source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(l0, clean_item_fn=None):
clean_item_fn = clean_item_fn if clean_item_fn else clean_item
l = list()
for index, item in enumerate(l0):
cleaned_item = clean_item_fn(item)
l.append(cleaned_item)
return l
|
clean_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l0, clean_item_fn=None):\n clean_item_fn = clean_item_fn if clean_item_fn else clean_item\n l = list()\n for index, item in enumerate(l0):\n cleaned_item = clean_item_fn(item)\n l.append(cleaned_item)\n return l\n",
"role": "user"
},
{
"content": "clean_list",
"role": "assistant"
}
] |
def x(t0, clean_item_fn=None):
clean_item_fn = clean_item_fn if clean_item_fn else clean_item
l = list()
for index, item in enumerate(t0):
cleaned_item = clean_item_fn(item)
l.append(cleaned_item)
return tuple(l)
|
clean_tuple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(t0, clean_item_fn=None):\n clean_item_fn = clean_item_fn if clean_item_fn else clean_item\n l = list()\n for index, item in enumerate(t0):\n cleaned_item = clean_item_fn(item)\n l.append(cleaned_item)\n return tuple(l)\n",
"role": "user"
},
{
"content": "clean_tuple",
"role": "assistant"
}
] |
def x(i):
itype = type(i)
if itype == dict:
return clean_dict(i)
elif itype == list:
return clean_list(i)
elif itype == tuple:
return clean_tuple(i)
elif itype == numpy.float32:
return float(i)
elif itype == numpy.float64:
return float(i)
elif itype == numpy.int16:
return int(i)
elif itype == numpy.uint16:
return int(i)
elif itype == numpy.int32:
return int(i)
elif itype == numpy.uint32:
return int(i)
elif itype == numpy.int64:
return int(i)
elif itype == numpy.uint64:
return int(i)
elif itype == float:
return i
elif itype == str:
return i
elif itype == int:
return i
elif itype == bool:
return i
elif itype == type(None):
return i
logging.info('[1] Unable to handle type %s', itype)
import traceback
traceback.print_stack()
return None
|
clean_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(i):\n itype = type(i)\n if itype == dict:\n return clean_dict(i)\n elif itype == list:\n return clean_list(i)\n elif itype == tuple:\n return clean_tuple(i)\n elif itype == numpy.float32:\n return float(i)\n elif itype == numpy.float64:\n return float(i)\n elif itype == numpy.int16:\n return int(i)\n elif itype == numpy.uint16:\n return int(i)\n elif itype == numpy.int32:\n return int(i)\n elif itype == numpy.uint32:\n return int(i)\n elif itype == numpy.int64:\n return int(i)\n elif itype == numpy.uint64:\n return int(i)\n elif itype == float:\n return i\n elif itype == str:\n return i\n elif itype == int:\n return i\n elif itype == bool:\n return i\n elif itype == type(None):\n return i\n logging.info('[1] Unable to handle type %s', itype)\n import traceback\n traceback.print_stack()\n return None\n",
"role": "user"
},
{
"content": "clean_item",
"role": "assistant"
}
] |
def x(i):
itype = type(i)
if itype == dict:
return clean_dict(i, clean_item_no_list)
elif itype == list:
return clean_tuple(i, clean_item_no_list)
elif itype == tuple:
return clean_tuple(i, clean_item_no_list)
elif itype == numpy.float32:
return float(i)
elif itype == numpy.float64:
return float(i)
elif itype == numpy.int16:
return int(i)
elif itype == numpy.uint16:
return int(i)
elif itype == numpy.int32:
return int(i)
elif itype == numpy.uint32:
return int(i)
elif itype == float:
return i
elif itype == str:
return i
elif itype == int:
return i
elif itype == bool:
return i
elif itype == type(None):
return i
logging.info('[2] Unable to handle type %s', itype)
return None
|
clean_item_no_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(i):\n itype = type(i)\n if itype == dict:\n return clean_dict(i, clean_item_no_list)\n elif itype == list:\n return clean_tuple(i, clean_item_no_list)\n elif itype == tuple:\n return clean_tuple(i, clean_item_no_list)\n elif itype == numpy.float32:\n return float(i)\n elif itype == numpy.float64:\n return float(i)\n elif itype == numpy.int16:\n return int(i)\n elif itype == numpy.uint16:\n return int(i)\n elif itype == numpy.int32:\n return int(i)\n elif itype == numpy.uint32:\n return int(i)\n elif itype == float:\n return i\n elif itype == str:\n return i\n elif itype == int:\n return i\n elif itype == bool:\n return i\n elif itype == type(None):\n return i\n logging.info('[2] Unable to handle type %s', itype)\n return None\n",
"role": "user"
},
{
"content": "clean_item_no_list",
"role": "assistant"
}
] |
def x(count=10, interval=0.1):
def x(l, ll):
l1 = list()
l1.append('*** STACKTRACE - START ***')
code = []
for threadId, stack in sys._current_frames().items():
sub_code = []
sub_code.append('# ThreadID: %s' % threadId)
for filename, lineno, name, line in traceback.extract_stack(stack):
sub_code.append('File: "%s", line %d, in %s' % (filename,
lineno, name))
if line:
sub_code.append(' %s' % line.strip())
if not 'in select' in sub_code[-2] and not 'in wait' in sub_code[-2
] and not 'in print_stack_all' in sub_code[-2
] and not 'in sample_stack_all' in sub_code[-2
] and not 'in checkcache' in sub_code[-2
] and not 'do_sleep' in sub_code[-2
] and not 'sleep' in sub_code[-1] and not any([(
'in do_sample' in s) for s in sub_code]):
code.extend(sub_code)
for line in code:
l1.append(line)
l1.append('*** STACKTRACE - END ***')
with l:
ll.extend(l1)
def x():
l = threading.RLock()
ll = list()
for i in range(count):
print_stack_all(l, ll)
time.sleep(interval)
with l:
print('\n'.join(ll))
threading.Thread(target=do_sample).start()
|
sample_stack_all
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(count=10, interval=0.1):\n\n def x(l, ll):\n l1 = list()\n l1.append('*** STACKTRACE - START ***')\n code = []\n for threadId, stack in sys._current_frames().items():\n sub_code = []\n sub_code.append('# ThreadID: %s' % threadId)\n for filename, lineno, name, line in traceback.extract_stack(stack):\n sub_code.append('File: \"%s\", line %d, in %s' % (filename,\n lineno, name))\n if line:\n sub_code.append(' %s' % line.strip())\n if not 'in select' in sub_code[-2] and not 'in wait' in sub_code[-2\n ] and not 'in print_stack_all' in sub_code[-2\n ] and not 'in sample_stack_all' in sub_code[-2\n ] and not 'in checkcache' in sub_code[-2\n ] and not 'do_sleep' in sub_code[-2\n ] and not 'sleep' in sub_code[-1] and not any([(\n 'in do_sample' in s) for s in sub_code]):\n code.extend(sub_code)\n for line in code:\n l1.append(line)\n l1.append('*** STACKTRACE - END ***')\n with l:\n ll.extend(l1)\n\n def x():\n l = threading.RLock()\n ll = list()\n for i in range(count):\n print_stack_all(l, ll)\n time.sleep(interval)\n with l:\n print('\\n'.join(ll))\n threading.Thread(target=do_sample).start()\n",
"role": "user"
},
{
"content": "sample_stack_all",
"role": "assistant"
}
] |
def x(self, X):
self._X = Model.convert_features(X)
self._eval()
return self._ind[0].hy
|
decision_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n self._X = Model.convert_features(X)\n self._eval()\n return self._ind[0].hy\n",
"role": "user"
},
{
"content": "decision_function",
"role": "assistant"
}
] |
def x(self):
pos = self._pos
self._pos += 1
node = self._ind[pos]
if isinstance(node, Function):
args = [self._eval() for x in range(node.nargs)]
node.eval(args)
for x in args:
x.hy = None
x.hy_test = None
else:
node.eval(self._X)
return node
|
eval
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n pos = self._pos\n self._pos += 1\n node = self._ind[pos]\n if isinstance(node, Function):\n args = [self._eval() for x in range(node.nargs)]\n node.eval(args)\n for x in args:\n x.hy = None\n x.hy_test = None\n else:\n node.eval(self._X)\n return node\n",
"role": "user"
},
{
"content": "eval",
"role": "assistant"
}
] |
def x(self, depth=0):
lst = []
self._create_random_ind_full(depth=depth, output=lst)
return lst
|
create_random_ind_full
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, depth=0):\n lst = []\n self._create_random_ind_full(depth=depth, output=lst)\n return lst\n",
"role": "user"
},
{
"content": "create_random_ind_full",
"role": "assistant"
}
] |
def x(self, depth=0):
if depth == 0:
return False
if depth == self._depth:
return True
return np.random.random() < 0.5
|
grow_use_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, depth=0):\n if depth == 0:\n return False\n if depth == self._depth:\n return True\n return np.random.random() < 0.5\n",
"role": "user"
},
{
"content": "grow_use_function",
"role": "assistant"
}
] |
def x(self, depth=0):
lst = []
self._depth = depth
self._create_random_ind_grow(depth=depth, output=lst)
return lst
|
create_random_ind_grow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, depth=0):\n lst = []\n self._depth = depth\n self._create_random_ind_grow(depth=depth, output=lst)\n return lst\n",
"role": "user"
},
{
"content": "create_random_ind_grow",
"role": "assistant"
}
] |
def x(self, popsize=1000, min_depth=2, max_depth=4, X=None):
import itertools
args = [x for x in itertools.product(range(min_depth, max_depth + 1), [
True, False])]
index = 0
output = []
while len(output) < popsize:
depth, full = args[index]
index += 1
if index >= len(args):
index = 0
if full:
ind = self.create_random_ind_full(depth=depth)
else:
ind = self.create_random_ind_grow(depth=depth)
flag = True
if X is not None:
x = Individual(ind)
x.decision_function(X)
flag = x.individual[0].isfinite()
l_vars = flag, len(output), full, depth, len(ind)
l_str = ' flag: %s len(output): %s full: %s depth: %s len(ind): %s'
self._logger.debug(l_str % l_vars)
if flag:
output.append(ind)
return output
|
create_population
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, popsize=1000, min_depth=2, max_depth=4, X=None):\n import itertools\n args = [x for x in itertools.product(range(min_depth, max_depth + 1), [\n True, False])]\n index = 0\n output = []\n while len(output) < popsize:\n depth, full = args[index]\n index += 1\n if index >= len(args):\n index = 0\n if full:\n ind = self.create_random_ind_full(depth=depth)\n else:\n ind = self.create_random_ind_grow(depth=depth)\n flag = True\n if X is not None:\n x = Individual(ind)\n x.decision_function(X)\n flag = x.individual[0].isfinite()\n l_vars = flag, len(output), full, depth, len(ind)\n l_str = ' flag: %s len(output): %s full: %s depth: %s len(ind): %s'\n self._logger.debug(l_str % l_vars)\n if flag:\n output.append(ind)\n return output\n",
"role": "user"
},
{
"content": "create_population",
"role": "assistant"
}
] |
def x(self, X, **kwargs):
if X is None:
return self._hy_test
X = self.convert_features(X)
if len(X) < self.nvar:
_ = 'Number of variables differ, trained with %s given %s' % (self.
nvar, len(X))
raise RuntimeError(_)
hist = self._hist
for node in hist:
if node.height:
node.eval(hist)
else:
node.eval(X)
node.normalize()
r = node.hy
for i in hist[:-1]:
i.hy = None
i.hy_test = None
gc.collect()
return r
|
decision_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, **kwargs):\n if X is None:\n return self._hy_test\n X = self.convert_features(X)\n if len(X) < self.nvar:\n _ = 'Number of variables differ, trained with %s given %s' % (self.\n nvar, len(X))\n raise RuntimeError(_)\n hist = self._hist\n for node in hist:\n if node.height:\n node.eval(hist)\n else:\n node.eval(X)\n node.normalize()\n r = node.hy\n for i in hist[:-1]:\n i.hy = None\n i.hy_test = None\n gc.collect()\n return r\n",
"role": "user"
},
{
"content": "decision_function",
"role": "assistant"
}
] |
def x(self):
l = [x.fitness_vs for x in self.models]
return np.median(l)
|
fitness_vs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n l = [x.fitness_vs for x in self.models]\n return np.median(l)\n",
"role": "user"
},
{
"content": "fitness_vs",
"role": "assistant"
}
] |
def x(self, directory, **kwargs):
import os
if not os.path.isdir(directory):
os.mkdir(directory)
output = os.path.join(directory, 'evodag-%s')
for k, m in enumerate(self.models):
m.graphviz(output % k, **kwargs)
|
graphviz
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, directory, **kwargs):\n import os\n if not os.path.isdir(directory):\n os.mkdir(directory)\n output = os.path.join(directory, 'evodag-%s')\n for k, m in enumerate(self.models):\n m.graphviz(output % k, **kwargs)\n",
"role": "user"
},
{
"content": "graphviz",
"role": "assistant"
}
] |
def x(self, num_samples=1000, percentiles=None):
self.percentiles = percentiles
self.num_samples = num_samples
if self.model_name.lower() in ['wrf']:
mo = ModelOutput(self.ensemble_name, self.member, self.run_date,
self.variable, self.start_date, self.end_date, self.path, self.
map_file, self.single_step)
mo.load_data()
self.data = mo.data[:]
if mo.units == 'm':
self.data *= 1000
self.units = 'mm'
else:
self.units = mo.units
else:
if self.track_forecasts is None:
self.load_track_data()
self.units = 'mm'
self.data = np.zeros((self.forecast_hours.size, self.mapping_data[
'lon'].shape[0], self.mapping_data['lon'].shape[1]), dtype=np.
float32)
if self.percentiles is not None:
self.percentile_data = np.zeros([len(self.percentiles)] + list(
self.data.shape))
full_condition_name = 'condition_' + self.condition_model_name.replace(
' ', '-')
dist_model_name = 'dist' + '_' + self.model_name.replace(' ', '-')
for track_forecast in self.track_forecasts:
times = track_forecast['properties']['times']
for s, step in enumerate(track_forecast['features']):
forecast_params = step['properties'][dist_model_name]
if self.condition_model_name is not None:
condition = step['properties'][full_condition_name]
else:
condition = None
forecast_time = self.run_date + timedelta(hours=times[s])
if forecast_time in self.times:
t = np.where(self.times == forecast_time)[0][0]
mask = np.array(step['properties']['masks'], dtype=int
).ravel()
rankings = np.argsort(np.array(step['properties'][
'timesteps']).ravel()[mask == 1])
i = np.array(step['properties']['i'], dtype=int).ravel()[
mask == 1][rankings]
j = np.array(step['properties']['j'], dtype=int).ravel()[
mask == 1][rankings]
if rankings.size > 0 and forecast_params[0
] > 0.1 and 1 < forecast_params[2] < 100:
raw_samples = np.sort(gamma.rvs(forecast_params[0],
loc=forecast_params[1], scale=forecast_params[2
], size=(num_samples, rankings.size)), axis=1)
if self.percentiles is None:
samples = raw_samples.mean(axis=0)
if condition >= self.condition_threshold:
self.data[t, i, j] = samples
else:
for p, percentile in enumerate(self.percentiles):
if percentile != 'mean':
if condition >= self.condition_threshold:
self.percentile_data[p, t, i, j
] = np.percentile(raw_samples,
percentile, axis=0)
elif condition >= self.condition_threshold:
self.percentile_data[p, t, i, j] = np.mean(
raw_samples, axis=0)
samples = raw_samples.mean(axis=0)
if condition >= self.condition_threshold:
self.data[t, i, j] = samples
|
load_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, num_samples=1000, percentiles=None):\n self.percentiles = percentiles\n self.num_samples = num_samples\n if self.model_name.lower() in ['wrf']:\n mo = ModelOutput(self.ensemble_name, self.member, self.run_date,\n self.variable, self.start_date, self.end_date, self.path, self.\n map_file, self.single_step)\n mo.load_data()\n self.data = mo.data[:]\n if mo.units == 'm':\n self.data *= 1000\n self.units = 'mm'\n else:\n self.units = mo.units\n else:\n if self.track_forecasts is None:\n self.load_track_data()\n self.units = 'mm'\n self.data = np.zeros((self.forecast_hours.size, self.mapping_data[\n 'lon'].shape[0], self.mapping_data['lon'].shape[1]), dtype=np.\n float32)\n if self.percentiles is not None:\n self.percentile_data = np.zeros([len(self.percentiles)] + list(\n self.data.shape))\n full_condition_name = 'condition_' + self.condition_model_name.replace(\n ' ', '-')\n dist_model_name = 'dist' + '_' + self.model_name.replace(' ', '-')\n for track_forecast in self.track_forecasts:\n times = track_forecast['properties']['times']\n for s, step in enumerate(track_forecast['features']):\n forecast_params = step['properties'][dist_model_name]\n if self.condition_model_name is not None:\n condition = step['properties'][full_condition_name]\n else:\n condition = None\n forecast_time = self.run_date + timedelta(hours=times[s])\n if forecast_time in self.times:\n t = np.where(self.times == forecast_time)[0][0]\n mask = np.array(step['properties']['masks'], dtype=int\n ).ravel()\n rankings = np.argsort(np.array(step['properties'][\n 'timesteps']).ravel()[mask == 1])\n i = np.array(step['properties']['i'], dtype=int).ravel()[\n mask == 1][rankings]\n j = np.array(step['properties']['j'], dtype=int).ravel()[\n mask == 1][rankings]\n if rankings.size > 0 and forecast_params[0\n ] > 0.1 and 1 < forecast_params[2] < 100:\n raw_samples = np.sort(gamma.rvs(forecast_params[0],\n loc=forecast_params[1], scale=forecast_params[2\n ], size=(num_samples, rankings.size)), axis=1)\n if self.percentiles is None:\n samples = raw_samples.mean(axis=0)\n if condition >= self.condition_threshold:\n self.data[t, i, j] = samples\n else:\n for p, percentile in enumerate(self.percentiles):\n if percentile != 'mean':\n if condition >= self.condition_threshold:\n self.percentile_data[p, t, i, j\n ] = np.percentile(raw_samples,\n percentile, axis=0)\n elif condition >= self.condition_threshold:\n self.percentile_data[p, t, i, j] = np.mean(\n raw_samples, axis=0)\n samples = raw_samples.mean(axis=0)\n if condition >= self.condition_threshold:\n self.data[t, i, j] = samples\n",
"role": "user"
},
{
"content": "load_data",
"role": "assistant"
}
] |
def x(self, threshold, radius):
weights = disk(radius, dtype=np.uint8)
thresh_data = np.zeros(self.data.shape[1:], dtype=np.uint8)
neighbor_prob = np.zeros(self.data.shape, dtype=np.float32)
for t in np.arange(self.data.shape[0]):
thresh_data[self.data[t] >= threshold] = 1
maximized = fftconvolve(thresh_data, weights, mode='same')
maximized[maximized > 1] = 1
maximized[maximized < 1] = 0
neighbor_prob[t] = fftconvolve(maximized, weights, mode='same')
thresh_data[:] = 0
neighbor_prob[neighbor_prob < 1] = 0
neighbor_prob /= weights.sum()
return neighbor_prob
|
neighborhood_probability
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, threshold, radius):\n weights = disk(radius, dtype=np.uint8)\n thresh_data = np.zeros(self.data.shape[1:], dtype=np.uint8)\n neighbor_prob = np.zeros(self.data.shape, dtype=np.float32)\n for t in np.arange(self.data.shape[0]):\n thresh_data[self.data[t] >= threshold] = 1\n maximized = fftconvolve(thresh_data, weights, mode='same')\n maximized[maximized > 1] = 1\n maximized[maximized < 1] = 0\n neighbor_prob[t] = fftconvolve(maximized, weights, mode='same')\n thresh_data[:] = 0\n neighbor_prob[neighbor_prob < 1] = 0\n neighbor_prob /= weights.sum()\n return neighbor_prob\n",
"role": "user"
},
{
"content": "neighborhood_probability",
"role": "assistant"
}
] |
def x(self):
lscale = 1000000.0
grib_id_start = [7, 0, 14, 14, 2]
gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30],
dtype=np.int32)
lon_0 = self.proj_dict['lon_0']
sw_lon = self.grid_dict['sw_lon']
if lon_0 < 0:
lon_0 += 360
if sw_lon < 0:
sw_lon += 360
gdtmp1 = [1, 0, self.proj_dict['a'], 0, float(self.proj_dict['a']), 0,
float(self.proj_dict['b']), self.data.shape[-1], self.data.shape[-2
], self.grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self.
proj_dict['lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] *
1000.0, self.grid_dict['dy'] * 1000.0, 0, 64, self.proj_dict[
'lat_1'] * lscale, self.proj_dict['lat_2'] * lscale, -90 * lscale, 0]
pdtmp1 = np.array([1, 31, 4, 0, 31, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0,
self.num_samples], dtype=np.int32)
grib_objects = pd.Series(index=self.times, data=[None] * self.times.
size, dtype=object)
drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32)
for t, time in enumerate(self.times):
time_list = list(self.run_date.utctimetuple()[0:6])
if grib_objects[time] is None:
grib_objects[time] = Grib2Encode(0, np.array(grib_id_start +
time_list + [2, 1], dtype=np.int32))
grib_objects[time].addgrid(gdsinfo, gdtmp1)
pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds(
) / 3600.0
data = self.percentile_data[:, t] / 1000.0
masked_data = np.ma.array(data, mask=data <= 0)
for p, percentile in enumerate(self.percentiles):
print('GRIB {3} Percentile {0}. Max: {1} Min: {2}'.format(
percentile, masked_data[p].max(), masked_data[p].min(), time))
if percentile in range(1, 100):
pdtmp1[-2] = percentile
grib_objects[time].addfield(6, pdtmp1[:-1], 0, drtmp1,
masked_data[p])
else:
pdtmp1[-2] = 0
grib_objects[time].addfield(2, pdtmp1, 0, drtmp1,
masked_data[p])
return grib_objects
|
encode_grib2_percentile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n lscale = 1000000.0\n grib_id_start = [7, 0, 14, 14, 2]\n gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30],\n dtype=np.int32)\n lon_0 = self.proj_dict['lon_0']\n sw_lon = self.grid_dict['sw_lon']\n if lon_0 < 0:\n lon_0 += 360\n if sw_lon < 0:\n sw_lon += 360\n gdtmp1 = [1, 0, self.proj_dict['a'], 0, float(self.proj_dict['a']), 0,\n float(self.proj_dict['b']), self.data.shape[-1], self.data.shape[-2\n ], self.grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self.\n proj_dict['lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] *\n 1000.0, self.grid_dict['dy'] * 1000.0, 0, 64, self.proj_dict[\n 'lat_1'] * lscale, self.proj_dict['lat_2'] * lscale, -90 * lscale, 0]\n pdtmp1 = np.array([1, 31, 4, 0, 31, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0,\n self.num_samples], dtype=np.int32)\n grib_objects = pd.Series(index=self.times, data=[None] * self.times.\n size, dtype=object)\n drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32)\n for t, time in enumerate(self.times):\n time_list = list(self.run_date.utctimetuple()[0:6])\n if grib_objects[time] is None:\n grib_objects[time] = Grib2Encode(0, np.array(grib_id_start +\n time_list + [2, 1], dtype=np.int32))\n grib_objects[time].addgrid(gdsinfo, gdtmp1)\n pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds(\n ) / 3600.0\n data = self.percentile_data[:, t] / 1000.0\n masked_data = np.ma.array(data, mask=data <= 0)\n for p, percentile in enumerate(self.percentiles):\n print('GRIB {3} Percentile {0}. Max: {1} Min: {2}'.format(\n percentile, masked_data[p].max(), masked_data[p].min(), time))\n if percentile in range(1, 100):\n pdtmp1[-2] = percentile\n grib_objects[time].addfield(6, pdtmp1[:-1], 0, drtmp1,\n masked_data[p])\n else:\n pdtmp1[-2] = 0\n grib_objects[time].addfield(2, pdtmp1, 0, drtmp1,\n masked_data[p])\n return grib_objects\n",
"role": "user"
},
{
"content": "encode_grib2_percentile",
"role": "assistant"
}
] |
def x(self):
lscale = 1000000.0
grib_id_start = [7, 0, 14, 14, 2]
gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30],
dtype=np.int32)
lon_0 = self.proj_dict['lon_0']
sw_lon = self.grid_dict['sw_lon']
if lon_0 < 0:
lon_0 += 360
if sw_lon < 0:
sw_lon += 360
gdtmp1 = [1, 0, self.proj_dict['a'], 0, float(self.proj_dict['a']), 0,
float(self.proj_dict['b']), self.data.shape[-1], self.data.shape[-2
], self.grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self.
proj_dict['lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] *
1000.0, self.grid_dict['dy'] * 1000.0, 0, 64, self.proj_dict[
'lat_1'] * lscale, self.proj_dict['lat_2'] * lscale, -90 * lscale, 0]
pdtmp1 = np.array([1, 31, 4, 0, 31, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1],
dtype=np.int32)
grib_objects = pd.Series(index=self.times, data=[None] * self.times.
size, dtype=object)
drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32)
for t, time in enumerate(self.times):
time_list = list(self.run_date.utctimetuple()[0:6])
if grib_objects[time] is None:
grib_objects[time] = Grib2Encode(0, np.array(grib_id_start +
time_list + [2, 1], dtype=np.int32))
grib_objects[time].addgrid(gdsinfo, gdtmp1)
pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds(
) / 3600.0
data = self.data[t] / 1000.0
data[np.isnan(data)] = 0
masked_data = np.ma.array(data, mask=data <= 0)
pdtmp1[-2] = 0
grib_objects[time].addfield(1, pdtmp1, 0, drtmp1, masked_data)
return grib_objects
|
encode_grib2_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n lscale = 1000000.0\n grib_id_start = [7, 0, 14, 14, 2]\n gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30],\n dtype=np.int32)\n lon_0 = self.proj_dict['lon_0']\n sw_lon = self.grid_dict['sw_lon']\n if lon_0 < 0:\n lon_0 += 360\n if sw_lon < 0:\n sw_lon += 360\n gdtmp1 = [1, 0, self.proj_dict['a'], 0, float(self.proj_dict['a']), 0,\n float(self.proj_dict['b']), self.data.shape[-1], self.data.shape[-2\n ], self.grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self.\n proj_dict['lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] *\n 1000.0, self.grid_dict['dy'] * 1000.0, 0, 64, self.proj_dict[\n 'lat_1'] * lscale, self.proj_dict['lat_2'] * lscale, -90 * lscale, 0]\n pdtmp1 = np.array([1, 31, 4, 0, 31, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1],\n dtype=np.int32)\n grib_objects = pd.Series(index=self.times, data=[None] * self.times.\n size, dtype=object)\n drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32)\n for t, time in enumerate(self.times):\n time_list = list(self.run_date.utctimetuple()[0:6])\n if grib_objects[time] is None:\n grib_objects[time] = Grib2Encode(0, np.array(grib_id_start +\n time_list + [2, 1], dtype=np.int32))\n grib_objects[time].addgrid(gdsinfo, gdtmp1)\n pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds(\n ) / 3600.0\n data = self.data[t] / 1000.0\n data[np.isnan(data)] = 0\n masked_data = np.ma.array(data, mask=data <= 0)\n pdtmp1[-2] = 0\n grib_objects[time].addfield(1, pdtmp1, 0, drtmp1, masked_data)\n return grib_objects\n",
"role": "user"
},
{
"content": "encode_grib2_data",
"role": "assistant"
}
] |
def x(self):
for m, member in enumerate(self.members):
mo = ModelOutput(self.ensemble_name, member, self.run_date, self.
variable, self.start_date, self.end_date, self.path, self.
map_file, self.single_step)
mo.load_data()
if self.data is None:
self.data = np.zeros((len(self.members), mo.data.shape[0], mo.
data.shape[1], mo.data.shape[2]), dtype=np.float32)
if mo.units == 'm':
self.data[m] = mo.data * 1000
self.units = 'mm'
else:
self.data[m] = mo.data
if self.units == '':
self.units = mo.units
del mo.data
del mo
|
load_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for m, member in enumerate(self.members):\n mo = ModelOutput(self.ensemble_name, member, self.run_date, self.\n variable, self.start_date, self.end_date, self.path, self.\n map_file, self.single_step)\n mo.load_data()\n if self.data is None:\n self.data = np.zeros((len(self.members), mo.data.shape[0], mo.\n data.shape[1], mo.data.shape[2]), dtype=np.float32)\n if mo.units == 'm':\n self.data[m] = mo.data * 1000\n self.units = 'mm'\n else:\n self.data[m] = mo.data\n if self.units == '':\n self.units = mo.units\n del mo.data\n del mo\n",
"role": "user"
},
{
"content": "load_data",
"role": "assistant"
}
] |
def x(self, consensus_type):
if 'mean' in consensus_type:
consensus_data = np.mean(self.data, axis=0)
elif 'std' in consensus_type:
consensus_data = np.std(self.data, axis=0)
elif 'median' in consensus_type:
consensus_data = np.median(self.data, axis=0)
elif 'max' in consensus_type:
consensus_data = np.max(self.data, axis=0)
elif 'percentile' in consensus_type:
percentile = int(consensus_type.split('_')[1])
consensus_data = np.percentile(self.data, percentile, axis=0)
else:
consensus_data = np.zeros(self.data.shape[1:])
consensus = EnsembleConsensus(consensus_data, consensus_type, self.
ensemble_name, self.run_date, self.variable, self.start_date, self.
end_date, self.units)
return consensus
|
point_consensus
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, consensus_type):\n if 'mean' in consensus_type:\n consensus_data = np.mean(self.data, axis=0)\n elif 'std' in consensus_type:\n consensus_data = np.std(self.data, axis=0)\n elif 'median' in consensus_type:\n consensus_data = np.median(self.data, axis=0)\n elif 'max' in consensus_type:\n consensus_data = np.max(self.data, axis=0)\n elif 'percentile' in consensus_type:\n percentile = int(consensus_type.split('_')[1])\n consensus_data = np.percentile(self.data, percentile, axis=0)\n else:\n consensus_data = np.zeros(self.data.shape[1:])\n consensus = EnsembleConsensus(consensus_data, consensus_type, self.\n ensemble_name, self.run_date, self.variable, self.start_date, self.\n end_date, self.units)\n return consensus\n",
"role": "user"
},
{
"content": "point_consensus",
"role": "assistant"
}
] |
def x(self, threshold):
point_prob = np.zeros(self.data.shape[1:])
for t in range(self.data.shape[1]):
point_prob[t] = np.where(self.data[:, t] >= threshold, 1.0, 0.0).mean(
axis=0)
return EnsembleConsensus(point_prob, 'point_probability', self.
ensemble_name, self.run_date, self.variable + '_{0:0.2f}_{1}'.
format(threshold, self.units.replace(' ', '_')), self.start_date,
self.end_date, '')
|
point_probability
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, threshold):\n point_prob = np.zeros(self.data.shape[1:])\n for t in range(self.data.shape[1]):\n point_prob[t] = np.where(self.data[:, t] >= threshold, 1.0, 0.0).mean(\n axis=0)\n return EnsembleConsensus(point_prob, 'point_probability', self.\n ensemble_name, self.run_date, self.variable + '_{0:0.2f}_{1}'.\n format(threshold, self.units.replace(' ', '_')), self.start_date,\n self.end_date, '')\n",
"role": "user"
},
{
"content": "point_probability",
"role": "assistant"
}
] |
def x(self, threshold, radius, sigmas=None):
if sigmas is None:
sigmas = [0]
weights = disk(radius)
filtered_prob = []
for sigma in sigmas:
filtered_prob.append(EnsembleConsensus(np.zeros(self.data.shape[1:],
dtype=np.float32), 'neighbor_prob_r_{0:d}_s_{1:d}'.format(
radius, sigma), self.ensemble_name, self.run_date, self.
variable + '_{0:0.2f}'.format(threshold), self.start_date, self
.end_date, ''))
thresh_data = np.zeros(self.data.shape[2:], dtype=np.uint8)
neighbor_prob = np.zeros(self.data.shape[2:], dtype=np.float32)
for t in range(self.data.shape[1]):
for m in range(self.data.shape[0]):
thresh_data[self.data[m, t] >= threshold] = 1
maximized = fftconvolve(thresh_data, weights, mode='same')
maximized[maximized > 1] = 1
maximized[maximized < 1] = 0
neighbor_prob += fftconvolve(maximized, weights, mode='same')
neighbor_prob[neighbor_prob < 1] = 0
thresh_data[:] = 0
neighbor_prob /= self.data.shape[0] * float(weights.sum())
for s, sigma in enumerate(sigmas):
if sigma > 0:
filtered_prob[s].data[t] = gaussian_filter(neighbor_prob,
sigma=sigma)
else:
filtered_prob[s].data[t] = neighbor_prob
neighbor_prob[:] = 0
return filtered_prob
|
neighborhood_probability
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, threshold, radius, sigmas=None):\n if sigmas is None:\n sigmas = [0]\n weights = disk(radius)\n filtered_prob = []\n for sigma in sigmas:\n filtered_prob.append(EnsembleConsensus(np.zeros(self.data.shape[1:],\n dtype=np.float32), 'neighbor_prob_r_{0:d}_s_{1:d}'.format(\n radius, sigma), self.ensemble_name, self.run_date, self.\n variable + '_{0:0.2f}'.format(threshold), self.start_date, self\n .end_date, ''))\n thresh_data = np.zeros(self.data.shape[2:], dtype=np.uint8)\n neighbor_prob = np.zeros(self.data.shape[2:], dtype=np.float32)\n for t in range(self.data.shape[1]):\n for m in range(self.data.shape[0]):\n thresh_data[self.data[m, t] >= threshold] = 1\n maximized = fftconvolve(thresh_data, weights, mode='same')\n maximized[maximized > 1] = 1\n maximized[maximized < 1] = 0\n neighbor_prob += fftconvolve(maximized, weights, mode='same')\n neighbor_prob[neighbor_prob < 1] = 0\n thresh_data[:] = 0\n neighbor_prob /= self.data.shape[0] * float(weights.sum())\n for s, sigma in enumerate(sigmas):\n if sigma > 0:\n filtered_prob[s].data[t] = gaussian_filter(neighbor_prob,\n sigma=sigma)\n else:\n filtered_prob[s].data[t] = neighbor_prob\n neighbor_prob[:] = 0\n return filtered_prob\n",
"role": "user"
},
{
"content": "neighborhood_probability",
"role": "assistant"
}
] |
def x(self, threshold, radius, sigmas=None):
if sigmas is None:
sigmas = [0]
weights = disk(radius)
neighborhood_prob = np.zeros(self.data.shape[2:], dtype=np.float32)
thresh_data = np.zeros(self.data.shape[2:], dtype=np.uint8)
for m in range(self.data.shape[0]):
thresh_data[self.data[m].max(axis=0) >= threshold] = 1
maximized = fftconvolve(thresh_data, weights, mode='same')
maximized[maximized > 1] = 1
neighborhood_prob += fftconvolve(maximized, weights, mode='same')
neighborhood_prob[neighborhood_prob < 1] = 0
neighborhood_prob /= self.data.shape[0] * float(weights.sum())
consensus_probs = []
for sigma in sigmas:
if sigma > 0:
filtered_prob = gaussian_filter(neighborhood_prob, sigma=sigma)
else:
filtered_prob = neighborhood_prob
ec = EnsembleConsensus(filtered_prob,
'neighbor_prob_{0:02d}-hour_r_{1:d}_s_{2:d}'.format(self.data.
shape[1], radius, sigma), self.ensemble_name, self.run_date,
self.variable + '_{0:0.2f}'.format(float(threshold)), self.
start_date, self.end_date, '')
consensus_probs.append(ec)
return consensus_probs
|
period_max_neighborhood_probability
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, threshold, radius, sigmas=None):\n if sigmas is None:\n sigmas = [0]\n weights = disk(radius)\n neighborhood_prob = np.zeros(self.data.shape[2:], dtype=np.float32)\n thresh_data = np.zeros(self.data.shape[2:], dtype=np.uint8)\n for m in range(self.data.shape[0]):\n thresh_data[self.data[m].max(axis=0) >= threshold] = 1\n maximized = fftconvolve(thresh_data, weights, mode='same')\n maximized[maximized > 1] = 1\n neighborhood_prob += fftconvolve(maximized, weights, mode='same')\n neighborhood_prob[neighborhood_prob < 1] = 0\n neighborhood_prob /= self.data.shape[0] * float(weights.sum())\n consensus_probs = []\n for sigma in sigmas:\n if sigma > 0:\n filtered_prob = gaussian_filter(neighborhood_prob, sigma=sigma)\n else:\n filtered_prob = neighborhood_prob\n ec = EnsembleConsensus(filtered_prob,\n 'neighbor_prob_{0:02d}-hour_r_{1:d}_s_{2:d}'.format(self.data.\n shape[1], radius, sigma), self.ensemble_name, self.run_date, \n self.variable + '_{0:0.2f}'.format(float(threshold)), self.\n start_date, self.end_date, '')\n consensus_probs.append(ec)\n return consensus_probs\n",
"role": "user"
},
{
"content": "period_max_neighborhood_probability",
"role": "assistant"
}
] |
def x(self, grid_method='gamma', num_samples=1000, condition_threshold=0.5,
zero_inflate=False, percentile=None):
self.percentile = percentile
if self.track_forecasts == {}:
self.load_track_forecasts()
if self.track_forecasts == {}:
return -1
if self.data is None:
self.data = np.zeros((len(self.members), self.times.size, self.
grid_shape[0], self.grid_shape[1]), dtype=np.float32)
else:
self.data[:] = 0
if grid_method in ['mean', 'median', 'samples']:
for m, member in enumerate(self.members):
print('Sampling ' + member)
for track_forecast in self.track_forecasts[member]:
times = track_forecast['properties']['times']
for s, step in enumerate(track_forecast['features']):
forecast_pdf = np.array(step['properties'][self.
variable + '_' + self.ensemble_name.replace(' ', '-')])
forecast_time = self.run_date + timedelta(hours=times[s])
t = np.where(self.times == forecast_time)[0][0]
mask = np.array(step['properties']['masks'], dtype=int)
i = np.array(step['properties']['i'], dtype=int)
i = i[mask == 1]
j = np.array(step['properties']['j'], dtype=int)
j = j[mask == 1]
if grid_method == 'samples':
intensities = np.array(step['properties'][
'timesteps'], dtype=float)[mask == 1]
rankings = np.argsort(intensities)
samples = np.random.choice(self.forecast_bins, size
=intensities.size, replace=True, p=forecast_pdf)
self.data[m, t, i[rankings], j[rankings]] = samples
else:
if grid_method == 'mean':
forecast_value = np.sum(forecast_pdf * self.
forecast_bins)
elif grid_method == 'median':
forecast_cdf = np.cumsum(forecast_pdf)
forecast_value = self.forecast_bins[np.argmin(
np.abs(forecast_cdf - 0.5))]
else:
forecast_value = 0
self.data[m, t, i, j] = forecast_value
if grid_method in ['gamma']:
full_condition_name = 'condition_' + self.condition_model_name.replace(
' ', '-')
dist_model_name = self.variable + '_' + self.ensemble_name.replace(' ',
'-')
for m, member in enumerate(self.members):
for track_forecast in self.track_forecasts[member]:
times = track_forecast['properties']['times']
for s, step in enumerate(track_forecast['features']):
forecast_params = step['properties'][dist_model_name]
if self.condition_model_name is not None:
condition = step['properties'][full_condition_name]
else:
condition = None
forecast_time = self.run_date + timedelta(hours=times[s])
if forecast_time in self.times:
t = np.where(self.times == forecast_time)[0][0]
mask = np.array(step['properties']['masks'], dtype=int)
rankings = np.argsort(step['properties']['timesteps'])[
mask == 1]
i = np.array(step['properties']['i'], dtype=int)[
mask == 1][rankings]
j = np.array(step['properties']['j'], dtype=int)[
mask == 1][rankings]
if rankings.size > 0:
raw_samples = np.sort(gamma.rvs(forecast_params
[0], loc=forecast_params[1], scale=
forecast_params[2], size=(num_samples,
rankings.size)), axis=1)
if zero_inflate:
raw_samples *= bernoulli.rvs(condition,
size=(num_samples, rankings.size))
if percentile is None:
samples = raw_samples.mean(axis=0)
else:
samples = np.percentile(raw_samples,
percentile, axis=0)
if (condition is None or condition >=
condition_threshold):
self.data[m, t, i, j] = samples
return 0
|
load_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, grid_method='gamma', num_samples=1000, condition_threshold=0.5,\n zero_inflate=False, percentile=None):\n self.percentile = percentile\n if self.track_forecasts == {}:\n self.load_track_forecasts()\n if self.track_forecasts == {}:\n return -1\n if self.data is None:\n self.data = np.zeros((len(self.members), self.times.size, self.\n grid_shape[0], self.grid_shape[1]), dtype=np.float32)\n else:\n self.data[:] = 0\n if grid_method in ['mean', 'median', 'samples']:\n for m, member in enumerate(self.members):\n print('Sampling ' + member)\n for track_forecast in self.track_forecasts[member]:\n times = track_forecast['properties']['times']\n for s, step in enumerate(track_forecast['features']):\n forecast_pdf = np.array(step['properties'][self.\n variable + '_' + self.ensemble_name.replace(' ', '-')])\n forecast_time = self.run_date + timedelta(hours=times[s])\n t = np.where(self.times == forecast_time)[0][0]\n mask = np.array(step['properties']['masks'], dtype=int)\n i = np.array(step['properties']['i'], dtype=int)\n i = i[mask == 1]\n j = np.array(step['properties']['j'], dtype=int)\n j = j[mask == 1]\n if grid_method == 'samples':\n intensities = np.array(step['properties'][\n 'timesteps'], dtype=float)[mask == 1]\n rankings = np.argsort(intensities)\n samples = np.random.choice(self.forecast_bins, size\n =intensities.size, replace=True, p=forecast_pdf)\n self.data[m, t, i[rankings], j[rankings]] = samples\n else:\n if grid_method == 'mean':\n forecast_value = np.sum(forecast_pdf * self.\n forecast_bins)\n elif grid_method == 'median':\n forecast_cdf = np.cumsum(forecast_pdf)\n forecast_value = self.forecast_bins[np.argmin(\n np.abs(forecast_cdf - 0.5))]\n else:\n forecast_value = 0\n self.data[m, t, i, j] = forecast_value\n if grid_method in ['gamma']:\n full_condition_name = 'condition_' + self.condition_model_name.replace(\n ' ', '-')\n dist_model_name = self.variable + '_' + self.ensemble_name.replace(' ',\n '-')\n for m, member in enumerate(self.members):\n for track_forecast in self.track_forecasts[member]:\n times = track_forecast['properties']['times']\n for s, step in enumerate(track_forecast['features']):\n forecast_params = step['properties'][dist_model_name]\n if self.condition_model_name is not None:\n condition = step['properties'][full_condition_name]\n else:\n condition = None\n forecast_time = self.run_date + timedelta(hours=times[s])\n if forecast_time in self.times:\n t = np.where(self.times == forecast_time)[0][0]\n mask = np.array(step['properties']['masks'], dtype=int)\n rankings = np.argsort(step['properties']['timesteps'])[\n mask == 1]\n i = np.array(step['properties']['i'], dtype=int)[\n mask == 1][rankings]\n j = np.array(step['properties']['j'], dtype=int)[\n mask == 1][rankings]\n if rankings.size > 0:\n raw_samples = np.sort(gamma.rvs(forecast_params\n [0], loc=forecast_params[1], scale=\n forecast_params[2], size=(num_samples,\n rankings.size)), axis=1)\n if zero_inflate:\n raw_samples *= bernoulli.rvs(condition,\n size=(num_samples, rankings.size))\n if percentile is None:\n samples = raw_samples.mean(axis=0)\n else:\n samples = np.percentile(raw_samples,\n percentile, axis=0)\n if (condition is None or condition >=\n condition_threshold):\n self.data[m, t, i, j] = samples\n return 0\n",
"role": "user"
},
{
"content": "load_data",
"role": "assistant"
}
] |
def x(self, path):
if self.percentile is None:
var_type = 'mean'
else:
var_type = 'p{0:02d}'.format(self.percentile)
lscale = 1000000.0
grib_id_start = [7, 0, 14, 14, 2]
gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30],
dtype=np.int32)
lon_0 = self.proj_dict['lon_0']
sw_lon = self.grid_dict['sw_lon']
if lon_0 < 0:
lon_0 += 360
if sw_lon < 0:
sw_lon += 360
gdtmp1 = np.array([7, 1, self.proj_dict['a'], 1, self.proj_dict['a'], 1,
self.proj_dict['b'], self.data.shape[-2], self.data.shape[-1], self
.grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self.proj_dict[
'lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] * 1000.0,
self.grid_dict['dy'] * 1000.0, 0, self.proj_dict['lat_1'] * lscale,
self.proj_dict['lat_2'] * lscale, 0, 0], dtype=np.int32)
pdtmp1 = np.array([1, 31, 2, 0, 116, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 192,
0, self.data.shape[0]], dtype=np.int32)
for m, member in enumerate(self.members):
pdtmp1[-2] = m
for t, time in enumerate(self.times):
time_list = list(time.utctimetuple()[0:6])
grbe = Grib2Encode(0, np.array(grib_id_start + time_list + [2,
1], dtype=np.int32))
grbe.addgrid(gdsinfo, gdtmp1)
pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds(
) / 3600.0
drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32)
data = self.data[m, t].astype(np.float32) / 1000.0
masked_data = np.ma.array(data, mask=data <= 0)
grbe.addfield(1, pdtmp1, 0, drtmp1, masked_data)
grbe.end()
filename = path + '{0}_{1}_mlhail_{2}_{3}.grib2'.format(self.
ensemble_name.replace(' ', '-'), member, var_type, time.
to_datetime().strftime('%Y%m%d%H%M'))
print('Writing to ' + filename)
grib_file = open(filename, 'wb')
grib_file.write(grbe.msg)
grib_file.close()
return
|
write_grib2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path):\n if self.percentile is None:\n var_type = 'mean'\n else:\n var_type = 'p{0:02d}'.format(self.percentile)\n lscale = 1000000.0\n grib_id_start = [7, 0, 14, 14, 2]\n gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30],\n dtype=np.int32)\n lon_0 = self.proj_dict['lon_0']\n sw_lon = self.grid_dict['sw_lon']\n if lon_0 < 0:\n lon_0 += 360\n if sw_lon < 0:\n sw_lon += 360\n gdtmp1 = np.array([7, 1, self.proj_dict['a'], 1, self.proj_dict['a'], 1,\n self.proj_dict['b'], self.data.shape[-2], self.data.shape[-1], self\n .grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self.proj_dict[\n 'lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] * 1000.0, \n self.grid_dict['dy'] * 1000.0, 0, self.proj_dict['lat_1'] * lscale,\n self.proj_dict['lat_2'] * lscale, 0, 0], dtype=np.int32)\n pdtmp1 = np.array([1, 31, 2, 0, 116, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 192,\n 0, self.data.shape[0]], dtype=np.int32)\n for m, member in enumerate(self.members):\n pdtmp1[-2] = m\n for t, time in enumerate(self.times):\n time_list = list(time.utctimetuple()[0:6])\n grbe = Grib2Encode(0, np.array(grib_id_start + time_list + [2, \n 1], dtype=np.int32))\n grbe.addgrid(gdsinfo, gdtmp1)\n pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds(\n ) / 3600.0\n drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32)\n data = self.data[m, t].astype(np.float32) / 1000.0\n masked_data = np.ma.array(data, mask=data <= 0)\n grbe.addfield(1, pdtmp1, 0, drtmp1, masked_data)\n grbe.end()\n filename = path + '{0}_{1}_mlhail_{2}_{3}.grib2'.format(self.\n ensemble_name.replace(' ', '-'), member, var_type, time.\n to_datetime().strftime('%Y%m%d%H%M'))\n print('Writing to ' + filename)\n grib_file = open(filename, 'wb')\n grib_file.write(grbe.msg)\n grib_file.close()\n return\n",
"role": "user"
},
{
"content": "write_grib2",
"role": "assistant"
}
] |
def x(self, filename, time_units='seconds since 1970-01-01T00:00'):
if os.access(filename, os.R_OK):
out_data = Dataset(filename, 'r+')
else:
out_data = Dataset(filename, 'w')
if len(self.data.shape) == 2:
for d, dim in enumerate(['y', 'x']):
out_data.createDimension(dim, self.data.shape[d])
else:
for d, dim in enumerate(['y', 'x']):
out_data.createDimension(dim, self.data.shape[d + 1])
out_data.createDimension('time', len(self.times))
time_var = out_data.createVariable('time', 'i8', ('time',))
time_var[:] = date2num(self.times.to_pydatetime(), time_units)
time_var.units = time_units
out_data.Conventions = 'CF-1.6'
return out_data
|
init_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, time_units='seconds since 1970-01-01T00:00'):\n if os.access(filename, os.R_OK):\n out_data = Dataset(filename, 'r+')\n else:\n out_data = Dataset(filename, 'w')\n if len(self.data.shape) == 2:\n for d, dim in enumerate(['y', 'x']):\n out_data.createDimension(dim, self.data.shape[d])\n else:\n for d, dim in enumerate(['y', 'x']):\n out_data.createDimension(dim, self.data.shape[d + 1])\n out_data.createDimension('time', len(self.times))\n time_var = out_data.createVariable('time', 'i8', ('time',))\n time_var[:] = date2num(self.times.to_pydatetime(), time_units)\n time_var.units = time_units\n out_data.Conventions = 'CF-1.6'\n return out_data\n",
"role": "user"
},
{
"content": "init_file",
"role": "assistant"
}
] |
def x(self, out_data):
full_var_name = self.consensus_type + '_' + self.variable
if '-hour' in self.consensus_type:
if full_var_name not in out_data.variables.keys():
var = out_data.createVariable(full_var_name, 'f4', ('y', 'x'),
zlib=True, least_significant_digit=3, shuffle=True)
else:
var = out_data.variables[full_var_name]
var.coordinates = 'y x'
else:
if full_var_name not in out_data.variables.keys():
var = out_data.createVariable(full_var_name, 'f4', ('time', 'y',
'x'), zlib=True, least_significant_digit=3, shuffle=True)
else:
var = out_data.variables[full_var_name]
var.coordinates = 'time y x'
var[:] = self.data
var.units = self.units
var.long_name = self.consensus_type + '_' + self.variable
return
|
write_to_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, out_data):\n full_var_name = self.consensus_type + '_' + self.variable\n if '-hour' in self.consensus_type:\n if full_var_name not in out_data.variables.keys():\n var = out_data.createVariable(full_var_name, 'f4', ('y', 'x'),\n zlib=True, least_significant_digit=3, shuffle=True)\n else:\n var = out_data.variables[full_var_name]\n var.coordinates = 'y x'\n else:\n if full_var_name not in out_data.variables.keys():\n var = out_data.createVariable(full_var_name, 'f4', ('time', 'y',\n 'x'), zlib=True, least_significant_digit=3, shuffle=True)\n else:\n var = out_data.variables[full_var_name]\n var.coordinates = 'time y x'\n var[:] = self.data\n var.units = self.units\n var.long_name = self.consensus_type + '_' + self.variable\n return\n",
"role": "user"
},
{
"content": "write_to_file",
"role": "assistant"
}
] |
def x(self, workspace_uuid):
workspace = next((workspace for workspace in self.document_model.
workspaces if workspace.uuid == workspace_uuid), None)
if workspace is None:
workspace = self.new_workspace()
self._change_workspace(workspace)
|
restore
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, workspace_uuid):\n workspace = next((workspace for workspace in self.document_model.\n workspaces if workspace.uuid == workspace_uuid), None)\n if workspace is None:\n workspace = self.new_workspace()\n self._change_workspace(workspace)\n",
"role": "user"
},
{
"content": "restore",
"role": "assistant"
}
] |
def x(self, name=None, layout=None, workspace_id=None, index=None
) ->WorkspaceLayout.WorkspaceLayout:
workspace = WorkspaceLayout.WorkspaceLayout()
self.document_model.insert_workspace(index if index is not None else
len(self.document_model.workspaces), workspace)
d = create_image_desc()
d['selected'] = True
workspace.layout = layout if layout is not None else d
workspace.name = name if name is not None else _('Workspace')
if workspace_id:
workspace.workspace_id = workspace_id
return workspace
|
new_workspace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name=None, layout=None, workspace_id=None, index=None\n ) ->WorkspaceLayout.WorkspaceLayout:\n workspace = WorkspaceLayout.WorkspaceLayout()\n self.document_model.insert_workspace(index if index is not None else\n len(self.document_model.workspaces), workspace)\n d = create_image_desc()\n d['selected'] = True\n workspace.layout = layout if layout is not None else d\n workspace.name = name if name is not None else _('Workspace')\n if workspace_id:\n workspace.workspace_id = workspace_id\n return workspace\n",
"role": "user"
},
{
"content": "new_workspace",
"role": "assistant"
}
] |
def x(self, name, layout, workspace_id):
workspace = next((workspace for workspace in self.document_model.
workspaces if workspace.workspace_id == workspace_id), None)
if not workspace:
workspace = self.new_workspace(name=name, layout=layout,
workspace_id=workspace_id)
self._change_workspace(workspace)
|
ensure_workspace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, layout, workspace_id):\n workspace = next((workspace for workspace in self.document_model.\n workspaces if workspace.workspace_id == workspace_id), None)\n if not workspace:\n workspace = self.new_workspace(name=name, layout=layout,\n workspace_id=workspace_id)\n self._change_workspace(workspace)\n",
"role": "user"
},
{
"content": "ensure_workspace",
"role": "assistant"
}
] |
def x(self) ->None:
def x(text):
if text:
command = Workspace.CreateWorkspaceCommand(self, text)
command.perform()
self.document_controller.push_undo_command(command)
self.pose_get_string_message_box(caption=_(
'Enter a name for the workspace'), text=_('Workspace'), accepted_fn
=create_clicked, accepted_text=_('Create'), message_box_id=
'create_workspace')
|
create_workspace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n\n def x(text):\n if text:\n command = Workspace.CreateWorkspaceCommand(self, text)\n command.perform()\n self.document_controller.push_undo_command(command)\n self.pose_get_string_message_box(caption=_(\n 'Enter a name for the workspace'), text=_('Workspace'), accepted_fn\n =create_clicked, accepted_text=_('Create'), message_box_id=\n 'create_workspace')\n",
"role": "user"
},
{
"content": "create_workspace",
"role": "assistant"
}
] |
def x(self) ->None:
def x(text):
if len(text) > 0:
command = Workspace.RenameWorkspaceCommand(self, text)
command.perform()
self.document_controller.push_undo_command(command)
self.pose_get_string_message_box(caption=_(
'Enter new name for workspace'), text=self.__workspace.name,
accepted_fn=rename_clicked, accepted_text=_('Rename'),
message_box_id='rename_workspace')
|
rename_workspace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n\n def x(text):\n if len(text) > 0:\n command = Workspace.RenameWorkspaceCommand(self, text)\n command.perform()\n self.document_controller.push_undo_command(command)\n self.pose_get_string_message_box(caption=_(\n 'Enter new name for workspace'), text=self.__workspace.name,\n accepted_fn=rename_clicked, accepted_text=_('Rename'),\n message_box_id='rename_workspace')\n",
"role": "user"
},
{
"content": "rename_workspace",
"role": "assistant"
}
] |
def x(self):
def x():
if len(self.document_model.workspaces) > 1:
command = Workspace.RemoveWorkspaceCommand(self)
command.perform()
self.document_controller.push_undo_command(command)
caption = _("Remove workspace named '{0}'?").format(self.__workspace.name)
self.pose_confirmation_message_box(caption, confirm_clicked,
accepted_text=_('Remove Workspace'), message_box_id='remove_workspace')
|
remove_workspace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n\n def x():\n if len(self.document_model.workspaces) > 1:\n command = Workspace.RemoveWorkspaceCommand(self)\n command.perform()\n self.document_controller.push_undo_command(command)\n caption = _(\"Remove workspace named '{0}'?\").format(self.__workspace.name)\n self.pose_confirmation_message_box(caption, confirm_clicked,\n accepted_text=_('Remove Workspace'), message_box_id='remove_workspace')\n",
"role": "user"
},
{
"content": "remove_workspace",
"role": "assistant"
}
] |
def x(self) ->None:
def x(text):
if text:
command = Workspace.CloneWorkspaceCommand(self, text)
command.perform()
self.document_controller.push_undo_command(command)
self.pose_get_string_message_box(caption=_(
'Enter a name for the workspace'), text=self.__workspace.name,
accepted_fn=clone_clicked, accepted_text=_('Clone'), message_box_id
='clone_workspace')
|
clone_workspace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n\n def x(text):\n if text:\n command = Workspace.CloneWorkspaceCommand(self, text)\n command.perform()\n self.document_controller.push_undo_command(command)\n self.pose_get_string_message_box(caption=_(\n 'Enter a name for the workspace'), text=self.__workspace.name,\n accepted_fn=clone_clicked, accepted_text=_('Clone'), message_box_id\n ='clone_workspace')\n",
"role": "user"
},
{
"content": "clone_workspace",
"role": "assistant"
}
] |
def x(self, display_panel, display_item, d=None) ->Undo.UndoableCommand:
self.document_controller.replaced_display_panel_content = (display_panel
.save_contents())
command = DisplayPanel.ReplaceDisplayPanelCommand(self)
if display_item:
display_panel.set_display_panel_display_item(display_item,
detect_controller=True)
elif d is not None:
display_panel.change_display_panel_content(d)
display_panel.request_focus()
self.__sync_layout()
return command
|
replace_displayed_display_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, display_panel, display_item, d=None) ->Undo.UndoableCommand:\n self.document_controller.replaced_display_panel_content = (display_panel\n .save_contents())\n command = DisplayPanel.ReplaceDisplayPanelCommand(self)\n if display_item:\n display_panel.set_display_panel_display_item(display_item,\n detect_controller=True)\n elif d is not None:\n display_panel.change_display_panel_content(d)\n display_panel.request_focus()\n self.__sync_layout()\n return command\n",
"role": "user"
},
{
"content": "replace_displayed_display_item",
"role": "assistant"
}
] |
def x(score_objs, n_boot=1000):
all_samples = np.random.choice(score_objs, size=(n_boot, len(score_objs
)), replace=True)
return all_samples.sum(axis=1)
|
bootstrap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(score_objs, n_boot=1000):\n all_samples = np.random.choice(score_objs, size=(n_boot, len(score_objs\n )), replace=True)\n return all_samples.sum(axis=1)\n",
"role": "user"
},
{
"content": "bootstrap",
"role": "assistant"
}
] |
def x(self, forecasts, observations):
for t, threshold in enumerate(self.thresholds):
tp = np.count_nonzero((forecasts >= threshold) & (observations >=
self.obs_threshold))
fp = np.count_nonzero((forecasts >= threshold) & (observations <
self.obs_threshold))
fn = np.count_nonzero((forecasts < threshold) & (observations >=
self.obs_threshold))
tn = np.count_nonzero((forecasts < threshold) & (observations <
self.obs_threshold))
self.contingency_tables.iloc[t] += [tp, fp, fn, tn]
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, forecasts, observations):\n for t, threshold in enumerate(self.thresholds):\n tp = np.count_nonzero((forecasts >= threshold) & (observations >=\n self.obs_threshold))\n fp = np.count_nonzero((forecasts >= threshold) & (observations <\n self.obs_threshold))\n fn = np.count_nonzero((forecasts < threshold) & (observations >=\n self.obs_threshold))\n tn = np.count_nonzero((forecasts < threshold) & (observations <\n self.obs_threshold))\n self.contingency_tables.iloc[t] += [tp, fp, fn, tn]\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, other_roc):
if other_roc.thresholds.size == self.thresholds.size and np.all(
other_roc.thresholds == self.thresholds):
self.contingency_tables += other_roc.contingency_tables
else:
print('Input table thresholds do not match.')
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other_roc):\n if other_roc.thresholds.size == self.thresholds.size and np.all(\n other_roc.thresholds == self.thresholds):\n self.contingency_tables += other_roc.contingency_tables\n else:\n print('Input table thresholds do not match.')\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(self):
pod = self.contingency_tables['TP'].astype(float) / (self.
contingency_tables['TP'] + self.contingency_tables['FN'])
pofd = self.contingency_tables['FP'].astype(float) / (self.
contingency_tables['FP'] + self.contingency_tables['TN'])
return pd.DataFrame({'POD': pod, 'POFD': pofd, 'Thresholds': self.
thresholds}, columns=['POD', 'POFD', 'Thresholds'])
|
roc_curve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n pod = self.contingency_tables['TP'].astype(float) / (self.\n contingency_tables['TP'] + self.contingency_tables['FN'])\n pofd = self.contingency_tables['FP'].astype(float) / (self.\n contingency_tables['FP'] + self.contingency_tables['TN'])\n return pd.DataFrame({'POD': pod, 'POFD': pofd, 'Thresholds': self.\n thresholds}, columns=['POD', 'POFD', 'Thresholds'])\n",
"role": "user"
},
{
"content": "roc_curve",
"role": "assistant"
}
] |
def x(self):
pod = self.contingency_tables['TP'] / (self.contingency_tables['TP'] +
self.contingency_tables['FN'])
far = self.contingency_tables['FP'] / (self.contingency_tables['FP'] +
self.contingency_tables['TP'])
far[self.contingency_tables['FP'] + self.contingency_tables['TP'] == 0
] = np.nan
return pd.DataFrame({'POD': pod, 'FAR': far, 'Thresholds': self.
thresholds}, columns=['POD', 'FAR', 'Thresholds'])
|
performance_curve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n pod = self.contingency_tables['TP'] / (self.contingency_tables['TP'] +\n self.contingency_tables['FN'])\n far = self.contingency_tables['FP'] / (self.contingency_tables['FP'] +\n self.contingency_tables['TP'])\n far[self.contingency_tables['FP'] + self.contingency_tables['TP'] == 0\n ] = np.nan\n return pd.DataFrame({'POD': pod, 'FAR': far, 'Thresholds': self.\n thresholds}, columns=['POD', 'FAR', 'Thresholds'])\n",
"role": "user"
},
{
"content": "performance_curve",
"role": "assistant"
}
] |
def x(self):
roc_curve = self.roc_curve()
return np.abs(np.trapz(roc_curve['POD'], x=roc_curve['POFD']))
|
auc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n roc_curve = self.roc_curve()\n return np.abs(np.trapz(roc_curve['POD'], x=roc_curve['POFD']))\n",
"role": "user"
},
{
"content": "auc",
"role": "assistant"
}
] |
def x(self):
csi = self.contingency_tables['TP'] / (self.contingency_tables['TP'] +
self.contingency_tables['FN'] + self.contingency_tables['FP'])
return csi.max()
|
max_csi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n csi = self.contingency_tables['TP'] / (self.contingency_tables['TP'] +\n self.contingency_tables['FN'] + self.contingency_tables['FP'])\n return csi.max()\n",
"role": "user"
},
{
"content": "max_csi",
"role": "assistant"
}
] |
def x(self):
return np.array([ContingencyTable(*ct) for ct in self.
contingency_tables.values])
|
get_contingency_tables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return np.array([ContingencyTable(*ct) for ct in self.\n contingency_tables.values])\n",
"role": "user"
},
{
"content": "get_contingency_tables",
"role": "assistant"
}
] |
def x(self, in_str):
parts = in_str.split(';')
for part in parts:
var_name, value = part.split(':')
if var_name == 'Obs_Threshold':
self.obs_threshold = float(value)
elif var_name == 'Thresholds':
self.thresholds = np.array(value.split(), dtype=float)
self.contingency_tables = pd.DataFrame(columns=self.
contingency_tables.columns, data=np.zeros((self.thresholds.
size, self.contingency_tables.columns.size)))
elif var_name in self.contingency_tables.columns:
self.contingency_tables[var_name] = np.array(value.split(),
dtype=int)
|
from_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, in_str):\n parts = in_str.split(';')\n for part in parts:\n var_name, value = part.split(':')\n if var_name == 'Obs_Threshold':\n self.obs_threshold = float(value)\n elif var_name == 'Thresholds':\n self.thresholds = np.array(value.split(), dtype=float)\n self.contingency_tables = pd.DataFrame(columns=self.\n contingency_tables.columns, data=np.zeros((self.thresholds.\n size, self.contingency_tables.columns.size)))\n elif var_name in self.contingency_tables.columns:\n self.contingency_tables[var_name] = np.array(value.split(),\n dtype=int)\n",
"role": "user"
},
{
"content": "from_str",
"role": "assistant"
}
] |
def x(self, forecasts, observations):
for t, threshold in enumerate(self.thresholds[:-1]):
self.frequencies.loc[t, 'Positive_Freq'] += np.count_nonzero((
threshold <= forecasts) & (forecasts < self.thresholds[t + 1]) &
(observations >= self.obs_threshold))
self.frequencies.loc[t, 'Total_Freq'] += np.count_nonzero((
threshold <= forecasts) & (forecasts < self.thresholds[t + 1]))
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, forecasts, observations):\n for t, threshold in enumerate(self.thresholds[:-1]):\n self.frequencies.loc[t, 'Positive_Freq'] += np.count_nonzero((\n threshold <= forecasts) & (forecasts < self.thresholds[t + 1]) &\n (observations >= self.obs_threshold))\n self.frequencies.loc[t, 'Total_Freq'] += np.count_nonzero((\n threshold <= forecasts) & (forecasts < self.thresholds[t + 1]))\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, other_rel):
if other_rel.thresholds.size == self.thresholds.size and np.all(
other_rel.thresholds == self.thresholds):
self.frequencies += other_rel.frequencies
else:
print('Input table thresholds do not match.')
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other_rel):\n if other_rel.thresholds.size == self.thresholds.size and np.all(\n other_rel.thresholds == self.thresholds):\n self.frequencies += other_rel.frequencies\n else:\n print('Input table thresholds do not match.')\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(self):
total = self.frequencies['Total_Freq'].sum()
curve = pd.DataFrame(columns=['Bin_Start', 'Bin_End', 'Bin_Center',
'Positive_Relative_Freq', 'Total_Relative_Freq'])
curve['Bin_Start'] = self.thresholds[:-1]
curve['Bin_End'] = self.thresholds[1:]
curve['Bin_Center'] = 0.5 * (self.thresholds[:-1] + self.thresholds[1:])
curve['Positive_Relative_Freq'] = self.frequencies['Positive_Freq'
] / self.frequencies['Total_Freq']
curve['Total_Relative_Freq'] = self.frequencies['Total_Freq'] / total
return curve
|
reliability_curve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n total = self.frequencies['Total_Freq'].sum()\n curve = pd.DataFrame(columns=['Bin_Start', 'Bin_End', 'Bin_Center',\n 'Positive_Relative_Freq', 'Total_Relative_Freq'])\n curve['Bin_Start'] = self.thresholds[:-1]\n curve['Bin_End'] = self.thresholds[1:]\n curve['Bin_Center'] = 0.5 * (self.thresholds[:-1] + self.thresholds[1:])\n curve['Positive_Relative_Freq'] = self.frequencies['Positive_Freq'\n ] / self.frequencies['Total_Freq']\n curve['Total_Relative_Freq'] = self.frequencies['Total_Freq'] / total\n return curve\n",
"role": "user"
},
{
"content": "reliability_curve",
"role": "assistant"
}
] |
def x(self):
rel_curve = self.reliability_curve()
total = self.frequencies['Total_Freq'].sum()
climo_freq = float(self.frequencies['Positive_Freq'].sum()
) / self.frequencies['Total_Freq'].sum()
reliability = np.sum(self.frequencies['Total_Freq'] * (rel_curve[
'Bin_Start'] - rel_curve['Positive_Relative_Freq']) ** 2) / total
resolution = np.sum(self.frequencies['Total_Freq'] * (rel_curve[
'Positive_Relative_Freq'] - climo_freq) ** 2) / total
uncertainty = climo_freq * (1 - climo_freq)
return reliability, resolution, uncertainty
|
brier_score_components
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n rel_curve = self.reliability_curve()\n total = self.frequencies['Total_Freq'].sum()\n climo_freq = float(self.frequencies['Positive_Freq'].sum()\n ) / self.frequencies['Total_Freq'].sum()\n reliability = np.sum(self.frequencies['Total_Freq'] * (rel_curve[\n 'Bin_Start'] - rel_curve['Positive_Relative_Freq']) ** 2) / total\n resolution = np.sum(self.frequencies['Total_Freq'] * (rel_curve[\n 'Positive_Relative_Freq'] - climo_freq) ** 2) / total\n uncertainty = climo_freq * (1 - climo_freq)\n return reliability, resolution, uncertainty\n",
"role": "user"
},
{
"content": "brier_score_components",
"role": "assistant"
}
] |
def x(self):
reliability, resolution, uncertainty = self.brier_score_components()
return reliability - resolution + uncertainty
|
brier_score
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n reliability, resolution, uncertainty = self.brier_score_components()\n return reliability - resolution + uncertainty\n",
"role": "user"
},
{
"content": "brier_score",
"role": "assistant"
}
] |
def x(self):
reliability, resolution, uncertainty = self.brier_score_components()
return (resolution - reliability) / uncertainty
|
brier_skill_score
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n reliability, resolution, uncertainty = self.brier_score_components()\n return (resolution - reliability) / uncertainty\n",
"role": "user"
},
{
"content": "brier_skill_score",
"role": "assistant"
}
] |
def x(self, forecasts, observations):
if len(observations.shape) == 1:
obs_cdfs = np.zeros((observations.size, self.thresholds.size))
for o, observation in enumerate(observations):
obs_cdfs[o, self.thresholds >= observation] = 1
else:
obs_cdfs = observations
self.errors['F_2'] += np.sum(forecasts ** 2, axis=0)
self.errors['F_O'] += np.sum(forecasts * obs_cdfs, axis=0)
self.errors['O_2'] += np.sum(obs_cdfs ** 2, axis=0)
self.errors['O'] += np.sum(obs_cdfs, axis=0)
self.num_forecasts += forecasts.shape[0]
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, forecasts, observations):\n if len(observations.shape) == 1:\n obs_cdfs = np.zeros((observations.size, self.thresholds.size))\n for o, observation in enumerate(observations):\n obs_cdfs[o, self.thresholds >= observation] = 1\n else:\n obs_cdfs = observations\n self.errors['F_2'] += np.sum(forecasts ** 2, axis=0)\n self.errors['F_O'] += np.sum(forecasts * obs_cdfs, axis=0)\n self.errors['O_2'] += np.sum(obs_cdfs ** 2, axis=0)\n self.errors['O'] += np.sum(obs_cdfs, axis=0)\n self.num_forecasts += forecasts.shape[0]\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
return np.sum(self.errors['F_2'].values - self.errors['F_O'].values *
2.0 + self.errors['O_2'].values) / (self.thresholds.size * self.
num_forecasts)
|
crps
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return np.sum(self.errors['F_2'].values - self.errors['F_O'].values * \n 2.0 + self.errors['O_2'].values) / (self.thresholds.size * self.\n num_forecasts)\n",
"role": "user"
},
{
"content": "crps",
"role": "assistant"
}
] |
def x(self):
o_bar = self.errors['O'].values / float(self.num_forecasts)
crps_c = np.sum(self.num_forecasts * o_bar ** 2 - o_bar * self.errors[
'O'].values * 2.0 + self.errors['O_2'].values) / float(self.
thresholds.size * self.num_forecasts)
return crps_c
|
crps_climo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n o_bar = self.errors['O'].values / float(self.num_forecasts)\n crps_c = np.sum(self.num_forecasts * o_bar ** 2 - o_bar * self.errors[\n 'O'].values * 2.0 + self.errors['O_2'].values) / float(self.\n thresholds.size * self.num_forecasts)\n return crps_c\n",
"role": "user"
},
{
"content": "crps_climo",
"role": "assistant"
}
] |
def x(self):
crps_f = self.crps()
crps_c = self.crps_climo()
return 1.0 - float(crps_f) / float(crps_c)
|
crpss
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n crps_f = self.crps()\n crps_c = self.crps_climo()\n return 1.0 - float(crps_f) / float(crps_c)\n",
"role": "user"
},
{
"content": "crpss",
"role": "assistant"
}
] |
def x(cliente_sat):
resposta = cliente_sat.consultar_status_operacional()
alertas = []
for classe_alerta in AlertaOperacao.alertas_registrados:
alerta = classe_alerta(resposta)
if alerta.checar():
alertas.append(alerta)
return alertas
|
checar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cliente_sat):\n resposta = cliente_sat.consultar_status_operacional()\n alertas = []\n for classe_alerta in AlertaOperacao.alertas_registrados:\n alerta = classe_alerta(resposta)\n if alerta.checar():\n alertas.append(alerta)\n return alertas\n",
"role": "user"
},
{
"content": "checar",
"role": "assistant"
}
] |
def x(metadata_source, key: str) ->bool:
desc = session_key_map.get(key)
if desc is not None:
d = getattr(metadata_source, 'session_metadata', dict())
for k in desc['path'][:-1]:
d = d.setdefault(k, dict()) if d is not None else None
if d is not None:
return desc['path'][-1] in d
desc = key_map.get(key)
if desc is not None:
d = getattr(metadata_source, 'metadata', dict())
for k in desc['path'][:-1]:
d = d.setdefault(k, dict()) if d is not None else None
if d is not None:
return desc['path'][-1] in d
raise (False)
|
has_metadata_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(metadata_source, key: str) ->bool:\n desc = session_key_map.get(key)\n if desc is not None:\n d = getattr(metadata_source, 'session_metadata', dict())\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None:\n return desc['path'][-1] in d\n desc = key_map.get(key)\n if desc is not None:\n d = getattr(metadata_source, 'metadata', dict())\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None:\n return desc['path'][-1] in d\n raise (False)\n",
"role": "user"
},
{
"content": "has_metadata_value",
"role": "assistant"
}
] |
def x(metadata_source, key: str) ->typing.Any:
desc = session_key_map.get(key)
if desc is not None:
v = getattr(metadata_source, 'session_metadata', dict())
for k in desc['path']:
v = v.get(k) if v is not None else None
return v
desc = key_map.get(key)
if desc is not None:
v = getattr(metadata_source, 'metadata', dict())
for k in desc['path']:
v = v.get(k) if v is not None else None
return v
raise KeyError()
|
get_metadata_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(metadata_source, key: str) ->typing.Any:\n desc = session_key_map.get(key)\n if desc is not None:\n v = getattr(metadata_source, 'session_metadata', dict())\n for k in desc['path']:\n v = v.get(k) if v is not None else None\n return v\n desc = key_map.get(key)\n if desc is not None:\n v = getattr(metadata_source, 'metadata', dict())\n for k in desc['path']:\n v = v.get(k) if v is not None else None\n return v\n raise KeyError()\n",
"role": "user"
},
{
"content": "get_metadata_value",
"role": "assistant"
}
] |
def x(metadata_source, key: str, value: typing.Any) ->None:
desc = session_key_map.get(key)
if desc is not None:
d0 = getattr(metadata_source, 'session_metadata', dict())
d = d0
for k in desc['path'][:-1]:
d = d.setdefault(k, dict()) if d is not None else None
if d is not None:
d[desc['path'][-1]] = value
metadata_source.session_metadata = d0
return
desc = key_map.get(key)
if desc is not None:
d0 = getattr(metadata_source, 'metadata', dict())
d = d0
for k in desc['path'][:-1]:
d = d.setdefault(k, dict()) if d is not None else None
if d is not None:
d[desc['path'][-1]] = value
metadata_source.metadata = d0
return
raise KeyError()
|
set_metadata_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(metadata_source, key: str, value: typing.Any) ->None:\n desc = session_key_map.get(key)\n if desc is not None:\n d0 = getattr(metadata_source, 'session_metadata', dict())\n d = d0\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None:\n d[desc['path'][-1]] = value\n metadata_source.session_metadata = d0\n return\n desc = key_map.get(key)\n if desc is not None:\n d0 = getattr(metadata_source, 'metadata', dict())\n d = d0\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None:\n d[desc['path'][-1]] = value\n metadata_source.metadata = d0\n return\n raise KeyError()\n",
"role": "user"
},
{
"content": "set_metadata_value",
"role": "assistant"
}
] |
def x(metadata_source, key: str) ->None:
desc = session_key_map.get(key)
if desc is not None:
d0 = getattr(metadata_source, 'session_metadata', dict())
d = d0
for k in desc['path'][:-1]:
d = d.setdefault(k, dict()) if d is not None else None
if d is not None and desc['path'][-1] in d:
d.pop(desc['path'][-1], None)
metadata_source.session_metadata = d0
return
desc = key_map.get(key)
if desc is not None:
d0 = getattr(metadata_source, 'metadata', dict())
d = d0
for k in desc['path'][:-1]:
d = d.setdefault(k, dict()) if d is not None else None
if d is not None and desc['path'][-1] in d:
d.pop(desc['path'][-1], None)
metadata_source.metadata = d0
return
|
delete_metadata_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(metadata_source, key: str) ->None:\n desc = session_key_map.get(key)\n if desc is not None:\n d0 = getattr(metadata_source, 'session_metadata', dict())\n d = d0\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None and desc['path'][-1] in d:\n d.pop(desc['path'][-1], None)\n metadata_source.session_metadata = d0\n return\n desc = key_map.get(key)\n if desc is not None:\n d0 = getattr(metadata_source, 'metadata', dict())\n d = d0\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None and desc['path'][-1] in d:\n d.pop(desc['path'][-1], None)\n metadata_source.metadata = d0\n return\n",
"role": "user"
},
{
"content": "delete_metadata_value",
"role": "assistant"
}
] |
def x(self, plot_height):
calibrated_data_min = self.calibrated_data_min
calibrated_data_max = self.calibrated_data_max
calibrated_data_range = calibrated_data_max - calibrated_data_min
ticker = self.y_ticker
y_ticks = list()
for tick_value, tick_label in zip(ticker.values, ticker.labels):
if calibrated_data_range != 0.0:
y_tick = plot_height - plot_height * (tick_value -
calibrated_data_min) / calibrated_data_range
else:
y_tick = plot_height - plot_height * 0.5
if y_tick >= 0 and y_tick <= plot_height:
y_ticks.append((y_tick, tick_label))
return y_ticks
|
calculate_y_ticks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, plot_height):\n calibrated_data_min = self.calibrated_data_min\n calibrated_data_max = self.calibrated_data_max\n calibrated_data_range = calibrated_data_max - calibrated_data_min\n ticker = self.y_ticker\n y_ticks = list()\n for tick_value, tick_label in zip(ticker.values, ticker.labels):\n if calibrated_data_range != 0.0:\n y_tick = plot_height - plot_height * (tick_value -\n calibrated_data_min) / calibrated_data_range\n else:\n y_tick = plot_height - plot_height * 0.5\n if y_tick >= 0 and y_tick <= plot_height:\n y_ticks.append((y_tick, tick_label))\n return y_ticks\n",
"role": "user"
},
{
"content": "calculate_y_ticks",
"role": "assistant"
}
] |
def x(self, plot_width):
x_calibration = self.x_calibration
uncalibrated_data_left = self.__uncalibrated_left_channel
uncalibrated_data_right = self.__uncalibrated_right_channel
calibrated_data_left = x_calibration.convert_to_calibrated_value(
uncalibrated_data_left
) if x_calibration is not None else uncalibrated_data_left
calibrated_data_right = x_calibration.convert_to_calibrated_value(
uncalibrated_data_right
) if x_calibration is not None else uncalibrated_data_right
calibrated_data_left, calibrated_data_right = min(calibrated_data_left,
calibrated_data_right), max(calibrated_data_left, calibrated_data_right
)
graph_left, graph_right, tick_values, division, precision = (Geometry.
make_pretty_range(calibrated_data_left, calibrated_data_right))
drawn_data_width = self.drawn_right_channel - self.drawn_left_channel
x_ticks = list()
if drawn_data_width > 0.0:
for tick_value in tick_values:
label = nice_label(tick_value, precision)
data_tick = x_calibration.convert_from_calibrated_value(tick_value
) if x_calibration else tick_value
x_tick = plot_width * (data_tick - self.drawn_left_channel
) / drawn_data_width
if x_tick >= 0 and x_tick <= plot_width:
x_ticks.append((x_tick, label))
return x_ticks
|
calculate_x_ticks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, plot_width):\n x_calibration = self.x_calibration\n uncalibrated_data_left = self.__uncalibrated_left_channel\n uncalibrated_data_right = self.__uncalibrated_right_channel\n calibrated_data_left = x_calibration.convert_to_calibrated_value(\n uncalibrated_data_left\n ) if x_calibration is not None else uncalibrated_data_left\n calibrated_data_right = x_calibration.convert_to_calibrated_value(\n uncalibrated_data_right\n ) if x_calibration is not None else uncalibrated_data_right\n calibrated_data_left, calibrated_data_right = min(calibrated_data_left,\n calibrated_data_right), max(calibrated_data_left, calibrated_data_right\n )\n graph_left, graph_right, tick_values, division, precision = (Geometry.\n make_pretty_range(calibrated_data_left, calibrated_data_right))\n drawn_data_width = self.drawn_right_channel - self.drawn_left_channel\n x_ticks = list()\n if drawn_data_width > 0.0:\n for tick_value in tick_values:\n label = nice_label(tick_value, precision)\n data_tick = x_calibration.convert_from_calibrated_value(tick_value\n ) if x_calibration else tick_value\n x_tick = plot_width * (data_tick - self.drawn_left_channel\n ) / drawn_data_width\n if x_tick >= 0 and x_tick <= plot_width:\n x_ticks.append((x_tick, label))\n return x_ticks\n",
"role": "user"
},
{
"content": "calculate_x_ticks",
"role": "assistant"
}
] |
def x(self):
new_sizing = self.copy_sizing()
new_sizing.minimum_height = 0
new_sizing.maximum_height = 0
axes = self.__axes
if axes and axes.is_valid:
if axes.x_calibration and axes.x_calibration.units:
new_sizing.minimum_height = self.font_size + 4
new_sizing.maximum_height = self.font_size + 4
self.update_sizing(new_sizing)
|
size_to_content
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n new_sizing = self.copy_sizing()\n new_sizing.minimum_height = 0\n new_sizing.maximum_height = 0\n axes = self.__axes\n if axes and axes.is_valid:\n if axes.x_calibration and axes.x_calibration.units:\n new_sizing.minimum_height = self.font_size + 4\n new_sizing.maximum_height = self.font_size + 4\n self.update_sizing(new_sizing)\n",
"role": "user"
},
{
"content": "size_to_content",
"role": "assistant"
}
] |
def x(self, get_font_metrics_fn):
new_sizing = self.copy_sizing()
new_sizing.minimum_width = 0
new_sizing.maximum_width = 0
axes = self.__axes
if axes and axes.is_valid:
font = '{0:d}px'.format(self.font_size)
max_width = 0
y_range = axes.calibrated_data_max - axes.calibrated_data_min
label = axes.y_ticker.value_label(axes.calibrated_data_max +
y_range * 5)
max_width = max(max_width, get_font_metrics_fn(font, label).width)
label = axes.y_ticker.value_label(axes.calibrated_data_min -
y_range * 5)
max_width = max(max_width, get_font_metrics_fn(font, label).width)
new_sizing.minimum_width = max_width
new_sizing.maximum_width = max_width
self.update_sizing(new_sizing)
|
size_to_content
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, get_font_metrics_fn):\n new_sizing = self.copy_sizing()\n new_sizing.minimum_width = 0\n new_sizing.maximum_width = 0\n axes = self.__axes\n if axes and axes.is_valid:\n font = '{0:d}px'.format(self.font_size)\n max_width = 0\n y_range = axes.calibrated_data_max - axes.calibrated_data_min\n label = axes.y_ticker.value_label(axes.calibrated_data_max + \n y_range * 5)\n max_width = max(max_width, get_font_metrics_fn(font, label).width)\n label = axes.y_ticker.value_label(axes.calibrated_data_min - \n y_range * 5)\n max_width = max(max_width, get_font_metrics_fn(font, label).width)\n new_sizing.minimum_width = max_width\n new_sizing.maximum_width = max_width\n self.update_sizing(new_sizing)\n",
"role": "user"
},
{
"content": "size_to_content",
"role": "assistant"
}
] |
def x(self):
new_sizing = self.copy_sizing()
new_sizing.minimum_width = 0
new_sizing.maximum_width = 0
axes = self.__axes
if axes and axes.is_valid:
if axes.y_calibration and axes.y_calibration.units:
new_sizing.minimum_width = self.font_size + 4
new_sizing.maximum_width = self.font_size + 4
self.update_sizing(new_sizing)
|
size_to_content
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n new_sizing = self.copy_sizing()\n new_sizing.minimum_width = 0\n new_sizing.maximum_width = 0\n axes = self.__axes\n if axes and axes.is_valid:\n if axes.y_calibration and axes.y_calibration.units:\n new_sizing.minimum_width = self.font_size + 4\n new_sizing.maximum_width = self.font_size + 4\n self.update_sizing(new_sizing)\n",
"role": "user"
},
{
"content": "size_to_content",
"role": "assistant"
}
] |
def x(snippet_name, **format_kwargs):
filename = snippet_name + '.snippet'
snippet_file = os.path.join(SNIPPETS_ROOT, filename)
if not os.path.isfile(snippet_file):
raise ValueError('could not find snippet with name ' + filename)
ret = helpers.get_file_content(snippet_file)
if format_kwargs:
ret = ret.format(**format_kwargs)
return ret
|
get_snippet_content
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(snippet_name, **format_kwargs):\n filename = snippet_name + '.snippet'\n snippet_file = os.path.join(SNIPPETS_ROOT, filename)\n if not os.path.isfile(snippet_file):\n raise ValueError('could not find snippet with name ' + filename)\n ret = helpers.get_file_content(snippet_file)\n if format_kwargs:\n ret = ret.format(**format_kwargs)\n return ret\n",
"role": "user"
},
{
"content": "get_snippet_content",
"role": "assistant"
}
] |
def x(self, display_calibration_info, display_properties: typing.Mapping,
display_layers: typing.Sequence[typing.Mapping]) ->None:
with self.__closing_lock:
if self.__closed:
return
displayed_dimensional_scales = (display_calibration_info.
displayed_dimensional_scales)
displayed_dimensional_calibrations = (display_calibration_info.
displayed_dimensional_calibrations)
self.__data_scale = displayed_dimensional_scales[-1] if len(
displayed_dimensional_scales) > 0 else 1
self.__displayed_dimensional_calibration = (
displayed_dimensional_calibrations[-1] if len(
displayed_dimensional_calibrations) > 0 else Calibration.
Calibration(scale=displayed_dimensional_scales[-1]))
self.__intensity_calibration = (display_calibration_info.
displayed_intensity_calibration)
self.__calibration_style = display_calibration_info.calibration_style
self.__y_min = display_properties.get('y_min')
self.__y_max = display_properties.get('y_max')
self.__y_style = display_properties.get('y_style', 'linear')
self.__left_channel = display_properties.get('left_channel')
self.__right_channel = display_properties.get('right_channel')
self.__legend_position = display_properties.get('legend_position')
self.__display_layers = display_layers
if self.__display_values_list and len(self.__display_values_list) > 0:
self.__xdata_list = [(display_values.display_data_and_metadata if
display_values else None) for display_values in self.
__display_values_list]
xdata0 = self.__xdata_list[0]
if xdata0:
self.__update_frame(xdata0.metadata)
else:
self.__xdata_list = list()
self.__update_cursor_info()
self.update()
|
update_display_properties
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, display_calibration_info, display_properties: typing.Mapping,\n display_layers: typing.Sequence[typing.Mapping]) ->None:\n with self.__closing_lock:\n if self.__closed:\n return\n displayed_dimensional_scales = (display_calibration_info.\n displayed_dimensional_scales)\n displayed_dimensional_calibrations = (display_calibration_info.\n displayed_dimensional_calibrations)\n self.__data_scale = displayed_dimensional_scales[-1] if len(\n displayed_dimensional_scales) > 0 else 1\n self.__displayed_dimensional_calibration = (\n displayed_dimensional_calibrations[-1] if len(\n displayed_dimensional_calibrations) > 0 else Calibration.\n Calibration(scale=displayed_dimensional_scales[-1]))\n self.__intensity_calibration = (display_calibration_info.\n displayed_intensity_calibration)\n self.__calibration_style = display_calibration_info.calibration_style\n self.__y_min = display_properties.get('y_min')\n self.__y_max = display_properties.get('y_max')\n self.__y_style = display_properties.get('y_style', 'linear')\n self.__left_channel = display_properties.get('left_channel')\n self.__right_channel = display_properties.get('right_channel')\n self.__legend_position = display_properties.get('legend_position')\n self.__display_layers = display_layers\n if self.__display_values_list and len(self.__display_values_list) > 0:\n self.__xdata_list = [(display_values.display_data_and_metadata if\n display_values else None) for display_values in self.\n __display_values_list]\n xdata0 = self.__xdata_list[0]\n if xdata0:\n self.__update_frame(xdata0.metadata)\n else:\n self.__xdata_list = list()\n self.__update_cursor_info()\n self.update()\n",
"role": "user"
},
{
"content": "update_display_properties",
"role": "assistant"
}
] |
def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, intervals:
typing.List[typing.Tuple[float, float]]) ->None:
left = None
right = None
for interval in intervals:
left = min(left, interval[0]) if left is not None else interval[0]
right = max(right, interval[1]) if right is not None else interval[1]
left = left if left is not None else 0.0
right = right if right is not None else 1.0
left_channel = int(max(0.0, left) * data_and_metadata.data_shape[-1])
right_channel = int(min(1.0, right) * data_and_metadata.data_shape[-1])
data_min = numpy.amin(data_and_metadata.data[..., left_channel:
right_channel])
data_max = numpy.amax(data_and_metadata.data[..., left_channel:
right_channel])
if data_min > 0 and data_max > 0:
y_min = 0.0
y_max = data_max * 1.2
elif data_min < 0 and data_max < 0:
y_min = data_min * 1.2
y_max = 0.0
else:
y_min = data_min * 1.2
y_max = data_max * 1.2
extra = (right - left) * 0.5
display_left_channel = int(max(0.0, left - extra) * data_and_metadata.
data_shape[-1])
display_right_channel = int(min(1.0, right + extra) * data_and_metadata
.data_shape[-1])
self.delegate.update_display_properties({'left_channel':
display_left_channel, 'right_channel': display_right_channel,
'y_min': y_min, 'y_max': y_max})
|
view_to_intervals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, intervals:\n typing.List[typing.Tuple[float, float]]) ->None:\n left = None\n right = None\n for interval in intervals:\n left = min(left, interval[0]) if left is not None else interval[0]\n right = max(right, interval[1]) if right is not None else interval[1]\n left = left if left is not None else 0.0\n right = right if right is not None else 1.0\n left_channel = int(max(0.0, left) * data_and_metadata.data_shape[-1])\n right_channel = int(min(1.0, right) * data_and_metadata.data_shape[-1])\n data_min = numpy.amin(data_and_metadata.data[..., left_channel:\n right_channel])\n data_max = numpy.amax(data_and_metadata.data[..., left_channel:\n right_channel])\n if data_min > 0 and data_max > 0:\n y_min = 0.0\n y_max = data_max * 1.2\n elif data_min < 0 and data_max < 0:\n y_min = data_min * 1.2\n y_max = 0.0\n else:\n y_min = data_min * 1.2\n y_max = data_max * 1.2\n extra = (right - left) * 0.5\n display_left_channel = int(max(0.0, left - extra) * data_and_metadata.\n data_shape[-1])\n display_right_channel = int(min(1.0, right + extra) * data_and_metadata\n .data_shape[-1])\n self.delegate.update_display_properties({'left_channel':\n display_left_channel, 'right_channel': display_right_channel,\n 'y_min': y_min, 'y_max': y_max})\n",
"role": "user"
},
{
"content": "view_to_intervals",
"role": "assistant"
}
] |
def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata) ->None:
all_graphics = self.__graphics
graphics = [graphic for graphic_index, graphic in enumerate(
all_graphics) if self.__graphic_selection.contains(graphic_index)]
intervals = list()
for graphic in graphics:
if isinstance(graphic, Graphics.IntervalGraphic):
intervals.append(graphic.interval)
self.__view_to_intervals(data_and_metadata, intervals)
|
view_to_selected_graphics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata) ->None:\n all_graphics = self.__graphics\n graphics = [graphic for graphic_index, graphic in enumerate(\n all_graphics) if self.__graphic_selection.contains(graphic_index)]\n intervals = list()\n for graphic in graphics:\n if isinstance(graphic, Graphics.IntervalGraphic):\n intervals.append(graphic.interval)\n self.__view_to_intervals(data_and_metadata, intervals)\n",
"role": "user"
},
{
"content": "view_to_selected_graphics",
"role": "assistant"
}
] |
def x(self):
if not self.delegate:
return
if self.__mouse_in and self.__last_mouse:
pos_1d = None
axes = self.__axes
line_graph_canvas_item = self.line_graph_canvas_item
if axes and axes.is_valid and line_graph_canvas_item:
mouse = self.map_to_canvas_item(self.__last_mouse,
line_graph_canvas_item)
plot_rect = line_graph_canvas_item.canvas_bounds
if plot_rect.contains_point(mouse):
mouse = mouse - plot_rect.origin
x = float(mouse.x) / plot_rect.width
px = axes.drawn_left_channel + x * (axes.
drawn_right_channel - axes.drawn_left_channel)
pos_1d = px,
self.delegate.cursor_changed(pos_1d)
|
update_cursor_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.delegate:\n return\n if self.__mouse_in and self.__last_mouse:\n pos_1d = None\n axes = self.__axes\n line_graph_canvas_item = self.line_graph_canvas_item\n if axes and axes.is_valid and line_graph_canvas_item:\n mouse = self.map_to_canvas_item(self.__last_mouse,\n line_graph_canvas_item)\n plot_rect = line_graph_canvas_item.canvas_bounds\n if plot_rect.contains_point(mouse):\n mouse = mouse - plot_rect.origin\n x = float(mouse.x) / plot_rect.width\n px = axes.drawn_left_channel + x * (axes.\n drawn_right_channel - axes.drawn_left_channel)\n pos_1d = px,\n self.delegate.cursor_changed(pos_1d)\n",
"role": "user"
},
{
"content": "update_cursor_info",
"role": "assistant"
}
] |
def x(self):
self.model_grid.load_data()
tracked_model_objects = []
model_objects = []
if self.model_grid.data is None:
print('No model output found')
return tracked_model_objects
min_orig = self.model_ew.min_thresh
max_orig = self.model_ew.max_thresh
data_increment_orig = self.model_ew.data_increment
self.model_ew.min_thresh = 0
self.model_ew.data_increment = 1
self.model_ew.max_thresh = 100
for h, hour in enumerate(self.hours):
print('Finding {0} objects for run {1} Hour: {2:02d}'.format(self.
ensemble_member, self.run_date.strftime('%Y%m%d%H'), hour))
if self.mask is not None:
model_data = self.model_grid.data[h] * self.mask
else:
model_data = self.model_grid.data[h]
model_data[:self.patch_radius] = 0
model_data[-self.patch_radius:] = 0
model_data[:, :self.patch_radius] = 0
model_data[:, -self.patch_radius:] = 0
scaled_data = np.array(rescale_data(model_data, min_orig, max_orig))
hour_labels = label_storm_objects(scaled_data, 'ew', self.model_ew.
min_thresh, self.model_ew.max_thresh, min_area=self.size_filter,
max_area=self.model_ew.max_size, max_range=self.model_ew.delta,
increment=self.model_ew.data_increment, gaussian_sd=self.
gaussian_window)
model_objects.extend(extract_storm_patches(hour_labels, model_data,
self.model_grid.x, self.model_grid.y, [hour], dx=self.
model_grid.dx, patch_radius=self.patch_radius))
for model_obj in model_objects[-1]:
dims = model_obj.timesteps[-1].shape
if h > 0:
model_obj.estimate_motion(hour, self.model_grid.data[h - 1],
dims[1], dims[0])
del scaled_data
del model_data
del hour_labels
tracked_model_objects.extend(track_storms(model_objects, self.hours,
self.object_matcher.cost_function_components, self.object_matcher.
max_values, self.object_matcher.weights))
self.model_ew.min_thresh = min_orig
self.model_ew.max_thresh = max_orig
self.model_ew.data_increment = data_increment_orig
return tracked_model_objects
|
find_model_patch_tracks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.model_grid.load_data()\n tracked_model_objects = []\n model_objects = []\n if self.model_grid.data is None:\n print('No model output found')\n return tracked_model_objects\n min_orig = self.model_ew.min_thresh\n max_orig = self.model_ew.max_thresh\n data_increment_orig = self.model_ew.data_increment\n self.model_ew.min_thresh = 0\n self.model_ew.data_increment = 1\n self.model_ew.max_thresh = 100\n for h, hour in enumerate(self.hours):\n print('Finding {0} objects for run {1} Hour: {2:02d}'.format(self.\n ensemble_member, self.run_date.strftime('%Y%m%d%H'), hour))\n if self.mask is not None:\n model_data = self.model_grid.data[h] * self.mask\n else:\n model_data = self.model_grid.data[h]\n model_data[:self.patch_radius] = 0\n model_data[-self.patch_radius:] = 0\n model_data[:, :self.patch_radius] = 0\n model_data[:, -self.patch_radius:] = 0\n scaled_data = np.array(rescale_data(model_data, min_orig, max_orig))\n hour_labels = label_storm_objects(scaled_data, 'ew', self.model_ew.\n min_thresh, self.model_ew.max_thresh, min_area=self.size_filter,\n max_area=self.model_ew.max_size, max_range=self.model_ew.delta,\n increment=self.model_ew.data_increment, gaussian_sd=self.\n gaussian_window)\n model_objects.extend(extract_storm_patches(hour_labels, model_data,\n self.model_grid.x, self.model_grid.y, [hour], dx=self.\n model_grid.dx, patch_radius=self.patch_radius))\n for model_obj in model_objects[-1]:\n dims = model_obj.timesteps[-1].shape\n if h > 0:\n model_obj.estimate_motion(hour, self.model_grid.data[h - 1],\n dims[1], dims[0])\n del scaled_data\n del model_data\n del hour_labels\n tracked_model_objects.extend(track_storms(model_objects, self.hours,\n self.object_matcher.cost_function_components, self.object_matcher.\n max_values, self.object_matcher.weights))\n self.model_ew.min_thresh = min_orig\n self.model_ew.max_thresh = max_orig\n self.model_ew.data_increment = data_increment_orig\n return tracked_model_objects\n",
"role": "user"
},
{
"content": "find_model_patch_tracks",
"role": "assistant"
}
] |
def x(self):
self.model_grid.load_data()
model_objects = []
tracked_model_objects = []
if self.model_grid.data is None:
print('No model output found')
return tracked_model_objects
for h, hour in enumerate(self.hours):
print('Finding {0} objects for run {1} Hour: {2:02d}'.format(self.
ensemble_member, self.run_date.strftime('%Y%m%d%H'), hour))
if self.mask is not None:
model_data = self.model_grid.data[h] * self.mask
else:
model_data = self.model_grid.data[h]
min_orig = self.model_ew.min_thresh
max_orig = self.model_ew.max_thresh
data_increment_orig = self.model_ew.data_increment
scaled_data = np.array(rescale_data(self.model_grid.data[h],
min_orig, max_orig))
self.model_ew.min_thresh = 0
self.model_ew.data_increment = 1
self.model_ew.max_thresh = 100
hour_labels = self.model_ew.label(gaussian_filter(scaled_data, self
.gaussian_window))
hour_labels[model_data < self.model_ew.min_thresh] = 0
hour_labels = self.model_ew.size_filter(hour_labels, self.size_filter)
self.model_ew.min_thresh = min_orig
self.model_ew.max_thresh = max_orig
self.model_ew.data_increment = data_increment_orig
obj_slices = find_objects(hour_labels)
num_slices = len(obj_slices)
model_objects.append([])
if num_slices > 0:
for s, sl in enumerate(obj_slices):
model_objects[-1].append(STObject(self.model_grid.data[h][
sl], np.where(hour_labels[sl] == s + 1, 1, 0), self.
model_grid.x[sl], self.model_grid.y[sl], self.
model_grid.i[sl], self.model_grid.j[sl], hour, hour, dx
=self.model_grid.dx))
if h > 0:
dims = model_objects[-1][-1].timesteps[0].shape
model_objects[-1][-1].estimate_motion(hour, self.
model_grid.data[h - 1], dims[1], dims[0])
del hour_labels
del scaled_data
del model_data
for h, hour in enumerate(self.hours):
past_time_objs = []
for obj in tracked_model_objects:
if obj.end_time == hour - 1:
past_time_objs.append(obj)
if len(past_time_objs) == 0:
tracked_model_objects.extend(model_objects[h])
elif len(past_time_objs) > 0 and len(model_objects[h]) > 0:
assignments = self.object_matcher.match_objects(past_time_objs,
model_objects[h], hour - 1, hour)
unpaired = list(range(len(model_objects[h])))
for pair in assignments:
past_time_objs[pair[0]].extend(model_objects[h][pair[1]])
unpaired.remove(pair[1])
if len(unpaired) > 0:
for up in unpaired:
tracked_model_objects.append(model_objects[h][up])
print('Tracked Model Objects: {0:03d} Hour: {1:02d}'.format(len(
tracked_model_objects), hour))
return tracked_model_objects
|
find_model_tracks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.model_grid.load_data()\n model_objects = []\n tracked_model_objects = []\n if self.model_grid.data is None:\n print('No model output found')\n return tracked_model_objects\n for h, hour in enumerate(self.hours):\n print('Finding {0} objects for run {1} Hour: {2:02d}'.format(self.\n ensemble_member, self.run_date.strftime('%Y%m%d%H'), hour))\n if self.mask is not None:\n model_data = self.model_grid.data[h] * self.mask\n else:\n model_data = self.model_grid.data[h]\n min_orig = self.model_ew.min_thresh\n max_orig = self.model_ew.max_thresh\n data_increment_orig = self.model_ew.data_increment\n scaled_data = np.array(rescale_data(self.model_grid.data[h],\n min_orig, max_orig))\n self.model_ew.min_thresh = 0\n self.model_ew.data_increment = 1\n self.model_ew.max_thresh = 100\n hour_labels = self.model_ew.label(gaussian_filter(scaled_data, self\n .gaussian_window))\n hour_labels[model_data < self.model_ew.min_thresh] = 0\n hour_labels = self.model_ew.size_filter(hour_labels, self.size_filter)\n self.model_ew.min_thresh = min_orig\n self.model_ew.max_thresh = max_orig\n self.model_ew.data_increment = data_increment_orig\n obj_slices = find_objects(hour_labels)\n num_slices = len(obj_slices)\n model_objects.append([])\n if num_slices > 0:\n for s, sl in enumerate(obj_slices):\n model_objects[-1].append(STObject(self.model_grid.data[h][\n sl], np.where(hour_labels[sl] == s + 1, 1, 0), self.\n model_grid.x[sl], self.model_grid.y[sl], self.\n model_grid.i[sl], self.model_grid.j[sl], hour, hour, dx\n =self.model_grid.dx))\n if h > 0:\n dims = model_objects[-1][-1].timesteps[0].shape\n model_objects[-1][-1].estimate_motion(hour, self.\n model_grid.data[h - 1], dims[1], dims[0])\n del hour_labels\n del scaled_data\n del model_data\n for h, hour in enumerate(self.hours):\n past_time_objs = []\n for obj in tracked_model_objects:\n if obj.end_time == hour - 1:\n past_time_objs.append(obj)\n if len(past_time_objs) == 0:\n tracked_model_objects.extend(model_objects[h])\n elif len(past_time_objs) > 0 and len(model_objects[h]) > 0:\n assignments = self.object_matcher.match_objects(past_time_objs,\n model_objects[h], hour - 1, hour)\n unpaired = list(range(len(model_objects[h])))\n for pair in assignments:\n past_time_objs[pair[0]].extend(model_objects[h][pair[1]])\n unpaired.remove(pair[1])\n if len(unpaired) > 0:\n for up in unpaired:\n tracked_model_objects.append(model_objects[h][up])\n print('Tracked Model Objects: {0:03d} Hour: {1:02d}'.format(len(\n tracked_model_objects), hour))\n return tracked_model_objects\n",
"role": "user"
},
{
"content": "find_model_tracks",
"role": "assistant"
}
] |
def x(self):
obs_objects = []
tracked_obs_objects = []
if self.mrms_ew is not None:
self.mrms_grid.load_data()
if len(self.mrms_grid.data) != len(self.hours):
print('Less than 24 hours of observation data found')
return tracked_obs_objects
for h, hour in enumerate(self.hours):
mrms_data = np.zeros(self.mrms_grid.data[h].shape)
mrms_data[:] = np.array(self.mrms_grid.data[h])
mrms_data[mrms_data < 0] = 0
hour_labels = self.mrms_ew.size_filter(self.mrms_ew.label(
gaussian_filter(mrms_data, self.gaussian_window)), self.
size_filter)
hour_labels[mrms_data < self.mrms_ew.min_thresh] = 0
obj_slices = find_objects(hour_labels)
num_slices = len(obj_slices)
obs_objects.append([])
if num_slices > 0:
for sl in obj_slices:
obs_objects[-1].append(STObject(mrms_data[sl], np.where
(hour_labels[sl] > 0, 1, 0), self.model_grid.x[sl],
self.model_grid.y[sl], self.model_grid.i[sl], self.
model_grid.j[sl], hour, hour, dx=self.model_grid.dx))
if h > 0:
dims = obs_objects[-1][-1].timesteps[0].shape
obs_objects[-1][-1].estimate_motion(hour, self.
mrms_grid.data[h - 1], dims[1], dims[0])
for h, hour in enumerate(self.hours):
past_time_objs = []
for obj in tracked_obs_objects:
if obj.end_time == hour - 1:
past_time_objs.append(obj)
if len(past_time_objs) == 0:
tracked_obs_objects.extend(obs_objects[h])
elif len(past_time_objs) > 0 and len(obs_objects[h]) > 0:
assignments = self.object_matcher.match_objects(past_time_objs,
obs_objects[h], hour - 1, hour)
unpaired = list(range(len(obs_objects[h])))
for pair in assignments:
past_time_objs[pair[0]].extend(obs_objects[h][pair[1]])
unpaired.remove(pair[1])
if len(unpaired) > 0:
for up in unpaired:
tracked_obs_objects.append(obs_objects[h][up])
print('Tracked Obs Objects: {0:03d} Hour: {1:02d}'.format(len(
tracked_obs_objects), hour))
return tracked_obs_objects
|
find_mrms_tracks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n obs_objects = []\n tracked_obs_objects = []\n if self.mrms_ew is not None:\n self.mrms_grid.load_data()\n if len(self.mrms_grid.data) != len(self.hours):\n print('Less than 24 hours of observation data found')\n return tracked_obs_objects\n for h, hour in enumerate(self.hours):\n mrms_data = np.zeros(self.mrms_grid.data[h].shape)\n mrms_data[:] = np.array(self.mrms_grid.data[h])\n mrms_data[mrms_data < 0] = 0\n hour_labels = self.mrms_ew.size_filter(self.mrms_ew.label(\n gaussian_filter(mrms_data, self.gaussian_window)), self.\n size_filter)\n hour_labels[mrms_data < self.mrms_ew.min_thresh] = 0\n obj_slices = find_objects(hour_labels)\n num_slices = len(obj_slices)\n obs_objects.append([])\n if num_slices > 0:\n for sl in obj_slices:\n obs_objects[-1].append(STObject(mrms_data[sl], np.where\n (hour_labels[sl] > 0, 1, 0), self.model_grid.x[sl],\n self.model_grid.y[sl], self.model_grid.i[sl], self.\n model_grid.j[sl], hour, hour, dx=self.model_grid.dx))\n if h > 0:\n dims = obs_objects[-1][-1].timesteps[0].shape\n obs_objects[-1][-1].estimate_motion(hour, self.\n mrms_grid.data[h - 1], dims[1], dims[0])\n for h, hour in enumerate(self.hours):\n past_time_objs = []\n for obj in tracked_obs_objects:\n if obj.end_time == hour - 1:\n past_time_objs.append(obj)\n if len(past_time_objs) == 0:\n tracked_obs_objects.extend(obs_objects[h])\n elif len(past_time_objs) > 0 and len(obs_objects[h]) > 0:\n assignments = self.object_matcher.match_objects(past_time_objs,\n obs_objects[h], hour - 1, hour)\n unpaired = list(range(len(obs_objects[h])))\n for pair in assignments:\n past_time_objs[pair[0]].extend(obs_objects[h][pair[1]])\n unpaired.remove(pair[1])\n if len(unpaired) > 0:\n for up in unpaired:\n tracked_obs_objects.append(obs_objects[h][up])\n print('Tracked Obs Objects: {0:03d} Hour: {1:02d}'.format(len(\n tracked_obs_objects), hour))\n return tracked_obs_objects\n",
"role": "user"
},
{
"content": "find_mrms_tracks",
"role": "assistant"
}
] |
def x(self, model_tracks, obs_tracks, unique_matches=True, closest_matches=
False):
if unique_matches:
pairings = self.track_matcher.match_tracks(model_tracks, obs_tracks,
closest_matches=closest_matches)
else:
pairings = self.track_matcher.neighbor_matches(model_tracks, obs_tracks
)
return pairings
|
match_tracks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model_tracks, obs_tracks, unique_matches=True, closest_matches=\n False):\n if unique_matches:\n pairings = self.track_matcher.match_tracks(model_tracks, obs_tracks,\n closest_matches=closest_matches)\n else:\n pairings = self.track_matcher.neighbor_matches(model_tracks, obs_tracks\n )\n return pairings\n",
"role": "user"
},
{
"content": "match_tracks",
"role": "assistant"
}
] |
def x(self, tracked_model_objects, storm_variables, potential_variables,
tendency_variables=None, future_variables=None):
if tendency_variables is None:
tendency_variables = []
if future_variables is None:
future_variables = []
model_grids = {}
for l_var in ['lon', 'lat']:
for model_obj in tracked_model_objects:
model_obj.extract_attribute_array(getattr(self.model_grid,
l_var), l_var)
for storm_var in storm_variables:
print('Storm {0} {1} {2}'.format(storm_var, self.ensemble_member,
self.run_date.strftime('%Y%m%d')))
model_grids[storm_var] = ModelOutput(self.ensemble_name, self.
ensemble_member, self.run_date, storm_var, self.start_date -
timedelta(hours=1), self.end_date + timedelta(hours=1), self.
model_path, self.model_map_file, self.sector_ind_path, self.
single_step)
model_grids[storm_var].load_data()
for model_obj in tracked_model_objects:
model_obj.extract_attribute_grid(model_grids[storm_var])
if (storm_var not in potential_variables + tendency_variables +
future_variables):
del model_grids[storm_var]
for potential_var in potential_variables:
print('Potential {0} {1} {2}'.format(potential_var, self.
ensemble_member, self.run_date.strftime('%Y%m%d')))
if potential_var not in model_grids.keys():
model_grids[potential_var] = ModelOutput(self.ensemble_name,
self.ensemble_member, self.run_date, potential_var, self.
start_date - timedelta(hours=1), self.end_date + timedelta(
hours=1), self.model_path, self.model_map_file, self.
sector_ind_path, self.single_step)
model_grids[potential_var].load_data()
for model_obj in tracked_model_objects:
model_obj.extract_attribute_grid(model_grids[potential_var],
potential=True)
if potential_var not in tendency_variables + future_variables:
del model_grids[potential_var]
for future_var in future_variables:
print('Future {0} {1} {2}'.format(future_var, self.ensemble_member,
self.run_date.strftime('%Y%m%d')))
if future_var not in model_grids.keys():
model_grids[future_var] = ModelOutput(self.ensemble_name, self.
ensemble_member, self.run_date, future_var, self.start_date -
timedelta(hours=1), self.end_date + timedelta(hours=1),
self.model_path, self.model_map_file, self.sector_ind_path,
self.single_step)
model_grids[future_var].load_data()
for model_obj in tracked_model_objects:
model_obj.extract_attribute_grid(model_grids[future_var],
future=True)
if future_var not in tendency_variables:
del model_grids[future_var]
for tendency_var in tendency_variables:
print('Tendency {0} {1} {2}'.format(tendency_var, self.
ensemble_member, self.run_date.strftime('%Y%m%d')))
if tendency_var not in model_grids.keys():
model_grids[tendency_var] = ModelOutput(self.ensemble_name,
self.ensemble_member, self.run_date, tendency_var, self.
start_date - timedelta(hours=1), self.end_date, self.
model_path, self.model_map_file, self.sector_ind_path, self
.single_step)
for model_obj in tracked_model_objects:
model_obj.extract_tendency_grid(model_grids[tendency_var])
del model_grids[tendency_var]
|
extract_model_attributes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tracked_model_objects, storm_variables, potential_variables,\n tendency_variables=None, future_variables=None):\n if tendency_variables is None:\n tendency_variables = []\n if future_variables is None:\n future_variables = []\n model_grids = {}\n for l_var in ['lon', 'lat']:\n for model_obj in tracked_model_objects:\n model_obj.extract_attribute_array(getattr(self.model_grid,\n l_var), l_var)\n for storm_var in storm_variables:\n print('Storm {0} {1} {2}'.format(storm_var, self.ensemble_member,\n self.run_date.strftime('%Y%m%d')))\n model_grids[storm_var] = ModelOutput(self.ensemble_name, self.\n ensemble_member, self.run_date, storm_var, self.start_date -\n timedelta(hours=1), self.end_date + timedelta(hours=1), self.\n model_path, self.model_map_file, self.sector_ind_path, self.\n single_step)\n model_grids[storm_var].load_data()\n for model_obj in tracked_model_objects:\n model_obj.extract_attribute_grid(model_grids[storm_var])\n if (storm_var not in potential_variables + tendency_variables +\n future_variables):\n del model_grids[storm_var]\n for potential_var in potential_variables:\n print('Potential {0} {1} {2}'.format(potential_var, self.\n ensemble_member, self.run_date.strftime('%Y%m%d')))\n if potential_var not in model_grids.keys():\n model_grids[potential_var] = ModelOutput(self.ensemble_name,\n self.ensemble_member, self.run_date, potential_var, self.\n start_date - timedelta(hours=1), self.end_date + timedelta(\n hours=1), self.model_path, self.model_map_file, self.\n sector_ind_path, self.single_step)\n model_grids[potential_var].load_data()\n for model_obj in tracked_model_objects:\n model_obj.extract_attribute_grid(model_grids[potential_var],\n potential=True)\n if potential_var not in tendency_variables + future_variables:\n del model_grids[potential_var]\n for future_var in future_variables:\n print('Future {0} {1} {2}'.format(future_var, self.ensemble_member,\n self.run_date.strftime('%Y%m%d')))\n if future_var not in model_grids.keys():\n model_grids[future_var] = ModelOutput(self.ensemble_name, self.\n ensemble_member, self.run_date, future_var, self.start_date -\n timedelta(hours=1), self.end_date + timedelta(hours=1),\n self.model_path, self.model_map_file, self.sector_ind_path,\n self.single_step)\n model_grids[future_var].load_data()\n for model_obj in tracked_model_objects:\n model_obj.extract_attribute_grid(model_grids[future_var],\n future=True)\n if future_var not in tendency_variables:\n del model_grids[future_var]\n for tendency_var in tendency_variables:\n print('Tendency {0} {1} {2}'.format(tendency_var, self.\n ensemble_member, self.run_date.strftime('%Y%m%d')))\n if tendency_var not in model_grids.keys():\n model_grids[tendency_var] = ModelOutput(self.ensemble_name,\n self.ensemble_member, self.run_date, tendency_var, self.\n start_date - timedelta(hours=1), self.end_date, self.\n model_path, self.model_map_file, self.sector_ind_path, self\n .single_step)\n for model_obj in tracked_model_objects:\n model_obj.extract_tendency_grid(model_grids[tendency_var])\n del model_grids[tendency_var]\n",
"role": "user"
},
{
"content": "extract_model_attributes",
"role": "assistant"
}
] |
def x(model_tracks, obs_tracks, track_pairings):
unpaired = list(range(len(model_tracks)))
for p, pair in enumerate(track_pairings):
model_track = model_tracks[pair[0]]
unpaired.remove(pair[0])
obs_track = obs_tracks[pair[1]]
obs_hail_sizes = np.array([step[obs_track.masks[t] == 1].max() for
t, step in enumerate(obs_track.timesteps)])
if obs_track.times.size > 1 and model_track.times.size > 1:
normalized_obs_times = 1.0 / (obs_track.times.max() - obs_track
.times.min()) * (obs_track.times - obs_track.times.min())
normalized_model_times = 1.0 / (model_track.times.max() -
model_track.times.min()) * (model_track.times - model_track
.times.min())
hail_interp = interp1d(normalized_obs_times, obs_hail_sizes,
kind='nearest', bounds_error=False, fill_value=0)
model_track.observations = hail_interp(normalized_model_times)
elif obs_track.times.size == 1:
model_track.observations = np.ones(model_track.times.shape
) * obs_hail_sizes[0]
elif model_track.times.size == 1:
model_track.observations = np.array([obs_hail_sizes.max()])
print(pair[0], 'obs', obs_hail_sizes)
print(pair[0], 'model', model_track.observations)
for u in unpaired:
model_tracks[u].observations = np.zeros(model_tracks[u].times.shape)
|
match_hail_sizes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model_tracks, obs_tracks, track_pairings):\n unpaired = list(range(len(model_tracks)))\n for p, pair in enumerate(track_pairings):\n model_track = model_tracks[pair[0]]\n unpaired.remove(pair[0])\n obs_track = obs_tracks[pair[1]]\n obs_hail_sizes = np.array([step[obs_track.masks[t] == 1].max() for \n t, step in enumerate(obs_track.timesteps)])\n if obs_track.times.size > 1 and model_track.times.size > 1:\n normalized_obs_times = 1.0 / (obs_track.times.max() - obs_track\n .times.min()) * (obs_track.times - obs_track.times.min())\n normalized_model_times = 1.0 / (model_track.times.max() -\n model_track.times.min()) * (model_track.times - model_track\n .times.min())\n hail_interp = interp1d(normalized_obs_times, obs_hail_sizes,\n kind='nearest', bounds_error=False, fill_value=0)\n model_track.observations = hail_interp(normalized_model_times)\n elif obs_track.times.size == 1:\n model_track.observations = np.ones(model_track.times.shape\n ) * obs_hail_sizes[0]\n elif model_track.times.size == 1:\n model_track.observations = np.array([obs_hail_sizes.max()])\n print(pair[0], 'obs', obs_hail_sizes)\n print(pair[0], 'model', model_track.observations)\n for u in unpaired:\n model_tracks[u].observations = np.zeros(model_tracks[u].times.shape)\n",
"role": "user"
},
{
"content": "match_hail_sizes",
"role": "assistant"
}
] |
def x(self, model_tracks, obs_tracks, track_pairings):
label_columns = ['Matched', 'Max_Hail_Size', 'Num_Matches', 'Shape',
'Location', 'Scale']
s = 0
for m, model_track in enumerate(model_tracks):
model_track.observations = pd.DataFrame(index=model_track.times,
columns=label_columns, dtype=np.float64)
model_track.observations.loc[:, :] = 0
model_track.observations['Matched'] = model_track.observations[
'Matched'].astype(np.int32)
for t, time in enumerate(model_track.times):
model_track.observations.loc[time, 'Matched'] = track_pairings.loc[
s, 'Matched']
if model_track.observations.loc[time, 'Matched'] > 0:
all_hail_sizes = []
step_pairs = track_pairings.loc[s, 'Pairings']
for step_pair in step_pairs:
obs_step = obs_tracks[step_pair[0]].timesteps[step_pair[1]
].ravel()
obs_mask = obs_tracks[step_pair[0]].masks[step_pair[1]
].ravel()
all_hail_sizes.append(obs_step[(obs_mask == 1) & (
obs_step >= self.mrms_ew.min_thresh)])
combined_hail_sizes = np.concatenate(all_hail_sizes)
min_hail = combined_hail_sizes.min() - 0.1
model_track.observations.loc[time, 'Max_Hail_Size'
] = combined_hail_sizes.max()
model_track.observations.loc[time, 'Num_Matches'
] = step_pairs.shape[0]
model_track.observations.loc[time, ['Shape', 'Location',
'Scale']] = gamma.fit(combined_hail_sizes, floc=min_hail)
s += 1
|
match_hail_size_step_distributions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model_tracks, obs_tracks, track_pairings):\n label_columns = ['Matched', 'Max_Hail_Size', 'Num_Matches', 'Shape',\n 'Location', 'Scale']\n s = 0\n for m, model_track in enumerate(model_tracks):\n model_track.observations = pd.DataFrame(index=model_track.times,\n columns=label_columns, dtype=np.float64)\n model_track.observations.loc[:, :] = 0\n model_track.observations['Matched'] = model_track.observations[\n 'Matched'].astype(np.int32)\n for t, time in enumerate(model_track.times):\n model_track.observations.loc[time, 'Matched'] = track_pairings.loc[\n s, 'Matched']\n if model_track.observations.loc[time, 'Matched'] > 0:\n all_hail_sizes = []\n step_pairs = track_pairings.loc[s, 'Pairings']\n for step_pair in step_pairs:\n obs_step = obs_tracks[step_pair[0]].timesteps[step_pair[1]\n ].ravel()\n obs_mask = obs_tracks[step_pair[0]].masks[step_pair[1]\n ].ravel()\n all_hail_sizes.append(obs_step[(obs_mask == 1) & (\n obs_step >= self.mrms_ew.min_thresh)])\n combined_hail_sizes = np.concatenate(all_hail_sizes)\n min_hail = combined_hail_sizes.min() - 0.1\n model_track.observations.loc[time, 'Max_Hail_Size'\n ] = combined_hail_sizes.max()\n model_track.observations.loc[time, 'Num_Matches'\n ] = step_pairs.shape[0]\n model_track.observations.loc[time, ['Shape', 'Location',\n 'Scale']] = gamma.fit(combined_hail_sizes, floc=min_hail)\n s += 1\n",
"role": "user"
},
{
"content": "match_hail_size_step_distributions",
"role": "assistant"
}
] |
def x(model_tracks, obs_tracks, track_pairings):
columns = ['obs_track_id', 'translation_error_x', 'translation_error_y',
'start_time_difference', 'end_time_difference']
track_errors = pd.DataFrame(index=list(range(len(model_tracks))),
columns=columns)
for p, pair in enumerate(track_pairings):
model_track = model_tracks[pair[0]]
if type(pair[1]) in [int, np.int64]:
obs_track = obs_tracks[pair[1]]
else:
obs_track = obs_tracks[pair[1][0]]
model_com = model_track.center_of_mass(model_track.start_time)
obs_com = obs_track.center_of_mass(obs_track.start_time)
track_errors.loc[pair[0], 'obs_track_id'] = pair[1] if type(pair[1]
) in [int, np.int64] else pair[1][0]
track_errors.loc[pair[0], 'translation_error_x'] = model_com[0
] - obs_com[0]
track_errors.loc[pair[0], 'translation_error_y'] = model_com[1
] - obs_com[1]
track_errors.loc[pair[0], 'start_time_difference'
] = model_track.start_time - obs_track.start_time
track_errors.loc[pair[0], 'end_time_difference'
] = model_track.end_time - obs_track.end_time
return track_errors
|
calc_track_errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model_tracks, obs_tracks, track_pairings):\n columns = ['obs_track_id', 'translation_error_x', 'translation_error_y',\n 'start_time_difference', 'end_time_difference']\n track_errors = pd.DataFrame(index=list(range(len(model_tracks))),\n columns=columns)\n for p, pair in enumerate(track_pairings):\n model_track = model_tracks[pair[0]]\n if type(pair[1]) in [int, np.int64]:\n obs_track = obs_tracks[pair[1]]\n else:\n obs_track = obs_tracks[pair[1][0]]\n model_com = model_track.center_of_mass(model_track.start_time)\n obs_com = obs_track.center_of_mass(obs_track.start_time)\n track_errors.loc[pair[0], 'obs_track_id'] = pair[1] if type(pair[1]\n ) in [int, np.int64] else pair[1][0]\n track_errors.loc[pair[0], 'translation_error_x'] = model_com[0\n ] - obs_com[0]\n track_errors.loc[pair[0], 'translation_error_y'] = model_com[1\n ] - obs_com[1]\n track_errors.loc[pair[0], 'start_time_difference'\n ] = model_track.start_time - obs_track.start_time\n track_errors.loc[pair[0], 'end_time_difference'\n ] = model_track.end_time - obs_track.end_time\n return track_errors\n",
"role": "user"
},
{
"content": "calc_track_errors",
"role": "assistant"
}
] |
def x(self):
super().persistent_object_context_changed()
def x(registered_object, unregistered_object):
if registered_object and registered_object.uuid == self.parent_uuid:
self.__parent = registered_object
if self.persistent_object_context:
self.__registration_listener = (self.persistent_object_context.
registration_event.listen(change_registration))
self.__parent = self.persistent_object_context.get_registered_object(
self.parent_uuid)
|
persistent_object_context_changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n super().persistent_object_context_changed()\n\n def x(registered_object, unregistered_object):\n if registered_object and registered_object.uuid == self.parent_uuid:\n self.__parent = registered_object\n if self.persistent_object_context:\n self.__registration_listener = (self.persistent_object_context.\n registration_event.listen(change_registration))\n self.__parent = self.persistent_object_context.get_registered_object(\n self.parent_uuid)\n",
"role": "user"
},
{
"content": "persistent_object_context_changed",
"role": "assistant"
}
] |
def x(self):
super().persistent_object_context_changed()
def x():
if self.__source is not None and self.__target is not None:
assert not self.__binding
self.__binding = Binding.PropertyBinding(self.__source, self.
source_property)
self.__binding.target_setter = self.__set_target_from_source
self.__binding.update_target_direct(self.__binding.
get_target_value())
def x(source):
self.__source = source
register()
def x(target):
self.__target = target
def x(target, property_name):
if property_name == self.target_property:
self.__set_source_from_target(getattr(target, property_name))
assert self.__target_property_changed_listener is None
self.__target_property_changed_listener = (target.
property_changed_event.listen(functools.partial(
property_changed, target)))
register()
def x(item=None):
if not item or item == self.__source:
self.__source = None
if not item or item == self.__target:
self.__target = None
if self.__binding:
self.__binding.close()
self.__binding = None
if self.__target_property_changed_listener:
self.__target_property_changed_listener.close()
self.__target_property_changed_listener = None
def x(registered_object, unregistered_object):
if registered_object and registered_object.uuid == self.source_uuid:
source_registered(registered_object)
if registered_object and registered_object.uuid == self.target_uuid:
target_registered(registered_object)
if unregistered_object and unregistered_object in (self._source,
self._target):
unregistered(unregistered_object)
if self.persistent_object_context:
self.__registration_listener = (self.persistent_object_context.
registration_event.listen(change_registration))
source = self.persistent_object_context.get_registered_object(self.
source_uuid)
target = self.persistent_object_context.get_registered_object(self.
target_uuid)
if source:
source_registered(source)
if target:
target_registered(target)
else:
unregistered()
|
persistent_object_context_changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n super().persistent_object_context_changed()\n\n def x():\n if self.__source is not None and self.__target is not None:\n assert not self.__binding\n self.__binding = Binding.PropertyBinding(self.__source, self.\n source_property)\n self.__binding.target_setter = self.__set_target_from_source\n self.__binding.update_target_direct(self.__binding.\n get_target_value())\n\n def x(source):\n self.__source = source\n register()\n\n def x(target):\n self.__target = target\n\n def x(target, property_name):\n if property_name == self.target_property:\n self.__set_source_from_target(getattr(target, property_name))\n assert self.__target_property_changed_listener is None\n self.__target_property_changed_listener = (target.\n property_changed_event.listen(functools.partial(\n property_changed, target)))\n register()\n\n def x(item=None):\n if not item or item == self.__source:\n self.__source = None\n if not item or item == self.__target:\n self.__target = None\n if self.__binding:\n self.__binding.close()\n self.__binding = None\n if self.__target_property_changed_listener:\n self.__target_property_changed_listener.close()\n self.__target_property_changed_listener = None\n\n def x(registered_object, unregistered_object):\n if registered_object and registered_object.uuid == self.source_uuid:\n source_registered(registered_object)\n if registered_object and registered_object.uuid == self.target_uuid:\n target_registered(registered_object)\n if unregistered_object and unregistered_object in (self._source,\n self._target):\n unregistered(unregistered_object)\n if self.persistent_object_context:\n self.__registration_listener = (self.persistent_object_context.\n registration_event.listen(change_registration))\n source = self.persistent_object_context.get_registered_object(self.\n source_uuid)\n target = self.persistent_object_context.get_registered_object(self.\n target_uuid)\n if source:\n source_registered(source)\n if target:\n target_registered(target)\n else:\n unregistered()\n",
"role": "user"
},
{
"content": "persistent_object_context_changed",
"role": "assistant"
}
] |
def x(self):
super().persistent_object_context_changed()
def x():
for listener in self.__interval_mutated_listeners:
listener.close()
self.__interval_mutated_listeners = list()
def x():
detach()
interval_descriptors = list()
if self.__source:
for region in self.__source.graphics:
if isinstance(region, Graphics.IntervalGraphic):
interval_descriptor = {'interval': region.interval,
'color': '#F00'}
interval_descriptors.append(interval_descriptor)
self.__interval_mutated_listeners.append(region.
property_changed_event.listen(lambda k: reattach()))
if self.__target:
self.__target.interval_descriptors = interval_descriptors
def x(key, value, before_index):
if key == 'graphics' and self.__target:
reattach()
def x(key, value, index):
if key == 'graphics' and self.__target:
reattach()
def x(source):
self.__source = source
self.__item_inserted_event_listener = (self.__source.
item_inserted_event.listen(item_inserted))
self.__item_removed_event_listener = (self.__source.
item_removed_event.listen(item_removed))
reattach()
def x(target):
self.__target = target
reattach()
def x(source=None):
if self.__item_inserted_event_listener:
self.__item_inserted_event_listener.close()
self.__item_inserted_event_listener = None
if self.__item_removed_event_listener:
self.__item_removed_event_listener.close()
self.__item_removed_event_listener = None
if self.persistent_object_context:
self.persistent_object_context.subscribe(self.source_uuid,
source_registered, unregistered)
self.persistent_object_context.subscribe(self.target_uuid,
target_registered, unregistered)
else:
unregistered()
|
persistent_object_context_changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n super().persistent_object_context_changed()\n\n def x():\n for listener in self.__interval_mutated_listeners:\n listener.close()\n self.__interval_mutated_listeners = list()\n\n def x():\n detach()\n interval_descriptors = list()\n if self.__source:\n for region in self.__source.graphics:\n if isinstance(region, Graphics.IntervalGraphic):\n interval_descriptor = {'interval': region.interval,\n 'color': '#F00'}\n interval_descriptors.append(interval_descriptor)\n self.__interval_mutated_listeners.append(region.\n property_changed_event.listen(lambda k: reattach()))\n if self.__target:\n self.__target.interval_descriptors = interval_descriptors\n\n def x(key, value, before_index):\n if key == 'graphics' and self.__target:\n reattach()\n\n def x(key, value, index):\n if key == 'graphics' and self.__target:\n reattach()\n\n def x(source):\n self.__source = source\n self.__item_inserted_event_listener = (self.__source.\n item_inserted_event.listen(item_inserted))\n self.__item_removed_event_listener = (self.__source.\n item_removed_event.listen(item_removed))\n reattach()\n\n def x(target):\n self.__target = target\n reattach()\n\n def x(source=None):\n if self.__item_inserted_event_listener:\n self.__item_inserted_event_listener.close()\n self.__item_inserted_event_listener = None\n if self.__item_removed_event_listener:\n self.__item_removed_event_listener.close()\n self.__item_removed_event_listener = None\n if self.persistent_object_context:\n self.persistent_object_context.subscribe(self.source_uuid,\n source_registered, unregistered)\n self.persistent_object_context.subscribe(self.target_uuid,\n target_registered, unregistered)\n else:\n unregistered()\n",
"role": "user"
},
{
"content": "persistent_object_context_changed",
"role": "assistant"
}
] |
def x(self, tree_node):
keys = tree_node.keys
if len(keys) == 1:
return '{0} ({1})'.format(tree_node.keys[-1], tree_node.count)
elif len(keys) == 2:
months = _('January'), _('February'), _('March'), _('April'), _('May'
), _('June'), _('July'), _('August'), _('September'), _('October'
), _('November'), _('December')
return '{0} ({1})'.format(months[max(min(tree_node.keys[1] - 1, 11),
0)], tree_node.count)
else:
weekdays = _('Monday'), _('Tuesday'), _('Wednesday'), _('Thursday'), _(
'Friday'), _('Saturday'), _('Sunday')
date = datetime.date(tree_node.keys[0], tree_node.keys[1],
tree_node.keys[2])
return '{0} - {1} ({2})'.format(tree_node.keys[2], weekdays[date.
weekday()], tree_node.count)
|
display_for_tree_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tree_node):\n keys = tree_node.keys\n if len(keys) == 1:\n return '{0} ({1})'.format(tree_node.keys[-1], tree_node.count)\n elif len(keys) == 2:\n months = _('January'), _('February'), _('March'), _('April'), _('May'\n ), _('June'), _('July'), _('August'), _('September'), _('October'\n ), _('November'), _('December')\n return '{0} ({1})'.format(months[max(min(tree_node.keys[1] - 1, 11),\n 0)], tree_node.count)\n else:\n weekdays = _('Monday'), _('Tuesday'), _('Wednesday'), _('Thursday'), _(\n 'Friday'), _('Saturday'), _('Sunday')\n date = datetime.date(tree_node.keys[0], tree_node.keys[1],\n tree_node.keys[2])\n return '{0} - {1} ({2})'.format(tree_node.keys[2], weekdays[date.\n weekday()], tree_node.count)\n",
"role": "user"
},
{
"content": "display_for_tree_node",
"role": "assistant"
}
] |
def x(self, parent_tree_node, index, tree_node):
parent_item = self.__mapping[id(parent_tree_node)]
self.item_model_controller.begin_insert(index, index, parent_item.row,
parent_item.id)
properties = {'display': self.__display_for_tree_node(tree_node),
'tree_node': tree_node}
item = self.item_model_controller.create_item(properties)
parent_item.insert_child(index, item)
self.__mapping[id(tree_node)] = item
self.item_model_controller.end_insert()
|
insert_child
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parent_tree_node, index, tree_node):\n parent_item = self.__mapping[id(parent_tree_node)]\n self.item_model_controller.begin_insert(index, index, parent_item.row,\n parent_item.id)\n properties = {'display': self.__display_for_tree_node(tree_node),\n 'tree_node': tree_node}\n item = self.item_model_controller.create_item(properties)\n parent_item.insert_child(index, item)\n self.__mapping[id(tree_node)] = item\n self.item_model_controller.end_insert()\n",
"role": "user"
},
{
"content": "insert_child",
"role": "assistant"
}
] |
def x(self, parent_tree_node, index):
parent_item = self.__mapping[id(parent_tree_node)]
self.item_model_controller.begin_remove(index, index, parent_item.row,
parent_item.id)
child_item = parent_item.children[index]
parent_item.remove_child(child_item)
self.__mapping.pop(id(child_item.data['tree_node']))
self.item_model_controller.end_remove()
|
remove_child
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parent_tree_node, index):\n parent_item = self.__mapping[id(parent_tree_node)]\n self.item_model_controller.begin_remove(index, index, parent_item.row,\n parent_item.id)\n child_item = parent_item.children[index]\n parent_item.remove_child(child_item)\n self.__mapping.pop(id(child_item.data['tree_node']))\n self.item_model_controller.end_remove()\n",
"role": "user"
},
{
"content": "remove_child",
"role": "assistant"
}
] |
def x(self):
item_model_controller = self.item_model_controller
if item_model_controller:
if self.__node_counts_dirty:
for item in self.__mapping.values():
if 'tree_node' in item.data:
tree_node = item.data['tree_node']
item.data['display'] = self.__display_for_tree_node(
tree_node)
item_model_controller.data_changed(item.row, item.
parent.row, item.parent.id)
self.__node_counts_dirty = False
|
update_all_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n item_model_controller = self.item_model_controller\n if item_model_controller:\n if self.__node_counts_dirty:\n for item in self.__mapping.values():\n if 'tree_node' in item.data:\n tree_node = item.data['tree_node']\n item.data['display'] = self.__display_for_tree_node(\n tree_node)\n item_model_controller.data_changed(item.row, item.\n parent.row, item.parent.id)\n self.__node_counts_dirty = False\n",
"role": "user"
},
{
"content": "update_all_nodes",
"role": "assistant"
}
] |
def x(self, selected_indexes):
partial_date_filters = list()
for index, parent_row, parent_id in selected_indexes:
item_model_controller = self.item_model_controller
tree_node = item_model_controller.item_value('tree_node', index,
parent_id)
partial_date_filters.append(ListModel.PartialDateFilter(
'created_local', *tree_node.keys))
if len(partial_date_filters) > 0:
self.__date_filter = ListModel.OrFilter(partial_date_filters)
else:
self.__date_filter = None
self.__update_filter()
|
date_browser_selection_changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, selected_indexes):\n partial_date_filters = list()\n for index, parent_row, parent_id in selected_indexes:\n item_model_controller = self.item_model_controller\n tree_node = item_model_controller.item_value('tree_node', index,\n parent_id)\n partial_date_filters.append(ListModel.PartialDateFilter(\n 'created_local', *tree_node.keys))\n if len(partial_date_filters) > 0:\n self.__date_filter = ListModel.OrFilter(partial_date_filters)\n else:\n self.__date_filter = None\n self.__update_filter()\n",
"role": "user"
},
{
"content": "date_browser_selection_changed",
"role": "assistant"
}
] |
def x(self, text):
text = text.strip() if text else None
if text is not None:
self.__text_filter = ListModel.TextFilter('text_for_filter', text)
else:
self.__text_filter = None
self.__update_filter()
|
text_filter_changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text):\n text = text.strip() if text else None\n if text is not None:\n self.__text_filter = ListModel.TextFilter('text_for_filter', text)\n else:\n self.__text_filter = None\n self.__update_filter()\n",
"role": "user"
},
{
"content": "text_filter_changed",
"role": "assistant"
}
] |
def x(self):
filters = list()
if self.__date_filter:
filters.append(self.__date_filter)
if self.__text_filter:
filters.append(self.__text_filter)
self.document_controller.display_filter = ListModel.AndFilter(filters)
|
update_filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n filters = list()\n if self.__date_filter:\n filters.append(self.__date_filter)\n if self.__text_filter:\n filters.append(self.__text_filter)\n self.document_controller.display_filter = ListModel.AndFilter(filters)\n",
"role": "user"
},
{
"content": "update_filter",
"role": "assistant"
}
] |
def x(self):
keys = list()
tree_node = self
while tree_node is not None and tree_node.key is not None:
keys.insert(0, tree_node.key)
tree_node = tree_node.parent
return keys
|
get_keys
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n keys = list()\n tree_node = self\n while tree_node is not None and tree_node.key is not None:\n keys.insert(0, tree_node.key)\n tree_node = tree_node.parent\n return keys\n",
"role": "user"
},
{
"content": "get_keys",
"role": "assistant"
}
] |
def x(self, keys, value):
self.count += 1
if not self.key:
self.__value_reverse_mapping[value] = keys
if len(keys) == 0:
self.values.append(value)
else:
key = keys[0]
index = bisect.bisect_left(self.children, TreeNode(key, reversed=
self.reversed))
if index == len(self.children) or self.children[index].key != key:
new_tree_node = TreeNode(key, list(), reversed=self.reversed)
new_tree_node.child_inserted = self.child_inserted
new_tree_node.child_removed = self.child_removed
new_tree_node.tree_node_updated = self.tree_node_updated
new_tree_node.__set_parent(self)
self.children.insert(index, new_tree_node)
if self.child_inserted:
self.child_inserted(self, index, new_tree_node)
child = self.children[index]
child.insert_value(keys[1:], value)
if self.tree_node_updated:
self.tree_node_updated(child)
|
insert_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, keys, value):\n self.count += 1\n if not self.key:\n self.__value_reverse_mapping[value] = keys\n if len(keys) == 0:\n self.values.append(value)\n else:\n key = keys[0]\n index = bisect.bisect_left(self.children, TreeNode(key, reversed=\n self.reversed))\n if index == len(self.children) or self.children[index].key != key:\n new_tree_node = TreeNode(key, list(), reversed=self.reversed)\n new_tree_node.child_inserted = self.child_inserted\n new_tree_node.child_removed = self.child_removed\n new_tree_node.tree_node_updated = self.tree_node_updated\n new_tree_node.__set_parent(self)\n self.children.insert(index, new_tree_node)\n if self.child_inserted:\n self.child_inserted(self, index, new_tree_node)\n child = self.children[index]\n child.insert_value(keys[1:], value)\n if self.tree_node_updated:\n self.tree_node_updated(child)\n",
"role": "user"
},
{
"content": "insert_value",
"role": "assistant"
}
] |
def x(self, keys, value):
self.count -= 1
if not self.key:
keys = self.__value_reverse_mapping[value]
del self.__value_reverse_mapping[value]
if len(keys) == 0:
self.values.remove(value)
else:
key = keys[0]
index = bisect.bisect_left(self.children, TreeNode(key, reversed=
self.reversed))
assert index != len(self.children) and self.children[index].key == key
self.children[index].remove_value(keys[1:], value)
if self.tree_node_updated:
self.tree_node_updated(self.children[index])
if self.children[index].count == 0:
del self.children[index]
if self.child_removed:
self.child_removed(self, index)
|
remove_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, keys, value):\n self.count -= 1\n if not self.key:\n keys = self.__value_reverse_mapping[value]\n del self.__value_reverse_mapping[value]\n if len(keys) == 0:\n self.values.remove(value)\n else:\n key = keys[0]\n index = bisect.bisect_left(self.children, TreeNode(key, reversed=\n self.reversed))\n assert index != len(self.children) and self.children[index].key == key\n self.children[index].remove_value(keys[1:], value)\n if self.tree_node_updated:\n self.tree_node_updated(self.children[index])\n if self.children[index].count == 0:\n del self.children[index]\n if self.child_removed:\n self.child_removed(self, index)\n",
"role": "user"
},
{
"content": "remove_value",
"role": "assistant"
}
] |
def x(data, method, min_intensity, max_intensity, min_area=1, max_area=100,
max_range=1, increment=1, gaussian_sd=0):
if method.lower() in ['ew', 'watershed']:
labeler = EnhancedWatershed(min_intensity, increment, max_intensity,
max_area, max_range)
else:
labeler = Hysteresis(min_intensity, max_intensity)
if len(data.shape) == 2:
label_grid = labeler.label(gaussian_filter(data, gaussian_sd))
label_grid[data < min_intensity] = 0
if min_area > 1:
label_grid = labeler.size_filter(label_grid, min_area)
else:
label_grid = np.zeros(data.shape, dtype=int)
for t in range(data.shape[0]):
label_grid[t] = labeler.label(gaussian_filter(data[t], gaussian_sd)
)
label_grid[t][data[t] < min_intensity] = 0
if min_area > 1:
label_grid[t] = labeler.size_filter(label_grid[t], min_area)
return label_grid
|
label_storm_objects
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, method, min_intensity, max_intensity, min_area=1, max_area=100,\n max_range=1, increment=1, gaussian_sd=0):\n if method.lower() in ['ew', 'watershed']:\n labeler = EnhancedWatershed(min_intensity, increment, max_intensity,\n max_area, max_range)\n else:\n labeler = Hysteresis(min_intensity, max_intensity)\n if len(data.shape) == 2:\n label_grid = labeler.label(gaussian_filter(data, gaussian_sd))\n label_grid[data < min_intensity] = 0\n if min_area > 1:\n label_grid = labeler.size_filter(label_grid, min_area)\n else:\n label_grid = np.zeros(data.shape, dtype=int)\n for t in range(data.shape[0]):\n label_grid[t] = labeler.label(gaussian_filter(data[t], gaussian_sd)\n )\n label_grid[t][data[t] < min_intensity] = 0\n if min_area > 1:\n label_grid[t] = labeler.size_filter(label_grid[t], min_area)\n return label_grid\n",
"role": "user"
},
{
"content": "label_storm_objects",
"role": "assistant"
}
] |
def x(label_grid, data, x_grid, y_grid, times, dx=1, dt=1, obj_buffer=0):
storm_objects = []
if len(label_grid.shape) == 3:
ij_grid = np.indices(label_grid.shape[1:])
for t, time in enumerate(times):
storm_objects.append([])
object_slices = list(find_objects(label_grid[t], label_grid[t].
max()))
if len(object_slices) > 0:
for o, obj_slice in enumerate(object_slices):
if obj_buffer > 0:
obj_slice_buff = [slice(np.maximum(0, osl.start -
obj_buffer), np.minimum(osl.stop + obj_buffer,
label_grid.shape[l + 1])) for l, osl in
enumerate(obj_slice)]
else:
obj_slice_buff = obj_slice
storm_objects[-1].append(STObject(data[t][
obj_slice_buff], np.where(label_grid[t][
obj_slice_buff] == o + 1, 1, 0), x_grid[
obj_slice_buff], y_grid[obj_slice_buff], ij_grid[0]
[obj_slice_buff], ij_grid[1][obj_slice_buff], time,
time, dx=dx, step=dt))
if t > 0:
dims = storm_objects[-1][-1].timesteps[0].shape
storm_objects[-1][-1].estimate_motion(time, data[t -
1], dims[1], dims[0])
else:
ij_grid = np.indices(label_grid.shape)
storm_objects.append([])
object_slices = list(find_objects(label_grid, label_grid.max()))
if len(object_slices) > 0:
for o, obj_slice in enumerate(object_slices):
if obj_buffer > 0:
obj_slice_buff = [slice(np.maximum(0, osl.start -
obj_buffer), np.minimum(osl.stop + obj_buffer,
label_grid.shape[l + 1])) for l, osl in enumerate(
obj_slice)]
else:
obj_slice_buff = obj_slice
storm_objects[-1].append(STObject(data[obj_slice_buff], np.
where(label_grid[obj_slice_buff] == o + 1, 1, 0),
x_grid[obj_slice_buff], y_grid[obj_slice_buff], ij_grid
[0][obj_slice_buff], ij_grid[1][obj_slice_buff], times,
times, dx=dx, step=dt))
return storm_objects
|
extract_storm_objects
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(label_grid, data, x_grid, y_grid, times, dx=1, dt=1, obj_buffer=0):\n storm_objects = []\n if len(label_grid.shape) == 3:\n ij_grid = np.indices(label_grid.shape[1:])\n for t, time in enumerate(times):\n storm_objects.append([])\n object_slices = list(find_objects(label_grid[t], label_grid[t].\n max()))\n if len(object_slices) > 0:\n for o, obj_slice in enumerate(object_slices):\n if obj_buffer > 0:\n obj_slice_buff = [slice(np.maximum(0, osl.start -\n obj_buffer), np.minimum(osl.stop + obj_buffer,\n label_grid.shape[l + 1])) for l, osl in\n enumerate(obj_slice)]\n else:\n obj_slice_buff = obj_slice\n storm_objects[-1].append(STObject(data[t][\n obj_slice_buff], np.where(label_grid[t][\n obj_slice_buff] == o + 1, 1, 0), x_grid[\n obj_slice_buff], y_grid[obj_slice_buff], ij_grid[0]\n [obj_slice_buff], ij_grid[1][obj_slice_buff], time,\n time, dx=dx, step=dt))\n if t > 0:\n dims = storm_objects[-1][-1].timesteps[0].shape\n storm_objects[-1][-1].estimate_motion(time, data[t -\n 1], dims[1], dims[0])\n else:\n ij_grid = np.indices(label_grid.shape)\n storm_objects.append([])\n object_slices = list(find_objects(label_grid, label_grid.max()))\n if len(object_slices) > 0:\n for o, obj_slice in enumerate(object_slices):\n if obj_buffer > 0:\n obj_slice_buff = [slice(np.maximum(0, osl.start -\n obj_buffer), np.minimum(osl.stop + obj_buffer,\n label_grid.shape[l + 1])) for l, osl in enumerate(\n obj_slice)]\n else:\n obj_slice_buff = obj_slice\n storm_objects[-1].append(STObject(data[obj_slice_buff], np.\n where(label_grid[obj_slice_buff] == o + 1, 1, 0),\n x_grid[obj_slice_buff], y_grid[obj_slice_buff], ij_grid\n [0][obj_slice_buff], ij_grid[1][obj_slice_buff], times,\n times, dx=dx, step=dt))\n return storm_objects\n",
"role": "user"
},
{
"content": "extract_storm_objects",
"role": "assistant"
}
] |
def x(label_grid, data, x_grid, y_grid, times, dx=1, dt=1, patch_radius=16):
storm_objects = []
if len(label_grid.shape) == 3:
ij_grid = np.indices(label_grid.shape[1:])
for t, time in enumerate(times):
storm_objects.append([])
centers = list(center_of_mass(data[t], labels=label_grid[t],
index=np.arange(1, label_grid[t].max() + 1)))
if len(centers) > 0:
for o, center in enumerate(centers):
int_center = np.round(center).astype(int)
obj_slice_buff = [slice(int_center[0] - patch_radius,
int_center[0] + patch_radius), slice(int_center[1] -
patch_radius, int_center[1] + patch_radius)]
storm_objects[-1].append(STObject(data[t][
obj_slice_buff], np.where(label_grid[t][
obj_slice_buff] == o + 1, 1, 0), x_grid[
obj_slice_buff], y_grid[obj_slice_buff], ij_grid[0]
[obj_slice_buff], ij_grid[1][obj_slice_buff], time,
time, dx=dx, step=dt))
if t > 0:
dims = storm_objects[-1][-1].timesteps[0].shape
storm_objects[-1][-1].estimate_motion(time, data[t -
1], dims[1], dims[0])
else:
ij_grid = np.indices(label_grid.shape)
storm_objects.append([])
centers = list(center_of_mass(data, labels=label_grid, index=np.
arange(1, label_grid.max() + 1)))
if len(centers) > 0:
for o, center in enumerate(centers):
int_center = np.round(center).astype(int)
obj_slice_buff = slice(int_center[0] - patch_radius,
int_center[0] + patch_radius), slice(int_center[1] -
patch_radius, int_center[1] + patch_radius)
storm_objects[-1].append(STObject(data[obj_slice_buff], np.
where(label_grid[obj_slice_buff] == o + 1, 1, 0),
x_grid[obj_slice_buff], y_grid[obj_slice_buff], ij_grid
[0][obj_slice_buff], ij_grid[1][obj_slice_buff], times[
0], times[0], dx=dx, step=dt))
return storm_objects
|
extract_storm_patches
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(label_grid, data, x_grid, y_grid, times, dx=1, dt=1, patch_radius=16):\n storm_objects = []\n if len(label_grid.shape) == 3:\n ij_grid = np.indices(label_grid.shape[1:])\n for t, time in enumerate(times):\n storm_objects.append([])\n centers = list(center_of_mass(data[t], labels=label_grid[t],\n index=np.arange(1, label_grid[t].max() + 1)))\n if len(centers) > 0:\n for o, center in enumerate(centers):\n int_center = np.round(center).astype(int)\n obj_slice_buff = [slice(int_center[0] - patch_radius, \n int_center[0] + patch_radius), slice(int_center[1] -\n patch_radius, int_center[1] + patch_radius)]\n storm_objects[-1].append(STObject(data[t][\n obj_slice_buff], np.where(label_grid[t][\n obj_slice_buff] == o + 1, 1, 0), x_grid[\n obj_slice_buff], y_grid[obj_slice_buff], ij_grid[0]\n [obj_slice_buff], ij_grid[1][obj_slice_buff], time,\n time, dx=dx, step=dt))\n if t > 0:\n dims = storm_objects[-1][-1].timesteps[0].shape\n storm_objects[-1][-1].estimate_motion(time, data[t -\n 1], dims[1], dims[0])\n else:\n ij_grid = np.indices(label_grid.shape)\n storm_objects.append([])\n centers = list(center_of_mass(data, labels=label_grid, index=np.\n arange(1, label_grid.max() + 1)))\n if len(centers) > 0:\n for o, center in enumerate(centers):\n int_center = np.round(center).astype(int)\n obj_slice_buff = slice(int_center[0] - patch_radius, \n int_center[0] + patch_radius), slice(int_center[1] -\n patch_radius, int_center[1] + patch_radius)\n storm_objects[-1].append(STObject(data[obj_slice_buff], np.\n where(label_grid[obj_slice_buff] == o + 1, 1, 0),\n x_grid[obj_slice_buff], y_grid[obj_slice_buff], ij_grid\n [0][obj_slice_buff], ij_grid[1][obj_slice_buff], times[\n 0], times[0], dx=dx, step=dt))\n return storm_objects\n",
"role": "user"
},
{
"content": "extract_storm_patches",
"role": "assistant"
}
] |
def x(storm_objects, times, distance_components, distance_maxima,
distance_weights, tracked_objects=None):
obj_matcher = ObjectMatcher(distance_components, distance_weights,
distance_maxima)
if tracked_objects is None:
tracked_objects = []
for t, time in enumerate(times):
past_time_objects = []
for obj in tracked_objects:
if obj.end_time == time - obj.step:
past_time_objects.append(obj)
if len(past_time_objects) == 0:
tracked_objects.extend(storm_objects[t])
elif len(past_time_objects) > 0 and len(storm_objects[t]) > 0:
assignments = obj_matcher.match_objects(past_time_objects,
storm_objects[t], times[t - 1], times[t])
unpaired = list(range(len(storm_objects[t])))
for pair in assignments:
past_time_objects[pair[0]].extend(storm_objects[t][pair[1]])
unpaired.remove(pair[1])
if len(unpaired) > 0:
for up in unpaired:
tracked_objects.append(storm_objects[t][up])
return tracked_objects
|
track_storms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(storm_objects, times, distance_components, distance_maxima,\n distance_weights, tracked_objects=None):\n obj_matcher = ObjectMatcher(distance_components, distance_weights,\n distance_maxima)\n if tracked_objects is None:\n tracked_objects = []\n for t, time in enumerate(times):\n past_time_objects = []\n for obj in tracked_objects:\n if obj.end_time == time - obj.step:\n past_time_objects.append(obj)\n if len(past_time_objects) == 0:\n tracked_objects.extend(storm_objects[t])\n elif len(past_time_objects) > 0 and len(storm_objects[t]) > 0:\n assignments = obj_matcher.match_objects(past_time_objects,\n storm_objects[t], times[t - 1], times[t])\n unpaired = list(range(len(storm_objects[t])))\n for pair in assignments:\n past_time_objects[pair[0]].extend(storm_objects[t][pair[1]])\n unpaired.remove(pair[1])\n if len(unpaired) > 0:\n for up in unpaired:\n tracked_objects.append(storm_objects[t][up])\n return tracked_objects\n",
"role": "user"
},
{
"content": "track_storms",
"role": "assistant"
}
] |
def x(self):
n = float(self.table.sum())
nf = self.table.sum(axis=1)
no = self.table.sum(axis=0)
correct = float(self.table.trace())
return (correct / n - (nf * no).sum() / n ** 2) / (1 - (no * no).sum() /
n ** 2)
|
peirce_skill_score
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n n = float(self.table.sum())\n nf = self.table.sum(axis=1)\n no = self.table.sum(axis=0)\n correct = float(self.table.trace())\n return (correct / n - (nf * no).sum() / n ** 2) / (1 - (no * no).sum() /\n n ** 2)\n",
"role": "user"
},
{
"content": "peirce_skill_score",
"role": "assistant"
}
] |
def x(self):
k = self.table.shape[0]
n = float(self.table.sum())
p_o = self.table.sum(axis=0) / n
p_sum = np.cumsum(p_o)[:-1]
a = (1.0 - p_sum) / p_sum
s = np.zeros(self.table.shape, dtype=float)
for i, j in np.ndindex(*s.shape):
if i == j:
s[i, j] = 1.0 / (k - 1.0) * (np.sum(1.0 / a[0:j]) + np.sum(a[j:
k - 1]))
elif i < j:
s[i, j] = 1.0 / (k - 1.0) * (np.sum(1.0 / a[0:i]) - (j - i) +
np.sum(a[j:k - 1]))
else:
s[i, j] = s[j, i]
return np.sum(self.table / float(self.table.sum()) * s)
|
gerrity_score
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n k = self.table.shape[0]\n n = float(self.table.sum())\n p_o = self.table.sum(axis=0) / n\n p_sum = np.cumsum(p_o)[:-1]\n a = (1.0 - p_sum) / p_sum\n s = np.zeros(self.table.shape, dtype=float)\n for i, j in np.ndindex(*s.shape):\n if i == j:\n s[i, j] = 1.0 / (k - 1.0) * (np.sum(1.0 / a[0:j]) + np.sum(a[j:\n k - 1]))\n elif i < j:\n s[i, j] = 1.0 / (k - 1.0) * (np.sum(1.0 / a[0:i]) - (j - i) +\n np.sum(a[j:k - 1]))\n else:\n s[i, j] = s[j, i]\n return np.sum(self.table / float(self.table.sum()) * s)\n",
"role": "user"
},
{
"content": "gerrity_score",
"role": "assistant"
}
] |
def x(item_a, time_a, item_b, time_b, max_value):
ax, ay = item_a.center_of_mass(time_a)
bx, by = item_b.center_of_mass(time_b)
return np.minimum(np.sqrt((ax - bx) ** 2 + (ay - by) ** 2), max_value
) / float(max_value)
|
centroid_distance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(item_a, time_a, item_b, time_b, max_value):\n ax, ay = item_a.center_of_mass(time_a)\n bx, by = item_b.center_of_mass(time_b)\n return np.minimum(np.sqrt((ax - bx) ** 2 + (ay - by) ** 2), max_value\n ) / float(max_value)\n",
"role": "user"
},
{
"content": "centroid_distance",
"role": "assistant"
}
] |
def x(item_a, time_a, item_b, time_b, max_value):
ax, ay = item_a.center_of_mass(time_a)
bx, by = item_b.center_of_mass(time_b)
if time_a < time_b:
bx = bx - item_b.u
by = by - item_b.v
else:
ax = ax - item_a.u
ay = ay - item_a.v
return np.minimum(np.sqrt((ax - bx) ** 2 + (ay - by) ** 2), max_value
) / float(max_value)
|
shifted_centroid_distance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(item_a, time_a, item_b, time_b, max_value):\n ax, ay = item_a.center_of_mass(time_a)\n bx, by = item_b.center_of_mass(time_b)\n if time_a < time_b:\n bx = bx - item_b.u\n by = by - item_b.v\n else:\n ax = ax - item_a.u\n ay = ay - item_a.v\n return np.minimum(np.sqrt((ax - bx) ** 2 + (ay - by) ** 2), max_value\n ) / float(max_value)\n",
"role": "user"
},
{
"content": "shifted_centroid_distance",
"role": "assistant"
}
] |
def x(item_a, time_a, item_b, time_b, max_value):
return np.minimum(item_a.closest_distance(time_a, item_b, time_b),
max_value) / float(max_value)
|
closest_distance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(item_a, time_a, item_b, time_b, max_value):\n return np.minimum(item_a.closest_distance(time_a, item_b, time_b),\n max_value) / float(max_value)\n",
"role": "user"
},
{
"content": "closest_distance",
"role": "assistant"
}
] |
def x(item_a, time_a, item_b, time_b, max_value):
ts = np.array([0, np.pi])
ell_a = item_a.get_ellipse_model(time_a)
ell_b = item_b.get_ellipse_model(time_b)
ends_a = ell_a.predict_xy(ts)
ends_b = ell_b.predict_xy(ts)
distances = np.sqrt((ends_a[:, 0:1] - ends_b[:, 0:1].T) ** 2 + (ends_a[
:, 1:] - ends_b[:, 1:].T) ** 2)
return np.minimum(distances[0, 1], max_value) / float(max_value)
|
ellipse_distance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(item_a, time_a, item_b, time_b, max_value):\n ts = np.array([0, np.pi])\n ell_a = item_a.get_ellipse_model(time_a)\n ell_b = item_b.get_ellipse_model(time_b)\n ends_a = ell_a.predict_xy(ts)\n ends_b = ell_b.predict_xy(ts)\n distances = np.sqrt((ends_a[:, 0:1] - ends_b[:, 0:1].T) ** 2 + (ends_a[\n :, 1:] - ends_b[:, 1:].T) ** 2)\n return np.minimum(distances[0, 1], max_value) / float(max_value)\n",
"role": "user"
},
{
"content": "ellipse_distance",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.