source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(retorno): resposta = analisar_retorno(forcar_unicode(retorno), funcao='AtivarSAT', classe_resposta=RespostaAtivarSAT, campos=(('numeroSessao', int), ( 'EEEEE', unicode), ('mensagem', unicode), ('cod', unicode), ( 'mensagemSEFAZ', unicode), ('CSR', unicode)), campos_alternativos=[ RespostaSAT.CAMPOS]) if resposta.EEEEE not in (ATIVADO_CORRETAMENTE, CSR_ICPBRASIL_CRIADO_SUCESSO): raise ExcecaoRespostaSAT(resposta) return resposta
analisar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao='AtivarSAT',\n classe_resposta=RespostaAtivarSAT, campos=(('numeroSessao', int), (\n 'EEEEE', unicode), ('mensagem', unicode), ('cod', unicode), (\n 'mensagemSEFAZ', unicode), ('CSR', unicode)), campos_alternativos=[\n RespostaSAT.CAMPOS])\n if resposta.EEEEE not in (ATIVADO_CORRETAMENTE,\n CSR_ICPBRASIL_CRIADO_SUCESSO):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n", "role": "user" }, { "content": "analisar", "role": "assistant" } ]
def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool ]=None, buffer_size: int=1) ->ViewTask: ...
create_view_task
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool\n ]=None, buffer_size: int=1) ->ViewTask:\n ...\n", "role": "user" }, { "content": "create_view_task", "role": "assistant" } ]
def x(): default_yaml_str = snippets.get_snippet_content('hatchery.yml') ret = yaml.load(default_yaml_str, Loader=yaml.RoundTripLoader) for config_path in CONFIG_LOCATIONS: config_path = os.path.expanduser(config_path) if os.path.isfile(config_path): with open(config_path) as config_file: config_dict = yaml.load(config_file, Loader=yaml. RoundTripLoader) if config_dict is None: continue for k, v in config_dict.items(): if k not in ret.keys(): raise ConfigError('found garbage key "{}" in {}'. format(k, config_path)) ret[k] = v return ret
from_yaml
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n default_yaml_str = snippets.get_snippet_content('hatchery.yml')\n ret = yaml.load(default_yaml_str, Loader=yaml.RoundTripLoader)\n for config_path in CONFIG_LOCATIONS:\n config_path = os.path.expanduser(config_path)\n if os.path.isfile(config_path):\n with open(config_path) as config_file:\n config_dict = yaml.load(config_file, Loader=yaml.\n RoundTripLoader)\n if config_dict is None:\n continue\n for k, v in config_dict.items():\n if k not in ret.keys():\n raise ConfigError('found garbage key \"{}\" in {}'.\n format(k, config_path))\n ret[k] = v\n return ret\n", "role": "user" }, { "content": "from_yaml", "role": "assistant" } ]
def x(pypi_repository): ret = {} pypirc_locations = PYPIRC_LOCATIONS for pypirc_path in pypirc_locations: pypirc_path = os.path.expanduser(pypirc_path) if os.path.isfile(pypirc_path): parser = configparser.SafeConfigParser() parser.read(pypirc_path) if 'distutils' not in parser.sections(): continue if 'index-servers' not in parser.options('distutils'): continue if pypi_repository not in parser.get('distutils', 'index-servers'): continue if pypi_repository in parser.sections(): for option in parser.options(pypi_repository): ret[option] = parser.get(pypi_repository, option) if not ret: raise ConfigError( 'repository does not appear to be configured in pypirc ({})'. format(pypi_repository) + ', remember that it needs an entry in [distutils] and its own section' ) return ret
from_pypirc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pypi_repository):\n ret = {}\n pypirc_locations = PYPIRC_LOCATIONS\n for pypirc_path in pypirc_locations:\n pypirc_path = os.path.expanduser(pypirc_path)\n if os.path.isfile(pypirc_path):\n parser = configparser.SafeConfigParser()\n parser.read(pypirc_path)\n if 'distutils' not in parser.sections():\n continue\n if 'index-servers' not in parser.options('distutils'):\n continue\n if pypi_repository not in parser.get('distutils', 'index-servers'):\n continue\n if pypi_repository in parser.sections():\n for option in parser.options(pypi_repository):\n ret[option] = parser.get(pypi_repository, option)\n if not ret:\n raise ConfigError(\n 'repository does not appear to be configured in pypirc ({})'.\n format(pypi_repository) +\n ', remember that it needs an entry in [distutils] and its own section'\n )\n return ret\n", "role": "user" }, { "content": "from_pypirc", "role": "assistant" } ]
def x(index_url): pypirc_file = tempfile.NamedTemporaryFile(suffix='.pypirc', delete=False) print(pypirc_file.name) with open(pypirc_file.name, 'w') as fh: fh.write(PYPIRC_TEMPLATE.format(index_name=PYPIRC_TEMP_INDEX_NAME, index_url=index_url)) return pypirc_file.name
pypirc_temp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(index_url):\n pypirc_file = tempfile.NamedTemporaryFile(suffix='.pypirc', delete=False)\n print(pypirc_file.name)\n with open(pypirc_file.name, 'w') as fh:\n fh.write(PYPIRC_TEMPLATE.format(index_name=PYPIRC_TEMP_INDEX_NAME,\n index_url=index_url))\n return pypirc_file.name\n", "role": "user" }, { "content": "pypirc_temp", "role": "assistant" } ]
def x(version: str, ui_version: str=None) ->API_1: ui_version = ui_version if ui_version else '~1.0' return _get_api_with_app(version, ui_version, ApplicationModule.app)
get_api
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(version: str, ui_version: str=None) ->API_1:\n ui_version = ui_version if ui_version else '~1.0'\n return _get_api_with_app(version, ui_version, ApplicationModule.app)\n", "role": "user" }, { "content": "get_api", "role": "assistant" } ]
def x(self, shape: DataAndMetadata.ShapeType ) ->DataAndMetadata.DataAndMetadata: mask = self._graphic.get_mask(shape) return DataAndMetadata.DataAndMetadata.from_data(mask)
mask_xdata_with_shape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shape: DataAndMetadata.ShapeType\n ) ->DataAndMetadata.DataAndMetadata:\n mask = self._graphic.get_mask(shape)\n return DataAndMetadata.DataAndMetadata.from_data(mask)\n", "role": "user" }, { "content": "mask_xdata_with_shape", "role": "assistant" } ]
def x(self, value: typing.Union[float, NormPointType]) ->None: self.set_property('end', value)
end
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value: typing.Union[float, NormPointType]) ->None:\n self.set_property('end', value)\n", "role": "user" }, { "content": "end", "role": "assistant" } ]
def x(self, value: typing.Union[float, NormPointType]) ->None: self.set_property('start', value)
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value: typing.Union[float, NormPointType]) ->None:\n self.set_property('start', value)\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self, data: numpy.ndarray) ->None: self.__data_item.set_data(numpy.copy(data))
data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data: numpy.ndarray) ->None:\n self.__data_item.set_data(numpy.copy(data))\n", "role": "user" }, { "content": "data", "role": "assistant" } ]
def x(self) ->DataAndMetadata.DataAndMetadata: display_data_channel = self.__display_item.display_data_channel return display_data_channel.get_calculated_display_values(True ).display_data_and_metadata
display_xdata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->DataAndMetadata.DataAndMetadata:\n display_data_channel = self.__display_item.display_data_channel\n return display_data_channel.get_calculated_display_values(True\n ).display_data_and_metadata\n", "role": "user" }, { "content": "display_xdata", "role": "assistant" } ]
def x(self, dimensional_calibrations: typing.List[CalibrationModule. Calibration]) ->None: self.__data_item.set_dimensional_calibrations(dimensional_calibrations)
set_dimensional_calibrations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dimensional_calibrations: typing.List[CalibrationModule.\n Calibration]) ->None:\n self.__data_item.set_dimensional_calibrations(dimensional_calibrations)\n", "role": "user" }, { "content": "set_dimensional_calibrations", "role": "assistant" } ]
def x(self, key: str) ->typing.Any: return self._data_item.get_metadata_value(key)
get_metadata_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key: str) ->typing.Any:\n return self._data_item.get_metadata_value(key)\n", "role": "user" }, { "content": "get_metadata_value", "role": "assistant" } ]
def x(self, key: str, value: typing.Any) ->None: self._data_item.set_metadata_value(key, value)
set_metadata_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key: str, value: typing.Any) ->None:\n self._data_item.set_metadata_value(key, value)\n", "role": "user" }, { "content": "set_metadata_value", "role": "assistant" } ]
def x(self) ->typing.List[Graphic]: return [Graphic(graphic) for graphic in self.__display_item.graphics]
graphics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->typing.List[Graphic]:\n return [Graphic(graphic) for graphic in self.__display_item.graphics]\n", "role": "user" }, { "content": "graphics", "role": "assistant" } ]
def x(self, y: float, x: float) ->Graphic: graphic = Graphics.PointGraphic() graphic.position = Geometry.FloatPoint(y, x) self.__display_item.add_graphic(graphic) return Graphic(graphic)
add_point_region
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, y: float, x: float) ->Graphic:\n graphic = Graphics.PointGraphic()\n graphic.position = Geometry.FloatPoint(y, x)\n self.__display_item.add_graphic(graphic)\n return Graphic(graphic)\n", "role": "user" }, { "content": "add_point_region", "role": "assistant" } ]
def x(self) ->DataAndMetadata.DataAndMetadata: display_data_channel = self.__display_item.display_data_channel shape = display_data_channel.display_data_shape mask = numpy.zeros(shape) for graphic in self.__display_item.graphics: if isinstance(graphic, (Graphics.SpotGraphic, Graphics.WedgeGraphic, Graphics.RingGraphic, Graphics.LatticeGraphic)): mask = numpy.logical_or(mask, graphic.get_mask(shape)) return DataAndMetadata.DataAndMetadata.from_data(mask)
mask_xdata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->DataAndMetadata.DataAndMetadata:\n display_data_channel = self.__display_item.display_data_channel\n shape = display_data_channel.display_data_shape\n mask = numpy.zeros(shape)\n for graphic in self.__display_item.graphics:\n if isinstance(graphic, (Graphics.SpotGraphic, Graphics.WedgeGraphic,\n Graphics.RingGraphic, Graphics.LatticeGraphic)):\n mask = numpy.logical_or(mask, graphic.get_mask(shape))\n return DataAndMetadata.DataAndMetadata.from_data(mask)\n", "role": "user" }, { "content": "mask_xdata", "role": "assistant" } ]
def x(self) ->DataItem: display_panel = self.__display_panel if not display_panel: return None data_item = display_panel.data_item return DataItem(data_item) if data_item else None
data_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->DataItem:\n display_panel = self.__display_panel\n if not display_panel:\n return None\n data_item = display_panel.data_item\n return DataItem(data_item) if data_item else None\n", "role": "user" }, { "content": "data_item", "role": "assistant" } ]
def x(self, data_item: DataItem) ->None: display_panel = self.__display_panel if display_panel: display_item = (data_item._data_item.container. get_display_item_for_data_item(data_item._data_item) if data_item._data_item.container else None) display_panel.set_display_panel_display_item(display_item)
set_data_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item: DataItem) ->None:\n display_panel = self.__display_panel\n if display_panel:\n display_item = (data_item._data_item.container.\n get_display_item_for_data_item(data_item._data_item) if\n data_item._data_item.container else None)\n display_panel.set_display_panel_display_item(display_item)\n", "role": "user" }, { "content": "set_data_item", "role": "assistant" } ]
def x(self, data_item: DataItem) ->None: display_item = (data_item._data_item.container. get_display_item_for_data_item(data_item._data_item) if data_item. _data_item.container else None) if display_item: self.__data_group.append_display_item(display_item)
add_data_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item: DataItem) ->None:\n display_item = (data_item._data_item.container.\n get_display_item_for_data_item(data_item._data_item) if data_item.\n _data_item.container else None)\n if display_item:\n self.__data_group.append_display_item(display_item)\n", "role": "user" }, { "content": "add_data_item", "role": "assistant" } ]
def x(self) ->None: self.__data_channel_buffer.stop() self.__data_channel_buffer.close() self.__data_channel_buffer = None if not self.__was_playing: self.__hardware_source.stop_playing()
close
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n self.__data_channel_buffer.stop()\n self.__data_channel_buffer.close()\n self.__data_channel_buffer = None\n if not self.__was_playing:\n self.__hardware_source.stop_playing()\n", "role": "user" }, { "content": "close", "role": "assistant" } ]
def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool ]=None, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata ]: if frame_parameters: self.__hardware_source.set_record_frame_parameters(self. __hardware_source.get_frame_parameters_from_dict(frame_parameters)) if channels_enabled is not None: for channel_index, channel_enabled in enumerate(channels_enabled): self.__hardware_source.set_channel_enabled(channel_index, channel_enabled) self.__hardware_source.start_recording() return self.__hardware_source.get_next_xdatas_to_finish(timeout)
record
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool\n ]=None, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata\n ]:\n if frame_parameters:\n self.__hardware_source.set_record_frame_parameters(self.\n __hardware_source.get_frame_parameters_from_dict(frame_parameters))\n if channels_enabled is not None:\n for channel_index, channel_enabled in enumerate(channels_enabled):\n self.__hardware_source.set_channel_enabled(channel_index,\n channel_enabled)\n self.__hardware_source.start_recording()\n return self.__hardware_source.get_next_xdatas_to_finish(timeout)\n", "role": "user" }, { "content": "record", "role": "assistant" } ]
def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool ]=None) ->RecordTask: return RecordTask(self.__hardware_source, frame_parameters, channels_enabled)
create_record_task
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool\n ]=None) ->RecordTask:\n return RecordTask(self.__hardware_source, frame_parameters,\n channels_enabled)\n", "role": "user" }, { "content": "create_record_task", "role": "assistant" } ]
def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool ]=None, buffer_size: int=1) ->ViewTask: return ViewTask(self.__hardware_source, frame_parameters, channels_enabled, buffer_size)
create_view_task
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, frame_parameters: dict=None, channels_enabled: typing.List[bool\n ]=None, buffer_size: int=1) ->ViewTask:\n return ViewTask(self.__hardware_source, frame_parameters,\n channels_enabled, buffer_size)\n", "role": "user" }, { "content": "create_view_task", "role": "assistant" } ]
def x(self, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata ]: self.start_playing() return self.__hardware_source.get_next_xdatas_to_finish(timeout)
grab_next_to_finish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata\n ]:\n self.start_playing()\n return self.__hardware_source.get_next_xdatas_to_finish(timeout)\n", "role": "user" }, { "content": "grab_next_to_finish", "role": "assistant" } ]
def x(self, name: str, value: float, *, options: dict=None) ->None: self.__instrument.set_control_output(name, value, options)
set_control_output
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name: str, value: float, *, options: dict=None) ->None:\n self.__instrument.set_control_output(name, value, options)\n", "role": "user" }, { "content": "set_control_output", "role": "assistant" } ]
def x(self, name: str) ->float: return float(self.__instrument.get_property(name))
get_property_as_float
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name: str) ->float:\n return float(self.__instrument.get_property(name))\n", "role": "user" }, { "content": "get_property_as_float", "role": "assistant" } ]
def x(self, name: str, value: float) ->None: self.__instrument.set_property(name, float(value))
set_property_as_float
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name: str, value: float) ->None:\n self.__instrument.set_property(name, float(value))\n", "role": "user" }, { "content": "set_property_as_float", "role": "assistant" } ]
def x(self) ->typing.List[DataItem]: return [DataItem(data_item) for data_item in self.__document_model. data_items]
data_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->typing.List[DataItem]:\n return [DataItem(data_item) for data_item in self.__document_model.\n data_items]\n", "role": "user" }, { "content": "data_items", "role": "assistant" } ]
def x(self) ->typing.List[Display]: return [Display(display_item) for display_item in self.__document_model .display_items]
display_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->typing.List[Display]:\n return [Display(display_item) for display_item in self.__document_model\n .display_items]\n", "role": "user" }, { "content": "display_items", "role": "assistant" } ]
def x(self, data_item: DataItem) ->typing.List[DataItem]: return [DataItem(data_item) for data_item in self._document_model. get_source_data_items(data_item._data_item)] if data_item else None
get_source_data_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item: DataItem) ->typing.List[DataItem]:\n return [DataItem(data_item) for data_item in self._document_model.\n get_source_data_items(data_item._data_item)] if data_item else None\n", "role": "user" }, { "content": "get_source_data_items", "role": "assistant" } ]
def x(self, data_item: DataItem) ->typing.List[DataItem]: return [DataItem(data_item) for data_item in self._document_model. get_dependent_data_items(data_item._data_item)] if data_item else None
get_dependent_data_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item: DataItem) ->typing.List[DataItem]:\n return [DataItem(data_item) for data_item in self._document_model.\n get_dependent_data_items(data_item._data_item)] if data_item else None\n", "role": "user" }, { "content": "get_dependent_data_items", "role": "assistant" } ]
def x(self, title: str=None) ->DataItem: data_item = DataItemModule.DataItem() data_item.ensure_data_source() if title is not None: data_item.title = title self.__document_model.append_data_item(data_item) return DataItem(data_item)
create_data_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, title: str=None) ->DataItem:\n data_item = DataItemModule.DataItem()\n data_item.ensure_data_source()\n if title is not None:\n data_item.title = title\n self.__document_model.append_data_item(data_item)\n return DataItem(data_item)\n", "role": "user" }, { "content": "create_data_item", "role": "assistant" } ]
def x(self, data: numpy.ndarray, title: str=None) ->DataItem: return self.create_data_item_from_data_and_metadata(DataAndMetadata. DataAndMetadata.from_data(data), title)
create_data_item_from_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data: numpy.ndarray, title: str=None) ->DataItem:\n return self.create_data_item_from_data_and_metadata(DataAndMetadata.\n DataAndMetadata.from_data(data), title)\n", "role": "user" }, { "content": "create_data_item_from_data", "role": "assistant" } ]
def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, title: str=None ) ->DataItem: data_item = DataItemModule.new_data_item(data_and_metadata) if title is not None: data_item.title = title self.__document_model.append_data_item(data_item) return DataItem(data_item)
create_data_item_from_data_and_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, title: str=None\n ) ->DataItem:\n data_item = DataItemModule.new_data_item(data_and_metadata)\n if title is not None:\n data_item.title = title\n self.__document_model.append_data_item(data_item)\n return DataItem(data_item)\n", "role": "user" }, { "content": "create_data_item_from_data_and_metadata", "role": "assistant" } ]
def x(self, data_item: DataItem) ->DataItem: data_item = copy.deepcopy(data_item._data_item) self.__document_model.append_data_item(data_item) return DataItem(data_item)
copy_data_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item: DataItem) ->DataItem:\n data_item = copy.deepcopy(data_item._data_item)\n self.__document_model.append_data_item(data_item)\n return DataItem(data_item)\n", "role": "user" }, { "content": "copy_data_item", "role": "assistant" } ]
def x(self, data_item: DataItem) ->DataItem: data_item = data_item._data_item.snapshot() self.__document_model.append_data_item(data_item) return DataItem(data_item)
snapshot_data_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item: DataItem) ->DataItem:\n data_item = data_item._data_item.snapshot()\n self.__document_model.append_data_item(data_item)\n return DataItem(data_item)\n", "role": "user" }, { "content": "snapshot_data_item", "role": "assistant" } ]
def x(self, title: str) ->DataGroup: return DataGroup(self.__document_model.get_or_create_data_group(title))
get_or_create_data_group
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, title: str) ->DataGroup:\n return DataGroup(self.__document_model.get_or_create_data_group(title))\n", "role": "user" }, { "content": "get_or_create_data_group", "role": "assistant" } ]
def x(self, hardware_source, channel_id: str=None, processor_id: str=None, create_if_needed: bool=False, large_format: bool=False) ->DataItem: assert hardware_source is not None hardware_source_id = hardware_source._hardware_source.hardware_source_id document_model = self._document_model data_item_reference_key = document_model.make_data_item_reference_key( hardware_source_id, channel_id, processor_id) return self.get_data_item_for_reference_key(data_item_reference_key, create_if_needed=create_if_needed, large_format=large_format)
get_data_item_for_hardware_source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, hardware_source, channel_id: str=None, processor_id: str=None,\n create_if_needed: bool=False, large_format: bool=False) ->DataItem:\n assert hardware_source is not None\n hardware_source_id = hardware_source._hardware_source.hardware_source_id\n document_model = self._document_model\n data_item_reference_key = document_model.make_data_item_reference_key(\n hardware_source_id, channel_id, processor_id)\n return self.get_data_item_for_reference_key(data_item_reference_key,\n create_if_needed=create_if_needed, large_format=large_format)\n", "role": "user" }, { "content": "get_data_item_for_hardware_source", "role": "assistant" } ]
def x(self, data_item_reference_key: str=None, create_if_needed: bool=False, large_format: bool=False) ->DataItem: document_model = self._document_model data_item_reference = document_model.get_data_item_reference( data_item_reference_key) data_item = data_item_reference.data_item if data_item is None and create_if_needed: data_item = DataItemModule.DataItem(large_format=large_format) data_item.ensure_data_source() document_model.append_data_item(data_item) document_model.setup_channel(data_item_reference_key, data_item) data_item.session_id = document_model.session_id data_item = document_model.get_data_item_reference( data_item_reference_key).data_item return DataItem(data_item) if data_item else None
get_data_item_for_reference_key
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item_reference_key: str=None, create_if_needed: bool=False,\n large_format: bool=False) ->DataItem:\n document_model = self._document_model\n data_item_reference = document_model.get_data_item_reference(\n data_item_reference_key)\n data_item = data_item_reference.data_item\n if data_item is None and create_if_needed:\n data_item = DataItemModule.DataItem(large_format=large_format)\n data_item.ensure_data_source()\n document_model.append_data_item(data_item)\n document_model.setup_channel(data_item_reference_key, data_item)\n data_item.session_id = document_model.session_id\n data_item = document_model.get_data_item_reference(\n data_item_reference_key).data_item\n return DataItem(data_item) if data_item else None\n", "role": "user" }, { "content": "get_data_item_for_reference_key", "role": "assistant" } ]
def x(self, data_item_uuid: uuid_module.UUID) ->DataItem: data_item = self._document_model.get_data_item_by_uuid(data_item_uuid) return DataItem(data_item) if data_item else None
get_data_item_by_uuid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item_uuid: uuid_module.UUID) ->DataItem:\n data_item = self._document_model.get_data_item_by_uuid(data_item_uuid)\n return DataItem(data_item) if data_item else None\n", "role": "user" }, { "content": "get_data_item_by_uuid", "role": "assistant" } ]
def x(self, graphic_uuid: uuid_module.UUID) ->Graphic: for display_item in self._document_model.display_items: for graphic in display_item.graphics: if graphic.uuid == graphic_uuid: return Graphic(graphic) return None
get_graphic_by_uuid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, graphic_uuid: uuid_module.UUID) ->Graphic:\n for display_item in self._document_model.display_items:\n for graphic in display_item.graphics:\n if graphic.uuid == graphic_uuid:\n return Graphic(graphic)\n return None\n", "role": "user" }, { "content": "get_graphic_by_uuid", "role": "assistant" } ]
def x(self, key: str) ->bool: desc = Metadata.session_key_map.get(key) if desc is not None: field_id = desc['path'][-1] return bool(getattr(ApplicationData.get_session_metadata_model(), field_id, None)) return False
has_library_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key: str) ->bool:\n desc = Metadata.session_key_map.get(key)\n if desc is not None:\n field_id = desc['path'][-1]\n return bool(getattr(ApplicationData.get_session_metadata_model(),\n field_id, None))\n return False\n", "role": "user" }, { "content": "has_library_value", "role": "assistant" } ]
def x(self, key: str) ->typing.Any: desc = Metadata.session_key_map.get(key) if desc is not None: field_id = desc['path'][-1] return getattr(ApplicationData.get_session_metadata_model(), field_id) raise KeyError()
get_library_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key: str) ->typing.Any:\n desc = Metadata.session_key_map.get(key)\n if desc is not None:\n field_id = desc['path'][-1]\n return getattr(ApplicationData.get_session_metadata_model(), field_id)\n raise KeyError()\n", "role": "user" }, { "content": "get_library_value", "role": "assistant" } ]
def x(self, key: str, value: typing.Any) ->None: desc = Metadata.session_key_map.get(key) if desc is not None: field_id = desc['path'][-1] setattr(ApplicationData.get_session_metadata_model(), field_id, value) return raise KeyError()
set_library_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key: str, value: typing.Any) ->None:\n desc = Metadata.session_key_map.get(key)\n if desc is not None:\n field_id = desc['path'][-1]\n setattr(ApplicationData.get_session_metadata_model(), field_id, value)\n return\n raise KeyError()\n", "role": "user" }, { "content": "set_library_value", "role": "assistant" } ]
def x(self, key: str) ->None: desc = Metadata.session_key_map.get(key) if desc is not None: field_id = desc['path'][-1] setattr(ApplicationData.get_session_metadata_model(), field_id, None) return raise KeyError()
delete_library_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key: str) ->None:\n desc = Metadata.session_key_map.get(key)\n if desc is not None:\n field_id = desc['path'][-1]\n setattr(ApplicationData.get_session_metadata_model(), field_id, None)\n return\n raise KeyError()\n", "role": "user" }, { "content": "delete_library_value", "role": "assistant" } ]
def x(self) ->typing.List[DisplayPanel]: return [DisplayPanel(display_panel) for display_panel in self. __document_controller.workspace_controller.display_panels]
all_display_panels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->typing.List[DisplayPanel]:\n return [DisplayPanel(display_panel) for display_panel in self.\n __document_controller.workspace_controller.display_panels]\n", "role": "user" }, { "content": "all_display_panels", "role": "assistant" } ]
def x(self, identifier: str) ->DisplayPanel: display_panel = next((display_panel for display_panel in self. __document_controller.workspace_controller.display_panels if display_panel.identifier.lower() == identifier.lower()), None) return DisplayPanel(display_panel) if display_panel else None
get_display_panel_by_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, identifier: str) ->DisplayPanel:\n display_panel = next((display_panel for display_panel in self.\n __document_controller.workspace_controller.display_panels if \n display_panel.identifier.lower() == identifier.lower()), None)\n return DisplayPanel(display_panel) if display_panel else None\n", "role": "user" }, { "content": "get_display_panel_by_id", "role": "assistant" } ]
def x(self, data_item: DataItem, source_display_panel=None, source_data_item=None): for display_panel in self.__document_controller.workspace_controller.display_panels: if display_panel.data_item == data_item._data_item: display_panel.request_focus() return DisplayPanel(display_panel) result_display_panel = (self.__document_controller. next_result_display_panel()) if result_display_panel: display_item = (self.__document_controller.document_model. get_display_item_for_data_item(data_item._data_item)) result_display_panel.set_display_panel_display_item(display_item) result_display_panel.request_focus() return DisplayPanel(result_display_panel) return None
display_data_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item: DataItem, source_display_panel=None,\n source_data_item=None):\n for display_panel in self.__document_controller.workspace_controller.display_panels:\n if display_panel.data_item == data_item._data_item:\n display_panel.request_focus()\n return DisplayPanel(display_panel)\n result_display_panel = (self.__document_controller.\n next_result_display_panel())\n if result_display_panel:\n display_item = (self.__document_controller.document_model.\n get_display_item_for_data_item(data_item._data_item))\n result_display_panel.set_display_panel_display_item(display_item)\n result_display_panel.request_focus()\n return DisplayPanel(result_display_panel)\n return None\n", "role": "user" }, { "content": "display_data_item", "role": "assistant" } ]
def x(self, caption: str, text: str, accepted_fn, rejected_fn=None, accepted_text: str=None, rejected_text: str=None) ->None: workspace = self.__document_controller.workspace_controller workspace.pose_get_string_message_box(caption, text, accepted_fn, rejected_fn, accepted_text, rejected_text)
show_get_string_message_box
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, caption: str, text: str, accepted_fn, rejected_fn=None,\n accepted_text: str=None, rejected_text: str=None) ->None:\n workspace = self.__document_controller.workspace_controller\n workspace.pose_get_string_message_box(caption, text, accepted_fn,\n rejected_fn, accepted_text, rejected_text)\n", "role": "user" }, { "content": "show_get_string_message_box", "role": "assistant" } ]
def x(self, data: numpy.ndarray, title: str=None) ->DataItem: return DataItem(self.__document_controller.add_data(data, title))
create_data_item_from_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data: numpy.ndarray, title: str=None) ->DataItem:\n return DataItem(self.__document_controller.add_data(data, title))\n", "role": "user" }, { "content": "create_data_item_from_data", "role": "assistant" } ]
def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, title: str=None ) ->DataItem: data_item = DataItemModule.new_data_item(data_and_metadata) if title is not None: data_item.title = title self.__document_controller.document_model.append_data_item(data_item) return DataItem(data_item)
create_data_item_from_data_and_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, title: str=None\n ) ->DataItem:\n data_item = DataItemModule.new_data_item(data_and_metadata)\n if title is not None:\n data_item.title = title\n self.__document_controller.document_model.append_data_item(data_item)\n return DataItem(data_item)\n", "role": "user" }, { "content": "create_data_item_from_data_and_metadata", "role": "assistant" } ]
def x(self, title: str) ->DataGroup: return DataGroup(self.__document_controller.document_model. get_or_create_data_group(title))
get_or_create_data_group
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, title: str) ->DataGroup:\n return DataGroup(self.__document_controller.document_model.\n get_or_create_data_group(title))\n", "role": "user" }, { "content": "get_or_create_data_group", "role": "assistant" } ]
def x(self) ->typing.List[DocumentWindow]: return [DocumentWindow(document_controller) for document_controller in self.__application.document_controllers]
document_windows
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->typing.List[DocumentWindow]:\n return [DocumentWindow(document_controller) for document_controller in\n self.__application.document_controllers]\n", "role": "user" }, { "content": "document_windows", "role": "assistant" } ]
def x(self, offset: float=None, scale: float=None, units: str=None ) ->CalibrationModule.Calibration: return CalibrationModule.Calibration(offset, scale, units)
create_calibration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, offset: float=None, scale: float=None, units: str=None\n ) ->CalibrationModule.Calibration:\n return CalibrationModule.Calibration(offset, scale, units)\n", "role": "user" }, { "content": "create_calibration", "role": "assistant" } ]
def x(self, is_sequence: bool, collection_dimension_count: int, datum_dimension_count: int) ->DataAndMetadata.DataDescriptor: return DataAndMetadata.DataDescriptor(is_sequence, collection_dimension_count, datum_dimension_count)
create_data_descriptor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, is_sequence: bool, collection_dimension_count: int,\n datum_dimension_count: int) ->DataAndMetadata.DataDescriptor:\n return DataAndMetadata.DataDescriptor(is_sequence,\n collection_dimension_count, datum_dimension_count)\n", "role": "user" }, { "content": "create_data_descriptor", "role": "assistant" } ]
def x(self, data: numpy.ndarray, intensity_calibration: CalibrationModule. Calibration=None, dimensional_calibrations: typing.List[ CalibrationModule.Calibration]=None, metadata: dict=None, timestamp: str=None, data_descriptor: DataAndMetadata.DataDescriptor=None ) ->DataAndMetadata.DataAndMetadata: return DataAndMetadata.new_data_and_metadata(data, intensity_calibration, dimensional_calibrations, metadata, timestamp, data_descriptor)
create_data_and_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data: numpy.ndarray, intensity_calibration: CalibrationModule.\n Calibration=None, dimensional_calibrations: typing.List[\n CalibrationModule.Calibration]=None, metadata: dict=None, timestamp:\n str=None, data_descriptor: DataAndMetadata.DataDescriptor=None\n ) ->DataAndMetadata.DataAndMetadata:\n return DataAndMetadata.new_data_and_metadata(data,\n intensity_calibration, dimensional_calibrations, metadata,\n timestamp, data_descriptor)\n", "role": "user" }, { "content": "create_data_and_metadata", "role": "assistant" } ]
def x(self, data: numpy.ndarray, intensity_calibration: CalibrationModule. Calibration=None, dimensional_calibrations: typing.List[ CalibrationModule.Calibration]=None, metadata: dict=None, timestamp: str=None) ->DataAndMetadata.DataAndMetadata: return self.create_data_and_metadata(numpy.copy(data), intensity_calibration, dimensional_calibrations, metadata, timestamp)
create_data_and_metadata_from_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data: numpy.ndarray, intensity_calibration: CalibrationModule.\n Calibration=None, dimensional_calibrations: typing.List[\n CalibrationModule.Calibration]=None, metadata: dict=None, timestamp:\n str=None) ->DataAndMetadata.DataAndMetadata:\n return self.create_data_and_metadata(numpy.copy(data),\n intensity_calibration, dimensional_calibrations, metadata, timestamp)\n", "role": "user" }, { "content": "create_data_and_metadata_from_data", "role": "assistant" } ]
def x(self, io_handler_delegate): class DelegateIOHandler(ImportExportManager.ImportExportHandler): def x(self): super().__init__(io_handler_delegate.io_handler_id, io_handler_delegate.io_handler_name, io_handler_delegate. io_handler_extensions) def x(self, ui, extension, file_path): data_and_metadata = io_handler_delegate.read_data_and_metadata( extension, file_path) data_element = (ImportExportManager. create_data_element_from_extended_data(data_and_metadata)) return [data_element] def x(self, data_and_metadata, extension): return io_handler_delegate.can_write_data_and_metadata( data_and_metadata, extension) def x(self, ui, display_item: DisplayItemModule.DisplayItem, file_path: str, extension: str) ->None: data_item = display_item.data_item if data_item: self.write_data_item(ui, data_item, file_path, extension) def x(self, ui, data_item, file_path, extension): data_and_metadata = data_item.xdata data = data_and_metadata.data if data is not None: if hasattr(io_handler_delegate, 'write_data_item'): io_handler_delegate.write_data_item(DataItem(data_item), file_path, extension) else: assert hasattr(io_handler_delegate, 'write_data_and_metadata') io_handler_delegate.write_data_and_metadata( data_and_metadata, file_path, extension) class IOHandlerReference: def x(self): self.__io_handler_delegate = io_handler_delegate self.__io_handler = DelegateIOHandler() ImportExportManager.ImportExportManager().register_io_handler(self .__io_handler) def x(self): self.close() def x(self): if self.__io_handler_delegate: io_handler_delegate_close_fn = getattr(self. __io_handler_delegate, 'close', None) if io_handler_delegate_close_fn: io_handler_delegate_close_fn() ImportExportManager.ImportExportManager( ).unregister_io_handler(self.__io_handler) self.__io_handler_delegate = None return IOHandlerReference()
create_data_and_metadata_io_handler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, io_handler_delegate):\n\n\n class DelegateIOHandler(ImportExportManager.ImportExportHandler):\n\n def x(self):\n super().__init__(io_handler_delegate.io_handler_id,\n io_handler_delegate.io_handler_name, io_handler_delegate.\n io_handler_extensions)\n\n def x(self, ui, extension, file_path):\n data_and_metadata = io_handler_delegate.read_data_and_metadata(\n extension, file_path)\n data_element = (ImportExportManager.\n create_data_element_from_extended_data(data_and_metadata))\n return [data_element]\n\n def x(self, data_and_metadata, extension):\n return io_handler_delegate.can_write_data_and_metadata(\n data_and_metadata, extension)\n\n def x(self, ui, display_item: DisplayItemModule.DisplayItem,\n file_path: str, extension: str) ->None:\n data_item = display_item.data_item\n if data_item:\n self.write_data_item(ui, data_item, file_path, extension)\n\n def x(self, ui, data_item, file_path, extension):\n data_and_metadata = data_item.xdata\n data = data_and_metadata.data\n if data is not None:\n if hasattr(io_handler_delegate, 'write_data_item'):\n io_handler_delegate.write_data_item(DataItem(data_item),\n file_path, extension)\n else:\n assert hasattr(io_handler_delegate,\n 'write_data_and_metadata')\n io_handler_delegate.write_data_and_metadata(\n data_and_metadata, file_path, extension)\n\n\n class IOHandlerReference:\n\n def x(self):\n self.__io_handler_delegate = io_handler_delegate\n self.__io_handler = DelegateIOHandler()\n ImportExportManager.ImportExportManager().register_io_handler(self\n .__io_handler)\n\n def x(self):\n self.close()\n\n def x(self):\n if self.__io_handler_delegate:\n io_handler_delegate_close_fn = getattr(self.\n __io_handler_delegate, 'close', None)\n if io_handler_delegate_close_fn:\n io_handler_delegate_close_fn()\n ImportExportManager.ImportExportManager(\n ).unregister_io_handler(self.__io_handler)\n self.__io_handler_delegate = None\n return IOHandlerReference()\n", "role": "user" }, { "content": "create_data_and_metadata_io_handler", "role": "assistant" } ]
def x(self, panel_delegate): panel_id = panel_delegate.panel_id panel_name = panel_delegate.panel_name panel_positions = getattr(panel_delegate, 'panel_positions', ['left', 'right']) panel_position = getattr(panel_delegate, 'panel_position', 'none') properties = getattr(panel_delegate, 'panel_properties', None) workspace_manager = Workspace.WorkspaceManager() def x(document_controller, panel_id, properties): panel = Panel(document_controller, panel_id, properties) ui = UserInterface(self.__ui_version, document_controller.ui) document_controller = DocumentWindow(document_controller) panel.widget = panel_delegate.create_panel_widget(ui, document_controller)._widget return panel class PanelReference: def x(self): self.__panel_delegate = panel_delegate workspace_manager.register_panel(create_facade_panel, panel_id, panel_name, panel_positions, panel_position, properties) def x(self): self.close() def x(self): if self.__panel_delegate: panel_delegate_close_fn = getattr(self.__panel_delegate, 'close', None) if panel_delegate_close_fn: panel_delegate_close_fn() workspace_manager.unregister_panel(panel_id) self.__panel_delegate = None return PanelReference()
create_panel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, panel_delegate):\n panel_id = panel_delegate.panel_id\n panel_name = panel_delegate.panel_name\n panel_positions = getattr(panel_delegate, 'panel_positions', ['left',\n 'right'])\n panel_position = getattr(panel_delegate, 'panel_position', 'none')\n properties = getattr(panel_delegate, 'panel_properties', None)\n workspace_manager = Workspace.WorkspaceManager()\n\n def x(document_controller, panel_id, properties):\n panel = Panel(document_controller, panel_id, properties)\n ui = UserInterface(self.__ui_version, document_controller.ui)\n document_controller = DocumentWindow(document_controller)\n panel.widget = panel_delegate.create_panel_widget(ui,\n document_controller)._widget\n return panel\n\n\n class PanelReference:\n\n def x(self):\n self.__panel_delegate = panel_delegate\n workspace_manager.register_panel(create_facade_panel, panel_id,\n panel_name, panel_positions, panel_position, properties)\n\n def x(self):\n self.close()\n\n def x(self):\n if self.__panel_delegate:\n panel_delegate_close_fn = getattr(self.__panel_delegate,\n 'close', None)\n if panel_delegate_close_fn:\n panel_delegate_close_fn()\n workspace_manager.unregister_panel(panel_id)\n self.__panel_delegate = None\n return PanelReference()\n", "role": "user" }, { "content": "create_panel", "role": "assistant" } ]
def x(self, hardware_source_id: str, version: str): actual_version = '1.0.0' if Utility.compare_versions(version, actual_version) > 0: raise NotImplementedError( 'Hardware API requested version %s is greater than %s.' % ( version, actual_version)) hardware_source = HardwareSourceModule.HardwareSourceManager( ).get_hardware_source_for_hardware_source_id(hardware_source_id) return HardwareSource(hardware_source) if hardware_source else None
get_hardware_source_by_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, hardware_source_id: str, version: str):\n actual_version = '1.0.0'\n if Utility.compare_versions(version, actual_version) > 0:\n raise NotImplementedError(\n 'Hardware API requested version %s is greater than %s.' % (\n version, actual_version))\n hardware_source = HardwareSourceModule.HardwareSourceManager(\n ).get_hardware_source_for_hardware_source_id(hardware_source_id)\n return HardwareSource(hardware_source) if hardware_source else None\n", "role": "user" }, { "content": "get_hardware_source_by_id", "role": "assistant" } ]
def x(self) ->Library: assert self.__app.document_model return Library(self.__app.document_model)
library
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Library:\n assert self.__app.document_model\n return Library(self.__app.document_model)\n", "role": "user" }, { "content": "library", "role": "assistant" } ]
def x(profit_matrix, inversion_function): cost_matrix = [] for row in profit_matrix: cost_matrix.append([inversion_function(value) for value in row]) return cost_matrix
make_cost_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(profit_matrix, inversion_function):\n cost_matrix = []\n for row in profit_matrix:\n cost_matrix.append([inversion_function(value) for value in row])\n return cost_matrix\n", "role": "user" }, { "content": "make_cost_matrix", "role": "assistant" } ]
def x(matrix, msg=None): import math if msg is not None: print(msg) width = 0 for row in matrix: for val in row: width = max(width, int(math.log10(val)) + 1) format = '%%%dd' % width for row in matrix: sep = '[' for val in row: sys.stdout.write(sep + format % val) sep = ', ' sys.stdout.write(']\n')
print_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(matrix, msg=None):\n import math\n if msg is not None:\n print(msg)\n width = 0\n for row in matrix:\n for val in row:\n width = max(width, int(math.log10(val)) + 1)\n format = '%%%dd' % width\n for row in matrix:\n sep = '['\n for val in row:\n sys.stdout.write(sep + format % val)\n sep = ', '\n sys.stdout.write(']\\n')\n", "role": "user" }, { "content": "print_matrix", "role": "assistant" } ]
def x(self, matrix, pad_value=0): max_columns = 0 total_rows = len(matrix) for row in matrix: max_columns = max(max_columns, len(row)) total_rows = max(max_columns, total_rows) new_matrix = [] for row in matrix: row_len = len(row) new_row = row[:] if total_rows > row_len: new_row += [pad_value] * (total_rows - row_len) new_matrix += [new_row] while len(new_matrix) < total_rows: new_matrix += [[pad_value] * total_rows] return new_matrix
pad_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, matrix, pad_value=0):\n max_columns = 0\n total_rows = len(matrix)\n for row in matrix:\n max_columns = max(max_columns, len(row))\n total_rows = max(max_columns, total_rows)\n new_matrix = []\n for row in matrix:\n row_len = len(row)\n new_row = row[:]\n if total_rows > row_len:\n new_row += [pad_value] * (total_rows - row_len)\n new_matrix += [new_row]\n while len(new_matrix) < total_rows:\n new_matrix += [[pad_value] * total_rows]\n return new_matrix\n", "role": "user" }, { "content": "pad_matrix", "role": "assistant" } ]
def x(self, cost_matrix): self.C = self.pad_matrix(cost_matrix) self.n = len(self.C) self.original_length = len(cost_matrix) self.original_width = len(cost_matrix[0]) self.row_covered = [(False) for i in range(self.n)] self.col_covered = [(False) for i in range(self.n)] self.Z0_r = 0 self.Z0_c = 0 self.path = self.__make_matrix(self.n * 2, 0) self.marked = self.__make_matrix(self.n, 0) done = False step = 1 steps = {(1): self.__step1, (2): self.__step2, (3): self.__step3, (4): self.__step4, (5): self.__step5, (6): self.__step6} while not done: try: func = steps[step] step = func() except KeyError: done = True results = [] for i in range(self.original_length): for j in range(self.original_width): if self.marked[i][j] == 1: results += [(i, j)] return results
compute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cost_matrix):\n self.C = self.pad_matrix(cost_matrix)\n self.n = len(self.C)\n self.original_length = len(cost_matrix)\n self.original_width = len(cost_matrix[0])\n self.row_covered = [(False) for i in range(self.n)]\n self.col_covered = [(False) for i in range(self.n)]\n self.Z0_r = 0\n self.Z0_c = 0\n self.path = self.__make_matrix(self.n * 2, 0)\n self.marked = self.__make_matrix(self.n, 0)\n done = False\n step = 1\n steps = {(1): self.__step1, (2): self.__step2, (3): self.__step3, (4):\n self.__step4, (5): self.__step5, (6): self.__step6}\n while not done:\n try:\n func = steps[step]\n step = func()\n except KeyError:\n done = True\n results = []\n for i in range(self.original_length):\n for j in range(self.original_width):\n if self.marked[i][j] == 1:\n results += [(i, j)]\n return results\n", "role": "user" }, { "content": "compute", "role": "assistant" } ]
def x(self, n, val): matrix = [] for i in range(n): matrix += [[val for j in range(n)]] return matrix
make_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, val):\n matrix = []\n for i in range(n):\n matrix += [[val for j in range(n)]]\n return matrix\n", "role": "user" }, { "content": "make_matrix", "role": "assistant" } ]
def x(self): C = self.C n = self.n for i in range(n): minval = min(self.C[i]) for j in range(n): self.C[i][j] -= minval return 2
step1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n C = self.C\n n = self.n\n for i in range(n):\n minval = min(self.C[i])\n for j in range(n):\n self.C[i][j] -= minval\n return 2\n", "role": "user" }, { "content": "step1", "role": "assistant" } ]
def x(self): n = self.n for i in range(n): for j in range(n): if self.C[i][j] == 0 and not self.col_covered[j ] and not self.row_covered[i]: self.marked[i][j] = 1 self.col_covered[j] = True self.row_covered[i] = True self.__clear_covers() return 3
step2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n n = self.n\n for i in range(n):\n for j in range(n):\n if self.C[i][j] == 0 and not self.col_covered[j\n ] and not self.row_covered[i]:\n self.marked[i][j] = 1\n self.col_covered[j] = True\n self.row_covered[i] = True\n self.__clear_covers()\n return 3\n", "role": "user" }, { "content": "step2", "role": "assistant" } ]
def x(self): n = self.n count = 0 for i in range(n): for j in range(n): if self.marked[i][j] == 1: self.col_covered[j] = True count += 1 if count >= n: step = 7 else: step = 4 return step
step3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n n = self.n\n count = 0\n for i in range(n):\n for j in range(n):\n if self.marked[i][j] == 1:\n self.col_covered[j] = True\n count += 1\n if count >= n:\n step = 7\n else:\n step = 4\n return step\n", "role": "user" }, { "content": "step3", "role": "assistant" } ]
def x(self): step = 0 done = False row = -1 col = -1 star_col = -1 while not done: row, col = self.__find_a_zero() if row < 0: done = True step = 6 else: self.marked[row][col] = 2 star_col = self.__find_star_in_row(row) if star_col >= 0: col = star_col self.row_covered[row] = True self.col_covered[col] = False else: done = True self.Z0_r = row self.Z0_c = col step = 5 return step
step4
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n step = 0\n done = False\n row = -1\n col = -1\n star_col = -1\n while not done:\n row, col = self.__find_a_zero()\n if row < 0:\n done = True\n step = 6\n else:\n self.marked[row][col] = 2\n star_col = self.__find_star_in_row(row)\n if star_col >= 0:\n col = star_col\n self.row_covered[row] = True\n self.col_covered[col] = False\n else:\n done = True\n self.Z0_r = row\n self.Z0_c = col\n step = 5\n return step\n", "role": "user" }, { "content": "step4", "role": "assistant" } ]
def x(self): count = 0 path = self.path path[count][0] = self.Z0_r path[count][1] = self.Z0_c done = False while not done: row = self.__find_star_in_col(path[count][1]) if row >= 0: count += 1 path[count][0] = row path[count][1] = path[count - 1][1] else: done = True if not done: col = self.__find_prime_in_row(path[count][0]) count += 1 path[count][0] = path[count - 1][0] path[count][1] = col self.__convert_path(path, count) self.__clear_covers() self.__erase_primes() return 3
step5
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n count = 0\n path = self.path\n path[count][0] = self.Z0_r\n path[count][1] = self.Z0_c\n done = False\n while not done:\n row = self.__find_star_in_col(path[count][1])\n if row >= 0:\n count += 1\n path[count][0] = row\n path[count][1] = path[count - 1][1]\n else:\n done = True\n if not done:\n col = self.__find_prime_in_row(path[count][0])\n count += 1\n path[count][0] = path[count - 1][0]\n path[count][1] = col\n self.__convert_path(path, count)\n self.__clear_covers()\n self.__erase_primes()\n return 3\n", "role": "user" }, { "content": "step5", "role": "assistant" } ]
def x(self): minval = self.__find_smallest() for i in range(self.n): for j in range(self.n): if self.row_covered[i]: self.C[i][j] += minval if not self.col_covered[j]: self.C[i][j] -= minval return 4
step6
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n minval = self.__find_smallest()\n for i in range(self.n):\n for j in range(self.n):\n if self.row_covered[i]:\n self.C[i][j] += minval\n if not self.col_covered[j]:\n self.C[i][j] -= minval\n return 4\n", "role": "user" }, { "content": "step6", "role": "assistant" } ]
def x(self): minval = sys.maxsize for i in range(self.n): for j in range(self.n): if not self.row_covered[i] and not self.col_covered[j]: if minval > self.C[i][j]: minval = self.C[i][j] return minval
find_smallest
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n minval = sys.maxsize\n for i in range(self.n):\n for j in range(self.n):\n if not self.row_covered[i] and not self.col_covered[j]:\n if minval > self.C[i][j]:\n minval = self.C[i][j]\n return minval\n", "role": "user" }, { "content": "find_smallest", "role": "assistant" } ]
def x(self): row = -1 col = -1 i = 0 n = self.n done = False while not done: j = 0 while True: if self.C[i][j] == 0 and not self.row_covered[i ] and not self.col_covered[j]: row = i col = j done = True j += 1 if j >= n: break i += 1 if i >= n: done = True return row, col
find_a_zero
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n row = -1\n col = -1\n i = 0\n n = self.n\n done = False\n while not done:\n j = 0\n while True:\n if self.C[i][j] == 0 and not self.row_covered[i\n ] and not self.col_covered[j]:\n row = i\n col = j\n done = True\n j += 1\n if j >= n:\n break\n i += 1\n if i >= n:\n done = True\n return row, col\n", "role": "user" }, { "content": "find_a_zero", "role": "assistant" } ]
def x(self, row): col = -1 for j in range(self.n): if self.marked[row][j] == 1: col = j break return col
find_star_in_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, row):\n col = -1\n for j in range(self.n):\n if self.marked[row][j] == 1:\n col = j\n break\n return col\n", "role": "user" }, { "content": "find_star_in_row", "role": "assistant" } ]
def x(self, col): row = -1 for i in range(self.n): if self.marked[i][col] == 1: row = i break return row
find_star_in_col
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, col):\n row = -1\n for i in range(self.n):\n if self.marked[i][col] == 1:\n row = i\n break\n return row\n", "role": "user" }, { "content": "find_star_in_col", "role": "assistant" } ]
def x(self, row): col = -1 for j in range(self.n): if self.marked[row][j] == 2: col = j break return col
find_prime_in_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, row):\n col = -1\n for j in range(self.n):\n if self.marked[row][j] == 2:\n col = j\n break\n return col\n", "role": "user" }, { "content": "find_prime_in_row", "role": "assistant" } ]
def x(self): for i in range(self.n): self.row_covered[i] = False self.col_covered[i] = False
clear_covers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for i in range(self.n):\n self.row_covered[i] = False\n self.col_covered[i] = False\n", "role": "user" }, { "content": "clear_covers", "role": "assistant" } ]
def x(self): for i in range(self.n): for j in range(self.n): if self.marked[i][j] == 2: self.marked[i][j] = 0
erase_primes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for i in range(self.n):\n for j in range(self.n):\n if self.marked[i][j] == 2:\n self.marked[i][j] = 0\n", "role": "user" }, { "content": "erase_primes", "role": "assistant" } ]
def x(self, a, b, c, d): self.table.ravel()[:] = [a, b, c, d] self.N = self.table.sum()
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, a, b, c, d):\n self.table.ravel()[:] = [a, b, c, d]\n self.N = self.table.sum()\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): return (self.table[0, 0] + self.table[0, 1]) / (self.table[0, 0] + self .table[1, 0])
bias
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return (self.table[0, 0] + self.table[0, 1]) / (self.table[0, 0] + self\n .table[1, 0])\n", "role": "user" }, { "content": "bias", "role": "assistant" } ]
def x(self): return self.table[0, 0] / (self.table[0, 0] + self.table[0, 1] + self. table[1, 0])
csi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self.table[0, 0] / (self.table[0, 0] + self.table[0, 1] + self.\n table[1, 0])\n", "role": "user" }, { "content": "csi", "role": "assistant" } ]
def x(self): r = (self.table[0, 0] + self.table[0, 1]) * (self.table[0, 0] + self. table[1, 0]) / self.N return (self.table[0, 0] - r) / (self.table[0, 0] + self.table[0, 1] + self.table[1, 0] - r)
ets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n r = (self.table[0, 0] + self.table[0, 1]) * (self.table[0, 0] + self.\n table[1, 0]) / self.N\n return (self.table[0, 0] - r) / (self.table[0, 0] + self.table[0, 1] +\n self.table[1, 0] - r)\n", "role": "user" }, { "content": "ets", "role": "assistant" } ]
def x(self): return 2 * (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] * self.table[1, 0]) / ((self.table[0, 0] + self.table[0, 1]) * (self. table[0, 1] + self.table[1, 1]) + (self.table[0, 0] + self.table[1, 0]) * (self.table[1, 0] + self.table[1, 1]))
hss
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return 2 * (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] *\n self.table[1, 0]) / ((self.table[0, 0] + self.table[0, 1]) * (self.\n table[0, 1] + self.table[1, 1]) + (self.table[0, 0] + self.table[1,\n 0]) * (self.table[1, 0] + self.table[1, 1]))\n", "role": "user" }, { "content": "hss", "role": "assistant" } ]
def x(self): return (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] * self. table[1, 0]) / ((self.table[0, 0] + self.table[1, 0]) * (self.table [0, 1] + self.table[1, 1]))
pss
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] * self.\n table[1, 0]) / ((self.table[0, 0] + self.table[1, 0]) * (self.table\n [0, 1] + self.table[1, 1]))\n", "role": "user" }, { "content": "pss", "role": "assistant" } ]
def x(self): return (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] * self. table[1, 0]) / ((self.table[0, 0] + self.table[0, 1]) * (self.table [1, 0] + self.table[1, 1]))
css
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return (self.table[0, 0] * self.table[1, 1] - self.table[0, 1] * self.\n table[1, 0]) / ((self.table[0, 0] + self.table[0, 1]) * (self.table\n [1, 0] + self.table[1, 1]))\n", "role": "user" }, { "content": "css", "role": "assistant" } ]
def x(filename): with open(filename) as file_obj: tree_ensemble_obj = pickle.load(file_obj) return tree_ensemble_obj
load_tree_object
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n with open(filename) as file_obj:\n tree_ensemble_obj = pickle.load(file_obj)\n return tree_ensemble_obj\n", "role": "user" }, { "content": "load_tree_object", "role": "assistant" } ]
def x(tree_ensemble_obj, output_filename, attribute_names=None): for t, tree in enumerate(tree_ensemble_obj.estimators_): print('Writing Tree {0:d}'.format(t)) out_file = open(output_filename + '.{0:d}.tree', 'w') tree_str = print_tree_recursive(tree.tree_, 0, attribute_names) out_file.write(tree_str) out_file.close() return
output_tree_ensemble
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tree_ensemble_obj, output_filename, attribute_names=None):\n for t, tree in enumerate(tree_ensemble_obj.estimators_):\n print('Writing Tree {0:d}'.format(t))\n out_file = open(output_filename + '.{0:d}.tree', 'w')\n tree_str = print_tree_recursive(tree.tree_, 0, attribute_names)\n out_file.write(tree_str)\n out_file.close()\n return\n", "role": "user" }, { "content": "output_tree_ensemble", "role": "assistant" } ]
def x(tree_obj, node_index, attribute_names=None): tree_str = '' if node_index == 0: tree_str += '{0:d}\n'.format(tree_obj.node_count) if tree_obj.feature[node_index] >= 0: if attribute_names is None: attr_val = '{0:d}'.format(tree_obj.feature[node_index]) else: attr_val = attribute_names[tree_obj.feature[node_index]] tree_str += 'b {0:d} {1} {2:0.4f} {3:d} {4:1.5e}\n'.format(node_index, attr_val, tree_obj.weighted_n_node_samples[node_index], tree_obj.n_node_samples[node_index], tree_obj.threshold[node_index] ) else: if tree_obj.max_n_classes > 1: leaf_value = '{0:d}'.format(tree_obj.value[node_index].argmax()) else: leaf_value = '{0}'.format(tree_obj.value[node_index][0][0]) tree_str += 'l {0:d} {1} {2:0.4f} {3:d}\n'.format(node_index, leaf_value, tree_obj.weighted_n_node_samples[node_index], tree_obj.n_node_samples[node_index]) if tree_obj.children_left[node_index] > 0: tree_str += print_tree_recursive(tree_obj, tree_obj.children_left[ node_index], attribute_names) if tree_obj.children_right[node_index] > 0: tree_str += print_tree_recursive(tree_obj, tree_obj.children_right[ node_index], attribute_names) return tree_str
print_tree_recursive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tree_obj, node_index, attribute_names=None):\n tree_str = ''\n if node_index == 0:\n tree_str += '{0:d}\\n'.format(tree_obj.node_count)\n if tree_obj.feature[node_index] >= 0:\n if attribute_names is None:\n attr_val = '{0:d}'.format(tree_obj.feature[node_index])\n else:\n attr_val = attribute_names[tree_obj.feature[node_index]]\n tree_str += 'b {0:d} {1} {2:0.4f} {3:d} {4:1.5e}\\n'.format(node_index,\n attr_val, tree_obj.weighted_n_node_samples[node_index],\n tree_obj.n_node_samples[node_index], tree_obj.threshold[node_index]\n )\n else:\n if tree_obj.max_n_classes > 1:\n leaf_value = '{0:d}'.format(tree_obj.value[node_index].argmax())\n else:\n leaf_value = '{0}'.format(tree_obj.value[node_index][0][0])\n tree_str += 'l {0:d} {1} {2:0.4f} {3:d}\\n'.format(node_index,\n leaf_value, tree_obj.weighted_n_node_samples[node_index],\n tree_obj.n_node_samples[node_index])\n if tree_obj.children_left[node_index] > 0:\n tree_str += print_tree_recursive(tree_obj, tree_obj.children_left[\n node_index], attribute_names)\n if tree_obj.children_right[node_index] > 0:\n tree_str += print_tree_recursive(tree_obj, tree_obj.children_right[\n node_index], attribute_names)\n return tree_str\n", "role": "user" }, { "content": "print_tree_recursive", "role": "assistant" } ]
def x(self, v, base_mask=True): base = self._base v = tonparray(v) a = np.unique(v) if a[0] != -1 or a[1] != 1: raise RuntimeError('The labels must be -1 and 1 (%s)' % a) mask = np.zeros_like(v) cnt = min([(v == x).sum() for x in a]) * base._tr_fraction cnt = int(round(cnt)) for i in a: index = np.where((v == i) & base_mask)[0] np.random.shuffle(index) mask[index[:cnt]] = True base._mask = SparseArray.fromlist(mask) return SparseArray.fromlist(v)
set_classifier_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v, base_mask=True):\n base = self._base\n v = tonparray(v)\n a = np.unique(v)\n if a[0] != -1 or a[1] != 1:\n raise RuntimeError('The labels must be -1 and 1 (%s)' % a)\n mask = np.zeros_like(v)\n cnt = min([(v == x).sum() for x in a]) * base._tr_fraction\n cnt = int(round(cnt))\n for i in a:\n index = np.where((v == i) & base_mask)[0]\n np.random.shuffle(index)\n mask[index[:cnt]] = True\n base._mask = SparseArray.fromlist(mask)\n return SparseArray.fromlist(v)\n", "role": "user" }, { "content": "set_classifier_mask", "role": "assistant" } ]
def x(self, v): base = self._base index = np.arange(v.size()) np.random.shuffle(index) ones = np.ones(v.size()) ones[index[int(base._tr_fraction * v.size()):]] = 0 base._mask = SparseArray.fromlist(ones)
set_regression_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v):\n base = self._base\n index = np.arange(v.size())\n np.random.shuffle(index)\n ones = np.ones(v.size())\n ones[index[int(base._tr_fraction * v.size()):]] = 0\n base._mask = SparseArray.fromlist(ones)\n", "role": "user" }, { "content": "set_regression_mask", "role": "assistant" } ]
def x(self, v): base = self._base if base._classifier: if base._multiple_outputs: hy = SparseArray.argmax(v.hy) fit_func = base._fitness_function if fit_func == 'macro-F1' or fit_func == 'a_F1': f1_score = self.score mf1, mf1_v = f1_score.a_F1(base._y_klass, hy, base._mask_ts .index) v._error = mf1_v - 1 v.fitness = mf1 - 1 elif fit_func == 'DotF1' or fit_func == 'g_F1': f1_score = self.score mf1, mf1_v = f1_score.g_F1(base._y_klass, hy, base._mask_ts .index) v._error = mf1_v - 1 v.fitness = mf1 - 1 elif fit_func == 'DotRecallDotPrecision' or fit_func == 'g_g_recall_precision': f1_score = self.score mf1, mf1_v = f1_score.g_g_recall_precision(base._y_klass, hy, base._mask_ts.index) v._error = mf1_v - 1 v.fitness = mf1 - 1 elif fit_func == 'BER' or fit_func == 'a_recall': f1_score = self.score mf1, mf1_v = f1_score.a_recall(base._y_klass, hy, base. _mask_ts.index) v._error = mf1_v - 1 v.fitness = mf1 - 1 elif fit_func == 'DotRecall' or fit_func == 'g_recall': f1_score = self.score mf1, mf1_v = f1_score.g_recall(base._y_klass, hy, base. _mask_ts.index) v._error = mf1_v - 1 v.fitness = mf1 - 1 elif fit_func == 'macro-Precision' or fit_func == 'a_precision': f1_score = self.score mf1, mf1_v = f1_score.a_precision(base._y_klass, hy, base. _mask_ts.index) v._error = mf1_v - 1 v.fitness = mf1 - 1 elif fit_func == 'DotPrecision' or fit_func == 'g_precision': f1_score = self.score mf1, mf1_v = f1_score.g_precision(base._y_klass, hy, base. _mask_ts.index) v._error = mf1_v - 1 v.fitness = mf1 - 1 elif fit_func == 'accDotMacroF1': f1_score = self.score mf1, mf1_v = f1_score.accDotMacroF1(base._y_klass, hy, base ._mask_ts.index) v._error = mf1_v - 1 v.fitness = mf1 - 1 elif fit_func == 'macro-RecallF1': f1_score = self.score mf1, mf1_v = f1_score.macroRecallF1(base._y_klass, hy, base ._mask_ts.index) v._error = mf1_v - 1 v.fitness = mf1 - 1 elif fit_func == 'F1': f1_score = self.score f1_index = self._base._F1_index index = self.min_class if f1_index < 0 else f1_index mf1, mf1_v = f1_score.F1(index, base._y_klass, hy, base. _mask_ts.index) v._error = mf1_v - 1 v.fitness = mf1 - 1 elif fit_func == 'RecallDotPrecision' or fit_func == 'g_recall_precision': f1_score = self.score mf1, mf1_v = f1_score.g_recall_precision(self.min_class, base._y_klass, hy, base._mask_ts.index) v._error = mf1_v - 1 v.fitness = mf1 - 1 elif fit_func == 'ER' or fit_func == 'accuracy': f1_score = self.score mf1, mf1_v = f1_score.accuracy(base._y_klass, hy, base. _mask_ts.index) v._error = mf1_v - 1 v.fitness = mf1 - 1 else: raise RuntimeError('Unknown fitness function %s' % base. _fitness_function) else: v.fitness = -base._ytr.SSE(v.hy * base._mask) elif base._multiple_outputs: _ = np.mean([a.SAE(b.mul(c)) for a, b, c in zip(base._ytr, v.hy, base._mask)]) v.fitness = -_ else: v.fitness = -base._ytr.SAE(v.hy * base._mask)
fitness
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v):\n base = self._base\n if base._classifier:\n if base._multiple_outputs:\n hy = SparseArray.argmax(v.hy)\n fit_func = base._fitness_function\n if fit_func == 'macro-F1' or fit_func == 'a_F1':\n f1_score = self.score\n mf1, mf1_v = f1_score.a_F1(base._y_klass, hy, base._mask_ts\n .index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'DotF1' or fit_func == 'g_F1':\n f1_score = self.score\n mf1, mf1_v = f1_score.g_F1(base._y_klass, hy, base._mask_ts\n .index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'DotRecallDotPrecision' or fit_func == 'g_g_recall_precision':\n f1_score = self.score\n mf1, mf1_v = f1_score.g_g_recall_precision(base._y_klass,\n hy, base._mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'BER' or fit_func == 'a_recall':\n f1_score = self.score\n mf1, mf1_v = f1_score.a_recall(base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'DotRecall' or fit_func == 'g_recall':\n f1_score = self.score\n mf1, mf1_v = f1_score.g_recall(base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'macro-Precision' or fit_func == 'a_precision':\n f1_score = self.score\n mf1, mf1_v = f1_score.a_precision(base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'DotPrecision' or fit_func == 'g_precision':\n f1_score = self.score\n mf1, mf1_v = f1_score.g_precision(base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'accDotMacroF1':\n f1_score = self.score\n mf1, mf1_v = f1_score.accDotMacroF1(base._y_klass, hy, base\n ._mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'macro-RecallF1':\n f1_score = self.score\n mf1, mf1_v = f1_score.macroRecallF1(base._y_klass, hy, base\n ._mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'F1':\n f1_score = self.score\n f1_index = self._base._F1_index\n index = self.min_class if f1_index < 0 else f1_index\n mf1, mf1_v = f1_score.F1(index, base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'RecallDotPrecision' or fit_func == 'g_recall_precision':\n f1_score = self.score\n mf1, mf1_v = f1_score.g_recall_precision(self.min_class,\n base._y_klass, hy, base._mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n elif fit_func == 'ER' or fit_func == 'accuracy':\n f1_score = self.score\n mf1, mf1_v = f1_score.accuracy(base._y_klass, hy, base.\n _mask_ts.index)\n v._error = mf1_v - 1\n v.fitness = mf1 - 1\n else:\n raise RuntimeError('Unknown fitness function %s' % base.\n _fitness_function)\n else:\n v.fitness = -base._ytr.SSE(v.hy * base._mask)\n elif base._multiple_outputs:\n _ = np.mean([a.SAE(b.mul(c)) for a, b, c in zip(base._ytr, v.hy,\n base._mask)])\n v.fitness = -_\n else:\n v.fitness = -base._ytr.SAE(v.hy * base._mask)\n", "role": "user" }, { "content": "fitness", "role": "assistant" } ]
def x(self, v): base = self._base if base._classifier: if base._multiple_outputs: v.fitness_vs = v._error else: v.fitness_vs = -((base.y - v.hy.sign()).sign().fabs() * base. _mask_vs).sum() else: mask = base._mask y = base.y hy = v.hy if not isinstance(mask, list): mask = [mask] y = [y] hy = [hy] fit = [] for _mask, _y, _hy in zip(mask, y, hy): m = (_mask + -1).fabs() x = _y * m y = _hy * m a = (x - y).sq().sum() b = (x + -x.sum() / x.size()).sq().sum() fit.append(-a / b) v.fitness_vs = np.mean(fit)
fitness_vs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v):\n base = self._base\n if base._classifier:\n if base._multiple_outputs:\n v.fitness_vs = v._error\n else:\n v.fitness_vs = -((base.y - v.hy.sign()).sign().fabs() * base.\n _mask_vs).sum()\n else:\n mask = base._mask\n y = base.y\n hy = v.hy\n if not isinstance(mask, list):\n mask = [mask]\n y = [y]\n hy = [hy]\n fit = []\n for _mask, _y, _hy in zip(mask, y, hy):\n m = (_mask + -1).fabs()\n x = _y * m\n y = _hy * m\n a = (x - y).sq().sum()\n b = (x + -x.sum() / x.size()).sq().sum()\n fit.append(-a / b)\n v.fitness_vs = np.mean(fit)\n", "role": "user" }, { "content": "fitness_vs", "role": "assistant" } ]
def x(self, v): base = self._base self.fitness(v) if not np.isfinite(v.fitness): self.del_error(v) return False if base._tr_fraction < 1: self.fitness_vs(v) if not np.isfinite(v.fitness_vs): self.del_error(v) return False self.del_error(v) return True
set_fitness
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v):\n base = self._base\n self.fitness(v)\n if not np.isfinite(v.fitness):\n self.del_error(v)\n return False\n if base._tr_fraction < 1:\n self.fitness_vs(v)\n if not np.isfinite(v.fitness_vs):\n self.del_error(v)\n return False\n self.del_error(v)\n return True\n", "role": "user" }, { "content": "set_fitness", "role": "assistant" } ]
def x(retorno): resposta = analisar_retorno(forcar_unicode(retorno), funcao= 'EnviarDadosVenda', classe_resposta=RespostaCancelarUltimaVenda, campos=(('numeroSessao', int), ('EEEEE', unicode), ('CCCC', unicode ), ('mensagem', unicode), ('cod', unicode), ('mensagemSEFAZ', unicode), ('arquivoCFeBase64', unicode), ('timeStamp', as_datetime), ('chaveConsulta', unicode), ('valorTotalCFe', Decimal), ( 'CPFCNPJValue', unicode), ('assinaturaQRCODE', unicode)), campos_alternativos=[(('numeroSessao', int), ('EEEEE', unicode), ( 'CCCC', unicode), ('mensagem', unicode), ('cod', unicode), ( 'mensagemSEFAZ', unicode)), RespostaSAT.CAMPOS]) if resposta.EEEEE not in ('07000',): raise ExcecaoRespostaSAT(resposta) return resposta
analisar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao=\n 'EnviarDadosVenda', classe_resposta=RespostaCancelarUltimaVenda,\n campos=(('numeroSessao', int), ('EEEEE', unicode), ('CCCC', unicode\n ), ('mensagem', unicode), ('cod', unicode), ('mensagemSEFAZ',\n unicode), ('arquivoCFeBase64', unicode), ('timeStamp', as_datetime),\n ('chaveConsulta', unicode), ('valorTotalCFe', Decimal), (\n 'CPFCNPJValue', unicode), ('assinaturaQRCODE', unicode)),\n campos_alternativos=[(('numeroSessao', int), ('EEEEE', unicode), (\n 'CCCC', unicode), ('mensagem', unicode), ('cod', unicode), (\n 'mensagemSEFAZ', unicode)), RespostaSAT.CAMPOS])\n if resposta.EEEEE not in ('07000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n", "role": "user" }, { "content": "analisar", "role": "assistant" } ]
def x(data_element) ->DataAndMetadata.DataAndMetadata: data = data_element['data'] dimensional_shape = Image.dimensional_shape_from_data(data) is_sequence = data_element.get('is_sequence', False) dimension_count = len(Image.dimensional_shape_from_data(data)) adjusted_dimension_count = dimension_count - (1 if is_sequence else 0) collection_dimension_count = data_element.get('collection_dimension_count', 2 if adjusted_dimension_count in (3, 4) else 0) datum_dimension_count = data_element.get('datum_dimension_count', adjusted_dimension_count - collection_dimension_count) data_descriptor = DataAndMetadata.DataDescriptor(is_sequence, collection_dimension_count, datum_dimension_count) dimensional_calibrations = None if 'spatial_calibrations' in data_element: dimensional_calibrations_list = data_element.get('spatial_calibrations' ) if len(dimensional_calibrations_list) == len(dimensional_shape): dimensional_calibrations = list() for dimension_calibration in dimensional_calibrations_list: offset = float(dimension_calibration.get('offset', 0.0)) scale = float(dimension_calibration.get('scale', 1.0)) units = dimension_calibration.get('units', '') units = str(units) if units is not None else str() if scale != 0.0: dimensional_calibrations.append(Calibration.Calibration (offset, scale, units)) else: dimensional_calibrations.append(Calibration.Calibration()) intensity_calibration = None if 'intensity_calibration' in data_element: intensity_calibration_dict = data_element.get('intensity_calibration') offset = float(intensity_calibration_dict.get('offset', 0.0)) scale = float(intensity_calibration_dict.get('scale', 1.0)) units = intensity_calibration_dict.get('units', '') units = str(units) if units is not None else str() if scale != 0.0: intensity_calibration = Calibration.Calibration(offset, scale, units) metadata = dict() if 'metadata' in data_element: metadata.update(Utility.clean_dict(data_element.get('metadata'))) if 'properties' in data_element and data_element['properties']: hardware_source_metadata = metadata.setdefault('hardware_source', dict()) hardware_source_metadata.update(Utility.clean_dict(data_element.get ('properties'))) timestamp = data_element.get('timestamp', datetime.datetime.utcnow()) datetime_item = data_element.get('datetime_modified', Utility. get_datetime_item_from_utc_datetime(timestamp)) local_datetime = Utility.get_datetime_from_datetime_item(datetime_item) dst_value = datetime_item.get('dst', '+00') tz_value = datetime_item.get('tz', '+0000') timezone = datetime_item.get('timezone') time_zone = {'dst': dst_value, 'tz': tz_value} if timezone is not None: time_zone['timezone'] = timezone tz_adjust = (int(tz_value[1:3]) * 60 + int(tz_value[3:5])) * (-1 if tz_value[0] == '-' else 1) utc_datetime = local_datetime - datetime.timedelta(minutes=tz_adjust) timestamp = utc_datetime return DataAndMetadata.new_data_and_metadata(data, intensity_calibration=intensity_calibration, dimensional_calibrations=dimensional_calibrations, metadata= metadata, timestamp=timestamp, data_descriptor=data_descriptor, timezone=timezone, timezone_offset=tz_value)
convert_data_element_to_data_and_metadata_1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_element) ->DataAndMetadata.DataAndMetadata:\n data = data_element['data']\n dimensional_shape = Image.dimensional_shape_from_data(data)\n is_sequence = data_element.get('is_sequence', False)\n dimension_count = len(Image.dimensional_shape_from_data(data))\n adjusted_dimension_count = dimension_count - (1 if is_sequence else 0)\n collection_dimension_count = data_element.get('collection_dimension_count',\n 2 if adjusted_dimension_count in (3, 4) else 0)\n datum_dimension_count = data_element.get('datum_dimension_count', \n adjusted_dimension_count - collection_dimension_count)\n data_descriptor = DataAndMetadata.DataDescriptor(is_sequence,\n collection_dimension_count, datum_dimension_count)\n dimensional_calibrations = None\n if 'spatial_calibrations' in data_element:\n dimensional_calibrations_list = data_element.get('spatial_calibrations'\n )\n if len(dimensional_calibrations_list) == len(dimensional_shape):\n dimensional_calibrations = list()\n for dimension_calibration in dimensional_calibrations_list:\n offset = float(dimension_calibration.get('offset', 0.0))\n scale = float(dimension_calibration.get('scale', 1.0))\n units = dimension_calibration.get('units', '')\n units = str(units) if units is not None else str()\n if scale != 0.0:\n dimensional_calibrations.append(Calibration.Calibration\n (offset, scale, units))\n else:\n dimensional_calibrations.append(Calibration.Calibration())\n intensity_calibration = None\n if 'intensity_calibration' in data_element:\n intensity_calibration_dict = data_element.get('intensity_calibration')\n offset = float(intensity_calibration_dict.get('offset', 0.0))\n scale = float(intensity_calibration_dict.get('scale', 1.0))\n units = intensity_calibration_dict.get('units', '')\n units = str(units) if units is not None else str()\n if scale != 0.0:\n intensity_calibration = Calibration.Calibration(offset, scale,\n units)\n metadata = dict()\n if 'metadata' in data_element:\n metadata.update(Utility.clean_dict(data_element.get('metadata')))\n if 'properties' in data_element and data_element['properties']:\n hardware_source_metadata = metadata.setdefault('hardware_source',\n dict())\n hardware_source_metadata.update(Utility.clean_dict(data_element.get\n ('properties')))\n timestamp = data_element.get('timestamp', datetime.datetime.utcnow())\n datetime_item = data_element.get('datetime_modified', Utility.\n get_datetime_item_from_utc_datetime(timestamp))\n local_datetime = Utility.get_datetime_from_datetime_item(datetime_item)\n dst_value = datetime_item.get('dst', '+00')\n tz_value = datetime_item.get('tz', '+0000')\n timezone = datetime_item.get('timezone')\n time_zone = {'dst': dst_value, 'tz': tz_value}\n if timezone is not None:\n time_zone['timezone'] = timezone\n tz_adjust = (int(tz_value[1:3]) * 60 + int(tz_value[3:5])) * (-1 if \n tz_value[0] == '-' else 1)\n utc_datetime = local_datetime - datetime.timedelta(minutes=tz_adjust)\n timestamp = utc_datetime\n return DataAndMetadata.new_data_and_metadata(data,\n intensity_calibration=intensity_calibration,\n dimensional_calibrations=dimensional_calibrations, metadata=\n metadata, timestamp=timestamp, data_descriptor=data_descriptor,\n timezone=timezone, timezone_offset=tz_value)\n", "role": "user" }, { "content": "convert_data_element_to_data_and_metadata_1", "role": "assistant" } ]
def x(self, csv_path, file_dict_key, out_path): csv_file = csv_path + '{0}_{1}_{2}_{3}.csv'.format(file_dict_key, self. ensemble_name, self.member, self.run_date.strftime(self.date_format)) if exists(csv_file): csv_data = pd.read_csv(csv_file) if self.inds is None: lon_obj = csv_data.loc[:, 'Centroid_Lon'] lat_obj = csv_data.loc[:, 'Centroid_Lat'] self.inds = np.where((self.ne_lat >= lat_obj) & (self.sw_lat <= lat_obj) & (self.ne_lon >= lon_obj) & (self.sw_lon <= lon_obj) )[0] if np.shape(self.inds)[0] > 0: csv_data = csv_data.reindex(np.array(self.inds)) sector_csv_filename = out_path + '{0}_{1}_{2}_{3}.csv'.format( file_dict_key, self.ensemble_name, self.member, self. run_date.strftime(self.date_format)) print('Output sector csv file ' + sector_csv_filename) csv_data.to_csv(sector_csv_filename, na_rep='nan', float_format ='%0.5f', index=False) os.chmod(sector_csv_filename, 438) else: print('No {0} {1} sector data found'.format(self.member, self. run_date.strftime('%Y%m%d'))) else: print('No {0} {1} csv file found'.format(self.member, self.run_date .strftime('%Y%m%d'))) return
output_sector_csv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, csv_path, file_dict_key, out_path):\n csv_file = csv_path + '{0}_{1}_{2}_{3}.csv'.format(file_dict_key, self.\n ensemble_name, self.member, self.run_date.strftime(self.date_format))\n if exists(csv_file):\n csv_data = pd.read_csv(csv_file)\n if self.inds is None:\n lon_obj = csv_data.loc[:, 'Centroid_Lon']\n lat_obj = csv_data.loc[:, 'Centroid_Lat']\n self.inds = np.where((self.ne_lat >= lat_obj) & (self.sw_lat <=\n lat_obj) & (self.ne_lon >= lon_obj) & (self.sw_lon <= lon_obj)\n )[0]\n if np.shape(self.inds)[0] > 0:\n csv_data = csv_data.reindex(np.array(self.inds))\n sector_csv_filename = out_path + '{0}_{1}_{2}_{3}.csv'.format(\n file_dict_key, self.ensemble_name, self.member, self.\n run_date.strftime(self.date_format))\n print('Output sector csv file ' + sector_csv_filename)\n csv_data.to_csv(sector_csv_filename, na_rep='nan', float_format\n ='%0.5f', index=False)\n os.chmod(sector_csv_filename, 438)\n else:\n print('No {0} {1} sector data found'.format(self.member, self.\n run_date.strftime('%Y%m%d')))\n else:\n print('No {0} {1} csv file found'.format(self.member, self.run_date\n .strftime('%Y%m%d')))\n return\n", "role": "user" }, { "content": "output_sector_csv", "role": "assistant" } ]
def x(self, netcdf_path, out_path, patch_radius, config): nc_data = self.load_netcdf_data(netcdf_path, patch_radius) if nc_data is not None: out_filename = out_path + '{0}_{1}_{2}_model_patches.nc'.format(self .ensemble_name, self.run_date.strftime(self.date_format), self. member) out_file = Dataset(out_filename, 'w') out_file.createDimension('p', np.shape(nc_data.variables['p'])[0]) out_file.createDimension('row', np.shape(nc_data.variables['row'])[0]) out_file.createDimension('col', np.shape(nc_data.variables['col'])[0]) out_file.createVariable('p', 'i4', ('p',)) out_file.createVariable('row', 'i4', ('row',)) out_file.createVariable('col', 'i4', ('col',)) out_file.variables['p'][:] = nc_data.variables['p'][:] out_file.variables['row'][:] = nc_data.variables['row'][:] out_file.variables['col'][:] = nc_data.variables['col'][:] out_file.Conventions = 'CF-1.6' out_file.title = '{0} Storm Patches for run {1} member {2}'.format(self .ensemble_name, self.run_date.strftime(self.date_format), self. member) out_file.object_variable = config.watershed_variable meta_variables = ['lon', 'lat', 'i', 'j', 'x', 'y', 'masks'] meta_units = ['degrees_east', 'degrees_north', '', '', 'm', 'm', ''] center_vars = ['time', 'centroid_lon', 'centroid_lat', 'centroid_i', 'centroid_j', 'track_id', 'track_step'] center_units = ['hours since {0}'.format(self.run_date.strftime( '%Y-%m-%d %H:%M:%S')), 'degrees_east', 'degrees_north', '', '', '', ''] label_columns = ['Matched', 'Max_Hail_Size', 'Num_Matches', 'Shape', 'Location', 'Scale'] for m, meta_variable in enumerate(meta_variables): if meta_variable in ['i', 'j', 'masks']: dtype = 'i4' else: dtype = 'f4' m_var = out_file.createVariable(meta_variable, dtype, ('p', 'row', 'col'), complevel=1, zlib=True) m_var.long_name = meta_variable m_var.units = meta_units[m] for c, center_var in enumerate(center_vars): if center_var in ['time', 'track_id', 'track_step']: dtype = 'i4' else: dtype = 'f4' c_var = out_file.createVariable(center_var, dtype, ('p',), zlib =True, complevel=1) c_var.long_name = center_var c_var.units = center_units[c] for storm_variable in config.storm_variables: s_var = out_file.createVariable(storm_variable + '_curr', 'f4', ('p', 'row', 'col'), complevel=1, zlib=True) s_var.long_name = storm_variable s_var.units = '' for potential_variable in config.potential_variables: p_var = out_file.createVariable(potential_variable + '_prev', 'f4', ('p', 'row', 'col'), complevel=1, zlib=True) p_var.long_name = potential_variable p_var.units = '' if config.train: for label_column in label_columns: if label_column in ['Matched', 'Num_Matches']: dtype = 'i4' else: dtype = 'f4' l_var = out_file.createVariable(label_column, dtype, ('p',), zlib=True, complevel=1) l_var.long_name = label_column l_var.units = '' out_file.variables['time'][:] = nc_data.variables['time'][:] for c_var in ['lon', 'lat']: out_file.variables['centroid_' + c_var][:] = nc_data.variables[ 'centroid_' + c_var][:] for c_var in ['i', 'j']: out_file.variables['centroid_' + c_var][:] = nc_data.variables[ 'centroid_' + c_var][:] out_file.variables['track_id'][:] = nc_data.variables['track_id'][:] out_file.variables['track_step'][:] = nc_data.variables['track_step'][: ] for meta_var in meta_variables: if meta_var in ['lon', 'lat']: out_file.variables[meta_var][:] = nc_data.variables[meta_var][: ] else: out_file.variables[meta_var][:] = nc_data.variables[meta_var][: ] for storm_variable in config.storm_variables: out_file.variables[storm_variable + '_curr'][: ] = nc_data.variables[storm_variable + '_curr'][:] for p_variable in config.potential_variables: out_file.variables[p_variable + '_prev'][:] = nc_data.variables[ p_variable + '_prev'][:] if config.train: for label_column in label_columns: try: out_file.variables[label_column][:] = nc_data.variables[ label_column][:] except: out_file.variables[label_column][:] = 0 out_file.close() print('Output sector nc file ' + out_filename) else: print('No {0} {1} netcdf file/sector data found'.format(self.member, self.run_date.strftime('%Y%m%d'))) return
output_sector_netcdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, netcdf_path, out_path, patch_radius, config):\n nc_data = self.load_netcdf_data(netcdf_path, patch_radius)\n if nc_data is not None:\n out_filename = out_path + '{0}_{1}_{2}_model_patches.nc'.format(self\n .ensemble_name, self.run_date.strftime(self.date_format), self.\n member)\n out_file = Dataset(out_filename, 'w')\n out_file.createDimension('p', np.shape(nc_data.variables['p'])[0])\n out_file.createDimension('row', np.shape(nc_data.variables['row'])[0])\n out_file.createDimension('col', np.shape(nc_data.variables['col'])[0])\n out_file.createVariable('p', 'i4', ('p',))\n out_file.createVariable('row', 'i4', ('row',))\n out_file.createVariable('col', 'i4', ('col',))\n out_file.variables['p'][:] = nc_data.variables['p'][:]\n out_file.variables['row'][:] = nc_data.variables['row'][:]\n out_file.variables['col'][:] = nc_data.variables['col'][:]\n out_file.Conventions = 'CF-1.6'\n out_file.title = '{0} Storm Patches for run {1} member {2}'.format(self\n .ensemble_name, self.run_date.strftime(self.date_format), self.\n member)\n out_file.object_variable = config.watershed_variable\n meta_variables = ['lon', 'lat', 'i', 'j', 'x', 'y', 'masks']\n meta_units = ['degrees_east', 'degrees_north', '', '', 'm', 'm', '']\n center_vars = ['time', 'centroid_lon', 'centroid_lat', 'centroid_i',\n 'centroid_j', 'track_id', 'track_step']\n center_units = ['hours since {0}'.format(self.run_date.strftime(\n '%Y-%m-%d %H:%M:%S')), 'degrees_east', 'degrees_north', '', '',\n '', '']\n label_columns = ['Matched', 'Max_Hail_Size', 'Num_Matches', 'Shape',\n 'Location', 'Scale']\n for m, meta_variable in enumerate(meta_variables):\n if meta_variable in ['i', 'j', 'masks']:\n dtype = 'i4'\n else:\n dtype = 'f4'\n m_var = out_file.createVariable(meta_variable, dtype, ('p',\n 'row', 'col'), complevel=1, zlib=True)\n m_var.long_name = meta_variable\n m_var.units = meta_units[m]\n for c, center_var in enumerate(center_vars):\n if center_var in ['time', 'track_id', 'track_step']:\n dtype = 'i4'\n else:\n dtype = 'f4'\n c_var = out_file.createVariable(center_var, dtype, ('p',), zlib\n =True, complevel=1)\n c_var.long_name = center_var\n c_var.units = center_units[c]\n for storm_variable in config.storm_variables:\n s_var = out_file.createVariable(storm_variable + '_curr', 'f4',\n ('p', 'row', 'col'), complevel=1, zlib=True)\n s_var.long_name = storm_variable\n s_var.units = ''\n for potential_variable in config.potential_variables:\n p_var = out_file.createVariable(potential_variable + '_prev',\n 'f4', ('p', 'row', 'col'), complevel=1, zlib=True)\n p_var.long_name = potential_variable\n p_var.units = ''\n if config.train:\n for label_column in label_columns:\n if label_column in ['Matched', 'Num_Matches']:\n dtype = 'i4'\n else:\n dtype = 'f4'\n l_var = out_file.createVariable(label_column, dtype, ('p',),\n zlib=True, complevel=1)\n l_var.long_name = label_column\n l_var.units = ''\n out_file.variables['time'][:] = nc_data.variables['time'][:]\n for c_var in ['lon', 'lat']:\n out_file.variables['centroid_' + c_var][:] = nc_data.variables[\n 'centroid_' + c_var][:]\n for c_var in ['i', 'j']:\n out_file.variables['centroid_' + c_var][:] = nc_data.variables[\n 'centroid_' + c_var][:]\n out_file.variables['track_id'][:] = nc_data.variables['track_id'][:]\n out_file.variables['track_step'][:] = nc_data.variables['track_step'][:\n ]\n for meta_var in meta_variables:\n if meta_var in ['lon', 'lat']:\n out_file.variables[meta_var][:] = nc_data.variables[meta_var][:\n ]\n else:\n out_file.variables[meta_var][:] = nc_data.variables[meta_var][:\n ]\n for storm_variable in config.storm_variables:\n out_file.variables[storm_variable + '_curr'][:\n ] = nc_data.variables[storm_variable + '_curr'][:]\n for p_variable in config.potential_variables:\n out_file.variables[p_variable + '_prev'][:] = nc_data.variables[\n p_variable + '_prev'][:]\n if config.train:\n for label_column in label_columns:\n try:\n out_file.variables[label_column][:] = nc_data.variables[\n label_column][:]\n except:\n out_file.variables[label_column][:] = 0\n out_file.close()\n print('Output sector nc file ' + out_filename)\n else:\n print('No {0} {1} netcdf file/sector data found'.format(self.member,\n self.run_date.strftime('%Y%m%d')))\n return\n", "role": "user" }, { "content": "output_sector_netcdf", "role": "assistant" } ]
def x(d0, clean_item_fn=None): clean_item_fn = clean_item_fn if clean_item_fn else clean_item d = dict() for key in d0: cleaned_item = clean_item_fn(d0[key]) if cleaned_item is not None: d[key] = cleaned_item return d
clean_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d0, clean_item_fn=None):\n clean_item_fn = clean_item_fn if clean_item_fn else clean_item\n d = dict()\n for key in d0:\n cleaned_item = clean_item_fn(d0[key])\n if cleaned_item is not None:\n d[key] = cleaned_item\n return d\n", "role": "user" }, { "content": "clean_dict", "role": "assistant" } ]