source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, input_grid): unset = 0 high_labels, num_labels = label(input_grid > self.high_thresh) region_ranking = np.argsort(maximum(input_grid, high_labels, index=np. arange(1, num_labels + 1)))[::-1] output_grid = np.zeros(input_grid.shape, dtype=int) stack = [] for rank in region_ranking: label_num = rank + 1 label_i, label_j = np.where(high_labels == label_num) for i in range(label_i.size): if output_grid[label_i[i], label_j[i]] == unset: stack.append((label_i[i], label_j[i])) while len(stack) > 0: index = stack.pop() output_grid[index] = label_num for i in range(index[0] - 1, index[0] + 2): for j in range(index[1] - 1, index[1] + 2): if 0 <= i < output_grid.shape[0 ] and 0 <= j < output_grid.shape[1]: if input_grid[i, j] > self.low_thresh and output_grid[ i, j] == unset: stack.append((i, j)) return output_grid
label
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_grid):\n unset = 0\n high_labels, num_labels = label(input_grid > self.high_thresh)\n region_ranking = np.argsort(maximum(input_grid, high_labels, index=np.\n arange(1, num_labels + 1)))[::-1]\n output_grid = np.zeros(input_grid.shape, dtype=int)\n stack = []\n for rank in region_ranking:\n label_num = rank + 1\n label_i, label_j = np.where(high_labels == label_num)\n for i in range(label_i.size):\n if output_grid[label_i[i], label_j[i]] == unset:\n stack.append((label_i[i], label_j[i]))\n while len(stack) > 0:\n index = stack.pop()\n output_grid[index] = label_num\n for i in range(index[0] - 1, index[0] + 2):\n for j in range(index[1] - 1, index[1] + 2):\n if 0 <= i < output_grid.shape[0\n ] and 0 <= j < output_grid.shape[1]:\n if input_grid[i, j] > self.low_thresh and output_grid[\n i, j] == unset:\n stack.append((i, j))\n return output_grid\n", "role": "user" }, { "content": "label", "role": "assistant" } ]
def x(labeled_grid, min_size): out_grid = np.zeros(labeled_grid.shape, dtype=int) slices = find_objects(labeled_grid) j = 1 for i, s in enumerate(slices): box = labeled_grid[s] size = np.count_nonzero(box.ravel() == i + 1) if size >= min_size and box.shape[0] > 1 and box.shape[1] > 1: out_grid[np.where(labeled_grid == i + 1)] = j j += 1 return out_grid
size_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labeled_grid, min_size):\n out_grid = np.zeros(labeled_grid.shape, dtype=int)\n slices = find_objects(labeled_grid)\n j = 1\n for i, s in enumerate(slices):\n box = labeled_grid[s]\n size = np.count_nonzero(box.ravel() == i + 1)\n if size >= min_size and box.shape[0] > 1 and box.shape[1] > 1:\n out_grid[np.where(labeled_grid == i + 1)] = j\n j += 1\n return out_grid\n", "role": "user" }, { "content": "size_filter", "role": "assistant" } ]
def x(roc_objs, obj_labels, colors, markers, filename, figsize=(8, 8), xlabel='Probability of False Detection', ylabel= 'Probability of Detection', title='ROC Curve', ticks=np.arange(0, 1.1, 0.1), dpi=300, legend_params=None, bootstrap_sets=None, ci=(2.5, 97.5), label_fontsize=14, title_fontsize=16, tick_fontsize=12): if legend_params is None: legend_params = dict(loc=4, fontsize=12, framealpha=1, frameon=True) plt.figure(figsize=figsize, dpi=dpi) plt.plot(ticks, ticks, 'k--') if bootstrap_sets is not None: for b, b_set in enumerate(bootstrap_sets): broc_curves = np.dstack([b_roc.roc_curve().values for b_roc in b_set]) pod_range = np.percentile(broc_curves[:, 0], ci, axis=1) pofd_range = np.percentile(broc_curves[:, 1], ci, axis=1) pod_poly = np.concatenate((pod_range[1], pod_range[0, ::-1])) pofd_poly = np.concatenate((pofd_range[0], pofd_range[1, ::-1])) pod_poly[np.isnan(pod_poly)] = 0 pofd_poly[np.isnan(pofd_poly)] = 0 plt.fill(pofd_poly, pod_poly, alpha=0.5, color=colors[b]) for r, roc_obj in enumerate(roc_objs): roc_data = roc_obj.roc_curve() plt.plot(roc_data['POFD'], roc_data['POD'], marker=markers[r], color=colors[r], label=obj_labels[r]) plt.xlabel(xlabel, fontsize=label_fontsize) plt.ylabel(ylabel, fontsize=label_fontsize) plt.xticks(ticks, fontsize=tick_fontsize) plt.yticks(ticks, fontsize=tick_fontsize) plt.title(title, fontsize=title_fontsize) plt.legend(**legend_params) plt.savefig(filename, dpi=dpi, bbox_inches='tight') plt.close()
roc_curve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(roc_objs, obj_labels, colors, markers, filename, figsize=(8, 8),\n xlabel='Probability of False Detection', ylabel=\n 'Probability of Detection', title='ROC Curve', ticks=np.arange(0, 1.1, \n 0.1), dpi=300, legend_params=None, bootstrap_sets=None, ci=(2.5, 97.5),\n label_fontsize=14, title_fontsize=16, tick_fontsize=12):\n if legend_params is None:\n legend_params = dict(loc=4, fontsize=12, framealpha=1, frameon=True)\n plt.figure(figsize=figsize, dpi=dpi)\n plt.plot(ticks, ticks, 'k--')\n if bootstrap_sets is not None:\n for b, b_set in enumerate(bootstrap_sets):\n broc_curves = np.dstack([b_roc.roc_curve().values for b_roc in\n b_set])\n pod_range = np.percentile(broc_curves[:, 0], ci, axis=1)\n pofd_range = np.percentile(broc_curves[:, 1], ci, axis=1)\n pod_poly = np.concatenate((pod_range[1], pod_range[0, ::-1]))\n pofd_poly = np.concatenate((pofd_range[0], pofd_range[1, ::-1]))\n pod_poly[np.isnan(pod_poly)] = 0\n pofd_poly[np.isnan(pofd_poly)] = 0\n plt.fill(pofd_poly, pod_poly, alpha=0.5, color=colors[b])\n for r, roc_obj in enumerate(roc_objs):\n roc_data = roc_obj.roc_curve()\n plt.plot(roc_data['POFD'], roc_data['POD'], marker=markers[r],\n color=colors[r], label=obj_labels[r])\n plt.xlabel(xlabel, fontsize=label_fontsize)\n plt.ylabel(ylabel, fontsize=label_fontsize)\n plt.xticks(ticks, fontsize=tick_fontsize)\n plt.yticks(ticks, fontsize=tick_fontsize)\n plt.title(title, fontsize=title_fontsize)\n plt.legend(**legend_params)\n plt.savefig(filename, dpi=dpi, bbox_inches='tight')\n plt.close()\n", "role": "user" }, { "content": "roc_curve", "role": "assistant" } ]
def x(roc_objs, obj_labels, colors, markers, filename, figsize=(8, 8), xlabel='Success Ratio (1-FAR)', ylabel='Probability of Detection', ticks=np.arange(0, 1.1, 0.1), dpi=300, csi_cmap='Blues', csi_label= 'Critical Success Index', title='Performance Diagram', legend_params= None, bootstrap_sets=None, ci=(2.5, 97.5), label_fontsize=14, title_fontsize=16, tick_fontsize=12): if legend_params is None: legend_params = dict(loc=4, fontsize=10, framealpha=1, frameon=True) plt.figure(figsize=figsize) grid_ticks = np.arange(0, 1.01, 0.01) sr_g, pod_g = np.meshgrid(grid_ticks, grid_ticks) bias = pod_g / sr_g csi = 1.0 / (1.0 / sr_g + 1.0 / pod_g - 1.0) csi_contour = plt.contourf(sr_g, pod_g, csi, np.arange(0.1, 1.1, 0.1), extend='max', cmap=csi_cmap) b_contour = plt.contour(sr_g, pod_g, bias, [0.5, 1, 1.5, 2, 4], colors= 'k', linestyles='dashed') plt.clabel(b_contour, fmt='%1.1f', manual=[(0.2, 0.9), (0.4, 0.9), (0.6, 0.9), (0.7, 0.7)]) if bootstrap_sets is not None: for b, b_set in enumerate(bootstrap_sets): perf_curves = np.dstack([b_roc.performance_curve().values for b_roc in b_set]) pod_range = np.nanpercentile(perf_curves[:, 0], ci, axis=1) sr_range = np.nanpercentile(1 - perf_curves[:, 1], ci, axis=1) pod_poly = np.concatenate((pod_range[1], pod_range[0, ::-1])) sr_poly = np.concatenate((sr_range[1], sr_range[0, ::-1])) pod_poly[np.isnan(pod_poly)] = 0 sr_poly[np.isnan(sr_poly)] = 1 plt.fill(sr_poly, pod_poly, alpha=0.5, color=colors[b]) for r, roc_obj in enumerate(roc_objs): perf_data = roc_obj.performance_curve() plt.plot(1 - perf_data['FAR'], perf_data['POD'], marker=markers[r], color=colors[r], label=obj_labels[r]) cbar = plt.colorbar(csi_contour) cbar.set_label(csi_label) plt.xlabel(xlabel, fontsize=label_fontsize) plt.ylabel(ylabel, fontsize=label_fontsize) plt.xticks(ticks, fontsize=tick_fontsize) plt.yticks(ticks, fontsize=tick_fontsize) plt.title(title, fontsize=title_fontsize) plt.legend(**legend_params) plt.savefig(filename, dpi=dpi, bbox_inches='tight') plt.close()
performance_diagram
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(roc_objs, obj_labels, colors, markers, filename, figsize=(8, 8),\n xlabel='Success Ratio (1-FAR)', ylabel='Probability of Detection',\n ticks=np.arange(0, 1.1, 0.1), dpi=300, csi_cmap='Blues', csi_label=\n 'Critical Success Index', title='Performance Diagram', legend_params=\n None, bootstrap_sets=None, ci=(2.5, 97.5), label_fontsize=14,\n title_fontsize=16, tick_fontsize=12):\n if legend_params is None:\n legend_params = dict(loc=4, fontsize=10, framealpha=1, frameon=True)\n plt.figure(figsize=figsize)\n grid_ticks = np.arange(0, 1.01, 0.01)\n sr_g, pod_g = np.meshgrid(grid_ticks, grid_ticks)\n bias = pod_g / sr_g\n csi = 1.0 / (1.0 / sr_g + 1.0 / pod_g - 1.0)\n csi_contour = plt.contourf(sr_g, pod_g, csi, np.arange(0.1, 1.1, 0.1),\n extend='max', cmap=csi_cmap)\n b_contour = plt.contour(sr_g, pod_g, bias, [0.5, 1, 1.5, 2, 4], colors=\n 'k', linestyles='dashed')\n plt.clabel(b_contour, fmt='%1.1f', manual=[(0.2, 0.9), (0.4, 0.9), (0.6,\n 0.9), (0.7, 0.7)])\n if bootstrap_sets is not None:\n for b, b_set in enumerate(bootstrap_sets):\n perf_curves = np.dstack([b_roc.performance_curve().values for\n b_roc in b_set])\n pod_range = np.nanpercentile(perf_curves[:, 0], ci, axis=1)\n sr_range = np.nanpercentile(1 - perf_curves[:, 1], ci, axis=1)\n pod_poly = np.concatenate((pod_range[1], pod_range[0, ::-1]))\n sr_poly = np.concatenate((sr_range[1], sr_range[0, ::-1]))\n pod_poly[np.isnan(pod_poly)] = 0\n sr_poly[np.isnan(sr_poly)] = 1\n plt.fill(sr_poly, pod_poly, alpha=0.5, color=colors[b])\n for r, roc_obj in enumerate(roc_objs):\n perf_data = roc_obj.performance_curve()\n plt.plot(1 - perf_data['FAR'], perf_data['POD'], marker=markers[r],\n color=colors[r], label=obj_labels[r])\n cbar = plt.colorbar(csi_contour)\n cbar.set_label(csi_label)\n plt.xlabel(xlabel, fontsize=label_fontsize)\n plt.ylabel(ylabel, fontsize=label_fontsize)\n plt.xticks(ticks, fontsize=tick_fontsize)\n plt.yticks(ticks, fontsize=tick_fontsize)\n plt.title(title, fontsize=title_fontsize)\n plt.legend(**legend_params)\n plt.savefig(filename, dpi=dpi, bbox_inches='tight')\n plt.close()\n", "role": "user" }, { "content": "performance_diagram", "role": "assistant" } ]
def x(rel_objs, obj_labels, colors, markers, filename, figsize=(8, 8), xlabel='Forecast Probability', ylabel='Observed Relative Frequency', ticks=np.arange(0, 1.05, 0.05), dpi=300, inset_size=1.5, title= 'Reliability Diagram', legend_params=None, bootstrap_sets=None, ci=(2.5, 97.5)): if legend_params is None: legend_params = dict(loc=4, fontsize=10, framealpha=1, frameon=True) fig, ax = plt.subplots(figsize=figsize) plt.plot(ticks, ticks, 'k--') inset_hist = inset_axes(ax, width=inset_size, height=inset_size, loc=2) if bootstrap_sets is not None: for b, b_set in enumerate(bootstrap_sets): brel_curves = np.dstack([b_rel.reliability_curve().values for b_rel in b_set]) bin_range = np.percentile(brel_curves[:, 0], ci, axis=1) rel_range = np.percentile(brel_curves[:, 3], ci, axis=1) bin_poly = np.concatenate((bin_range[1], bin_range[0, ::-1])) rel_poly = np.concatenate((rel_range[1], rel_range[0, ::-1])) bin_poly[np.isnan(bin_poly)] = 0 rel_poly[np.isnan(rel_poly)] = 0 plt.fill(bin_poly, rel_poly, alpha=0.5, color=colors[b]) for r, rel_obj in enumerate(rel_objs): rel_curve = rel_obj.reliability_curve() ax.plot(rel_curve['Bin_Start'], rel_curve['Positive_Relative_Freq'], color=colors[r], marker=markers[r], label=obj_labels[r]) inset_hist.semilogy(rel_curve['Bin_Start'], rel_curve[ 'Total_Relative_Freq'], color=colors[r], marker=markers[r]) inset_hist.set_xlabel('Forecast Probability') inset_hist.set_ylabel('Forecast Relative Frequency') ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_xticks(ticks) ax.set_yticks(ticks) ax.legend(**legend_params) ax.set_title(title) plt.savefig(filename, dpi=dpi, bbox_inches='tight') plt.close()
reliability_diagram
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(rel_objs, obj_labels, colors, markers, filename, figsize=(8, 8),\n xlabel='Forecast Probability', ylabel='Observed Relative Frequency',\n ticks=np.arange(0, 1.05, 0.05), dpi=300, inset_size=1.5, title=\n 'Reliability Diagram', legend_params=None, bootstrap_sets=None, ci=(2.5,\n 97.5)):\n if legend_params is None:\n legend_params = dict(loc=4, fontsize=10, framealpha=1, frameon=True)\n fig, ax = plt.subplots(figsize=figsize)\n plt.plot(ticks, ticks, 'k--')\n inset_hist = inset_axes(ax, width=inset_size, height=inset_size, loc=2)\n if bootstrap_sets is not None:\n for b, b_set in enumerate(bootstrap_sets):\n brel_curves = np.dstack([b_rel.reliability_curve().values for\n b_rel in b_set])\n bin_range = np.percentile(brel_curves[:, 0], ci, axis=1)\n rel_range = np.percentile(brel_curves[:, 3], ci, axis=1)\n bin_poly = np.concatenate((bin_range[1], bin_range[0, ::-1]))\n rel_poly = np.concatenate((rel_range[1], rel_range[0, ::-1]))\n bin_poly[np.isnan(bin_poly)] = 0\n rel_poly[np.isnan(rel_poly)] = 0\n plt.fill(bin_poly, rel_poly, alpha=0.5, color=colors[b])\n for r, rel_obj in enumerate(rel_objs):\n rel_curve = rel_obj.reliability_curve()\n ax.plot(rel_curve['Bin_Start'], rel_curve['Positive_Relative_Freq'],\n color=colors[r], marker=markers[r], label=obj_labels[r])\n inset_hist.semilogy(rel_curve['Bin_Start'], rel_curve[\n 'Total_Relative_Freq'], color=colors[r], marker=markers[r])\n inset_hist.set_xlabel('Forecast Probability')\n inset_hist.set_ylabel('Forecast Relative Frequency')\n ax.set_xlabel(xlabel)\n ax.set_ylabel(ylabel)\n ax.set_xticks(ticks)\n ax.set_yticks(ticks)\n ax.legend(**legend_params)\n ax.set_title(title)\n plt.savefig(filename, dpi=dpi, bbox_inches='tight')\n plt.close()\n", "role": "user" }, { "content": "reliability_diagram", "role": "assistant" } ]
def x(rel_objs, obj_labels, colors, markers, filename, figsize=(8, 8), xlabel='Forecast Probability', ylabel='Observed Relative Frequency', ticks=np.arange(0, 1.05, 0.05), dpi=300, title='Attributes Diagram', legend_params=None, inset_params=None, inset_position=(0.12, 0.72, 0.25, 0.25), bootstrap_sets=None, ci=(2.5, 97.5)): if legend_params is None: legend_params = dict(loc=4, fontsize=10, framealpha=1, frameon=True) if inset_params is None: inset_params = dict(width='25%', height='25%', loc=2, axes_kwargs= dict(axisbg='white')) fig, ax = plt.subplots(figsize=figsize) plt.plot(ticks, ticks, 'k--') inset_hist = inset_axes(ax, **inset_params) ip = InsetPosition(ax, inset_position) inset_hist.set_axes_locator(ip) climo = rel_objs[0].climatology() no_skill = 0.5 * ticks + 0.5 * climo skill_x = [climo, climo, 1, 1, climo, climo, 0, 0, climo] skill_y = [climo, 1, 1, no_skill[-1], climo, 0, 0, no_skill[0], climo] f = ax.fill(skill_x, skill_y, '0.8') f[0].set_zorder(1) ax.plot(ticks, np.ones(ticks.shape) * climo, 'k--') if bootstrap_sets is not None: for b, b_set in enumerate(bootstrap_sets): brel_curves = np.vstack([b_rel.reliability_curve()[ 'Positive_Relative_Freq'].values for b_rel in b_set]) rel_range = np.nanpercentile(brel_curves, ci, axis=0) fb = ax.fill_between(b_rel.thresholds[:-1], rel_range[1], rel_range[0], alpha=0.5, color=colors[b]) fb.set_zorder(2) for r, rel_obj in enumerate(rel_objs): rel_curve = rel_obj.reliability_curve() ax.plot(rel_curve['Bin_Start'], rel_curve['Positive_Relative_Freq'], color=colors[r], marker=markers[r], label=obj_labels[r]) inset_hist.semilogy(rel_curve['Bin_Start'] * 100, rel_obj. frequencies['Total_Freq'][:-1], color=colors[r], marker=markers[r]) inset_hist.set_xlabel('Forecast Probability') inset_hist.set_ylabel('Frequency') ax.annotate('No Skill', (0.6, no_skill[12]), rotation=22.5) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_xticks(ticks) ax.set_xticklabels((ticks * 100).astype(int)) ax.set_yticks(ticks) ax.set_yticklabels((ticks * 100).astype(int)) ax.legend(**legend_params) ax.set_title(title) plt.savefig(filename, dpi=dpi, bbox_inches='tight') plt.close()
attributes_diagram
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(rel_objs, obj_labels, colors, markers, filename, figsize=(8, 8),\n xlabel='Forecast Probability', ylabel='Observed Relative Frequency',\n ticks=np.arange(0, 1.05, 0.05), dpi=300, title='Attributes Diagram',\n legend_params=None, inset_params=None, inset_position=(0.12, 0.72, 0.25,\n 0.25), bootstrap_sets=None, ci=(2.5, 97.5)):\n if legend_params is None:\n legend_params = dict(loc=4, fontsize=10, framealpha=1, frameon=True)\n if inset_params is None:\n inset_params = dict(width='25%', height='25%', loc=2, axes_kwargs=\n dict(axisbg='white'))\n fig, ax = plt.subplots(figsize=figsize)\n plt.plot(ticks, ticks, 'k--')\n inset_hist = inset_axes(ax, **inset_params)\n ip = InsetPosition(ax, inset_position)\n inset_hist.set_axes_locator(ip)\n climo = rel_objs[0].climatology()\n no_skill = 0.5 * ticks + 0.5 * climo\n skill_x = [climo, climo, 1, 1, climo, climo, 0, 0, climo]\n skill_y = [climo, 1, 1, no_skill[-1], climo, 0, 0, no_skill[0], climo]\n f = ax.fill(skill_x, skill_y, '0.8')\n f[0].set_zorder(1)\n ax.plot(ticks, np.ones(ticks.shape) * climo, 'k--')\n if bootstrap_sets is not None:\n for b, b_set in enumerate(bootstrap_sets):\n brel_curves = np.vstack([b_rel.reliability_curve()[\n 'Positive_Relative_Freq'].values for b_rel in b_set])\n rel_range = np.nanpercentile(brel_curves, ci, axis=0)\n fb = ax.fill_between(b_rel.thresholds[:-1], rel_range[1],\n rel_range[0], alpha=0.5, color=colors[b])\n fb.set_zorder(2)\n for r, rel_obj in enumerate(rel_objs):\n rel_curve = rel_obj.reliability_curve()\n ax.plot(rel_curve['Bin_Start'], rel_curve['Positive_Relative_Freq'],\n color=colors[r], marker=markers[r], label=obj_labels[r])\n inset_hist.semilogy(rel_curve['Bin_Start'] * 100, rel_obj.\n frequencies['Total_Freq'][:-1], color=colors[r], marker=markers[r])\n inset_hist.set_xlabel('Forecast Probability')\n inset_hist.set_ylabel('Frequency')\n ax.annotate('No Skill', (0.6, no_skill[12]), rotation=22.5)\n ax.set_xlabel(xlabel)\n ax.set_ylabel(ylabel)\n ax.set_xticks(ticks)\n ax.set_xticklabels((ticks * 100).astype(int))\n ax.set_yticks(ticks)\n ax.set_yticklabels((ticks * 100).astype(int))\n ax.legend(**legend_params)\n ax.set_title(title)\n plt.savefig(filename, dpi=dpi, bbox_inches='tight')\n plt.close()\n", "role": "user" }, { "content": "attributes_diagram", "role": "assistant" } ]
def x(self, prompt, default_str=None) ->str: accept_event = threading.Event() value_ref = [None] def x(): def x(text): value_ref[0] = text accept_event.set() def x(): accept_event.set() self.__message_column.remove_all() pose_get_string_message_box(self.ui, self.__message_column, prompt, str(default_str), accepted, rejected) with self.__lock: self.__q.append(perform) self.document_controller.add_task('ui_' + str(id(self)), self. __handle_output_and_q) accept_event.wait() def x(): self.__message_column.remove_all() self.__message_column.add(self.__make_cancel_row()) self.document_controller.add_task('ui_' + str(id(self)), update_message_column) if value_ref[0] is None: raise Exception('Cancel') return value_ref[0]
get_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, prompt, default_str=None) ->str:\n accept_event = threading.Event()\n value_ref = [None]\n\n def x():\n\n def x(text):\n value_ref[0] = text\n accept_event.set()\n\n def x():\n accept_event.set()\n self.__message_column.remove_all()\n pose_get_string_message_box(self.ui, self.__message_column, prompt,\n str(default_str), accepted, rejected)\n with self.__lock:\n self.__q.append(perform)\n self.document_controller.add_task('ui_' + str(id(self)), self.\n __handle_output_and_q)\n accept_event.wait()\n\n def x():\n self.__message_column.remove_all()\n self.__message_column.add(self.__make_cancel_row())\n self.document_controller.add_task('ui_' + str(id(self)),\n update_message_column)\n if value_ref[0] is None:\n raise Exception('Cancel')\n return value_ref[0]\n", "role": "user" }, { "content": "get_string", "role": "assistant" } ]
def x(self, prompt, accepted_text, rejected_text, display_rejected): accept_event = threading.Event() result_ref = [False] def x(): def x(): result_ref[0] = True accept_event.set() def x(): result_ref[0] = False accept_event.set() self.__message_column.remove_all() pose_confirmation_message_box(self.ui, self.__message_column, prompt, accepted, rejected, accepted_text, rejected_text, display_rejected) with self.__lock: self.__q.append(perform) self.document_controller.add_task('ui_' + str(id(self)), self. __handle_output_and_q) accept_event.wait() def x(): self.__message_column.remove_all() self.__message_column.add(self.__make_cancel_row()) self.document_controller.add_task('ui_' + str(id(self)), update_message_column) return result_ref[0]
accept_reject
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, prompt, accepted_text, rejected_text, display_rejected):\n accept_event = threading.Event()\n result_ref = [False]\n\n def x():\n\n def x():\n result_ref[0] = True\n accept_event.set()\n\n def x():\n result_ref[0] = False\n accept_event.set()\n self.__message_column.remove_all()\n pose_confirmation_message_box(self.ui, self.__message_column,\n prompt, accepted, rejected, accepted_text, rejected_text,\n display_rejected)\n with self.__lock:\n self.__q.append(perform)\n self.document_controller.add_task('ui_' + str(id(self)), self.\n __handle_output_and_q)\n accept_event.wait()\n\n def x():\n self.__message_column.remove_all()\n self.__message_column.add(self.__make_cancel_row())\n self.document_controller.add_task('ui_' + str(id(self)),\n update_message_column)\n return result_ref[0]\n", "role": "user" }, { "content": "accept_reject", "role": "assistant" } ]
def x(self, r, ytr=None, mask=None): ytr = self._ytr if ytr is None else ytr mask = self._mask if mask is None else mask return compute_weight(r, ytr, mask)
compute_weight
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r, ytr=None, mask=None):\n ytr = self._ytr if ytr is None else ytr\n mask = self._mask if mask is None else mask\n return compute_weight(r, ytr, mask)\n", "role": "user" }, { "content": "compute_weight", "role": "assistant" } ]
def x(self): if self._multiple_outputs: if self.hy_test is not None: r = [(hy.isfinite() and (hyt is None or hyt.isfinite())) for hy, hyt in zip(self.hy, self.hy_test)] else: r = [hy.isfinite() for hy in self.hy] return np.all(r) return self.hy.isfinite() and (self.hy_test is None or self.hy_test. isfinite())
isfinite
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._multiple_outputs:\n if self.hy_test is not None:\n r = [(hy.isfinite() and (hyt is None or hyt.isfinite())) for hy,\n hyt in zip(self.hy, self.hy_test)]\n else:\n r = [hy.isfinite() for hy in self.hy]\n return np.all(r)\n return self.hy.isfinite() and (self.hy_test is None or self.hy_test.\n isfinite())\n", "role": "user" }, { "content": "isfinite", "role": "assistant" } ]
def x(argument_name, function_name, search_str, resolve_varname=False): try: search_str = unicode(search_str) except NameError: pass readline = StringIO(search_str).readline try: token_generator = tokenize.generate_tokens(readline) tokens = [SimplifiedToken(toknum, tokval) for toknum, tokval, _, _, _ in token_generator] except tokenize.TokenError as e: raise ValueError('search_str is not parse-able python code: ' + str(e)) in_function = False is_var = False for i in range(len(tokens)): if not in_function and tokens[i].typenum == tokenize.NAME and tokens[i ].value == function_name and tokens[i + 1 ].typenum == tokenize.OP and tokens[i + 1].value == '(': in_function = True continue elif in_function and tokens[i].typenum == tokenize.NAME and tokens[i ].value == argument_name and tokens[i + 1 ].typenum == tokenize.OP and tokens[i + 1].value == '=': if resolve_varname and tokens[i + 2].typenum == 1: is_var = True argument_name = tokens[i + 2].value break j = 3 while True: if tokens[i + j].value in (',', ')') or tokens[i + j ].typenum == 58: break j += 1 return ''.join([t.value for t in tokens[i + 2:i + j]]).strip() if is_var: for i in range(len(tokens)): if tokens[i].typenum == tokenize.NAME and tokens[i ].value == argument_name and tokens[i + 1 ].typenum == tokenize.OP and tokens[i + 1].value == '=': return tokens[i + 2].value.strip() return None
value_of_named_argument_in_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(argument_name, function_name, search_str, resolve_varname=False):\n try:\n search_str = unicode(search_str)\n except NameError:\n pass\n readline = StringIO(search_str).readline\n try:\n token_generator = tokenize.generate_tokens(readline)\n tokens = [SimplifiedToken(toknum, tokval) for toknum, tokval, _, _,\n _ in token_generator]\n except tokenize.TokenError as e:\n raise ValueError('search_str is not parse-able python code: ' + str(e))\n in_function = False\n is_var = False\n for i in range(len(tokens)):\n if not in_function and tokens[i].typenum == tokenize.NAME and tokens[i\n ].value == function_name and tokens[i + 1\n ].typenum == tokenize.OP and tokens[i + 1].value == '(':\n in_function = True\n continue\n elif in_function and tokens[i].typenum == tokenize.NAME and tokens[i\n ].value == argument_name and tokens[i + 1\n ].typenum == tokenize.OP and tokens[i + 1].value == '=':\n if resolve_varname and tokens[i + 2].typenum == 1:\n is_var = True\n argument_name = tokens[i + 2].value\n break\n j = 3\n while True:\n if tokens[i + j].value in (',', ')') or tokens[i + j\n ].typenum == 58:\n break\n j += 1\n return ''.join([t.value for t in tokens[i + 2:i + j]]).strip()\n if is_var:\n for i in range(len(tokens)):\n if tokens[i].typenum == tokenize.NAME and tokens[i\n ].value == argument_name and tokens[i + 1\n ].typenum == tokenize.OP and tokens[i + 1].value == '=':\n return tokens[i + 2].value.strip()\n return None\n", "role": "user" }, { "content": "value_of_named_argument_in_function", "role": "assistant" } ]
def x(regex, filepath, return_match=False): file_content = get_file_content(filepath) re_method = funcy.re_find if return_match else funcy.re_test return re_method(regex, file_content)
regex_in_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(regex, filepath, return_match=False):\n file_content = get_file_content(filepath)\n re_method = funcy.re_find if return_match else funcy.re_test\n return re_method(regex, file_content)\n", "role": "user" }, { "content": "regex_in_file", "role": "assistant" } ]
def x(regex, filename, package_name, return_match=False): filepath = package_file_path(filename, package_name) return regex_in_file(regex, filepath, return_match=return_match)
regex_in_package_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(regex, filename, package_name, return_match=False):\n filepath = package_file_path(filename, package_name)\n return regex_in_file(regex, filepath, return_match=return_match)\n", "role": "user" }, { "content": "regex_in_package_file", "role": "assistant" } ]
def x(test_str): parsed = urlparse.urlparse(test_str) return parsed.scheme is not None and parsed.scheme != ''
string_is_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(test_str):\n parsed = urlparse.urlparse(test_str)\n return parsed.scheme is not None and parsed.scheme != ''\n", "role": "user" }, { "content": "string_is_url", "role": "assistant" } ]
def x(self, item) ->Transaction: items = self.__build_transaction_items(item) transaction = Transaction(self, item, items) self.__transactions.append(transaction) return transaction
item_transaction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, item) ->Transaction:\n items = self.__build_transaction_items(item)\n transaction = Transaction(self, item, items)\n self.__transactions.append(transaction)\n return transaction\n", "role": "user" }, { "content": "item_transaction", "role": "assistant" } ]
def x(self, before_index, data_item, auto_display: bool=True) ->None: assert data_item is not None assert data_item not in self.data_items assert before_index <= len(self.data_items) and before_index >= 0 assert data_item.uuid not in self.__uuid_to_data_item data_item.session_id = self.session_id self.__insert_data_item(before_index, data_item, do_write=True) if auto_display: display_item = DisplayItem.DisplayItem(data_item=data_item) self.append_display_item(display_item)
insert_data_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, before_index, data_item, auto_display: bool=True) ->None:\n assert data_item is not None\n assert data_item not in self.data_items\n assert before_index <= len(self.data_items) and before_index >= 0\n assert data_item.uuid not in self.__uuid_to_data_item\n data_item.session_id = self.session_id\n self.__insert_data_item(before_index, data_item, do_write=True)\n if auto_display:\n display_item = DisplayItem.DisplayItem(data_item=data_item)\n self.append_display_item(display_item)\n", "role": "user" }, { "content": "insert_data_item", "role": "assistant" } ]
def x(self, data_item: DataItem.DataItem, *, safe: bool=False ) ->typing.Optional[typing.Sequence]: return self.__cascade_delete(data_item, safe=safe)
remove_data_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item: DataItem.DataItem, *, safe: bool=False\n ) ->typing.Optional[typing.Sequence]:\n return self.__cascade_delete(data_item, safe=safe)\n", "role": "user" }, { "content": "remove_data_item", "role": "assistant" } ]
def x(self, master_item, safe: bool=False) ->typing.Optional[typing.Sequence]: if self.__computation_changed_delay_list is None: computation_changed_delay_list = list() self.__computation_changed_delay_list = computation_changed_delay_list else: computation_changed_delay_list = None undelete_log = list() try: items = list() dependencies = list() self.__build_cascade(master_item, items, dependencies) cascaded = True while cascaded: cascaded = False items_set = set(items) for computation in copy.copy(self.computations): output_deleted = master_item in computation._outputs computation._inputs -= items_set computation._outputs -= items_set if (computation not in items and computation != self. __current_computation): if output_deleted or all(input in items for input in computation._inputs): self.__build_cascade(computation, items, dependencies) cascaded = True for source, target in reversed(dependencies): self.__remove_dependency(source, target) for item in reversed(items): for computation in self.computations: new_entries = computation.list_item_removed(item) undelete_log.extend(new_entries) container = item.container if isinstance(item, DataItem.DataItem): name = 'data_items' elif isinstance(item, DisplayItem.DisplayItem): name = 'display_items' elif isinstance(item, Graphics.Graphic): name = 'graphics' elif isinstance(item, DataStructure.DataStructure): name = 'data_structures' elif isinstance(item, Symbolic.Computation): name = 'computations' elif isinstance(item, Connection.Connection): name = 'connections' elif isinstance(item, DisplayItem.DisplayDataChannel): name = 'display_data_channels' else: name = None assert False, 'Unable to cascade delete type ' + str(type(item) ) assert name if container is self and name == 'data_items': index = getattr(container, name).index(item) item_dict = item.write_to_dict() undelete_log.extend(self.__remove_data_item(item, safe=safe)) undelete_log.append({'type': name, 'index': index, 'properties': item_dict}) elif container is self and name == 'display_items': index = getattr(container, name).index(item) item_dict = item.write_to_dict() undelete_log.extend(self.__remove_display_item(item, safe=safe) ) undelete_log.append({'type': name, 'index': index, 'properties': item_dict}) elif container: container_ref = str(container.uuid) index = getattr(container, name).index(item) item_dict = item.write_to_dict() container_properties = container.save_properties() if hasattr( container, 'save_properties') else dict() undelete_log.append({'type': name, 'container': container_ref, 'index': index, 'properties': item_dict, 'container_properties': container_properties}) container.remove_item(name, item) if container == self and name in ('data_structures', 'computations'): self.notify_remove_item(name, item, index) except Exception as e: import sys, traceback traceback.print_exc() traceback.format_exception(*sys.exc_info()) finally: if computation_changed_delay_list is not None: self.__finish_computation_changed() return undelete_log
cascade_delete_inner
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, master_item, safe: bool=False) ->typing.Optional[typing.Sequence]:\n if self.__computation_changed_delay_list is None:\n computation_changed_delay_list = list()\n self.__computation_changed_delay_list = computation_changed_delay_list\n else:\n computation_changed_delay_list = None\n undelete_log = list()\n try:\n items = list()\n dependencies = list()\n self.__build_cascade(master_item, items, dependencies)\n cascaded = True\n while cascaded:\n cascaded = False\n items_set = set(items)\n for computation in copy.copy(self.computations):\n output_deleted = master_item in computation._outputs\n computation._inputs -= items_set\n computation._outputs -= items_set\n if (computation not in items and computation != self.\n __current_computation):\n if output_deleted or all(input in items for input in\n computation._inputs):\n self.__build_cascade(computation, items, dependencies)\n cascaded = True\n for source, target in reversed(dependencies):\n self.__remove_dependency(source, target)\n for item in reversed(items):\n for computation in self.computations:\n new_entries = computation.list_item_removed(item)\n undelete_log.extend(new_entries)\n container = item.container\n if isinstance(item, DataItem.DataItem):\n name = 'data_items'\n elif isinstance(item, DisplayItem.DisplayItem):\n name = 'display_items'\n elif isinstance(item, Graphics.Graphic):\n name = 'graphics'\n elif isinstance(item, DataStructure.DataStructure):\n name = 'data_structures'\n elif isinstance(item, Symbolic.Computation):\n name = 'computations'\n elif isinstance(item, Connection.Connection):\n name = 'connections'\n elif isinstance(item, DisplayItem.DisplayDataChannel):\n name = 'display_data_channels'\n else:\n name = None\n assert False, 'Unable to cascade delete type ' + str(type(item)\n )\n assert name\n if container is self and name == 'data_items':\n index = getattr(container, name).index(item)\n item_dict = item.write_to_dict()\n undelete_log.extend(self.__remove_data_item(item, safe=safe))\n undelete_log.append({'type': name, 'index': index,\n 'properties': item_dict})\n elif container is self and name == 'display_items':\n index = getattr(container, name).index(item)\n item_dict = item.write_to_dict()\n undelete_log.extend(self.__remove_display_item(item, safe=safe)\n )\n undelete_log.append({'type': name, 'index': index,\n 'properties': item_dict})\n elif container:\n container_ref = str(container.uuid)\n index = getattr(container, name).index(item)\n item_dict = item.write_to_dict()\n container_properties = container.save_properties() if hasattr(\n container, 'save_properties') else dict()\n undelete_log.append({'type': name, 'container':\n container_ref, 'index': index, 'properties': item_dict,\n 'container_properties': container_properties})\n container.remove_item(name, item)\n if container == self and name in ('data_structures',\n 'computations'):\n self.notify_remove_item(name, item, index)\n except Exception as e:\n import sys, traceback\n traceback.print_exc()\n traceback.format_exception(*sys.exc_info())\n finally:\n if computation_changed_delay_list is not None:\n self.__finish_computation_changed()\n return undelete_log\n", "role": "user" }, { "content": "cascade_delete_inner", "role": "assistant" } ]
def x(self, item) ->typing.List: with self.__dependency_tree_lock: return copy.copy(self.__dependency_tree_source_to_target_map.get( weakref.ref(item), list()))
get_dependent_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, item) ->typing.List:\n with self.__dependency_tree_lock:\n return copy.copy(self.__dependency_tree_source_to_target_map.get(\n weakref.ref(item), list()))\n", "role": "user" }, { "content": "get_dependent_items", "role": "assistant" } ]
def x(self, item, item_set) ->None: if not item in item_set: item_set.add(item) with self.__dependency_tree_lock: for dependent in self.get_dependent_items(item): self.__get_deep_dependent_item_set(dependent, item_set)
get_deep_dependent_item_set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, item, item_set) ->None:\n if not item in item_set:\n item_set.add(item)\n with self.__dependency_tree_lock:\n for dependent in self.get_dependent_items(item):\n self.__get_deep_dependent_item_set(dependent, item_set)\n", "role": "user" }, { "content": "get_deep_dependent_item_set", "role": "assistant" } ]
def x(self, data_item: DataItem.DataItem) ->typing.List[DataItem.DataItem]: with self.__dependency_tree_lock: return [data_item for data_item in self. __dependency_tree_source_to_target_map.get(weakref.ref( data_item), list()) if isinstance(data_item, DataItem.DataItem)]
get_dependent_data_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item: DataItem.DataItem) ->typing.List[DataItem.DataItem]:\n with self.__dependency_tree_lock:\n return [data_item for data_item in self.\n __dependency_tree_source_to_target_map.get(weakref.ref(\n data_item), list()) if isinstance(data_item, DataItem.DataItem)]\n", "role": "user" }, { "content": "get_dependent_data_items", "role": "assistant" } ]
def x(self): class DocumentModelTransaction: def x(self, document_model): self.__document_model = document_model def x(self): self.__document_model.persistent_object_context.enter_write_delay( self.__document_model) return self def x(self, type, value, traceback): self.__document_model.persistent_object_context.exit_write_delay( self.__document_model) self.__document_model.persistent_object_context.rewrite_item(self .__document_model) return DocumentModelTransaction(self)
transaction_context
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n\n\n class DocumentModelTransaction:\n\n def x(self, document_model):\n self.__document_model = document_model\n\n def x(self):\n self.__document_model.persistent_object_context.enter_write_delay(\n self.__document_model)\n return self\n\n def x(self, type, value, traceback):\n self.__document_model.persistent_object_context.exit_write_delay(\n self.__document_model)\n self.__document_model.persistent_object_context.rewrite_item(self\n .__document_model)\n return DocumentModelTransaction(self)\n", "role": "user" }, { "content": "transaction_context", "role": "assistant" } ]
def x(self, data_item): class LiveContextManager: def x(self, manager, object): self.__manager = manager self.__object = object def x(self): self.__manager.begin_data_item_live(self.__object) return self def x(self, type, value, traceback): self.__manager.end_data_item_live(self.__object) return LiveContextManager(self, data_item)
data_item_live
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item):\n\n\n class LiveContextManager:\n\n def x(self, manager, object):\n self.__manager = manager\n self.__object = object\n\n def x(self):\n self.__manager.begin_data_item_live(self.__object)\n return self\n\n def x(self, type, value, traceback):\n self.__manager.end_data_item_live(self.__object)\n return LiveContextManager(self, data_item)\n", "role": "user" }, { "content": "data_item_live", "role": "assistant" } ]
def x(self, data_item): with self.__live_data_items_lock: old_live_count = self.__live_data_items.get(data_item.uuid, 0) self.__live_data_items[data_item.uuid] = old_live_count + 1 if old_live_count == 0: data_item._enter_live_state() for dependent_data_item in self.get_dependent_data_items(data_item): self.begin_data_item_live(dependent_data_item)
begin_data_item_live
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item):\n with self.__live_data_items_lock:\n old_live_count = self.__live_data_items.get(data_item.uuid, 0)\n self.__live_data_items[data_item.uuid] = old_live_count + 1\n if old_live_count == 0:\n data_item._enter_live_state()\n for dependent_data_item in self.get_dependent_data_items(data_item):\n self.begin_data_item_live(dependent_data_item)\n", "role": "user" }, { "content": "begin_data_item_live", "role": "assistant" } ]
def x(self, data_item): with self.__live_data_items_lock: live_count = self.__live_data_items.get(data_item.uuid, 0) - 1 assert live_count >= 0 self.__live_data_items[data_item.uuid] = live_count if live_count == 0: data_item._exit_live_state() for dependent_data_item in self.get_dependent_data_items(data_item): self.end_data_item_live(dependent_data_item)
end_data_item_live
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item):\n with self.__live_data_items_lock:\n live_count = self.__live_data_items.get(data_item.uuid, 0) - 1\n assert live_count >= 0\n self.__live_data_items[data_item.uuid] = live_count\n if live_count == 0:\n data_item._exit_live_state()\n for dependent_data_item in self.get_dependent_data_items(data_item):\n self.end_data_item_live(dependent_data_item)\n", "role": "user" }, { "content": "end_data_item_live", "role": "assistant" } ]
def x(self, hardware_source: HardwareSource.HardwareSource, data_channel: HardwareSource.DataChannel): session_id = self.session_id key = self.make_data_item_reference_key(hardware_source. hardware_source_id, data_channel.channel_id) data_item_reference = self.get_data_item_reference(key) with data_item_reference.mutex: data_item = data_item_reference.data_item if data_item is None: data_item = DataItem.DataItem() data_item.ensure_data_source() data_item.title = '%s (%s)' % (hardware_source.display_name, data_channel.name ) if data_channel.name else hardware_source.display_name data_item.category = 'temporary' data_item_reference.data_item = data_item def x(): self.append_data_item(data_item) self._update_data_item_reference(key, data_item) self.__call_soon(append_data_item) def x(): if data_item.session_id != session_id: data_item.session_id = session_id session_metadata = ApplicationData.get_session_metadata_dict() if data_item.session_metadata != session_metadata: data_item.session_metadata = session_metadata if data_channel.processor: src_data_channel = hardware_source.data_channels[data_channel .src_channel_index] src_data_item_reference = self.get_data_item_reference(self .make_data_item_reference_key(hardware_source. hardware_source_id, src_data_channel.channel_id)) data_channel.processor.connect_data_item_reference( src_data_item_reference) self.__call_soon(update_session) return data_item_reference
construct_data_item_reference
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, hardware_source: HardwareSource.HardwareSource, data_channel:\n HardwareSource.DataChannel):\n session_id = self.session_id\n key = self.make_data_item_reference_key(hardware_source.\n hardware_source_id, data_channel.channel_id)\n data_item_reference = self.get_data_item_reference(key)\n with data_item_reference.mutex:\n data_item = data_item_reference.data_item\n if data_item is None:\n data_item = DataItem.DataItem()\n data_item.ensure_data_source()\n data_item.title = '%s (%s)' % (hardware_source.display_name,\n data_channel.name\n ) if data_channel.name else hardware_source.display_name\n data_item.category = 'temporary'\n data_item_reference.data_item = data_item\n\n def x():\n self.append_data_item(data_item)\n self._update_data_item_reference(key, data_item)\n self.__call_soon(append_data_item)\n\n def x():\n if data_item.session_id != session_id:\n data_item.session_id = session_id\n session_metadata = ApplicationData.get_session_metadata_dict()\n if data_item.session_metadata != session_metadata:\n data_item.session_metadata = session_metadata\n if data_channel.processor:\n src_data_channel = hardware_source.data_channels[data_channel\n .src_channel_index]\n src_data_item_reference = self.get_data_item_reference(self\n .make_data_item_reference_key(hardware_source.\n hardware_source_id, src_data_channel.channel_id))\n data_channel.processor.connect_data_item_reference(\n src_data_item_reference)\n self.__call_soon(update_session)\n return data_item_reference\n", "role": "user" }, { "content": "construct_data_item_reference", "role": "assistant" } ]
def x(array: numpy.ndarray, x: int) ->numpy.ndarray: out_array = [] for i in range(x): if i % (x / (len(array) - 1)) == 0: index = i / (x / (len(array) - 1)) out_array.append(array[int(index)]) else: start_marker = array[math.floor(i / (x / (len(array) - 1)))] stop_marker = array[math.ceil(i / (x / (len(array) - 1)))] interp_amount = i % (x / (len(array) - 1)) / (x / (len(array) - 1)) interp_color = numpy.rint(start_marker + (stop_marker - start_marker) * interp_amount) out_array.append(interp_color) out_array[-1] = array[-1] return numpy.array(out_array).astype(numpy.uint8)
interpolate_colors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(array: numpy.ndarray, x: int) ->numpy.ndarray:\n out_array = []\n for i in range(x):\n if i % (x / (len(array) - 1)) == 0:\n index = i / (x / (len(array) - 1))\n out_array.append(array[int(index)])\n else:\n start_marker = array[math.floor(i / (x / (len(array) - 1)))]\n stop_marker = array[math.ceil(i / (x / (len(array) - 1)))]\n interp_amount = i % (x / (len(array) - 1)) / (x / (len(array) - 1))\n interp_color = numpy.rint(start_marker + (stop_marker -\n start_marker) * interp_amount)\n out_array.append(interp_color)\n out_array[-1] = array[-1]\n return numpy.array(out_array).astype(numpy.uint8)\n", "role": "user" }, { "content": "interpolate_colors", "role": "assistant" } ]
def x(self, **args): if 'name' in args: self.gist_name = args['name'] self.gist_id = self.getMyID(self.gist_name) elif 'id' in args: self.gist_id = args['id'] else: raise Exception( "Either provide authenticated user's Unambigious Gistname or any unique Gistid to be starred" ) r = requests.put('%s' % BASE_URL + '/gists/%s/star' % self.gist_id, headers=self.gist.header) if r.status_code == 204: response = {'id': self.gist_id} return response raise Exception("Gist can't be starred")
star
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **args):\n if 'name' in args:\n self.gist_name = args['name']\n self.gist_id = self.getMyID(self.gist_name)\n elif 'id' in args:\n self.gist_id = args['id']\n else:\n raise Exception(\n \"Either provide authenticated user's Unambigious Gistname or any unique Gistid to be starred\"\n )\n r = requests.put('%s' % BASE_URL + '/gists/%s/star' % self.gist_id,\n headers=self.gist.header)\n if r.status_code == 204:\n response = {'id': self.gist_id}\n return response\n raise Exception(\"Gist can't be starred\")\n", "role": "user" }, { "content": "star", "role": "assistant" } ]
def x(self, **args): if 'name' in args: self.gist_name = args['name'] self.gist_id = self.getMyID(self.gist_name) elif 'id' in args: self.gist_id = args['id'] else: raise Exception( "Either provide authenticated user's Unambigious Gistname or any unique Gistid to be forked" ) r = requests.post('%s' % BASE_URL + '/gists/%s/forks' % self.gist_id, headers=self.gist.header) if r.status_code == 201: response = {'id': self.gist_id, 'description': r.json()[ 'description'], 'public': r.json()['public'], 'comments': r. json()['comments']} return response raise Exception("Gist can't be forked")
fork
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **args):\n if 'name' in args:\n self.gist_name = args['name']\n self.gist_id = self.getMyID(self.gist_name)\n elif 'id' in args:\n self.gist_id = args['id']\n else:\n raise Exception(\n \"Either provide authenticated user's Unambigious Gistname or any unique Gistid to be forked\"\n )\n r = requests.post('%s' % BASE_URL + '/gists/%s/forks' % self.gist_id,\n headers=self.gist.header)\n if r.status_code == 201:\n response = {'id': self.gist_id, 'description': r.json()[\n 'description'], 'public': r.json()['public'], 'comments': r.\n json()['comments']}\n return response\n raise Exception(\"Gist can't be forked\")\n", "role": "user" }, { "content": "fork", "role": "assistant" } ]
def x(self, **args): if 'name' in args: self.gist_name = args['name'] self.gist_id = self.getMyID(self.gist_name) elif 'id' in args: self.gist_id = args['id'] else: raise Exception( "Either provide authenticated user's Unambigious Gistname or any unique Gistid to be checked for star" ) r = requests.get('%s' % BASE_URL + '/gists/%s/star' % self.gist_id, headers=self.gist.header) if r.status_code == 204: response = {'starred': 'True', 'id': self.gist_id} else: response = {'starred': 'False'} return response
checkifstar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **args):\n if 'name' in args:\n self.gist_name = args['name']\n self.gist_id = self.getMyID(self.gist_name)\n elif 'id' in args:\n self.gist_id = args['id']\n else:\n raise Exception(\n \"Either provide authenticated user's Unambigious Gistname or any unique Gistid to be checked for star\"\n )\n r = requests.get('%s' % BASE_URL + '/gists/%s/star' % self.gist_id,\n headers=self.gist.header)\n if r.status_code == 204:\n response = {'starred': 'True', 'id': self.gist_id}\n else:\n response = {'starred': 'False'}\n return response\n", "role": "user" }, { "content": "checkifstar", "role": "assistant" } ]
def x(self, destino=None, prefix='tmp', suffix='-sat.log'): if destino: if os.path.exists(destino): raise IOError((errno.EEXIST, 'File exists', destino)) destino = os.path.abspath(destino) fd = os.open(destino, os.O_EXCL | os.O_CREAT | os.O_WRONLY) else: fd, destino = tempfile.mkstemp(prefix=prefix, suffix=suffix) os.write(fd, self.conteudo()) os.fsync(fd) os.close(fd) return os.path.abspath(destino)
salvar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, destino=None, prefix='tmp', suffix='-sat.log'):\n if destino:\n if os.path.exists(destino):\n raise IOError((errno.EEXIST, 'File exists', destino))\n destino = os.path.abspath(destino)\n fd = os.open(destino, os.O_EXCL | os.O_CREAT | os.O_WRONLY)\n else:\n fd, destino = tempfile.mkstemp(prefix=prefix, suffix=suffix)\n os.write(fd, self.conteudo())\n os.fsync(fd)\n os.close(fd)\n return os.path.abspath(destino)\n", "role": "user" }, { "content": "salvar", "role": "assistant" } ]
def x(retorno): resposta = analisar_retorno(forcar_unicode(retorno), funcao= 'ExtrairLogs', classe_resposta=RespostaExtrairLogs, campos= RespostaSAT.CAMPOS + (('arquivoLog', unicode),), campos_alternativos=[RespostaSAT.CAMPOS]) if resposta.EEEEE not in ('15000',): raise ExcecaoRespostaSAT(resposta) return resposta
analisar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao=\n 'ExtrairLogs', classe_resposta=RespostaExtrairLogs, campos=\n RespostaSAT.CAMPOS + (('arquivoLog', unicode),),\n campos_alternativos=[RespostaSAT.CAMPOS])\n if resposta.EEEEE not in ('15000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n", "role": "user" }, { "content": "analisar", "role": "assistant" } ]
def x(self): units = '' if len(self.file_objects) == 1 and self.file_objects[0] is not None: data = self.file_objects[0].variables[self.variable][self. forecast_hours] if hasattr(self.file_objects[0].variables[self.variable], 'units'): units = self.file_objects[0].variables[self.variable].units elif len(self.file_objects) > 1: grid_shape = [len(self.file_objects), 1, 1] for file_object in self.file_objects: if file_object is not None: if self.variable in file_object.variables.keys(): grid_shape = file_object.variables[self.variable].shape elif self.variable.ljust(6, '_') in file_object.variables.keys( ): grid_shape = file_object.variables[self.variable.ljust( 6, '_')].shape else: print('{0} not found'.format(self.variable)) raise KeyError break data = np.zeros((len(self.file_objects), grid_shape[1], grid_shape[2])) for f, file_object in enumerate(self.file_objects): if file_object is not None: if self.variable in file_object.variables.keys(): var_name = self.variable elif self.variable.ljust(6, '_') in file_object.variables.keys( ): var_name = self.variable.ljust(6, '_') else: print('{0} not found'.format(self.variable)) raise KeyError data[f] = file_object.variables[var_name][0] if units == '' and hasattr(file_object.variables[var_name], 'units'): units = file_object.variables[var_name].units else: data = None return data, units
load_data_old
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n units = ''\n if len(self.file_objects) == 1 and self.file_objects[0] is not None:\n data = self.file_objects[0].variables[self.variable][self.\n forecast_hours]\n if hasattr(self.file_objects[0].variables[self.variable], 'units'):\n units = self.file_objects[0].variables[self.variable].units\n elif len(self.file_objects) > 1:\n grid_shape = [len(self.file_objects), 1, 1]\n for file_object in self.file_objects:\n if file_object is not None:\n if self.variable in file_object.variables.keys():\n grid_shape = file_object.variables[self.variable].shape\n elif self.variable.ljust(6, '_') in file_object.variables.keys(\n ):\n grid_shape = file_object.variables[self.variable.ljust(\n 6, '_')].shape\n else:\n print('{0} not found'.format(self.variable))\n raise KeyError\n break\n data = np.zeros((len(self.file_objects), grid_shape[1], grid_shape[2]))\n for f, file_object in enumerate(self.file_objects):\n if file_object is not None:\n if self.variable in file_object.variables.keys():\n var_name = self.variable\n elif self.variable.ljust(6, '_') in file_object.variables.keys(\n ):\n var_name = self.variable.ljust(6, '_')\n else:\n print('{0} not found'.format(self.variable))\n raise KeyError\n data[f] = file_object.variables[var_name][0]\n if units == '' and hasattr(file_object.variables[var_name],\n 'units'):\n units = file_object.variables[var_name].units\n else:\n data = None\n return data, units\n", "role": "user" }, { "content": "load_data_old", "role": "assistant" } ]
def x(self): units = '' if self.file_objects[0] is None: raise IOError() var_name, z_index = self.format_var_name(self.variable, list(self. file_objects[0].variables.keys())) ntimes = 0 if 'time' in self.file_objects[0].variables[var_name].dimensions: ntimes = len(self.file_objects[0].dimensions['time']) if ntimes > 1: if z_index is None: data = self.file_objects[0].variables[var_name][self.forecast_hours ].astype(np.float32) else: data = self.file_objects[0].variables[var_name][self. forecast_hours, z_index].astype(np.float32) else: y_dim, x_dim = self.file_objects[0].variables[var_name].shape[-2:] data = np.zeros((len(self.valid_dates), y_dim, x_dim), dtype=np.float32 ) for f, file_object in enumerate(self.file_objects): if file_object is not None: if z_index is None: data[f] = file_object.variables[var_name][0] else: data[f] = file_object.variables[var_name][0, z_index] if hasattr(self.file_objects[0].variables[var_name], 'units'): units = self.file_objects[0].variables[var_name].units return data, units
load_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n units = ''\n if self.file_objects[0] is None:\n raise IOError()\n var_name, z_index = self.format_var_name(self.variable, list(self.\n file_objects[0].variables.keys()))\n ntimes = 0\n if 'time' in self.file_objects[0].variables[var_name].dimensions:\n ntimes = len(self.file_objects[0].dimensions['time'])\n if ntimes > 1:\n if z_index is None:\n data = self.file_objects[0].variables[var_name][self.forecast_hours\n ].astype(np.float32)\n else:\n data = self.file_objects[0].variables[var_name][self.\n forecast_hours, z_index].astype(np.float32)\n else:\n y_dim, x_dim = self.file_objects[0].variables[var_name].shape[-2:]\n data = np.zeros((len(self.valid_dates), y_dim, x_dim), dtype=np.float32\n )\n for f, file_object in enumerate(self.file_objects):\n if file_object is not None:\n if z_index is None:\n data[f] = file_object.variables[var_name][0]\n else:\n data[f] = file_object.variables[var_name][0, z_index]\n if hasattr(self.file_objects[0].variables[var_name], 'units'):\n units = self.file_objects[0].variables[var_name].units\n return data, units\n", "role": "user" }, { "content": "load_data", "role": "assistant" } ]
def x(variable, var_list): z_index = None if variable in var_list: var_name = variable elif variable.ljust(6, '_') in var_list: var_name = variable.ljust(6, '_') elif any([(variable in v_sub.split('_')) for v_sub in var_list]): var_name = var_list[[(variable in v_sub.split('_')) for v_sub in var_list].index(True)] z_index = var_name.split('_').index(variable) else: raise KeyError('{0} not found in {1}'.format(variable, var_list)) return var_name, z_index
format_var_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variable, var_list):\n z_index = None\n if variable in var_list:\n var_name = variable\n elif variable.ljust(6, '_') in var_list:\n var_name = variable.ljust(6, '_')\n elif any([(variable in v_sub.split('_')) for v_sub in var_list]):\n var_name = var_list[[(variable in v_sub.split('_')) for v_sub in\n var_list].index(True)]\n z_index = var_name.split('_').index(variable)\n else:\n raise KeyError('{0} not found in {1}'.format(variable, var_list))\n return var_name, z_index\n", "role": "user" }, { "content": "format_var_name", "role": "assistant" } ]
def x(self, mode='train', format='csv'): if mode in self.data.keys(): run_dates = pd.DatetimeIndex(start=self.start_dates[mode], end=self .end_dates[mode], freq='1D') run_date_str = [d.strftime('%Y%m%d-%H%M') for d in run_dates.date] print(run_date_str) all_total_track_files = sorted(glob(getattr(self, mode + '_data_path') + '*total_' + self.ensemble_name + '*.' + format)) all_step_track_files = sorted(glob(getattr(self, mode + '_data_path') + '*step_' + self.ensemble_name + '*.' + format)) total_track_files = [] for track_file in all_total_track_files: file_date = track_file.split('_')[-1][:-4] if file_date in run_date_str: total_track_files.append(track_file) step_track_files = [] for step_file in all_step_track_files: file_date = step_file.split('_')[-1][:-4] if file_date in run_date_str: step_track_files.append(step_file) self.data[mode]['total'] = pd.concat(map(pd.read_csv, total_track_files), ignore_index=True) self.data[mode]['total'] = self.data[mode]['total'].fillna(value=0) self.data[mode]['total'] = self.data[mode]['total'].replace([np.inf, -np.inf], 0) self.data[mode]['step'] = pd.concat(map(pd.read_csv, step_track_files), ignore_index=True) self.data[mode]['step'] = self.data[mode]['step'].fillna(value=0) self.data[mode]['step'] = self.data[mode]['step'].replace([np.inf, -np.inf], 0) if mode == 'forecast': self.data[mode]['step'] = self.data[mode]['step'].drop_duplicates( 'Step_ID') self.data[mode]['member'] = pd.read_csv(self.member_files[mode]) self.data[mode]['combo'] = pd.merge(self.data[mode]['step'], self. data[mode]['total'], on=['Track_ID', 'Ensemble_Name', 'Ensemble_Member', 'Run_Date']) self.data[mode]['combo'] = pd.merge(self.data[mode]['combo'], self. data[mode]['member'], on='Ensemble_Member') self.data[mode]['total_group'] = pd.merge(self.data[mode]['total'], self.data[mode]['member'], on='Ensemble_Member')
load_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode='train', format='csv'):\n if mode in self.data.keys():\n run_dates = pd.DatetimeIndex(start=self.start_dates[mode], end=self\n .end_dates[mode], freq='1D')\n run_date_str = [d.strftime('%Y%m%d-%H%M') for d in run_dates.date]\n print(run_date_str)\n all_total_track_files = sorted(glob(getattr(self, mode +\n '_data_path') + '*total_' + self.ensemble_name + '*.' + format))\n all_step_track_files = sorted(glob(getattr(self, mode +\n '_data_path') + '*step_' + self.ensemble_name + '*.' + format))\n total_track_files = []\n for track_file in all_total_track_files:\n file_date = track_file.split('_')[-1][:-4]\n if file_date in run_date_str:\n total_track_files.append(track_file)\n step_track_files = []\n for step_file in all_step_track_files:\n file_date = step_file.split('_')[-1][:-4]\n if file_date in run_date_str:\n step_track_files.append(step_file)\n self.data[mode]['total'] = pd.concat(map(pd.read_csv,\n total_track_files), ignore_index=True)\n self.data[mode]['total'] = self.data[mode]['total'].fillna(value=0)\n self.data[mode]['total'] = self.data[mode]['total'].replace([np.inf,\n -np.inf], 0)\n self.data[mode]['step'] = pd.concat(map(pd.read_csv,\n step_track_files), ignore_index=True)\n self.data[mode]['step'] = self.data[mode]['step'].fillna(value=0)\n self.data[mode]['step'] = self.data[mode]['step'].replace([np.inf, \n -np.inf], 0)\n if mode == 'forecast':\n self.data[mode]['step'] = self.data[mode]['step'].drop_duplicates(\n 'Step_ID')\n self.data[mode]['member'] = pd.read_csv(self.member_files[mode])\n self.data[mode]['combo'] = pd.merge(self.data[mode]['step'], self.\n data[mode]['total'], on=['Track_ID', 'Ensemble_Name',\n 'Ensemble_Member', 'Run_Date'])\n self.data[mode]['combo'] = pd.merge(self.data[mode]['combo'], self.\n data[mode]['member'], on='Ensemble_Member')\n self.data[mode]['total_group'] = pd.merge(self.data[mode]['total'],\n self.data[mode]['member'], on='Ensemble_Member')\n", "role": "user" }, { "content": "load_data", "role": "assistant" } ]
def x(self, output_file, model_names=('start-time', 'translation-x', 'translation-y'), label_columns=('Start_Time_Error', 'Translation_Error_X', 'Translation_Error_Y')): if len(self.data['train']) == 0: self.load_data() groups = self.data['train']['member'][self.group_col].unique() copulas = {} label_columns = list(label_columns) for group in groups: print(group) group_data = self.data['train']['total_group'].loc[self.data[ 'train']['total_group'][self.group_col] == group] group_data = group_data.dropna() group_data.reset_index(drop=True, inplace=True) copulas[group] = {} copulas[group]['mean'] = group_data[label_columns].mean(axis=0).values copulas[group]['cov'] = np.cov(group_data[label_columns].values.T) copulas[group]['model_names'] = list(model_names) del group_data pickle.dump(copulas, open(output_file, 'w'), pickle.HIGHEST_PROTOCOL)
calc_copulas
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, output_file, model_names=('start-time', 'translation-x',\n 'translation-y'), label_columns=('Start_Time_Error',\n 'Translation_Error_X', 'Translation_Error_Y')):\n if len(self.data['train']) == 0:\n self.load_data()\n groups = self.data['train']['member'][self.group_col].unique()\n copulas = {}\n label_columns = list(label_columns)\n for group in groups:\n print(group)\n group_data = self.data['train']['total_group'].loc[self.data[\n 'train']['total_group'][self.group_col] == group]\n group_data = group_data.dropna()\n group_data.reset_index(drop=True, inplace=True)\n copulas[group] = {}\n copulas[group]['mean'] = group_data[label_columns].mean(axis=0).values\n copulas[group]['cov'] = np.cov(group_data[label_columns].values.T)\n copulas[group]['model_names'] = list(model_names)\n del group_data\n pickle.dump(copulas, open(output_file, 'w'), pickle.HIGHEST_PROTOCOL)\n", "role": "user" }, { "content": "calc_copulas", "role": "assistant" } ]
def x(self, model_names, model_objs, input_columns, output_column='Matched', output_threshold=0.0): print('Fitting condition models') groups = self.data['train']['member'][self.group_col].unique() weights = None for group in groups: print(group) group_data = self.data['train']['combo'].loc[self.data['train'][ 'combo'][self.group_col] == group] if self.sector: lon_obj = data.loc[:, 'Centroid_Lon'] lat_obj = data.loc[:, 'Centroid_Lat'] left_lon, right_lon = self.grid_dict['sw_lon'], self.grid_dict[ 'ne_lon'] lower_lat, upper_lat = self.grid_dict['sw_lat'], self.grid_dict[ 'ne_lat'] weights = np.where((left_lon <= lon_obj) & (right_lon >= lon_obj) & (lower_lat <= lat_obj) & (upper_lat >= lat_obj), 1, 0.3) output_data = np.where(group_data[output_column] > output_threshold, 1, 0) print('Ones: ', np.count_nonzero(output_data > 0), 'Zeros: ', np. count_nonzero(output_data == 0)) self.condition_models[group] = {} for m, model_name in enumerate(model_names): print(model_name) self.condition_models[group][model_name] = deepcopy(model_objs[m]) try: self.condition_models[group][model_name].fit(group_data[ input_columns], output_data, sample_weight=weights) except: self.condition_models[group][model_name].fit(group_data[ input_columns], output_data) if hasattr(self.condition_models[group][model_name], 'best_estimator_'): print(self.condition_models[group][model_name].best_estimator_) print(self.condition_models[group][model_name].best_score_)
fit_condition_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_names, model_objs, input_columns, output_column='Matched',\n output_threshold=0.0):\n print('Fitting condition models')\n groups = self.data['train']['member'][self.group_col].unique()\n weights = None\n for group in groups:\n print(group)\n group_data = self.data['train']['combo'].loc[self.data['train'][\n 'combo'][self.group_col] == group]\n if self.sector:\n lon_obj = data.loc[:, 'Centroid_Lon']\n lat_obj = data.loc[:, 'Centroid_Lat']\n left_lon, right_lon = self.grid_dict['sw_lon'], self.grid_dict[\n 'ne_lon']\n lower_lat, upper_lat = self.grid_dict['sw_lat'], self.grid_dict[\n 'ne_lat']\n weights = np.where((left_lon <= lon_obj) & (right_lon >=\n lon_obj) & (lower_lat <= lat_obj) & (upper_lat >= lat_obj),\n 1, 0.3)\n output_data = np.where(group_data[output_column] > output_threshold,\n 1, 0)\n print('Ones: ', np.count_nonzero(output_data > 0), 'Zeros: ', np.\n count_nonzero(output_data == 0))\n self.condition_models[group] = {}\n for m, model_name in enumerate(model_names):\n print(model_name)\n self.condition_models[group][model_name] = deepcopy(model_objs[m])\n try:\n self.condition_models[group][model_name].fit(group_data[\n input_columns], output_data, sample_weight=weights)\n except:\n self.condition_models[group][model_name].fit(group_data[\n input_columns], output_data)\n if hasattr(self.condition_models[group][model_name],\n 'best_estimator_'):\n print(self.condition_models[group][model_name].best_estimator_)\n print(self.condition_models[group][model_name].best_score_)\n", "role": "user" }, { "content": "fit_condition_models", "role": "assistant" } ]
def x(self, model_names, model_objs, input_columns, output_column='Matched', output_threshold=0.5, num_folds=5, threshold_score='ets'): print('Fitting condition models') groups = self.data['train']['member'][self.group_col].unique() weights = None for group in groups: print(group) group_data = self.data['train']['combo'].iloc[np.where(self.data[ 'train']['combo'][self.group_col] == group)[0]] if self.sector: lon_obj = group_data.loc[:, 'Centroid_Lon'] lat_obj = group_data.loc[:, 'Centroid_Lat'] conus_lat_lon_points = zip(lon_obj.values.ravel(), lat_obj. values.ravel()) center_lon, center_lat = self.proj_dict['lon_0'], self.proj_dict[ 'lat_0'] distances = np.array([np.sqrt((x - center_lon) ** 2 + (y - center_lat) ** 2) for x, y in conus_lat_lon_points]) min_dist, max_minus_min = min(distances), max(distances) - min( distances) distance_0_1 = [(1.0 - (d - min_dist) / max_minus_min) for d in distances] weights = np.array(distance_0_1) output_data = np.where(group_data.loc[:, output_column] > output_threshold, 1, 0) ones = np.count_nonzero(output_data > 0) print('Ones: ', ones, 'Zeros: ', np.count_nonzero(output_data == 0)) self.condition_models[group] = {} num_elements = group_data[input_columns].shape[0] for m, model_name in enumerate(model_names): print(model_name) roc = DistributedROC(thresholds=np.arange(0, 1.1, 0.01)) self.condition_models[group][model_name] = deepcopy(model_objs[m]) try: kf = KFold(n_splits=num_folds) for train_index, test_index in kf.split(group_data[ input_columns].values): if np.count_nonzero(output_data[train_index]) > 0: try: self.condition_models[group][model_name].fit( group_data.iloc[train_index][input_columns], output_data[train_index], sample_weight= weights[train_index]) except: self.condition_models[group][model_name].fit( group_data.iloc[train_index][input_columns], output_data[train_index]) cv_preds = self.condition_models[group][model_name ].predict_proba(group_data.iloc[test_index][ input_columns])[:, 1] roc.update(cv_preds, output_data[test_index]) else: continue except TypeError: kf = KFold(num_elements, n_folds=num_folds) for train_index, test_index in kf: if np.count_nonzero(output_data[train_index]) > 0: try: self.condition_models[group][model_name].fit( group_data.iloc[train_index][input_columns], output_data[train_index], sample_weight= weights[train_index]) except: self.condition_models[group][model_name].fit( group_data.iloc[train_index][input_columns], output_data[train_index]) cv_preds = self.condition_models[group][model_name ].predict_proba(group_data.iloc[test_index][ input_columns])[:, 1] roc.update(cv_preds, output_data[test_index]) else: continue self.condition_models[group][model_name + '_condition_threshold' ], _ = roc.max_threshold_score(threshold_score) print(model_name + ' condition threshold: {0:0.3f}'.format(self .condition_models[group][model_name + '_condition_threshold'])) self.condition_models[group][model_name].fit(group_data[ input_columns], output_data)
fit_condition_threshold_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_names, model_objs, input_columns, output_column='Matched',\n output_threshold=0.5, num_folds=5, threshold_score='ets'):\n print('Fitting condition models')\n groups = self.data['train']['member'][self.group_col].unique()\n weights = None\n for group in groups:\n print(group)\n group_data = self.data['train']['combo'].iloc[np.where(self.data[\n 'train']['combo'][self.group_col] == group)[0]]\n if self.sector:\n lon_obj = group_data.loc[:, 'Centroid_Lon']\n lat_obj = group_data.loc[:, 'Centroid_Lat']\n conus_lat_lon_points = zip(lon_obj.values.ravel(), lat_obj.\n values.ravel())\n center_lon, center_lat = self.proj_dict['lon_0'], self.proj_dict[\n 'lat_0']\n distances = np.array([np.sqrt((x - center_lon) ** 2 + (y -\n center_lat) ** 2) for x, y in conus_lat_lon_points])\n min_dist, max_minus_min = min(distances), max(distances) - min(\n distances)\n distance_0_1 = [(1.0 - (d - min_dist) / max_minus_min) for d in\n distances]\n weights = np.array(distance_0_1)\n output_data = np.where(group_data.loc[:, output_column] >\n output_threshold, 1, 0)\n ones = np.count_nonzero(output_data > 0)\n print('Ones: ', ones, 'Zeros: ', np.count_nonzero(output_data == 0))\n self.condition_models[group] = {}\n num_elements = group_data[input_columns].shape[0]\n for m, model_name in enumerate(model_names):\n print(model_name)\n roc = DistributedROC(thresholds=np.arange(0, 1.1, 0.01))\n self.condition_models[group][model_name] = deepcopy(model_objs[m])\n try:\n kf = KFold(n_splits=num_folds)\n for train_index, test_index in kf.split(group_data[\n input_columns].values):\n if np.count_nonzero(output_data[train_index]) > 0:\n try:\n self.condition_models[group][model_name].fit(\n group_data.iloc[train_index][input_columns],\n output_data[train_index], sample_weight=\n weights[train_index])\n except:\n self.condition_models[group][model_name].fit(\n group_data.iloc[train_index][input_columns],\n output_data[train_index])\n cv_preds = self.condition_models[group][model_name\n ].predict_proba(group_data.iloc[test_index][\n input_columns])[:, 1]\n roc.update(cv_preds, output_data[test_index])\n else:\n continue\n except TypeError:\n kf = KFold(num_elements, n_folds=num_folds)\n for train_index, test_index in kf:\n if np.count_nonzero(output_data[train_index]) > 0:\n try:\n self.condition_models[group][model_name].fit(\n group_data.iloc[train_index][input_columns],\n output_data[train_index], sample_weight=\n weights[train_index])\n except:\n self.condition_models[group][model_name].fit(\n group_data.iloc[train_index][input_columns],\n output_data[train_index])\n cv_preds = self.condition_models[group][model_name\n ].predict_proba(group_data.iloc[test_index][\n input_columns])[:, 1]\n roc.update(cv_preds, output_data[test_index])\n else:\n continue\n self.condition_models[group][model_name + '_condition_threshold'\n ], _ = roc.max_threshold_score(threshold_score)\n print(model_name + ' condition threshold: {0:0.3f}'.format(self\n .condition_models[group][model_name + '_condition_threshold']))\n self.condition_models[group][model_name].fit(group_data[\n input_columns], output_data)\n", "role": "user" }, { "content": "fit_condition_threshold_models", "role": "assistant" } ]
def x(self, model_names, input_columns, metadata_cols, data_mode='forecast'): groups = self.condition_models.keys() predictions = pd.DataFrame(self.data[data_mode]['combo'][metadata_cols]) for group in groups: print(group) print(self.condition_models[group]) g_idxs = self.data[data_mode]['combo'][self.group_col] == group group_count = np.count_nonzero(g_idxs) if group_count > 0: for m, model_name in enumerate(model_names): mn = model_name.replace(' ', '-') predictions.loc[g_idxs, mn + '_conditionprob' ] = self.condition_models[group][model_name].predict_proba( self.data[data_mode]['combo'].loc[g_idxs, input_columns])[ :, 1] predictions.loc[g_idxs, mn + '_conditionthresh'] = np.where( predictions.loc[g_idxs, mn + '_conditionprob'] >= self. condition_models[group][model_name + '_condition_threshold'], 1, 0) return predictions
predict_condition_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_names, input_columns, metadata_cols, data_mode='forecast'):\n groups = self.condition_models.keys()\n predictions = pd.DataFrame(self.data[data_mode]['combo'][metadata_cols])\n for group in groups:\n print(group)\n print(self.condition_models[group])\n g_idxs = self.data[data_mode]['combo'][self.group_col] == group\n group_count = np.count_nonzero(g_idxs)\n if group_count > 0:\n for m, model_name in enumerate(model_names):\n mn = model_name.replace(' ', '-')\n predictions.loc[g_idxs, mn + '_conditionprob'\n ] = self.condition_models[group][model_name].predict_proba(\n self.data[data_mode]['combo'].loc[g_idxs, input_columns])[\n :, 1]\n predictions.loc[g_idxs, mn + '_conditionthresh'] = np.where(\n predictions.loc[g_idxs, mn + '_conditionprob'] >= self.\n condition_models[group][model_name +\n '_condition_threshold'], 1, 0)\n return predictions\n", "role": "user" }, { "content": "predict_condition_models", "role": "assistant" } ]
def x(self, model_names, model_objs, input_columns, output_columns=None, calibrate=False): if output_columns is None: output_columns = ['Shape', 'Location', 'Scale'] groups = np.unique(self.data['train']['member'][self.group_col]) weights = None for group in groups: group_data = self.data['train']['combo'].loc[self.data['train'][ 'combo'][self.group_col] == group] group_data = group_data.dropna() group_data = group_data[group_data[output_columns[-1]] > 0] if self.sector: lon_obj = group_data.loc[:, 'Centroid_Lon'] lat_obj = group_data.loc[:, 'Centroid_Lat'] conus_lat_lon_points = zip(lon_obj.values.ravel(), lat_obj. values.ravel()) center_lon, center_lat = self.proj_dict['lon_0'], self.proj_dict[ 'lat_0'] distances = np.array([np.sqrt((x - center_lon) ** 2 + (y - center_lat) ** 2) for x, y in conus_lat_lon_points]) min_dist, max_minus_min = min(distances), max(distances) - min( distances) distance_0_1 = [(1.0 - (d - min_dist) / max_minus_min) for d in distances] weights = np.array(distance_0_1) self.size_distribution_models[group] = {'multi': {}, 'lognorm': {}} if calibrate: self.size_distribution_models[group]['calshape'] = {} self.size_distribution_models[group]['calscale'] = {} log_labels = np.log(group_data[output_columns].values) log_means = log_labels.mean(axis=0) log_sds = log_labels.std(axis=0) self.size_distribution_models[group]['lognorm']['mean'] = log_means self.size_distribution_models[group]['lognorm']['sd'] = log_sds for m, model_name in enumerate(model_names): print(group, model_name) self.size_distribution_models[group]['multi'][model_name ] = deepcopy(model_objs[m]) try: self.size_distribution_models[group]['multi'][model_name].fit( group_data[input_columns], (log_labels - log_means) / log_sds, sample_weight=weights) except: self.size_distribution_models[group]['multi'][model_name].fit( group_data[input_columns], (log_labels - log_means) / log_sds) if calibrate: training_predictions = self.size_distribution_models[group][ 'multi'][model_name].predict(group_data[input_columns]) self.size_distribution_models[group]['calshape'][model_name ] = LinearRegression() self.size_distribution_models[group]['calshape'][model_name ].fit(training_predictions[:, 0:1], (log_labels[:, 0] - log_means[0]) / log_sds[0], sample_weight=weights) self.size_distribution_models[group]['calscale'][model_name ] = LinearRegression() self.size_distribution_models[group]['calscale'][model_name ].fit(training_predictions[:, 1:], (log_labels[:, 1] - log_means[1]) / log_sds[1], sample_weight=weights)
fit_size_distribution_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_names, model_objs, input_columns, output_columns=None,\n calibrate=False):\n if output_columns is None:\n output_columns = ['Shape', 'Location', 'Scale']\n groups = np.unique(self.data['train']['member'][self.group_col])\n weights = None\n for group in groups:\n group_data = self.data['train']['combo'].loc[self.data['train'][\n 'combo'][self.group_col] == group]\n group_data = group_data.dropna()\n group_data = group_data[group_data[output_columns[-1]] > 0]\n if self.sector:\n lon_obj = group_data.loc[:, 'Centroid_Lon']\n lat_obj = group_data.loc[:, 'Centroid_Lat']\n conus_lat_lon_points = zip(lon_obj.values.ravel(), lat_obj.\n values.ravel())\n center_lon, center_lat = self.proj_dict['lon_0'], self.proj_dict[\n 'lat_0']\n distances = np.array([np.sqrt((x - center_lon) ** 2 + (y -\n center_lat) ** 2) for x, y in conus_lat_lon_points])\n min_dist, max_minus_min = min(distances), max(distances) - min(\n distances)\n distance_0_1 = [(1.0 - (d - min_dist) / max_minus_min) for d in\n distances]\n weights = np.array(distance_0_1)\n self.size_distribution_models[group] = {'multi': {}, 'lognorm': {}}\n if calibrate:\n self.size_distribution_models[group]['calshape'] = {}\n self.size_distribution_models[group]['calscale'] = {}\n log_labels = np.log(group_data[output_columns].values)\n log_means = log_labels.mean(axis=0)\n log_sds = log_labels.std(axis=0)\n self.size_distribution_models[group]['lognorm']['mean'] = log_means\n self.size_distribution_models[group]['lognorm']['sd'] = log_sds\n for m, model_name in enumerate(model_names):\n print(group, model_name)\n self.size_distribution_models[group]['multi'][model_name\n ] = deepcopy(model_objs[m])\n try:\n self.size_distribution_models[group]['multi'][model_name].fit(\n group_data[input_columns], (log_labels - log_means) /\n log_sds, sample_weight=weights)\n except:\n self.size_distribution_models[group]['multi'][model_name].fit(\n group_data[input_columns], (log_labels - log_means) /\n log_sds)\n if calibrate:\n training_predictions = self.size_distribution_models[group][\n 'multi'][model_name].predict(group_data[input_columns])\n self.size_distribution_models[group]['calshape'][model_name\n ] = LinearRegression()\n self.size_distribution_models[group]['calshape'][model_name\n ].fit(training_predictions[:, 0:1], (log_labels[:, 0] -\n log_means[0]) / log_sds[0], sample_weight=weights)\n self.size_distribution_models[group]['calscale'][model_name\n ] = LinearRegression()\n self.size_distribution_models[group]['calscale'][model_name\n ].fit(training_predictions[:, 1:], (log_labels[:, 1] -\n log_means[1]) / log_sds[1], sample_weight=weights)\n", "role": "user" }, { "content": "fit_size_distribution_models", "role": "assistant" } ]
def x(self, model_names, model_objs, input_columns, output_columns): groups = np.unique(self.data['train']['member'][self.group_col]) weights = None for group in groups: print(group) group_data = self.data['train']['combo'].loc[self.data['train'][ 'combo'][self.group_col] == group] group_data = group_data.dropna() group_data = group_data.loc[group_data[output_columns[-1]] > 0] if self.sector: lon_obj = group_data.loc[:, 'Centroid_Lon'] lat_obj = group_data.loc[:, 'Centroid_Lat'] conus_lat_lon_points = zip(lon_obj.values.ravel(), lat_obj. values.ravel()) center_lon, center_lat = self.proj_dict['lon_0'], self.proj_dict[ 'lat_0'] distances = np.array([np.sqrt((x - center_lon) ** 2 + (y - center_lat) ** 2) for x, y in conus_lat_lon_points]) min_dist, max_minus_min = min(distances), max(distances) - min( distances) distance_0_1 = [(1.0 - (d - min_dist) / max_minus_min) for d in distances] weights = np.array(distance_0_1) self.size_distribution_models[group] = {'lognorm': {}} self.size_distribution_models[group]['lognorm']['pca'] = PCA( n_components=len(output_columns)) log_labels = np.log(group_data[output_columns].values) log_labels[:, np.where(output_columns == 'Shape')[0]] *= -1 log_means = log_labels.mean(axis=0) log_sds = log_labels.std(axis=0) log_norm_labels = (log_labels - log_means) / log_sds out_pc_labels = self.size_distribution_models[group]['lognorm']['pca' ].fit_transform(log_norm_labels) self.size_distribution_models[group]['lognorm']['mean'] = log_means self.size_distribution_models[group]['lognorm']['sd'] = log_sds for comp in range(len(output_columns)): self.size_distribution_models[group]['pc_{0:d}'.format(comp) ] = dict() for m, model_name in enumerate(model_names): print(model_name, comp) self.size_distribution_models[group]['pc_{0:d}'.format(comp)][ model_name] = deepcopy(model_objs[m]) try: self.size_distribution_models[group]['pc_{0:d}'.format( comp)][model_name].fit(group_data[input_columns], out_pc_labels[:, comp], sample_weight=weights) except: self.size_distribution_models[group]['pc_{0:d}'.format( comp)][model_name].fit(group_data[input_columns], out_pc_labels[:, comp]) return
fit_size_distribution_component_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_names, model_objs, input_columns, output_columns):\n groups = np.unique(self.data['train']['member'][self.group_col])\n weights = None\n for group in groups:\n print(group)\n group_data = self.data['train']['combo'].loc[self.data['train'][\n 'combo'][self.group_col] == group]\n group_data = group_data.dropna()\n group_data = group_data.loc[group_data[output_columns[-1]] > 0]\n if self.sector:\n lon_obj = group_data.loc[:, 'Centroid_Lon']\n lat_obj = group_data.loc[:, 'Centroid_Lat']\n conus_lat_lon_points = zip(lon_obj.values.ravel(), lat_obj.\n values.ravel())\n center_lon, center_lat = self.proj_dict['lon_0'], self.proj_dict[\n 'lat_0']\n distances = np.array([np.sqrt((x - center_lon) ** 2 + (y -\n center_lat) ** 2) for x, y in conus_lat_lon_points])\n min_dist, max_minus_min = min(distances), max(distances) - min(\n distances)\n distance_0_1 = [(1.0 - (d - min_dist) / max_minus_min) for d in\n distances]\n weights = np.array(distance_0_1)\n self.size_distribution_models[group] = {'lognorm': {}}\n self.size_distribution_models[group]['lognorm']['pca'] = PCA(\n n_components=len(output_columns))\n log_labels = np.log(group_data[output_columns].values)\n log_labels[:, np.where(output_columns == 'Shape')[0]] *= -1\n log_means = log_labels.mean(axis=0)\n log_sds = log_labels.std(axis=0)\n log_norm_labels = (log_labels - log_means) / log_sds\n out_pc_labels = self.size_distribution_models[group]['lognorm']['pca'\n ].fit_transform(log_norm_labels)\n self.size_distribution_models[group]['lognorm']['mean'] = log_means\n self.size_distribution_models[group]['lognorm']['sd'] = log_sds\n for comp in range(len(output_columns)):\n self.size_distribution_models[group]['pc_{0:d}'.format(comp)\n ] = dict()\n for m, model_name in enumerate(model_names):\n print(model_name, comp)\n self.size_distribution_models[group]['pc_{0:d}'.format(comp)][\n model_name] = deepcopy(model_objs[m])\n try:\n self.size_distribution_models[group]['pc_{0:d}'.format(\n comp)][model_name].fit(group_data[input_columns],\n out_pc_labels[:, comp], sample_weight=weights)\n except:\n self.size_distribution_models[group]['pc_{0:d}'.format(\n comp)][model_name].fit(group_data[input_columns],\n out_pc_labels[:, comp])\n return\n", "role": "user" }, { "content": "fit_size_distribution_component_models", "role": "assistant" } ]
def x(self, model_names, input_columns, metadata_cols, data_mode='forecast', location=6, calibrate=False): groups = self.size_distribution_models.keys() predictions = {} for group in groups: group_data = self.data[data_mode]['combo'].loc[self.data[data_mode] ['combo'][self.group_col] == group] predictions[group] = group_data[metadata_cols] if group_data.shape[0] > 0: log_mean = self.size_distribution_models[group]['lognorm']['mean'] log_sd = self.size_distribution_models[group]['lognorm']['sd'] for m, model_name in enumerate(model_names): multi_predictions = self.size_distribution_models[group][ 'multi'][model_name].predict(group_data[input_columns]) if calibrate: multi_predictions[:, 0] = self.size_distribution_models[ group]['calshape'][model_name].predict( multi_predictions[:, 0:1]) multi_predictions[:, 1] = self.size_distribution_models[ group]['calscale'][model_name].predict( multi_predictions[:, 1:]) multi_predictions = np.exp(multi_predictions * log_sd + log_mean) if multi_predictions.shape[1] == 2: multi_predictions_temp = np.zeros((multi_predictions. shape[0], 3)) multi_predictions_temp[:, 0] = multi_predictions[:, 0] multi_predictions_temp[:, 1] = location multi_predictions_temp[:, 2] = multi_predictions[:, 1] multi_predictions = multi_predictions_temp for p, pred_col in enumerate(['shape', 'location', 'scale']): predictions[group][model_name].loc[:, model_name. replace(' ', '-') + '_' + pred_col ] = multi_predictions[:, p] return predictions
predict_size_distribution_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_names, input_columns, metadata_cols, data_mode='forecast',\n location=6, calibrate=False):\n groups = self.size_distribution_models.keys()\n predictions = {}\n for group in groups:\n group_data = self.data[data_mode]['combo'].loc[self.data[data_mode]\n ['combo'][self.group_col] == group]\n predictions[group] = group_data[metadata_cols]\n if group_data.shape[0] > 0:\n log_mean = self.size_distribution_models[group]['lognorm']['mean']\n log_sd = self.size_distribution_models[group]['lognorm']['sd']\n for m, model_name in enumerate(model_names):\n multi_predictions = self.size_distribution_models[group][\n 'multi'][model_name].predict(group_data[input_columns])\n if calibrate:\n multi_predictions[:, 0] = self.size_distribution_models[\n group]['calshape'][model_name].predict(\n multi_predictions[:, 0:1])\n multi_predictions[:, 1] = self.size_distribution_models[\n group]['calscale'][model_name].predict(\n multi_predictions[:, 1:])\n multi_predictions = np.exp(multi_predictions * log_sd +\n log_mean)\n if multi_predictions.shape[1] == 2:\n multi_predictions_temp = np.zeros((multi_predictions.\n shape[0], 3))\n multi_predictions_temp[:, 0] = multi_predictions[:, 0]\n multi_predictions_temp[:, 1] = location\n multi_predictions_temp[:, 2] = multi_predictions[:, 1]\n multi_predictions = multi_predictions_temp\n for p, pred_col in enumerate(['shape', 'location', 'scale']):\n predictions[group][model_name].loc[:, model_name.\n replace(' ', '-') + '_' + pred_col\n ] = multi_predictions[:, p]\n return predictions\n", "role": "user" }, { "content": "predict_size_distribution_models", "role": "assistant" } ]
def x(self, model_names, input_columns, output_columns, metadata_cols, data_mode='forecast', location=6): groups = self.size_distribution_models.keys() predictions = pd.DataFrame(self.data[data_mode]['combo'][metadata_cols]) for group in groups: group_idxs = self.data[data_mode]['combo'][self.group_col] == group group_count = np.count_nonzero(group_idxs) print(self.size_distribution_models[group]) if group_count > 0: log_mean = self.size_distribution_models[group]['lognorm']['mean'] log_sd = self.size_distribution_models[group]['lognorm']['sd'] for m, model_name in enumerate(model_names): raw_preds = np.zeros((group_count, len(output_columns))) for c in range(len(output_columns)): raw_preds[:, c] = self.size_distribution_models[group][ 'pc_{0:d}'.format(c)][model_name].predict(self.data [data_mode]['combo'].loc[group_idxs, input_columns]) log_norm_preds = self.size_distribution_models[group]['lognorm' ]['pca'].inverse_transform(raw_preds) log_norm_preds[:, 0] *= -1 multi_predictions = np.exp(log_norm_preds * log_sd + log_mean) if multi_predictions.shape[1] == 2: multi_predictions_temp = np.zeros((multi_predictions. shape[0], 3)) multi_predictions_temp[:, 0] = multi_predictions[:, 0] multi_predictions_temp[:, 1] = location multi_predictions_temp[:, 2] = multi_predictions[:, 1] multi_predictions = multi_predictions_temp for p, pred_col in enumerate(['shape', 'location', 'scale']): predictions.loc[group_idxs, model_name.replace(' ', '-' ) + '_' + pred_col] = multi_predictions[:, p] return predictions
predict_size_distribution_component_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_names, input_columns, output_columns, metadata_cols,\n data_mode='forecast', location=6):\n groups = self.size_distribution_models.keys()\n predictions = pd.DataFrame(self.data[data_mode]['combo'][metadata_cols])\n for group in groups:\n group_idxs = self.data[data_mode]['combo'][self.group_col] == group\n group_count = np.count_nonzero(group_idxs)\n print(self.size_distribution_models[group])\n if group_count > 0:\n log_mean = self.size_distribution_models[group]['lognorm']['mean']\n log_sd = self.size_distribution_models[group]['lognorm']['sd']\n for m, model_name in enumerate(model_names):\n raw_preds = np.zeros((group_count, len(output_columns)))\n for c in range(len(output_columns)):\n raw_preds[:, c] = self.size_distribution_models[group][\n 'pc_{0:d}'.format(c)][model_name].predict(self.data\n [data_mode]['combo'].loc[group_idxs, input_columns])\n log_norm_preds = self.size_distribution_models[group]['lognorm'\n ]['pca'].inverse_transform(raw_preds)\n log_norm_preds[:, 0] *= -1\n multi_predictions = np.exp(log_norm_preds * log_sd + log_mean)\n if multi_predictions.shape[1] == 2:\n multi_predictions_temp = np.zeros((multi_predictions.\n shape[0], 3))\n multi_predictions_temp[:, 0] = multi_predictions[:, 0]\n multi_predictions_temp[:, 1] = location\n multi_predictions_temp[:, 2] = multi_predictions[:, 1]\n multi_predictions = multi_predictions_temp\n for p, pred_col in enumerate(['shape', 'location', 'scale']):\n predictions.loc[group_idxs, model_name.replace(' ', '-'\n ) + '_' + pred_col] = multi_predictions[:, p]\n return predictions\n", "role": "user" }, { "content": "predict_size_distribution_component_models", "role": "assistant" } ]
def x(self, model_names, model_objs, input_columns, output_column= 'Hail_Size', output_start=5, output_step=5, output_stop=100): print('Fitting size models') groups = self.data['train']['member'][self.group_col].unique() output_start = int(output_start) output_step = int(output_step) output_stop = int(output_stop) for group in groups: group_data = self.data['train']['combo'].loc[self.data['train'][ 'combo'][self.group_col] == group] group_data.dropna(inplace=True) group_data = group_data[group_data[output_column] >= output_start] output_data = group_data[output_column].values.astype(int) output_data[output_data > output_stop] = output_stop discrete_data = (output_data - output_start ) // output_step * output_step + output_start self.size_models[group] = {} self.size_models[group]['outputvalues'] = np.arange(output_start, output_stop + output_step, output_step, dtype=int) for m, model_name in enumerate(model_names): print('{0} {1}'.format(group, model_name)) self.size_models[group][model_name] = deepcopy(model_objs[m]) self.size_models[group][model_name].fit(group_data[ input_columns], discrete_data)
fit_size_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_names, model_objs, input_columns, output_column=\n 'Hail_Size', output_start=5, output_step=5, output_stop=100):\n print('Fitting size models')\n groups = self.data['train']['member'][self.group_col].unique()\n output_start = int(output_start)\n output_step = int(output_step)\n output_stop = int(output_stop)\n for group in groups:\n group_data = self.data['train']['combo'].loc[self.data['train'][\n 'combo'][self.group_col] == group]\n group_data.dropna(inplace=True)\n group_data = group_data[group_data[output_column] >= output_start]\n output_data = group_data[output_column].values.astype(int)\n output_data[output_data > output_stop] = output_stop\n discrete_data = (output_data - output_start\n ) // output_step * output_step + output_start\n self.size_models[group] = {}\n self.size_models[group]['outputvalues'] = np.arange(output_start, \n output_stop + output_step, output_step, dtype=int)\n for m, model_name in enumerate(model_names):\n print('{0} {1}'.format(group, model_name))\n self.size_models[group][model_name] = deepcopy(model_objs[m])\n self.size_models[group][model_name].fit(group_data[\n input_columns], discrete_data)\n", "role": "user" }, { "content": "fit_size_models", "role": "assistant" } ]
def x(self, model_names, input_columns, metadata_cols, data_mode='forecast'): groups = self.size_models.keys() predictions = {} for group in groups: group_data = self.data[data_mode]['combo'].loc[self.data[data_mode] ['combo'][self.group_col] == group] if group_data.shape[0] > 0: predictions[group] = {} output_values = self.size_models[group]['outputvalues'].astype(int) for m, model_name in enumerate(model_names): print('{0} {1}'.format(group, model_name)) pred_col_names = [(model_name.replace(' ', '-') + '_{0:02d}'.format(p)) for p in output_values] predictions[group][model_name] = group_data[metadata_cols] pred_vals = self.size_models[group][model_name].predict_proba( group_data[input_columns]) pred_classes = self.size_models[group][model_name].classes_ pred_pdf = np.zeros((pred_vals.shape[0], output_values.size)) for pcv, pc in enumerate(pred_classes): idx = np.where(output_values == pc)[0][0] pred_pdf[:, idx] = pred_vals[:, pcv] for pcn, pred_col_name in enumerate(pred_col_names): predictions[group][model_name].loc[:, pred_col_name ] = pred_pdf[:, pcn] return predictions
predict_size_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_names, input_columns, metadata_cols, data_mode='forecast'):\n groups = self.size_models.keys()\n predictions = {}\n for group in groups:\n group_data = self.data[data_mode]['combo'].loc[self.data[data_mode]\n ['combo'][self.group_col] == group]\n if group_data.shape[0] > 0:\n predictions[group] = {}\n output_values = self.size_models[group]['outputvalues'].astype(int)\n for m, model_name in enumerate(model_names):\n print('{0} {1}'.format(group, model_name))\n pred_col_names = [(model_name.replace(' ', '-') +\n '_{0:02d}'.format(p)) for p in output_values]\n predictions[group][model_name] = group_data[metadata_cols]\n pred_vals = self.size_models[group][model_name].predict_proba(\n group_data[input_columns])\n pred_classes = self.size_models[group][model_name].classes_\n pred_pdf = np.zeros((pred_vals.shape[0], output_values.size))\n for pcv, pc in enumerate(pred_classes):\n idx = np.where(output_values == pc)[0][0]\n pred_pdf[:, idx] = pred_vals[:, pcv]\n for pcn, pred_col_name in enumerate(pred_col_names):\n predictions[group][model_name].loc[:, pred_col_name\n ] = pred_pdf[:, pcn]\n return predictions\n", "role": "user" }, { "content": "predict_size_models", "role": "assistant" } ]
def x(self, model_names, model_objs, input_columns, output_columns, output_ranges): print('Fitting track models') groups = self.data['train']['member'][self.group_col].unique() for group in groups: group_data = self.data['train']['combo'].loc[self.data['train'][ 'combo'][self.group_col] == group] group_data = group_data.dropna() group_data = group_data.loc[group_data['Duration_Step'] == 1] for model_type, model_dict in self.track_models.items(): model_dict[group] = {} output_data = group_data[output_columns[model_type]].values.astype( int) output_data[output_data < output_ranges[model_type][0] ] = output_ranges[model_type][0] output_data[output_data > output_ranges[model_type][1] ] = output_ranges[model_type][1] discrete_data = (output_data - output_ranges[model_type][0] ) // output_ranges[model_type][2] * output_ranges[model_type][2 ] + output_ranges[model_type][0] model_dict[group]['outputvalues'] = np.arange(output_ranges[ model_type][0], output_ranges[model_type][1] + output_ranges[model_type][2], output_ranges[model_type][2]) for m, model_name in enumerate(model_names): print('{0} {1} {2}'.format(group, model_type, model_name)) model_dict[group][model_name] = deepcopy(model_objs[m]) model_dict[group][model_name].fit(group_data[input_columns], discrete_data)
fit_track_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_names, model_objs, input_columns, output_columns,\n output_ranges):\n print('Fitting track models')\n groups = self.data['train']['member'][self.group_col].unique()\n for group in groups:\n group_data = self.data['train']['combo'].loc[self.data['train'][\n 'combo'][self.group_col] == group]\n group_data = group_data.dropna()\n group_data = group_data.loc[group_data['Duration_Step'] == 1]\n for model_type, model_dict in self.track_models.items():\n model_dict[group] = {}\n output_data = group_data[output_columns[model_type]].values.astype(\n int)\n output_data[output_data < output_ranges[model_type][0]\n ] = output_ranges[model_type][0]\n output_data[output_data > output_ranges[model_type][1]\n ] = output_ranges[model_type][1]\n discrete_data = (output_data - output_ranges[model_type][0]\n ) // output_ranges[model_type][2] * output_ranges[model_type][2\n ] + output_ranges[model_type][0]\n model_dict[group]['outputvalues'] = np.arange(output_ranges[\n model_type][0], output_ranges[model_type][1] +\n output_ranges[model_type][2], output_ranges[model_type][2])\n for m, model_name in enumerate(model_names):\n print('{0} {1} {2}'.format(group, model_type, model_name))\n model_dict[group][model_name] = deepcopy(model_objs[m])\n model_dict[group][model_name].fit(group_data[input_columns],\n discrete_data)\n", "role": "user" }, { "content": "fit_track_models", "role": "assistant" } ]
def x(self, model_path): for group, condition_model_set in self.condition_models.items(): for model_name, model_obj in condition_model_set.items(): out_filename = model_path + '{0}_{1}_condition.pkl'.format(group, model_name.replace(' ', '-')) with open(out_filename, 'wb') as pickle_file: pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL) for group, size_model_set in self.size_models.items(): for model_name, model_obj in size_model_set.items(): out_filename = model_path + '{0}_{1}_size.pkl'.format(group, model_name.replace(' ', '-')) with open(out_filename, 'wb') as pickle_file: pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL) for group, dist_model_set in self.size_distribution_models.items(): for model_type, model_objs in dist_model_set.items(): for model_name, model_obj in model_objs.items(): out_filename = model_path + '{0}_{1}_{2}_sizedist.pkl'.format( group, model_name.replace(' ', '-'), model_type) with open(out_filename, 'wb') as pickle_file: pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL ) for model_type, track_type_models in self.track_models.items(): for group, track_model_set in track_type_models.items(): for model_name, model_obj in track_model_set.items(): out_filename = model_path + '{0}_{1}_{2}_track.pkl'.format( group, model_name.replace(' ', '-'), model_type) with open(out_filename, 'wb') as pickle_file: pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL ) return
save_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_path):\n for group, condition_model_set in self.condition_models.items():\n for model_name, model_obj in condition_model_set.items():\n out_filename = model_path + '{0}_{1}_condition.pkl'.format(group,\n model_name.replace(' ', '-'))\n with open(out_filename, 'wb') as pickle_file:\n pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL)\n for group, size_model_set in self.size_models.items():\n for model_name, model_obj in size_model_set.items():\n out_filename = model_path + '{0}_{1}_size.pkl'.format(group,\n model_name.replace(' ', '-'))\n with open(out_filename, 'wb') as pickle_file:\n pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL)\n for group, dist_model_set in self.size_distribution_models.items():\n for model_type, model_objs in dist_model_set.items():\n for model_name, model_obj in model_objs.items():\n out_filename = model_path + '{0}_{1}_{2}_sizedist.pkl'.format(\n group, model_name.replace(' ', '-'), model_type)\n with open(out_filename, 'wb') as pickle_file:\n pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL\n )\n for model_type, track_type_models in self.track_models.items():\n for group, track_model_set in track_type_models.items():\n for model_name, model_obj in track_model_set.items():\n out_filename = model_path + '{0}_{1}_{2}_track.pkl'.format(\n group, model_name.replace(' ', '-'), model_type)\n with open(out_filename, 'wb') as pickle_file:\n pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL\n )\n return\n", "role": "user" }, { "content": "save_models", "role": "assistant" } ]
def x(self, model_path): condition_model_files = sorted(glob(model_path + '*_condition.pkl')) if len(condition_model_files) > 0: for condition_model_file in condition_model_files: model_comps = condition_model_file.split('/')[-1][:-4].split('_') if model_comps[0] not in self.condition_models.keys(): self.condition_models[model_comps[0]] = {} model_name = model_comps[1].replace('-', ' ') with open(condition_model_file, 'rb') as cmf: if 'condition_threshold' in condition_model_file: self.condition_models[model_comps[0]][model_name + '_condition_threshold'] = pickle.load(cmf) else: self.condition_models[model_comps[0]][model_name ] = pickle.load(cmf) size_model_files = sorted(glob(model_path + '*_size.pkl')) if len(size_model_files) > 0: for size_model_file in size_model_files: model_comps = size_model_file.split('/')[-1][:-4].split('_') if model_comps[0] not in self.size_models.keys(): self.size_models[model_comps[0]] = {} model_name = model_comps[1].replace('-', ' ') with open(size_model_file, 'rb') as smf: self.size_models[model_comps[0]][model_name] = pickle.load(smf) size_dist_model_files = sorted(glob(model_path + '*_sizedist.pkl')) if len(size_dist_model_files) > 0: for dist_model_file in size_dist_model_files: model_comps = dist_model_file.split('/')[-1][:-4].split('_') if model_comps[0] not in self.size_distribution_models.keys(): self.size_distribution_models[model_comps[0]] = {} if '_'.join(model_comps[2:-1] ) not in self.size_distribution_models[model_comps[0]].keys(): self.size_distribution_models[model_comps[0]]['_'.join( model_comps[2:-1])] = {} model_name = model_comps[1].replace('-', ' ') with open(dist_model_file, 'rb') as dmf: self.size_distribution_models[model_comps[0]]['_'.join( model_comps[2:-1])][model_name] = pickle.load(dmf) track_model_files = sorted(glob(model_path + '*_track.pkl')) if len(track_model_files) > 0: for track_model_file in track_model_files: model_comps = track_model_file.split('/')[-1][:-4].split('_') group = model_comps[0] model_name = model_comps[1].replace('-', ' ') model_type = model_comps[2] if model_type not in self.track_models.keys(): self.track_models[model_type] = {} if group not in self.track_models[model_type].keys(): self.track_models[model_type][group] = {} with open(track_model_file, 'rb') as tmf: self.track_models[model_type][group][model_name] = pickle.load( tmf)
load_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_path):\n condition_model_files = sorted(glob(model_path + '*_condition.pkl'))\n if len(condition_model_files) > 0:\n for condition_model_file in condition_model_files:\n model_comps = condition_model_file.split('/')[-1][:-4].split('_')\n if model_comps[0] not in self.condition_models.keys():\n self.condition_models[model_comps[0]] = {}\n model_name = model_comps[1].replace('-', ' ')\n with open(condition_model_file, 'rb') as cmf:\n if 'condition_threshold' in condition_model_file:\n self.condition_models[model_comps[0]][model_name +\n '_condition_threshold'] = pickle.load(cmf)\n else:\n self.condition_models[model_comps[0]][model_name\n ] = pickle.load(cmf)\n size_model_files = sorted(glob(model_path + '*_size.pkl'))\n if len(size_model_files) > 0:\n for size_model_file in size_model_files:\n model_comps = size_model_file.split('/')[-1][:-4].split('_')\n if model_comps[0] not in self.size_models.keys():\n self.size_models[model_comps[0]] = {}\n model_name = model_comps[1].replace('-', ' ')\n with open(size_model_file, 'rb') as smf:\n self.size_models[model_comps[0]][model_name] = pickle.load(smf)\n size_dist_model_files = sorted(glob(model_path + '*_sizedist.pkl'))\n if len(size_dist_model_files) > 0:\n for dist_model_file in size_dist_model_files:\n model_comps = dist_model_file.split('/')[-1][:-4].split('_')\n if model_comps[0] not in self.size_distribution_models.keys():\n self.size_distribution_models[model_comps[0]] = {}\n if '_'.join(model_comps[2:-1]\n ) not in self.size_distribution_models[model_comps[0]].keys():\n self.size_distribution_models[model_comps[0]]['_'.join(\n model_comps[2:-1])] = {}\n model_name = model_comps[1].replace('-', ' ')\n with open(dist_model_file, 'rb') as dmf:\n self.size_distribution_models[model_comps[0]]['_'.join(\n model_comps[2:-1])][model_name] = pickle.load(dmf)\n track_model_files = sorted(glob(model_path + '*_track.pkl'))\n if len(track_model_files) > 0:\n for track_model_file in track_model_files:\n model_comps = track_model_file.split('/')[-1][:-4].split('_')\n group = model_comps[0]\n model_name = model_comps[1].replace('-', ' ')\n model_type = model_comps[2]\n if model_type not in self.track_models.keys():\n self.track_models[model_type] = {}\n if group not in self.track_models[model_type].keys():\n self.track_models[model_type][group] = {}\n with open(track_model_file, 'rb') as tmf:\n self.track_models[model_type][group][model_name] = pickle.load(\n tmf)\n", "role": "user" }, { "content": "load_models", "role": "assistant" } ]
def x(self, forecasts, condition_model_names, size_model_names, dist_model_names, track_model_names, json_data_path, out_path): total_tracks = self.data['forecast']['total'] for r in np.arange(total_tracks.shape[0]): track_id = total_tracks.loc[r, 'Track_ID'] print(track_id) track_num = track_id.split('_')[-1] ensemble_name = total_tracks.loc[r, 'Ensemble_Name'] member = total_tracks.loc[r, 'Ensemble_Member'] group = self.data['forecast']['member'].loc[self.data['forecast'][ 'member']['Ensemble_Member'] == member, self.group_col].values[0] run_date = track_id.split('_')[-4][:8] step_forecasts = {} for ml_model in condition_model_names: step_forecasts['condition_' + ml_model.replace(' ', '-') ] = forecasts['condition'][group].loc[forecasts['condition' ][group]['Track_ID'] == track_id, ml_model] for ml_model in size_model_names: step_forecasts['size_' + ml_model.replace(' ', '-')] = forecasts[ 'size'][group][ml_model].loc[forecasts['size'][group][ ml_model]['Track_ID'] == track_id] for ml_model in dist_model_names: step_forecasts['dist_' + ml_model.replace(' ', '-')] = forecasts[ 'dist'][group][ml_model].loc[forecasts['dist'][group][ ml_model]['Track_ID'] == track_id] for model_type in forecasts['track'].keys(): for ml_model in track_model_names: mframe = forecasts['track'][model_type][group][ml_model] step_forecasts[model_type + '_' + ml_model.replace(' ', '-') ] = mframe.loc[mframe['Track_ID'] == track_id] json_file_name = '{0}_{1}_{2}_model_track_{3}.json'.format( ensemble_name, run_date, member, track_num) full_json_path = json_data_path + '/'.join([run_date, member] ) + '/' + json_file_name with open(full_json_path) as json_file_obj: try: track_obj = json.load(json_file_obj) except FileNotFoundError: print(full_json_path + ' not found') continue for f, feature in enumerate(track_obj['features']): del feature['properties']['attributes'] for model_name, fdata in step_forecasts.items(): ml_model_name = model_name.split('_')[1] if 'condition' in model_name: feature['properties'][model_name] = fdata.values[f] else: predcols = [] for col in fdata.columns: if ml_model_name in col: predcols.append(col) feature['properties'][model_name] = fdata.loc[:, predcols ].values[f].tolist() full_path = [] for part in [run_date, member]: full_path.append(part) if not os.access(out_path + '/'.join(full_path), os.R_OK): try: os.mkdir(out_path + '/'.join(full_path)) except OSError: print('directory already created') out_json_filename = out_path + '/'.join(full_path ) + '/' + json_file_name with open(out_json_filename, 'w') as out_json_obj: json.dump(track_obj, out_json_obj, indent=1, sort_keys=True) return
output_forecasts_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, forecasts, condition_model_names, size_model_names,\n dist_model_names, track_model_names, json_data_path, out_path):\n total_tracks = self.data['forecast']['total']\n for r in np.arange(total_tracks.shape[0]):\n track_id = total_tracks.loc[r, 'Track_ID']\n print(track_id)\n track_num = track_id.split('_')[-1]\n ensemble_name = total_tracks.loc[r, 'Ensemble_Name']\n member = total_tracks.loc[r, 'Ensemble_Member']\n group = self.data['forecast']['member'].loc[self.data['forecast'][\n 'member']['Ensemble_Member'] == member, self.group_col].values[0]\n run_date = track_id.split('_')[-4][:8]\n step_forecasts = {}\n for ml_model in condition_model_names:\n step_forecasts['condition_' + ml_model.replace(' ', '-')\n ] = forecasts['condition'][group].loc[forecasts['condition'\n ][group]['Track_ID'] == track_id, ml_model]\n for ml_model in size_model_names:\n step_forecasts['size_' + ml_model.replace(' ', '-')] = forecasts[\n 'size'][group][ml_model].loc[forecasts['size'][group][\n ml_model]['Track_ID'] == track_id]\n for ml_model in dist_model_names:\n step_forecasts['dist_' + ml_model.replace(' ', '-')] = forecasts[\n 'dist'][group][ml_model].loc[forecasts['dist'][group][\n ml_model]['Track_ID'] == track_id]\n for model_type in forecasts['track'].keys():\n for ml_model in track_model_names:\n mframe = forecasts['track'][model_type][group][ml_model]\n step_forecasts[model_type + '_' + ml_model.replace(' ', '-')\n ] = mframe.loc[mframe['Track_ID'] == track_id]\n json_file_name = '{0}_{1}_{2}_model_track_{3}.json'.format(\n ensemble_name, run_date, member, track_num)\n full_json_path = json_data_path + '/'.join([run_date, member]\n ) + '/' + json_file_name\n with open(full_json_path) as json_file_obj:\n try:\n track_obj = json.load(json_file_obj)\n except FileNotFoundError:\n print(full_json_path + ' not found')\n continue\n for f, feature in enumerate(track_obj['features']):\n del feature['properties']['attributes']\n for model_name, fdata in step_forecasts.items():\n ml_model_name = model_name.split('_')[1]\n if 'condition' in model_name:\n feature['properties'][model_name] = fdata.values[f]\n else:\n predcols = []\n for col in fdata.columns:\n if ml_model_name in col:\n predcols.append(col)\n feature['properties'][model_name] = fdata.loc[:, predcols\n ].values[f].tolist()\n full_path = []\n for part in [run_date, member]:\n full_path.append(part)\n if not os.access(out_path + '/'.join(full_path), os.R_OK):\n try:\n os.mkdir(out_path + '/'.join(full_path))\n except OSError:\n print('directory already created')\n out_json_filename = out_path + '/'.join(full_path\n ) + '/' + json_file_name\n with open(out_json_filename, 'w') as out_json_obj:\n json.dump(track_obj, out_json_obj, indent=1, sort_keys=True)\n return\n", "role": "user" }, { "content": "output_forecasts_json", "role": "assistant" } ]
def x(self, forecasts, mode, csv_path, run_date_format='%Y%m%d-%H%M'): merged_forecasts = pd.merge(forecasts['condition'], forecasts['dist'], on=['Step_ID', 'Track_ID', 'Ensemble_Member', 'Forecast_Hour']) all_members = self.data[mode]['combo']['Ensemble_Member'] members = np.unique(all_members) all_run_dates = pd.DatetimeIndex(self.data[mode]['combo']['Run_Date']) run_dates = pd.DatetimeIndex(np.unique(all_run_dates)) print(run_dates) for member in members: for run_date in run_dates: mem_run_index = (all_run_dates == run_date) & (all_members == member) member_forecast = merged_forecasts.loc[mem_run_index] member_forecast.to_csv(join(csv_path, 'hail_forecasts_{0}_{1}_{2}.csv'.format(self.ensemble_name, member, run_date.strftime(run_date_format)))) return
output_forecasts_csv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, forecasts, mode, csv_path, run_date_format='%Y%m%d-%H%M'):\n merged_forecasts = pd.merge(forecasts['condition'], forecasts['dist'],\n on=['Step_ID', 'Track_ID', 'Ensemble_Member', 'Forecast_Hour'])\n all_members = self.data[mode]['combo']['Ensemble_Member']\n members = np.unique(all_members)\n all_run_dates = pd.DatetimeIndex(self.data[mode]['combo']['Run_Date'])\n run_dates = pd.DatetimeIndex(np.unique(all_run_dates))\n print(run_dates)\n for member in members:\n for run_date in run_dates:\n mem_run_index = (all_run_dates == run_date) & (all_members ==\n member)\n member_forecast = merged_forecasts.loc[mem_run_index]\n member_forecast.to_csv(join(csv_path,\n 'hail_forecasts_{0}_{1}_{2}.csv'.format(self.ensemble_name,\n member, run_date.strftime(run_date_format))))\n return\n", "role": "user" }, { "content": "output_forecasts_csv", "role": "assistant" } ]
def x(self): if self._convencao is None: if self._caminho.endswith(('.DLL', '.dll')): self._convencao = constantes.WINDOWS_STDCALL else: self._convencao = constantes.STANDARD_C if self._convencao == constantes.STANDARD_C: loader = ctypes.CDLL elif self._convencao == constantes.WINDOWS_STDCALL: loader = ctypes.WinDLL else: raise ValueError('Convencao de chamada desconhecida: {!r}'.format( self._convencao)) self._libsat = loader(self._caminho)
carregar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._convencao is None:\n if self._caminho.endswith(('.DLL', '.dll')):\n self._convencao = constantes.WINDOWS_STDCALL\n else:\n self._convencao = constantes.STANDARD_C\n if self._convencao == constantes.STANDARD_C:\n loader = ctypes.CDLL\n elif self._convencao == constantes.WINDOWS_STDCALL:\n loader = ctypes.WinDLL\n else:\n raise ValueError('Convencao de chamada desconhecida: {!r}'.format(\n self._convencao))\n self._libsat = loader(self._caminho)\n", "role": "user" }, { "content": "carregar", "role": "assistant" } ]
def x(self, tipo_certificado, cnpj, codigo_uf): return self.invocar__AtivarSAT(self.gerar_numero_sessao(), tipo_certificado, self._codigo_ativacao, cnpj, codigo_uf)
ativar_sat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tipo_certificado, cnpj, codigo_uf):\n return self.invocar__AtivarSAT(self.gerar_numero_sessao(),\n tipo_certificado, self._codigo_ativacao, cnpj, codigo_uf)\n", "role": "user" }, { "content": "ativar_sat", "role": "assistant" } ]
def x(self, certificado): return self.invocar__ComunicarCertificadoICPBRASIL(self. gerar_numero_sessao(), self._codigo_ativacao, certificado)
comunicar_certificado_icpbrasil
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, certificado):\n return self.invocar__ComunicarCertificadoICPBRASIL(self.\n gerar_numero_sessao(), self._codigo_ativacao, certificado)\n", "role": "user" }, { "content": "comunicar_certificado_icpbrasil", "role": "assistant" } ]
def x(self, dados_venda): cfe_venda = dados_venda if isinstance(dados_venda, basestring ) else dados_venda.documento() return self.invocar__EnviarDadosVenda(self.gerar_numero_sessao(), self. _codigo_ativacao, cfe_venda)
enviar_dados_venda
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dados_venda):\n cfe_venda = dados_venda if isinstance(dados_venda, basestring\n ) else dados_venda.documento()\n return self.invocar__EnviarDadosVenda(self.gerar_numero_sessao(), self.\n _codigo_ativacao, cfe_venda)\n", "role": "user" }, { "content": "enviar_dados_venda", "role": "assistant" } ]
def x(self, chave_cfe, dados_cancelamento): cfe_canc = dados_cancelamento if isinstance(dados_cancelamento, basestring ) else dados_cancelamento.documento() return self.invocar__CancelarUltimaVenda(self.gerar_numero_sessao(), self._codigo_ativacao, chave_cfe, cfe_canc)
cancelar_ultima_venda
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chave_cfe, dados_cancelamento):\n cfe_canc = dados_cancelamento if isinstance(dados_cancelamento, basestring\n ) else dados_cancelamento.documento()\n return self.invocar__CancelarUltimaVenda(self.gerar_numero_sessao(),\n self._codigo_ativacao, chave_cfe, cfe_canc)\n", "role": "user" }, { "content": "cancelar_ultima_venda", "role": "assistant" } ]
def x(self, numero_sessao): return self.invocar__ConsultarNumeroSessao(self.gerar_numero_sessao(), self._codigo_ativacao, numero_sessao)
consultar_numero_sessao
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, numero_sessao):\n return self.invocar__ConsultarNumeroSessao(self.gerar_numero_sessao(),\n self._codigo_ativacao, numero_sessao)\n", "role": "user" }, { "content": "consultar_numero_sessao", "role": "assistant" } ]
def x(self, configuracao): conf_xml = configuracao if isinstance(configuracao, basestring ) else configuracao.documento() return self.invocar__ConfigurarInterfaceDeRede(self.gerar_numero_sessao (), self._codigo_ativacao, conf_xml)
configurar_interface_de_rede
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, configuracao):\n conf_xml = configuracao if isinstance(configuracao, basestring\n ) else configuracao.documento()\n return self.invocar__ConfigurarInterfaceDeRede(self.gerar_numero_sessao\n (), self._codigo_ativacao, conf_xml)\n", "role": "user" }, { "content": "configurar_interface_de_rede", "role": "assistant" } ]
def x(self, sequencia_cnpj, assinatura_ac): return self.invocar__AssociarAssinatura(self.gerar_numero_sessao(), self._codigo_ativacao, sequencia_cnpj, assinatura_ac)
associar_assinatura
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sequencia_cnpj, assinatura_ac):\n return self.invocar__AssociarAssinatura(self.gerar_numero_sessao(),\n self._codigo_ativacao, sequencia_cnpj, assinatura_ac)\n", "role": "user" }, { "content": "associar_assinatura", "role": "assistant" } ]
def x(self, novo_codigo_ativacao, opcao=constantes.CODIGO_ATIVACAO_REGULAR, codigo_emergencia=None): if not novo_codigo_ativacao: raise ValueError('Novo codigo de ativacao invalido: {!r}'.format( novo_codigo_ativacao)) codigo_ativacao = self._codigo_ativacao if opcao == constantes.CODIGO_ATIVACAO_EMERGENCIA: if codigo_emergencia: codigo_ativacao = codigo_emergencia else: raise ValueError( 'Codigo de ativacao de emergencia invalido: {!r} (opcao={!r})' .format(codigo_emergencia, opcao)) return self.invocar__TrocarCodigoDeAtivacao(self.gerar_numero_sessao(), codigo_ativacao, opcao, novo_codigo_ativacao, novo_codigo_ativacao)
trocar_codigo_de_ativacao
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, novo_codigo_ativacao, opcao=constantes.CODIGO_ATIVACAO_REGULAR,\n codigo_emergencia=None):\n if not novo_codigo_ativacao:\n raise ValueError('Novo codigo de ativacao invalido: {!r}'.format(\n novo_codigo_ativacao))\n codigo_ativacao = self._codigo_ativacao\n if opcao == constantes.CODIGO_ATIVACAO_EMERGENCIA:\n if codigo_emergencia:\n codigo_ativacao = codigo_emergencia\n else:\n raise ValueError(\n 'Codigo de ativacao de emergencia invalido: {!r} (opcao={!r})'\n .format(codigo_emergencia, opcao))\n return self.invocar__TrocarCodigoDeAtivacao(self.gerar_numero_sessao(),\n codigo_ativacao, opcao, novo_codigo_ativacao, novo_codigo_ativacao)\n", "role": "user" }, { "content": "trocar_codigo_de_ativacao", "role": "assistant" } ]
def x(self): forecast_path = self.forecast_json_path + '/{0}/{1}/'.format(self. run_date.strftime('%Y%m%d'), self.ensemble_member) forecast_files = sorted(glob(forecast_path + '*.json')) for forecast_file in forecast_files: file_obj = open(forecast_file) json_obj = json.load(file_obj) file_obj.close() track_id = json_obj['properties']['id'] obs_track_id = json_obj['properties']['obs_track_id'] forecast_hours = json_obj['properties']['times'] duration = json_obj['properties']['duration'] for f, feature in enumerate(json_obj['features']): area = np.sum(feature['properties']['masks']) step_id = track_id + '_{0:02d}'.format(f) for model_type in self.model_types: for model_name in self.model_names[model_type]: prediction = feature['properties'][model_type + '_' + model_name.replace(' ', '-')] if model_type == 'condition': prediction = [prediction] row = [track_id, obs_track_id, self.ensemble_name, self .ensemble_member, forecast_hours[f], f + 1, duration, area] + prediction self.forecasts[model_type][model_name].loc[step_id] = row
load_forecasts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n forecast_path = self.forecast_json_path + '/{0}/{1}/'.format(self.\n run_date.strftime('%Y%m%d'), self.ensemble_member)\n forecast_files = sorted(glob(forecast_path + '*.json'))\n for forecast_file in forecast_files:\n file_obj = open(forecast_file)\n json_obj = json.load(file_obj)\n file_obj.close()\n track_id = json_obj['properties']['id']\n obs_track_id = json_obj['properties']['obs_track_id']\n forecast_hours = json_obj['properties']['times']\n duration = json_obj['properties']['duration']\n for f, feature in enumerate(json_obj['features']):\n area = np.sum(feature['properties']['masks'])\n step_id = track_id + '_{0:02d}'.format(f)\n for model_type in self.model_types:\n for model_name in self.model_names[model_type]:\n prediction = feature['properties'][model_type + '_' +\n model_name.replace(' ', '-')]\n if model_type == 'condition':\n prediction = [prediction]\n row = [track_id, obs_track_id, self.ensemble_name, self\n .ensemble_member, forecast_hours[f], f + 1,\n duration, area] + prediction\n self.forecasts[model_type][model_name].loc[step_id] = row\n", "role": "user" }, { "content": "load_forecasts", "role": "assistant" } ]
def x(self): track_total_file = (self.track_data_csv_path + 'track_total_{0}_{1}_{2}.csv'.format(self.ensemble_name, self. ensemble_member, self.run_date.strftime('%Y%m%d'))) track_step_file = (self.track_data_csv_path + 'track_step_{0}_{1}_{2}.csv'.format(self.ensemble_name, self. ensemble_member, self.run_date.strftime('%Y%m%d'))) track_total_cols = ['Track_ID', 'Translation_Error_X', 'Translation_Error_Y', 'Start_Time_Error'] track_step_cols = ['Step_ID', 'Track_ID', 'Hail_Size', 'Shape', 'Location', 'Scale'] track_total_data = pd.read_csv(track_total_file, usecols=track_total_cols) track_step_data = pd.read_csv(track_step_file, usecols=track_step_cols) obs_data = pd.merge(track_step_data, track_total_data, on='Track_ID', how='left') self.obs = obs_data
load_obs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n track_total_file = (self.track_data_csv_path +\n 'track_total_{0}_{1}_{2}.csv'.format(self.ensemble_name, self.\n ensemble_member, self.run_date.strftime('%Y%m%d')))\n track_step_file = (self.track_data_csv_path +\n 'track_step_{0}_{1}_{2}.csv'.format(self.ensemble_name, self.\n ensemble_member, self.run_date.strftime('%Y%m%d')))\n track_total_cols = ['Track_ID', 'Translation_Error_X',\n 'Translation_Error_Y', 'Start_Time_Error']\n track_step_cols = ['Step_ID', 'Track_ID', 'Hail_Size', 'Shape',\n 'Location', 'Scale']\n track_total_data = pd.read_csv(track_total_file, usecols=track_total_cols)\n track_step_data = pd.read_csv(track_step_file, usecols=track_step_cols)\n obs_data = pd.merge(track_step_data, track_total_data, on='Track_ID',\n how='left')\n self.obs = obs_data\n", "role": "user" }, { "content": "load_obs", "role": "assistant" } ]
def x(self): for model_type in self.model_types: self.matched_forecasts[model_type] = {} for model_name in self.model_names[model_type]: self.matched_forecasts[model_type][model_name] = pd.merge(self. forecasts[model_type][model_name], self.obs, right_on= 'Step_ID', how='left', left_index=True)
merge_obs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for model_type in self.model_types:\n self.matched_forecasts[model_type] = {}\n for model_name in self.model_names[model_type]:\n self.matched_forecasts[model_type][model_name] = pd.merge(self.\n forecasts[model_type][model_name], self.obs, right_on=\n 'Step_ID', how='left', left_index=True)\n", "role": "user" }, { "content": "merge_obs", "role": "assistant" } ]
def x(self, model_type, model_name, condition_model_name, condition_threshold, query=None): def x(x, a, loc, b): if a == 0 or b == 0: cdf = np.ones(x.shape) else: cdf = gamma.cdf(x, a, loc, b) return cdf crps_obj = DistributedCRPS(self.dist_thresholds) if query is not None: sub_forecasts = self.matched_forecasts[model_type][model_name].query( query) sub_forecasts = sub_forecasts.reset_index(drop=True) condition_forecasts = self.matched_forecasts['condition'][ condition_model_name].query(query) condition_forecasts = condition_forecasts.reset_index(drop=True) else: sub_forecasts = self.matched_forecasts[model_type][model_name] condition_forecasts = self.matched_forecasts['condition'][ condition_model_name] if sub_forecasts.shape[0] > 0: if model_type == 'dist': forecast_cdfs = np.zeros((sub_forecasts.shape[0], self. dist_thresholds.size)) for f in range(sub_forecasts.shape[0]): condition_prob = condition_forecasts.loc[f, self. forecast_bins['condition'][0]] if condition_prob >= condition_threshold: f_params = [0, 0, 0] else: f_params = sub_forecasts[self.forecast_bins[model_type] ].values[f] forecast_cdfs[f] = gamma_cdf(self.dist_thresholds, f_params [0], f_params[1], f_params[2]) obs_cdfs = np.array([gamma_cdf(self.dist_thresholds, *params) for params in sub_forecasts[self.type_cols[model_type]].values]) crps_obj.update(forecast_cdfs, obs_cdfs) else: crps_obj.update(sub_forecasts[self.forecast_bins[model_type]. astype(str)].values, sub_forecasts[self.type_cols[ model_type]].values) return crps_obj
crps
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_type, model_name, condition_model_name,\n condition_threshold, query=None):\n\n def x(x, a, loc, b):\n if a == 0 or b == 0:\n cdf = np.ones(x.shape)\n else:\n cdf = gamma.cdf(x, a, loc, b)\n return cdf\n crps_obj = DistributedCRPS(self.dist_thresholds)\n if query is not None:\n sub_forecasts = self.matched_forecasts[model_type][model_name].query(\n query)\n sub_forecasts = sub_forecasts.reset_index(drop=True)\n condition_forecasts = self.matched_forecasts['condition'][\n condition_model_name].query(query)\n condition_forecasts = condition_forecasts.reset_index(drop=True)\n else:\n sub_forecasts = self.matched_forecasts[model_type][model_name]\n condition_forecasts = self.matched_forecasts['condition'][\n condition_model_name]\n if sub_forecasts.shape[0] > 0:\n if model_type == 'dist':\n forecast_cdfs = np.zeros((sub_forecasts.shape[0], self.\n dist_thresholds.size))\n for f in range(sub_forecasts.shape[0]):\n condition_prob = condition_forecasts.loc[f, self.\n forecast_bins['condition'][0]]\n if condition_prob >= condition_threshold:\n f_params = [0, 0, 0]\n else:\n f_params = sub_forecasts[self.forecast_bins[model_type]\n ].values[f]\n forecast_cdfs[f] = gamma_cdf(self.dist_thresholds, f_params\n [0], f_params[1], f_params[2])\n obs_cdfs = np.array([gamma_cdf(self.dist_thresholds, *params) for\n params in sub_forecasts[self.type_cols[model_type]].values])\n crps_obj.update(forecast_cdfs, obs_cdfs)\n else:\n crps_obj.update(sub_forecasts[self.forecast_bins[model_type].\n astype(str)].values, sub_forecasts[self.type_cols[\n model_type]].values)\n return crps_obj\n", "role": "user" }, { "content": "crps", "role": "assistant" } ]
def x(self, model_type, model_name, intensity_threshold, prob_thresholds, query=None): roc_obj = DistributedROC(prob_thresholds, 0.5) if query is not None: sub_forecasts = self.matched_forecasts[model_type][model_name].query( query) sub_forecasts = sub_forecasts.reset_index(drop=True) else: sub_forecasts = self.matched_forecasts[model_type][model_name] obs_values = np.zeros(sub_forecasts.shape[0]) if sub_forecasts.shape[0] > 0: if model_type == 'dist': forecast_values = np.array([gamma_sf(intensity_threshold, * params) for params in sub_forecasts[self.forecast_bins[ model_type]].values]) obs_probs = np.array([gamma_sf(intensity_threshold, *params) for params in sub_forecasts[self.type_cols[model_type]].values]) obs_values[obs_probs >= 0.01] = 1 elif len(self.forecast_bins[model_type]) > 1: fbin = np.argmin(np.abs(self.forecast_bins[model_type] - intensity_threshold)) forecast_values = 1 - sub_forecasts[self.forecast_bins[ model_type].astype(str)].values.cumsum(axis=1)[:, fbin] obs_values[sub_forecasts[self.type_cols[model_type]].values >= intensity_threshold] = 1 else: forecast_values = sub_forecasts[self.forecast_bins[model_type]. astype(str)[0]].values obs_values[sub_forecasts[self.type_cols[model_type]].values >= intensity_threshold] = 1 roc_obj.update(forecast_values, obs_values) return roc_obj
roc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model_type, model_name, intensity_threshold, prob_thresholds,\n query=None):\n roc_obj = DistributedROC(prob_thresholds, 0.5)\n if query is not None:\n sub_forecasts = self.matched_forecasts[model_type][model_name].query(\n query)\n sub_forecasts = sub_forecasts.reset_index(drop=True)\n else:\n sub_forecasts = self.matched_forecasts[model_type][model_name]\n obs_values = np.zeros(sub_forecasts.shape[0])\n if sub_forecasts.shape[0] > 0:\n if model_type == 'dist':\n forecast_values = np.array([gamma_sf(intensity_threshold, *\n params) for params in sub_forecasts[self.forecast_bins[\n model_type]].values])\n obs_probs = np.array([gamma_sf(intensity_threshold, *params) for\n params in sub_forecasts[self.type_cols[model_type]].values])\n obs_values[obs_probs >= 0.01] = 1\n elif len(self.forecast_bins[model_type]) > 1:\n fbin = np.argmin(np.abs(self.forecast_bins[model_type] -\n intensity_threshold))\n forecast_values = 1 - sub_forecasts[self.forecast_bins[\n model_type].astype(str)].values.cumsum(axis=1)[:, fbin]\n obs_values[sub_forecasts[self.type_cols[model_type]].values >=\n intensity_threshold] = 1\n else:\n forecast_values = sub_forecasts[self.forecast_bins[model_type].\n astype(str)[0]].values\n obs_values[sub_forecasts[self.type_cols[model_type]].values >=\n intensity_threshold] = 1\n roc_obj.update(forecast_values, obs_values)\n return roc_obj\n", "role": "user" }, { "content": "roc", "role": "assistant" } ]
def x(self, dist_model_name, condition_model_name, num_samples, condition_threshold=0.5, query=None): if query is not None: dist_forecasts = self.matched_forecasts['dist'][dist_model_name].query( query) dist_forecasts = dist_forecasts.reset_index(drop=True) condition_forecasts = self.matched_forecasts['condition'][ condition_model_name].query(query) condition_forecasts = condition_forecasts.reset_index(drop=True) else: dist_forecasts = self.matched_forecasts['dist'][dist_model_name] condition_forecasts = self.matched_forecasts['condition'][ condition_model_name] max_hail_samples = np.zeros((dist_forecasts.shape[0], num_samples)) areas = dist_forecasts['Area'].values for f in np.arange(dist_forecasts.shape[0]): condition_prob = condition_forecasts.loc[f, self.forecast_bins[ 'condition'][0]] if condition_prob >= condition_threshold: max_hail_samples[f] = np.sort(gamma.rvs(*dist_forecasts.loc[f, self.forecast_bins['dist']].values, size=(num_samples, areas[f])).max(axis=1)) return max_hail_samples
sample_forecast_max_hail
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dist_model_name, condition_model_name, num_samples,\n condition_threshold=0.5, query=None):\n if query is not None:\n dist_forecasts = self.matched_forecasts['dist'][dist_model_name].query(\n query)\n dist_forecasts = dist_forecasts.reset_index(drop=True)\n condition_forecasts = self.matched_forecasts['condition'][\n condition_model_name].query(query)\n condition_forecasts = condition_forecasts.reset_index(drop=True)\n else:\n dist_forecasts = self.matched_forecasts['dist'][dist_model_name]\n condition_forecasts = self.matched_forecasts['condition'][\n condition_model_name]\n max_hail_samples = np.zeros((dist_forecasts.shape[0], num_samples))\n areas = dist_forecasts['Area'].values\n for f in np.arange(dist_forecasts.shape[0]):\n condition_prob = condition_forecasts.loc[f, self.forecast_bins[\n 'condition'][0]]\n if condition_prob >= condition_threshold:\n max_hail_samples[f] = np.sort(gamma.rvs(*dist_forecasts.loc[f,\n self.forecast_bins['dist']].values, size=(num_samples,\n areas[f])).max(axis=1))\n return max_hail_samples\n", "role": "user" }, { "content": "sample_forecast_max_hail", "role": "assistant" } ]
def x(self): params = {'key': self.get_app_key(), 'uid': self.user_id, 'widget': self.widget_code} products_number = len(self.products) if self.get_api_type() == self.API_GOODS: if isinstance(self.products, list): if products_number == 1: product = self.products[0] if isinstance(product, Product): post_trial_product = None if isinstance(product.get_trial_product(), Product): post_trial_product = product product = product.get_trial_product() params['amount'] = product.get_amount() params['currencyCode'] = product.get_currency_code() params['ag_name'] = product.get_name() params['ag_external_id'] = product.get_id() params['ag_type'] = product.get_type() if product.get_type() == Product.TYPE_SUBSCRIPTION: params['ag_period_length'] = product.get_period_length( ) params['ag_period_type'] = product.get_period_type() if product.is_recurring(): params['ag_recurring'] = 1 if product.is_recurring( ) else 0 if post_trial_product: params['ag_trial'] = 1 params['ag_post_trial_external_id' ] = post_trial_product.get_id() params['ag_post_trial_period_length' ] = post_trial_product.get_period_length() params['ag_post_trial_period_type' ] = post_trial_product.get_period_type() params['ag_post_trial_name' ] = post_trial_product.get_name() params['post_trial_amount' ] = post_trial_product.get_amount() params['post_trial_currencyCode' ] = post_trial_product.get_currency_code() else: self.append_to_errors('Not a Product instance') else: self.append_to_errors('Only 1 product is allowed') elif self.get_api_type() == self.API_CART: index = 0 for product in self.products: params['external_ids[' + str(index) + ']'] = product.get_id() if product.get_amount() > 0: params['prices[' + str(index) + ']'] = product.get_amount() if product.get_currency_code() != '' and product.get_currency_code( ) is not None: params['currencies[' + str(index) + ']' ] = product.get_currency_code() index += 1 params['sign_version'] = signature_version = str(self. get_default_widget_signature()) if not self.is_empty(self.extra_params, 'sign_version'): signature_version = params['sign_version'] = str(self.extra_params[ 'sign_version']) params = self.array_merge(params, self.extra_params) params['sign'] = self.calculate_signature(params, self.get_secret_key(), int(signature_version)) return params
get_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n params = {'key': self.get_app_key(), 'uid': self.user_id, 'widget':\n self.widget_code}\n products_number = len(self.products)\n if self.get_api_type() == self.API_GOODS:\n if isinstance(self.products, list):\n if products_number == 1:\n product = self.products[0]\n if isinstance(product, Product):\n post_trial_product = None\n if isinstance(product.get_trial_product(), Product):\n post_trial_product = product\n product = product.get_trial_product()\n params['amount'] = product.get_amount()\n params['currencyCode'] = product.get_currency_code()\n params['ag_name'] = product.get_name()\n params['ag_external_id'] = product.get_id()\n params['ag_type'] = product.get_type()\n if product.get_type() == Product.TYPE_SUBSCRIPTION:\n params['ag_period_length'] = product.get_period_length(\n )\n params['ag_period_type'] = product.get_period_type()\n if product.is_recurring():\n params['ag_recurring'] = 1 if product.is_recurring(\n ) else 0\n if post_trial_product:\n params['ag_trial'] = 1\n params['ag_post_trial_external_id'\n ] = post_trial_product.get_id()\n params['ag_post_trial_period_length'\n ] = post_trial_product.get_period_length()\n params['ag_post_trial_period_type'\n ] = post_trial_product.get_period_type()\n params['ag_post_trial_name'\n ] = post_trial_product.get_name()\n params['post_trial_amount'\n ] = post_trial_product.get_amount()\n params['post_trial_currencyCode'\n ] = post_trial_product.get_currency_code()\n else:\n self.append_to_errors('Not a Product instance')\n else:\n self.append_to_errors('Only 1 product is allowed')\n elif self.get_api_type() == self.API_CART:\n index = 0\n for product in self.products:\n params['external_ids[' + str(index) + ']'] = product.get_id()\n if product.get_amount() > 0:\n params['prices[' + str(index) + ']'] = product.get_amount()\n if product.get_currency_code() != '' and product.get_currency_code(\n ) is not None:\n params['currencies[' + str(index) + ']'\n ] = product.get_currency_code()\n index += 1\n params['sign_version'] = signature_version = str(self.\n get_default_widget_signature())\n if not self.is_empty(self.extra_params, 'sign_version'):\n signature_version = params['sign_version'] = str(self.extra_params[\n 'sign_version'])\n params = self.array_merge(params, self.extra_params)\n params['sign'] = self.calculate_signature(params, self.get_secret_key(),\n int(signature_version))\n return params\n", "role": "user" }, { "content": "get_params", "role": "assistant" } ]
def x(segundos): h = segundos / 3600 m = (segundos - 3600 * h) / 60 s = segundos - 3600 * h - m * 60 return h, m, s
hms
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(segundos):\n h = segundos / 3600\n m = (segundos - 3600 * h) / 60\n s = segundos - 3600 * h - m * 60\n return h, m, s\n", "role": "user" }, { "content": "hms", "role": "assistant" } ]
def x(segundos): p = lambda n, s, p: p if n > 1 else s h, m, s = hms(segundos) tokens = ['' if h == 0 else '{:d} {}'.format(h, p(h, 'hora', 'horas')), '' if m == 0 else '{:d} {}'.format(m, p(m, 'minuto', 'minutos')), '' if s == 0 else '{:d} {}'.format(s, p(s, 'segundo', 'segundos'))] tokens = [token for token in tokens if token] if len(tokens) == 1: return tokens[0] if len(tokens) > 1: return '{} e {}'.format(', '.join(tokens[:-1]), tokens[-1]) return 'zero segundos'
hms_humanizado
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(segundos):\n p = lambda n, s, p: p if n > 1 else s\n h, m, s = hms(segundos)\n tokens = ['' if h == 0 else '{:d} {}'.format(h, p(h, 'hora', 'horas')),\n '' if m == 0 else '{:d} {}'.format(m, p(m, 'minuto', 'minutos')), \n '' if s == 0 else '{:d} {}'.format(s, p(s, 'segundo', 'segundos'))]\n tokens = [token for token in tokens if token]\n if len(tokens) == 1:\n return tokens[0]\n if len(tokens) > 1:\n return '{} e {}'.format(', '.join(tokens[:-1]), tokens[-1])\n return 'zero segundos'\n", "role": "user" }, { "content": "hms_humanizado", "role": "assistant" } ]
def x(self, selected_variable): names = self.unknown_names units = self.unknown_units for key, value in names.items(): if selected_variable == value: Id = key u = units[key] return Id, u
format_grib_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, selected_variable):\n names = self.unknown_names\n units = self.unknown_units\n for key, value in names.items():\n if selected_variable == value:\n Id = key\n u = units[key]\n return Id, u\n", "role": "user" }, { "content": "format_grib_name", "role": "assistant" } ]
def x(self): file_objects = self.file_objects var = self.variable valid_date = self.valid_dates data = self.data unknown_names = self.unknown_names unknown_units = self.unknown_units member = self.member lat = self.lat lon = self.lon if self.sector_ind_path: inds_file = pd.read_csv(self.sector_ind_path + 'sector_data_indices.csv') inds = inds_file.loc[:, 'indices'] out_x = self.mapping_data['x'] if not file_objects: print() print('No {0} model runs on {1}'.format(member, self.run_date)) print() units = None return self.data, units for f, file in enumerate(file_objects): grib = pygrib.open(file) if type(var) is int: data_values = grib[var].values if grib[var].units == 'unknown': Id = grib[var].parameterNumber units = self.unknown_units[Id] else: units = grib[var].units elif type(var) is str: if '_' in var: variable = var.split('_')[0] level = int(var.split('_')[1]) if variable in unknown_names.values(): Id, units = self.format_grib_name(variable) data_values = grib.select(parameterNumber=Id, level=level)[ 0].values else: data_values = grib.select(name=variable, level=level)[0 ].values units = grib.select(name=variable, level=level)[0].units elif var in unknown_names.values(): Id, units = self.format_grib_name(var) data_values = grib.select(parameterNumber=Id)[0].values elif len(grib.select(name=var)) > 1: raise NameError( "Multiple '{0}' records found. Rename with level:'{0}_level'" .format(var)) else: data_values = grib.select(name=var)[0].values units = grib.select(name=var)[0].units if data is None: data = np.empty((len(valid_date), out_x.shape[0], out_x.shape[1 ]), dtype=float) if self.sector_ind_path: data[f] = data_values[:].flatten()[inds].reshape(out_x.shape) else: data[f] = data_values[:] elif self.sector_ind_path: data[f] = data_values[:].flatten()[inds].reshape(out_x.shape) else: data[f] = data_values[:] return data, units
load_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n file_objects = self.file_objects\n var = self.variable\n valid_date = self.valid_dates\n data = self.data\n unknown_names = self.unknown_names\n unknown_units = self.unknown_units\n member = self.member\n lat = self.lat\n lon = self.lon\n if self.sector_ind_path:\n inds_file = pd.read_csv(self.sector_ind_path +\n 'sector_data_indices.csv')\n inds = inds_file.loc[:, 'indices']\n out_x = self.mapping_data['x']\n if not file_objects:\n print()\n print('No {0} model runs on {1}'.format(member, self.run_date))\n print()\n units = None\n return self.data, units\n for f, file in enumerate(file_objects):\n grib = pygrib.open(file)\n if type(var) is int:\n data_values = grib[var].values\n if grib[var].units == 'unknown':\n Id = grib[var].parameterNumber\n units = self.unknown_units[Id]\n else:\n units = grib[var].units\n elif type(var) is str:\n if '_' in var:\n variable = var.split('_')[0]\n level = int(var.split('_')[1])\n if variable in unknown_names.values():\n Id, units = self.format_grib_name(variable)\n data_values = grib.select(parameterNumber=Id, level=level)[\n 0].values\n else:\n data_values = grib.select(name=variable, level=level)[0\n ].values\n units = grib.select(name=variable, level=level)[0].units\n elif var in unknown_names.values():\n Id, units = self.format_grib_name(var)\n data_values = grib.select(parameterNumber=Id)[0].values\n elif len(grib.select(name=var)) > 1:\n raise NameError(\n \"Multiple '{0}' records found. Rename with level:'{0}_level'\"\n .format(var))\n else:\n data_values = grib.select(name=var)[0].values\n units = grib.select(name=var)[0].units\n if data is None:\n data = np.empty((len(valid_date), out_x.shape[0], out_x.shape[1\n ]), dtype=float)\n if self.sector_ind_path:\n data[f] = data_values[:].flatten()[inds].reshape(out_x.shape)\n else:\n data[f] = data_values[:]\n elif self.sector_ind_path:\n data[f] = data_values[:].flatten()[inds].reshape(out_x.shape)\n else:\n data[f] = data_values[:]\n return data, units\n", "role": "user" }, { "content": "load_data", "role": "assistant" } ]
def x(self): run_date_str = self.run_date.strftime('%Y%m%d') for model_name in self.model_names: self.raw_forecasts[model_name] = {} forecast_file = (self.forecast_path + run_date_str + '/' + model_name.replace(' ', '-') + '_hailprobs_{0}_{1}.nc'.format( self.ensemble_member, run_date_str)) forecast_obj = Dataset(forecast_file) forecast_hours = forecast_obj.variables['forecast_hour'][:] valid_hour_indices = np.where((self.start_hour <= forecast_hours) & (forecast_hours <= self.end_hour))[0] for size_threshold in self.size_thresholds: self.raw_forecasts[model_name][size_threshold ] = forecast_obj.variables['prob_hail_{0:02d}_mm'.format( size_threshold)][valid_hour_indices] forecast_obj.close()
load_forecasts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n run_date_str = self.run_date.strftime('%Y%m%d')\n for model_name in self.model_names:\n self.raw_forecasts[model_name] = {}\n forecast_file = (self.forecast_path + run_date_str + '/' +\n model_name.replace(' ', '-') + '_hailprobs_{0}_{1}.nc'.format(\n self.ensemble_member, run_date_str))\n forecast_obj = Dataset(forecast_file)\n forecast_hours = forecast_obj.variables['forecast_hour'][:]\n valid_hour_indices = np.where((self.start_hour <= forecast_hours) &\n (forecast_hours <= self.end_hour))[0]\n for size_threshold in self.size_thresholds:\n self.raw_forecasts[model_name][size_threshold\n ] = forecast_obj.variables['prob_hail_{0:02d}_mm'.format(\n size_threshold)][valid_hour_indices]\n forecast_obj.close()\n", "role": "user" }, { "content": "load_forecasts", "role": "assistant" } ]
def x(self): for model_name in self.model_names: self.window_forecasts[model_name] = {} for size_threshold in self.size_thresholds: self.window_forecasts[model_name][size_threshold] = np.array([ self.raw_forecasts[model_name][size_threshold][sl].sum(axis =0) for sl in self.hour_windows])
get_window_forecasts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for model_name in self.model_names:\n self.window_forecasts[model_name] = {}\n for size_threshold in self.size_thresholds:\n self.window_forecasts[model_name][size_threshold] = np.array([\n self.raw_forecasts[model_name][size_threshold][sl].sum(axis\n =0) for sl in self.hour_windows])\n", "role": "user" }, { "content": "get_window_forecasts", "role": "assistant" } ]
def x(self, mask_threshold=0.5): start_date = self.run_date + timedelta(hours=self.start_hour) end_date = self.run_date + timedelta(hours=self.end_hour) mrms_grid = MRMSGrid(start_date, end_date, self.mrms_variable, self. mrms_path) mrms_grid.load_data() if len(mrms_grid.data) > 0: self.raw_obs[self.mrms_variable] = np.where(mrms_grid.data > 100, 100, mrms_grid.data) self.window_obs[self.mrms_variable] = np.array([self.raw_obs[self. mrms_variable][sl].max(axis=0) for sl in self.hour_windows]) if self.obs_mask: mask_grid = MRMSGrid(start_date, end_date, self.mask_variable, self.mrms_path) mask_grid.load_data() self.raw_obs[self.mask_variable] = np.where(mask_grid.data >= mask_threshold, 1, 0) self.window_obs[self.mask_variable] = np.array([self.raw_obs[ self.mask_variable][sl].max(axis=0) for sl in self. hour_windows])
load_obs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mask_threshold=0.5):\n start_date = self.run_date + timedelta(hours=self.start_hour)\n end_date = self.run_date + timedelta(hours=self.end_hour)\n mrms_grid = MRMSGrid(start_date, end_date, self.mrms_variable, self.\n mrms_path)\n mrms_grid.load_data()\n if len(mrms_grid.data) > 0:\n self.raw_obs[self.mrms_variable] = np.where(mrms_grid.data > 100, \n 100, mrms_grid.data)\n self.window_obs[self.mrms_variable] = np.array([self.raw_obs[self.\n mrms_variable][sl].max(axis=0) for sl in self.hour_windows])\n if self.obs_mask:\n mask_grid = MRMSGrid(start_date, end_date, self.mask_variable,\n self.mrms_path)\n mask_grid.load_data()\n self.raw_obs[self.mask_variable] = np.where(mask_grid.data >=\n mask_threshold, 1, 0)\n self.window_obs[self.mask_variable] = np.array([self.raw_obs[\n self.mask_variable][sl].max(axis=0) for sl in self.\n hour_windows])\n", "role": "user" }, { "content": "load_obs", "role": "assistant" } ]
def x(self, dilation_radius): for s in self.size_thresholds: self.dilated_obs[s] = np.zeros(self.window_obs[self.mrms_variable]. shape) for t in range(self.dilated_obs[s].shape[0]): self.dilated_obs[s][t][binary_dilation(self.window_obs[self. mrms_variable][t] >= s, iterations=dilation_radius)] = 1
dilate_obs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dilation_radius):\n for s in self.size_thresholds:\n self.dilated_obs[s] = np.zeros(self.window_obs[self.mrms_variable].\n shape)\n for t in range(self.dilated_obs[s].shape[0]):\n self.dilated_obs[s][t][binary_dilation(self.window_obs[self.\n mrms_variable][t] >= s, iterations=dilation_radius)] = 1\n", "role": "user" }, { "content": "dilate_obs", "role": "assistant" } ]
def x(self, prob_thresholds): all_roc_curves = {} for model_name in self.model_names: all_roc_curves[model_name] = {} for size_threshold in self.size_thresholds: all_roc_curves[model_name][size_threshold] = {} for h, hour_window in enumerate(self.hour_windows): hour_range = hour_window.start, hour_window.stop all_roc_curves[model_name][size_threshold][hour_range ] = DistributedROC(prob_thresholds, 1) if self.obs_mask: all_roc_curves[model_name][size_threshold][hour_range ].update(self.window_forecasts[model_name][ size_threshold][h][self.window_obs[self. mask_variable][h] > 0], self.dilated_obs[ size_threshold][h][self.window_obs[self. mask_variable][h] > 0]) else: all_roc_curves[model_name][size_threshold][hour_range ].update(self.window_forecasts[model_name][ size_threshold][h], self.dilated_obs[size_threshold][h] ) return all_roc_curves
roc_curves
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, prob_thresholds):\n all_roc_curves = {}\n for model_name in self.model_names:\n all_roc_curves[model_name] = {}\n for size_threshold in self.size_thresholds:\n all_roc_curves[model_name][size_threshold] = {}\n for h, hour_window in enumerate(self.hour_windows):\n hour_range = hour_window.start, hour_window.stop\n all_roc_curves[model_name][size_threshold][hour_range\n ] = DistributedROC(prob_thresholds, 1)\n if self.obs_mask:\n all_roc_curves[model_name][size_threshold][hour_range\n ].update(self.window_forecasts[model_name][\n size_threshold][h][self.window_obs[self.\n mask_variable][h] > 0], self.dilated_obs[\n size_threshold][h][self.window_obs[self.\n mask_variable][h] > 0])\n else:\n all_roc_curves[model_name][size_threshold][hour_range\n ].update(self.window_forecasts[model_name][\n size_threshold][h], self.dilated_obs[size_threshold][h]\n )\n return all_roc_curves\n", "role": "user" }, { "content": "roc_curves", "role": "assistant" } ]
def x(self, prob_thresholds): all_rel_curves = {} for model_name in self.model_names: all_rel_curves[model_name] = {} for size_threshold in self.size_thresholds: all_rel_curves[model_name][size_threshold] = {} for h, hour_window in enumerate(self.hour_windows): hour_range = hour_window.start, hour_window.stop all_rel_curves[model_name][size_threshold][hour_range ] = DistributedReliability(prob_thresholds, 1) if self.obs_mask: all_rel_curves[model_name][size_threshold][hour_range ].update(self.window_forecasts[model_name][ size_threshold][h][self.window_obs[self. mask_variable][h] > 0], self.dilated_obs[ size_threshold][h][self.window_obs[self. mask_variable][h] > 0]) else: all_rel_curves[model_name][size_threshold][hour_range ].update(self.window_forecasts[model_name][ size_threshold][h], self.dilated_obs[size_threshold][h] ) return all_rel_curves
reliability_curves
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, prob_thresholds):\n all_rel_curves = {}\n for model_name in self.model_names:\n all_rel_curves[model_name] = {}\n for size_threshold in self.size_thresholds:\n all_rel_curves[model_name][size_threshold] = {}\n for h, hour_window in enumerate(self.hour_windows):\n hour_range = hour_window.start, hour_window.stop\n all_rel_curves[model_name][size_threshold][hour_range\n ] = DistributedReliability(prob_thresholds, 1)\n if self.obs_mask:\n all_rel_curves[model_name][size_threshold][hour_range\n ].update(self.window_forecasts[model_name][\n size_threshold][h][self.window_obs[self.\n mask_variable][h] > 0], self.dilated_obs[\n size_threshold][h][self.window_obs[self.\n mask_variable][h] > 0])\n else:\n all_rel_curves[model_name][size_threshold][hour_range\n ].update(self.window_forecasts[model_name][\n size_threshold][h], self.dilated_obs[size_threshold][h]\n )\n return all_rel_curves\n", "role": "user" }, { "content": "reliability_curves", "role": "assistant" } ]
def x(map_file): if map_file[-4:] == '.pkl': map_data = pickle.load(open(map_file)) lon = map_data['lon'] lat = map_data['lat'] else: map_data = Dataset(map_file) if 'lon' in map_data.variables.keys(): lon = map_data.variables['lon'][:] lat = map_data.variables['lat'][:] else: lon = map_data.variables['XLONG'][0] lat = map_data.variables['XLAT'][0] return lon, lat
load_map_coordinates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(map_file):\n if map_file[-4:] == '.pkl':\n map_data = pickle.load(open(map_file))\n lon = map_data['lon']\n lat = map_data['lat']\n else:\n map_data = Dataset(map_file)\n if 'lon' in map_data.variables.keys():\n lon = map_data.variables['lon'][:]\n lat = map_data.variables['lat'][:]\n else:\n lon = map_data.variables['XLONG'][0]\n lat = map_data.variables['XLAT'][0]\n return lon, lat\n", "role": "user" }, { "content": "load_map_coordinates", "role": "assistant" } ]
def x(start_date, variable, interp_type, mrms_path, map_filename, out_path): try: print(start_date, variable) end_date = start_date + timedelta(hours=23) mrms = MRMSGrid(start_date, end_date, variable, mrms_path) if mrms.data is not None: if map_filename[-3:] == 'map': mapping_data = make_proj_grids(*read_arps_map_file( map_filename)) mrms.interpolate_to_netcdf(mapping_data['lon'], mapping_data['lat'], out_path, interp_type=interp_type) elif map_filename[-3:] == 'txt': mapping_data = make_proj_grids(*read_ncar_map_file( map_filename)) mrms.interpolate_to_netcdf(mapping_data['lon'], mapping_data['lat'], out_path, interp_type=interp_type) else: lon, lat = load_map_coordinates(map_filename) mrms.interpolate_to_netcdf(lon, lat, out_path, interp_type= interp_type) except Exception as e: print(traceback.format_exc()) raise e
interpolate_mrms_day
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(start_date, variable, interp_type, mrms_path, map_filename, out_path):\n try:\n print(start_date, variable)\n end_date = start_date + timedelta(hours=23)\n mrms = MRMSGrid(start_date, end_date, variable, mrms_path)\n if mrms.data is not None:\n if map_filename[-3:] == 'map':\n mapping_data = make_proj_grids(*read_arps_map_file(\n map_filename))\n mrms.interpolate_to_netcdf(mapping_data['lon'],\n mapping_data['lat'], out_path, interp_type=interp_type)\n elif map_filename[-3:] == 'txt':\n mapping_data = make_proj_grids(*read_ncar_map_file(\n map_filename))\n mrms.interpolate_to_netcdf(mapping_data['lon'],\n mapping_data['lat'], out_path, interp_type=interp_type)\n else:\n lon, lat = load_map_coordinates(map_filename)\n mrms.interpolate_to_netcdf(lon, lat, out_path, interp_type=\n interp_type)\n except Exception as e:\n print(traceback.format_exc())\n raise e\n", "role": "user" }, { "content": "interpolate_mrms_day", "role": "assistant" } ]
def x(self): data = [] loaded_dates = [] loaded_indices = [] for t, timestamp in enumerate(self.all_dates): date_str = timestamp.date().strftime('%Y%m%d') full_path = self.path_start + date_str + '/' if self.variable in os.listdir(full_path): full_path += self.variable + '/' data_files = sorted(os.listdir(full_path)) file_dates = pd.to_datetime([d.split('_')[-1][0:13] for d in data_files]) if timestamp in file_dates: data_file = data_files[np.where(timestamp == file_dates)[0][0]] print(full_path + data_file) if data_file[-2:] == 'gz': subprocess.call(['gunzip', full_path + data_file]) file_obj = Nio.open_file(full_path + data_file[:-3]) else: file_obj = Nio.open_file(full_path + data_file) var_name = sorted(file_obj.variables.keys())[0] data.append(file_obj.variables[var_name][:]) if self.lon is None: self.lon = file_obj.variables['lon_0'][:] if np.count_nonzero(self.lon > 180) > 0: self.lon -= 360 self.lat = file_obj.variables['lat_0'][:] file_obj.close() if data_file[-2:] == 'gz': subprocess.call(['gzip', full_path + data_file[:-3]]) else: subprocess.call(['gzip', full_path + data_file]) loaded_dates.append(timestamp) loaded_indices.append(t) if len(loaded_dates) > 0: self.loaded_dates = pd.DatetimeIndex(loaded_dates) self.data = np.ones((self.all_dates.shape[0], data[0].shape[0], data[0].shape[1])) * -9999 self.data[loaded_indices] = np.array(data)
load_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n data = []\n loaded_dates = []\n loaded_indices = []\n for t, timestamp in enumerate(self.all_dates):\n date_str = timestamp.date().strftime('%Y%m%d')\n full_path = self.path_start + date_str + '/'\n if self.variable in os.listdir(full_path):\n full_path += self.variable + '/'\n data_files = sorted(os.listdir(full_path))\n file_dates = pd.to_datetime([d.split('_')[-1][0:13] for d in\n data_files])\n if timestamp in file_dates:\n data_file = data_files[np.where(timestamp == file_dates)[0][0]]\n print(full_path + data_file)\n if data_file[-2:] == 'gz':\n subprocess.call(['gunzip', full_path + data_file])\n file_obj = Nio.open_file(full_path + data_file[:-3])\n else:\n file_obj = Nio.open_file(full_path + data_file)\n var_name = sorted(file_obj.variables.keys())[0]\n data.append(file_obj.variables[var_name][:])\n if self.lon is None:\n self.lon = file_obj.variables['lon_0'][:]\n if np.count_nonzero(self.lon > 180) > 0:\n self.lon -= 360\n self.lat = file_obj.variables['lat_0'][:]\n file_obj.close()\n if data_file[-2:] == 'gz':\n subprocess.call(['gzip', full_path + data_file[:-3]])\n else:\n subprocess.call(['gzip', full_path + data_file])\n loaded_dates.append(timestamp)\n loaded_indices.append(t)\n if len(loaded_dates) > 0:\n self.loaded_dates = pd.DatetimeIndex(loaded_dates)\n self.data = np.ones((self.all_dates.shape[0], data[0].shape[0],\n data[0].shape[1])) * -9999\n self.data[loaded_indices] = np.array(data)\n", "role": "user" }, { "content": "load_data", "role": "assistant" } ]
def x(self, in_lon, in_lat): out_data = np.zeros((self.data.shape[0], in_lon.shape[0], in_lon.shape[1])) for d in range(self.data.shape[0]): print('Loading ', d, self.variable, self.start_date) if self.data[d].max() > -999: step = self.data[d] step[step < 0] = 0 if self.lat[-1] < self.lat[0]: spline = RectBivariateSpline(self.lat[::-1], self.lon, step [::-1], kx=3, ky=3) else: spline = RectBivariateSpline(self.lat, self.lon, step, kx=3, ky=3) print('Evaluating', d, self.variable, self.start_date) flat_data = spline.ev(in_lat.ravel(), in_lon.ravel()) out_data[d] = flat_data.reshape(in_lon.shape) del spline else: print(d, ' is missing') out_data[d] = -9999 return out_data
interpolate_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, in_lon, in_lat):\n out_data = np.zeros((self.data.shape[0], in_lon.shape[0], in_lon.shape[1]))\n for d in range(self.data.shape[0]):\n print('Loading ', d, self.variable, self.start_date)\n if self.data[d].max() > -999:\n step = self.data[d]\n step[step < 0] = 0\n if self.lat[-1] < self.lat[0]:\n spline = RectBivariateSpline(self.lat[::-1], self.lon, step\n [::-1], kx=3, ky=3)\n else:\n spline = RectBivariateSpline(self.lat, self.lon, step, kx=3,\n ky=3)\n print('Evaluating', d, self.variable, self.start_date)\n flat_data = spline.ev(in_lat.ravel(), in_lon.ravel())\n out_data[d] = flat_data.reshape(in_lon.shape)\n del spline\n else:\n print(d, ' is missing')\n out_data[d] = -9999\n return out_data\n", "role": "user" }, { "content": "interpolate_grid", "role": "assistant" } ]
def x(self, in_lon, in_lat, radius=0.05): out_data = np.zeros((self.data.shape[0], in_lon.shape[0], in_lon.shape[1])) in_tree = cKDTree(np.vstack((in_lat.ravel(), in_lon.ravel())).T) out_indices = np.indices(out_data.shape[1:]) out_rows = out_indices[0].ravel() out_cols = out_indices[1].ravel() for d in range(self.data.shape[0]): nz_points = np.where(self.data[d] > 0) if len(nz_points[0]) > 0: nz_vals = self.data[d][nz_points] nz_rank = np.argsort(nz_vals) original_points = cKDTree(np.vstack((self.lat[nz_points[0][ nz_rank]], self.lon[nz_points[1][nz_rank]])).T) all_neighbors = original_points.query_ball_tree(in_tree, radius, p=2, eps=0) for n, neighbors in enumerate(all_neighbors): if len(neighbors) > 0: out_data[d, out_rows[neighbors], out_cols[neighbors] ] = nz_vals[nz_rank][n] return out_data
max_neighbor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, in_lon, in_lat, radius=0.05):\n out_data = np.zeros((self.data.shape[0], in_lon.shape[0], in_lon.shape[1]))\n in_tree = cKDTree(np.vstack((in_lat.ravel(), in_lon.ravel())).T)\n out_indices = np.indices(out_data.shape[1:])\n out_rows = out_indices[0].ravel()\n out_cols = out_indices[1].ravel()\n for d in range(self.data.shape[0]):\n nz_points = np.where(self.data[d] > 0)\n if len(nz_points[0]) > 0:\n nz_vals = self.data[d][nz_points]\n nz_rank = np.argsort(nz_vals)\n original_points = cKDTree(np.vstack((self.lat[nz_points[0][\n nz_rank]], self.lon[nz_points[1][nz_rank]])).T)\n all_neighbors = original_points.query_ball_tree(in_tree, radius,\n p=2, eps=0)\n for n, neighbors in enumerate(all_neighbors):\n if len(neighbors) > 0:\n out_data[d, out_rows[neighbors], out_cols[neighbors]\n ] = nz_vals[nz_rank][n]\n return out_data\n", "role": "user" }, { "content": "max_neighbor", "role": "assistant" } ]
def x(self, in_lon, in_lat, out_path, date_unit= 'seconds since 1970-01-01T00:00', interp_type='spline'): if interp_type == 'spline': out_data = self.interpolate_grid(in_lon, in_lat) else: out_data = self.max_neighbor(in_lon, in_lat) if not os.access(out_path + self.variable, os.R_OK): try: os.mkdir(out_path + self.variable) except OSError: print(out_path + self.variable + ' already created') out_file = out_path + self.variable + '/' + '{0}_{1}_{2}.nc'.format(self .variable, self.start_date.strftime('%Y%m%d-%H:%M'), self.end_date. strftime('%Y%m%d-%H:%M')) out_obj = Dataset(out_file, 'w') out_obj.createDimension('time', out_data.shape[0]) out_obj.createDimension('y', out_data.shape[1]) out_obj.createDimension('x', out_data.shape[2]) data_var = out_obj.createVariable(self.variable, 'f4', ('time', 'y', 'x'), zlib=True, fill_value=-9999.0, least_significant_digit=3) data_var[:] = out_data data_var.long_name = self.variable data_var.coordinates = 'latitude longitude' if 'MESH' in self.variable or 'QPE' in self.variable: data_var.units = 'mm' elif 'Reflectivity' in self.variable: data_var.units = 'dBZ' elif 'Rotation' in self.variable: data_var.units = 's-1' else: data_var.units = '' out_lon = out_obj.createVariable('longitude', 'f4', ('y', 'x'), zlib=True) out_lon[:] = in_lon out_lon.units = 'degrees_east' out_lat = out_obj.createVariable('latitude', 'f4', ('y', 'x'), zlib=True) out_lat[:] = in_lat out_lat.units = 'degrees_north' dates = out_obj.createVariable('time', 'i8', ('time',), zlib=True) dates[:] = np.round(date2num(self.all_dates.to_pydatetime(), date_unit) ).astype(np.int64) dates.long_name = 'Valid date' dates.units = date_unit out_obj.Conventions = 'CF-1.6' out_obj.close() return
interpolate_to_netcdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, in_lon, in_lat, out_path, date_unit=\n 'seconds since 1970-01-01T00:00', interp_type='spline'):\n if interp_type == 'spline':\n out_data = self.interpolate_grid(in_lon, in_lat)\n else:\n out_data = self.max_neighbor(in_lon, in_lat)\n if not os.access(out_path + self.variable, os.R_OK):\n try:\n os.mkdir(out_path + self.variable)\n except OSError:\n print(out_path + self.variable + ' already created')\n out_file = out_path + self.variable + '/' + '{0}_{1}_{2}.nc'.format(self\n .variable, self.start_date.strftime('%Y%m%d-%H:%M'), self.end_date.\n strftime('%Y%m%d-%H:%M'))\n out_obj = Dataset(out_file, 'w')\n out_obj.createDimension('time', out_data.shape[0])\n out_obj.createDimension('y', out_data.shape[1])\n out_obj.createDimension('x', out_data.shape[2])\n data_var = out_obj.createVariable(self.variable, 'f4', ('time', 'y',\n 'x'), zlib=True, fill_value=-9999.0, least_significant_digit=3)\n data_var[:] = out_data\n data_var.long_name = self.variable\n data_var.coordinates = 'latitude longitude'\n if 'MESH' in self.variable or 'QPE' in self.variable:\n data_var.units = 'mm'\n elif 'Reflectivity' in self.variable:\n data_var.units = 'dBZ'\n elif 'Rotation' in self.variable:\n data_var.units = 's-1'\n else:\n data_var.units = ''\n out_lon = out_obj.createVariable('longitude', 'f4', ('y', 'x'), zlib=True)\n out_lon[:] = in_lon\n out_lon.units = 'degrees_east'\n out_lat = out_obj.createVariable('latitude', 'f4', ('y', 'x'), zlib=True)\n out_lat[:] = in_lat\n out_lat.units = 'degrees_north'\n dates = out_obj.createVariable('time', 'i8', ('time',), zlib=True)\n dates[:] = np.round(date2num(self.all_dates.to_pydatetime(), date_unit)\n ).astype(np.int64)\n dates.long_name = 'Valid date'\n dates.units = date_unit\n out_obj.Conventions = 'CF-1.6'\n out_obj.close()\n return\n", "role": "user" }, { "content": "interpolate_to_netcdf", "role": "assistant" } ]
def x(hardware_source_id, sync=True): hardware_source = HardwareSourceManager( ).get_hardware_source_for_hardware_source_id(hardware_source_id) def x(): return hardware_source.get_next_xdatas_to_finish()[0].data.copy() yield get_last_data
get_data_generator_by_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hardware_source_id, sync=True):\n hardware_source = HardwareSourceManager(\n ).get_hardware_source_for_hardware_source_id(hardware_source_id)\n\n def x():\n return hardware_source.get_next_xdatas_to_finish()[0].data.copy()\n yield get_last_data\n", "role": "user" }, { "content": "get_data_generator_by_id", "role": "assistant" } ]
def x(config_path): if os.path.exists(config_path): logging.info('Parsing alias file {:s}'.format(config_path)) try: config = configparser.ConfigParser() config.read(config_path) for section in config.sections(): device = config.get(section, 'device') hardware_alias = config.get(section, 'hardware_alias') display_name = config.get(section, 'display_name') try: logging.info( 'Adding alias {:s} for device {:s}, display name: {:s} ' .format(hardware_alias, device, display_name)) HardwareSourceManager().make_instrument_alias(device, hardware_alias, _(display_name)) except Exception as e: logging.info( 'Error creating hardware alias {:s} for device {:s} ' .format(hardware_alias, device)) logging.info(traceback.format_exc()) except Exception as e: logging.info('Error reading alias file from: ' + config_path) logging.info(traceback.format_exc()) return True return False
parse_hardware_aliases_config_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_path):\n if os.path.exists(config_path):\n logging.info('Parsing alias file {:s}'.format(config_path))\n try:\n config = configparser.ConfigParser()\n config.read(config_path)\n for section in config.sections():\n device = config.get(section, 'device')\n hardware_alias = config.get(section, 'hardware_alias')\n display_name = config.get(section, 'display_name')\n try:\n logging.info(\n 'Adding alias {:s} for device {:s}, display name: {:s} '\n .format(hardware_alias, device, display_name))\n HardwareSourceManager().make_instrument_alias(device,\n hardware_alias, _(display_name))\n except Exception as e:\n logging.info(\n 'Error creating hardware alias {:s} for device {:s} '\n .format(hardware_alias, device))\n logging.info(traceback.format_exc())\n except Exception as e:\n logging.info('Error reading alias file from: ' + config_path)\n logging.info(traceback.format_exc())\n return True\n return False\n", "role": "user" }, { "content": "parse_hardware_aliases_config_file", "role": "assistant" } ]
def x(self, instrument_id, alias_instrument_id, display_name): self.__aliases[alias_instrument_id] = instrument_id, display_name for f in self.aliases_updated: f()
make_instrument_alias
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instrument_id, alias_instrument_id, display_name):\n self.__aliases[alias_instrument_id] = instrument_id, display_name\n for f in self.aliases_updated:\n f()\n", "role": "user" }, { "content": "make_instrument_alias", "role": "assistant" } ]
def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, state: str, sub_area, view_id) ->None: self.__state = state self.__sub_area = sub_area hardware_source_id = self.__hardware_source.hardware_source_id channel_index = self.index channel_id = self.channel_id channel_name = self.name metadata = copy.deepcopy(data_and_metadata.metadata) hardware_source_metadata = dict() hardware_source_metadata['hardware_source_id'] = hardware_source_id hardware_source_metadata['channel_index'] = channel_index if channel_id is not None: hardware_source_metadata['reference_key'] = '_'.join([ hardware_source_id, channel_id]) hardware_source_metadata['channel_id'] = channel_id else: hardware_source_metadata['reference_key'] = hardware_source_id if channel_name is not None: hardware_source_metadata['channel_name'] = channel_name if view_id: hardware_source_metadata['view_id'] = view_id metadata.setdefault('hardware_source', dict()).update( hardware_source_metadata) data = data_and_metadata.data master_data = (self.__data_and_metadata.data if self. __data_and_metadata else None) data_matches = (master_data is not None and data.shape == master_data. shape and data.dtype == master_data.dtype) if data_matches and sub_area is not None: top = sub_area[0][0] bottom = sub_area[0][0] + sub_area[1][0] left = sub_area[0][1] right = sub_area[0][1] + sub_area[1][1] if top > 0 or left > 0 or bottom < data.shape[0] or right < data.shape[ 1]: master_data = numpy.copy(master_data) master_data[top:bottom, left:right] = data[top:bottom, left:right] else: master_data = numpy.copy(data) else: master_data = data data_descriptor = data_and_metadata.data_descriptor intensity_calibration = (data_and_metadata.intensity_calibration if data_and_metadata else None) dimensional_calibrations = (data_and_metadata.dimensional_calibrations if data_and_metadata else None) timestamp = data_and_metadata.timestamp new_extended_data = DataAndMetadata.new_data_and_metadata(master_data, intensity_calibration=intensity_calibration, dimensional_calibrations=dimensional_calibrations, metadata= metadata, timestamp=timestamp, data_descriptor=data_descriptor) self.__data_and_metadata = new_extended_data self.data_channel_updated_event.fire(new_extended_data) self.is_dirty = True
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_and_metadata: DataAndMetadata.DataAndMetadata, state: str,\n sub_area, view_id) ->None:\n self.__state = state\n self.__sub_area = sub_area\n hardware_source_id = self.__hardware_source.hardware_source_id\n channel_index = self.index\n channel_id = self.channel_id\n channel_name = self.name\n metadata = copy.deepcopy(data_and_metadata.metadata)\n hardware_source_metadata = dict()\n hardware_source_metadata['hardware_source_id'] = hardware_source_id\n hardware_source_metadata['channel_index'] = channel_index\n if channel_id is not None:\n hardware_source_metadata['reference_key'] = '_'.join([\n hardware_source_id, channel_id])\n hardware_source_metadata['channel_id'] = channel_id\n else:\n hardware_source_metadata['reference_key'] = hardware_source_id\n if channel_name is not None:\n hardware_source_metadata['channel_name'] = channel_name\n if view_id:\n hardware_source_metadata['view_id'] = view_id\n metadata.setdefault('hardware_source', dict()).update(\n hardware_source_metadata)\n data = data_and_metadata.data\n master_data = (self.__data_and_metadata.data if self.\n __data_and_metadata else None)\n data_matches = (master_data is not None and data.shape == master_data.\n shape and data.dtype == master_data.dtype)\n if data_matches and sub_area is not None:\n top = sub_area[0][0]\n bottom = sub_area[0][0] + sub_area[1][0]\n left = sub_area[0][1]\n right = sub_area[0][1] + sub_area[1][1]\n if top > 0 or left > 0 or bottom < data.shape[0] or right < data.shape[\n 1]:\n master_data = numpy.copy(master_data)\n master_data[top:bottom, left:right] = data[top:bottom, left:right]\n else:\n master_data = numpy.copy(data)\n else:\n master_data = data\n data_descriptor = data_and_metadata.data_descriptor\n intensity_calibration = (data_and_metadata.intensity_calibration if\n data_and_metadata else None)\n dimensional_calibrations = (data_and_metadata.dimensional_calibrations if\n data_and_metadata else None)\n timestamp = data_and_metadata.timestamp\n new_extended_data = DataAndMetadata.new_data_and_metadata(master_data,\n intensity_calibration=intensity_calibration,\n dimensional_calibrations=dimensional_calibrations, metadata=\n metadata, timestamp=timestamp, data_descriptor=data_descriptor)\n self.__data_and_metadata = new_extended_data\n self.data_channel_updated_event.fire(new_extended_data)\n self.is_dirty = True\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): old_start_count = self.__start_count self.__start_count += 1 if old_start_count == 0: self.data_channel_start_event.fire()
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n old_start_count = self.__start_count\n self.__start_count += 1\n if old_start_count == 0:\n self.data_channel_start_event.fire()\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self, data_item_reference): display_item = data_item_reference.display_item data_item = display_item.data_item if display_item else None if data_item and display_item: self.__connect_display(display_item) else: def x(): self.__data_item_reference_changed_event_listener.close() self.connect_data_item_reference(data_item_reference) self.__data_item_reference_changed_event_listener = ( data_item_reference.data_item_reference_changed_event.listen( data_item_reference_changed))
connect_data_item_reference
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_item_reference):\n display_item = data_item_reference.display_item\n data_item = display_item.data_item if display_item else None\n if data_item and display_item:\n self.__connect_display(display_item)\n else:\n\n def x():\n self.__data_item_reference_changed_event_listener.close()\n self.connect_data_item_reference(data_item_reference)\n self.__data_item_reference_changed_event_listener = (\n data_item_reference.data_item_reference_changed_event.listen(\n data_item_reference_changed))\n", "role": "user" }, { "content": "connect_data_item_reference", "role": "assistant" } ]
def x(self, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata ]: timeout = timeout if timeout is not None else 10.0 with self.__buffer_lock: if len(self.__buffer) == 0: done_event = threading.Event() self.__done_events.append(done_event) self.__buffer_lock.release() done = done_event.wait(timeout) self.__buffer_lock.acquire() if not done: raise Exception('Could not grab latest.') return self.__buffer.pop(0)
grab_earliest
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata\n ]:\n timeout = timeout if timeout is not None else 10.0\n with self.__buffer_lock:\n if len(self.__buffer) == 0:\n done_event = threading.Event()\n self.__done_events.append(done_event)\n self.__buffer_lock.release()\n done = done_event.wait(timeout)\n self.__buffer_lock.acquire()\n if not done:\n raise Exception('Could not grab latest.')\n return self.__buffer.pop(0)\n", "role": "user" }, { "content": "grab_earliest", "role": "assistant" } ]
def x(self, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata ]: with self.__buffer_lock: self.__buffer = list() return self.grab_latest(timeout)
grab_next
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata\n ]:\n with self.__buffer_lock:\n self.__buffer = list()\n return self.grab_latest(timeout)\n", "role": "user" }, { "content": "grab_next", "role": "assistant" } ]
def x(self, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata ]: self.grab_next(timeout) return self.grab_next(timeout)
grab_following
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeout: float=None) ->typing.List[DataAndMetadata.DataAndMetadata\n ]:\n self.grab_next(timeout)\n return self.grab_next(timeout)\n", "role": "user" }, { "content": "grab_following", "role": "assistant" } ]
def x(self) ->None: with self.__state_lock: if self.__state == DataChannelBuffer.State.started: self.__state = DataChannelBuffer.State.paused
pause
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n with self.__state_lock:\n if self.__state == DataChannelBuffer.State.started:\n self.__state = DataChannelBuffer.State.paused\n", "role": "user" }, { "content": "pause", "role": "assistant" } ]
def x(self) ->None: with self.__state_lock: if self.__state == DataChannelBuffer.State.paused: self.__state = DataChannelBuffer.State.started
resume
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n with self.__state_lock:\n if self.__state == DataChannelBuffer.State.paused:\n self.__state = DataChannelBuffer.State.started\n", "role": "user" }, { "content": "resume", "role": "assistant" } ]
def x(n, mapping): try: it = mapping.iteritems() except AttributeError: it = iter(mapping.items()) pq = minpq() try: for i in range(n): pq.additem(*next(it)) except StopIteration: pass try: while it: pq.pushpopitem(*next(it)) except StopIteration: pass out = list(pq.popkeys()) out.reverse() return out
nlargest
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, mapping):\n try:\n it = mapping.iteritems()\n except AttributeError:\n it = iter(mapping.items())\n pq = minpq()\n try:\n for i in range(n):\n pq.additem(*next(it))\n except StopIteration:\n pass\n try:\n while it:\n pq.pushpopitem(*next(it))\n except StopIteration:\n pass\n out = list(pq.popkeys())\n out.reverse()\n return out\n", "role": "user" }, { "content": "nlargest", "role": "assistant" } ]
def x(cls, iterable, value, **kwargs): return cls(((k, value) for k in iterable), **kwargs)
fromkeys
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, iterable, value, **kwargs):\n return cls(((k, value) for k in iterable), **kwargs)\n", "role": "user" }, { "content": "fromkeys", "role": "assistant" } ]
def x(self): return self.__class__(self, key=self._keyfn, precedes=self._precedes)
copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self.__class__(self, key=self._keyfn, precedes=self._precedes)\n", "role": "user" }, { "content": "copy", "role": "assistant" } ]
def x(self, key=__marker, default=__marker): heap = self._heap position = self._position if key is self.__marker: if not heap: raise KeyError('pqdict is empty') key = heap[0].key del self[key] return key try: pos = position.pop(key) except KeyError: if default is self.__marker: raise return default else: node_to_delete = heap[pos] end = heap.pop() if end is not node_to_delete: heap[pos] = end position[end.key] = pos self._reheapify(pos) value = node_to_delete.value del node_to_delete return value
pop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key=__marker, default=__marker):\n heap = self._heap\n position = self._position\n if key is self.__marker:\n if not heap:\n raise KeyError('pqdict is empty')\n key = heap[0].key\n del self[key]\n return key\n try:\n pos = position.pop(key)\n except KeyError:\n if default is self.__marker:\n raise\n return default\n else:\n node_to_delete = heap[pos]\n end = heap.pop()\n if end is not node_to_delete:\n heap[pos] = end\n position[end.key] = pos\n self._reheapify(pos)\n value = node_to_delete.value\n del node_to_delete\n return value\n", "role": "user" }, { "content": "pop", "role": "assistant" } ]
def x(self): heap = self._heap position = self._position try: end = heap.pop(-1) except IndexError: raise KeyError('pqdict is empty') if heap: node = heap[0] heap[0] = end position[end.key] = 0 self._sink(0) else: node = end del position[node.key] return node.key, node.value
popitem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n heap = self._heap\n position = self._position\n try:\n end = heap.pop(-1)\n except IndexError:\n raise KeyError('pqdict is empty')\n if heap:\n node = heap[0]\n heap[0] = end\n position[end.key] = 0\n self._sink(0)\n else:\n node = end\n del position[node.key]\n return node.key, node.value\n", "role": "user" }, { "content": "popitem", "role": "assistant" } ]
def x(self): try: node = self._heap[0] except IndexError: raise KeyError('pqdict is empty') return node.key, node.value
topitem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n node = self._heap[0]\n except IndexError:\n raise KeyError('pqdict is empty')\n return node.key, node.value\n", "role": "user" }, { "content": "topitem", "role": "assistant" } ]