source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, colors, indexed=None):
colors = _fix_colors(np.asarray(colors))
if indexed is None:
if colors.ndim != 2:
raise ValueError('colors must be 2D if indexed is None')
if colors.shape[0] != self.n_vertices:
raise ValueError('incorrect number of colors %s, expected %s' %
(colors.shape[0], self.n_vertices))
self._vertex_colors = colors
self._vertex_colors_indexed_by_faces = None
elif indexed == 'faces':
if colors.ndim != 3:
raise ValueError('colors must be 3D if indexed is "faces"')
if colors.shape[0] != self.n_faces:
raise ValueError('incorrect number of faces')
self._vertex_colors = None
self._vertex_colors_indexed_by_faces = colors
else:
raise ValueError('indexed must be None or "faces"')
|
set_vertex_colors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, colors, indexed=None):\n colors = _fix_colors(np.asarray(colors))\n if indexed is None:\n if colors.ndim != 2:\n raise ValueError('colors must be 2D if indexed is None')\n if colors.shape[0] != self.n_vertices:\n raise ValueError('incorrect number of colors %s, expected %s' %\n (colors.shape[0], self.n_vertices))\n self._vertex_colors = colors\n self._vertex_colors_indexed_by_faces = None\n elif indexed == 'faces':\n if colors.ndim != 3:\n raise ValueError('colors must be 3D if indexed is \"faces\"')\n if colors.shape[0] != self.n_faces:\n raise ValueError('incorrect number of faces')\n self._vertex_colors = None\n self._vertex_colors_indexed_by_faces = colors\n else:\n raise ValueError('indexed must be None or \"faces\"')\n",
"role": "user"
},
{
"content": "set_vertex_colors",
"role": "assistant"
}
] |
def x(self, indexed=None):
if indexed is None:
return self._face_colors
elif indexed == 'faces':
if (self._face_colors_indexed_by_faces is None and self.
_face_colors is not None):
Nf = self._face_colors.shape[0]
self._face_colors_indexed_by_faces = np.empty((Nf, 3, 4), dtype
=self._face_colors.dtype)
self._face_colors_indexed_by_faces[:] = self._face_colors.reshape(
Nf, 1, 4)
return self._face_colors_indexed_by_faces
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
|
get_face_colors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indexed=None):\n if indexed is None:\n return self._face_colors\n elif indexed == 'faces':\n if (self._face_colors_indexed_by_faces is None and self.\n _face_colors is not None):\n Nf = self._face_colors.shape[0]\n self._face_colors_indexed_by_faces = np.empty((Nf, 3, 4), dtype\n =self._face_colors.dtype)\n self._face_colors_indexed_by_faces[:] = self._face_colors.reshape(\n Nf, 1, 4)\n return self._face_colors_indexed_by_faces\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n",
"role": "user"
},
{
"content": "get_face_colors",
"role": "assistant"
}
] |
def x(self, colors, indexed=None):
colors = _fix_colors(colors)
if colors.shape[0] != self.n_faces:
raise ValueError('incorrect number of colors %s, expected %s' % (
colors.shape[0], self.n_faces))
if indexed is None:
if colors.ndim != 2:
raise ValueError('colors must be 2D if indexed is None')
self._face_colors = colors
self._face_colors_indexed_by_faces = None
elif indexed == 'faces':
if colors.ndim != 3:
raise ValueError('colors must be 3D if indexed is "faces"')
self._face_colors = None
self._face_colors_indexed_by_faces = colors
else:
raise ValueError('indexed must be None or "faces"')
|
set_face_colors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, colors, indexed=None):\n colors = _fix_colors(colors)\n if colors.shape[0] != self.n_faces:\n raise ValueError('incorrect number of colors %s, expected %s' % (\n colors.shape[0], self.n_faces))\n if indexed is None:\n if colors.ndim != 2:\n raise ValueError('colors must be 2D if indexed is None')\n self._face_colors = colors\n self._face_colors_indexed_by_faces = None\n elif indexed == 'faces':\n if colors.ndim != 3:\n raise ValueError('colors must be 3D if indexed is \"faces\"')\n self._face_colors = None\n self._face_colors_indexed_by_faces = colors\n else:\n raise ValueError('indexed must be None or \"faces\"')\n",
"role": "user"
},
{
"content": "set_face_colors",
"role": "assistant"
}
] |
def x(self):
if self._faces is not None:
return self._faces.shape[0]
elif self._vertices_indexed_by_faces is not None:
return self._vertices_indexed_by_faces.shape[0]
|
n_faces
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._faces is not None:\n return self._faces.shape[0]\n elif self._vertices_indexed_by_faces is not None:\n return self._vertices_indexed_by_faces.shape[0]\n",
"role": "user"
},
{
"content": "n_faces",
"role": "assistant"
}
] |
def x(self):
if self._vertex_faces is None:
self._vertex_faces = [[] for i in xrange(len(self.get_vertices()))]
for i in xrange(self._faces.shape[0]):
face = self._faces[i]
for ind in face:
self._vertex_faces[ind].append(i)
return self._vertex_faces
|
get_vertex_faces
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._vertex_faces is None:\n self._vertex_faces = [[] for i in xrange(len(self.get_vertices()))]\n for i in xrange(self._faces.shape[0]):\n face = self._faces[i]\n for ind in face:\n self._vertex_faces[ind].append(i)\n return self._vertex_faces\n",
"role": "user"
},
{
"content": "get_vertex_faces",
"role": "assistant"
}
] |
def x(self):
import pickle
if self._faces is not None:
names = ['_vertices', '_faces']
else:
names = ['_vertices_indexed_by_faces']
if self._vertex_colors is not None:
names.append('_vertex_colors')
elif self._vertex_colors_indexed_by_faces is not None:
names.append('_vertex_colors_indexed_by_faces')
if self._face_colors is not None:
names.append('_face_colors')
elif self._face_colors_indexed_by_faces is not None:
names.append('_face_colors_indexed_by_faces')
state = dict([(n, getattr(self, n)) for n in names])
return pickle.dumps(state)
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n import pickle\n if self._faces is not None:\n names = ['_vertices', '_faces']\n else:\n names = ['_vertices_indexed_by_faces']\n if self._vertex_colors is not None:\n names.append('_vertex_colors')\n elif self._vertex_colors_indexed_by_faces is not None:\n names.append('_vertex_colors_indexed_by_faces')\n if self._face_colors is not None:\n names.append('_face_colors')\n elif self._face_colors_indexed_by_faces is not None:\n names.append('_face_colors_indexed_by_faces')\n state = dict([(n, getattr(self, n)) for n in names])\n return pickle.dumps(state)\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(self, state):
import pickle
state = pickle.loads(state)
for k in state:
if isinstance(state[k], list):
state[k] = np.array(state[k])
setattr(self, k, state[k])
|
restore
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, state):\n import pickle\n state = pickle.loads(state)\n for k in state:\n if isinstance(state[k], list):\n state[k] = np.array(state[k])\n setattr(self, k, state[k])\n",
"role": "user"
},
{
"content": "restore",
"role": "assistant"
}
] |
def x(start=0.5, rot=1, gamma=1.0, reverse=True, nlev=256.0, minSat=1.2,
maxSat=1.2, minLight=0.0, maxLight=1.0, **kwargs):
if kwargs is not None:
if 'startHue' in kwargs:
start = (kwargs.get('startHue') / 360.0 - 1.0) * 3.0
if 'endHue' in kwargs:
rot = kwargs.get('endHue') / 360.0 - start / 3.0 - 1.0
if 'sat' in kwargs:
minSat = kwargs.get('sat')
maxSat = kwargs.get('sat')
fract = np.linspace(minLight, maxLight, nlev)
angle = 2.0 * pi * (start / 3.0 + rot * fract + 1.0)
fract = fract ** gamma
satar = np.linspace(minSat, maxSat, nlev)
amp = satar * fract * (1.0 - fract) / 2.0
red = fract + amp * (-0.14861 * np.cos(angle) + 1.78277 * np.sin(angle))
grn = fract + amp * (-0.29227 * np.cos(angle) - 0.90649 * np.sin(angle))
blu = fract + amp * (1.97294 * np.cos(angle))
red[np.where(red > 1.0)] = 1.0
grn[np.where(grn > 1.0)] = 1.0
blu[np.where(blu > 1.0)] = 1.0
red[np.where(red < 0.0)] = 0.0
grn[np.where(grn < 0.0)] = 0.0
blu[np.where(blu < 0.0)] = 0.0
if reverse is True:
red = red[::-1]
blu = blu[::-1]
grn = grn[::-1]
return np.array((red, grn, blu)).T
|
cubehelix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(start=0.5, rot=1, gamma=1.0, reverse=True, nlev=256.0, minSat=1.2,\n maxSat=1.2, minLight=0.0, maxLight=1.0, **kwargs):\n if kwargs is not None:\n if 'startHue' in kwargs:\n start = (kwargs.get('startHue') / 360.0 - 1.0) * 3.0\n if 'endHue' in kwargs:\n rot = kwargs.get('endHue') / 360.0 - start / 3.0 - 1.0\n if 'sat' in kwargs:\n minSat = kwargs.get('sat')\n maxSat = kwargs.get('sat')\n fract = np.linspace(minLight, maxLight, nlev)\n angle = 2.0 * pi * (start / 3.0 + rot * fract + 1.0)\n fract = fract ** gamma\n satar = np.linspace(minSat, maxSat, nlev)\n amp = satar * fract * (1.0 - fract) / 2.0\n red = fract + amp * (-0.14861 * np.cos(angle) + 1.78277 * np.sin(angle))\n grn = fract + amp * (-0.29227 * np.cos(angle) - 0.90649 * np.sin(angle))\n blu = fract + amp * (1.97294 * np.cos(angle))\n red[np.where(red > 1.0)] = 1.0\n grn[np.where(grn > 1.0)] = 1.0\n blu[np.where(blu > 1.0)] = 1.0\n red[np.where(red < 0.0)] = 0.0\n grn[np.where(grn < 0.0)] = 0.0\n blu[np.where(blu < 0.0)] = 0.0\n if reverse is True:\n red = red[::-1]\n blu = blu[::-1]\n grn = grn[::-1]\n return np.array((red, grn, blu)).T\n",
"role": "user"
},
{
"content": "cubehelix",
"role": "assistant"
}
] |
def x(color):
if color is None or colorConverter.to_rgba(color)[3] == 0:
return 'none'
else:
rgb = colorConverter.to_rgb(color)
return '#{0:02X}{1:02X}{2:02X}'.format(*(int(255 * c) for c in rgb))
|
color_to_hex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(color):\n if color is None or colorConverter.to_rgba(color)[3] == 0:\n return 'none'\n else:\n rgb = colorConverter.to_rgb(color)\n return '#{0:02X}{1:02X}{2:02X}'.format(*(int(255 * c) for c in rgb))\n",
"role": "user"
},
{
"content": "color_to_hex",
"role": "assistant"
}
] |
def x(input_dict):
return dict((key, val) for keys, val in input_dict.items() for key in keys)
|
many_to_one
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_dict):\n return dict((key, val) for keys, val in input_dict.items() for key in keys)\n",
"role": "user"
},
{
"content": "many_to_one",
"role": "assistant"
}
] |
def x(obj):
if obj.__dict__.get('_dashSeq', None) is not None:
return ','.join(map(str, obj._dashSeq))
else:
ls = obj.get_linestyle()
dasharray = LINESTYLES.get(ls, 'not found')
if dasharray == 'not found':
warnings.warn(
"line style '{0}' not understood: defaulting to solid line."
.format(ls))
dasharray = LINESTYLES['solid']
return dasharray
|
get_dasharray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n if obj.__dict__.get('_dashSeq', None) is not None:\n return ','.join(map(str, obj._dashSeq))\n else:\n ls = obj.get_linestyle()\n dasharray = LINESTYLES.get(ls, 'not found')\n if dasharray == 'not found':\n warnings.warn(\n \"line style '{0}' not understood: defaulting to solid line.\"\n .format(ls))\n dasharray = LINESTYLES['solid']\n return dasharray\n",
"role": "user"
},
{
"content": "get_dasharray",
"role": "assistant"
}
] |
def x(path, transform=None, simplify=False):
if transform is not None:
path = path.transformed(transform)
vc_tuples = [(vertices if path_code != Path.CLOSEPOLY else [],
PATH_DICT[path_code]) for vertices, path_code in path.iter_segments
(simplify=simplify)]
if not vc_tuples:
return np.zeros((0, 2)), []
else:
vertices, codes = zip(*vc_tuples)
vertices = np.array(list(itertools.chain(*vertices))).reshape(-1, 2)
return vertices, list(codes)
|
SVG_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, transform=None, simplify=False):\n if transform is not None:\n path = path.transformed(transform)\n vc_tuples = [(vertices if path_code != Path.CLOSEPOLY else [],\n PATH_DICT[path_code]) for vertices, path_code in path.iter_segments\n (simplify=simplify)]\n if not vc_tuples:\n return np.zeros((0, 2)), []\n else:\n vertices, codes = zip(*vc_tuples)\n vertices = np.array(list(itertools.chain(*vertices))).reshape(-1, 2)\n return vertices, list(codes)\n",
"role": "user"
},
{
"content": "SVG_path",
"role": "assistant"
}
] |
def x(path, fill=True):
style = {}
style['alpha'] = path.get_alpha()
if style['alpha'] is None:
style['alpha'] = 1
style['edgecolor'] = color_to_hex(path.get_edgecolor())
if fill:
style['facecolor'] = color_to_hex(path.get_facecolor())
else:
style['facecolor'] = 'none'
style['edgewidth'] = path.get_linewidth()
style['dasharray'] = get_dasharray(path)
style['zorder'] = path.get_zorder()
return style
|
get_path_style
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, fill=True):\n style = {}\n style['alpha'] = path.get_alpha()\n if style['alpha'] is None:\n style['alpha'] = 1\n style['edgecolor'] = color_to_hex(path.get_edgecolor())\n if fill:\n style['facecolor'] = color_to_hex(path.get_facecolor())\n else:\n style['facecolor'] = 'none'\n style['edgewidth'] = path.get_linewidth()\n style['dasharray'] = get_dasharray(path)\n style['zorder'] = path.get_zorder()\n return style\n",
"role": "user"
},
{
"content": "get_path_style",
"role": "assistant"
}
] |
def x(line):
style = {}
style['alpha'] = line.get_alpha()
if style['alpha'] is None:
style['alpha'] = 1
style['color'] = color_to_hex(line.get_color())
style['linewidth'] = line.get_linewidth()
style['dasharray'] = get_dasharray(line)
style['zorder'] = line.get_zorder()
return style
|
get_line_style
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line):\n style = {}\n style['alpha'] = line.get_alpha()\n if style['alpha'] is None:\n style['alpha'] = 1\n style['color'] = color_to_hex(line.get_color())\n style['linewidth'] = line.get_linewidth()\n style['dasharray'] = get_dasharray(line)\n style['zorder'] = line.get_zorder()\n return style\n",
"role": "user"
},
{
"content": "get_line_style",
"role": "assistant"
}
] |
def x(line):
style = {}
style['alpha'] = line.get_alpha()
if style['alpha'] is None:
style['alpha'] = 1
style['facecolor'] = color_to_hex(line.get_markerfacecolor())
style['edgecolor'] = color_to_hex(line.get_markeredgecolor())
style['edgewidth'] = line.get_markeredgewidth()
style['marker'] = line.get_marker()
markerstyle = MarkerStyle(line.get_marker())
markersize = line.get_markersize()
markertransform = markerstyle.get_transform() + Affine2D().scale(markersize
, -markersize)
style['markerpath'] = SVG_path(markerstyle.get_path(), markertransform)
style['markersize'] = markersize
style['zorder'] = line.get_zorder()
return style
|
get_marker_style
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line):\n style = {}\n style['alpha'] = line.get_alpha()\n if style['alpha'] is None:\n style['alpha'] = 1\n style['facecolor'] = color_to_hex(line.get_markerfacecolor())\n style['edgecolor'] = color_to_hex(line.get_markeredgecolor())\n style['edgewidth'] = line.get_markeredgewidth()\n style['marker'] = line.get_marker()\n markerstyle = MarkerStyle(line.get_marker())\n markersize = line.get_markersize()\n markertransform = markerstyle.get_transform() + Affine2D().scale(markersize\n , -markersize)\n style['markerpath'] = SVG_path(markerstyle.get_path(), markertransform)\n style['markersize'] = markersize\n style['zorder'] = line.get_zorder()\n return style\n",
"role": "user"
},
{
"content": "get_marker_style",
"role": "assistant"
}
] |
def x(text):
style = {}
style['alpha'] = text.get_alpha()
if style['alpha'] is None:
style['alpha'] = 1
style['fontsize'] = text.get_size()
style['color'] = color_to_hex(text.get_color())
style['halign'] = text.get_horizontalalignment()
style['valign'] = text.get_verticalalignment()
style['malign'] = text._multialignment
style['rotation'] = text.get_rotation()
style['zorder'] = text.get_zorder()
return style
|
get_text_style
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n style = {}\n style['alpha'] = text.get_alpha()\n if style['alpha'] is None:\n style['alpha'] = 1\n style['fontsize'] = text.get_size()\n style['color'] = color_to_hex(text.get_color())\n style['halign'] = text.get_horizontalalignment()\n style['valign'] = text.get_verticalalignment()\n style['malign'] = text._multialignment\n style['rotation'] = text.get_rotation()\n style['zorder'] = text.get_zorder()\n return style\n",
"role": "user"
},
{
"content": "get_text_style",
"role": "assistant"
}
] |
def x(axis):
props = {}
label1On = axis._major_tick_kw.get('label1On', True)
if isinstance(axis, matplotlib.axis.XAxis):
if label1On:
props['position'] = 'bottom'
else:
props['position'] = 'top'
elif isinstance(axis, matplotlib.axis.YAxis):
if label1On:
props['position'] = 'left'
else:
props['position'] = 'right'
else:
raise ValueError('{0} should be an Axis instance'.format(axis))
locator = axis.get_major_locator()
props['nticks'] = len(locator())
if isinstance(locator, ticker.FixedLocator):
props['tickvalues'] = list(locator())
else:
props['tickvalues'] = None
formatter = axis.get_major_formatter()
if isinstance(formatter, ticker.NullFormatter):
props['tickformat'] = ''
elif isinstance(formatter, ticker.FixedFormatter):
props['tickformat'] = list(formatter.seq)
elif not any(label.get_visible() for label in axis.get_ticklabels()):
props['tickformat'] = ''
else:
props['tickformat'] = None
props['scale'] = axis.get_scale()
labels = axis.get_ticklabels()
if labels:
props['fontsize'] = labels[0].get_fontsize()
else:
props['fontsize'] = None
props['grid'] = get_grid_style(axis)
return props
|
get_axis_properties
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(axis):\n props = {}\n label1On = axis._major_tick_kw.get('label1On', True)\n if isinstance(axis, matplotlib.axis.XAxis):\n if label1On:\n props['position'] = 'bottom'\n else:\n props['position'] = 'top'\n elif isinstance(axis, matplotlib.axis.YAxis):\n if label1On:\n props['position'] = 'left'\n else:\n props['position'] = 'right'\n else:\n raise ValueError('{0} should be an Axis instance'.format(axis))\n locator = axis.get_major_locator()\n props['nticks'] = len(locator())\n if isinstance(locator, ticker.FixedLocator):\n props['tickvalues'] = list(locator())\n else:\n props['tickvalues'] = None\n formatter = axis.get_major_formatter()\n if isinstance(formatter, ticker.NullFormatter):\n props['tickformat'] = ''\n elif isinstance(formatter, ticker.FixedFormatter):\n props['tickformat'] = list(formatter.seq)\n elif not any(label.get_visible() for label in axis.get_ticklabels()):\n props['tickformat'] = ''\n else:\n props['tickformat'] = None\n props['scale'] = axis.get_scale()\n labels = axis.get_ticklabels()\n if labels:\n props['fontsize'] = labels[0].get_fontsize()\n else:\n props['fontsize'] = None\n props['grid'] = get_grid_style(axis)\n return props\n",
"role": "user"
},
{
"content": "get_axis_properties",
"role": "assistant"
}
] |
def x(obj, skipContainers=False):
if hasattr(obj, 'get_children') and len(obj.get_children()) > 0:
for child in obj.get_children():
if not skipContainers:
yield child
for grandchild in iter_all_children(child, skipContainers):
yield grandchild
else:
yield obj
|
iter_all_children
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj, skipContainers=False):\n if hasattr(obj, 'get_children') and len(obj.get_children()) > 0:\n for child in obj.get_children():\n if not skipContainers:\n yield child\n for grandchild in iter_all_children(child, skipContainers):\n yield grandchild\n else:\n yield obj\n",
"role": "user"
},
{
"content": "iter_all_children",
"role": "assistant"
}
] |
def x(image):
ax = image.axes
binary_buffer = io.BytesIO()
lim = ax.axis()
ax.axis(image.get_extent())
image.write_png(binary_buffer)
ax.axis(lim)
binary_buffer.seek(0)
return base64.b64encode(binary_buffer.read()).decode('utf-8')
|
image_to_base64
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image):\n ax = image.axes\n binary_buffer = io.BytesIO()\n lim = ax.axis()\n ax.axis(image.get_extent())\n image.write_png(binary_buffer)\n ax.axis(lim)\n binary_buffer.seek(0)\n return base64.b64encode(binary_buffer.read()).decode('utf-8')\n",
"role": "user"
},
{
"content": "image_to_base64",
"role": "assistant"
}
] |
def x(enabled=True, app=None):
if enabled:
inputhook_manager.enable_gui('vispy', app)
else:
inputhook_manager.disable_gui()
|
set_interactive
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(enabled=True, app=None):\n if enabled:\n inputhook_manager.enable_gui('vispy', app)\n else:\n inputhook_manager.disable_gui()\n",
"role": "user"
},
{
"content": "set_interactive",
"role": "assistant"
}
] |
def x(self, font_scale):
new_sizes = (font_scale,) + self.size
if new_sizes == self._current_sizes:
return
self._n_rows = int(max(self.size[1] / (self._char_height * font_scale), 1))
self._n_cols = int(max(self.size[0] / (self._char_width * font_scale), 1))
self._bytes_012 = np.zeros((self._n_rows, self._n_cols, 3), np.float32)
self._bytes_345 = np.zeros((self._n_rows, self._n_cols, 3), np.float32)
pos = np.empty((self._n_rows, self._n_cols, 2), np.float32)
C, R = np.meshgrid(np.arange(self._n_cols), np.arange(self._n_rows))
x_off = 4.0
y_off = 4 - self.size[1] / font_scale
pos[..., 0] = x_off + self._char_width * C
pos[..., 1] = y_off + self._char_height * R
self._position = VertexBuffer(pos)
for ii, line in enumerate(self._text_lines[:self._n_rows]):
self._insert_text_buf(line, ii)
self._current_sizes = new_sizes
|
resize_buffers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, font_scale):\n new_sizes = (font_scale,) + self.size\n if new_sizes == self._current_sizes:\n return\n self._n_rows = int(max(self.size[1] / (self._char_height * font_scale), 1))\n self._n_cols = int(max(self.size[0] / (self._char_width * font_scale), 1))\n self._bytes_012 = np.zeros((self._n_rows, self._n_cols, 3), np.float32)\n self._bytes_345 = np.zeros((self._n_rows, self._n_cols, 3), np.float32)\n pos = np.empty((self._n_rows, self._n_cols, 2), np.float32)\n C, R = np.meshgrid(np.arange(self._n_cols), np.arange(self._n_rows))\n x_off = 4.0\n y_off = 4 - self.size[1] / font_scale\n pos[..., 0] = x_off + self._char_width * C\n pos[..., 1] = y_off + self._char_height * R\n self._position = VertexBuffer(pos)\n for ii, line in enumerate(self._text_lines[:self._n_rows]):\n self._insert_text_buf(line, ii)\n self._current_sizes = new_sizes\n",
"role": "user"
},
{
"content": "resize_buffers",
"role": "assistant"
}
] |
def x(self):
if hasattr(self, '_bytes_012'):
self._bytes_012.fill(0)
self._bytes_345.fill(0)
self._text_lines = [] * self._n_rows
self._pending_writes = []
|
clear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if hasattr(self, '_bytes_012'):\n self._bytes_012.fill(0)\n self._bytes_345.fill(0)\n self._text_lines = [] * self._n_rows\n self._pending_writes = []\n",
"role": "user"
},
{
"content": "clear",
"role": "assistant"
}
] |
def x(self, text='', wrap=True):
if not isinstance(text, string_types):
raise TypeError('text must be a string')
text = text.encode('utf-8').decode('ascii', errors='replace')
self._pending_writes.append((text, wrap))
self.update()
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text='', wrap=True):\n if not isinstance(text, string_types):\n raise TypeError('text must be a string')\n text = text.encode('utf-8').decode('ascii', errors='replace')\n self._pending_writes.append((text, wrap))\n self.update()\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self):
for text, wrap in self._pending_writes:
text = text[-self._n_cols * self._n_rows:]
text = text.split('\n')
text = [(t if len(t) > 0 else '') for t in text]
nr, nc = self._n_rows, self._n_cols
for para in text:
para = para[:nc] if not wrap else para
lines = [para[ii:ii + nc] for ii in range(0, len(para), nc)]
lines = [''] if len(lines) == 0 else lines
for line in lines:
self._text_lines.insert(0, line)
self._text_lines = self._text_lines[:nr]
self._bytes_012[1:] = self._bytes_012[:-1]
self._bytes_345[1:] = self._bytes_345[:-1]
self._insert_text_buf(line, 0)
self._pending_writes = []
|
do_pending_writes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for text, wrap in self._pending_writes:\n text = text[-self._n_cols * self._n_rows:]\n text = text.split('\\n')\n text = [(t if len(t) > 0 else '') for t in text]\n nr, nc = self._n_rows, self._n_cols\n for para in text:\n para = para[:nc] if not wrap else para\n lines = [para[ii:ii + nc] for ii in range(0, len(para), nc)]\n lines = [''] if len(lines) == 0 else lines\n for line in lines:\n self._text_lines.insert(0, line)\n self._text_lines = self._text_lines[:nr]\n self._bytes_012[1:] = self._bytes_012[:-1]\n self._bytes_345[1:] = self._bytes_345[:-1]\n self._insert_text_buf(line, 0)\n self._pending_writes = []\n",
"role": "user"
},
{
"content": "do_pending_writes",
"role": "assistant"
}
] |
def x(self, line, idx):
self._bytes_012[idx] = 0
self._bytes_345[idx] = 0
I = np.array([(ord(c) - 32) for c in line[:self._n_cols]])
I = np.clip(I, 0, len(__font_6x8__) - 1)
if len(I) > 0:
b = __font_6x8__[I]
self._bytes_012[idx, :len(I)] = b[:, :3]
self._bytes_345[idx, :len(I)] = b[:, 3:]
|
insert_text_buf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line, idx):\n self._bytes_012[idx] = 0\n self._bytes_345[idx] = 0\n I = np.array([(ord(c) - 32) for c in line[:self._n_cols]])\n I = np.clip(I, 0, len(__font_6x8__) - 1)\n if len(I) > 0:\n b = __font_6x8__[I]\n self._bytes_012[idx, :len(I)] = b[:, :3]\n self._bytes_345[idx, :len(I)] = b[:, 3:]\n",
"role": "user"
},
{
"content": "insert_text_buf",
"role": "assistant"
}
] |
def x(self, str1, str2):
if str2 != self._replacements.get(str1, None):
self._replacements[str1] = str2
self.changed(code_changed=True)
|
replace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, str1, str2):\n if str2 != self._replacements.get(str1, None):\n self._replacements[str1] = str2\n self.changed(code_changed=True)\n",
"role": "user"
},
{
"content": "replace",
"role": "assistant"
}
] |
def x(self):
template_vars = set()
for var in parsing.find_template_variables(self._code):
var = var.lstrip('$')
if var == self.name:
continue
if var in ('pre', 'post'):
raise ValueError('GLSL uses reserved template variable $%s' % var)
template_vars.add(var)
return template_vars
|
parse_template_vars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n template_vars = set()\n for var in parsing.find_template_variables(self._code):\n var = var.lstrip('$')\n if var == self.name:\n continue\n if var in ('pre', 'post'):\n raise ValueError('GLSL uses reserved template variable $%s' % var)\n template_vars.add(var)\n return template_vars\n",
"role": "user"
},
{
"content": "parse_template_vars",
"role": "assistant"
}
] |
def x(self, names):
code = self._code
fname = names[self]
code = code.replace(' ' + self.name + '(', ' ' + fname + '(')
for key, val in self._replacements.items():
code = code.replace(key, val)
post_lines = []
for key, val in self._assignments.items():
if isinstance(key, Variable):
key = names[key]
if isinstance(val, ShaderObject):
val = val.expression(names)
line = ' %s = %s;' % (key, val)
post_lines.append(line)
if 'post' in self._expressions:
post_lines.append(' $post')
post_text = '\n'.join(post_lines)
if post_text:
post_text = '\n' + post_text + '\n'
code = code.rpartition('}')
code = code[0] + post_text + code[1] + code[2]
if 'pre' in self._expressions:
m = re.search(fname + '\\s*\\([^{]*\\)\\s*{', code)
if m is None:
raise RuntimeError("Cound not find beginning of function '%s'" %
fname)
ind = m.span()[1]
code = code[:ind] + '\n $pre\n' + code[ind:]
for key, val in self._expressions.items():
val = val.expression(names)
search = '\\$' + key + '($|[^a-zA-Z0-9_])'
code = re.sub(search, val + '\\1', code)
if '$' in code:
v = parsing.find_template_variables(code)
logger.warning(
'Unsubstituted placeholders in code: %s\n replacements made: %s',
v, list(self._expressions.keys()))
return code + '\n'
|
get_replaced_code
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, names):\n code = self._code\n fname = names[self]\n code = code.replace(' ' + self.name + '(', ' ' + fname + '(')\n for key, val in self._replacements.items():\n code = code.replace(key, val)\n post_lines = []\n for key, val in self._assignments.items():\n if isinstance(key, Variable):\n key = names[key]\n if isinstance(val, ShaderObject):\n val = val.expression(names)\n line = ' %s = %s;' % (key, val)\n post_lines.append(line)\n if 'post' in self._expressions:\n post_lines.append(' $post')\n post_text = '\\n'.join(post_lines)\n if post_text:\n post_text = '\\n' + post_text + '\\n'\n code = code.rpartition('}')\n code = code[0] + post_text + code[1] + code[2]\n if 'pre' in self._expressions:\n m = re.search(fname + '\\\\s*\\\\([^{]*\\\\)\\\\s*{', code)\n if m is None:\n raise RuntimeError(\"Cound not find beginning of function '%s'\" %\n fname)\n ind = m.span()[1]\n code = code[:ind] + '\\n $pre\\n' + code[ind:]\n for key, val in self._expressions.items():\n val = val.expression(names)\n search = '\\\\$' + key + '($|[^a-zA-Z0-9_])'\n code = re.sub(search, val + '\\\\1', code)\n if '$' in code:\n v = parsing.find_template_variables(code)\n logger.warning(\n 'Unsubstituted placeholders in code: %s\\n replacements made: %s',\n v, list(self._expressions.keys()))\n return code + '\\n'\n",
"role": "user"
},
{
"content": "get_replaced_code",
"role": "assistant"
}
] |
def x(self, code):
lines = code.split('\n')
min_indent = 100
for line in lines:
if line.strip() != '':
indent = len(line) - len(line.lstrip())
min_indent = min(indent, min_indent)
if min_indent > 0:
lines = [line[min_indent:] for line in lines]
code = '\n'.join(lines)
return code
|
clean_code
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, code):\n lines = code.split('\\n')\n min_indent = 100\n for line in lines:\n if line.strip() != '':\n indent = len(line) - len(line.lstrip())\n min_indent = min(indent, min_indent)\n if min_indent > 0:\n lines = [line[min_indent:] for line in lines]\n code = '\\n'.join(lines)\n return code\n",
"role": "user"
},
{
"content": "clean_code",
"role": "assistant"
}
] |
def x(self, var):
chain = FunctionChain(var, [])
self._chains[var] = chain
self[var] = chain
|
add_chain
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, var):\n chain = FunctionChain(var, [])\n self._chains[var] = chain\n self[var] = chain\n",
"role": "user"
},
{
"content": "add_chain",
"role": "assistant"
}
] |
def x(self, function, update=True):
self._funcs.append(function)
self._add_dep(function)
if update:
self._update()
|
append
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, function, update=True):\n self._funcs.append(function)\n self._add_dep(function)\n if update:\n self._update()\n",
"role": "user"
},
{
"content": "append",
"role": "assistant"
}
] |
def x(self, index, function, update=True):
self._funcs.insert(index, function)
self._add_dep(function)
if update:
self._update()
|
insert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index, function, update=True):\n self._funcs.insert(index, function)\n self._add_dep(function)\n if update:\n self._update()\n",
"role": "user"
},
{
"content": "insert",
"role": "assistant"
}
] |
def x(self, function, update=True):
self._funcs.remove(function)
self._remove_dep(function)
if update:
self._update()
|
remove
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, function, update=True):\n self._funcs.remove(function)\n self._remove_dep(function)\n if update:\n self._update()\n",
"role": "user"
},
{
"content": "remove",
"role": "assistant"
}
] |
def x(self, item, position=5):
if item in self.items:
return
self.items[item] = position
self._add_dep(item)
self.order = None
self.changed(code_changed=True)
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, item, position=5):\n if item in self.items:\n return\n self.items[item] = position\n self._add_dep(item)\n self.order = None\n self.changed(code_changed=True)\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self, item):
self.items.pop(item)
self._remove_dep(item)
self.order = None
self.changed(code_changed=True)
|
remove
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, item):\n self.items.pop(item)\n self._remove_dep(item)\n self.order = None\n self.changed(code_changed=True)\n",
"role": "user"
},
{
"content": "remove",
"role": "assistant"
}
] |
def x(self):
if self._faces is None:
if self._vertices is None:
return None
self.triangulate()
return self._faces
|
faces
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._faces is None:\n if self._vertices is None:\n return None\n self.triangulate()\n return self._faces\n",
"role": "user"
},
{
"content": "faces",
"role": "assistant"
}
] |
def x(self):
if self._faces is None:
if self._vertices is None:
return None
self.triangulate()
return self._vertices
|
vertices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._faces is None:\n if self._vertices is None:\n return None\n self.triangulate()\n return self._vertices\n",
"role": "user"
},
{
"content": "vertices",
"role": "assistant"
}
] |
def x(self):
if self._faces is None:
if self._vertices is None:
return None
self.triangulate()
return self._convex_hull
|
convex_hull
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._faces is None:\n if self._vertices is None:\n return None\n self.triangulate()\n return self._convex_hull\n",
"role": "user"
},
{
"content": "convex_hull",
"role": "assistant"
}
] |
def x(self):
npts = self._vertices.shape[0]
if np.any(self._vertices[0] != self._vertices[1]):
edges = np.empty((npts, 2), dtype=np.uint32)
edges[:, 0] = np.arange(npts)
edges[:, 1] = edges[:, 0] + 1
edges[-1, 1] = 0
else:
edges = np.empty((npts - 1, 2), dtype=np.uint32)
edges[:, 0] = np.arange(npts)
edges[:, 1] = edges[:, 0] + 1
tri = Triangulation(self._vertices, edges)
tri.triangulate()
return tri.pts, tri.tris
|
triangulate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n npts = self._vertices.shape[0]\n if np.any(self._vertices[0] != self._vertices[1]):\n edges = np.empty((npts, 2), dtype=np.uint32)\n edges[:, 0] = np.arange(npts)\n edges[:, 1] = edges[:, 0] + 1\n edges[-1, 1] = 0\n else:\n edges = np.empty((npts - 1, 2), dtype=np.uint32)\n edges[:, 0] = np.arange(npts)\n edges[:, 1] = edges[:, 0] + 1\n tri = Triangulation(self._vertices, edges)\n tri.triangulate()\n return tri.pts, tri.tris\n",
"role": "user"
},
{
"content": "triangulate",
"role": "assistant"
}
] |
def x(name):
if op.exists(name):
return name
path = op.dirname(__file__) or '.'
paths = [path] + config['include_path']
for path in paths:
filename = op.abspath(op.join(path, name))
if op.exists(filename):
return filename
for d in os.listdir(path):
fullpath = op.abspath(op.join(path, d))
if op.isdir(fullpath):
filename = op.abspath(op.join(fullpath, name))
if op.exists(filename):
return filename
return None
|
find
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n if op.exists(name):\n return name\n path = op.dirname(__file__) or '.'\n paths = [path] + config['include_path']\n for path in paths:\n filename = op.abspath(op.join(path, name))\n if op.exists(filename):\n return filename\n for d in os.listdir(path):\n fullpath = op.abspath(op.join(path, d))\n if op.isdir(fullpath):\n filename = op.abspath(op.join(fullpath, name))\n if op.exists(filename):\n return filename\n return None\n",
"role": "user"
},
{
"content": "find",
"role": "assistant"
}
] |
def x(name):
filename = find(name)
if filename is None:
raise RuntimeError('Could not find %s' % name)
with open(filename) as fid:
return fid.read()
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n filename = find(name)\n if filename is None:\n raise RuntimeError('Could not find %s' % name)\n with open(filename) as fid:\n return fid.read()\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(func, args, times=7, sleep_t=0.5):
while times > 0:
try:
return func(*args)
except Exception as e:
times -= 1
logger.debug('expect failed - attempts left: %d' % times)
time.sleep(sleep_t)
if times == 0:
raise exceptions.BaseExc(e)
|
expect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, args, times=7, sleep_t=0.5):\n while times > 0:\n try:\n return func(*args)\n except Exception as e:\n times -= 1\n logger.debug('expect failed - attempts left: %d' % times)\n time.sleep(sleep_t)\n if times == 0:\n raise exceptions.BaseExc(e)\n",
"role": "user"
},
{
"content": "expect",
"role": "assistant"
}
] |
def x(string):
if not isinstance(string, type('')):
raise ValueError(type(''))
try:
string = re.sub('[^a-zA-Z0-9\\.\\-]', '', string)
number = re.findall('[-+]?\\d*\\.\\d+|[-+]?\\d+', string)
return float(number[0])
except Exception as e:
logger = logging.getLogger('tradingAPI.utils.num')
logger.debug('number not found in %s' % string)
logger.debug(e)
return None
|
num
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string):\n if not isinstance(string, type('')):\n raise ValueError(type(''))\n try:\n string = re.sub('[^a-zA-Z0-9\\\\.\\\\-]', '', string)\n number = re.findall('[-+]?\\\\d*\\\\.\\\\d+|[-+]?\\\\d+', string)\n return float(number[0])\n except Exception as e:\n logger = logging.getLogger('tradingAPI.utils.num')\n logger.debug('number not found in %s' % string)\n logger.debug(e)\n return None\n",
"role": "user"
},
{
"content": "num",
"role": "assistant"
}
] |
def x(number):
n = str(float(number))
mult, submult = n.split('.')
if float(submult) != 0:
unit = '0.' + (len(submult) - 1) * '0' + '1'
return float(unit)
else:
return float(1)
|
get_number_unit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(number):\n n = str(float(number))\n mult, submult = n.split('.')\n if float(submult) != 0:\n unit = '0.' + (len(submult) - 1) * '0' + '1'\n return float(unit)\n else:\n return float(1)\n",
"role": "user"
},
{
"content": "get_number_unit",
"role": "assistant"
}
] |
def x(mov=None, api=None, name=None):
if mov is None and api is None:
logger.error('need at least one of those')
raise ValueError()
elif mov is not None and api is not None:
logger.error('mov and api are exclusive')
raise ValueError()
if api is not None:
if name is None:
logger.error('need a name')
raise ValueError()
mov = api.new_mov(name)
mov.open()
if mov is not None:
mov._check_open()
try:
logger.debug(len(Glob().theCollector.collection))
pip = Glob().theCollector.collection['pip']
if name is not None:
pip_res = pip[name]
elif mov is not None:
pip_res = pip[mov.product]
logger.debug('pip found in the collection')
return pip_res
except KeyError:
logger.debug('pip not found in the collection')
records = []
intervals = [10, 20, 30]
def x(interval=10):
timeout = time.time() + interval
while time.time() < timeout:
records.append(mov.get_price())
time.sleep(0.5)
for interval in intervals:
_check_price(interval)
if min(records) == max(records):
logger.debug('no variation in %d seconds' % interval)
if interval == intervals[-1]:
raise TimeoutError('no variation')
else:
break
for price in records:
if 'best_price' not in locals():
best_price = price
if len(str(price)) > len(str(best_price)):
logger.debug('found new best_price %f' % price)
best_price = price
pip = get_number_unit(best_price)
Glob().pipHandler.add_val({mov.product: pip})
return pip
|
get_pip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mov=None, api=None, name=None):\n if mov is None and api is None:\n logger.error('need at least one of those')\n raise ValueError()\n elif mov is not None and api is not None:\n logger.error('mov and api are exclusive')\n raise ValueError()\n if api is not None:\n if name is None:\n logger.error('need a name')\n raise ValueError()\n mov = api.new_mov(name)\n mov.open()\n if mov is not None:\n mov._check_open()\n try:\n logger.debug(len(Glob().theCollector.collection))\n pip = Glob().theCollector.collection['pip']\n if name is not None:\n pip_res = pip[name]\n elif mov is not None:\n pip_res = pip[mov.product]\n logger.debug('pip found in the collection')\n return pip_res\n except KeyError:\n logger.debug('pip not found in the collection')\n records = []\n intervals = [10, 20, 30]\n\n def x(interval=10):\n timeout = time.time() + interval\n while time.time() < timeout:\n records.append(mov.get_price())\n time.sleep(0.5)\n for interval in intervals:\n _check_price(interval)\n if min(records) == max(records):\n logger.debug('no variation in %d seconds' % interval)\n if interval == intervals[-1]:\n raise TimeoutError('no variation')\n else:\n break\n for price in records:\n if 'best_price' not in locals():\n best_price = price\n if len(str(price)) > len(str(best_price)):\n logger.debug('found new best_price %f' % price)\n best_price = price\n pip = get_number_unit(best_price)\n Glob().pipHandler.add_val({mov.product: pip})\n return pip\n",
"role": "user"
},
{
"content": "get_pip",
"role": "assistant"
}
] |
def x(self):
return self._items[:self._count, 1] - self._items[:self._count, 0]
|
itemsize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self._items[:self._count, 1] - self._items[:self._count, 0]\n",
"role": "user"
},
{
"content": "itemsize",
"role": "assistant"
}
] |
def x(self, capacity):
if capacity >= self._data.size:
capacity = int(2 ** np.ceil(np.log2(capacity)))
self._data = np.resize(self._data, capacity)
|
reserve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, capacity):\n if capacity >= self._data.size:\n capacity = int(2 ** np.ceil(np.log2(capacity)))\n self._data = np.resize(self._data, capacity)\n",
"role": "user"
},
{
"content": "reserve",
"role": "assistant"
}
] |
def x(self, index, data, itemsize=None):
if not self._sizeable:
raise AttributeError('List is not sizeable')
if isinstance(data, (list, tuple)) and isinstance(data[0], (list, tuple)):
itemsize = [len(l) for l in data]
data = [item for sublist in data for item in sublist]
data = np.array(data, copy=False).ravel()
size = data.size
if itemsize is not None:
if isinstance(itemsize, int):
if size % itemsize != 0:
raise ValueError('Cannot partition data as requested')
_count = size // itemsize
_itemsize = np.ones(_count, dtype=int) * (size // _count)
else:
_itemsize = np.array(itemsize, copy=False)
_count = len(itemsize)
if _itemsize.sum() != size:
raise ValueError('Cannot partition data as requested')
else:
_count = 1
if self._size + size >= self._data.size:
capacity = int(2 ** np.ceil(np.log2(self._size + size)))
self._data = np.resize(self._data, capacity)
if self._count + _count >= len(self._items):
capacity = int(2 ** np.ceil(np.log2(self._count + _count)))
self._items = np.resize(self._items, (capacity, 2))
if index < 0:
index += len(self)
if index < 0 or index > len(self):
raise IndexError('List insertion index out of range')
if index < self._count:
istart = index
dstart = self._items[istart][0]
dstop = self._items[istart][1]
Z = self._data[dstart:self._size]
self._data[dstart + size:self._size + size] = Z
I = self._items[istart:self._count] + size
self._items[istart + _count:self._count + _count] = I
else:
dstart = self._size
istart = self._count
if _count == 1:
self._data[dstart:dstart + size] = data
self._size += size
self._items[istart][0] = dstart
self._items[istart][1] = dstart + size
self._count += 1
else:
dstop = dstart + size
self._data[dstart:dstop] = data
self._size += size
items = np.ones((_count, 2), int) * dstart
C = _itemsize.cumsum()
items[1:, 0] += C[:-1]
items[0:, 1] += C
istop = istart + _count
self._items[istart:istop] = items
self._count += _count
|
insert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index, data, itemsize=None):\n if not self._sizeable:\n raise AttributeError('List is not sizeable')\n if isinstance(data, (list, tuple)) and isinstance(data[0], (list, tuple)):\n itemsize = [len(l) for l in data]\n data = [item for sublist in data for item in sublist]\n data = np.array(data, copy=False).ravel()\n size = data.size\n if itemsize is not None:\n if isinstance(itemsize, int):\n if size % itemsize != 0:\n raise ValueError('Cannot partition data as requested')\n _count = size // itemsize\n _itemsize = np.ones(_count, dtype=int) * (size // _count)\n else:\n _itemsize = np.array(itemsize, copy=False)\n _count = len(itemsize)\n if _itemsize.sum() != size:\n raise ValueError('Cannot partition data as requested')\n else:\n _count = 1\n if self._size + size >= self._data.size:\n capacity = int(2 ** np.ceil(np.log2(self._size + size)))\n self._data = np.resize(self._data, capacity)\n if self._count + _count >= len(self._items):\n capacity = int(2 ** np.ceil(np.log2(self._count + _count)))\n self._items = np.resize(self._items, (capacity, 2))\n if index < 0:\n index += len(self)\n if index < 0 or index > len(self):\n raise IndexError('List insertion index out of range')\n if index < self._count:\n istart = index\n dstart = self._items[istart][0]\n dstop = self._items[istart][1]\n Z = self._data[dstart:self._size]\n self._data[dstart + size:self._size + size] = Z\n I = self._items[istart:self._count] + size\n self._items[istart + _count:self._count + _count] = I\n else:\n dstart = self._size\n istart = self._count\n if _count == 1:\n self._data[dstart:dstart + size] = data\n self._size += size\n self._items[istart][0] = dstart\n self._items[istart][1] = dstart + size\n self._count += 1\n else:\n dstop = dstart + size\n self._data[dstart:dstop] = data\n self._size += size\n items = np.ones((_count, 2), int) * dstart\n C = _itemsize.cumsum()\n items[1:, 0] += C[:-1]\n items[0:, 1] += C\n istop = istart + _count\n self._items[istart:istop] = items\n self._count += _count\n",
"role": "user"
},
{
"content": "insert",
"role": "assistant"
}
] |
def x(self, data, itemsize=None):
self.insert(len(self), data, itemsize)
|
append
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, itemsize=None):\n self.insert(len(self), data, itemsize)\n",
"role": "user"
},
{
"content": "append",
"role": "assistant"
}
] |
def x(func, bounds=None, nvar=None, args=(), disp=False, eps=0.0001, maxf=
20000, maxT=6000, algmethod=0, fglobal=-1e+100, fglper=0.01, volper=-
1.0, sigmaper=-1.0, **kwargs):
if bounds is None:
l = np.zeros(nvar, dtype=np.float64)
u = np.ones(nvar, dtype=np.float64)
else:
bounds = np.asarray(bounds)
l = bounds[:, 0]
u = bounds[:, 1]
def x(x, iidata, ddata, cdata, n, iisize, idsize, icsize):
try:
return func(x, *args), 0
except:
return np.nan, 1
iidata = np.ones(0, dtype=np.int32)
ddata = np.ones(0, dtype=np.float64)
cdata = np.ones([0, 40], dtype=np.uint8)
x, fun, ierror = direct(_objective_wrap, eps, maxf, maxT, l, u,
algmethod, 'dummylogfile', fglobal, fglper, volper, sigmaper,
iidata, ddata, cdata, disp)
return OptimizeResult(x=x, fun=fun, status=ierror, success=ierror > 0,
message=SUCCESS_MESSAGES[ierror - 1] if ierror > 0 else
ERROR_MESSAGES[abs(ierror) - 1])
|
minimize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, bounds=None, nvar=None, args=(), disp=False, eps=0.0001, maxf=\n 20000, maxT=6000, algmethod=0, fglobal=-1e+100, fglper=0.01, volper=-\n 1.0, sigmaper=-1.0, **kwargs):\n if bounds is None:\n l = np.zeros(nvar, dtype=np.float64)\n u = np.ones(nvar, dtype=np.float64)\n else:\n bounds = np.asarray(bounds)\n l = bounds[:, 0]\n u = bounds[:, 1]\n\n def x(x, iidata, ddata, cdata, n, iisize, idsize, icsize):\n try:\n return func(x, *args), 0\n except:\n return np.nan, 1\n iidata = np.ones(0, dtype=np.int32)\n ddata = np.ones(0, dtype=np.float64)\n cdata = np.ones([0, 40], dtype=np.uint8)\n x, fun, ierror = direct(_objective_wrap, eps, maxf, maxT, l, u,\n algmethod, 'dummylogfile', fglobal, fglper, volper, sigmaper,\n iidata, ddata, cdata, disp)\n return OptimizeResult(x=x, fun=fun, status=ierror, success=ierror > 0,\n message=SUCCESS_MESSAGES[ierror - 1] if ierror > 0 else\n ERROR_MESSAGES[abs(ierror) - 1])\n",
"role": "user"
},
{
"content": "minimize",
"role": "assistant"
}
] |
def x(raise_error=True):
try:
user32.SetProcessDPIAware()
except AttributeError:
pass
dc = user32.GetDC(0)
h_size = gdi32.GetDeviceCaps(dc, HORZSIZE)
v_size = gdi32.GetDeviceCaps(dc, VERTSIZE)
h_res = gdi32.GetDeviceCaps(dc, HORZRES)
v_res = gdi32.GetDeviceCaps(dc, VERTRES)
user32.ReleaseDC(None, dc)
return (h_res / float(h_size) + v_res / float(v_size)) * 0.5 * 25.4
|
get_dpi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(raise_error=True):\n try:\n user32.SetProcessDPIAware()\n except AttributeError:\n pass\n dc = user32.GetDC(0)\n h_size = gdi32.GetDeviceCaps(dc, HORZSIZE)\n v_size = gdi32.GetDeviceCaps(dc, VERTSIZE)\n h_res = gdi32.GetDeviceCaps(dc, HORZRES)\n v_res = gdi32.GetDeviceCaps(dc, VERTRES)\n user32.ReleaseDC(None, dc)\n return (h_res / float(h_size) + v_res / float(v_size)) * 0.5 * 25.4\n",
"role": "user"
},
{
"content": "get_dpi",
"role": "assistant"
}
] |
def x(self):
if self._need_build:
self._build()
self._need_build = False
self.update_variables()
|
build_if_needed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._need_build:\n self._build()\n self._need_build = False\n self.update_variables()\n",
"role": "user"
},
{
"content": "build_if_needed",
"role": "assistant"
}
] |
def x(a, b, c, d, curvefn=None, normfn=None):
if not curvefn:
curvefn = lambda x: x
def x(n):
r = 1.0 * (n - a) / (b - a)
out = curvefn(r) * (d - c) + c
if not normfn:
return out
return normfn(out)
return map
|
nmap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, c, d, curvefn=None, normfn=None):\n if not curvefn:\n curvefn = lambda x: x\n\n def x(n):\n r = 1.0 * (n - a) / (b - a)\n out = curvefn(r) * (d - c) + c\n if not normfn:\n return out\n return normfn(out)\n return map\n",
"role": "user"
},
{
"content": "nmap",
"role": "assistant"
}
] |
def x(self, view):
if view is self._linked_view:
return
if self._linked_view is not None:
self._linked_view.scene.transform.changed.disconnect(self._view_changed
)
self._linked_view = view
view.scene.transform.changed.connect(self._view_changed)
self._view_changed()
|
link_view
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, view):\n if view is self._linked_view:\n return\n if self._linked_view is not None:\n self._linked_view.scene.transform.changed.disconnect(self._view_changed\n )\n self._linked_view = view\n view.scene.transform.changed.connect(self._view_changed)\n self._view_changed()\n",
"role": "user"
},
{
"content": "link_view",
"role": "assistant"
}
] |
def x(self, event=None):
tr = self.node_transform(self._linked_view.scene)
p1, p2 = tr.map(self._axis_ends())
if self.orientation in ('left', 'right'):
self.axis.domain = p1[1], p2[1]
else:
self.axis.domain = p1[0], p2[0]
|
view_changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event=None):\n tr = self.node_transform(self._linked_view.scene)\n p1, p2 = tr.map(self._axis_ends())\n if self.orientation in ('left', 'right'):\n self.axis.domain = p1[1], p2[1]\n else:\n self.axis.domain = p1[0], p2[0]\n",
"role": "user"
},
{
"content": "view_changed",
"role": "assistant"
}
] |
def x(self, event):
self.mouse_pos = event.pos[:2]
if event.type == 'mouse_wheel':
m = self.mag_target
m *= 1.2 ** event.delta[1]
m = m if m > 1 else 1
self.mag_target = m
else:
super(MagnifyCamera, self).viewbox_mouse_event(event)
if not self.timer.running:
self.timer.start()
self._update_transform()
|
viewbox_mouse_event
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n self.mouse_pos = event.pos[:2]\n if event.type == 'mouse_wheel':\n m = self.mag_target\n m *= 1.2 ** event.delta[1]\n m = m if m > 1 else 1\n self.mag_target = m\n else:\n super(MagnifyCamera, self).viewbox_mouse_event(event)\n if not self.timer.running:\n self.timer.start()\n self._update_transform()\n",
"role": "user"
},
{
"content": "viewbox_mouse_event",
"role": "assistant"
}
] |
def x(self, event=None):
k = np.clip(100.0 / self.mag.mag, 10, 100)
s = 10 ** (-k * event.dt)
c = np.array(self.mag.center)
c1 = c * s + self.mouse_pos * (1 - s)
m = self.mag.mag * s + self.mag_target * (1 - s)
if np.all(np.abs((c - c1) / c1) < 1e-05) and np.abs(np.log(m / self.mag
.mag)) < 0.001:
self.timer.stop()
self.mag.center = c1
self.mag.mag = m
self._update_transform()
|
on_timer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event=None):\n k = np.clip(100.0 / self.mag.mag, 10, 100)\n s = 10 ** (-k * event.dt)\n c = np.array(self.mag.center)\n c1 = c * s + self.mouse_pos * (1 - s)\n m = self.mag.mag * s + self.mag_target * (1 - s)\n if np.all(np.abs((c - c1) / c1) < 1e-05) and np.abs(np.log(m / self.mag\n .mag)) < 0.001:\n self.timer.stop()\n self.mag.center = c1\n self.mag.mag = m\n self._update_transform()\n",
"role": "user"
},
{
"content": "on_timer",
"role": "assistant"
}
] |
def x(target, data, usage):
if isinstance(data, int):
size = data
data = ctypes.c_voidp(0)
else:
if not data.flags['C_CONTIGUOUS'] or not data.flags['ALIGNED']:
data = data.copy('C')
data_ = data
size = data_.nbytes
data = data_.ctypes.data
try:
nativefunc = glBufferData._native
except AttributeError:
nativefunc = glBufferData._native = _get_gl_func('glBufferData',
None, (ctypes.c_uint, ctypes.c_int, ctypes.c_void_p, ctypes.c_uint)
)
res = nativefunc(target, size, data, usage)
|
glBufferData
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(target, data, usage):\n if isinstance(data, int):\n size = data\n data = ctypes.c_voidp(0)\n else:\n if not data.flags['C_CONTIGUOUS'] or not data.flags['ALIGNED']:\n data = data.copy('C')\n data_ = data\n size = data_.nbytes\n data = data_.ctypes.data\n try:\n nativefunc = glBufferData._native\n except AttributeError:\n nativefunc = glBufferData._native = _get_gl_func('glBufferData',\n None, (ctypes.c_uint, ctypes.c_int, ctypes.c_void_p, ctypes.c_uint)\n )\n res = nativefunc(target, size, data, usage)\n",
"role": "user"
},
{
"content": "glBufferData",
"role": "assistant"
}
] |
def x(n):
n -= 1
shift = 1
while n + 1 & n:
n |= n >> shift
shift *= 2
return max(4, n + 1)
|
next_power_of_2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n):\n n -= 1\n shift = 1\n while n + 1 & n:\n n |= n >> shift\n shift *= 2\n return max(4, n + 1)\n",
"role": "user"
},
{
"content": "next_power_of_2",
"role": "assistant"
}
] |
def x(self, vertices, uniforms=None, indices=None, itemsize=None):
vertices = np.array(vertices).astype(self.vtype).ravel()
vsize = self._vertices_list.size
if itemsize is None:
index = 0
count = 1
elif isinstance(itemsize, int):
count = len(vertices) / itemsize
index = np.repeat(np.arange(count), itemsize)
elif isinstance(itemsize, (np.ndarray, list)):
count = len(itemsize)
index = np.repeat(np.arange(count), itemsize)
else:
raise ValueError('Itemsize not understood')
if self.utype:
vertices['collection_index'] = index + len(self)
self._vertices_list.append(vertices, itemsize)
if self.itype is not None:
if indices is None:
indices = vsize + np.arange(len(vertices))
self._indices_list.append(indices, itemsize)
else:
if itemsize is None:
I = np.array(indices) + vsize
elif isinstance(itemsize, int):
I = vsize + (np.tile(indices, count) + itemsize * np.repeat
(np.arange(count), len(indices)))
else:
raise ValueError('Indices not compatible with items')
self._indices_list.append(I, len(indices))
if self.utype:
if uniforms is None:
uniforms = np.zeros(count, dtype=self.utype)
else:
uniforms = np.array(uniforms).astype(self.utype).ravel()
self._uniforms_list.append(uniforms, itemsize=1)
self._need_update = True
|
append
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vertices, uniforms=None, indices=None, itemsize=None):\n vertices = np.array(vertices).astype(self.vtype).ravel()\n vsize = self._vertices_list.size\n if itemsize is None:\n index = 0\n count = 1\n elif isinstance(itemsize, int):\n count = len(vertices) / itemsize\n index = np.repeat(np.arange(count), itemsize)\n elif isinstance(itemsize, (np.ndarray, list)):\n count = len(itemsize)\n index = np.repeat(np.arange(count), itemsize)\n else:\n raise ValueError('Itemsize not understood')\n if self.utype:\n vertices['collection_index'] = index + len(self)\n self._vertices_list.append(vertices, itemsize)\n if self.itype is not None:\n if indices is None:\n indices = vsize + np.arange(len(vertices))\n self._indices_list.append(indices, itemsize)\n else:\n if itemsize is None:\n I = np.array(indices) + vsize\n elif isinstance(itemsize, int):\n I = vsize + (np.tile(indices, count) + itemsize * np.repeat\n (np.arange(count), len(indices)))\n else:\n raise ValueError('Indices not compatible with items')\n self._indices_list.append(I, len(indices))\n if self.utype:\n if uniforms is None:\n uniforms = np.zeros(count, dtype=self.utype)\n else:\n uniforms = np.array(uniforms).astype(self.utype).ravel()\n self._uniforms_list.append(uniforms, itemsize=1)\n self._need_update = True\n",
"role": "user"
},
{
"content": "append",
"role": "assistant"
}
] |
def x(self, size=1):
linesize = 1024
count = self._uniforms_float_count
cols = 4 * linesize // int(count)
rows = max(1, int(math.ceil(size / float(cols))))
shape = rows, cols * (count // 4), count
self._ushape = shape
return shape
|
compute_texture_shape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size=1):\n linesize = 1024\n count = self._uniforms_float_count\n cols = 4 * linesize // int(count)\n rows = max(1, int(math.ceil(size / float(cols))))\n shape = rows, cols * (count // 4), count\n self._ushape = shape\n return shape\n",
"role": "user"
},
{
"content": "compute_texture_shape",
"role": "assistant"
}
] |
def x(self):
if self._vertices_buffer is not None:
self._vertices_buffer.delete()
self._vertices_buffer = VertexBuffer(self._vertices_list.data)
if self.itype is not None:
if self._indices_buffer is not None:
self._indices_buffer.delete()
self._indices_buffer = IndexBuffer(self._indices_list.data)
if self.utype is not None:
if self._uniforms_texture is not None:
self._uniforms_texture.delete()
texture = self._uniforms_list._data.view(np.float32)
size = len(texture) / self._uniforms_float_count
shape = self._compute_texture_shape(size)
texture = texture.reshape(shape[0], shape[1], 4)
self._uniforms_texture = Texture2D(texture)
self._uniforms_texture.data = texture
self._uniforms_texture.interpolation = 'nearest'
if len(self._programs):
for program in self._programs:
program.bind(self._vertices_buffer)
if self._uniforms_list is not None:
program['uniforms'] = self._uniforms_texture
program['uniforms_shape'] = self._ushape
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._vertices_buffer is not None:\n self._vertices_buffer.delete()\n self._vertices_buffer = VertexBuffer(self._vertices_list.data)\n if self.itype is not None:\n if self._indices_buffer is not None:\n self._indices_buffer.delete()\n self._indices_buffer = IndexBuffer(self._indices_list.data)\n if self.utype is not None:\n if self._uniforms_texture is not None:\n self._uniforms_texture.delete()\n texture = self._uniforms_list._data.view(np.float32)\n size = len(texture) / self._uniforms_float_count\n shape = self._compute_texture_shape(size)\n texture = texture.reshape(shape[0], shape[1], 4)\n self._uniforms_texture = Texture2D(texture)\n self._uniforms_texture.data = texture\n self._uniforms_texture.interpolation = 'nearest'\n if len(self._programs):\n for program in self._programs:\n program.bind(self._vertices_buffer)\n if self._uniforms_list is not None:\n program['uniforms'] = self._uniforms_texture\n program['uniforms_shape'] = self._ushape\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(name, *args, **kwargs):
if name not in _layout_map:
raise KeyError("Graph layout '%s' not found. Should be one of %s" %
(name, AVAILABLE_LAYOUTS))
layout = _layout_map[name]
if inspect.isclass(layout):
layout = layout(*args, **kwargs)
return layout
|
get_layout
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, *args, **kwargs):\n if name not in _layout_map:\n raise KeyError(\"Graph layout '%s' not found. Should be one of %s\" %\n (name, AVAILABLE_LAYOUTS))\n layout = _layout_map[name]\n if inspect.isclass(layout):\n layout = layout(*args, **kwargs)\n return layout\n",
"role": "user"
},
{
"content": "get_layout",
"role": "assistant"
}
] |
def x(rec, context):
if '_protocol' not in rec:
rec.pop('properties')
rec['state'] = {}
rec['state']['values'] = rec.pop('options')
layer_states = []
for layer in rec['layers']:
state_id = str(uuid.uuid4())
state_cls = STATE_CLASS[layer['_type'].split('.')[-1]]
state = state_cls(layer=context.object(layer.pop('layer')))
properties = set(layer.keys()) - set(['_type'])
for prop in sorted(properties, key=state.update_priority,
reverse=True):
value = layer.pop(prop)
value = context.object(value)
if isinstance(value, six.string_types) and value == 'fixed':
value = 'Fixed'
if isinstance(value, six.string_types) and value == 'linear':
value = 'Linear'
setattr(state, prop, value)
context.register_object(state_id, state)
layer['state'] = state_id
layer_states.append(state)
list_id = str(uuid.uuid4())
context.register_object(list_id, layer_states)
rec['state']['values']['layers'] = list_id
rec['state']['values']['visible_axes'] = rec['state']['values'].pop(
'visible_box')
|
update_viewer_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rec, context):\n if '_protocol' not in rec:\n rec.pop('properties')\n rec['state'] = {}\n rec['state']['values'] = rec.pop('options')\n layer_states = []\n for layer in rec['layers']:\n state_id = str(uuid.uuid4())\n state_cls = STATE_CLASS[layer['_type'].split('.')[-1]]\n state = state_cls(layer=context.object(layer.pop('layer')))\n properties = set(layer.keys()) - set(['_type'])\n for prop in sorted(properties, key=state.update_priority,\n reverse=True):\n value = layer.pop(prop)\n value = context.object(value)\n if isinstance(value, six.string_types) and value == 'fixed':\n value = 'Fixed'\n if isinstance(value, six.string_types) and value == 'linear':\n value = 'Linear'\n setattr(state, prop, value)\n context.register_object(state_id, state)\n layer['state'] = state_id\n layer_states.append(state)\n list_id = str(uuid.uuid4())\n context.register_object(list_id, layer_states)\n rec['state']['values']['layers'] = list_id\n rec['state']['values']['visible_axes'] = rec['state']['values'].pop(\n 'visible_box')\n",
"role": "user"
},
{
"content": "update_viewer_state",
"role": "assistant"
}
] |
def x(code):
pattern = '(\\".*?\\"|\\\'.*?\\\')|(/\\*.*?\\*/|//[^\\r\\n]*\\n)'
regex = re.compile(pattern, re.MULTILINE | re.DOTALL)
def x(match):
if match.group(2) is not None:
return ''
else:
return match.group(1)
return regex.sub(do_replace, code)
|
remove_comments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(code):\n pattern = '(\\\\\".*?\\\\\"|\\\\\\'.*?\\\\\\')|(/\\\\*.*?\\\\*/|//[^\\\\r\\\\n]*\\\\n)'\n regex = re.compile(pattern, re.MULTILINE | re.DOTALL)\n\n def x(match):\n if match.group(2) is not None:\n return ''\n else:\n return match.group(1)\n return regex.sub(do_replace, code)\n",
"role": "user"
},
{
"content": "remove_comments",
"role": "assistant"
}
] |
def x(code):
pattern = '\\#\\s*include\\s*"(?P<filename>[a-zA-Z0-9\\_\\-\\.\\/]+)"'
regex = re.compile(pattern)
includes = []
def x(match):
filename = match.group('filename')
if filename not in includes:
includes.append(filename)
path = glsl.find(filename)
if not path:
logger.critical('"%s" not found' % filename)
raise RuntimeError('File not found', filename)
text = '\n// --- start of "%s" ---\n' % filename
with open(path) as fh:
text += fh.read()
text += '// --- end of "%s" ---\n' % filename
return text
return ''
for i in range(10):
if re.search(regex, code):
code = re.sub(regex, replace, code)
else:
break
return code
|
merge_includes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(code):\n pattern = '\\\\#\\\\s*include\\\\s*\"(?P<filename>[a-zA-Z0-9\\\\_\\\\-\\\\.\\\\/]+)\"'\n regex = re.compile(pattern)\n includes = []\n\n def x(match):\n filename = match.group('filename')\n if filename not in includes:\n includes.append(filename)\n path = glsl.find(filename)\n if not path:\n logger.critical('\"%s\" not found' % filename)\n raise RuntimeError('File not found', filename)\n text = '\\n// --- start of \"%s\" ---\\n' % filename\n with open(path) as fh:\n text += fh.read()\n text += '// --- end of \"%s\" ---\\n' % filename\n return text\n return ''\n for i in range(10):\n if re.search(regex, code):\n code = re.sub(regex, replace, code)\n else:\n break\n return code\n",
"role": "user"
},
{
"content": "merge_includes",
"role": "assistant"
}
] |
def x(self, widget=None, row=None, col=None, row_span=1, col_span=1, **kwargs):
if row is None:
row = self._next_cell[0]
if col is None:
col = self._next_cell[1]
if widget is None:
widget = Widget(**kwargs)
elif kwargs:
raise ValueError('cannot send kwargs if widget is given')
_row = self._cells.setdefault(row, {})
_row[col] = widget
self._grid_widgets[self._n_added] = row, col, row_span, col_span, widget
self._n_added += 1
widget.parent = self
self._next_cell = [row, col + col_span]
widget._var_w = Variable('w-(row: %s | col: %s)' % (row, col))
widget._var_h = Variable('h-(row: %s | col: %s)' % (row, col))
stretch = list(widget.stretch)
stretch[0] = col_span if stretch[0] is None else stretch[0]
stretch[1] = row_span if stretch[1] is None else stretch[1]
widget.stretch = stretch
self._need_solver_recreate = True
return widget
|
add_widget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, widget=None, row=None, col=None, row_span=1, col_span=1, **kwargs):\n if row is None:\n row = self._next_cell[0]\n if col is None:\n col = self._next_cell[1]\n if widget is None:\n widget = Widget(**kwargs)\n elif kwargs:\n raise ValueError('cannot send kwargs if widget is given')\n _row = self._cells.setdefault(row, {})\n _row[col] = widget\n self._grid_widgets[self._n_added] = row, col, row_span, col_span, widget\n self._n_added += 1\n widget.parent = self\n self._next_cell = [row, col + col_span]\n widget._var_w = Variable('w-(row: %s | col: %s)' % (row, col))\n widget._var_h = Variable('h-(row: %s | col: %s)' % (row, col))\n stretch = list(widget.stretch)\n stretch[0] = col_span if stretch[0] is None else stretch[0]\n stretch[1] = row_span if stretch[1] is None else stretch[1]\n widget.stretch = stretch\n self._need_solver_recreate = True\n return widget\n",
"role": "user"
},
{
"content": "add_widget",
"role": "assistant"
}
] |
def x(self, widget):
self._grid_widgets = dict((key, val) for key, val in self._grid_widgets
.items() if val[-1] != widget)
self._need_solver_recreate = True
|
remove_widget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, widget):\n self._grid_widgets = dict((key, val) for key, val in self._grid_widgets\n .items() if val[-1] != widget)\n self._need_solver_recreate = True\n",
"role": "user"
},
{
"content": "remove_widget",
"role": "assistant"
}
] |
def x(self, widget, row_span, col_span):
row = None
col = None
for r, c, rspan, cspan, w in self._grid_widgets.values():
if w == widget:
row = r
col = c
break
if row is None or col is None:
raise ValueError('%s not found in grid' % widget)
self.remove_widget(widget)
self.add_widget(widget, row, col, row_span, col_span)
self._need_solver_recreate = True
|
resize_widget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, widget, row_span, col_span):\n row = None\n col = None\n for r, c, rspan, cspan, w in self._grid_widgets.values():\n if w == widget:\n row = r\n col = c\n break\n if row is None or col is None:\n raise ValueError('%s not found in grid' % widget)\n self.remove_widget(widget)\n self.add_widget(widget, row, col, row_span, col_span)\n self._need_solver_recreate = True\n",
"role": "user"
},
{
"content": "resize_widget",
"role": "assistant"
}
] |
def x(self, row=None, col=None, row_span=1, col_span=1, **kwargs):
from .grid import Grid
grid = Grid(**kwargs)
return self.add_widget(grid, row, col, row_span, col_span)
|
add_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row=None, col=None, row_span=1, col_span=1, **kwargs):\n from .grid import Grid\n grid = Grid(**kwargs)\n return self.add_widget(grid, row, col, row_span, col_span)\n",
"role": "user"
},
{
"content": "add_grid",
"role": "assistant"
}
] |
def x(self, row=None, col=None, row_span=1, col_span=1, **kwargs):
from .viewbox import ViewBox
view = ViewBox(**kwargs)
return self.add_widget(view, row, col, row_span, col_span)
|
add_view
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row=None, col=None, row_span=1, col_span=1, **kwargs):\n from .viewbox import ViewBox\n view = ViewBox(**kwargs)\n return self.add_widget(view, row, col, row_span, col_span)\n",
"role": "user"
},
{
"content": "add_view",
"role": "assistant"
}
] |
def x(face, bold, italic):
bold = FC_WEIGHT_BOLD if bold else FC_WEIGHT_REGULAR
italic = FC_SLANT_ITALIC if italic else FC_SLANT_ROMAN
face = face.encode('utf8')
fontconfig.FcInit()
pattern = fontconfig.FcPatternCreate()
fontconfig.FcPatternAddInteger(pattern, FC_WEIGHT, bold)
fontconfig.FcPatternAddInteger(pattern, FC_SLANT, italic)
fontconfig.FcPatternAddString(pattern, FC_FAMILY, face)
fontconfig.FcConfigSubstitute(0, pattern, FcMatchPattern)
fontconfig.FcDefaultSubstitute(pattern)
result = FcType()
match = fontconfig.FcFontMatch(0, pattern, byref(result))
fontconfig.FcPatternDestroy(pattern)
if not match:
raise RuntimeError('Could not match font "%s"' % face)
value = FcValue()
fontconfig.FcPatternGet(match, FC_FAMILY, 0, byref(value))
if value.u.s != face:
warnings.warn(
'Could not find face match "%s", falling back to "%s"' % (face,
value.u.s))
result = fontconfig.FcPatternGet(match, FC_FILE, 0, byref(value))
if result != 0:
raise RuntimeError('No filename or FT face for "%s"' % face)
fname = value.u.s
return fname.decode('utf-8')
|
find_font
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(face, bold, italic):\n bold = FC_WEIGHT_BOLD if bold else FC_WEIGHT_REGULAR\n italic = FC_SLANT_ITALIC if italic else FC_SLANT_ROMAN\n face = face.encode('utf8')\n fontconfig.FcInit()\n pattern = fontconfig.FcPatternCreate()\n fontconfig.FcPatternAddInteger(pattern, FC_WEIGHT, bold)\n fontconfig.FcPatternAddInteger(pattern, FC_SLANT, italic)\n fontconfig.FcPatternAddString(pattern, FC_FAMILY, face)\n fontconfig.FcConfigSubstitute(0, pattern, FcMatchPattern)\n fontconfig.FcDefaultSubstitute(pattern)\n result = FcType()\n match = fontconfig.FcFontMatch(0, pattern, byref(result))\n fontconfig.FcPatternDestroy(pattern)\n if not match:\n raise RuntimeError('Could not match font \"%s\"' % face)\n value = FcValue()\n fontconfig.FcPatternGet(match, FC_FAMILY, 0, byref(value))\n if value.u.s != face:\n warnings.warn(\n 'Could not find face match \"%s\", falling back to \"%s\"' % (face,\n value.u.s))\n result = fontconfig.FcPatternGet(match, FC_FILE, 0, byref(value))\n if result != 0:\n raise RuntimeError('No filename or FT face for \"%s\"' % face)\n fname = value.u.s\n return fname.decode('utf-8')\n",
"role": "user"
},
{
"content": "find_font",
"role": "assistant"
}
] |
def x():
stdout_, stderr = run_subprocess(['fc-list', ':scalable=true', 'family'])
vals = [v.split(',')[0] for v in stdout_.strip().splitlines(False)]
return vals
|
list_fonts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n stdout_, stderr = run_subprocess(['fc-list', ':scalable=true', 'family'])\n vals = [v.split(',')[0] for v in stdout_.strip().splitlines(False)]\n return vals\n",
"role": "user"
},
{
"content": "list_fonts",
"role": "assistant"
}
] |
def x():
records = inspect.stack()
for record in records[5:]:
module = record[0].f_globals['__name__']
if module.startswith('vispy'):
line = str(record[0].f_lineno)
func = record[3]
cls = record[0].f_locals.get('self', None)
clsname = '' if cls is None else cls.__class__.__name__ + '.'
caller = '{0}:{1}{2}({3}): '.format(module, clsname, func, line)
return caller
return 'unknown'
|
get_vispy_caller
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n records = inspect.stack()\n for record in records[5:]:\n module = record[0].f_globals['__name__']\n if module.startswith('vispy'):\n line = str(record[0].f_lineno)\n func = record[3]\n cls = record[0].f_locals.get('self', None)\n clsname = '' if cls is None else cls.__class__.__name__ + '.'\n caller = '{0}:{1}{2}({3}): '.format(module, clsname, func, line)\n return caller\n return 'unknown'\n",
"role": "user"
},
{
"content": "get_vispy_caller",
"role": "assistant"
}
] |
def x(verbose, match=None, return_old=False):
if isinstance(verbose, bool):
verbose = 'info' if verbose else 'warning'
if isinstance(verbose, string_types):
verbose = verbose.lower()
if verbose not in logging_types:
raise ValueError('Invalid argument "%s"' % verbose)
verbose = logging_types[verbose]
else:
raise TypeError('verbose must be a bool or string')
logger = logging.getLogger('vispy')
old_verbose = logger.level
old_match = _lh._vispy_set_match(match)
logger.setLevel(verbose)
if verbose <= logging.DEBUG:
_lf._vispy_set_prepend(True)
else:
_lf._vispy_set_prepend(False)
out = None
if return_old:
out = old_verbose, old_match
return out
|
set_log_level
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(verbose, match=None, return_old=False):\n if isinstance(verbose, bool):\n verbose = 'info' if verbose else 'warning'\n if isinstance(verbose, string_types):\n verbose = verbose.lower()\n if verbose not in logging_types:\n raise ValueError('Invalid argument \"%s\"' % verbose)\n verbose = logging_types[verbose]\n else:\n raise TypeError('verbose must be a bool or string')\n logger = logging.getLogger('vispy')\n old_verbose = logger.level\n old_match = _lh._vispy_set_match(match)\n logger.setLevel(verbose)\n if verbose <= logging.DEBUG:\n _lf._vispy_set_prepend(True)\n else:\n _lf._vispy_set_prepend(False)\n out = None\n if return_old:\n out = old_verbose, old_match\n return out\n",
"role": "user"
},
{
"content": "set_log_level",
"role": "assistant"
}
] |
def x(level='warning', tb_skip=2):
stack = ''.join(traceback.format_stack()[:-tb_skip])
tb = traceback.format_exception(*sys.exc_info())
msg = tb[0]
msg += stack
msg += ' << caught exception here: >>\n'
msg += ''.join(tb[1:]).rstrip()
logger.log(logging_types[level], msg)
|
log_exception
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(level='warning', tb_skip=2):\n stack = ''.join(traceback.format_stack()[:-tb_skip])\n tb = traceback.format_exception(*sys.exc_info())\n msg = tb[0]\n msg += stack\n msg += ' << caught exception here: >>\\n'\n msg += ''.join(tb[1:]).rstrip()\n logger.log(logging_types[level], msg)\n",
"role": "user"
},
{
"content": "log_exception",
"role": "assistant"
}
] |
def x(ignore_callback_errors, print_callback_errors, obj, cb_event=None,
node=None):
if not hasattr(obj, '_vispy_err_registry'):
obj._vispy_err_registry = {}
registry = obj._vispy_err_registry
if cb_event is not None:
cb, event = cb_event
exp_type = 'callback'
else:
exp_type = 'node'
type_, value, tb = sys.exc_info()
tb = tb.tb_next
sys.last_type = type_
sys.last_value = value
sys.last_traceback = tb
del tb
if not ignore_callback_errors:
raise
if print_callback_errors != 'never':
this_print = 'full'
if print_callback_errors in ('first', 'reminders'):
if exp_type == 'callback':
key = repr(cb) + repr(event)
else:
key = repr(node)
if key in registry:
registry[key] += 1
if print_callback_errors == 'first':
this_print = None
else:
ii = registry[key]
if ii == 2 ** int(np.log2(ii)):
this_print = ii
else:
this_print = None
else:
registry[key] = 1
if this_print == 'full':
logger.log_exception()
if exp_type == 'callback':
logger.error('Invoking %s for %s' % (cb, event))
else:
logger.error('Drawing node %s' % node)
elif this_print is not None:
if exp_type == 'callback':
logger.error('Invoking %s repeat %s' % (cb, this_print))
else:
logger.error('Drawing node %s repeat %s' % (node, this_print))
|
handle_exception
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ignore_callback_errors, print_callback_errors, obj, cb_event=None,\n node=None):\n if not hasattr(obj, '_vispy_err_registry'):\n obj._vispy_err_registry = {}\n registry = obj._vispy_err_registry\n if cb_event is not None:\n cb, event = cb_event\n exp_type = 'callback'\n else:\n exp_type = 'node'\n type_, value, tb = sys.exc_info()\n tb = tb.tb_next\n sys.last_type = type_\n sys.last_value = value\n sys.last_traceback = tb\n del tb\n if not ignore_callback_errors:\n raise\n if print_callback_errors != 'never':\n this_print = 'full'\n if print_callback_errors in ('first', 'reminders'):\n if exp_type == 'callback':\n key = repr(cb) + repr(event)\n else:\n key = repr(node)\n if key in registry:\n registry[key] += 1\n if print_callback_errors == 'first':\n this_print = None\n else:\n ii = registry[key]\n if ii == 2 ** int(np.log2(ii)):\n this_print = ii\n else:\n this_print = None\n else:\n registry[key] = 1\n if this_print == 'full':\n logger.log_exception()\n if exp_type == 'callback':\n logger.error('Invoking %s for %s' % (cb, event))\n else:\n logger.error('Drawing node %s' % node)\n elif this_print is not None:\n if exp_type == 'callback':\n logger.error('Invoking %s repeat %s' % (cb, this_print))\n else:\n logger.error('Drawing node %s repeat %s' % (node, this_print))\n",
"role": "user"
},
{
"content": "handle_exception",
"role": "assistant"
}
] |
def x(buffer, array_serialization=None):
if array_serialization == 'binary':
return buffer.ravel().tostring()
elif array_serialization == 'base64':
return {'storage_type': 'base64', 'buffer': base64.b64encode(buffer
).decode('ascii')}
raise ValueError(
"The array serialization method should be 'binary' or 'base64'.")
|
serialize_buffer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(buffer, array_serialization=None):\n if array_serialization == 'binary':\n return buffer.ravel().tostring()\n elif array_serialization == 'base64':\n return {'storage_type': 'base64', 'buffer': base64.b64encode(buffer\n ).decode('ascii')}\n raise ValueError(\n \"The array serialization method should be 'binary' or 'base64'.\")\n",
"role": "user"
},
{
"content": "serialize_buffer",
"role": "assistant"
}
] |
def x(self, record):
test = record.getMessage()
match = self._vispy_match
if match is None or re.search(match, test) or re.search(match,
_get_vispy_caller()):
if self._vispy_emit_record:
fmt_rec = self._vispy_formatter.format(record)
self._vispy_emit_list.append(fmt_rec)
if self._vispy_print_msg:
return logging.StreamHandler.emit(self, record)
else:
return
|
vispy_emit_match_andor_record
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, record):\n test = record.getMessage()\n match = self._vispy_match\n if match is None or re.search(match, test) or re.search(match,\n _get_vispy_caller()):\n if self._vispy_emit_record:\n fmt_rec = self._vispy_formatter.format(record)\n self._vispy_emit_list.append(fmt_rec)\n if self._vispy_print_msg:\n return logging.StreamHandler.emit(self, record)\n else:\n return\n",
"role": "user"
},
{
"content": "vispy_emit_match_andor_record",
"role": "assistant"
}
] |
def x(self, obj, ref=None):
if isinstance(ref, Variable):
ref = ref.name
elif isinstance(ref, string_types) and ref.startswith('gl_'):
ref = ref[3:].lower()
if hasattr(obj, '_shader_object'):
obj = obj._shader_object()
if isinstance(obj, ShaderObject):
if isinstance(obj, Variable) and obj.name is None:
obj.name = ref
elif isinstance(obj, string_types):
obj = TextExpression(obj)
else:
obj = Variable(ref, obj)
if obj.vtype and obj.vtype[0] in 'auv':
obj.name = obj.vtype[0] + '_' + obj.name
return obj
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj, ref=None):\n if isinstance(ref, Variable):\n ref = ref.name\n elif isinstance(ref, string_types) and ref.startswith('gl_'):\n ref = ref[3:].lower()\n if hasattr(obj, '_shader_object'):\n obj = obj._shader_object()\n if isinstance(obj, ShaderObject):\n if isinstance(obj, Variable) and obj.name is None:\n obj.name = ref\n elif isinstance(obj, string_types):\n obj = TextExpression(obj)\n else:\n obj = Variable(ref, obj)\n if obj.vtype and obj.vtype[0] in 'auv':\n obj.name = obj.vtype[0] + '_' + obj.name\n return obj\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(self, sort=False):
alldeps = []
if sort:
def x(obj):
if not isinstance(obj, Variable):
return 0, 0
else:
return 1, obj.vtype
deps = sorted(self._deps, key=key)
else:
deps = self._deps
for dep in deps:
alldeps.extend(dep.dependencies(sort=sort))
alldeps.append(self)
return alldeps
|
dependencies
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sort=False):\n alldeps = []\n if sort:\n\n def x(obj):\n if not isinstance(obj, Variable):\n return 0, 0\n else:\n return 1, obj.vtype\n deps = sorted(self._deps, key=key)\n else:\n deps = self._deps\n for dep in deps:\n alldeps.extend(dep.dependencies(sort=sort))\n alldeps.append(self)\n return alldeps\n",
"role": "user"
},
{
"content": "dependencies",
"role": "assistant"
}
] |
def x(self, dep):
if dep in self._deps:
self._deps[dep] += 1
else:
self._deps[dep] = 1
dep._dependents[self] = None
|
add_dep
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dep):\n if dep in self._deps:\n self._deps[dep] += 1\n else:\n self._deps[dep] = 1\n dep._dependents[self] = None\n",
"role": "user"
},
{
"content": "add_dep",
"role": "assistant"
}
] |
def x(self, dep):
refcount = self._deps[dep]
if refcount == 1:
self._deps.pop(dep)
dep._dependents.pop(self)
else:
self._deps[dep] -= 1
|
remove_dep
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dep):\n refcount = self._deps[dep]\n if refcount == 1:\n self._deps.pop(dep)\n dep._dependents.pop(self)\n else:\n self._deps[dep] -= 1\n",
"role": "user"
},
{
"content": "remove_dep",
"role": "assistant"
}
] |
def x(self, dep, code_changed=False, value_changed=False):
self.changed(code_changed, value_changed)
|
dep_changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dep, code_changed=False, value_changed=False):\n self.changed(code_changed, value_changed)\n",
"role": "user"
},
{
"content": "dep_changed",
"role": "assistant"
}
] |
def x(self, code_changed=False, value_changed=False):
for d in self._dependents:
d._dep_changed(self, code_changed=code_changed, value_changed=
value_changed)
|
changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, code_changed=False, value_changed=False):\n for d in self._dependents:\n d._dep_changed(self, code_changed=code_changed, value_changed=\n value_changed)\n",
"role": "user"
},
{
"content": "changed",
"role": "assistant"
}
] |
def x(a, b):
if a is b:
return True
if a is None or b is None:
return True if a is None and b is None else False
try:
e = a == b
except ValueError:
return False
except AttributeError:
return False
except Exception:
print('a:', str(type(a)), str(a))
print('b:', str(type(b)), str(b))
raise
t = type(e)
if t is bool:
return e
elif t is bool_:
return bool(e)
elif isinstance(e, ndarray):
try:
if a.shape != b.shape:
return False
except Exception:
return False
if hasattr(e, 'implements') and e.implements('MetaArray'):
return e.asarray().all()
else:
return e.all()
else:
raise Exception('== operator returned type %s' % str(type(e)))
|
eq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b):\n if a is b:\n return True\n if a is None or b is None:\n return True if a is None and b is None else False\n try:\n e = a == b\n except ValueError:\n return False\n except AttributeError:\n return False\n except Exception:\n print('a:', str(type(a)), str(a))\n print('b:', str(type(b)), str(b))\n raise\n t = type(e)\n if t is bool:\n return e\n elif t is bool_:\n return bool(e)\n elif isinstance(e, ndarray):\n try:\n if a.shape != b.shape:\n return False\n except Exception:\n return False\n if hasattr(e, 'implements') and e.implements('MetaArray'):\n return e.asarray().all()\n else:\n return e.all()\n else:\n raise Exception('== operator returned type %s' % str(type(e)))\n",
"role": "user"
},
{
"content": "eq",
"role": "assistant"
}
] |
def x(self, factor, center=None):
assert len(center) in (2, 3, 4)
if np.isscalar(factor):
scale = [factor, factor]
else:
if len(factor) != 2:
raise TypeError('factor must be scalar or length-2 sequence.')
scale = list(factor)
if self.aspect is not None:
scale[0] = scale[1]
center = center if center is not None else self.center
rect = Rect(self.rect)
left_space = center[0] - rect.left
right_space = rect.right - center[0]
bottom_space = center[1] - rect.bottom
top_space = rect.top - center[1]
rect.left = center[0] - left_space * scale[0]
rect.right = center[0] + right_space * scale[0]
rect.bottom = center[1] - bottom_space * scale[1]
rect.top = center[1] + top_space * scale[1]
self.rect = rect
|
zoom
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, factor, center=None):\n assert len(center) in (2, 3, 4)\n if np.isscalar(factor):\n scale = [factor, factor]\n else:\n if len(factor) != 2:\n raise TypeError('factor must be scalar or length-2 sequence.')\n scale = list(factor)\n if self.aspect is not None:\n scale[0] = scale[1]\n center = center if center is not None else self.center\n rect = Rect(self.rect)\n left_space = center[0] - rect.left\n right_space = rect.right - center[0]\n bottom_space = center[1] - rect.bottom\n top_space = rect.top - center[1]\n rect.left = center[0] - left_space * scale[0]\n rect.right = center[0] + right_space * scale[0]\n rect.bottom = center[1] - bottom_space * scale[1]\n rect.top = center[1] + top_space * scale[1]\n self.rect = rect\n",
"role": "user"
},
{
"content": "zoom",
"role": "assistant"
}
] |
def x(self, *pan):
if len(pan) == 1:
pan = pan[0]
self.rect = self.rect + pan
|
pan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *pan):\n if len(pan) == 1:\n pan = pan[0]\n self.rect = self.rect + pan\n",
"role": "user"
},
{
"content": "pan",
"role": "assistant"
}
] |
def x(self, event):
if event.handled or not self.interactive:
return
BaseCamera.viewbox_mouse_event(self, event)
if event.type == 'mouse_wheel':
center = self._scene_transform.imap(event.pos)
self.zoom((1 + self.zoom_factor) ** (-event.delta[1] * 30), center)
event.handled = True
elif event.type == 'mouse_move':
if event.press_event is None:
return
modifiers = event.mouse_event.modifiers
p1 = event.mouse_event.press_event.pos
p2 = event.mouse_event.pos
if 1 in event.buttons and not modifiers:
p1 = np.array(event.last_event.pos)[:2]
p2 = np.array(event.pos)[:2]
p1s = self._transform.imap(p1)
p2s = self._transform.imap(p2)
self.pan(p1s - p2s)
event.handled = True
elif 2 in event.buttons and not modifiers:
p1c = np.array(event.last_event.pos)[:2]
p2c = np.array(event.pos)[:2]
scale = (1 + self.zoom_factor) ** ((p1c - p2c) * np.array([1, -1]))
center = self._transform.imap(event.press_event.pos[:2])
self.zoom(scale, center)
event.handled = True
else:
event.handled = False
elif event.type == 'mouse_press':
event.handled = event.button in [1, 2]
else:
event.handled = False
|
viewbox_mouse_event
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if event.handled or not self.interactive:\n return\n BaseCamera.viewbox_mouse_event(self, event)\n if event.type == 'mouse_wheel':\n center = self._scene_transform.imap(event.pos)\n self.zoom((1 + self.zoom_factor) ** (-event.delta[1] * 30), center)\n event.handled = True\n elif event.type == 'mouse_move':\n if event.press_event is None:\n return\n modifiers = event.mouse_event.modifiers\n p1 = event.mouse_event.press_event.pos\n p2 = event.mouse_event.pos\n if 1 in event.buttons and not modifiers:\n p1 = np.array(event.last_event.pos)[:2]\n p2 = np.array(event.pos)[:2]\n p1s = self._transform.imap(p1)\n p2s = self._transform.imap(p2)\n self.pan(p1s - p2s)\n event.handled = True\n elif 2 in event.buttons and not modifiers:\n p1c = np.array(event.last_event.pos)[:2]\n p2c = np.array(event.pos)[:2]\n scale = (1 + self.zoom_factor) ** ((p1c - p2c) * np.array([1, -1]))\n center = self._transform.imap(event.press_event.pos[:2])\n self.zoom(scale, center)\n event.handled = True\n else:\n event.handled = False\n elif event.type == 'mouse_press':\n event.handled = event.button in [1, 2]\n else:\n event.handled = False\n",
"role": "user"
},
{
"content": "viewbox_mouse_event",
"role": "assistant"
}
] |
def x(self, vol, clim=None):
if not isinstance(vol, np.ndarray):
raise ValueError('Volume visual needs a numpy array.')
if not (vol.ndim == 3 or vol.ndim == 4 and vol.shape[-1] <= 4):
raise ValueError('Volume visual needs a 3D image.')
if clim is not None:
clim = np.array(clim, float)
if not (clim.ndim == 1 and clim.size == 2):
raise ValueError('clim must be a 2-element array-like')
self._clim = tuple(clim)
if self._clim is None:
self._clim = vol.min(), vol.max()
vol = np.array(vol, dtype='float32', copy=False)
if self._clim[1] == self._clim[0]:
if self._clim[0] != 0.0:
vol *= 1.0 / self._clim[0]
else:
vol -= self._clim[0]
vol /= self._clim[1] - self._clim[0]
self._tex.set_data(vol)
self.shared_program['u_shape'] = vol.shape[2], vol.shape[1], vol.shape[0]
shape = vol.shape[:3]
if self._vol_shape != shape:
self._vol_shape = shape
self._need_vertex_update = True
self._vol_shape = shape
self._kb_for_texture = np.prod(self._vol_shape) / 1024
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vol, clim=None):\n if not isinstance(vol, np.ndarray):\n raise ValueError('Volume visual needs a numpy array.')\n if not (vol.ndim == 3 or vol.ndim == 4 and vol.shape[-1] <= 4):\n raise ValueError('Volume visual needs a 3D image.')\n if clim is not None:\n clim = np.array(clim, float)\n if not (clim.ndim == 1 and clim.size == 2):\n raise ValueError('clim must be a 2-element array-like')\n self._clim = tuple(clim)\n if self._clim is None:\n self._clim = vol.min(), vol.max()\n vol = np.array(vol, dtype='float32', copy=False)\n if self._clim[1] == self._clim[0]:\n if self._clim[0] != 0.0:\n vol *= 1.0 / self._clim[0]\n else:\n vol -= self._clim[0]\n vol /= self._clim[1] - self._clim[0]\n self._tex.set_data(vol)\n self.shared_program['u_shape'] = vol.shape[2], vol.shape[1], vol.shape[0]\n shape = vol.shape[:3]\n if self._vol_shape != shape:\n self._vol_shape = shape\n self._need_vertex_update = True\n self._vol_shape = shape\n self._kb_for_texture = np.prod(self._vol_shape) / 1024\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(self):
shape = self._vol_shape
x0, x1 = -0.5, shape[2] - 0.5
y0, y1 = -0.5, shape[1] - 0.5
z0, z1 = -0.5, shape[0] - 0.5
pos = np.array([[x0, y0, z0], [x1, y0, z0], [x0, y1, z0], [x1, y1, z0],
[x0, y0, z1], [x1, y0, z1], [x0, y1, z1], [x1, y1, z1]], dtype=np.
float32)
"""
6-------7
/| /|
4-------5 |
| | | |
| 2-----|-3
|/ |/
0-------1
"""
indices = np.array([2, 6, 0, 4, 5, 6, 7, 2, 3, 0, 1, 5, 3, 7], dtype=np
.uint32)
self._vertices.set_data(pos)
self._index_buffer.set_data(indices)
|
create_vertex_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n shape = self._vol_shape\n x0, x1 = -0.5, shape[2] - 0.5\n y0, y1 = -0.5, shape[1] - 0.5\n z0, z1 = -0.5, shape[0] - 0.5\n pos = np.array([[x0, y0, z0], [x1, y0, z0], [x0, y1, z0], [x1, y1, z0],\n [x0, y0, z1], [x1, y0, z1], [x0, y1, z1], [x1, y1, z1]], dtype=np.\n float32)\n \"\"\"\n 6-------7\n /| /|\n 4-------5 |\n | | | |\n | 2-----|-3\n |/ |/\n 0-------1\n \"\"\"\n indices = np.array([2, 6, 0, 4, 5, 6, 7, 2, 3, 0, 1, 5, 3, 7], dtype=np\n .uint32)\n self._vertices.set_data(pos)\n self._index_buffer.set_data(indices)\n",
"role": "user"
},
{
"content": "create_vertex_data",
"role": "assistant"
}
] |
def x(self, pos=None, color=None):
new_pos = self._pos
new_color = self._color
if pos is not None:
num_elements = len(pos)
pos = np.array(pos, dtype=np.float32)
if pos.ndim != 1:
raise ValueError('Expected 1D array')
vertex = np.empty((num_elements * 2, 2), dtype=np.float32)
if self._is_vertical:
vertex[:, 0] = np.repeat(pos, 2)
vertex[:, 1] = np.tile([-1, 1], num_elements)
else:
vertex[:, 1] = np.repeat(pos, 2)
vertex[:, 0] = np.tile([1, -1], num_elements)
new_pos = vertex
self._changed['pos'] = True
if color is not None:
color = np.array(color, dtype=np.float32)
num_elements = new_pos.shape[0] / 2
if color.ndim == 2:
if color.shape[0] != num_elements:
raise ValueError('Expected a color for each pos')
if color.shape[1] != 4:
raise ValueError('Each color must be a RGBA array')
color = np.repeat(color, 2, axis=0).astype(np.float32)
elif color.ndim == 1:
if color.shape[0] != 4:
raise ValueError('Each color must be a RGBA array')
color = np.repeat([color], new_pos.shape[0], axis=0)
color = color.astype(np.float32)
else:
raise ValueError(
'Expected a numpy array of shape (%d, 4) or (1, 4)' %
num_elements)
new_color = color
self._changed['color'] = True
if new_pos.shape[0] != new_color.shape[0]:
raise ValueError('pos and color does must have the same size')
self._color = new_color
self._pos = new_pos
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pos=None, color=None):\n new_pos = self._pos\n new_color = self._color\n if pos is not None:\n num_elements = len(pos)\n pos = np.array(pos, dtype=np.float32)\n if pos.ndim != 1:\n raise ValueError('Expected 1D array')\n vertex = np.empty((num_elements * 2, 2), dtype=np.float32)\n if self._is_vertical:\n vertex[:, 0] = np.repeat(pos, 2)\n vertex[:, 1] = np.tile([-1, 1], num_elements)\n else:\n vertex[:, 1] = np.repeat(pos, 2)\n vertex[:, 0] = np.tile([1, -1], num_elements)\n new_pos = vertex\n self._changed['pos'] = True\n if color is not None:\n color = np.array(color, dtype=np.float32)\n num_elements = new_pos.shape[0] / 2\n if color.ndim == 2:\n if color.shape[0] != num_elements:\n raise ValueError('Expected a color for each pos')\n if color.shape[1] != 4:\n raise ValueError('Each color must be a RGBA array')\n color = np.repeat(color, 2, axis=0).astype(np.float32)\n elif color.ndim == 1:\n if color.shape[0] != 4:\n raise ValueError('Each color must be a RGBA array')\n color = np.repeat([color], new_pos.shape[0], axis=0)\n color = color.astype(np.float32)\n else:\n raise ValueError(\n 'Expected a numpy array of shape (%d, 4) or (1, 4)' %\n num_elements)\n new_color = color\n self._changed['color'] = True\n if new_pos.shape[0] != new_color.shape[0]:\n raise ValueError('pos and color does must have the same size')\n self._color = new_color\n self._pos = new_pos\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(self, view=None):
if self._changed['pos']:
self.pos_buf.set_data(self._pos)
self._changed['pos'] = False
if self._changed['color']:
self.color_buf.set_data(self._color)
self._program.vert['color'] = self.color_buf
self._changed['color'] = False
return True
|
prepare_draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, view=None):\n if self._changed['pos']:\n self.pos_buf.set_data(self._pos)\n self._changed['pos'] = False\n if self._changed['color']:\n self.color_buf.set_data(self._color)\n self._program.vert['color'] = self.color_buf\n self._changed['color'] = False\n return True\n",
"role": "user"
},
{
"content": "prepare_draw",
"role": "assistant"
}
] |
def x(self, cat_id):
self.cache[cat_id] = most_recent_25_posts_by_category(cat_id)
self.last_refresh[cat_id] = datetime.now()
print('Cache refresh at...', str(self.last_refresh[cat_id]))
|
refresh_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cat_id):\n self.cache[cat_id] = most_recent_25_posts_by_category(cat_id)\n self.last_refresh[cat_id] = datetime.now()\n print('Cache refresh at...', str(self.last_refresh[cat_id]))\n",
"role": "user"
},
{
"content": "refresh_cache",
"role": "assistant"
}
] |
def x(self, min_depth):
def x(ret, start, stop):
if min_depth is not None:
shift = 2 * (29 - min_depth)
mask = (int(1) << shift) - 1
if stop - start < mask:
ret.append((start, stop))
else:
ofs = start & mask
st = start
if ofs > 0:
st = start - ofs + (mask + 1)
ret.append((start, st))
while st + mask + 1 < stop:
ret.append((st, st + mask + 1))
st = st + mask + 1
ret.append((st, stop))
else:
ret.append((start, stop))
ret = []
start = stop = None
self._intervals.sort(axis=0)
for itv in self._intervals:
if start is None:
start, stop = itv
continue
if itv[0] > stop:
add_interval(ret, start, stop)
start, stop = itv
elif itv[1] > stop:
stop = itv[1]
if start is not None and stop is not None:
add_interval(ret, start, stop)
self._intervals = np.asarray(ret)
|
merge_intervals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, min_depth):\n\n def x(ret, start, stop):\n if min_depth is not None:\n shift = 2 * (29 - min_depth)\n mask = (int(1) << shift) - 1\n if stop - start < mask:\n ret.append((start, stop))\n else:\n ofs = start & mask\n st = start\n if ofs > 0:\n st = start - ofs + (mask + 1)\n ret.append((start, st))\n while st + mask + 1 < stop:\n ret.append((st, st + mask + 1))\n st = st + mask + 1\n ret.append((st, stop))\n else:\n ret.append((start, stop))\n ret = []\n start = stop = None\n self._intervals.sort(axis=0)\n for itv in self._intervals:\n if start is None:\n start, stop = itv\n continue\n if itv[0] > stop:\n add_interval(ret, start, stop)\n start, stop = itv\n elif itv[1] > stop:\n stop = itv[1]\n if start is not None and stop is not None:\n add_interval(ret, start, stop)\n self._intervals = np.asarray(ret)\n",
"role": "user"
},
{
"content": "merge_intervals",
"role": "assistant"
}
] |
def x(self, another_is):
result = IntervalSet()
if another_is.empty():
result._intervals = self._intervals
elif self.empty():
result._intervals = another_is._intervals
else:
result._intervals = IntervalSet.merge(self._intervals, another_is.
_intervals, lambda in_a, in_b: in_a or in_b)
return result
|
union
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, another_is):\n result = IntervalSet()\n if another_is.empty():\n result._intervals = self._intervals\n elif self.empty():\n result._intervals = another_is._intervals\n else:\n result._intervals = IntervalSet.merge(self._intervals, another_is.\n _intervals, lambda in_a, in_b: in_a or in_b)\n return result\n",
"role": "user"
},
{
"content": "union",
"role": "assistant"
}
] |
def x(cls, nested_is):
r2 = nested_is.copy()
res = []
if r2.empty():
return IntervalSet()
order = 0
while not r2.empty():
shift = int(2 * (IntervalSet.HPY_MAX_ORDER - order))
ofs = (int(1) << shift) - 1
ofs2 = int(1) << 2 * order + 2
r4 = []
for iv in r2._intervals:
a = int(iv[0]) + ofs >> shift
b = int(iv[1]) >> shift
c = a << shift
d = b << shift
if d > c:
r4.append((c, d))
res.append((a + ofs2, b + ofs2))
if len(r4) > 0:
r4_is = IntervalSet(np.asarray(r4))
r2 = r2.difference(r4_is)
order += 1
return IntervalSet(np.asarray(res))
|
to_nuniq_interval_set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, nested_is):\n r2 = nested_is.copy()\n res = []\n if r2.empty():\n return IntervalSet()\n order = 0\n while not r2.empty():\n shift = int(2 * (IntervalSet.HPY_MAX_ORDER - order))\n ofs = (int(1) << shift) - 1\n ofs2 = int(1) << 2 * order + 2\n r4 = []\n for iv in r2._intervals:\n a = int(iv[0]) + ofs >> shift\n b = int(iv[1]) >> shift\n c = a << shift\n d = b << shift\n if d > c:\n r4.append((c, d))\n res.append((a + ofs2, b + ofs2))\n if len(r4) > 0:\n r4_is = IntervalSet(np.asarray(r4))\n r2 = r2.difference(r4_is)\n order += 1\n return IntervalSet(np.asarray(res))\n",
"role": "user"
},
{
"content": "to_nuniq_interval_set",
"role": "assistant"
}
] |
def x(cls, nuniq_is):
nested_is = IntervalSet()
rtmp = []
last_order = 0
intervals = nuniq_is._intervals
diff_order = IntervalSet.HPY_MAX_ORDER
shift_order = 2 * diff_order
for interval in intervals:
for j in range(interval[0], interval[1]):
order, i_pix = uniq2orderipix(j)
if order != last_order:
nested_is = nested_is.union(IntervalSet(np.asarray(rtmp)))
rtmp = []
last_order = order
diff_order = IntervalSet.HPY_MAX_ORDER - order
shift_order = 2 * diff_order
rtmp.append((i_pix << shift_order, i_pix + 1 << shift_order))
nested_is = nested_is.union(IntervalSet(np.asarray(rtmp)))
return nested_is
|
from_nuniq_interval_set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, nuniq_is):\n nested_is = IntervalSet()\n rtmp = []\n last_order = 0\n intervals = nuniq_is._intervals\n diff_order = IntervalSet.HPY_MAX_ORDER\n shift_order = 2 * diff_order\n for interval in intervals:\n for j in range(interval[0], interval[1]):\n order, i_pix = uniq2orderipix(j)\n if order != last_order:\n nested_is = nested_is.union(IntervalSet(np.asarray(rtmp)))\n rtmp = []\n last_order = order\n diff_order = IntervalSet.HPY_MAX_ORDER - order\n shift_order = 2 * diff_order\n rtmp.append((i_pix << shift_order, i_pix + 1 << shift_order))\n nested_is = nested_is.union(IntervalSet(np.asarray(rtmp)))\n return nested_is\n",
"role": "user"
},
{
"content": "from_nuniq_interval_set",
"role": "assistant"
}
] |
def x(a_intervals, b_intervals, op):
a_endpoints = a_intervals.flatten().tolist()
b_endpoints = b_intervals.flatten().tolist()
sentinel = max(a_endpoints[-1], b_endpoints[-1]) + 1
a_endpoints += [sentinel]
b_endpoints += [sentinel]
a_index = 0
b_index = 0
res = []
scan = min(a_endpoints[0], b_endpoints[0])
while scan < sentinel:
in_a = not (scan < a_endpoints[a_index]) ^ a_index % 2
in_b = not (scan < b_endpoints[b_index]) ^ b_index % 2
in_res = op(in_a, in_b)
if in_res ^ len(res) % 2:
res += [scan]
if scan == a_endpoints[a_index]:
a_index += 1
if scan == b_endpoints[b_index]:
b_index += 1
scan = min(a_endpoints[a_index], b_endpoints[b_index])
return np.asarray(res).reshape((-1, 2))
|
merge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a_intervals, b_intervals, op):\n a_endpoints = a_intervals.flatten().tolist()\n b_endpoints = b_intervals.flatten().tolist()\n sentinel = max(a_endpoints[-1], b_endpoints[-1]) + 1\n a_endpoints += [sentinel]\n b_endpoints += [sentinel]\n a_index = 0\n b_index = 0\n res = []\n scan = min(a_endpoints[0], b_endpoints[0])\n while scan < sentinel:\n in_a = not (scan < a_endpoints[a_index]) ^ a_index % 2\n in_b = not (scan < b_endpoints[b_index]) ^ b_index % 2\n in_res = op(in_a, in_b)\n if in_res ^ len(res) % 2:\n res += [scan]\n if scan == a_endpoints[a_index]:\n a_index += 1\n if scan == b_endpoints[b_index]:\n b_index += 1\n scan = min(a_endpoints[a_index], b_endpoints[b_index])\n return np.asarray(res).reshape((-1, 2))\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(self):
if hasattr(self, '_glir'):
self._glir.command('DELETE', self._id)
self._glir._deletable = True
del self._glir
|
delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if hasattr(self, '_glir'):\n self._glir.command('DELETE', self._id)\n self._glir._deletable = True\n del self._glir\n",
"role": "user"
},
{
"content": "delete",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.