source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(l0, clean_item_fn=None): clean_item_fn = clean_item_fn if clean_item_fn else clean_item l = list() for index, item in enumerate(l0): cleaned_item = clean_item_fn(item) l.append(cleaned_item) return l
clean_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(l0, clean_item_fn=None):\n clean_item_fn = clean_item_fn if clean_item_fn else clean_item\n l = list()\n for index, item in enumerate(l0):\n cleaned_item = clean_item_fn(item)\n l.append(cleaned_item)\n return l\n", "role": "user" }, { "content": "clean_list", "role": "assistant" } ]
def x(t0, clean_item_fn=None): clean_item_fn = clean_item_fn if clean_item_fn else clean_item l = list() for index, item in enumerate(t0): cleaned_item = clean_item_fn(item) l.append(cleaned_item) return tuple(l)
clean_tuple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(t0, clean_item_fn=None):\n clean_item_fn = clean_item_fn if clean_item_fn else clean_item\n l = list()\n for index, item in enumerate(t0):\n cleaned_item = clean_item_fn(item)\n l.append(cleaned_item)\n return tuple(l)\n", "role": "user" }, { "content": "clean_tuple", "role": "assistant" } ]
def x(i): itype = type(i) if itype == dict: return clean_dict(i) elif itype == list: return clean_list(i) elif itype == tuple: return clean_tuple(i) elif itype == numpy.float32: return float(i) elif itype == numpy.float64: return float(i) elif itype == numpy.int16: return int(i) elif itype == numpy.uint16: return int(i) elif itype == numpy.int32: return int(i) elif itype == numpy.uint32: return int(i) elif itype == numpy.int64: return int(i) elif itype == numpy.uint64: return int(i) elif itype == float: return i elif itype == str: return i elif itype == int: return i elif itype == bool: return i elif itype == type(None): return i logging.info('[1] Unable to handle type %s', itype) import traceback traceback.print_stack() return None
clean_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(i):\n itype = type(i)\n if itype == dict:\n return clean_dict(i)\n elif itype == list:\n return clean_list(i)\n elif itype == tuple:\n return clean_tuple(i)\n elif itype == numpy.float32:\n return float(i)\n elif itype == numpy.float64:\n return float(i)\n elif itype == numpy.int16:\n return int(i)\n elif itype == numpy.uint16:\n return int(i)\n elif itype == numpy.int32:\n return int(i)\n elif itype == numpy.uint32:\n return int(i)\n elif itype == numpy.int64:\n return int(i)\n elif itype == numpy.uint64:\n return int(i)\n elif itype == float:\n return i\n elif itype == str:\n return i\n elif itype == int:\n return i\n elif itype == bool:\n return i\n elif itype == type(None):\n return i\n logging.info('[1] Unable to handle type %s', itype)\n import traceback\n traceback.print_stack()\n return None\n", "role": "user" }, { "content": "clean_item", "role": "assistant" } ]
def x(i): itype = type(i) if itype == dict: return clean_dict(i, clean_item_no_list) elif itype == list: return clean_tuple(i, clean_item_no_list) elif itype == tuple: return clean_tuple(i, clean_item_no_list) elif itype == numpy.float32: return float(i) elif itype == numpy.float64: return float(i) elif itype == numpy.int16: return int(i) elif itype == numpy.uint16: return int(i) elif itype == numpy.int32: return int(i) elif itype == numpy.uint32: return int(i) elif itype == float: return i elif itype == str: return i elif itype == int: return i elif itype == bool: return i elif itype == type(None): return i logging.info('[2] Unable to handle type %s', itype) return None
clean_item_no_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(i):\n itype = type(i)\n if itype == dict:\n return clean_dict(i, clean_item_no_list)\n elif itype == list:\n return clean_tuple(i, clean_item_no_list)\n elif itype == tuple:\n return clean_tuple(i, clean_item_no_list)\n elif itype == numpy.float32:\n return float(i)\n elif itype == numpy.float64:\n return float(i)\n elif itype == numpy.int16:\n return int(i)\n elif itype == numpy.uint16:\n return int(i)\n elif itype == numpy.int32:\n return int(i)\n elif itype == numpy.uint32:\n return int(i)\n elif itype == float:\n return i\n elif itype == str:\n return i\n elif itype == int:\n return i\n elif itype == bool:\n return i\n elif itype == type(None):\n return i\n logging.info('[2] Unable to handle type %s', itype)\n return None\n", "role": "user" }, { "content": "clean_item_no_list", "role": "assistant" } ]
def x(count=10, interval=0.1): def x(l, ll): l1 = list() l1.append('*** STACKTRACE - START ***') code = [] for threadId, stack in sys._current_frames().items(): sub_code = [] sub_code.append('# ThreadID: %s' % threadId) for filename, lineno, name, line in traceback.extract_stack(stack): sub_code.append('File: "%s", line %d, in %s' % (filename, lineno, name)) if line: sub_code.append(' %s' % line.strip()) if not 'in select' in sub_code[-2] and not 'in wait' in sub_code[-2 ] and not 'in print_stack_all' in sub_code[-2 ] and not 'in sample_stack_all' in sub_code[-2 ] and not 'in checkcache' in sub_code[-2 ] and not 'do_sleep' in sub_code[-2 ] and not 'sleep' in sub_code[-1] and not any([( 'in do_sample' in s) for s in sub_code]): code.extend(sub_code) for line in code: l1.append(line) l1.append('*** STACKTRACE - END ***') with l: ll.extend(l1) def x(): l = threading.RLock() ll = list() for i in range(count): print_stack_all(l, ll) time.sleep(interval) with l: print('\n'.join(ll)) threading.Thread(target=do_sample).start()
sample_stack_all
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(count=10, interval=0.1):\n\n def x(l, ll):\n l1 = list()\n l1.append('*** STACKTRACE - START ***')\n code = []\n for threadId, stack in sys._current_frames().items():\n sub_code = []\n sub_code.append('# ThreadID: %s' % threadId)\n for filename, lineno, name, line in traceback.extract_stack(stack):\n sub_code.append('File: \"%s\", line %d, in %s' % (filename,\n lineno, name))\n if line:\n sub_code.append(' %s' % line.strip())\n if not 'in select' in sub_code[-2] and not 'in wait' in sub_code[-2\n ] and not 'in print_stack_all' in sub_code[-2\n ] and not 'in sample_stack_all' in sub_code[-2\n ] and not 'in checkcache' in sub_code[-2\n ] and not 'do_sleep' in sub_code[-2\n ] and not 'sleep' in sub_code[-1] and not any([(\n 'in do_sample' in s) for s in sub_code]):\n code.extend(sub_code)\n for line in code:\n l1.append(line)\n l1.append('*** STACKTRACE - END ***')\n with l:\n ll.extend(l1)\n\n def x():\n l = threading.RLock()\n ll = list()\n for i in range(count):\n print_stack_all(l, ll)\n time.sleep(interval)\n with l:\n print('\\n'.join(ll))\n threading.Thread(target=do_sample).start()\n", "role": "user" }, { "content": "sample_stack_all", "role": "assistant" } ]
def x(self, X): self._X = Model.convert_features(X) self._eval() return self._ind[0].hy
decision_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X):\n self._X = Model.convert_features(X)\n self._eval()\n return self._ind[0].hy\n", "role": "user" }, { "content": "decision_function", "role": "assistant" } ]
def x(self): pos = self._pos self._pos += 1 node = self._ind[pos] if isinstance(node, Function): args = [self._eval() for x in range(node.nargs)] node.eval(args) for x in args: x.hy = None x.hy_test = None else: node.eval(self._X) return node
eval
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n pos = self._pos\n self._pos += 1\n node = self._ind[pos]\n if isinstance(node, Function):\n args = [self._eval() for x in range(node.nargs)]\n node.eval(args)\n for x in args:\n x.hy = None\n x.hy_test = None\n else:\n node.eval(self._X)\n return node\n", "role": "user" }, { "content": "eval", "role": "assistant" } ]
def x(self, depth=0): lst = [] self._create_random_ind_full(depth=depth, output=lst) return lst
create_random_ind_full
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, depth=0):\n lst = []\n self._create_random_ind_full(depth=depth, output=lst)\n return lst\n", "role": "user" }, { "content": "create_random_ind_full", "role": "assistant" } ]
def x(self, depth=0): if depth == 0: return False if depth == self._depth: return True return np.random.random() < 0.5
grow_use_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, depth=0):\n if depth == 0:\n return False\n if depth == self._depth:\n return True\n return np.random.random() < 0.5\n", "role": "user" }, { "content": "grow_use_function", "role": "assistant" } ]
def x(self, depth=0): lst = [] self._depth = depth self._create_random_ind_grow(depth=depth, output=lst) return lst
create_random_ind_grow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, depth=0):\n lst = []\n self._depth = depth\n self._create_random_ind_grow(depth=depth, output=lst)\n return lst\n", "role": "user" }, { "content": "create_random_ind_grow", "role": "assistant" } ]
def x(self, popsize=1000, min_depth=2, max_depth=4, X=None): import itertools args = [x for x in itertools.product(range(min_depth, max_depth + 1), [ True, False])] index = 0 output = [] while len(output) < popsize: depth, full = args[index] index += 1 if index >= len(args): index = 0 if full: ind = self.create_random_ind_full(depth=depth) else: ind = self.create_random_ind_grow(depth=depth) flag = True if X is not None: x = Individual(ind) x.decision_function(X) flag = x.individual[0].isfinite() l_vars = flag, len(output), full, depth, len(ind) l_str = ' flag: %s len(output): %s full: %s depth: %s len(ind): %s' self._logger.debug(l_str % l_vars) if flag: output.append(ind) return output
create_population
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, popsize=1000, min_depth=2, max_depth=4, X=None):\n import itertools\n args = [x for x in itertools.product(range(min_depth, max_depth + 1), [\n True, False])]\n index = 0\n output = []\n while len(output) < popsize:\n depth, full = args[index]\n index += 1\n if index >= len(args):\n index = 0\n if full:\n ind = self.create_random_ind_full(depth=depth)\n else:\n ind = self.create_random_ind_grow(depth=depth)\n flag = True\n if X is not None:\n x = Individual(ind)\n x.decision_function(X)\n flag = x.individual[0].isfinite()\n l_vars = flag, len(output), full, depth, len(ind)\n l_str = ' flag: %s len(output): %s full: %s depth: %s len(ind): %s'\n self._logger.debug(l_str % l_vars)\n if flag:\n output.append(ind)\n return output\n", "role": "user" }, { "content": "create_population", "role": "assistant" } ]
def x(self, X, **kwargs): if X is None: return self._hy_test X = self.convert_features(X) if len(X) < self.nvar: _ = 'Number of variables differ, trained with %s given %s' % (self. nvar, len(X)) raise RuntimeError(_) hist = self._hist for node in hist: if node.height: node.eval(hist) else: node.eval(X) node.normalize() r = node.hy for i in hist[:-1]: i.hy = None i.hy_test = None gc.collect() return r
decision_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, **kwargs):\n if X is None:\n return self._hy_test\n X = self.convert_features(X)\n if len(X) < self.nvar:\n _ = 'Number of variables differ, trained with %s given %s' % (self.\n nvar, len(X))\n raise RuntimeError(_)\n hist = self._hist\n for node in hist:\n if node.height:\n node.eval(hist)\n else:\n node.eval(X)\n node.normalize()\n r = node.hy\n for i in hist[:-1]:\n i.hy = None\n i.hy_test = None\n gc.collect()\n return r\n", "role": "user" }, { "content": "decision_function", "role": "assistant" } ]
def x(self): l = [x.fitness_vs for x in self.models] return np.median(l)
fitness_vs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n l = [x.fitness_vs for x in self.models]\n return np.median(l)\n", "role": "user" }, { "content": "fitness_vs", "role": "assistant" } ]
def x(self, directory, **kwargs): import os if not os.path.isdir(directory): os.mkdir(directory) output = os.path.join(directory, 'evodag-%s') for k, m in enumerate(self.models): m.graphviz(output % k, **kwargs)
graphviz
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, directory, **kwargs):\n import os\n if not os.path.isdir(directory):\n os.mkdir(directory)\n output = os.path.join(directory, 'evodag-%s')\n for k, m in enumerate(self.models):\n m.graphviz(output % k, **kwargs)\n", "role": "user" }, { "content": "graphviz", "role": "assistant" } ]
def x(self, num_samples=1000, percentiles=None): self.percentiles = percentiles self.num_samples = num_samples if self.model_name.lower() in ['wrf']: mo = ModelOutput(self.ensemble_name, self.member, self.run_date, self.variable, self.start_date, self.end_date, self.path, self. map_file, self.single_step) mo.load_data() self.data = mo.data[:] if mo.units == 'm': self.data *= 1000 self.units = 'mm' else: self.units = mo.units else: if self.track_forecasts is None: self.load_track_data() self.units = 'mm' self.data = np.zeros((self.forecast_hours.size, self.mapping_data[ 'lon'].shape[0], self.mapping_data['lon'].shape[1]), dtype=np. float32) if self.percentiles is not None: self.percentile_data = np.zeros([len(self.percentiles)] + list( self.data.shape)) full_condition_name = 'condition_' + self.condition_model_name.replace( ' ', '-') dist_model_name = 'dist' + '_' + self.model_name.replace(' ', '-') for track_forecast in self.track_forecasts: times = track_forecast['properties']['times'] for s, step in enumerate(track_forecast['features']): forecast_params = step['properties'][dist_model_name] if self.condition_model_name is not None: condition = step['properties'][full_condition_name] else: condition = None forecast_time = self.run_date + timedelta(hours=times[s]) if forecast_time in self.times: t = np.where(self.times == forecast_time)[0][0] mask = np.array(step['properties']['masks'], dtype=int ).ravel() rankings = np.argsort(np.array(step['properties'][ 'timesteps']).ravel()[mask == 1]) i = np.array(step['properties']['i'], dtype=int).ravel()[ mask == 1][rankings] j = np.array(step['properties']['j'], dtype=int).ravel()[ mask == 1][rankings] if rankings.size > 0 and forecast_params[0 ] > 0.1 and 1 < forecast_params[2] < 100: raw_samples = np.sort(gamma.rvs(forecast_params[0], loc=forecast_params[1], scale=forecast_params[2 ], size=(num_samples, rankings.size)), axis=1) if self.percentiles is None: samples = raw_samples.mean(axis=0) if condition >= self.condition_threshold: self.data[t, i, j] = samples else: for p, percentile in enumerate(self.percentiles): if percentile != 'mean': if condition >= self.condition_threshold: self.percentile_data[p, t, i, j ] = np.percentile(raw_samples, percentile, axis=0) elif condition >= self.condition_threshold: self.percentile_data[p, t, i, j] = np.mean( raw_samples, axis=0) samples = raw_samples.mean(axis=0) if condition >= self.condition_threshold: self.data[t, i, j] = samples
load_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num_samples=1000, percentiles=None):\n self.percentiles = percentiles\n self.num_samples = num_samples\n if self.model_name.lower() in ['wrf']:\n mo = ModelOutput(self.ensemble_name, self.member, self.run_date,\n self.variable, self.start_date, self.end_date, self.path, self.\n map_file, self.single_step)\n mo.load_data()\n self.data = mo.data[:]\n if mo.units == 'm':\n self.data *= 1000\n self.units = 'mm'\n else:\n self.units = mo.units\n else:\n if self.track_forecasts is None:\n self.load_track_data()\n self.units = 'mm'\n self.data = np.zeros((self.forecast_hours.size, self.mapping_data[\n 'lon'].shape[0], self.mapping_data['lon'].shape[1]), dtype=np.\n float32)\n if self.percentiles is not None:\n self.percentile_data = np.zeros([len(self.percentiles)] + list(\n self.data.shape))\n full_condition_name = 'condition_' + self.condition_model_name.replace(\n ' ', '-')\n dist_model_name = 'dist' + '_' + self.model_name.replace(' ', '-')\n for track_forecast in self.track_forecasts:\n times = track_forecast['properties']['times']\n for s, step in enumerate(track_forecast['features']):\n forecast_params = step['properties'][dist_model_name]\n if self.condition_model_name is not None:\n condition = step['properties'][full_condition_name]\n else:\n condition = None\n forecast_time = self.run_date + timedelta(hours=times[s])\n if forecast_time in self.times:\n t = np.where(self.times == forecast_time)[0][0]\n mask = np.array(step['properties']['masks'], dtype=int\n ).ravel()\n rankings = np.argsort(np.array(step['properties'][\n 'timesteps']).ravel()[mask == 1])\n i = np.array(step['properties']['i'], dtype=int).ravel()[\n mask == 1][rankings]\n j = np.array(step['properties']['j'], dtype=int).ravel()[\n mask == 1][rankings]\n if rankings.size > 0 and forecast_params[0\n ] > 0.1 and 1 < forecast_params[2] < 100:\n raw_samples = np.sort(gamma.rvs(forecast_params[0],\n loc=forecast_params[1], scale=forecast_params[2\n ], size=(num_samples, rankings.size)), axis=1)\n if self.percentiles is None:\n samples = raw_samples.mean(axis=0)\n if condition >= self.condition_threshold:\n self.data[t, i, j] = samples\n else:\n for p, percentile in enumerate(self.percentiles):\n if percentile != 'mean':\n if condition >= self.condition_threshold:\n self.percentile_data[p, t, i, j\n ] = np.percentile(raw_samples,\n percentile, axis=0)\n elif condition >= self.condition_threshold:\n self.percentile_data[p, t, i, j] = np.mean(\n raw_samples, axis=0)\n samples = raw_samples.mean(axis=0)\n if condition >= self.condition_threshold:\n self.data[t, i, j] = samples\n", "role": "user" }, { "content": "load_data", "role": "assistant" } ]
def x(self, threshold, radius): weights = disk(radius, dtype=np.uint8) thresh_data = np.zeros(self.data.shape[1:], dtype=np.uint8) neighbor_prob = np.zeros(self.data.shape, dtype=np.float32) for t in np.arange(self.data.shape[0]): thresh_data[self.data[t] >= threshold] = 1 maximized = fftconvolve(thresh_data, weights, mode='same') maximized[maximized > 1] = 1 maximized[maximized < 1] = 0 neighbor_prob[t] = fftconvolve(maximized, weights, mode='same') thresh_data[:] = 0 neighbor_prob[neighbor_prob < 1] = 0 neighbor_prob /= weights.sum() return neighbor_prob
neighborhood_probability
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, threshold, radius):\n weights = disk(radius, dtype=np.uint8)\n thresh_data = np.zeros(self.data.shape[1:], dtype=np.uint8)\n neighbor_prob = np.zeros(self.data.shape, dtype=np.float32)\n for t in np.arange(self.data.shape[0]):\n thresh_data[self.data[t] >= threshold] = 1\n maximized = fftconvolve(thresh_data, weights, mode='same')\n maximized[maximized > 1] = 1\n maximized[maximized < 1] = 0\n neighbor_prob[t] = fftconvolve(maximized, weights, mode='same')\n thresh_data[:] = 0\n neighbor_prob[neighbor_prob < 1] = 0\n neighbor_prob /= weights.sum()\n return neighbor_prob\n", "role": "user" }, { "content": "neighborhood_probability", "role": "assistant" } ]
def x(self): lscale = 1000000.0 grib_id_start = [7, 0, 14, 14, 2] gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30], dtype=np.int32) lon_0 = self.proj_dict['lon_0'] sw_lon = self.grid_dict['sw_lon'] if lon_0 < 0: lon_0 += 360 if sw_lon < 0: sw_lon += 360 gdtmp1 = [1, 0, self.proj_dict['a'], 0, float(self.proj_dict['a']), 0, float(self.proj_dict['b']), self.data.shape[-1], self.data.shape[-2 ], self.grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self. proj_dict['lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] * 1000.0, self.grid_dict['dy'] * 1000.0, 0, 64, self.proj_dict[ 'lat_1'] * lscale, self.proj_dict['lat_2'] * lscale, -90 * lscale, 0] pdtmp1 = np.array([1, 31, 4, 0, 31, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, self.num_samples], dtype=np.int32) grib_objects = pd.Series(index=self.times, data=[None] * self.times. size, dtype=object) drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32) for t, time in enumerate(self.times): time_list = list(self.run_date.utctimetuple()[0:6]) if grib_objects[time] is None: grib_objects[time] = Grib2Encode(0, np.array(grib_id_start + time_list + [2, 1], dtype=np.int32)) grib_objects[time].addgrid(gdsinfo, gdtmp1) pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds( ) / 3600.0 data = self.percentile_data[:, t] / 1000.0 masked_data = np.ma.array(data, mask=data <= 0) for p, percentile in enumerate(self.percentiles): print('GRIB {3} Percentile {0}. Max: {1} Min: {2}'.format( percentile, masked_data[p].max(), masked_data[p].min(), time)) if percentile in range(1, 100): pdtmp1[-2] = percentile grib_objects[time].addfield(6, pdtmp1[:-1], 0, drtmp1, masked_data[p]) else: pdtmp1[-2] = 0 grib_objects[time].addfield(2, pdtmp1, 0, drtmp1, masked_data[p]) return grib_objects
encode_grib2_percentile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n lscale = 1000000.0\n grib_id_start = [7, 0, 14, 14, 2]\n gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30],\n dtype=np.int32)\n lon_0 = self.proj_dict['lon_0']\n sw_lon = self.grid_dict['sw_lon']\n if lon_0 < 0:\n lon_0 += 360\n if sw_lon < 0:\n sw_lon += 360\n gdtmp1 = [1, 0, self.proj_dict['a'], 0, float(self.proj_dict['a']), 0,\n float(self.proj_dict['b']), self.data.shape[-1], self.data.shape[-2\n ], self.grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self.\n proj_dict['lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] *\n 1000.0, self.grid_dict['dy'] * 1000.0, 0, 64, self.proj_dict[\n 'lat_1'] * lscale, self.proj_dict['lat_2'] * lscale, -90 * lscale, 0]\n pdtmp1 = np.array([1, 31, 4, 0, 31, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0,\n self.num_samples], dtype=np.int32)\n grib_objects = pd.Series(index=self.times, data=[None] * self.times.\n size, dtype=object)\n drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32)\n for t, time in enumerate(self.times):\n time_list = list(self.run_date.utctimetuple()[0:6])\n if grib_objects[time] is None:\n grib_objects[time] = Grib2Encode(0, np.array(grib_id_start +\n time_list + [2, 1], dtype=np.int32))\n grib_objects[time].addgrid(gdsinfo, gdtmp1)\n pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds(\n ) / 3600.0\n data = self.percentile_data[:, t] / 1000.0\n masked_data = np.ma.array(data, mask=data <= 0)\n for p, percentile in enumerate(self.percentiles):\n print('GRIB {3} Percentile {0}. Max: {1} Min: {2}'.format(\n percentile, masked_data[p].max(), masked_data[p].min(), time))\n if percentile in range(1, 100):\n pdtmp1[-2] = percentile\n grib_objects[time].addfield(6, pdtmp1[:-1], 0, drtmp1,\n masked_data[p])\n else:\n pdtmp1[-2] = 0\n grib_objects[time].addfield(2, pdtmp1, 0, drtmp1,\n masked_data[p])\n return grib_objects\n", "role": "user" }, { "content": "encode_grib2_percentile", "role": "assistant" } ]
def x(self): lscale = 1000000.0 grib_id_start = [7, 0, 14, 14, 2] gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30], dtype=np.int32) lon_0 = self.proj_dict['lon_0'] sw_lon = self.grid_dict['sw_lon'] if lon_0 < 0: lon_0 += 360 if sw_lon < 0: sw_lon += 360 gdtmp1 = [1, 0, self.proj_dict['a'], 0, float(self.proj_dict['a']), 0, float(self.proj_dict['b']), self.data.shape[-1], self.data.shape[-2 ], self.grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self. proj_dict['lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] * 1000.0, self.grid_dict['dy'] * 1000.0, 0, 64, self.proj_dict[ 'lat_1'] * lscale, self.proj_dict['lat_2'] * lscale, -90 * lscale, 0] pdtmp1 = np.array([1, 31, 4, 0, 31, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1], dtype=np.int32) grib_objects = pd.Series(index=self.times, data=[None] * self.times. size, dtype=object) drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32) for t, time in enumerate(self.times): time_list = list(self.run_date.utctimetuple()[0:6]) if grib_objects[time] is None: grib_objects[time] = Grib2Encode(0, np.array(grib_id_start + time_list + [2, 1], dtype=np.int32)) grib_objects[time].addgrid(gdsinfo, gdtmp1) pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds( ) / 3600.0 data = self.data[t] / 1000.0 data[np.isnan(data)] = 0 masked_data = np.ma.array(data, mask=data <= 0) pdtmp1[-2] = 0 grib_objects[time].addfield(1, pdtmp1, 0, drtmp1, masked_data) return grib_objects
encode_grib2_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n lscale = 1000000.0\n grib_id_start = [7, 0, 14, 14, 2]\n gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30],\n dtype=np.int32)\n lon_0 = self.proj_dict['lon_0']\n sw_lon = self.grid_dict['sw_lon']\n if lon_0 < 0:\n lon_0 += 360\n if sw_lon < 0:\n sw_lon += 360\n gdtmp1 = [1, 0, self.proj_dict['a'], 0, float(self.proj_dict['a']), 0,\n float(self.proj_dict['b']), self.data.shape[-1], self.data.shape[-2\n ], self.grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self.\n proj_dict['lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] *\n 1000.0, self.grid_dict['dy'] * 1000.0, 0, 64, self.proj_dict[\n 'lat_1'] * lscale, self.proj_dict['lat_2'] * lscale, -90 * lscale, 0]\n pdtmp1 = np.array([1, 31, 4, 0, 31, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1],\n dtype=np.int32)\n grib_objects = pd.Series(index=self.times, data=[None] * self.times.\n size, dtype=object)\n drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32)\n for t, time in enumerate(self.times):\n time_list = list(self.run_date.utctimetuple()[0:6])\n if grib_objects[time] is None:\n grib_objects[time] = Grib2Encode(0, np.array(grib_id_start +\n time_list + [2, 1], dtype=np.int32))\n grib_objects[time].addgrid(gdsinfo, gdtmp1)\n pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds(\n ) / 3600.0\n data = self.data[t] / 1000.0\n data[np.isnan(data)] = 0\n masked_data = np.ma.array(data, mask=data <= 0)\n pdtmp1[-2] = 0\n grib_objects[time].addfield(1, pdtmp1, 0, drtmp1, masked_data)\n return grib_objects\n", "role": "user" }, { "content": "encode_grib2_data", "role": "assistant" } ]
def x(self): for m, member in enumerate(self.members): mo = ModelOutput(self.ensemble_name, member, self.run_date, self. variable, self.start_date, self.end_date, self.path, self. map_file, self.single_step) mo.load_data() if self.data is None: self.data = np.zeros((len(self.members), mo.data.shape[0], mo. data.shape[1], mo.data.shape[2]), dtype=np.float32) if mo.units == 'm': self.data[m] = mo.data * 1000 self.units = 'mm' else: self.data[m] = mo.data if self.units == '': self.units = mo.units del mo.data del mo
load_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for m, member in enumerate(self.members):\n mo = ModelOutput(self.ensemble_name, member, self.run_date, self.\n variable, self.start_date, self.end_date, self.path, self.\n map_file, self.single_step)\n mo.load_data()\n if self.data is None:\n self.data = np.zeros((len(self.members), mo.data.shape[0], mo.\n data.shape[1], mo.data.shape[2]), dtype=np.float32)\n if mo.units == 'm':\n self.data[m] = mo.data * 1000\n self.units = 'mm'\n else:\n self.data[m] = mo.data\n if self.units == '':\n self.units = mo.units\n del mo.data\n del mo\n", "role": "user" }, { "content": "load_data", "role": "assistant" } ]
def x(self, consensus_type): if 'mean' in consensus_type: consensus_data = np.mean(self.data, axis=0) elif 'std' in consensus_type: consensus_data = np.std(self.data, axis=0) elif 'median' in consensus_type: consensus_data = np.median(self.data, axis=0) elif 'max' in consensus_type: consensus_data = np.max(self.data, axis=0) elif 'percentile' in consensus_type: percentile = int(consensus_type.split('_')[1]) consensus_data = np.percentile(self.data, percentile, axis=0) else: consensus_data = np.zeros(self.data.shape[1:]) consensus = EnsembleConsensus(consensus_data, consensus_type, self. ensemble_name, self.run_date, self.variable, self.start_date, self. end_date, self.units) return consensus
point_consensus
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, consensus_type):\n if 'mean' in consensus_type:\n consensus_data = np.mean(self.data, axis=0)\n elif 'std' in consensus_type:\n consensus_data = np.std(self.data, axis=0)\n elif 'median' in consensus_type:\n consensus_data = np.median(self.data, axis=0)\n elif 'max' in consensus_type:\n consensus_data = np.max(self.data, axis=0)\n elif 'percentile' in consensus_type:\n percentile = int(consensus_type.split('_')[1])\n consensus_data = np.percentile(self.data, percentile, axis=0)\n else:\n consensus_data = np.zeros(self.data.shape[1:])\n consensus = EnsembleConsensus(consensus_data, consensus_type, self.\n ensemble_name, self.run_date, self.variable, self.start_date, self.\n end_date, self.units)\n return consensus\n", "role": "user" }, { "content": "point_consensus", "role": "assistant" } ]
def x(self, threshold): point_prob = np.zeros(self.data.shape[1:]) for t in range(self.data.shape[1]): point_prob[t] = np.where(self.data[:, t] >= threshold, 1.0, 0.0).mean( axis=0) return EnsembleConsensus(point_prob, 'point_probability', self. ensemble_name, self.run_date, self.variable + '_{0:0.2f}_{1}'. format(threshold, self.units.replace(' ', '_')), self.start_date, self.end_date, '')
point_probability
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, threshold):\n point_prob = np.zeros(self.data.shape[1:])\n for t in range(self.data.shape[1]):\n point_prob[t] = np.where(self.data[:, t] >= threshold, 1.0, 0.0).mean(\n axis=0)\n return EnsembleConsensus(point_prob, 'point_probability', self.\n ensemble_name, self.run_date, self.variable + '_{0:0.2f}_{1}'.\n format(threshold, self.units.replace(' ', '_')), self.start_date,\n self.end_date, '')\n", "role": "user" }, { "content": "point_probability", "role": "assistant" } ]
def x(self, threshold, radius, sigmas=None): if sigmas is None: sigmas = [0] weights = disk(radius) filtered_prob = [] for sigma in sigmas: filtered_prob.append(EnsembleConsensus(np.zeros(self.data.shape[1:], dtype=np.float32), 'neighbor_prob_r_{0:d}_s_{1:d}'.format( radius, sigma), self.ensemble_name, self.run_date, self. variable + '_{0:0.2f}'.format(threshold), self.start_date, self .end_date, '')) thresh_data = np.zeros(self.data.shape[2:], dtype=np.uint8) neighbor_prob = np.zeros(self.data.shape[2:], dtype=np.float32) for t in range(self.data.shape[1]): for m in range(self.data.shape[0]): thresh_data[self.data[m, t] >= threshold] = 1 maximized = fftconvolve(thresh_data, weights, mode='same') maximized[maximized > 1] = 1 maximized[maximized < 1] = 0 neighbor_prob += fftconvolve(maximized, weights, mode='same') neighbor_prob[neighbor_prob < 1] = 0 thresh_data[:] = 0 neighbor_prob /= self.data.shape[0] * float(weights.sum()) for s, sigma in enumerate(sigmas): if sigma > 0: filtered_prob[s].data[t] = gaussian_filter(neighbor_prob, sigma=sigma) else: filtered_prob[s].data[t] = neighbor_prob neighbor_prob[:] = 0 return filtered_prob
neighborhood_probability
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, threshold, radius, sigmas=None):\n if sigmas is None:\n sigmas = [0]\n weights = disk(radius)\n filtered_prob = []\n for sigma in sigmas:\n filtered_prob.append(EnsembleConsensus(np.zeros(self.data.shape[1:],\n dtype=np.float32), 'neighbor_prob_r_{0:d}_s_{1:d}'.format(\n radius, sigma), self.ensemble_name, self.run_date, self.\n variable + '_{0:0.2f}'.format(threshold), self.start_date, self\n .end_date, ''))\n thresh_data = np.zeros(self.data.shape[2:], dtype=np.uint8)\n neighbor_prob = np.zeros(self.data.shape[2:], dtype=np.float32)\n for t in range(self.data.shape[1]):\n for m in range(self.data.shape[0]):\n thresh_data[self.data[m, t] >= threshold] = 1\n maximized = fftconvolve(thresh_data, weights, mode='same')\n maximized[maximized > 1] = 1\n maximized[maximized < 1] = 0\n neighbor_prob += fftconvolve(maximized, weights, mode='same')\n neighbor_prob[neighbor_prob < 1] = 0\n thresh_data[:] = 0\n neighbor_prob /= self.data.shape[0] * float(weights.sum())\n for s, sigma in enumerate(sigmas):\n if sigma > 0:\n filtered_prob[s].data[t] = gaussian_filter(neighbor_prob,\n sigma=sigma)\n else:\n filtered_prob[s].data[t] = neighbor_prob\n neighbor_prob[:] = 0\n return filtered_prob\n", "role": "user" }, { "content": "neighborhood_probability", "role": "assistant" } ]
def x(self, threshold, radius, sigmas=None): if sigmas is None: sigmas = [0] weights = disk(radius) neighborhood_prob = np.zeros(self.data.shape[2:], dtype=np.float32) thresh_data = np.zeros(self.data.shape[2:], dtype=np.uint8) for m in range(self.data.shape[0]): thresh_data[self.data[m].max(axis=0) >= threshold] = 1 maximized = fftconvolve(thresh_data, weights, mode='same') maximized[maximized > 1] = 1 neighborhood_prob += fftconvolve(maximized, weights, mode='same') neighborhood_prob[neighborhood_prob < 1] = 0 neighborhood_prob /= self.data.shape[0] * float(weights.sum()) consensus_probs = [] for sigma in sigmas: if sigma > 0: filtered_prob = gaussian_filter(neighborhood_prob, sigma=sigma) else: filtered_prob = neighborhood_prob ec = EnsembleConsensus(filtered_prob, 'neighbor_prob_{0:02d}-hour_r_{1:d}_s_{2:d}'.format(self.data. shape[1], radius, sigma), self.ensemble_name, self.run_date, self.variable + '_{0:0.2f}'.format(float(threshold)), self. start_date, self.end_date, '') consensus_probs.append(ec) return consensus_probs
period_max_neighborhood_probability
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, threshold, radius, sigmas=None):\n if sigmas is None:\n sigmas = [0]\n weights = disk(radius)\n neighborhood_prob = np.zeros(self.data.shape[2:], dtype=np.float32)\n thresh_data = np.zeros(self.data.shape[2:], dtype=np.uint8)\n for m in range(self.data.shape[0]):\n thresh_data[self.data[m].max(axis=0) >= threshold] = 1\n maximized = fftconvolve(thresh_data, weights, mode='same')\n maximized[maximized > 1] = 1\n neighborhood_prob += fftconvolve(maximized, weights, mode='same')\n neighborhood_prob[neighborhood_prob < 1] = 0\n neighborhood_prob /= self.data.shape[0] * float(weights.sum())\n consensus_probs = []\n for sigma in sigmas:\n if sigma > 0:\n filtered_prob = gaussian_filter(neighborhood_prob, sigma=sigma)\n else:\n filtered_prob = neighborhood_prob\n ec = EnsembleConsensus(filtered_prob,\n 'neighbor_prob_{0:02d}-hour_r_{1:d}_s_{2:d}'.format(self.data.\n shape[1], radius, sigma), self.ensemble_name, self.run_date, \n self.variable + '_{0:0.2f}'.format(float(threshold)), self.\n start_date, self.end_date, '')\n consensus_probs.append(ec)\n return consensus_probs\n", "role": "user" }, { "content": "period_max_neighborhood_probability", "role": "assistant" } ]
def x(self, grid_method='gamma', num_samples=1000, condition_threshold=0.5, zero_inflate=False, percentile=None): self.percentile = percentile if self.track_forecasts == {}: self.load_track_forecasts() if self.track_forecasts == {}: return -1 if self.data is None: self.data = np.zeros((len(self.members), self.times.size, self. grid_shape[0], self.grid_shape[1]), dtype=np.float32) else: self.data[:] = 0 if grid_method in ['mean', 'median', 'samples']: for m, member in enumerate(self.members): print('Sampling ' + member) for track_forecast in self.track_forecasts[member]: times = track_forecast['properties']['times'] for s, step in enumerate(track_forecast['features']): forecast_pdf = np.array(step['properties'][self. variable + '_' + self.ensemble_name.replace(' ', '-')]) forecast_time = self.run_date + timedelta(hours=times[s]) t = np.where(self.times == forecast_time)[0][0] mask = np.array(step['properties']['masks'], dtype=int) i = np.array(step['properties']['i'], dtype=int) i = i[mask == 1] j = np.array(step['properties']['j'], dtype=int) j = j[mask == 1] if grid_method == 'samples': intensities = np.array(step['properties'][ 'timesteps'], dtype=float)[mask == 1] rankings = np.argsort(intensities) samples = np.random.choice(self.forecast_bins, size =intensities.size, replace=True, p=forecast_pdf) self.data[m, t, i[rankings], j[rankings]] = samples else: if grid_method == 'mean': forecast_value = np.sum(forecast_pdf * self. forecast_bins) elif grid_method == 'median': forecast_cdf = np.cumsum(forecast_pdf) forecast_value = self.forecast_bins[np.argmin( np.abs(forecast_cdf - 0.5))] else: forecast_value = 0 self.data[m, t, i, j] = forecast_value if grid_method in ['gamma']: full_condition_name = 'condition_' + self.condition_model_name.replace( ' ', '-') dist_model_name = self.variable + '_' + self.ensemble_name.replace(' ', '-') for m, member in enumerate(self.members): for track_forecast in self.track_forecasts[member]: times = track_forecast['properties']['times'] for s, step in enumerate(track_forecast['features']): forecast_params = step['properties'][dist_model_name] if self.condition_model_name is not None: condition = step['properties'][full_condition_name] else: condition = None forecast_time = self.run_date + timedelta(hours=times[s]) if forecast_time in self.times: t = np.where(self.times == forecast_time)[0][0] mask = np.array(step['properties']['masks'], dtype=int) rankings = np.argsort(step['properties']['timesteps'])[ mask == 1] i = np.array(step['properties']['i'], dtype=int)[ mask == 1][rankings] j = np.array(step['properties']['j'], dtype=int)[ mask == 1][rankings] if rankings.size > 0: raw_samples = np.sort(gamma.rvs(forecast_params [0], loc=forecast_params[1], scale= forecast_params[2], size=(num_samples, rankings.size)), axis=1) if zero_inflate: raw_samples *= bernoulli.rvs(condition, size=(num_samples, rankings.size)) if percentile is None: samples = raw_samples.mean(axis=0) else: samples = np.percentile(raw_samples, percentile, axis=0) if (condition is None or condition >= condition_threshold): self.data[m, t, i, j] = samples return 0
load_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, grid_method='gamma', num_samples=1000, condition_threshold=0.5,\n zero_inflate=False, percentile=None):\n self.percentile = percentile\n if self.track_forecasts == {}:\n self.load_track_forecasts()\n if self.track_forecasts == {}:\n return -1\n if self.data is None:\n self.data = np.zeros((len(self.members), self.times.size, self.\n grid_shape[0], self.grid_shape[1]), dtype=np.float32)\n else:\n self.data[:] = 0\n if grid_method in ['mean', 'median', 'samples']:\n for m, member in enumerate(self.members):\n print('Sampling ' + member)\n for track_forecast in self.track_forecasts[member]:\n times = track_forecast['properties']['times']\n for s, step in enumerate(track_forecast['features']):\n forecast_pdf = np.array(step['properties'][self.\n variable + '_' + self.ensemble_name.replace(' ', '-')])\n forecast_time = self.run_date + timedelta(hours=times[s])\n t = np.where(self.times == forecast_time)[0][0]\n mask = np.array(step['properties']['masks'], dtype=int)\n i = np.array(step['properties']['i'], dtype=int)\n i = i[mask == 1]\n j = np.array(step['properties']['j'], dtype=int)\n j = j[mask == 1]\n if grid_method == 'samples':\n intensities = np.array(step['properties'][\n 'timesteps'], dtype=float)[mask == 1]\n rankings = np.argsort(intensities)\n samples = np.random.choice(self.forecast_bins, size\n =intensities.size, replace=True, p=forecast_pdf)\n self.data[m, t, i[rankings], j[rankings]] = samples\n else:\n if grid_method == 'mean':\n forecast_value = np.sum(forecast_pdf * self.\n forecast_bins)\n elif grid_method == 'median':\n forecast_cdf = np.cumsum(forecast_pdf)\n forecast_value = self.forecast_bins[np.argmin(\n np.abs(forecast_cdf - 0.5))]\n else:\n forecast_value = 0\n self.data[m, t, i, j] = forecast_value\n if grid_method in ['gamma']:\n full_condition_name = 'condition_' + self.condition_model_name.replace(\n ' ', '-')\n dist_model_name = self.variable + '_' + self.ensemble_name.replace(' ',\n '-')\n for m, member in enumerate(self.members):\n for track_forecast in self.track_forecasts[member]:\n times = track_forecast['properties']['times']\n for s, step in enumerate(track_forecast['features']):\n forecast_params = step['properties'][dist_model_name]\n if self.condition_model_name is not None:\n condition = step['properties'][full_condition_name]\n else:\n condition = None\n forecast_time = self.run_date + timedelta(hours=times[s])\n if forecast_time in self.times:\n t = np.where(self.times == forecast_time)[0][0]\n mask = np.array(step['properties']['masks'], dtype=int)\n rankings = np.argsort(step['properties']['timesteps'])[\n mask == 1]\n i = np.array(step['properties']['i'], dtype=int)[\n mask == 1][rankings]\n j = np.array(step['properties']['j'], dtype=int)[\n mask == 1][rankings]\n if rankings.size > 0:\n raw_samples = np.sort(gamma.rvs(forecast_params\n [0], loc=forecast_params[1], scale=\n forecast_params[2], size=(num_samples,\n rankings.size)), axis=1)\n if zero_inflate:\n raw_samples *= bernoulli.rvs(condition,\n size=(num_samples, rankings.size))\n if percentile is None:\n samples = raw_samples.mean(axis=0)\n else:\n samples = np.percentile(raw_samples,\n percentile, axis=0)\n if (condition is None or condition >=\n condition_threshold):\n self.data[m, t, i, j] = samples\n return 0\n", "role": "user" }, { "content": "load_data", "role": "assistant" } ]
def x(self, path): if self.percentile is None: var_type = 'mean' else: var_type = 'p{0:02d}'.format(self.percentile) lscale = 1000000.0 grib_id_start = [7, 0, 14, 14, 2] gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30], dtype=np.int32) lon_0 = self.proj_dict['lon_0'] sw_lon = self.grid_dict['sw_lon'] if lon_0 < 0: lon_0 += 360 if sw_lon < 0: sw_lon += 360 gdtmp1 = np.array([7, 1, self.proj_dict['a'], 1, self.proj_dict['a'], 1, self.proj_dict['b'], self.data.shape[-2], self.data.shape[-1], self .grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self.proj_dict[ 'lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] * 1000.0, self.grid_dict['dy'] * 1000.0, 0, self.proj_dict['lat_1'] * lscale, self.proj_dict['lat_2'] * lscale, 0, 0], dtype=np.int32) pdtmp1 = np.array([1, 31, 2, 0, 116, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 192, 0, self.data.shape[0]], dtype=np.int32) for m, member in enumerate(self.members): pdtmp1[-2] = m for t, time in enumerate(self.times): time_list = list(time.utctimetuple()[0:6]) grbe = Grib2Encode(0, np.array(grib_id_start + time_list + [2, 1], dtype=np.int32)) grbe.addgrid(gdsinfo, gdtmp1) pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds( ) / 3600.0 drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32) data = self.data[m, t].astype(np.float32) / 1000.0 masked_data = np.ma.array(data, mask=data <= 0) grbe.addfield(1, pdtmp1, 0, drtmp1, masked_data) grbe.end() filename = path + '{0}_{1}_mlhail_{2}_{3}.grib2'.format(self. ensemble_name.replace(' ', '-'), member, var_type, time. to_datetime().strftime('%Y%m%d%H%M')) print('Writing to ' + filename) grib_file = open(filename, 'wb') grib_file.write(grbe.msg) grib_file.close() return
write_grib2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path):\n if self.percentile is None:\n var_type = 'mean'\n else:\n var_type = 'p{0:02d}'.format(self.percentile)\n lscale = 1000000.0\n grib_id_start = [7, 0, 14, 14, 2]\n gdsinfo = np.array([0, np.product(self.data.shape[-2:]), 0, 0, 30],\n dtype=np.int32)\n lon_0 = self.proj_dict['lon_0']\n sw_lon = self.grid_dict['sw_lon']\n if lon_0 < 0:\n lon_0 += 360\n if sw_lon < 0:\n sw_lon += 360\n gdtmp1 = np.array([7, 1, self.proj_dict['a'], 1, self.proj_dict['a'], 1,\n self.proj_dict['b'], self.data.shape[-2], self.data.shape[-1], self\n .grid_dict['sw_lat'] * lscale, sw_lon * lscale, 0, self.proj_dict[\n 'lat_0'] * lscale, lon_0 * lscale, self.grid_dict['dx'] * 1000.0, \n self.grid_dict['dy'] * 1000.0, 0, self.proj_dict['lat_1'] * lscale,\n self.proj_dict['lat_2'] * lscale, 0, 0], dtype=np.int32)\n pdtmp1 = np.array([1, 31, 2, 0, 116, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 192,\n 0, self.data.shape[0]], dtype=np.int32)\n for m, member in enumerate(self.members):\n pdtmp1[-2] = m\n for t, time in enumerate(self.times):\n time_list = list(time.utctimetuple()[0:6])\n grbe = Grib2Encode(0, np.array(grib_id_start + time_list + [2, \n 1], dtype=np.int32))\n grbe.addgrid(gdsinfo, gdtmp1)\n pdtmp1[8] = (time.to_pydatetime() - self.run_date).total_seconds(\n ) / 3600.0\n drtmp1 = np.array([0, 0, 4, 8, 0], dtype=np.int32)\n data = self.data[m, t].astype(np.float32) / 1000.0\n masked_data = np.ma.array(data, mask=data <= 0)\n grbe.addfield(1, pdtmp1, 0, drtmp1, masked_data)\n grbe.end()\n filename = path + '{0}_{1}_mlhail_{2}_{3}.grib2'.format(self.\n ensemble_name.replace(' ', '-'), member, var_type, time.\n to_datetime().strftime('%Y%m%d%H%M'))\n print('Writing to ' + filename)\n grib_file = open(filename, 'wb')\n grib_file.write(grbe.msg)\n grib_file.close()\n return\n", "role": "user" }, { "content": "write_grib2", "role": "assistant" } ]
def x(self, filename, time_units='seconds since 1970-01-01T00:00'): if os.access(filename, os.R_OK): out_data = Dataset(filename, 'r+') else: out_data = Dataset(filename, 'w') if len(self.data.shape) == 2: for d, dim in enumerate(['y', 'x']): out_data.createDimension(dim, self.data.shape[d]) else: for d, dim in enumerate(['y', 'x']): out_data.createDimension(dim, self.data.shape[d + 1]) out_data.createDimension('time', len(self.times)) time_var = out_data.createVariable('time', 'i8', ('time',)) time_var[:] = date2num(self.times.to_pydatetime(), time_units) time_var.units = time_units out_data.Conventions = 'CF-1.6' return out_data
init_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, time_units='seconds since 1970-01-01T00:00'):\n if os.access(filename, os.R_OK):\n out_data = Dataset(filename, 'r+')\n else:\n out_data = Dataset(filename, 'w')\n if len(self.data.shape) == 2:\n for d, dim in enumerate(['y', 'x']):\n out_data.createDimension(dim, self.data.shape[d])\n else:\n for d, dim in enumerate(['y', 'x']):\n out_data.createDimension(dim, self.data.shape[d + 1])\n out_data.createDimension('time', len(self.times))\n time_var = out_data.createVariable('time', 'i8', ('time',))\n time_var[:] = date2num(self.times.to_pydatetime(), time_units)\n time_var.units = time_units\n out_data.Conventions = 'CF-1.6'\n return out_data\n", "role": "user" }, { "content": "init_file", "role": "assistant" } ]
def x(self, out_data): full_var_name = self.consensus_type + '_' + self.variable if '-hour' in self.consensus_type: if full_var_name not in out_data.variables.keys(): var = out_data.createVariable(full_var_name, 'f4', ('y', 'x'), zlib=True, least_significant_digit=3, shuffle=True) else: var = out_data.variables[full_var_name] var.coordinates = 'y x' else: if full_var_name not in out_data.variables.keys(): var = out_data.createVariable(full_var_name, 'f4', ('time', 'y', 'x'), zlib=True, least_significant_digit=3, shuffle=True) else: var = out_data.variables[full_var_name] var.coordinates = 'time y x' var[:] = self.data var.units = self.units var.long_name = self.consensus_type + '_' + self.variable return
write_to_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, out_data):\n full_var_name = self.consensus_type + '_' + self.variable\n if '-hour' in self.consensus_type:\n if full_var_name not in out_data.variables.keys():\n var = out_data.createVariable(full_var_name, 'f4', ('y', 'x'),\n zlib=True, least_significant_digit=3, shuffle=True)\n else:\n var = out_data.variables[full_var_name]\n var.coordinates = 'y x'\n else:\n if full_var_name not in out_data.variables.keys():\n var = out_data.createVariable(full_var_name, 'f4', ('time', 'y',\n 'x'), zlib=True, least_significant_digit=3, shuffle=True)\n else:\n var = out_data.variables[full_var_name]\n var.coordinates = 'time y x'\n var[:] = self.data\n var.units = self.units\n var.long_name = self.consensus_type + '_' + self.variable\n return\n", "role": "user" }, { "content": "write_to_file", "role": "assistant" } ]
def x(self, workspace_uuid): workspace = next((workspace for workspace in self.document_model. workspaces if workspace.uuid == workspace_uuid), None) if workspace is None: workspace = self.new_workspace() self._change_workspace(workspace)
restore
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, workspace_uuid):\n workspace = next((workspace for workspace in self.document_model.\n workspaces if workspace.uuid == workspace_uuid), None)\n if workspace is None:\n workspace = self.new_workspace()\n self._change_workspace(workspace)\n", "role": "user" }, { "content": "restore", "role": "assistant" } ]
def x(self, name=None, layout=None, workspace_id=None, index=None ) ->WorkspaceLayout.WorkspaceLayout: workspace = WorkspaceLayout.WorkspaceLayout() self.document_model.insert_workspace(index if index is not None else len(self.document_model.workspaces), workspace) d = create_image_desc() d['selected'] = True workspace.layout = layout if layout is not None else d workspace.name = name if name is not None else _('Workspace') if workspace_id: workspace.workspace_id = workspace_id return workspace
new_workspace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name=None, layout=None, workspace_id=None, index=None\n ) ->WorkspaceLayout.WorkspaceLayout:\n workspace = WorkspaceLayout.WorkspaceLayout()\n self.document_model.insert_workspace(index if index is not None else\n len(self.document_model.workspaces), workspace)\n d = create_image_desc()\n d['selected'] = True\n workspace.layout = layout if layout is not None else d\n workspace.name = name if name is not None else _('Workspace')\n if workspace_id:\n workspace.workspace_id = workspace_id\n return workspace\n", "role": "user" }, { "content": "new_workspace", "role": "assistant" } ]
def x(self, name, layout, workspace_id): workspace = next((workspace for workspace in self.document_model. workspaces if workspace.workspace_id == workspace_id), None) if not workspace: workspace = self.new_workspace(name=name, layout=layout, workspace_id=workspace_id) self._change_workspace(workspace)
ensure_workspace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, layout, workspace_id):\n workspace = next((workspace for workspace in self.document_model.\n workspaces if workspace.workspace_id == workspace_id), None)\n if not workspace:\n workspace = self.new_workspace(name=name, layout=layout,\n workspace_id=workspace_id)\n self._change_workspace(workspace)\n", "role": "user" }, { "content": "ensure_workspace", "role": "assistant" } ]
def x(self) ->None: def x(text): if text: command = Workspace.CreateWorkspaceCommand(self, text) command.perform() self.document_controller.push_undo_command(command) self.pose_get_string_message_box(caption=_( 'Enter a name for the workspace'), text=_('Workspace'), accepted_fn =create_clicked, accepted_text=_('Create'), message_box_id= 'create_workspace')
create_workspace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n\n def x(text):\n if text:\n command = Workspace.CreateWorkspaceCommand(self, text)\n command.perform()\n self.document_controller.push_undo_command(command)\n self.pose_get_string_message_box(caption=_(\n 'Enter a name for the workspace'), text=_('Workspace'), accepted_fn\n =create_clicked, accepted_text=_('Create'), message_box_id=\n 'create_workspace')\n", "role": "user" }, { "content": "create_workspace", "role": "assistant" } ]
def x(self) ->None: def x(text): if len(text) > 0: command = Workspace.RenameWorkspaceCommand(self, text) command.perform() self.document_controller.push_undo_command(command) self.pose_get_string_message_box(caption=_( 'Enter new name for workspace'), text=self.__workspace.name, accepted_fn=rename_clicked, accepted_text=_('Rename'), message_box_id='rename_workspace')
rename_workspace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n\n def x(text):\n if len(text) > 0:\n command = Workspace.RenameWorkspaceCommand(self, text)\n command.perform()\n self.document_controller.push_undo_command(command)\n self.pose_get_string_message_box(caption=_(\n 'Enter new name for workspace'), text=self.__workspace.name,\n accepted_fn=rename_clicked, accepted_text=_('Rename'),\n message_box_id='rename_workspace')\n", "role": "user" }, { "content": "rename_workspace", "role": "assistant" } ]
def x(self): def x(): if len(self.document_model.workspaces) > 1: command = Workspace.RemoveWorkspaceCommand(self) command.perform() self.document_controller.push_undo_command(command) caption = _("Remove workspace named '{0}'?").format(self.__workspace.name) self.pose_confirmation_message_box(caption, confirm_clicked, accepted_text=_('Remove Workspace'), message_box_id='remove_workspace')
remove_workspace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n\n def x():\n if len(self.document_model.workspaces) > 1:\n command = Workspace.RemoveWorkspaceCommand(self)\n command.perform()\n self.document_controller.push_undo_command(command)\n caption = _(\"Remove workspace named '{0}'?\").format(self.__workspace.name)\n self.pose_confirmation_message_box(caption, confirm_clicked,\n accepted_text=_('Remove Workspace'), message_box_id='remove_workspace')\n", "role": "user" }, { "content": "remove_workspace", "role": "assistant" } ]
def x(self) ->None: def x(text): if text: command = Workspace.CloneWorkspaceCommand(self, text) command.perform() self.document_controller.push_undo_command(command) self.pose_get_string_message_box(caption=_( 'Enter a name for the workspace'), text=self.__workspace.name, accepted_fn=clone_clicked, accepted_text=_('Clone'), message_box_id ='clone_workspace')
clone_workspace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n\n def x(text):\n if text:\n command = Workspace.CloneWorkspaceCommand(self, text)\n command.perform()\n self.document_controller.push_undo_command(command)\n self.pose_get_string_message_box(caption=_(\n 'Enter a name for the workspace'), text=self.__workspace.name,\n accepted_fn=clone_clicked, accepted_text=_('Clone'), message_box_id\n ='clone_workspace')\n", "role": "user" }, { "content": "clone_workspace", "role": "assistant" } ]
def x(self, display_panel, display_item, d=None) ->Undo.UndoableCommand: self.document_controller.replaced_display_panel_content = (display_panel .save_contents()) command = DisplayPanel.ReplaceDisplayPanelCommand(self) if display_item: display_panel.set_display_panel_display_item(display_item, detect_controller=True) elif d is not None: display_panel.change_display_panel_content(d) display_panel.request_focus() self.__sync_layout() return command
replace_displayed_display_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, display_panel, display_item, d=None) ->Undo.UndoableCommand:\n self.document_controller.replaced_display_panel_content = (display_panel\n .save_contents())\n command = DisplayPanel.ReplaceDisplayPanelCommand(self)\n if display_item:\n display_panel.set_display_panel_display_item(display_item,\n detect_controller=True)\n elif d is not None:\n display_panel.change_display_panel_content(d)\n display_panel.request_focus()\n self.__sync_layout()\n return command\n", "role": "user" }, { "content": "replace_displayed_display_item", "role": "assistant" } ]
def x(score_objs, n_boot=1000): all_samples = np.random.choice(score_objs, size=(n_boot, len(score_objs )), replace=True) return all_samples.sum(axis=1)
bootstrap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(score_objs, n_boot=1000):\n all_samples = np.random.choice(score_objs, size=(n_boot, len(score_objs\n )), replace=True)\n return all_samples.sum(axis=1)\n", "role": "user" }, { "content": "bootstrap", "role": "assistant" } ]
def x(self, forecasts, observations): for t, threshold in enumerate(self.thresholds): tp = np.count_nonzero((forecasts >= threshold) & (observations >= self.obs_threshold)) fp = np.count_nonzero((forecasts >= threshold) & (observations < self.obs_threshold)) fn = np.count_nonzero((forecasts < threshold) & (observations >= self.obs_threshold)) tn = np.count_nonzero((forecasts < threshold) & (observations < self.obs_threshold)) self.contingency_tables.iloc[t] += [tp, fp, fn, tn]
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, forecasts, observations):\n for t, threshold in enumerate(self.thresholds):\n tp = np.count_nonzero((forecasts >= threshold) & (observations >=\n self.obs_threshold))\n fp = np.count_nonzero((forecasts >= threshold) & (observations <\n self.obs_threshold))\n fn = np.count_nonzero((forecasts < threshold) & (observations >=\n self.obs_threshold))\n tn = np.count_nonzero((forecasts < threshold) & (observations <\n self.obs_threshold))\n self.contingency_tables.iloc[t] += [tp, fp, fn, tn]\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, other_roc): if other_roc.thresholds.size == self.thresholds.size and np.all( other_roc.thresholds == self.thresholds): self.contingency_tables += other_roc.contingency_tables else: print('Input table thresholds do not match.')
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other_roc):\n if other_roc.thresholds.size == self.thresholds.size and np.all(\n other_roc.thresholds == self.thresholds):\n self.contingency_tables += other_roc.contingency_tables\n else:\n print('Input table thresholds do not match.')\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(self): pod = self.contingency_tables['TP'].astype(float) / (self. contingency_tables['TP'] + self.contingency_tables['FN']) pofd = self.contingency_tables['FP'].astype(float) / (self. contingency_tables['FP'] + self.contingency_tables['TN']) return pd.DataFrame({'POD': pod, 'POFD': pofd, 'Thresholds': self. thresholds}, columns=['POD', 'POFD', 'Thresholds'])
roc_curve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n pod = self.contingency_tables['TP'].astype(float) / (self.\n contingency_tables['TP'] + self.contingency_tables['FN'])\n pofd = self.contingency_tables['FP'].astype(float) / (self.\n contingency_tables['FP'] + self.contingency_tables['TN'])\n return pd.DataFrame({'POD': pod, 'POFD': pofd, 'Thresholds': self.\n thresholds}, columns=['POD', 'POFD', 'Thresholds'])\n", "role": "user" }, { "content": "roc_curve", "role": "assistant" } ]
def x(self): pod = self.contingency_tables['TP'] / (self.contingency_tables['TP'] + self.contingency_tables['FN']) far = self.contingency_tables['FP'] / (self.contingency_tables['FP'] + self.contingency_tables['TP']) far[self.contingency_tables['FP'] + self.contingency_tables['TP'] == 0 ] = np.nan return pd.DataFrame({'POD': pod, 'FAR': far, 'Thresholds': self. thresholds}, columns=['POD', 'FAR', 'Thresholds'])
performance_curve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n pod = self.contingency_tables['TP'] / (self.contingency_tables['TP'] +\n self.contingency_tables['FN'])\n far = self.contingency_tables['FP'] / (self.contingency_tables['FP'] +\n self.contingency_tables['TP'])\n far[self.contingency_tables['FP'] + self.contingency_tables['TP'] == 0\n ] = np.nan\n return pd.DataFrame({'POD': pod, 'FAR': far, 'Thresholds': self.\n thresholds}, columns=['POD', 'FAR', 'Thresholds'])\n", "role": "user" }, { "content": "performance_curve", "role": "assistant" } ]
def x(self): roc_curve = self.roc_curve() return np.abs(np.trapz(roc_curve['POD'], x=roc_curve['POFD']))
auc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n roc_curve = self.roc_curve()\n return np.abs(np.trapz(roc_curve['POD'], x=roc_curve['POFD']))\n", "role": "user" }, { "content": "auc", "role": "assistant" } ]
def x(self): csi = self.contingency_tables['TP'] / (self.contingency_tables['TP'] + self.contingency_tables['FN'] + self.contingency_tables['FP']) return csi.max()
max_csi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n csi = self.contingency_tables['TP'] / (self.contingency_tables['TP'] +\n self.contingency_tables['FN'] + self.contingency_tables['FP'])\n return csi.max()\n", "role": "user" }, { "content": "max_csi", "role": "assistant" } ]
def x(self): return np.array([ContingencyTable(*ct) for ct in self. contingency_tables.values])
get_contingency_tables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return np.array([ContingencyTable(*ct) for ct in self.\n contingency_tables.values])\n", "role": "user" }, { "content": "get_contingency_tables", "role": "assistant" } ]
def x(self, in_str): parts = in_str.split(';') for part in parts: var_name, value = part.split(':') if var_name == 'Obs_Threshold': self.obs_threshold = float(value) elif var_name == 'Thresholds': self.thresholds = np.array(value.split(), dtype=float) self.contingency_tables = pd.DataFrame(columns=self. contingency_tables.columns, data=np.zeros((self.thresholds. size, self.contingency_tables.columns.size))) elif var_name in self.contingency_tables.columns: self.contingency_tables[var_name] = np.array(value.split(), dtype=int)
from_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, in_str):\n parts = in_str.split(';')\n for part in parts:\n var_name, value = part.split(':')\n if var_name == 'Obs_Threshold':\n self.obs_threshold = float(value)\n elif var_name == 'Thresholds':\n self.thresholds = np.array(value.split(), dtype=float)\n self.contingency_tables = pd.DataFrame(columns=self.\n contingency_tables.columns, data=np.zeros((self.thresholds.\n size, self.contingency_tables.columns.size)))\n elif var_name in self.contingency_tables.columns:\n self.contingency_tables[var_name] = np.array(value.split(),\n dtype=int)\n", "role": "user" }, { "content": "from_str", "role": "assistant" } ]
def x(self, forecasts, observations): for t, threshold in enumerate(self.thresholds[:-1]): self.frequencies.loc[t, 'Positive_Freq'] += np.count_nonzero(( threshold <= forecasts) & (forecasts < self.thresholds[t + 1]) & (observations >= self.obs_threshold)) self.frequencies.loc[t, 'Total_Freq'] += np.count_nonzero(( threshold <= forecasts) & (forecasts < self.thresholds[t + 1]))
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, forecasts, observations):\n for t, threshold in enumerate(self.thresholds[:-1]):\n self.frequencies.loc[t, 'Positive_Freq'] += np.count_nonzero((\n threshold <= forecasts) & (forecasts < self.thresholds[t + 1]) &\n (observations >= self.obs_threshold))\n self.frequencies.loc[t, 'Total_Freq'] += np.count_nonzero((\n threshold <= forecasts) & (forecasts < self.thresholds[t + 1]))\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, other_rel): if other_rel.thresholds.size == self.thresholds.size and np.all( other_rel.thresholds == self.thresholds): self.frequencies += other_rel.frequencies else: print('Input table thresholds do not match.')
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other_rel):\n if other_rel.thresholds.size == self.thresholds.size and np.all(\n other_rel.thresholds == self.thresholds):\n self.frequencies += other_rel.frequencies\n else:\n print('Input table thresholds do not match.')\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(self): total = self.frequencies['Total_Freq'].sum() curve = pd.DataFrame(columns=['Bin_Start', 'Bin_End', 'Bin_Center', 'Positive_Relative_Freq', 'Total_Relative_Freq']) curve['Bin_Start'] = self.thresholds[:-1] curve['Bin_End'] = self.thresholds[1:] curve['Bin_Center'] = 0.5 * (self.thresholds[:-1] + self.thresholds[1:]) curve['Positive_Relative_Freq'] = self.frequencies['Positive_Freq' ] / self.frequencies['Total_Freq'] curve['Total_Relative_Freq'] = self.frequencies['Total_Freq'] / total return curve
reliability_curve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n total = self.frequencies['Total_Freq'].sum()\n curve = pd.DataFrame(columns=['Bin_Start', 'Bin_End', 'Bin_Center',\n 'Positive_Relative_Freq', 'Total_Relative_Freq'])\n curve['Bin_Start'] = self.thresholds[:-1]\n curve['Bin_End'] = self.thresholds[1:]\n curve['Bin_Center'] = 0.5 * (self.thresholds[:-1] + self.thresholds[1:])\n curve['Positive_Relative_Freq'] = self.frequencies['Positive_Freq'\n ] / self.frequencies['Total_Freq']\n curve['Total_Relative_Freq'] = self.frequencies['Total_Freq'] / total\n return curve\n", "role": "user" }, { "content": "reliability_curve", "role": "assistant" } ]
def x(self): rel_curve = self.reliability_curve() total = self.frequencies['Total_Freq'].sum() climo_freq = float(self.frequencies['Positive_Freq'].sum() ) / self.frequencies['Total_Freq'].sum() reliability = np.sum(self.frequencies['Total_Freq'] * (rel_curve[ 'Bin_Start'] - rel_curve['Positive_Relative_Freq']) ** 2) / total resolution = np.sum(self.frequencies['Total_Freq'] * (rel_curve[ 'Positive_Relative_Freq'] - climo_freq) ** 2) / total uncertainty = climo_freq * (1 - climo_freq) return reliability, resolution, uncertainty
brier_score_components
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n rel_curve = self.reliability_curve()\n total = self.frequencies['Total_Freq'].sum()\n climo_freq = float(self.frequencies['Positive_Freq'].sum()\n ) / self.frequencies['Total_Freq'].sum()\n reliability = np.sum(self.frequencies['Total_Freq'] * (rel_curve[\n 'Bin_Start'] - rel_curve['Positive_Relative_Freq']) ** 2) / total\n resolution = np.sum(self.frequencies['Total_Freq'] * (rel_curve[\n 'Positive_Relative_Freq'] - climo_freq) ** 2) / total\n uncertainty = climo_freq * (1 - climo_freq)\n return reliability, resolution, uncertainty\n", "role": "user" }, { "content": "brier_score_components", "role": "assistant" } ]
def x(self): reliability, resolution, uncertainty = self.brier_score_components() return reliability - resolution + uncertainty
brier_score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n reliability, resolution, uncertainty = self.brier_score_components()\n return reliability - resolution + uncertainty\n", "role": "user" }, { "content": "brier_score", "role": "assistant" } ]
def x(self): reliability, resolution, uncertainty = self.brier_score_components() return (resolution - reliability) / uncertainty
brier_skill_score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n reliability, resolution, uncertainty = self.brier_score_components()\n return (resolution - reliability) / uncertainty\n", "role": "user" }, { "content": "brier_skill_score", "role": "assistant" } ]
def x(self, forecasts, observations): if len(observations.shape) == 1: obs_cdfs = np.zeros((observations.size, self.thresholds.size)) for o, observation in enumerate(observations): obs_cdfs[o, self.thresholds >= observation] = 1 else: obs_cdfs = observations self.errors['F_2'] += np.sum(forecasts ** 2, axis=0) self.errors['F_O'] += np.sum(forecasts * obs_cdfs, axis=0) self.errors['O_2'] += np.sum(obs_cdfs ** 2, axis=0) self.errors['O'] += np.sum(obs_cdfs, axis=0) self.num_forecasts += forecasts.shape[0]
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, forecasts, observations):\n if len(observations.shape) == 1:\n obs_cdfs = np.zeros((observations.size, self.thresholds.size))\n for o, observation in enumerate(observations):\n obs_cdfs[o, self.thresholds >= observation] = 1\n else:\n obs_cdfs = observations\n self.errors['F_2'] += np.sum(forecasts ** 2, axis=0)\n self.errors['F_O'] += np.sum(forecasts * obs_cdfs, axis=0)\n self.errors['O_2'] += np.sum(obs_cdfs ** 2, axis=0)\n self.errors['O'] += np.sum(obs_cdfs, axis=0)\n self.num_forecasts += forecasts.shape[0]\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): return np.sum(self.errors['F_2'].values - self.errors['F_O'].values * 2.0 + self.errors['O_2'].values) / (self.thresholds.size * self. num_forecasts)
crps
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return np.sum(self.errors['F_2'].values - self.errors['F_O'].values * \n 2.0 + self.errors['O_2'].values) / (self.thresholds.size * self.\n num_forecasts)\n", "role": "user" }, { "content": "crps", "role": "assistant" } ]
def x(self): o_bar = self.errors['O'].values / float(self.num_forecasts) crps_c = np.sum(self.num_forecasts * o_bar ** 2 - o_bar * self.errors[ 'O'].values * 2.0 + self.errors['O_2'].values) / float(self. thresholds.size * self.num_forecasts) return crps_c
crps_climo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n o_bar = self.errors['O'].values / float(self.num_forecasts)\n crps_c = np.sum(self.num_forecasts * o_bar ** 2 - o_bar * self.errors[\n 'O'].values * 2.0 + self.errors['O_2'].values) / float(self.\n thresholds.size * self.num_forecasts)\n return crps_c\n", "role": "user" }, { "content": "crps_climo", "role": "assistant" } ]
def x(self): crps_f = self.crps() crps_c = self.crps_climo() return 1.0 - float(crps_f) / float(crps_c)
crpss
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n crps_f = self.crps()\n crps_c = self.crps_climo()\n return 1.0 - float(crps_f) / float(crps_c)\n", "role": "user" }, { "content": "crpss", "role": "assistant" } ]
def x(cliente_sat): resposta = cliente_sat.consultar_status_operacional() alertas = [] for classe_alerta in AlertaOperacao.alertas_registrados: alerta = classe_alerta(resposta) if alerta.checar(): alertas.append(alerta) return alertas
checar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cliente_sat):\n resposta = cliente_sat.consultar_status_operacional()\n alertas = []\n for classe_alerta in AlertaOperacao.alertas_registrados:\n alerta = classe_alerta(resposta)\n if alerta.checar():\n alertas.append(alerta)\n return alertas\n", "role": "user" }, { "content": "checar", "role": "assistant" } ]
def x(metadata_source, key: str) ->bool: desc = session_key_map.get(key) if desc is not None: d = getattr(metadata_source, 'session_metadata', dict()) for k in desc['path'][:-1]: d = d.setdefault(k, dict()) if d is not None else None if d is not None: return desc['path'][-1] in d desc = key_map.get(key) if desc is not None: d = getattr(metadata_source, 'metadata', dict()) for k in desc['path'][:-1]: d = d.setdefault(k, dict()) if d is not None else None if d is not None: return desc['path'][-1] in d raise (False)
has_metadata_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(metadata_source, key: str) ->bool:\n desc = session_key_map.get(key)\n if desc is not None:\n d = getattr(metadata_source, 'session_metadata', dict())\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None:\n return desc['path'][-1] in d\n desc = key_map.get(key)\n if desc is not None:\n d = getattr(metadata_source, 'metadata', dict())\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None:\n return desc['path'][-1] in d\n raise (False)\n", "role": "user" }, { "content": "has_metadata_value", "role": "assistant" } ]
def x(metadata_source, key: str) ->typing.Any: desc = session_key_map.get(key) if desc is not None: v = getattr(metadata_source, 'session_metadata', dict()) for k in desc['path']: v = v.get(k) if v is not None else None return v desc = key_map.get(key) if desc is not None: v = getattr(metadata_source, 'metadata', dict()) for k in desc['path']: v = v.get(k) if v is not None else None return v raise KeyError()
get_metadata_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(metadata_source, key: str) ->typing.Any:\n desc = session_key_map.get(key)\n if desc is not None:\n v = getattr(metadata_source, 'session_metadata', dict())\n for k in desc['path']:\n v = v.get(k) if v is not None else None\n return v\n desc = key_map.get(key)\n if desc is not None:\n v = getattr(metadata_source, 'metadata', dict())\n for k in desc['path']:\n v = v.get(k) if v is not None else None\n return v\n raise KeyError()\n", "role": "user" }, { "content": "get_metadata_value", "role": "assistant" } ]
def x(metadata_source, key: str, value: typing.Any) ->None: desc = session_key_map.get(key) if desc is not None: d0 = getattr(metadata_source, 'session_metadata', dict()) d = d0 for k in desc['path'][:-1]: d = d.setdefault(k, dict()) if d is not None else None if d is not None: d[desc['path'][-1]] = value metadata_source.session_metadata = d0 return desc = key_map.get(key) if desc is not None: d0 = getattr(metadata_source, 'metadata', dict()) d = d0 for k in desc['path'][:-1]: d = d.setdefault(k, dict()) if d is not None else None if d is not None: d[desc['path'][-1]] = value metadata_source.metadata = d0 return raise KeyError()
set_metadata_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(metadata_source, key: str, value: typing.Any) ->None:\n desc = session_key_map.get(key)\n if desc is not None:\n d0 = getattr(metadata_source, 'session_metadata', dict())\n d = d0\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None:\n d[desc['path'][-1]] = value\n metadata_source.session_metadata = d0\n return\n desc = key_map.get(key)\n if desc is not None:\n d0 = getattr(metadata_source, 'metadata', dict())\n d = d0\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None:\n d[desc['path'][-1]] = value\n metadata_source.metadata = d0\n return\n raise KeyError()\n", "role": "user" }, { "content": "set_metadata_value", "role": "assistant" } ]
def x(metadata_source, key: str) ->None: desc = session_key_map.get(key) if desc is not None: d0 = getattr(metadata_source, 'session_metadata', dict()) d = d0 for k in desc['path'][:-1]: d = d.setdefault(k, dict()) if d is not None else None if d is not None and desc['path'][-1] in d: d.pop(desc['path'][-1], None) metadata_source.session_metadata = d0 return desc = key_map.get(key) if desc is not None: d0 = getattr(metadata_source, 'metadata', dict()) d = d0 for k in desc['path'][:-1]: d = d.setdefault(k, dict()) if d is not None else None if d is not None and desc['path'][-1] in d: d.pop(desc['path'][-1], None) metadata_source.metadata = d0 return
delete_metadata_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(metadata_source, key: str) ->None:\n desc = session_key_map.get(key)\n if desc is not None:\n d0 = getattr(metadata_source, 'session_metadata', dict())\n d = d0\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None and desc['path'][-1] in d:\n d.pop(desc['path'][-1], None)\n metadata_source.session_metadata = d0\n return\n desc = key_map.get(key)\n if desc is not None:\n d0 = getattr(metadata_source, 'metadata', dict())\n d = d0\n for k in desc['path'][:-1]:\n d = d.setdefault(k, dict()) if d is not None else None\n if d is not None and desc['path'][-1] in d:\n d.pop(desc['path'][-1], None)\n metadata_source.metadata = d0\n return\n", "role": "user" }, { "content": "delete_metadata_value", "role": "assistant" } ]
def x(self, plot_height): calibrated_data_min = self.calibrated_data_min calibrated_data_max = self.calibrated_data_max calibrated_data_range = calibrated_data_max - calibrated_data_min ticker = self.y_ticker y_ticks = list() for tick_value, tick_label in zip(ticker.values, ticker.labels): if calibrated_data_range != 0.0: y_tick = plot_height - plot_height * (tick_value - calibrated_data_min) / calibrated_data_range else: y_tick = plot_height - plot_height * 0.5 if y_tick >= 0 and y_tick <= plot_height: y_ticks.append((y_tick, tick_label)) return y_ticks
calculate_y_ticks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, plot_height):\n calibrated_data_min = self.calibrated_data_min\n calibrated_data_max = self.calibrated_data_max\n calibrated_data_range = calibrated_data_max - calibrated_data_min\n ticker = self.y_ticker\n y_ticks = list()\n for tick_value, tick_label in zip(ticker.values, ticker.labels):\n if calibrated_data_range != 0.0:\n y_tick = plot_height - plot_height * (tick_value -\n calibrated_data_min) / calibrated_data_range\n else:\n y_tick = plot_height - plot_height * 0.5\n if y_tick >= 0 and y_tick <= plot_height:\n y_ticks.append((y_tick, tick_label))\n return y_ticks\n", "role": "user" }, { "content": "calculate_y_ticks", "role": "assistant" } ]
def x(self, plot_width): x_calibration = self.x_calibration uncalibrated_data_left = self.__uncalibrated_left_channel uncalibrated_data_right = self.__uncalibrated_right_channel calibrated_data_left = x_calibration.convert_to_calibrated_value( uncalibrated_data_left ) if x_calibration is not None else uncalibrated_data_left calibrated_data_right = x_calibration.convert_to_calibrated_value( uncalibrated_data_right ) if x_calibration is not None else uncalibrated_data_right calibrated_data_left, calibrated_data_right = min(calibrated_data_left, calibrated_data_right), max(calibrated_data_left, calibrated_data_right ) graph_left, graph_right, tick_values, division, precision = (Geometry. make_pretty_range(calibrated_data_left, calibrated_data_right)) drawn_data_width = self.drawn_right_channel - self.drawn_left_channel x_ticks = list() if drawn_data_width > 0.0: for tick_value in tick_values: label = nice_label(tick_value, precision) data_tick = x_calibration.convert_from_calibrated_value(tick_value ) if x_calibration else tick_value x_tick = plot_width * (data_tick - self.drawn_left_channel ) / drawn_data_width if x_tick >= 0 and x_tick <= plot_width: x_ticks.append((x_tick, label)) return x_ticks
calculate_x_ticks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, plot_width):\n x_calibration = self.x_calibration\n uncalibrated_data_left = self.__uncalibrated_left_channel\n uncalibrated_data_right = self.__uncalibrated_right_channel\n calibrated_data_left = x_calibration.convert_to_calibrated_value(\n uncalibrated_data_left\n ) if x_calibration is not None else uncalibrated_data_left\n calibrated_data_right = x_calibration.convert_to_calibrated_value(\n uncalibrated_data_right\n ) if x_calibration is not None else uncalibrated_data_right\n calibrated_data_left, calibrated_data_right = min(calibrated_data_left,\n calibrated_data_right), max(calibrated_data_left, calibrated_data_right\n )\n graph_left, graph_right, tick_values, division, precision = (Geometry.\n make_pretty_range(calibrated_data_left, calibrated_data_right))\n drawn_data_width = self.drawn_right_channel - self.drawn_left_channel\n x_ticks = list()\n if drawn_data_width > 0.0:\n for tick_value in tick_values:\n label = nice_label(tick_value, precision)\n data_tick = x_calibration.convert_from_calibrated_value(tick_value\n ) if x_calibration else tick_value\n x_tick = plot_width * (data_tick - self.drawn_left_channel\n ) / drawn_data_width\n if x_tick >= 0 and x_tick <= plot_width:\n x_ticks.append((x_tick, label))\n return x_ticks\n", "role": "user" }, { "content": "calculate_x_ticks", "role": "assistant" } ]
def x(self): new_sizing = self.copy_sizing() new_sizing.minimum_height = 0 new_sizing.maximum_height = 0 axes = self.__axes if axes and axes.is_valid: if axes.x_calibration and axes.x_calibration.units: new_sizing.minimum_height = self.font_size + 4 new_sizing.maximum_height = self.font_size + 4 self.update_sizing(new_sizing)
size_to_content
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n new_sizing = self.copy_sizing()\n new_sizing.minimum_height = 0\n new_sizing.maximum_height = 0\n axes = self.__axes\n if axes and axes.is_valid:\n if axes.x_calibration and axes.x_calibration.units:\n new_sizing.minimum_height = self.font_size + 4\n new_sizing.maximum_height = self.font_size + 4\n self.update_sizing(new_sizing)\n", "role": "user" }, { "content": "size_to_content", "role": "assistant" } ]
def x(self, get_font_metrics_fn): new_sizing = self.copy_sizing() new_sizing.minimum_width = 0 new_sizing.maximum_width = 0 axes = self.__axes if axes and axes.is_valid: font = '{0:d}px'.format(self.font_size) max_width = 0 y_range = axes.calibrated_data_max - axes.calibrated_data_min label = axes.y_ticker.value_label(axes.calibrated_data_max + y_range * 5) max_width = max(max_width, get_font_metrics_fn(font, label).width) label = axes.y_ticker.value_label(axes.calibrated_data_min - y_range * 5) max_width = max(max_width, get_font_metrics_fn(font, label).width) new_sizing.minimum_width = max_width new_sizing.maximum_width = max_width self.update_sizing(new_sizing)
size_to_content
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, get_font_metrics_fn):\n new_sizing = self.copy_sizing()\n new_sizing.minimum_width = 0\n new_sizing.maximum_width = 0\n axes = self.__axes\n if axes and axes.is_valid:\n font = '{0:d}px'.format(self.font_size)\n max_width = 0\n y_range = axes.calibrated_data_max - axes.calibrated_data_min\n label = axes.y_ticker.value_label(axes.calibrated_data_max + \n y_range * 5)\n max_width = max(max_width, get_font_metrics_fn(font, label).width)\n label = axes.y_ticker.value_label(axes.calibrated_data_min - \n y_range * 5)\n max_width = max(max_width, get_font_metrics_fn(font, label).width)\n new_sizing.minimum_width = max_width\n new_sizing.maximum_width = max_width\n self.update_sizing(new_sizing)\n", "role": "user" }, { "content": "size_to_content", "role": "assistant" } ]
def x(self): new_sizing = self.copy_sizing() new_sizing.minimum_width = 0 new_sizing.maximum_width = 0 axes = self.__axes if axes and axes.is_valid: if axes.y_calibration and axes.y_calibration.units: new_sizing.minimum_width = self.font_size + 4 new_sizing.maximum_width = self.font_size + 4 self.update_sizing(new_sizing)
size_to_content
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n new_sizing = self.copy_sizing()\n new_sizing.minimum_width = 0\n new_sizing.maximum_width = 0\n axes = self.__axes\n if axes and axes.is_valid:\n if axes.y_calibration and axes.y_calibration.units:\n new_sizing.minimum_width = self.font_size + 4\n new_sizing.maximum_width = self.font_size + 4\n self.update_sizing(new_sizing)\n", "role": "user" }, { "content": "size_to_content", "role": "assistant" } ]
def x(snippet_name, **format_kwargs): filename = snippet_name + '.snippet' snippet_file = os.path.join(SNIPPETS_ROOT, filename) if not os.path.isfile(snippet_file): raise ValueError('could not find snippet with name ' + filename) ret = helpers.get_file_content(snippet_file) if format_kwargs: ret = ret.format(**format_kwargs) return ret
get_snippet_content
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(snippet_name, **format_kwargs):\n filename = snippet_name + '.snippet'\n snippet_file = os.path.join(SNIPPETS_ROOT, filename)\n if not os.path.isfile(snippet_file):\n raise ValueError('could not find snippet with name ' + filename)\n ret = helpers.get_file_content(snippet_file)\n if format_kwargs:\n ret = ret.format(**format_kwargs)\n return ret\n", "role": "user" }, { "content": "get_snippet_content", "role": "assistant" } ]
def x(self, display_calibration_info, display_properties: typing.Mapping, display_layers: typing.Sequence[typing.Mapping]) ->None: with self.__closing_lock: if self.__closed: return displayed_dimensional_scales = (display_calibration_info. displayed_dimensional_scales) displayed_dimensional_calibrations = (display_calibration_info. displayed_dimensional_calibrations) self.__data_scale = displayed_dimensional_scales[-1] if len( displayed_dimensional_scales) > 0 else 1 self.__displayed_dimensional_calibration = ( displayed_dimensional_calibrations[-1] if len( displayed_dimensional_calibrations) > 0 else Calibration. Calibration(scale=displayed_dimensional_scales[-1])) self.__intensity_calibration = (display_calibration_info. displayed_intensity_calibration) self.__calibration_style = display_calibration_info.calibration_style self.__y_min = display_properties.get('y_min') self.__y_max = display_properties.get('y_max') self.__y_style = display_properties.get('y_style', 'linear') self.__left_channel = display_properties.get('left_channel') self.__right_channel = display_properties.get('right_channel') self.__legend_position = display_properties.get('legend_position') self.__display_layers = display_layers if self.__display_values_list and len(self.__display_values_list) > 0: self.__xdata_list = [(display_values.display_data_and_metadata if display_values else None) for display_values in self. __display_values_list] xdata0 = self.__xdata_list[0] if xdata0: self.__update_frame(xdata0.metadata) else: self.__xdata_list = list() self.__update_cursor_info() self.update()
update_display_properties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, display_calibration_info, display_properties: typing.Mapping,\n display_layers: typing.Sequence[typing.Mapping]) ->None:\n with self.__closing_lock:\n if self.__closed:\n return\n displayed_dimensional_scales = (display_calibration_info.\n displayed_dimensional_scales)\n displayed_dimensional_calibrations = (display_calibration_info.\n displayed_dimensional_calibrations)\n self.__data_scale = displayed_dimensional_scales[-1] if len(\n displayed_dimensional_scales) > 0 else 1\n self.__displayed_dimensional_calibration = (\n displayed_dimensional_calibrations[-1] if len(\n displayed_dimensional_calibrations) > 0 else Calibration.\n Calibration(scale=displayed_dimensional_scales[-1]))\n self.__intensity_calibration = (display_calibration_info.\n displayed_intensity_calibration)\n self.__calibration_style = display_calibration_info.calibration_style\n self.__y_min = display_properties.get('y_min')\n self.__y_max = display_properties.get('y_max')\n self.__y_style = display_properties.get('y_style', 'linear')\n self.__left_channel = display_properties.get('left_channel')\n self.__right_channel = display_properties.get('right_channel')\n self.__legend_position = display_properties.get('legend_position')\n self.__display_layers = display_layers\n if self.__display_values_list and len(self.__display_values_list) > 0:\n self.__xdata_list = [(display_values.display_data_and_metadata if\n display_values else None) for display_values in self.\n __display_values_list]\n xdata0 = self.__xdata_list[0]\n if xdata0:\n self.__update_frame(xdata0.metadata)\n else:\n self.__xdata_list = list()\n self.__update_cursor_info()\n self.update()\n", "role": "user" }, { "content": "update_display_properties", "role": "assistant" } ]
def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, intervals: typing.List[typing.Tuple[float, float]]) ->None: left = None right = None for interval in intervals: left = min(left, interval[0]) if left is not None else interval[0] right = max(right, interval[1]) if right is not None else interval[1] left = left if left is not None else 0.0 right = right if right is not None else 1.0 left_channel = int(max(0.0, left) * data_and_metadata.data_shape[-1]) right_channel = int(min(1.0, right) * data_and_metadata.data_shape[-1]) data_min = numpy.amin(data_and_metadata.data[..., left_channel: right_channel]) data_max = numpy.amax(data_and_metadata.data[..., left_channel: right_channel]) if data_min > 0 and data_max > 0: y_min = 0.0 y_max = data_max * 1.2 elif data_min < 0 and data_max < 0: y_min = data_min * 1.2 y_max = 0.0 else: y_min = data_min * 1.2 y_max = data_max * 1.2 extra = (right - left) * 0.5 display_left_channel = int(max(0.0, left - extra) * data_and_metadata. data_shape[-1]) display_right_channel = int(min(1.0, right + extra) * data_and_metadata .data_shape[-1]) self.delegate.update_display_properties({'left_channel': display_left_channel, 'right_channel': display_right_channel, 'y_min': y_min, 'y_max': y_max})
view_to_intervals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, intervals:\n typing.List[typing.Tuple[float, float]]) ->None:\n left = None\n right = None\n for interval in intervals:\n left = min(left, interval[0]) if left is not None else interval[0]\n right = max(right, interval[1]) if right is not None else interval[1]\n left = left if left is not None else 0.0\n right = right if right is not None else 1.0\n left_channel = int(max(0.0, left) * data_and_metadata.data_shape[-1])\n right_channel = int(min(1.0, right) * data_and_metadata.data_shape[-1])\n data_min = numpy.amin(data_and_metadata.data[..., left_channel:\n right_channel])\n data_max = numpy.amax(data_and_metadata.data[..., left_channel:\n right_channel])\n if data_min > 0 and data_max > 0:\n y_min = 0.0\n y_max = data_max * 1.2\n elif data_min < 0 and data_max < 0:\n y_min = data_min * 1.2\n y_max = 0.0\n else:\n y_min = data_min * 1.2\n y_max = data_max * 1.2\n extra = (right - left) * 0.5\n display_left_channel = int(max(0.0, left - extra) * data_and_metadata.\n data_shape[-1])\n display_right_channel = int(min(1.0, right + extra) * data_and_metadata\n .data_shape[-1])\n self.delegate.update_display_properties({'left_channel':\n display_left_channel, 'right_channel': display_right_channel,\n 'y_min': y_min, 'y_max': y_max})\n", "role": "user" }, { "content": "view_to_intervals", "role": "assistant" } ]
def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata) ->None: all_graphics = self.__graphics graphics = [graphic for graphic_index, graphic in enumerate( all_graphics) if self.__graphic_selection.contains(graphic_index)] intervals = list() for graphic in graphics: if isinstance(graphic, Graphics.IntervalGraphic): intervals.append(graphic.interval) self.__view_to_intervals(data_and_metadata, intervals)
view_to_selected_graphics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata) ->None:\n all_graphics = self.__graphics\n graphics = [graphic for graphic_index, graphic in enumerate(\n all_graphics) if self.__graphic_selection.contains(graphic_index)]\n intervals = list()\n for graphic in graphics:\n if isinstance(graphic, Graphics.IntervalGraphic):\n intervals.append(graphic.interval)\n self.__view_to_intervals(data_and_metadata, intervals)\n", "role": "user" }, { "content": "view_to_selected_graphics", "role": "assistant" } ]
def x(self): if not self.delegate: return if self.__mouse_in and self.__last_mouse: pos_1d = None axes = self.__axes line_graph_canvas_item = self.line_graph_canvas_item if axes and axes.is_valid and line_graph_canvas_item: mouse = self.map_to_canvas_item(self.__last_mouse, line_graph_canvas_item) plot_rect = line_graph_canvas_item.canvas_bounds if plot_rect.contains_point(mouse): mouse = mouse - plot_rect.origin x = float(mouse.x) / plot_rect.width px = axes.drawn_left_channel + x * (axes. drawn_right_channel - axes.drawn_left_channel) pos_1d = px, self.delegate.cursor_changed(pos_1d)
update_cursor_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.delegate:\n return\n if self.__mouse_in and self.__last_mouse:\n pos_1d = None\n axes = self.__axes\n line_graph_canvas_item = self.line_graph_canvas_item\n if axes and axes.is_valid and line_graph_canvas_item:\n mouse = self.map_to_canvas_item(self.__last_mouse,\n line_graph_canvas_item)\n plot_rect = line_graph_canvas_item.canvas_bounds\n if plot_rect.contains_point(mouse):\n mouse = mouse - plot_rect.origin\n x = float(mouse.x) / plot_rect.width\n px = axes.drawn_left_channel + x * (axes.\n drawn_right_channel - axes.drawn_left_channel)\n pos_1d = px,\n self.delegate.cursor_changed(pos_1d)\n", "role": "user" }, { "content": "update_cursor_info", "role": "assistant" } ]
def x(self): self.model_grid.load_data() tracked_model_objects = [] model_objects = [] if self.model_grid.data is None: print('No model output found') return tracked_model_objects min_orig = self.model_ew.min_thresh max_orig = self.model_ew.max_thresh data_increment_orig = self.model_ew.data_increment self.model_ew.min_thresh = 0 self.model_ew.data_increment = 1 self.model_ew.max_thresh = 100 for h, hour in enumerate(self.hours): print('Finding {0} objects for run {1} Hour: {2:02d}'.format(self. ensemble_member, self.run_date.strftime('%Y%m%d%H'), hour)) if self.mask is not None: model_data = self.model_grid.data[h] * self.mask else: model_data = self.model_grid.data[h] model_data[:self.patch_radius] = 0 model_data[-self.patch_radius:] = 0 model_data[:, :self.patch_radius] = 0 model_data[:, -self.patch_radius:] = 0 scaled_data = np.array(rescale_data(model_data, min_orig, max_orig)) hour_labels = label_storm_objects(scaled_data, 'ew', self.model_ew. min_thresh, self.model_ew.max_thresh, min_area=self.size_filter, max_area=self.model_ew.max_size, max_range=self.model_ew.delta, increment=self.model_ew.data_increment, gaussian_sd=self. gaussian_window) model_objects.extend(extract_storm_patches(hour_labels, model_data, self.model_grid.x, self.model_grid.y, [hour], dx=self. model_grid.dx, patch_radius=self.patch_radius)) for model_obj in model_objects[-1]: dims = model_obj.timesteps[-1].shape if h > 0: model_obj.estimate_motion(hour, self.model_grid.data[h - 1], dims[1], dims[0]) del scaled_data del model_data del hour_labels tracked_model_objects.extend(track_storms(model_objects, self.hours, self.object_matcher.cost_function_components, self.object_matcher. max_values, self.object_matcher.weights)) self.model_ew.min_thresh = min_orig self.model_ew.max_thresh = max_orig self.model_ew.data_increment = data_increment_orig return tracked_model_objects
find_model_patch_tracks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.model_grid.load_data()\n tracked_model_objects = []\n model_objects = []\n if self.model_grid.data is None:\n print('No model output found')\n return tracked_model_objects\n min_orig = self.model_ew.min_thresh\n max_orig = self.model_ew.max_thresh\n data_increment_orig = self.model_ew.data_increment\n self.model_ew.min_thresh = 0\n self.model_ew.data_increment = 1\n self.model_ew.max_thresh = 100\n for h, hour in enumerate(self.hours):\n print('Finding {0} objects for run {1} Hour: {2:02d}'.format(self.\n ensemble_member, self.run_date.strftime('%Y%m%d%H'), hour))\n if self.mask is not None:\n model_data = self.model_grid.data[h] * self.mask\n else:\n model_data = self.model_grid.data[h]\n model_data[:self.patch_radius] = 0\n model_data[-self.patch_radius:] = 0\n model_data[:, :self.patch_radius] = 0\n model_data[:, -self.patch_radius:] = 0\n scaled_data = np.array(rescale_data(model_data, min_orig, max_orig))\n hour_labels = label_storm_objects(scaled_data, 'ew', self.model_ew.\n min_thresh, self.model_ew.max_thresh, min_area=self.size_filter,\n max_area=self.model_ew.max_size, max_range=self.model_ew.delta,\n increment=self.model_ew.data_increment, gaussian_sd=self.\n gaussian_window)\n model_objects.extend(extract_storm_patches(hour_labels, model_data,\n self.model_grid.x, self.model_grid.y, [hour], dx=self.\n model_grid.dx, patch_radius=self.patch_radius))\n for model_obj in model_objects[-1]:\n dims = model_obj.timesteps[-1].shape\n if h > 0:\n model_obj.estimate_motion(hour, self.model_grid.data[h - 1],\n dims[1], dims[0])\n del scaled_data\n del model_data\n del hour_labels\n tracked_model_objects.extend(track_storms(model_objects, self.hours,\n self.object_matcher.cost_function_components, self.object_matcher.\n max_values, self.object_matcher.weights))\n self.model_ew.min_thresh = min_orig\n self.model_ew.max_thresh = max_orig\n self.model_ew.data_increment = data_increment_orig\n return tracked_model_objects\n", "role": "user" }, { "content": "find_model_patch_tracks", "role": "assistant" } ]
def x(self): self.model_grid.load_data() model_objects = [] tracked_model_objects = [] if self.model_grid.data is None: print('No model output found') return tracked_model_objects for h, hour in enumerate(self.hours): print('Finding {0} objects for run {1} Hour: {2:02d}'.format(self. ensemble_member, self.run_date.strftime('%Y%m%d%H'), hour)) if self.mask is not None: model_data = self.model_grid.data[h] * self.mask else: model_data = self.model_grid.data[h] min_orig = self.model_ew.min_thresh max_orig = self.model_ew.max_thresh data_increment_orig = self.model_ew.data_increment scaled_data = np.array(rescale_data(self.model_grid.data[h], min_orig, max_orig)) self.model_ew.min_thresh = 0 self.model_ew.data_increment = 1 self.model_ew.max_thresh = 100 hour_labels = self.model_ew.label(gaussian_filter(scaled_data, self .gaussian_window)) hour_labels[model_data < self.model_ew.min_thresh] = 0 hour_labels = self.model_ew.size_filter(hour_labels, self.size_filter) self.model_ew.min_thresh = min_orig self.model_ew.max_thresh = max_orig self.model_ew.data_increment = data_increment_orig obj_slices = find_objects(hour_labels) num_slices = len(obj_slices) model_objects.append([]) if num_slices > 0: for s, sl in enumerate(obj_slices): model_objects[-1].append(STObject(self.model_grid.data[h][ sl], np.where(hour_labels[sl] == s + 1, 1, 0), self. model_grid.x[sl], self.model_grid.y[sl], self. model_grid.i[sl], self.model_grid.j[sl], hour, hour, dx =self.model_grid.dx)) if h > 0: dims = model_objects[-1][-1].timesteps[0].shape model_objects[-1][-1].estimate_motion(hour, self. model_grid.data[h - 1], dims[1], dims[0]) del hour_labels del scaled_data del model_data for h, hour in enumerate(self.hours): past_time_objs = [] for obj in tracked_model_objects: if obj.end_time == hour - 1: past_time_objs.append(obj) if len(past_time_objs) == 0: tracked_model_objects.extend(model_objects[h]) elif len(past_time_objs) > 0 and len(model_objects[h]) > 0: assignments = self.object_matcher.match_objects(past_time_objs, model_objects[h], hour - 1, hour) unpaired = list(range(len(model_objects[h]))) for pair in assignments: past_time_objs[pair[0]].extend(model_objects[h][pair[1]]) unpaired.remove(pair[1]) if len(unpaired) > 0: for up in unpaired: tracked_model_objects.append(model_objects[h][up]) print('Tracked Model Objects: {0:03d} Hour: {1:02d}'.format(len( tracked_model_objects), hour)) return tracked_model_objects
find_model_tracks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.model_grid.load_data()\n model_objects = []\n tracked_model_objects = []\n if self.model_grid.data is None:\n print('No model output found')\n return tracked_model_objects\n for h, hour in enumerate(self.hours):\n print('Finding {0} objects for run {1} Hour: {2:02d}'.format(self.\n ensemble_member, self.run_date.strftime('%Y%m%d%H'), hour))\n if self.mask is not None:\n model_data = self.model_grid.data[h] * self.mask\n else:\n model_data = self.model_grid.data[h]\n min_orig = self.model_ew.min_thresh\n max_orig = self.model_ew.max_thresh\n data_increment_orig = self.model_ew.data_increment\n scaled_data = np.array(rescale_data(self.model_grid.data[h],\n min_orig, max_orig))\n self.model_ew.min_thresh = 0\n self.model_ew.data_increment = 1\n self.model_ew.max_thresh = 100\n hour_labels = self.model_ew.label(gaussian_filter(scaled_data, self\n .gaussian_window))\n hour_labels[model_data < self.model_ew.min_thresh] = 0\n hour_labels = self.model_ew.size_filter(hour_labels, self.size_filter)\n self.model_ew.min_thresh = min_orig\n self.model_ew.max_thresh = max_orig\n self.model_ew.data_increment = data_increment_orig\n obj_slices = find_objects(hour_labels)\n num_slices = len(obj_slices)\n model_objects.append([])\n if num_slices > 0:\n for s, sl in enumerate(obj_slices):\n model_objects[-1].append(STObject(self.model_grid.data[h][\n sl], np.where(hour_labels[sl] == s + 1, 1, 0), self.\n model_grid.x[sl], self.model_grid.y[sl], self.\n model_grid.i[sl], self.model_grid.j[sl], hour, hour, dx\n =self.model_grid.dx))\n if h > 0:\n dims = model_objects[-1][-1].timesteps[0].shape\n model_objects[-1][-1].estimate_motion(hour, self.\n model_grid.data[h - 1], dims[1], dims[0])\n del hour_labels\n del scaled_data\n del model_data\n for h, hour in enumerate(self.hours):\n past_time_objs = []\n for obj in tracked_model_objects:\n if obj.end_time == hour - 1:\n past_time_objs.append(obj)\n if len(past_time_objs) == 0:\n tracked_model_objects.extend(model_objects[h])\n elif len(past_time_objs) > 0 and len(model_objects[h]) > 0:\n assignments = self.object_matcher.match_objects(past_time_objs,\n model_objects[h], hour - 1, hour)\n unpaired = list(range(len(model_objects[h])))\n for pair in assignments:\n past_time_objs[pair[0]].extend(model_objects[h][pair[1]])\n unpaired.remove(pair[1])\n if len(unpaired) > 0:\n for up in unpaired:\n tracked_model_objects.append(model_objects[h][up])\n print('Tracked Model Objects: {0:03d} Hour: {1:02d}'.format(len(\n tracked_model_objects), hour))\n return tracked_model_objects\n", "role": "user" }, { "content": "find_model_tracks", "role": "assistant" } ]
def x(self): obs_objects = [] tracked_obs_objects = [] if self.mrms_ew is not None: self.mrms_grid.load_data() if len(self.mrms_grid.data) != len(self.hours): print('Less than 24 hours of observation data found') return tracked_obs_objects for h, hour in enumerate(self.hours): mrms_data = np.zeros(self.mrms_grid.data[h].shape) mrms_data[:] = np.array(self.mrms_grid.data[h]) mrms_data[mrms_data < 0] = 0 hour_labels = self.mrms_ew.size_filter(self.mrms_ew.label( gaussian_filter(mrms_data, self.gaussian_window)), self. size_filter) hour_labels[mrms_data < self.mrms_ew.min_thresh] = 0 obj_slices = find_objects(hour_labels) num_slices = len(obj_slices) obs_objects.append([]) if num_slices > 0: for sl in obj_slices: obs_objects[-1].append(STObject(mrms_data[sl], np.where (hour_labels[sl] > 0, 1, 0), self.model_grid.x[sl], self.model_grid.y[sl], self.model_grid.i[sl], self. model_grid.j[sl], hour, hour, dx=self.model_grid.dx)) if h > 0: dims = obs_objects[-1][-1].timesteps[0].shape obs_objects[-1][-1].estimate_motion(hour, self. mrms_grid.data[h - 1], dims[1], dims[0]) for h, hour in enumerate(self.hours): past_time_objs = [] for obj in tracked_obs_objects: if obj.end_time == hour - 1: past_time_objs.append(obj) if len(past_time_objs) == 0: tracked_obs_objects.extend(obs_objects[h]) elif len(past_time_objs) > 0 and len(obs_objects[h]) > 0: assignments = self.object_matcher.match_objects(past_time_objs, obs_objects[h], hour - 1, hour) unpaired = list(range(len(obs_objects[h]))) for pair in assignments: past_time_objs[pair[0]].extend(obs_objects[h][pair[1]]) unpaired.remove(pair[1]) if len(unpaired) > 0: for up in unpaired: tracked_obs_objects.append(obs_objects[h][up]) print('Tracked Obs Objects: {0:03d} Hour: {1:02d}'.format(len( tracked_obs_objects), hour)) return tracked_obs_objects
find_mrms_tracks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n obs_objects = []\n tracked_obs_objects = []\n if self.mrms_ew is not None:\n self.mrms_grid.load_data()\n if len(self.mrms_grid.data) != len(self.hours):\n print('Less than 24 hours of observation data found')\n return tracked_obs_objects\n for h, hour in enumerate(self.hours):\n mrms_data = np.zeros(self.mrms_grid.data[h].shape)\n mrms_data[:] = np.array(self.mrms_grid.data[h])\n mrms_data[mrms_data < 0] = 0\n hour_labels = self.mrms_ew.size_filter(self.mrms_ew.label(\n gaussian_filter(mrms_data, self.gaussian_window)), self.\n size_filter)\n hour_labels[mrms_data < self.mrms_ew.min_thresh] = 0\n obj_slices = find_objects(hour_labels)\n num_slices = len(obj_slices)\n obs_objects.append([])\n if num_slices > 0:\n for sl in obj_slices:\n obs_objects[-1].append(STObject(mrms_data[sl], np.where\n (hour_labels[sl] > 0, 1, 0), self.model_grid.x[sl],\n self.model_grid.y[sl], self.model_grid.i[sl], self.\n model_grid.j[sl], hour, hour, dx=self.model_grid.dx))\n if h > 0:\n dims = obs_objects[-1][-1].timesteps[0].shape\n obs_objects[-1][-1].estimate_motion(hour, self.\n mrms_grid.data[h - 1], dims[1], dims[0])\n for h, hour in enumerate(self.hours):\n past_time_objs = []\n for obj in tracked_obs_objects:\n if obj.end_time == hour - 1:\n past_time_objs.append(obj)\n if len(past_time_objs) == 0:\n tracked_obs_objects.extend(obs_objects[h])\n elif len(past_time_objs) > 0 and len(obs_objects[h]) > 0:\n assignments = self.object_matcher.match_objects(past_time_objs,\n obs_objects[h], hour - 1, hour)\n unpaired = list(range(len(obs_objects[h])))\n for pair in assignments:\n past_time_objs[pair[0]].extend(obs_objects[h][pair[1]])\n unpaired.remove(pair[1])\n if len(unpaired) > 0:\n for up in unpaired:\n tracked_obs_objects.append(obs_objects[h][up])\n print('Tracked Obs Objects: {0:03d} Hour: {1:02d}'.format(len(\n tracked_obs_objects), hour))\n return tracked_obs_objects\n", "role": "user" }, { "content": "find_mrms_tracks", "role": "assistant" } ]
def x(self, model_tracks, obs_tracks, unique_matches=True, closest_matches= False): if unique_matches: pairings = self.track_matcher.match_tracks(model_tracks, obs_tracks, closest_matches=closest_matches) else: pairings = self.track_matcher.neighbor_matches(model_tracks, obs_tracks ) return pairings
match_tracks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_tracks, obs_tracks, unique_matches=True, closest_matches=\n False):\n if unique_matches:\n pairings = self.track_matcher.match_tracks(model_tracks, obs_tracks,\n closest_matches=closest_matches)\n else:\n pairings = self.track_matcher.neighbor_matches(model_tracks, obs_tracks\n )\n return pairings\n", "role": "user" }, { "content": "match_tracks", "role": "assistant" } ]
def x(self, tracked_model_objects, storm_variables, potential_variables, tendency_variables=None, future_variables=None): if tendency_variables is None: tendency_variables = [] if future_variables is None: future_variables = [] model_grids = {} for l_var in ['lon', 'lat']: for model_obj in tracked_model_objects: model_obj.extract_attribute_array(getattr(self.model_grid, l_var), l_var) for storm_var in storm_variables: print('Storm {0} {1} {2}'.format(storm_var, self.ensemble_member, self.run_date.strftime('%Y%m%d'))) model_grids[storm_var] = ModelOutput(self.ensemble_name, self. ensemble_member, self.run_date, storm_var, self.start_date - timedelta(hours=1), self.end_date + timedelta(hours=1), self. model_path, self.model_map_file, self.sector_ind_path, self. single_step) model_grids[storm_var].load_data() for model_obj in tracked_model_objects: model_obj.extract_attribute_grid(model_grids[storm_var]) if (storm_var not in potential_variables + tendency_variables + future_variables): del model_grids[storm_var] for potential_var in potential_variables: print('Potential {0} {1} {2}'.format(potential_var, self. ensemble_member, self.run_date.strftime('%Y%m%d'))) if potential_var not in model_grids.keys(): model_grids[potential_var] = ModelOutput(self.ensemble_name, self.ensemble_member, self.run_date, potential_var, self. start_date - timedelta(hours=1), self.end_date + timedelta( hours=1), self.model_path, self.model_map_file, self. sector_ind_path, self.single_step) model_grids[potential_var].load_data() for model_obj in tracked_model_objects: model_obj.extract_attribute_grid(model_grids[potential_var], potential=True) if potential_var not in tendency_variables + future_variables: del model_grids[potential_var] for future_var in future_variables: print('Future {0} {1} {2}'.format(future_var, self.ensemble_member, self.run_date.strftime('%Y%m%d'))) if future_var not in model_grids.keys(): model_grids[future_var] = ModelOutput(self.ensemble_name, self. ensemble_member, self.run_date, future_var, self.start_date - timedelta(hours=1), self.end_date + timedelta(hours=1), self.model_path, self.model_map_file, self.sector_ind_path, self.single_step) model_grids[future_var].load_data() for model_obj in tracked_model_objects: model_obj.extract_attribute_grid(model_grids[future_var], future=True) if future_var not in tendency_variables: del model_grids[future_var] for tendency_var in tendency_variables: print('Tendency {0} {1} {2}'.format(tendency_var, self. ensemble_member, self.run_date.strftime('%Y%m%d'))) if tendency_var not in model_grids.keys(): model_grids[tendency_var] = ModelOutput(self.ensemble_name, self.ensemble_member, self.run_date, tendency_var, self. start_date - timedelta(hours=1), self.end_date, self. model_path, self.model_map_file, self.sector_ind_path, self .single_step) for model_obj in tracked_model_objects: model_obj.extract_tendency_grid(model_grids[tendency_var]) del model_grids[tendency_var]
extract_model_attributes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tracked_model_objects, storm_variables, potential_variables,\n tendency_variables=None, future_variables=None):\n if tendency_variables is None:\n tendency_variables = []\n if future_variables is None:\n future_variables = []\n model_grids = {}\n for l_var in ['lon', 'lat']:\n for model_obj in tracked_model_objects:\n model_obj.extract_attribute_array(getattr(self.model_grid,\n l_var), l_var)\n for storm_var in storm_variables:\n print('Storm {0} {1} {2}'.format(storm_var, self.ensemble_member,\n self.run_date.strftime('%Y%m%d')))\n model_grids[storm_var] = ModelOutput(self.ensemble_name, self.\n ensemble_member, self.run_date, storm_var, self.start_date -\n timedelta(hours=1), self.end_date + timedelta(hours=1), self.\n model_path, self.model_map_file, self.sector_ind_path, self.\n single_step)\n model_grids[storm_var].load_data()\n for model_obj in tracked_model_objects:\n model_obj.extract_attribute_grid(model_grids[storm_var])\n if (storm_var not in potential_variables + tendency_variables +\n future_variables):\n del model_grids[storm_var]\n for potential_var in potential_variables:\n print('Potential {0} {1} {2}'.format(potential_var, self.\n ensemble_member, self.run_date.strftime('%Y%m%d')))\n if potential_var not in model_grids.keys():\n model_grids[potential_var] = ModelOutput(self.ensemble_name,\n self.ensemble_member, self.run_date, potential_var, self.\n start_date - timedelta(hours=1), self.end_date + timedelta(\n hours=1), self.model_path, self.model_map_file, self.\n sector_ind_path, self.single_step)\n model_grids[potential_var].load_data()\n for model_obj in tracked_model_objects:\n model_obj.extract_attribute_grid(model_grids[potential_var],\n potential=True)\n if potential_var not in tendency_variables + future_variables:\n del model_grids[potential_var]\n for future_var in future_variables:\n print('Future {0} {1} {2}'.format(future_var, self.ensemble_member,\n self.run_date.strftime('%Y%m%d')))\n if future_var not in model_grids.keys():\n model_grids[future_var] = ModelOutput(self.ensemble_name, self.\n ensemble_member, self.run_date, future_var, self.start_date -\n timedelta(hours=1), self.end_date + timedelta(hours=1),\n self.model_path, self.model_map_file, self.sector_ind_path,\n self.single_step)\n model_grids[future_var].load_data()\n for model_obj in tracked_model_objects:\n model_obj.extract_attribute_grid(model_grids[future_var],\n future=True)\n if future_var not in tendency_variables:\n del model_grids[future_var]\n for tendency_var in tendency_variables:\n print('Tendency {0} {1} {2}'.format(tendency_var, self.\n ensemble_member, self.run_date.strftime('%Y%m%d')))\n if tendency_var not in model_grids.keys():\n model_grids[tendency_var] = ModelOutput(self.ensemble_name,\n self.ensemble_member, self.run_date, tendency_var, self.\n start_date - timedelta(hours=1), self.end_date, self.\n model_path, self.model_map_file, self.sector_ind_path, self\n .single_step)\n for model_obj in tracked_model_objects:\n model_obj.extract_tendency_grid(model_grids[tendency_var])\n del model_grids[tendency_var]\n", "role": "user" }, { "content": "extract_model_attributes", "role": "assistant" } ]
def x(model_tracks, obs_tracks, track_pairings): unpaired = list(range(len(model_tracks))) for p, pair in enumerate(track_pairings): model_track = model_tracks[pair[0]] unpaired.remove(pair[0]) obs_track = obs_tracks[pair[1]] obs_hail_sizes = np.array([step[obs_track.masks[t] == 1].max() for t, step in enumerate(obs_track.timesteps)]) if obs_track.times.size > 1 and model_track.times.size > 1: normalized_obs_times = 1.0 / (obs_track.times.max() - obs_track .times.min()) * (obs_track.times - obs_track.times.min()) normalized_model_times = 1.0 / (model_track.times.max() - model_track.times.min()) * (model_track.times - model_track .times.min()) hail_interp = interp1d(normalized_obs_times, obs_hail_sizes, kind='nearest', bounds_error=False, fill_value=0) model_track.observations = hail_interp(normalized_model_times) elif obs_track.times.size == 1: model_track.observations = np.ones(model_track.times.shape ) * obs_hail_sizes[0] elif model_track.times.size == 1: model_track.observations = np.array([obs_hail_sizes.max()]) print(pair[0], 'obs', obs_hail_sizes) print(pair[0], 'model', model_track.observations) for u in unpaired: model_tracks[u].observations = np.zeros(model_tracks[u].times.shape)
match_hail_sizes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model_tracks, obs_tracks, track_pairings):\n unpaired = list(range(len(model_tracks)))\n for p, pair in enumerate(track_pairings):\n model_track = model_tracks[pair[0]]\n unpaired.remove(pair[0])\n obs_track = obs_tracks[pair[1]]\n obs_hail_sizes = np.array([step[obs_track.masks[t] == 1].max() for \n t, step in enumerate(obs_track.timesteps)])\n if obs_track.times.size > 1 and model_track.times.size > 1:\n normalized_obs_times = 1.0 / (obs_track.times.max() - obs_track\n .times.min()) * (obs_track.times - obs_track.times.min())\n normalized_model_times = 1.0 / (model_track.times.max() -\n model_track.times.min()) * (model_track.times - model_track\n .times.min())\n hail_interp = interp1d(normalized_obs_times, obs_hail_sizes,\n kind='nearest', bounds_error=False, fill_value=0)\n model_track.observations = hail_interp(normalized_model_times)\n elif obs_track.times.size == 1:\n model_track.observations = np.ones(model_track.times.shape\n ) * obs_hail_sizes[0]\n elif model_track.times.size == 1:\n model_track.observations = np.array([obs_hail_sizes.max()])\n print(pair[0], 'obs', obs_hail_sizes)\n print(pair[0], 'model', model_track.observations)\n for u in unpaired:\n model_tracks[u].observations = np.zeros(model_tracks[u].times.shape)\n", "role": "user" }, { "content": "match_hail_sizes", "role": "assistant" } ]
def x(self, model_tracks, obs_tracks, track_pairings): label_columns = ['Matched', 'Max_Hail_Size', 'Num_Matches', 'Shape', 'Location', 'Scale'] s = 0 for m, model_track in enumerate(model_tracks): model_track.observations = pd.DataFrame(index=model_track.times, columns=label_columns, dtype=np.float64) model_track.observations.loc[:, :] = 0 model_track.observations['Matched'] = model_track.observations[ 'Matched'].astype(np.int32) for t, time in enumerate(model_track.times): model_track.observations.loc[time, 'Matched'] = track_pairings.loc[ s, 'Matched'] if model_track.observations.loc[time, 'Matched'] > 0: all_hail_sizes = [] step_pairs = track_pairings.loc[s, 'Pairings'] for step_pair in step_pairs: obs_step = obs_tracks[step_pair[0]].timesteps[step_pair[1] ].ravel() obs_mask = obs_tracks[step_pair[0]].masks[step_pair[1] ].ravel() all_hail_sizes.append(obs_step[(obs_mask == 1) & ( obs_step >= self.mrms_ew.min_thresh)]) combined_hail_sizes = np.concatenate(all_hail_sizes) min_hail = combined_hail_sizes.min() - 0.1 model_track.observations.loc[time, 'Max_Hail_Size' ] = combined_hail_sizes.max() model_track.observations.loc[time, 'Num_Matches' ] = step_pairs.shape[0] model_track.observations.loc[time, ['Shape', 'Location', 'Scale']] = gamma.fit(combined_hail_sizes, floc=min_hail) s += 1
match_hail_size_step_distributions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_tracks, obs_tracks, track_pairings):\n label_columns = ['Matched', 'Max_Hail_Size', 'Num_Matches', 'Shape',\n 'Location', 'Scale']\n s = 0\n for m, model_track in enumerate(model_tracks):\n model_track.observations = pd.DataFrame(index=model_track.times,\n columns=label_columns, dtype=np.float64)\n model_track.observations.loc[:, :] = 0\n model_track.observations['Matched'] = model_track.observations[\n 'Matched'].astype(np.int32)\n for t, time in enumerate(model_track.times):\n model_track.observations.loc[time, 'Matched'] = track_pairings.loc[\n s, 'Matched']\n if model_track.observations.loc[time, 'Matched'] > 0:\n all_hail_sizes = []\n step_pairs = track_pairings.loc[s, 'Pairings']\n for step_pair in step_pairs:\n obs_step = obs_tracks[step_pair[0]].timesteps[step_pair[1]\n ].ravel()\n obs_mask = obs_tracks[step_pair[0]].masks[step_pair[1]\n ].ravel()\n all_hail_sizes.append(obs_step[(obs_mask == 1) & (\n obs_step >= self.mrms_ew.min_thresh)])\n combined_hail_sizes = np.concatenate(all_hail_sizes)\n min_hail = combined_hail_sizes.min() - 0.1\n model_track.observations.loc[time, 'Max_Hail_Size'\n ] = combined_hail_sizes.max()\n model_track.observations.loc[time, 'Num_Matches'\n ] = step_pairs.shape[0]\n model_track.observations.loc[time, ['Shape', 'Location',\n 'Scale']] = gamma.fit(combined_hail_sizes, floc=min_hail)\n s += 1\n", "role": "user" }, { "content": "match_hail_size_step_distributions", "role": "assistant" } ]
def x(model_tracks, obs_tracks, track_pairings): columns = ['obs_track_id', 'translation_error_x', 'translation_error_y', 'start_time_difference', 'end_time_difference'] track_errors = pd.DataFrame(index=list(range(len(model_tracks))), columns=columns) for p, pair in enumerate(track_pairings): model_track = model_tracks[pair[0]] if type(pair[1]) in [int, np.int64]: obs_track = obs_tracks[pair[1]] else: obs_track = obs_tracks[pair[1][0]] model_com = model_track.center_of_mass(model_track.start_time) obs_com = obs_track.center_of_mass(obs_track.start_time) track_errors.loc[pair[0], 'obs_track_id'] = pair[1] if type(pair[1] ) in [int, np.int64] else pair[1][0] track_errors.loc[pair[0], 'translation_error_x'] = model_com[0 ] - obs_com[0] track_errors.loc[pair[0], 'translation_error_y'] = model_com[1 ] - obs_com[1] track_errors.loc[pair[0], 'start_time_difference' ] = model_track.start_time - obs_track.start_time track_errors.loc[pair[0], 'end_time_difference' ] = model_track.end_time - obs_track.end_time return track_errors
calc_track_errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model_tracks, obs_tracks, track_pairings):\n columns = ['obs_track_id', 'translation_error_x', 'translation_error_y',\n 'start_time_difference', 'end_time_difference']\n track_errors = pd.DataFrame(index=list(range(len(model_tracks))),\n columns=columns)\n for p, pair in enumerate(track_pairings):\n model_track = model_tracks[pair[0]]\n if type(pair[1]) in [int, np.int64]:\n obs_track = obs_tracks[pair[1]]\n else:\n obs_track = obs_tracks[pair[1][0]]\n model_com = model_track.center_of_mass(model_track.start_time)\n obs_com = obs_track.center_of_mass(obs_track.start_time)\n track_errors.loc[pair[0], 'obs_track_id'] = pair[1] if type(pair[1]\n ) in [int, np.int64] else pair[1][0]\n track_errors.loc[pair[0], 'translation_error_x'] = model_com[0\n ] - obs_com[0]\n track_errors.loc[pair[0], 'translation_error_y'] = model_com[1\n ] - obs_com[1]\n track_errors.loc[pair[0], 'start_time_difference'\n ] = model_track.start_time - obs_track.start_time\n track_errors.loc[pair[0], 'end_time_difference'\n ] = model_track.end_time - obs_track.end_time\n return track_errors\n", "role": "user" }, { "content": "calc_track_errors", "role": "assistant" } ]
def x(self): super().persistent_object_context_changed() def x(registered_object, unregistered_object): if registered_object and registered_object.uuid == self.parent_uuid: self.__parent = registered_object if self.persistent_object_context: self.__registration_listener = (self.persistent_object_context. registration_event.listen(change_registration)) self.__parent = self.persistent_object_context.get_registered_object( self.parent_uuid)
persistent_object_context_changed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n super().persistent_object_context_changed()\n\n def x(registered_object, unregistered_object):\n if registered_object and registered_object.uuid == self.parent_uuid:\n self.__parent = registered_object\n if self.persistent_object_context:\n self.__registration_listener = (self.persistent_object_context.\n registration_event.listen(change_registration))\n self.__parent = self.persistent_object_context.get_registered_object(\n self.parent_uuid)\n", "role": "user" }, { "content": "persistent_object_context_changed", "role": "assistant" } ]
def x(self): super().persistent_object_context_changed() def x(): if self.__source is not None and self.__target is not None: assert not self.__binding self.__binding = Binding.PropertyBinding(self.__source, self. source_property) self.__binding.target_setter = self.__set_target_from_source self.__binding.update_target_direct(self.__binding. get_target_value()) def x(source): self.__source = source register() def x(target): self.__target = target def x(target, property_name): if property_name == self.target_property: self.__set_source_from_target(getattr(target, property_name)) assert self.__target_property_changed_listener is None self.__target_property_changed_listener = (target. property_changed_event.listen(functools.partial( property_changed, target))) register() def x(item=None): if not item or item == self.__source: self.__source = None if not item or item == self.__target: self.__target = None if self.__binding: self.__binding.close() self.__binding = None if self.__target_property_changed_listener: self.__target_property_changed_listener.close() self.__target_property_changed_listener = None def x(registered_object, unregistered_object): if registered_object and registered_object.uuid == self.source_uuid: source_registered(registered_object) if registered_object and registered_object.uuid == self.target_uuid: target_registered(registered_object) if unregistered_object and unregistered_object in (self._source, self._target): unregistered(unregistered_object) if self.persistent_object_context: self.__registration_listener = (self.persistent_object_context. registration_event.listen(change_registration)) source = self.persistent_object_context.get_registered_object(self. source_uuid) target = self.persistent_object_context.get_registered_object(self. target_uuid) if source: source_registered(source) if target: target_registered(target) else: unregistered()
persistent_object_context_changed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n super().persistent_object_context_changed()\n\n def x():\n if self.__source is not None and self.__target is not None:\n assert not self.__binding\n self.__binding = Binding.PropertyBinding(self.__source, self.\n source_property)\n self.__binding.target_setter = self.__set_target_from_source\n self.__binding.update_target_direct(self.__binding.\n get_target_value())\n\n def x(source):\n self.__source = source\n register()\n\n def x(target):\n self.__target = target\n\n def x(target, property_name):\n if property_name == self.target_property:\n self.__set_source_from_target(getattr(target, property_name))\n assert self.__target_property_changed_listener is None\n self.__target_property_changed_listener = (target.\n property_changed_event.listen(functools.partial(\n property_changed, target)))\n register()\n\n def x(item=None):\n if not item or item == self.__source:\n self.__source = None\n if not item or item == self.__target:\n self.__target = None\n if self.__binding:\n self.__binding.close()\n self.__binding = None\n if self.__target_property_changed_listener:\n self.__target_property_changed_listener.close()\n self.__target_property_changed_listener = None\n\n def x(registered_object, unregistered_object):\n if registered_object and registered_object.uuid == self.source_uuid:\n source_registered(registered_object)\n if registered_object and registered_object.uuid == self.target_uuid:\n target_registered(registered_object)\n if unregistered_object and unregistered_object in (self._source,\n self._target):\n unregistered(unregistered_object)\n if self.persistent_object_context:\n self.__registration_listener = (self.persistent_object_context.\n registration_event.listen(change_registration))\n source = self.persistent_object_context.get_registered_object(self.\n source_uuid)\n target = self.persistent_object_context.get_registered_object(self.\n target_uuid)\n if source:\n source_registered(source)\n if target:\n target_registered(target)\n else:\n unregistered()\n", "role": "user" }, { "content": "persistent_object_context_changed", "role": "assistant" } ]
def x(self): super().persistent_object_context_changed() def x(): for listener in self.__interval_mutated_listeners: listener.close() self.__interval_mutated_listeners = list() def x(): detach() interval_descriptors = list() if self.__source: for region in self.__source.graphics: if isinstance(region, Graphics.IntervalGraphic): interval_descriptor = {'interval': region.interval, 'color': '#F00'} interval_descriptors.append(interval_descriptor) self.__interval_mutated_listeners.append(region. property_changed_event.listen(lambda k: reattach())) if self.__target: self.__target.interval_descriptors = interval_descriptors def x(key, value, before_index): if key == 'graphics' and self.__target: reattach() def x(key, value, index): if key == 'graphics' and self.__target: reattach() def x(source): self.__source = source self.__item_inserted_event_listener = (self.__source. item_inserted_event.listen(item_inserted)) self.__item_removed_event_listener = (self.__source. item_removed_event.listen(item_removed)) reattach() def x(target): self.__target = target reattach() def x(source=None): if self.__item_inserted_event_listener: self.__item_inserted_event_listener.close() self.__item_inserted_event_listener = None if self.__item_removed_event_listener: self.__item_removed_event_listener.close() self.__item_removed_event_listener = None if self.persistent_object_context: self.persistent_object_context.subscribe(self.source_uuid, source_registered, unregistered) self.persistent_object_context.subscribe(self.target_uuid, target_registered, unregistered) else: unregistered()
persistent_object_context_changed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n super().persistent_object_context_changed()\n\n def x():\n for listener in self.__interval_mutated_listeners:\n listener.close()\n self.__interval_mutated_listeners = list()\n\n def x():\n detach()\n interval_descriptors = list()\n if self.__source:\n for region in self.__source.graphics:\n if isinstance(region, Graphics.IntervalGraphic):\n interval_descriptor = {'interval': region.interval,\n 'color': '#F00'}\n interval_descriptors.append(interval_descriptor)\n self.__interval_mutated_listeners.append(region.\n property_changed_event.listen(lambda k: reattach()))\n if self.__target:\n self.__target.interval_descriptors = interval_descriptors\n\n def x(key, value, before_index):\n if key == 'graphics' and self.__target:\n reattach()\n\n def x(key, value, index):\n if key == 'graphics' and self.__target:\n reattach()\n\n def x(source):\n self.__source = source\n self.__item_inserted_event_listener = (self.__source.\n item_inserted_event.listen(item_inserted))\n self.__item_removed_event_listener = (self.__source.\n item_removed_event.listen(item_removed))\n reattach()\n\n def x(target):\n self.__target = target\n reattach()\n\n def x(source=None):\n if self.__item_inserted_event_listener:\n self.__item_inserted_event_listener.close()\n self.__item_inserted_event_listener = None\n if self.__item_removed_event_listener:\n self.__item_removed_event_listener.close()\n self.__item_removed_event_listener = None\n if self.persistent_object_context:\n self.persistent_object_context.subscribe(self.source_uuid,\n source_registered, unregistered)\n self.persistent_object_context.subscribe(self.target_uuid,\n target_registered, unregistered)\n else:\n unregistered()\n", "role": "user" }, { "content": "persistent_object_context_changed", "role": "assistant" } ]
def x(self, tree_node): keys = tree_node.keys if len(keys) == 1: return '{0} ({1})'.format(tree_node.keys[-1], tree_node.count) elif len(keys) == 2: months = _('January'), _('February'), _('March'), _('April'), _('May' ), _('June'), _('July'), _('August'), _('September'), _('October' ), _('November'), _('December') return '{0} ({1})'.format(months[max(min(tree_node.keys[1] - 1, 11), 0)], tree_node.count) else: weekdays = _('Monday'), _('Tuesday'), _('Wednesday'), _('Thursday'), _( 'Friday'), _('Saturday'), _('Sunday') date = datetime.date(tree_node.keys[0], tree_node.keys[1], tree_node.keys[2]) return '{0} - {1} ({2})'.format(tree_node.keys[2], weekdays[date. weekday()], tree_node.count)
display_for_tree_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tree_node):\n keys = tree_node.keys\n if len(keys) == 1:\n return '{0} ({1})'.format(tree_node.keys[-1], tree_node.count)\n elif len(keys) == 2:\n months = _('January'), _('February'), _('March'), _('April'), _('May'\n ), _('June'), _('July'), _('August'), _('September'), _('October'\n ), _('November'), _('December')\n return '{0} ({1})'.format(months[max(min(tree_node.keys[1] - 1, 11),\n 0)], tree_node.count)\n else:\n weekdays = _('Monday'), _('Tuesday'), _('Wednesday'), _('Thursday'), _(\n 'Friday'), _('Saturday'), _('Sunday')\n date = datetime.date(tree_node.keys[0], tree_node.keys[1],\n tree_node.keys[2])\n return '{0} - {1} ({2})'.format(tree_node.keys[2], weekdays[date.\n weekday()], tree_node.count)\n", "role": "user" }, { "content": "display_for_tree_node", "role": "assistant" } ]
def x(self, parent_tree_node, index, tree_node): parent_item = self.__mapping[id(parent_tree_node)] self.item_model_controller.begin_insert(index, index, parent_item.row, parent_item.id) properties = {'display': self.__display_for_tree_node(tree_node), 'tree_node': tree_node} item = self.item_model_controller.create_item(properties) parent_item.insert_child(index, item) self.__mapping[id(tree_node)] = item self.item_model_controller.end_insert()
insert_child
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parent_tree_node, index, tree_node):\n parent_item = self.__mapping[id(parent_tree_node)]\n self.item_model_controller.begin_insert(index, index, parent_item.row,\n parent_item.id)\n properties = {'display': self.__display_for_tree_node(tree_node),\n 'tree_node': tree_node}\n item = self.item_model_controller.create_item(properties)\n parent_item.insert_child(index, item)\n self.__mapping[id(tree_node)] = item\n self.item_model_controller.end_insert()\n", "role": "user" }, { "content": "insert_child", "role": "assistant" } ]
def x(self, parent_tree_node, index): parent_item = self.__mapping[id(parent_tree_node)] self.item_model_controller.begin_remove(index, index, parent_item.row, parent_item.id) child_item = parent_item.children[index] parent_item.remove_child(child_item) self.__mapping.pop(id(child_item.data['tree_node'])) self.item_model_controller.end_remove()
remove_child
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parent_tree_node, index):\n parent_item = self.__mapping[id(parent_tree_node)]\n self.item_model_controller.begin_remove(index, index, parent_item.row,\n parent_item.id)\n child_item = parent_item.children[index]\n parent_item.remove_child(child_item)\n self.__mapping.pop(id(child_item.data['tree_node']))\n self.item_model_controller.end_remove()\n", "role": "user" }, { "content": "remove_child", "role": "assistant" } ]
def x(self): item_model_controller = self.item_model_controller if item_model_controller: if self.__node_counts_dirty: for item in self.__mapping.values(): if 'tree_node' in item.data: tree_node = item.data['tree_node'] item.data['display'] = self.__display_for_tree_node( tree_node) item_model_controller.data_changed(item.row, item. parent.row, item.parent.id) self.__node_counts_dirty = False
update_all_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n item_model_controller = self.item_model_controller\n if item_model_controller:\n if self.__node_counts_dirty:\n for item in self.__mapping.values():\n if 'tree_node' in item.data:\n tree_node = item.data['tree_node']\n item.data['display'] = self.__display_for_tree_node(\n tree_node)\n item_model_controller.data_changed(item.row, item.\n parent.row, item.parent.id)\n self.__node_counts_dirty = False\n", "role": "user" }, { "content": "update_all_nodes", "role": "assistant" } ]
def x(self, selected_indexes): partial_date_filters = list() for index, parent_row, parent_id in selected_indexes: item_model_controller = self.item_model_controller tree_node = item_model_controller.item_value('tree_node', index, parent_id) partial_date_filters.append(ListModel.PartialDateFilter( 'created_local', *tree_node.keys)) if len(partial_date_filters) > 0: self.__date_filter = ListModel.OrFilter(partial_date_filters) else: self.__date_filter = None self.__update_filter()
date_browser_selection_changed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, selected_indexes):\n partial_date_filters = list()\n for index, parent_row, parent_id in selected_indexes:\n item_model_controller = self.item_model_controller\n tree_node = item_model_controller.item_value('tree_node', index,\n parent_id)\n partial_date_filters.append(ListModel.PartialDateFilter(\n 'created_local', *tree_node.keys))\n if len(partial_date_filters) > 0:\n self.__date_filter = ListModel.OrFilter(partial_date_filters)\n else:\n self.__date_filter = None\n self.__update_filter()\n", "role": "user" }, { "content": "date_browser_selection_changed", "role": "assistant" } ]
def x(self, text): text = text.strip() if text else None if text is not None: self.__text_filter = ListModel.TextFilter('text_for_filter', text) else: self.__text_filter = None self.__update_filter()
text_filter_changed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text):\n text = text.strip() if text else None\n if text is not None:\n self.__text_filter = ListModel.TextFilter('text_for_filter', text)\n else:\n self.__text_filter = None\n self.__update_filter()\n", "role": "user" }, { "content": "text_filter_changed", "role": "assistant" } ]
def x(self): filters = list() if self.__date_filter: filters.append(self.__date_filter) if self.__text_filter: filters.append(self.__text_filter) self.document_controller.display_filter = ListModel.AndFilter(filters)
update_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n filters = list()\n if self.__date_filter:\n filters.append(self.__date_filter)\n if self.__text_filter:\n filters.append(self.__text_filter)\n self.document_controller.display_filter = ListModel.AndFilter(filters)\n", "role": "user" }, { "content": "update_filter", "role": "assistant" } ]
def x(self): keys = list() tree_node = self while tree_node is not None and tree_node.key is not None: keys.insert(0, tree_node.key) tree_node = tree_node.parent return keys
get_keys
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n keys = list()\n tree_node = self\n while tree_node is not None and tree_node.key is not None:\n keys.insert(0, tree_node.key)\n tree_node = tree_node.parent\n return keys\n", "role": "user" }, { "content": "get_keys", "role": "assistant" } ]
def x(self, keys, value): self.count += 1 if not self.key: self.__value_reverse_mapping[value] = keys if len(keys) == 0: self.values.append(value) else: key = keys[0] index = bisect.bisect_left(self.children, TreeNode(key, reversed= self.reversed)) if index == len(self.children) or self.children[index].key != key: new_tree_node = TreeNode(key, list(), reversed=self.reversed) new_tree_node.child_inserted = self.child_inserted new_tree_node.child_removed = self.child_removed new_tree_node.tree_node_updated = self.tree_node_updated new_tree_node.__set_parent(self) self.children.insert(index, new_tree_node) if self.child_inserted: self.child_inserted(self, index, new_tree_node) child = self.children[index] child.insert_value(keys[1:], value) if self.tree_node_updated: self.tree_node_updated(child)
insert_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, keys, value):\n self.count += 1\n if not self.key:\n self.__value_reverse_mapping[value] = keys\n if len(keys) == 0:\n self.values.append(value)\n else:\n key = keys[0]\n index = bisect.bisect_left(self.children, TreeNode(key, reversed=\n self.reversed))\n if index == len(self.children) or self.children[index].key != key:\n new_tree_node = TreeNode(key, list(), reversed=self.reversed)\n new_tree_node.child_inserted = self.child_inserted\n new_tree_node.child_removed = self.child_removed\n new_tree_node.tree_node_updated = self.tree_node_updated\n new_tree_node.__set_parent(self)\n self.children.insert(index, new_tree_node)\n if self.child_inserted:\n self.child_inserted(self, index, new_tree_node)\n child = self.children[index]\n child.insert_value(keys[1:], value)\n if self.tree_node_updated:\n self.tree_node_updated(child)\n", "role": "user" }, { "content": "insert_value", "role": "assistant" } ]
def x(self, keys, value): self.count -= 1 if not self.key: keys = self.__value_reverse_mapping[value] del self.__value_reverse_mapping[value] if len(keys) == 0: self.values.remove(value) else: key = keys[0] index = bisect.bisect_left(self.children, TreeNode(key, reversed= self.reversed)) assert index != len(self.children) and self.children[index].key == key self.children[index].remove_value(keys[1:], value) if self.tree_node_updated: self.tree_node_updated(self.children[index]) if self.children[index].count == 0: del self.children[index] if self.child_removed: self.child_removed(self, index)
remove_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, keys, value):\n self.count -= 1\n if not self.key:\n keys = self.__value_reverse_mapping[value]\n del self.__value_reverse_mapping[value]\n if len(keys) == 0:\n self.values.remove(value)\n else:\n key = keys[0]\n index = bisect.bisect_left(self.children, TreeNode(key, reversed=\n self.reversed))\n assert index != len(self.children) and self.children[index].key == key\n self.children[index].remove_value(keys[1:], value)\n if self.tree_node_updated:\n self.tree_node_updated(self.children[index])\n if self.children[index].count == 0:\n del self.children[index]\n if self.child_removed:\n self.child_removed(self, index)\n", "role": "user" }, { "content": "remove_value", "role": "assistant" } ]
def x(data, method, min_intensity, max_intensity, min_area=1, max_area=100, max_range=1, increment=1, gaussian_sd=0): if method.lower() in ['ew', 'watershed']: labeler = EnhancedWatershed(min_intensity, increment, max_intensity, max_area, max_range) else: labeler = Hysteresis(min_intensity, max_intensity) if len(data.shape) == 2: label_grid = labeler.label(gaussian_filter(data, gaussian_sd)) label_grid[data < min_intensity] = 0 if min_area > 1: label_grid = labeler.size_filter(label_grid, min_area) else: label_grid = np.zeros(data.shape, dtype=int) for t in range(data.shape[0]): label_grid[t] = labeler.label(gaussian_filter(data[t], gaussian_sd) ) label_grid[t][data[t] < min_intensity] = 0 if min_area > 1: label_grid[t] = labeler.size_filter(label_grid[t], min_area) return label_grid
label_storm_objects
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, method, min_intensity, max_intensity, min_area=1, max_area=100,\n max_range=1, increment=1, gaussian_sd=0):\n if method.lower() in ['ew', 'watershed']:\n labeler = EnhancedWatershed(min_intensity, increment, max_intensity,\n max_area, max_range)\n else:\n labeler = Hysteresis(min_intensity, max_intensity)\n if len(data.shape) == 2:\n label_grid = labeler.label(gaussian_filter(data, gaussian_sd))\n label_grid[data < min_intensity] = 0\n if min_area > 1:\n label_grid = labeler.size_filter(label_grid, min_area)\n else:\n label_grid = np.zeros(data.shape, dtype=int)\n for t in range(data.shape[0]):\n label_grid[t] = labeler.label(gaussian_filter(data[t], gaussian_sd)\n )\n label_grid[t][data[t] < min_intensity] = 0\n if min_area > 1:\n label_grid[t] = labeler.size_filter(label_grid[t], min_area)\n return label_grid\n", "role": "user" }, { "content": "label_storm_objects", "role": "assistant" } ]
def x(label_grid, data, x_grid, y_grid, times, dx=1, dt=1, obj_buffer=0): storm_objects = [] if len(label_grid.shape) == 3: ij_grid = np.indices(label_grid.shape[1:]) for t, time in enumerate(times): storm_objects.append([]) object_slices = list(find_objects(label_grid[t], label_grid[t]. max())) if len(object_slices) > 0: for o, obj_slice in enumerate(object_slices): if obj_buffer > 0: obj_slice_buff = [slice(np.maximum(0, osl.start - obj_buffer), np.minimum(osl.stop + obj_buffer, label_grid.shape[l + 1])) for l, osl in enumerate(obj_slice)] else: obj_slice_buff = obj_slice storm_objects[-1].append(STObject(data[t][ obj_slice_buff], np.where(label_grid[t][ obj_slice_buff] == o + 1, 1, 0), x_grid[ obj_slice_buff], y_grid[obj_slice_buff], ij_grid[0] [obj_slice_buff], ij_grid[1][obj_slice_buff], time, time, dx=dx, step=dt)) if t > 0: dims = storm_objects[-1][-1].timesteps[0].shape storm_objects[-1][-1].estimate_motion(time, data[t - 1], dims[1], dims[0]) else: ij_grid = np.indices(label_grid.shape) storm_objects.append([]) object_slices = list(find_objects(label_grid, label_grid.max())) if len(object_slices) > 0: for o, obj_slice in enumerate(object_slices): if obj_buffer > 0: obj_slice_buff = [slice(np.maximum(0, osl.start - obj_buffer), np.minimum(osl.stop + obj_buffer, label_grid.shape[l + 1])) for l, osl in enumerate( obj_slice)] else: obj_slice_buff = obj_slice storm_objects[-1].append(STObject(data[obj_slice_buff], np. where(label_grid[obj_slice_buff] == o + 1, 1, 0), x_grid[obj_slice_buff], y_grid[obj_slice_buff], ij_grid [0][obj_slice_buff], ij_grid[1][obj_slice_buff], times, times, dx=dx, step=dt)) return storm_objects
extract_storm_objects
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(label_grid, data, x_grid, y_grid, times, dx=1, dt=1, obj_buffer=0):\n storm_objects = []\n if len(label_grid.shape) == 3:\n ij_grid = np.indices(label_grid.shape[1:])\n for t, time in enumerate(times):\n storm_objects.append([])\n object_slices = list(find_objects(label_grid[t], label_grid[t].\n max()))\n if len(object_slices) > 0:\n for o, obj_slice in enumerate(object_slices):\n if obj_buffer > 0:\n obj_slice_buff = [slice(np.maximum(0, osl.start -\n obj_buffer), np.minimum(osl.stop + obj_buffer,\n label_grid.shape[l + 1])) for l, osl in\n enumerate(obj_slice)]\n else:\n obj_slice_buff = obj_slice\n storm_objects[-1].append(STObject(data[t][\n obj_slice_buff], np.where(label_grid[t][\n obj_slice_buff] == o + 1, 1, 0), x_grid[\n obj_slice_buff], y_grid[obj_slice_buff], ij_grid[0]\n [obj_slice_buff], ij_grid[1][obj_slice_buff], time,\n time, dx=dx, step=dt))\n if t > 0:\n dims = storm_objects[-1][-1].timesteps[0].shape\n storm_objects[-1][-1].estimate_motion(time, data[t -\n 1], dims[1], dims[0])\n else:\n ij_grid = np.indices(label_grid.shape)\n storm_objects.append([])\n object_slices = list(find_objects(label_grid, label_grid.max()))\n if len(object_slices) > 0:\n for o, obj_slice in enumerate(object_slices):\n if obj_buffer > 0:\n obj_slice_buff = [slice(np.maximum(0, osl.start -\n obj_buffer), np.minimum(osl.stop + obj_buffer,\n label_grid.shape[l + 1])) for l, osl in enumerate(\n obj_slice)]\n else:\n obj_slice_buff = obj_slice\n storm_objects[-1].append(STObject(data[obj_slice_buff], np.\n where(label_grid[obj_slice_buff] == o + 1, 1, 0),\n x_grid[obj_slice_buff], y_grid[obj_slice_buff], ij_grid\n [0][obj_slice_buff], ij_grid[1][obj_slice_buff], times,\n times, dx=dx, step=dt))\n return storm_objects\n", "role": "user" }, { "content": "extract_storm_objects", "role": "assistant" } ]
def x(label_grid, data, x_grid, y_grid, times, dx=1, dt=1, patch_radius=16): storm_objects = [] if len(label_grid.shape) == 3: ij_grid = np.indices(label_grid.shape[1:]) for t, time in enumerate(times): storm_objects.append([]) centers = list(center_of_mass(data[t], labels=label_grid[t], index=np.arange(1, label_grid[t].max() + 1))) if len(centers) > 0: for o, center in enumerate(centers): int_center = np.round(center).astype(int) obj_slice_buff = [slice(int_center[0] - patch_radius, int_center[0] + patch_radius), slice(int_center[1] - patch_radius, int_center[1] + patch_radius)] storm_objects[-1].append(STObject(data[t][ obj_slice_buff], np.where(label_grid[t][ obj_slice_buff] == o + 1, 1, 0), x_grid[ obj_slice_buff], y_grid[obj_slice_buff], ij_grid[0] [obj_slice_buff], ij_grid[1][obj_slice_buff], time, time, dx=dx, step=dt)) if t > 0: dims = storm_objects[-1][-1].timesteps[0].shape storm_objects[-1][-1].estimate_motion(time, data[t - 1], dims[1], dims[0]) else: ij_grid = np.indices(label_grid.shape) storm_objects.append([]) centers = list(center_of_mass(data, labels=label_grid, index=np. arange(1, label_grid.max() + 1))) if len(centers) > 0: for o, center in enumerate(centers): int_center = np.round(center).astype(int) obj_slice_buff = slice(int_center[0] - patch_radius, int_center[0] + patch_radius), slice(int_center[1] - patch_radius, int_center[1] + patch_radius) storm_objects[-1].append(STObject(data[obj_slice_buff], np. where(label_grid[obj_slice_buff] == o + 1, 1, 0), x_grid[obj_slice_buff], y_grid[obj_slice_buff], ij_grid [0][obj_slice_buff], ij_grid[1][obj_slice_buff], times[ 0], times[0], dx=dx, step=dt)) return storm_objects
extract_storm_patches
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(label_grid, data, x_grid, y_grid, times, dx=1, dt=1, patch_radius=16):\n storm_objects = []\n if len(label_grid.shape) == 3:\n ij_grid = np.indices(label_grid.shape[1:])\n for t, time in enumerate(times):\n storm_objects.append([])\n centers = list(center_of_mass(data[t], labels=label_grid[t],\n index=np.arange(1, label_grid[t].max() + 1)))\n if len(centers) > 0:\n for o, center in enumerate(centers):\n int_center = np.round(center).astype(int)\n obj_slice_buff = [slice(int_center[0] - patch_radius, \n int_center[0] + patch_radius), slice(int_center[1] -\n patch_radius, int_center[1] + patch_radius)]\n storm_objects[-1].append(STObject(data[t][\n obj_slice_buff], np.where(label_grid[t][\n obj_slice_buff] == o + 1, 1, 0), x_grid[\n obj_slice_buff], y_grid[obj_slice_buff], ij_grid[0]\n [obj_slice_buff], ij_grid[1][obj_slice_buff], time,\n time, dx=dx, step=dt))\n if t > 0:\n dims = storm_objects[-1][-1].timesteps[0].shape\n storm_objects[-1][-1].estimate_motion(time, data[t -\n 1], dims[1], dims[0])\n else:\n ij_grid = np.indices(label_grid.shape)\n storm_objects.append([])\n centers = list(center_of_mass(data, labels=label_grid, index=np.\n arange(1, label_grid.max() + 1)))\n if len(centers) > 0:\n for o, center in enumerate(centers):\n int_center = np.round(center).astype(int)\n obj_slice_buff = slice(int_center[0] - patch_radius, \n int_center[0] + patch_radius), slice(int_center[1] -\n patch_radius, int_center[1] + patch_radius)\n storm_objects[-1].append(STObject(data[obj_slice_buff], np.\n where(label_grid[obj_slice_buff] == o + 1, 1, 0),\n x_grid[obj_slice_buff], y_grid[obj_slice_buff], ij_grid\n [0][obj_slice_buff], ij_grid[1][obj_slice_buff], times[\n 0], times[0], dx=dx, step=dt))\n return storm_objects\n", "role": "user" }, { "content": "extract_storm_patches", "role": "assistant" } ]
def x(storm_objects, times, distance_components, distance_maxima, distance_weights, tracked_objects=None): obj_matcher = ObjectMatcher(distance_components, distance_weights, distance_maxima) if tracked_objects is None: tracked_objects = [] for t, time in enumerate(times): past_time_objects = [] for obj in tracked_objects: if obj.end_time == time - obj.step: past_time_objects.append(obj) if len(past_time_objects) == 0: tracked_objects.extend(storm_objects[t]) elif len(past_time_objects) > 0 and len(storm_objects[t]) > 0: assignments = obj_matcher.match_objects(past_time_objects, storm_objects[t], times[t - 1], times[t]) unpaired = list(range(len(storm_objects[t]))) for pair in assignments: past_time_objects[pair[0]].extend(storm_objects[t][pair[1]]) unpaired.remove(pair[1]) if len(unpaired) > 0: for up in unpaired: tracked_objects.append(storm_objects[t][up]) return tracked_objects
track_storms
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(storm_objects, times, distance_components, distance_maxima,\n distance_weights, tracked_objects=None):\n obj_matcher = ObjectMatcher(distance_components, distance_weights,\n distance_maxima)\n if tracked_objects is None:\n tracked_objects = []\n for t, time in enumerate(times):\n past_time_objects = []\n for obj in tracked_objects:\n if obj.end_time == time - obj.step:\n past_time_objects.append(obj)\n if len(past_time_objects) == 0:\n tracked_objects.extend(storm_objects[t])\n elif len(past_time_objects) > 0 and len(storm_objects[t]) > 0:\n assignments = obj_matcher.match_objects(past_time_objects,\n storm_objects[t], times[t - 1], times[t])\n unpaired = list(range(len(storm_objects[t])))\n for pair in assignments:\n past_time_objects[pair[0]].extend(storm_objects[t][pair[1]])\n unpaired.remove(pair[1])\n if len(unpaired) > 0:\n for up in unpaired:\n tracked_objects.append(storm_objects[t][up])\n return tracked_objects\n", "role": "user" }, { "content": "track_storms", "role": "assistant" } ]
def x(self): n = float(self.table.sum()) nf = self.table.sum(axis=1) no = self.table.sum(axis=0) correct = float(self.table.trace()) return (correct / n - (nf * no).sum() / n ** 2) / (1 - (no * no).sum() / n ** 2)
peirce_skill_score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n n = float(self.table.sum())\n nf = self.table.sum(axis=1)\n no = self.table.sum(axis=0)\n correct = float(self.table.trace())\n return (correct / n - (nf * no).sum() / n ** 2) / (1 - (no * no).sum() /\n n ** 2)\n", "role": "user" }, { "content": "peirce_skill_score", "role": "assistant" } ]
def x(self): k = self.table.shape[0] n = float(self.table.sum()) p_o = self.table.sum(axis=0) / n p_sum = np.cumsum(p_o)[:-1] a = (1.0 - p_sum) / p_sum s = np.zeros(self.table.shape, dtype=float) for i, j in np.ndindex(*s.shape): if i == j: s[i, j] = 1.0 / (k - 1.0) * (np.sum(1.0 / a[0:j]) + np.sum(a[j: k - 1])) elif i < j: s[i, j] = 1.0 / (k - 1.0) * (np.sum(1.0 / a[0:i]) - (j - i) + np.sum(a[j:k - 1])) else: s[i, j] = s[j, i] return np.sum(self.table / float(self.table.sum()) * s)
gerrity_score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n k = self.table.shape[0]\n n = float(self.table.sum())\n p_o = self.table.sum(axis=0) / n\n p_sum = np.cumsum(p_o)[:-1]\n a = (1.0 - p_sum) / p_sum\n s = np.zeros(self.table.shape, dtype=float)\n for i, j in np.ndindex(*s.shape):\n if i == j:\n s[i, j] = 1.0 / (k - 1.0) * (np.sum(1.0 / a[0:j]) + np.sum(a[j:\n k - 1]))\n elif i < j:\n s[i, j] = 1.0 / (k - 1.0) * (np.sum(1.0 / a[0:i]) - (j - i) +\n np.sum(a[j:k - 1]))\n else:\n s[i, j] = s[j, i]\n return np.sum(self.table / float(self.table.sum()) * s)\n", "role": "user" }, { "content": "gerrity_score", "role": "assistant" } ]
def x(item_a, time_a, item_b, time_b, max_value): ax, ay = item_a.center_of_mass(time_a) bx, by = item_b.center_of_mass(time_b) return np.minimum(np.sqrt((ax - bx) ** 2 + (ay - by) ** 2), max_value ) / float(max_value)
centroid_distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(item_a, time_a, item_b, time_b, max_value):\n ax, ay = item_a.center_of_mass(time_a)\n bx, by = item_b.center_of_mass(time_b)\n return np.minimum(np.sqrt((ax - bx) ** 2 + (ay - by) ** 2), max_value\n ) / float(max_value)\n", "role": "user" }, { "content": "centroid_distance", "role": "assistant" } ]
def x(item_a, time_a, item_b, time_b, max_value): ax, ay = item_a.center_of_mass(time_a) bx, by = item_b.center_of_mass(time_b) if time_a < time_b: bx = bx - item_b.u by = by - item_b.v else: ax = ax - item_a.u ay = ay - item_a.v return np.minimum(np.sqrt((ax - bx) ** 2 + (ay - by) ** 2), max_value ) / float(max_value)
shifted_centroid_distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(item_a, time_a, item_b, time_b, max_value):\n ax, ay = item_a.center_of_mass(time_a)\n bx, by = item_b.center_of_mass(time_b)\n if time_a < time_b:\n bx = bx - item_b.u\n by = by - item_b.v\n else:\n ax = ax - item_a.u\n ay = ay - item_a.v\n return np.minimum(np.sqrt((ax - bx) ** 2 + (ay - by) ** 2), max_value\n ) / float(max_value)\n", "role": "user" }, { "content": "shifted_centroid_distance", "role": "assistant" } ]
def x(item_a, time_a, item_b, time_b, max_value): return np.minimum(item_a.closest_distance(time_a, item_b, time_b), max_value) / float(max_value)
closest_distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(item_a, time_a, item_b, time_b, max_value):\n return np.minimum(item_a.closest_distance(time_a, item_b, time_b),\n max_value) / float(max_value)\n", "role": "user" }, { "content": "closest_distance", "role": "assistant" } ]
def x(item_a, time_a, item_b, time_b, max_value): ts = np.array([0, np.pi]) ell_a = item_a.get_ellipse_model(time_a) ell_b = item_b.get_ellipse_model(time_b) ends_a = ell_a.predict_xy(ts) ends_b = ell_b.predict_xy(ts) distances = np.sqrt((ends_a[:, 0:1] - ends_b[:, 0:1].T) ** 2 + (ends_a[ :, 1:] - ends_b[:, 1:].T) ** 2) return np.minimum(distances[0, 1], max_value) / float(max_value)
ellipse_distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(item_a, time_a, item_b, time_b, max_value):\n ts = np.array([0, np.pi])\n ell_a = item_a.get_ellipse_model(time_a)\n ell_b = item_b.get_ellipse_model(time_b)\n ends_a = ell_a.predict_xy(ts)\n ends_b = ell_b.predict_xy(ts)\n distances = np.sqrt((ends_a[:, 0:1] - ends_b[:, 0:1].T) ** 2 + (ends_a[\n :, 1:] - ends_b[:, 1:].T) ** 2)\n return np.minimum(distances[0, 1], max_value) / float(max_value)\n", "role": "user" }, { "content": "ellipse_distance", "role": "assistant" } ]