source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(filename, data):
data = np.asarray(data)
if not data.ndim == 3 and data.shape[-1] in (3, 4):
raise ValueError('data must be a 3D array with last dimension 3 or 4')
with open(filename, 'wb') as f:
f.write(_make_png(data))
|
write_png
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, data):\n data = np.asarray(data)\n if not data.ndim == 3 and data.shape[-1] in (3, 4):\n raise ValueError('data must be a 3D array with last dimension 3 or 4')\n with open(filename, 'wb') as f:\n f.write(_make_png(data))\n",
"role": "user"
},
{
"content": "write_png",
"role": "assistant"
}
] |
def x(filename, format=None):
imageio, PIL = _check_img_lib()
if imageio is not None:
return imageio.imread(filename, format)
elif PIL is not None:
im = PIL.Image.open(filename)
if im.mode == 'P':
im = im.convert()
a = np.asarray(im)
if len(a.shape) == 0:
raise MemoryError('Too little memory to convert PIL image to array'
)
return a
else:
raise RuntimeError('imread requires the imageio or PIL package.')
|
imread
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, format=None):\n imageio, PIL = _check_img_lib()\n if imageio is not None:\n return imageio.imread(filename, format)\n elif PIL is not None:\n im = PIL.Image.open(filename)\n if im.mode == 'P':\n im = im.convert()\n a = np.asarray(im)\n if len(a.shape) == 0:\n raise MemoryError('Too little memory to convert PIL image to array'\n )\n return a\n else:\n raise RuntimeError('imread requires the imageio or PIL package.')\n",
"role": "user"
},
{
"content": "imread",
"role": "assistant"
}
] |
def x(filename, im, format=None):
imageio, PIL = _check_img_lib()
if imageio is not None:
return imageio.imsave(filename, im, format)
elif PIL is not None:
pim = PIL.Image.fromarray(im)
pim.save(filename, format)
else:
raise RuntimeError('imsave requires the imageio or PIL package.')
|
imsave
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, im, format=None):\n imageio, PIL = _check_img_lib()\n if imageio is not None:\n return imageio.imsave(filename, im, format)\n elif PIL is not None:\n pim = PIL.Image.fromarray(im)\n pim.save(filename, format)\n else:\n raise RuntimeError('imsave requires the imageio or PIL package.')\n",
"role": "user"
},
{
"content": "imsave",
"role": "assistant"
}
] |
def x():
imageio = PIL = None
try:
import imageio
except ImportError:
try:
import PIL.Image
except ImportError:
pass
return imageio, PIL
|
check_img_lib
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n imageio = PIL = None\n try:\n import imageio\n except ImportError:\n try:\n import PIL.Image\n except ImportError:\n pass\n return imageio, PIL\n",
"role": "user"
},
{
"content": "check_img_lib",
"role": "assistant"
}
] |
def x(input_type, *args, **kwargs):
def x(*args, **kwargs):
while True:
try:
tmp = raw_input(*args, **kwargs)
except NameError:
tmp = input(*args, **kwargs)
try:
return input_type(tmp)
except:
print('Expected type', input_type)
return _read_in(*args, **kwargs)
|
read_from_user
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_type, *args, **kwargs):\n\n def x(*args, **kwargs):\n while True:\n try:\n tmp = raw_input(*args, **kwargs)\n except NameError:\n tmp = input(*args, **kwargs)\n try:\n return input_type(tmp)\n except:\n print('Expected type', input_type)\n return _read_in(*args, **kwargs)\n",
"role": "user"
},
{
"content": "read_from_user",
"role": "assistant"
}
] |
def x():
builtin_slots = {}
for index, line in enumerate(open(BUILTIN_SLOTS_LOCATION)):
o = line.strip().split('\t')
builtin_slots[index] = {'name': o[0], 'description': o[1]}
return builtin_slots
|
load_builtin_slots
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n builtin_slots = {}\n for index, line in enumerate(open(BUILTIN_SLOTS_LOCATION)):\n o = line.strip().split('\\t')\n builtin_slots[index] = {'name': o[0], 'description': o[1]}\n return builtin_slots\n",
"role": "user"
},
{
"content": "load_builtin_slots",
"role": "assistant"
}
] |
def x(logger=None, level=logging.INFO, fmt=
'function %(function_name)s execution time: %(execution_time).3f', *
func_or_func_args, **timer_kwargs):
def x(f):
@functools.wraps(f)
def x(*args, **kwargs):
with Timer(**timer_kwargs) as t:
out = f(*args, **kwargs)
context = {'function_name': f.__name__, 'execution_time': t.elapsed
}
if logger:
logger.log(level, fmt % context, extra=context)
else:
print(fmt % context)
return out
return wrapped
if len(func_or_func_args) == 1 and isinstance(func_or_func_args[0],
collections.Callable):
return wrapped_f(func_or_func_args[0])
else:
return wrapped_f
|
timer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(logger=None, level=logging.INFO, fmt=\n 'function %(function_name)s execution time: %(execution_time).3f', *\n func_or_func_args, **timer_kwargs):\n\n def x(f):\n\n @functools.wraps(f)\n def x(*args, **kwargs):\n with Timer(**timer_kwargs) as t:\n out = f(*args, **kwargs)\n context = {'function_name': f.__name__, 'execution_time': t.elapsed\n }\n if logger:\n logger.log(level, fmt % context, extra=context)\n else:\n print(fmt % context)\n return out\n return wrapped\n if len(func_or_func_args) == 1 and isinstance(func_or_func_args[0],\n collections.Callable):\n return wrapped_f(func_or_func_args[0])\n else:\n return wrapped_f\n",
"role": "user"
},
{
"content": "timer",
"role": "assistant"
}
] |
def x(self, points, indices, **kwargs):
itemsize = len(points)
itemcount = 1
V = np.empty(itemcount * itemsize, dtype=self.vtype)
for name in self.vtype.names:
if name not in ['collection_index', 'position']:
V[name] = kwargs.get(name, self._defaults[name])
V['position'] = points
if self.utype:
U = np.zeros(itemcount, dtype=self.utype)
for name in self.utype.names:
if name not in ['__unused__']:
U[name] = kwargs.get(name, self._defaults[name])
else:
U = None
I = np.array(indices).ravel()
Collection.append(self, vertices=V, uniforms=U, indices=I, itemsize=
itemsize)
|
append
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, points, indices, **kwargs):\n itemsize = len(points)\n itemcount = 1\n V = np.empty(itemcount * itemsize, dtype=self.vtype)\n for name in self.vtype.names:\n if name not in ['collection_index', 'position']:\n V[name] = kwargs.get(name, self._defaults[name])\n V['position'] = points\n if self.utype:\n U = np.zeros(itemcount, dtype=self.utype)\n for name in self.utype.names:\n if name not in ['__unused__']:\n U[name] = kwargs.get(name, self._defaults[name])\n else:\n U = None\n I = np.array(indices).ravel()\n Collection.append(self, vertices=V, uniforms=U, indices=I, itemsize=\n itemsize)\n",
"role": "user"
},
{
"content": "append",
"role": "assistant"
}
] |
def x(fig):
renderer = VispyRenderer()
exporter = Exporter(renderer)
with warnings.catch_warnings(record=True):
exporter.run(fig)
renderer._vispy_done()
return renderer.canvas
|
mpl_to_vispy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fig):\n renderer = VispyRenderer()\n exporter = Exporter(renderer)\n with warnings.catch_warnings(record=True):\n exporter.run(fig)\n renderer._vispy_done()\n return renderer.canvas\n",
"role": "user"
},
{
"content": "mpl_to_vispy",
"role": "assistant"
}
] |
def x(block=False):
if not has_matplotlib():
raise ImportError('Requires matplotlib version >= 1.2')
cs = [_mpl_to_vispy(plt.figure(ii)) for ii in plt.get_fignums()]
if block and len(cs) > 0:
cs[0].app.run()
return cs
|
show
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(block=False):\n if not has_matplotlib():\n raise ImportError('Requires matplotlib version >= 1.2')\n cs = [_mpl_to_vispy(plt.figure(ii)) for ii in plt.get_fignums()]\n if block and len(cs) > 0:\n cs[0].app.run()\n return cs\n",
"role": "user"
},
{
"content": "show",
"role": "assistant"
}
] |
def x(self, mplobj, output='vb'):
for ax in self._axs.values():
if ax['ax'] is mplobj.axes:
return ax[output]
raise RuntimeError('Parent axes could not be found!')
|
mpl_ax_to
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mplobj, output='vb'):\n for ax in self._axs.values():\n if ax['ax'] is mplobj.axes:\n return ax[output]\n raise RuntimeError('Parent axes could not be found!')\n",
"role": "user"
},
{
"content": "mpl_ax_to",
"role": "assistant"
}
] |
def x(adjacency_mat, directed=False, random_state=None):
if random_state is None:
random_state = np.random
elif not isinstance(random_state, np.random.RandomState):
random_state = np.random.RandomState(random_state)
if issparse(adjacency_mat):
adjacency_mat = adjacency_mat.tocoo()
num_nodes = adjacency_mat.shape[0]
node_coords = random_state.rand(num_nodes, 2)
line_vertices, arrows = _straight_line_vertices(adjacency_mat,
node_coords, directed)
yield node_coords, line_vertices, arrows
|
random
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(adjacency_mat, directed=False, random_state=None):\n if random_state is None:\n random_state = np.random\n elif not isinstance(random_state, np.random.RandomState):\n random_state = np.random.RandomState(random_state)\n if issparse(adjacency_mat):\n adjacency_mat = adjacency_mat.tocoo()\n num_nodes = adjacency_mat.shape[0]\n node_coords = random_state.rand(num_nodes, 2)\n line_vertices, arrows = _straight_line_vertices(adjacency_mat,\n node_coords, directed)\n yield node_coords, line_vertices, arrows\n",
"role": "user"
},
{
"content": "random",
"role": "assistant"
}
] |
def x(data, level, connected=False, extend_to_edge=False):
if extend_to_edge:
d2 = np.empty((data.shape[0] + 2, data.shape[1] + 2), dtype=data.dtype)
d2[1:-1, 1:-1] = data
d2[0, 1:-1] = data[0]
d2[-1, 1:-1] = data[-1]
d2[1:-1, 0] = data[:, 0]
d2[1:-1, -1] = data[:, -1]
d2[0, 0] = d2[0, 1]
d2[0, -1] = d2[1, -1]
d2[-1, 0] = d2[-1, 1]
d2[-1, -1] = d2[-1, -2]
data = d2
side_table = [[], [0, 1], [1, 2], [0, 2], [0, 3], [1, 3], [0, 1, 2, 3],
[2, 3], [2, 3], [0, 1, 2, 3], [1, 3], [0, 3], [0, 2], [1, 2], [0, 1
], []]
edge_key = [[(0, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 0), (1, 1)], [(1,
1), (0, 1)]]
level = float(level)
lines = []
mask = data < level
index = np.zeros([(x - 1) for x in data.shape], dtype=np.ubyte)
fields = np.empty((2, 2), dtype=object)
slices = [slice(0, -1), slice(1, None)]
for i in [0, 1]:
for j in [0, 1]:
fields[i, j] = mask[slices[i], slices[j]]
vertIndex = i + 2 * j
index += (fields[i, j] * 2 ** vertIndex).astype(np.ubyte)
for i in range(index.shape[0]):
for j in range(index.shape[1]):
sides = side_table[index[i, j]]
for l in range(0, len(sides), 2):
edges = sides[l:l + 2]
pts = []
for m in [0, 1]:
p1 = edge_key[edges[m]][0]
p2 = edge_key[edges[m]][1]
v1 = data[i + p1[0], j + p1[1]]
v2 = data[i + p2[0], j + p2[1]]
f = (level - v1) / (v2 - v1)
fi = 1.0 - f
p = p1[0] * fi + p2[0] * f + i + 0.5, p1[1] * fi + p2[1
] * f + j + 0.5
if extend_to_edge:
p = min(data.shape[0] - 2, max(0, p[0] - 1)), min(
data.shape[1] - 2, max(0, p[1] - 1))
if connected:
gridKey = i + (1 if edges[m] == 2 else 0), j + (1 if
edges[m] == 3 else 0), edges[m] % 2
pts.append((p, gridKey))
else:
pts.append(p)
lines.append(pts)
if not connected:
return lines
points = {}
for a, b in lines:
if a[1] not in points:
points[a[1]] = []
points[a[1]].append([a, b])
if b[1] not in points:
points[b[1]] = []
points[b[1]].append([b, a])
for k in list(points.keys()):
try:
chains = points[k]
except KeyError:
continue
for chain in chains:
x = None
while True:
if x == chain[-1][1]:
break
x = chain[-1][1]
if x == k:
break
y = chain[-2][1]
connects = points[x]
for conn in connects[:]:
if conn[1][1] != y:
chain.extend(conn[1:])
del points[x]
if chain[0][1] == chain[-1][1]:
chains.pop()
break
lines = []
for chain in points.values():
if len(chain) == 2:
chain = chain[1][1:][::-1] + chain[0]
else:
chain = chain[0]
lines.append([pt[0] for pt in chain])
return lines
|
isocurve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, level, connected=False, extend_to_edge=False):\n if extend_to_edge:\n d2 = np.empty((data.shape[0] + 2, data.shape[1] + 2), dtype=data.dtype)\n d2[1:-1, 1:-1] = data\n d2[0, 1:-1] = data[0]\n d2[-1, 1:-1] = data[-1]\n d2[1:-1, 0] = data[:, 0]\n d2[1:-1, -1] = data[:, -1]\n d2[0, 0] = d2[0, 1]\n d2[0, -1] = d2[1, -1]\n d2[-1, 0] = d2[-1, 1]\n d2[-1, -1] = d2[-1, -2]\n data = d2\n side_table = [[], [0, 1], [1, 2], [0, 2], [0, 3], [1, 3], [0, 1, 2, 3],\n [2, 3], [2, 3], [0, 1, 2, 3], [1, 3], [0, 3], [0, 2], [1, 2], [0, 1\n ], []]\n edge_key = [[(0, 1), (0, 0)], [(0, 0), (1, 0)], [(1, 0), (1, 1)], [(1, \n 1), (0, 1)]]\n level = float(level)\n lines = []\n mask = data < level\n index = np.zeros([(x - 1) for x in data.shape], dtype=np.ubyte)\n fields = np.empty((2, 2), dtype=object)\n slices = [slice(0, -1), slice(1, None)]\n for i in [0, 1]:\n for j in [0, 1]:\n fields[i, j] = mask[slices[i], slices[j]]\n vertIndex = i + 2 * j\n index += (fields[i, j] * 2 ** vertIndex).astype(np.ubyte)\n for i in range(index.shape[0]):\n for j in range(index.shape[1]):\n sides = side_table[index[i, j]]\n for l in range(0, len(sides), 2):\n edges = sides[l:l + 2]\n pts = []\n for m in [0, 1]:\n p1 = edge_key[edges[m]][0]\n p2 = edge_key[edges[m]][1]\n v1 = data[i + p1[0], j + p1[1]]\n v2 = data[i + p2[0], j + p2[1]]\n f = (level - v1) / (v2 - v1)\n fi = 1.0 - f\n p = p1[0] * fi + p2[0] * f + i + 0.5, p1[1] * fi + p2[1\n ] * f + j + 0.5\n if extend_to_edge:\n p = min(data.shape[0] - 2, max(0, p[0] - 1)), min(\n data.shape[1] - 2, max(0, p[1] - 1))\n if connected:\n gridKey = i + (1 if edges[m] == 2 else 0), j + (1 if\n edges[m] == 3 else 0), edges[m] % 2\n pts.append((p, gridKey))\n else:\n pts.append(p)\n lines.append(pts)\n if not connected:\n return lines\n points = {}\n for a, b in lines:\n if a[1] not in points:\n points[a[1]] = []\n points[a[1]].append([a, b])\n if b[1] not in points:\n points[b[1]] = []\n points[b[1]].append([b, a])\n for k in list(points.keys()):\n try:\n chains = points[k]\n except KeyError:\n continue\n for chain in chains:\n x = None\n while True:\n if x == chain[-1][1]:\n break\n x = chain[-1][1]\n if x == k:\n break\n y = chain[-2][1]\n connects = points[x]\n for conn in connects[:]:\n if conn[1][1] != y:\n chain.extend(conn[1:])\n del points[x]\n if chain[0][1] == chain[-1][1]:\n chains.pop()\n break\n lines = []\n for chain in points.values():\n if len(chain) == 2:\n chain = chain[1][1:][::-1] + chain[0]\n else:\n chain = chain[0]\n lines.append([pt[0] for pt in chain])\n return lines\n",
"role": "user"
},
{
"content": "isocurve",
"role": "assistant"
}
] |
def x(self):
if self._pos is None:
tr = self.visual.get_transform('canvas', 'visual')
self._pos = tr.map(self.mouse_event.pos)
return self._pos
|
pos
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._pos is None:\n tr = self.visual.get_transform('canvas', 'visual')\n self._pos = tr.map(self.mouse_event.pos)\n return self._pos\n",
"role": "user"
},
{
"content": "pos",
"role": "assistant"
}
] |
def x(self):
if self.mouse_event.last_event is None:
return None
ev = self.copy()
ev.mouse_event = self.mouse_event.last_event
return ev
|
last_event
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.mouse_event.last_event is None:\n return None\n ev = self.copy()\n ev.mouse_event = self.mouse_event.last_event\n return ev\n",
"role": "user"
},
{
"content": "last_event",
"role": "assistant"
}
] |
def x(self):
if self.mouse_event.press_event is None:
return None
ev = self.copy()
ev.mouse_event = self.mouse_event.press_event
return ev
|
press_event
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.mouse_event.press_event is None:\n return None\n ev = self.copy()\n ev.mouse_event = self.mouse_event.press_event\n return ev\n",
"role": "user"
},
{
"content": "press_event",
"role": "assistant"
}
] |
def x(enum, name=None, valid=None):
name = name or 'enum'
res = None
if isinstance(enum, int):
if hasattr(enum, 'name') and enum.name.startswith('GL_'):
res = enum.name[3:].lower()
elif isinstance(enum, string_types):
res = enum.lower()
if res is None:
raise ValueError(
'Could not determine string represenatation forenum %r' % enum)
elif valid and res not in valid:
raise ValueError('Value of %s must be one of %r, not %r' % (name,
valid, enum))
return res
|
check_enum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(enum, name=None, valid=None):\n name = name or 'enum'\n res = None\n if isinstance(enum, int):\n if hasattr(enum, 'name') and enum.name.startswith('GL_'):\n res = enum.name[3:].lower()\n elif isinstance(enum, string_types):\n res = enum.lower()\n if res is None:\n raise ValueError(\n 'Could not determine string represenatation forenum %r' % enum)\n elif valid and res not in valid:\n raise ValueError('Value of %s must be one of %r, not %r' % (name,\n valid, enum))\n return res\n",
"role": "user"
},
{
"content": "check_enum",
"role": "assistant"
}
] |
def x(tex):
from .program import Program
program = Program(vert_draw, frag_draw)
program['u_texture'] = tex
program['a_position'] = [[-1.0, -1.0], [-1.0, 1.0], [1.0, -1.0], [1.0, 1.0]
]
program['a_texcoord'] = [[0.0, 1.0], [0.0, 0.0], [1.0, 1.0], [1.0, 0.0]]
program.draw('triangle_strip')
|
draw_texture
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tex):\n from .program import Program\n program = Program(vert_draw, frag_draw)\n program['u_texture'] = tex\n program['a_position'] = [[-1.0, -1.0], [-1.0, 1.0], [1.0, -1.0], [1.0, 1.0]\n ]\n program['a_texcoord'] = [[0.0, 1.0], [0.0, 0.0], [1.0, 1.0], [1.0, 0.0]]\n program.draw('triangle_strip')\n",
"role": "user"
},
{
"content": "draw_texture",
"role": "assistant"
}
] |
def x(cmd, pattern, func):
try:
out, _ = run_subprocess([cmd])
except (OSError, CalledProcessError):
pass
else:
match = re.search(pattern, out)
if match:
return func(*map(float, match.groups()))
|
get_dpi_from
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cmd, pattern, func):\n try:\n out, _ = run_subprocess([cmd])\n except (OSError, CalledProcessError):\n pass\n else:\n match = re.search(pattern, out)\n if match:\n return func(*map(float, match.groups()))\n",
"role": "user"
},
{
"content": "get_dpi_from",
"role": "assistant"
}
] |
def x(raise_error=True):
if 'DISPLAY' not in os.environ:
return 96.0
from_xdpyinfo = _get_dpi_from('xdpyinfo', '(\\d+)x(\\d+) dots per inch',
lambda x_dpi, y_dpi: (x_dpi + y_dpi) / 2)
if from_xdpyinfo is not None:
return from_xdpyinfo
from_xrandr = _get_dpi_from('xrandr',
'(\\d+)x(\\d+).*?(\\d+)mm x (\\d+)mm', lambda x_px, y_px, x_mm,
y_mm: 25.4 * (x_px / x_mm + y_px / y_mm) / 2)
if from_xrandr is not None:
return from_xrandr
if raise_error:
raise RuntimeError('could not determine DPI')
else:
logger.warning('could not determine DPI')
return 96
|
get_dpi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(raise_error=True):\n if 'DISPLAY' not in os.environ:\n return 96.0\n from_xdpyinfo = _get_dpi_from('xdpyinfo', '(\\\\d+)x(\\\\d+) dots per inch',\n lambda x_dpi, y_dpi: (x_dpi + y_dpi) / 2)\n if from_xdpyinfo is not None:\n return from_xdpyinfo\n from_xrandr = _get_dpi_from('xrandr',\n '(\\\\d+)x(\\\\d+).*?(\\\\d+)mm x (\\\\d+)mm', lambda x_px, y_px, x_mm,\n y_mm: 25.4 * (x_px / x_mm + y_px / y_mm) / 2)\n if from_xrandr is not None:\n return from_xrandr\n if raise_error:\n raise RuntimeError('could not determine DPI')\n else:\n logger.warning('could not determine DPI')\n return 96\n",
"role": "user"
},
{
"content": "get_dpi",
"role": "assistant"
}
] |
def x(self, adjacency_mat=None, **kwargs):
if adjacency_mat is not None:
if adjacency_mat.shape[0] != adjacency_mat.shape[1]:
raise ValueError('Adjacency matrix should be square.')
self._adjacency_mat = adjacency_mat
for k in self._arrow_attributes:
if k in kwargs:
translated = self._arrow_kw_trans[k
] if k in self._arrow_kw_trans else k
setattr(self._edges, translated, kwargs.pop(k))
arrow_kwargs = {}
for k in self._arrow_kwargs:
if k in kwargs:
translated = self._arrow_kw_trans[k
] if k in self._arrow_kw_trans else k
arrow_kwargs[translated] = kwargs.pop(k)
node_kwargs = {}
for k in self._node_kwargs:
if k in kwargs:
translated = self._node_kw_trans[k
] if k in self._node_kw_trans else k
node_kwargs[translated] = kwargs.pop(k)
if len(kwargs) > 0:
raise TypeError('%s.set_data() got invalid keyword arguments: %S' %
(self.__class__.__name__, list(kwargs.keys())))
self._arrow_data = arrow_kwargs
self._node_data = node_kwargs
if not self._animate:
self.set_final_layout()
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, adjacency_mat=None, **kwargs):\n if adjacency_mat is not None:\n if adjacency_mat.shape[0] != adjacency_mat.shape[1]:\n raise ValueError('Adjacency matrix should be square.')\n self._adjacency_mat = adjacency_mat\n for k in self._arrow_attributes:\n if k in kwargs:\n translated = self._arrow_kw_trans[k\n ] if k in self._arrow_kw_trans else k\n setattr(self._edges, translated, kwargs.pop(k))\n arrow_kwargs = {}\n for k in self._arrow_kwargs:\n if k in kwargs:\n translated = self._arrow_kw_trans[k\n ] if k in self._arrow_kw_trans else k\n arrow_kwargs[translated] = kwargs.pop(k)\n node_kwargs = {}\n for k in self._node_kwargs:\n if k in kwargs:\n translated = self._node_kw_trans[k\n ] if k in self._node_kw_trans else k\n node_kwargs[translated] = kwargs.pop(k)\n if len(kwargs) > 0:\n raise TypeError('%s.set_data() got invalid keyword arguments: %S' %\n (self.__class__.__name__, list(kwargs.keys())))\n self._arrow_data = arrow_kwargs\n self._node_data = node_kwargs\n if not self._animate:\n self.set_final_layout()\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(rect, orientation):
total_halfx, total_halfy = rect.center
if orientation in ['bottom', 'top']:
total_major_axis, total_minor_axis = total_halfx, total_halfy
else:
total_major_axis, total_minor_axis = total_halfy, total_halfx
major_axis = total_major_axis * (1.0 - ColorBarWidget.major_axis_padding)
minor_axis = major_axis * ColorBarWidget.minor_axis_ratio
minor_axis = np.minimum(minor_axis, total_minor_axis * (1.0 -
ColorBarWidget.minor_axis_padding))
return major_axis, minor_axis
|
calc_size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rect, orientation):\n total_halfx, total_halfy = rect.center\n if orientation in ['bottom', 'top']:\n total_major_axis, total_minor_axis = total_halfx, total_halfy\n else:\n total_major_axis, total_minor_axis = total_halfy, total_halfx\n major_axis = total_major_axis * (1.0 - ColorBarWidget.major_axis_padding)\n minor_axis = major_axis * ColorBarWidget.minor_axis_ratio\n minor_axis = np.minimum(minor_axis, total_minor_axis * (1.0 -\n ColorBarWidget.minor_axis_padding))\n return major_axis, minor_axis\n",
"role": "user"
},
{
"content": "calc_size",
"role": "assistant"
}
] |
def x(dtype, level=0, depth=0):
dtype = np.dtype(dtype)
fields = dtype.fields
if fields is None:
if len(dtype.shape):
count = reduce(mul, dtype.shape)
else:
count = 1
if dtype.subdtype:
name = str(dtype.subdtype[0])
else:
name = str(dtype)
return ['', count, name]
else:
items = []
name = ''
for key, value in fields.items():
l = dtype_reduce(value[0], level, depth + 1)
if type(l[0]) is str:
items.append([key, l[1], l[2]])
else:
items.append(l)
name += key + ','
ctype = None
count = 0
for i, item in enumerate(items):
if type(item[0]) is not str:
return items
elif i == 0:
ctype = item[2]
count += item[1]
else:
if item[2] != ctype:
return items
count += item[1]
if depth >= level:
return [name, count, ctype]
else:
return items
|
dtype_reduce
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dtype, level=0, depth=0):\n dtype = np.dtype(dtype)\n fields = dtype.fields\n if fields is None:\n if len(dtype.shape):\n count = reduce(mul, dtype.shape)\n else:\n count = 1\n if dtype.subdtype:\n name = str(dtype.subdtype[0])\n else:\n name = str(dtype)\n return ['', count, name]\n else:\n items = []\n name = ''\n for key, value in fields.items():\n l = dtype_reduce(value[0], level, depth + 1)\n if type(l[0]) is str:\n items.append([key, l[1], l[2]])\n else:\n items.append(l)\n name += key + ','\n ctype = None\n count = 0\n for i, item in enumerate(items):\n if type(item[0]) is not str:\n return items\n elif i == 0:\n ctype = item[2]\n count += item[1]\n else:\n if item[2] != ctype:\n return items\n count += item[1]\n if depth >= level:\n return [name, count, ctype]\n else:\n return items\n",
"role": "user"
},
{
"content": "dtype_reduce",
"role": "assistant"
}
] |
def x(utype, prefix=''):
utype = np.dtype(utype)
_utype = dtype_reduce(utype, level=1)
header = """
uniform sampler2D uniforms;
uniform vec3 uniforms_shape;
attribute float collection_index;
"""
types = {(1): 'float', (2): 'vec2 ', (3): 'vec3 ', (4): 'vec4 ', (9):
'mat3 ', (16): 'mat4 '}
for name, count, _ in _utype:
if name != '__unused__':
header += 'varying %s %s%s;\n' % (types[count], prefix, name)
body = """
void fetch_uniforms() {
float rows = uniforms_shape.x;
float cols = uniforms_shape.y;
float count = uniforms_shape.z;
float index = collection_index;
int index_x = int(mod(index, (floor(cols/(count/4.0))))) * int(count/4.0);
int index_y = int(floor(index / (floor(cols/(count/4.0)))));
float size_x = cols - 1.0;
float size_y = rows - 1.0;
float ty = 0.0;
if (size_y > 0.0)
ty = float(index_y)/size_y;
int i = index_x;
vec4 _uniform;
"""
_utype = dict([(name, count) for name, count, _ in _utype])
store = 0
for name in utype.names:
if name == '__unused__':
continue
count, shift = _utype[name], 0
size = count
while count:
if store == 0:
body += (
'\n _uniform = texture2D(uniforms, vec2(float(i++)/size_x,ty));\n'
)
store = 4
if store == 4:
a = 'xyzw'
elif store == 3:
a = 'yzw'
elif store == 2:
a = 'zw'
elif store == 1:
a = 'w'
if shift == 0:
b = 'xyzw'
elif shift == 1:
b = 'yzw'
elif shift == 2:
b = 'zw'
elif shift == 3:
b = 'w'
i = min(min(len(b), count), len(a))
if size > 1:
body += ' %s%s.%s = _uniform.%s;\n' % (prefix, name, b[:
i], a[:i])
else:
body += ' %s%s = _uniform.%s;\n' % (prefix, name, a[:i])
count -= i
shift += i
store -= i
body += '}\n\n'
return header + body
|
fetchcode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(utype, prefix=''):\n utype = np.dtype(utype)\n _utype = dtype_reduce(utype, level=1)\n header = \"\"\"\nuniform sampler2D uniforms;\nuniform vec3 uniforms_shape;\nattribute float collection_index;\n\n\"\"\"\n types = {(1): 'float', (2): 'vec2 ', (3): 'vec3 ', (4): 'vec4 ', (9):\n 'mat3 ', (16): 'mat4 '}\n for name, count, _ in _utype:\n if name != '__unused__':\n header += 'varying %s %s%s;\\n' % (types[count], prefix, name)\n body = \"\"\"\nvoid fetch_uniforms() {\n float rows = uniforms_shape.x;\n float cols = uniforms_shape.y;\n float count = uniforms_shape.z;\n float index = collection_index;\n int index_x = int(mod(index, (floor(cols/(count/4.0))))) * int(count/4.0);\n int index_y = int(floor(index / (floor(cols/(count/4.0)))));\n float size_x = cols - 1.0;\n float size_y = rows - 1.0;\n float ty = 0.0;\n if (size_y > 0.0)\n ty = float(index_y)/size_y;\n int i = index_x;\n vec4 _uniform;\n\"\"\"\n _utype = dict([(name, count) for name, count, _ in _utype])\n store = 0\n for name in utype.names:\n if name == '__unused__':\n continue\n count, shift = _utype[name], 0\n size = count\n while count:\n if store == 0:\n body += (\n '\\n _uniform = texture2D(uniforms, vec2(float(i++)/size_x,ty));\\n'\n )\n store = 4\n if store == 4:\n a = 'xyzw'\n elif store == 3:\n a = 'yzw'\n elif store == 2:\n a = 'zw'\n elif store == 1:\n a = 'w'\n if shift == 0:\n b = 'xyzw'\n elif shift == 1:\n b = 'yzw'\n elif shift == 2:\n b = 'zw'\n elif shift == 3:\n b = 'w'\n i = min(min(len(b), count), len(a))\n if size > 1:\n body += ' %s%s.%s = _uniform.%s;\\n' % (prefix, name, b[:\n i], a[:i])\n else:\n body += ' %s%s = _uniform.%s;\\n' % (prefix, name, a[:i])\n count -= i\n shift += i\n store -= i\n body += '}\\n\\n'\n return header + body\n",
"role": "user"
},
{
"content": "fetchcode",
"role": "assistant"
}
] |
def x():
vtype = [('position', np.float32, 3), ('texcoord', np.float32, 2), (
'normal', np.float32, 3), ('color', np.float32, 4)]
itype = np.uint32
p = np.array([[1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1], [1, -1, -
1], [1, 1, -1], [-1, 1, -1], [-1, -1, -1]])
n = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0], [-1, 0, 1], [0, -1, 0],
[0, 0, -1]])
c = np.array([[1, 1, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1], [1, 0, 1, 1], [
1, 0, 0, 1], [1, 1, 0, 1], [0, 1, 0, 1], [0, 0, 0, 1]])
t = np.array([[0, 0], [0, 1], [1, 1], [1, 0]])
faces_p = [0, 1, 2, 3, 0, 3, 4, 5, 0, 5, 6, 1, 1, 6, 7, 2, 7, 4, 3, 2,
4, 7, 6, 5]
faces_c = [0, 1, 2, 3, 0, 3, 4, 5, 0, 5, 6, 1, 1, 6, 7, 2, 7, 4, 3, 2,
4, 7, 6, 5]
faces_n = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
5, 5, 5, 5]
faces_t = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 2, 3,
0, 1, 2, 3]
vertices = np.zeros(24, vtype)
vertices['position'] = p[faces_p]
vertices['normal'] = n[faces_n]
vertices['color'] = c[faces_c]
vertices['texcoord'] = t[faces_t]
filled = np.resize(np.array([0, 1, 2, 0, 2, 3], dtype=itype), 6 * (2 * 3))
filled += np.repeat(4 * np.arange(6, dtype=itype), 6)
filled = filled.reshape((len(filled) // 3, 3))
outline = np.resize(np.array([0, 1, 1, 2, 2, 3, 3, 0], dtype=itype), 6 *
(2 * 4))
outline += np.repeat(4 * np.arange(6, dtype=itype), 8)
return vertices, filled, outline
|
create_cube
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n vtype = [('position', np.float32, 3), ('texcoord', np.float32, 2), (\n 'normal', np.float32, 3), ('color', np.float32, 4)]\n itype = np.uint32\n p = np.array([[1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1], [1, -1, -\n 1], [1, 1, -1], [-1, 1, -1], [-1, -1, -1]])\n n = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0], [-1, 0, 1], [0, -1, 0],\n [0, 0, -1]])\n c = np.array([[1, 1, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1], [1, 0, 1, 1], [\n 1, 0, 0, 1], [1, 1, 0, 1], [0, 1, 0, 1], [0, 0, 0, 1]])\n t = np.array([[0, 0], [0, 1], [1, 1], [1, 0]])\n faces_p = [0, 1, 2, 3, 0, 3, 4, 5, 0, 5, 6, 1, 1, 6, 7, 2, 7, 4, 3, 2, \n 4, 7, 6, 5]\n faces_c = [0, 1, 2, 3, 0, 3, 4, 5, 0, 5, 6, 1, 1, 6, 7, 2, 7, 4, 3, 2, \n 4, 7, 6, 5]\n faces_n = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, \n 5, 5, 5, 5]\n faces_t = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 2, 3, \n 0, 1, 2, 3]\n vertices = np.zeros(24, vtype)\n vertices['position'] = p[faces_p]\n vertices['normal'] = n[faces_n]\n vertices['color'] = c[faces_c]\n vertices['texcoord'] = t[faces_t]\n filled = np.resize(np.array([0, 1, 2, 0, 2, 3], dtype=itype), 6 * (2 * 3))\n filled += np.repeat(4 * np.arange(6, dtype=itype), 6)\n filled = filled.reshape((len(filled) // 3, 3))\n outline = np.resize(np.array([0, 1, 1, 2, 2, 3, 3, 0], dtype=itype), 6 *\n (2 * 4))\n outline += np.repeat(4 * np.arange(6, dtype=itype), 8)\n return vertices, filled, outline\n",
"role": "user"
},
{
"content": "create_cube",
"role": "assistant"
}
] |
def x(width=1, height=1, width_segments=1, height_segments=1, direction='+z'):
x_grid = width_segments
y_grid = height_segments
x_grid1 = x_grid + 1
y_grid1 = y_grid + 1
positions = np.zeros(x_grid1 * y_grid1 * 3)
normals = np.zeros(x_grid1 * y_grid1 * 3)
texcoords = np.zeros(x_grid1 * y_grid1 * 2)
y = np.arange(y_grid1) * height / y_grid - height / 2
x = np.arange(x_grid1) * width / x_grid - width / 2
positions[::3] = np.tile(x, y_grid1)
positions[1::3] = -np.repeat(y, x_grid1)
normals[2::3] = 1
texcoords[::2] = np.tile(np.arange(x_grid1) / x_grid, y_grid1)
texcoords[1::2] = np.repeat(1 - np.arange(y_grid1) / y_grid, x_grid1)
faces, outline = [], []
for i_y in range(y_grid):
for i_x in range(x_grid):
a = i_x + x_grid1 * i_y
b = i_x + x_grid1 * (i_y + 1)
c = i_x + 1 + x_grid1 * (i_y + 1)
d = i_x + 1 + x_grid1 * i_y
faces.extend(((a, b, d), (b, c, d)))
outline.extend(((a, b), (b, c), (c, d), (d, a)))
positions = np.reshape(positions, (-1, 3))
texcoords = np.reshape(texcoords, (-1, 2))
normals = np.reshape(normals, (-1, 3))
faces = np.reshape(faces, (-1, 3)).astype(np.uint32)
outline = np.reshape(outline, (-1, 2)).astype(np.uint32)
direction = direction.lower()
if direction in ('-x', '+x'):
shift, neutral_axis = 1, 0
elif direction in ('-y', '+y'):
shift, neutral_axis = -1, 1
elif direction in ('-z', '+z'):
shift, neutral_axis = 0, 2
sign = -1 if '-' in direction else 1
positions = np.roll(positions, shift, -1)
normals = np.roll(normals, shift, -1) * sign
colors = np.ravel(positions)
colors = np.hstack((np.reshape(np.interp(colors, (np.min(colors), np.
max(colors)), (0, 1)), positions.shape), np.ones((positions.shape[0
], 1))))
colors[..., neutral_axis] = 0
vertices = np.zeros(positions.shape[0], [('position', np.float32, 3), (
'texcoord', np.float32, 2), ('normal', np.float32, 3), ('color', np
.float32, 4)])
vertices['position'] = positions
vertices['texcoord'] = texcoords
vertices['normal'] = normals
vertices['color'] = colors
return vertices, faces, outline
|
create_plane
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(width=1, height=1, width_segments=1, height_segments=1, direction='+z'):\n x_grid = width_segments\n y_grid = height_segments\n x_grid1 = x_grid + 1\n y_grid1 = y_grid + 1\n positions = np.zeros(x_grid1 * y_grid1 * 3)\n normals = np.zeros(x_grid1 * y_grid1 * 3)\n texcoords = np.zeros(x_grid1 * y_grid1 * 2)\n y = np.arange(y_grid1) * height / y_grid - height / 2\n x = np.arange(x_grid1) * width / x_grid - width / 2\n positions[::3] = np.tile(x, y_grid1)\n positions[1::3] = -np.repeat(y, x_grid1)\n normals[2::3] = 1\n texcoords[::2] = np.tile(np.arange(x_grid1) / x_grid, y_grid1)\n texcoords[1::2] = np.repeat(1 - np.arange(y_grid1) / y_grid, x_grid1)\n faces, outline = [], []\n for i_y in range(y_grid):\n for i_x in range(x_grid):\n a = i_x + x_grid1 * i_y\n b = i_x + x_grid1 * (i_y + 1)\n c = i_x + 1 + x_grid1 * (i_y + 1)\n d = i_x + 1 + x_grid1 * i_y\n faces.extend(((a, b, d), (b, c, d)))\n outline.extend(((a, b), (b, c), (c, d), (d, a)))\n positions = np.reshape(positions, (-1, 3))\n texcoords = np.reshape(texcoords, (-1, 2))\n normals = np.reshape(normals, (-1, 3))\n faces = np.reshape(faces, (-1, 3)).astype(np.uint32)\n outline = np.reshape(outline, (-1, 2)).astype(np.uint32)\n direction = direction.lower()\n if direction in ('-x', '+x'):\n shift, neutral_axis = 1, 0\n elif direction in ('-y', '+y'):\n shift, neutral_axis = -1, 1\n elif direction in ('-z', '+z'):\n shift, neutral_axis = 0, 2\n sign = -1 if '-' in direction else 1\n positions = np.roll(positions, shift, -1)\n normals = np.roll(normals, shift, -1) * sign\n colors = np.ravel(positions)\n colors = np.hstack((np.reshape(np.interp(colors, (np.min(colors), np.\n max(colors)), (0, 1)), positions.shape), np.ones((positions.shape[0\n ], 1))))\n colors[..., neutral_axis] = 0\n vertices = np.zeros(positions.shape[0], [('position', np.float32, 3), (\n 'texcoord', np.float32, 2), ('normal', np.float32, 3), ('color', np\n .float32, 4)])\n vertices['position'] = positions\n vertices['texcoord'] = texcoords\n vertices['normal'] = normals\n vertices['color'] = colors\n return vertices, faces, outline\n",
"role": "user"
},
{
"content": "create_plane",
"role": "assistant"
}
] |
def x(width=1, height=1, depth=1, width_segments=1, height_segments=1,
depth_segments=1, planes=None):
planes = ('+x', '-x', '+y', '-y', '+z', '-z') if planes is None else [d
.lower() for d in planes]
w_s, h_s, d_s = width_segments, height_segments, depth_segments
planes_m = []
if '-z' in planes:
planes_m.append(create_plane(width, depth, w_s, d_s, '-z'))
planes_m[-1][0]['position'][..., 2] -= height / 2
if '+z' in planes:
planes_m.append(create_plane(width, depth, w_s, d_s, '+z'))
planes_m[-1][0]['position'][..., 2] += height / 2
if '-y' in planes:
planes_m.append(create_plane(height, width, h_s, w_s, '-y'))
planes_m[-1][0]['position'][..., 1] -= depth / 2
if '+y' in planes:
planes_m.append(create_plane(height, width, h_s, w_s, '+y'))
planes_m[-1][0]['position'][..., 1] += depth / 2
if '-x' in planes:
planes_m.append(create_plane(depth, height, d_s, h_s, '-x'))
planes_m[-1][0]['position'][..., 0] -= width / 2
if '+x' in planes:
planes_m.append(create_plane(depth, height, d_s, h_s, '+x'))
planes_m[-1][0]['position'][..., 0] += width / 2
positions = np.zeros((0, 3), dtype=np.float32)
texcoords = np.zeros((0, 2), dtype=np.float32)
normals = np.zeros((0, 3), dtype=np.float32)
faces = np.zeros((0, 3), dtype=np.uint32)
outline = np.zeros((0, 2), dtype=np.uint32)
offset = 0
for vertices_p, faces_p, outline_p in planes_m:
positions = np.vstack((positions, vertices_p['position']))
texcoords = np.vstack((texcoords, vertices_p['texcoord']))
normals = np.vstack((normals, vertices_p['normal']))
faces = np.vstack((faces, faces_p + offset))
outline = np.vstack((outline, outline_p + offset))
offset += vertices_p['position'].shape[0]
vertices = np.zeros(positions.shape[0], [('position', np.float32, 3), (
'texcoord', np.float32, 2), ('normal', np.float32, 3), ('color', np
.float32, 4)])
colors = np.ravel(positions)
colors = np.hstack((np.reshape(np.interp(colors, (np.min(colors), np.
max(colors)), (0, 1)), positions.shape), np.ones((positions.shape[0
], 1))))
vertices['position'] = positions
vertices['texcoord'] = texcoords
vertices['normal'] = normals
vertices['color'] = colors
return vertices, faces, outline
|
create_box
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(width=1, height=1, depth=1, width_segments=1, height_segments=1,\n depth_segments=1, planes=None):\n planes = ('+x', '-x', '+y', '-y', '+z', '-z') if planes is None else [d\n .lower() for d in planes]\n w_s, h_s, d_s = width_segments, height_segments, depth_segments\n planes_m = []\n if '-z' in planes:\n planes_m.append(create_plane(width, depth, w_s, d_s, '-z'))\n planes_m[-1][0]['position'][..., 2] -= height / 2\n if '+z' in planes:\n planes_m.append(create_plane(width, depth, w_s, d_s, '+z'))\n planes_m[-1][0]['position'][..., 2] += height / 2\n if '-y' in planes:\n planes_m.append(create_plane(height, width, h_s, w_s, '-y'))\n planes_m[-1][0]['position'][..., 1] -= depth / 2\n if '+y' in planes:\n planes_m.append(create_plane(height, width, h_s, w_s, '+y'))\n planes_m[-1][0]['position'][..., 1] += depth / 2\n if '-x' in planes:\n planes_m.append(create_plane(depth, height, d_s, h_s, '-x'))\n planes_m[-1][0]['position'][..., 0] -= width / 2\n if '+x' in planes:\n planes_m.append(create_plane(depth, height, d_s, h_s, '+x'))\n planes_m[-1][0]['position'][..., 0] += width / 2\n positions = np.zeros((0, 3), dtype=np.float32)\n texcoords = np.zeros((0, 2), dtype=np.float32)\n normals = np.zeros((0, 3), dtype=np.float32)\n faces = np.zeros((0, 3), dtype=np.uint32)\n outline = np.zeros((0, 2), dtype=np.uint32)\n offset = 0\n for vertices_p, faces_p, outline_p in planes_m:\n positions = np.vstack((positions, vertices_p['position']))\n texcoords = np.vstack((texcoords, vertices_p['texcoord']))\n normals = np.vstack((normals, vertices_p['normal']))\n faces = np.vstack((faces, faces_p + offset))\n outline = np.vstack((outline, outline_p + offset))\n offset += vertices_p['position'].shape[0]\n vertices = np.zeros(positions.shape[0], [('position', np.float32, 3), (\n 'texcoord', np.float32, 2), ('normal', np.float32, 3), ('color', np\n .float32, 4)])\n colors = np.ravel(positions)\n colors = np.hstack((np.reshape(np.interp(colors, (np.min(colors), np.\n max(colors)), (0, 1)), positions.shape), np.ones((positions.shape[0\n ], 1))))\n vertices['position'] = positions\n vertices['texcoord'] = texcoords\n vertices['normal'] = normals\n vertices['color'] = colors\n return vertices, faces, outline\n",
"role": "user"
},
{
"content": "create_box",
"role": "assistant"
}
] |
def x(rows=10, cols=10, depth=10, radius=1.0, offset=True, subdivisions=3,
method='latitude'):
if method == 'latitude':
return _latitude(rows, cols, radius, offset)
elif method == 'ico':
return _ico(radius, subdivisions)
elif method == 'cube':
return _cube(rows, cols, depth, radius)
else:
raise Exception("Invalid method. Accepts: 'latitude', 'ico', 'cube'")
|
create_sphere
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rows=10, cols=10, depth=10, radius=1.0, offset=True, subdivisions=3,\n method='latitude'):\n if method == 'latitude':\n return _latitude(rows, cols, radius, offset)\n elif method == 'ico':\n return _ico(radius, subdivisions)\n elif method == 'cube':\n return _cube(rows, cols, depth, radius)\n else:\n raise Exception(\"Invalid method. Accepts: 'latitude', 'ico', 'cube'\")\n",
"role": "user"
},
{
"content": "create_sphere",
"role": "assistant"
}
] |
def x(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False):
verts = np.empty((rows + 1, cols, 3), dtype=np.float32)
if isinstance(radius, int):
radius = [radius, radius]
th = np.linspace(2 * np.pi, 0, cols).reshape(1, cols)
r = np.linspace(radius[0], radius[1], num=rows + 1, endpoint=True).reshape(
rows + 1, 1)
verts[..., 2] = np.linspace(0, length, num=rows + 1, endpoint=True
).reshape(rows + 1, 1)
if offset:
th = th + np.pi / cols * np.arange(rows + 1).reshape(rows + 1, 1)
verts[..., 0] = r * np.cos(th)
verts[..., 1] = r * np.sin(th)
verts = verts.reshape((rows + 1) * cols, 3)
faces = np.empty((rows * cols * 2, 3), dtype=np.uint32)
rowtemplate1 = (np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])
) % cols + np.array([[0, 0, cols]])
rowtemplate2 = (np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])
) % cols + np.array([[cols, 0, cols]])
for row in range(rows):
start = row * cols * 2
faces[start:start + cols] = rowtemplate1 + row * cols
faces[start + cols:start + cols * 2] = rowtemplate2 + row * cols
return MeshData(vertices=verts, faces=faces)
|
create_cylinder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False):\n verts = np.empty((rows + 1, cols, 3), dtype=np.float32)\n if isinstance(radius, int):\n radius = [radius, radius]\n th = np.linspace(2 * np.pi, 0, cols).reshape(1, cols)\n r = np.linspace(radius[0], radius[1], num=rows + 1, endpoint=True).reshape(\n rows + 1, 1)\n verts[..., 2] = np.linspace(0, length, num=rows + 1, endpoint=True\n ).reshape(rows + 1, 1)\n if offset:\n th = th + np.pi / cols * np.arange(rows + 1).reshape(rows + 1, 1)\n verts[..., 0] = r * np.cos(th)\n verts[..., 1] = r * np.sin(th)\n verts = verts.reshape((rows + 1) * cols, 3)\n faces = np.empty((rows * cols * 2, 3), dtype=np.uint32)\n rowtemplate1 = (np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 0]])\n ) % cols + np.array([[0, 0, cols]])\n rowtemplate2 = (np.arange(cols).reshape(cols, 1) + np.array([[0, 1, 1]])\n ) % cols + np.array([[cols, 0, cols]])\n for row in range(rows):\n start = row * cols * 2\n faces[start:start + cols] = rowtemplate1 + row * cols\n faces[start + cols:start + cols * 2] = rowtemplate2 + row * cols\n return MeshData(vertices=verts, faces=faces)\n",
"role": "user"
},
{
"content": "create_cylinder",
"role": "assistant"
}
] |
def x(cols, radius=1.0, length=1.0):
verts = np.empty((cols + 1, 3), dtype=np.float32)
th = np.linspace(2 * np.pi, 0, cols + 1).reshape(1, cols + 1)
verts[:-1, 2] = 0.0
verts[:-1, 0] = radius * np.cos(th[0, :-1])
verts[:-1, 1] = radius * np.sin(th[0, :-1])
verts[-1, 0] = 0.0
verts[-1, 1] = 0.0
verts[-1, 2] = length
verts = verts.reshape(cols + 1, 3)
faces = np.empty((cols, 3), dtype=np.uint32)
template = np.array([[0, 1]])
for pos in range(cols):
faces[pos, :-1] = template + pos
faces[:, 2] = cols
faces[-1, 1] = 0
return MeshData(vertices=verts, faces=faces)
|
create_cone
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cols, radius=1.0, length=1.0):\n verts = np.empty((cols + 1, 3), dtype=np.float32)\n th = np.linspace(2 * np.pi, 0, cols + 1).reshape(1, cols + 1)\n verts[:-1, 2] = 0.0\n verts[:-1, 0] = radius * np.cos(th[0, :-1])\n verts[:-1, 1] = radius * np.sin(th[0, :-1])\n verts[-1, 0] = 0.0\n verts[-1, 1] = 0.0\n verts[-1, 2] = length\n verts = verts.reshape(cols + 1, 3)\n faces = np.empty((cols, 3), dtype=np.uint32)\n template = np.array([[0, 1]])\n for pos in range(cols):\n faces[pos, :-1] = template + pos\n faces[:, 2] = cols\n faces[-1, 1] = 0\n return MeshData(vertices=verts, faces=faces)\n",
"role": "user"
},
{
"content": "create_cone",
"role": "assistant"
}
] |
def x(rows, cols, radius=0.1, length=1.0, cone_radius=None, cone_length=None):
md_cyl = None
if cone_radius is None:
cone_radius = radius * 2.0
if cone_length is None:
con_L = length / 3.0
cyl_L = length * 2.0 / 3.0
else:
cyl_L = max(0, length - cone_length)
con_L = min(cone_length, length)
if cyl_L != 0:
md_cyl = create_cylinder(rows, cols, radius=[radius, radius],
length=cyl_L)
md_con = create_cone(cols, radius=cone_radius, length=con_L)
verts = md_con.get_vertices()
nbr_verts_con = verts.size // 3
faces = md_con.get_faces()
if md_cyl is not None:
trans = np.array([[0.0, 0.0, cyl_L]])
verts = np.vstack((verts + trans, md_cyl.get_vertices()))
faces = np.vstack((faces, md_cyl.get_faces() + nbr_verts_con))
return MeshData(vertices=verts, faces=faces)
|
create_arrow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rows, cols, radius=0.1, length=1.0, cone_radius=None, cone_length=None):\n md_cyl = None\n if cone_radius is None:\n cone_radius = radius * 2.0\n if cone_length is None:\n con_L = length / 3.0\n cyl_L = length * 2.0 / 3.0\n else:\n cyl_L = max(0, length - cone_length)\n con_L = min(cone_length, length)\n if cyl_L != 0:\n md_cyl = create_cylinder(rows, cols, radius=[radius, radius],\n length=cyl_L)\n md_con = create_cone(cols, radius=cone_radius, length=con_L)\n verts = md_con.get_vertices()\n nbr_verts_con = verts.size // 3\n faces = md_con.get_faces()\n if md_cyl is not None:\n trans = np.array([[0.0, 0.0, cyl_L]])\n verts = np.vstack((verts + trans, md_cyl.get_vertices()))\n faces = np.vstack((faces, md_cyl.get_faces() + nbr_verts_con))\n return MeshData(vertices=verts, faces=faces)\n",
"role": "user"
},
{
"content": "create_arrow",
"role": "assistant"
}
] |
def x(xs, ys, zs):
shape = xs.shape
length = shape[0] * shape[1]
vertices = np.zeros((length, 3))
vertices[:, 0] = xs.reshape(length)
vertices[:, 1] = ys.reshape(length)
vertices[:, 2] = zs.reshape(length)
basic_indices = np.array([0, 1, 1 + shape[1], 0, 0 + shape[1], 1 +
shape[1]], dtype=np.uint32)
inner_grid_length = (shape[0] - 1) * (shape[1] - 1)
offsets = np.arange(inner_grid_length)
offsets += np.repeat(np.arange(shape[0] - 1), shape[1] - 1)
offsets = np.repeat(offsets, 6)
indices = np.resize(basic_indices, len(offsets)) + offsets
indices = indices.reshape((len(indices) // 3, 3))
return vertices, indices
|
create_grid_mesh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xs, ys, zs):\n shape = xs.shape\n length = shape[0] * shape[1]\n vertices = np.zeros((length, 3))\n vertices[:, 0] = xs.reshape(length)\n vertices[:, 1] = ys.reshape(length)\n vertices[:, 2] = zs.reshape(length)\n basic_indices = np.array([0, 1, 1 + shape[1], 0, 0 + shape[1], 1 +\n shape[1]], dtype=np.uint32)\n inner_grid_length = (shape[0] - 1) * (shape[1] - 1)\n offsets = np.arange(inner_grid_length)\n offsets += np.repeat(np.arange(shape[0] - 1), shape[1] - 1)\n offsets = np.repeat(offsets, 6)\n indices = np.resize(basic_indices, len(offsets)) + offsets\n indices = indices.reshape((len(indices) // 3, 3))\n return vertices, indices\n",
"role": "user"
},
{
"content": "create_grid_mesh",
"role": "assistant"
}
] |
def x(adjacency_mat, node_coords, directed=False):
if not issparse(adjacency_mat):
adjacency_mat = np.asarray(adjacency_mat, float)
if adjacency_mat.ndim != 2 or adjacency_mat.shape[0
] != adjacency_mat.shape[1]:
raise ValueError('Adjacency matrix should be square.')
arrow_vertices = np.array([])
edges = _get_edges(adjacency_mat)
line_vertices = node_coords[edges.ravel()]
if directed:
arrows = np.array(list(_get_directed_edges(adjacency_mat)))
arrow_vertices = node_coords[arrows.ravel()]
arrow_vertices = arrow_vertices.reshape((len(arrow_vertices) / 2, 4))
return line_vertices, arrow_vertices
|
straight_line_vertices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(adjacency_mat, node_coords, directed=False):\n if not issparse(adjacency_mat):\n adjacency_mat = np.asarray(adjacency_mat, float)\n if adjacency_mat.ndim != 2 or adjacency_mat.shape[0\n ] != adjacency_mat.shape[1]:\n raise ValueError('Adjacency matrix should be square.')\n arrow_vertices = np.array([])\n edges = _get_edges(adjacency_mat)\n line_vertices = node_coords[edges.ravel()]\n if directed:\n arrows = np.array(list(_get_directed_edges(adjacency_mat)))\n arrow_vertices = node_coords[arrows.ravel()]\n arrow_vertices = arrow_vertices.reshape((len(arrow_vertices) / 2, 4))\n return line_vertices, arrow_vertices\n",
"role": "user"
},
{
"content": "straight_line_vertices",
"role": "assistant"
}
] |
def x(pos, scale=1):
pos -= pos.min(axis=0)
pos *= scale / pos.max()
return pos
|
rescale_layout
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pos, scale=1):\n pos -= pos.min(axis=0)\n pos *= scale / pos.max()\n return pos\n",
"role": "user"
},
{
"content": "rescale_layout",
"role": "assistant"
}
] |
def x():
global __handle__
if not __handle__:
__handle__ = FT_Library()
error = FT_Init_FreeType(byref(__handle__))
if error:
raise RuntimeError(hex(error))
return __handle__
|
get_handle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n global __handle__\n if not __handle__:\n __handle__ = FT_Library()\n error = FT_Init_FreeType(byref(__handle__))\n if error:\n raise RuntimeError(hex(error))\n return __handle__\n",
"role": "user"
},
{
"content": "get_handle",
"role": "assistant"
}
] |
def x():
amajor = FT_Int()
aminor = FT_Int()
apatch = FT_Int()
library = get_handle()
FT_Library_Version(library, byref(amajor), byref(aminor), byref(apatch))
return amajor.value, aminor.value, apatch.value
|
version
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n amajor = FT_Int()\n aminor = FT_Int()\n apatch = FT_Int()\n library = get_handle()\n FT_Library_Version(library, byref(amajor), byref(aminor), byref(apatch))\n return amajor.value, aminor.value, apatch.value\n",
"role": "user"
},
{
"content": "version",
"role": "assistant"
}
] |
def x(cam_type, *args, **kwargs):
cam_types = {None: BaseCamera}
for camType in (BaseCamera, PanZoomCamera, PerspectiveCamera,
TurntableCamera, FlyCamera, ArcballCamera):
cam_types[camType.__name__[:-6].lower()] = camType
try:
return cam_types[cam_type](*args, **kwargs)
except KeyError:
raise KeyError('Unknown camera type "%s". Options are: %s' % (
cam_type, cam_types.keys()))
|
make_camera
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cam_type, *args, **kwargs):\n cam_types = {None: BaseCamera}\n for camType in (BaseCamera, PanZoomCamera, PerspectiveCamera,\n TurntableCamera, FlyCamera, ArcballCamera):\n cam_types[camType.__name__[:-6].lower()] = camType\n try:\n return cam_types[cam_type](*args, **kwargs)\n except KeyError:\n raise KeyError('Unknown camera type \"%s\". Options are: %s' % (\n cam_type, cam_types.keys()))\n",
"role": "user"
},
{
"content": "make_camera",
"role": "assistant"
}
] |
def x(self, label, x, y, z):
self.layers[label]['data'] = np.array([x, y, z]).transpose()
self._update()
|
set_data_values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, label, x, y, z):\n self.layers[label]['data'] = np.array([x, y, z]).transpose()\n self._update()\n",
"role": "user"
},
{
"content": "set_data_values",
"role": "assistant"
}
] |
def x(mode='agg-fast', *args, **kwargs):
if mode == 'raw':
return RawSegmentCollection(*args, **kwargs)
return AggSegmentCollection(*args, **kwargs)
|
SegmentCollection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mode='agg-fast', *args, **kwargs):\n if mode == 'raw':\n return RawSegmentCollection(*args, **kwargs)\n return AggSegmentCollection(*args, **kwargs)\n",
"role": "user"
},
{
"content": "SegmentCollection",
"role": "assistant"
}
] |
def x(func, umin=0, umax=2 * np.pi, ucount=64, urepeat=1.0, vmin=0, vmax=2 *
np.pi, vcount=64, vrepeat=1.0):
vtype = [('position', np.float32, 3), ('texcoord', np.float32, 2), (
'normal', np.float32, 3)]
itype = np.uint32
vcount += 1
ucount += 1
n = vcount * ucount
Un = np.repeat(np.linspace(0, 1, ucount, endpoint=True), vcount)
Vn = np.tile(np.linspace(0, 1, vcount, endpoint=True), ucount)
U = umin + Un * (umax - umin)
V = vmin + Vn * (vmax - vmin)
vertices = np.zeros(n, dtype=vtype)
for i, (u, v) in enumerate(zip(U, V)):
vertices['position'][i] = func(u, v)
vertices['texcoord'][:, 0] = Un * urepeat
vertices['texcoord'][:, 1] = Vn * vrepeat
indices = []
for i in range(ucount - 1):
for j in range(vcount - 1):
indices.append(i * vcount + j)
indices.append(i * vcount + j + 1)
indices.append(i * vcount + j + vcount + 1)
indices.append(i * vcount + j + vcount)
indices.append(i * vcount + j + vcount + 1)
indices.append(i * vcount + j)
indices = np.array(indices, dtype=itype)
vertices['normal'] = normals(vertices['position'], indices.reshape(len(
indices) / 3, 3))
return vertices, indices
|
surface
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, umin=0, umax=2 * np.pi, ucount=64, urepeat=1.0, vmin=0, vmax=2 *\n np.pi, vcount=64, vrepeat=1.0):\n vtype = [('position', np.float32, 3), ('texcoord', np.float32, 2), (\n 'normal', np.float32, 3)]\n itype = np.uint32\n vcount += 1\n ucount += 1\n n = vcount * ucount\n Un = np.repeat(np.linspace(0, 1, ucount, endpoint=True), vcount)\n Vn = np.tile(np.linspace(0, 1, vcount, endpoint=True), ucount)\n U = umin + Un * (umax - umin)\n V = vmin + Vn * (vmax - vmin)\n vertices = np.zeros(n, dtype=vtype)\n for i, (u, v) in enumerate(zip(U, V)):\n vertices['position'][i] = func(u, v)\n vertices['texcoord'][:, 0] = Un * urepeat\n vertices['texcoord'][:, 1] = Vn * vrepeat\n indices = []\n for i in range(ucount - 1):\n for j in range(vcount - 1):\n indices.append(i * vcount + j)\n indices.append(i * vcount + j + 1)\n indices.append(i * vcount + j + vcount + 1)\n indices.append(i * vcount + j + vcount)\n indices.append(i * vcount + j + vcount + 1)\n indices.append(i * vcount + j)\n indices = np.array(indices, dtype=itype)\n vertices['normal'] = normals(vertices['position'], indices.reshape(len(\n indices) / 3, 3))\n return vertices, indices\n",
"role": "user"
},
{
"content": "surface",
"role": "assistant"
}
] |
def x(mode='raw', *args, **kwargs):
if mode == 'raw':
return RawPointCollection(*args, **kwargs)
return AggPointCollection(*args, **kwargs)
|
PointCollection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mode='raw', *args, **kwargs):\n if mode == 'raw':\n return RawPointCollection(*args, **kwargs)\n return AggPointCollection(*args, **kwargs)\n",
"role": "user"
},
{
"content": "PointCollection",
"role": "assistant"
}
] |
def x(self, data):
data = data.astype('float32')[..., np.newaxis]
s1 = self._data_shape[1] - self._offset
if data.shape[1] > s1:
self._pos_tex[:, self._offset:] = data[:, :s1]
self._pos_tex[:, :data.shape[1] - s1] = data[:, s1:]
self._offset = (self._offset + data.shape[1]) % self._data_shape[1]
else:
self._pos_tex[:, self._offset:self._offset + data.shape[1]] = data
self._offset += data.shape[1]
self.shared_program['offset'] = self._offset
self.update()
|
roll_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n data = data.astype('float32')[..., np.newaxis]\n s1 = self._data_shape[1] - self._offset\n if data.shape[1] > s1:\n self._pos_tex[:, self._offset:] = data[:, :s1]\n self._pos_tex[:, :data.shape[1] - s1] = data[:, s1:]\n self._offset = (self._offset + data.shape[1]) % self._data_shape[1]\n else:\n self._pos_tex[:, self._offset:self._offset + data.shape[1]] = data\n self._offset += data.shape[1]\n self.shared_program['offset'] = self._offset\n self.update()\n",
"role": "user"
},
{
"content": "roll_data",
"role": "assistant"
}
] |
def x(self, index, data):
self._pos_tex[index, :] = data
self.update()
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index, data):\n self._pos_tex[index, :] = data\n self.update()\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(self, name=None):
if name is None:
name = 'program' + str(self._next_prog_id)
self._next_prog_id += 1
if name in self._programs:
raise KeyError("Program named '%s' already exists." % name)
prog = ModularProgram(self._vcode, self._fcode)
for key, val in self._set_items.items():
prog[key] = val
self.frag._new_program(prog)
self.vert._new_program(prog)
self._programs[name] = prog
return prog
|
add_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name=None):\n if name is None:\n name = 'program' + str(self._next_prog_id)\n self._next_prog_id += 1\n if name in self._programs:\n raise KeyError(\"Program named '%s' already exists.\" % name)\n prog = ModularProgram(self._vcode, self._fcode)\n for key, val in self._set_items.items():\n prog[key] = val\n self.frag._new_program(prog)\n self.vert._new_program(prog)\n self._programs[name] = prog\n return prog\n",
"role": "user"
},
{
"content": "add_program",
"role": "assistant"
}
] |
def x(self, p):
for k, v in self._set_items.items():
getattr(p, self._shader)[k] = v
|
new_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, p):\n for k, v in self._set_items.items():\n getattr(p, self._shader)[k] = v\n",
"role": "user"
},
{
"content": "new_program",
"role": "assistant"
}
] |
def x(self, canvas):
self._canvas = canvas
canvas.events.resize.connect(self.on_resize)
canvas.events.mouse_wheel.connect(self.on_mouse_wheel)
canvas.events.mouse_move.connect(self.on_mouse_move)
|
attach
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, canvas):\n self._canvas = canvas\n canvas.events.resize.connect(self.on_resize)\n canvas.events.mouse_wheel.connect(self.on_mouse_wheel)\n canvas.events.mouse_move.connect(self.on_mouse_move)\n",
"role": "user"
},
{
"content": "attach",
"role": "assistant"
}
] |
def x(self, event):
if self._aspect is None:
return
w, h = self._canvas.size
aspect = self._aspect / (w / h)
self.scale = self.scale[0], self.scale[0] / aspect
self.shader_map()
|
on_resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if self._aspect is None:\n return\n w, h = self._canvas.size\n aspect = self._aspect / (w / h)\n self.scale = self.scale[0], self.scale[0] / aspect\n self.shader_map()\n",
"role": "user"
},
{
"content": "on_resize",
"role": "assistant"
}
] |
def x(self, event):
if event.is_dragging:
dxy = event.pos - event.last_event.pos
button = event.press_event.button
if button == 1:
dxy = self.canvas_tr.map(dxy)
o = self.canvas_tr.map([0, 0])
t = dxy - o
self.move(t)
elif button == 2:
center = self.canvas_tr.map(event.press_event.pos)
if self._aspect is None:
self.zoom(np.exp(dxy * (0.01, -0.01)), center)
else:
s = dxy[1] * -0.01
self.zoom(np.exp(np.array([s, s])), center)
self.shader_map()
|
on_mouse_move
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if event.is_dragging:\n dxy = event.pos - event.last_event.pos\n button = event.press_event.button\n if button == 1:\n dxy = self.canvas_tr.map(dxy)\n o = self.canvas_tr.map([0, 0])\n t = dxy - o\n self.move(t)\n elif button == 2:\n center = self.canvas_tr.map(event.press_event.pos)\n if self._aspect is None:\n self.zoom(np.exp(dxy * (0.01, -0.01)), center)\n else:\n s = dxy[1] * -0.01\n self.zoom(np.exp(np.array([s, s])), center)\n self.shader_map()\n",
"role": "user"
},
{
"content": "on_mouse_move",
"role": "assistant"
}
] |
def x(self, event):
self.zoom(np.exp(event.delta * (0.01, -0.01)), event.pos)
|
on_mouse_wheel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n self.zoom(np.exp(event.delta * (0.01, -0.01)), event.pos)\n",
"role": "user"
},
{
"content": "on_mouse_wheel",
"role": "assistant"
}
] |
def x(points, closed):
tangents = np.zeros((len(points), 3))
normals = np.zeros((len(points), 3))
epsilon = 0.0001
tangents = np.roll(points, -1, axis=0) - np.roll(points, 1, axis=0)
if not closed:
tangents[0] = points[1] - points[0]
tangents[-1] = points[-1] - points[-2]
mags = np.sqrt(np.sum(tangents * tangents, axis=1))
tangents /= mags[:, np.newaxis]
t = np.abs(tangents[0])
smallest = np.argmin(t)
normal = np.zeros(3)
normal[smallest] = 1.0
vec = np.cross(tangents[0], normal)
normals[0] = np.cross(tangents[0], vec)
for i in range(1, len(points)):
normals[i] = normals[i - 1]
vec = np.cross(tangents[i - 1], tangents[i])
if norm(vec) > epsilon:
vec /= norm(vec)
theta = np.arccos(np.clip(tangents[i - 1].dot(tangents[i]), -1, 1))
normals[i] = rotate(-np.degrees(theta), vec)[:3, :3].dot(normals[i]
)
if closed:
theta = np.arccos(np.clip(normals[0].dot(normals[-1]), -1, 1))
theta /= len(points) - 1
if tangents[0].dot(np.cross(normals[0], normals[-1])) > 0:
theta *= -1.0
for i in range(1, len(points)):
normals[i] = rotate(-np.degrees(theta * i), tangents[i])[:3, :3
].dot(normals[i])
binormals = np.cross(tangents, normals)
return tangents, normals, binormals
|
frenet_frames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, closed):\n tangents = np.zeros((len(points), 3))\n normals = np.zeros((len(points), 3))\n epsilon = 0.0001\n tangents = np.roll(points, -1, axis=0) - np.roll(points, 1, axis=0)\n if not closed:\n tangents[0] = points[1] - points[0]\n tangents[-1] = points[-1] - points[-2]\n mags = np.sqrt(np.sum(tangents * tangents, axis=1))\n tangents /= mags[:, np.newaxis]\n t = np.abs(tangents[0])\n smallest = np.argmin(t)\n normal = np.zeros(3)\n normal[smallest] = 1.0\n vec = np.cross(tangents[0], normal)\n normals[0] = np.cross(tangents[0], vec)\n for i in range(1, len(points)):\n normals[i] = normals[i - 1]\n vec = np.cross(tangents[i - 1], tangents[i])\n if norm(vec) > epsilon:\n vec /= norm(vec)\n theta = np.arccos(np.clip(tangents[i - 1].dot(tangents[i]), -1, 1))\n normals[i] = rotate(-np.degrees(theta), vec)[:3, :3].dot(normals[i]\n )\n if closed:\n theta = np.arccos(np.clip(normals[0].dot(normals[-1]), -1, 1))\n theta /= len(points) - 1\n if tangents[0].dot(np.cross(normals[0], normals[-1])) > 0:\n theta *= -1.0\n for i in range(1, len(points)):\n normals[i] = rotate(-np.degrees(theta * i), tangents[i])[:3, :3\n ].dot(normals[i])\n binormals = np.cross(tangents, normals)\n return tangents, normals, binormals\n",
"role": "user"
},
{
"content": "frenet_frames",
"role": "assistant"
}
] |
def x(self):
combo = int(0)
for iv in self._interval_set._intervals:
combo |= iv[0] | iv[1]
ret = AbstractMOC.HPY_MAX_NORDER - utils.number_trailing_zeros(combo) // 2
if ret < 0:
ret = 0
return ret
|
max_order
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n combo = int(0)\n for iv in self._interval_set._intervals:\n combo |= iv[0] | iv[1]\n ret = AbstractMOC.HPY_MAX_NORDER - utils.number_trailing_zeros(combo) // 2\n if ret < 0:\n ret = 0\n return ret\n",
"role": "user"
},
{
"content": "max_order",
"role": "assistant"
}
] |
def x(self, another_moc, *args):
interval_set = self._interval_set.intersection(another_moc._interval_set)
for moc in args:
interval_set = interval_set.intersection(moc._interval_set)
return self.__class__(interval_set)
|
intersection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, another_moc, *args):\n interval_set = self._interval_set.intersection(another_moc._interval_set)\n for moc in args:\n interval_set = interval_set.intersection(moc._interval_set)\n return self.__class__(interval_set)\n",
"role": "user"
},
{
"content": "intersection",
"role": "assistant"
}
] |
def x(self, another_moc, *args):
interval_set = self._interval_set.union(another_moc._interval_set)
for moc in args:
interval_set = interval_set.union(moc._interval_set)
return self.__class__(interval_set)
|
union
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, another_moc, *args):\n interval_set = self._interval_set.union(another_moc._interval_set)\n for moc in args:\n interval_set = interval_set.union(moc._interval_set)\n return self.__class__(interval_set)\n",
"role": "user"
},
{
"content": "union",
"role": "assistant"
}
] |
def x(self, another_moc, *args):
interval_set = self._interval_set.difference(another_moc._interval_set)
for moc in args:
interval_set = interval_set.difference(moc._interval_set)
return self.__class__(interval_set)
|
difference
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, another_moc, *args):\n interval_set = self._interval_set.difference(another_moc._interval_set)\n for moc in args:\n interval_set = interval_set.difference(moc._interval_set)\n return self.__class__(interval_set)\n",
"role": "user"
},
{
"content": "difference",
"role": "assistant"
}
] |
def x(hp, ipix):
neigh_ipix = np.unique(hp.neighbours(ipix).ravel())
return neigh_ipix[np.where(neigh_ipix >= 0)]
|
neighbour_pixels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hp, ipix):\n neigh_ipix = np.unique(hp.neighbours(ipix).ravel())\n return neigh_ipix[np.where(neigh_ipix >= 0)]\n",
"role": "user"
},
{
"content": "neighbour_pixels",
"role": "assistant"
}
] |
def x(cls, cells):
shift = AbstractMOC.HPY_MAX_NORDER - cells['depth'] << 1
p1 = cells['ipix']
p2 = cells['ipix'] + 1
intervals = np.vstack((p1 << shift, p2 << shift)).T
return cls(IntervalSet(intervals))
|
from_cells
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, cells):\n shift = AbstractMOC.HPY_MAX_NORDER - cells['depth'] << 1\n p1 = cells['ipix']\n p2 = cells['ipix'] + 1\n intervals = np.vstack((p1 << shift, p2 << shift)).T\n return cls(IntervalSet(intervals))\n",
"role": "user"
},
{
"content": "from_cells",
"role": "assistant"
}
] |
def x(cls, json_moc):
intervals = np.array([])
for order, pix_l in json_moc.items():
if len(pix_l) == 0:
continue
pix = np.array(pix_l)
p1 = pix
p2 = pix + 1
shift = 2 * (AbstractMOC.HPY_MAX_NORDER - int(order))
itv = np.vstack((p1 << shift, p2 << shift)).T
if intervals.size == 0:
intervals = itv
else:
intervals = np.vstack((intervals, itv))
return cls(IntervalSet(intervals))
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, json_moc):\n intervals = np.array([])\n for order, pix_l in json_moc.items():\n if len(pix_l) == 0:\n continue\n pix = np.array(pix_l)\n p1 = pix\n p2 = pix + 1\n shift = 2 * (AbstractMOC.HPY_MAX_NORDER - int(order))\n itv = np.vstack((p1 << shift, p2 << shift)).T\n if intervals.size == 0:\n intervals = itv\n else:\n intervals = np.vstack((intervals, itv))\n return cls(IntervalSet(intervals))\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(self):
intervals_uniq_l = IntervalSet.to_nuniq_interval_set(self._interval_set
)._intervals
for uniq_iv in intervals_uniq_l:
for uniq in range(uniq_iv[0], uniq_iv[1]):
yield uniq
|
uniq_pixels_iterator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n intervals_uniq_l = IntervalSet.to_nuniq_interval_set(self._interval_set\n )._intervals\n for uniq_iv in intervals_uniq_l:\n for uniq in range(uniq_iv[0], uniq_iv[1]):\n yield uniq\n",
"role": "user"
},
{
"content": "uniq_pixels_iterator",
"role": "assistant"
}
] |
def x(cls, filename):
table = Table.read(filename)
intervals = np.vstack((table['UNIQ'], table['UNIQ'] + 1)).T
nuniq_interval_set = IntervalSet(intervals)
interval_set = IntervalSet.from_nuniq_interval_set(nuniq_interval_set)
return cls(interval_set)
|
from_fits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, filename):\n table = Table.read(filename)\n intervals = np.vstack((table['UNIQ'], table['UNIQ'] + 1)).T\n nuniq_interval_set = IntervalSet(intervals)\n interval_set = IntervalSet.from_nuniq_interval_set(nuniq_interval_set)\n return cls(interval_set)\n",
"role": "user"
},
{
"content": "from_fits",
"role": "assistant"
}
] |
def x(cls, value):
from lark import Lark, Transformer
class ParsingException(Exception):
pass
class TreeToJson(Transformer):
def x(self, items):
res = {}
for item in items:
if item is not None:
res.update(item)
return res
def x(self, items):
pass
def x(self, items):
depth = str(items[0])
pixs_l = items[1:][0]
return {depth: pixs_l}
def x(self, pix):
if pix:
return [int(pix[0])]
def x(self, range_pix):
lower_bound = int(range_pix[0])
upper_bound = int(range_pix[1])
return np.arange(lower_bound, upper_bound + 1, dtype=int)
def x(self, items):
ipixs = []
for pix in items:
if pix is not None:
ipixs.extend(pix)
return ipixs
if AbstractMOC.LARK_PARSER_STR is None:
AbstractMOC.LARK_PARSER_STR = Lark(
"""
value: depthpix (sep+ depthpix)*
depthpix : INT "/" sep* pixs
pixs : pix (sep+ pix)*
pix : INT? -> uniq_pix
| (INT "-" INT) -> range_pix
sep : " " | "," | "\\n" | "\\r"
%import common.INT
"""
, start='value')
try:
tree = AbstractMOC.LARK_PARSER_STR.parse(value)
except Exception as err:
raise ParsingException(
"""Could not parse {0}.
Check the grammar section 2.3.2 of http://ivoa.net/documents/MOC/20190215/WD-MOC-1.1-20190215.pdf to see the correct syntax for writing a MOC from a str"""
.format(value))
moc_json = TreeToJson().transform(tree)
return cls.from_json(moc_json)
|
from_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, value):\n from lark import Lark, Transformer\n\n\n class ParsingException(Exception):\n pass\n\n\n class TreeToJson(Transformer):\n\n def x(self, items):\n res = {}\n for item in items:\n if item is not None:\n res.update(item)\n return res\n\n def x(self, items):\n pass\n\n def x(self, items):\n depth = str(items[0])\n pixs_l = items[1:][0]\n return {depth: pixs_l}\n\n def x(self, pix):\n if pix:\n return [int(pix[0])]\n\n def x(self, range_pix):\n lower_bound = int(range_pix[0])\n upper_bound = int(range_pix[1])\n return np.arange(lower_bound, upper_bound + 1, dtype=int)\n\n def x(self, items):\n ipixs = []\n for pix in items:\n if pix is not None:\n ipixs.extend(pix)\n return ipixs\n if AbstractMOC.LARK_PARSER_STR is None:\n AbstractMOC.LARK_PARSER_STR = Lark(\n \"\"\"\n value: depthpix (sep+ depthpix)*\n depthpix : INT \"/\" sep* pixs\n pixs : pix (sep+ pix)*\n pix : INT? -> uniq_pix\n | (INT \"-\" INT) -> range_pix\n sep : \" \" | \",\" | \"\\\\n\" | \"\\\\r\"\n\n %import common.INT\n \"\"\"\n , start='value')\n try:\n tree = AbstractMOC.LARK_PARSER_STR.parse(value)\n except Exception as err:\n raise ParsingException(\n \"\"\"Could not parse {0}. \n Check the grammar section 2.3.2 of http://ivoa.net/documents/MOC/20190215/WD-MOC-1.1-20190215.pdf to see the correct syntax for writing a MOC from a str\"\"\"\n .format(value))\n moc_json = TreeToJson().transform(tree)\n return cls.from_json(moc_json)\n",
"role": "user"
},
{
"content": "from_str",
"role": "assistant"
}
] |
def x(uniq):
result_json = {}
depth, ipix = utils.uniq2orderipix(uniq)
min_depth = np.min(depth[0])
max_depth = np.max(depth[-1])
for d in range(min_depth, max_depth + 1):
pix_index = np.where(depth == d)[0]
if pix_index.size:
ipix_depth = ipix[pix_index]
result_json[str(d)] = ipix_depth.tolist()
return result_json
|
to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uniq):\n result_json = {}\n depth, ipix = utils.uniq2orderipix(uniq)\n min_depth = np.min(depth[0])\n max_depth = np.max(depth[-1])\n for d in range(min_depth, max_depth + 1):\n pix_index = np.where(depth == d)[0]\n if pix_index.size:\n ipix_depth = ipix[pix_index]\n result_json[str(d)] = ipix_depth.tolist()\n return result_json\n",
"role": "user"
},
{
"content": "to_json",
"role": "assistant"
}
] |
def x(uniq):
def x(serial, a, b, sep=''):
if a == b:
serial += '{0}{1}'.format(a, sep)
else:
serial += '{0}-{1}{2}'.format(a, b, sep)
return serial
res = ''
if uniq.size == 0:
return res
depth, ipixels = utils.uniq2orderipix(uniq)
min_depth = np.min(depth[0])
max_depth = np.max(depth[-1])
for d in range(min_depth, max_depth + 1):
pix_index = np.where(depth == d)[0]
if pix_index.size > 0:
res += '{0}/'.format(d)
ipix_depth = ipixels[pix_index]
if ipix_depth.size == 1:
res = write_cells(res, ipix_depth[0], ipix_depth[0])
else:
ipix_depth = np.sort(ipix_depth)
beg_range = ipix_depth[0]
last_range = beg_range
for ipix in ipix_depth[1:]:
if ipix > last_range + 1:
res = write_cells(res, beg_range, last_range, sep=',')
beg_range = ipix
last_range = ipix
res = write_cells(res, beg_range, last_range)
res += ' '
res = res[:-1]
return res
|
to_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uniq):\n\n def x(serial, a, b, sep=''):\n if a == b:\n serial += '{0}{1}'.format(a, sep)\n else:\n serial += '{0}-{1}{2}'.format(a, b, sep)\n return serial\n res = ''\n if uniq.size == 0:\n return res\n depth, ipixels = utils.uniq2orderipix(uniq)\n min_depth = np.min(depth[0])\n max_depth = np.max(depth[-1])\n for d in range(min_depth, max_depth + 1):\n pix_index = np.where(depth == d)[0]\n if pix_index.size > 0:\n res += '{0}/'.format(d)\n ipix_depth = ipixels[pix_index]\n if ipix_depth.size == 1:\n res = write_cells(res, ipix_depth[0], ipix_depth[0])\n else:\n ipix_depth = np.sort(ipix_depth)\n beg_range = ipix_depth[0]\n last_range = beg_range\n for ipix in ipix_depth[1:]:\n if ipix > last_range + 1:\n res = write_cells(res, beg_range, last_range, sep=',')\n beg_range = ipix\n last_range = ipix\n res = write_cells(res, beg_range, last_range)\n res += ' '\n res = res[:-1]\n return res\n",
"role": "user"
},
{
"content": "to_str",
"role": "assistant"
}
] |
def x(self, uniq, optional_kw_dict=None):
depth = self.max_order
if depth <= 13:
fits_format = '1J'
else:
fits_format = '1K'
tbhdu = fits.BinTableHDU.from_columns(fits.ColDefs([fits.Column(name=
'UNIQ', format=fits_format, array=uniq)]))
tbhdu.header['PIXTYPE'] = 'HEALPIX'
tbhdu.header['ORDERING'] = 'NUNIQ'
tbhdu.header.update(self._fits_header_keywords)
tbhdu.header['MOCORDER'] = depth
tbhdu.header['MOCTOOL'] = 'MOCPy'
if optional_kw_dict:
for key in optional_kw_dict:
tbhdu.header[key] = optional_kw_dict[key]
thdulist = fits.HDUList([fits.PrimaryHDU(), tbhdu])
return thdulist
|
to_fits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, uniq, optional_kw_dict=None):\n depth = self.max_order\n if depth <= 13:\n fits_format = '1J'\n else:\n fits_format = '1K'\n tbhdu = fits.BinTableHDU.from_columns(fits.ColDefs([fits.Column(name=\n 'UNIQ', format=fits_format, array=uniq)]))\n tbhdu.header['PIXTYPE'] = 'HEALPIX'\n tbhdu.header['ORDERING'] = 'NUNIQ'\n tbhdu.header.update(self._fits_header_keywords)\n tbhdu.header['MOCORDER'] = depth\n tbhdu.header['MOCTOOL'] = 'MOCPy'\n if optional_kw_dict:\n for key in optional_kw_dict:\n tbhdu.header[key] = optional_kw_dict[key]\n thdulist = fits.HDUList([fits.PrimaryHDU(), tbhdu])\n return thdulist\n",
"role": "user"
},
{
"content": "to_fits",
"role": "assistant"
}
] |
def x(self, format='fits', optional_kw_dict=None):
formats = 'fits', 'json', 'str'
if format not in formats:
raise ValueError('format should be one of %s' % str(formats))
uniq_l = []
for uniq in self._uniq_pixels_iterator():
uniq_l.append(uniq)
uniq = np.array(uniq_l)
if format == 'fits':
result = self._to_fits(uniq=uniq, optional_kw_dict=optional_kw_dict)
elif format == 'str':
result = self.__class__._to_str(uniq=uniq)
else:
result = self.__class__._to_json(uniq=uniq)
return result
|
serialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, format='fits', optional_kw_dict=None):\n formats = 'fits', 'json', 'str'\n if format not in formats:\n raise ValueError('format should be one of %s' % str(formats))\n uniq_l = []\n for uniq in self._uniq_pixels_iterator():\n uniq_l.append(uniq)\n uniq = np.array(uniq_l)\n if format == 'fits':\n result = self._to_fits(uniq=uniq, optional_kw_dict=optional_kw_dict)\n elif format == 'str':\n result = self.__class__._to_str(uniq=uniq)\n else:\n result = self.__class__._to_json(uniq=uniq)\n return result\n",
"role": "user"
},
{
"content": "serialize",
"role": "assistant"
}
] |
def x(self, path, format='fits', overwrite=False, optional_kw_dict=None):
serialization = self.serialize(format=format, optional_kw_dict=
optional_kw_dict)
if format == 'fits':
serialization.writeto(path, overwrite=overwrite)
else:
import json
with open(path, 'w') as h:
h.write(json.dumps(serialization, sort_keys=True, indent=2))
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path, format='fits', overwrite=False, optional_kw_dict=None):\n serialization = self.serialize(format=format, optional_kw_dict=\n optional_kw_dict)\n if format == 'fits':\n serialization.writeto(path, overwrite=overwrite)\n else:\n import json\n with open(path, 'w') as h:\n h.write(json.dumps(serialization, sort_keys=True, indent=2))\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self, new_order):
shift = 2 * (AbstractMOC.HPY_MAX_NORDER - new_order)
ofs = (int(1) << shift) - 1
mask = ~ofs
adda = int(0)
addb = ofs
iv_set = []
for iv in self._interval_set._intervals:
a = iv[0] + adda & mask
b = iv[1] + addb & mask
if b > a:
iv_set.append((a, b))
return self.__class__(IntervalSet(np.asarray(iv_set)))
|
degrade_to_order
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_order):\n shift = 2 * (AbstractMOC.HPY_MAX_NORDER - new_order)\n ofs = (int(1) << shift) - 1\n mask = ~ofs\n adda = int(0)\n addb = ofs\n iv_set = []\n for iv in self._interval_set._intervals:\n a = iv[0] + adda & mask\n b = iv[1] + addb & mask\n if b > a:\n iv_set.append((a, b))\n return self.__class__(IntervalSet(np.asarray(iv_set)))\n",
"role": "user"
},
{
"content": "degrade_to_order",
"role": "assistant"
}
] |
def x(self, name):
self.name = name
self.server.request('screen_set %s name %s' % (self.ref, self.name))
|
set_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name):\n self.name = name\n self.server.request('screen_set %s name %s' % (self.ref, self.name))\n",
"role": "user"
},
{
"content": "set_name",
"role": "assistant"
}
] |
def x(self, width):
if width > 0 and width <= self.server.server_info.get('screen_width'):
self.width = width
self.server.request('screen_set %s wid %i' % (self.ref, self.width))
|
set_width
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, width):\n if width > 0 and width <= self.server.server_info.get('screen_width'):\n self.width = width\n self.server.request('screen_set %s wid %i' % (self.ref, self.width))\n",
"role": "user"
},
{
"content": "set_width",
"role": "assistant"
}
] |
def x(self, height):
if height > 0 and height <= self.server.server_info.get('screen_height'):
self.height = height
self.server.request('screen_set %s hgt %i' % (self.ref, self.height))
|
set_height
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, height):\n if height > 0 and height <= self.server.server_info.get('screen_height'):\n self.height = height\n self.server.request('screen_set %s hgt %i' % (self.ref, self.height))\n",
"role": "user"
},
{
"content": "set_height",
"role": "assistant"
}
] |
def x(self, x):
if x >= 0 and x <= self.server.server_info.get('screen_width'):
self.cursor_x = x
self.server.request('screen_set %s cursor_x %i' % (self.ref, self.
cursor_x))
|
set_cursor_x
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n if x >= 0 and x <= self.server.server_info.get('screen_width'):\n self.cursor_x = x\n self.server.request('screen_set %s cursor_x %i' % (self.ref, self.\n cursor_x))\n",
"role": "user"
},
{
"content": "set_cursor_x",
"role": "assistant"
}
] |
def x(self, y):
if y >= 0 and y <= self.server.server_info.get('screen_height'):
self.cursor_y = y
self.server.request('screen_set %s cursor_y %i' % (self.ref, self.
cursor_y))
|
set_cursor_y
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, y):\n if y >= 0 and y <= self.server.server_info.get('screen_height'):\n self.cursor_y = y\n self.server.request('screen_set %s cursor_y %i' % (self.ref, self.\n cursor_y))\n",
"role": "user"
},
{
"content": "set_cursor_y",
"role": "assistant"
}
] |
def x(self, duration):
if duration > 0:
self.duration = duration
self.server.request('screen_set %s duration %i' % (self.ref, self.
duration * 8))
|
set_duration
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, duration):\n if duration > 0:\n self.duration = duration\n self.server.request('screen_set %s duration %i' % (self.ref, self.\n duration * 8))\n",
"role": "user"
},
{
"content": "set_duration",
"role": "assistant"
}
] |
def x(self, timeout):
if timeout > 0:
self.timeout = timeout
self.server.request('screen_set %s timeout %i' % (self.ref, self.
timeout * 8))
|
set_timeout
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timeout):\n if timeout > 0:\n self.timeout = timeout\n self.server.request('screen_set %s timeout %i' % (self.ref, self.\n timeout * 8))\n",
"role": "user"
},
{
"content": "set_timeout",
"role": "assistant"
}
] |
def x(self, priority):
if priority in ['hidden', 'background', 'info', 'foreground', 'alert',
'input']:
self.priority = priority
self.server.request('screen_set %s priority %s' % (self.ref, self.
priority))
|
set_priority
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, priority):\n if priority in ['hidden', 'background', 'info', 'foreground', 'alert',\n 'input']:\n self.priority = priority\n self.server.request('screen_set %s priority %s' % (self.ref, self.\n priority))\n",
"role": "user"
},
{
"content": "set_priority",
"role": "assistant"
}
] |
def x(self, state):
if state in ['on', 'off', 'toggle', 'open', 'blink', 'flash']:
self.backlight = state
self.server.request('screen_set %s backlight %s' % (self.ref, self.
backlight))
|
set_backlight
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, state):\n if state in ['on', 'off', 'toggle', 'open', 'blink', 'flash']:\n self.backlight = state\n self.server.request('screen_set %s backlight %s' % (self.ref, self.\n backlight))\n",
"role": "user"
},
{
"content": "set_backlight",
"role": "assistant"
}
] |
def x(self, state):
if state in ['on', 'off', 'open']:
self.heartbeat = state
self.server.request('screen_set %s heartbeat %s' % (self.ref, self.
heartbeat))
|
set_heartbeat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, state):\n if state in ['on', 'off', 'open']:\n self.heartbeat = state\n self.server.request('screen_set %s heartbeat %s' % (self.ref, self.\n heartbeat))\n",
"role": "user"
},
{
"content": "set_heartbeat",
"role": "assistant"
}
] |
def x(self, cursor):
if cursor in ['on', 'off', 'under', 'block']:
self.cursor = cursor
self.server.request('screen_set %s cursor %s' % (self.ref, self.cursor)
)
|
set_cursor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cursor):\n if cursor in ['on', 'off', 'under', 'block']:\n self.cursor = cursor\n self.server.request('screen_set %s cursor %s' % (self.ref, self.cursor)\n )\n",
"role": "user"
},
{
"content": "set_cursor",
"role": "assistant"
}
] |
def x(self):
widgets.StringWidget(self, ref='_w1_', text=' ' * 20, x=1, y=1)
widgets.StringWidget(self, ref='_w2_', text=' ' * 20, x=1, y=2)
widgets.StringWidget(self, ref='_w3_', text=' ' * 20, x=1, y=3)
widgets.StringWidget(self, ref='_w4_', text=' ' * 20, x=1, y=4)
|
clear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n widgets.StringWidget(self, ref='_w1_', text=' ' * 20, x=1, y=1)\n widgets.StringWidget(self, ref='_w2_', text=' ' * 20, x=1, y=2)\n widgets.StringWidget(self, ref='_w3_', text=' ' * 20, x=1, y=3)\n widgets.StringWidget(self, ref='_w4_', text=' ' * 20, x=1, y=4)\n",
"role": "user"
},
{
"content": "clear",
"role": "assistant"
}
] |
def x(self, ref, text='Text', x=1, y=1):
if ref not in self.widgets:
widget = widgets.StringWidget(screen=self, ref=ref, text=text, x=x, y=y
)
self.widgets[ref] = widget
return self.widgets[ref]
|
add_string_widget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ref, text='Text', x=1, y=1):\n if ref not in self.widgets:\n widget = widgets.StringWidget(screen=self, ref=ref, text=text, x=x, y=y\n )\n self.widgets[ref] = widget\n return self.widgets[ref]\n",
"role": "user"
},
{
"content": "add_string_widget",
"role": "assistant"
}
] |
def x(self, ref, text='Title'):
if ref not in self.widgets:
widget = widgets.TitleWidget(screen=self, ref=ref, text=text)
self.widgets[ref] = widget
return self.widgets[ref]
|
add_title_widget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ref, text='Title'):\n if ref not in self.widgets:\n widget = widgets.TitleWidget(screen=self, ref=ref, text=text)\n self.widgets[ref] = widget\n return self.widgets[ref]\n",
"role": "user"
},
{
"content": "add_title_widget",
"role": "assistant"
}
] |
def x(self, ref, x=1, y=1, length=10):
if ref not in self.widgets:
widget = widgets.HBarWidget(screen=self, ref=ref, x=x, y=y, length=
length)
self.widgets[ref] = widget
return self.widgets[ref]
|
add_hbar_widget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ref, x=1, y=1, length=10):\n if ref not in self.widgets:\n widget = widgets.HBarWidget(screen=self, ref=ref, x=x, y=y, length=\n length)\n self.widgets[ref] = widget\n return self.widgets[ref]\n",
"role": "user"
},
{
"content": "add_hbar_widget",
"role": "assistant"
}
] |
def x(self, ref, x=1, y=1, length=10):
if ref not in self.widgets:
widget = widgets.VBarWidget(screen=self, ref=ref, x=x, y=y, length=
length)
self.widgets[ref] = widget
return self.widgets[ref]
|
add_vbar_widget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ref, x=1, y=1, length=10):\n if ref not in self.widgets:\n widget = widgets.VBarWidget(screen=self, ref=ref, x=x, y=y, length=\n length)\n self.widgets[ref] = widget\n return self.widgets[ref]\n",
"role": "user"
},
{
"content": "add_vbar_widget",
"role": "assistant"
}
] |
def x(self, ref, left=1, top=1, right=20, bottom=1, width=20, height=4,
direction='h', speed=1):
if ref not in self.widgets:
widget = widgets.FrameWidget(screen=self, ref=ref, left=left, top=
top, right=right, bottom=bottom, width=width, height=height,
direction=direction, speed=speed)
self.widgets[ref] = widget
return self.widgets[ref]
|
add_frame_widget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ref, left=1, top=1, right=20, bottom=1, width=20, height=4,\n direction='h', speed=1):\n if ref not in self.widgets:\n widget = widgets.FrameWidget(screen=self, ref=ref, left=left, top=\n top, right=right, bottom=bottom, width=width, height=height,\n direction=direction, speed=speed)\n self.widgets[ref] = widget\n return self.widgets[ref]\n",
"role": "user"
},
{
"content": "add_frame_widget",
"role": "assistant"
}
] |
def x(self, ref, x=1, value=1):
if ref not in self.widgets:
widget = widgets.NumberWidget(screen=self, ref=ref, x=x, value=value)
self.widgets[ref] = widget
return self.widgets[ref]
|
add_number_widget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ref, x=1, value=1):\n if ref not in self.widgets:\n widget = widgets.NumberWidget(screen=self, ref=ref, x=x, value=value)\n self.widgets[ref] = widget\n return self.widgets[ref]\n",
"role": "user"
},
{
"content": "add_number_widget",
"role": "assistant"
}
] |
def x(self, ref):
self.server.request('widget_del %s %s' % (self.name, ref))
del self.widgets[ref]
|
del_widget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ref):\n self.server.request('widget_del %s %s' % (self.name, ref))\n del self.widgets[ref]\n",
"role": "user"
},
{
"content": "del_widget",
"role": "assistant"
}
] |
def x(self, azim, elev):
self.azimuth += azim
self.elevation = np.clip(self.elevation + elev, -90, 90)
self.view_changed()
|
orbit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, azim, elev):\n self.azimuth += azim\n self.elevation = np.clip(self.elevation + elev, -90, 90)\n self.view_changed()\n",
"role": "user"
},
{
"content": "orbit",
"role": "assistant"
}
] |
def x(self, event):
p1 = event.mouse_event.press_event.pos
p2 = event.mouse_event.pos
if self._event_value is None:
self._event_value = self.azimuth, self.elevation
self.azimuth = self._event_value[0] - (p2 - p1)[0] * 0.5
self.elevation = self._event_value[1] + (p2 - p1)[1] * 0.5
|
update_rotation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n p1 = event.mouse_event.press_event.pos\n p2 = event.mouse_event.pos\n if self._event_value is None:\n self._event_value = self.azimuth, self.elevation\n self.azimuth = self._event_value[0] - (p2 - p1)[0] * 0.5\n self.elevation = self._event_value[1] + (p2 - p1)[1] * 0.5\n",
"role": "user"
},
{
"content": "update_rotation",
"role": "assistant"
}
] |
def x(self):
up, forward, right = self._get_dim_vectors()
self.transform.rotate(self.elevation, -right)
self.transform.rotate(self.azimuth, up)
|
rotate_tr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n up, forward, right = self._get_dim_vectors()\n self.transform.rotate(self.elevation, -right)\n self.transform.rotate(self.azimuth, up)\n",
"role": "user"
},
{
"content": "rotate_tr",
"role": "assistant"
}
] |
def x(self, dist):
rae = np.array([self.roll, self.azimuth, self.elevation]) * np.pi / 180
sro, saz, sel = np.sin(rae)
cro, caz, cel = np.cos(rae)
dx = +dist[0] * (cro * caz + sro * sel * saz) + dist[1] * (sro * caz -
cro * sel * saz)
dy = +dist[0] * (cro * saz - sro * sel * caz) + dist[1] * (sro * saz +
cro * sel * caz)
dz = -dist[0] * sro * cel + dist[1] * cro * cel
return dx, dy, dz
|
dist_to_trans
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dist):\n rae = np.array([self.roll, self.azimuth, self.elevation]) * np.pi / 180\n sro, saz, sel = np.sin(rae)\n cro, caz, cel = np.cos(rae)\n dx = +dist[0] * (cro * caz + sro * sel * saz) + dist[1] * (sro * caz - \n cro * sel * saz)\n dy = +dist[0] * (cro * saz - sro * sel * caz) + dist[1] * (sro * saz + \n cro * sel * caz)\n dz = -dist[0] * sro * cel + dist[1] * cro * cel\n return dx, dy, dz\n",
"role": "user"
},
{
"content": "dist_to_trans",
"role": "assistant"
}
] |
def x(c):
glfw.glfwWindowHint(glfw.GLFW_RED_BITS, c['red_size'])
glfw.glfwWindowHint(glfw.GLFW_GREEN_BITS, c['green_size'])
glfw.glfwWindowHint(glfw.GLFW_BLUE_BITS, c['blue_size'])
glfw.glfwWindowHint(glfw.GLFW_ALPHA_BITS, c['alpha_size'])
glfw.glfwWindowHint(glfw.GLFW_ACCUM_RED_BITS, 0)
glfw.glfwWindowHint(glfw.GLFW_ACCUM_GREEN_BITS, 0)
glfw.glfwWindowHint(glfw.GLFW_ACCUM_BLUE_BITS, 0)
glfw.glfwWindowHint(glfw.GLFW_ACCUM_ALPHA_BITS, 0)
glfw.glfwWindowHint(glfw.GLFW_DEPTH_BITS, c['depth_size'])
glfw.glfwWindowHint(glfw.GLFW_STENCIL_BITS, c['stencil_size'])
glfw.glfwWindowHint(glfw.GLFW_SAMPLES, c['samples'])
glfw.glfwWindowHint(glfw.GLFW_STEREO, c['stereo'])
if not c['double_buffer']:
raise RuntimeError(
'GLFW must double buffer, consider using a different backend, or using double buffering'
)
|
set_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c):\n glfw.glfwWindowHint(glfw.GLFW_RED_BITS, c['red_size'])\n glfw.glfwWindowHint(glfw.GLFW_GREEN_BITS, c['green_size'])\n glfw.glfwWindowHint(glfw.GLFW_BLUE_BITS, c['blue_size'])\n glfw.glfwWindowHint(glfw.GLFW_ALPHA_BITS, c['alpha_size'])\n glfw.glfwWindowHint(glfw.GLFW_ACCUM_RED_BITS, 0)\n glfw.glfwWindowHint(glfw.GLFW_ACCUM_GREEN_BITS, 0)\n glfw.glfwWindowHint(glfw.GLFW_ACCUM_BLUE_BITS, 0)\n glfw.glfwWindowHint(glfw.GLFW_ACCUM_ALPHA_BITS, 0)\n glfw.glfwWindowHint(glfw.GLFW_DEPTH_BITS, c['depth_size'])\n glfw.glfwWindowHint(glfw.GLFW_STENCIL_BITS, c['stencil_size'])\n glfw.glfwWindowHint(glfw.GLFW_SAMPLES, c['samples'])\n glfw.glfwWindowHint(glfw.GLFW_STEREO, c['stereo'])\n if not c['double_buffer']:\n raise RuntimeError(\n 'GLFW must double buffer, consider using a different backend, or using double buffering'\n )\n",
"role": "user"
},
{
"content": "set_config",
"role": "assistant"
}
] |
def x(self, key, down):
if key in MOD_KEYS:
if down:
if key not in self._mod:
self._mod.append(key)
elif key in self._mod:
self._mod.pop(self._mod.index(key))
return self._mod
|
process_mod
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, down):\n if key in MOD_KEYS:\n if down:\n if key not in self._mod:\n self._mod.append(key)\n elif key in self._mod:\n self._mod.pop(self._mod.index(key))\n return self._mod\n",
"role": "user"
},
{
"content": "process_mod",
"role": "assistant"
}
] |
def x():
import sys
from OpenGL import GL
if sys.version_info > (3,):
buffersubdatafunc = GL.glBufferSubData
if hasattr(buffersubdatafunc, 'wrapperFunction'):
buffersubdatafunc = buffersubdatafunc.wrapperFunction
_m = sys.modules[buffersubdatafunc.__module__]
_m.long = int
try:
from OpenGL.GL.VERSION import GL_2_0
GL_2_0.GL_OBJECT_SHADER_SOURCE_LENGTH = GL_2_0.GL_SHADER_SOURCE_LENGTH
except Exception:
pass
|
patch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n import sys\n from OpenGL import GL\n if sys.version_info > (3,):\n buffersubdatafunc = GL.glBufferSubData\n if hasattr(buffersubdatafunc, 'wrapperFunction'):\n buffersubdatafunc = buffersubdatafunc.wrapperFunction\n _m = sys.modules[buffersubdatafunc.__module__]\n _m.long = int\n try:\n from OpenGL.GL.VERSION import GL_2_0\n GL_2_0.GL_OBJECT_SHADER_SOURCE_LENGTH = GL_2_0.GL_SHADER_SOURCE_LENGTH\n except Exception:\n pass\n",
"role": "user"
},
{
"content": "patch",
"role": "assistant"
}
] |
def x(funcname):
func = None
try:
func = getattr(_GL, funcname)
except AttributeError:
try:
func = getattr(_FBO, funcname)
except AttributeError:
func = None
if not bool(func):
if funcname.endswith('f'):
try:
func = getattr(_GL, funcname[:-1])
except AttributeError:
pass
if func is None:
func = _make_unavailable_func(funcname)
logger.warning('warning: %s not available' % funcname)
return func
|
get_function_from_pyopengl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(funcname):\n func = None\n try:\n func = getattr(_GL, funcname)\n except AttributeError:\n try:\n func = getattr(_FBO, funcname)\n except AttributeError:\n func = None\n if not bool(func):\n if funcname.endswith('f'):\n try:\n func = getattr(_GL, funcname[:-1])\n except AttributeError:\n pass\n if func is None:\n func = _make_unavailable_func(funcname)\n logger.warning('warning: %s not available' % funcname)\n return func\n",
"role": "user"
},
{
"content": "get_function_from_pyopengl",
"role": "assistant"
}
] |
def x():
NS = _pyopengl2.__dict__
for glname, ourname in _pyopengl2._functions_to_import:
func = _get_function_from_pyopengl(glname)
NS[ourname] = func
|
inject
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n NS = _pyopengl2.__dict__\n for glname, ourname in _pyopengl2._functions_to_import:\n func = _get_function_from_pyopengl(glname)\n NS[ourname] = func\n",
"role": "user"
},
{
"content": "inject",
"role": "assistant"
}
] |
def x(face, bold, italic):
name = face + '-'
name += 'Regular' if not bold and not italic else ''
name += 'Bold' if bold else ''
name += 'Italic' if italic else ''
name += '.ttf'
return load_data_file('fonts/%s' % name)
|
get_vispy_font_filename
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(face, bold, italic):\n name = face + '-'\n name += 'Regular' if not bold and not italic else ''\n name += 'Bold' if bold else ''\n name += 'Italic' if italic else ''\n name += '.ttf'\n return load_data_file('fonts/%s' % name)\n",
"role": "user"
},
{
"content": "get_vispy_font_filename",
"role": "assistant"
}
] |
def x(val):
val = np.atleast_2d(val)
if val.shape[1] not in (3, 4):
raise RuntimeError('Value must have second dimension of size 3 or 4')
return val, val.shape[1]
|
check_color_dim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(val):\n val = np.atleast_2d(val)\n if val.shape[1] not in (3, 4):\n raise RuntimeError('Value must have second dimension of size 3 or 4')\n return val, val.shape[1]\n",
"role": "user"
},
{
"content": "check_color_dim",
"role": "assistant"
}
] |
def x(hexs):
hexs = np.atleast_1d(np.array(hexs, '|U9'))
out = np.ones((len(hexs), 4), np.float32)
for hi, h in enumerate(hexs):
assert isinstance(h, string_types)
off = 1 if h[0] == '#' else 0
assert len(h) in (6 + off, 8 + off)
e = (len(h) - off) // 2
out[hi, :e] = [(int(h[i:i + 2], 16) / 255.0) for i in range(off,
len(h), 2)]
return out
|
hex_to_rgba
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hexs):\n hexs = np.atleast_1d(np.array(hexs, '|U9'))\n out = np.ones((len(hexs), 4), np.float32)\n for hi, h in enumerate(hexs):\n assert isinstance(h, string_types)\n off = 1 if h[0] == '#' else 0\n assert len(h) in (6 + off, 8 + off)\n e = (len(h) - off) // 2\n out[hi, :e] = [(int(h[i:i + 2], 16) / 255.0) for i in range(off,\n len(h), 2)]\n return out\n",
"role": "user"
},
{
"content": "hex_to_rgba",
"role": "assistant"
}
] |
def x(rgbs):
rgbs, n_dim = _check_color_dim(rgbs)
return np.array([('#%02x%02x%02x' % tuple((255 * rgb[:3]).astype(np.
uint8))) for rgb in rgbs], '|U7')
|
rgb_to_hex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rgbs):\n rgbs, n_dim = _check_color_dim(rgbs)\n return np.array([('#%02x%02x%02x' % tuple((255 * rgb[:3]).astype(np.\n uint8))) for rgb in rgbs], '|U7')\n",
"role": "user"
},
{
"content": "rgb_to_hex",
"role": "assistant"
}
] |
def x(rgbs):
rgbs, n_dim = _check_color_dim(rgbs)
hsvs = list()
for rgb in rgbs:
rgb = rgb[:3]
idx = np.argmax(rgb)
val = rgb[idx]
c = val - np.min(rgb)
if c == 0:
hue = 0
sat = 0
else:
if idx == 0:
hue = (rgb[1] - rgb[2]) / c % 6
elif idx == 1:
hue = (rgb[2] - rgb[0]) / c + 2
else:
hue = (rgb[0] - rgb[1]) / c + 4
hue *= 60
sat = c / val
hsv = [hue, sat, val]
hsvs.append(hsv)
hsvs = np.array(hsvs, dtype=np.float32)
if n_dim == 4:
hsvs = np.concatenate((hsvs, rgbs[:, 3]), axis=1)
return hsvs
|
rgb_to_hsv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rgbs):\n rgbs, n_dim = _check_color_dim(rgbs)\n hsvs = list()\n for rgb in rgbs:\n rgb = rgb[:3]\n idx = np.argmax(rgb)\n val = rgb[idx]\n c = val - np.min(rgb)\n if c == 0:\n hue = 0\n sat = 0\n else:\n if idx == 0:\n hue = (rgb[1] - rgb[2]) / c % 6\n elif idx == 1:\n hue = (rgb[2] - rgb[0]) / c + 2\n else:\n hue = (rgb[0] - rgb[1]) / c + 4\n hue *= 60\n sat = c / val\n hsv = [hue, sat, val]\n hsvs.append(hsv)\n hsvs = np.array(hsvs, dtype=np.float32)\n if n_dim == 4:\n hsvs = np.concatenate((hsvs, rgbs[:, 3]), axis=1)\n return hsvs\n",
"role": "user"
},
{
"content": "rgb_to_hsv",
"role": "assistant"
}
] |
def x(hsvs):
hsvs, n_dim = _check_color_dim(hsvs)
rgbs = list()
for hsv in hsvs:
c = hsv[1] * hsv[2]
m = hsv[2] - c
hp = hsv[0] / 60
x = c * (1 - abs(hp % 2 - 1))
if 0 <= hp < 1:
r, g, b = c, x, 0
elif hp < 2:
r, g, b = x, c, 0
elif hp < 3:
r, g, b = 0, c, x
elif hp < 4:
r, g, b = 0, x, c
elif hp < 5:
r, g, b = x, 0, c
else:
r, g, b = c, 0, x
rgb = [r + m, g + m, b + m]
rgbs.append(rgb)
rgbs = np.array(rgbs, dtype=np.float32)
if n_dim == 4:
rgbs = np.concatenate((rgbs, hsvs[:, 3]), axis=1)
return rgbs
|
hsv_to_rgb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hsvs):\n hsvs, n_dim = _check_color_dim(hsvs)\n rgbs = list()\n for hsv in hsvs:\n c = hsv[1] * hsv[2]\n m = hsv[2] - c\n hp = hsv[0] / 60\n x = c * (1 - abs(hp % 2 - 1))\n if 0 <= hp < 1:\n r, g, b = c, x, 0\n elif hp < 2:\n r, g, b = x, c, 0\n elif hp < 3:\n r, g, b = 0, c, x\n elif hp < 4:\n r, g, b = 0, x, c\n elif hp < 5:\n r, g, b = x, 0, c\n else:\n r, g, b = c, 0, x\n rgb = [r + m, g + m, b + m]\n rgbs.append(rgb)\n rgbs = np.array(rgbs, dtype=np.float32)\n if n_dim == 4:\n rgbs = np.concatenate((rgbs, hsvs[:, 3]), axis=1)\n return rgbs\n",
"role": "user"
},
{
"content": "hsv_to_rgb",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.