source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
try:
return self._p
except AttributeError:
self._p = self._population_class(base=self, tournament_size=self.
_tournament_size, classifier=self.classifier, labels=self.
_labels, es_extra_test=self.es_extra_test, popsize=self.
_popsize, random_generations=self._random_generations,
negative_selection=self._negative_selection)
return self._p
|
population
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n return self._p\n except AttributeError:\n self._p = self._population_class(base=self, tournament_size=self.\n _tournament_size, classifier=self.classifier, labels=self.\n _labels, es_extra_test=self.es_extra_test, popsize=self.\n _popsize, random_generations=self._random_generations,\n negative_selection=self._negative_selection)\n return self._p\n",
"role": "user"
},
{
"content": "population",
"role": "assistant"
}
] |
def x(self):
for i in range(self._number_tries_feasible_ind):
var = np.random.randint(self.nvar)
v = self._random_leaf(var)
if v is None:
continue
return v
raise RuntimeError('Could not find a suitable random leaf')
|
random_leaf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for i in range(self._number_tries_feasible_ind):\n var = np.random.randint(self.nvar)\n v = self._random_leaf(var)\n if v is None:\n continue\n return v\n raise RuntimeError('Could not find a suitable random leaf')\n",
"role": "user"
},
{
"content": "random_leaf",
"role": "assistant"
}
] |
def x(self):
function_set = self.function_set
function_selection = self._function_selection_ins
function_selection.density = self.population.density
function_selection.unfeasible_functions.clear()
for i in range(self._number_tries_feasible_ind):
if self._function_selection:
func_index = function_selection.tournament()
else:
func_index = function_selection.random_function()
func = function_set[func_index]
args = self.get_args(func)
if args is None:
continue
args = [self.population.population[x].position for x in args]
f = self._random_offspring(func, args)
if f is None:
function_selection.unfeasible_functions.add(func_index)
continue
function_selection[func_index] = f.fitness
return f
raise RuntimeError('Could not find a suitable random offpsring')
|
random_offspring
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n function_set = self.function_set\n function_selection = self._function_selection_ins\n function_selection.density = self.population.density\n function_selection.unfeasible_functions.clear()\n for i in range(self._number_tries_feasible_ind):\n if self._function_selection:\n func_index = function_selection.tournament()\n else:\n func_index = function_selection.random_function()\n func = function_set[func_index]\n args = self.get_args(func)\n if args is None:\n continue\n args = [self.population.population[x].position for x in args]\n f = self._random_offspring(func, args)\n if f is None:\n function_selection.unfeasible_functions.add(func_index)\n continue\n function_selection[func_index] = f.fitness\n return f\n raise RuntimeError('Could not find a suitable random offpsring')\n",
"role": "user"
},
{
"content": "random_offspring",
"role": "assistant"
}
] |
def x(self):
if self.stopping_criteria_tl():
return True
if self.generations < np.inf:
inds = self.popsize * self.generations
flag = inds <= len(self.population.hist)
else:
flag = False
if flag:
return True
est = self.population.estopping
if self._tr_fraction < 1:
if est is not None and est.fitness_vs == 0:
return True
esr = self._early_stopping_rounds
if self._tr_fraction < 1 and esr is not None and est is not None:
position = self.population.estopping.position
if position < self.init_popsize:
position = self.init_popsize
return len(self.population.hist
) + self._unfeasible_counter - position > esr
return flag
|
stopping_criteria
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.stopping_criteria_tl():\n return True\n if self.generations < np.inf:\n inds = self.popsize * self.generations\n flag = inds <= len(self.population.hist)\n else:\n flag = False\n if flag:\n return True\n est = self.population.estopping\n if self._tr_fraction < 1:\n if est is not None and est.fitness_vs == 0:\n return True\n esr = self._early_stopping_rounds\n if self._tr_fraction < 1 and esr is not None and est is not None:\n position = self.population.estopping.position\n if position < self.init_popsize:\n position = self.init_popsize\n return len(self.population.hist\n ) + self._unfeasible_counter - position > esr\n return flag\n",
"role": "user"
},
{
"content": "stopping_criteria",
"role": "assistant"
}
] |
def x(self, v):
if not self.classifier:
return 0
if isinstance(v, list):
self._labels = np.arange(len(v))
return
if not isinstance(v, np.ndarray):
v = tonparray(v)
self._labels = np.unique(v)
return self._labels.shape[0]
|
nclasses
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v):\n if not self.classifier:\n return 0\n if isinstance(v, list):\n self._labels = np.arange(len(v))\n return\n if not isinstance(v, np.ndarray):\n v = tonparray(v)\n self._labels = np.unique(v)\n return self._labels.shape[0]\n",
"role": "user"
},
{
"content": "nclasses",
"role": "assistant"
}
] |
def x(self, X, y, test_set=None):
self._init_time = time.time()
self.X = X
if self._popsize == 'nvar':
self._popsize = self.nvar + len(self._input_functions)
if isinstance(test_set, str) and test_set == 'shuffle':
test_set = self.shuffle_tr2ts()
nclasses = self.nclasses(y)
if self.classifier and self._multiple_outputs:
pass
elif nclasses > 2:
assert False
self._multiclass = True
return self.multiclass(X, y, test_set=test_set)
self.y = y
if test_set is not None:
self.Xtest = test_set
for _ in range(self._number_tries_feasible_ind):
self._logger.info('Starting evolution')
try:
self.create_population()
if self.stopping_criteria_tl():
break
except RuntimeError as err:
self._logger.info(
'Done evolution (RuntimeError (%s), hist: %s)' % (err, len(
self.population.hist)))
return self
self._logger.info('Population created (hist: %s)' % len(self.
population.hist))
if len(self.population.hist) >= self._tournament_size:
break
if len(self.population.hist) == 0:
raise RuntimeError('Could not find a suitable individual')
if len(self.population.hist) < self._tournament_size:
self._logger.info('Done evolution (hist: %s)' % len(self.population
.hist))
return self
if self._remove_raw_inputs:
for x in range(self.nvar):
self._X[x] = None
while not self.stopping_criteria():
try:
a = self.random_offspring()
except RuntimeError as err:
self._logger.info(
'Done evolution (RuntimeError (%s), hist: %s)' % (err, len(
self.population.hist)))
return self
self.replace(a)
self._logger.info('Done evolution (hist: %s)' % len(self.population.hist))
return self
|
fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, y, test_set=None):\n self._init_time = time.time()\n self.X = X\n if self._popsize == 'nvar':\n self._popsize = self.nvar + len(self._input_functions)\n if isinstance(test_set, str) and test_set == 'shuffle':\n test_set = self.shuffle_tr2ts()\n nclasses = self.nclasses(y)\n if self.classifier and self._multiple_outputs:\n pass\n elif nclasses > 2:\n assert False\n self._multiclass = True\n return self.multiclass(X, y, test_set=test_set)\n self.y = y\n if test_set is not None:\n self.Xtest = test_set\n for _ in range(self._number_tries_feasible_ind):\n self._logger.info('Starting evolution')\n try:\n self.create_population()\n if self.stopping_criteria_tl():\n break\n except RuntimeError as err:\n self._logger.info(\n 'Done evolution (RuntimeError (%s), hist: %s)' % (err, len(\n self.population.hist)))\n return self\n self._logger.info('Population created (hist: %s)' % len(self.\n population.hist))\n if len(self.population.hist) >= self._tournament_size:\n break\n if len(self.population.hist) == 0:\n raise RuntimeError('Could not find a suitable individual')\n if len(self.population.hist) < self._tournament_size:\n self._logger.info('Done evolution (hist: %s)' % len(self.population\n .hist))\n return self\n if self._remove_raw_inputs:\n for x in range(self.nvar):\n self._X[x] = None\n while not self.stopping_criteria():\n try:\n a = self.random_offspring()\n except RuntimeError as err:\n self._logger.info(\n 'Done evolution (RuntimeError (%s), hist: %s)' % (err, len(\n self.population.hist)))\n return self\n self.replace(a)\n self._logger.info('Done evolution (hist: %s)' % len(self.population.hist))\n return self\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
] |
def x(self, v=None, X=None):
m = self.model(v=v)
return m.decision_function(X)
|
decision_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v=None, X=None):\n m = self.model(v=v)\n return m.decision_function(X)\n",
"role": "user"
},
{
"content": "decision_function",
"role": "assistant"
}
] |
def x(self, v=None, X=None):
if X is None:
X = v
v = None
m = self.model(v=v)
return m.predict(X)
|
predict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v=None, X=None):\n if X is None:\n X = v\n v = None\n m = self.model(v=v)\n return m.predict(X)\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
] |
def x(application, host='127.0.0.1', port=8080):
WSGIServer((host, int(port)), application).serve_forever()
|
serve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(application, host='127.0.0.1', port=8080):\n WSGIServer((host, int(port)), application).serve_forever()\n",
"role": "user"
},
{
"content": "serve",
"role": "assistant"
}
] |
def x(obj):
ctype = ContentType.objects.get_for_model(obj)
return Subscription.objects.filter(content_type=ctype, object_id=obj.pk)
|
get_subscribers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n ctype = ContentType.objects.get_for_model(obj)\n return Subscription.objects.filter(content_type=ctype, object_id=obj.pk)\n",
"role": "user"
},
{
"content": "get_subscribers",
"role": "assistant"
}
] |
def x(user, obj):
if not user.is_authenticated():
return False
ctype = ContentType.objects.get_for_model(obj)
try:
Subscription.objects.get(user=user, content_type=ctype, object_id=
obj.pk)
except Subscription.DoesNotExist:
return False
return True
|
is_subscribed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(user, obj):\n if not user.is_authenticated():\n return False\n ctype = ContentType.objects.get_for_model(obj)\n try:\n Subscription.objects.get(user=user, content_type=ctype, object_id=\n obj.pk)\n except Subscription.DoesNotExist:\n return False\n return True\n",
"role": "user"
},
{
"content": "is_subscribed",
"role": "assistant"
}
] |
def x(self, name, instantiate=True):
metaclass = type(self.__class__)
contents = self.__dict__.copy()
cls = metaclass(str(name), (self.__class__,), contents)
if instantiate:
return cls()
return cls
|
promote
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, instantiate=True):\n metaclass = type(self.__class__)\n contents = self.__dict__.copy()\n cls = metaclass(str(name), (self.__class__,), contents)\n if instantiate:\n return cls()\n return cls\n",
"role": "user"
},
{
"content": "promote",
"role": "assistant"
}
] |
def x(sim_var, reference, neuroml_file, nml_doc, still_included,
generate_dir, target, sim_time, dt, simulator, cleanup=True, show=False):
for var_name in sim_var.keys():
individual_var_names = var_name.split('+')
for individual_var_name in individual_var_names:
words = individual_var_name.split('/')
type, id1 = words[0].split(':')
if ':' in words[1]:
variable, id2 = words[1].split(':')
else:
variable = words[1]
id2 = None
units = words[2]
value = sim_var[var_name]
pyneuroml.pynml.print_comment_v(
' Changing value of %s (%s) in %s (%s) to: %s %s' % (
variable, id2, type, id1, value, units))
if type == 'channel':
channel = nml_doc.get_by_id(id1)
if channel:
print('Setting channel %s' % channel)
if variable == 'vShift':
channel.v_shift = '%s %s' % (value, units)
else:
pyneuroml.pynml.print_comment_v(
'Could not find channel with id %s from expression: %s'
% (id1, individual_var_name))
exit()
elif type == 'cell':
cell = None
for c in nml_doc.cells:
if c.id == id1:
cell = c
if variable == 'channelDensity':
chanDens = None
for cd in (cell.biophysical_properties.
membrane_properties.channel_densities + cell.
biophysical_properties.membrane_properties.
channel_density_v_shifts):
if cd.id == id2:
chanDens = cd
chanDens.cond_density = '%s %s' % (value, units)
elif variable == 'vShift_channelDensity':
chanDens = None
for cd in cell.biophysical_properties.membrane_properties.channel_density_v_shifts:
if cd.id == id2:
chanDens = cd
chanDens.v_shift = '%s %s' % (value, units)
elif variable == 'channelDensityNernst':
chanDens = None
for cd in cell.biophysical_properties.membrane_properties.channel_density_nernsts:
if cd.id == id2:
chanDens = cd
chanDens.cond_density = '%s %s' % (value, units)
elif variable == 'erev_id':
chanDens = None
for cd in (cell.biophysical_properties.
membrane_properties.channel_densities + cell.
biophysical_properties.membrane_properties.
channel_density_v_shifts):
if cd.id == id2:
chanDens = cd
chanDens.erev = '%s %s' % (value, units)
elif variable == 'erev_ion':
chanDens = None
for cd in (cell.biophysical_properties.
membrane_properties.channel_densities + cell.
biophysical_properties.membrane_properties.
channel_density_v_shifts):
if cd.ion == id2:
chanDens = cd
chanDens.erev = '%s %s' % (value, units)
elif variable == 'specificCapacitance':
specCap = None
for sc in cell.biophysical_properties.membrane_properties.specific_capacitances:
if (sc.segment_groups == None and id2 == 'all' or
sc.segment_groups == id2):
specCap = sc
specCap.value = '%s %s' % (value, units)
elif variable == 'resistivity':
resistivity = None
for rs in cell.biophysical_properties.intracellular_properties.resistivities:
if (rs.segment_groups == None and id2 == 'all' or
rs.segment_groups == id2):
resistivity = rs
resistivity.value = '%s %s' % (value, units)
else:
pyneuroml.pynml.print_comment_v(
'Unknown variable (%s) in variable expression: %s' %
(variable, individual_var_name))
exit()
elif type == 'izhikevich2007Cell':
izhcell = None
for c in nml_doc.izhikevich2007_cells:
if c.id == id1:
izhcell = c
izhcell.__setattr__(variable, '%s %s' % (value, units))
else:
pyneuroml.pynml.print_comment_v(
'Unknown type (%s) in variable expression: %s' % (type,
individual_var_name))
new_neuroml_file = '%s/%s' % (generate_dir, os.path.basename(neuroml_file))
if new_neuroml_file == neuroml_file:
pyneuroml.pynml.print_comment_v(
'Cannot use a directory for generating into (%s) which is the same location of the NeuroML file (%s)!'
% (neuroml_file, generate_dir))
pyneuroml.pynml.write_neuroml2_file(nml_doc, new_neuroml_file)
for include in still_included:
inc_loc = '%s/%s' % (os.path.dirname(os.path.abspath(neuroml_file)),
include)
pyneuroml.pynml.print_comment_v(
'Copying non included file %s to %s (%s) beside %s' % (inc_loc,
generate_dir, os.path.abspath(generate_dir), new_neuroml_file))
shutil.copy(inc_loc, generate_dir)
from pyneuroml.tune.NeuroMLSimulation import NeuroMLSimulation
sim = NeuroMLSimulation(reference, neuroml_file=new_neuroml_file,
target=target, sim_time=sim_time, dt=dt, simulator=simulator,
generate_dir=generate_dir, cleanup=cleanup, nml_doc=nml_doc)
sim.go()
if show:
sim.show()
return sim.t, sim.volts
|
run_individual
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sim_var, reference, neuroml_file, nml_doc, still_included,\n generate_dir, target, sim_time, dt, simulator, cleanup=True, show=False):\n for var_name in sim_var.keys():\n individual_var_names = var_name.split('+')\n for individual_var_name in individual_var_names:\n words = individual_var_name.split('/')\n type, id1 = words[0].split(':')\n if ':' in words[1]:\n variable, id2 = words[1].split(':')\n else:\n variable = words[1]\n id2 = None\n units = words[2]\n value = sim_var[var_name]\n pyneuroml.pynml.print_comment_v(\n ' Changing value of %s (%s) in %s (%s) to: %s %s' % (\n variable, id2, type, id1, value, units))\n if type == 'channel':\n channel = nml_doc.get_by_id(id1)\n if channel:\n print('Setting channel %s' % channel)\n if variable == 'vShift':\n channel.v_shift = '%s %s' % (value, units)\n else:\n pyneuroml.pynml.print_comment_v(\n 'Could not find channel with id %s from expression: %s'\n % (id1, individual_var_name))\n exit()\n elif type == 'cell':\n cell = None\n for c in nml_doc.cells:\n if c.id == id1:\n cell = c\n if variable == 'channelDensity':\n chanDens = None\n for cd in (cell.biophysical_properties.\n membrane_properties.channel_densities + cell.\n biophysical_properties.membrane_properties.\n channel_density_v_shifts):\n if cd.id == id2:\n chanDens = cd\n chanDens.cond_density = '%s %s' % (value, units)\n elif variable == 'vShift_channelDensity':\n chanDens = None\n for cd in cell.biophysical_properties.membrane_properties.channel_density_v_shifts:\n if cd.id == id2:\n chanDens = cd\n chanDens.v_shift = '%s %s' % (value, units)\n elif variable == 'channelDensityNernst':\n chanDens = None\n for cd in cell.biophysical_properties.membrane_properties.channel_density_nernsts:\n if cd.id == id2:\n chanDens = cd\n chanDens.cond_density = '%s %s' % (value, units)\n elif variable == 'erev_id':\n chanDens = None\n for cd in (cell.biophysical_properties.\n membrane_properties.channel_densities + cell.\n biophysical_properties.membrane_properties.\n channel_density_v_shifts):\n if cd.id == id2:\n chanDens = cd\n chanDens.erev = '%s %s' % (value, units)\n elif variable == 'erev_ion':\n chanDens = None\n for cd in (cell.biophysical_properties.\n membrane_properties.channel_densities + cell.\n biophysical_properties.membrane_properties.\n channel_density_v_shifts):\n if cd.ion == id2:\n chanDens = cd\n chanDens.erev = '%s %s' % (value, units)\n elif variable == 'specificCapacitance':\n specCap = None\n for sc in cell.biophysical_properties.membrane_properties.specific_capacitances:\n if (sc.segment_groups == None and id2 == 'all' or \n sc.segment_groups == id2):\n specCap = sc\n specCap.value = '%s %s' % (value, units)\n elif variable == 'resistivity':\n resistivity = None\n for rs in cell.biophysical_properties.intracellular_properties.resistivities:\n if (rs.segment_groups == None and id2 == 'all' or \n rs.segment_groups == id2):\n resistivity = rs\n resistivity.value = '%s %s' % (value, units)\n else:\n pyneuroml.pynml.print_comment_v(\n 'Unknown variable (%s) in variable expression: %s' %\n (variable, individual_var_name))\n exit()\n elif type == 'izhikevich2007Cell':\n izhcell = None\n for c in nml_doc.izhikevich2007_cells:\n if c.id == id1:\n izhcell = c\n izhcell.__setattr__(variable, '%s %s' % (value, units))\n else:\n pyneuroml.pynml.print_comment_v(\n 'Unknown type (%s) in variable expression: %s' % (type,\n individual_var_name))\n new_neuroml_file = '%s/%s' % (generate_dir, os.path.basename(neuroml_file))\n if new_neuroml_file == neuroml_file:\n pyneuroml.pynml.print_comment_v(\n 'Cannot use a directory for generating into (%s) which is the same location of the NeuroML file (%s)!'\n % (neuroml_file, generate_dir))\n pyneuroml.pynml.write_neuroml2_file(nml_doc, new_neuroml_file)\n for include in still_included:\n inc_loc = '%s/%s' % (os.path.dirname(os.path.abspath(neuroml_file)),\n include)\n pyneuroml.pynml.print_comment_v(\n 'Copying non included file %s to %s (%s) beside %s' % (inc_loc,\n generate_dir, os.path.abspath(generate_dir), new_neuroml_file))\n shutil.copy(inc_loc, generate_dir)\n from pyneuroml.tune.NeuroMLSimulation import NeuroMLSimulation\n sim = NeuroMLSimulation(reference, neuroml_file=new_neuroml_file,\n target=target, sim_time=sim_time, dt=dt, simulator=simulator,\n generate_dir=generate_dir, cleanup=cleanup, nml_doc=nml_doc)\n sim.go()\n if show:\n sim.show()\n return sim.t, sim.volts\n",
"role": "user"
},
{
"content": "run_individual",
"role": "assistant"
}
] |
def x(self, candidates, parameters):
traces = []
start_time = time.time()
if self.num_parallel_evaluations == 1:
for candidate_i in range(len(candidates)):
candidate = candidates[candidate_i]
sim_var = dict(zip(parameters, candidate))
pyneuroml.pynml.print_comment_v(
'\n\n - RUN %i (%i/%i); variables: %s\n' % (self.count,
candidate_i + 1, len(candidates), sim_var))
self.count += 1
t, v = self.run_individual(sim_var)
traces.append([t, v])
else:
import pp
ppservers = ()
job_server = pp.Server(self.num_parallel_evaluations, ppservers=
ppservers)
pyneuroml.pynml.print_comment_v(
'Running %i candidates across %i local processes' % (len(
candidates), job_server.get_ncpus()))
jobs = []
for candidate_i in range(len(candidates)):
candidate = candidates[candidate_i]
sim_var = dict(zip(parameters, candidate))
pyneuroml.pynml.print_comment_v(
"""
- PARALLEL RUN %i (%i/%i of curr candidates); variables: %s
"""
% (self.count, candidate_i + 1, len(candidates), sim_var))
self.count += 1
cand_dir = self.generate_dir + '/CANDIDATE_%s' % candidate_i
if not os.path.exists(cand_dir):
os.mkdir(cand_dir)
vars = (sim_var, self.ref, self.neuroml_file, self.nml_doc,
self.still_included, cand_dir, self.target, self.sim_time,
self.dt, self.simulator)
job = job_server.submit(run_individual, vars, (), (
'pyneuroml.pynml', 'pyneuroml.tune.NeuroMLSimulation',
'shutil', 'neuroml'))
jobs.append(job)
for job_i in range(len(jobs)):
job = jobs[job_i]
pyneuroml.pynml.print_comment_v(
'Checking parallel job %i/%i; set running so far: %i' % (
job_i, len(jobs), self.count))
t, v = job()
traces.append([t, v])
job_server.destroy()
print('-------------------------------------------')
end_time = time.time()
tot = end_time - start_time
pyneuroml.pynml.print_comment_v(
'Ran %i candidates in %s seconds (~%ss per job)' % (len(candidates),
tot, tot / len(candidates)))
return traces
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, candidates, parameters):\n traces = []\n start_time = time.time()\n if self.num_parallel_evaluations == 1:\n for candidate_i in range(len(candidates)):\n candidate = candidates[candidate_i]\n sim_var = dict(zip(parameters, candidate))\n pyneuroml.pynml.print_comment_v(\n '\\n\\n - RUN %i (%i/%i); variables: %s\\n' % (self.count, \n candidate_i + 1, len(candidates), sim_var))\n self.count += 1\n t, v = self.run_individual(sim_var)\n traces.append([t, v])\n else:\n import pp\n ppservers = ()\n job_server = pp.Server(self.num_parallel_evaluations, ppservers=\n ppservers)\n pyneuroml.pynml.print_comment_v(\n 'Running %i candidates across %i local processes' % (len(\n candidates), job_server.get_ncpus()))\n jobs = []\n for candidate_i in range(len(candidates)):\n candidate = candidates[candidate_i]\n sim_var = dict(zip(parameters, candidate))\n pyneuroml.pynml.print_comment_v(\n \"\"\"\n\n - PARALLEL RUN %i (%i/%i of curr candidates); variables: %s\n\"\"\"\n % (self.count, candidate_i + 1, len(candidates), sim_var))\n self.count += 1\n cand_dir = self.generate_dir + '/CANDIDATE_%s' % candidate_i\n if not os.path.exists(cand_dir):\n os.mkdir(cand_dir)\n vars = (sim_var, self.ref, self.neuroml_file, self.nml_doc,\n self.still_included, cand_dir, self.target, self.sim_time,\n self.dt, self.simulator)\n job = job_server.submit(run_individual, vars, (), (\n 'pyneuroml.pynml', 'pyneuroml.tune.NeuroMLSimulation',\n 'shutil', 'neuroml'))\n jobs.append(job)\n for job_i in range(len(jobs)):\n job = jobs[job_i]\n pyneuroml.pynml.print_comment_v(\n 'Checking parallel job %i/%i; set running so far: %i' % (\n job_i, len(jobs), self.count))\n t, v = job()\n traces.append([t, v])\n job_server.destroy()\n print('-------------------------------------------')\n end_time = time.time()\n tot = end_time - start_time\n pyneuroml.pynml.print_comment_v(\n 'Ran %i candidates in %s seconds (~%ss per job)' % (len(candidates),\n tot, tot / len(candidates)))\n return traces\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, context):
if __debug__:
log.debug('Assigning thread local request context.')
self.local.context = context
|
prepare
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n if __debug__:\n log.debug('Assigning thread local request context.')\n self.local.context = context\n",
"role": "user"
},
{
"content": "prepare",
"role": "assistant"
}
] |
def x(self, kind, handler):
if __debug__:
if py3 and not pypy:
log.debug('Registering view handler.', extra=dict(type=name(
kind), handler=name(handler)))
else:
log.debug('Registering view handler.', extra=dict(type=repr(
kind), handler=repr(handler)))
self._map.add(kind, handler)
return handler
|
register
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kind, handler):\n if __debug__:\n if py3 and not pypy:\n log.debug('Registering view handler.', extra=dict(type=name(\n kind), handler=name(handler)))\n else:\n log.debug('Registering view handler.', extra=dict(type=repr(\n kind), handler=repr(handler)))\n self._map.add(kind, handler)\n return handler\n",
"role": "user"
},
{
"content": "register",
"role": "assistant"
}
] |
def x(base, mapping=None, far=('js', 'css', 'gif', 'jpg', 'jpeg', 'png',
'ttf', 'woff')):
base = abspath(base)
@staticmethod
def x(context, *parts, **kw):
path = normpath(pathjoin(base, *parts))
if __debug__:
log.debug('Attempting to serve static file.', extra=dict(
request=id(context), base=base, path=path))
if not path.startswith(base):
raise HTTPForbidden(
'Cowardly refusing to violate base path policy.' if
__debug__ else None)
if not exists(path):
raise HTTPNotFound()
if not isfile(path):
raise HTTPForbidden('Cowardly refusing to open a non-file.' if
__debug__ else None)
if far and path.rpartition('.')[2] in far:
context.response.cache_expires = 60 * 60 * 24 * 365
if mapping:
_, _, extension = basename(path).partition('.')
if extension in mapping:
return mapping[extension] + ':' + path, dict()
return open(path, 'rb')
return static_handler
|
static
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(base, mapping=None, far=('js', 'css', 'gif', 'jpg', 'jpeg', 'png',\n 'ttf', 'woff')):\n base = abspath(base)\n\n @staticmethod\n def x(context, *parts, **kw):\n path = normpath(pathjoin(base, *parts))\n if __debug__:\n log.debug('Attempting to serve static file.', extra=dict(\n request=id(context), base=base, path=path))\n if not path.startswith(base):\n raise HTTPForbidden(\n 'Cowardly refusing to violate base path policy.' if\n __debug__ else None)\n if not exists(path):\n raise HTTPNotFound()\n if not isfile(path):\n raise HTTPForbidden('Cowardly refusing to open a non-file.' if\n __debug__ else None)\n if far and path.rpartition('.')[2] in far:\n context.response.cache_expires = 60 * 60 * 24 * 365\n if mapping:\n _, _, extension = basename(path).partition('.')\n if extension in mapping:\n return mapping[extension] + ':' + path, dict()\n return open(path, 'rb')\n return static_handler\n",
"role": "user"
},
{
"content": "static",
"role": "assistant"
}
] |
def x(application, host='127.0.0.1', port=8080):
WSGIApplication(application, port=int(port), iface=host).run()
|
serve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(application, host='127.0.0.1', port=8080):\n WSGIApplication(application, port=int(port), iface=host).run()\n",
"role": "user"
},
{
"content": "serve",
"role": "assistant"
}
] |
def x():
parser = argparse.ArgumentParser(description=
'A script for plotting files containing spike time data')
parser.add_argument('spiketimeFiles', type=str, metavar=
'<spiketime file>', help='List of text file containing spike times',
nargs='+')
parser.add_argument('-format', type=str, metavar='<format>', default=
DEFAULTS['format'], help=
"""How the spiketimes are represented on each line of file:
""" +
'id_t: id of cell, space(s)/tab(s), time of spike (default);\n' +
"""t_id: time of spike, space(s)/tab(s), id of cell;
""" +
'sonata: SONATA format HDF5 file containing spike times')
parser.add_argument('-rates', action='store_true', default=DEFAULTS[
'rates'], help='Show a plot of rates')
parser.add_argument('-showPlotsAlready', action='store_true', default=
DEFAULTS['show_plots_already'], help='Show plots once generated')
parser.add_argument('-saveSpikePlotTo', type=str, metavar=
'<spiketime plot filename>', default=DEFAULTS['save_spike_plot_to'],
help='Name of file in which to save spiketime plot')
parser.add_argument('-rateWindow', type=int, metavar='<rate window>',
default=DEFAULTS['rate_window'], help=
'Window for rate calculation in ms')
parser.add_argument('-rateBins', type=int, metavar='<rate bins>',
default=DEFAULTS['rate_bins'], help='Number of bins for rate histogram'
)
return parser.parse_args()
|
process_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = argparse.ArgumentParser(description=\n 'A script for plotting files containing spike time data')\n parser.add_argument('spiketimeFiles', type=str, metavar=\n '<spiketime file>', help='List of text file containing spike times',\n nargs='+')\n parser.add_argument('-format', type=str, metavar='<format>', default=\n DEFAULTS['format'], help=\n \"\"\"How the spiketimes are represented on each line of file:\n\"\"\" +\n 'id_t: id of cell, space(s)/tab(s), time of spike (default);\\n' +\n \"\"\"t_id: time of spike, space(s)/tab(s), id of cell;\n\"\"\" +\n 'sonata: SONATA format HDF5 file containing spike times')\n parser.add_argument('-rates', action='store_true', default=DEFAULTS[\n 'rates'], help='Show a plot of rates')\n parser.add_argument('-showPlotsAlready', action='store_true', default=\n DEFAULTS['show_plots_already'], help='Show plots once generated')\n parser.add_argument('-saveSpikePlotTo', type=str, metavar=\n '<spiketime plot filename>', default=DEFAULTS['save_spike_plot_to'],\n help='Name of file in which to save spiketime plot')\n parser.add_argument('-rateWindow', type=int, metavar='<rate window>',\n default=DEFAULTS['rate_window'], help=\n 'Window for rate calculation in ms')\n parser.add_argument('-rateBins', type=int, metavar='<rate bins>',\n default=DEFAULTS['rate_bins'], help='Number of bins for rate histogram'\n )\n return parser.parse_args()\n",
"role": "user"
},
{
"content": "process_args",
"role": "assistant"
}
] |
def x(application, host='127.0.0.1', port=8080):
print('serving on http://{0}:{1}'.format(host, port))
make_server(host, int(port), application).serve_forever()
|
simple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(application, host='127.0.0.1', port=8080):\n print('serving on http://{0}:{1}'.format(host, port))\n make_server(host, int(port), application).serve_forever()\n",
"role": "user"
},
{
"content": "simple",
"role": "assistant"
}
] |
def x(application):
try:
from wsgiref.handlers import IISCGIHandler
except ImportError:
print('Python 3.2 or newer is required.')
if not __debug__:
warnings.warn(
'Interactive debugging and other persistence-based processes will not work.'
)
IISCGIHandler().run(application)
|
iiscgi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(application):\n try:\n from wsgiref.handlers import IISCGIHandler\n except ImportError:\n print('Python 3.2 or newer is required.')\n if not __debug__:\n warnings.warn(\n 'Interactive debugging and other persistence-based processes will not work.'\n )\n IISCGIHandler().run(application)\n",
"role": "user"
},
{
"content": "iiscgi",
"role": "assistant"
}
] |
def x(application, host='127.0.0.1', port=8080, socket=None, **options):
if not socket:
bindAddress = host, int(port)
else:
bindAddress = socket
WSGIServer(application, bindAddress=bindAddress, **options).run()
|
serve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(application, host='127.0.0.1', port=8080, socket=None, **options):\n if not socket:\n bindAddress = host, int(port)\n else:\n bindAddress = socket\n WSGIServer(application, bindAddress=bindAddress, **options).run()\n",
"role": "user"
},
{
"content": "serve",
"role": "assistant"
}
] |
def x(self):
method_kwargs = {'user': self.user, 'content_type': self.ctype,
'object_id': self.content_object.pk}
return method_kwargs
|
get_method_kwargs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n method_kwargs = {'user': self.user, 'content_type': self.ctype,\n 'object_id': self.content_object.pk}\n return method_kwargs\n",
"role": "user"
},
{
"content": "get_method_kwargs",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
method_kwargs = self._get_method_kwargs()
try:
subscription = Subscription.objects.get(**method_kwargs)
except Subscription.DoesNotExist:
subscription = Subscription.objects.create(**method_kwargs)
return subscription
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n method_kwargs = self._get_method_kwargs()\n try:\n subscription = Subscription.objects.get(**method_kwargs)\n except Subscription.DoesNotExist:\n subscription = Subscription.objects.create(**method_kwargs)\n return subscription\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(self, context):
if __debug__:
log.debug('Preparing request context.', extra=dict(request=id(context))
)
context.request = Request(context.environ)
context.response = Response(request=context.request)
context.environ['web.base'] = context.request.script_name
context.request.remainder = context.request.path_info.split('/')
if context.request.remainder and not context.request.remainder[0]:
del context.request.remainder[0]
context.path = Bread()
|
prepare
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n if __debug__:\n log.debug('Preparing request context.', extra=dict(request=id(context))\n )\n context.request = Request(context.environ)\n context.response = Response(request=context.request)\n context.environ['web.base'] = context.request.script_name\n context.request.remainder = context.request.path_info.split('/')\n if context.request.remainder and not context.request.remainder[0]:\n del context.request.remainder[0]\n context.path = Bread()\n",
"role": "user"
},
{
"content": "prepare",
"role": "assistant"
}
] |
def x(self, context, consumed, handler, is_endpoint):
request = context.request
if __debug__:
log.debug('Handling dispatch event.', extra=dict(request=id(context
), consumed=consumed, handler=safe_name(handler), endpoint=
is_endpoint))
if not consumed and context.request.path_info_peek() == '':
consumed = ['']
nConsumed = 0
if consumed:
if not isinstance(consumed, (list, tuple)):
consumed = consumed.split('/')
for element in consumed:
if element == context.request.path_info_peek():
context.request.path_info_pop()
nConsumed += 1
else:
break
context.path.append(Crumb(handler, Path(request.script_name)))
if consumed:
request.remainder = request.remainder[nConsumed:]
|
dispatch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, consumed, handler, is_endpoint):\n request = context.request\n if __debug__:\n log.debug('Handling dispatch event.', extra=dict(request=id(context\n ), consumed=consumed, handler=safe_name(handler), endpoint=\n is_endpoint))\n if not consumed and context.request.path_info_peek() == '':\n consumed = ['']\n nConsumed = 0\n if consumed:\n if not isinstance(consumed, (list, tuple)):\n consumed = consumed.split('/')\n for element in consumed:\n if element == context.request.path_info_peek():\n context.request.path_info_pop()\n nConsumed += 1\n else:\n break\n context.path.append(Crumb(handler, Path(request.script_name)))\n if consumed:\n request.remainder = request.remainder[nConsumed:]\n",
"role": "user"
},
{
"content": "dispatch",
"role": "assistant"
}
] |
def x(self, context, result):
context.response.body = b''
del context.response.content_length
return True
|
render_none
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, result):\n context.response.body = b''\n del context.response.content_length\n return True\n",
"role": "user"
},
{
"content": "render_none",
"role": "assistant"
}
] |
def x(self, context, result):
context.response.app_iter = iter((result,))
return True
|
render_binary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, result):\n context.response.app_iter = iter((result,))\n return True\n",
"role": "user"
},
{
"content": "render_binary",
"role": "assistant"
}
] |
def x(self, context, result):
if __debug__:
log.debug('Processing file-like object.', extra=dict(request=id(
context), result=repr(result)))
response = context.response
response.conditional_response = True
modified = mktime(gmtime(getmtime(result.name)))
response.last_modified = datetime.fromtimestamp(modified)
ct, ce = guess_type(result.name)
if not ct:
ct = 'application/octet-stream'
response.content_type, response.content_encoding = ct, ce
response.etag = unicode(modified)
result.seek(0, 2)
response.content_length = result.tell()
result.seek(0)
response.body_file = result
return True
|
render_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, result):\n if __debug__:\n log.debug('Processing file-like object.', extra=dict(request=id(\n context), result=repr(result)))\n response = context.response\n response.conditional_response = True\n modified = mktime(gmtime(getmtime(result.name)))\n response.last_modified = datetime.fromtimestamp(modified)\n ct, ce = guess_type(result.name)\n if not ct:\n ct = 'application/octet-stream'\n response.content_type, response.content_encoding = ct, ce\n response.etag = unicode(modified)\n result.seek(0, 2)\n response.content_length = result.tell()\n result.seek(0)\n response.body_file = result\n return True\n",
"role": "user"
},
{
"content": "render_file",
"role": "assistant"
}
] |
def x(self, context, result):
context.response.encoding = 'utf8'
context.response.app_iter = (i.encode('utf8') if isinstance(i, unicode)
else i for i in result if i is not None)
return True
|
render_generator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, result):\n context.response.encoding = 'utf8'\n context.response.app_iter = (i.encode('utf8') if isinstance(i, unicode)\n else i for i in result if i is not None)\n return True\n",
"role": "user"
},
{
"content": "render_generator",
"role": "assistant"
}
] |
def x(application, host='127.0.0.1', port=8080):
server = CherryPyWSGIServer((host, int(port)), application, server_name
=host)
print('serving on http://{0}:{1}'.format(host, port))
try:
server.start()
except KeyboardInterrupt:
server.stop()
|
serve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(application, host='127.0.0.1', port=8080):\n server = CherryPyWSGIServer((host, int(port)), application, server_name\n =host)\n print('serving on http://{0}:{1}'.format(host, port))\n try:\n server.start()\n except KeyboardInterrupt:\n server.stop()\n",
"role": "user"
},
{
"content": "serve",
"role": "assistant"
}
] |
def x(self, string, rgb=None, ansi=None, bg=None, ansi_bg=None):
if not isinstance(string, str):
string = str(string)
if rgb is None and ansi is None:
raise TerminalColorMapException(
'colorize: must specify one named parameter: rgb or ansi')
if rgb is not None and ansi is not None:
raise TerminalColorMapException(
'colorize: must specify only one named parameter: rgb or ansi')
if bg is not None and ansi_bg is not None:
raise TerminalColorMapException(
'colorize: must specify only one named parameter: bg or ansi_bg')
if rgb is not None:
closestAnsi, closestRgb = self.convert(rgb)
elif ansi is not None:
closestAnsi, closestRgb = ansi, self.colors[ansi]
if bg is None and ansi_bg is None:
return '\x1b[38;5;{ansiCode:d}m{string:s}\x1b[0m'.format(ansiCode=
closestAnsi, string=string)
if bg is not None:
closestBgAnsi, unused = self.convert(bg)
elif ansi_bg is not None:
closestBgAnsi, unused = ansi_bg, self.colors[ansi_bg]
return '\x1b[38;5;{ansiCode:d}m\x1b[48;5;{bf:d}m{string:s}\x1b[0m'.format(
ansiCode=closestAnsi, bf=closestBgAnsi, string=string)
|
colorize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, string, rgb=None, ansi=None, bg=None, ansi_bg=None):\n if not isinstance(string, str):\n string = str(string)\n if rgb is None and ansi is None:\n raise TerminalColorMapException(\n 'colorize: must specify one named parameter: rgb or ansi')\n if rgb is not None and ansi is not None:\n raise TerminalColorMapException(\n 'colorize: must specify only one named parameter: rgb or ansi')\n if bg is not None and ansi_bg is not None:\n raise TerminalColorMapException(\n 'colorize: must specify only one named parameter: bg or ansi_bg')\n if rgb is not None:\n closestAnsi, closestRgb = self.convert(rgb)\n elif ansi is not None:\n closestAnsi, closestRgb = ansi, self.colors[ansi]\n if bg is None and ansi_bg is None:\n return '\\x1b[38;5;{ansiCode:d}m{string:s}\\x1b[0m'.format(ansiCode=\n closestAnsi, string=string)\n if bg is not None:\n closestBgAnsi, unused = self.convert(bg)\n elif ansi_bg is not None:\n closestBgAnsi, unused = ansi_bg, self.colors[ansi_bg]\n return '\\x1b[38;5;{ansiCode:d}m\\x1b[48;5;{bf:d}m{string:s}\\x1b[0m'.format(\n ansiCode=closestAnsi, bf=closestBgAnsi, string=string)\n",
"role": "user"
},
{
"content": "colorize",
"role": "assistant"
}
] |
def x(self, context, result):
resp = context.response
serial = context.serialize
match = context.request.accept.best_match(serial.types, default_match=
self.default)
result = serial[match](result)
if isinstance(result, str):
result = result.decode('utf-8')
resp.charset = 'utf-8'
resp.content_type = match
resp.text = result
return True
|
render_serialization
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, result):\n resp = context.response\n serial = context.serialize\n match = context.request.accept.best_match(serial.types, default_match=\n self.default)\n result = serial[match](result)\n if isinstance(result, str):\n result = result.decode('utf-8')\n resp.charset = 'utf-8'\n resp.content_type = match\n resp.text = result\n return True\n",
"role": "user"
},
{
"content": "render_serialization",
"role": "assistant"
}
] |
def x(application, host='127.0.0.1', port=8080):
server(listen(host, int(port)), application)
|
serve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(application, host='127.0.0.1', port=8080):\n server(listen(host, int(port)), application)\n",
"role": "user"
},
{
"content": "serve",
"role": "assistant"
}
] |
def x():
parser = argparse.ArgumentParser(description=
'A script which can be run to generate a LEMS file to analyse the behaviour of channels in NeuroML 2'
)
parser.add_argument('channelFiles', type=str, nargs='+', metavar=
'<NeuroML 2 Channel file>', help='Name of the NeuroML 2 file(s)')
parser.add_argument('-v', action='store_true', default=DEFAULTS['v'],
help='Verbose output')
parser.add_argument('-minV', type=int, metavar='<min v>', default=
DEFAULTS['minV'], help=
'Minimum voltage to test (integer, mV), default: %smV' % DEFAULTS[
'minV'])
parser.add_argument('-maxV', type=int, metavar='<max v>', default=
DEFAULTS['maxV'], help=
'Maximum voltage to test (integer, mV), default: %smV' % DEFAULTS[
'maxV'])
parser.add_argument('-temperature', type=float, metavar='<temperature>',
default=DEFAULTS['temperature'], help=
'Temperature (float, celsius), default: %sdegC' % DEFAULTS[
'temperature'])
parser.add_argument('-duration', type=float, metavar='<duration>',
default=DEFAULTS['duration'], help=
'Duration of simulation in ms, default: %sms' % DEFAULTS['duration'])
parser.add_argument('-clampDelay', type=float, metavar='<clamp delay>',
default=DEFAULTS['clampDelay'], help=
'Delay before voltage clamp is activated in ms, default: %sms' %
DEFAULTS['clampDelay'])
parser.add_argument('-clampDuration', type=float, metavar=
'<clamp duration>', default=DEFAULTS['clampDuration'], help=
'Duration of voltage clamp in ms, default: %sms' % DEFAULTS[
'clampDuration'])
parser.add_argument('-clampBaseVoltage', type=float, metavar=
'<clamp base voltage>', default=DEFAULTS['clampBaseVoltage'], help=
'Clamp base (starting/finishing) voltage in mV, default: %smV' %
DEFAULTS['clampBaseVoltage'])
parser.add_argument('-stepTargetVoltage', type=float, metavar=
'<step target voltage>', default=DEFAULTS['stepTargetVoltage'],
help=
'Voltage in mV through which to step voltage clamps, default: %smV' %
DEFAULTS['stepTargetVoltage'])
parser.add_argument('-erev', type=float, metavar='<reversal potential>',
default=DEFAULTS['erev'], help=
'Reversal potential of channel for currents, default: %smV' %
DEFAULTS['erev'])
parser.add_argument('-scaleDt', type=float, metavar=
'<scale dt in generated LEMS>', default=DEFAULTS['scaleDt'], help=
'Scale dt in generated LEMS, default: %s' % DEFAULTS['scaleDt'])
parser.add_argument('-caConc', type=float, metavar=
'<Ca2+ concentration>', default=DEFAULTS['caConc'], help=
'Internal concentration of Ca2+ (float, concentration in mM), default: %smM'
% DEFAULTS['caConc'])
parser.add_argument('-datSuffix', type=str, metavar='<dat suffix>',
default=DEFAULTS['datSuffix'], help=
'String to add to dat file names (before .dat)')
parser.add_argument('-norun', action='store_true', default=DEFAULTS[
'norun'], help="If used, just generate the LEMS file, don't run it")
parser.add_argument('-nogui', action='store_true', default=DEFAULTS[
'nogui'], help=
'Supress plotting of variables and only save data to file')
parser.add_argument('-html', action='store_true', default=DEFAULTS[
'html'], help=
'Generate a HTML page featuring the plots for the channel')
parser.add_argument('-md', action='store_true', default=DEFAULTS['md'],
help=
'Generate a (GitHub flavoured) Markdown page featuring the plots for the channel'
)
parser.add_argument('-ivCurve', action='store_true', default=DEFAULTS[
'ivCurve'], help=
'Save currents through voltage clamp at each level & plot current vs voltage for ion channel'
)
return parser.parse_args()
|
process_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = argparse.ArgumentParser(description=\n 'A script which can be run to generate a LEMS file to analyse the behaviour of channels in NeuroML 2'\n )\n parser.add_argument('channelFiles', type=str, nargs='+', metavar=\n '<NeuroML 2 Channel file>', help='Name of the NeuroML 2 file(s)')\n parser.add_argument('-v', action='store_true', default=DEFAULTS['v'],\n help='Verbose output')\n parser.add_argument('-minV', type=int, metavar='<min v>', default=\n DEFAULTS['minV'], help=\n 'Minimum voltage to test (integer, mV), default: %smV' % DEFAULTS[\n 'minV'])\n parser.add_argument('-maxV', type=int, metavar='<max v>', default=\n DEFAULTS['maxV'], help=\n 'Maximum voltage to test (integer, mV), default: %smV' % DEFAULTS[\n 'maxV'])\n parser.add_argument('-temperature', type=float, metavar='<temperature>',\n default=DEFAULTS['temperature'], help=\n 'Temperature (float, celsius), default: %sdegC' % DEFAULTS[\n 'temperature'])\n parser.add_argument('-duration', type=float, metavar='<duration>',\n default=DEFAULTS['duration'], help=\n 'Duration of simulation in ms, default: %sms' % DEFAULTS['duration'])\n parser.add_argument('-clampDelay', type=float, metavar='<clamp delay>',\n default=DEFAULTS['clampDelay'], help=\n 'Delay before voltage clamp is activated in ms, default: %sms' %\n DEFAULTS['clampDelay'])\n parser.add_argument('-clampDuration', type=float, metavar=\n '<clamp duration>', default=DEFAULTS['clampDuration'], help=\n 'Duration of voltage clamp in ms, default: %sms' % DEFAULTS[\n 'clampDuration'])\n parser.add_argument('-clampBaseVoltage', type=float, metavar=\n '<clamp base voltage>', default=DEFAULTS['clampBaseVoltage'], help=\n 'Clamp base (starting/finishing) voltage in mV, default: %smV' %\n DEFAULTS['clampBaseVoltage'])\n parser.add_argument('-stepTargetVoltage', type=float, metavar=\n '<step target voltage>', default=DEFAULTS['stepTargetVoltage'],\n help=\n 'Voltage in mV through which to step voltage clamps, default: %smV' %\n DEFAULTS['stepTargetVoltage'])\n parser.add_argument('-erev', type=float, metavar='<reversal potential>',\n default=DEFAULTS['erev'], help=\n 'Reversal potential of channel for currents, default: %smV' %\n DEFAULTS['erev'])\n parser.add_argument('-scaleDt', type=float, metavar=\n '<scale dt in generated LEMS>', default=DEFAULTS['scaleDt'], help=\n 'Scale dt in generated LEMS, default: %s' % DEFAULTS['scaleDt'])\n parser.add_argument('-caConc', type=float, metavar=\n '<Ca2+ concentration>', default=DEFAULTS['caConc'], help=\n 'Internal concentration of Ca2+ (float, concentration in mM), default: %smM'\n % DEFAULTS['caConc'])\n parser.add_argument('-datSuffix', type=str, metavar='<dat suffix>',\n default=DEFAULTS['datSuffix'], help=\n 'String to add to dat file names (before .dat)')\n parser.add_argument('-norun', action='store_true', default=DEFAULTS[\n 'norun'], help=\"If used, just generate the LEMS file, don't run it\")\n parser.add_argument('-nogui', action='store_true', default=DEFAULTS[\n 'nogui'], help=\n 'Supress plotting of variables and only save data to file')\n parser.add_argument('-html', action='store_true', default=DEFAULTS[\n 'html'], help=\n 'Generate a HTML page featuring the plots for the channel')\n parser.add_argument('-md', action='store_true', default=DEFAULTS['md'],\n help=\n 'Generate a (GitHub flavoured) Markdown page featuring the plots for the channel'\n )\n parser.add_argument('-ivCurve', action='store_true', default=DEFAULTS[\n 'ivCurve'], help=\n 'Save currents through voltage clamp at each level & plot current vs voltage for ion channel'\n )\n return parser.parse_args()\n",
"role": "user"
},
{
"content": "process_args",
"role": "assistant"
}
] |
def x(a, hold_v, i, *plt_args, **plt_kwargs):
grid = plt_kwargs.pop('grid', True)
same_fig = plt_kwargs.pop('same_fig', False)
if not len(plt_args):
plt_args = 'ko-',
if 'label' not in plt_kwargs:
plt_kwargs['label'] = 'Current'
if not same_fig:
make_iv_curve_fig(a, grid=grid)
if type(i) is dict:
i = [i[v] for v in hold_v]
plt.plot([(v * 1000.0) for v in hold_v], [(ii * 1000000000000.0) for ii in
i], *plt_args, **plt_kwargs)
plt.legend(loc=2)
|
plot_iv_curve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, hold_v, i, *plt_args, **plt_kwargs):\n grid = plt_kwargs.pop('grid', True)\n same_fig = plt_kwargs.pop('same_fig', False)\n if not len(plt_args):\n plt_args = 'ko-',\n if 'label' not in plt_kwargs:\n plt_kwargs['label'] = 'Current'\n if not same_fig:\n make_iv_curve_fig(a, grid=grid)\n if type(i) is dict:\n i = [i[v] for v in hold_v]\n plt.plot([(v * 1000.0) for v in hold_v], [(ii * 1000000000000.0) for ii in\n i], *plt_args, **plt_kwargs)\n plt.legend(loc=2)\n",
"role": "user"
},
{
"content": "plot_iv_curve",
"role": "assistant"
}
] |
def x(context):
response = context.response
parts = []
for i in range(12):
for j in range(12):
parts.append(executor.submit(mul, i, j))
def x(parts, timeout=None):
try:
for future in as_completed(parts, timeout):
mime, result = future.result()
result = result.encode('utf8')
yield """!!!!!!=_NextPart_{num}
Content-Type: {mime}
Content-Length: {length}
""".format(
num=randint(100000000, 999999999), mime=mime, length=
len(result)).encode('utf8') + result
except TimeoutError:
for future in parts:
future.cancel()
response.content_length = None
response.app_iter = stream(parts, 0.2)
return response
|
root
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context):\n response = context.response\n parts = []\n for i in range(12):\n for j in range(12):\n parts.append(executor.submit(mul, i, j))\n\n def x(parts, timeout=None):\n try:\n for future in as_completed(parts, timeout):\n mime, result = future.result()\n result = result.encode('utf8')\n yield \"\"\"!!!!!!=_NextPart_{num}\nContent-Type: {mime}\nContent-Length: {length}\n\n\"\"\".format(\n num=randint(100000000, 999999999), mime=mime, length=\n len(result)).encode('utf8') + result\n except TimeoutError:\n for future in parts:\n future.cancel()\n response.content_length = None\n response.app_iter = stream(parts, 0.2)\n return response\n",
"role": "user"
},
{
"content": "root",
"role": "assistant"
}
] |
def x(file, template_file_name, **kwargs):
template_file_content = ''.join(codecs.open(template_file_name,
encoding='UTF-8').readlines())
template_rendered = string.Template(template_file_content).safe_substitute(
**kwargs)
file.write(template_rendered)
|
render_template_with_args_in_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file, template_file_name, **kwargs):\n template_file_content = ''.join(codecs.open(template_file_name,\n encoding='UTF-8').readlines())\n template_rendered = string.Template(template_file_content).safe_substitute(\n **kwargs)\n file.write(template_rendered)\n",
"role": "user"
},
{
"content": "render_template_with_args_in_file",
"role": "assistant"
}
] |
def x(file_name, initial_template_file_name, args):
file = None
if not os.path.isfile(os.path.join(args['django_application_folder'],
file_name)):
file = codecs.open(os.path.join(args['django_application_folder'],
file_name), 'w+', encoding='UTF-8')
print('Creating {}'.format(file_name))
if initial_template_file_name:
render_template_with_args_in_file(file,
initial_template_file_name, **{})
else:
file = codecs.open(os.path.join(args['django_application_folder'],
file_name), 'a+', encoding='UTF-8')
return file
|
create_or_open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_name, initial_template_file_name, args):\n file = None\n if not os.path.isfile(os.path.join(args['django_application_folder'],\n file_name)):\n file = codecs.open(os.path.join(args['django_application_folder'],\n file_name), 'w+', encoding='UTF-8')\n print('Creating {}'.format(file_name))\n if initial_template_file_name:\n render_template_with_args_in_file(file,\n initial_template_file_name, **{})\n else:\n file = codecs.open(os.path.join(args['django_application_folder'],\n file_name), 'a+', encoding='UTF-8')\n return file\n",
"role": "user"
},
{
"content": "create_or_open",
"role": "assistant"
}
] |
def x(module_name, args, **kwargs):
file = create_or_open('{}.py'.format(module_name), os.path.join(
BASE_TEMPLATES_DIR, '{}_initial.py.tmpl'.format(module_name)), args)
render_template_with_args_in_file(file, os.path.join(BASE_TEMPLATES_DIR,
'{}.py.tmpl'.format(module_name)), **kwargs)
file.close()
|
generic_insert_module
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(module_name, args, **kwargs):\n file = create_or_open('{}.py'.format(module_name), os.path.join(\n BASE_TEMPLATES_DIR, '{}_initial.py.tmpl'.format(module_name)), args)\n render_template_with_args_in_file(file, os.path.join(BASE_TEMPLATES_DIR,\n '{}.py.tmpl'.format(module_name)), **kwargs)\n file.close()\n",
"role": "user"
},
{
"content": "generic_insert_module",
"role": "assistant"
}
] |
def x(args):
if not os.path.isfile(os.path.join(args['django_application_folder'],
'models.py')):
print('django_application_folder is not a Django application folder')
sys.exit(1)
|
sanity_check
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n if not os.path.isfile(os.path.join(args['django_application_folder'],\n 'models.py')):\n print('django_application_folder is not a Django application folder')\n sys.exit(1)\n",
"role": "user"
},
{
"content": "sanity_check",
"role": "assistant"
}
] |
def x(folder_name, file_name, template_name, args):
if not os.path.isdir(os.path.join(args['django_application_folder'],
folder_name)):
os.mkdir(os.path.join(args['django_application_folder'], folder_name))
codecs.open(os.path.join(args['django_application_folder'],
folder_name, '__init__.py'), 'w+')
view_file = create_or_open(os.path.join(folder_name, '{}.py'.format(
file_name)), '', args)
render_template_with_args_in_file(view_file, os.path.join(
BASE_TEMPLATES_DIR, template_name), model_name=args['model_name'],
model_prefix=args['model_prefix'], model_name_lower=args[
'model_name'].lower(), application_name=args[
'django_application_folder'].split('/')[-1])
view_file.close()
|
generic_insert_with_folder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(folder_name, file_name, template_name, args):\n if not os.path.isdir(os.path.join(args['django_application_folder'],\n folder_name)):\n os.mkdir(os.path.join(args['django_application_folder'], folder_name))\n codecs.open(os.path.join(args['django_application_folder'],\n folder_name, '__init__.py'), 'w+')\n view_file = create_or_open(os.path.join(folder_name, '{}.py'.format(\n file_name)), '', args)\n render_template_with_args_in_file(view_file, os.path.join(\n BASE_TEMPLATES_DIR, template_name), model_name=args['model_name'],\n model_prefix=args['model_prefix'], model_name_lower=args[\n 'model_name'].lower(), application_name=args[\n 'django_application_folder'].split('/')[-1])\n view_file.close()\n",
"role": "user"
},
{
"content": "generic_insert_with_folder",
"role": "assistant"
}
] |
def x(application, host='127.0.0.1', port=8080, threads=4, **kw):
serve_(application, host=host, port=int(port), threads=int(threads), **kw)
|
serve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(application, host='127.0.0.1', port=8080, threads=4, **kw):\n serve_(application, host=host, port=int(port), threads=int(threads), **kw)\n",
"role": "user"
},
{
"content": "serve",
"role": "assistant"
}
] |
def x(self):
from matplotlib import pyplot as plt
if self.already_run:
for ref in self.volts.keys():
plt.plot(self.t, self.volts[ref], label=ref)
plt.title('Simulation voltage vs time')
plt.legend()
plt.xlabel('Time [ms]')
plt.ylabel('Voltage [mV]')
else:
pynml.print_comment("First you have to 'go()' the simulation.", True)
plt.show()
|
show
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n from matplotlib import pyplot as plt\n if self.already_run:\n for ref in self.volts.keys():\n plt.plot(self.t, self.volts[ref], label=ref)\n plt.title('Simulation voltage vs time')\n plt.legend()\n plt.xlabel('Time [ms]')\n plt.ylabel('Voltage [mV]')\n else:\n pynml.print_comment(\"First you have to 'go()' the simulation.\", True)\n plt.show()\n",
"role": "user"
},
{
"content": "show",
"role": "assistant"
}
] |
def x(self, a: int=None, b: int=None) ->'json':
if not a or not b:
return dict(message='Pass arguments a and b to multiply them together!'
)
return dict(answer=a * b)
|
mul
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, a: int=None, b: int=None) ->'json':\n if not a or not b:\n return dict(message='Pass arguments a and b to multiply them together!'\n )\n return dict(answer=a * b)\n",
"role": "user"
},
{
"content": "mul",
"role": "assistant"
}
] |
def x(string, rgb=None, ansi=None, bg=None, ansi_bg=None, fd=1):
if colorize.fd != fd:
colorize.init = False
colorize.fd = fd
if not colorize.init:
colorize.init = True
colorize.is_term = isatty(fd)
if 'TERM' in environ:
if environ['TERM'].startswith('xterm'):
colorize.cmap = XTermColorMap()
elif environ['TERM'] == 'vt100':
colorize.cmap = VT100ColorMap()
else:
colorize.is_term = False
else:
colorize.is_term = False
if colorize.is_term:
string = colorize.cmap.colorize(string, rgb, ansi, bg, ansi_bg)
return string
|
colorize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, rgb=None, ansi=None, bg=None, ansi_bg=None, fd=1):\n if colorize.fd != fd:\n colorize.init = False\n colorize.fd = fd\n if not colorize.init:\n colorize.init = True\n colorize.is_term = isatty(fd)\n if 'TERM' in environ:\n if environ['TERM'].startswith('xterm'):\n colorize.cmap = XTermColorMap()\n elif environ['TERM'] == 'vt100':\n colorize.cmap = VT100ColorMap()\n else:\n colorize.is_term = False\n else:\n colorize.is_term = False\n if colorize.is_term:\n string = colorize.cmap.colorize(string, rgb, ansi, bg, ansi_bg)\n return string\n",
"role": "user"
},
{
"content": "colorize",
"role": "assistant"
}
] |
def x(self, context, handler, args, kw):
def x(arg, val):
if arg not in annotations:
return
cast = annotations[key]
try:
val = cast(val)
except (ValueError, TypeError) as e:
parts = list(e.args)
parts[0] = parts[0] + " processing argument '{}'".format(arg)
e.args = tuple(parts)
raise
return val
annotations = getattr(handler.__func__ if hasattr(handler, '__func__') else
handler, '__annotations__', None)
if not annotations:
return
argspec = getfullargspec(handler)
arglist = list(argspec.args)
if ismethod(handler):
del arglist[0]
for i, value in enumerate(list(args)):
key = arglist[i]
if key in annotations:
args[i] = cast(key, value)
for key, value in list(items(kw)):
if key in annotations:
kw[key] = cast(key, value)
|
mutate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, handler, args, kw):\n\n def x(arg, val):\n if arg not in annotations:\n return\n cast = annotations[key]\n try:\n val = cast(val)\n except (ValueError, TypeError) as e:\n parts = list(e.args)\n parts[0] = parts[0] + \" processing argument '{}'\".format(arg)\n e.args = tuple(parts)\n raise\n return val\n annotations = getattr(handler.__func__ if hasattr(handler, '__func__') else\n handler, '__annotations__', None)\n if not annotations:\n return\n argspec = getfullargspec(handler)\n arglist = list(argspec.args)\n if ismethod(handler):\n del arglist[0]\n for i, value in enumerate(list(args)):\n key = arglist[i]\n if key in annotations:\n args[i] = cast(key, value)\n for key, value in list(items(kw)):\n if key in annotations:\n kw[key] = cast(key, value)\n",
"role": "user"
},
{
"content": "mutate",
"role": "assistant"
}
] |
def x(self, context, handler, result):
handler = handler.__func__ if hasattr(handler, '__func__') else handler
annotation = getattr(handler, '__annotations__', {}).get('return', None)
if annotation:
return annotation, result
return result
|
transform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, handler, result):\n handler = handler.__func__ if hasattr(handler, '__func__') else handler\n annotation = getattr(handler, '__annotations__', {}).get('return', None)\n if annotation:\n return annotation, result\n return result\n",
"role": "user"
},
{
"content": "transform",
"role": "assistant"
}
] |
def x():
parser = argparse.ArgumentParser(description=
'A script which can be run to tune a NeuroML 2 model against a number of target properties. Work in progress!'
)
parser.add_argument('prefix', type=str, metavar='<prefix>', help=
'Prefix for optimisation run')
parser.add_argument('neuromlFile', type=str, metavar='<neuromlFile>',
help='NeuroML2 file containing model')
parser.add_argument('target', type=str, metavar='<target>', help=
'Target in NeuroML2 model')
parser.add_argument('parameters', type=str, metavar='<parameters>',
help='List of parameter to adjust')
parser.add_argument('maxConstraints', type=str, metavar=
'<max_constraints>', help='Max values for parameters')
parser.add_argument('minConstraints', type=str, metavar=
'<min_constraints>', help='Min values for parameters')
parser.add_argument('targetData', type=str, metavar='<targetData>',
help=
'List of name/value pairs for properties extracted from data to judge fitness against'
)
parser.add_argument('weights', type=str, metavar='<weights>', help=
'Weights to assign to each target name/value pair')
parser.add_argument('-simTime', type=float, metavar='<simTime>',
default=DEFAULTS['simTime'], help='Simulation duration')
parser.add_argument('-dt', type=float, metavar='<dt>', default=DEFAULTS
['dt'], help='Simulation timestep')
parser.add_argument('-analysisStartTime', type=float, metavar=
'<analysisStartTime>', default=DEFAULTS['analysisStartTime'], help=
'Analysis start time')
parser.add_argument('-populationSize', type=int, metavar=
'<populationSize>', default=DEFAULTS['populationSize'], help=
'Population size')
parser.add_argument('-maxEvaluations', type=int, metavar=
'<maxEvaluations>', default=DEFAULTS['maxEvaluations'], help=
'Maximum evaluations')
parser.add_argument('-numSelected', type=int, metavar='<numSelected>',
default=DEFAULTS['numSelected'], help='Number selected')
parser.add_argument('-numOffspring', type=int, metavar='<numOffspring>',
default=DEFAULTS['numOffspring'], help='Number offspring')
parser.add_argument('-mutationRate', type=float, metavar=
'<mutationRate>', default=DEFAULTS['mutationRate'], help=
'Mutation rate')
parser.add_argument('-numElites', type=int, metavar='<numElites>',
default=DEFAULTS['numElites'], help='Number of elites')
parser.add_argument('-numParallelEvaluations', type=int, metavar=
'<numParallelEvaluations>', default=DEFAULTS[
'numParallelEvaluations'], help=
'Number of evaluations to run in parallel')
parser.add_argument('-seed', type=int, metavar='<seed>', default=
DEFAULTS['seed'], help='Seed for optimiser')
parser.add_argument('-simulator', type=str, metavar='<simulator>',
default=DEFAULTS['simulator'], help='Simulator to run')
parser.add_argument('-knownTargetValues', type=str, metavar=
'<knownTargetValues>', help=
'List of name/value pairs which represent the known values of the target parameters'
)
parser.add_argument('-nogui', action='store_true', default=DEFAULTS[
'nogui'], help='Should GUI elements be supressed?')
parser.add_argument('-showPlotAlready', action='store_true', default=
DEFAULTS['showPlotAlready'], help=
'Should generated plots be suppressed until show() called?')
parser.add_argument('-verbose', action='store_true', default=DEFAULTS[
'verbose'], help='Verbose mode')
parser.add_argument('-dryRun', action='store_true', default=DEFAULTS[
'dryRun'], help='Dry run; just print setup information')
parser.add_argument('-extraReportInfo', type=str, metavar=
'<extraReportInfo>', default=DEFAULTS['extraReportInfo'], help=
'Extra tag/value pairs can be put into the report.json: -extraReportInfo=["tag":"value"]'
)
parser.add_argument('-cleanup', action='store_true', default=DEFAULTS[
'cleanup'], help=
'Should (some) generated files, e.g. *.dat, be deleted as optimisation progresses?'
)
return parser.parse_args()
|
process_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = argparse.ArgumentParser(description=\n 'A script which can be run to tune a NeuroML 2 model against a number of target properties. Work in progress!'\n )\n parser.add_argument('prefix', type=str, metavar='<prefix>', help=\n 'Prefix for optimisation run')\n parser.add_argument('neuromlFile', type=str, metavar='<neuromlFile>',\n help='NeuroML2 file containing model')\n parser.add_argument('target', type=str, metavar='<target>', help=\n 'Target in NeuroML2 model')\n parser.add_argument('parameters', type=str, metavar='<parameters>',\n help='List of parameter to adjust')\n parser.add_argument('maxConstraints', type=str, metavar=\n '<max_constraints>', help='Max values for parameters')\n parser.add_argument('minConstraints', type=str, metavar=\n '<min_constraints>', help='Min values for parameters')\n parser.add_argument('targetData', type=str, metavar='<targetData>',\n help=\n 'List of name/value pairs for properties extracted from data to judge fitness against'\n )\n parser.add_argument('weights', type=str, metavar='<weights>', help=\n 'Weights to assign to each target name/value pair')\n parser.add_argument('-simTime', type=float, metavar='<simTime>',\n default=DEFAULTS['simTime'], help='Simulation duration')\n parser.add_argument('-dt', type=float, metavar='<dt>', default=DEFAULTS\n ['dt'], help='Simulation timestep')\n parser.add_argument('-analysisStartTime', type=float, metavar=\n '<analysisStartTime>', default=DEFAULTS['analysisStartTime'], help=\n 'Analysis start time')\n parser.add_argument('-populationSize', type=int, metavar=\n '<populationSize>', default=DEFAULTS['populationSize'], help=\n 'Population size')\n parser.add_argument('-maxEvaluations', type=int, metavar=\n '<maxEvaluations>', default=DEFAULTS['maxEvaluations'], help=\n 'Maximum evaluations')\n parser.add_argument('-numSelected', type=int, metavar='<numSelected>',\n default=DEFAULTS['numSelected'], help='Number selected')\n parser.add_argument('-numOffspring', type=int, metavar='<numOffspring>',\n default=DEFAULTS['numOffspring'], help='Number offspring')\n parser.add_argument('-mutationRate', type=float, metavar=\n '<mutationRate>', default=DEFAULTS['mutationRate'], help=\n 'Mutation rate')\n parser.add_argument('-numElites', type=int, metavar='<numElites>',\n default=DEFAULTS['numElites'], help='Number of elites')\n parser.add_argument('-numParallelEvaluations', type=int, metavar=\n '<numParallelEvaluations>', default=DEFAULTS[\n 'numParallelEvaluations'], help=\n 'Number of evaluations to run in parallel')\n parser.add_argument('-seed', type=int, metavar='<seed>', default=\n DEFAULTS['seed'], help='Seed for optimiser')\n parser.add_argument('-simulator', type=str, metavar='<simulator>',\n default=DEFAULTS['simulator'], help='Simulator to run')\n parser.add_argument('-knownTargetValues', type=str, metavar=\n '<knownTargetValues>', help=\n 'List of name/value pairs which represent the known values of the target parameters'\n )\n parser.add_argument('-nogui', action='store_true', default=DEFAULTS[\n 'nogui'], help='Should GUI elements be supressed?')\n parser.add_argument('-showPlotAlready', action='store_true', default=\n DEFAULTS['showPlotAlready'], help=\n 'Should generated plots be suppressed until show() called?')\n parser.add_argument('-verbose', action='store_true', default=DEFAULTS[\n 'verbose'], help='Verbose mode')\n parser.add_argument('-dryRun', action='store_true', default=DEFAULTS[\n 'dryRun'], help='Dry run; just print setup information')\n parser.add_argument('-extraReportInfo', type=str, metavar=\n '<extraReportInfo>', default=DEFAULTS['extraReportInfo'], help=\n 'Extra tag/value pairs can be put into the report.json: -extraReportInfo=[\"tag\":\"value\"]'\n )\n parser.add_argument('-cleanup', action='store_true', default=DEFAULTS[\n 'cleanup'], help=\n 'Should (some) generated files, e.g. *.dat, be deleted as optimisation progresses?'\n )\n return parser.parse_args()\n",
"role": "user"
},
{
"content": "process_args",
"role": "assistant"
}
] |
def x():
parser = argparse.ArgumentParser(description=
'A file for overlaying POVRay files generated from NeuroML by NeuroML1ToPOVRay.py with cell activity (e.g. as generated from a neuroConstruct simulation)'
)
parser.add_argument('prefix', type=str, metavar='<network prefix>',
help=
'Prefix for files in PovRay, e.g. use PREFIX is files are PREFIX.pov, PREFIX_net.inc, etc.'
)
parser.add_argument('-activity', action='store_true', default=False,
help='If this is specified, overlay network activity (not tested!!)')
parser.add_argument('-maxV', type=float, metavar='<maxV>', default=50.0,
help='Max voltage for colour scale in mV')
parser.add_argument('-minV', type=float, metavar='<minV>', default=-
90.0, help='Min voltage for colour scale in mV')
parser.add_argument('-startTime', type=float, metavar='<startTime>',
default=0, help=
'Time in ms at which to start overlaying the simulation activity')
parser.add_argument('-endTime', type=float, metavar='<endTime>',
default=100, help='End time of simulation activity in ms')
parser.add_argument('-title', type=str, metavar='<title>', default=
'Movie generated from neuroConstruct simulation', help=
'Title for movie')
parser.add_argument('-left', type=str, metavar='<left info>', default=
'', help='Text on left')
parser.add_argument('-frames', type=int, metavar='<frames>', default=
100, help='Number of frames')
parser.add_argument('-name', type=str, metavar='<Movie name>', default=
'output', help='Movie name')
return parser.parse_args()
|
process_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = argparse.ArgumentParser(description=\n 'A file for overlaying POVRay files generated from NeuroML by NeuroML1ToPOVRay.py with cell activity (e.g. as generated from a neuroConstruct simulation)'\n )\n parser.add_argument('prefix', type=str, metavar='<network prefix>',\n help=\n 'Prefix for files in PovRay, e.g. use PREFIX is files are PREFIX.pov, PREFIX_net.inc, etc.'\n )\n parser.add_argument('-activity', action='store_true', default=False,\n help='If this is specified, overlay network activity (not tested!!)')\n parser.add_argument('-maxV', type=float, metavar='<maxV>', default=50.0,\n help='Max voltage for colour scale in mV')\n parser.add_argument('-minV', type=float, metavar='<minV>', default=-\n 90.0, help='Min voltage for colour scale in mV')\n parser.add_argument('-startTime', type=float, metavar='<startTime>',\n default=0, help=\n 'Time in ms at which to start overlaying the simulation activity')\n parser.add_argument('-endTime', type=float, metavar='<endTime>',\n default=100, help='End time of simulation activity in ms')\n parser.add_argument('-title', type=str, metavar='<title>', default=\n 'Movie generated from neuroConstruct simulation', help=\n 'Title for movie')\n parser.add_argument('-left', type=str, metavar='<left info>', default=\n '', help='Text on left')\n parser.add_argument('-frames', type=int, metavar='<frames>', default=\n 100, help='Number of frames')\n parser.add_argument('-name', type=str, metavar='<Movie name>', default=\n 'output', help='Movie name')\n return parser.parse_args()\n",
"role": "user"
},
{
"content": "process_args",
"role": "assistant"
}
] |
def x(application, host='127.0.0.1', port=8080, **options):
container = tornado.wsgi.WSGIContainer(application)
http_server = tornado.httpserver.HTTPServer(container, **options)
http_server.listen(int(port), host)
tornado.ioloop.IOLoop.instance().start()
|
serve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(application, host='127.0.0.1', port=8080, **options):\n container = tornado.wsgi.WSGIContainer(application)\n http_server = tornado.httpserver.HTTPServer(container, **options)\n http_server.listen(int(port), host)\n tornado.ioloop.IOLoop.instance().start()\n",
"role": "user"
},
{
"content": "serve",
"role": "assistant"
}
] |
def x(nml2_doc):
info = 'Contents of NeuroML 2 document: %s\n' % nml2_doc.id
membs = inspect.getmembers(nml2_doc)
for memb in membs:
if isinstance(memb[1], list) and len(memb[1]) > 0 and not memb[0
].endswith('_'):
info += ' %s:\n [' % memb[0]
for entry in memb[1]:
extra = '???'
extra = entry.name if hasattr(entry, 'name') else extra
extra = entry.href if hasattr(entry, 'href') else extra
extra = entry.id if hasattr(entry, 'id') else extra
info += ' %s (%s),' % (entry, extra)
info += ']\n'
return info
|
quick_summary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nml2_doc):\n info = 'Contents of NeuroML 2 document: %s\\n' % nml2_doc.id\n membs = inspect.getmembers(nml2_doc)\n for memb in membs:\n if isinstance(memb[1], list) and len(memb[1]) > 0 and not memb[0\n ].endswith('_'):\n info += ' %s:\\n [' % memb[0]\n for entry in memb[1]:\n extra = '???'\n extra = entry.name if hasattr(entry, 'name') else extra\n extra = entry.href if hasattr(entry, 'href') else extra\n extra = entry.id if hasattr(entry, 'id') else extra\n info += ' %s (%s),' % (entry, extra)\n info += ']\\n'\n return info\n",
"role": "user"
},
{
"content": "quick_summary",
"role": "assistant"
}
] |
def x(command, directory, verbose=DEFAULTS['v'], prefix='Output: ', env=None):
if os.name == 'nt':
directory = os.path.normpath(directory)
print_comment('Executing: (%s) in directory: %s' % (command, directory),
verbose)
if env is not None:
print_comment('Extra env variables %s' % env, verbose)
try:
if os.name == 'nt':
return_string = subprocess.check_output(command, cwd=directory,
shell=True, env=env, close_fds=False)
else:
return_string = subprocess.check_output(command, cwd=directory,
shell=True, stderr=subprocess.STDOUT, env=env, close_fds=True)
return_string = return_string.decode('utf-8')
print_comment('Command completed. Output: \n %s%s' % (prefix,
return_string.replace('\n', '\n ' + prefix)), verbose)
return return_string
except AttributeError:
print_comment_v('Assuming Python 2.6...')
return_string = subprocess.Popen(command, cwd=directory, shell=True,
stdout=subprocess.PIPE).communicate()[0]
return return_string
except subprocess.CalledProcessError as e:
print_comment_v('*** Problem running command: \n %s' % e)
print_comment_v('%s%s' % (prefix, e.output.decode().replace('\n',
'\n' + prefix)))
return None
except:
print_comment_v('*** Unknown problem running command: %s' % e)
return None
print_comment('Finished execution', verbose)
|
execute_command_in_dir
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(command, directory, verbose=DEFAULTS['v'], prefix='Output: ', env=None):\n if os.name == 'nt':\n directory = os.path.normpath(directory)\n print_comment('Executing: (%s) in directory: %s' % (command, directory),\n verbose)\n if env is not None:\n print_comment('Extra env variables %s' % env, verbose)\n try:\n if os.name == 'nt':\n return_string = subprocess.check_output(command, cwd=directory,\n shell=True, env=env, close_fds=False)\n else:\n return_string = subprocess.check_output(command, cwd=directory,\n shell=True, stderr=subprocess.STDOUT, env=env, close_fds=True)\n return_string = return_string.decode('utf-8')\n print_comment('Command completed. Output: \\n %s%s' % (prefix,\n return_string.replace('\\n', '\\n ' + prefix)), verbose)\n return return_string\n except AttributeError:\n print_comment_v('Assuming Python 2.6...')\n return_string = subprocess.Popen(command, cwd=directory, shell=True,\n stdout=subprocess.PIPE).communicate()[0]\n return return_string\n except subprocess.CalledProcessError as e:\n print_comment_v('*** Problem running command: \\n %s' % e)\n print_comment_v('%s%s' % (prefix, e.output.decode().replace('\\n', \n '\\n' + prefix)))\n return None\n except:\n print_comment_v('*** Unknown problem running command: %s' % e)\n return None\n print_comment('Finished execution', verbose)\n",
"role": "user"
},
{
"content": "execute_command_in_dir",
"role": "assistant"
}
] |
def x(comp_type, req_variables={}, parameter_values={}):
print_comment('Evaluating %s with req:%s; params:%s' % (comp_type.name,
req_variables, parameter_values))
exec_str = ''
return_vals = {}
from math import exp
for p in parameter_values:
exec_str += '%s = %s\n' % (p, get_value_in_si(parameter_values[p]))
for r in req_variables:
exec_str += '%s = %s\n' % (r, get_value_in_si(req_variables[r]))
for c in comp_type.Constant:
exec_str += '%s = %s\n' % (c.name, get_value_in_si(c.value))
for d in comp_type.Dynamics:
for dv in d.DerivedVariable:
exec_str += '%s = %s\n' % (dv.name, dv.value)
exec_str += 'return_vals["%s"] = %s\n' % (dv.name, dv.name)
for cdv in d.ConditionalDerivedVariable:
for case in cdv.Case:
if case.condition:
cond = case.condition.replace('.neq.', '!=').replace('.eq.'
, '==').replace('.gt.', '<').replace('.lt.', '<')
exec_str += 'if ( %s ): %s = %s \n' % (cond, cdv.name,
case.value)
else:
exec_str += 'else: %s = %s \n' % (cdv.name, case.value)
exec_str += '\n'
exec_str += 'return_vals["%s"] = %s\n' % (cdv.name, cdv.name)
"""print_comment_v(exec_str)"""
exec(exec_str)
return return_vals
|
evaluate_component
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(comp_type, req_variables={}, parameter_values={}):\n print_comment('Evaluating %s with req:%s; params:%s' % (comp_type.name,\n req_variables, parameter_values))\n exec_str = ''\n return_vals = {}\n from math import exp\n for p in parameter_values:\n exec_str += '%s = %s\\n' % (p, get_value_in_si(parameter_values[p]))\n for r in req_variables:\n exec_str += '%s = %s\\n' % (r, get_value_in_si(req_variables[r]))\n for c in comp_type.Constant:\n exec_str += '%s = %s\\n' % (c.name, get_value_in_si(c.value))\n for d in comp_type.Dynamics:\n for dv in d.DerivedVariable:\n exec_str += '%s = %s\\n' % (dv.name, dv.value)\n exec_str += 'return_vals[\"%s\"] = %s\\n' % (dv.name, dv.name)\n for cdv in d.ConditionalDerivedVariable:\n for case in cdv.Case:\n if case.condition:\n cond = case.condition.replace('.neq.', '!=').replace('.eq.'\n , '==').replace('.gt.', '<').replace('.lt.', '<')\n exec_str += 'if ( %s ): %s = %s \\n' % (cond, cdv.name,\n case.value)\n else:\n exec_str += 'else: %s = %s \\n' % (cdv.name, case.value)\n exec_str += '\\n'\n exec_str += 'return_vals[\"%s\"] = %s\\n' % (cdv.name, cdv.name)\n \"\"\"print_comment_v(exec_str)\"\"\"\n exec(exec_str)\n return return_vals\n",
"role": "user"
},
{
"content": "evaluate_component",
"role": "assistant"
}
] |
def x(self, context, exc=None):
duration = context._duration = round((time.time() - context._start_time
) * 1000)
delta = unicode(duration)
if self.header:
context.response.headers[self.header] = delta
if self.log:
self.log('Response generated in ' + delta + ' seconds.', extra=dict
(duration=duration, request=id(context)))
|
after
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, exc=None):\n duration = context._duration = round((time.time() - context._start_time\n ) * 1000)\n delta = unicode(duration)\n if self.header:\n context.response.headers[self.header] = delta\n if self.log:\n self.log('Response generated in ' + delta + ' seconds.', extra=dict\n (duration=duration, request=id(context)))\n",
"role": "user"
},
{
"content": "after",
"role": "assistant"
}
] |
def x(source, kwargs):
ordered_arrays = []
for name, value in source.items():
container = kwargs
if '.' in name:
parts = name.split('.')
name = name.rpartition('.')[2]
for target, following in zip(parts[:-1], parts[1:]):
if following.isnumeric():
container.setdefault(target, [{}])
if container[target] not in ordered_arrays:
ordered_arrays.append(container[target])
container = container[target][0]
continue
container = container.setdefault(target, {})
if name.endswith('[]'):
name = name[:-2]
container.setdefault(name, [])
container[name].append(value)
continue
if name.isnumeric() and container is not kwargs:
container[int(name)] = value
continue
if name in container:
if not isinstance(container[name], list):
container[name] = [container[name]]
container[name].append(value)
continue
container[name] = value
for container in ordered_arrays:
elements = container[0]
del container[:]
container.extend(value for name, value in sorted(elements.items()))
|
process_flat_kwargs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source, kwargs):\n ordered_arrays = []\n for name, value in source.items():\n container = kwargs\n if '.' in name:\n parts = name.split('.')\n name = name.rpartition('.')[2]\n for target, following in zip(parts[:-1], parts[1:]):\n if following.isnumeric():\n container.setdefault(target, [{}])\n if container[target] not in ordered_arrays:\n ordered_arrays.append(container[target])\n container = container[target][0]\n continue\n container = container.setdefault(target, {})\n if name.endswith('[]'):\n name = name[:-2]\n container.setdefault(name, [])\n container[name].append(value)\n continue\n if name.isnumeric() and container is not kwargs:\n container[int(name)] = value\n continue\n if name in container:\n if not isinstance(container[name], list):\n container[name] = [container[name]]\n container[name].append(value)\n continue\n container[name] = value\n for container in ordered_arrays:\n elements = container[0]\n del container[:]\n container.extend(value for name, value in sorted(elements.items()))\n",
"role": "user"
},
{
"content": "process_flat_kwargs",
"role": "assistant"
}
] |
def x():
parser = argparse.ArgumentParser(description=
'A file for converting NeuroML v2 files into POVRay files for 3D rendering'
)
parser.add_argument('neuroml_file', type=str, metavar='<NeuroML file>',
help=
'NeuroML (version 2 beta 3+) file to be converted to PovRay format (XML or HDF5 format)'
)
parser.add_argument('-split', action='store_true', default=False, help=
'If this is specified, generate separate pov files for cells & network. Default is false'
)
parser.add_argument('-background', type=str, metavar=
'<background colour>', default=_WHITE, help=
'Colour of background, e.g. <0,0,0,0.55>')
parser.add_argument('-movie', action='store_true', default=False, help=
'If this is specified, generate a ini file for generating a sequence of frames for a movie of the 3D structure'
)
parser.add_argument('-inputs', action='store_true', default=False, help
=
'If this is specified, show the locations of (synaptic, current clamp, etc.) inputs into the cells of the network'
)
parser.add_argument('-conns', action='store_true', default=False, help=
'If this is specified, show the connections present in the network with lines'
)
parser.add_argument('-conn_points', action='store_true', default=False,
help=
'If this is specified, show the end points of the connections present in the network'
)
parser.add_argument('-v', action='store_true', default=False, help=
'Verbose output')
parser.add_argument('-frames', type=int, metavar='<frames>', default=36,
help='Number of frames in movie')
parser.add_argument('-posx', type=float, metavar='<position offset x>',
default=0, help='Offset position in x dir (0 is centre, 1 is top)')
parser.add_argument('-posy', type=float, metavar='<position offset y>',
default=0, help='Offset position in y dir (0 is centre, 1 is top)')
parser.add_argument('-posz', type=float, metavar='<position offset z>',
default=0, help='Offset position in z dir (0 is centre, 1 is top)')
parser.add_argument('-viewx', type=float, metavar='<view offset x>',
default=0, help='Offset viewing point in x dir (0 is centre, 1 is top)'
)
parser.add_argument('-viewy', type=float, metavar='<view offset y>',
default=0, help='Offset viewing point in y dir (0 is centre, 1 is top)'
)
parser.add_argument('-viewz', type=float, metavar='<view offset z>',
default=0, help='Offset viewing point in z dir (0 is centre, 1 is top)'
)
parser.add_argument('-scalex', type=float, metavar='<scale position x>',
default=1, help='Scale position from network in x dir')
parser.add_argument('-scaley', type=float, metavar='<scale position y>',
default=1.5, help='Scale position from network in y dir')
parser.add_argument('-scalez', type=float, metavar='<scale position z>',
default=1, help='Scale position from network in z dir')
parser.add_argument('-mindiam', type=float, metavar=
'<minimum diameter dendrites/axons>', default=0, help=
'Minimum diameter for dendrites/axons (to improve visualisations)')
parser.add_argument('-plane', action='store_true', default=False, help=
'If this is specified, add a 2D plane below cell/network')
parser.add_argument('-segids', action='store_true', default=False, help
='Show segment ids')
return parser.parse_args()
|
process_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = argparse.ArgumentParser(description=\n 'A file for converting NeuroML v2 files into POVRay files for 3D rendering'\n )\n parser.add_argument('neuroml_file', type=str, metavar='<NeuroML file>',\n help=\n 'NeuroML (version 2 beta 3+) file to be converted to PovRay format (XML or HDF5 format)'\n )\n parser.add_argument('-split', action='store_true', default=False, help=\n 'If this is specified, generate separate pov files for cells & network. Default is false'\n )\n parser.add_argument('-background', type=str, metavar=\n '<background colour>', default=_WHITE, help=\n 'Colour of background, e.g. <0,0,0,0.55>')\n parser.add_argument('-movie', action='store_true', default=False, help=\n 'If this is specified, generate a ini file for generating a sequence of frames for a movie of the 3D structure'\n )\n parser.add_argument('-inputs', action='store_true', default=False, help\n =\n 'If this is specified, show the locations of (synaptic, current clamp, etc.) inputs into the cells of the network'\n )\n parser.add_argument('-conns', action='store_true', default=False, help=\n 'If this is specified, show the connections present in the network with lines'\n )\n parser.add_argument('-conn_points', action='store_true', default=False,\n help=\n 'If this is specified, show the end points of the connections present in the network'\n )\n parser.add_argument('-v', action='store_true', default=False, help=\n 'Verbose output')\n parser.add_argument('-frames', type=int, metavar='<frames>', default=36,\n help='Number of frames in movie')\n parser.add_argument('-posx', type=float, metavar='<position offset x>',\n default=0, help='Offset position in x dir (0 is centre, 1 is top)')\n parser.add_argument('-posy', type=float, metavar='<position offset y>',\n default=0, help='Offset position in y dir (0 is centre, 1 is top)')\n parser.add_argument('-posz', type=float, metavar='<position offset z>',\n default=0, help='Offset position in z dir (0 is centre, 1 is top)')\n parser.add_argument('-viewx', type=float, metavar='<view offset x>',\n default=0, help='Offset viewing point in x dir (0 is centre, 1 is top)'\n )\n parser.add_argument('-viewy', type=float, metavar='<view offset y>',\n default=0, help='Offset viewing point in y dir (0 is centre, 1 is top)'\n )\n parser.add_argument('-viewz', type=float, metavar='<view offset z>',\n default=0, help='Offset viewing point in z dir (0 is centre, 1 is top)'\n )\n parser.add_argument('-scalex', type=float, metavar='<scale position x>',\n default=1, help='Scale position from network in x dir')\n parser.add_argument('-scaley', type=float, metavar='<scale position y>',\n default=1.5, help='Scale position from network in y dir')\n parser.add_argument('-scalez', type=float, metavar='<scale position z>',\n default=1, help='Scale position from network in z dir')\n parser.add_argument('-mindiam', type=float, metavar=\n '<minimum diameter dendrites/axons>', default=0, help=\n 'Minimum diameter for dendrites/axons (to improve visualisations)')\n parser.add_argument('-plane', action='store_true', default=False, help=\n 'If this is specified, add a 2D plane below cell/network')\n parser.add_argument('-segids', action='store_true', default=False, help\n ='Show segment ids')\n return parser.parse_args()\n",
"role": "user"
},
{
"content": "process_args",
"role": "assistant"
}
] |
def x(self, config):
config = config or dict()
if 'extensions' not in config:
config['extensions'] = list()
if not any(isinstance(ext, BaseExtension) for ext in config['extensions']):
config['extensions'].insert(0, BaseExtension())
if not any(isinstance(ext, arguments.ArgumentExtension) for ext in
config['extensions']):
config['extensions'].extend([arguments.ValidateArgumentsExtension(),
arguments.ContextArgsExtension(), arguments.
RemainderArgsExtension(), arguments.QueryStringArgsExtension(),
arguments.FormEncodedKwargsExtension(), arguments.
JSONKwargsExtension()])
config['extensions'].append(self)
try:
addLoggingLevel('trace', logging.DEBUG - 5)
except AttributeError:
pass
level = config.get('logging', {}).get('level', None)
if level:
logging.basicConfig(level=getattr(logging, level.upper()))
elif 'logging' in config:
logging.config.dictConfig(config['logging'])
return config
|
configure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, config):\n config = config or dict()\n if 'extensions' not in config:\n config['extensions'] = list()\n if not any(isinstance(ext, BaseExtension) for ext in config['extensions']):\n config['extensions'].insert(0, BaseExtension())\n if not any(isinstance(ext, arguments.ArgumentExtension) for ext in\n config['extensions']):\n config['extensions'].extend([arguments.ValidateArgumentsExtension(),\n arguments.ContextArgsExtension(), arguments.\n RemainderArgsExtension(), arguments.QueryStringArgsExtension(),\n arguments.FormEncodedKwargsExtension(), arguments.\n JSONKwargsExtension()])\n config['extensions'].append(self)\n try:\n addLoggingLevel('trace', logging.DEBUG - 5)\n except AttributeError:\n pass\n level = config.get('logging', {}).get('level', None)\n if level:\n logging.basicConfig(level=getattr(logging, level.upper()))\n elif 'logging' in config:\n logging.config.dictConfig(config['logging'])\n return config\n",
"role": "user"
},
{
"content": "configure",
"role": "assistant"
}
] |
def x(self, service='auto', **options):
service = load(service, 'web.server')
try:
service(self, **options)
except KeyboardInterrupt:
pass
for ext in self.__context.extension.signal.stop:
ext(self.__context)
|
serve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, service='auto', **options):\n service = load(service, 'web.server')\n try:\n service(self, **options)\n except KeyboardInterrupt:\n pass\n for ext in self.__context.extension.signal.stop:\n ext(self.__context)\n",
"role": "user"
},
{
"content": "serve",
"role": "assistant"
}
] |
def x(self, environ, start_response):
context = environ['wc.context'] = self.RequestContext(environ=environ)
signals = context.extension.signal
for ext in signals.pre:
ext(context)
is_endpoint, handler = context.dispatch(context, context.root, context.
environ['PATH_INFO'])
if is_endpoint:
try:
result = self._execute_endpoint(context, handler, signals)
except Exception as e:
log.exception(
'Caught exception attempting to execute the endpoint.')
result = HTTPInternalServerError(str(e) if __debug__ else
'Please see the logs.')
if 'debugger' in context.extension.feature:
context.response = result
for ext in signals.after:
ext(context)
raise
else:
result = HTTPNotFound('Dispatch failed.' if __debug__ else None)
if __debug__:
log.debug('Result prepared, identifying view handler.', extra=dict(
request=id(context), result=safe_name(type(result))))
for view in context.view(result):
if view(context, result):
break
else:
raise TypeError('No view could be found to handle: ' + repr(type(
result)))
if __debug__:
log.debug('View identified, populating response.', extra=dict(
request=id(context), view=repr(view)))
for ext in signals.after:
ext(context)
def x(response):
for chunk in response:
yield chunk
for ext in signals.done:
ext(context)
return capture_done(context.response.conditional_response_app(environ,
start_response))
|
application
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, environ, start_response):\n context = environ['wc.context'] = self.RequestContext(environ=environ)\n signals = context.extension.signal\n for ext in signals.pre:\n ext(context)\n is_endpoint, handler = context.dispatch(context, context.root, context.\n environ['PATH_INFO'])\n if is_endpoint:\n try:\n result = self._execute_endpoint(context, handler, signals)\n except Exception as e:\n log.exception(\n 'Caught exception attempting to execute the endpoint.')\n result = HTTPInternalServerError(str(e) if __debug__ else\n 'Please see the logs.')\n if 'debugger' in context.extension.feature:\n context.response = result\n for ext in signals.after:\n ext(context)\n raise\n else:\n result = HTTPNotFound('Dispatch failed.' if __debug__ else None)\n if __debug__:\n log.debug('Result prepared, identifying view handler.', extra=dict(\n request=id(context), result=safe_name(type(result))))\n for view in context.view(result):\n if view(context, result):\n break\n else:\n raise TypeError('No view could be found to handle: ' + repr(type(\n result)))\n if __debug__:\n log.debug('View identified, populating response.', extra=dict(\n request=id(context), view=repr(view)))\n for ext in signals.after:\n ext(context)\n\n def x(response):\n for chunk in response:\n yield chunk\n for ext in signals.done:\n ext(context)\n return capture_done(context.response.conditional_response_app(environ,\n start_response))\n",
"role": "user"
},
{
"content": "application",
"role": "assistant"
}
] |
def x(self):
self.ref_start, self.qry_start = self.qry_start, self.ref_start
self.ref_end, self.qry_end = self.qry_end, self.ref_end
self.hit_length_ref, self.hit_length_qry = (self.hit_length_qry, self.
hit_length_ref)
self.ref_length, self.qry_length = self.qry_length, self.ref_length
self.ref_name, self.qry_name = self.qry_name, self.ref_name
|
swap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.ref_start, self.qry_start = self.qry_start, self.ref_start\n self.ref_end, self.qry_end = self.qry_end, self.ref_end\n self.hit_length_ref, self.hit_length_qry = (self.hit_length_qry, self.\n hit_length_ref)\n self.ref_length, self.qry_length = self.qry_length, self.ref_length\n self.ref_name, self.qry_name = self.qry_name, self.ref_name\n",
"role": "user"
},
{
"content": "swap",
"role": "assistant"
}
] |
def x(self):
return pyfastaq.intervals.Interval(min(self.qry_start, self.qry_end),
max(self.qry_start, self.qry_end))
|
qry_coords
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return pyfastaq.intervals.Interval(min(self.qry_start, self.qry_end),\n max(self.qry_start, self.qry_end))\n",
"role": "user"
},
{
"content": "qry_coords",
"role": "assistant"
}
] |
def x(self):
return pyfastaq.intervals.Interval(min(self.ref_start, self.ref_end),
max(self.ref_start, self.ref_end))
|
ref_coords
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return pyfastaq.intervals.Interval(min(self.ref_start, self.ref_end),\n max(self.ref_start, self.ref_end))\n",
"role": "user"
},
{
"content": "ref_coords",
"role": "assistant"
}
] |
def x(self):
return (self.ref_start < self.ref_end) == (self.qry_start < self.qry_end)
|
on_same_strand
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return (self.ref_start < self.ref_end) == (self.qry_start < self.qry_end)\n",
"role": "user"
},
{
"content": "on_same_strand",
"role": "assistant"
}
] |
def x(self):
return (self.ref_name == self.qry_name and self.ref_start == self.
qry_start and self.ref_end == self.qry_end and self.
percent_identity == 100)
|
is_self_hit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return (self.ref_name == self.qry_name and self.ref_start == self.\n qry_start and self.ref_end == self.qry_end and self.\n percent_identity == 100)\n",
"role": "user"
},
{
"content": "is_self_hit",
"role": "assistant"
}
] |
def x(self):
self.qry_start = self.qry_length - self.qry_start - 1
self.qry_end = self.qry_length - self.qry_end - 1
|
reverse_query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.qry_start = self.qry_length - self.qry_start - 1\n self.qry_end = self.qry_length - self.qry_end - 1\n",
"role": "user"
},
{
"content": "reverse_query",
"role": "assistant"
}
] |
def x(self):
self.ref_start = self.ref_length - self.ref_start - 1
self.ref_end = self.ref_length - self.ref_end - 1
|
reverse_reference
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.ref_start = self.ref_length - self.ref_start - 1\n self.ref_end = self.ref_length - self.ref_end - 1\n",
"role": "user"
},
{
"content": "reverse_reference",
"role": "assistant"
}
] |
def x(self):
aln_score = int(self.percent_identity * 0.005 * (self.hit_length_ref +
self.hit_length_qry))
return ' '.join(str(x) for x in [aln_score, '{0:.2f}'.format(self.
percent_identity), self.qry_start + 1, self.qry_end + 1, self.
qry_name, self.ref_start + 1, self.ref_end + 1, self.ref_name])
|
to_msp_crunch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n aln_score = int(self.percent_identity * 0.005 * (self.hit_length_ref +\n self.hit_length_qry))\n return ' '.join(str(x) for x in [aln_score, '{0:.2f}'.format(self.\n percent_identity), self.qry_start + 1, self.qry_end + 1, self.\n qry_name, self.ref_start + 1, self.ref_end + 1, self.ref_name])\n",
"role": "user"
},
{
"content": "to_msp_crunch",
"role": "assistant"
}
] |
def x(self, ref_coord, variant_list):
if self.ref_coords().distance_to_point(ref_coord) > 0:
raise Error(
'Cannot get query coord in qry_coords_from_ref_coord because given ref_coord '
+ str(ref_coord) + """ does not lie in nucmer alignment:
""" +
str(self))
indel_variant_indexes = []
for i in range(len(variant_list)):
if variant_list[i].var_type not in {variant.INS, variant.DEL}:
continue
if not self.intersects_variant(variant_list[i]):
continue
if variant_list[i].ref_start <= ref_coord <= variant_list[i].ref_end:
return variant_list[i].qry_start, True
elif variant_list[i].ref_start < ref_coord:
indel_variant_indexes.append(i)
distance = ref_coord - min(self.ref_start, self.ref_end)
for i in indel_variant_indexes:
if variant_list[i].var_type == variant.INS:
distance += len(variant_list[i].qry_base)
else:
assert variant_list[i].var_type == variant.DEL
distance -= len(variant_list[i].ref_base)
if self.on_same_strand():
return min(self.qry_start, self.qry_end) + distance, False
else:
return max(self.qry_start, self.qry_end) - distance, False
|
qry_coords_from_ref_coord
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ref_coord, variant_list):\n if self.ref_coords().distance_to_point(ref_coord) > 0:\n raise Error(\n 'Cannot get query coord in qry_coords_from_ref_coord because given ref_coord '\n + str(ref_coord) + \"\"\" does not lie in nucmer alignment:\n\"\"\" +\n str(self))\n indel_variant_indexes = []\n for i in range(len(variant_list)):\n if variant_list[i].var_type not in {variant.INS, variant.DEL}:\n continue\n if not self.intersects_variant(variant_list[i]):\n continue\n if variant_list[i].ref_start <= ref_coord <= variant_list[i].ref_end:\n return variant_list[i].qry_start, True\n elif variant_list[i].ref_start < ref_coord:\n indel_variant_indexes.append(i)\n distance = ref_coord - min(self.ref_start, self.ref_end)\n for i in indel_variant_indexes:\n if variant_list[i].var_type == variant.INS:\n distance += len(variant_list[i].qry_base)\n else:\n assert variant_list[i].var_type == variant.DEL\n distance -= len(variant_list[i].ref_base)\n if self.on_same_strand():\n return min(self.qry_start, self.qry_end) + distance, False\n else:\n return max(self.qry_start, self.qry_end) - distance, False\n",
"role": "user"
},
{
"content": "qry_coords_from_ref_coord",
"role": "assistant"
}
] |
def x(self, ref, qry, outprefix):
if self.use_promer:
command = 'promer'
else:
command = 'nucmer'
command += ' -p ' + outprefix
if self.breaklen is not None:
command += ' -b ' + str(self.breaklen)
if self.diagdiff is not None and not self.use_promer:
command += ' -D ' + str(self.diagdiff)
if self.diagfactor:
command += ' -d ' + str(self.diagfactor)
if self.maxgap:
command += ' -g ' + str(self.maxgap)
if self.maxmatch:
command += ' --maxmatch'
if self.mincluster is not None:
command += ' -c ' + str(self.mincluster)
if not self.simplify and not self.use_promer:
command += ' --nosimplify'
return command + ' ' + ref + ' ' + qry
|
nucmer_command
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ref, qry, outprefix):\n if self.use_promer:\n command = 'promer'\n else:\n command = 'nucmer'\n command += ' -p ' + outprefix\n if self.breaklen is not None:\n command += ' -b ' + str(self.breaklen)\n if self.diagdiff is not None and not self.use_promer:\n command += ' -D ' + str(self.diagdiff)\n if self.diagfactor:\n command += ' -d ' + str(self.diagfactor)\n if self.maxgap:\n command += ' -g ' + str(self.maxgap)\n if self.maxmatch:\n command += ' --maxmatch'\n if self.mincluster is not None:\n command += ' -c ' + str(self.mincluster)\n if not self.simplify and not self.use_promer:\n command += ' --nosimplify'\n return command + ' ' + ref + ' ' + qry\n",
"role": "user"
},
{
"content": "nucmer_command",
"role": "assistant"
}
] |
def x(self, infile, outfile):
command = 'delta-filter'
if self.min_id is not None:
command += ' -i ' + str(self.min_id)
if self.min_length is not None:
command += ' -l ' + str(self.min_length)
return command + ' ' + infile + ' > ' + outfile
|
delta_filter_command
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, infile, outfile):\n command = 'delta-filter'\n if self.min_id is not None:\n command += ' -i ' + str(self.min_id)\n if self.min_length is not None:\n command += ' -l ' + str(self.min_length)\n return command + ' ' + infile + ' > ' + outfile\n",
"role": "user"
},
{
"content": "delta_filter_command",
"role": "assistant"
}
] |
def x(self, infile, outfile):
command = 'show-coords -dTlro'
if not self.coords_header:
command += ' -H'
return command + ' ' + infile + ' > ' + outfile
|
show_coords_command
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, infile, outfile):\n command = 'show-coords -dTlro'\n if not self.coords_header:\n command += ' -H'\n return command + ' ' + infile + ' > ' + outfile\n",
"role": "user"
},
{
"content": "show_coords_command",
"role": "assistant"
}
] |
def x(self, script_name, ref, qry, outfile):
f = pyfastaq.utils.open_file_write(script_name)
print(self._nucmer_command(ref, qry, 'p'), file=f)
print(self._delta_filter_command('p.delta', 'p.delta.filter'), file=f)
print(self._show_coords_command('p.delta.filter', outfile), file=f)
if self.show_snps:
print(self._show_snps_command('p.delta.filter', outfile + '.snps'),
file=f)
pyfastaq.utils.close(f)
|
write_script
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, script_name, ref, qry, outfile):\n f = pyfastaq.utils.open_file_write(script_name)\n print(self._nucmer_command(ref, qry, 'p'), file=f)\n print(self._delta_filter_command('p.delta', 'p.delta.filter'), file=f)\n print(self._show_coords_command('p.delta.filter', outfile), file=f)\n if self.show_snps:\n print(self._show_snps_command('p.delta.filter', outfile + '.snps'),\n file=f)\n pyfastaq.utils.close(f)\n",
"role": "user"
},
{
"content": "write_script",
"role": "assistant"
}
] |
def x(self):
qry = os.path.abspath(self.qry)
ref = os.path.abspath(self.ref)
outfile = os.path.abspath(self.outfile)
tmpdir = tempfile.mkdtemp(prefix='tmp.run_nucmer.', dir=os.getcwd())
original_dir = os.getcwd()
os.chdir(tmpdir)
script = 'run_nucmer.sh'
self._write_script(script, ref, qry, outfile)
syscall.run('bash ' + script, verbose=self.verbose)
os.chdir(original_dir)
shutil.rmtree(tmpdir)
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n qry = os.path.abspath(self.qry)\n ref = os.path.abspath(self.ref)\n outfile = os.path.abspath(self.outfile)\n tmpdir = tempfile.mkdtemp(prefix='tmp.run_nucmer.', dir=os.getcwd())\n original_dir = os.getcwd()\n os.chdir(tmpdir)\n script = 'run_nucmer.sh'\n self._write_script(script, ref, qry, outfile)\n syscall.run('bash ' + script, verbose=self.verbose)\n os.chdir(original_dir)\n shutil.rmtree(tmpdir)\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, nucmer_snp):
new_variant = Variant(nucmer_snp)
if (self.var_type not in [INS, DEL] or self.var_type != new_variant.
var_type or self.qry_name != new_variant.qry_name or self.ref_name !=
new_variant.ref_name or self.reverse != new_variant.reverse):
return False
if (self.var_type == INS and self.ref_start == new_variant.ref_start and
self.qry_end + 1 == new_variant.qry_start):
self.qry_base += new_variant.qry_base
self.qry_end += 1
return True
if (self.var_type == DEL and self.qry_start == new_variant.qry_start and
self.ref_end + 1 == new_variant.ref_start):
self.ref_base += new_variant.ref_base
self.ref_end += 1
return True
return False
|
update_indel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nucmer_snp):\n new_variant = Variant(nucmer_snp)\n if (self.var_type not in [INS, DEL] or self.var_type != new_variant.\n var_type or self.qry_name != new_variant.qry_name or self.ref_name !=\n new_variant.ref_name or self.reverse != new_variant.reverse):\n return False\n if (self.var_type == INS and self.ref_start == new_variant.ref_start and\n self.qry_end + 1 == new_variant.qry_start):\n self.qry_base += new_variant.qry_base\n self.qry_end += 1\n return True\n if (self.var_type == DEL and self.qry_start == new_variant.qry_start and\n self.ref_end + 1 == new_variant.ref_start):\n self.ref_base += new_variant.ref_base\n self.ref_end += 1\n return True\n return False\n",
"role": "user"
},
{
"content": "update_indel",
"role": "assistant"
}
] |
def x(fname):
f = pyfastaq.utils.open_file_read(fname)
for line in f:
if line.startswith('[') or not '\t' in line:
continue
yield alignment.Alignment(line)
pyfastaq.utils.close(f)
|
reader
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n f = pyfastaq.utils.open_file_read(fname)\n for line in f:\n if line.startswith('[') or not '\\t' in line:\n continue\n yield alignment.Alignment(line)\n pyfastaq.utils.close(f)\n",
"role": "user"
},
{
"content": "reader",
"role": "assistant"
}
] |
def x(infile, outfile, ref_fai=None, qry_fai=None):
fai_files = {ref_fai, qry_fai}
if None in fai_files and len(fai_files) != 1:
print(fai_files)
raise Error(
'Error in convert_to_msp_crunch. Must use both of ref_fai and qry_fai, or neither of them'
)
if ref_fai is not None:
assert qry_fai is not None
ref_offsets = pyfastaq.tasks.length_offsets_from_fai(ref_fai)
qry_offsets = pyfastaq.tasks.length_offsets_from_fai(qry_fai)
file_reader = reader(infile)
f_out = pyfastaq.utils.open_file_write(outfile)
for aln in file_reader:
if ref_fai is not None:
aln.ref_start += ref_offsets[aln.ref_name]
aln.ref_end += ref_offsets[aln.ref_name]
aln.qry_start += qry_offsets[aln.qry_name]
aln.qry_end += qry_offsets[aln.qry_name]
print(aln.to_msp_crunch(), file=f_out)
pyfastaq.utils.close(f_out)
|
convert_to_msp_crunch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile, outfile, ref_fai=None, qry_fai=None):\n fai_files = {ref_fai, qry_fai}\n if None in fai_files and len(fai_files) != 1:\n print(fai_files)\n raise Error(\n 'Error in convert_to_msp_crunch. Must use both of ref_fai and qry_fai, or neither of them'\n )\n if ref_fai is not None:\n assert qry_fai is not None\n ref_offsets = pyfastaq.tasks.length_offsets_from_fai(ref_fai)\n qry_offsets = pyfastaq.tasks.length_offsets_from_fai(qry_fai)\n file_reader = reader(infile)\n f_out = pyfastaq.utils.open_file_write(outfile)\n for aln in file_reader:\n if ref_fai is not None:\n aln.ref_start += ref_offsets[aln.ref_name]\n aln.ref_end += ref_offsets[aln.ref_name]\n aln.qry_start += qry_offsets[aln.qry_name]\n aln.qry_end += qry_offsets[aln.qry_name]\n print(aln.to_msp_crunch(), file=f_out)\n pyfastaq.utils.close(f_out)\n",
"role": "user"
},
{
"content": "convert_to_msp_crunch",
"role": "assistant"
}
] |
def x(self, method, url, params=None, headers=None, data=None):
if not params:
params = {}
if not headers:
headers = {'accept': '*/*'}
if method == 'POST' or method == 'PUT':
headers.update({'Content-Type': 'application/json'})
try:
response = requests.request(method=method, url=self.host + self.key +
url, params=params, headers=headers, data=data)
try:
response.raise_for_status()
response_code = response.status_code
success = True if response_code // 100 == 2 else False
if response.text:
try:
data = response.json()
except ValueError:
data = response.content
else:
data = ''
response_headers = response.headers
return BurpResponse(success=success, response_code=
response_code, data=data, response_headers=response_headers)
except ValueError as e:
return BurpResponse(success=False, message=
'JSON response could not be decoded {}.'.format(e))
except requests.exceptions.HTTPError as e:
if response.status_code == 400:
return BurpResponse(success=False, response_code=400,
message='Bad Request')
else:
return BurpResponse(message=
'There was an error while handling the request. {}'.
format(response.content), success=False)
except Exception as e:
return BurpResponse(success=False, message='Eerror is %s' % e)
|
request
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method, url, params=None, headers=None, data=None):\n if not params:\n params = {}\n if not headers:\n headers = {'accept': '*/*'}\n if method == 'POST' or method == 'PUT':\n headers.update({'Content-Type': 'application/json'})\n try:\n response = requests.request(method=method, url=self.host + self.key +\n url, params=params, headers=headers, data=data)\n try:\n response.raise_for_status()\n response_code = response.status_code\n success = True if response_code // 100 == 2 else False\n if response.text:\n try:\n data = response.json()\n except ValueError:\n data = response.content\n else:\n data = ''\n response_headers = response.headers\n return BurpResponse(success=success, response_code=\n response_code, data=data, response_headers=response_headers)\n except ValueError as e:\n return BurpResponse(success=False, message=\n 'JSON response could not be decoded {}.'.format(e))\n except requests.exceptions.HTTPError as e:\n if response.status_code == 400:\n return BurpResponse(success=False, response_code=400,\n message='Bad Request')\n else:\n return BurpResponse(message=\n 'There was an error while handling the request. {}'.\n format(response.content), success=False)\n except Exception as e:\n return BurpResponse(success=False, message='Eerror is %s' % e)\n",
"role": "user"
},
{
"content": "request",
"role": "assistant"
}
] |
def x(name, rawtext, text, lineno, inliner, options=None, content=None):
options = options or {}
content = content or []
has_explicit_title, title, target = split_explicit_title(text)
target = utils.unescape(target).strip()
title = utils.unescape(title).strip()
config = inliner.document.settings.env.app.config
if config.issues_user_uri:
ref = config.issues_user_uri.format(user=target)
else:
ref = 'https://github.com/{0}'.format(target)
if has_explicit_title:
text = title
else:
text = '@{0}'.format(target)
link = nodes.reference(text=text, refuri=ref, **options)
return [link], []
|
user_role
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, rawtext, text, lineno, inliner, options=None, content=None):\n options = options or {}\n content = content or []\n has_explicit_title, title, target = split_explicit_title(text)\n target = utils.unescape(target).strip()\n title = utils.unescape(title).strip()\n config = inliner.document.settings.env.app.config\n if config.issues_user_uri:\n ref = config.issues_user_uri.format(user=target)\n else:\n ref = 'https://github.com/{0}'.format(target)\n if has_explicit_title:\n text = title\n else:\n text = '@{0}'.format(target)\n link = nodes.reference(text=text, refuri=ref, **options)\n return [link], []\n",
"role": "user"
},
{
"content": "user_role",
"role": "assistant"
}
] |
def x(name, rawtext, text, lineno, inliner, options=None, content=None):
options = options or {}
content = content or []
has_explicit_title, title, target = split_explicit_title(text)
target = utils.unescape(target).strip()
title = utils.unescape(title).strip()
ref = 'https://cve.mitre.org/cgi-bin/cvename.cgi?name={0}'.format(target)
text = title if has_explicit_title else target
link = nodes.reference(text=text, refuri=ref, **options)
return [link], []
|
cve_role
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, rawtext, text, lineno, inliner, options=None, content=None):\n options = options or {}\n content = content or []\n has_explicit_title, title, target = split_explicit_title(text)\n target = utils.unescape(target).strip()\n title = utils.unescape(title).strip()\n ref = 'https://cve.mitre.org/cgi-bin/cvename.cgi?name={0}'.format(target)\n text = title if has_explicit_title else target\n link = nodes.reference(text=text, refuri=ref, **options)\n return [link], []\n",
"role": "user"
},
{
"content": "cve_role",
"role": "assistant"
}
] |
def x(self, line):
if len(line) == 0:
return
self.stream.write(str(line[0]))
for item in line[1:]:
self.stream.write('\t')
self.stream.write(str(item))
self.stream.write('\n')
|
list_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line):\n if len(line) == 0:\n return\n self.stream.write(str(line[0]))\n for item in line[1:]:\n self.stream.write('\\t')\n self.stream.write(str(item))\n self.stream.write('\\n')\n",
"role": "user"
},
{
"content": "list_line",
"role": "assistant"
}
] |
def x(doc):
doc.mustache_files = doc.get_metadata('mustache')
if isinstance(doc.mustache_files, basestring):
if not doc.mustache_files:
doc.mustache_files = None
else:
doc.mustache_files = [doc.mustache_files]
if doc.mustache_files is not None:
doc.mustache_hashes = [yaml.load(open(file, 'r').read()) for file in
doc.mustache_files]
doc.mhash = {k: v for mdict in doc.mustache_hashes for k, v in
mdict.items()}
doc.mrenderer = pystache.Renderer(escape=lambda u: u, missing_tags=
'strict')
else:
doc.mhash = None
|
prepare
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(doc):\n doc.mustache_files = doc.get_metadata('mustache')\n if isinstance(doc.mustache_files, basestring):\n if not doc.mustache_files:\n doc.mustache_files = None\n else:\n doc.mustache_files = [doc.mustache_files]\n if doc.mustache_files is not None:\n doc.mustache_hashes = [yaml.load(open(file, 'r').read()) for file in\n doc.mustache_files]\n doc.mhash = {k: v for mdict in doc.mustache_hashes for k, v in\n mdict.items()}\n doc.mrenderer = pystache.Renderer(escape=lambda u: u, missing_tags=\n 'strict')\n else:\n doc.mhash = None\n",
"role": "user"
},
{
"content": "prepare",
"role": "assistant"
}
] |
def x(elem, doc):
if type(elem) == Str and doc.mhash is not None:
elem.text = doc.mrenderer.render(elem.text, doc.mhash)
return elem
|
action
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(elem, doc):\n if type(elem) == Str and doc.mhash is not None:\n elem.text = doc.mrenderer.render(elem.text, doc.mhash)\n return elem\n",
"role": "user"
},
{
"content": "action",
"role": "assistant"
}
] |
def x(self, renderer_context):
request = renderer_context.get('request', None)
params = request and get_query_params(request) or {}
return params.get(self.callback_parameter, self.default_callback)
|
get_callback
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, renderer_context):\n request = renderer_context.get('request', None)\n params = request and get_query_params(request) or {}\n return params.get(self.callback_parameter, self.default_callback)\n",
"role": "user"
},
{
"content": "get_callback",
"role": "assistant"
}
] |
def x(self, data, accepted_media_type=None, renderer_context=None):
renderer_context = renderer_context or {}
callback = self.get_callback(renderer_context)
json = super(JSONPRenderer, self).render(data, accepted_media_type,
renderer_context)
return callback.encode(self.charset) + b'(' + json + b');'
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, accepted_media_type=None, renderer_context=None):\n renderer_context = renderer_context or {}\n callback = self.get_callback(renderer_context)\n json = super(JSONPRenderer, self).render(data, accepted_media_type,\n renderer_context)\n return callback.encode(self.charset) + b'(' + json + b');'\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x(self, measurementId):
logger.info('Loading raw data for ' + measurementId)
measurement = self._measurementController.getMeasurement(measurementId,
MeasurementStatus.COMPLETE)
if measurement is not None:
if measurement.inflate():
data = {name: {'raw': {'x': self._jsonify(data.raw('x')), 'y':
self._jsonify(data.raw('y')), 'z': self._jsonify(data.raw(
'z'))}, 'vibration': {'x': self._jsonify(data.vibration('x'
)), 'y': self._jsonify(data.vibration('y')), 'z': self.
_jsonify(data.vibration('z'))}, 'tilt': {'x': self._jsonify
(data.tilt('x')), 'y': self._jsonify(data.tilt('y')), 'z':
self._jsonify(data.tilt('z'))}} for name, data in
measurement.data.items()}
return data, 200
else:
return None, 404
else:
return None, 404
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, measurementId):\n logger.info('Loading raw data for ' + measurementId)\n measurement = self._measurementController.getMeasurement(measurementId,\n MeasurementStatus.COMPLETE)\n if measurement is not None:\n if measurement.inflate():\n data = {name: {'raw': {'x': self._jsonify(data.raw('x')), 'y':\n self._jsonify(data.raw('y')), 'z': self._jsonify(data.raw(\n 'z'))}, 'vibration': {'x': self._jsonify(data.vibration('x'\n )), 'y': self._jsonify(data.vibration('y')), 'z': self.\n _jsonify(data.vibration('z'))}, 'tilt': {'x': self._jsonify\n (data.tilt('x')), 'y': self._jsonify(data.tilt('y')), 'z':\n self._jsonify(data.tilt('z'))}} for name, data in\n measurement.data.items()}\n return data, 200\n else:\n return None, 404\n else:\n return None, 404\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(year, week, day):
return day + n_weeks(SUN, gregorian.to_jd(year - 1, 12, 28), week)
|
to_jd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(year, week, day):\n return day + n_weeks(SUN, gregorian.to_jd(year - 1, 12, 28), week)\n",
"role": "user"
},
{
"content": "to_jd",
"role": "assistant"
}
] |
def x(jd):
year = gregorian.from_jd(jd)[0]
day = jwday(jd) + 1
dayofyear = ordinal.from_jd(jd)[1]
week = trunc((dayofyear - day + 10) / 7)
if week < 1:
week = weeks_per_year(year - 1)
year = year - 1
elif week == 53 and weeks_per_year(year) != 53:
week = 1
year = year + 1
return year, week, day
|
from_jd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(jd):\n year = gregorian.from_jd(jd)[0]\n day = jwday(jd) + 1\n dayofyear = ordinal.from_jd(jd)[1]\n week = trunc((dayofyear - day + 10) / 7)\n if week < 1:\n week = weeks_per_year(year - 1)\n year = year - 1\n elif week == 53 and weeks_per_year(year) != 53:\n week = 1\n year = year + 1\n return year, week, day\n",
"role": "user"
},
{
"content": "from_jd",
"role": "assistant"
}
] |
def x(year):
jan1 = jwday(gregorian.to_jd(year, 1, 1))
if jan1 == THU or jan1 == WED and isleap(year):
return 53
else:
return 52
|
weeks_per_year
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(year):\n jan1 = jwday(gregorian.to_jd(year, 1, 1))\n if jan1 == THU or jan1 == WED and isleap(year):\n return 53\n else:\n return 52\n",
"role": "user"
},
{
"content": "weeks_per_year",
"role": "assistant"
}
] |
def x(hdulist):
instrument = hdulist[0].header.get('INSTRUME', '')
if instrument in ('WFPC2', 'FOC'):
rootname = hdulist[0].header.get('ROOTNAME', '')
filetype = hdulist[0].header.get('FILETYPE', '')
for i in range(1, len(hdulist)):
hdulist[i].name = filetype
hdulist[i]._extver = i
hdulist[i].header['EXPNAME'
] = rootname, '9 character exposure identifier'
hdulist[i].header['EXTVER'] = i, 'extension version number'
hdulist[i].header['EXTNAME'] = filetype, 'extension name'
hdulist[i].header['INHERIT'] = True, 'inherit the primary header'
hdulist[i].header['ROOTNAME'
] = rootname, 'rootname of the observation set'
|
stsci
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hdulist):\n instrument = hdulist[0].header.get('INSTRUME', '')\n if instrument in ('WFPC2', 'FOC'):\n rootname = hdulist[0].header.get('ROOTNAME', '')\n filetype = hdulist[0].header.get('FILETYPE', '')\n for i in range(1, len(hdulist)):\n hdulist[i].name = filetype\n hdulist[i]._extver = i\n hdulist[i].header['EXPNAME'\n ] = rootname, '9 character exposure identifier'\n hdulist[i].header['EXTVER'] = i, 'extension version number'\n hdulist[i].header['EXTNAME'] = filetype, 'extension name'\n hdulist[i].header['INHERIT'] = True, 'inherit the primary header'\n hdulist[i].header['ROOTNAME'\n ] = rootname, 'rootname of the observation set'\n",
"role": "user"
},
{
"content": "stsci",
"role": "assistant"
}
] |
def x(hdulist, filename):
instrument = hdulist[0].header.get('INSTRUME', '')
if instrument in ('WFPC2', 'FOC'):
hdulist[0].header['FILENAME'] = filename
|
stsci2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hdulist, filename):\n instrument = hdulist[0].header.get('INSTRUME', '')\n if instrument in ('WFPC2', 'FOC'):\n hdulist[0].header['FILENAME'] = filename\n",
"role": "user"
},
{
"content": "stsci2",
"role": "assistant"
}
] |
def x(f1, f2):
import glob
f2 = f2.strip()
if f2 == '' or f2 == '*':
f2 = './'
if os.path.isdir(f1):
f1 = os.path.join(f1, '*.??h')
list1 = glob.glob(f1)
list1 = [name for name in list1 if name[-1] == 'h' and name[-4] == '.']
if os.path.isdir(f2):
list2 = []
for file in list1:
name = os.path.split(file)[-1]
fitsname = name[:-4] + '_' + name[-3:-1] + 'f.fits'
list2.append(os.path.join(f2, fitsname))
else:
list2 = [s.strip() for s in f2.split(',')]
if list1 == [] or list2 == []:
err_msg = ''
if list1 == []:
err_msg += 'Input files `{:s}` not usable/available. '.format(f1)
if list2 == []:
err_msg += 'Input files `{:s}` not usable/available. '.format(f2)
raise IOError(err_msg)
else:
return list1, list2
|
parse_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f1, f2):\n import glob\n f2 = f2.strip()\n if f2 == '' or f2 == '*':\n f2 = './'\n if os.path.isdir(f1):\n f1 = os.path.join(f1, '*.??h')\n list1 = glob.glob(f1)\n list1 = [name for name in list1 if name[-1] == 'h' and name[-4] == '.']\n if os.path.isdir(f2):\n list2 = []\n for file in list1:\n name = os.path.split(file)[-1]\n fitsname = name[:-4] + '_' + name[-3:-1] + 'f.fits'\n list2.append(os.path.join(f2, fitsname))\n else:\n list2 = [s.strip() for s in f2.split(',')]\n if list1 == [] or list2 == []:\n err_msg = ''\n if list1 == []:\n err_msg += 'Input files `{:s}` not usable/available. '.format(f1)\n if list2 == []:\n err_msg += 'Input files `{:s}` not usable/available. '.format(f2)\n raise IOError(err_msg)\n else:\n return list1, list2\n",
"role": "user"
},
{
"content": "parse_path",
"role": "assistant"
}
] |
def x(inputlist, outputname=None, atfile=None):
files = []
newoutputname = outputname
files = irafglob(inputlist, atfile=atfile)
for file in files:
if checkASN(file) == True:
assoclist = []
try:
assocdict = readASNTable(file, None, prodonly=False)
except:
errorstr = '###################################\n'
errorstr += '# #\n'
errorstr += '# UNABLE TO READ ASSOCIATION FILE,#\n'
errorstr += str(file) + '\n'
errorstr += '# DURING FILE PARSING. #\n'
errorstr += '# #\n'
errorstr += '# Please determine if the file is #\n'
errorstr += '# in the current directory and #\n'
errorstr += '# that it has been properly #\n'
errorstr += '# formatted. #\n'
errorstr += '# #\n'
errorstr += '# This error message is being #\n'
errorstr += '# generated from within the #\n'
errorstr += '# parseinput.py module. #\n'
errorstr += '# #\n'
errorstr += '###################################\n'
raise ValueError(errorstr)
if outputname is None:
newoutputname = assocdict['output']
for f in assocdict['order']:
assoclist.append(fileutil.buildRootname(f))
files.remove(file)
files.extend(assoclist)
return files, newoutputname
|
parseinput
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputlist, outputname=None, atfile=None):\n files = []\n newoutputname = outputname\n files = irafglob(inputlist, atfile=atfile)\n for file in files:\n if checkASN(file) == True:\n assoclist = []\n try:\n assocdict = readASNTable(file, None, prodonly=False)\n except:\n errorstr = '###################################\\n'\n errorstr += '# #\\n'\n errorstr += '# UNABLE TO READ ASSOCIATION FILE,#\\n'\n errorstr += str(file) + '\\n'\n errorstr += '# DURING FILE PARSING. #\\n'\n errorstr += '# #\\n'\n errorstr += '# Please determine if the file is #\\n'\n errorstr += '# in the current directory and #\\n'\n errorstr += '# that it has been properly #\\n'\n errorstr += '# formatted. #\\n'\n errorstr += '# #\\n'\n errorstr += '# This error message is being #\\n'\n errorstr += '# generated from within the #\\n'\n errorstr += '# parseinput.py module. #\\n'\n errorstr += '# #\\n'\n errorstr += '###################################\\n'\n raise ValueError(errorstr)\n if outputname is None:\n newoutputname = assocdict['output']\n for f in assocdict['order']:\n assoclist.append(fileutil.buildRootname(f))\n files.remove(file)\n files.extend(assoclist)\n return files, newoutputname\n",
"role": "user"
},
{
"content": "parseinput",
"role": "assistant"
}
] |
def x(filename):
extnType = filename[filename.rfind('_') + 1:filename.rfind('.')]
if isValidAssocExtn(extnType):
return True
else:
return False
|
checkASN
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n extnType = filename[filename.rfind('_') + 1:filename.rfind('.')]\n if isValidAssocExtn(extnType):\n return True\n else:\n return False\n",
"role": "user"
},
{
"content": "checkASN",
"role": "assistant"
}
] |
def x(inputlist):
numInputs = 0
numASNfiles = 0
files = irafglob(inputlist, atfile=None)
numInputs = len(files)
for file in files:
if checkASN(file) == True:
numASNfiles += 1
return numInputs, numASNfiles
|
countinputs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputlist):\n numInputs = 0\n numASNfiles = 0\n files = irafglob(inputlist, atfile=None)\n numInputs = len(files)\n for file in files:\n if checkASN(file) == True:\n numASNfiles += 1\n return numInputs, numASNfiles\n",
"role": "user"
},
{
"content": "countinputs",
"role": "assistant"
}
] |
def x():
_ltime = _time.localtime(_time.time())
tlm_str = _time.strftime('%H:%M:%S (%d/%m/%Y)', _ltime)
return tlm_str
|
getLTime
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n _ltime = _time.localtime(_time.time())\n tlm_str = _time.strftime('%H:%M:%S (%d/%m/%Y)', _ltime)\n return tlm_str\n",
"role": "user"
},
{
"content": "getLTime",
"role": "assistant"
}
] |
def x():
_ltime = _time.localtime(_time.time())
date_str = _time.strftime('%Y-%m-%dT%H:%M:%S', _ltime)
return date_str
|
getDate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n _ltime = _time.localtime(_time.time())\n date_str = _time.strftime('%Y-%m-%dT%H:%M:%S', _ltime)\n return date_str\n",
"role": "user"
},
{
"content": "getDate",
"role": "assistant"
}
] |
def x(date):
d, t = date.split('T')
return decimal_date(d, timeobs=t)
|
convertDate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(date):\n d, t = date.split('T')\n return decimal_date(d, timeobs=t)\n",
"role": "user"
},
{
"content": "convertDate",
"role": "assistant"
}
] |
def x(dateobs, timeobs=None):
year, month, day = dateobs.split('-')
if timeobs is not None:
hr, min, sec = timeobs.split(':')
else:
hr, min, sec = 0, 0, 0
rdate = datetime.datetime(int(year), int(month), int(day), int(hr), int
(min), int(sec))
dday = (float(rdate.strftime('%j')) + rdate.hour / 24.0 + rdate.minute /
(60.0 * 24) + rdate.second / (3600 * 24.0)) / 365.25
ddate = int(year) + dday
return ddate
|
decimal_date
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dateobs, timeobs=None):\n year, month, day = dateobs.split('-')\n if timeobs is not None:\n hr, min, sec = timeobs.split(':')\n else:\n hr, min, sec = 0, 0, 0\n rdate = datetime.datetime(int(year), int(month), int(day), int(hr), int\n (min), int(sec))\n dday = (float(rdate.strftime('%j')) + rdate.hour / 24.0 + rdate.minute /\n (60.0 * 24) + rdate.second / (3600 * 24.0)) / 365.25\n ddate = int(year) + dday\n return ddate\n",
"role": "user"
},
{
"content": "decimal_date",
"role": "assistant"
}
] |
def x(input):
nbits = 16
for iexp in [16, 32, 64, 128]:
if input // 2 ** iexp == 0:
nbits = iexp
break
a = np.zeros(1, dtype='int16')
atype_descr = a.dtype.descr[0][1]
dtype_str = atype_descr[:2] + str(nbits // 8)
result = np.zeros(nbits + 1, dtype=dtype_str)
for n in range(nbits + 1):
i = 2 ** n
if input & i > 0:
result[n] = i
return np.delete(np.unique(result), 0).tolist()
|
interpretDQvalue
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input):\n nbits = 16\n for iexp in [16, 32, 64, 128]:\n if input // 2 ** iexp == 0:\n nbits = iexp\n break\n a = np.zeros(1, dtype='int16')\n atype_descr = a.dtype.descr[0][1]\n dtype_str = atype_descr[:2] + str(nbits // 8)\n result = np.zeros(nbits + 1, dtype=dtype_str)\n for n in range(nbits + 1):\n i = 2 ** n\n if input & i > 0:\n result[n] = i\n return np.delete(np.unique(result), 0).tolist()\n",
"role": "user"
},
{
"content": "interpretDQvalue",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.