source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(retorno):
resposta = analisar_retorno(forcar_unicode(retorno), funcao='AtivarSAT',
classe_resposta=RespostaAtivarSAT, campos=(('numeroSessao', int), (
'EEEEE', unicode), ('mensagem', unicode), ('cod', unicode), (
'mensagemSEFAZ', unicode), ('CSR', unicode)), campos_alternativos=[
RespostaSAT.CAMPOS])
if resposta.EEEEE not in (ATIVADO_CORRETAMENTE,
CSR_ICPBRASIL_CRIADO_SUCESSO):
raise ExcecaoRespostaSAT(resposta)
return resposta
|
analisar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao='AtivarSAT',\n classe_resposta=RespostaAtivarSAT, campos=(('numeroSessao', int), (\n 'EEEEE', unicode), ('mensagem', unicode), ('cod', unicode), (\n 'mensagemSEFAZ', unicode), ('CSR', unicode)), campos_alternativos=[\n RespostaSAT.CAMPOS])\n if resposta.EEEEE not in (ATIVADO_CORRETAMENTE,\n CSR_ICPBRASIL_CRIADO_SUCESSO):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n",
"role": "user"
},
{
"content": "analisar",
"role": "assistant"
}
] |
def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool
]=None, buffer_size: int=1) ->ViewTask:
...
|
create_view_task
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool\n ]=None, buffer_size: int=1) ->ViewTask:\n ...\n",
"role": "user"
},
{
"content": "create_view_task",
"role": "assistant"
}
] |
def x():
default_yaml_str = snippets.get_snippet_content('hatchery.yml')
ret = yaml.load(default_yaml_str, Loader=yaml.RoundTripLoader)
for config_path in CONFIG_LOCATIONS:
config_path = os.path.expanduser(config_path)
if os.path.isfile(config_path):
with open(config_path) as config_file:
config_dict = yaml.load(config_file, Loader=yaml.
RoundTripLoader)
if config_dict is None:
continue
for k, v in config_dict.items():
if k not in ret.keys():
raise ConfigError('found garbage key "{}" in {}'.
format(k, config_path))
ret[k] = v
return ret
|
from_yaml
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n default_yaml_str = snippets.get_snippet_content('hatchery.yml')\n ret = yaml.load(default_yaml_str, Loader=yaml.RoundTripLoader)\n for config_path in CONFIG_LOCATIONS:\n config_path = os.path.expanduser(config_path)\n if os.path.isfile(config_path):\n with open(config_path) as config_file:\n config_dict = yaml.load(config_file, Loader=yaml.\n RoundTripLoader)\n if config_dict is None:\n continue\n for k, v in config_dict.items():\n if k not in ret.keys():\n raise ConfigError('found garbage key \"{}\" in {}'.\n format(k, config_path))\n ret[k] = v\n return ret\n",
"role": "user"
},
{
"content": "from_yaml",
"role": "assistant"
}
] |
def x(pypi_repository):
ret = {}
pypirc_locations = PYPIRC_LOCATIONS
for pypirc_path in pypirc_locations:
pypirc_path = os.path.expanduser(pypirc_path)
if os.path.isfile(pypirc_path):
parser = configparser.SafeConfigParser()
parser.read(pypirc_path)
if 'distutils' not in parser.sections():
continue
if 'index-servers' not in parser.options('distutils'):
continue
if pypi_repository not in parser.get('distutils', 'index-servers'):
continue
if pypi_repository in parser.sections():
for option in parser.options(pypi_repository):
ret[option] = parser.get(pypi_repository, option)
if not ret:
raise ConfigError(
'repository does not appear to be configured in pypirc ({})'.
format(pypi_repository) +
', remember that it needs an entry in [distutils] and its own section'
)
return ret
|
from_pypirc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pypi_repository):\n ret = {}\n pypirc_locations = PYPIRC_LOCATIONS\n for pypirc_path in pypirc_locations:\n pypirc_path = os.path.expanduser(pypirc_path)\n if os.path.isfile(pypirc_path):\n parser = configparser.SafeConfigParser()\n parser.read(pypirc_path)\n if 'distutils' not in parser.sections():\n continue\n if 'index-servers' not in parser.options('distutils'):\n continue\n if pypi_repository not in parser.get('distutils', 'index-servers'):\n continue\n if pypi_repository in parser.sections():\n for option in parser.options(pypi_repository):\n ret[option] = parser.get(pypi_repository, option)\n if not ret:\n raise ConfigError(\n 'repository does not appear to be configured in pypirc ({})'.\n format(pypi_repository) +\n ', remember that it needs an entry in [distutils] and its own section'\n )\n return ret\n",
"role": "user"
},
{
"content": "from_pypirc",
"role": "assistant"
}
] |
def x(index_url):
pypirc_file = tempfile.NamedTemporaryFile(suffix='.pypirc', delete=False)
print(pypirc_file.name)
with open(pypirc_file.name, 'w') as fh:
fh.write(PYPIRC_TEMPLATE.format(index_name=PYPIRC_TEMP_INDEX_NAME,
index_url=index_url))
return pypirc_file.name
|
pypirc_temp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(index_url):\n pypirc_file = tempfile.NamedTemporaryFile(suffix='.pypirc', delete=False)\n print(pypirc_file.name)\n with open(pypirc_file.name, 'w') as fh:\n fh.write(PYPIRC_TEMPLATE.format(index_name=PYPIRC_TEMP_INDEX_NAME,\n index_url=index_url))\n return pypirc_file.name\n",
"role": "user"
},
{
"content": "pypirc_temp",
"role": "assistant"
}
] |
def x(version: str, ui_version: str=None) ->API_1:
ui_version = ui_version if ui_version else '~1.0'
return _get_api_with_app(version, ui_version, ApplicationModule.app)
|
get_api
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(version: str, ui_version: str=None) ->API_1:\n ui_version = ui_version if ui_version else '~1.0'\n return _get_api_with_app(version, ui_version, ApplicationModule.app)\n",
"role": "user"
},
{
"content": "get_api",
"role": "assistant"
}
] |
def x(self, shape: DataAndMetadata.ShapeType
) ->DataAndMetadata.DataAndMetadata:
mask = self._graphic.get_mask(shape)
return DataAndMetadata.DataAndMetadata.from_data(mask)
|
mask_xdata_with_shape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shape: DataAndMetadata.ShapeType\n ) ->DataAndMetadata.DataAndMetadata:\n mask = self._graphic.get_mask(shape)\n return DataAndMetadata.DataAndMetadata.from_data(mask)\n",
"role": "user"
},
{
"content": "mask_xdata_with_shape",
"role": "assistant"
}
] |
def x(self, value: typing.Union[float, NormPointType]) ->None:
self.set_property('end', value)
|
end
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value: typing.Union[float, NormPointType]) ->None:\n self.set_property('end', value)\n",
"role": "user"
},
{
"content": "end",
"role": "assistant"
}
] |
def x(self, value: typing.Union[float, NormPointType]) ->None:
self.set_property('start', value)
|
start
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value: typing.Union[float, NormPointType]) ->None:\n self.set_property('start', value)\n",
"role": "user"
},
{
"content": "start",
"role": "assistant"
}
] |
def x(self, data: numpy.ndarray) ->None:
self.__data_item.set_data(numpy.copy(data))
|
data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data: numpy.ndarray) ->None:\n self.__data_item.set_data(numpy.copy(data))\n",
"role": "user"
},
{
"content": "data",
"role": "assistant"
}
] |
def x(self) ->DataAndMetadata.DataAndMetadata:
display_data_channel = self.__display_item.display_data_channel
return display_data_channel.get_calculated_display_values(True
).display_data_and_metadata
|
display_xdata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->DataAndMetadata.DataAndMetadata:\n display_data_channel = self.__display_item.display_data_channel\n return display_data_channel.get_calculated_display_values(True\n ).display_data_and_metadata\n",
"role": "user"
},
{
"content": "display_xdata",
"role": "assistant"
}
] |
def x(self, dimensional_calibrations: typing.List[CalibrationModule.
Calibration]) ->None:
self.__data_item.set_dimensional_calibrations(dimensional_calibrations)
|
set_dimensional_calibrations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dimensional_calibrations: typing.List[CalibrationModule.\n Calibration]) ->None:\n self.__data_item.set_dimensional_calibrations(dimensional_calibrations)\n",
"role": "user"
},
{
"content": "set_dimensional_calibrations",
"role": "assistant"
}
] |
def x(self, key: str) ->typing.Any:
return self._data_item.get_metadata_value(key)
|
get_metadata_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key: str) ->typing.Any:\n return self._data_item.get_metadata_value(key)\n",
"role": "user"
},
{
"content": "get_metadata_value",
"role": "assistant"
}
] |
def x(self, key: str, value: typing.Any) ->None:
self._data_item.set_metadata_value(key, value)
|
set_metadata_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key: str, value: typing.Any) ->None:\n self._data_item.set_metadata_value(key, value)\n",
"role": "user"
},
{
"content": "set_metadata_value",
"role": "assistant"
}
] |
def x(self) ->typing.List[Graphic]:
return [Graphic(graphic) for graphic in self.__display_item.graphics]
|
graphics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->typing.List[Graphic]:\n return [Graphic(graphic) for graphic in self.__display_item.graphics]\n",
"role": "user"
},
{
"content": "graphics",
"role": "assistant"
}
] |
def x(self, y: float, x: float) ->Graphic:
graphic = Graphics.PointGraphic()
graphic.position = Geometry.FloatPoint(y, x)
self.__display_item.add_graphic(graphic)
return Graphic(graphic)
|
add_point_region
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, y: float, x: float) ->Graphic:\n graphic = Graphics.PointGraphic()\n graphic.position = Geometry.FloatPoint(y, x)\n self.__display_item.add_graphic(graphic)\n return Graphic(graphic)\n",
"role": "user"
},
{
"content": "add_point_region",
"role": "assistant"
}
] |
def x(self) ->DataAndMetadata.DataAndMetadata:
display_data_channel = self.__display_item.display_data_channel
shape = display_data_channel.display_data_shape
mask = numpy.zeros(shape)
for graphic in self.__display_item.graphics:
if isinstance(graphic, (Graphics.SpotGraphic, Graphics.WedgeGraphic,
Graphics.RingGraphic, Graphics.LatticeGraphic)):
mask = numpy.logical_or(mask, graphic.get_mask(shape))
return DataAndMetadata.DataAndMetadata.from_data(mask)
|
mask_xdata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->DataAndMetadata.DataAndMetadata:\n display_data_channel = self.__display_item.display_data_channel\n shape = display_data_channel.display_data_shape\n mask = numpy.zeros(shape)\n for graphic in self.__display_item.graphics:\n if isinstance(graphic, (Graphics.SpotGraphic, Graphics.WedgeGraphic,\n Graphics.RingGraphic, Graphics.LatticeGraphic)):\n mask = numpy.logical_or(mask, graphic.get_mask(shape))\n return DataAndMetadata.DataAndMetadata.from_data(mask)\n",
"role": "user"
},
{
"content": "mask_xdata",
"role": "assistant"
}
] |
def x(self) ->DataItem:
display_panel = self.__display_panel
if not display_panel:
return None
data_item = display_panel.data_item
return DataItem(data_item) if data_item else None
|
data_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->DataItem:\n display_panel = self.__display_panel\n if not display_panel:\n return None\n data_item = display_panel.data_item\n return DataItem(data_item) if data_item else None\n",
"role": "user"
},
{
"content": "data_item",
"role": "assistant"
}
] |
def x(self, data_item: DataItem) ->None:
display_panel = self.__display_panel
if display_panel:
display_item = (data_item._data_item.container.
get_display_item_for_data_item(data_item._data_item) if
data_item._data_item.container else None)
display_panel.set_display_panel_display_item(display_item)
|
set_data_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_item: DataItem) ->None:\n display_panel = self.__display_panel\n if display_panel:\n display_item = (data_item._data_item.container.\n get_display_item_for_data_item(data_item._data_item) if\n data_item._data_item.container else None)\n display_panel.set_display_panel_display_item(display_item)\n",
"role": "user"
},
{
"content": "set_data_item",
"role": "assistant"
}
] |
def x(self, data_item: DataItem) ->None:
display_item = (data_item._data_item.container.
get_display_item_for_data_item(data_item._data_item) if data_item.
_data_item.container else None)
if display_item:
self.__data_group.append_display_item(display_item)
|
add_data_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_item: DataItem) ->None:\n display_item = (data_item._data_item.container.\n get_display_item_for_data_item(data_item._data_item) if data_item.\n _data_item.container else None)\n if display_item:\n self.__data_group.append_display_item(display_item)\n",
"role": "user"
},
{
"content": "add_data_item",
"role": "assistant"
}
] |
def x(self) ->None:
self.__data_channel_buffer.stop()
self.__data_channel_buffer.close()
self.__data_channel_buffer = None
if not self.__was_playing:
self.__hardware_source.stop_playing()
|
close
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n self.__data_channel_buffer.stop()\n self.__data_channel_buffer.close()\n self.__data_channel_buffer = None\n if not self.__was_playing:\n self.__hardware_source.stop_playing()\n",
"role": "user"
},
{
"content": "close",
"role": "assistant"
}
] |
def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool
]=None, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata
]:
if frame_parameters:
self.__hardware_source.set_record_frame_parameters(self.
__hardware_source.get_frame_parameters_from_dict(frame_parameters))
if channels_enabled is not None:
for channel_index, channel_enabled in enumerate(channels_enabled):
self.__hardware_source.set_channel_enabled(channel_index,
channel_enabled)
self.__hardware_source.start_recording()
return self.__hardware_source.get_next_xdatas_to_finish(timeout)
|
record
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool\n ]=None, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata\n ]:\n if frame_parameters:\n self.__hardware_source.set_record_frame_parameters(self.\n __hardware_source.get_frame_parameters_from_dict(frame_parameters))\n if channels_enabled is not None:\n for channel_index, channel_enabled in enumerate(channels_enabled):\n self.__hardware_source.set_channel_enabled(channel_index,\n channel_enabled)\n self.__hardware_source.start_recording()\n return self.__hardware_source.get_next_xdatas_to_finish(timeout)\n",
"role": "user"
},
{
"content": "record",
"role": "assistant"
}
] |
def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool
]=None) ->RecordTask:
return RecordTask(self.__hardware_source, frame_parameters,
channels_enabled)
|
create_record_task
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool\n ]=None) ->RecordTask:\n return RecordTask(self.__hardware_source, frame_parameters,\n channels_enabled)\n",
"role": "user"
},
{
"content": "create_record_task",
"role": "assistant"
}
] |
def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool
]=None, buffer_size: int=1) ->ViewTask:
return ViewTask(self.__hardware_source, frame_parameters,
channels_enabled, buffer_size)
|
create_view_task
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool\n ]=None, buffer_size: int=1) ->ViewTask:\n return ViewTask(self.__hardware_source, frame_parameters,\n channels_enabled, buffer_size)\n",
"role": "user"
},
{
"content": "create_view_task",
"role": "assistant"
}
] |
def x(self, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata
]:
self.start_playing()
return self.__hardware_source.get_next_xdatas_to_finish(timeout)
|
grab_next_to_finish
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata\n ]:\n self.start_playing()\n return self.__hardware_source.get_next_xdatas_to_finish(timeout)\n",
"role": "user"
},
{
"content": "grab_next_to_finish",
"role": "assistant"
}
] |
def x(self, name: str, value: float, *, options: dict=None) ->None:
self.__instrument.set_control_output(name, value, options)
|
set_control_output
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name: str, value: float, *, options: dict=None) ->None:\n self.__instrument.set_control_output(name, value, options)\n",
"role": "user"
},
{
"content": "set_control_output",
"role": "assistant"
}
] |
def x(self, name: str) ->float:
return float(self.__instrument.get_property(name))
|
get_property_as_float
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name: str) ->float:\n return float(self.__instrument.get_property(name))\n",
"role": "user"
},
{
"content": "get_property_as_float",
"role": "assistant"
}
] |
def x(self, name: str, value: float) ->None:
self.__instrument.set_property(name, float(value))
|
set_property_as_float
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name: str, value: float) ->None:\n self.__instrument.set_property(name, float(value))\n",
"role": "user"
},
{
"content": "set_property_as_float",
"role": "assistant"
}
] |
def x(self) ->typing.List[DataItem]:
return [DataItem(data_item) for data_item in self.__document_model.
data_items]
|
data_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->typing.List[DataItem]:\n return [DataItem(data_item) for data_item in self.__document_model.\n data_items]\n",
"role": "user"
},
{
"content": "data_items",
"role": "assistant"
}
] |
def x(self) ->typing.List[Display]:
return [Display(display_item) for display_item in self.__document_model
.display_items]
|
display_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->typing.List[Display]:\n return [Display(display_item) for display_item in self.__document_model\n .display_items]\n",
"role": "user"
},
{
"content": "display_items",
"role": "assistant"
}
] |
def x(self, data_item: DataItem) ->typing.List[DataItem]:
return [DataItem(data_item) for data_item in self._document_model.
get_source_data_items(data_item._data_item)] if data_item else None
|
get_source_data_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_item: DataItem) ->typing.List[DataItem]:\n return [DataItem(data_item) for data_item in self._document_model.\n get_source_data_items(data_item._data_item)] if data_item else None\n",
"role": "user"
},
{
"content": "get_source_data_items",
"role": "assistant"
}
] |
def x(self, data_item: DataItem) ->typing.List[DataItem]:
return [DataItem(data_item) for data_item in self._document_model.
get_dependent_data_items(data_item._data_item)] if data_item else None
|
get_dependent_data_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_item: DataItem) ->typing.List[DataItem]:\n return [DataItem(data_item) for data_item in self._document_model.\n get_dependent_data_items(data_item._data_item)] if data_item else None\n",
"role": "user"
},
{
"content": "get_dependent_data_items",
"role": "assistant"
}
] |
def x(self, title: str=None) ->DataItem:
data_item = DataItemModule.DataItem()
data_item.ensure_data_source()
if title is not None:
data_item.title = title
self.__document_model.append_data_item(data_item)
return DataItem(data_item)
|
create_data_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, title: str=None) ->DataItem:\n data_item = DataItemModule.DataItem()\n data_item.ensure_data_source()\n if title is not None:\n data_item.title = title\n self.__document_model.append_data_item(data_item)\n return DataItem(data_item)\n",
"role": "user"
},
{
"content": "create_data_item",
"role": "assistant"
}
] |
def x(self, data: numpy.ndarray, title: str=None) ->DataItem:
return self.create_data_item_from_data_and_metadata(DataAndMetadata.
DataAndMetadata.from_data(data), title)
|
create_data_item_from_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data: numpy.ndarray, title: str=None) ->DataItem:\n return self.create_data_item_from_data_and_metadata(DataAndMetadata.\n DataAndMetadata.from_data(data), title)\n",
"role": "user"
},
{
"content": "create_data_item_from_data",
"role": "assistant"
}
] |
def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, title: str=None
) ->DataItem:
data_item = DataItemModule.new_data_item(data_and_metadata)
if title is not None:
data_item.title = title
self.__document_model.append_data_item(data_item)
return DataItem(data_item)
|
create_data_item_from_data_and_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, title: str=None\n ) ->DataItem:\n data_item = DataItemModule.new_data_item(data_and_metadata)\n if title is not None:\n data_item.title = title\n self.__document_model.append_data_item(data_item)\n return DataItem(data_item)\n",
"role": "user"
},
{
"content": "create_data_item_from_data_and_metadata",
"role": "assistant"
}
] |
def x(self, data_item: DataItem) ->DataItem:
data_item = copy.deepcopy(data_item._data_item)
self.__document_model.append_data_item(data_item)
return DataItem(data_item)
|
copy_data_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_item: DataItem) ->DataItem:\n data_item = copy.deepcopy(data_item._data_item)\n self.__document_model.append_data_item(data_item)\n return DataItem(data_item)\n",
"role": "user"
},
{
"content": "copy_data_item",
"role": "assistant"
}
] |
def x(self, data_item: DataItem) ->DataItem:
data_item = data_item._data_item.snapshot()
self.__document_model.append_data_item(data_item)
return DataItem(data_item)
|
snapshot_data_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_item: DataItem) ->DataItem:\n data_item = data_item._data_item.snapshot()\n self.__document_model.append_data_item(data_item)\n return DataItem(data_item)\n",
"role": "user"
},
{
"content": "snapshot_data_item",
"role": "assistant"
}
] |
def x(self, title: str) ->DataGroup:
return DataGroup(self.__document_model.get_or_create_data_group(title))
|
get_or_create_data_group
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, title: str) ->DataGroup:\n return DataGroup(self.__document_model.get_or_create_data_group(title))\n",
"role": "user"
},
{
"content": "get_or_create_data_group",
"role": "assistant"
}
] |
def x(self, hardware_source, channel_id: str=None, processor_id: str=None,
create_if_needed: bool=False, large_format: bool=False) ->DataItem:
assert hardware_source is not None
hardware_source_id = hardware_source._hardware_source.hardware_source_id
document_model = self._document_model
data_item_reference_key = document_model.make_data_item_reference_key(
hardware_source_id, channel_id, processor_id)
return self.get_data_item_for_reference_key(data_item_reference_key,
create_if_needed=create_if_needed, large_format=large_format)
|
get_data_item_for_hardware_source
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, hardware_source, channel_id: str=None, processor_id: str=None,\n create_if_needed: bool=False, large_format: bool=False) ->DataItem:\n assert hardware_source is not None\n hardware_source_id = hardware_source._hardware_source.hardware_source_id\n document_model = self._document_model\n data_item_reference_key = document_model.make_data_item_reference_key(\n hardware_source_id, channel_id, processor_id)\n return self.get_data_item_for_reference_key(data_item_reference_key,\n create_if_needed=create_if_needed, large_format=large_format)\n",
"role": "user"
},
{
"content": "get_data_item_for_hardware_source",
"role": "assistant"
}
] |
def x(self, data_item_reference_key: str=None, create_if_needed: bool=False,
large_format: bool=False) ->DataItem:
document_model = self._document_model
data_item_reference = document_model.get_data_item_reference(
data_item_reference_key)
data_item = data_item_reference.data_item
if data_item is None and create_if_needed:
data_item = DataItemModule.DataItem(large_format=large_format)
data_item.ensure_data_source()
document_model.append_data_item(data_item)
document_model.setup_channel(data_item_reference_key, data_item)
data_item.session_id = document_model.session_id
data_item = document_model.get_data_item_reference(
data_item_reference_key).data_item
return DataItem(data_item) if data_item else None
|
get_data_item_for_reference_key
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_item_reference_key: str=None, create_if_needed: bool=False,\n large_format: bool=False) ->DataItem:\n document_model = self._document_model\n data_item_reference = document_model.get_data_item_reference(\n data_item_reference_key)\n data_item = data_item_reference.data_item\n if data_item is None and create_if_needed:\n data_item = DataItemModule.DataItem(large_format=large_format)\n data_item.ensure_data_source()\n document_model.append_data_item(data_item)\n document_model.setup_channel(data_item_reference_key, data_item)\n data_item.session_id = document_model.session_id\n data_item = document_model.get_data_item_reference(\n data_item_reference_key).data_item\n return DataItem(data_item) if data_item else None\n",
"role": "user"
},
{
"content": "get_data_item_for_reference_key",
"role": "assistant"
}
] |
def x(self, data_item_uuid: uuid_module.UUID) ->DataItem:
data_item = self._document_model.get_data_item_by_uuid(data_item_uuid)
return DataItem(data_item) if data_item else None
|
get_data_item_by_uuid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_item_uuid: uuid_module.UUID) ->DataItem:\n data_item = self._document_model.get_data_item_by_uuid(data_item_uuid)\n return DataItem(data_item) if data_item else None\n",
"role": "user"
},
{
"content": "get_data_item_by_uuid",
"role": "assistant"
}
] |
def x(self, graphic_uuid: uuid_module.UUID) ->Graphic:
for display_item in self._document_model.display_items:
for graphic in display_item.graphics:
if graphic.uuid == graphic_uuid:
return Graphic(graphic)
return None
|
get_graphic_by_uuid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, graphic_uuid: uuid_module.UUID) ->Graphic:\n for display_item in self._document_model.display_items:\n for graphic in display_item.graphics:\n if graphic.uuid == graphic_uuid:\n return Graphic(graphic)\n return None\n",
"role": "user"
},
{
"content": "get_graphic_by_uuid",
"role": "assistant"
}
] |
def x(self, key: str) ->bool:
desc = Metadata.session_key_map.get(key)
if desc is not None:
field_id = desc['path'][-1]
return bool(getattr(ApplicationData.get_session_metadata_model(),
field_id, None))
return False
|
has_library_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key: str) ->bool:\n desc = Metadata.session_key_map.get(key)\n if desc is not None:\n field_id = desc['path'][-1]\n return bool(getattr(ApplicationData.get_session_metadata_model(),\n field_id, None))\n return False\n",
"role": "user"
},
{
"content": "has_library_value",
"role": "assistant"
}
] |
def x(self, key: str) ->typing.Any:
desc = Metadata.session_key_map.get(key)
if desc is not None:
field_id = desc['path'][-1]
return getattr(ApplicationData.get_session_metadata_model(), field_id)
raise KeyError()
|
get_library_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key: str) ->typing.Any:\n desc = Metadata.session_key_map.get(key)\n if desc is not None:\n field_id = desc['path'][-1]\n return getattr(ApplicationData.get_session_metadata_model(), field_id)\n raise KeyError()\n",
"role": "user"
},
{
"content": "get_library_value",
"role": "assistant"
}
] |
def x(self, key: str, value: typing.Any) ->None:
desc = Metadata.session_key_map.get(key)
if desc is not None:
field_id = desc['path'][-1]
setattr(ApplicationData.get_session_metadata_model(), field_id, value)
return
raise KeyError()
|
set_library_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key: str, value: typing.Any) ->None:\n desc = Metadata.session_key_map.get(key)\n if desc is not None:\n field_id = desc['path'][-1]\n setattr(ApplicationData.get_session_metadata_model(), field_id, value)\n return\n raise KeyError()\n",
"role": "user"
},
{
"content": "set_library_value",
"role": "assistant"
}
] |
def x(self, key: str) ->None:
desc = Metadata.session_key_map.get(key)
if desc is not None:
field_id = desc['path'][-1]
setattr(ApplicationData.get_session_metadata_model(), field_id, None)
return
raise KeyError()
|
delete_library_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key: str) ->None:\n desc = Metadata.session_key_map.get(key)\n if desc is not None:\n field_id = desc['path'][-1]\n setattr(ApplicationData.get_session_metadata_model(), field_id, None)\n return\n raise KeyError()\n",
"role": "user"
},
{
"content": "delete_library_value",
"role": "assistant"
}
] |
def x(self) ->typing.List[DisplayPanel]:
return [DisplayPanel(display_panel) for display_panel in self.
__document_controller.workspace_controller.display_panels]
|
all_display_panels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->typing.List[DisplayPanel]:\n return [DisplayPanel(display_panel) for display_panel in self.\n __document_controller.workspace_controller.display_panels]\n",
"role": "user"
},
{
"content": "all_display_panels",
"role": "assistant"
}
] |
def x(self, identifier: str) ->DisplayPanel:
display_panel = next((display_panel for display_panel in self.
__document_controller.workspace_controller.display_panels if
display_panel.identifier.lower() == identifier.lower()), None)
return DisplayPanel(display_panel) if display_panel else None
|
get_display_panel_by_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, identifier: str) ->DisplayPanel:\n display_panel = next((display_panel for display_panel in self.\n __document_controller.workspace_controller.display_panels if \n display_panel.identifier.lower() == identifier.lower()), None)\n return DisplayPanel(display_panel) if display_panel else None\n",
"role": "user"
},
{
"content": "get_display_panel_by_id",
"role": "assistant"
}
] |
def x(self, data_item: DataItem, source_display_panel=None,
source_data_item=None):
for display_panel in self.__document_controller.workspace_controller.display_panels:
if display_panel.data_item == data_item._data_item:
display_panel.request_focus()
return DisplayPanel(display_panel)
result_display_panel = (self.__document_controller.
next_result_display_panel())
if result_display_panel:
display_item = (self.__document_controller.document_model.
get_display_item_for_data_item(data_item._data_item))
result_display_panel.set_display_panel_display_item(display_item)
result_display_panel.request_focus()
return DisplayPanel(result_display_panel)
return None
|
display_data_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_item: DataItem, source_display_panel=None,\n source_data_item=None):\n for display_panel in self.__document_controller.workspace_controller.display_panels:\n if display_panel.data_item == data_item._data_item:\n display_panel.request_focus()\n return DisplayPanel(display_panel)\n result_display_panel = (self.__document_controller.\n next_result_display_panel())\n if result_display_panel:\n display_item = (self.__document_controller.document_model.\n get_display_item_for_data_item(data_item._data_item))\n result_display_panel.set_display_panel_display_item(display_item)\n result_display_panel.request_focus()\n return DisplayPanel(result_display_panel)\n return None\n",
"role": "user"
},
{
"content": "display_data_item",
"role": "assistant"
}
] |
def x(self, caption: str, text: str, accepted_fn, rejected_fn=None,
accepted_text: str=None, rejected_text: str=None) ->None:
workspace = self.__document_controller.workspace_controller
workspace.pose_get_string_message_box(caption, text, accepted_fn,
rejected_fn, accepted_text, rejected_text)
|
show_get_string_message_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, caption: str, text: str, accepted_fn, rejected_fn=None,\n accepted_text: str=None, rejected_text: str=None) ->None:\n workspace = self.__document_controller.workspace_controller\n workspace.pose_get_string_message_box(caption, text, accepted_fn,\n rejected_fn, accepted_text, rejected_text)\n",
"role": "user"
},
{
"content": "show_get_string_message_box",
"role": "assistant"
}
] |
def x(self, data: numpy.ndarray, title: str=None) ->DataItem:
return DataItem(self.__document_controller.add_data(data, title))
|
create_data_item_from_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data: numpy.ndarray, title: str=None) ->DataItem:\n return DataItem(self.__document_controller.add_data(data, title))\n",
"role": "user"
},
{
"content": "create_data_item_from_data",
"role": "assistant"
}
] |
def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, title: str=None
) ->DataItem:
data_item = DataItemModule.new_data_item(data_and_metadata)
if title is not None:
data_item.title = title
self.__document_controller.document_model.append_data_item(data_item)
return DataItem(data_item)
|
create_data_item_from_data_and_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, title: str=None\n ) ->DataItem:\n data_item = DataItemModule.new_data_item(data_and_metadata)\n if title is not None:\n data_item.title = title\n self.__document_controller.document_model.append_data_item(data_item)\n return DataItem(data_item)\n",
"role": "user"
},
{
"content": "create_data_item_from_data_and_metadata",
"role": "assistant"
}
] |
def x(self, title: str) ->DataGroup:
return DataGroup(self.__document_controller.document_model.
get_or_create_data_group(title))
|
get_or_create_data_group
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, title: str) ->DataGroup:\n return DataGroup(self.__document_controller.document_model.\n get_or_create_data_group(title))\n",
"role": "user"
},
{
"content": "get_or_create_data_group",
"role": "assistant"
}
] |
def x(self) ->typing.List[DocumentWindow]:
return [DocumentWindow(document_controller) for document_controller in
self.__application.document_controllers]
|
document_windows
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->typing.List[DocumentWindow]:\n return [DocumentWindow(document_controller) for document_controller in\n self.__application.document_controllers]\n",
"role": "user"
},
{
"content": "document_windows",
"role": "assistant"
}
] |
def x(self, offset: float=None, scale: float=None, units: str=None
) ->CalibrationModule.Calibration:
return CalibrationModule.Calibration(offset, scale, units)
|
create_calibration
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, offset: float=None, scale: float=None, units: str=None\n ) ->CalibrationModule.Calibration:\n return CalibrationModule.Calibration(offset, scale, units)\n",
"role": "user"
},
{
"content": "create_calibration",
"role": "assistant"
}
] |
def x(self, is_sequence: bool, collection_dimension_count: int,
datum_dimension_count: int) ->DataAndMetadata.DataDescriptor:
return DataAndMetadata.DataDescriptor(is_sequence,
collection_dimension_count, datum_dimension_count)
|
create_data_descriptor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, is_sequence: bool, collection_dimension_count: int,\n datum_dimension_count: int) ->DataAndMetadata.DataDescriptor:\n return DataAndMetadata.DataDescriptor(is_sequence,\n collection_dimension_count, datum_dimension_count)\n",
"role": "user"
},
{
"content": "create_data_descriptor",
"role": "assistant"
}
] |
def x(self, data: numpy.ndarray, intensity_calibration: CalibrationModule.
Calibration=None, dimensional_calibrations: typing.List[
CalibrationModule.Calibration]=None, metadata: dict=None, timestamp:
str=None, data_descriptor: DataAndMetadata.DataDescriptor=None
) ->DataAndMetadata.DataAndMetadata:
return DataAndMetadata.new_data_and_metadata(data,
intensity_calibration, dimensional_calibrations, metadata,
timestamp, data_descriptor)
|
create_data_and_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data: numpy.ndarray, intensity_calibration: CalibrationModule.\n Calibration=None, dimensional_calibrations: typing.List[\n CalibrationModule.Calibration]=None, metadata: dict=None, timestamp:\n str=None, data_descriptor: DataAndMetadata.DataDescriptor=None\n ) ->DataAndMetadata.DataAndMetadata:\n return DataAndMetadata.new_data_and_metadata(data,\n intensity_calibration, dimensional_calibrations, metadata,\n timestamp, data_descriptor)\n",
"role": "user"
},
{
"content": "create_data_and_metadata",
"role": "assistant"
}
] |
def x(self, data: numpy.ndarray, intensity_calibration: CalibrationModule.
Calibration=None, dimensional_calibrations: typing.List[
CalibrationModule.Calibration]=None, metadata: dict=None, timestamp:
str=None) ->DataAndMetadata.DataAndMetadata:
return self.create_data_and_metadata(numpy.copy(data),
intensity_calibration, dimensional_calibrations, metadata, timestamp)
|
create_data_and_metadata_from_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data: numpy.ndarray, intensity_calibration: CalibrationModule.\n Calibration=None, dimensional_calibrations: typing.List[\n CalibrationModule.Calibration]=None, metadata: dict=None, timestamp:\n str=None) ->DataAndMetadata.DataAndMetadata:\n return self.create_data_and_metadata(numpy.copy(data),\n intensity_calibration, dimensional_calibrations, metadata, timestamp)\n",
"role": "user"
},
{
"content": "create_data_and_metadata_from_data",
"role": "assistant"
}
] |
def x(self, io_handler_delegate):
class DelegateIOHandler(ImportExportManager.ImportExportHandler):
def x(self):
super().__init__(io_handler_delegate.io_handler_id,
io_handler_delegate.io_handler_name, io_handler_delegate.
io_handler_extensions)
def x(self, ui, extension, file_path):
data_and_metadata = io_handler_delegate.read_data_and_metadata(
extension, file_path)
data_element = (ImportExportManager.
create_data_element_from_extended_data(data_and_metadata))
return [data_element]
def x(self, data_and_metadata, extension):
return io_handler_delegate.can_write_data_and_metadata(
data_and_metadata, extension)
def x(self, ui, display_item: DisplayItemModule.DisplayItem,
file_path: str, extension: str) ->None:
data_item = display_item.data_item
if data_item:
self.write_data_item(ui, data_item, file_path, extension)
def x(self, ui, data_item, file_path, extension):
data_and_metadata = data_item.xdata
data = data_and_metadata.data
if data is not None:
if hasattr(io_handler_delegate, 'write_data_item'):
io_handler_delegate.write_data_item(DataItem(data_item),
file_path, extension)
else:
assert hasattr(io_handler_delegate,
'write_data_and_metadata')
io_handler_delegate.write_data_and_metadata(
data_and_metadata, file_path, extension)
class IOHandlerReference:
def x(self):
self.__io_handler_delegate = io_handler_delegate
self.__io_handler = DelegateIOHandler()
ImportExportManager.ImportExportManager().register_io_handler(self
.__io_handler)
def x(self):
self.close()
def x(self):
if self.__io_handler_delegate:
io_handler_delegate_close_fn = getattr(self.
__io_handler_delegate, 'close', None)
if io_handler_delegate_close_fn:
io_handler_delegate_close_fn()
ImportExportManager.ImportExportManager(
).unregister_io_handler(self.__io_handler)
self.__io_handler_delegate = None
return IOHandlerReference()
|
create_data_and_metadata_io_handler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, io_handler_delegate):\n\n\n class DelegateIOHandler(ImportExportManager.ImportExportHandler):\n\n def x(self):\n super().__init__(io_handler_delegate.io_handler_id,\n io_handler_delegate.io_handler_name, io_handler_delegate.\n io_handler_extensions)\n\n def x(self, ui, extension, file_path):\n data_and_metadata = io_handler_delegate.read_data_and_metadata(\n extension, file_path)\n data_element = (ImportExportManager.\n create_data_element_from_extended_data(data_and_metadata))\n return [data_element]\n\n def x(self, data_and_metadata, extension):\n return io_handler_delegate.can_write_data_and_metadata(\n data_and_metadata, extension)\n\n def x(self, ui, display_item: DisplayItemModule.DisplayItem,\n file_path: str, extension: str) ->None:\n data_item = display_item.data_item\n if data_item:\n self.write_data_item(ui, data_item, file_path, extension)\n\n def x(self, ui, data_item, file_path, extension):\n data_and_metadata = data_item.xdata\n data = data_and_metadata.data\n if data is not None:\n if hasattr(io_handler_delegate, 'write_data_item'):\n io_handler_delegate.write_data_item(DataItem(data_item),\n file_path, extension)\n else:\n assert hasattr(io_handler_delegate,\n 'write_data_and_metadata')\n io_handler_delegate.write_data_and_metadata(\n data_and_metadata, file_path, extension)\n\n\n class IOHandlerReference:\n\n def x(self):\n self.__io_handler_delegate = io_handler_delegate\n self.__io_handler = DelegateIOHandler()\n ImportExportManager.ImportExportManager().register_io_handler(self\n .__io_handler)\n\n def x(self):\n self.close()\n\n def x(self):\n if self.__io_handler_delegate:\n io_handler_delegate_close_fn = getattr(self.\n __io_handler_delegate, 'close', None)\n if io_handler_delegate_close_fn:\n io_handler_delegate_close_fn()\n ImportExportManager.ImportExportManager(\n ).unregister_io_handler(self.__io_handler)\n self.__io_handler_delegate = None\n return IOHandlerReference()\n",
"role": "user"
},
{
"content": "create_data_and_metadata_io_handler",
"role": "assistant"
}
] |
def x(self, panel_delegate):
panel_id = panel_delegate.panel_id
panel_name = panel_delegate.panel_name
panel_positions = getattr(panel_delegate, 'panel_positions', ['left',
'right'])
panel_position = getattr(panel_delegate, 'panel_position', 'none')
properties = getattr(panel_delegate, 'panel_properties', None)
workspace_manager = Workspace.WorkspaceManager()
def x(document_controller, panel_id, properties):
panel = Panel(document_controller, panel_id, properties)
ui = UserInterface(self.__ui_version, document_controller.ui)
document_controller = DocumentWindow(document_controller)
panel.widget = panel_delegate.create_panel_widget(ui,
document_controller)._widget
return panel
class PanelReference:
def x(self):
self.__panel_delegate = panel_delegate
workspace_manager.register_panel(create_facade_panel, panel_id,
panel_name, panel_positions, panel_position, properties)
def x(self):
self.close()
def x(self):
if self.__panel_delegate:
panel_delegate_close_fn = getattr(self.__panel_delegate,
'close', None)
if panel_delegate_close_fn:
panel_delegate_close_fn()
workspace_manager.unregister_panel(panel_id)
self.__panel_delegate = None
return PanelReference()
|
create_panel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, panel_delegate):\n panel_id = panel_delegate.panel_id\n panel_name = panel_delegate.panel_name\n panel_positions = getattr(panel_delegate, 'panel_positions', ['left',\n 'right'])\n panel_position = getattr(panel_delegate, 'panel_position', 'none')\n properties = getattr(panel_delegate, 'panel_properties', None)\n workspace_manager = Workspace.WorkspaceManager()\n\n def x(document_controller, panel_id, properties):\n panel = Panel(document_controller, panel_id, properties)\n ui = UserInterface(self.__ui_version, document_controller.ui)\n document_controller = DocumentWindow(document_controller)\n panel.widget = panel_delegate.create_panel_widget(ui,\n document_controller)._widget\n return panel\n\n\n class PanelReference:\n\n def x(self):\n self.__panel_delegate = panel_delegate\n workspace_manager.register_panel(create_facade_panel, panel_id,\n panel_name, panel_positions, panel_position, properties)\n\n def x(self):\n self.close()\n\n def x(self):\n if self.__panel_delegate:\n panel_delegate_close_fn = getattr(self.__panel_delegate,\n 'close', None)\n if panel_delegate_close_fn:\n panel_delegate_close_fn()\n workspace_manager.unregister_panel(panel_id)\n self.__panel_delegate = None\n return PanelReference()\n",
"role": "user"
},
{
"content": "create_panel",
"role": "assistant"
}
] |
def x(self, hardware_source_id: str, version: str):
actual_version = '1.0.0'
if Utility.compare_versions(version, actual_version) > 0:
raise NotImplementedError(
'Hardware API requested version %s is greater than %s.' % (
version, actual_version))
hardware_source = HardwareSourceModule.HardwareSourceManager(
).get_hardware_source_for_hardware_source_id(hardware_source_id)
return HardwareSource(hardware_source) if hardware_source else None
|
get_hardware_source_by_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, hardware_source_id: str, version: str):\n actual_version = '1.0.0'\n if Utility.compare_versions(version, actual_version) > 0:\n raise NotImplementedError(\n 'Hardware API requested version %s is greater than %s.' % (\n version, actual_version))\n hardware_source = HardwareSourceModule.HardwareSourceManager(\n ).get_hardware_source_for_hardware_source_id(hardware_source_id)\n return HardwareSource(hardware_source) if hardware_source else None\n",
"role": "user"
},
{
"content": "get_hardware_source_by_id",
"role": "assistant"
}
] |
def x(self) ->Library:
assert self.__app.document_model
return Library(self.__app.document_model)
|
library
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Library:\n assert self.__app.document_model\n return Library(self.__app.document_model)\n",
"role": "user"
},
{
"content": "library",
"role": "assistant"
}
] |
def x(profit_matrix, inversion_function):
cost_matrix = []
for row in profit_matrix:
cost_matrix.append([inversion_function(value) for value in row])
return cost_matrix
|
make_cost_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(profit_matrix, inversion_function):\n cost_matrix = []\n for row in profit_matrix:\n cost_matrix.append([inversion_function(value) for value in row])\n return cost_matrix\n",
"role": "user"
},
{
"content": "make_cost_matrix",
"role": "assistant"
}
] |
def x(matrix, msg=None):
import math
if msg is not None:
print(msg)
width = 0
for row in matrix:
for val in row:
width = max(width, int(math.log10(val)) + 1)
format = '%%%dd' % width
for row in matrix:
sep = '['
for val in row:
sys.stdout.write(sep + format % val)
sep = ', '
sys.stdout.write(']\n')
|
print_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(matrix, msg=None):\n import math\n if msg is not None:\n print(msg)\n width = 0\n for row in matrix:\n for val in row:\n width = max(width, int(math.log10(val)) + 1)\n format = '%%%dd' % width\n for row in matrix:\n sep = '['\n for val in row:\n sys.stdout.write(sep + format % val)\n sep = ', '\n sys.stdout.write(']\\n')\n",
"role": "user"
},
{
"content": "print_matrix",
"role": "assistant"
}
] |
def x(self, matrix, pad_value=0):
max_columns = 0
total_rows = len(matrix)
for row in matrix:
max_columns = max(max_columns, len(row))
total_rows = max(max_columns, total_rows)
new_matrix = []
for row in matrix:
row_len = len(row)
new_row = row[:]
if total_rows > row_len:
new_row += [pad_value] * (total_rows - row_len)
new_matrix += [new_row]
while len(new_matrix) < total_rows:
new_matrix += [[pad_value] * total_rows]
return new_matrix
|
pad_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, matrix, pad_value=0):\n max_columns = 0\n total_rows = len(matrix)\n for row in matrix:\n max_columns = max(max_columns, len(row))\n total_rows = max(max_columns, total_rows)\n new_matrix = []\n for row in matrix:\n row_len = len(row)\n new_row = row[:]\n if total_rows > row_len:\n new_row += [pad_value] * (total_rows - row_len)\n new_matrix += [new_row]\n while len(new_matrix) < total_rows:\n new_matrix += [[pad_value] * total_rows]\n return new_matrix\n",
"role": "user"
},
{
"content": "pad_matrix",
"role": "assistant"
}
] |
def x(self, cost_matrix):
self.C = self.pad_matrix(cost_matrix)
self.n = len(self.C)
self.original_length = len(cost_matrix)
self.original_width = len(cost_matrix[0])
self.row_covered = [(False) for i in range(self.n)]
self.col_covered = [(False) for i in range(self.n)]
self.Z0_r = 0
self.Z0_c = 0
self.path = self.__make_matrix(self.n * 2, 0)
self.marked = self.__make_matrix(self.n, 0)
done = False
step = 1
steps = {(1): self.__step1, (2): self.__step2, (3): self.__step3, (4):
self.__step4, (5): self.__step5, (6): self.__step6}
while not done:
try:
func = steps[step]
step = func()
except KeyError:
done = True
results = []
for i in range(self.original_length):
for j in range(self.original_width):
if self.marked[i][j] == 1:
results += [(i, j)]
return results
|
compute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cost_matrix):\n self.C = self.pad_matrix(cost_matrix)\n self.n = len(self.C)\n self.original_length = len(cost_matrix)\n self.original_width = len(cost_matrix[0])\n self.row_covered = [(False) for i in range(self.n)]\n self.col_covered = [(False) for i in range(self.n)]\n self.Z0_r = 0\n self.Z0_c = 0\n self.path = self.__make_matrix(self.n * 2, 0)\n self.marked = self.__make_matrix(self.n, 0)\n done = False\n step = 1\n steps = {(1): self.__step1, (2): self.__step2, (3): self.__step3, (4):\n self.__step4, (5): self.__step5, (6): self.__step6}\n while not done:\n try:\n func = steps[step]\n step = func()\n except KeyError:\n done = True\n results = []\n for i in range(self.original_length):\n for j in range(self.original_width):\n if self.marked[i][j] == 1:\n results += [(i, j)]\n return results\n",
"role": "user"
},
{
"content": "compute",
"role": "assistant"
}
] |
def x(self, n, val):
matrix = []
for i in range(n):
matrix += [[val for j in range(n)]]
return matrix
|
make_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, val):\n matrix = []\n for i in range(n):\n matrix += [[val for j in range(n)]]\n return matrix\n",
"role": "user"
},
{
"content": "make_matrix",
"role": "assistant"
}
] |
def x(self):
C = self.C
n = self.n
for i in range(n):
minval = min(self.C[i])
for j in range(n):
self.C[i][j] -= minval
return 2
|
step1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n C = self.C\n n = self.n\n for i in range(n):\n minval = min(self.C[i])\n for j in range(n):\n self.C[i][j] -= minval\n return 2\n",
"role": "user"
},
{
"content": "step1",
"role": "assistant"
}
] |
def x(self):
n = self.n
for i in range(n):
for j in range(n):
if self.C[i][j] == 0 and not self.col_covered[j
] and not self.row_covered[i]:
self.marked[i][j] = 1
self.col_covered[j] = True
self.row_covered[i] = True
self.__clear_covers()
return 3
|
step2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n n = self.n\n for i in range(n):\n for j in range(n):\n if self.C[i][j] == 0 and not self.col_covered[j\n ] and not self.row_covered[i]:\n self.marked[i][j] = 1\n self.col_covered[j] = True\n self.row_covered[i] = True\n self.__clear_covers()\n return 3\n",
"role": "user"
},
{
"content": "step2",
"role": "assistant"
}
] |
def x(self):
n = self.n
count = 0
for i in range(n):
for j in range(n):
if self.marked[i][j] == 1:
self.col_covered[j] = True
count += 1
if count >= n:
step = 7
else:
step = 4
return step
|
step3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n n = self.n\n count = 0\n for i in range(n):\n for j in range(n):\n if self.marked[i][j] == 1:\n self.col_covered[j] = True\n count += 1\n if count >= n:\n step = 7\n else:\n step = 4\n return step\n",
"role": "user"
},
{
"content": "step3",
"role": "assistant"
}
] |
def x(self):
step = 0
done = False
row = -1
col = -1
star_col = -1
while not done:
row, col = self.__find_a_zero()
if row < 0:
done = True
step = 6
else:
self.marked[row][col] = 2
star_col = self.__find_star_in_row(row)
if star_col >= 0:
col = star_col
self.row_covered[row] = True
self.col_covered[col] = False
else:
done = True
self.Z0_r = row
self.Z0_c = col
step = 5
return step
|
step4
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n step = 0\n done = False\n row = -1\n col = -1\n star_col = -1\n while not done:\n row, col = self.__find_a_zero()\n if row < 0:\n done = True\n step = 6\n else:\n self.marked[row][col] = 2\n star_col = self.__find_star_in_row(row)\n if star_col >= 0:\n col = star_col\n self.row_covered[row] = True\n self.col_covered[col] = False\n else:\n done = True\n self.Z0_r = row\n self.Z0_c = col\n step = 5\n return step\n",
"role": "user"
},
{
"content": "step4",
"role": "assistant"
}
] |
def x(self):
count = 0
path = self.path
path[count][0] = self.Z0_r
path[count][1] = self.Z0_c
done = False
while not done:
row = self.__find_star_in_col(path[count][1])
if row >= 0:
count += 1
path[count][0] = row
path[count][1] = path[count - 1][1]
else:
done = True
if not done:
col = self.__find_prime_in_row(path[count][0])
count += 1
path[count][0] = path[count - 1][0]
path[count][1] = col
self.__convert_path(path, count)
self.__clear_covers()
self.__erase_primes()
return 3
|
step5
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n count = 0\n path = self.path\n path[count][0] = self.Z0_r\n path[count][1] = self.Z0_c\n done = False\n while not done:\n row = self.__find_star_in_col(path[count][1])\n if row >= 0:\n count += 1\n path[count][0] = row\n path[count][1] = path[count - 1][1]\n else:\n done = True\n if not done:\n col = self.__find_prime_in_row(path[count][0])\n count += 1\n path[count][0] = path[count - 1][0]\n path[count][1] = col\n self.__convert_path(path, count)\n self.__clear_covers()\n self.__erase_primes()\n return 3\n",
"role": "user"
},
{
"content": "step5",
"role": "assistant"
}
] |
def x(self):
minval = self.__find_smallest()
for i in range(self.n):
for j in range(self.n):
if self.row_covered[i]:
self.C[i][j] += minval
if not self.col_covered[j]:
self.C[i][j] -= minval
return 4
|
step6
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n minval = self.__find_smallest()\n for i in range(self.n):\n for j in range(self.n):\n if self.row_covered[i]:\n self.C[i][j] += minval\n if not self.col_covered[j]:\n self.C[i][j] -= minval\n return 4\n",
"role": "user"
},
{
"content": "step6",
"role": "assistant"
}
] |
def x(self):
minval = sys.maxsize
for i in range(self.n):
for j in range(self.n):
if not self.row_covered[i] and not self.col_covered[j]:
if minval > self.C[i][j]:
minval = self.C[i][j]
return minval
|
find_smallest
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n minval = sys.maxsize\n for i in range(self.n):\n for j in range(self.n):\n if not self.row_covered[i] and not self.col_covered[j]:\n if minval > self.C[i][j]:\n minval = self.C[i][j]\n return minval\n",
"role": "user"
},
{
"content": "find_smallest",
"role": "assistant"
}
] |
def x(self):
row = -1
col = -1
i = 0
n = self.n
done = False
while not done:
j = 0
while True:
if self.C[i][j] == 0 and not self.row_covered[i
] and not self.col_covered[j]:
row = i
col = j
done = True
j += 1
if j >= n:
break
i += 1
if i >= n:
done = True
return row, col
|
find_a_zero
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n row = -1\n col = -1\n i = 0\n n = self.n\n done = False\n while not done:\n j = 0\n while True:\n if self.C[i][j] == 0 and not self.row_covered[i\n ] and not self.col_covered[j]:\n row = i\n col = j\n done = True\n j += 1\n if j >= n:\n break\n i += 1\n if i >= n:\n done = True\n return row, col\n",
"role": "user"
},
{
"content": "find_a_zero",
"role": "assistant"
}
] |
def x(self, row):
col = -1
for j in range(self.n):
if self.marked[row][j] == 1:
col = j
break
return col
|
find_star_in_row
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row):\n col = -1\n for j in range(self.n):\n if self.marked[row][j] == 1:\n col = j\n break\n return col\n",
"role": "user"
},
{
"content": "find_star_in_row",
"role": "assistant"
}
] |
def x(self, col):
row = -1
for i in range(self.n):
if self.marked[i][col] == 1:
row = i
break
return row
|
find_star_in_col
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, col):\n row = -1\n for i in range(self.n):\n if self.marked[i][col] == 1:\n row = i\n break\n return row\n",
"role": "user"
},
{
"content": "find_star_in_col",
"role": "assistant"
}
] |
def x(self, row):
col = -1
for j in range(self.n):
if self.marked[row][j] == 2:
col = j
break
return col
|
find_prime_in_row
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row):\n col = -1\n for j in range(self.n):\n if self.marked[row][j] == 2:\n col = j\n break\n return col\n",
"role": "user"
},
{
"content": "find_prime_in_row",
"role": "assistant"
}
] |
def x(self):
for i in range(self.n):
self.row_covered[i] = False
self.col_covered[i] = False
|
clear_covers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for i in range(self.n):\n self.row_covered[i] = False\n self.col_covered[i] = False\n",
"role": "user"
},
{
"content": "clear_covers",
"role": "assistant"
}
] |
def x(self):
for i in range(self.n):
for j in range(self.n):
if self.marked[i][j] == 2:
self.marked[i][j] = 0
|
erase_primes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for i in range(self.n):\n for j in range(self.n):\n if self.marked[i][j] == 2:\n self.marked[i][j] = 0\n",
"role": "user"
},
{
"content": "erase_primes",
"role": "assistant"
}
] |
def x(self, a, b, c, d):
self.table.ravel()[:] = [a, b, c, d]
self.N = self.table.sum()
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, a, b, c, d):\n self.table.ravel()[:] = [a, b, c, d]\n self.N = self.table.sum()\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
return (self.table[0, 0] + self.table[0, 1]) / (self.table[0, 0] + self
.table[1, 0])
|
bias
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return (self.table[0, 0] + self.table[0, 1]) / (self.table[0, 0] + self\n .table[1, 0])\n",
"role": "user"
},
{
"content": "bias",
"role": "assistant"
}
] |
def x(self):
return self.table[0, 0] / (self.table[0, 0] + self.table[0, 1] + self.
table[1, 0])
|
csi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self.table[0, 0] / (self.table[0, 0] + self.table[0, 1] + self.\n table[1, 0])\n",
"role": "user"
},
{
"content": "csi",
"role": "assistant"
}
] |
def x(self):
r = (self.table[0, 0] + self.table[0, 1]) * (self.table[0, 0] + self.
table[1, 0]) / self.N
return (self.table[0, 0] - r) / (self.table[0, 0] + self.table[0, 1] +
self.table[1, 0] - r)
|
ets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n r = (self.table[0, 0] + self.table[0, 1]) * (self.table[0, 0] + self.\n table[1, 0]) / self.N\n return (self.table[0, 0] - r) / (self.table[0, 0] + self.table[0, 1] +\n self.table[1, 0] - r)\n",
"role": "user"
},
{
"content": "ets",
"role": "assistant"
}
] |
def x(self):
return 2 * (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] *
self.table[1, 0]) / ((self.table[0, 0] + self.table[0, 1]) * (self.
table[0, 1] + self.table[1, 1]) + (self.table[0, 0] + self.table[1,
0]) * (self.table[1, 0] + self.table[1, 1]))
|
hss
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return 2 * (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] *\n self.table[1, 0]) / ((self.table[0, 0] + self.table[0, 1]) * (self.\n table[0, 1] + self.table[1, 1]) + (self.table[0, 0] + self.table[1,\n 0]) * (self.table[1, 0] + self.table[1, 1]))\n",
"role": "user"
},
{
"content": "hss",
"role": "assistant"
}
] |
def x(self):
return (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] * self.
table[1, 0]) / ((self.table[0, 0] + self.table[1, 0]) * (self.table
[0, 1] + self.table[1, 1]))
|
pss
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] * self.\n table[1, 0]) / ((self.table[0, 0] + self.table[1, 0]) * (self.table\n [0, 1] + self.table[1, 1]))\n",
"role": "user"
},
{
"content": "pss",
"role": "assistant"
}
] |
def x(self):
return (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] * self.
table[1, 0]) / ((self.table[0, 0] + self.table[0, 1]) * (self.table
[1, 0] + self.table[1, 1]))
|
css
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] * self.\n table[1, 0]) / ((self.table[0, 0] + self.table[0, 1]) * (self.table\n [1, 0] + self.table[1, 1]))\n",
"role": "user"
},
{
"content": "css",
"role": "assistant"
}
] |
def x(filename):
with open(filename) as file_obj:
tree_ensemble_obj = pickle.load(file_obj)
return tree_ensemble_obj
|
load_tree_object
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n with open(filename) as file_obj:\n tree_ensemble_obj = pickle.load(file_obj)\n return tree_ensemble_obj\n",
"role": "user"
},
{
"content": "load_tree_object",
"role": "assistant"
}
] |
def x(tree_ensemble_obj, output_filename, attribute_names=None):
for t, tree in enumerate(tree_ensemble_obj.estimators_):
print('Writing Tree {0:d}'.format(t))
out_file = open(output_filename + '.{0:d}.tree', 'w')
tree_str = print_tree_recursive(tree.tree_, 0, attribute_names)
out_file.write(tree_str)
out_file.close()
return
|
output_tree_ensemble
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tree_ensemble_obj, output_filename, attribute_names=None):\n for t, tree in enumerate(tree_ensemble_obj.estimators_):\n print('Writing Tree {0:d}'.format(t))\n out_file = open(output_filename + '.{0:d}.tree', 'w')\n tree_str = print_tree_recursive(tree.tree_, 0, attribute_names)\n out_file.write(tree_str)\n out_file.close()\n return\n",
"role": "user"
},
{
"content": "output_tree_ensemble",
"role": "assistant"
}
] |
def x(tree_obj, node_index, attribute_names=None):
tree_str = ''
if node_index == 0:
tree_str += '{0:d}\n'.format(tree_obj.node_count)
if tree_obj.feature[node_index] >= 0:
if attribute_names is None:
attr_val = '{0:d}'.format(tree_obj.feature[node_index])
else:
attr_val = attribute_names[tree_obj.feature[node_index]]
tree_str += 'b {0:d} {1} {2:0.4f} {3:d} {4:1.5e}\n'.format(node_index,
attr_val, tree_obj.weighted_n_node_samples[node_index],
tree_obj.n_node_samples[node_index], tree_obj.threshold[node_index]
)
else:
if tree_obj.max_n_classes > 1:
leaf_value = '{0:d}'.format(tree_obj.value[node_index].argmax())
else:
leaf_value = '{0}'.format(tree_obj.value[node_index][0][0])
tree_str += 'l {0:d} {1} {2:0.4f} {3:d}\n'.format(node_index,
leaf_value, tree_obj.weighted_n_node_samples[node_index],
tree_obj.n_node_samples[node_index])
if tree_obj.children_left[node_index] > 0:
tree_str += print_tree_recursive(tree_obj, tree_obj.children_left[
node_index], attribute_names)
if tree_obj.children_right[node_index] > 0:
tree_str += print_tree_recursive(tree_obj, tree_obj.children_right[
node_index], attribute_names)
return tree_str
|
print_tree_recursive
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tree_obj, node_index, attribute_names=None):\n tree_str = ''\n if node_index == 0:\n tree_str += '{0:d}\\n'.format(tree_obj.node_count)\n if tree_obj.feature[node_index] >= 0:\n if attribute_names is None:\n attr_val = '{0:d}'.format(tree_obj.feature[node_index])\n else:\n attr_val = attribute_names[tree_obj.feature[node_index]]\n tree_str += 'b {0:d} {1} {2:0.4f} {3:d} {4:1.5e}\\n'.format(node_index,\n attr_val, tree_obj.weighted_n_node_samples[node_index],\n tree_obj.n_node_samples[node_index], tree_obj.threshold[node_index]\n )\n else:\n if tree_obj.max_n_classes > 1:\n leaf_value = '{0:d}'.format(tree_obj.value[node_index].argmax())\n else:\n leaf_value = '{0}'.format(tree_obj.value[node_index][0][0])\n tree_str += 'l {0:d} {1} {2:0.4f} {3:d}\\n'.format(node_index,\n leaf_value, tree_obj.weighted_n_node_samples[node_index],\n tree_obj.n_node_samples[node_index])\n if tree_obj.children_left[node_index] > 0:\n tree_str += print_tree_recursive(tree_obj, tree_obj.children_left[\n node_index], attribute_names)\n if tree_obj.children_right[node_index] > 0:\n tree_str += print_tree_recursive(tree_obj, tree_obj.children_right[\n node_index], attribute_names)\n return tree_str\n",
"role": "user"
},
{
"content": "print_tree_recursive",
"role": "assistant"
}
] |
def x(self, v, base_mask=True):
base = self._base
v = tonparray(v)
a = np.unique(v)
if a[0] != -1 or a[1] != 1:
raise RuntimeError('The labels must be -1 and 1 (%s)' % a)
mask = np.zeros_like(v)
cnt = min([(v == x).sum() for x in a]) * base._tr_fraction
cnt = int(round(cnt))
for i in a:
index = np.where((v == i) & base_mask)[0]
np.random.shuffle(index)
mask[index[:cnt]] = True
base._mask = SparseArray.fromlist(mask)
return SparseArray.fromlist(v)
|
set_classifier_mask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v, base_mask=True):\n base = self._base\n v = tonparray(v)\n a = np.unique(v)\n if a[0] != -1 or a[1] != 1:\n raise RuntimeError('The labels must be -1 and 1 (%s)' % a)\n mask = np.zeros_like(v)\n cnt = min([(v == x).sum() for x in a]) * base._tr_fraction\n cnt = int(round(cnt))\n for i in a:\n index = np.where((v == i) & base_mask)[0]\n np.random.shuffle(index)\n mask[index[:cnt]] = True\n base._mask = SparseArray.fromlist(mask)\n return SparseArray.fromlist(v)\n",
"role": "user"
},
{
"content": "set_classifier_mask",
"role": "assistant"
}
] |
def x(self, v):
base = self._base
index = np.arange(v.size())
np.random.shuffle(index)
ones = np.ones(v.size())
ones[index[int(base._tr_fraction * v.size()):]] = 0
base._mask = SparseArray.fromlist(ones)
|
set_regression_mask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v):\n base = self._base\n index = np.arange(v.size())\n np.random.shuffle(index)\n ones = np.ones(v.size())\n ones[index[int(base._tr_fraction * v.size()):]] = 0\n base._mask = SparseArray.fromlist(ones)\n",
"role": "user"
},
{
"content": "set_regression_mask",
"role": "assistant"
}
] |
def x(self, v):
base = self._base
if base._classifier:
if base._multiple_outputs:
hy = SparseArray.argmax(v.hy)
fit_func = base._fitness_function
if fit_func == 'macro-F1' or fit_func == 'a_F1':
f1_score = self.score
mf1, mf1_v = f1_score.a_F1(base._y_klass, hy, base._mask_ts
.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
elif fit_func == 'DotF1' or fit_func == 'g_F1':
f1_score = self.score
mf1, mf1_v = f1_score.g_F1(base._y_klass, hy, base._mask_ts
.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
elif fit_func == 'DotRecallDotPrecision' or fit_func == 'g_g_recall_precision':
f1_score = self.score
mf1, mf1_v = f1_score.g_g_recall_precision(base._y_klass,
hy, base._mask_ts.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
elif fit_func == 'BER' or fit_func == 'a_recall':
f1_score = self.score
mf1, mf1_v = f1_score.a_recall(base._y_klass, hy, base.
_mask_ts.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
elif fit_func == 'DotRecall' or fit_func == 'g_recall':
f1_score = self.score
mf1, mf1_v = f1_score.g_recall(base._y_klass, hy, base.
_mask_ts.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
elif fit_func == 'macro-Precision' or fit_func == 'a_precision':
f1_score = self.score
mf1, mf1_v = f1_score.a_precision(base._y_klass, hy, base.
_mask_ts.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
elif fit_func == 'DotPrecision' or fit_func == 'g_precision':
f1_score = self.score
mf1, mf1_v = f1_score.g_precision(base._y_klass, hy, base.
_mask_ts.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
elif fit_func == 'accDotMacroF1':
f1_score = self.score
mf1, mf1_v = f1_score.accDotMacroF1(base._y_klass, hy, base
._mask_ts.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
elif fit_func == 'macro-RecallF1':
f1_score = self.score
mf1, mf1_v = f1_score.macroRecallF1(base._y_klass, hy, base
._mask_ts.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
elif fit_func == 'F1':
f1_score = self.score
f1_index = self._base._F1_index
index = self.min_class if f1_index < 0 else f1_index
mf1, mf1_v = f1_score.F1(index, base._y_klass, hy, base.
_mask_ts.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
elif fit_func == 'RecallDotPrecision' or fit_func == 'g_recall_precision':
f1_score = self.score
mf1, mf1_v = f1_score.g_recall_precision(self.min_class,
base._y_klass, hy, base._mask_ts.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
elif fit_func == 'ER' or fit_func == 'accuracy':
f1_score = self.score
mf1, mf1_v = f1_score.accuracy(base._y_klass, hy, base.
_mask_ts.index)
v._error = mf1_v - 1
v.fitness = mf1 - 1
else:
raise RuntimeError('Unknown fitness function %s' % base.
_fitness_function)
else:
v.fitness = -base._ytr.SSE(v.hy * base._mask)
elif base._multiple_outputs:
_ = np.mean([a.SAE(b.mul(c)) for a, b, c in zip(base._ytr, v.hy,
base._mask)])
v.fitness = -_
else:
v.fitness = -base._ytr.SAE(v.hy * base._mask)
|
fitness
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v):\n base = self._base\n if base._classifier:\n if base._multiple_outputs:\n hy = SparseArray.argmax(v.hy)\n fit_func = base._fitness_function\n if fit_func == 'macro-F1' or fit_func == 'a_F1':\n f1_score = self.score\n mf1, mf1_v = f1_score.a_F1(base._y_klass, hy, base._mask_ts\n .index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'DotF1' or fit_func == 'g_F1':\n f1_score = self.score\n mf1, mf1_v = f1_score.g_F1(base._y_klass, hy, base._mask_ts\n .index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'DotRecallDotPrecision' or fit_func == 'g_g_recall_precision':\n f1_score = self.score\n mf1, mf1_v = f1_score.g_g_recall_precision(base._y_klass,\n hy, base._mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'BER' or fit_func == 'a_recall':\n f1_score = self.score\n mf1, mf1_v = f1_score.a_recall(base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'DotRecall' or fit_func == 'g_recall':\n f1_score = self.score\n mf1, mf1_v = f1_score.g_recall(base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'macro-Precision' or fit_func == 'a_precision':\n f1_score = self.score\n mf1, mf1_v = f1_score.a_precision(base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'DotPrecision' or fit_func == 'g_precision':\n f1_score = self.score\n mf1, mf1_v = f1_score.g_precision(base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'accDotMacroF1':\n f1_score = self.score\n mf1, mf1_v = f1_score.accDotMacroF1(base._y_klass, hy, base\n ._mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'macro-RecallF1':\n f1_score = self.score\n mf1, mf1_v = f1_score.macroRecallF1(base._y_klass, hy, base\n ._mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'F1':\n f1_score = self.score\n f1_index = self._base._F1_index\n index = self.min_class if f1_index < 0 else f1_index\n mf1, mf1_v = f1_score.F1(index, base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'RecallDotPrecision' or fit_func == 'g_recall_precision':\n f1_score = self.score\n mf1, mf1_v = f1_score.g_recall_precision(self.min_class,\n base._y_klass, hy, base._mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'ER' or fit_func == 'accuracy':\n f1_score = self.score\n mf1, mf1_v = f1_score.accuracy(base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n else:\n raise RuntimeError('Unknown fitness function %s' % base.\n _fitness_function)\n else:\n v.fitness = -base._ytr.SSE(v.hy * base._mask)\n elif base._multiple_outputs:\n _ = np.mean([a.SAE(b.mul(c)) for a, b, c in zip(base._ytr, v.hy,\n base._mask)])\n v.fitness = -_\n else:\n v.fitness = -base._ytr.SAE(v.hy * base._mask)\n",
"role": "user"
},
{
"content": "fitness",
"role": "assistant"
}
] |
def x(self, v):
base = self._base
if base._classifier:
if base._multiple_outputs:
v.fitness_vs = v._error
else:
v.fitness_vs = -((base.y - v.hy.sign()).sign().fabs() * base.
_mask_vs).sum()
else:
mask = base._mask
y = base.y
hy = v.hy
if not isinstance(mask, list):
mask = [mask]
y = [y]
hy = [hy]
fit = []
for _mask, _y, _hy in zip(mask, y, hy):
m = (_mask + -1).fabs()
x = _y * m
y = _hy * m
a = (x - y).sq().sum()
b = (x + -x.sum() / x.size()).sq().sum()
fit.append(-a / b)
v.fitness_vs = np.mean(fit)
|
fitness_vs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v):\n base = self._base\n if base._classifier:\n if base._multiple_outputs:\n v.fitness_vs = v._error\n else:\n v.fitness_vs = -((base.y - v.hy.sign()).sign().fabs() * base.\n _mask_vs).sum()\n else:\n mask = base._mask\n y = base.y\n hy = v.hy\n if not isinstance(mask, list):\n mask = [mask]\n y = [y]\n hy = [hy]\n fit = []\n for _mask, _y, _hy in zip(mask, y, hy):\n m = (_mask + -1).fabs()\n x = _y * m\n y = _hy * m\n a = (x - y).sq().sum()\n b = (x + -x.sum() / x.size()).sq().sum()\n fit.append(-a / b)\n v.fitness_vs = np.mean(fit)\n",
"role": "user"
},
{
"content": "fitness_vs",
"role": "assistant"
}
] |
def x(self, v):
base = self._base
self.fitness(v)
if not np.isfinite(v.fitness):
self.del_error(v)
return False
if base._tr_fraction < 1:
self.fitness_vs(v)
if not np.isfinite(v.fitness_vs):
self.del_error(v)
return False
self.del_error(v)
return True
|
set_fitness
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v):\n base = self._base\n self.fitness(v)\n if not np.isfinite(v.fitness):\n self.del_error(v)\n return False\n if base._tr_fraction < 1:\n self.fitness_vs(v)\n if not np.isfinite(v.fitness_vs):\n self.del_error(v)\n return False\n self.del_error(v)\n return True\n",
"role": "user"
},
{
"content": "set_fitness",
"role": "assistant"
}
] |
def x(retorno):
resposta = analisar_retorno(forcar_unicode(retorno), funcao=
'EnviarDadosVenda', classe_resposta=RespostaCancelarUltimaVenda,
campos=(('numeroSessao', int), ('EEEEE', unicode), ('CCCC', unicode
), ('mensagem', unicode), ('cod', unicode), ('mensagemSEFAZ',
unicode), ('arquivoCFeBase64', unicode), ('timeStamp', as_datetime),
('chaveConsulta', unicode), ('valorTotalCFe', Decimal), (
'CPFCNPJValue', unicode), ('assinaturaQRCODE', unicode)),
campos_alternativos=[(('numeroSessao', int), ('EEEEE', unicode), (
'CCCC', unicode), ('mensagem', unicode), ('cod', unicode), (
'mensagemSEFAZ', unicode)), RespostaSAT.CAMPOS])
if resposta.EEEEE not in ('07000',):
raise ExcecaoRespostaSAT(resposta)
return resposta
|
analisar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao=\n 'EnviarDadosVenda', classe_resposta=RespostaCancelarUltimaVenda,\n campos=(('numeroSessao', int), ('EEEEE', unicode), ('CCCC', unicode\n ), ('mensagem', unicode), ('cod', unicode), ('mensagemSEFAZ',\n unicode), ('arquivoCFeBase64', unicode), ('timeStamp', as_datetime),\n ('chaveConsulta', unicode), ('valorTotalCFe', Decimal), (\n 'CPFCNPJValue', unicode), ('assinaturaQRCODE', unicode)),\n campos_alternativos=[(('numeroSessao', int), ('EEEEE', unicode), (\n 'CCCC', unicode), ('mensagem', unicode), ('cod', unicode), (\n 'mensagemSEFAZ', unicode)), RespostaSAT.CAMPOS])\n if resposta.EEEEE not in ('07000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n",
"role": "user"
},
{
"content": "analisar",
"role": "assistant"
}
] |
def x(data_element) ->DataAndMetadata.DataAndMetadata:
data = data_element['data']
dimensional_shape = Image.dimensional_shape_from_data(data)
is_sequence = data_element.get('is_sequence', False)
dimension_count = len(Image.dimensional_shape_from_data(data))
adjusted_dimension_count = dimension_count - (1 if is_sequence else 0)
collection_dimension_count = data_element.get('collection_dimension_count',
2 if adjusted_dimension_count in (3, 4) else 0)
datum_dimension_count = data_element.get('datum_dimension_count',
adjusted_dimension_count - collection_dimension_count)
data_descriptor = DataAndMetadata.DataDescriptor(is_sequence,
collection_dimension_count, datum_dimension_count)
dimensional_calibrations = None
if 'spatial_calibrations' in data_element:
dimensional_calibrations_list = data_element.get('spatial_calibrations'
)
if len(dimensional_calibrations_list) == len(dimensional_shape):
dimensional_calibrations = list()
for dimension_calibration in dimensional_calibrations_list:
offset = float(dimension_calibration.get('offset', 0.0))
scale = float(dimension_calibration.get('scale', 1.0))
units = dimension_calibration.get('units', '')
units = str(units) if units is not None else str()
if scale != 0.0:
dimensional_calibrations.append(Calibration.Calibration
(offset, scale, units))
else:
dimensional_calibrations.append(Calibration.Calibration())
intensity_calibration = None
if 'intensity_calibration' in data_element:
intensity_calibration_dict = data_element.get('intensity_calibration')
offset = float(intensity_calibration_dict.get('offset', 0.0))
scale = float(intensity_calibration_dict.get('scale', 1.0))
units = intensity_calibration_dict.get('units', '')
units = str(units) if units is not None else str()
if scale != 0.0:
intensity_calibration = Calibration.Calibration(offset, scale,
units)
metadata = dict()
if 'metadata' in data_element:
metadata.update(Utility.clean_dict(data_element.get('metadata')))
if 'properties' in data_element and data_element['properties']:
hardware_source_metadata = metadata.setdefault('hardware_source',
dict())
hardware_source_metadata.update(Utility.clean_dict(data_element.get
('properties')))
timestamp = data_element.get('timestamp', datetime.datetime.utcnow())
datetime_item = data_element.get('datetime_modified', Utility.
get_datetime_item_from_utc_datetime(timestamp))
local_datetime = Utility.get_datetime_from_datetime_item(datetime_item)
dst_value = datetime_item.get('dst', '+00')
tz_value = datetime_item.get('tz', '+0000')
timezone = datetime_item.get('timezone')
time_zone = {'dst': dst_value, 'tz': tz_value}
if timezone is not None:
time_zone['timezone'] = timezone
tz_adjust = (int(tz_value[1:3]) * 60 + int(tz_value[3:5])) * (-1 if
tz_value[0] == '-' else 1)
utc_datetime = local_datetime - datetime.timedelta(minutes=tz_adjust)
timestamp = utc_datetime
return DataAndMetadata.new_data_and_metadata(data,
intensity_calibration=intensity_calibration,
dimensional_calibrations=dimensional_calibrations, metadata=
metadata, timestamp=timestamp, data_descriptor=data_descriptor,
timezone=timezone, timezone_offset=tz_value)
|
convert_data_element_to_data_and_metadata_1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_element) ->DataAndMetadata.DataAndMetadata:\n data = data_element['data']\n dimensional_shape = Image.dimensional_shape_from_data(data)\n is_sequence = data_element.get('is_sequence', False)\n dimension_count = len(Image.dimensional_shape_from_data(data))\n adjusted_dimension_count = dimension_count - (1 if is_sequence else 0)\n collection_dimension_count = data_element.get('collection_dimension_count',\n 2 if adjusted_dimension_count in (3, 4) else 0)\n datum_dimension_count = data_element.get('datum_dimension_count', \n adjusted_dimension_count - collection_dimension_count)\n data_descriptor = DataAndMetadata.DataDescriptor(is_sequence,\n collection_dimension_count, datum_dimension_count)\n dimensional_calibrations = None\n if 'spatial_calibrations' in data_element:\n dimensional_calibrations_list = data_element.get('spatial_calibrations'\n )\n if len(dimensional_calibrations_list) == len(dimensional_shape):\n dimensional_calibrations = list()\n for dimension_calibration in dimensional_calibrations_list:\n offset = float(dimension_calibration.get('offset', 0.0))\n scale = float(dimension_calibration.get('scale', 1.0))\n units = dimension_calibration.get('units', '')\n units = str(units) if units is not None else str()\n if scale != 0.0:\n dimensional_calibrations.append(Calibration.Calibration\n (offset, scale, units))\n else:\n dimensional_calibrations.append(Calibration.Calibration())\n intensity_calibration = None\n if 'intensity_calibration' in data_element:\n intensity_calibration_dict = data_element.get('intensity_calibration')\n offset = float(intensity_calibration_dict.get('offset', 0.0))\n scale = float(intensity_calibration_dict.get('scale', 1.0))\n units = intensity_calibration_dict.get('units', '')\n units = str(units) if units is not None else str()\n if scale != 0.0:\n intensity_calibration = Calibration.Calibration(offset, scale,\n units)\n metadata = dict()\n if 'metadata' in data_element:\n metadata.update(Utility.clean_dict(data_element.get('metadata')))\n if 'properties' in data_element and data_element['properties']:\n hardware_source_metadata = metadata.setdefault('hardware_source',\n dict())\n hardware_source_metadata.update(Utility.clean_dict(data_element.get\n ('properties')))\n timestamp = data_element.get('timestamp', datetime.datetime.utcnow())\n datetime_item = data_element.get('datetime_modified', Utility.\n get_datetime_item_from_utc_datetime(timestamp))\n local_datetime = Utility.get_datetime_from_datetime_item(datetime_item)\n dst_value = datetime_item.get('dst', '+00')\n tz_value = datetime_item.get('tz', '+0000')\n timezone = datetime_item.get('timezone')\n time_zone = {'dst': dst_value, 'tz': tz_value}\n if timezone is not None:\n time_zone['timezone'] = timezone\n tz_adjust = (int(tz_value[1:3]) * 60 + int(tz_value[3:5])) * (-1 if \n tz_value[0] == '-' else 1)\n utc_datetime = local_datetime - datetime.timedelta(minutes=tz_adjust)\n timestamp = utc_datetime\n return DataAndMetadata.new_data_and_metadata(data,\n intensity_calibration=intensity_calibration,\n dimensional_calibrations=dimensional_calibrations, metadata=\n metadata, timestamp=timestamp, data_descriptor=data_descriptor,\n timezone=timezone, timezone_offset=tz_value)\n",
"role": "user"
},
{
"content": "convert_data_element_to_data_and_metadata_1",
"role": "assistant"
}
] |
def x(self, csv_path, file_dict_key, out_path):
csv_file = csv_path + '{0}_{1}_{2}_{3}.csv'.format(file_dict_key, self.
ensemble_name, self.member, self.run_date.strftime(self.date_format))
if exists(csv_file):
csv_data = pd.read_csv(csv_file)
if self.inds is None:
lon_obj = csv_data.loc[:, 'Centroid_Lon']
lat_obj = csv_data.loc[:, 'Centroid_Lat']
self.inds = np.where((self.ne_lat >= lat_obj) & (self.sw_lat <=
lat_obj) & (self.ne_lon >= lon_obj) & (self.sw_lon <= lon_obj)
)[0]
if np.shape(self.inds)[0] > 0:
csv_data = csv_data.reindex(np.array(self.inds))
sector_csv_filename = out_path + '{0}_{1}_{2}_{3}.csv'.format(
file_dict_key, self.ensemble_name, self.member, self.
run_date.strftime(self.date_format))
print('Output sector csv file ' + sector_csv_filename)
csv_data.to_csv(sector_csv_filename, na_rep='nan', float_format
='%0.5f', index=False)
os.chmod(sector_csv_filename, 438)
else:
print('No {0} {1} sector data found'.format(self.member, self.
run_date.strftime('%Y%m%d')))
else:
print('No {0} {1} csv file found'.format(self.member, self.run_date
.strftime('%Y%m%d')))
return
|
output_sector_csv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, csv_path, file_dict_key, out_path):\n csv_file = csv_path + '{0}_{1}_{2}_{3}.csv'.format(file_dict_key, self.\n ensemble_name, self.member, self.run_date.strftime(self.date_format))\n if exists(csv_file):\n csv_data = pd.read_csv(csv_file)\n if self.inds is None:\n lon_obj = csv_data.loc[:, 'Centroid_Lon']\n lat_obj = csv_data.loc[:, 'Centroid_Lat']\n self.inds = np.where((self.ne_lat >= lat_obj) & (self.sw_lat <=\n lat_obj) & (self.ne_lon >= lon_obj) & (self.sw_lon <= lon_obj)\n )[0]\n if np.shape(self.inds)[0] > 0:\n csv_data = csv_data.reindex(np.array(self.inds))\n sector_csv_filename = out_path + '{0}_{1}_{2}_{3}.csv'.format(\n file_dict_key, self.ensemble_name, self.member, self.\n run_date.strftime(self.date_format))\n print('Output sector csv file ' + sector_csv_filename)\n csv_data.to_csv(sector_csv_filename, na_rep='nan', float_format\n ='%0.5f', index=False)\n os.chmod(sector_csv_filename, 438)\n else:\n print('No {0} {1} sector data found'.format(self.member, self.\n run_date.strftime('%Y%m%d')))\n else:\n print('No {0} {1} csv file found'.format(self.member, self.run_date\n .strftime('%Y%m%d')))\n return\n",
"role": "user"
},
{
"content": "output_sector_csv",
"role": "assistant"
}
] |
def x(self, netcdf_path, out_path, patch_radius, config):
nc_data = self.load_netcdf_data(netcdf_path, patch_radius)
if nc_data is not None:
out_filename = out_path + '{0}_{1}_{2}_model_patches.nc'.format(self
.ensemble_name, self.run_date.strftime(self.date_format), self.
member)
out_file = Dataset(out_filename, 'w')
out_file.createDimension('p', np.shape(nc_data.variables['p'])[0])
out_file.createDimension('row', np.shape(nc_data.variables['row'])[0])
out_file.createDimension('col', np.shape(nc_data.variables['col'])[0])
out_file.createVariable('p', 'i4', ('p',))
out_file.createVariable('row', 'i4', ('row',))
out_file.createVariable('col', 'i4', ('col',))
out_file.variables['p'][:] = nc_data.variables['p'][:]
out_file.variables['row'][:] = nc_data.variables['row'][:]
out_file.variables['col'][:] = nc_data.variables['col'][:]
out_file.Conventions = 'CF-1.6'
out_file.title = '{0} Storm Patches for run {1} member {2}'.format(self
.ensemble_name, self.run_date.strftime(self.date_format), self.
member)
out_file.object_variable = config.watershed_variable
meta_variables = ['lon', 'lat', 'i', 'j', 'x', 'y', 'masks']
meta_units = ['degrees_east', 'degrees_north', '', '', 'm', 'm', '']
center_vars = ['time', 'centroid_lon', 'centroid_lat', 'centroid_i',
'centroid_j', 'track_id', 'track_step']
center_units = ['hours since {0}'.format(self.run_date.strftime(
'%Y-%m-%d %H:%M:%S')), 'degrees_east', 'degrees_north', '', '',
'', '']
label_columns = ['Matched', 'Max_Hail_Size', 'Num_Matches', 'Shape',
'Location', 'Scale']
for m, meta_variable in enumerate(meta_variables):
if meta_variable in ['i', 'j', 'masks']:
dtype = 'i4'
else:
dtype = 'f4'
m_var = out_file.createVariable(meta_variable, dtype, ('p',
'row', 'col'), complevel=1, zlib=True)
m_var.long_name = meta_variable
m_var.units = meta_units[m]
for c, center_var in enumerate(center_vars):
if center_var in ['time', 'track_id', 'track_step']:
dtype = 'i4'
else:
dtype = 'f4'
c_var = out_file.createVariable(center_var, dtype, ('p',), zlib
=True, complevel=1)
c_var.long_name = center_var
c_var.units = center_units[c]
for storm_variable in config.storm_variables:
s_var = out_file.createVariable(storm_variable + '_curr', 'f4',
('p', 'row', 'col'), complevel=1, zlib=True)
s_var.long_name = storm_variable
s_var.units = ''
for potential_variable in config.potential_variables:
p_var = out_file.createVariable(potential_variable + '_prev',
'f4', ('p', 'row', 'col'), complevel=1, zlib=True)
p_var.long_name = potential_variable
p_var.units = ''
if config.train:
for label_column in label_columns:
if label_column in ['Matched', 'Num_Matches']:
dtype = 'i4'
else:
dtype = 'f4'
l_var = out_file.createVariable(label_column, dtype, ('p',),
zlib=True, complevel=1)
l_var.long_name = label_column
l_var.units = ''
out_file.variables['time'][:] = nc_data.variables['time'][:]
for c_var in ['lon', 'lat']:
out_file.variables['centroid_' + c_var][:] = nc_data.variables[
'centroid_' + c_var][:]
for c_var in ['i', 'j']:
out_file.variables['centroid_' + c_var][:] = nc_data.variables[
'centroid_' + c_var][:]
out_file.variables['track_id'][:] = nc_data.variables['track_id'][:]
out_file.variables['track_step'][:] = nc_data.variables['track_step'][:
]
for meta_var in meta_variables:
if meta_var in ['lon', 'lat']:
out_file.variables[meta_var][:] = nc_data.variables[meta_var][:
]
else:
out_file.variables[meta_var][:] = nc_data.variables[meta_var][:
]
for storm_variable in config.storm_variables:
out_file.variables[storm_variable + '_curr'][:
] = nc_data.variables[storm_variable + '_curr'][:]
for p_variable in config.potential_variables:
out_file.variables[p_variable + '_prev'][:] = nc_data.variables[
p_variable + '_prev'][:]
if config.train:
for label_column in label_columns:
try:
out_file.variables[label_column][:] = nc_data.variables[
label_column][:]
except:
out_file.variables[label_column][:] = 0
out_file.close()
print('Output sector nc file ' + out_filename)
else:
print('No {0} {1} netcdf file/sector data found'.format(self.member,
self.run_date.strftime('%Y%m%d')))
return
|
output_sector_netcdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, netcdf_path, out_path, patch_radius, config):\n nc_data = self.load_netcdf_data(netcdf_path, patch_radius)\n if nc_data is not None:\n out_filename = out_path + '{0}_{1}_{2}_model_patches.nc'.format(self\n .ensemble_name, self.run_date.strftime(self.date_format), self.\n member)\n out_file = Dataset(out_filename, 'w')\n out_file.createDimension('p', np.shape(nc_data.variables['p'])[0])\n out_file.createDimension('row', np.shape(nc_data.variables['row'])[0])\n out_file.createDimension('col', np.shape(nc_data.variables['col'])[0])\n out_file.createVariable('p', 'i4', ('p',))\n out_file.createVariable('row', 'i4', ('row',))\n out_file.createVariable('col', 'i4', ('col',))\n out_file.variables['p'][:] = nc_data.variables['p'][:]\n out_file.variables['row'][:] = nc_data.variables['row'][:]\n out_file.variables['col'][:] = nc_data.variables['col'][:]\n out_file.Conventions = 'CF-1.6'\n out_file.title = '{0} Storm Patches for run {1} member {2}'.format(self\n .ensemble_name, self.run_date.strftime(self.date_format), self.\n member)\n out_file.object_variable = config.watershed_variable\n meta_variables = ['lon', 'lat', 'i', 'j', 'x', 'y', 'masks']\n meta_units = ['degrees_east', 'degrees_north', '', '', 'm', 'm', '']\n center_vars = ['time', 'centroid_lon', 'centroid_lat', 'centroid_i',\n 'centroid_j', 'track_id', 'track_step']\n center_units = ['hours since {0}'.format(self.run_date.strftime(\n '%Y-%m-%d %H:%M:%S')), 'degrees_east', 'degrees_north', '', '',\n '', '']\n label_columns = ['Matched', 'Max_Hail_Size', 'Num_Matches', 'Shape',\n 'Location', 'Scale']\n for m, meta_variable in enumerate(meta_variables):\n if meta_variable in ['i', 'j', 'masks']:\n dtype = 'i4'\n else:\n dtype = 'f4'\n m_var = out_file.createVariable(meta_variable, dtype, ('p',\n 'row', 'col'), complevel=1, zlib=True)\n m_var.long_name = meta_variable\n m_var.units = meta_units[m]\n for c, center_var in enumerate(center_vars):\n if center_var in ['time', 'track_id', 'track_step']:\n dtype = 'i4'\n else:\n dtype = 'f4'\n c_var = out_file.createVariable(center_var, dtype, ('p',), zlib\n =True, complevel=1)\n c_var.long_name = center_var\n c_var.units = center_units[c]\n for storm_variable in config.storm_variables:\n s_var = out_file.createVariable(storm_variable + '_curr', 'f4',\n ('p', 'row', 'col'), complevel=1, zlib=True)\n s_var.long_name = storm_variable\n s_var.units = ''\n for potential_variable in config.potential_variables:\n p_var = out_file.createVariable(potential_variable + '_prev',\n 'f4', ('p', 'row', 'col'), complevel=1, zlib=True)\n p_var.long_name = potential_variable\n p_var.units = ''\n if config.train:\n for label_column in label_columns:\n if label_column in ['Matched', 'Num_Matches']:\n dtype = 'i4'\n else:\n dtype = 'f4'\n l_var = out_file.createVariable(label_column, dtype, ('p',),\n zlib=True, complevel=1)\n l_var.long_name = label_column\n l_var.units = ''\n out_file.variables['time'][:] = nc_data.variables['time'][:]\n for c_var in ['lon', 'lat']:\n out_file.variables['centroid_' + c_var][:] = nc_data.variables[\n 'centroid_' + c_var][:]\n for c_var in ['i', 'j']:\n out_file.variables['centroid_' + c_var][:] = nc_data.variables[\n 'centroid_' + c_var][:]\n out_file.variables['track_id'][:] = nc_data.variables['track_id'][:]\n out_file.variables['track_step'][:] = nc_data.variables['track_step'][:\n ]\n for meta_var in meta_variables:\n if meta_var in ['lon', 'lat']:\n out_file.variables[meta_var][:] = nc_data.variables[meta_var][:\n ]\n else:\n out_file.variables[meta_var][:] = nc_data.variables[meta_var][:\n ]\n for storm_variable in config.storm_variables:\n out_file.variables[storm_variable + '_curr'][:\n ] = nc_data.variables[storm_variable + '_curr'][:]\n for p_variable in config.potential_variables:\n out_file.variables[p_variable + '_prev'][:] = nc_data.variables[\n p_variable + '_prev'][:]\n if config.train:\n for label_column in label_columns:\n try:\n out_file.variables[label_column][:] = nc_data.variables[\n label_column][:]\n except:\n out_file.variables[label_column][:] = 0\n out_file.close()\n print('Output sector nc file ' + out_filename)\n else:\n print('No {0} {1} netcdf file/sector data found'.format(self.member,\n self.run_date.strftime('%Y%m%d')))\n return\n",
"role": "user"
},
{
"content": "output_sector_netcdf",
"role": "assistant"
}
] |
def x(d0, clean_item_fn=None):
clean_item_fn = clean_item_fn if clean_item_fn else clean_item
d = dict()
for key in d0:
cleaned_item = clean_item_fn(d0[key])
if cleaned_item is not None:
d[key] = cleaned_item
return d
|
clean_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d0, clean_item_fn=None):\n clean_item_fn = clean_item_fn if clean_item_fn else clean_item\n d = dict()\n for key in d0:\n cleaned_item = clean_item_fn(d0[key])\n if cleaned_item is not None:\n d[key] = cleaned_item\n return d\n",
"role": "user"
},
{
"content": "clean_dict",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.