source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): try: return self._p except AttributeError: self._p = self._population_class(base=self, tournament_size=self. _tournament_size, classifier=self.classifier, labels=self. _labels, es_extra_test=self.es_extra_test, popsize=self. _popsize, random_generations=self._random_generations, negative_selection=self._negative_selection) return self._p
population
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n return self._p\n except AttributeError:\n self._p = self._population_class(base=self, tournament_size=self.\n _tournament_size, classifier=self.classifier, labels=self.\n _labels, es_extra_test=self.es_extra_test, popsize=self.\n _popsize, random_generations=self._random_generations,\n negative_selection=self._negative_selection)\n return self._p\n", "role": "user" }, { "content": "population", "role": "assistant" } ]
def x(self): for i in range(self._number_tries_feasible_ind): var = np.random.randint(self.nvar) v = self._random_leaf(var) if v is None: continue return v raise RuntimeError('Could not find a suitable random leaf')
random_leaf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for i in range(self._number_tries_feasible_ind):\n var = np.random.randint(self.nvar)\n v = self._random_leaf(var)\n if v is None:\n continue\n return v\n raise RuntimeError('Could not find a suitable random leaf')\n", "role": "user" }, { "content": "random_leaf", "role": "assistant" } ]
def x(self): function_set = self.function_set function_selection = self._function_selection_ins function_selection.density = self.population.density function_selection.unfeasible_functions.clear() for i in range(self._number_tries_feasible_ind): if self._function_selection: func_index = function_selection.tournament() else: func_index = function_selection.random_function() func = function_set[func_index] args = self.get_args(func) if args is None: continue args = [self.population.population[x].position for x in args] f = self._random_offspring(func, args) if f is None: function_selection.unfeasible_functions.add(func_index) continue function_selection[func_index] = f.fitness return f raise RuntimeError('Could not find a suitable random offpsring')
random_offspring
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n function_set = self.function_set\n function_selection = self._function_selection_ins\n function_selection.density = self.population.density\n function_selection.unfeasible_functions.clear()\n for i in range(self._number_tries_feasible_ind):\n if self._function_selection:\n func_index = function_selection.tournament()\n else:\n func_index = function_selection.random_function()\n func = function_set[func_index]\n args = self.get_args(func)\n if args is None:\n continue\n args = [self.population.population[x].position for x in args]\n f = self._random_offspring(func, args)\n if f is None:\n function_selection.unfeasible_functions.add(func_index)\n continue\n function_selection[func_index] = f.fitness\n return f\n raise RuntimeError('Could not find a suitable random offpsring')\n", "role": "user" }, { "content": "random_offspring", "role": "assistant" } ]
def x(self): if self.stopping_criteria_tl(): return True if self.generations < np.inf: inds = self.popsize * self.generations flag = inds <= len(self.population.hist) else: flag = False if flag: return True est = self.population.estopping if self._tr_fraction < 1: if est is not None and est.fitness_vs == 0: return True esr = self._early_stopping_rounds if self._tr_fraction < 1 and esr is not None and est is not None: position = self.population.estopping.position if position < self.init_popsize: position = self.init_popsize return len(self.population.hist ) + self._unfeasible_counter - position > esr return flag
stopping_criteria
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.stopping_criteria_tl():\n return True\n if self.generations < np.inf:\n inds = self.popsize * self.generations\n flag = inds <= len(self.population.hist)\n else:\n flag = False\n if flag:\n return True\n est = self.population.estopping\n if self._tr_fraction < 1:\n if est is not None and est.fitness_vs == 0:\n return True\n esr = self._early_stopping_rounds\n if self._tr_fraction < 1 and esr is not None and est is not None:\n position = self.population.estopping.position\n if position < self.init_popsize:\n position = self.init_popsize\n return len(self.population.hist\n ) + self._unfeasible_counter - position > esr\n return flag\n", "role": "user" }, { "content": "stopping_criteria", "role": "assistant" } ]
def x(self, v): if not self.classifier: return 0 if isinstance(v, list): self._labels = np.arange(len(v)) return if not isinstance(v, np.ndarray): v = tonparray(v) self._labels = np.unique(v) return self._labels.shape[0]
nclasses
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v):\n if not self.classifier:\n return 0\n if isinstance(v, list):\n self._labels = np.arange(len(v))\n return\n if not isinstance(v, np.ndarray):\n v = tonparray(v)\n self._labels = np.unique(v)\n return self._labels.shape[0]\n", "role": "user" }, { "content": "nclasses", "role": "assistant" } ]
def x(self, X, y, test_set=None): self._init_time = time.time() self.X = X if self._popsize == 'nvar': self._popsize = self.nvar + len(self._input_functions) if isinstance(test_set, str) and test_set == 'shuffle': test_set = self.shuffle_tr2ts() nclasses = self.nclasses(y) if self.classifier and self._multiple_outputs: pass elif nclasses > 2: assert False self._multiclass = True return self.multiclass(X, y, test_set=test_set) self.y = y if test_set is not None: self.Xtest = test_set for _ in range(self._number_tries_feasible_ind): self._logger.info('Starting evolution') try: self.create_population() if self.stopping_criteria_tl(): break except RuntimeError as err: self._logger.info( 'Done evolution (RuntimeError (%s), hist: %s)' % (err, len( self.population.hist))) return self self._logger.info('Population created (hist: %s)' % len(self. population.hist)) if len(self.population.hist) >= self._tournament_size: break if len(self.population.hist) == 0: raise RuntimeError('Could not find a suitable individual') if len(self.population.hist) < self._tournament_size: self._logger.info('Done evolution (hist: %s)' % len(self.population .hist)) return self if self._remove_raw_inputs: for x in range(self.nvar): self._X[x] = None while not self.stopping_criteria(): try: a = self.random_offspring() except RuntimeError as err: self._logger.info( 'Done evolution (RuntimeError (%s), hist: %s)' % (err, len( self.population.hist))) return self self.replace(a) self._logger.info('Done evolution (hist: %s)' % len(self.population.hist)) return self
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, y, test_set=None):\n self._init_time = time.time()\n self.X = X\n if self._popsize == 'nvar':\n self._popsize = self.nvar + len(self._input_functions)\n if isinstance(test_set, str) and test_set == 'shuffle':\n test_set = self.shuffle_tr2ts()\n nclasses = self.nclasses(y)\n if self.classifier and self._multiple_outputs:\n pass\n elif nclasses > 2:\n assert False\n self._multiclass = True\n return self.multiclass(X, y, test_set=test_set)\n self.y = y\n if test_set is not None:\n self.Xtest = test_set\n for _ in range(self._number_tries_feasible_ind):\n self._logger.info('Starting evolution')\n try:\n self.create_population()\n if self.stopping_criteria_tl():\n break\n except RuntimeError as err:\n self._logger.info(\n 'Done evolution (RuntimeError (%s), hist: %s)' % (err, len(\n self.population.hist)))\n return self\n self._logger.info('Population created (hist: %s)' % len(self.\n population.hist))\n if len(self.population.hist) >= self._tournament_size:\n break\n if len(self.population.hist) == 0:\n raise RuntimeError('Could not find a suitable individual')\n if len(self.population.hist) < self._tournament_size:\n self._logger.info('Done evolution (hist: %s)' % len(self.population\n .hist))\n return self\n if self._remove_raw_inputs:\n for x in range(self.nvar):\n self._X[x] = None\n while not self.stopping_criteria():\n try:\n a = self.random_offspring()\n except RuntimeError as err:\n self._logger.info(\n 'Done evolution (RuntimeError (%s), hist: %s)' % (err, len(\n self.population.hist)))\n return self\n self.replace(a)\n self._logger.info('Done evolution (hist: %s)' % len(self.population.hist))\n return self\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(self, v=None, X=None): m = self.model(v=v) return m.decision_function(X)
decision_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v=None, X=None):\n m = self.model(v=v)\n return m.decision_function(X)\n", "role": "user" }, { "content": "decision_function", "role": "assistant" } ]
def x(self, v=None, X=None): if X is None: X = v v = None m = self.model(v=v) return m.predict(X)
predict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v=None, X=None):\n if X is None:\n X = v\n v = None\n m = self.model(v=v)\n return m.predict(X)\n", "role": "user" }, { "content": "predict", "role": "assistant" } ]
def x(application, host='127.0.0.1', port=8080): WSGIServer((host, int(port)), application).serve_forever()
serve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(application, host='127.0.0.1', port=8080):\n WSGIServer((host, int(port)), application).serve_forever()\n", "role": "user" }, { "content": "serve", "role": "assistant" } ]
def x(obj): ctype = ContentType.objects.get_for_model(obj) return Subscription.objects.filter(content_type=ctype, object_id=obj.pk)
get_subscribers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj):\n ctype = ContentType.objects.get_for_model(obj)\n return Subscription.objects.filter(content_type=ctype, object_id=obj.pk)\n", "role": "user" }, { "content": "get_subscribers", "role": "assistant" } ]
def x(user, obj): if not user.is_authenticated(): return False ctype = ContentType.objects.get_for_model(obj) try: Subscription.objects.get(user=user, content_type=ctype, object_id= obj.pk) except Subscription.DoesNotExist: return False return True
is_subscribed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(user, obj):\n if not user.is_authenticated():\n return False\n ctype = ContentType.objects.get_for_model(obj)\n try:\n Subscription.objects.get(user=user, content_type=ctype, object_id=\n obj.pk)\n except Subscription.DoesNotExist:\n return False\n return True\n", "role": "user" }, { "content": "is_subscribed", "role": "assistant" } ]
def x(self, name, instantiate=True): metaclass = type(self.__class__) contents = self.__dict__.copy() cls = metaclass(str(name), (self.__class__,), contents) if instantiate: return cls() return cls
promote
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, instantiate=True):\n metaclass = type(self.__class__)\n contents = self.__dict__.copy()\n cls = metaclass(str(name), (self.__class__,), contents)\n if instantiate:\n return cls()\n return cls\n", "role": "user" }, { "content": "promote", "role": "assistant" } ]
def x(sim_var, reference, neuroml_file, nml_doc, still_included, generate_dir, target, sim_time, dt, simulator, cleanup=True, show=False): for var_name in sim_var.keys(): individual_var_names = var_name.split('+') for individual_var_name in individual_var_names: words = individual_var_name.split('/') type, id1 = words[0].split(':') if ':' in words[1]: variable, id2 = words[1].split(':') else: variable = words[1] id2 = None units = words[2] value = sim_var[var_name] pyneuroml.pynml.print_comment_v( ' Changing value of %s (%s) in %s (%s) to: %s %s' % ( variable, id2, type, id1, value, units)) if type == 'channel': channel = nml_doc.get_by_id(id1) if channel: print('Setting channel %s' % channel) if variable == 'vShift': channel.v_shift = '%s %s' % (value, units) else: pyneuroml.pynml.print_comment_v( 'Could not find channel with id %s from expression: %s' % (id1, individual_var_name)) exit() elif type == 'cell': cell = None for c in nml_doc.cells: if c.id == id1: cell = c if variable == 'channelDensity': chanDens = None for cd in (cell.biophysical_properties. membrane_properties.channel_densities + cell. biophysical_properties.membrane_properties. channel_density_v_shifts): if cd.id == id2: chanDens = cd chanDens.cond_density = '%s %s' % (value, units) elif variable == 'vShift_channelDensity': chanDens = None for cd in cell.biophysical_properties.membrane_properties.channel_density_v_shifts: if cd.id == id2: chanDens = cd chanDens.v_shift = '%s %s' % (value, units) elif variable == 'channelDensityNernst': chanDens = None for cd in cell.biophysical_properties.membrane_properties.channel_density_nernsts: if cd.id == id2: chanDens = cd chanDens.cond_density = '%s %s' % (value, units) elif variable == 'erev_id': chanDens = None for cd in (cell.biophysical_properties. membrane_properties.channel_densities + cell. biophysical_properties.membrane_properties. channel_density_v_shifts): if cd.id == id2: chanDens = cd chanDens.erev = '%s %s' % (value, units) elif variable == 'erev_ion': chanDens = None for cd in (cell.biophysical_properties. membrane_properties.channel_densities + cell. biophysical_properties.membrane_properties. channel_density_v_shifts): if cd.ion == id2: chanDens = cd chanDens.erev = '%s %s' % (value, units) elif variable == 'specificCapacitance': specCap = None for sc in cell.biophysical_properties.membrane_properties.specific_capacitances: if (sc.segment_groups == None and id2 == 'all' or sc.segment_groups == id2): specCap = sc specCap.value = '%s %s' % (value, units) elif variable == 'resistivity': resistivity = None for rs in cell.biophysical_properties.intracellular_properties.resistivities: if (rs.segment_groups == None and id2 == 'all' or rs.segment_groups == id2): resistivity = rs resistivity.value = '%s %s' % (value, units) else: pyneuroml.pynml.print_comment_v( 'Unknown variable (%s) in variable expression: %s' % (variable, individual_var_name)) exit() elif type == 'izhikevich2007Cell': izhcell = None for c in nml_doc.izhikevich2007_cells: if c.id == id1: izhcell = c izhcell.__setattr__(variable, '%s %s' % (value, units)) else: pyneuroml.pynml.print_comment_v( 'Unknown type (%s) in variable expression: %s' % (type, individual_var_name)) new_neuroml_file = '%s/%s' % (generate_dir, os.path.basename(neuroml_file)) if new_neuroml_file == neuroml_file: pyneuroml.pynml.print_comment_v( 'Cannot use a directory for generating into (%s) which is the same location of the NeuroML file (%s)!' % (neuroml_file, generate_dir)) pyneuroml.pynml.write_neuroml2_file(nml_doc, new_neuroml_file) for include in still_included: inc_loc = '%s/%s' % (os.path.dirname(os.path.abspath(neuroml_file)), include) pyneuroml.pynml.print_comment_v( 'Copying non included file %s to %s (%s) beside %s' % (inc_loc, generate_dir, os.path.abspath(generate_dir), new_neuroml_file)) shutil.copy(inc_loc, generate_dir) from pyneuroml.tune.NeuroMLSimulation import NeuroMLSimulation sim = NeuroMLSimulation(reference, neuroml_file=new_neuroml_file, target=target, sim_time=sim_time, dt=dt, simulator=simulator, generate_dir=generate_dir, cleanup=cleanup, nml_doc=nml_doc) sim.go() if show: sim.show() return sim.t, sim.volts
run_individual
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sim_var, reference, neuroml_file, nml_doc, still_included,\n generate_dir, target, sim_time, dt, simulator, cleanup=True, show=False):\n for var_name in sim_var.keys():\n individual_var_names = var_name.split('+')\n for individual_var_name in individual_var_names:\n words = individual_var_name.split('/')\n type, id1 = words[0].split(':')\n if ':' in words[1]:\n variable, id2 = words[1].split(':')\n else:\n variable = words[1]\n id2 = None\n units = words[2]\n value = sim_var[var_name]\n pyneuroml.pynml.print_comment_v(\n ' Changing value of %s (%s) in %s (%s) to: %s %s' % (\n variable, id2, type, id1, value, units))\n if type == 'channel':\n channel = nml_doc.get_by_id(id1)\n if channel:\n print('Setting channel %s' % channel)\n if variable == 'vShift':\n channel.v_shift = '%s %s' % (value, units)\n else:\n pyneuroml.pynml.print_comment_v(\n 'Could not find channel with id %s from expression: %s'\n % (id1, individual_var_name))\n exit()\n elif type == 'cell':\n cell = None\n for c in nml_doc.cells:\n if c.id == id1:\n cell = c\n if variable == 'channelDensity':\n chanDens = None\n for cd in (cell.biophysical_properties.\n membrane_properties.channel_densities + cell.\n biophysical_properties.membrane_properties.\n channel_density_v_shifts):\n if cd.id == id2:\n chanDens = cd\n chanDens.cond_density = '%s %s' % (value, units)\n elif variable == 'vShift_channelDensity':\n chanDens = None\n for cd in cell.biophysical_properties.membrane_properties.channel_density_v_shifts:\n if cd.id == id2:\n chanDens = cd\n chanDens.v_shift = '%s %s' % (value, units)\n elif variable == 'channelDensityNernst':\n chanDens = None\n for cd in cell.biophysical_properties.membrane_properties.channel_density_nernsts:\n if cd.id == id2:\n chanDens = cd\n chanDens.cond_density = '%s %s' % (value, units)\n elif variable == 'erev_id':\n chanDens = None\n for cd in (cell.biophysical_properties.\n membrane_properties.channel_densities + cell.\n biophysical_properties.membrane_properties.\n channel_density_v_shifts):\n if cd.id == id2:\n chanDens = cd\n chanDens.erev = '%s %s' % (value, units)\n elif variable == 'erev_ion':\n chanDens = None\n for cd in (cell.biophysical_properties.\n membrane_properties.channel_densities + cell.\n biophysical_properties.membrane_properties.\n channel_density_v_shifts):\n if cd.ion == id2:\n chanDens = cd\n chanDens.erev = '%s %s' % (value, units)\n elif variable == 'specificCapacitance':\n specCap = None\n for sc in cell.biophysical_properties.membrane_properties.specific_capacitances:\n if (sc.segment_groups == None and id2 == 'all' or \n sc.segment_groups == id2):\n specCap = sc\n specCap.value = '%s %s' % (value, units)\n elif variable == 'resistivity':\n resistivity = None\n for rs in cell.biophysical_properties.intracellular_properties.resistivities:\n if (rs.segment_groups == None and id2 == 'all' or \n rs.segment_groups == id2):\n resistivity = rs\n resistivity.value = '%s %s' % (value, units)\n else:\n pyneuroml.pynml.print_comment_v(\n 'Unknown variable (%s) in variable expression: %s' %\n (variable, individual_var_name))\n exit()\n elif type == 'izhikevich2007Cell':\n izhcell = None\n for c in nml_doc.izhikevich2007_cells:\n if c.id == id1:\n izhcell = c\n izhcell.__setattr__(variable, '%s %s' % (value, units))\n else:\n pyneuroml.pynml.print_comment_v(\n 'Unknown type (%s) in variable expression: %s' % (type,\n individual_var_name))\n new_neuroml_file = '%s/%s' % (generate_dir, os.path.basename(neuroml_file))\n if new_neuroml_file == neuroml_file:\n pyneuroml.pynml.print_comment_v(\n 'Cannot use a directory for generating into (%s) which is the same location of the NeuroML file (%s)!'\n % (neuroml_file, generate_dir))\n pyneuroml.pynml.write_neuroml2_file(nml_doc, new_neuroml_file)\n for include in still_included:\n inc_loc = '%s/%s' % (os.path.dirname(os.path.abspath(neuroml_file)),\n include)\n pyneuroml.pynml.print_comment_v(\n 'Copying non included file %s to %s (%s) beside %s' % (inc_loc,\n generate_dir, os.path.abspath(generate_dir), new_neuroml_file))\n shutil.copy(inc_loc, generate_dir)\n from pyneuroml.tune.NeuroMLSimulation import NeuroMLSimulation\n sim = NeuroMLSimulation(reference, neuroml_file=new_neuroml_file,\n target=target, sim_time=sim_time, dt=dt, simulator=simulator,\n generate_dir=generate_dir, cleanup=cleanup, nml_doc=nml_doc)\n sim.go()\n if show:\n sim.show()\n return sim.t, sim.volts\n", "role": "user" }, { "content": "run_individual", "role": "assistant" } ]
def x(self, candidates, parameters): traces = [] start_time = time.time() if self.num_parallel_evaluations == 1: for candidate_i in range(len(candidates)): candidate = candidates[candidate_i] sim_var = dict(zip(parameters, candidate)) pyneuroml.pynml.print_comment_v( '\n\n - RUN %i (%i/%i); variables: %s\n' % (self.count, candidate_i + 1, len(candidates), sim_var)) self.count += 1 t, v = self.run_individual(sim_var) traces.append([t, v]) else: import pp ppservers = () job_server = pp.Server(self.num_parallel_evaluations, ppservers= ppservers) pyneuroml.pynml.print_comment_v( 'Running %i candidates across %i local processes' % (len( candidates), job_server.get_ncpus())) jobs = [] for candidate_i in range(len(candidates)): candidate = candidates[candidate_i] sim_var = dict(zip(parameters, candidate)) pyneuroml.pynml.print_comment_v( """ - PARALLEL RUN %i (%i/%i of curr candidates); variables: %s """ % (self.count, candidate_i + 1, len(candidates), sim_var)) self.count += 1 cand_dir = self.generate_dir + '/CANDIDATE_%s' % candidate_i if not os.path.exists(cand_dir): os.mkdir(cand_dir) vars = (sim_var, self.ref, self.neuroml_file, self.nml_doc, self.still_included, cand_dir, self.target, self.sim_time, self.dt, self.simulator) job = job_server.submit(run_individual, vars, (), ( 'pyneuroml.pynml', 'pyneuroml.tune.NeuroMLSimulation', 'shutil', 'neuroml')) jobs.append(job) for job_i in range(len(jobs)): job = jobs[job_i] pyneuroml.pynml.print_comment_v( 'Checking parallel job %i/%i; set running so far: %i' % ( job_i, len(jobs), self.count)) t, v = job() traces.append([t, v]) job_server.destroy() print('-------------------------------------------') end_time = time.time() tot = end_time - start_time pyneuroml.pynml.print_comment_v( 'Ran %i candidates in %s seconds (~%ss per job)' % (len(candidates), tot, tot / len(candidates))) return traces
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, candidates, parameters):\n traces = []\n start_time = time.time()\n if self.num_parallel_evaluations == 1:\n for candidate_i in range(len(candidates)):\n candidate = candidates[candidate_i]\n sim_var = dict(zip(parameters, candidate))\n pyneuroml.pynml.print_comment_v(\n '\\n\\n - RUN %i (%i/%i); variables: %s\\n' % (self.count, \n candidate_i + 1, len(candidates), sim_var))\n self.count += 1\n t, v = self.run_individual(sim_var)\n traces.append([t, v])\n else:\n import pp\n ppservers = ()\n job_server = pp.Server(self.num_parallel_evaluations, ppservers=\n ppservers)\n pyneuroml.pynml.print_comment_v(\n 'Running %i candidates across %i local processes' % (len(\n candidates), job_server.get_ncpus()))\n jobs = []\n for candidate_i in range(len(candidates)):\n candidate = candidates[candidate_i]\n sim_var = dict(zip(parameters, candidate))\n pyneuroml.pynml.print_comment_v(\n \"\"\"\n\n - PARALLEL RUN %i (%i/%i of curr candidates); variables: %s\n\"\"\"\n % (self.count, candidate_i + 1, len(candidates), sim_var))\n self.count += 1\n cand_dir = self.generate_dir + '/CANDIDATE_%s' % candidate_i\n if not os.path.exists(cand_dir):\n os.mkdir(cand_dir)\n vars = (sim_var, self.ref, self.neuroml_file, self.nml_doc,\n self.still_included, cand_dir, self.target, self.sim_time,\n self.dt, self.simulator)\n job = job_server.submit(run_individual, vars, (), (\n 'pyneuroml.pynml', 'pyneuroml.tune.NeuroMLSimulation',\n 'shutil', 'neuroml'))\n jobs.append(job)\n for job_i in range(len(jobs)):\n job = jobs[job_i]\n pyneuroml.pynml.print_comment_v(\n 'Checking parallel job %i/%i; set running so far: %i' % (\n job_i, len(jobs), self.count))\n t, v = job()\n traces.append([t, v])\n job_server.destroy()\n print('-------------------------------------------')\n end_time = time.time()\n tot = end_time - start_time\n pyneuroml.pynml.print_comment_v(\n 'Ran %i candidates in %s seconds (~%ss per job)' % (len(candidates),\n tot, tot / len(candidates)))\n return traces\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, context): if __debug__: log.debug('Assigning thread local request context.') self.local.context = context
prepare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n if __debug__:\n log.debug('Assigning thread local request context.')\n self.local.context = context\n", "role": "user" }, { "content": "prepare", "role": "assistant" } ]
def x(self, kind, handler): if __debug__: if py3 and not pypy: log.debug('Registering view handler.', extra=dict(type=name( kind), handler=name(handler))) else: log.debug('Registering view handler.', extra=dict(type=repr( kind), handler=repr(handler))) self._map.add(kind, handler) return handler
register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kind, handler):\n if __debug__:\n if py3 and not pypy:\n log.debug('Registering view handler.', extra=dict(type=name(\n kind), handler=name(handler)))\n else:\n log.debug('Registering view handler.', extra=dict(type=repr(\n kind), handler=repr(handler)))\n self._map.add(kind, handler)\n return handler\n", "role": "user" }, { "content": "register", "role": "assistant" } ]
def x(base, mapping=None, far=('js', 'css', 'gif', 'jpg', 'jpeg', 'png', 'ttf', 'woff')): base = abspath(base) @staticmethod def x(context, *parts, **kw): path = normpath(pathjoin(base, *parts)) if __debug__: log.debug('Attempting to serve static file.', extra=dict( request=id(context), base=base, path=path)) if not path.startswith(base): raise HTTPForbidden( 'Cowardly refusing to violate base path policy.' if __debug__ else None) if not exists(path): raise HTTPNotFound() if not isfile(path): raise HTTPForbidden('Cowardly refusing to open a non-file.' if __debug__ else None) if far and path.rpartition('.')[2] in far: context.response.cache_expires = 60 * 60 * 24 * 365 if mapping: _, _, extension = basename(path).partition('.') if extension in mapping: return mapping[extension] + ':' + path, dict() return open(path, 'rb') return static_handler
static
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(base, mapping=None, far=('js', 'css', 'gif', 'jpg', 'jpeg', 'png',\n 'ttf', 'woff')):\n base = abspath(base)\n\n @staticmethod\n def x(context, *parts, **kw):\n path = normpath(pathjoin(base, *parts))\n if __debug__:\n log.debug('Attempting to serve static file.', extra=dict(\n request=id(context), base=base, path=path))\n if not path.startswith(base):\n raise HTTPForbidden(\n 'Cowardly refusing to violate base path policy.' if\n __debug__ else None)\n if not exists(path):\n raise HTTPNotFound()\n if not isfile(path):\n raise HTTPForbidden('Cowardly refusing to open a non-file.' if\n __debug__ else None)\n if far and path.rpartition('.')[2] in far:\n context.response.cache_expires = 60 * 60 * 24 * 365\n if mapping:\n _, _, extension = basename(path).partition('.')\n if extension in mapping:\n return mapping[extension] + ':' + path, dict()\n return open(path, 'rb')\n return static_handler\n", "role": "user" }, { "content": "static", "role": "assistant" } ]
def x(application, host='127.0.0.1', port=8080): WSGIApplication(application, port=int(port), iface=host).run()
serve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(application, host='127.0.0.1', port=8080):\n WSGIApplication(application, port=int(port), iface=host).run()\n", "role": "user" }, { "content": "serve", "role": "assistant" } ]
def x(): parser = argparse.ArgumentParser(description= 'A script for plotting files containing spike time data') parser.add_argument('spiketimeFiles', type=str, metavar= '<spiketime file>', help='List of text file containing spike times', nargs='+') parser.add_argument('-format', type=str, metavar='<format>', default= DEFAULTS['format'], help= """How the spiketimes are represented on each line of file: """ + 'id_t: id of cell, space(s)/tab(s), time of spike (default);\n' + """t_id: time of spike, space(s)/tab(s), id of cell; """ + 'sonata: SONATA format HDF5 file containing spike times') parser.add_argument('-rates', action='store_true', default=DEFAULTS[ 'rates'], help='Show a plot of rates') parser.add_argument('-showPlotsAlready', action='store_true', default= DEFAULTS['show_plots_already'], help='Show plots once generated') parser.add_argument('-saveSpikePlotTo', type=str, metavar= '<spiketime plot filename>', default=DEFAULTS['save_spike_plot_to'], help='Name of file in which to save spiketime plot') parser.add_argument('-rateWindow', type=int, metavar='<rate window>', default=DEFAULTS['rate_window'], help= 'Window for rate calculation in ms') parser.add_argument('-rateBins', type=int, metavar='<rate bins>', default=DEFAULTS['rate_bins'], help='Number of bins for rate histogram' ) return parser.parse_args()
process_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n parser = argparse.ArgumentParser(description=\n 'A script for plotting files containing spike time data')\n parser.add_argument('spiketimeFiles', type=str, metavar=\n '<spiketime file>', help='List of text file containing spike times',\n nargs='+')\n parser.add_argument('-format', type=str, metavar='<format>', default=\n DEFAULTS['format'], help=\n \"\"\"How the spiketimes are represented on each line of file:\n\"\"\" +\n 'id_t: id of cell, space(s)/tab(s), time of spike (default);\\n' +\n \"\"\"t_id: time of spike, space(s)/tab(s), id of cell;\n\"\"\" +\n 'sonata: SONATA format HDF5 file containing spike times')\n parser.add_argument('-rates', action='store_true', default=DEFAULTS[\n 'rates'], help='Show a plot of rates')\n parser.add_argument('-showPlotsAlready', action='store_true', default=\n DEFAULTS['show_plots_already'], help='Show plots once generated')\n parser.add_argument('-saveSpikePlotTo', type=str, metavar=\n '<spiketime plot filename>', default=DEFAULTS['save_spike_plot_to'],\n help='Name of file in which to save spiketime plot')\n parser.add_argument('-rateWindow', type=int, metavar='<rate window>',\n default=DEFAULTS['rate_window'], help=\n 'Window for rate calculation in ms')\n parser.add_argument('-rateBins', type=int, metavar='<rate bins>',\n default=DEFAULTS['rate_bins'], help='Number of bins for rate histogram'\n )\n return parser.parse_args()\n", "role": "user" }, { "content": "process_args", "role": "assistant" } ]
def x(application, host='127.0.0.1', port=8080): print('serving on http://{0}:{1}'.format(host, port)) make_server(host, int(port), application).serve_forever()
simple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(application, host='127.0.0.1', port=8080):\n print('serving on http://{0}:{1}'.format(host, port))\n make_server(host, int(port), application).serve_forever()\n", "role": "user" }, { "content": "simple", "role": "assistant" } ]
def x(application): try: from wsgiref.handlers import IISCGIHandler except ImportError: print('Python 3.2 or newer is required.') if not __debug__: warnings.warn( 'Interactive debugging and other persistence-based processes will not work.' ) IISCGIHandler().run(application)
iiscgi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(application):\n try:\n from wsgiref.handlers import IISCGIHandler\n except ImportError:\n print('Python 3.2 or newer is required.')\n if not __debug__:\n warnings.warn(\n 'Interactive debugging and other persistence-based processes will not work.'\n )\n IISCGIHandler().run(application)\n", "role": "user" }, { "content": "iiscgi", "role": "assistant" } ]
def x(application, host='127.0.0.1', port=8080, socket=None, **options): if not socket: bindAddress = host, int(port) else: bindAddress = socket WSGIServer(application, bindAddress=bindAddress, **options).run()
serve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(application, host='127.0.0.1', port=8080, socket=None, **options):\n if not socket:\n bindAddress = host, int(port)\n else:\n bindAddress = socket\n WSGIServer(application, bindAddress=bindAddress, **options).run()\n", "role": "user" }, { "content": "serve", "role": "assistant" } ]
def x(self): method_kwargs = {'user': self.user, 'content_type': self.ctype, 'object_id': self.content_object.pk} return method_kwargs
get_method_kwargs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n method_kwargs = {'user': self.user, 'content_type': self.ctype,\n 'object_id': self.content_object.pk}\n return method_kwargs\n", "role": "user" }, { "content": "get_method_kwargs", "role": "assistant" } ]
def x(self, *args, **kwargs): method_kwargs = self._get_method_kwargs() try: subscription = Subscription.objects.get(**method_kwargs) except Subscription.DoesNotExist: subscription = Subscription.objects.create(**method_kwargs) return subscription
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n method_kwargs = self._get_method_kwargs()\n try:\n subscription = Subscription.objects.get(**method_kwargs)\n except Subscription.DoesNotExist:\n subscription = Subscription.objects.create(**method_kwargs)\n return subscription\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(self, context): if __debug__: log.debug('Preparing request context.', extra=dict(request=id(context)) ) context.request = Request(context.environ) context.response = Response(request=context.request) context.environ['web.base'] = context.request.script_name context.request.remainder = context.request.path_info.split('/') if context.request.remainder and not context.request.remainder[0]: del context.request.remainder[0] context.path = Bread()
prepare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n if __debug__:\n log.debug('Preparing request context.', extra=dict(request=id(context))\n )\n context.request = Request(context.environ)\n context.response = Response(request=context.request)\n context.environ['web.base'] = context.request.script_name\n context.request.remainder = context.request.path_info.split('/')\n if context.request.remainder and not context.request.remainder[0]:\n del context.request.remainder[0]\n context.path = Bread()\n", "role": "user" }, { "content": "prepare", "role": "assistant" } ]
def x(self, context, consumed, handler, is_endpoint): request = context.request if __debug__: log.debug('Handling dispatch event.', extra=dict(request=id(context ), consumed=consumed, handler=safe_name(handler), endpoint= is_endpoint)) if not consumed and context.request.path_info_peek() == '': consumed = [''] nConsumed = 0 if consumed: if not isinstance(consumed, (list, tuple)): consumed = consumed.split('/') for element in consumed: if element == context.request.path_info_peek(): context.request.path_info_pop() nConsumed += 1 else: break context.path.append(Crumb(handler, Path(request.script_name))) if consumed: request.remainder = request.remainder[nConsumed:]
dispatch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, consumed, handler, is_endpoint):\n request = context.request\n if __debug__:\n log.debug('Handling dispatch event.', extra=dict(request=id(context\n ), consumed=consumed, handler=safe_name(handler), endpoint=\n is_endpoint))\n if not consumed and context.request.path_info_peek() == '':\n consumed = ['']\n nConsumed = 0\n if consumed:\n if not isinstance(consumed, (list, tuple)):\n consumed = consumed.split('/')\n for element in consumed:\n if element == context.request.path_info_peek():\n context.request.path_info_pop()\n nConsumed += 1\n else:\n break\n context.path.append(Crumb(handler, Path(request.script_name)))\n if consumed:\n request.remainder = request.remainder[nConsumed:]\n", "role": "user" }, { "content": "dispatch", "role": "assistant" } ]
def x(self, context, result): context.response.body = b'' del context.response.content_length return True
render_none
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, result):\n context.response.body = b''\n del context.response.content_length\n return True\n", "role": "user" }, { "content": "render_none", "role": "assistant" } ]
def x(self, context, result): context.response.app_iter = iter((result,)) return True
render_binary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, result):\n context.response.app_iter = iter((result,))\n return True\n", "role": "user" }, { "content": "render_binary", "role": "assistant" } ]
def x(self, context, result): if __debug__: log.debug('Processing file-like object.', extra=dict(request=id( context), result=repr(result))) response = context.response response.conditional_response = True modified = mktime(gmtime(getmtime(result.name))) response.last_modified = datetime.fromtimestamp(modified) ct, ce = guess_type(result.name) if not ct: ct = 'application/octet-stream' response.content_type, response.content_encoding = ct, ce response.etag = unicode(modified) result.seek(0, 2) response.content_length = result.tell() result.seek(0) response.body_file = result return True
render_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, result):\n if __debug__:\n log.debug('Processing file-like object.', extra=dict(request=id(\n context), result=repr(result)))\n response = context.response\n response.conditional_response = True\n modified = mktime(gmtime(getmtime(result.name)))\n response.last_modified = datetime.fromtimestamp(modified)\n ct, ce = guess_type(result.name)\n if not ct:\n ct = 'application/octet-stream'\n response.content_type, response.content_encoding = ct, ce\n response.etag = unicode(modified)\n result.seek(0, 2)\n response.content_length = result.tell()\n result.seek(0)\n response.body_file = result\n return True\n", "role": "user" }, { "content": "render_file", "role": "assistant" } ]
def x(self, context, result): context.response.encoding = 'utf8' context.response.app_iter = (i.encode('utf8') if isinstance(i, unicode) else i for i in result if i is not None) return True
render_generator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, result):\n context.response.encoding = 'utf8'\n context.response.app_iter = (i.encode('utf8') if isinstance(i, unicode)\n else i for i in result if i is not None)\n return True\n", "role": "user" }, { "content": "render_generator", "role": "assistant" } ]
def x(application, host='127.0.0.1', port=8080): server = CherryPyWSGIServer((host, int(port)), application, server_name =host) print('serving on http://{0}:{1}'.format(host, port)) try: server.start() except KeyboardInterrupt: server.stop()
serve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(application, host='127.0.0.1', port=8080):\n server = CherryPyWSGIServer((host, int(port)), application, server_name\n =host)\n print('serving on http://{0}:{1}'.format(host, port))\n try:\n server.start()\n except KeyboardInterrupt:\n server.stop()\n", "role": "user" }, { "content": "serve", "role": "assistant" } ]
def x(self, string, rgb=None, ansi=None, bg=None, ansi_bg=None): if not isinstance(string, str): string = str(string) if rgb is None and ansi is None: raise TerminalColorMapException( 'colorize: must specify one named parameter: rgb or ansi') if rgb is not None and ansi is not None: raise TerminalColorMapException( 'colorize: must specify only one named parameter: rgb or ansi') if bg is not None and ansi_bg is not None: raise TerminalColorMapException( 'colorize: must specify only one named parameter: bg or ansi_bg') if rgb is not None: closestAnsi, closestRgb = self.convert(rgb) elif ansi is not None: closestAnsi, closestRgb = ansi, self.colors[ansi] if bg is None and ansi_bg is None: return '\x1b[38;5;{ansiCode:d}m{string:s}\x1b[0m'.format(ansiCode= closestAnsi, string=string) if bg is not None: closestBgAnsi, unused = self.convert(bg) elif ansi_bg is not None: closestBgAnsi, unused = ansi_bg, self.colors[ansi_bg] return '\x1b[38;5;{ansiCode:d}m\x1b[48;5;{bf:d}m{string:s}\x1b[0m'.format( ansiCode=closestAnsi, bf=closestBgAnsi, string=string)
colorize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, string, rgb=None, ansi=None, bg=None, ansi_bg=None):\n if not isinstance(string, str):\n string = str(string)\n if rgb is None and ansi is None:\n raise TerminalColorMapException(\n 'colorize: must specify one named parameter: rgb or ansi')\n if rgb is not None and ansi is not None:\n raise TerminalColorMapException(\n 'colorize: must specify only one named parameter: rgb or ansi')\n if bg is not None and ansi_bg is not None:\n raise TerminalColorMapException(\n 'colorize: must specify only one named parameter: bg or ansi_bg')\n if rgb is not None:\n closestAnsi, closestRgb = self.convert(rgb)\n elif ansi is not None:\n closestAnsi, closestRgb = ansi, self.colors[ansi]\n if bg is None and ansi_bg is None:\n return '\\x1b[38;5;{ansiCode:d}m{string:s}\\x1b[0m'.format(ansiCode=\n closestAnsi, string=string)\n if bg is not None:\n closestBgAnsi, unused = self.convert(bg)\n elif ansi_bg is not None:\n closestBgAnsi, unused = ansi_bg, self.colors[ansi_bg]\n return '\\x1b[38;5;{ansiCode:d}m\\x1b[48;5;{bf:d}m{string:s}\\x1b[0m'.format(\n ansiCode=closestAnsi, bf=closestBgAnsi, string=string)\n", "role": "user" }, { "content": "colorize", "role": "assistant" } ]
def x(self, context, result): resp = context.response serial = context.serialize match = context.request.accept.best_match(serial.types, default_match= self.default) result = serial[match](result) if isinstance(result, str): result = result.decode('utf-8') resp.charset = 'utf-8' resp.content_type = match resp.text = result return True
render_serialization
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, result):\n resp = context.response\n serial = context.serialize\n match = context.request.accept.best_match(serial.types, default_match=\n self.default)\n result = serial[match](result)\n if isinstance(result, str):\n result = result.decode('utf-8')\n resp.charset = 'utf-8'\n resp.content_type = match\n resp.text = result\n return True\n", "role": "user" }, { "content": "render_serialization", "role": "assistant" } ]
def x(application, host='127.0.0.1', port=8080): server(listen(host, int(port)), application)
serve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(application, host='127.0.0.1', port=8080):\n server(listen(host, int(port)), application)\n", "role": "user" }, { "content": "serve", "role": "assistant" } ]
def x(): parser = argparse.ArgumentParser(description= 'A script which can be run to generate a LEMS file to analyse the behaviour of channels in NeuroML 2' ) parser.add_argument('channelFiles', type=str, nargs='+', metavar= '<NeuroML 2 Channel file>', help='Name of the NeuroML 2 file(s)') parser.add_argument('-v', action='store_true', default=DEFAULTS['v'], help='Verbose output') parser.add_argument('-minV', type=int, metavar='<min v>', default= DEFAULTS['minV'], help= 'Minimum voltage to test (integer, mV), default: %smV' % DEFAULTS[ 'minV']) parser.add_argument('-maxV', type=int, metavar='<max v>', default= DEFAULTS['maxV'], help= 'Maximum voltage to test (integer, mV), default: %smV' % DEFAULTS[ 'maxV']) parser.add_argument('-temperature', type=float, metavar='<temperature>', default=DEFAULTS['temperature'], help= 'Temperature (float, celsius), default: %sdegC' % DEFAULTS[ 'temperature']) parser.add_argument('-duration', type=float, metavar='<duration>', default=DEFAULTS['duration'], help= 'Duration of simulation in ms, default: %sms' % DEFAULTS['duration']) parser.add_argument('-clampDelay', type=float, metavar='<clamp delay>', default=DEFAULTS['clampDelay'], help= 'Delay before voltage clamp is activated in ms, default: %sms' % DEFAULTS['clampDelay']) parser.add_argument('-clampDuration', type=float, metavar= '<clamp duration>', default=DEFAULTS['clampDuration'], help= 'Duration of voltage clamp in ms, default: %sms' % DEFAULTS[ 'clampDuration']) parser.add_argument('-clampBaseVoltage', type=float, metavar= '<clamp base voltage>', default=DEFAULTS['clampBaseVoltage'], help= 'Clamp base (starting/finishing) voltage in mV, default: %smV' % DEFAULTS['clampBaseVoltage']) parser.add_argument('-stepTargetVoltage', type=float, metavar= '<step target voltage>', default=DEFAULTS['stepTargetVoltage'], help= 'Voltage in mV through which to step voltage clamps, default: %smV' % DEFAULTS['stepTargetVoltage']) parser.add_argument('-erev', type=float, metavar='<reversal potential>', default=DEFAULTS['erev'], help= 'Reversal potential of channel for currents, default: %smV' % DEFAULTS['erev']) parser.add_argument('-scaleDt', type=float, metavar= '<scale dt in generated LEMS>', default=DEFAULTS['scaleDt'], help= 'Scale dt in generated LEMS, default: %s' % DEFAULTS['scaleDt']) parser.add_argument('-caConc', type=float, metavar= '<Ca2+ concentration>', default=DEFAULTS['caConc'], help= 'Internal concentration of Ca2+ (float, concentration in mM), default: %smM' % DEFAULTS['caConc']) parser.add_argument('-datSuffix', type=str, metavar='<dat suffix>', default=DEFAULTS['datSuffix'], help= 'String to add to dat file names (before .dat)') parser.add_argument('-norun', action='store_true', default=DEFAULTS[ 'norun'], help="If used, just generate the LEMS file, don't run it") parser.add_argument('-nogui', action='store_true', default=DEFAULTS[ 'nogui'], help= 'Supress plotting of variables and only save data to file') parser.add_argument('-html', action='store_true', default=DEFAULTS[ 'html'], help= 'Generate a HTML page featuring the plots for the channel') parser.add_argument('-md', action='store_true', default=DEFAULTS['md'], help= 'Generate a (GitHub flavoured) Markdown page featuring the plots for the channel' ) parser.add_argument('-ivCurve', action='store_true', default=DEFAULTS[ 'ivCurve'], help= 'Save currents through voltage clamp at each level & plot current vs voltage for ion channel' ) return parser.parse_args()
process_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n parser = argparse.ArgumentParser(description=\n 'A script which can be run to generate a LEMS file to analyse the behaviour of channels in NeuroML 2'\n )\n parser.add_argument('channelFiles', type=str, nargs='+', metavar=\n '<NeuroML 2 Channel file>', help='Name of the NeuroML 2 file(s)')\n parser.add_argument('-v', action='store_true', default=DEFAULTS['v'],\n help='Verbose output')\n parser.add_argument('-minV', type=int, metavar='<min v>', default=\n DEFAULTS['minV'], help=\n 'Minimum voltage to test (integer, mV), default: %smV' % DEFAULTS[\n 'minV'])\n parser.add_argument('-maxV', type=int, metavar='<max v>', default=\n DEFAULTS['maxV'], help=\n 'Maximum voltage to test (integer, mV), default: %smV' % DEFAULTS[\n 'maxV'])\n parser.add_argument('-temperature', type=float, metavar='<temperature>',\n default=DEFAULTS['temperature'], help=\n 'Temperature (float, celsius), default: %sdegC' % DEFAULTS[\n 'temperature'])\n parser.add_argument('-duration', type=float, metavar='<duration>',\n default=DEFAULTS['duration'], help=\n 'Duration of simulation in ms, default: %sms' % DEFAULTS['duration'])\n parser.add_argument('-clampDelay', type=float, metavar='<clamp delay>',\n default=DEFAULTS['clampDelay'], help=\n 'Delay before voltage clamp is activated in ms, default: %sms' %\n DEFAULTS['clampDelay'])\n parser.add_argument('-clampDuration', type=float, metavar=\n '<clamp duration>', default=DEFAULTS['clampDuration'], help=\n 'Duration of voltage clamp in ms, default: %sms' % DEFAULTS[\n 'clampDuration'])\n parser.add_argument('-clampBaseVoltage', type=float, metavar=\n '<clamp base voltage>', default=DEFAULTS['clampBaseVoltage'], help=\n 'Clamp base (starting/finishing) voltage in mV, default: %smV' %\n DEFAULTS['clampBaseVoltage'])\n parser.add_argument('-stepTargetVoltage', type=float, metavar=\n '<step target voltage>', default=DEFAULTS['stepTargetVoltage'],\n help=\n 'Voltage in mV through which to step voltage clamps, default: %smV' %\n DEFAULTS['stepTargetVoltage'])\n parser.add_argument('-erev', type=float, metavar='<reversal potential>',\n default=DEFAULTS['erev'], help=\n 'Reversal potential of channel for currents, default: %smV' %\n DEFAULTS['erev'])\n parser.add_argument('-scaleDt', type=float, metavar=\n '<scale dt in generated LEMS>', default=DEFAULTS['scaleDt'], help=\n 'Scale dt in generated LEMS, default: %s' % DEFAULTS['scaleDt'])\n parser.add_argument('-caConc', type=float, metavar=\n '<Ca2+ concentration>', default=DEFAULTS['caConc'], help=\n 'Internal concentration of Ca2+ (float, concentration in mM), default: %smM'\n % DEFAULTS['caConc'])\n parser.add_argument('-datSuffix', type=str, metavar='<dat suffix>',\n default=DEFAULTS['datSuffix'], help=\n 'String to add to dat file names (before .dat)')\n parser.add_argument('-norun', action='store_true', default=DEFAULTS[\n 'norun'], help=\"If used, just generate the LEMS file, don't run it\")\n parser.add_argument('-nogui', action='store_true', default=DEFAULTS[\n 'nogui'], help=\n 'Supress plotting of variables and only save data to file')\n parser.add_argument('-html', action='store_true', default=DEFAULTS[\n 'html'], help=\n 'Generate a HTML page featuring the plots for the channel')\n parser.add_argument('-md', action='store_true', default=DEFAULTS['md'],\n help=\n 'Generate a (GitHub flavoured) Markdown page featuring the plots for the channel'\n )\n parser.add_argument('-ivCurve', action='store_true', default=DEFAULTS[\n 'ivCurve'], help=\n 'Save currents through voltage clamp at each level & plot current vs voltage for ion channel'\n )\n return parser.parse_args()\n", "role": "user" }, { "content": "process_args", "role": "assistant" } ]
def x(a, hold_v, i, *plt_args, **plt_kwargs): grid = plt_kwargs.pop('grid', True) same_fig = plt_kwargs.pop('same_fig', False) if not len(plt_args): plt_args = 'ko-', if 'label' not in plt_kwargs: plt_kwargs['label'] = 'Current' if not same_fig: make_iv_curve_fig(a, grid=grid) if type(i) is dict: i = [i[v] for v in hold_v] plt.plot([(v * 1000.0) for v in hold_v], [(ii * 1000000000000.0) for ii in i], *plt_args, **plt_kwargs) plt.legend(loc=2)
plot_iv_curve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, hold_v, i, *plt_args, **plt_kwargs):\n grid = plt_kwargs.pop('grid', True)\n same_fig = plt_kwargs.pop('same_fig', False)\n if not len(plt_args):\n plt_args = 'ko-',\n if 'label' not in plt_kwargs:\n plt_kwargs['label'] = 'Current'\n if not same_fig:\n make_iv_curve_fig(a, grid=grid)\n if type(i) is dict:\n i = [i[v] for v in hold_v]\n plt.plot([(v * 1000.0) for v in hold_v], [(ii * 1000000000000.0) for ii in\n i], *plt_args, **plt_kwargs)\n plt.legend(loc=2)\n", "role": "user" }, { "content": "plot_iv_curve", "role": "assistant" } ]
def x(context): response = context.response parts = [] for i in range(12): for j in range(12): parts.append(executor.submit(mul, i, j)) def x(parts, timeout=None): try: for future in as_completed(parts, timeout): mime, result = future.result() result = result.encode('utf8') yield """!!!!!!=_NextPart_{num} Content-Type: {mime} Content-Length: {length} """.format( num=randint(100000000, 999999999), mime=mime, length= len(result)).encode('utf8') + result except TimeoutError: for future in parts: future.cancel() response.content_length = None response.app_iter = stream(parts, 0.2) return response
root
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context):\n response = context.response\n parts = []\n for i in range(12):\n for j in range(12):\n parts.append(executor.submit(mul, i, j))\n\n def x(parts, timeout=None):\n try:\n for future in as_completed(parts, timeout):\n mime, result = future.result()\n result = result.encode('utf8')\n yield \"\"\"!!!!!!=_NextPart_{num}\nContent-Type: {mime}\nContent-Length: {length}\n\n\"\"\".format(\n num=randint(100000000, 999999999), mime=mime, length=\n len(result)).encode('utf8') + result\n except TimeoutError:\n for future in parts:\n future.cancel()\n response.content_length = None\n response.app_iter = stream(parts, 0.2)\n return response\n", "role": "user" }, { "content": "root", "role": "assistant" } ]
def x(file, template_file_name, **kwargs): template_file_content = ''.join(codecs.open(template_file_name, encoding='UTF-8').readlines()) template_rendered = string.Template(template_file_content).safe_substitute( **kwargs) file.write(template_rendered)
render_template_with_args_in_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file, template_file_name, **kwargs):\n template_file_content = ''.join(codecs.open(template_file_name,\n encoding='UTF-8').readlines())\n template_rendered = string.Template(template_file_content).safe_substitute(\n **kwargs)\n file.write(template_rendered)\n", "role": "user" }, { "content": "render_template_with_args_in_file", "role": "assistant" } ]
def x(file_name, initial_template_file_name, args): file = None if not os.path.isfile(os.path.join(args['django_application_folder'], file_name)): file = codecs.open(os.path.join(args['django_application_folder'], file_name), 'w+', encoding='UTF-8') print('Creating {}'.format(file_name)) if initial_template_file_name: render_template_with_args_in_file(file, initial_template_file_name, **{}) else: file = codecs.open(os.path.join(args['django_application_folder'], file_name), 'a+', encoding='UTF-8') return file
create_or_open
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_name, initial_template_file_name, args):\n file = None\n if not os.path.isfile(os.path.join(args['django_application_folder'],\n file_name)):\n file = codecs.open(os.path.join(args['django_application_folder'],\n file_name), 'w+', encoding='UTF-8')\n print('Creating {}'.format(file_name))\n if initial_template_file_name:\n render_template_with_args_in_file(file,\n initial_template_file_name, **{})\n else:\n file = codecs.open(os.path.join(args['django_application_folder'],\n file_name), 'a+', encoding='UTF-8')\n return file\n", "role": "user" }, { "content": "create_or_open", "role": "assistant" } ]
def x(module_name, args, **kwargs): file = create_or_open('{}.py'.format(module_name), os.path.join( BASE_TEMPLATES_DIR, '{}_initial.py.tmpl'.format(module_name)), args) render_template_with_args_in_file(file, os.path.join(BASE_TEMPLATES_DIR, '{}.py.tmpl'.format(module_name)), **kwargs) file.close()
generic_insert_module
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(module_name, args, **kwargs):\n file = create_or_open('{}.py'.format(module_name), os.path.join(\n BASE_TEMPLATES_DIR, '{}_initial.py.tmpl'.format(module_name)), args)\n render_template_with_args_in_file(file, os.path.join(BASE_TEMPLATES_DIR,\n '{}.py.tmpl'.format(module_name)), **kwargs)\n file.close()\n", "role": "user" }, { "content": "generic_insert_module", "role": "assistant" } ]
def x(args): if not os.path.isfile(os.path.join(args['django_application_folder'], 'models.py')): print('django_application_folder is not a Django application folder') sys.exit(1)
sanity_check
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n if not os.path.isfile(os.path.join(args['django_application_folder'],\n 'models.py')):\n print('django_application_folder is not a Django application folder')\n sys.exit(1)\n", "role": "user" }, { "content": "sanity_check", "role": "assistant" } ]
def x(folder_name, file_name, template_name, args): if not os.path.isdir(os.path.join(args['django_application_folder'], folder_name)): os.mkdir(os.path.join(args['django_application_folder'], folder_name)) codecs.open(os.path.join(args['django_application_folder'], folder_name, '__init__.py'), 'w+') view_file = create_or_open(os.path.join(folder_name, '{}.py'.format( file_name)), '', args) render_template_with_args_in_file(view_file, os.path.join( BASE_TEMPLATES_DIR, template_name), model_name=args['model_name'], model_prefix=args['model_prefix'], model_name_lower=args[ 'model_name'].lower(), application_name=args[ 'django_application_folder'].split('/')[-1]) view_file.close()
generic_insert_with_folder
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(folder_name, file_name, template_name, args):\n if not os.path.isdir(os.path.join(args['django_application_folder'],\n folder_name)):\n os.mkdir(os.path.join(args['django_application_folder'], folder_name))\n codecs.open(os.path.join(args['django_application_folder'],\n folder_name, '__init__.py'), 'w+')\n view_file = create_or_open(os.path.join(folder_name, '{}.py'.format(\n file_name)), '', args)\n render_template_with_args_in_file(view_file, os.path.join(\n BASE_TEMPLATES_DIR, template_name), model_name=args['model_name'],\n model_prefix=args['model_prefix'], model_name_lower=args[\n 'model_name'].lower(), application_name=args[\n 'django_application_folder'].split('/')[-1])\n view_file.close()\n", "role": "user" }, { "content": "generic_insert_with_folder", "role": "assistant" } ]
def x(application, host='127.0.0.1', port=8080, threads=4, **kw): serve_(application, host=host, port=int(port), threads=int(threads), **kw)
serve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(application, host='127.0.0.1', port=8080, threads=4, **kw):\n serve_(application, host=host, port=int(port), threads=int(threads), **kw)\n", "role": "user" }, { "content": "serve", "role": "assistant" } ]
def x(self): from matplotlib import pyplot as plt if self.already_run: for ref in self.volts.keys(): plt.plot(self.t, self.volts[ref], label=ref) plt.title('Simulation voltage vs time') plt.legend() plt.xlabel('Time [ms]') plt.ylabel('Voltage [mV]') else: pynml.print_comment("First you have to 'go()' the simulation.", True) plt.show()
show
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from matplotlib import pyplot as plt\n if self.already_run:\n for ref in self.volts.keys():\n plt.plot(self.t, self.volts[ref], label=ref)\n plt.title('Simulation voltage vs time')\n plt.legend()\n plt.xlabel('Time [ms]')\n plt.ylabel('Voltage [mV]')\n else:\n pynml.print_comment(\"First you have to 'go()' the simulation.\", True)\n plt.show()\n", "role": "user" }, { "content": "show", "role": "assistant" } ]
def x(self, a: int=None, b: int=None) ->'json': if not a or not b: return dict(message='Pass arguments a and b to multiply them together!' ) return dict(answer=a * b)
mul
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, a: int=None, b: int=None) ->'json':\n if not a or not b:\n return dict(message='Pass arguments a and b to multiply them together!'\n )\n return dict(answer=a * b)\n", "role": "user" }, { "content": "mul", "role": "assistant" } ]
def x(string, rgb=None, ansi=None, bg=None, ansi_bg=None, fd=1): if colorize.fd != fd: colorize.init = False colorize.fd = fd if not colorize.init: colorize.init = True colorize.is_term = isatty(fd) if 'TERM' in environ: if environ['TERM'].startswith('xterm'): colorize.cmap = XTermColorMap() elif environ['TERM'] == 'vt100': colorize.cmap = VT100ColorMap() else: colorize.is_term = False else: colorize.is_term = False if colorize.is_term: string = colorize.cmap.colorize(string, rgb, ansi, bg, ansi_bg) return string
colorize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, rgb=None, ansi=None, bg=None, ansi_bg=None, fd=1):\n if colorize.fd != fd:\n colorize.init = False\n colorize.fd = fd\n if not colorize.init:\n colorize.init = True\n colorize.is_term = isatty(fd)\n if 'TERM' in environ:\n if environ['TERM'].startswith('xterm'):\n colorize.cmap = XTermColorMap()\n elif environ['TERM'] == 'vt100':\n colorize.cmap = VT100ColorMap()\n else:\n colorize.is_term = False\n else:\n colorize.is_term = False\n if colorize.is_term:\n string = colorize.cmap.colorize(string, rgb, ansi, bg, ansi_bg)\n return string\n", "role": "user" }, { "content": "colorize", "role": "assistant" } ]
def x(self, context, handler, args, kw): def x(arg, val): if arg not in annotations: return cast = annotations[key] try: val = cast(val) except (ValueError, TypeError) as e: parts = list(e.args) parts[0] = parts[0] + " processing argument '{}'".format(arg) e.args = tuple(parts) raise return val annotations = getattr(handler.__func__ if hasattr(handler, '__func__') else handler, '__annotations__', None) if not annotations: return argspec = getfullargspec(handler) arglist = list(argspec.args) if ismethod(handler): del arglist[0] for i, value in enumerate(list(args)): key = arglist[i] if key in annotations: args[i] = cast(key, value) for key, value in list(items(kw)): if key in annotations: kw[key] = cast(key, value)
mutate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, handler, args, kw):\n\n def x(arg, val):\n if arg not in annotations:\n return\n cast = annotations[key]\n try:\n val = cast(val)\n except (ValueError, TypeError) as e:\n parts = list(e.args)\n parts[0] = parts[0] + \" processing argument '{}'\".format(arg)\n e.args = tuple(parts)\n raise\n return val\n annotations = getattr(handler.__func__ if hasattr(handler, '__func__') else\n handler, '__annotations__', None)\n if not annotations:\n return\n argspec = getfullargspec(handler)\n arglist = list(argspec.args)\n if ismethod(handler):\n del arglist[0]\n for i, value in enumerate(list(args)):\n key = arglist[i]\n if key in annotations:\n args[i] = cast(key, value)\n for key, value in list(items(kw)):\n if key in annotations:\n kw[key] = cast(key, value)\n", "role": "user" }, { "content": "mutate", "role": "assistant" } ]
def x(self, context, handler, result): handler = handler.__func__ if hasattr(handler, '__func__') else handler annotation = getattr(handler, '__annotations__', {}).get('return', None) if annotation: return annotation, result return result
transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, handler, result):\n handler = handler.__func__ if hasattr(handler, '__func__') else handler\n annotation = getattr(handler, '__annotations__', {}).get('return', None)\n if annotation:\n return annotation, result\n return result\n", "role": "user" }, { "content": "transform", "role": "assistant" } ]
def x(): parser = argparse.ArgumentParser(description= 'A script which can be run to tune a NeuroML 2 model against a number of target properties. Work in progress!' ) parser.add_argument('prefix', type=str, metavar='<prefix>', help= 'Prefix for optimisation run') parser.add_argument('neuromlFile', type=str, metavar='<neuromlFile>', help='NeuroML2 file containing model') parser.add_argument('target', type=str, metavar='<target>', help= 'Target in NeuroML2 model') parser.add_argument('parameters', type=str, metavar='<parameters>', help='List of parameter to adjust') parser.add_argument('maxConstraints', type=str, metavar= '<max_constraints>', help='Max values for parameters') parser.add_argument('minConstraints', type=str, metavar= '<min_constraints>', help='Min values for parameters') parser.add_argument('targetData', type=str, metavar='<targetData>', help= 'List of name/value pairs for properties extracted from data to judge fitness against' ) parser.add_argument('weights', type=str, metavar='<weights>', help= 'Weights to assign to each target name/value pair') parser.add_argument('-simTime', type=float, metavar='<simTime>', default=DEFAULTS['simTime'], help='Simulation duration') parser.add_argument('-dt', type=float, metavar='<dt>', default=DEFAULTS ['dt'], help='Simulation timestep') parser.add_argument('-analysisStartTime', type=float, metavar= '<analysisStartTime>', default=DEFAULTS['analysisStartTime'], help= 'Analysis start time') parser.add_argument('-populationSize', type=int, metavar= '<populationSize>', default=DEFAULTS['populationSize'], help= 'Population size') parser.add_argument('-maxEvaluations', type=int, metavar= '<maxEvaluations>', default=DEFAULTS['maxEvaluations'], help= 'Maximum evaluations') parser.add_argument('-numSelected', type=int, metavar='<numSelected>', default=DEFAULTS['numSelected'], help='Number selected') parser.add_argument('-numOffspring', type=int, metavar='<numOffspring>', default=DEFAULTS['numOffspring'], help='Number offspring') parser.add_argument('-mutationRate', type=float, metavar= '<mutationRate>', default=DEFAULTS['mutationRate'], help= 'Mutation rate') parser.add_argument('-numElites', type=int, metavar='<numElites>', default=DEFAULTS['numElites'], help='Number of elites') parser.add_argument('-numParallelEvaluations', type=int, metavar= '<numParallelEvaluations>', default=DEFAULTS[ 'numParallelEvaluations'], help= 'Number of evaluations to run in parallel') parser.add_argument('-seed', type=int, metavar='<seed>', default= DEFAULTS['seed'], help='Seed for optimiser') parser.add_argument('-simulator', type=str, metavar='<simulator>', default=DEFAULTS['simulator'], help='Simulator to run') parser.add_argument('-knownTargetValues', type=str, metavar= '<knownTargetValues>', help= 'List of name/value pairs which represent the known values of the target parameters' ) parser.add_argument('-nogui', action='store_true', default=DEFAULTS[ 'nogui'], help='Should GUI elements be supressed?') parser.add_argument('-showPlotAlready', action='store_true', default= DEFAULTS['showPlotAlready'], help= 'Should generated plots be suppressed until show() called?') parser.add_argument('-verbose', action='store_true', default=DEFAULTS[ 'verbose'], help='Verbose mode') parser.add_argument('-dryRun', action='store_true', default=DEFAULTS[ 'dryRun'], help='Dry run; just print setup information') parser.add_argument('-extraReportInfo', type=str, metavar= '<extraReportInfo>', default=DEFAULTS['extraReportInfo'], help= 'Extra tag/value pairs can be put into the report.json: -extraReportInfo=["tag":"value"]' ) parser.add_argument('-cleanup', action='store_true', default=DEFAULTS[ 'cleanup'], help= 'Should (some) generated files, e.g. *.dat, be deleted as optimisation progresses?' ) return parser.parse_args()
process_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n parser = argparse.ArgumentParser(description=\n 'A script which can be run to tune a NeuroML 2 model against a number of target properties. Work in progress!'\n )\n parser.add_argument('prefix', type=str, metavar='<prefix>', help=\n 'Prefix for optimisation run')\n parser.add_argument('neuromlFile', type=str, metavar='<neuromlFile>',\n help='NeuroML2 file containing model')\n parser.add_argument('target', type=str, metavar='<target>', help=\n 'Target in NeuroML2 model')\n parser.add_argument('parameters', type=str, metavar='<parameters>',\n help='List of parameter to adjust')\n parser.add_argument('maxConstraints', type=str, metavar=\n '<max_constraints>', help='Max values for parameters')\n parser.add_argument('minConstraints', type=str, metavar=\n '<min_constraints>', help='Min values for parameters')\n parser.add_argument('targetData', type=str, metavar='<targetData>',\n help=\n 'List of name/value pairs for properties extracted from data to judge fitness against'\n )\n parser.add_argument('weights', type=str, metavar='<weights>', help=\n 'Weights to assign to each target name/value pair')\n parser.add_argument('-simTime', type=float, metavar='<simTime>',\n default=DEFAULTS['simTime'], help='Simulation duration')\n parser.add_argument('-dt', type=float, metavar='<dt>', default=DEFAULTS\n ['dt'], help='Simulation timestep')\n parser.add_argument('-analysisStartTime', type=float, metavar=\n '<analysisStartTime>', default=DEFAULTS['analysisStartTime'], help=\n 'Analysis start time')\n parser.add_argument('-populationSize', type=int, metavar=\n '<populationSize>', default=DEFAULTS['populationSize'], help=\n 'Population size')\n parser.add_argument('-maxEvaluations', type=int, metavar=\n '<maxEvaluations>', default=DEFAULTS['maxEvaluations'], help=\n 'Maximum evaluations')\n parser.add_argument('-numSelected', type=int, metavar='<numSelected>',\n default=DEFAULTS['numSelected'], help='Number selected')\n parser.add_argument('-numOffspring', type=int, metavar='<numOffspring>',\n default=DEFAULTS['numOffspring'], help='Number offspring')\n parser.add_argument('-mutationRate', type=float, metavar=\n '<mutationRate>', default=DEFAULTS['mutationRate'], help=\n 'Mutation rate')\n parser.add_argument('-numElites', type=int, metavar='<numElites>',\n default=DEFAULTS['numElites'], help='Number of elites')\n parser.add_argument('-numParallelEvaluations', type=int, metavar=\n '<numParallelEvaluations>', default=DEFAULTS[\n 'numParallelEvaluations'], help=\n 'Number of evaluations to run in parallel')\n parser.add_argument('-seed', type=int, metavar='<seed>', default=\n DEFAULTS['seed'], help='Seed for optimiser')\n parser.add_argument('-simulator', type=str, metavar='<simulator>',\n default=DEFAULTS['simulator'], help='Simulator to run')\n parser.add_argument('-knownTargetValues', type=str, metavar=\n '<knownTargetValues>', help=\n 'List of name/value pairs which represent the known values of the target parameters'\n )\n parser.add_argument('-nogui', action='store_true', default=DEFAULTS[\n 'nogui'], help='Should GUI elements be supressed?')\n parser.add_argument('-showPlotAlready', action='store_true', default=\n DEFAULTS['showPlotAlready'], help=\n 'Should generated plots be suppressed until show() called?')\n parser.add_argument('-verbose', action='store_true', default=DEFAULTS[\n 'verbose'], help='Verbose mode')\n parser.add_argument('-dryRun', action='store_true', default=DEFAULTS[\n 'dryRun'], help='Dry run; just print setup information')\n parser.add_argument('-extraReportInfo', type=str, metavar=\n '<extraReportInfo>', default=DEFAULTS['extraReportInfo'], help=\n 'Extra tag/value pairs can be put into the report.json: -extraReportInfo=[\"tag\":\"value\"]'\n )\n parser.add_argument('-cleanup', action='store_true', default=DEFAULTS[\n 'cleanup'], help=\n 'Should (some) generated files, e.g. *.dat, be deleted as optimisation progresses?'\n )\n return parser.parse_args()\n", "role": "user" }, { "content": "process_args", "role": "assistant" } ]
def x(): parser = argparse.ArgumentParser(description= 'A file for overlaying POVRay files generated from NeuroML by NeuroML1ToPOVRay.py with cell activity (e.g. as generated from a neuroConstruct simulation)' ) parser.add_argument('prefix', type=str, metavar='<network prefix>', help= 'Prefix for files in PovRay, e.g. use PREFIX is files are PREFIX.pov, PREFIX_net.inc, etc.' ) parser.add_argument('-activity', action='store_true', default=False, help='If this is specified, overlay network activity (not tested!!)') parser.add_argument('-maxV', type=float, metavar='<maxV>', default=50.0, help='Max voltage for colour scale in mV') parser.add_argument('-minV', type=float, metavar='<minV>', default=- 90.0, help='Min voltage for colour scale in mV') parser.add_argument('-startTime', type=float, metavar='<startTime>', default=0, help= 'Time in ms at which to start overlaying the simulation activity') parser.add_argument('-endTime', type=float, metavar='<endTime>', default=100, help='End time of simulation activity in ms') parser.add_argument('-title', type=str, metavar='<title>', default= 'Movie generated from neuroConstruct simulation', help= 'Title for movie') parser.add_argument('-left', type=str, metavar='<left info>', default= '', help='Text on left') parser.add_argument('-frames', type=int, metavar='<frames>', default= 100, help='Number of frames') parser.add_argument('-name', type=str, metavar='<Movie name>', default= 'output', help='Movie name') return parser.parse_args()
process_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n parser = argparse.ArgumentParser(description=\n 'A file for overlaying POVRay files generated from NeuroML by NeuroML1ToPOVRay.py with cell activity (e.g. as generated from a neuroConstruct simulation)'\n )\n parser.add_argument('prefix', type=str, metavar='<network prefix>',\n help=\n 'Prefix for files in PovRay, e.g. use PREFIX is files are PREFIX.pov, PREFIX_net.inc, etc.'\n )\n parser.add_argument('-activity', action='store_true', default=False,\n help='If this is specified, overlay network activity (not tested!!)')\n parser.add_argument('-maxV', type=float, metavar='<maxV>', default=50.0,\n help='Max voltage for colour scale in mV')\n parser.add_argument('-minV', type=float, metavar='<minV>', default=-\n 90.0, help='Min voltage for colour scale in mV')\n parser.add_argument('-startTime', type=float, metavar='<startTime>',\n default=0, help=\n 'Time in ms at which to start overlaying the simulation activity')\n parser.add_argument('-endTime', type=float, metavar='<endTime>',\n default=100, help='End time of simulation activity in ms')\n parser.add_argument('-title', type=str, metavar='<title>', default=\n 'Movie generated from neuroConstruct simulation', help=\n 'Title for movie')\n parser.add_argument('-left', type=str, metavar='<left info>', default=\n '', help='Text on left')\n parser.add_argument('-frames', type=int, metavar='<frames>', default=\n 100, help='Number of frames')\n parser.add_argument('-name', type=str, metavar='<Movie name>', default=\n 'output', help='Movie name')\n return parser.parse_args()\n", "role": "user" }, { "content": "process_args", "role": "assistant" } ]
def x(application, host='127.0.0.1', port=8080, **options): container = tornado.wsgi.WSGIContainer(application) http_server = tornado.httpserver.HTTPServer(container, **options) http_server.listen(int(port), host) tornado.ioloop.IOLoop.instance().start()
serve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(application, host='127.0.0.1', port=8080, **options):\n container = tornado.wsgi.WSGIContainer(application)\n http_server = tornado.httpserver.HTTPServer(container, **options)\n http_server.listen(int(port), host)\n tornado.ioloop.IOLoop.instance().start()\n", "role": "user" }, { "content": "serve", "role": "assistant" } ]
def x(nml2_doc): info = 'Contents of NeuroML 2 document: %s\n' % nml2_doc.id membs = inspect.getmembers(nml2_doc) for memb in membs: if isinstance(memb[1], list) and len(memb[1]) > 0 and not memb[0 ].endswith('_'): info += ' %s:\n [' % memb[0] for entry in memb[1]: extra = '???' extra = entry.name if hasattr(entry, 'name') else extra extra = entry.href if hasattr(entry, 'href') else extra extra = entry.id if hasattr(entry, 'id') else extra info += ' %s (%s),' % (entry, extra) info += ']\n' return info
quick_summary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nml2_doc):\n info = 'Contents of NeuroML 2 document: %s\\n' % nml2_doc.id\n membs = inspect.getmembers(nml2_doc)\n for memb in membs:\n if isinstance(memb[1], list) and len(memb[1]) > 0 and not memb[0\n ].endswith('_'):\n info += ' %s:\\n [' % memb[0]\n for entry in memb[1]:\n extra = '???'\n extra = entry.name if hasattr(entry, 'name') else extra\n extra = entry.href if hasattr(entry, 'href') else extra\n extra = entry.id if hasattr(entry, 'id') else extra\n info += ' %s (%s),' % (entry, extra)\n info += ']\\n'\n return info\n", "role": "user" }, { "content": "quick_summary", "role": "assistant" } ]
def x(command, directory, verbose=DEFAULTS['v'], prefix='Output: ', env=None): if os.name == 'nt': directory = os.path.normpath(directory) print_comment('Executing: (%s) in directory: %s' % (command, directory), verbose) if env is not None: print_comment('Extra env variables %s' % env, verbose) try: if os.name == 'nt': return_string = subprocess.check_output(command, cwd=directory, shell=True, env=env, close_fds=False) else: return_string = subprocess.check_output(command, cwd=directory, shell=True, stderr=subprocess.STDOUT, env=env, close_fds=True) return_string = return_string.decode('utf-8') print_comment('Command completed. Output: \n %s%s' % (prefix, return_string.replace('\n', '\n ' + prefix)), verbose) return return_string except AttributeError: print_comment_v('Assuming Python 2.6...') return_string = subprocess.Popen(command, cwd=directory, shell=True, stdout=subprocess.PIPE).communicate()[0] return return_string except subprocess.CalledProcessError as e: print_comment_v('*** Problem running command: \n %s' % e) print_comment_v('%s%s' % (prefix, e.output.decode().replace('\n', '\n' + prefix))) return None except: print_comment_v('*** Unknown problem running command: %s' % e) return None print_comment('Finished execution', verbose)
execute_command_in_dir
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(command, directory, verbose=DEFAULTS['v'], prefix='Output: ', env=None):\n if os.name == 'nt':\n directory = os.path.normpath(directory)\n print_comment('Executing: (%s) in directory: %s' % (command, directory),\n verbose)\n if env is not None:\n print_comment('Extra env variables %s' % env, verbose)\n try:\n if os.name == 'nt':\n return_string = subprocess.check_output(command, cwd=directory,\n shell=True, env=env, close_fds=False)\n else:\n return_string = subprocess.check_output(command, cwd=directory,\n shell=True, stderr=subprocess.STDOUT, env=env, close_fds=True)\n return_string = return_string.decode('utf-8')\n print_comment('Command completed. Output: \\n %s%s' % (prefix,\n return_string.replace('\\n', '\\n ' + prefix)), verbose)\n return return_string\n except AttributeError:\n print_comment_v('Assuming Python 2.6...')\n return_string = subprocess.Popen(command, cwd=directory, shell=True,\n stdout=subprocess.PIPE).communicate()[0]\n return return_string\n except subprocess.CalledProcessError as e:\n print_comment_v('*** Problem running command: \\n %s' % e)\n print_comment_v('%s%s' % (prefix, e.output.decode().replace('\\n', \n '\\n' + prefix)))\n return None\n except:\n print_comment_v('*** Unknown problem running command: %s' % e)\n return None\n print_comment('Finished execution', verbose)\n", "role": "user" }, { "content": "execute_command_in_dir", "role": "assistant" } ]
def x(comp_type, req_variables={}, parameter_values={}): print_comment('Evaluating %s with req:%s; params:%s' % (comp_type.name, req_variables, parameter_values)) exec_str = '' return_vals = {} from math import exp for p in parameter_values: exec_str += '%s = %s\n' % (p, get_value_in_si(parameter_values[p])) for r in req_variables: exec_str += '%s = %s\n' % (r, get_value_in_si(req_variables[r])) for c in comp_type.Constant: exec_str += '%s = %s\n' % (c.name, get_value_in_si(c.value)) for d in comp_type.Dynamics: for dv in d.DerivedVariable: exec_str += '%s = %s\n' % (dv.name, dv.value) exec_str += 'return_vals["%s"] = %s\n' % (dv.name, dv.name) for cdv in d.ConditionalDerivedVariable: for case in cdv.Case: if case.condition: cond = case.condition.replace('.neq.', '!=').replace('.eq.' , '==').replace('.gt.', '<').replace('.lt.', '<') exec_str += 'if ( %s ): %s = %s \n' % (cond, cdv.name, case.value) else: exec_str += 'else: %s = %s \n' % (cdv.name, case.value) exec_str += '\n' exec_str += 'return_vals["%s"] = %s\n' % (cdv.name, cdv.name) """print_comment_v(exec_str)""" exec(exec_str) return return_vals
evaluate_component
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(comp_type, req_variables={}, parameter_values={}):\n print_comment('Evaluating %s with req:%s; params:%s' % (comp_type.name,\n req_variables, parameter_values))\n exec_str = ''\n return_vals = {}\n from math import exp\n for p in parameter_values:\n exec_str += '%s = %s\\n' % (p, get_value_in_si(parameter_values[p]))\n for r in req_variables:\n exec_str += '%s = %s\\n' % (r, get_value_in_si(req_variables[r]))\n for c in comp_type.Constant:\n exec_str += '%s = %s\\n' % (c.name, get_value_in_si(c.value))\n for d in comp_type.Dynamics:\n for dv in d.DerivedVariable:\n exec_str += '%s = %s\\n' % (dv.name, dv.value)\n exec_str += 'return_vals[\"%s\"] = %s\\n' % (dv.name, dv.name)\n for cdv in d.ConditionalDerivedVariable:\n for case in cdv.Case:\n if case.condition:\n cond = case.condition.replace('.neq.', '!=').replace('.eq.'\n , '==').replace('.gt.', '<').replace('.lt.', '<')\n exec_str += 'if ( %s ): %s = %s \\n' % (cond, cdv.name,\n case.value)\n else:\n exec_str += 'else: %s = %s \\n' % (cdv.name, case.value)\n exec_str += '\\n'\n exec_str += 'return_vals[\"%s\"] = %s\\n' % (cdv.name, cdv.name)\n \"\"\"print_comment_v(exec_str)\"\"\"\n exec(exec_str)\n return return_vals\n", "role": "user" }, { "content": "evaluate_component", "role": "assistant" } ]
def x(self, context, exc=None): duration = context._duration = round((time.time() - context._start_time ) * 1000) delta = unicode(duration) if self.header: context.response.headers[self.header] = delta if self.log: self.log('Response generated in ' + delta + ' seconds.', extra=dict (duration=duration, request=id(context)))
after
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, exc=None):\n duration = context._duration = round((time.time() - context._start_time\n ) * 1000)\n delta = unicode(duration)\n if self.header:\n context.response.headers[self.header] = delta\n if self.log:\n self.log('Response generated in ' + delta + ' seconds.', extra=dict\n (duration=duration, request=id(context)))\n", "role": "user" }, { "content": "after", "role": "assistant" } ]
def x(source, kwargs): ordered_arrays = [] for name, value in source.items(): container = kwargs if '.' in name: parts = name.split('.') name = name.rpartition('.')[2] for target, following in zip(parts[:-1], parts[1:]): if following.isnumeric(): container.setdefault(target, [{}]) if container[target] not in ordered_arrays: ordered_arrays.append(container[target]) container = container[target][0] continue container = container.setdefault(target, {}) if name.endswith('[]'): name = name[:-2] container.setdefault(name, []) container[name].append(value) continue if name.isnumeric() and container is not kwargs: container[int(name)] = value continue if name in container: if not isinstance(container[name], list): container[name] = [container[name]] container[name].append(value) continue container[name] = value for container in ordered_arrays: elements = container[0] del container[:] container.extend(value for name, value in sorted(elements.items()))
process_flat_kwargs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source, kwargs):\n ordered_arrays = []\n for name, value in source.items():\n container = kwargs\n if '.' in name:\n parts = name.split('.')\n name = name.rpartition('.')[2]\n for target, following in zip(parts[:-1], parts[1:]):\n if following.isnumeric():\n container.setdefault(target, [{}])\n if container[target] not in ordered_arrays:\n ordered_arrays.append(container[target])\n container = container[target][0]\n continue\n container = container.setdefault(target, {})\n if name.endswith('[]'):\n name = name[:-2]\n container.setdefault(name, [])\n container[name].append(value)\n continue\n if name.isnumeric() and container is not kwargs:\n container[int(name)] = value\n continue\n if name in container:\n if not isinstance(container[name], list):\n container[name] = [container[name]]\n container[name].append(value)\n continue\n container[name] = value\n for container in ordered_arrays:\n elements = container[0]\n del container[:]\n container.extend(value for name, value in sorted(elements.items()))\n", "role": "user" }, { "content": "process_flat_kwargs", "role": "assistant" } ]
def x(): parser = argparse.ArgumentParser(description= 'A file for converting NeuroML v2 files into POVRay files for 3D rendering' ) parser.add_argument('neuroml_file', type=str, metavar='<NeuroML file>', help= 'NeuroML (version 2 beta 3+) file to be converted to PovRay format (XML or HDF5 format)' ) parser.add_argument('-split', action='store_true', default=False, help= 'If this is specified, generate separate pov files for cells & network. Default is false' ) parser.add_argument('-background', type=str, metavar= '<background colour>', default=_WHITE, help= 'Colour of background, e.g. <0,0,0,0.55>') parser.add_argument('-movie', action='store_true', default=False, help= 'If this is specified, generate a ini file for generating a sequence of frames for a movie of the 3D structure' ) parser.add_argument('-inputs', action='store_true', default=False, help = 'If this is specified, show the locations of (synaptic, current clamp, etc.) inputs into the cells of the network' ) parser.add_argument('-conns', action='store_true', default=False, help= 'If this is specified, show the connections present in the network with lines' ) parser.add_argument('-conn_points', action='store_true', default=False, help= 'If this is specified, show the end points of the connections present in the network' ) parser.add_argument('-v', action='store_true', default=False, help= 'Verbose output') parser.add_argument('-frames', type=int, metavar='<frames>', default=36, help='Number of frames in movie') parser.add_argument('-posx', type=float, metavar='<position offset x>', default=0, help='Offset position in x dir (0 is centre, 1 is top)') parser.add_argument('-posy', type=float, metavar='<position offset y>', default=0, help='Offset position in y dir (0 is centre, 1 is top)') parser.add_argument('-posz', type=float, metavar='<position offset z>', default=0, help='Offset position in z dir (0 is centre, 1 is top)') parser.add_argument('-viewx', type=float, metavar='<view offset x>', default=0, help='Offset viewing point in x dir (0 is centre, 1 is top)' ) parser.add_argument('-viewy', type=float, metavar='<view offset y>', default=0, help='Offset viewing point in y dir (0 is centre, 1 is top)' ) parser.add_argument('-viewz', type=float, metavar='<view offset z>', default=0, help='Offset viewing point in z dir (0 is centre, 1 is top)' ) parser.add_argument('-scalex', type=float, metavar='<scale position x>', default=1, help='Scale position from network in x dir') parser.add_argument('-scaley', type=float, metavar='<scale position y>', default=1.5, help='Scale position from network in y dir') parser.add_argument('-scalez', type=float, metavar='<scale position z>', default=1, help='Scale position from network in z dir') parser.add_argument('-mindiam', type=float, metavar= '<minimum diameter dendrites/axons>', default=0, help= 'Minimum diameter for dendrites/axons (to improve visualisations)') parser.add_argument('-plane', action='store_true', default=False, help= 'If this is specified, add a 2D plane below cell/network') parser.add_argument('-segids', action='store_true', default=False, help ='Show segment ids') return parser.parse_args()
process_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n parser = argparse.ArgumentParser(description=\n 'A file for converting NeuroML v2 files into POVRay files for 3D rendering'\n )\n parser.add_argument('neuroml_file', type=str, metavar='<NeuroML file>',\n help=\n 'NeuroML (version 2 beta 3+) file to be converted to PovRay format (XML or HDF5 format)'\n )\n parser.add_argument('-split', action='store_true', default=False, help=\n 'If this is specified, generate separate pov files for cells & network. Default is false'\n )\n parser.add_argument('-background', type=str, metavar=\n '<background colour>', default=_WHITE, help=\n 'Colour of background, e.g. <0,0,0,0.55>')\n parser.add_argument('-movie', action='store_true', default=False, help=\n 'If this is specified, generate a ini file for generating a sequence of frames for a movie of the 3D structure'\n )\n parser.add_argument('-inputs', action='store_true', default=False, help\n =\n 'If this is specified, show the locations of (synaptic, current clamp, etc.) inputs into the cells of the network'\n )\n parser.add_argument('-conns', action='store_true', default=False, help=\n 'If this is specified, show the connections present in the network with lines'\n )\n parser.add_argument('-conn_points', action='store_true', default=False,\n help=\n 'If this is specified, show the end points of the connections present in the network'\n )\n parser.add_argument('-v', action='store_true', default=False, help=\n 'Verbose output')\n parser.add_argument('-frames', type=int, metavar='<frames>', default=36,\n help='Number of frames in movie')\n parser.add_argument('-posx', type=float, metavar='<position offset x>',\n default=0, help='Offset position in x dir (0 is centre, 1 is top)')\n parser.add_argument('-posy', type=float, metavar='<position offset y>',\n default=0, help='Offset position in y dir (0 is centre, 1 is top)')\n parser.add_argument('-posz', type=float, metavar='<position offset z>',\n default=0, help='Offset position in z dir (0 is centre, 1 is top)')\n parser.add_argument('-viewx', type=float, metavar='<view offset x>',\n default=0, help='Offset viewing point in x dir (0 is centre, 1 is top)'\n )\n parser.add_argument('-viewy', type=float, metavar='<view offset y>',\n default=0, help='Offset viewing point in y dir (0 is centre, 1 is top)'\n )\n parser.add_argument('-viewz', type=float, metavar='<view offset z>',\n default=0, help='Offset viewing point in z dir (0 is centre, 1 is top)'\n )\n parser.add_argument('-scalex', type=float, metavar='<scale position x>',\n default=1, help='Scale position from network in x dir')\n parser.add_argument('-scaley', type=float, metavar='<scale position y>',\n default=1.5, help='Scale position from network in y dir')\n parser.add_argument('-scalez', type=float, metavar='<scale position z>',\n default=1, help='Scale position from network in z dir')\n parser.add_argument('-mindiam', type=float, metavar=\n '<minimum diameter dendrites/axons>', default=0, help=\n 'Minimum diameter for dendrites/axons (to improve visualisations)')\n parser.add_argument('-plane', action='store_true', default=False, help=\n 'If this is specified, add a 2D plane below cell/network')\n parser.add_argument('-segids', action='store_true', default=False, help\n ='Show segment ids')\n return parser.parse_args()\n", "role": "user" }, { "content": "process_args", "role": "assistant" } ]
def x(self, config): config = config or dict() if 'extensions' not in config: config['extensions'] = list() if not any(isinstance(ext, BaseExtension) for ext in config['extensions']): config['extensions'].insert(0, BaseExtension()) if not any(isinstance(ext, arguments.ArgumentExtension) for ext in config['extensions']): config['extensions'].extend([arguments.ValidateArgumentsExtension(), arguments.ContextArgsExtension(), arguments. RemainderArgsExtension(), arguments.QueryStringArgsExtension(), arguments.FormEncodedKwargsExtension(), arguments. JSONKwargsExtension()]) config['extensions'].append(self) try: addLoggingLevel('trace', logging.DEBUG - 5) except AttributeError: pass level = config.get('logging', {}).get('level', None) if level: logging.basicConfig(level=getattr(logging, level.upper())) elif 'logging' in config: logging.config.dictConfig(config['logging']) return config
configure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, config):\n config = config or dict()\n if 'extensions' not in config:\n config['extensions'] = list()\n if not any(isinstance(ext, BaseExtension) for ext in config['extensions']):\n config['extensions'].insert(0, BaseExtension())\n if not any(isinstance(ext, arguments.ArgumentExtension) for ext in\n config['extensions']):\n config['extensions'].extend([arguments.ValidateArgumentsExtension(),\n arguments.ContextArgsExtension(), arguments.\n RemainderArgsExtension(), arguments.QueryStringArgsExtension(),\n arguments.FormEncodedKwargsExtension(), arguments.\n JSONKwargsExtension()])\n config['extensions'].append(self)\n try:\n addLoggingLevel('trace', logging.DEBUG - 5)\n except AttributeError:\n pass\n level = config.get('logging', {}).get('level', None)\n if level:\n logging.basicConfig(level=getattr(logging, level.upper()))\n elif 'logging' in config:\n logging.config.dictConfig(config['logging'])\n return config\n", "role": "user" }, { "content": "configure", "role": "assistant" } ]
def x(self, service='auto', **options): service = load(service, 'web.server') try: service(self, **options) except KeyboardInterrupt: pass for ext in self.__context.extension.signal.stop: ext(self.__context)
serve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, service='auto', **options):\n service = load(service, 'web.server')\n try:\n service(self, **options)\n except KeyboardInterrupt:\n pass\n for ext in self.__context.extension.signal.stop:\n ext(self.__context)\n", "role": "user" }, { "content": "serve", "role": "assistant" } ]
def x(self, environ, start_response): context = environ['wc.context'] = self.RequestContext(environ=environ) signals = context.extension.signal for ext in signals.pre: ext(context) is_endpoint, handler = context.dispatch(context, context.root, context. environ['PATH_INFO']) if is_endpoint: try: result = self._execute_endpoint(context, handler, signals) except Exception as e: log.exception( 'Caught exception attempting to execute the endpoint.') result = HTTPInternalServerError(str(e) if __debug__ else 'Please see the logs.') if 'debugger' in context.extension.feature: context.response = result for ext in signals.after: ext(context) raise else: result = HTTPNotFound('Dispatch failed.' if __debug__ else None) if __debug__: log.debug('Result prepared, identifying view handler.', extra=dict( request=id(context), result=safe_name(type(result)))) for view in context.view(result): if view(context, result): break else: raise TypeError('No view could be found to handle: ' + repr(type( result))) if __debug__: log.debug('View identified, populating response.', extra=dict( request=id(context), view=repr(view))) for ext in signals.after: ext(context) def x(response): for chunk in response: yield chunk for ext in signals.done: ext(context) return capture_done(context.response.conditional_response_app(environ, start_response))
application
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, environ, start_response):\n context = environ['wc.context'] = self.RequestContext(environ=environ)\n signals = context.extension.signal\n for ext in signals.pre:\n ext(context)\n is_endpoint, handler = context.dispatch(context, context.root, context.\n environ['PATH_INFO'])\n if is_endpoint:\n try:\n result = self._execute_endpoint(context, handler, signals)\n except Exception as e:\n log.exception(\n 'Caught exception attempting to execute the endpoint.')\n result = HTTPInternalServerError(str(e) if __debug__ else\n 'Please see the logs.')\n if 'debugger' in context.extension.feature:\n context.response = result\n for ext in signals.after:\n ext(context)\n raise\n else:\n result = HTTPNotFound('Dispatch failed.' if __debug__ else None)\n if __debug__:\n log.debug('Result prepared, identifying view handler.', extra=dict(\n request=id(context), result=safe_name(type(result))))\n for view in context.view(result):\n if view(context, result):\n break\n else:\n raise TypeError('No view could be found to handle: ' + repr(type(\n result)))\n if __debug__:\n log.debug('View identified, populating response.', extra=dict(\n request=id(context), view=repr(view)))\n for ext in signals.after:\n ext(context)\n\n def x(response):\n for chunk in response:\n yield chunk\n for ext in signals.done:\n ext(context)\n return capture_done(context.response.conditional_response_app(environ,\n start_response))\n", "role": "user" }, { "content": "application", "role": "assistant" } ]
def x(self): self.ref_start, self.qry_start = self.qry_start, self.ref_start self.ref_end, self.qry_end = self.qry_end, self.ref_end self.hit_length_ref, self.hit_length_qry = (self.hit_length_qry, self. hit_length_ref) self.ref_length, self.qry_length = self.qry_length, self.ref_length self.ref_name, self.qry_name = self.qry_name, self.ref_name
swap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.ref_start, self.qry_start = self.qry_start, self.ref_start\n self.ref_end, self.qry_end = self.qry_end, self.ref_end\n self.hit_length_ref, self.hit_length_qry = (self.hit_length_qry, self.\n hit_length_ref)\n self.ref_length, self.qry_length = self.qry_length, self.ref_length\n self.ref_name, self.qry_name = self.qry_name, self.ref_name\n", "role": "user" }, { "content": "swap", "role": "assistant" } ]
def x(self): return pyfastaq.intervals.Interval(min(self.qry_start, self.qry_end), max(self.qry_start, self.qry_end))
qry_coords
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return pyfastaq.intervals.Interval(min(self.qry_start, self.qry_end),\n max(self.qry_start, self.qry_end))\n", "role": "user" }, { "content": "qry_coords", "role": "assistant" } ]
def x(self): return pyfastaq.intervals.Interval(min(self.ref_start, self.ref_end), max(self.ref_start, self.ref_end))
ref_coords
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return pyfastaq.intervals.Interval(min(self.ref_start, self.ref_end),\n max(self.ref_start, self.ref_end))\n", "role": "user" }, { "content": "ref_coords", "role": "assistant" } ]
def x(self): return (self.ref_start < self.ref_end) == (self.qry_start < self.qry_end)
on_same_strand
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return (self.ref_start < self.ref_end) == (self.qry_start < self.qry_end)\n", "role": "user" }, { "content": "on_same_strand", "role": "assistant" } ]
def x(self): return (self.ref_name == self.qry_name and self.ref_start == self. qry_start and self.ref_end == self.qry_end and self. percent_identity == 100)
is_self_hit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return (self.ref_name == self.qry_name and self.ref_start == self.\n qry_start and self.ref_end == self.qry_end and self.\n percent_identity == 100)\n", "role": "user" }, { "content": "is_self_hit", "role": "assistant" } ]
def x(self): self.qry_start = self.qry_length - self.qry_start - 1 self.qry_end = self.qry_length - self.qry_end - 1
reverse_query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.qry_start = self.qry_length - self.qry_start - 1\n self.qry_end = self.qry_length - self.qry_end - 1\n", "role": "user" }, { "content": "reverse_query", "role": "assistant" } ]
def x(self): self.ref_start = self.ref_length - self.ref_start - 1 self.ref_end = self.ref_length - self.ref_end - 1
reverse_reference
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.ref_start = self.ref_length - self.ref_start - 1\n self.ref_end = self.ref_length - self.ref_end - 1\n", "role": "user" }, { "content": "reverse_reference", "role": "assistant" } ]
def x(self): aln_score = int(self.percent_identity * 0.005 * (self.hit_length_ref + self.hit_length_qry)) return ' '.join(str(x) for x in [aln_score, '{0:.2f}'.format(self. percent_identity), self.qry_start + 1, self.qry_end + 1, self. qry_name, self.ref_start + 1, self.ref_end + 1, self.ref_name])
to_msp_crunch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n aln_score = int(self.percent_identity * 0.005 * (self.hit_length_ref +\n self.hit_length_qry))\n return ' '.join(str(x) for x in [aln_score, '{0:.2f}'.format(self.\n percent_identity), self.qry_start + 1, self.qry_end + 1, self.\n qry_name, self.ref_start + 1, self.ref_end + 1, self.ref_name])\n", "role": "user" }, { "content": "to_msp_crunch", "role": "assistant" } ]
def x(self, ref_coord, variant_list): if self.ref_coords().distance_to_point(ref_coord) > 0: raise Error( 'Cannot get query coord in qry_coords_from_ref_coord because given ref_coord ' + str(ref_coord) + """ does not lie in nucmer alignment: """ + str(self)) indel_variant_indexes = [] for i in range(len(variant_list)): if variant_list[i].var_type not in {variant.INS, variant.DEL}: continue if not self.intersects_variant(variant_list[i]): continue if variant_list[i].ref_start <= ref_coord <= variant_list[i].ref_end: return variant_list[i].qry_start, True elif variant_list[i].ref_start < ref_coord: indel_variant_indexes.append(i) distance = ref_coord - min(self.ref_start, self.ref_end) for i in indel_variant_indexes: if variant_list[i].var_type == variant.INS: distance += len(variant_list[i].qry_base) else: assert variant_list[i].var_type == variant.DEL distance -= len(variant_list[i].ref_base) if self.on_same_strand(): return min(self.qry_start, self.qry_end) + distance, False else: return max(self.qry_start, self.qry_end) - distance, False
qry_coords_from_ref_coord
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ref_coord, variant_list):\n if self.ref_coords().distance_to_point(ref_coord) > 0:\n raise Error(\n 'Cannot get query coord in qry_coords_from_ref_coord because given ref_coord '\n + str(ref_coord) + \"\"\" does not lie in nucmer alignment:\n\"\"\" +\n str(self))\n indel_variant_indexes = []\n for i in range(len(variant_list)):\n if variant_list[i].var_type not in {variant.INS, variant.DEL}:\n continue\n if not self.intersects_variant(variant_list[i]):\n continue\n if variant_list[i].ref_start <= ref_coord <= variant_list[i].ref_end:\n return variant_list[i].qry_start, True\n elif variant_list[i].ref_start < ref_coord:\n indel_variant_indexes.append(i)\n distance = ref_coord - min(self.ref_start, self.ref_end)\n for i in indel_variant_indexes:\n if variant_list[i].var_type == variant.INS:\n distance += len(variant_list[i].qry_base)\n else:\n assert variant_list[i].var_type == variant.DEL\n distance -= len(variant_list[i].ref_base)\n if self.on_same_strand():\n return min(self.qry_start, self.qry_end) + distance, False\n else:\n return max(self.qry_start, self.qry_end) - distance, False\n", "role": "user" }, { "content": "qry_coords_from_ref_coord", "role": "assistant" } ]
def x(self, ref, qry, outprefix): if self.use_promer: command = 'promer' else: command = 'nucmer' command += ' -p ' + outprefix if self.breaklen is not None: command += ' -b ' + str(self.breaklen) if self.diagdiff is not None and not self.use_promer: command += ' -D ' + str(self.diagdiff) if self.diagfactor: command += ' -d ' + str(self.diagfactor) if self.maxgap: command += ' -g ' + str(self.maxgap) if self.maxmatch: command += ' --maxmatch' if self.mincluster is not None: command += ' -c ' + str(self.mincluster) if not self.simplify and not self.use_promer: command += ' --nosimplify' return command + ' ' + ref + ' ' + qry
nucmer_command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ref, qry, outprefix):\n if self.use_promer:\n command = 'promer'\n else:\n command = 'nucmer'\n command += ' -p ' + outprefix\n if self.breaklen is not None:\n command += ' -b ' + str(self.breaklen)\n if self.diagdiff is not None and not self.use_promer:\n command += ' -D ' + str(self.diagdiff)\n if self.diagfactor:\n command += ' -d ' + str(self.diagfactor)\n if self.maxgap:\n command += ' -g ' + str(self.maxgap)\n if self.maxmatch:\n command += ' --maxmatch'\n if self.mincluster is not None:\n command += ' -c ' + str(self.mincluster)\n if not self.simplify and not self.use_promer:\n command += ' --nosimplify'\n return command + ' ' + ref + ' ' + qry\n", "role": "user" }, { "content": "nucmer_command", "role": "assistant" } ]
def x(self, infile, outfile): command = 'delta-filter' if self.min_id is not None: command += ' -i ' + str(self.min_id) if self.min_length is not None: command += ' -l ' + str(self.min_length) return command + ' ' + infile + ' > ' + outfile
delta_filter_command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, infile, outfile):\n command = 'delta-filter'\n if self.min_id is not None:\n command += ' -i ' + str(self.min_id)\n if self.min_length is not None:\n command += ' -l ' + str(self.min_length)\n return command + ' ' + infile + ' > ' + outfile\n", "role": "user" }, { "content": "delta_filter_command", "role": "assistant" } ]
def x(self, infile, outfile): command = 'show-coords -dTlro' if not self.coords_header: command += ' -H' return command + ' ' + infile + ' > ' + outfile
show_coords_command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, infile, outfile):\n command = 'show-coords -dTlro'\n if not self.coords_header:\n command += ' -H'\n return command + ' ' + infile + ' > ' + outfile\n", "role": "user" }, { "content": "show_coords_command", "role": "assistant" } ]
def x(self, script_name, ref, qry, outfile): f = pyfastaq.utils.open_file_write(script_name) print(self._nucmer_command(ref, qry, 'p'), file=f) print(self._delta_filter_command('p.delta', 'p.delta.filter'), file=f) print(self._show_coords_command('p.delta.filter', outfile), file=f) if self.show_snps: print(self._show_snps_command('p.delta.filter', outfile + '.snps'), file=f) pyfastaq.utils.close(f)
write_script
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, script_name, ref, qry, outfile):\n f = pyfastaq.utils.open_file_write(script_name)\n print(self._nucmer_command(ref, qry, 'p'), file=f)\n print(self._delta_filter_command('p.delta', 'p.delta.filter'), file=f)\n print(self._show_coords_command('p.delta.filter', outfile), file=f)\n if self.show_snps:\n print(self._show_snps_command('p.delta.filter', outfile + '.snps'),\n file=f)\n pyfastaq.utils.close(f)\n", "role": "user" }, { "content": "write_script", "role": "assistant" } ]
def x(self): qry = os.path.abspath(self.qry) ref = os.path.abspath(self.ref) outfile = os.path.abspath(self.outfile) tmpdir = tempfile.mkdtemp(prefix='tmp.run_nucmer.', dir=os.getcwd()) original_dir = os.getcwd() os.chdir(tmpdir) script = 'run_nucmer.sh' self._write_script(script, ref, qry, outfile) syscall.run('bash ' + script, verbose=self.verbose) os.chdir(original_dir) shutil.rmtree(tmpdir)
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n qry = os.path.abspath(self.qry)\n ref = os.path.abspath(self.ref)\n outfile = os.path.abspath(self.outfile)\n tmpdir = tempfile.mkdtemp(prefix='tmp.run_nucmer.', dir=os.getcwd())\n original_dir = os.getcwd()\n os.chdir(tmpdir)\n script = 'run_nucmer.sh'\n self._write_script(script, ref, qry, outfile)\n syscall.run('bash ' + script, verbose=self.verbose)\n os.chdir(original_dir)\n shutil.rmtree(tmpdir)\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, nucmer_snp): new_variant = Variant(nucmer_snp) if (self.var_type not in [INS, DEL] or self.var_type != new_variant. var_type or self.qry_name != new_variant.qry_name or self.ref_name != new_variant.ref_name or self.reverse != new_variant.reverse): return False if (self.var_type == INS and self.ref_start == new_variant.ref_start and self.qry_end + 1 == new_variant.qry_start): self.qry_base += new_variant.qry_base self.qry_end += 1 return True if (self.var_type == DEL and self.qry_start == new_variant.qry_start and self.ref_end + 1 == new_variant.ref_start): self.ref_base += new_variant.ref_base self.ref_end += 1 return True return False
update_indel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nucmer_snp):\n new_variant = Variant(nucmer_snp)\n if (self.var_type not in [INS, DEL] or self.var_type != new_variant.\n var_type or self.qry_name != new_variant.qry_name or self.ref_name !=\n new_variant.ref_name or self.reverse != new_variant.reverse):\n return False\n if (self.var_type == INS and self.ref_start == new_variant.ref_start and\n self.qry_end + 1 == new_variant.qry_start):\n self.qry_base += new_variant.qry_base\n self.qry_end += 1\n return True\n if (self.var_type == DEL and self.qry_start == new_variant.qry_start and\n self.ref_end + 1 == new_variant.ref_start):\n self.ref_base += new_variant.ref_base\n self.ref_end += 1\n return True\n return False\n", "role": "user" }, { "content": "update_indel", "role": "assistant" } ]
def x(fname): f = pyfastaq.utils.open_file_read(fname) for line in f: if line.startswith('[') or not '\t' in line: continue yield alignment.Alignment(line) pyfastaq.utils.close(f)
reader
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n f = pyfastaq.utils.open_file_read(fname)\n for line in f:\n if line.startswith('[') or not '\\t' in line:\n continue\n yield alignment.Alignment(line)\n pyfastaq.utils.close(f)\n", "role": "user" }, { "content": "reader", "role": "assistant" } ]
def x(infile, outfile, ref_fai=None, qry_fai=None): fai_files = {ref_fai, qry_fai} if None in fai_files and len(fai_files) != 1: print(fai_files) raise Error( 'Error in convert_to_msp_crunch. Must use both of ref_fai and qry_fai, or neither of them' ) if ref_fai is not None: assert qry_fai is not None ref_offsets = pyfastaq.tasks.length_offsets_from_fai(ref_fai) qry_offsets = pyfastaq.tasks.length_offsets_from_fai(qry_fai) file_reader = reader(infile) f_out = pyfastaq.utils.open_file_write(outfile) for aln in file_reader: if ref_fai is not None: aln.ref_start += ref_offsets[aln.ref_name] aln.ref_end += ref_offsets[aln.ref_name] aln.qry_start += qry_offsets[aln.qry_name] aln.qry_end += qry_offsets[aln.qry_name] print(aln.to_msp_crunch(), file=f_out) pyfastaq.utils.close(f_out)
convert_to_msp_crunch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile, outfile, ref_fai=None, qry_fai=None):\n fai_files = {ref_fai, qry_fai}\n if None in fai_files and len(fai_files) != 1:\n print(fai_files)\n raise Error(\n 'Error in convert_to_msp_crunch. Must use both of ref_fai and qry_fai, or neither of them'\n )\n if ref_fai is not None:\n assert qry_fai is not None\n ref_offsets = pyfastaq.tasks.length_offsets_from_fai(ref_fai)\n qry_offsets = pyfastaq.tasks.length_offsets_from_fai(qry_fai)\n file_reader = reader(infile)\n f_out = pyfastaq.utils.open_file_write(outfile)\n for aln in file_reader:\n if ref_fai is not None:\n aln.ref_start += ref_offsets[aln.ref_name]\n aln.ref_end += ref_offsets[aln.ref_name]\n aln.qry_start += qry_offsets[aln.qry_name]\n aln.qry_end += qry_offsets[aln.qry_name]\n print(aln.to_msp_crunch(), file=f_out)\n pyfastaq.utils.close(f_out)\n", "role": "user" }, { "content": "convert_to_msp_crunch", "role": "assistant" } ]
def x(self, method, url, params=None, headers=None, data=None): if not params: params = {} if not headers: headers = {'accept': '*/*'} if method == 'POST' or method == 'PUT': headers.update({'Content-Type': 'application/json'}) try: response = requests.request(method=method, url=self.host + self.key + url, params=params, headers=headers, data=data) try: response.raise_for_status() response_code = response.status_code success = True if response_code // 100 == 2 else False if response.text: try: data = response.json() except ValueError: data = response.content else: data = '' response_headers = response.headers return BurpResponse(success=success, response_code= response_code, data=data, response_headers=response_headers) except ValueError as e: return BurpResponse(success=False, message= 'JSON response could not be decoded {}.'.format(e)) except requests.exceptions.HTTPError as e: if response.status_code == 400: return BurpResponse(success=False, response_code=400, message='Bad Request') else: return BurpResponse(message= 'There was an error while handling the request. {}'. format(response.content), success=False) except Exception as e: return BurpResponse(success=False, message='Eerror is %s' % e)
request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method, url, params=None, headers=None, data=None):\n if not params:\n params = {}\n if not headers:\n headers = {'accept': '*/*'}\n if method == 'POST' or method == 'PUT':\n headers.update({'Content-Type': 'application/json'})\n try:\n response = requests.request(method=method, url=self.host + self.key +\n url, params=params, headers=headers, data=data)\n try:\n response.raise_for_status()\n response_code = response.status_code\n success = True if response_code // 100 == 2 else False\n if response.text:\n try:\n data = response.json()\n except ValueError:\n data = response.content\n else:\n data = ''\n response_headers = response.headers\n return BurpResponse(success=success, response_code=\n response_code, data=data, response_headers=response_headers)\n except ValueError as e:\n return BurpResponse(success=False, message=\n 'JSON response could not be decoded {}.'.format(e))\n except requests.exceptions.HTTPError as e:\n if response.status_code == 400:\n return BurpResponse(success=False, response_code=400,\n message='Bad Request')\n else:\n return BurpResponse(message=\n 'There was an error while handling the request. {}'.\n format(response.content), success=False)\n except Exception as e:\n return BurpResponse(success=False, message='Eerror is %s' % e)\n", "role": "user" }, { "content": "request", "role": "assistant" } ]
def x(name, rawtext, text, lineno, inliner, options=None, content=None): options = options or {} content = content or [] has_explicit_title, title, target = split_explicit_title(text) target = utils.unescape(target).strip() title = utils.unescape(title).strip() config = inliner.document.settings.env.app.config if config.issues_user_uri: ref = config.issues_user_uri.format(user=target) else: ref = 'https://github.com/{0}'.format(target) if has_explicit_title: text = title else: text = '@{0}'.format(target) link = nodes.reference(text=text, refuri=ref, **options) return [link], []
user_role
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, rawtext, text, lineno, inliner, options=None, content=None):\n options = options or {}\n content = content or []\n has_explicit_title, title, target = split_explicit_title(text)\n target = utils.unescape(target).strip()\n title = utils.unescape(title).strip()\n config = inliner.document.settings.env.app.config\n if config.issues_user_uri:\n ref = config.issues_user_uri.format(user=target)\n else:\n ref = 'https://github.com/{0}'.format(target)\n if has_explicit_title:\n text = title\n else:\n text = '@{0}'.format(target)\n link = nodes.reference(text=text, refuri=ref, **options)\n return [link], []\n", "role": "user" }, { "content": "user_role", "role": "assistant" } ]
def x(name, rawtext, text, lineno, inliner, options=None, content=None): options = options or {} content = content or [] has_explicit_title, title, target = split_explicit_title(text) target = utils.unescape(target).strip() title = utils.unescape(title).strip() ref = 'https://cve.mitre.org/cgi-bin/cvename.cgi?name={0}'.format(target) text = title if has_explicit_title else target link = nodes.reference(text=text, refuri=ref, **options) return [link], []
cve_role
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, rawtext, text, lineno, inliner, options=None, content=None):\n options = options or {}\n content = content or []\n has_explicit_title, title, target = split_explicit_title(text)\n target = utils.unescape(target).strip()\n title = utils.unescape(title).strip()\n ref = 'https://cve.mitre.org/cgi-bin/cvename.cgi?name={0}'.format(target)\n text = title if has_explicit_title else target\n link = nodes.reference(text=text, refuri=ref, **options)\n return [link], []\n", "role": "user" }, { "content": "cve_role", "role": "assistant" } ]
def x(self, line): if len(line) == 0: return self.stream.write(str(line[0])) for item in line[1:]: self.stream.write('\t') self.stream.write(str(item)) self.stream.write('\n')
list_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line):\n if len(line) == 0:\n return\n self.stream.write(str(line[0]))\n for item in line[1:]:\n self.stream.write('\\t')\n self.stream.write(str(item))\n self.stream.write('\\n')\n", "role": "user" }, { "content": "list_line", "role": "assistant" } ]
def x(doc): doc.mustache_files = doc.get_metadata('mustache') if isinstance(doc.mustache_files, basestring): if not doc.mustache_files: doc.mustache_files = None else: doc.mustache_files = [doc.mustache_files] if doc.mustache_files is not None: doc.mustache_hashes = [yaml.load(open(file, 'r').read()) for file in doc.mustache_files] doc.mhash = {k: v for mdict in doc.mustache_hashes for k, v in mdict.items()} doc.mrenderer = pystache.Renderer(escape=lambda u: u, missing_tags= 'strict') else: doc.mhash = None
prepare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(doc):\n doc.mustache_files = doc.get_metadata('mustache')\n if isinstance(doc.mustache_files, basestring):\n if not doc.mustache_files:\n doc.mustache_files = None\n else:\n doc.mustache_files = [doc.mustache_files]\n if doc.mustache_files is not None:\n doc.mustache_hashes = [yaml.load(open(file, 'r').read()) for file in\n doc.mustache_files]\n doc.mhash = {k: v for mdict in doc.mustache_hashes for k, v in\n mdict.items()}\n doc.mrenderer = pystache.Renderer(escape=lambda u: u, missing_tags=\n 'strict')\n else:\n doc.mhash = None\n", "role": "user" }, { "content": "prepare", "role": "assistant" } ]
def x(elem, doc): if type(elem) == Str and doc.mhash is not None: elem.text = doc.mrenderer.render(elem.text, doc.mhash) return elem
action
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(elem, doc):\n if type(elem) == Str and doc.mhash is not None:\n elem.text = doc.mrenderer.render(elem.text, doc.mhash)\n return elem\n", "role": "user" }, { "content": "action", "role": "assistant" } ]
def x(self, renderer_context): request = renderer_context.get('request', None) params = request and get_query_params(request) or {} return params.get(self.callback_parameter, self.default_callback)
get_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, renderer_context):\n request = renderer_context.get('request', None)\n params = request and get_query_params(request) or {}\n return params.get(self.callback_parameter, self.default_callback)\n", "role": "user" }, { "content": "get_callback", "role": "assistant" } ]
def x(self, data, accepted_media_type=None, renderer_context=None): renderer_context = renderer_context or {} callback = self.get_callback(renderer_context) json = super(JSONPRenderer, self).render(data, accepted_media_type, renderer_context) return callback.encode(self.charset) + b'(' + json + b');'
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, accepted_media_type=None, renderer_context=None):\n renderer_context = renderer_context or {}\n callback = self.get_callback(renderer_context)\n json = super(JSONPRenderer, self).render(data, accepted_media_type,\n renderer_context)\n return callback.encode(self.charset) + b'(' + json + b');'\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(self, measurementId): logger.info('Loading raw data for ' + measurementId) measurement = self._measurementController.getMeasurement(measurementId, MeasurementStatus.COMPLETE) if measurement is not None: if measurement.inflate(): data = {name: {'raw': {'x': self._jsonify(data.raw('x')), 'y': self._jsonify(data.raw('y')), 'z': self._jsonify(data.raw( 'z'))}, 'vibration': {'x': self._jsonify(data.vibration('x' )), 'y': self._jsonify(data.vibration('y')), 'z': self. _jsonify(data.vibration('z'))}, 'tilt': {'x': self._jsonify (data.tilt('x')), 'y': self._jsonify(data.tilt('y')), 'z': self._jsonify(data.tilt('z'))}} for name, data in measurement.data.items()} return data, 200 else: return None, 404 else: return None, 404
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, measurementId):\n logger.info('Loading raw data for ' + measurementId)\n measurement = self._measurementController.getMeasurement(measurementId,\n MeasurementStatus.COMPLETE)\n if measurement is not None:\n if measurement.inflate():\n data = {name: {'raw': {'x': self._jsonify(data.raw('x')), 'y':\n self._jsonify(data.raw('y')), 'z': self._jsonify(data.raw(\n 'z'))}, 'vibration': {'x': self._jsonify(data.vibration('x'\n )), 'y': self._jsonify(data.vibration('y')), 'z': self.\n _jsonify(data.vibration('z'))}, 'tilt': {'x': self._jsonify\n (data.tilt('x')), 'y': self._jsonify(data.tilt('y')), 'z':\n self._jsonify(data.tilt('z'))}} for name, data in\n measurement.data.items()}\n return data, 200\n else:\n return None, 404\n else:\n return None, 404\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(year, week, day): return day + n_weeks(SUN, gregorian.to_jd(year - 1, 12, 28), week)
to_jd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(year, week, day):\n return day + n_weeks(SUN, gregorian.to_jd(year - 1, 12, 28), week)\n", "role": "user" }, { "content": "to_jd", "role": "assistant" } ]
def x(jd): year = gregorian.from_jd(jd)[0] day = jwday(jd) + 1 dayofyear = ordinal.from_jd(jd)[1] week = trunc((dayofyear - day + 10) / 7) if week < 1: week = weeks_per_year(year - 1) year = year - 1 elif week == 53 and weeks_per_year(year) != 53: week = 1 year = year + 1 return year, week, day
from_jd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(jd):\n year = gregorian.from_jd(jd)[0]\n day = jwday(jd) + 1\n dayofyear = ordinal.from_jd(jd)[1]\n week = trunc((dayofyear - day + 10) / 7)\n if week < 1:\n week = weeks_per_year(year - 1)\n year = year - 1\n elif week == 53 and weeks_per_year(year) != 53:\n week = 1\n year = year + 1\n return year, week, day\n", "role": "user" }, { "content": "from_jd", "role": "assistant" } ]
def x(year): jan1 = jwday(gregorian.to_jd(year, 1, 1)) if jan1 == THU or jan1 == WED and isleap(year): return 53 else: return 52
weeks_per_year
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(year):\n jan1 = jwday(gregorian.to_jd(year, 1, 1))\n if jan1 == THU or jan1 == WED and isleap(year):\n return 53\n else:\n return 52\n", "role": "user" }, { "content": "weeks_per_year", "role": "assistant" } ]
def x(hdulist): instrument = hdulist[0].header.get('INSTRUME', '') if instrument in ('WFPC2', 'FOC'): rootname = hdulist[0].header.get('ROOTNAME', '') filetype = hdulist[0].header.get('FILETYPE', '') for i in range(1, len(hdulist)): hdulist[i].name = filetype hdulist[i]._extver = i hdulist[i].header['EXPNAME' ] = rootname, '9 character exposure identifier' hdulist[i].header['EXTVER'] = i, 'extension version number' hdulist[i].header['EXTNAME'] = filetype, 'extension name' hdulist[i].header['INHERIT'] = True, 'inherit the primary header' hdulist[i].header['ROOTNAME' ] = rootname, 'rootname of the observation set'
stsci
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hdulist):\n instrument = hdulist[0].header.get('INSTRUME', '')\n if instrument in ('WFPC2', 'FOC'):\n rootname = hdulist[0].header.get('ROOTNAME', '')\n filetype = hdulist[0].header.get('FILETYPE', '')\n for i in range(1, len(hdulist)):\n hdulist[i].name = filetype\n hdulist[i]._extver = i\n hdulist[i].header['EXPNAME'\n ] = rootname, '9 character exposure identifier'\n hdulist[i].header['EXTVER'] = i, 'extension version number'\n hdulist[i].header['EXTNAME'] = filetype, 'extension name'\n hdulist[i].header['INHERIT'] = True, 'inherit the primary header'\n hdulist[i].header['ROOTNAME'\n ] = rootname, 'rootname of the observation set'\n", "role": "user" }, { "content": "stsci", "role": "assistant" } ]
def x(hdulist, filename): instrument = hdulist[0].header.get('INSTRUME', '') if instrument in ('WFPC2', 'FOC'): hdulist[0].header['FILENAME'] = filename
stsci2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hdulist, filename):\n instrument = hdulist[0].header.get('INSTRUME', '')\n if instrument in ('WFPC2', 'FOC'):\n hdulist[0].header['FILENAME'] = filename\n", "role": "user" }, { "content": "stsci2", "role": "assistant" } ]
def x(f1, f2): import glob f2 = f2.strip() if f2 == '' or f2 == '*': f2 = './' if os.path.isdir(f1): f1 = os.path.join(f1, '*.??h') list1 = glob.glob(f1) list1 = [name for name in list1 if name[-1] == 'h' and name[-4] == '.'] if os.path.isdir(f2): list2 = [] for file in list1: name = os.path.split(file)[-1] fitsname = name[:-4] + '_' + name[-3:-1] + 'f.fits' list2.append(os.path.join(f2, fitsname)) else: list2 = [s.strip() for s in f2.split(',')] if list1 == [] or list2 == []: err_msg = '' if list1 == []: err_msg += 'Input files `{:s}` not usable/available. '.format(f1) if list2 == []: err_msg += 'Input files `{:s}` not usable/available. '.format(f2) raise IOError(err_msg) else: return list1, list2
parse_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f1, f2):\n import glob\n f2 = f2.strip()\n if f2 == '' or f2 == '*':\n f2 = './'\n if os.path.isdir(f1):\n f1 = os.path.join(f1, '*.??h')\n list1 = glob.glob(f1)\n list1 = [name for name in list1 if name[-1] == 'h' and name[-4] == '.']\n if os.path.isdir(f2):\n list2 = []\n for file in list1:\n name = os.path.split(file)[-1]\n fitsname = name[:-4] + '_' + name[-3:-1] + 'f.fits'\n list2.append(os.path.join(f2, fitsname))\n else:\n list2 = [s.strip() for s in f2.split(',')]\n if list1 == [] or list2 == []:\n err_msg = ''\n if list1 == []:\n err_msg += 'Input files `{:s}` not usable/available. '.format(f1)\n if list2 == []:\n err_msg += 'Input files `{:s}` not usable/available. '.format(f2)\n raise IOError(err_msg)\n else:\n return list1, list2\n", "role": "user" }, { "content": "parse_path", "role": "assistant" } ]
def x(inputlist, outputname=None, atfile=None): files = [] newoutputname = outputname files = irafglob(inputlist, atfile=atfile) for file in files: if checkASN(file) == True: assoclist = [] try: assocdict = readASNTable(file, None, prodonly=False) except: errorstr = '###################################\n' errorstr += '# #\n' errorstr += '# UNABLE TO READ ASSOCIATION FILE,#\n' errorstr += str(file) + '\n' errorstr += '# DURING FILE PARSING. #\n' errorstr += '# #\n' errorstr += '# Please determine if the file is #\n' errorstr += '# in the current directory and #\n' errorstr += '# that it has been properly #\n' errorstr += '# formatted. #\n' errorstr += '# #\n' errorstr += '# This error message is being #\n' errorstr += '# generated from within the #\n' errorstr += '# parseinput.py module. #\n' errorstr += '# #\n' errorstr += '###################################\n' raise ValueError(errorstr) if outputname is None: newoutputname = assocdict['output'] for f in assocdict['order']: assoclist.append(fileutil.buildRootname(f)) files.remove(file) files.extend(assoclist) return files, newoutputname
parseinput
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputlist, outputname=None, atfile=None):\n files = []\n newoutputname = outputname\n files = irafglob(inputlist, atfile=atfile)\n for file in files:\n if checkASN(file) == True:\n assoclist = []\n try:\n assocdict = readASNTable(file, None, prodonly=False)\n except:\n errorstr = '###################################\\n'\n errorstr += '# #\\n'\n errorstr += '# UNABLE TO READ ASSOCIATION FILE,#\\n'\n errorstr += str(file) + '\\n'\n errorstr += '# DURING FILE PARSING. #\\n'\n errorstr += '# #\\n'\n errorstr += '# Please determine if the file is #\\n'\n errorstr += '# in the current directory and #\\n'\n errorstr += '# that it has been properly #\\n'\n errorstr += '# formatted. #\\n'\n errorstr += '# #\\n'\n errorstr += '# This error message is being #\\n'\n errorstr += '# generated from within the #\\n'\n errorstr += '# parseinput.py module. #\\n'\n errorstr += '# #\\n'\n errorstr += '###################################\\n'\n raise ValueError(errorstr)\n if outputname is None:\n newoutputname = assocdict['output']\n for f in assocdict['order']:\n assoclist.append(fileutil.buildRootname(f))\n files.remove(file)\n files.extend(assoclist)\n return files, newoutputname\n", "role": "user" }, { "content": "parseinput", "role": "assistant" } ]
def x(filename): extnType = filename[filename.rfind('_') + 1:filename.rfind('.')] if isValidAssocExtn(extnType): return True else: return False
checkASN
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n extnType = filename[filename.rfind('_') + 1:filename.rfind('.')]\n if isValidAssocExtn(extnType):\n return True\n else:\n return False\n", "role": "user" }, { "content": "checkASN", "role": "assistant" } ]
def x(inputlist): numInputs = 0 numASNfiles = 0 files = irafglob(inputlist, atfile=None) numInputs = len(files) for file in files: if checkASN(file) == True: numASNfiles += 1 return numInputs, numASNfiles
countinputs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputlist):\n numInputs = 0\n numASNfiles = 0\n files = irafglob(inputlist, atfile=None)\n numInputs = len(files)\n for file in files:\n if checkASN(file) == True:\n numASNfiles += 1\n return numInputs, numASNfiles\n", "role": "user" }, { "content": "countinputs", "role": "assistant" } ]
def x(): _ltime = _time.localtime(_time.time()) tlm_str = _time.strftime('%H:%M:%S (%d/%m/%Y)', _ltime) return tlm_str
getLTime
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n _ltime = _time.localtime(_time.time())\n tlm_str = _time.strftime('%H:%M:%S (%d/%m/%Y)', _ltime)\n return tlm_str\n", "role": "user" }, { "content": "getLTime", "role": "assistant" } ]
def x(): _ltime = _time.localtime(_time.time()) date_str = _time.strftime('%Y-%m-%dT%H:%M:%S', _ltime) return date_str
getDate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n _ltime = _time.localtime(_time.time())\n date_str = _time.strftime('%Y-%m-%dT%H:%M:%S', _ltime)\n return date_str\n", "role": "user" }, { "content": "getDate", "role": "assistant" } ]
def x(date): d, t = date.split('T') return decimal_date(d, timeobs=t)
convertDate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date):\n d, t = date.split('T')\n return decimal_date(d, timeobs=t)\n", "role": "user" }, { "content": "convertDate", "role": "assistant" } ]
def x(dateobs, timeobs=None): year, month, day = dateobs.split('-') if timeobs is not None: hr, min, sec = timeobs.split(':') else: hr, min, sec = 0, 0, 0 rdate = datetime.datetime(int(year), int(month), int(day), int(hr), int (min), int(sec)) dday = (float(rdate.strftime('%j')) + rdate.hour / 24.0 + rdate.minute / (60.0 * 24) + rdate.second / (3600 * 24.0)) / 365.25 ddate = int(year) + dday return ddate
decimal_date
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dateobs, timeobs=None):\n year, month, day = dateobs.split('-')\n if timeobs is not None:\n hr, min, sec = timeobs.split(':')\n else:\n hr, min, sec = 0, 0, 0\n rdate = datetime.datetime(int(year), int(month), int(day), int(hr), int\n (min), int(sec))\n dday = (float(rdate.strftime('%j')) + rdate.hour / 24.0 + rdate.minute /\n (60.0 * 24) + rdate.second / (3600 * 24.0)) / 365.25\n ddate = int(year) + dday\n return ddate\n", "role": "user" }, { "content": "decimal_date", "role": "assistant" } ]
def x(input): nbits = 16 for iexp in [16, 32, 64, 128]: if input // 2 ** iexp == 0: nbits = iexp break a = np.zeros(1, dtype='int16') atype_descr = a.dtype.descr[0][1] dtype_str = atype_descr[:2] + str(nbits // 8) result = np.zeros(nbits + 1, dtype=dtype_str) for n in range(nbits + 1): i = 2 ** n if input & i > 0: result[n] = i return np.delete(np.unique(result), 0).tolist()
interpretDQvalue
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input):\n nbits = 16\n for iexp in [16, 32, 64, 128]:\n if input // 2 ** iexp == 0:\n nbits = iexp\n break\n a = np.zeros(1, dtype='int16')\n atype_descr = a.dtype.descr[0][1]\n dtype_str = atype_descr[:2] + str(nbits // 8)\n result = np.zeros(nbits + 1, dtype=dtype_str)\n for n in range(nbits + 1):\n i = 2 ** n\n if input & i > 0:\n result[n] = i\n return np.delete(np.unique(result), 0).tolist()\n", "role": "user" }, { "content": "interpretDQvalue", "role": "assistant" } ]