source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, key, value):
if key in self._position:
raise KeyError('%s is already in the queue' % repr(key))
self[key] = value
|
additem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, value):\n if key in self._position:\n raise KeyError('%s is already in the queue' % repr(key))\n self[key] = value\n",
"role": "user"
},
{
"content": "additem",
"role": "assistant"
}
] |
def x(self, key, value, node_factory=_Node):
heap = self._heap
position = self._position
precedes = self._precedes
prio = self._keyfn(value) if self._keyfn else value
node = node_factory(key, value, prio)
if key in self:
raise KeyError('%s is already in the queue' % repr(key))
if heap and precedes(heap[0].prio, node.prio):
node, heap[0] = heap[0], node
position[key] = 0
del position[node.key]
self._sink(0)
return node.key, node.value
|
pushpopitem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, value, node_factory=_Node):\n heap = self._heap\n position = self._position\n precedes = self._precedes\n prio = self._keyfn(value) if self._keyfn else value\n node = node_factory(key, value, prio)\n if key in self:\n raise KeyError('%s is already in the queue' % repr(key))\n if heap and precedes(heap[0].prio, node.prio):\n node, heap[0] = heap[0], node\n position[key] = 0\n del position[node.key]\n self._sink(0)\n return node.key, node.value\n",
"role": "user"
},
{
"content": "pushpopitem",
"role": "assistant"
}
] |
def x(self, key, new_val):
if key not in self._position:
raise KeyError(key)
self[key] = new_val
|
updateitem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, new_val):\n if key not in self._position:\n raise KeyError(key)\n self[key] = new_val\n",
"role": "user"
},
{
"content": "updateitem",
"role": "assistant"
}
] |
def x(self, key, new_key):
heap = self._heap
position = self._position
if new_key in self:
raise KeyError('%s is already in the queue' % repr(new_key))
pos = position.pop(key)
position[new_key] = pos
heap[pos].key = new_key
|
replace_key
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, new_key):\n heap = self._heap\n position = self._position\n if new_key in self:\n raise KeyError('%s is already in the queue' % repr(new_key))\n pos = position.pop(key)\n position[new_key] = pos\n heap[pos].key = new_key\n",
"role": "user"
},
{
"content": "replace_key",
"role": "assistant"
}
] |
def x(self, key1, key2):
heap = self._heap
position = self._position
if key1 not in self or key2 not in self:
raise KeyError
pos1, pos2 = position[key1], position[key2]
heap[pos1].key, heap[pos2].key = key2, key1
position[key1], position[key2] = pos2, pos1
|
swap_priority
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key1, key2):\n heap = self._heap\n position = self._position\n if key1 not in self or key2 not in self:\n raise KeyError\n pos1, pos2 = position[key1], position[key2]\n heap[pos1].key, heap[pos2].key = key2, key1\n position[key1], position[key2] = pos2, pos1\n",
"role": "user"
},
{
"content": "swap_priority",
"role": "assistant"
}
] |
def x(self, key=__marker):
if key is self.__marker:
n = len(self._heap)
for pos in reversed(range(n // 2)):
self._sink(pos)
else:
try:
pos = self._position[key]
except KeyError:
raise KeyError(key)
self._reheapify(pos)
|
heapify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key=__marker):\n if key is self.__marker:\n n = len(self._heap)\n for pos in reversed(range(n // 2)):\n self._sink(pos)\n else:\n try:\n pos = self._position[key]\n except KeyError:\n raise KeyError(key)\n self._reheapify(pos)\n",
"role": "user"
},
{
"content": "heapify",
"role": "assistant"
}
] |
def x(package_name):
version_file_path = helpers.package_file_path('_version.py', package_name)
return os.path.isfile(version_file_path)
|
package_has_version_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(package_name):\n version_file_path = helpers.package_file_path('_version.py', package_name)\n return os.path.isfile(version_file_path)\n",
"role": "user"
},
{
"content": "package_has_version_file",
"role": "assistant"
}
] |
def x():
setup_py_content = helpers.get_file_content('setup.py')
ret = helpers.value_of_named_argument_in_function('name', 'setup',
setup_py_content, resolve_varname=True)
if ret and ret[0] == ret[-1] in ('"', "'"):
ret = ret[1:-1]
return ret
|
get_project_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n setup_py_content = helpers.get_file_content('setup.py')\n ret = helpers.value_of_named_argument_in_function('name', 'setup',\n setup_py_content, resolve_varname=True)\n if ret and ret[0] == ret[-1] in ('\"', \"'\"):\n ret = ret[1:-1]\n return ret\n",
"role": "user"
},
{
"content": "get_project_name",
"role": "assistant"
}
] |
def x(package_name, ignore_cache=False):
if ignore_cache:
with microcache.temporarily_disabled():
found = helpers.regex_in_package_file(VERSION_SET_REGEX,
'_version.py', package_name, return_match=True)
else:
found = helpers.regex_in_package_file(VERSION_SET_REGEX,
'_version.py', package_name, return_match=True)
if found is None:
raise ProjectError('found {}, but __version__ is not defined')
current_version = found['version']
return current_version
|
get_version
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(package_name, ignore_cache=False):\n if ignore_cache:\n with microcache.temporarily_disabled():\n found = helpers.regex_in_package_file(VERSION_SET_REGEX,\n '_version.py', package_name, return_match=True)\n else:\n found = helpers.regex_in_package_file(VERSION_SET_REGEX,\n '_version.py', package_name, return_match=True)\n if found is None:\n raise ProjectError('found {}, but __version__ is not defined')\n current_version = found['version']\n return current_version\n",
"role": "user"
},
{
"content": "get_version",
"role": "assistant"
}
] |
def x(package_name, version_str):
current_version = get_version(package_name)
version_file_path = helpers.package_file_path('_version.py', package_name)
version_file_content = helpers.get_file_content(version_file_path)
version_file_content = version_file_content.replace(current_version,
version_str)
with open(version_file_path, 'w') as version_file:
version_file.write(version_file_content)
|
set_version
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(package_name, version_str):\n current_version = get_version(package_name)\n version_file_path = helpers.package_file_path('_version.py', package_name)\n version_file_content = helpers.get_file_content(version_file_path)\n version_file_content = version_file_content.replace(current_version,\n version_str)\n with open(version_file_path, 'w') as version_file:\n version_file.write(version_file_content)\n",
"role": "user"
},
{
"content": "set_version",
"role": "assistant"
}
] |
def x(version_str):
try:
packaging.version.Version(version_str)
except packaging.version.InvalidVersion:
return False
return True
|
version_is_valid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(version_str):\n try:\n packaging.version.Version(version_str)\n except packaging.version.InvalidVersion:\n return False\n return True\n",
"role": "user"
},
{
"content": "version_is_valid",
"role": "assistant"
}
] |
def x(project_name, index_url, requests_verify=True):
url = '/'.join((index_url, project_name, 'json'))
response = requests.get(url, verify=requests_verify)
if response.status_code == 200:
return response.json()['releases'].keys()
return None
|
get_uploaded_versions_warehouse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(project_name, index_url, requests_verify=True):\n url = '/'.join((index_url, project_name, 'json'))\n response = requests.get(url, verify=requests_verify)\n if response.status_code == 200:\n return response.json()['releases'].keys()\n return None\n",
"role": "user"
},
{
"content": "get_uploaded_versions_warehouse",
"role": "assistant"
}
] |
def x(project_name, index_url, requests_verify=True):
api_url = index_url
for suffix in ('/pypi', '/pypi/', '/simple', '/simple/'):
if api_url.endswith(suffix):
api_url = api_url[:len(suffix) * -1] + '/api/package'
break
url = '/'.join((api_url, project_name))
response = requests.get(url, verify=requests_verify)
if response.status_code == 200:
return [p['version'] for p in response.json()['packages']]
return None
|
get_uploaded_versions_pypicloud
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(project_name, index_url, requests_verify=True):\n api_url = index_url\n for suffix in ('/pypi', '/pypi/', '/simple', '/simple/'):\n if api_url.endswith(suffix):\n api_url = api_url[:len(suffix) * -1] + '/api/package'\n break\n url = '/'.join((api_url, project_name))\n response = requests.get(url, verify=requests_verify)\n if response.status_code == 200:\n return [p['version'] for p in response.json()['packages']]\n return None\n",
"role": "user"
},
{
"content": "get_uploaded_versions_pypicloud",
"role": "assistant"
}
] |
def x(project_name, version_str, index_url, requests_verify=True):
all_versions = _get_uploaded_versions(project_name, index_url,
requests_verify)
return version_str in all_versions
|
version_already_uploaded
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(project_name, version_str, index_url, requests_verify=True):\n all_versions = _get_uploaded_versions(project_name, index_url,\n requests_verify)\n return version_str in all_versions\n",
"role": "user"
},
{
"content": "version_already_uploaded",
"role": "assistant"
}
] |
def x():
project_files = os.listdir('.')
for filename in project_files:
if filename.lower() == 'readme':
raise ProjectError('found {} in project directory...'.format(
filename) + 'not sure what to do with it, refusing to convert')
elif filename.lower() == 'readme.rst':
raise ProjectError('found {} in project directory...'.format(
filename) + 'refusing to overwrite')
for filename in project_files:
if filename.lower() == 'readme.md':
rst_filename = 'README.rst'
logger.info('converting {} to {}'.format(filename, rst_filename))
try:
rst_content = pypandoc.convert(filename, 'rst')
with open('README.rst', 'w') as rst_file:
rst_file.write(rst_content)
return
except OSError as e:
raise ProjectError(
'could not convert readme to rst due to pypandoc error:' +
os.linesep + str(e))
raise ProjectError('could not find any README.md file to convert')
|
convert_readme_to_rst
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n project_files = os.listdir('.')\n for filename in project_files:\n if filename.lower() == 'readme':\n raise ProjectError('found {} in project directory...'.format(\n filename) + 'not sure what to do with it, refusing to convert')\n elif filename.lower() == 'readme.rst':\n raise ProjectError('found {} in project directory...'.format(\n filename) + 'refusing to overwrite')\n for filename in project_files:\n if filename.lower() == 'readme.md':\n rst_filename = 'README.rst'\n logger.info('converting {} to {}'.format(filename, rst_filename))\n try:\n rst_content = pypandoc.convert(filename, 'rst')\n with open('README.rst', 'w') as rst_file:\n rst_file.write(rst_content)\n return\n except OSError as e:\n raise ProjectError(\n 'could not convert readme to rst due to pypandoc error:' +\n os.linesep + str(e))\n raise ProjectError('could not find any README.md file to convert')\n",
"role": "user"
},
{
"content": "convert_readme_to_rst",
"role": "assistant"
}
] |
def x(package_name):
if not os.path.isdir('dist'):
return []
return [os.path.join('dist', filename) for filename in os.listdir('dist')]
|
get_packaged_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(package_name):\n if not os.path.isdir('dist'):\n return []\n return [os.path.join('dist', filename) for filename in os.listdir('dist')]\n",
"role": "user"
},
{
"content": "get_packaged_files",
"role": "assistant"
}
] |
def x(package_name):
dist_files = os.listdir('dist')
versions = set()
for filename in dist_files:
version = funcy.re_find('{}-(.+).tar.gz'.format(package_name), filename
)
if version:
versions.add(version)
return len(versions) > 1
|
multiple_packaged_versions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(package_name):\n dist_files = os.listdir('dist')\n versions = set()\n for filename in dist_files:\n version = funcy.re_find('{}-(.+).tar.gz'.format(package_name), filename\n )\n if version:\n versions.add(version)\n return len(versions) > 1\n",
"role": "user"
},
{
"content": "multiple_packaged_versions",
"role": "assistant"
}
] |
def x(self, radius, smoothing, threshold, stride, start_time, end_time):
neighbor_x = self.x[::stride, ::stride]
neighbor_y = self.y[::stride, ::stride]
neighbor_kd_tree = cKDTree(np.vstack((neighbor_x.ravel(), neighbor_y.
ravel())).T)
neighbor_prob = np.zeros((self.data.shape[0], neighbor_x.shape[0],
neighbor_x.shape[1]))
print('Forecast Hours: {0}-{1}'.format(start_time, end_time))
for m in range(len(self.members)):
period_max = self.data[m, start_time:end_time, :, :].max(axis=0)
valid_i, valid_j = np.where(period_max >= threshold)
print(self.members[m], len(valid_i))
if len(valid_i) > 0:
var_kd_tree = cKDTree(np.vstack((self.x[valid_i, valid_j], self
.y[valid_i, valid_j])).T)
exceed_points = np.unique(np.concatenate(var_kd_tree.
query_ball_tree(neighbor_kd_tree, radius))).astype(int)
exceed_i, exceed_j = np.unravel_index(exceed_points, neighbor_x
.shape)
neighbor_prob[m][exceed_i, exceed_j] = 1
if smoothing > 0:
neighbor_prob[m] = gaussian_filter(neighbor_prob[m],
smoothing, mode='constant')
return neighbor_prob
|
period_neighborhood_probability
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, radius, smoothing, threshold, stride, start_time, end_time):\n neighbor_x = self.x[::stride, ::stride]\n neighbor_y = self.y[::stride, ::stride]\n neighbor_kd_tree = cKDTree(np.vstack((neighbor_x.ravel(), neighbor_y.\n ravel())).T)\n neighbor_prob = np.zeros((self.data.shape[0], neighbor_x.shape[0],\n neighbor_x.shape[1]))\n print('Forecast Hours: {0}-{1}'.format(start_time, end_time))\n for m in range(len(self.members)):\n period_max = self.data[m, start_time:end_time, :, :].max(axis=0)\n valid_i, valid_j = np.where(period_max >= threshold)\n print(self.members[m], len(valid_i))\n if len(valid_i) > 0:\n var_kd_tree = cKDTree(np.vstack((self.x[valid_i, valid_j], self\n .y[valid_i, valid_j])).T)\n exceed_points = np.unique(np.concatenate(var_kd_tree.\n query_ball_tree(neighbor_kd_tree, radius))).astype(int)\n exceed_i, exceed_j = np.unravel_index(exceed_points, neighbor_x\n .shape)\n neighbor_prob[m][exceed_i, exceed_j] = 1\n if smoothing > 0:\n neighbor_prob[m] = gaussian_filter(neighbor_prob[m],\n smoothing, mode='constant')\n return neighbor_prob\n",
"role": "user"
},
{
"content": "period_neighborhood_probability",
"role": "assistant"
}
] |
def x(retorno):
if '|' not in retorno:
raise ErroRespostaSATInvalida(
'Resposta nao possui pipes separando os campos: {!r}'.format(
retorno))
resposta = _RespostaParcial(*retorno.split('|')[:2])
for faixa, construtor in _RESPOSTAS_POSSIVEIS:
if int(resposta.EEEEE) in xrange(faixa, faixa + 1000):
return construtor(retorno)
return RespostaConsultarNumeroSessao._pos_analise(retorno)
|
analisar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n if '|' not in retorno:\n raise ErroRespostaSATInvalida(\n 'Resposta nao possui pipes separando os campos: {!r}'.format(\n retorno))\n resposta = _RespostaParcial(*retorno.split('|')[:2])\n for faixa, construtor in _RESPOSTAS_POSSIVEIS:\n if int(resposta.EEEEE) in xrange(faixa, faixa + 1000):\n return construtor(retorno)\n return RespostaConsultarNumeroSessao._pos_analise(retorno)\n",
"role": "user"
},
{
"content": "analisar",
"role": "assistant"
}
] |
def x(retorno, classe_resposta=RespostaSAT, campos=RespostaSAT.CAMPOS,
campos_alternativos=[], funcao=None, manter_verbatim=True):
if '|' not in retorno:
raise ErroRespostaSATInvalida(
'Resposta nao possui pipes separando os campos: "%s"' %
as_ascii(retorno))
partes = retorno.split('|')
if len(partes) != len(campos):
for relacao_alternativa in campos_alternativos:
if len(partes) == len(relacao_alternativa):
relacao_campos = relacao_alternativa
break
else:
raise ErroRespostaSATInvalida(
'Resposta nao possui o numero esperado de campos. Esperados %d campos, mas contem %d: "%s"'
% (len(campos), len(partes), as_ascii(retorno)))
else:
relacao_campos = campos
resultado = {}
def x(sequence):
for index, value in enumerate(sequence):
yield index, value[0], value[1]
for indice, campo, conversor in _enumerate(relacao_campos):
resultado[campo] = conversor(partes[indice])
resposta = classe_resposta(**resultado)
resposta.atributos.funcao = funcao
resposta.atributos.verbatim = retorno if manter_verbatim else None
return resposta
|
analisar_retorno
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno, classe_resposta=RespostaSAT, campos=RespostaSAT.CAMPOS,\n campos_alternativos=[], funcao=None, manter_verbatim=True):\n if '|' not in retorno:\n raise ErroRespostaSATInvalida(\n 'Resposta nao possui pipes separando os campos: \"%s\"' %\n as_ascii(retorno))\n partes = retorno.split('|')\n if len(partes) != len(campos):\n for relacao_alternativa in campos_alternativos:\n if len(partes) == len(relacao_alternativa):\n relacao_campos = relacao_alternativa\n break\n else:\n raise ErroRespostaSATInvalida(\n 'Resposta nao possui o numero esperado de campos. Esperados %d campos, mas contem %d: \"%s\"'\n % (len(campos), len(partes), as_ascii(retorno)))\n else:\n relacao_campos = campos\n resultado = {}\n\n def x(sequence):\n for index, value in enumerate(sequence):\n yield index, value[0], value[1]\n for indice, campo, conversor in _enumerate(relacao_campos):\n resultado[campo] = conversor(partes[indice])\n resposta = classe_resposta(**resultado)\n resposta.atributos.funcao = funcao\n resposta.atributos.verbatim = retorno if manter_verbatim else None\n return resposta\n",
"role": "user"
},
{
"content": "analisar_retorno",
"role": "assistant"
}
] |
def x(retorno):
resposta = analisar_retorno(forcar_unicode(retorno), funcao=
'ComunicarCertificadoICPBRASIL')
if resposta.EEEEE not in ('05000',):
raise ExcecaoRespostaSAT(resposta)
return resposta
|
comunicar_certificado_icpbrasil
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao=\n 'ComunicarCertificadoICPBRASIL')\n if resposta.EEEEE not in ('05000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n",
"role": "user"
},
{
"content": "comunicar_certificado_icpbrasil",
"role": "assistant"
}
] |
def x(retorno):
resposta = analisar_retorno(forcar_unicode(retorno), funcao='ConsultarSAT')
if resposta.EEEEE not in ('08000',):
raise ExcecaoRespostaSAT(resposta)
return resposta
|
consultar_sat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao='ConsultarSAT')\n if resposta.EEEEE not in ('08000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n",
"role": "user"
},
{
"content": "consultar_sat",
"role": "assistant"
}
] |
def x(retorno):
resposta = analisar_retorno(forcar_unicode(retorno), funcao=
'ConfigurarInterfaceDeRede')
if resposta.EEEEE not in ('12000',):
raise ExcecaoRespostaSAT(resposta)
return resposta
|
configurar_interface_de_rede
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao=\n 'ConfigurarInterfaceDeRede')\n if resposta.EEEEE not in ('12000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n",
"role": "user"
},
{
"content": "configurar_interface_de_rede",
"role": "assistant"
}
] |
def x(retorno):
resposta = analisar_retorno(forcar_unicode(retorno), funcao=
'AssociarAssinatura')
if resposta.EEEEE not in ('13000',):
raise ExcecaoRespostaSAT(resposta)
return resposta
|
associar_assinatura
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao=\n 'AssociarAssinatura')\n if resposta.EEEEE not in ('13000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n",
"role": "user"
},
{
"content": "associar_assinatura",
"role": "assistant"
}
] |
def x(retorno):
resposta = analisar_retorno(forcar_unicode(retorno), funcao=
'AtualizarSoftwareSAT')
if resposta.EEEEE not in ('14000',):
raise ExcecaoRespostaSAT(resposta)
return resposta
|
atualizar_software_sat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao=\n 'AtualizarSoftwareSAT')\n if resposta.EEEEE not in ('14000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n",
"role": "user"
},
{
"content": "atualizar_software_sat",
"role": "assistant"
}
] |
def x(retorno):
resposta = analisar_retorno(forcar_unicode(retorno), funcao='BloquearSAT')
if resposta.EEEEE not in ('16000',):
raise ExcecaoRespostaSAT(resposta)
return resposta
|
bloquear_sat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao='BloquearSAT')\n if resposta.EEEEE not in ('16000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n",
"role": "user"
},
{
"content": "bloquear_sat",
"role": "assistant"
}
] |
def x(retorno):
resposta = analisar_retorno(forcar_unicode(retorno), funcao=
'DesbloquearSAT')
if resposta.EEEEE not in ('17000',):
raise ExcecaoRespostaSAT(resposta)
return resposta
|
desbloquear_sat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao=\n 'DesbloquearSAT')\n if resposta.EEEEE not in ('17000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n",
"role": "user"
},
{
"content": "desbloquear_sat",
"role": "assistant"
}
] |
def x(retorno):
resposta = analisar_retorno(forcar_unicode(retorno), funcao=
'TrocarCodigoDeAtivacao')
if resposta.EEEEE not in ('18000',):
raise ExcecaoRespostaSAT(resposta)
return resposta
|
trocar_codigo_de_ativacao
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao=\n 'TrocarCodigoDeAtivacao')\n if resposta.EEEEE not in ('18000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n",
"role": "user"
},
{
"content": "trocar_codigo_de_ativacao",
"role": "assistant"
}
] |
def x(self):
if self.ensemble_name.upper() == 'SSEF':
if self.variable[0:2] == 'rh':
pressure_level = self.variable[2:]
relh_vars = ['sph', 'tmp']
relh_vals = {}
for var in relh_vars:
mg = SSEFModelGrid(self.member_name, self.run_date, var +
pressure_level, self.start_date, self.end_date, self.
path, single_step=self.single_step)
relh_vals[var], units = mg.load_data()
mg.close()
self.data = relative_humidity_pressure_level(relh_vals['tmp'],
relh_vals['sph'], float(pressure_level) * 100)
self.units = '%'
elif self.variable == 'melth':
input_vars = ['hgtsfc', 'hgt700', 'hgt500', 'tmp700', 'tmp500']
input_vals = {}
for var in input_vars:
mg = SSEFModelGrid(self.member_name, self.run_date, var,
self.start_date, self.end_date, self.path, single_step=
self.single_step)
input_vals[var], units = mg.load_data()
mg.close()
self.data = melting_layer_height(input_vals['hgtsfc'],
input_vals['hgt700'], input_vals['hgt500'], input_vals[
'tmp700'], input_vals['tmp500'])
self.units = 'm'
else:
mg = SSEFModelGrid(self.member_name, self.run_date, self.
variable, self.start_date, self.end_date, self.path,
single_step=self.single_step)
self.data, self.units = mg.load_data()
mg.close()
elif self.ensemble_name.upper() == 'NCAR':
mg = NCARModelGrid(self.member_name, self.run_date, self.variable,
self.start_date, self.end_date, self.path, single_step=self.
single_step)
self.data, self.units = mg.load_data()
mg.close()
elif self.ensemble_name.upper() == 'HREFV2':
proj_dict, grid_dict = read_ncar_map_file(self.map_file)
mapping_data = make_proj_grids(proj_dict, grid_dict)
mg = HREFv2ModelGrid(self.member_name, self.run_date, self.variable,
self.start_date, self.end_date, self.path, mapping_data, self.
sector_ind_path, single_step=self.single_step)
self.data, self.units = mg.load_data()
elif self.ensemble_name.upper() == 'VSE':
mg = VSEModelGrid(self.member_name, self.run_date, self.variable,
self.start_date, self.end_date, self.path, single_step=self.
single_step)
self.data, self.units = mg.load_data()
mg.close()
elif self.ensemble_name.upper() == 'HRRR':
mg = HRRRModelGrid(self.run_date, self.variable, self.start_date,
self.end_date, self.path)
self.data, self.units = mg.load_data()
mg.close()
elif self.ensemble_name.upper() == 'NCARSTORM':
mg = NCARStormEventModelGrid(self.run_date, self.variable, self.
start_date, self.end_date, self.path)
self.data, self.units = mg.load_data()
mg.close()
else:
print(self.ensemble_name + ' not supported.')
|
load_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.ensemble_name.upper() == 'SSEF':\n if self.variable[0:2] == 'rh':\n pressure_level = self.variable[2:]\n relh_vars = ['sph', 'tmp']\n relh_vals = {}\n for var in relh_vars:\n mg = SSEFModelGrid(self.member_name, self.run_date, var +\n pressure_level, self.start_date, self.end_date, self.\n path, single_step=self.single_step)\n relh_vals[var], units = mg.load_data()\n mg.close()\n self.data = relative_humidity_pressure_level(relh_vals['tmp'],\n relh_vals['sph'], float(pressure_level) * 100)\n self.units = '%'\n elif self.variable == 'melth':\n input_vars = ['hgtsfc', 'hgt700', 'hgt500', 'tmp700', 'tmp500']\n input_vals = {}\n for var in input_vars:\n mg = SSEFModelGrid(self.member_name, self.run_date, var,\n self.start_date, self.end_date, self.path, single_step=\n self.single_step)\n input_vals[var], units = mg.load_data()\n mg.close()\n self.data = melting_layer_height(input_vals['hgtsfc'],\n input_vals['hgt700'], input_vals['hgt500'], input_vals[\n 'tmp700'], input_vals['tmp500'])\n self.units = 'm'\n else:\n mg = SSEFModelGrid(self.member_name, self.run_date, self.\n variable, self.start_date, self.end_date, self.path,\n single_step=self.single_step)\n self.data, self.units = mg.load_data()\n mg.close()\n elif self.ensemble_name.upper() == 'NCAR':\n mg = NCARModelGrid(self.member_name, self.run_date, self.variable,\n self.start_date, self.end_date, self.path, single_step=self.\n single_step)\n self.data, self.units = mg.load_data()\n mg.close()\n elif self.ensemble_name.upper() == 'HREFV2':\n proj_dict, grid_dict = read_ncar_map_file(self.map_file)\n mapping_data = make_proj_grids(proj_dict, grid_dict)\n mg = HREFv2ModelGrid(self.member_name, self.run_date, self.variable,\n self.start_date, self.end_date, self.path, mapping_data, self.\n sector_ind_path, single_step=self.single_step)\n self.data, self.units = mg.load_data()\n elif self.ensemble_name.upper() == 'VSE':\n mg = VSEModelGrid(self.member_name, self.run_date, self.variable,\n self.start_date, self.end_date, self.path, single_step=self.\n single_step)\n self.data, self.units = mg.load_data()\n mg.close()\n elif self.ensemble_name.upper() == 'HRRR':\n mg = HRRRModelGrid(self.run_date, self.variable, self.start_date,\n self.end_date, self.path)\n self.data, self.units = mg.load_data()\n mg.close()\n elif self.ensemble_name.upper() == 'NCARSTORM':\n mg = NCARStormEventModelGrid(self.run_date, self.variable, self.\n start_date, self.end_date, self.path)\n self.data, self.units = mg.load_data()\n mg.close()\n else:\n print(self.ensemble_name + ' not supported.')\n",
"role": "user"
},
{
"content": "load_data",
"role": "assistant"
}
] |
def x(self, map_file):
if self.ensemble_name.upper() == 'SSEF':
proj_dict, grid_dict = read_arps_map_file(map_file)
self.dx = int(grid_dict['dx'])
mapping_data = make_proj_grids(proj_dict, grid_dict)
for m, v in mapping_data.items():
setattr(self, m, v)
self.i, self.j = np.indices(self.lon.shape)
self.proj = get_proj_obj(proj_dict)
elif self.ensemble_name.upper() in ['NCAR', 'NCARSTORM', 'HRRR', 'VSE',
'HREFV2']:
proj_dict, grid_dict = read_ncar_map_file(map_file)
if self.member_name[0:7] == '1km_pbl':
grid_dict['dx'] = 1000
grid_dict['dy'] = 1000
grid_dict['sw_lon'] = 258.697
grid_dict['sw_lat'] = 23.999
grid_dict['ne_lon'] = 282.868269206236
grid_dict['ne_lat'] = 36.4822338520542
self.dx = int(grid_dict['dx'])
mapping_data = make_proj_grids(proj_dict, grid_dict)
for m, v in mapping_data.items():
setattr(self, m, v)
self.i, self.j = np.indices(self.lon.shape)
self.proj = get_proj_obj(proj_dict)
|
load_map_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, map_file):\n if self.ensemble_name.upper() == 'SSEF':\n proj_dict, grid_dict = read_arps_map_file(map_file)\n self.dx = int(grid_dict['dx'])\n mapping_data = make_proj_grids(proj_dict, grid_dict)\n for m, v in mapping_data.items():\n setattr(self, m, v)\n self.i, self.j = np.indices(self.lon.shape)\n self.proj = get_proj_obj(proj_dict)\n elif self.ensemble_name.upper() in ['NCAR', 'NCARSTORM', 'HRRR', 'VSE',\n 'HREFV2']:\n proj_dict, grid_dict = read_ncar_map_file(map_file)\n if self.member_name[0:7] == '1km_pbl':\n grid_dict['dx'] = 1000\n grid_dict['dy'] = 1000\n grid_dict['sw_lon'] = 258.697\n grid_dict['sw_lat'] = 23.999\n grid_dict['ne_lon'] = 282.868269206236\n grid_dict['ne_lat'] = 36.4822338520542\n self.dx = int(grid_dict['dx'])\n mapping_data = make_proj_grids(proj_dict, grid_dict)\n for m, v in mapping_data.items():\n setattr(self, m, v)\n self.i, self.j = np.indices(self.lon.shape)\n self.proj = get_proj_obj(proj_dict)\n",
"role": "user"
},
{
"content": "load_map_info",
"role": "assistant"
}
] |
def x(filename):
json_file = open(filename)
data = json.load(json_file)
json_file.close()
times = data['properties']['times']
main_data = dict(timesteps=[], masks=[], x=[], y=[], i=[], j=[])
attribute_data = dict()
for feature in data['features']:
for main_name in main_data.keys():
main_data[main_name].append(np.array(feature['properties'][
main_name]))
for k, v in feature['properties']['attributes'].items():
if k not in attribute_data.keys():
attribute_data[k] = [np.array(v)]
else:
attribute_data[k].append(np.array(v))
kwargs = {}
for kw in ['dx', 'step', 'u', 'v']:
if kw in data['properties'].keys():
kwargs[kw] = data['properties'][kw]
sto = STObject(main_data['timesteps'], main_data['masks'], main_data[
'x'], main_data['y'], main_data['i'], main_data['j'], times[0],
times[-1], **kwargs)
for k, v in attribute_data.items():
sto.attributes[k] = v
return sto
|
read_geojson
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n json_file = open(filename)\n data = json.load(json_file)\n json_file.close()\n times = data['properties']['times']\n main_data = dict(timesteps=[], masks=[], x=[], y=[], i=[], j=[])\n attribute_data = dict()\n for feature in data['features']:\n for main_name in main_data.keys():\n main_data[main_name].append(np.array(feature['properties'][\n main_name]))\n for k, v in feature['properties']['attributes'].items():\n if k not in attribute_data.keys():\n attribute_data[k] = [np.array(v)]\n else:\n attribute_data[k].append(np.array(v))\n kwargs = {}\n for kw in ['dx', 'step', 'u', 'v']:\n if kw in data['properties'].keys():\n kwargs[kw] = data['properties'][kw]\n sto = STObject(main_data['timesteps'], main_data['masks'], main_data[\n 'x'], main_data['y'], main_data['i'], main_data['j'], times[0],\n times[-1], **kwargs)\n for k, v in attribute_data.items():\n sto.attributes[k] = v\n return sto\n",
"role": "user"
},
{
"content": "read_geojson",
"role": "assistant"
}
] |
def x(self, time):
if self.start_time <= time <= self.end_time:
diff = time - self.start_time
valid = np.flatnonzero(self.masks[diff] != 0)
if valid.size > 0:
com_x = 1.0 / self.timesteps[diff].ravel()[valid].sum() * np.sum(
self.timesteps[diff].ravel()[valid] * self.x[diff].ravel()[
valid])
com_y = 1.0 / self.timesteps[diff].ravel()[valid].sum() * np.sum(
self.timesteps[diff].ravel()[valid] * self.y[diff].ravel()[
valid])
else:
com_x = np.mean(self.x[diff])
com_y = np.mean(self.y[diff])
else:
com_x = None
com_y = None
return com_x, com_y
|
center_of_mass
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, time):\n if self.start_time <= time <= self.end_time:\n diff = time - self.start_time\n valid = np.flatnonzero(self.masks[diff] != 0)\n if valid.size > 0:\n com_x = 1.0 / self.timesteps[diff].ravel()[valid].sum() * np.sum(\n self.timesteps[diff].ravel()[valid] * self.x[diff].ravel()[\n valid])\n com_y = 1.0 / self.timesteps[diff].ravel()[valid].sum() * np.sum(\n self.timesteps[diff].ravel()[valid] * self.y[diff].ravel()[\n valid])\n else:\n com_x = np.mean(self.x[diff])\n com_y = np.mean(self.y[diff])\n else:\n com_x = None\n com_y = None\n return com_x, com_y\n",
"role": "user"
},
{
"content": "center_of_mass",
"role": "assistant"
}
] |
def x(self):
traj = np.zeros((2, self.times.size))
for t, time in enumerate(self.times):
traj[:, t] = self.center_of_mass(time)
return traj
|
trajectory
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n traj = np.zeros((2, self.times.size))\n for t, time in enumerate(self.times):\n traj[:, t] = self.center_of_mass(time)\n return traj\n",
"role": "user"
},
{
"content": "trajectory",
"role": "assistant"
}
] |
def x(self, time):
if self.start_time <= time <= self.end_time:
diff = time - self.start_time
return self.i[diff][0, 0], self.j[diff][0, 0]
else:
return -1, -1
|
get_corner
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, time):\n if self.start_time <= time <= self.end_time:\n diff = time - self.start_time\n return self.i[diff][0, 0], self.j[diff][0, 0]\n else:\n return -1, -1\n",
"role": "user"
},
{
"content": "get_corner",
"role": "assistant"
}
] |
def x(self, time):
if self.start_time <= time <= self.end_time:
return self.masks[time - self.start_time].sum()
else:
return 0
|
size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, time):\n if self.start_time <= time <= self.end_time:\n return self.masks[time - self.start_time].sum()\n else:\n return 0\n",
"role": "user"
},
{
"content": "size",
"role": "assistant"
}
] |
def x(self):
sizes = np.array([m.sum() for m in self.masks])
return sizes.max()
|
max_size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n sizes = np.array([m.sum() for m in self.masks])\n return sizes.max()\n",
"role": "user"
},
{
"content": "max_size",
"role": "assistant"
}
] |
def x(self, time):
ti = np.where(time == self.times)[0][0]
return self.timesteps[ti].max()
|
max_intensity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, time):\n ti = np.where(time == self.times)[0][0]\n return self.timesteps[ti].max()\n",
"role": "user"
},
{
"content": "max_intensity",
"role": "assistant"
}
] |
def x(self, step):
self.timesteps.extend(step.timesteps)
self.masks.extend(step.masks)
self.x.extend(step.x)
self.y.extend(step.y)
self.i.extend(step.i)
self.j.extend(step.j)
self.end_time = step.end_time
self.times = np.arange(self.start_time, self.end_time + self.step, self
.step)
self.u = np.concatenate((self.u, step.u))
self.v = np.concatenate((self.v, step.v))
for attr in self.attributes.keys():
if attr in step.attributes.keys():
self.attributes[attr].extend(step.attributes[attr])
|
extend
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, step):\n self.timesteps.extend(step.timesteps)\n self.masks.extend(step.masks)\n self.x.extend(step.x)\n self.y.extend(step.y)\n self.i.extend(step.i)\n self.j.extend(step.j)\n self.end_time = step.end_time\n self.times = np.arange(self.start_time, self.end_time + self.step, self\n .step)\n self.u = np.concatenate((self.u, step.u))\n self.v = np.concatenate((self.v, step.v))\n for attr in self.attributes.keys():\n if attr in step.attributes.keys():\n self.attributes[attr].extend(step.attributes[attr])\n",
"role": "user"
},
{
"content": "extend",
"role": "assistant"
}
] |
def x(self, time):
ti = np.where(time == self.times)[0][0]
com_x, com_y = self.center_of_mass(time)
padded_mask = np.pad(self.masks[ti], 1, 'constant', constant_values=0)
chull = convex_hull_image(padded_mask)
boundary_image = find_boundaries(chull, mode='inner', background=0)
boundary_image = boundary_image[1:-1, 1:-1]
boundary_x = self.x[ti].ravel()[boundary_image.ravel()]
boundary_y = self.y[ti].ravel()[boundary_image.ravel()]
r = np.sqrt((boundary_x - com_x) ** 2 + (boundary_y - com_y) ** 2)
theta = np.arctan2(boundary_y - com_y, boundary_x - com_x
) * 180.0 / np.pi + 360
polar_coords = np.array([(r[x], theta[x]) for x in range(r.size)],
dtype=[('r', 'f4'), ('theta', 'f4')])
coord_order = np.argsort(polar_coords, order=['theta', 'r'])
ordered_coords = np.vstack([boundary_x[coord_order], boundary_y[
coord_order]])
return ordered_coords
|
boundary_polygon
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, time):\n ti = np.where(time == self.times)[0][0]\n com_x, com_y = self.center_of_mass(time)\n padded_mask = np.pad(self.masks[ti], 1, 'constant', constant_values=0)\n chull = convex_hull_image(padded_mask)\n boundary_image = find_boundaries(chull, mode='inner', background=0)\n boundary_image = boundary_image[1:-1, 1:-1]\n boundary_x = self.x[ti].ravel()[boundary_image.ravel()]\n boundary_y = self.y[ti].ravel()[boundary_image.ravel()]\n r = np.sqrt((boundary_x - com_x) ** 2 + (boundary_y - com_y) ** 2)\n theta = np.arctan2(boundary_y - com_y, boundary_x - com_x\n ) * 180.0 / np.pi + 360\n polar_coords = np.array([(r[x], theta[x]) for x in range(r.size)],\n dtype=[('r', 'f4'), ('theta', 'f4')])\n coord_order = np.argsort(polar_coords, order=['theta', 'r'])\n ordered_coords = np.vstack([boundary_x[coord_order], boundary_y[\n coord_order]])\n return ordered_coords\n",
"role": "user"
},
{
"content": "boundary_polygon",
"role": "assistant"
}
] |
def x(self, time, intensity_grid, max_u, max_v):
ti = np.where(time == self.times)[0][0]
mask_vals = np.where(self.masks[ti].ravel() == 1)
i_vals = self.i[ti].ravel()[mask_vals]
j_vals = self.j[ti].ravel()[mask_vals]
obj_vals = self.timesteps[ti].ravel()[mask_vals]
u_shifts = np.arange(-max_u, max_u + 1)
v_shifts = np.arange(-max_v, max_v + 1)
min_error = 99999999999.0
best_u = 0
best_v = 0
for u in u_shifts:
j_shift = j_vals - u
for v in v_shifts:
i_shift = i_vals - v
if np.all((0 <= i_shift) & (i_shift < intensity_grid.shape[0]) &
(0 <= j_shift) & (j_shift < intensity_grid.shape[1])):
shift_vals = intensity_grid[i_shift, j_shift]
else:
shift_vals = np.zeros(i_shift.shape)
error = np.abs(shift_vals - obj_vals).mean()
if error < min_error:
min_error = error
best_u = u * self.dx
best_v = v * self.dx
self.u[ti] = best_u
self.v[ti] = best_v
return best_u, best_v, min_error
|
estimate_motion
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, time, intensity_grid, max_u, max_v):\n ti = np.where(time == self.times)[0][0]\n mask_vals = np.where(self.masks[ti].ravel() == 1)\n i_vals = self.i[ti].ravel()[mask_vals]\n j_vals = self.j[ti].ravel()[mask_vals]\n obj_vals = self.timesteps[ti].ravel()[mask_vals]\n u_shifts = np.arange(-max_u, max_u + 1)\n v_shifts = np.arange(-max_v, max_v + 1)\n min_error = 99999999999.0\n best_u = 0\n best_v = 0\n for u in u_shifts:\n j_shift = j_vals - u\n for v in v_shifts:\n i_shift = i_vals - v\n if np.all((0 <= i_shift) & (i_shift < intensity_grid.shape[0]) &\n (0 <= j_shift) & (j_shift < intensity_grid.shape[1])):\n shift_vals = intensity_grid[i_shift, j_shift]\n else:\n shift_vals = np.zeros(i_shift.shape)\n error = np.abs(shift_vals - obj_vals).mean()\n if error < min_error:\n min_error = error\n best_u = u * self.dx\n best_v = v * self.dx\n self.u[ti] = best_u\n self.v[ti] = best_v\n return best_u, best_v, min_error\n",
"role": "user"
},
{
"content": "estimate_motion",
"role": "assistant"
}
] |
def x(self, time, other_object, other_time):
ti = np.where(time == self.times)[0][0]
ma = np.where(self.masks[ti].ravel() == 1)
oti = np.where(other_time == other_object.times)[0]
obj_coords = np.zeros(self.masks[ti].sum(), dtype=[('x', int), ('y', int)])
other_obj_coords = np.zeros(other_object.masks[oti].sum(), dtype=[('x',
int), ('y', int)])
obj_coords['x'] = self.i[ti].ravel()[ma]
obj_coords['y'] = self.j[ti].ravel()[ma]
other_obj_coords['x'] = other_object.i[oti][other_object.masks[oti] == 1]
other_obj_coords['y'] = other_object.j[oti][other_object.masks[oti] == 1]
return float(np.intersect1d(obj_coords, other_obj_coords).size
) / np.maximum(self.masks[ti].sum(), other_object.masks[oti].sum())
|
count_overlap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, time, other_object, other_time):\n ti = np.where(time == self.times)[0][0]\n ma = np.where(self.masks[ti].ravel() == 1)\n oti = np.where(other_time == other_object.times)[0]\n obj_coords = np.zeros(self.masks[ti].sum(), dtype=[('x', int), ('y', int)])\n other_obj_coords = np.zeros(other_object.masks[oti].sum(), dtype=[('x',\n int), ('y', int)])\n obj_coords['x'] = self.i[ti].ravel()[ma]\n obj_coords['y'] = self.j[ti].ravel()[ma]\n other_obj_coords['x'] = other_object.i[oti][other_object.masks[oti] == 1]\n other_obj_coords['y'] = other_object.j[oti][other_object.masks[oti] == 1]\n return float(np.intersect1d(obj_coords, other_obj_coords).size\n ) / np.maximum(self.masks[ti].sum(), other_object.masks[oti].sum())\n",
"role": "user"
},
{
"content": "count_overlap",
"role": "assistant"
}
] |
def x(self, model_grid, potential=False, future=False):
if potential:
var_name = model_grid.variable + '-potential'
timesteps = np.arange(self.start_time - 1, self.end_time)
elif future:
var_name = model_grid.variable + '-future'
timesteps = np.arange(self.start_time + 1, self.end_time + 2)
else:
var_name = model_grid.variable
timesteps = np.arange(self.start_time, self.end_time + 1)
self.attributes[var_name] = []
for ti, t in enumerate(timesteps):
self.attributes[var_name].append(model_grid.data[t - model_grid.
start_hour, self.i[ti], self.j[ti]])
|
extract_attribute_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model_grid, potential=False, future=False):\n if potential:\n var_name = model_grid.variable + '-potential'\n timesteps = np.arange(self.start_time - 1, self.end_time)\n elif future:\n var_name = model_grid.variable + '-future'\n timesteps = np.arange(self.start_time + 1, self.end_time + 2)\n else:\n var_name = model_grid.variable\n timesteps = np.arange(self.start_time, self.end_time + 1)\n self.attributes[var_name] = []\n for ti, t in enumerate(timesteps):\n self.attributes[var_name].append(model_grid.data[t - model_grid.\n start_hour, self.i[ti], self.j[ti]])\n",
"role": "user"
},
{
"content": "extract_attribute_grid",
"role": "assistant"
}
] |
def x(self, data_array, var_name):
if var_name not in self.attributes.keys():
self.attributes[var_name] = []
for t in range(self.times.size):
self.attributes[var_name].append(data_array[self.i[t], self.j[t]])
|
extract_attribute_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_array, var_name):\n if var_name not in self.attributes.keys():\n self.attributes[var_name] = []\n for t in range(self.times.size):\n self.attributes[var_name].append(data_array[self.i[t], self.j[t]])\n",
"role": "user"
},
{
"content": "extract_attribute_array",
"role": "assistant"
}
] |
def x(self, model_grid):
var_name = model_grid.variable + '-tendency'
self.attributes[var_name] = []
timesteps = np.arange(self.start_time, self.end_time + 1)
for ti, t in enumerate(timesteps):
t_index = t - model_grid.start_hour
self.attributes[var_name].append(model_grid.data[t_index, self.i[ti
], self.j[ti]] - model_grid.data[t_index - 1, self.i[ti], self.
j[ti]])
|
extract_tendency_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model_grid):\n var_name = model_grid.variable + '-tendency'\n self.attributes[var_name] = []\n timesteps = np.arange(self.start_time, self.end_time + 1)\n for ti, t in enumerate(timesteps):\n t_index = t - model_grid.start_hour\n self.attributes[var_name].append(model_grid.data[t_index, self.i[ti\n ], self.j[ti]] - model_grid.data[t_index - 1, self.i[ti], self.\n j[ti]])\n",
"role": "user"
},
{
"content": "extract_tendency_grid",
"role": "assistant"
}
] |
def x(self, statistic_name):
stats = {}
for var, grids in self.attributes.items():
if len(grids) > 1:
stats[var] = getattr(np.array([getattr(np.ma.array(x, mask=self
.masks[t] == 0), statistic_name)() for t, x in enumerate(
grids)]), statistic_name)()
else:
stats[var] = getattr(np.ma.array(grids[0], mask=self.masks[0] ==
0), statistic_name)()
return stats
|
calc_attribute_statistics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, statistic_name):\n stats = {}\n for var, grids in self.attributes.items():\n if len(grids) > 1:\n stats[var] = getattr(np.array([getattr(np.ma.array(x, mask=self\n .masks[t] == 0), statistic_name)() for t, x in enumerate(\n grids)]), statistic_name)()\n else:\n stats[var] = getattr(np.ma.array(grids[0], mask=self.masks[0] ==\n 0), statistic_name)()\n return stats\n",
"role": "user"
},
{
"content": "calc_attribute_statistics",
"role": "assistant"
}
] |
def x(self, attribute, statistic, time):
ti = np.where(self.times == time)[0][0]
ma = np.where(self.masks[ti].ravel() == 1)
if statistic in ['mean', 'max', 'min', 'std', 'ptp']:
stat_val = getattr(self.attributes[attribute][ti].ravel()[ma],
statistic)()
elif statistic == 'median':
stat_val = np.median(self.attributes[attribute][ti].ravel()[ma])
elif statistic == 'skew':
stat_val = np.mean(self.attributes[attribute][ti].ravel()[ma]
) - np.median(self.attributes[attribute][ti].ravel()[ma])
elif 'percentile' in statistic:
per = int(statistic.split('_')[1])
stat_val = np.percentile(self.attributes[attribute][ti].ravel()[ma],
per)
elif 'dt' in statistic:
stat_name = statistic[:-3]
if ti == 0:
stat_val = 0
else:
stat_val = self.calc_attribute_statistic(attribute, stat_name, time
) - self.calc_attribute_statistic(attribute, stat_name,
time - 1)
else:
stat_val = np.nan
return stat_val
|
calc_attribute_statistic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, attribute, statistic, time):\n ti = np.where(self.times == time)[0][0]\n ma = np.where(self.masks[ti].ravel() == 1)\n if statistic in ['mean', 'max', 'min', 'std', 'ptp']:\n stat_val = getattr(self.attributes[attribute][ti].ravel()[ma],\n statistic)()\n elif statistic == 'median':\n stat_val = np.median(self.attributes[attribute][ti].ravel()[ma])\n elif statistic == 'skew':\n stat_val = np.mean(self.attributes[attribute][ti].ravel()[ma]\n ) - np.median(self.attributes[attribute][ti].ravel()[ma])\n elif 'percentile' in statistic:\n per = int(statistic.split('_')[1])\n stat_val = np.percentile(self.attributes[attribute][ti].ravel()[ma],\n per)\n elif 'dt' in statistic:\n stat_name = statistic[:-3]\n if ti == 0:\n stat_val = 0\n else:\n stat_val = self.calc_attribute_statistic(attribute, stat_name, time\n ) - self.calc_attribute_statistic(attribute, stat_name, \n time - 1)\n else:\n stat_val = np.nan\n return stat_val\n",
"role": "user"
},
{
"content": "calc_attribute_statistic",
"role": "assistant"
}
] |
def x(self, statistic, time):
ti = np.where(self.times == time)[0][0]
ma = np.where(self.masks[ti].ravel() == 1)
if statistic in ['mean', 'max', 'min', 'std', 'ptp']:
stat_val = getattr(self.timesteps[ti].ravel()[ma], statistic)()
elif statistic == 'median':
stat_val = np.median(self.timesteps[ti].ravel()[ma])
elif 'percentile' in statistic:
per = int(statistic.split('_')[1])
stat_val = np.percentile(self.timesteps[ti].ravel()[ma], per)
elif 'dt' in statistic:
stat_name = statistic[:-3]
if ti == 0:
stat_val = 0
else:
stat_val = self.calc_timestep_statistic(stat_name, time
) - self.calc_timestep_statistic(stat_name, time - 1)
else:
stat_val = np.nan
return stat_val
|
calc_timestep_statistic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, statistic, time):\n ti = np.where(self.times == time)[0][0]\n ma = np.where(self.masks[ti].ravel() == 1)\n if statistic in ['mean', 'max', 'min', 'std', 'ptp']:\n stat_val = getattr(self.timesteps[ti].ravel()[ma], statistic)()\n elif statistic == 'median':\n stat_val = np.median(self.timesteps[ti].ravel()[ma])\n elif 'percentile' in statistic:\n per = int(statistic.split('_')[1])\n stat_val = np.percentile(self.timesteps[ti].ravel()[ma], per)\n elif 'dt' in statistic:\n stat_name = statistic[:-3]\n if ti == 0:\n stat_val = 0\n else:\n stat_val = self.calc_timestep_statistic(stat_name, time\n ) - self.calc_timestep_statistic(stat_name, time - 1)\n else:\n stat_val = np.nan\n return stat_val\n",
"role": "user"
},
{
"content": "calc_timestep_statistic",
"role": "assistant"
}
] |
def x(self, stat_names):
stats = {}
try:
all_props = [regionprops(m) for m in self.masks]
except TypeError:
print(self.masks)
exit()
for stat in stat_names:
stats[stat] = np.mean([p[0][stat] for p in all_props])
return stats
|
calc_shape_statistics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, stat_names):\n stats = {}\n try:\n all_props = [regionprops(m) for m in self.masks]\n except TypeError:\n print(self.masks)\n exit()\n for stat in stat_names:\n stats[stat] = np.mean([p[0][stat] for p in all_props])\n return stats\n",
"role": "user"
},
{
"content": "calc_shape_statistics",
"role": "assistant"
}
] |
def x(self, stat_names, time):
ti = np.where(self.times == time)[0][0]
props = regionprops(self.masks[ti], self.timesteps[ti])[0]
shape_stats = []
for stat_name in stat_names:
if 'moments_hu' in stat_name:
hu_index = int(stat_name.split('_')[-1])
hu_name = '_'.join(stat_name.split('_')[:-1])
hu_val = np.log(props[hu_name][hu_index])
if np.isnan(hu_val):
shape_stats.append(0)
else:
shape_stats.append(hu_val)
else:
shape_stats.append(props[stat_name])
return shape_stats
|
calc_shape_step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, stat_names, time):\n ti = np.where(self.times == time)[0][0]\n props = regionprops(self.masks[ti], self.timesteps[ti])[0]\n shape_stats = []\n for stat_name in stat_names:\n if 'moments_hu' in stat_name:\n hu_index = int(stat_name.split('_')[-1])\n hu_name = '_'.join(stat_name.split('_')[:-1])\n hu_val = np.log(props[hu_name][hu_index])\n if np.isnan(hu_val):\n shape_stats.append(0)\n else:\n shape_stats.append(hu_val)\n else:\n shape_stats.append(props[stat_name])\n return shape_stats\n",
"role": "user"
},
{
"content": "calc_shape_step",
"role": "assistant"
}
] |
def x(self, filename, proj, metadata=None):
if metadata is None:
metadata = {}
json_obj = {'type': 'FeatureCollection', 'features': [], 'properties': {}}
json_obj['properties']['times'] = self.times.tolist()
json_obj['properties']['dx'] = self.dx
json_obj['properties']['step'] = self.step
json_obj['properties']['u'] = self.u.tolist()
json_obj['properties']['v'] = self.v.tolist()
for k, v in metadata.items():
json_obj['properties'][k] = v
for t, time in enumerate(self.times):
feature = {'type': 'Feature', 'geometry': {'type': 'Polygon'},
'properties': {}}
boundary_coords = self.boundary_polygon(time)
lonlat = np.vstack(proj(boundary_coords[0], boundary_coords[1],
inverse=True))
lonlat_list = lonlat.T.tolist()
if len(lonlat_list) > 0:
lonlat_list.append(lonlat_list[0])
feature['geometry']['coordinates'] = [lonlat_list]
for attr in ['timesteps', 'masks', 'x', 'y', 'i', 'j']:
feature['properties'][attr] = getattr(self, attr)[t].tolist()
feature['properties']['attributes'] = {}
for attr_name, steps in self.attributes.items():
feature['properties']['attributes'][attr_name] = steps[t].tolist()
json_obj['features'].append(feature)
file_obj = open(filename, 'w')
json.dump(json_obj, file_obj, indent=1, sort_keys=True)
file_obj.close()
return
|
to_geojson
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, proj, metadata=None):\n if metadata is None:\n metadata = {}\n json_obj = {'type': 'FeatureCollection', 'features': [], 'properties': {}}\n json_obj['properties']['times'] = self.times.tolist()\n json_obj['properties']['dx'] = self.dx\n json_obj['properties']['step'] = self.step\n json_obj['properties']['u'] = self.u.tolist()\n json_obj['properties']['v'] = self.v.tolist()\n for k, v in metadata.items():\n json_obj['properties'][k] = v\n for t, time in enumerate(self.times):\n feature = {'type': 'Feature', 'geometry': {'type': 'Polygon'},\n 'properties': {}}\n boundary_coords = self.boundary_polygon(time)\n lonlat = np.vstack(proj(boundary_coords[0], boundary_coords[1],\n inverse=True))\n lonlat_list = lonlat.T.tolist()\n if len(lonlat_list) > 0:\n lonlat_list.append(lonlat_list[0])\n feature['geometry']['coordinates'] = [lonlat_list]\n for attr in ['timesteps', 'masks', 'x', 'y', 'i', 'j']:\n feature['properties'][attr] = getattr(self, attr)[t].tolist()\n feature['properties']['attributes'] = {}\n for attr_name, steps in self.attributes.items():\n feature['properties']['attributes'][attr_name] = steps[t].tolist()\n json_obj['features'].append(feature)\n file_obj = open(filename, 'w')\n json.dump(json_obj, file_obj, indent=1, sort_keys=True)\n file_obj.close()\n return\n",
"role": "user"
},
{
"content": "to_geojson",
"role": "assistant"
}
] |
def x(self, properties):
with self.__library_storage_lock:
self.__library_storage = properties
self.__write_properties(None)
|
rewrite_properties
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, properties):\n with self.__library_storage_lock:\n self.__library_storage = properties\n self.__write_properties(None)\n",
"role": "user"
},
{
"content": "rewrite_properties",
"role": "assistant"
}
] |
def x(self, v=None):
if v is None:
v = self.estopping
hist = self.hist
trace = self.trace(v)
ins = None
if self._base._probability_calibration is not None:
node = hist[-1]
node.normalize()
X = np.array([x.full_array() for x in node.hy]).T
y = np.array(self._base._y_klass.full_array())
mask = np.ones(X.shape[0], dtype=np.bool)
mask[np.array(self._base._mask_ts.index)] = False
ins = self._base._probability_calibration().fit(X[mask], y[mask])
if self._classifier:
nclasses = self._labels.shape[0]
else:
nclasses = None
m = Model(trace, hist, nvar=self._base._nvar, classifier=self.
_classifier, labels=self._labels, probability_calibration=ins,
nclasses=nclasses)
return m
|
model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v=None):\n if v is None:\n v = self.estopping\n hist = self.hist\n trace = self.trace(v)\n ins = None\n if self._base._probability_calibration is not None:\n node = hist[-1]\n node.normalize()\n X = np.array([x.full_array() for x in node.hy]).T\n y = np.array(self._base._y_klass.full_array())\n mask = np.ones(X.shape[0], dtype=np.bool)\n mask[np.array(self._base._mask_ts.index)] = False\n ins = self._base._probability_calibration().fit(X[mask], y[mask])\n if self._classifier:\n nclasses = self._labels.shape[0]\n else:\n nclasses = None\n m = Model(trace, hist, nvar=self._base._nvar, classifier=self.\n _classifier, labels=self._labels, probability_calibration=ins,\n nclasses=nclasses)\n return m\n",
"role": "user"
},
{
"content": "model",
"role": "assistant"
}
] |
def x(self, n):
trace_map = {}
self._trace(n, trace_map)
s = list(trace_map.keys())
s.sort()
return s
|
trace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n):\n trace_map = {}\n self._trace(n, trace_map)\n s = list(trace_map.keys())\n s.sort()\n return s\n",
"role": "user"
},
{
"content": "trace",
"role": "assistant"
}
] |
def x(self, negative=False):
if self.generation <= self._random_generations and not negative:
return self.random_selection()
if not self._negative_selection and negative:
return self.random_selection(negative=negative)
vars = self.random()
fit = [(k, self.population[x].fitness) for k, x in enumerate(vars)]
if negative:
fit = min(fit, key=lambda x: x[1])
else:
fit = max(fit, key=lambda x: x[1])
index = fit[0]
return vars[index]
|
tournament
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, negative=False):\n if self.generation <= self._random_generations and not negative:\n return self.random_selection()\n if not self._negative_selection and negative:\n return self.random_selection(negative=negative)\n vars = self.random()\n fit = [(k, self.population[x].fitness) for k, x in enumerate(vars)]\n if negative:\n fit = min(fit, key=lambda x: x[1])\n else:\n fit = max(fit, key=lambda x: x[1])\n index = fit[0]\n return vars[index]\n",
"role": "user"
},
{
"content": "tournament",
"role": "assistant"
}
] |
def x(self):
base = self._base
if base._share_inputs:
used_inputs_var = SelectNumbers([x for x in range(base.nvar)])
used_inputs_naive = used_inputs_var
if base._pr_variable == 0:
used_inputs_var = SelectNumbers([])
used_inputs_naive = SelectNumbers([x for x in range(base.nvar)])
elif base._pr_variable == 1:
used_inputs_var = SelectNumbers([x for x in range(base.nvar)])
used_inputs_naive = SelectNumbers([])
else:
used_inputs_var = SelectNumbers([x for x in range(base.nvar)])
used_inputs_naive = SelectNumbers([x for x in range(base.nvar)])
nb_input = Inputs(base, used_inputs_naive, functions=base._input_functions)
while base._all_inputs and not base.stopping_criteria_tl(
) or self.popsize < base.popsize and not base.stopping_criteria():
if base._all_inputs and used_inputs_var.empty(
) and used_inputs_naive.empty():
base._init_popsize = self.popsize
break
if nb_input.use_all_variables():
v = nb_input.all_variables()
if v is None:
continue
elif not used_inputs_var.empty() and np.random.random(
) < base._pr_variable:
v = self.variable_input(used_inputs_var)
if v is None:
used_inputs_var.pos = used_inputs_var.size
continue
elif not used_inputs_naive.empty():
v = nb_input.input()
if not used_inputs_var.empty() and used_inputs_naive.empty():
base._pr_variable = 1
if v is None:
used_inputs_naive.pos = used_inputs_naive.size
if not used_inputs_var.empty():
base._pr_variable = 1
continue
else:
gen = self.generation
self.generation = 0
v = base.random_offspring()
self.generation = gen
self.add(v)
|
create_population
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n base = self._base\n if base._share_inputs:\n used_inputs_var = SelectNumbers([x for x in range(base.nvar)])\n used_inputs_naive = used_inputs_var\n if base._pr_variable == 0:\n used_inputs_var = SelectNumbers([])\n used_inputs_naive = SelectNumbers([x for x in range(base.nvar)])\n elif base._pr_variable == 1:\n used_inputs_var = SelectNumbers([x for x in range(base.nvar)])\n used_inputs_naive = SelectNumbers([])\n else:\n used_inputs_var = SelectNumbers([x for x in range(base.nvar)])\n used_inputs_naive = SelectNumbers([x for x in range(base.nvar)])\n nb_input = Inputs(base, used_inputs_naive, functions=base._input_functions)\n while base._all_inputs and not base.stopping_criteria_tl(\n ) or self.popsize < base.popsize and not base.stopping_criteria():\n if base._all_inputs and used_inputs_var.empty(\n ) and used_inputs_naive.empty():\n base._init_popsize = self.popsize\n break\n if nb_input.use_all_variables():\n v = nb_input.all_variables()\n if v is None:\n continue\n elif not used_inputs_var.empty() and np.random.random(\n ) < base._pr_variable:\n v = self.variable_input(used_inputs_var)\n if v is None:\n used_inputs_var.pos = used_inputs_var.size\n continue\n elif not used_inputs_naive.empty():\n v = nb_input.input()\n if not used_inputs_var.empty() and used_inputs_naive.empty():\n base._pr_variable = 1\n if v is None:\n used_inputs_naive.pos = used_inputs_naive.size\n if not used_inputs_var.empty():\n base._pr_variable = 1\n continue\n else:\n gen = self.generation\n self.generation = 0\n v = base.random_offspring()\n self.generation = gen\n self.add(v)\n",
"role": "user"
},
{
"content": "create_population",
"role": "assistant"
}
] |
def x(self, v):
self.population.append(v)
self._current_popsize += 1
v.position = len(self._hist)
self._hist.append(v)
self.bsf = v
self.estopping = v
self._density += self.get_density(v)
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v):\n self.population.append(v)\n self._current_popsize += 1\n v.position = len(self._hist)\n self._hist.append(v)\n self.bsf = v\n self.estopping = v\n self._density += self.get_density(v)\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self, v):
if self.popsize < self._popsize:
return self.add(v)
k = self.tournament(negative=True)
self.clean(self.population[k])
self.population[k] = v
v.position = len(self._hist)
self._hist.append(v)
self.bsf = v
self.estopping = v
self._inds_replace += 1
self._density += self.get_density(v)
if self._inds_replace == self._popsize:
self._inds_replace = 0
self.generation += 1
gc.collect()
|
replace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v):\n if self.popsize < self._popsize:\n return self.add(v)\n k = self.tournament(negative=True)\n self.clean(self.population[k])\n self.population[k] = v\n v.position = len(self._hist)\n self._hist.append(v)\n self.bsf = v\n self.estopping = v\n self._inds_replace += 1\n self._density += self.get_density(v)\n if self._inds_replace == self._popsize:\n self._inds_replace = 0\n self.generation += 1\n gc.collect()\n",
"role": "user"
},
{
"content": "replace",
"role": "assistant"
}
] |
def x(directory_path):
if os.path.exists(directory_path):
if not os.path.isdir(directory_path):
raise OSError('Path is not a directory:', directory_path)
else:
os.makedirs(directory_path)
|
make_directory_if_needed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(directory_path):\n if os.path.exists(directory_path):\n if not os.path.isdir(directory_path):\n raise OSError('Path is not a directory:', directory_path)\n else:\n os.makedirs(directory_path)\n",
"role": "user"
},
{
"content": "make_directory_if_needed",
"role": "assistant"
}
] |
def x():
args = docopt.docopt(__doc__)
task_list = args['<task>']
if not task_list or 'help' in task_list or args['--help']:
print(__doc__.format(version=_version.__version__, config_files=
config.CONFIG_LOCATIONS))
return 0
level_str = args['--log-level']
try:
level_const = getattr(logging, level_str.upper())
logging.basicConfig(level=level_const)
if level_const == logging.DEBUG:
workdir.options.debug = True
except LookupError:
logging.basicConfig()
logger.error('received invalid log level: ' + level_str)
return 1
for task in task_list:
if task not in ORDERED_TASKS:
logger.info('starting task: check')
logger.error('received invalid task: ' + task)
return 1
for task in CHECK_TASKS:
if task in task_list:
task_check(args)
break
if 'package' in task_list and not args['--release-version']:
logger.error('--release-version is required for the package task')
return 1
config_dict = _get_config_or_die(calling_task='hatchery',
required_params=['auto_push_tag'])
if config_dict['auto_push_tag'] and 'upload' in task_list:
logger.info('adding task: tag (auto_push_tag==True)')
task_list.append('tag')
for task in ORDERED_TASKS:
if task in task_list and task != 'check':
logger.info('starting task: ' + task)
globals()['task_' + task](args)
logger.info("all's well that ends well...hatchery out")
return 0
|
hatchery
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n args = docopt.docopt(__doc__)\n task_list = args['<task>']\n if not task_list or 'help' in task_list or args['--help']:\n print(__doc__.format(version=_version.__version__, config_files=\n config.CONFIG_LOCATIONS))\n return 0\n level_str = args['--log-level']\n try:\n level_const = getattr(logging, level_str.upper())\n logging.basicConfig(level=level_const)\n if level_const == logging.DEBUG:\n workdir.options.debug = True\n except LookupError:\n logging.basicConfig()\n logger.error('received invalid log level: ' + level_str)\n return 1\n for task in task_list:\n if task not in ORDERED_TASKS:\n logger.info('starting task: check')\n logger.error('received invalid task: ' + task)\n return 1\n for task in CHECK_TASKS:\n if task in task_list:\n task_check(args)\n break\n if 'package' in task_list and not args['--release-version']:\n logger.error('--release-version is required for the package task')\n return 1\n config_dict = _get_config_or_die(calling_task='hatchery',\n required_params=['auto_push_tag'])\n if config_dict['auto_push_tag'] and 'upload' in task_list:\n logger.info('adding task: tag (auto_push_tag==True)')\n task_list.append('tag')\n for task in ORDERED_TASKS:\n if task in task_list and task != 'check':\n logger.info('starting task: ' + task)\n globals()['task_' + task](args)\n logger.info(\"all's well that ends well...hatchery out\")\n return 0\n",
"role": "user"
},
{
"content": "hatchery",
"role": "assistant"
}
] |
def x(cmd_args, suppress_output=False):
if not funcy.is_list(cmd_args) and not funcy.is_tuple(cmd_args):
cmd_args = shlex.split(cmd_args)
logger.info('executing `{}`'.format(' '.join(cmd_args)))
call_request = CallRequest(cmd_args, suppress_output=suppress_output)
call_result = call_request.run()
if call_result.exitval:
logger.error('`{}` returned error code {}'.format(' '.join(cmd_args
), call_result.exitval))
return call_result
|
call
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cmd_args, suppress_output=False):\n if not funcy.is_list(cmd_args) and not funcy.is_tuple(cmd_args):\n cmd_args = shlex.split(cmd_args)\n logger.info('executing `{}`'.format(' '.join(cmd_args)))\n call_request = CallRequest(cmd_args, suppress_output=suppress_output)\n call_result = call_request.run()\n if call_result.exitval:\n logger.error('`{}` returned error code {}'.format(' '.join(cmd_args\n ), call_result.exitval))\n return call_result\n",
"role": "user"
},
{
"content": "call",
"role": "assistant"
}
] |
def x(cmd_args, suppress_output=False):
if not funcy.is_list(cmd_args) and not funcy.is_tuple(cmd_args):
cmd_args = shlex.split(cmd_args)
cmd_args = [sys.executable, 'setup.py'] + [x for x in cmd_args]
return call(cmd_args, suppress_output=suppress_output)
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cmd_args, suppress_output=False):\n if not funcy.is_list(cmd_args) and not funcy.is_tuple(cmd_args):\n cmd_args = shlex.split(cmd_args)\n cmd_args = [sys.executable, 'setup.py'] + [x for x in cmd_args]\n return call(cmd_args, suppress_output=suppress_output)\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(self):
data = []
valid_dates = []
mrms_files = np.array(sorted(os.listdir(self.path + self.variable + '/')))
mrms_file_dates = np.array([m_file.split('_')[-2].split('-')[0] for
m_file in mrms_files])
old_mrms_file = None
file_obj = None
for t in range(self.all_dates.shape[0]):
file_index = np.where(mrms_file_dates == self.all_dates[t].strftime
('%Y%m%d'))[0]
if len(file_index) > 0:
mrms_file = mrms_files[file_index][0]
if mrms_file is not None:
if file_obj is not None:
file_obj.close()
file_obj = Dataset(self.path + self.variable + '/' + mrms_file)
if 'time' in file_obj.variables.keys():
time_var = 'time'
else:
time_var = 'date'
file_valid_dates = pd.DatetimeIndex(num2date(file_obj.
variables[time_var][:], file_obj.variables[time_var].units)
)
else:
file_valid_dates = pd.DatetimeIndex([])
time_index = np.where(file_valid_dates.values == self.all_dates
.values[t])[0]
if len(time_index) > 0:
data.append(file_obj.variables[self.variable][time_index[0]])
valid_dates.append(self.all_dates[t])
if file_obj is not None:
file_obj.close()
self.data = np.array(data)
self.data[self.data < 0] = 0
self.data[self.data > 150] = 150
self.valid_dates = pd.DatetimeIndex(valid_dates)
|
load_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n data = []\n valid_dates = []\n mrms_files = np.array(sorted(os.listdir(self.path + self.variable + '/')))\n mrms_file_dates = np.array([m_file.split('_')[-2].split('-')[0] for\n m_file in mrms_files])\n old_mrms_file = None\n file_obj = None\n for t in range(self.all_dates.shape[0]):\n file_index = np.where(mrms_file_dates == self.all_dates[t].strftime\n ('%Y%m%d'))[0]\n if len(file_index) > 0:\n mrms_file = mrms_files[file_index][0]\n if mrms_file is not None:\n if file_obj is not None:\n file_obj.close()\n file_obj = Dataset(self.path + self.variable + '/' + mrms_file)\n if 'time' in file_obj.variables.keys():\n time_var = 'time'\n else:\n time_var = 'date'\n file_valid_dates = pd.DatetimeIndex(num2date(file_obj.\n variables[time_var][:], file_obj.variables[time_var].units)\n )\n else:\n file_valid_dates = pd.DatetimeIndex([])\n time_index = np.where(file_valid_dates.values == self.all_dates\n .values[t])[0]\n if len(time_index) > 0:\n data.append(file_obj.variables[self.variable][time_index[0]])\n valid_dates.append(self.all_dates[t])\n if file_obj is not None:\n file_obj.close()\n self.data = np.array(data)\n self.data[self.data < 0] = 0\n self.data[self.data > 150] = 150\n self.valid_dates = pd.DatetimeIndex(valid_dates)\n",
"role": "user"
},
{
"content": "load_data",
"role": "assistant"
}
] |
def x(data, data_min, data_max, out_min=0.0, out_max=100.0):
return (out_max - out_min) / (data_max - data_min) * (data - data_min
) + out_min
|
rescale_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, data_min, data_max, out_min=0.0, out_max=100.0):\n return (out_max - out_min) / (data_max - data_min) * (data - data_min\n ) + out_min\n",
"role": "user"
},
{
"content": "rescale_data",
"role": "assistant"
}
] |
def x(self, input_grid):
marked = self.find_local_maxima(input_grid)
marked = np.where(marked >= 0, 1, 0)
markers = splabel(marked)[0]
return markers
|
label
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_grid):\n marked = self.find_local_maxima(input_grid)\n marked = np.where(marked >= 0, 1, 0)\n markers = splabel(marked)[0]\n return markers\n",
"role": "user"
},
{
"content": "label",
"role": "assistant"
}
] |
def x(self, input_grid):
pixels, q_data = self.quantize(input_grid)
centers = OrderedDict()
for p in pixels.keys():
centers[p] = []
marked = np.ones(q_data.shape, dtype=int) * self.UNMARKED
MIN_INFL = int(np.round(1 + 0.5 * np.sqrt(self.max_size)))
MAX_INFL = 2 * MIN_INFL
marked_so_far = []
for b in sorted(pixels.keys(), reverse=True):
infl_dist = MIN_INFL + int(np.round(float(b) / self.max_bin * (
MAX_INFL - MIN_INFL)))
for p in pixels[b]:
if marked[p] == self.UNMARKED:
ok = False
del marked_so_far[:]
for (i, j), v in np.ndenumerate(marked[p[0] - infl_dist:p[0
] + infl_dist + 1, p[1] - infl_dist:p[1] + infl_dist + 1]):
if v == self.UNMARKED:
ok = True
marked[i - infl_dist + p[0], j - infl_dist + p[1]] = b
marked_so_far.append((i - infl_dist + p[0], j -
infl_dist + p[1]))
else:
ok = False
break
if ok:
centers[b].append(p)
else:
for m in marked_so_far:
marked[m] = self.UNMARKED
marked[:, :] = self.UNMARKED
deferred_from_last = []
deferred_to_next = []
for delta in range(0, self.delta + 1):
for b in sorted(centers.keys(), reverse=True):
bin_lower = b - delta
deferred_from_last[:] = deferred_to_next[:]
del deferred_to_next[:]
foothills = []
n_centers = len(centers[b])
tot_centers = n_centers + len(deferred_from_last)
for i in range(tot_centers):
if i < n_centers:
center = centers[b][i]
else:
center = deferred_from_last[i - n_centers]
if bin_lower < 0:
bin_lower = 0
if marked[center] == self.UNMARKED:
captured = self.set_maximum(q_data, marked, center,
bin_lower, foothills)
if not captured:
deferred_to_next.append(center)
else:
pass
self.remove_foothills(q_data, marked, b, bin_lower, centers,
foothills)
del deferred_from_last[:]
del deferred_to_next[:]
return marked
|
find_local_maxima
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_grid):\n pixels, q_data = self.quantize(input_grid)\n centers = OrderedDict()\n for p in pixels.keys():\n centers[p] = []\n marked = np.ones(q_data.shape, dtype=int) * self.UNMARKED\n MIN_INFL = int(np.round(1 + 0.5 * np.sqrt(self.max_size)))\n MAX_INFL = 2 * MIN_INFL\n marked_so_far = []\n for b in sorted(pixels.keys(), reverse=True):\n infl_dist = MIN_INFL + int(np.round(float(b) / self.max_bin * (\n MAX_INFL - MIN_INFL)))\n for p in pixels[b]:\n if marked[p] == self.UNMARKED:\n ok = False\n del marked_so_far[:]\n for (i, j), v in np.ndenumerate(marked[p[0] - infl_dist:p[0\n ] + infl_dist + 1, p[1] - infl_dist:p[1] + infl_dist + 1]):\n if v == self.UNMARKED:\n ok = True\n marked[i - infl_dist + p[0], j - infl_dist + p[1]] = b\n marked_so_far.append((i - infl_dist + p[0], j -\n infl_dist + p[1]))\n else:\n ok = False\n break\n if ok:\n centers[b].append(p)\n else:\n for m in marked_so_far:\n marked[m] = self.UNMARKED\n marked[:, :] = self.UNMARKED\n deferred_from_last = []\n deferred_to_next = []\n for delta in range(0, self.delta + 1):\n for b in sorted(centers.keys(), reverse=True):\n bin_lower = b - delta\n deferred_from_last[:] = deferred_to_next[:]\n del deferred_to_next[:]\n foothills = []\n n_centers = len(centers[b])\n tot_centers = n_centers + len(deferred_from_last)\n for i in range(tot_centers):\n if i < n_centers:\n center = centers[b][i]\n else:\n center = deferred_from_last[i - n_centers]\n if bin_lower < 0:\n bin_lower = 0\n if marked[center] == self.UNMARKED:\n captured = self.set_maximum(q_data, marked, center,\n bin_lower, foothills)\n if not captured:\n deferred_to_next.append(center)\n else:\n pass\n self.remove_foothills(q_data, marked, b, bin_lower, centers,\n foothills)\n del deferred_from_last[:]\n del deferred_to_next[:]\n return marked\n",
"role": "user"
},
{
"content": "find_local_maxima",
"role": "assistant"
}
] |
def x(self, q_data, marked, center, bin_lower, foothills):
as_bin = []
as_glob = []
marked_so_far = []
will_be_considered_again = False
as_bin.append(center)
center_data = q_data[center]
while len(as_bin) > 0:
p = as_bin.pop(-1)
if marked[p] != self.UNMARKED:
continue
marked[p] = q_data[center]
marked_so_far.append(p)
for index, val in np.ndenumerate(marked[p[0] - 1:p[0] + 2, p[1] - 1
:p[1] + 2]):
if val == self.UNMARKED:
pixel = index[0] - 1 + p[0], index[1] - 1 + p[1]
p_data = q_data[pixel]
if (not will_be_considered_again and p_data >= 0 and p_data <
center_data):
will_be_considered_again = True
if p_data >= bin_lower and np.abs(center_data - p_data
) <= self.delta:
as_bin.append(pixel)
elif p_data >= 0:
as_glob.append(pixel)
if bin_lower == 0:
will_be_considered_again = False
big_enough = len(marked_so_far) >= self.max_size
if big_enough:
foothills.append((center, as_glob))
elif will_be_considered_again:
for m in marked_so_far:
marked[m] = self.UNMARKED
del as_bin[:]
del as_glob[:]
del marked_so_far[:]
return big_enough or not will_be_considered_again
|
set_maximum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q_data, marked, center, bin_lower, foothills):\n as_bin = []\n as_glob = []\n marked_so_far = []\n will_be_considered_again = False\n as_bin.append(center)\n center_data = q_data[center]\n while len(as_bin) > 0:\n p = as_bin.pop(-1)\n if marked[p] != self.UNMARKED:\n continue\n marked[p] = q_data[center]\n marked_so_far.append(p)\n for index, val in np.ndenumerate(marked[p[0] - 1:p[0] + 2, p[1] - 1\n :p[1] + 2]):\n if val == self.UNMARKED:\n pixel = index[0] - 1 + p[0], index[1] - 1 + p[1]\n p_data = q_data[pixel]\n if (not will_be_considered_again and p_data >= 0 and p_data <\n center_data):\n will_be_considered_again = True\n if p_data >= bin_lower and np.abs(center_data - p_data\n ) <= self.delta:\n as_bin.append(pixel)\n elif p_data >= 0:\n as_glob.append(pixel)\n if bin_lower == 0:\n will_be_considered_again = False\n big_enough = len(marked_so_far) >= self.max_size\n if big_enough:\n foothills.append((center, as_glob))\n elif will_be_considered_again:\n for m in marked_so_far:\n marked[m] = self.UNMARKED\n del as_bin[:]\n del as_glob[:]\n del marked_so_far[:]\n return big_enough or not will_be_considered_again\n",
"role": "user"
},
{
"content": "set_maximum",
"role": "assistant"
}
] |
def x(self, q_data, marked, bin_num, bin_lower, centers, foothills):
hills = []
for foot in foothills:
center = foot[0]
hills[:] = foot[1][:]
while len(hills) > 0:
pt = hills.pop(-1)
marked[pt] = self.GLOBBED
for s_index, val in np.ndenumerate(marked[pt[0] - 1:pt[0] + 2,
pt[1] - 1:pt[1] + 2]):
index = s_index[0] - 1 + pt[0], s_index[1] - 1 + pt[1]
if val == self.UNMARKED:
if q_data[index] >= 0 and q_data[index] < bin_lower and (
q_data[index] <= q_data[pt] or self.is_closest(
index, center, centers, bin_num)):
hills.append(index)
del foothills[:]
|
remove_foothills
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q_data, marked, bin_num, bin_lower, centers, foothills):\n hills = []\n for foot in foothills:\n center = foot[0]\n hills[:] = foot[1][:]\n while len(hills) > 0:\n pt = hills.pop(-1)\n marked[pt] = self.GLOBBED\n for s_index, val in np.ndenumerate(marked[pt[0] - 1:pt[0] + 2, \n pt[1] - 1:pt[1] + 2]):\n index = s_index[0] - 1 + pt[0], s_index[1] - 1 + pt[1]\n if val == self.UNMARKED:\n if q_data[index] >= 0 and q_data[index] < bin_lower and (\n q_data[index] <= q_data[pt] or self.is_closest(\n index, center, centers, bin_num)):\n hills.append(index)\n del foothills[:]\n",
"role": "user"
},
{
"content": "remove_foothills",
"role": "assistant"
}
] |
def x(self, input_grid):
pixels = {}
for i in range(self.max_bin + 1):
pixels[i] = []
data = (np.array(input_grid, dtype=int) - self.min_thresh
) / self.data_increment
data[data < 0] = -1
data[data > self.max_bin] = self.max_bin
good_points = np.where(data >= 0)
for g in np.arange(good_points[0].shape[0]):
pixels[data[good_points[0][g], good_points[1][g]]].append((
good_points[0][g], good_points[1][g]))
return pixels, data
|
quantize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_grid):\n pixels = {}\n for i in range(self.max_bin + 1):\n pixels[i] = []\n data = (np.array(input_grid, dtype=int) - self.min_thresh\n ) / self.data_increment\n data[data < 0] = -1\n data[data > self.max_bin] = self.max_bin\n good_points = np.where(data >= 0)\n for g in np.arange(good_points[0].shape[0]):\n pixels[data[good_points[0][g], good_points[1][g]]].append((\n good_points[0][g], good_points[1][g]))\n return pixels, data\n",
"role": "user"
},
{
"content": "quantize",
"role": "assistant"
}
] |
def x(self):
file_name = []
r = requests.get('%s/users/%s/gists' % (BASE_URL, self.user), headers=
self.gist.header)
r_text = json.loads(r.text)
limit = len(r.json())
if r.status_code == 200:
for g, no in zip(r_text, range(0, limit)):
for key, value in r.json()[no]['files'].iteritems():
file_name.append(value['filename'])
return file_name
raise Exception('Username not found')
|
listall
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n file_name = []\n r = requests.get('%s/users/%s/gists' % (BASE_URL, self.user), headers=\n self.gist.header)\n r_text = json.loads(r.text)\n limit = len(r.json())\n if r.status_code == 200:\n for g, no in zip(r_text, range(0, limit)):\n for key, value in r.json()[no]['files'].iteritems():\n file_name.append(value['filename'])\n return file_name\n raise Exception('Username not found')\n",
"role": "user"
},
{
"content": "listall",
"role": "assistant"
}
] |
def x(self, **args):
self.gist_name = ''
if 'name' in args:
self.gist_name = args['name']
self.gist_id = self.getMyID(self.gist_name)
elif 'id' in args:
self.gist_id = args['id']
else:
raise Exception(
"Either provide authenticated user's Unambigious Gistname or any unique Gistid"
)
if self.gist_id:
r = requests.get('%s' % BASE_URL + '/gists/%s' % self.gist_id,
headers=self.gist.header)
if r.status_code == 200:
r_text = json.loads(r.text)
if self.gist_name != '':
content = r.json()['files'][self.gist_name]['content']
else:
for key, value in r.json()['files'].iteritems():
content = r.json()['files'][value['filename']]['content']
return content
raise Exception('No such gist found')
|
content
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **args):\n self.gist_name = ''\n if 'name' in args:\n self.gist_name = args['name']\n self.gist_id = self.getMyID(self.gist_name)\n elif 'id' in args:\n self.gist_id = args['id']\n else:\n raise Exception(\n \"Either provide authenticated user's Unambigious Gistname or any unique Gistid\"\n )\n if self.gist_id:\n r = requests.get('%s' % BASE_URL + '/gists/%s' % self.gist_id,\n headers=self.gist.header)\n if r.status_code == 200:\n r_text = json.loads(r.text)\n if self.gist_name != '':\n content = r.json()['files'][self.gist_name]['content']\n else:\n for key, value in r.json()['files'].iteritems():\n content = r.json()['files'][value['filename']]['content']\n return content\n raise Exception('No such gist found')\n",
"role": "user"
},
{
"content": "content",
"role": "assistant"
}
] |
def x(self, **args):
self.gist_name = ''
if 'description' in args:
self.description = args['description']
else:
self.description = ''
if 'name' in args and 'id' in args:
self.gist_name = args['name']
self.gist_id = args['id']
elif 'name' in args:
self.gist_name = args['name']
self.gist_id = self.getMyID(self.gist_name)
elif 'id' in args:
self.gist_id = args['id']
else:
raise Exception('Gist Name/ID must be provided')
if 'content' in args:
self.content = args['content']
else:
raise Exception("Gist content can't be empty")
if self.gist_name == '':
self.gist_name = self.getgist(id=self.gist_id)
data = {'description': self.description, 'files': {self.gist_name:
{'content': self.content}}}
else:
data = {'description': self.description, 'files': {self.gist_name:
{'content': self.content}}}
if self.gist_id:
r = requests.patch('%s/gists/%s' % (BASE_URL, self.gist_id),
headers=self.gist.header, data=json.dumps(data))
if r.status_code == 200:
r_text = json.loads(r.text)
response = {'updated_content': self.content, 'created_at': r.
json()['created_at'], 'comments': r.json()['comments']}
return response
raise Exception('No such gist found')
|
edit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **args):\n self.gist_name = ''\n if 'description' in args:\n self.description = args['description']\n else:\n self.description = ''\n if 'name' in args and 'id' in args:\n self.gist_name = args['name']\n self.gist_id = args['id']\n elif 'name' in args:\n self.gist_name = args['name']\n self.gist_id = self.getMyID(self.gist_name)\n elif 'id' in args:\n self.gist_id = args['id']\n else:\n raise Exception('Gist Name/ID must be provided')\n if 'content' in args:\n self.content = args['content']\n else:\n raise Exception(\"Gist content can't be empty\")\n if self.gist_name == '':\n self.gist_name = self.getgist(id=self.gist_id)\n data = {'description': self.description, 'files': {self.gist_name:\n {'content': self.content}}}\n else:\n data = {'description': self.description, 'files': {self.gist_name:\n {'content': self.content}}}\n if self.gist_id:\n r = requests.patch('%s/gists/%s' % (BASE_URL, self.gist_id),\n headers=self.gist.header, data=json.dumps(data))\n if r.status_code == 200:\n r_text = json.loads(r.text)\n response = {'updated_content': self.content, 'created_at': r.\n json()['created_at'], 'comments': r.json()['comments']}\n return response\n raise Exception('No such gist found')\n",
"role": "user"
},
{
"content": "edit",
"role": "assistant"
}
] |
def x(self, **args):
if 'name' in args:
self.gist_name = args['name']
self.gist_id = self.getMyID(self.gist_name)
elif 'id' in args:
self.gist_id = args['id']
else:
raise Exception('Provide GistName to delete')
url = 'gists'
if self.gist_id:
r = requests.delete('%s/%s/%s' % (BASE_URL, url, self.gist_id),
headers=self.gist.header)
if r.status_code == 204:
response = {'id': self.gist_id}
return response
raise Exception('Can not delete gist')
|
delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **args):\n if 'name' in args:\n self.gist_name = args['name']\n self.gist_id = self.getMyID(self.gist_name)\n elif 'id' in args:\n self.gist_id = args['id']\n else:\n raise Exception('Provide GistName to delete')\n url = 'gists'\n if self.gist_id:\n r = requests.delete('%s/%s/%s' % (BASE_URL, url, self.gist_id),\n headers=self.gist.header)\n if r.status_code == 204:\n response = {'id': self.gist_id}\n return response\n raise Exception('Can not delete gist')\n",
"role": "user"
},
{
"content": "delete",
"role": "assistant"
}
] |
def x(self, **args):
ids = []
r = requests.get('%s/gists/starred' % BASE_URL, headers=self.gist.header)
if 'limit' in args:
limit = args['limit']
else:
limit = len(r.json())
if r.status_code == 200:
for g in range(0, limit):
ids.append('%s/%s/%s' % (GIST_URL, r.json()[g]['user']['login'],
r.json()[g]['id']))
return ids
raise Exception('Username not found')
|
starred
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **args):\n ids = []\n r = requests.get('%s/gists/starred' % BASE_URL, headers=self.gist.header)\n if 'limit' in args:\n limit = args['limit']\n else:\n limit = len(r.json())\n if r.status_code == 200:\n for g in range(0, limit):\n ids.append('%s/%s/%s' % (GIST_URL, r.json()[g]['user']['login'],\n r.json()[g]['id']))\n return ids\n raise Exception('Username not found')\n",
"role": "user"
},
{
"content": "starred",
"role": "assistant"
}
] |
def x(self, **args):
if 'name' in args:
self.gist_name = args['name']
self.gist_id = self.getMyID(self.gist_name)
elif 'id' in args:
self.gist_id = args['id']
else:
raise Exception('Gist Name/ID must be provided')
if self.gist_id:
r = requests.get('%s/gists/%s' % (BASE_URL, self.gist_id), headers=
self.gist.header)
if r.status_code == 200:
content = {'Github-User': r.json()['user']['login'], 'GistID':
r.json()['id'], 'Gist-Link': '%s/%s/%s' % (GIST_URL, self.
gist.username, r.json()['id']), 'Clone-Link': '%s/%s.git' %
(GIST_URL, r.json()['id']), 'Embed-Script':
'<script src="%s/%s/%s.js"</script>' % (GIST_URL, self.gist
.username, r.json()['id'])}
return content
raise Exception('No such gist found')
|
links
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **args):\n if 'name' in args:\n self.gist_name = args['name']\n self.gist_id = self.getMyID(self.gist_name)\n elif 'id' in args:\n self.gist_id = args['id']\n else:\n raise Exception('Gist Name/ID must be provided')\n if self.gist_id:\n r = requests.get('%s/gists/%s' % (BASE_URL, self.gist_id), headers=\n self.gist.header)\n if r.status_code == 200:\n content = {'Github-User': r.json()['user']['login'], 'GistID':\n r.json()['id'], 'Gist-Link': '%s/%s/%s' % (GIST_URL, self.\n gist.username, r.json()['id']), 'Clone-Link': '%s/%s.git' %\n (GIST_URL, r.json()['id']), 'Embed-Script': \n '<script src=\"%s/%s/%s.js\"</script>' % (GIST_URL, self.gist\n .username, r.json()['id'])}\n return content\n raise Exception('No such gist found')\n",
"role": "user"
},
{
"content": "links",
"role": "assistant"
}
] |
def x(self):
run_date_str = self.run_date.strftime('%Y%m%d')
forecast_file = (self.forecast_path +
'{0}/{1}_{2}_{3}_consensus_{0}.nc'.format(run_date_str, self.
ensemble_name, self.model_name, self.forecast_variable))
print('Forecast file: ' + forecast_file)
forecast_data = Dataset(forecast_file)
for size_threshold in self.size_thresholds:
for smoothing_radius in self.smoothing_radii:
for neighbor_radius in self.neighbor_radii:
hour_var = 'neighbor_prob_r_{0:d}_s_{1:d}_{2}_{3:0.2f}'.format(
neighbor_radius, smoothing_radius, self.
forecast_variable, float(size_threshold))
period_var = (
'neighbor_prob_{0:d}-hour_r_{1:d}_s_{2:d}_{3}_{4:0.2f}'
.format(self.end_hour - self.start_hour + 1,
neighbor_radius, smoothing_radius, self.
forecast_variable, float(size_threshold)))
print('Loading forecasts {0} {1} {2} {3} {4}'.format(self.
run_date, self.model_name, self.forecast_variable,
size_threshold, smoothing_radius))
if hour_var in forecast_data.variables.keys():
self.hourly_forecasts[hour_var] = forecast_data.variables[
hour_var][:]
if period_var in forecast_data.variables.keys():
self.period_forecasts[period_var
] = forecast_data.variables[period_var][:]
forecast_data.close()
|
load_forecasts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n run_date_str = self.run_date.strftime('%Y%m%d')\n forecast_file = (self.forecast_path +\n '{0}/{1}_{2}_{3}_consensus_{0}.nc'.format(run_date_str, self.\n ensemble_name, self.model_name, self.forecast_variable))\n print('Forecast file: ' + forecast_file)\n forecast_data = Dataset(forecast_file)\n for size_threshold in self.size_thresholds:\n for smoothing_radius in self.smoothing_radii:\n for neighbor_radius in self.neighbor_radii:\n hour_var = 'neighbor_prob_r_{0:d}_s_{1:d}_{2}_{3:0.2f}'.format(\n neighbor_radius, smoothing_radius, self.\n forecast_variable, float(size_threshold))\n period_var = (\n 'neighbor_prob_{0:d}-hour_r_{1:d}_s_{2:d}_{3}_{4:0.2f}'\n .format(self.end_hour - self.start_hour + 1,\n neighbor_radius, smoothing_radius, self.\n forecast_variable, float(size_threshold)))\n print('Loading forecasts {0} {1} {2} {3} {4}'.format(self.\n run_date, self.model_name, self.forecast_variable,\n size_threshold, smoothing_radius))\n if hour_var in forecast_data.variables.keys():\n self.hourly_forecasts[hour_var] = forecast_data.variables[\n hour_var][:]\n if period_var in forecast_data.variables.keys():\n self.period_forecasts[period_var\n ] = forecast_data.variables[period_var][:]\n forecast_data.close()\n",
"role": "user"
},
{
"content": "load_forecasts",
"role": "assistant"
}
] |
def x(self, mask_threshold=0.5):
print('Loading obs ', self.run_date, self.model_name, self.
forecast_variable)
start_date = self.run_date + timedelta(hours=self.start_hour)
end_date = self.run_date + timedelta(hours=self.end_hour)
mrms_grid = MRMSGrid(start_date, end_date, self.mrms_variable, self.
mrms_path)
mrms_grid.load_data()
if len(mrms_grid.data) > 0:
self.raw_obs[self.mrms_variable] = np.where(mrms_grid.data > 100,
100, mrms_grid.data)
self.period_obs[self.mrms_variable] = self.raw_obs[self.mrms_variable
].max(axis=0)
if self.obs_mask:
mask_grid = MRMSGrid(start_date, end_date, self.mask_variable,
self.mrms_path)
mask_grid.load_data()
self.raw_obs[self.mask_variable] = np.where(mask_grid.data >=
mask_threshold, 1, 0)
self.period_obs[self.mask_variable] = self.raw_obs[self.
mask_variable].max(axis=0)
|
load_obs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mask_threshold=0.5):\n print('Loading obs ', self.run_date, self.model_name, self.\n forecast_variable)\n start_date = self.run_date + timedelta(hours=self.start_hour)\n end_date = self.run_date + timedelta(hours=self.end_hour)\n mrms_grid = MRMSGrid(start_date, end_date, self.mrms_variable, self.\n mrms_path)\n mrms_grid.load_data()\n if len(mrms_grid.data) > 0:\n self.raw_obs[self.mrms_variable] = np.where(mrms_grid.data > 100, \n 100, mrms_grid.data)\n self.period_obs[self.mrms_variable] = self.raw_obs[self.mrms_variable\n ].max(axis=0)\n if self.obs_mask:\n mask_grid = MRMSGrid(start_date, end_date, self.mask_variable,\n self.mrms_path)\n mask_grid.load_data()\n self.raw_obs[self.mask_variable] = np.where(mask_grid.data >=\n mask_threshold, 1, 0)\n self.period_obs[self.mask_variable] = self.raw_obs[self.\n mask_variable].max(axis=0)\n",
"role": "user"
},
{
"content": "load_obs",
"role": "assistant"
}
] |
def x(self):
coord_file = Dataset(self.coordinate_file)
if 'lon' in coord_file.variables.keys():
self.coordinates['lon'] = coord_file.variables['lon'][:]
self.coordinates['lat'] = coord_file.variables['lat'][:]
else:
self.coordinates['lon'] = coord_file.variables['XLONG'][0]
self.coordinates['lat'] = coord_file.variables['XLAT'][0]
coord_file.close()
|
load_coordinates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n coord_file = Dataset(self.coordinate_file)\n if 'lon' in coord_file.variables.keys():\n self.coordinates['lon'] = coord_file.variables['lon'][:]\n self.coordinates['lat'] = coord_file.variables['lat'][:]\n else:\n self.coordinates['lon'] = coord_file.variables['XLONG'][0]\n self.coordinates['lat'] = coord_file.variables['XLAT'][0]\n coord_file.close()\n",
"role": "user"
},
{
"content": "load_coordinates",
"role": "assistant"
}
] |
def x(self):
score_columns = ['Run_Date', 'Forecast_Hour', 'Ensemble Name',
'Model_Name', 'Forecast_Variable', 'Neighbor_Radius',
'Smoothing_Radius', 'Size_Threshold', 'ROC', 'Reliability']
all_scores = pd.DataFrame(columns=score_columns)
for h, hour in enumerate(range(self.start_hour, self.end_hour + 1)):
for neighbor_radius in self.neighbor_radii:
n_filter = disk(neighbor_radius)
for s, size_threshold in enumerate(self.size_thresholds):
print('Eval hourly forecast {0:02d} {1} {2} {3} {4:d} {5:d}'
.format(hour, self.model_name, self.forecast_variable,
self.run_date, neighbor_radius, size_threshold))
hour_obs = fftconvolve(self.raw_obs[self.mrms_variable][h] >=
self.obs_thresholds[s], n_filter, mode='same')
hour_obs[hour_obs > 1] = 1
hour_obs[hour_obs < 1] = 0
if self.obs_mask:
hour_obs = hour_obs[self.raw_obs[self.mask_variable][h] > 0
]
for smoothing_radius in self.smoothing_radii:
hour_var = ('neighbor_prob_r_{0:d}_s_{1:d}_{2}_{3:0.2f}'
.format(neighbor_radius, smoothing_radius, self.
forecast_variable, size_threshold))
if self.obs_mask:
hour_forecast = self.hourly_forecasts[hour_var][h][
self.raw_obs[self.mask_variable][h] > 0]
else:
hour_forecast = self.hourly_forecasts[hour_var][h]
roc = DistributedROC(thresholds=self.probability_levels,
obs_threshold=0.5)
roc.update(hour_forecast, hour_obs)
rel = DistributedReliability(thresholds=self.
probability_levels, obs_threshold=0.5)
rel.update(hour_forecast, hour_obs)
row = [self.run_date, hour, self.ensemble_name, self.
model_name, self.forecast_variable, neighbor_radius,
smoothing_radius, size_threshold, roc, rel]
all_scores.loc[hour_var + '_{0:d}'.format(hour)] = row
return all_scores
|
evaluate_hourly_forecasts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n score_columns = ['Run_Date', 'Forecast_Hour', 'Ensemble Name',\n 'Model_Name', 'Forecast_Variable', 'Neighbor_Radius',\n 'Smoothing_Radius', 'Size_Threshold', 'ROC', 'Reliability']\n all_scores = pd.DataFrame(columns=score_columns)\n for h, hour in enumerate(range(self.start_hour, self.end_hour + 1)):\n for neighbor_radius in self.neighbor_radii:\n n_filter = disk(neighbor_radius)\n for s, size_threshold in enumerate(self.size_thresholds):\n print('Eval hourly forecast {0:02d} {1} {2} {3} {4:d} {5:d}'\n .format(hour, self.model_name, self.forecast_variable,\n self.run_date, neighbor_radius, size_threshold))\n hour_obs = fftconvolve(self.raw_obs[self.mrms_variable][h] >=\n self.obs_thresholds[s], n_filter, mode='same')\n hour_obs[hour_obs > 1] = 1\n hour_obs[hour_obs < 1] = 0\n if self.obs_mask:\n hour_obs = hour_obs[self.raw_obs[self.mask_variable][h] > 0\n ]\n for smoothing_radius in self.smoothing_radii:\n hour_var = ('neighbor_prob_r_{0:d}_s_{1:d}_{2}_{3:0.2f}'\n .format(neighbor_radius, smoothing_radius, self.\n forecast_variable, size_threshold))\n if self.obs_mask:\n hour_forecast = self.hourly_forecasts[hour_var][h][\n self.raw_obs[self.mask_variable][h] > 0]\n else:\n hour_forecast = self.hourly_forecasts[hour_var][h]\n roc = DistributedROC(thresholds=self.probability_levels,\n obs_threshold=0.5)\n roc.update(hour_forecast, hour_obs)\n rel = DistributedReliability(thresholds=self.\n probability_levels, obs_threshold=0.5)\n rel.update(hour_forecast, hour_obs)\n row = [self.run_date, hour, self.ensemble_name, self.\n model_name, self.forecast_variable, neighbor_radius,\n smoothing_radius, size_threshold, roc, rel]\n all_scores.loc[hour_var + '_{0:d}'.format(hour)] = row\n return all_scores\n",
"role": "user"
},
{
"content": "evaluate_hourly_forecasts",
"role": "assistant"
}
] |
def x(self):
score_columns = ['Run_Date', 'Ensemble Name', 'Model_Name',
'Forecast_Variable', 'Neighbor_Radius', 'Smoothing_Radius',
'Size_Threshold', 'ROC', 'Reliability']
all_scores = pd.DataFrame(columns=score_columns)
if self.coordinate_file is not None:
coord_mask = np.where((self.coordinates['lon'] >= self.lon_bounds[0
]) & (self.coordinates['lon'] <= self.lon_bounds[1]) & (self.
coordinates['lat'] >= self.lat_bounds[0]) & (self.coordinates[
'lat'] <= self.lat_bounds[1]) & (self.period_obs[self.
mask_variable] > 0))
else:
coord_mask = None
for neighbor_radius in self.neighbor_radii:
n_filter = disk(neighbor_radius)
for s, size_threshold in enumerate(self.size_thresholds):
period_obs = fftconvolve(self.period_obs[self.mrms_variable] >=
self.obs_thresholds[s], n_filter, mode='same')
period_obs[period_obs > 1] = 1
if self.obs_mask and self.coordinate_file is None:
period_obs = period_obs[self.period_obs[self.mask_variable] > 0
]
elif self.obs_mask and self.coordinate_file is not None:
period_obs = period_obs[coord_mask[0], coord_mask[1]]
else:
period_obs = period_obs.ravel()
for smoothing_radius in self.smoothing_radii:
print('Eval period forecast {0} {1} {2} {3} {4} {5}'.format
(self.model_name, self.forecast_variable, self.run_date,
neighbor_radius, size_threshold, smoothing_radius))
period_var = (
'neighbor_prob_{0:d}-hour_r_{1:d}_s_{2:d}_{3}_{4:0.2f}'
.format(self.end_hour - self.start_hour + 1,
neighbor_radius, smoothing_radius, self.
forecast_variable, size_threshold))
if self.obs_mask and self.coordinate_file is None:
period_forecast = self.period_forecasts[period_var][
self.period_obs[self.mask_variable] > 0]
elif self.obs_mask and self.coordinate_file is not None:
period_forecast = self.period_forecasts[period_var][
coord_mask[0], coord_mask[1]]
else:
period_forecast = self.period_forecasts[period_var].ravel()
roc = DistributedROC(thresholds=self.probability_levels,
obs_threshold=0.5)
roc.update(period_forecast, period_obs)
rel = DistributedReliability(thresholds=self.
probability_levels, obs_threshold=0.5)
rel.update(period_forecast, period_obs)
row = [self.run_date, self.ensemble_name, self.model_name,
self.forecast_variable, neighbor_radius,
smoothing_radius, size_threshold, roc, rel]
all_scores.loc[period_var] = row
return all_scores
|
evaluate_period_forecasts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n score_columns = ['Run_Date', 'Ensemble Name', 'Model_Name',\n 'Forecast_Variable', 'Neighbor_Radius', 'Smoothing_Radius',\n 'Size_Threshold', 'ROC', 'Reliability']\n all_scores = pd.DataFrame(columns=score_columns)\n if self.coordinate_file is not None:\n coord_mask = np.where((self.coordinates['lon'] >= self.lon_bounds[0\n ]) & (self.coordinates['lon'] <= self.lon_bounds[1]) & (self.\n coordinates['lat'] >= self.lat_bounds[0]) & (self.coordinates[\n 'lat'] <= self.lat_bounds[1]) & (self.period_obs[self.\n mask_variable] > 0))\n else:\n coord_mask = None\n for neighbor_radius in self.neighbor_radii:\n n_filter = disk(neighbor_radius)\n for s, size_threshold in enumerate(self.size_thresholds):\n period_obs = fftconvolve(self.period_obs[self.mrms_variable] >=\n self.obs_thresholds[s], n_filter, mode='same')\n period_obs[period_obs > 1] = 1\n if self.obs_mask and self.coordinate_file is None:\n period_obs = period_obs[self.period_obs[self.mask_variable] > 0\n ]\n elif self.obs_mask and self.coordinate_file is not None:\n period_obs = period_obs[coord_mask[0], coord_mask[1]]\n else:\n period_obs = period_obs.ravel()\n for smoothing_radius in self.smoothing_radii:\n print('Eval period forecast {0} {1} {2} {3} {4} {5}'.format\n (self.model_name, self.forecast_variable, self.run_date,\n neighbor_radius, size_threshold, smoothing_radius))\n period_var = (\n 'neighbor_prob_{0:d}-hour_r_{1:d}_s_{2:d}_{3}_{4:0.2f}'\n .format(self.end_hour - self.start_hour + 1,\n neighbor_radius, smoothing_radius, self.\n forecast_variable, size_threshold))\n if self.obs_mask and self.coordinate_file is None:\n period_forecast = self.period_forecasts[period_var][\n self.period_obs[self.mask_variable] > 0]\n elif self.obs_mask and self.coordinate_file is not None:\n period_forecast = self.period_forecasts[period_var][\n coord_mask[0], coord_mask[1]]\n else:\n period_forecast = self.period_forecasts[period_var].ravel()\n roc = DistributedROC(thresholds=self.probability_levels,\n obs_threshold=0.5)\n roc.update(period_forecast, period_obs)\n rel = DistributedReliability(thresholds=self.\n probability_levels, obs_threshold=0.5)\n rel.update(period_forecast, period_obs)\n row = [self.run_date, self.ensemble_name, self.model_name,\n self.forecast_variable, neighbor_radius,\n smoothing_radius, size_threshold, roc, rel]\n all_scores.loc[period_var] = row\n return all_scores\n",
"role": "user"
},
{
"content": "evaluate_period_forecasts",
"role": "assistant"
}
] |
def x(args):
version_info = sys.version_info
if version_info.major != 3 or version_info.minor < 6:
return None, 'python36'
main_fn = load_module_as_package('nionui_app.nionswift')
if main_fn:
return main_fn(['nionui_app.nionswift'] + args, {'pyqt': None}), None
return None, 'main'
|
bootstrap_main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n version_info = sys.version_info\n if version_info.major != 3 or version_info.minor < 6:\n return None, 'python36'\n main_fn = load_module_as_package('nionui_app.nionswift')\n if main_fn:\n return main_fn(['nionui_app.nionswift'] + args, {'pyqt': None}), None\n return None, 'main'\n",
"role": "user"
},
{
"content": "bootstrap_main",
"role": "assistant"
}
] |
def x(workspace_dir: pathlib.Path, do_logging: bool=True) ->pathlib.Path:
library_path_11 = workspace_dir / 'Nion Swift Workspace.nslib'
library_path_12 = workspace_dir / 'Nion Swift Library 12.nslib'
library_path_13 = workspace_dir / 'Nion Swift Library 13.nslib'
library_paths = library_path_11, library_path_12
library_path_latest = library_path_13
if not os.path.exists(library_path_latest):
for library_path in reversed(library_paths):
if os.path.exists(library_path):
if do_logging:
logging.info('Migrating library: %s -> %s',
library_path, library_path_latest)
shutil.copyfile(library_path, library_path_latest)
break
return library_path_latest
|
migrate_library
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(workspace_dir: pathlib.Path, do_logging: bool=True) ->pathlib.Path:\n library_path_11 = workspace_dir / 'Nion Swift Workspace.nslib'\n library_path_12 = workspace_dir / 'Nion Swift Library 12.nslib'\n library_path_13 = workspace_dir / 'Nion Swift Library 13.nslib'\n library_paths = library_path_11, library_path_12\n library_path_latest = library_path_13\n if not os.path.exists(library_path_latest):\n for library_path in reversed(library_paths):\n if os.path.exists(library_path):\n if do_logging:\n logging.info('Migrating library: %s -> %s',\n library_path, library_path_latest)\n shutil.copyfile(library_path, library_path_latest)\n break\n return library_path_latest\n",
"role": "user"
},
{
"content": "migrate_library",
"role": "assistant"
}
] |
def x(self):
for valor, rotulo in ESTADOS_OPERACAO:
if self.ESTADO_OPERACAO == valor:
return rotulo
return u'(desconhecido: {})'.format(self.ESTADO_OPERACAO)
|
status
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for valor, rotulo in ESTADOS_OPERACAO:\n if self.ESTADO_OPERACAO == valor:\n return rotulo\n return u'(desconhecido: {})'.format(self.ESTADO_OPERACAO)\n",
"role": "user"
},
{
"content": "status",
"role": "assistant"
}
] |
def x(retorno):
resposta = analisar_retorno(forcar_unicode(retorno), funcao=
'ConsultarStatusOperacional', classe_resposta=
RespostaConsultarStatusOperacional, campos=RespostaSAT.CAMPOS + ((
'NSERIE', as_clean_unicode), ('TIPO_LAN', as_clean_unicode), (
'LAN_IP', normalizar_ip), ('LAN_MAC', unicode), ('LAN_MASK',
normalizar_ip), ('LAN_GW', normalizar_ip), ('LAN_DNS_1',
normalizar_ip), ('LAN_DNS_2', normalizar_ip), ('STATUS_LAN',
as_clean_unicode), ('NIVEL_BATERIA', as_clean_unicode), ('MT_TOTAL',
as_clean_unicode), ('MT_USADA', as_clean_unicode), ('DH_ATUAL',
as_datetime), ('VER_SB', as_clean_unicode), ('VER_LAYOUT',
as_clean_unicode), ('ULTIMO_CF_E_SAT', as_clean_unicode), (
'LISTA_INICIAL', as_clean_unicode), ('LISTA_FINAL',
as_clean_unicode), ('DH_CFE', as_datetime_or_none), ('DH_ULTIMA',
as_datetime), ('CERT_EMISSAO', as_date), ('CERT_VENCIMENTO',
as_date), ('ESTADO_OPERACAO', int)), campos_alternativos=[
RespostaSAT.CAMPOS])
if resposta.EEEEE not in ('10000',):
raise ExcecaoRespostaSAT(resposta)
return resposta
|
analisar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(retorno):\n resposta = analisar_retorno(forcar_unicode(retorno), funcao=\n 'ConsultarStatusOperacional', classe_resposta=\n RespostaConsultarStatusOperacional, campos=RespostaSAT.CAMPOS + ((\n 'NSERIE', as_clean_unicode), ('TIPO_LAN', as_clean_unicode), (\n 'LAN_IP', normalizar_ip), ('LAN_MAC', unicode), ('LAN_MASK',\n normalizar_ip), ('LAN_GW', normalizar_ip), ('LAN_DNS_1',\n normalizar_ip), ('LAN_DNS_2', normalizar_ip), ('STATUS_LAN',\n as_clean_unicode), ('NIVEL_BATERIA', as_clean_unicode), ('MT_TOTAL',\n as_clean_unicode), ('MT_USADA', as_clean_unicode), ('DH_ATUAL',\n as_datetime), ('VER_SB', as_clean_unicode), ('VER_LAYOUT',\n as_clean_unicode), ('ULTIMO_CF_E_SAT', as_clean_unicode), (\n 'LISTA_INICIAL', as_clean_unicode), ('LISTA_FINAL',\n as_clean_unicode), ('DH_CFE', as_datetime_or_none), ('DH_ULTIMA',\n as_datetime), ('CERT_EMISSAO', as_date), ('CERT_VENCIMENTO',\n as_date), ('ESTADO_OPERACAO', int)), campos_alternativos=[\n RespostaSAT.CAMPOS])\n if resposta.EEEEE not in ('10000',):\n raise ExcecaoRespostaSAT(resposta)\n return resposta\n",
"role": "user"
},
{
"content": "analisar",
"role": "assistant"
}
] |
def x(input_csv_file, forecast_json_path, condition_models, dist_models):
try:
run_date = input_csv_file[:-4].split('_')[-1]
print(run_date)
ens_member = '_'.join(input_csv_file.split('/')[-1][:-4].split('_')
[3:-1])
ens_name = input_csv_file.split('/')[-1].split('_')[2]
input_data = pd.read_csv(input_csv_file, index_col='Step_ID')
full_json_path = forecast_json_path + '{0}/{1}/'.format(run_date,
ens_member)
track_ids = sorted(input_data['Track_ID'].unique())
model_pred_cols = []
condition_models_ns = []
dist_models_ns = []
gamma_params = ['Shape', 'Location', 'Scale']
for condition_model in condition_models:
model_pred_cols.append(condition_model.replace(' ', '-') +
'_Condition')
condition_models_ns.append(condition_model.replace(' ', '-'))
for dist_model in dist_models:
dist_models_ns.append(dist_model.replace(' ', '-'))
for param in gamma_params:
model_pred_cols.append(dist_model.replace(' ', '-') + '_' +
param)
pred_data = pd.DataFrame(index=input_data.index, columns=
model_pred_cols, dtype=float)
for track_id in track_ids:
track_id_num = track_id.split('_')[-1]
json_filename = (full_json_path +
'{0}_{1}_{2}_model_track_{3}.json'.format(ens_name,
run_date, ens_member, track_id_num))
json_file = open(json_filename)
json_data = json.load(json_file)
json_file.close()
for s, step in enumerate(json_data['features']):
step_id = track_id + '_{0:02d}'.format(s)
for cond_model in condition_models_ns:
pred_data.loc[step_id, cond_model + '_Condition'] = step[
'properties']['condition_' + cond_model]
for dist_model in dist_models_ns:
pred_data.loc[step_id, [(dist_model + '_' + p) for p in
gamma_params]] = step['properties']['dist_' +
dist_model]
out_data = input_data.merge(pred_data, left_index=True, right_index
=True)
return out_data, ens_name, ens_member
except Exception as e:
print(traceback.format_exc())
raise e
|
merge_input_csv_forecast_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_csv_file, forecast_json_path, condition_models, dist_models):\n try:\n run_date = input_csv_file[:-4].split('_')[-1]\n print(run_date)\n ens_member = '_'.join(input_csv_file.split('/')[-1][:-4].split('_')\n [3:-1])\n ens_name = input_csv_file.split('/')[-1].split('_')[2]\n input_data = pd.read_csv(input_csv_file, index_col='Step_ID')\n full_json_path = forecast_json_path + '{0}/{1}/'.format(run_date,\n ens_member)\n track_ids = sorted(input_data['Track_ID'].unique())\n model_pred_cols = []\n condition_models_ns = []\n dist_models_ns = []\n gamma_params = ['Shape', 'Location', 'Scale']\n for condition_model in condition_models:\n model_pred_cols.append(condition_model.replace(' ', '-') +\n '_Condition')\n condition_models_ns.append(condition_model.replace(' ', '-'))\n for dist_model in dist_models:\n dist_models_ns.append(dist_model.replace(' ', '-'))\n for param in gamma_params:\n model_pred_cols.append(dist_model.replace(' ', '-') + '_' +\n param)\n pred_data = pd.DataFrame(index=input_data.index, columns=\n model_pred_cols, dtype=float)\n for track_id in track_ids:\n track_id_num = track_id.split('_')[-1]\n json_filename = (full_json_path +\n '{0}_{1}_{2}_model_track_{3}.json'.format(ens_name,\n run_date, ens_member, track_id_num))\n json_file = open(json_filename)\n json_data = json.load(json_file)\n json_file.close()\n for s, step in enumerate(json_data['features']):\n step_id = track_id + '_{0:02d}'.format(s)\n for cond_model in condition_models_ns:\n pred_data.loc[step_id, cond_model + '_Condition'] = step[\n 'properties']['condition_' + cond_model]\n for dist_model in dist_models_ns:\n pred_data.loc[step_id, [(dist_model + '_' + p) for p in\n gamma_params]] = step['properties']['dist_' +\n dist_model]\n out_data = input_data.merge(pred_data, left_index=True, right_index\n =True)\n return out_data, ens_name, ens_member\n except Exception as e:\n print(traceback.format_exc())\n raise e\n",
"role": "user"
},
{
"content": "merge_input_csv_forecast_json",
"role": "assistant"
}
] |
def x(self):
self.__cache.set_cached_value_dirty(self.__display_item, self.
__cache_property_name)
self.__initialize_cache()
self.__cached_value_dirty = True
|
mark_data_dirty
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.__cache.set_cached_value_dirty(self.__display_item, self.\n __cache_property_name)\n self.__initialize_cache()\n self.__cached_value_dirty = True\n",
"role": "user"
},
{
"content": "mark_data_dirty",
"role": "assistant"
}
] |
def x(self):
if self.__cached_value_dirty is None:
self.__cached_value_dirty = self.__cache.is_cached_value_dirty(self
.__display_item, self.__cache_property_name)
self.__cached_value = self.__cache.get_cached_value(self.
__display_item, self.__cache_property_name)
|
initialize_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.__cached_value_dirty is None:\n self.__cached_value_dirty = self.__cache.is_cached_value_dirty(self\n .__display_item, self.__cache_property_name)\n self.__cached_value = self.__cache.get_cached_value(self.\n __display_item, self.__cache_property_name)\n",
"role": "user"
},
{
"content": "initialize_cache",
"role": "assistant"
}
] |
def x(self, ui):
self.__initialize_cache()
if self.__cached_value_dirty:
with self.__is_recomputing_lock:
is_recomputing = self.__is_recomputing
self.__is_recomputing = True
if is_recomputing:
pass
else:
def x():
try:
if self.__recompute_thread_cancel.wait(0.01):
return
minimum_time = 0.5
current_time = time.time()
if current_time < self.__cached_value_time + minimum_time:
if self.__recompute_thread_cancel.wait(self.
__cached_value_time + minimum_time - current_time):
return
self.recompute_data(ui)
finally:
self.__is_recomputing = False
self.__recompute_thread = None
with self.__is_recomputing_lock:
self.__recompute_thread = threading.Thread(target=recompute)
self.__recompute_thread.start()
|
recompute_if_necessary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ui):\n self.__initialize_cache()\n if self.__cached_value_dirty:\n with self.__is_recomputing_lock:\n is_recomputing = self.__is_recomputing\n self.__is_recomputing = True\n if is_recomputing:\n pass\n else:\n\n def x():\n try:\n if self.__recompute_thread_cancel.wait(0.01):\n return\n minimum_time = 0.5\n current_time = time.time()\n if current_time < self.__cached_value_time + minimum_time:\n if self.__recompute_thread_cancel.wait(self.\n __cached_value_time + minimum_time - current_time):\n return\n self.recompute_data(ui)\n finally:\n self.__is_recomputing = False\n self.__recompute_thread = None\n with self.__is_recomputing_lock:\n self.__recompute_thread = threading.Thread(target=recompute)\n self.__recompute_thread.start()\n",
"role": "user"
},
{
"content": "recompute_if_necessary",
"role": "assistant"
}
] |
def x(self, ui):
self.__initialize_cache()
with self.__recompute_lock:
if self.__cached_value_dirty:
try:
calculated_data = self.get_calculated_data(ui)
except Exception as e:
import traceback
traceback.print_exc()
traceback.print_stack()
raise
self.__cache.set_cached_value(self.__display_item, self.
__cache_property_name, calculated_data)
self.__cached_value = calculated_data
self.__cached_value_dirty = False
self.__cached_value_time = time.time()
else:
calculated_data = None
if calculated_data is None:
calculated_data = self.get_default_data()
if calculated_data is not None:
self.__cache.set_cached_value(self.__display_item, self.
__cache_property_name, calculated_data)
self.__cached_value = calculated_data
self.__cached_value_dirty = False
self.__cached_value_time = time.time()
else:
self.__cache.remove_cached_value(self.__display_item, self.
__cache_property_name)
self.__cached_value = None
self.__cached_value_dirty = None
self.__cached_value_time = 0
self.__recompute_lock.release()
if callable(self.on_thumbnail_updated):
self.on_thumbnail_updated()
self.__recompute_lock.acquire()
|
recompute_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ui):\n self.__initialize_cache()\n with self.__recompute_lock:\n if self.__cached_value_dirty:\n try:\n calculated_data = self.get_calculated_data(ui)\n except Exception as e:\n import traceback\n traceback.print_exc()\n traceback.print_stack()\n raise\n self.__cache.set_cached_value(self.__display_item, self.\n __cache_property_name, calculated_data)\n self.__cached_value = calculated_data\n self.__cached_value_dirty = False\n self.__cached_value_time = time.time()\n else:\n calculated_data = None\n if calculated_data is None:\n calculated_data = self.get_default_data()\n if calculated_data is not None:\n self.__cache.set_cached_value(self.__display_item, self.\n __cache_property_name, calculated_data)\n self.__cached_value = calculated_data\n self.__cached_value_dirty = False\n self.__cached_value_time = time.time()\n else:\n self.__cache.remove_cached_value(self.__display_item, self.\n __cache_property_name)\n self.__cached_value = None\n self.__cached_value_dirty = None\n self.__cached_value_time = 0\n self.__recompute_lock.release()\n if callable(self.on_thumbnail_updated):\n self.on_thumbnail_updated()\n self.__recompute_lock.acquire()\n",
"role": "user"
},
{
"content": "recompute_data",
"role": "assistant"
}
] |
def x(self, ui, display_item: DisplayItem.DisplayItem) ->ThumbnailSource:
with self.__lock:
thumbnail_source = self.__thumbnail_sources.get(display_item)
if not thumbnail_source:
thumbnail_source = ThumbnailSource(ui, display_item)
self.__thumbnail_sources[display_item] = thumbnail_source
def x(thumbnail_source):
del self.__thumbnail_sources[thumbnail_source._display_item]
thumbnail_source._on_will_delete = will_delete
else:
assert thumbnail_source._ui == ui
return thumbnail_source.add_ref()
|
thumbnail_source_for_display_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ui, display_item: DisplayItem.DisplayItem) ->ThumbnailSource:\n with self.__lock:\n thumbnail_source = self.__thumbnail_sources.get(display_item)\n if not thumbnail_source:\n thumbnail_source = ThumbnailSource(ui, display_item)\n self.__thumbnail_sources[display_item] = thumbnail_source\n\n def x(thumbnail_source):\n del self.__thumbnail_sources[thumbnail_source._display_item]\n thumbnail_source._on_will_delete = will_delete\n else:\n assert thumbnail_source._ui == ui\n return thumbnail_source.add_ref()\n",
"role": "user"
},
{
"content": "thumbnail_source_for_display_item",
"role": "assistant"
}
] |
def x(app, root_dir):
global extensions
ui = app.ui
subdirectories = []
if root_dir:
subdirectories.append(root_dir)
data_location = ui.get_data_location()
if data_location is not None:
subdirectories.append(data_location)
plugins_dir = os.path.abspath(os.path.join(data_location, 'PlugIns'))
if not os.path.exists(plugins_dir):
logging.info('Creating plug-ins directory %s', plugins_dir)
os.makedirs(plugins_dir)
document_location = ui.get_document_location()
if document_location is not None:
subdirectories.append(os.path.join(document_location, 'Nion', 'Swift'))
PlugInDir = collections.namedtuple('PlugInDir', ['directory',
'relative_path'])
plugin_dirs = list()
seen_plugin_dirs = list()
for subdirectory in subdirectories:
plugins_dir = os.path.abspath(os.path.join(subdirectory, 'PlugIns'))
if os.path.exists(plugins_dir) and not plugins_dir in seen_plugin_dirs:
logging.info('Loading plug-ins from %s', plugins_dir)
sys.path.append(plugins_dir)
sorted_relative_paths = sorted([d for d in os.listdir(
plugins_dir) if os.path.isdir(os.path.join(plugins_dir, d))])
plugin_dirs.extend([PlugInDir(plugins_dir, sorted_relative_path
) for sorted_relative_path in sorted_relative_paths])
seen_plugin_dirs.append(plugins_dir)
else:
logging.info('NOT Loading plug-ins from %s (missing)', plugins_dir)
version_map = dict()
module_exists_map = dict()
plugin_adapters = list()
import nionswift_plugin
for module_info in pkgutil.iter_modules(nionswift_plugin.__path__):
plugin_adapters.append(ModuleAdapter(nionswift_plugin.__name__,
module_info))
for directory, relative_path in plugin_dirs:
plugin_adapters.append(PlugInAdapter(directory, relative_path))
progress = True
while progress:
progress = False
plugin_adapters_copy = copy.deepcopy(plugin_adapters)
plugin_adapters = list()
for plugin_adapter in plugin_adapters_copy:
manifest_path = plugin_adapter.manifest_path
manifest = plugin_adapter.manifest
if manifest:
manifest_valid = True
if not 'name' in manifest:
logging.info("Invalid manifest (missing 'name'): %s",
manifest_path)
manifest_valid = False
if not 'identifier' in manifest:
logging.info("Invalid manifest (missing 'identifier'): %s",
manifest_path)
manifest_valid = False
if 'identifier' in manifest and not re.match(
'[_\\-a-zA-Z][_\\-a-zA-Z0-9.]*$', manifest['identifier']):
logging.info(
"Invalid manifest (invalid 'identifier': '%s'): %s",
manifest['identifier'], manifest_path)
manifest_valid = False
if not 'version' in manifest:
logging.info("Invalid manifest (missing 'version'): %s",
manifest_path)
manifest_valid = False
if 'requires' in manifest and not isinstance(manifest[
'requires'], list):
logging.info("Invalid manifest ('requires' not a list): %s"
, manifest_path)
manifest_valid = False
if not manifest_valid:
continue
for module in manifest.get('modules', list()):
if module in module_exists_map:
module_exists = module_exists_map.get(module)
else:
module_exists = importlib.util.find_spec(module
) is not None
module_exists_map[module] = module_exists
if not module_exists:
logging.info("Plug-in '" + plugin_adapter.
module_name + "' NOT loaded (" + plugin_adapter
.module_path + ').')
logging.info('Cannot satisfy requirement (%s): %s',
module, manifest_path)
manifest_valid = False
break
for requirement in manifest.get('requires', list()):
requirement_components = requirement.split()
if len(requirement_components
) != 3 or requirement_components[1] != '~=':
logging.info(
"Invalid manifest (requirement '%s' invalid): %s",
requirement, manifest_path)
manifest_valid = False
break
identifier, operator, version_specifier = (
requirement_components[0], requirement_components[1
], requirement_components[2])
if identifier in version_map:
if Utility.compare_versions('~' + version_specifier,
version_map[identifier]) != 0:
logging.info("Plug-in '" + plugin_adapter.
module_name + "' NOT loaded (" +
plugin_adapter.module_path + ').')
logging.info('Cannot satisfy requirement (%s): %s',
requirement, manifest_path)
manifest_valid = False
break
else:
logging.info("Plug-in '" + plugin_adapter.
module_name + "' delayed (%s) (" +
plugin_adapter.module_path + ').', requirement)
plugin_adapters.append(plugin_adapter)
manifest_valid = False
break
if not manifest_valid:
continue
version_map[manifest['identifier']] = manifest['version']
module = plugin_adapter.load()
if module:
__modules.append(module)
progress = True
for plugin_adapter in plugin_adapters:
logging.info("Plug-in '" + plugin_adapter.module_name +
"' NOT loaded (requirements) (" + plugin_adapter.module_path + ').'
)
notify_modules('run')
|
load_plug_ins
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(app, root_dir):\n global extensions\n ui = app.ui\n subdirectories = []\n if root_dir:\n subdirectories.append(root_dir)\n data_location = ui.get_data_location()\n if data_location is not None:\n subdirectories.append(data_location)\n plugins_dir = os.path.abspath(os.path.join(data_location, 'PlugIns'))\n if not os.path.exists(plugins_dir):\n logging.info('Creating plug-ins directory %s', plugins_dir)\n os.makedirs(plugins_dir)\n document_location = ui.get_document_location()\n if document_location is not None:\n subdirectories.append(os.path.join(document_location, 'Nion', 'Swift'))\n PlugInDir = collections.namedtuple('PlugInDir', ['directory',\n 'relative_path'])\n plugin_dirs = list()\n seen_plugin_dirs = list()\n for subdirectory in subdirectories:\n plugins_dir = os.path.abspath(os.path.join(subdirectory, 'PlugIns'))\n if os.path.exists(plugins_dir) and not plugins_dir in seen_plugin_dirs:\n logging.info('Loading plug-ins from %s', plugins_dir)\n sys.path.append(plugins_dir)\n sorted_relative_paths = sorted([d for d in os.listdir(\n plugins_dir) if os.path.isdir(os.path.join(plugins_dir, d))])\n plugin_dirs.extend([PlugInDir(plugins_dir, sorted_relative_path\n ) for sorted_relative_path in sorted_relative_paths])\n seen_plugin_dirs.append(plugins_dir)\n else:\n logging.info('NOT Loading plug-ins from %s (missing)', plugins_dir)\n version_map = dict()\n module_exists_map = dict()\n plugin_adapters = list()\n import nionswift_plugin\n for module_info in pkgutil.iter_modules(nionswift_plugin.__path__):\n plugin_adapters.append(ModuleAdapter(nionswift_plugin.__name__,\n module_info))\n for directory, relative_path in plugin_dirs:\n plugin_adapters.append(PlugInAdapter(directory, relative_path))\n progress = True\n while progress:\n progress = False\n plugin_adapters_copy = copy.deepcopy(plugin_adapters)\n plugin_adapters = list()\n for plugin_adapter in plugin_adapters_copy:\n manifest_path = plugin_adapter.manifest_path\n manifest = plugin_adapter.manifest\n if manifest:\n manifest_valid = True\n if not 'name' in manifest:\n logging.info(\"Invalid manifest (missing 'name'): %s\",\n manifest_path)\n manifest_valid = False\n if not 'identifier' in manifest:\n logging.info(\"Invalid manifest (missing 'identifier'): %s\",\n manifest_path)\n manifest_valid = False\n if 'identifier' in manifest and not re.match(\n '[_\\\\-a-zA-Z][_\\\\-a-zA-Z0-9.]*$', manifest['identifier']):\n logging.info(\n \"Invalid manifest (invalid 'identifier': '%s'): %s\",\n manifest['identifier'], manifest_path)\n manifest_valid = False\n if not 'version' in manifest:\n logging.info(\"Invalid manifest (missing 'version'): %s\",\n manifest_path)\n manifest_valid = False\n if 'requires' in manifest and not isinstance(manifest[\n 'requires'], list):\n logging.info(\"Invalid manifest ('requires' not a list): %s\"\n , manifest_path)\n manifest_valid = False\n if not manifest_valid:\n continue\n for module in manifest.get('modules', list()):\n if module in module_exists_map:\n module_exists = module_exists_map.get(module)\n else:\n module_exists = importlib.util.find_spec(module\n ) is not None\n module_exists_map[module] = module_exists\n if not module_exists:\n logging.info(\"Plug-in '\" + plugin_adapter.\n module_name + \"' NOT loaded (\" + plugin_adapter\n .module_path + ').')\n logging.info('Cannot satisfy requirement (%s): %s',\n module, manifest_path)\n manifest_valid = False\n break\n for requirement in manifest.get('requires', list()):\n requirement_components = requirement.split()\n if len(requirement_components\n ) != 3 or requirement_components[1] != '~=':\n logging.info(\n \"Invalid manifest (requirement '%s' invalid): %s\",\n requirement, manifest_path)\n manifest_valid = False\n break\n identifier, operator, version_specifier = (\n requirement_components[0], requirement_components[1\n ], requirement_components[2])\n if identifier in version_map:\n if Utility.compare_versions('~' + version_specifier,\n version_map[identifier]) != 0:\n logging.info(\"Plug-in '\" + plugin_adapter.\n module_name + \"' NOT loaded (\" +\n plugin_adapter.module_path + ').')\n logging.info('Cannot satisfy requirement (%s): %s',\n requirement, manifest_path)\n manifest_valid = False\n break\n else:\n logging.info(\"Plug-in '\" + plugin_adapter.\n module_name + \"' delayed (%s) (\" +\n plugin_adapter.module_path + ').', requirement)\n plugin_adapters.append(plugin_adapter)\n manifest_valid = False\n break\n if not manifest_valid:\n continue\n version_map[manifest['identifier']] = manifest['version']\n module = plugin_adapter.load()\n if module:\n __modules.append(module)\n progress = True\n for plugin_adapter in plugin_adapters:\n logging.info(\"Plug-in '\" + plugin_adapter.module_name +\n \"' NOT loaded (requirements) (\" + plugin_adapter.module_path + ').'\n )\n notify_modules('run')\n",
"role": "user"
},
{
"content": "load_plug_ins",
"role": "assistant"
}
] |
def x(self, gist_name):
r = requests.get('%s' % BASE_URL + '/users/%s/gists' % self.user,
headers=self.gist.header)
if r.status_code == 200:
r_text = json.loads(r.text)
limit = len(r.json())
for g, no in zip(r_text, range(0, limit)):
for ka, va in r.json()[no]['files'].iteritems():
if str(va['filename']) == str(gist_name):
return r.json()[no]['id']
return 0
raise Exception('Username not found')
|
getMyID
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, gist_name):\n r = requests.get('%s' % BASE_URL + '/users/%s/gists' % self.user,\n headers=self.gist.header)\n if r.status_code == 200:\n r_text = json.loads(r.text)\n limit = len(r.json())\n for g, no in zip(r_text, range(0, limit)):\n for ka, va in r.json()[no]['files'].iteritems():\n if str(va['filename']) == str(gist_name):\n return r.json()[no]['id']\n return 0\n raise Exception('Username not found')\n",
"role": "user"
},
{
"content": "getMyID",
"role": "assistant"
}
] |
def x(self):
assert self.__closed == False
self.__closed = True
self.finish_periodic()
for weak_dialog in self.__dialogs:
dialog = weak_dialog()
if dialog:
try:
dialog.request_close()
except Exception as e:
pass
self._file_menu = None
self._edit_menu = None
self._processing_menu = None
self._view_menu = None
self._window_menu = None
self._help_menu = None
self._library_menu = None
self._processing_arithmetic_menu = None
self._processing_reduce_menu = None
self._processing_transform_menu = None
self._processing_filter_menu = None
self._processing_fourier_menu = None
self._processing_graphics_menu = None
self._processing_sequence_menu = None
self._processing_redimension_menu = None
self._display_type_menu = None
if self.__workspace_controller:
self.__workspace_controller.close()
self.__workspace_controller = None
self.__call_soon_event_listener.close()
self.__call_soon_event_listener = None
self.__filtered_display_items_model.close()
self.__filtered_display_items_model = None
self.filter_controller.close()
self.filter_controller = None
self.__display_items_model.close()
self.__display_items_model = None
self.document_model.remove_ref()
self.document_model = None
self.did_close_event.fire(self)
self.did_close_event = None
super().close()
|
close
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n assert self.__closed == False\n self.__closed = True\n self.finish_periodic()\n for weak_dialog in self.__dialogs:\n dialog = weak_dialog()\n if dialog:\n try:\n dialog.request_close()\n except Exception as e:\n pass\n self._file_menu = None\n self._edit_menu = None\n self._processing_menu = None\n self._view_menu = None\n self._window_menu = None\n self._help_menu = None\n self._library_menu = None\n self._processing_arithmetic_menu = None\n self._processing_reduce_menu = None\n self._processing_transform_menu = None\n self._processing_filter_menu = None\n self._processing_fourier_menu = None\n self._processing_graphics_menu = None\n self._processing_sequence_menu = None\n self._processing_redimension_menu = None\n self._display_type_menu = None\n if self.__workspace_controller:\n self.__workspace_controller.close()\n self.__workspace_controller = None\n self.__call_soon_event_listener.close()\n self.__call_soon_event_listener = None\n self.__filtered_display_items_model.close()\n self.__filtered_display_items_model = None\n self.filter_controller.close()\n self.filter_controller = None\n self.__display_items_model.close()\n self.__display_items_model = None\n self.document_model.remove_ref()\n self.document_model = None\n self.did_close_event.fire(self)\n self.did_close_event = None\n super().close()\n",
"role": "user"
},
{
"content": "close",
"role": "assistant"
}
] |
def x(self, interval: float, listener_fn):
class PeriodicListener:
def x(self, interval: float, listener_fn):
self.interval = interval
self.__listener_fn = listener_fn
if callable(listener_fn):
self.call = self.__listener_fn
else:
def x(*args, **kwargs):
pass
self.call = void
self.next_scheduled_time = time.time() + interval
def x(self):
self.__listener_fn = None
def x(*args, **kwargs):
pass
self.call = void
listener = PeriodicListener(interval, listener_fn)
def x(weak_listener):
with self.__weak_periodic_listeners_mutex:
self.__weak_periodic_listeners.remove(weak_listener)
weak_listener = weakref.ref(listener, remove_listener)
with self.__weak_periodic_listeners_mutex:
self.__weak_periodic_listeners.append(weak_listener)
return listener
|
add_periodic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, interval: float, listener_fn):\n\n\n class PeriodicListener:\n\n def x(self, interval: float, listener_fn):\n self.interval = interval\n self.__listener_fn = listener_fn\n if callable(listener_fn):\n self.call = self.__listener_fn\n else:\n\n def x(*args, **kwargs):\n pass\n self.call = void\n self.next_scheduled_time = time.time() + interval\n\n def x(self):\n self.__listener_fn = None\n\n def x(*args, **kwargs):\n pass\n self.call = void\n listener = PeriodicListener(interval, listener_fn)\n\n def x(weak_listener):\n with self.__weak_periodic_listeners_mutex:\n self.__weak_periodic_listeners.remove(weak_listener)\n weak_listener = weakref.ref(listener, remove_listener)\n with self.__weak_periodic_listeners_mutex:\n self.__weak_periodic_listeners.append(weak_listener)\n return listener\n",
"role": "user"
},
{
"content": "add_periodic",
"role": "assistant"
}
] |
def x(self, display_items_model: ListModel.FilteredListModel, data_group:
typing.Optional[DataGroup.DataGroup], filter_id: typing.Optional[str]
) ->None:
with display_items_model.changes():
if data_group is not None:
display_items_model.container = data_group
display_items_model.filter = ListModel.Filter(True)
display_items_model.sort_key = None
display_items_model.filter_id = None
elif filter_id == 'latest-session':
display_items_model.container = self.document_model
display_items_model.filter = ListModel.EqFilter('session_id',
self.document_model.session_id)
display_items_model.sort_key = DataItem.sort_by_date_key
display_items_model.sort_reverse = True
display_items_model.filter_id = filter_id
elif filter_id == 'temporary':
display_items_model.container = self.document_model
display_items_model.filter = ListModel.NotEqFilter('category',
'persistent')
display_items_model.sort_key = DataItem.sort_by_date_key
display_items_model.sort_reverse = True
display_items_model.filter_id = filter_id
elif filter_id == 'none':
display_items_model.container = self.document_model
display_items_model.filter = ListModel.Filter(False)
display_items_model.sort_key = DataItem.sort_by_date_key
display_items_model.sort_reverse = True
display_items_model.filter_id = filter_id
else:
display_items_model.container = self.document_model
display_items_model.filter = ListModel.EqFilter('category',
'persistent')
display_items_model.sort_key = DataItem.sort_by_date_key
display_items_model.sort_reverse = True
display_items_model.filter_id = None
|
update_display_items_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, display_items_model: ListModel.FilteredListModel, data_group:\n typing.Optional[DataGroup.DataGroup], filter_id: typing.Optional[str]\n ) ->None:\n with display_items_model.changes():\n if data_group is not None:\n display_items_model.container = data_group\n display_items_model.filter = ListModel.Filter(True)\n display_items_model.sort_key = None\n display_items_model.filter_id = None\n elif filter_id == 'latest-session':\n display_items_model.container = self.document_model\n display_items_model.filter = ListModel.EqFilter('session_id',\n self.document_model.session_id)\n display_items_model.sort_key = DataItem.sort_by_date_key\n display_items_model.sort_reverse = True\n display_items_model.filter_id = filter_id\n elif filter_id == 'temporary':\n display_items_model.container = self.document_model\n display_items_model.filter = ListModel.NotEqFilter('category',\n 'persistent')\n display_items_model.sort_key = DataItem.sort_by_date_key\n display_items_model.sort_reverse = True\n display_items_model.filter_id = filter_id\n elif filter_id == 'none':\n display_items_model.container = self.document_model\n display_items_model.filter = ListModel.Filter(False)\n display_items_model.sort_key = DataItem.sort_by_date_key\n display_items_model.sort_reverse = True\n display_items_model.filter_id = filter_id\n else:\n display_items_model.container = self.document_model\n display_items_model.filter = ListModel.EqFilter('category',\n 'persistent')\n display_items_model.sort_key = DataItem.sort_by_date_key\n display_items_model.sort_reverse = True\n display_items_model.filter_id = None\n",
"role": "user"
},
{
"content": "update_display_items_model",
"role": "assistant"
}
] |
def x(self) ->typing.Optional[DataItem.DataItem]:
return (self.__focused_display_item.data_item if self.
__focused_display_item else None)
|
focused_data_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->typing.Optional[DataItem.DataItem]:\n return (self.__focused_display_item.data_item if self.\n __focused_display_item else None)\n",
"role": "user"
},
{
"content": "focused_data_item",
"role": "assistant"
}
] |
def x(self) ->typing.Optional[DisplayItem.DisplayItem]:
display_item = self.focused_display_item
if not display_item:
selected_display_panel = self.selected_display_panel
display_item = (selected_display_panel.display_item if
selected_display_panel else None)
return display_item
|
selected_display_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->typing.Optional[DisplayItem.DisplayItem]:\n display_item = self.focused_display_item\n if not display_item:\n selected_display_panel = self.selected_display_panel\n display_item = (selected_display_panel.display_item if\n selected_display_panel else None)\n return display_item\n",
"role": "user"
},
{
"content": "selected_display_item",
"role": "assistant"
}
] |
def x(self):
selected_display_items = self.selected_display_items
if len(selected_display_items) < 2:
selected_display_items = list()
display_item = self.selected_display_item
if display_item:
selected_display_items.append(display_item)
if len(selected_display_items) == 1:
display_item = selected_display_items[0]
data_item = display_item.data_item if display_item else None
if display_item and len(display_item.graphic_selection.indexes) == 2:
index1 = display_item.graphic_selection.anchor_index
index2 = list(display_item.graphic_selection.indexes.difference
({index1}))[0]
graphic1 = display_item.graphics[index1]
graphic2 = display_item.graphics[index2]
if data_item:
if data_item.is_datum_1d and isinstance(graphic1, Graphics.
IntervalGraphic) and isinstance(graphic2, Graphics.
IntervalGraphic):
crop_graphic1 = graphic1
crop_graphic2 = graphic2
elif data_item.is_datum_2d and isinstance(graphic1,
Graphics.RectangleTypeGraphic) and isinstance(graphic2,
Graphics.RectangleTypeGraphic):
crop_graphic1 = graphic1
crop_graphic2 = graphic2
else:
crop_graphic1 = self.__get_crop_graphic(display_item)
crop_graphic2 = crop_graphic1
else:
crop_graphic1 = self.__get_crop_graphic(display_item)
crop_graphic2 = crop_graphic1
else:
crop_graphic1 = self.__get_crop_graphic(display_item)
crop_graphic2 = crop_graphic1
return (display_item, crop_graphic1), (display_item, crop_graphic2)
if len(selected_display_items) == 2:
display_item1 = selected_display_items[0]
crop_graphic1 = self.__get_crop_graphic(display_item1)
display_item2 = selected_display_items[1]
crop_graphic2 = self.__get_crop_graphic(display_item2)
return (display_item1, crop_graphic1), (display_item2, crop_graphic2)
return None
|
get_two_data_sources
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n selected_display_items = self.selected_display_items\n if len(selected_display_items) < 2:\n selected_display_items = list()\n display_item = self.selected_display_item\n if display_item:\n selected_display_items.append(display_item)\n if len(selected_display_items) == 1:\n display_item = selected_display_items[0]\n data_item = display_item.data_item if display_item else None\n if display_item and len(display_item.graphic_selection.indexes) == 2:\n index1 = display_item.graphic_selection.anchor_index\n index2 = list(display_item.graphic_selection.indexes.difference\n ({index1}))[0]\n graphic1 = display_item.graphics[index1]\n graphic2 = display_item.graphics[index2]\n if data_item:\n if data_item.is_datum_1d and isinstance(graphic1, Graphics.\n IntervalGraphic) and isinstance(graphic2, Graphics.\n IntervalGraphic):\n crop_graphic1 = graphic1\n crop_graphic2 = graphic2\n elif data_item.is_datum_2d and isinstance(graphic1,\n Graphics.RectangleTypeGraphic) and isinstance(graphic2,\n Graphics.RectangleTypeGraphic):\n crop_graphic1 = graphic1\n crop_graphic2 = graphic2\n else:\n crop_graphic1 = self.__get_crop_graphic(display_item)\n crop_graphic2 = crop_graphic1\n else:\n crop_graphic1 = self.__get_crop_graphic(display_item)\n crop_graphic2 = crop_graphic1\n else:\n crop_graphic1 = self.__get_crop_graphic(display_item)\n crop_graphic2 = crop_graphic1\n return (display_item, crop_graphic1), (display_item, crop_graphic2)\n if len(selected_display_items) == 2:\n display_item1 = selected_display_items[0]\n crop_graphic1 = self.__get_crop_graphic(display_item1)\n display_item2 = selected_display_items[1]\n crop_graphic2 = self.__get_crop_graphic(display_item2)\n return (display_item1, crop_graphic1), (display_item2, crop_graphic2)\n return None\n",
"role": "user"
},
{
"content": "get_two_data_sources",
"role": "assistant"
}
] |
def x(canvas_size, data_shape, image_canvas_mode, image_zoom, image_position
) ->typing.Tuple[typing.Any, typing.Any]:
if data_shape is None:
return None, None
if image_canvas_mode == 'fill':
data_shape = data_shape
scale_h = float(data_shape[1]) / canvas_size[1]
scale_v = float(data_shape[0]) / canvas_size[0]
if scale_v < scale_h:
image_canvas_size = canvas_size[0], canvas_size[0] * data_shape[1
] / data_shape[0]
else:
image_canvas_size = canvas_size[1] * data_shape[0] / data_shape[1
], canvas_size[1]
image_canvas_origin = canvas_size[0] * 0.5 - image_canvas_size[0
] * 0.5, canvas_size[1] * 0.5 - image_canvas_size[1] * 0.5
elif image_canvas_mode == 'fit':
image_canvas_size = canvas_size
image_canvas_origin = 0, 0
elif image_canvas_mode == '1:1':
image_canvas_size = data_shape
image_canvas_origin = canvas_size[0] * 0.5 - image_canvas_size[0
] * 0.5, canvas_size[1] * 0.5 - image_canvas_size[1] * 0.5
elif image_canvas_mode == '2:1':
image_canvas_size = data_shape[0] * 0.5, data_shape[1] * 0.5
image_canvas_origin = canvas_size[0] * 0.5 - image_canvas_size[0
] * 0.5, canvas_size[1] * 0.5 - image_canvas_size[1] * 0.5
else:
image_canvas_size = canvas_size[0] * image_zoom, canvas_size[1
] * image_zoom
canvas_rect = Geometry.fit_to_size(((0, 0), image_canvas_size),
data_shape)
image_canvas_origin_y = canvas_size[0] * 0.5 - image_position[0
] * canvas_rect[1][0] - canvas_rect[0][0]
image_canvas_origin_x = canvas_size[1] * 0.5 - image_position[1
] * canvas_rect[1][1] - canvas_rect[0][1]
image_canvas_origin = image_canvas_origin_y, image_canvas_origin_x
return image_canvas_origin, image_canvas_size
|
calculate_origin_and_size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(canvas_size, data_shape, image_canvas_mode, image_zoom, image_position\n ) ->typing.Tuple[typing.Any, typing.Any]:\n if data_shape is None:\n return None, None\n if image_canvas_mode == 'fill':\n data_shape = data_shape\n scale_h = float(data_shape[1]) / canvas_size[1]\n scale_v = float(data_shape[0]) / canvas_size[0]\n if scale_v < scale_h:\n image_canvas_size = canvas_size[0], canvas_size[0] * data_shape[1\n ] / data_shape[0]\n else:\n image_canvas_size = canvas_size[1] * data_shape[0] / data_shape[1\n ], canvas_size[1]\n image_canvas_origin = canvas_size[0] * 0.5 - image_canvas_size[0\n ] * 0.5, canvas_size[1] * 0.5 - image_canvas_size[1] * 0.5\n elif image_canvas_mode == 'fit':\n image_canvas_size = canvas_size\n image_canvas_origin = 0, 0\n elif image_canvas_mode == '1:1':\n image_canvas_size = data_shape\n image_canvas_origin = canvas_size[0] * 0.5 - image_canvas_size[0\n ] * 0.5, canvas_size[1] * 0.5 - image_canvas_size[1] * 0.5\n elif image_canvas_mode == '2:1':\n image_canvas_size = data_shape[0] * 0.5, data_shape[1] * 0.5\n image_canvas_origin = canvas_size[0] * 0.5 - image_canvas_size[0\n ] * 0.5, canvas_size[1] * 0.5 - image_canvas_size[1] * 0.5\n else:\n image_canvas_size = canvas_size[0] * image_zoom, canvas_size[1\n ] * image_zoom\n canvas_rect = Geometry.fit_to_size(((0, 0), image_canvas_size),\n data_shape)\n image_canvas_origin_y = canvas_size[0] * 0.5 - image_position[0\n ] * canvas_rect[1][0] - canvas_rect[0][0]\n image_canvas_origin_x = canvas_size[1] * 0.5 - image_position[1\n ] * canvas_rect[1][1] - canvas_rect[0][1]\n image_canvas_origin = image_canvas_origin_y, image_canvas_origin_x\n return image_canvas_origin, image_canvas_size\n",
"role": "user"
},
{
"content": "calculate_origin_and_size",
"role": "assistant"
}
] |
def x(*, persistent_storage_system=None, new_persistent_storage_system=None,
data_item_uuids=None, deletions: typing.List[uuid.UUID]=None,
utilized_deletions: typing.Set[uuid.UUID]=None, ignore_older_files:
bool=True):
storage_handlers = persistent_storage_system.find_data_items()
ReaderInfo = collections.namedtuple('ReaderInfo', ['properties',
'changed_ref', 'large_format', 'storage_handler', 'identifier'])
reader_info_list = list()
for storage_handler in storage_handlers:
try:
large_format = isinstance(storage_handler, HDF5Handler.HDF5Handler)
properties = Migration.transform_to_latest(storage_handler.
read_properties())
reader_info = ReaderInfo(properties, [False], large_format,
storage_handler, storage_handler.reference)
reader_info_list.append(reader_info)
except Exception as e:
logging.debug('Error reading %s', storage_handler.reference)
import traceback
traceback.print_exc()
traceback.print_stack()
library_storage_properties = (persistent_storage_system.
library_storage_properties)
for deletion in copy.deepcopy(library_storage_properties.get(
'data_item_deletions', list())):
if not deletion in deletions:
deletions.append(deletion)
preliminary_library_updates = dict()
library_updates = dict()
if not ignore_older_files:
Migration.migrate_to_latest(reader_info_list,
preliminary_library_updates)
good_reader_info_list = list()
count = len(reader_info_list)
for index, reader_info in enumerate(reader_info_list):
storage_handler = reader_info.storage_handler
properties = reader_info.properties
try:
version = properties.get('version', 0)
if version == DataItem.DataItem.writer_version:
data_item_uuid = uuid.UUID(properties['uuid'])
if not data_item_uuid in data_item_uuids:
if str(data_item_uuid) in deletions:
utilized_deletions.add(data_item_uuid)
else:
auto_migrate_data_item(reader_info,
persistent_storage_system,
new_persistent_storage_system, index, count)
good_reader_info_list.append(reader_info)
data_item_uuids.add(data_item_uuid)
library_update = preliminary_library_updates.get(
data_item_uuid)
if library_update:
library_updates[data_item_uuid] = library_update
except Exception as e:
logging.debug('Error reading %s', storage_handler.reference)
import traceback
traceback.print_exc()
traceback.print_stack()
return good_reader_info_list, library_updates
|
auto_migrate_storage_system
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*, persistent_storage_system=None, new_persistent_storage_system=None,\n data_item_uuids=None, deletions: typing.List[uuid.UUID]=None,\n utilized_deletions: typing.Set[uuid.UUID]=None, ignore_older_files:\n bool=True):\n storage_handlers = persistent_storage_system.find_data_items()\n ReaderInfo = collections.namedtuple('ReaderInfo', ['properties',\n 'changed_ref', 'large_format', 'storage_handler', 'identifier'])\n reader_info_list = list()\n for storage_handler in storage_handlers:\n try:\n large_format = isinstance(storage_handler, HDF5Handler.HDF5Handler)\n properties = Migration.transform_to_latest(storage_handler.\n read_properties())\n reader_info = ReaderInfo(properties, [False], large_format,\n storage_handler, storage_handler.reference)\n reader_info_list.append(reader_info)\n except Exception as e:\n logging.debug('Error reading %s', storage_handler.reference)\n import traceback\n traceback.print_exc()\n traceback.print_stack()\n library_storage_properties = (persistent_storage_system.\n library_storage_properties)\n for deletion in copy.deepcopy(library_storage_properties.get(\n 'data_item_deletions', list())):\n if not deletion in deletions:\n deletions.append(deletion)\n preliminary_library_updates = dict()\n library_updates = dict()\n if not ignore_older_files:\n Migration.migrate_to_latest(reader_info_list,\n preliminary_library_updates)\n good_reader_info_list = list()\n count = len(reader_info_list)\n for index, reader_info in enumerate(reader_info_list):\n storage_handler = reader_info.storage_handler\n properties = reader_info.properties\n try:\n version = properties.get('version', 0)\n if version == DataItem.DataItem.writer_version:\n data_item_uuid = uuid.UUID(properties['uuid'])\n if not data_item_uuid in data_item_uuids:\n if str(data_item_uuid) in deletions:\n utilized_deletions.add(data_item_uuid)\n else:\n auto_migrate_data_item(reader_info,\n persistent_storage_system,\n new_persistent_storage_system, index, count)\n good_reader_info_list.append(reader_info)\n data_item_uuids.add(data_item_uuid)\n library_update = preliminary_library_updates.get(\n data_item_uuid)\n if library_update:\n library_updates[data_item_uuid] = library_update\n except Exception as e:\n logging.debug('Error reading %s', storage_handler.reference)\n import traceback\n traceback.print_exc()\n traceback.print_stack()\n return good_reader_info_list, library_updates\n",
"role": "user"
},
{
"content": "auto_migrate_storage_system",
"role": "assistant"
}
] |
def x(self, properties):
with self.__properties_lock:
self.__properties = properties
self.__write_properties(None)
|
rewrite_properties
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, properties):\n with self.__properties_lock:\n self.__properties = properties\n self.__write_properties(None)\n",
"role": "user"
},
{
"content": "rewrite_properties",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.