methcode = 'LP-IRM' if 'A' in codes: methcode = 'LT-AF-I' dc = '%10.3e' % (0.001 * float(args[ind + 1])) MagRecs = [] version_num = pmag.get_version() meas_file = dir_path + '/' + meas_file for line in input.readlines(): instcode = 'ODP-MSPN' rec = line.split() if len(rec) > 2 and 'Leg' not in line: MagRec = {} MagRec['er_expedition_name'] = rec[0] MagRec['er_location_name'] = rec[1] + rec[2] MagRec['er_specimen_name'] = rec[0] + '-' + 'U' + rec[1] + rec[2 ].upper() + '-' + rec[3] + rec[4].upper() + '-' + rec[5 ] + '-' + 'W' + '-' + rec[6] MagRec['er_site_name'] = MagRec['er_specimen_name'] MagRec['er_sample_name'] = MagRec['er_specimen_name'] MagRec['magic_software_packages'] = version_num MagRec['treatment_temp'] = '%8.3e' % 273 MagRec['measurement_temp'] = '%8.3e' % 273 MagRec['treatment_ac_field'] = '0' MagRec['treatment_dc_field'] = dc MagRec['treatment_dc_field_phi'] = '0' MagRec['treatment_dc_field_theta'] = '0' meas_type = 'LT-NO' if float(rec[11]) == 0: pass elif demag == 'AF': MagRec['treatment_ac_field'] = '%8.3e' % (float(rec[11]) * 0.001) meas_type = 'LT-AF-Z' MagRec['treatment_dc_field'] = '0' else: MagRec['treatment_temp'] = '%8.3e' % (float(rec[11]) + 273.0) meas_type = 'LT-T-Z' intens = 0.001 * float(rec[10]) * vol MagRec['measurement_magn_moment'] = '%10.3e' % intens MagRec['measurement_dec'] = rec[8] MagRec['measurement_inc'] = rec[9] MagRec['magic_instrument_codes'] = 'ODP-MSPN' MagRec['er_analyst_mail_names'] = user MagRec['er_citation_names'] = citation MagRec['magic_method_codes'] = meas_type MagRec['measurement_flag'] = 'g' MagRec['measurement_csd'] = '' MagRec['measurement_number'] = '1' MagRecs.append(MagRec) MagOuts = pmag.measurements_methods(MagRecs, noave) pmag.magic_write(meas_file, MagOuts, 'magic_measurements') print('results put in ', meas_file)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n noave = 0\n methcode, inst = '', ''\n phi, theta, peakfield, labfield = 0, 0, 0, 0\n dec = [315, 225, 180, 135, 45, 90, 270, 270, 270, 90, 180, 180, 0, 0, 0]\n inc = [0, 0, 0, 0, 0, -45, -45, 0, 45, 45, 45, -45, -90, -45, 45]\n missing = 1\n demag = 'N'\n er_location_name = ''\n citation = 'This study'\n args = sys.argv\n methcode = 'LP-NO'\n trm = 0\n irm = 0\n dc = '0'\n dir_path = '.'\n meas_file = 'magic_measurements.txt'\n user = ''\n if '-WD' in args:\n ind = args.index('-WD')\n dir_path = args[ind + 1]\n samp_file = dir_path + '/' + 'er_samples.txt'\n if '-h' in args:\n print(main.__doc__)\n sys.exit()\n if '-F' in args:\n ind = args.index('-F')\n meas_file = args[ind + 1]\n if '-f' in args:\n ind = args.index('-f')\n mag_file = dir_path + '/' + args[ind + 1]\n try:\n input = open(mag_file, 'r')\n except:\n print('bad mag file name')\n sys.exit()\n else:\n print('spn_file field is required option')\n print(main.__doc__)\n sys.exit()\n vol = 1.05e-05\n if '-V' in args:\n ind = args.index('-V')\n vol = float(args[ind + 1]) * 1e-06\n if '-A' in args:\n noave = 1\n if '-LP' in args:\n ind = args.index('-LP')\n codelist = args[ind + 1]\n codes = codelist.split(':')\n if 'AF' in codes:\n demag = 'AF'\n methcode = 'LT-AF-Z'\n if 'T' in codes:\n demag = 'T'\n methcode = 'LT-T-Z'\n if 'I' in codes:\n methcode = 'LP-IRM'\n if 'A' in codes:\n methcode = 'LT-AF-I'\n dc = '%10.3e' % (0.001 * float(args[ind + 1]))\n MagRecs = []\n version_num = pmag.get_version()\n meas_file = dir_path + '/' + meas_file\n for line in input.readlines():\n instcode = 'ODP-MSPN'\n rec = line.split()\n if len(rec) > 2 and 'Leg' not in line:\n MagRec = {}\n MagRec['er_expedition_name'] = rec[0]\n MagRec['er_location_name'] = rec[1] + rec[2]\n MagRec['er_specimen_name'] = rec[0] + '-' + 'U' + rec[1] + rec[2\n ].upper() + '-' + rec[3] + rec[4].upper() + '-' + rec[5\n ] + '-' + 'W' + '-' + rec[6]\n MagRec['er_site_name'] = MagRec['er_specimen_name']\n MagRec['er_sample_name'] = MagRec['er_specimen_name']\n MagRec['magic_software_packages'] = version_num\n MagRec['treatment_temp'] = '%8.3e' % 273\n MagRec['measurement_temp'] = '%8.3e' % 273\n MagRec['treatment_ac_field'] = '0'\n MagRec['treatment_dc_field'] = dc\n MagRec['treatment_dc_field_phi'] = '0'\n MagRec['treatment_dc_field_theta'] = '0'\n meas_type = 'LT-NO'\n if float(rec[11]) == 0:\n pass\n elif demag == 'AF':\n MagRec['treatment_ac_field'] = '%8.3e' % (float(rec[11]) * \n 0.001)\n meas_type = 'LT-AF-Z'\n MagRec['treatment_dc_field'] = '0'\n else:\n MagRec['treatment_temp'] = '%8.3e' % (float(rec[11]) + 273.0)\n meas_type = 'LT-T-Z'\n intens = 0.001 * float(rec[10]) * vol\n MagRec['measurement_magn_moment'] = '%10.3e' % intens\n MagRec['measurement_dec'] = rec[8]\n MagRec['measurement_inc'] = rec[9]\n MagRec['magic_instrument_codes'] = 'ODP-MSPN'\n MagRec['er_analyst_mail_names'] = user\n MagRec['er_citation_names'] = citation\n MagRec['magic_method_codes'] = meas_type\n MagRec['measurement_flag'] = 'g'\n MagRec['measurement_csd'] = ''\n MagRec['measurement_number'] = '1'\n MagRecs.append(MagRec)\n MagOuts = pmag.measurements_methods(MagRecs, noave)\n pmag.magic_write(meas_file, MagOuts, 'magic_measurements')\n print('results put in ', meas_file)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]