source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(labs): labs, n_dim = _check_color_dim(labs) y = (labs[:, 0] + 16.0) / 116.0 x = labs[:, 1] / 500.0 + y z = y - labs[:, 2] / 200.0 xyz = np.concatenate(([x], [y], [z])) over = xyz > 0.2068966 xyz[over] = xyz[over] ** 3.0 xyz[~over] = (xyz[~over] - 0.13793103448275862) / 7.787 rgbs = np.dot(_xyz2rgb_norm, xyz).T over = rgbs > 0.0031308 rgbs[over] = 1.055 * rgbs[over] ** (1.0 / 2.4) - 0.055 rgbs[~over] *= 12.92 if n_dim == 4: rgbs = np.concatenate((rgbs, labs[:, 3]), axis=1) rgbs = np.clip(rgbs, 0.0, 1.0) return rgbs
lab_to_rgb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labs):\n labs, n_dim = _check_color_dim(labs)\n y = (labs[:, 0] + 16.0) / 116.0\n x = labs[:, 1] / 500.0 + y\n z = y - labs[:, 2] / 200.0\n xyz = np.concatenate(([x], [y], [z]))\n over = xyz > 0.2068966\n xyz[over] = xyz[over] ** 3.0\n xyz[~over] = (xyz[~over] - 0.13793103448275862) / 7.787\n rgbs = np.dot(_xyz2rgb_norm, xyz).T\n over = rgbs > 0.0031308\n rgbs[over] = 1.055 * rgbs[over] ** (1.0 / 2.4) - 0.055\n rgbs[~over] *= 12.92\n if n_dim == 4:\n rgbs = np.concatenate((rgbs, labs[:, 3]), axis=1)\n rgbs = np.clip(rgbs, 0.0, 1.0)\n return rgbs\n", "role": "user" }, { "content": "lab_to_rgb", "role": "assistant" } ]
def x(self, tags): value = tags.get(self.name, '') for name in self.alternate_tags: value = value or tags.get(name, '') value = value or self.default return value
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tags):\n value = tags.get(self.name, '')\n for name in self.alternate_tags:\n value = value or tags.get(name, '')\n value = value or self.default\n return value\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(code): m = re.search('^\\s*' + re_func_decl + '\\s*{', code, re.M) if m is None: print(code) raise Exception( 'Failed to parse function signature. Full code is printed above.') rtype, name, args = m.groups()[:3] if args == 'void' or args.strip() == '': args = [] else: args = [tuple(arg.strip().split(' ')) for arg in args.split(',')] return name, args, rtype
parse_function_signature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(code):\n m = re.search('^\\\\s*' + re_func_decl + '\\\\s*{', code, re.M)\n if m is None:\n print(code)\n raise Exception(\n 'Failed to parse function signature. Full code is printed above.')\n rtype, name, args = m.groups()[:3]\n if args == 'void' or args.strip() == '':\n args = []\n else:\n args = [tuple(arg.strip().split(' ')) for arg in args.split(',')]\n return name, args, rtype\n", "role": "user" }, { "content": "parse_function_signature", "role": "assistant" } ]
def x(code): regex = '^\\s*' + re_func_decl + '\\s*{' funcs = [] while True: m = re.search(regex, code, re.M) if m is None: return funcs rtype, name, args = m.groups()[:3] if args == 'void' or args.strip() == '': args = [] else: args = [tuple(arg.strip().split(' ')) for arg in args.split(',')] funcs.append((name, args, rtype)) code = code[m.end():]
find_functions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(code):\n regex = '^\\\\s*' + re_func_decl + '\\\\s*{'\n funcs = []\n while True:\n m = re.search(regex, code, re.M)\n if m is None:\n return funcs\n rtype, name, args = m.groups()[:3]\n if args == 'void' or args.strip() == '':\n args = []\n else:\n args = [tuple(arg.strip().split(' ')) for arg in args.split(',')]\n funcs.append((name, args, rtype))\n code = code[m.end():]\n", "role": "user" }, { "content": "find_functions", "role": "assistant" } ]
def x(code): prots = [] lines = code.split('\n') for line in lines: m = re.match('\\s*' + re_func_prot, line) if m is not None: rtype, name, args = m.groups()[:3] if args == 'void' or args.strip() == '': args = [] else: args = [tuple(arg.strip().split(' ')) for arg in args.split (',')] prots.append((name, args, rtype)) return prots
find_prototypes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(code):\n prots = []\n lines = code.split('\\n')\n for line in lines:\n m = re.match('\\\\s*' + re_func_prot, line)\n if m is not None:\n rtype, name, args = m.groups()[:3]\n if args == 'void' or args.strip() == '':\n args = []\n else:\n args = [tuple(arg.strip().split(' ')) for arg in args.split\n (',')]\n prots.append((name, args, rtype))\n return prots\n", "role": "user" }, { "content": "find_prototypes", "role": "assistant" } ]
def x(code): vars = {} lines = code.split('\n') for line in lines: m = re.match('\\s*' + re_prog_var_declaration + '\\s*(=|;)', line) if m is not None: vtype, dtype, names = m.groups()[:3] for name in names.split(','): vars[name.strip()] = vtype, dtype return vars
find_program_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(code):\n vars = {}\n lines = code.split('\\n')\n for line in lines:\n m = re.match('\\\\s*' + re_prog_var_declaration + '\\\\s*(=|;)', line)\n if m is not None:\n vtype, dtype, names = m.groups()[:3]\n for name in names.split(','):\n vars[name.strip()] = vtype, dtype\n return vars\n", "role": "user" }, { "content": "find_program_variables", "role": "assistant" } ]
def x(c): func = sdl2.SDL_GL_SetAttribute func(sdl2.SDL_GL_RED_SIZE, c['red_size']) func(sdl2.SDL_GL_GREEN_SIZE, c['green_size']) func(sdl2.SDL_GL_BLUE_SIZE, c['blue_size']) func(sdl2.SDL_GL_ALPHA_SIZE, c['alpha_size']) func(sdl2.SDL_GL_DEPTH_SIZE, c['depth_size']) func(sdl2.SDL_GL_STENCIL_SIZE, c['stencil_size']) func(sdl2.SDL_GL_DOUBLEBUFFER, 1 if c['double_buffer'] else 0) samps = c['samples'] func(sdl2.SDL_GL_MULTISAMPLEBUFFERS, 1 if samps > 0 else 0) func(sdl2.SDL_GL_MULTISAMPLESAMPLES, samps if samps > 0 else 0) func(sdl2.SDL_GL_STEREO, c['stereo'])
set_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c):\n func = sdl2.SDL_GL_SetAttribute\n func(sdl2.SDL_GL_RED_SIZE, c['red_size'])\n func(sdl2.SDL_GL_GREEN_SIZE, c['green_size'])\n func(sdl2.SDL_GL_BLUE_SIZE, c['blue_size'])\n func(sdl2.SDL_GL_ALPHA_SIZE, c['alpha_size'])\n func(sdl2.SDL_GL_DEPTH_SIZE, c['depth_size'])\n func(sdl2.SDL_GL_STENCIL_SIZE, c['stencil_size'])\n func(sdl2.SDL_GL_DOUBLEBUFFER, 1 if c['double_buffer'] else 0)\n samps = c['samples']\n func(sdl2.SDL_GL_MULTISAMPLEBUFFERS, 1 if samps > 0 else 0)\n func(sdl2.SDL_GL_MULTISAMPLESAMPLES, samps if samps > 0 else 0)\n func(sdl2.SDL_GL_STEREO, c['stereo'])\n", "role": "user" }, { "content": "set_config", "role": "assistant" } ]
def x(self, message=None, end_session=False, card_obj=None, reprompt_message=None, is_ssml=None): response = dict(self.base_response) if message: response['response'] = self.create_speech(message, is_ssml) response['response']['shouldEndSession'] = end_session if card_obj: response['response']['card'] = card_obj if reprompt_message: response['response']['reprompt'] = self.create_speech(reprompt_message, is_ssml) return Response(response)
create_response
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message=None, end_session=False, card_obj=None,\n reprompt_message=None, is_ssml=None):\n response = dict(self.base_response)\n if message:\n response['response'] = self.create_speech(message, is_ssml)\n response['response']['shouldEndSession'] = end_session\n if card_obj:\n response['response']['card'] = card_obj\n if reprompt_message:\n response['response']['reprompt'] = self.create_speech(reprompt_message,\n is_ssml)\n return Response(response)\n", "role": "user" }, { "content": "create_response", "role": "assistant" } ]
def x(self, title=None, subtitle=None, content=None, card_type='Simple'): card = {'type': card_type} if title: card['title'] = title if subtitle: card['subtitle'] = subtitle if content: card['content'] = content return card
create_card
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, title=None, subtitle=None, content=None, card_type='Simple'):\n card = {'type': card_type}\n if title:\n card['title'] = title\n if subtitle:\n card['subtitle'] = subtitle\n if content:\n card['content'] = content\n return card\n", "role": "user" }, { "content": "create_card", "role": "assistant" } ]
def x(self, intent): def x(func): self._handlers['IntentRequest'][intent] = func return func return _handler
intent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, intent):\n\n def x(func):\n self._handlers['IntentRequest'][intent] = func\n return func\n return _handler\n", "role": "user" }, { "content": "intent", "role": "assistant" } ]
def x(self, request_type): def x(func): self._handlers[request_type] = func return func return _handler
request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request_type):\n\n def x(func):\n self._handlers[request_type] = func\n return func\n return _handler\n", "role": "user" }, { "content": "request", "role": "assistant" } ]
def x(self, request_json, metadata=None): request = Request(request_json) request.metadata = metadata handler_fn = self._handlers[self._default] if not request.is_intent() and request.request_type() in self._handlers: """ Route request to a non intent handler """ handler_fn = self._handlers[request.request_type()] elif request.is_intent() and request.intent_name() in self._handlers[ 'IntentRequest']: """ Route to right intent handler """ handler_fn = self._handlers['IntentRequest'][request.intent_name()] response = handler_fn(request) response.set_session(request.session) return response.to_json()
route_request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request_json, metadata=None):\n request = Request(request_json)\n request.metadata = metadata\n handler_fn = self._handlers[self._default]\n if not request.is_intent() and request.request_type() in self._handlers:\n \"\"\" Route request to a non intent handler \"\"\"\n handler_fn = self._handlers[request.request_type()]\n elif request.is_intent() and request.intent_name() in self._handlers[\n 'IntentRequest']:\n \"\"\" Route to right intent handler \"\"\"\n handler_fn = self._handlers['IntentRequest'][request.intent_name()]\n response = handler_fn(request)\n response.set_session(request.session)\n return response.to_json()\n", "role": "user" }, { "content": "route_request", "role": "assistant" } ]
def x(self, viewbox): self._viewbox = viewbox viewbox.events.mouse_press.connect(self.viewbox_mouse_event) viewbox.events.mouse_release.connect(self.viewbox_mouse_event) viewbox.events.mouse_move.connect(self.viewbox_mouse_event) viewbox.events.mouse_wheel.connect(self.viewbox_mouse_event) viewbox.events.resize.connect(self.viewbox_resize_event)
viewbox_set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, viewbox):\n self._viewbox = viewbox\n viewbox.events.mouse_press.connect(self.viewbox_mouse_event)\n viewbox.events.mouse_release.connect(self.viewbox_mouse_event)\n viewbox.events.mouse_move.connect(self.viewbox_mouse_event)\n viewbox.events.mouse_wheel.connect(self.viewbox_mouse_event)\n viewbox.events.resize.connect(self.viewbox_resize_event)\n", "role": "user" }, { "content": "viewbox_set", "role": "assistant" } ]
def x(self, viewbox): self._viewbox = None viewbox.events.mouse_press.disconnect(self.viewbox_mouse_event) viewbox.events.mouse_release.disconnect(self.viewbox_mouse_event) viewbox.events.mouse_move.disconnect(self.viewbox_mouse_event) viewbox.events.mouse_wheel.disconnect(self.viewbox_mouse_event) viewbox.events.resize.disconnect(self.viewbox_resize_event)
viewbox_unset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, viewbox):\n self._viewbox = None\n viewbox.events.mouse_press.disconnect(self.viewbox_mouse_event)\n viewbox.events.mouse_release.disconnect(self.viewbox_mouse_event)\n viewbox.events.mouse_move.disconnect(self.viewbox_mouse_event)\n viewbox.events.mouse_wheel.disconnect(self.viewbox_mouse_event)\n viewbox.events.resize.disconnect(self.viewbox_resize_event)\n", "role": "user" }, { "content": "viewbox_unset", "role": "assistant" } ]
def x(self, x=None, y=None, z=None, margin=0.05): init = self._xlim is None bounds = [None, None, None] if x is not None: bounds[0] = float(x[0]), float(x[1]) if y is not None: bounds[1] = float(y[0]), float(y[1]) if z is not None: bounds[2] = float(z[0]), float(z[1]) if self._viewbox is None: self._set_range_args = bounds[0], bounds[1], bounds[2], margin return self._resetting = True if all([(b is None) for b in bounds]): bounds = self._viewbox.get_scene_bounds() else: for i in range(3): if bounds[i] is None: bounds[i] = self._viewbox.get_scene_bounds(i) ranges = [(b[1] - b[0]) for b in bounds] margins = [(r * margin or 0.1) for r in ranges] bounds_margins = [(b[0] - m, b[1] + m) for b, m in zip(bounds, margins)] self._xlim, self._ylim, self._zlim = bounds_margins if not init or self._center is None: self._center = [(b[0] + r / 2) for b, r in zip(bounds, ranges)] self._set_range(init) self._resetting = False self.view_changed()
set_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x=None, y=None, z=None, margin=0.05):\n init = self._xlim is None\n bounds = [None, None, None]\n if x is not None:\n bounds[0] = float(x[0]), float(x[1])\n if y is not None:\n bounds[1] = float(y[0]), float(y[1])\n if z is not None:\n bounds[2] = float(z[0]), float(z[1])\n if self._viewbox is None:\n self._set_range_args = bounds[0], bounds[1], bounds[2], margin\n return\n self._resetting = True\n if all([(b is None) for b in bounds]):\n bounds = self._viewbox.get_scene_bounds()\n else:\n for i in range(3):\n if bounds[i] is None:\n bounds[i] = self._viewbox.get_scene_bounds(i)\n ranges = [(b[1] - b[0]) for b in bounds]\n margins = [(r * margin or 0.1) for r in ranges]\n bounds_margins = [(b[0] - m, b[1] + m) for b, m in zip(bounds, margins)]\n self._xlim, self._ylim, self._zlim = bounds_margins\n if not init or self._center is None:\n self._center = [(b[0] + r / 2) for b, r in zip(bounds, ranges)]\n self._set_range(init)\n self._resetting = False\n self.view_changed()\n", "role": "user" }, { "content": "set_range", "role": "assistant" } ]
def x(self): D = {} for key in self._state_props: D[key] = getattr(self, key) return D
get_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n D = {}\n for key in self._state_props:\n D[key] = getattr(self, key)\n return D\n", "role": "user" }, { "content": "get_state", "role": "assistant" } ]
def x(self, state=None, **kwargs): D = state or {} D.update(kwargs) for key, val in D.items(): if key not in self._state_props: raise KeyError('Not a valid camera state property %r' % key) setattr(self, key, val)
set_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, state=None, **kwargs):\n D = state or {}\n D.update(kwargs)\n for key, val in D.items():\n if key not in self._state_props:\n raise KeyError('Not a valid camera state property %r' % key)\n setattr(self, key, val)\n", "role": "user" }, { "content": "set_state", "role": "assistant" } ]
def x(self, camera): cam1, cam2 = self, camera while cam1 in cam2._linked_cameras: cam2._linked_cameras.remove(cam1) while cam2 in cam1._linked_cameras: cam1._linked_cameras.remove(cam2) cam1._linked_cameras.append(cam2) cam2._linked_cameras.append(cam1)
link
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, camera):\n cam1, cam2 = self, camera\n while cam1 in cam2._linked_cameras:\n cam2._linked_cameras.remove(cam1)\n while cam2 in cam1._linked_cameras:\n cam1._linked_cameras.remove(cam2)\n cam1._linked_cameras.append(cam2)\n cam2._linked_cameras.append(cam1)\n", "role": "user" }, { "content": "link", "role": "assistant" } ]
def x(self): if self._resetting: return if self._viewbox: if self._xlim is None: args = self._set_range_args or () self.set_range(*args) if self._default_state is None: self.set_default_state() self._update_transform()
view_changed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._resetting:\n return\n if self._viewbox:\n if self._xlim is None:\n args = self._set_range_args or ()\n self.set_range(*args)\n if self._default_state is None:\n self.set_default_state()\n self._update_transform()\n", "role": "user" }, { "content": "view_changed", "role": "assistant" } ]
def x(self, event): if event.old is not None: event.old.events.key_press.disconnect(self.viewbox_key_event) event.old.events.key_release.disconnect(self.viewbox_key_event) if event.new is not None: event.new.events.key_press.connect(self.viewbox_key_event) event.new.events.key_release.connect(self.viewbox_key_event)
on_canvas_change
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n if event.old is not None:\n event.old.events.key_press.disconnect(self.viewbox_key_event)\n event.old.events.key_release.disconnect(self.viewbox_key_event)\n if event.new is not None:\n event.new.events.key_press.connect(self.viewbox_key_event)\n event.new.events.key_release.connect(self.viewbox_key_event)\n", "role": "user" }, { "content": "on_canvas_change", "role": "assistant" } ]
def x(self, tr): pre_tr = self.pre_transform if pre_tr is None: self._scene_transform = tr else: self._transform_cache.roll() self._scene_transform = self._transform_cache.get([pre_tr, tr]) self._scene_transform.dynamic = True self._viewbox.scene.transform = self._scene_transform self._viewbox.update() for cam in self._linked_cameras: if cam is self._linked_cameras_no_update: continue try: cam._linked_cameras_no_update = self cam.set_state(self.get_state()) finally: cam._linked_cameras_no_update = None
set_scene_transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tr):\n pre_tr = self.pre_transform\n if pre_tr is None:\n self._scene_transform = tr\n else:\n self._transform_cache.roll()\n self._scene_transform = self._transform_cache.get([pre_tr, tr])\n self._scene_transform.dynamic = True\n self._viewbox.scene.transform = self._scene_transform\n self._viewbox.update()\n for cam in self._linked_cameras:\n if cam is self._linked_cameras_no_update:\n continue\n try:\n cam._linked_cameras_no_update = self\n cam.set_state(self.get_state())\n finally:\n cam._linked_cameras_no_update = None\n", "role": "user" }, { "content": "set_scene_transform", "role": "assistant" } ]
def x(c): glformat = QGLFormat() glformat.setRedBufferSize(c['red_size']) glformat.setGreenBufferSize(c['green_size']) glformat.setBlueBufferSize(c['blue_size']) glformat.setAlphaBufferSize(c['alpha_size']) if QT5_NEW_API: glformat.setSwapBehavior(glformat.DoubleBuffer if c['double_buffer' ] else glformat.SingleBuffer) else: glformat.setAccum(False) glformat.setRgba(True) glformat.setDoubleBuffer(True if c['double_buffer'] else False) glformat.setDepth(True if c['depth_size'] else False) glformat.setStencil(True if c['stencil_size'] else False) glformat.setSampleBuffers(True if c['samples'] else False) glformat.setDepthBufferSize(c['depth_size'] if c['depth_size'] else 0) glformat.setStencilBufferSize(c['stencil_size'] if c['stencil_size'] else 0 ) glformat.setSamples(c['samples'] if c['samples'] else 0) glformat.setStereo(c['stereo']) return glformat
set_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c):\n glformat = QGLFormat()\n glformat.setRedBufferSize(c['red_size'])\n glformat.setGreenBufferSize(c['green_size'])\n glformat.setBlueBufferSize(c['blue_size'])\n glformat.setAlphaBufferSize(c['alpha_size'])\n if QT5_NEW_API:\n glformat.setSwapBehavior(glformat.DoubleBuffer if c['double_buffer'\n ] else glformat.SingleBuffer)\n else:\n glformat.setAccum(False)\n glformat.setRgba(True)\n glformat.setDoubleBuffer(True if c['double_buffer'] else False)\n glformat.setDepth(True if c['depth_size'] else False)\n glformat.setStencil(True if c['stencil_size'] else False)\n glformat.setSampleBuffers(True if c['samples'] else False)\n glformat.setDepthBufferSize(c['depth_size'] if c['depth_size'] else 0)\n glformat.setStencilBufferSize(c['stencil_size'] if c['stencil_size'] else 0\n )\n glformat.setSamples(c['samples'] if c['samples'] else 0)\n glformat.setStereo(c['stereo'])\n return glformat\n", "role": "user" }, { "content": "set_config", "role": "assistant" } ]
def x(self): winid = self.winId() if IS_RPI: nw = (ctypes.c_int * 3)(winid, self.width(), self.height()) return ctypes.pointer(nw) elif IS_LINUX: return int(winid) ctypes.pythonapi.PyCapsule_GetName.restype = ctypes.c_char_p ctypes.pythonapi.PyCapsule_GetName.argtypes = [ctypes.py_object] ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.c_void_p ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [ctypes.py_object, ctypes.c_char_p] name = ctypes.pythonapi.PyCapsule_GetName(winid) handle = ctypes.pythonapi.PyCapsule_GetPointer(winid, name) return handle
get_window_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n winid = self.winId()\n if IS_RPI:\n nw = (ctypes.c_int * 3)(winid, self.width(), self.height())\n return ctypes.pointer(nw)\n elif IS_LINUX:\n return int(winid)\n ctypes.pythonapi.PyCapsule_GetName.restype = ctypes.c_char_p\n ctypes.pythonapi.PyCapsule_GetName.argtypes = [ctypes.py_object]\n ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.c_void_p\n ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [ctypes.py_object,\n ctypes.c_char_p]\n name = ctypes.pythonapi.PyCapsule_GetName(winid)\n handle = ctypes.pythonapi.PyCapsule_GetPointer(winid, name)\n return handle\n", "role": "user" }, { "content": "get_window_id", "role": "assistant" } ]
def x(x): x1 = x[0] x2 = x[1] f = (4 - 2.1 * (x1 * x1) + x1 * x1 * x1 * x1 / 3.0) * (x1 * x1 ) + x1 * x2 + (-4 + 4 * (x2 * x2)) * (x2 * x2) return f
obj
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n x1 = x[0]\n x2 = x[1]\n f = (4 - 2.1 * (x1 * x1) + x1 * x1 * x1 * x1 / 3.0) * (x1 * x1\n ) + x1 * x2 + (-4 + 4 * (x2 * x2)) * (x2 * x2)\n return f\n", "role": "user" }, { "content": "obj", "role": "assistant" } ]
def x(mode='agg', *args, **kwargs): if mode == 'raw': return RawPathCollection(*args, **kwargs) elif mode == 'agg+': return AggPathCollection(*args, **kwargs) return AggFastPathCollection(*args, **kwargs)
PathCollection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mode='agg', *args, **kwargs):\n if mode == 'raw':\n return RawPathCollection(*args, **kwargs)\n elif mode == 'agg+':\n return AggPathCollection(*args, **kwargs)\n return AggFastPathCollection(*args, **kwargs)\n", "role": "user" }, { "content": "PathCollection", "role": "assistant" } ]
def x(self, coords): m = np.empty(coords.shape) m[:, :3] = coords[:, :3] * self.scale[np.newaxis, :3] + coords[:, 3: ] * self.translate[np.newaxis, :3] m[:, 3] = coords[:, 3] return m
map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coords):\n m = np.empty(coords.shape)\n m[:, :3] = coords[:, :3] * self.scale[np.newaxis, :3] + coords[:, 3:\n ] * self.translate[np.newaxis, :3]\n m[:, 3] = coords[:, 3]\n return m\n", "role": "user" }, { "content": "map", "role": "assistant" } ]
def x(self, move): move = as_vec4(move, default=(0, 0, 0, 0)) self.translate = self.translate + move
move
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, move):\n move = as_vec4(move, default=(0, 0, 0, 0))\n self.translate = self.translate + move\n", "role": "user" }, { "content": "move", "role": "assistant" } ]
def x(self, zoom, center=(0, 0, 0), mapped=True): zoom = as_vec4(zoom, default=(1, 1, 1, 1)) center = as_vec4(center, default=(0, 0, 0, 0)) scale = self.scale * zoom if mapped: trans = center - (center - self.translate) * zoom else: trans = self.scale * (1 - zoom) * center + self.translate self._set_st(scale=scale, translate=trans)
zoom
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, zoom, center=(0, 0, 0), mapped=True):\n zoom = as_vec4(zoom, default=(1, 1, 1, 1))\n center = as_vec4(center, default=(0, 0, 0, 0))\n scale = self.scale * zoom\n if mapped:\n trans = center - (center - self.translate) * zoom\n else:\n trans = self.scale * (1 - zoom) * center + self.translate\n self._set_st(scale=scale, translate=trans)\n", "role": "user" }, { "content": "zoom", "role": "assistant" } ]
def x(cls, x0, x1): t = cls() t.set_mapping(x0, x1) return t
from_mapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, x0, x1):\n t = cls()\n t.set_mapping(x0, x1)\n return t\n", "role": "user" }, { "content": "from_mapping", "role": "assistant" } ]
def x(self, x0, x1, update=True): if isinstance(x0, Rect): x0 = x0._transform_in()[:3] if isinstance(x1, Rect): x1 = x1._transform_in()[:3] x0 = np.asarray(x0) x1 = np.asarray(x1) if x0.ndim != 2 or x0.shape[0] != 2 or x1.ndim != 2 or x1.shape[0] != 2: raise TypeError('set_mapping requires array inputs of shape (2, N).') denom = x0[1] - x0[0] mask = denom == 0 denom[mask] = 1.0 s = (x1[1] - x1[0]) / denom s[mask] = 1.0 s[x0[1] == x0[0]] = 1.0 t = x1[0] - s * x0[0] s = as_vec4(s, default=(1, 1, 1, 1)) t = as_vec4(t, default=(0, 0, 0, 0)) self._set_st(scale=s, translate=t, update=update)
set_mapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x0, x1, update=True):\n if isinstance(x0, Rect):\n x0 = x0._transform_in()[:3]\n if isinstance(x1, Rect):\n x1 = x1._transform_in()[:3]\n x0 = np.asarray(x0)\n x1 = np.asarray(x1)\n if x0.ndim != 2 or x0.shape[0] != 2 or x1.ndim != 2 or x1.shape[0] != 2:\n raise TypeError('set_mapping requires array inputs of shape (2, N).')\n denom = x0[1] - x0[0]\n mask = denom == 0\n denom[mask] = 1.0\n s = (x1[1] - x1[0]) / denom\n s[mask] = 1.0\n s[x0[1] == x0[0]] = 1.0\n t = x1[0] - s * x0[0]\n s = as_vec4(s, default=(1, 1, 1, 1))\n t = as_vec4(t, default=(0, 0, 0, 0))\n self._set_st(scale=s, translate=t, update=update)\n", "role": "user" }, { "content": "set_mapping", "role": "assistant" } ]
def x(self, pos): self.matrix = np.dot(self.matrix, transforms.translate(pos[0, :3]))
translate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pos):\n self.matrix = np.dot(self.matrix, transforms.translate(pos[0, :3]))\n", "role": "user" }, { "content": "translate", "role": "assistant" } ]
def x(self, scale, center=None): scale = transforms.scale(as_vec4(scale, default=(1, 1, 1, 1))[0, :3]) if center is not None: center = as_vec4(center)[0, :3] scale = np.dot(np.dot(transforms.translate(-center), scale), transforms.translate(center)) self.matrix = np.dot(self.matrix, scale)
scale
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, scale, center=None):\n scale = transforms.scale(as_vec4(scale, default=(1, 1, 1, 1))[0, :3])\n if center is not None:\n center = as_vec4(center)[0, :3]\n scale = np.dot(np.dot(transforms.translate(-center), scale),\n transforms.translate(center))\n self.matrix = np.dot(self.matrix, scale)\n", "role": "user" }, { "content": "scale", "role": "assistant" } ]
def x(self, angle, axis): self.matrix = np.dot(self.matrix, transforms.rotate(angle, axis))
rotate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, angle, axis):\n self.matrix = np.dot(self.matrix, transforms.rotate(angle, axis))\n", "role": "user" }, { "content": "rotate", "role": "assistant" } ]
def x(self, points1, points2): self.matrix = transforms.affine_map(points1, points2).T
set_mapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, points1, points2):\n self.matrix = transforms.affine_map(points1, points2).T\n", "role": "user" }, { "content": "set_mapping", "role": "assistant" } ]
def x(self, l, r, b, t, n, f): self.matrix = transforms.ortho(l, r, b, t, n, f)
set_ortho
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, l, r, b, t, n, f):\n self.matrix = transforms.ortho(l, r, b, t, n, f)\n", "role": "user" }, { "content": "set_ortho", "role": "assistant" } ]
def x(self, fov, aspect, near, far): self.matrix = transforms.perspective(fov, aspect, near, far)
set_perspective
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fov, aspect, near, far):\n self.matrix = transforms.perspective(fov, aspect, near, far)\n", "role": "user" }, { "content": "set_perspective", "role": "assistant" } ]
def x(self, l, r, b, t, n, f): self.matrix = transforms.frustum(l, r, b, t, n, f)
set_frustum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, l, r, b, t, n, f):\n self.matrix = transforms.frustum(l, r, b, t, n, f)\n", "role": "user" }, { "content": "set_frustum", "role": "assistant" } ]
def x(v): res = np.zeros(v.shape, dtype=np.int32) tt = v >> 16 tt_zero = tt == 0 tt_not_zero = ~tt_zero t_h = tt >> 8 t_zero_h = (t_h == 0) & tt_not_zero t_not_zero_h = ~t_zero_h & tt_not_zero res[t_zero_h] = LogTable256[tt[t_zero_h]] + 16 res[t_not_zero_h] = LogTable256[t_h[t_not_zero_h]] + 24 t_l = v >> 8 t_zero_l = (t_l == 0) & tt_zero t_not_zero_l = ~t_zero_l & tt_zero res[t_zero_l] = LogTable256[v[t_zero_l]] res[t_not_zero_l] = LogTable256[t_l[t_not_zero_l]] + 8 return res
log2_lut
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(v):\n res = np.zeros(v.shape, dtype=np.int32)\n tt = v >> 16\n tt_zero = tt == 0\n tt_not_zero = ~tt_zero\n t_h = tt >> 8\n t_zero_h = (t_h == 0) & tt_not_zero\n t_not_zero_h = ~t_zero_h & tt_not_zero\n res[t_zero_h] = LogTable256[tt[t_zero_h]] + 16\n res[t_not_zero_h] = LogTable256[t_h[t_not_zero_h]] + 24\n t_l = v >> 8\n t_zero_l = (t_l == 0) & tt_zero\n t_not_zero_l = ~t_zero_l & tt_zero\n res[t_zero_l] = LogTable256[v[t_zero_l]]\n res[t_not_zero_l] = LogTable256[t_l[t_not_zero_l]] + 8\n return res\n", "role": "user" }, { "content": "log2_lut", "role": "assistant" } ]
def x(uniq): order = log2_lut(uniq >> 2) >> 1 ipix = uniq - (1 << 2 * (order + 1)) return order, ipix
uniq2orderipix_lut
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uniq):\n order = log2_lut(uniq >> 2) >> 1\n ipix = uniq - (1 << 2 * (order + 1))\n return order, ipix\n", "role": "user" }, { "content": "uniq2orderipix_lut", "role": "assistant" } ]
def x(uniq): order = np.log2(uniq // 4) // 2 order = order.astype(int) ipix = uniq - 4 * 4 ** order return order, ipix
uniq2orderipix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(uniq):\n order = np.log2(uniq // 4) // 2\n order = order.astype(int)\n ipix = uniq - 4 * 4 ** order\n return order, ipix\n", "role": "user" }, { "content": "uniq2orderipix", "role": "assistant" } ]
def x(target, data, usage): if isinstance(data, int): size = data data = None else: size = data.nbytes GL.glBufferData(target, size, data, usage)
glBufferData
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(target, data, usage):\n if isinstance(data, int):\n size = data\n data = None\n else:\n size = data.nbytes\n GL.glBufferData(target, size, data, usage)\n", "role": "user" }, { "content": "glBufferData", "role": "assistant" } ]
def x(self, data=None, **kwargs): if data is None: pos = None else: if isinstance(data, tuple): pos = np.array(data).T.astype(np.float32) else: pos = np.atleast_1d(data).astype(np.float32) if pos.ndim == 1: pos = pos[:, np.newaxis] elif pos.ndim > 2: raise ValueError('data must have at most two dimensions') if pos.size == 0: pos = self._line.pos if len(kwargs) == 0: raise TypeError( 'neither line points nor line propertiesare provided') elif pos.shape[1] == 1: x = np.arange(pos.shape[0], dtype=np.float32)[:, np.newaxis] pos = np.concatenate((x, pos), axis=1) elif pos.shape[1] > 3: raise TypeError('Too many coordinates given (%s; max is 3).' % pos.shape[1]) line_kwargs = {} for k in self._line_kwargs: if k in kwargs: k_ = self._kw_trans[k] if k in self._kw_trans else k line_kwargs[k] = kwargs.pop(k_) if pos is not None or len(line_kwargs) > 0: self._line.set_data(pos=pos, **line_kwargs) marker_kwargs = {} for k in self._marker_kwargs: if k in kwargs: k_ = self._kw_trans[k] if k in self._kw_trans else k marker_kwargs[k_] = kwargs.pop(k) if pos is not None or len(marker_kwargs) > 0: self._markers.set_data(pos=pos, **marker_kwargs) if len(kwargs) > 0: raise TypeError('Invalid keyword arguments: %s' % kwargs.keys())
set_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data=None, **kwargs):\n if data is None:\n pos = None\n else:\n if isinstance(data, tuple):\n pos = np.array(data).T.astype(np.float32)\n else:\n pos = np.atleast_1d(data).astype(np.float32)\n if pos.ndim == 1:\n pos = pos[:, np.newaxis]\n elif pos.ndim > 2:\n raise ValueError('data must have at most two dimensions')\n if pos.size == 0:\n pos = self._line.pos\n if len(kwargs) == 0:\n raise TypeError(\n 'neither line points nor line propertiesare provided')\n elif pos.shape[1] == 1:\n x = np.arange(pos.shape[0], dtype=np.float32)[:, np.newaxis]\n pos = np.concatenate((x, pos), axis=1)\n elif pos.shape[1] > 3:\n raise TypeError('Too many coordinates given (%s; max is 3).' %\n pos.shape[1])\n line_kwargs = {}\n for k in self._line_kwargs:\n if k in kwargs:\n k_ = self._kw_trans[k] if k in self._kw_trans else k\n line_kwargs[k] = kwargs.pop(k_)\n if pos is not None or len(line_kwargs) > 0:\n self._line.set_data(pos=pos, **line_kwargs)\n marker_kwargs = {}\n for k in self._marker_kwargs:\n if k in kwargs:\n k_ = self._kw_trans[k] if k in self._kw_trans else k\n marker_kwargs[k_] = kwargs.pop(k)\n if pos is not None or len(marker_kwargs) > 0:\n self._markers.set_data(pos=pos, **marker_kwargs)\n if len(kwargs) > 0:\n raise TypeError('Invalid keyword arguments: %s' % kwargs.keys())\n", "role": "user" }, { "content": "set_data", "role": "assistant" } ]
def x(self, pos=None, color=None): if pos is not None: pos = float(pos) xy = self._pos if self._is_vertical: xy[0, 0] = pos xy[0, 1] = -1 xy[1, 0] = pos xy[1, 1] = 1 else: xy[0, 0] = -1 xy[0, 1] = pos xy[1, 0] = 1 xy[1, 1] = pos self._changed['pos'] = True if color is not None: color = np.array(color, dtype=np.float32) if color.ndim != 1 or color.shape[0] != 4: raise ValueError( 'color must be a 4 element float rgba tuple, list or array') self._color = color self._changed['color'] = True
set_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pos=None, color=None):\n if pos is not None:\n pos = float(pos)\n xy = self._pos\n if self._is_vertical:\n xy[0, 0] = pos\n xy[0, 1] = -1\n xy[1, 0] = pos\n xy[1, 1] = 1\n else:\n xy[0, 0] = -1\n xy[0, 1] = pos\n xy[1, 0] = 1\n xy[1, 1] = pos\n self._changed['pos'] = True\n if color is not None:\n color = np.array(color, dtype=np.float32)\n if color.ndim != 1 or color.shape[0] != 4:\n raise ValueError(\n 'color must be a 4 element float rgba tuple, list or array')\n self._color = color\n self._changed['color'] = True\n", "role": "user" }, { "content": "set_data", "role": "assistant" } ]
def x(self, axis, view): is_vertical = self._is_vertical pos = self._pos if axis == 0 and is_vertical: return pos[0, 0], pos[0, 0] elif axis == 1 and not is_vertical: return self._pos[0, 1], self._pos[0, 1] return None
compute_bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, axis, view):\n is_vertical = self._is_vertical\n pos = self._pos\n if axis == 0 and is_vertical:\n return pos[0, 0], pos[0, 0]\n elif axis == 1 and not is_vertical:\n return self._pos[0, 1], self._pos[0, 1]\n return None\n", "role": "user" }, { "content": "compute_bounds", "role": "assistant" } ]
def x(p1, p2, p3): x1, y1 = p1 x2, y2 = p2 x3, y3 = p3 points = [] _curve3_recursive_bezier(points, x1, y1, x2, y2, x3, y3) dx, dy = points[0][0] - x1, points[0][1] - y1 if dx * dx + dy * dy > 1e-10: points.insert(0, (x1, y1)) dx, dy = points[-1][0] - x3, points[-1][1] - y3 if dx * dx + dy * dy > 1e-10: points.append((x3, y3)) return np.array(points).reshape(len(points), 2)
curve3_bezier
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p1, p2, p3):\n x1, y1 = p1\n x2, y2 = p2\n x3, y3 = p3\n points = []\n _curve3_recursive_bezier(points, x1, y1, x2, y2, x3, y3)\n dx, dy = points[0][0] - x1, points[0][1] - y1\n if dx * dx + dy * dy > 1e-10:\n points.insert(0, (x1, y1))\n dx, dy = points[-1][0] - x3, points[-1][1] - y3\n if dx * dx + dy * dy > 1e-10:\n points.append((x3, y3))\n return np.array(points).reshape(len(points), 2)\n", "role": "user" }, { "content": "curve3_bezier", "role": "assistant" } ]
def x(p1, p2, p3, p4): x1, y1 = p1 x2, y2 = p2 x3, y3 = p3 x4, y4 = p4 points = [] _curve4_recursive_bezier(points, x1, y1, x2, y2, x3, y3, x4, y4) dx, dy = points[0][0] - x1, points[0][1] - y1 if dx * dx + dy * dy > 1e-10: points.insert(0, (x1, y1)) dx, dy = points[-1][0] - x4, points[-1][1] - y4 if dx * dx + dy * dy > 1e-10: points.append((x4, y4)) return np.array(points).reshape(len(points), 2)
curve4_bezier
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p1, p2, p3, p4):\n x1, y1 = p1\n x2, y2 = p2\n x3, y3 = p3\n x4, y4 = p4\n points = []\n _curve4_recursive_bezier(points, x1, y1, x2, y2, x3, y3, x4, y4)\n dx, dy = points[0][0] - x1, points[0][1] - y1\n if dx * dx + dy * dy > 1e-10:\n points.insert(0, (x1, y1))\n dx, dy = points[-1][0] - x4, points[-1][1] - y4\n if dx * dx + dy * dy > 1e-10:\n points.append((x4, y4))\n return np.array(points).reshape(len(points), 2)\n", "role": "user" }, { "content": "curve4_bezier", "role": "assistant" } ]
def x(self, data, texture, offset, size): assert isinstance(texture, Texture2D) set_state(blend=False, depth_test=False) orig_tex = Texture2D(255 - data, format='luminance', wrapping= 'clamp_to_edge', interpolation='nearest') edf_neg_tex = self._render_edf(orig_tex) orig_tex[:, :, 0] = data edf_pos_tex = self._render_edf(orig_tex) self.program_insert['u_texture'] = orig_tex self.program_insert['u_pos_texture'] = edf_pos_tex self.program_insert['u_neg_texture'] = edf_neg_tex self.fbo_to[-1].color_buffer = texture with self.fbo_to[-1]: set_viewport(tuple(offset) + tuple(size)) self.program_insert.draw('triangle_strip')
render_to_texture
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, texture, offset, size):\n assert isinstance(texture, Texture2D)\n set_state(blend=False, depth_test=False)\n orig_tex = Texture2D(255 - data, format='luminance', wrapping=\n 'clamp_to_edge', interpolation='nearest')\n edf_neg_tex = self._render_edf(orig_tex)\n orig_tex[:, :, 0] = data\n edf_pos_tex = self._render_edf(orig_tex)\n self.program_insert['u_texture'] = orig_tex\n self.program_insert['u_pos_texture'] = edf_pos_tex\n self.program_insert['u_neg_texture'] = edf_neg_tex\n self.fbo_to[-1].color_buffer = texture\n with self.fbo_to[-1]:\n set_viewport(tuple(offset) + tuple(size))\n self.program_insert.draw('triangle_strip')\n", "role": "user" }, { "content": "render_to_texture", "role": "assistant" } ]
def x(self, orig_tex): sdf_size = orig_tex.shape[:2] comp_texs = [] for _ in range(2): tex = Texture2D(sdf_size + (4,), format='rgba', interpolation= 'nearest', wrapping='clamp_to_edge') comp_texs.append(tex) self.fbo_to[0].color_buffer = comp_texs[0] self.fbo_to[1].color_buffer = comp_texs[1] for program in self.programs[1:]: program['u_texh'], program['u_texw'] = sdf_size last_rend = 0 with self.fbo_to[last_rend]: set_viewport(0, 0, sdf_size[1], sdf_size[0]) self.program_seed['u_texture'] = orig_tex self.program_seed.draw('triangle_strip') stepsize = (np.array(sdf_size) // 2).max() while stepsize > 0: self.program_flood['u_step'] = stepsize self.program_flood['u_texture'] = comp_texs[last_rend] last_rend = 1 if last_rend == 0 else 0 with self.fbo_to[last_rend]: set_viewport(0, 0, sdf_size[1], sdf_size[0]) self.program_flood.draw('triangle_strip') stepsize //= 2 return comp_texs[last_rend]
render_edf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, orig_tex):\n sdf_size = orig_tex.shape[:2]\n comp_texs = []\n for _ in range(2):\n tex = Texture2D(sdf_size + (4,), format='rgba', interpolation=\n 'nearest', wrapping='clamp_to_edge')\n comp_texs.append(tex)\n self.fbo_to[0].color_buffer = comp_texs[0]\n self.fbo_to[1].color_buffer = comp_texs[1]\n for program in self.programs[1:]:\n program['u_texh'], program['u_texw'] = sdf_size\n last_rend = 0\n with self.fbo_to[last_rend]:\n set_viewport(0, 0, sdf_size[1], sdf_size[0])\n self.program_seed['u_texture'] = orig_tex\n self.program_seed.draw('triangle_strip')\n stepsize = (np.array(sdf_size) // 2).max()\n while stepsize > 0:\n self.program_flood['u_step'] = stepsize\n self.program_flood['u_texture'] = comp_texs[last_rend]\n last_rend = 1 if last_rend == 0 else 0\n with self.fbo_to[last_rend]:\n set_viewport(0, 0, sdf_size[1], sdf_size[0])\n self.program_flood.draw('triangle_strip')\n stepsize //= 2\n return comp_texs[last_rend]\n", "role": "user" }, { "content": "render_edf", "role": "assistant" } ]
def x(self, intent_num=0): print('Name of intent number : ', intent_num) slot_type_mappings = load_builtin_slots() intent_name = read_from_user(str) print('How many slots?') num_slots = read_from_user(int) slot_list = [] for i in range(num_slots): print('Slot name no.', i + 1) slot_name = read_from_user(str).strip() print( 'Slot type? Enter a number for AMAZON supported types below,else enter a string for a Custom Slot' ) print(json.dumps(slot_type_mappings, indent=True)) slot_type_str = read_from_user(str) try: slot_type = slot_type_mappings[int(slot_type_str)]['name'] except: slot_type = slot_type_str slot_list += [self.build_slot(slot_name, slot_type)] self.add_intent(intent_name, slot_list)
add_intent_interactive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, intent_num=0):\n print('Name of intent number : ', intent_num)\n slot_type_mappings = load_builtin_slots()\n intent_name = read_from_user(str)\n print('How many slots?')\n num_slots = read_from_user(int)\n slot_list = []\n for i in range(num_slots):\n print('Slot name no.', i + 1)\n slot_name = read_from_user(str).strip()\n print(\n 'Slot type? Enter a number for AMAZON supported types below,else enter a string for a Custom Slot'\n )\n print(json.dumps(slot_type_mappings, indent=True))\n slot_type_str = read_from_user(str)\n try:\n slot_type = slot_type_mappings[int(slot_type_str)]['name']\n except:\n slot_type = slot_type_str\n slot_list += [self.build_slot(slot_name, slot_type)]\n self.add_intent(intent_name, slot_list)\n", "role": "user" }, { "content": "add_intent_interactive", "role": "assistant" } ]
def x(self, filename): if os.path.exists(filename): with open(filename) as fp: return IntentSchema(json.load(fp, object_pairs_hook=OrderedDict)) else: print('File does not exist') return IntentSchema()
from_filename
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n if os.path.exists(filename):\n with open(filename) as fp:\n return IntentSchema(json.load(fp, object_pairs_hook=OrderedDict))\n else:\n print('File does not exist')\n return IntentSchema()\n", "role": "user" }, { "content": "from_filename", "role": "assistant" } ]
def x(request): user_id = request.access_token() if user_id in twitter_cache.users(): user_cache = twitter_cache.get_user_state(user_id) user_cache['amzn_id'] = request.user_id() base_message = ('Welcome to Twitter, {} . How may I help you today ?' .format(user_cache['screen_name'])) print(user_cache) if 'pending_action' in user_cache: base_message += ' You have one pending action . ' print('Found pending action') if 'description' in user_cache['pending_action']: print('Found description') base_message += user_cache['pending_action']['description'] return r.create_response(base_message) card = r.create_card(title='Please log into twitter', card_type= 'LinkAccount') return r.create_response(message= "Welcome to twitter, looks like you haven't logged in! Log in via the alexa app." , card_obj=card, end_session=True)
launch_request_handler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n user_id = request.access_token()\n if user_id in twitter_cache.users():\n user_cache = twitter_cache.get_user_state(user_id)\n user_cache['amzn_id'] = request.user_id()\n base_message = ('Welcome to Twitter, {} . How may I help you today ?'\n .format(user_cache['screen_name']))\n print(user_cache)\n if 'pending_action' in user_cache:\n base_message += ' You have one pending action . '\n print('Found pending action')\n if 'description' in user_cache['pending_action']:\n print('Found description')\n base_message += user_cache['pending_action']['description']\n return r.create_response(base_message)\n card = r.create_card(title='Please log into twitter', card_type=\n 'LinkAccount')\n return r.create_response(message=\n \"Welcome to twitter, looks like you haven't logged in! Log in via the alexa app.\"\n , card_obj=card, end_session=True)\n", "role": "user" }, { "content": "launch_request_handler", "role": "assistant" } ]
def x(request): tweet = request.get_slot_value('Tweet') tweet = tweet if tweet else '' if tweet: user_state = twitter_cache.get_user_state(request.access_token()) def x(): return post_tweet(request.access_token(), tweet) message = ( """I am ready to post the tweet, {} , Please say yes to confirm or stop to cancel .""" .format(tweet)) user_state['pending_action'] = {'action': action, 'description': message} return r.create_response(message=message, end_session=False) else: message = ' '.join([ "I'm sorry, I couldn't understand what you wanted to tweet .", 'Please prepend the message with either post or tweet .']) return alexa.create_response(message=message, end_session=False)
post_tweet_intent_handler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n tweet = request.get_slot_value('Tweet')\n tweet = tweet if tweet else ''\n if tweet:\n user_state = twitter_cache.get_user_state(request.access_token())\n\n def x():\n return post_tweet(request.access_token(), tweet)\n message = (\n \"\"\"I am ready to post the tweet, {} ,\n Please say yes to confirm or stop to cancel .\"\"\"\n .format(tweet))\n user_state['pending_action'] = {'action': action, 'description':\n message}\n return r.create_response(message=message, end_session=False)\n else:\n message = ' '.join([\n \"I'm sorry, I couldn't understand what you wanted to tweet .\",\n 'Please prepend the message with either post or tweet .'])\n return alexa.create_response(message=message, end_session=False)\n", "role": "user" }, { "content": "post_tweet_intent_handler", "role": "assistant" } ]
def x(request, tweet_list_builder, msg_prefix=''): tweets = tweet_list_builder(request.access_token()) print(len(tweets), 'tweets found') if tweets: twitter_cache.initialize_user_queue(user_id=request.access_token(), queue=tweets) text_to_read_out = twitter_cache.user_queue(request.access_token() ).read_out_next(MAX_RESPONSE_TWEETS) message = (msg_prefix + text_to_read_out + ", say 'next' to hear more, or reply to a tweet by number.") return alexa.create_response(message=message, end_session=False) else: return alexa.create_response(message= 'Sorry, no tweets found, please try something else', end_session=False)
tweet_list_handler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request, tweet_list_builder, msg_prefix=''):\n tweets = tweet_list_builder(request.access_token())\n print(len(tweets), 'tweets found')\n if tweets:\n twitter_cache.initialize_user_queue(user_id=request.access_token(),\n queue=tweets)\n text_to_read_out = twitter_cache.user_queue(request.access_token()\n ).read_out_next(MAX_RESPONSE_TWEETS)\n message = (msg_prefix + text_to_read_out +\n \", say 'next' to hear more, or reply to a tweet by number.\")\n return alexa.create_response(message=message, end_session=False)\n else:\n return alexa.create_response(message=\n 'Sorry, no tweets found, please try something else',\n end_session=False)\n", "role": "user" }, { "content": "tweet_list_handler", "role": "assistant" } ]
def x(request): slots = request.get_slot_map() if 'Index' in slots and slots['Index']: index = int(slots['Index']) elif 'Ordinal' in slots and slots['Index']: parse_ordinal = lambda inp: int(''.join([l for l in inp if l in string.digits])) index = parse_ordinal(slots['Ordinal']) else: return False index = index - 1 user_state = twitter_cache.get_user_state(request.access_token()) queue = user_state['user_queue'].queue() if index < len(queue): tweet_to_analyze = queue[index] user_state['focus_tweet'] = tweet_to_analyze return index + 1 twitter_cache.serialize() return False
focused_on_tweet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n slots = request.get_slot_map()\n if 'Index' in slots and slots['Index']:\n index = int(slots['Index'])\n elif 'Ordinal' in slots and slots['Index']:\n parse_ordinal = lambda inp: int(''.join([l for l in inp if l in\n string.digits]))\n index = parse_ordinal(slots['Ordinal'])\n else:\n return False\n index = index - 1\n user_state = twitter_cache.get_user_state(request.access_token())\n queue = user_state['user_queue'].queue()\n if index < len(queue):\n tweet_to_analyze = queue[index]\n user_state['focus_tweet'] = tweet_to_analyze\n return index + 1\n twitter_cache.serialize()\n return False\n", "role": "user" }, { "content": "focused_on_tweet", "role": "assistant" } ]
def x(request): message = "Sorry, couldn't find anything in your next queue" end_session = True if True: user_queue = twitter_cache.user_queue(request.access_token()) if not user_queue.is_finished(): message = user_queue.read_out_next(MAX_RESPONSE_TWEETS) if not user_queue.is_finished(): end_session = False message = (message + ". Please, say 'next' if you want me to read out more. ") return alexa.create_response(message=message, end_session=end_session)
next_intent_handler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n message = \"Sorry, couldn't find anything in your next queue\"\n end_session = True\n if True:\n user_queue = twitter_cache.user_queue(request.access_token())\n if not user_queue.is_finished():\n message = user_queue.read_out_next(MAX_RESPONSE_TWEETS)\n if not user_queue.is_finished():\n end_session = False\n message = (message +\n \". Please, say 'next' if you want me to read out more. \")\n return alexa.create_response(message=message, end_session=end_session)\n", "role": "user" }, { "content": "next_intent_handler", "role": "assistant" } ]
def x(backend_name=None, call_reuse=True): global default_app if default_app is not None: names = default_app.backend_name.lower().replace('(', ' ').strip(') ') names = [name for name in names.split(' ') if name] if backend_name and backend_name.lower() not in names: raise RuntimeError( 'Can only select a backend once, already using %s.' % names) else: if call_reuse: default_app.reuse() return default_app default_app = Application(backend_name) return default_app
use_app
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(backend_name=None, call_reuse=True):\n global default_app\n if default_app is not None:\n names = default_app.backend_name.lower().replace('(', ' ').strip(') ')\n names = [name for name in names.split(' ') if name]\n if backend_name and backend_name.lower() not in names:\n raise RuntimeError(\n 'Can only select a backend once, already using %s.' % names)\n else:\n if call_reuse:\n default_app.reuse()\n return default_app\n default_app = Application(backend_name)\n return default_app\n", "role": "user" }, { "content": "use_app", "role": "assistant" } ]
def x(target, data, usage): if isinstance(data, int): size = data data = ctypes.c_voidp(0) else: if not data.flags['C_CONTIGUOUS'] or not data.flags['ALIGNED']: data = data.copy('C') data_ = data size = data_.nbytes data = data_.ctypes.data res = _lib.glBufferData(target, size, data, usage)
glBufferData
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(target, data, usage):\n if isinstance(data, int):\n size = data\n data = ctypes.c_voidp(0)\n else:\n if not data.flags['C_CONTIGUOUS'] or not data.flags['ALIGNED']:\n data = data.copy('C')\n data_ = data\n size = data_.nbytes\n data = data_.ctypes.data\n res = _lib.glBufferData(target, size, data, usage)\n", "role": "user" }, { "content": "glBufferData", "role": "assistant" } ]
def x(self, vertices=None, faces=None, vertex_colors=None, face_colors=None, color=None, meshdata=None): if meshdata is not None: self._meshdata = meshdata else: self._meshdata = MeshData(vertices=vertices, faces=faces, vertex_colors=vertex_colors, face_colors=face_colors) self._bounds = self._meshdata.get_bounds() if color is not None: self._color = Color(color) self.mesh_data_changed()
set_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vertices=None, faces=None, vertex_colors=None, face_colors=None,\n color=None, meshdata=None):\n if meshdata is not None:\n self._meshdata = meshdata\n else:\n self._meshdata = MeshData(vertices=vertices, faces=faces,\n vertex_colors=vertex_colors, face_colors=face_colors)\n self._bounds = self._meshdata.get_bounds()\n if color is not None:\n self._color = Color(color)\n self.mesh_data_changed()\n", "role": "user" }, { "content": "set_data", "role": "assistant" } ]
def x(self, axis, view=None): if view is None: view = self if axis not in self._vshare.bounds: self._vshare.bounds[axis] = self._compute_bounds(axis, view) return self._vshare.bounds[axis]
bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, axis, view=None):\n if view is None:\n view = self\n if axis not in self._vshare.bounds:\n self._vshare.bounds[axis] = self._compute_bounds(axis, view)\n return self._vshare.bounds[axis]\n", "role": "user" }, { "content": "bounds", "role": "assistant" } ]
def x(self, preset=None, **kwargs): self._vshare.gl_state = kwargs self._vshare.gl_state['preset'] = preset
set_gl_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, preset=None, **kwargs):\n self._vshare.gl_state = kwargs\n self._vshare.gl_state['preset'] = preset\n", "role": "user" }, { "content": "set_gl_state", "role": "assistant" } ]
def x(self, *args, **kwargs): if len(args) == 1: self._vshare.gl_state['preset'] = args[0] elif len(args) != 0: raise TypeError('Only one positional argument allowed.') self._vshare.gl_state.update(kwargs)
update_gl_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n if len(args) == 1:\n self._vshare.gl_state['preset'] = args[0]\n elif len(args) != 0:\n raise TypeError('Only one positional argument allowed.')\n self._vshare.gl_state.update(kwargs)\n", "role": "user" }, { "content": "update_gl_state", "role": "assistant" } ]
def x(self, shader, name): assert name in ('pre', 'post') key = shader, name if key in self._hooks: return self._hooks[key] hook = StatementList() if shader == 'vert': self.view_program.vert[name] = hook elif shader == 'frag': self.view_program.frag[name] = hook self._hooks[key] = hook return hook
get_hook
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shader, name):\n assert name in ('pre', 'post')\n key = shader, name\n if key in self._hooks:\n return self._hooks[key]\n hook = StatementList()\n if shader == 'vert':\n self.view_program.vert[name] = hook\n elif shader == 'frag':\n self.view_program.frag[name] = hook\n self._hooks[key] = hook\n return hook\n", "role": "user" }, { "content": "get_hook", "role": "assistant" } ]
def x(self, filt, view=None): if view is None: self._vshare.filters.append(filt) for view in self._vshare.views.keys(): filt._attach(view) else: view._filters.append(filt) filt._attach(view)
attach
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filt, view=None):\n if view is None:\n self._vshare.filters.append(filt)\n for view in self._vshare.views.keys():\n filt._attach(view)\n else:\n view._filters.append(filt)\n filt._attach(view)\n", "role": "user" }, { "content": "attach", "role": "assistant" } ]
def x(self, filt, view=None): if view is None: self._vshare.filters.remove(filt) for view in self._vshare.views.keys(): filt._detach(view) else: view._filters.remove(filt) filt._detach(view)
detach
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filt, view=None):\n if view is None:\n self._vshare.filters.remove(filt)\n for view in self._vshare.views.keys():\n filt._detach(view)\n else:\n view._filters.remove(filt)\n filt._detach(view)\n", "role": "user" }, { "content": "detach", "role": "assistant" } ]
def x(self, visual): visual.transforms = self.transforms visual._prepare_transforms(visual) self._subvisuals.append(visual) visual.events.update.connect(self._subv_update) self.update()
add_subvisual
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, visual):\n visual.transforms = self.transforms\n visual._prepare_transforms(visual)\n self._subvisuals.append(visual)\n visual.events.update.connect(self._subv_update)\n self.update()\n", "role": "user" }, { "content": "add_subvisual", "role": "assistant" } ]
def x(self, visual): visual.events.update.disconnect(self._subv_update) self._subvisuals.remove(visual) self.update()
remove_subvisual
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, visual):\n visual.events.update.disconnect(self._subv_update)\n self._subvisuals.remove(visual)\n self.update()\n", "role": "user" }, { "content": "remove_subvisual", "role": "assistant" } ]
def x(self): if not self.visible: return if self._prepare_draw(view=self) is False: return for v in self._subvisuals: if v.visible: v.draw()
draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.visible:\n return\n if self._prepare_draw(view=self) is False:\n return\n for v in self._subvisuals:\n if v.visible:\n v.draw()\n", "role": "user" }, { "content": "draw", "role": "assistant" } ]
def x(self, preset=None, **kwargs): for v in self._subvisuals: v.set_gl_state(preset=preset, **kwargs)
set_gl_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, preset=None, **kwargs):\n for v in self._subvisuals:\n v.set_gl_state(preset=preset, **kwargs)\n", "role": "user" }, { "content": "set_gl_state", "role": "assistant" } ]
def x(self, *args, **kwargs): for v in self._subvisuals: v.update_gl_state(*args, **kwargs)
update_gl_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n for v in self._subvisuals:\n v.update_gl_state(*args, **kwargs)\n", "role": "user" }, { "content": "update_gl_state", "role": "assistant" } ]
def x(self, filt, view=None): for v in self._subvisuals: v.attach(filt, v)
attach
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filt, view=None):\n for v in self._subvisuals:\n v.attach(filt, v)\n", "role": "user" }, { "content": "attach", "role": "assistant" } ]
def x(self, filt, view=None): for v in self._subvisuals: v.detach(filt, v)
detach
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filt, view=None):\n for v in self._subvisuals:\n v.detach(filt, v)\n", "role": "user" }, { "content": "detach", "role": "assistant" } ]
def x(self, product, quantity=None, mode='buy', stop_limit=None, auto_margin=None, name_counter=None): if not isinstance(product, type('')) or not isinstance(name_counter, type('')) and name_counter is not None: raise ValueError('product and name_counter have to be a string') if not isinstance(stop_limit, type({})) and stop_limit is not None: raise ValueError('it has to be a dictionary') if quantity is not None and auto_margin is not None: raise ValueError('quantity and auto_margin are exclusive') elif quantity is None and auto_margin is None: raise ValueError('need at least one quantity') mov = self.new_mov(product) mov.open() mov.set_mode(mode) if quantity is not None: mov.set_quantity(quantity) try: margin = mov.get_unit_value() * quantity except TimeoutError: mov.close() logger.warning('market closed for %s' % mov.product) return False elif auto_margin is not None: unit_value = mov.get_unit_value() mov.set_quantity(auto_margin * unit_value) margin = auto_margin if stop_limit is not None: mov.set_limit('gain', stop_limit['gain'][0], stop_limit['gain'][1]) mov.set_limit('loss', stop_limit['loss'][0], stop_limit['loss'][1]) try: mov.confirm() except (exceptions.MaxQuantLimit, exceptions.MinQuantLimit) as e: logger.warning(e.err) mov.set_quantity(e.quant) mov.confirm() except Exception: logger.exception('undefined error in movement confirmation') mov_logger.info(f'added {mov.product} movement of {mov.quantity} ' + f'with margin of {margin}') mov_logger.debug(f'stop_limit: {stop_limit}')
addMov
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, product, quantity=None, mode='buy', stop_limit=None,\n auto_margin=None, name_counter=None):\n if not isinstance(product, type('')) or not isinstance(name_counter,\n type('')) and name_counter is not None:\n raise ValueError('product and name_counter have to be a string')\n if not isinstance(stop_limit, type({})) and stop_limit is not None:\n raise ValueError('it has to be a dictionary')\n if quantity is not None and auto_margin is not None:\n raise ValueError('quantity and auto_margin are exclusive')\n elif quantity is None and auto_margin is None:\n raise ValueError('need at least one quantity')\n mov = self.new_mov(product)\n mov.open()\n mov.set_mode(mode)\n if quantity is not None:\n mov.set_quantity(quantity)\n try:\n margin = mov.get_unit_value() * quantity\n except TimeoutError:\n mov.close()\n logger.warning('market closed for %s' % mov.product)\n return False\n elif auto_margin is not None:\n unit_value = mov.get_unit_value()\n mov.set_quantity(auto_margin * unit_value)\n margin = auto_margin\n if stop_limit is not None:\n mov.set_limit('gain', stop_limit['gain'][0], stop_limit['gain'][1])\n mov.set_limit('loss', stop_limit['loss'][0], stop_limit['loss'][1])\n try:\n mov.confirm()\n except (exceptions.MaxQuantLimit, exceptions.MinQuantLimit) as e:\n logger.warning(e.err)\n mov.set_quantity(e.quant)\n mov.confirm()\n except Exception:\n logger.exception('undefined error in movement confirmation')\n mov_logger.info(f'added {mov.product} movement of {mov.quantity} ' +\n f'with margin of {margin}')\n mov_logger.debug(f'stop_limit: {stop_limit}')\n", "role": "user" }, { "content": "addMov", "role": "assistant" } ]
def x(self): soup = BeautifulSoup(self.css1(path['movs-table']).html, 'html.parser') poss = [] for label in soup.find_all('tr'): pos_id = label['id'] pos_list = [x for x in self.positions if x.id == pos_id] if pos_list: pos = pos_list[0] pos.update(label) else: pos = self.new_pos(label) pos.get_gain() poss.append(pos) self.positions.clear() self.positions.extend(poss) logger.debug('%d positions update' % len(poss)) return self.positions
checkPos
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n soup = BeautifulSoup(self.css1(path['movs-table']).html, 'html.parser')\n poss = []\n for label in soup.find_all('tr'):\n pos_id = label['id']\n pos_list = [x for x in self.positions if x.id == pos_id]\n if pos_list:\n pos = pos_list[0]\n pos.update(label)\n else:\n pos = self.new_pos(label)\n pos.get_gain()\n poss.append(pos)\n self.positions.clear()\n self.positions.extend(poss)\n logger.debug('%d positions update' % len(poss))\n return self.positions\n", "role": "user" }, { "content": "checkPos", "role": "assistant" } ]
def x(self): if not self.preferences: logger.debug('no preferences') return None soup = BeautifulSoup(self.xpath(path['stock-table'])[0].html, 'html.parser' ) count = 0 for product in soup.select('div.tradebox'): prod_name = product.select('span.instrument-name')[0].text stk_name = [x for x in self.preferences if x.lower() in prod_name. lower()] if not stk_name: continue name = prod_name if not [x for x in self.stocks if x.product == name]: self.stocks.append(Stock(name)) stock = [x for x in self.stocks if x.product == name][0] if 'tradebox-market-closed' in product['class']: stock.market = False if not stock.market: logger.debug('market closed for %s' % stock.product) continue sell_price = product.select('div.tradebox-price-sell')[0].text buy_price = product.select('div.tradebox-price-buy')[0].text sent = int(product.select(path['sent'])[0].text.strip('%')) / 100 stock.new_rec([sell_price, buy_price, sent]) count += 1 logger.debug(f'added %d stocks' % count) return self.stocks
checkStock
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.preferences:\n logger.debug('no preferences')\n return None\n soup = BeautifulSoup(self.xpath(path['stock-table'])[0].html, 'html.parser'\n )\n count = 0\n for product in soup.select('div.tradebox'):\n prod_name = product.select('span.instrument-name')[0].text\n stk_name = [x for x in self.preferences if x.lower() in prod_name.\n lower()]\n if not stk_name:\n continue\n name = prod_name\n if not [x for x in self.stocks if x.product == name]:\n self.stocks.append(Stock(name))\n stock = [x for x in self.stocks if x.product == name][0]\n if 'tradebox-market-closed' in product['class']:\n stock.market = False\n if not stock.market:\n logger.debug('market closed for %s' % stock.product)\n continue\n sell_price = product.select('div.tradebox-price-sell')[0].text\n buy_price = product.select('div.tradebox-price-buy')[0].text\n sent = int(product.select(path['sent'])[0].text.strip('%')) / 100\n stock.new_rec([sell_price, buy_price, sent])\n count += 1\n logger.debug(f'added %d stocks' % count)\n return self.stocks\n", "role": "user" }, { "content": "checkStock", "role": "assistant" } ]
def x(self): self.preferences.clear() tradebox_num = len(self.css('div.tradebox')) for i in range(tradebox_num): self.xpath(path['trade-box'])[0].right_click() self.css1('div.item-trade-contextmenu-list-remove').click() logger.info('cleared preferences')
clearPrefs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.preferences.clear()\n tradebox_num = len(self.css('div.tradebox'))\n for i in range(tradebox_num):\n self.xpath(path['trade-box'])[0].right_click()\n self.css1('div.item-trade-contextmenu-list-remove').click()\n logger.info('cleared preferences')\n", "role": "user" }, { "content": "clearPrefs", "role": "assistant" } ]
def x(self, prefs=[]): if len(prefs) == len(self.preferences) == 0: logger.debug('no preferences') return None self.preferences.extend(prefs) self.css1(path['search-btn']).click() count = 0 for pref in self.preferences: self.css1(path['search-pref']).fill(pref) self.css1(path['pref-icon']).click() btn = self.css1('div.add-to-watchlist-popup-item .icon-wrapper') if not self.css1('svg', btn)['class'] is None: btn.click() count += 1 self.css1(path['pref-icon']).click() self.css1(path['back-btn']).click() self.css1(path['back-btn']).click() logger.debug('updated %d preferences' % count) return self.preferences
addPrefs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, prefs=[]):\n if len(prefs) == len(self.preferences) == 0:\n logger.debug('no preferences')\n return None\n self.preferences.extend(prefs)\n self.css1(path['search-btn']).click()\n count = 0\n for pref in self.preferences:\n self.css1(path['search-pref']).fill(pref)\n self.css1(path['pref-icon']).click()\n btn = self.css1('div.add-to-watchlist-popup-item .icon-wrapper')\n if not self.css1('svg', btn)['class'] is None:\n btn.click()\n count += 1\n self.css1(path['pref-icon']).click()\n self.css1(path['back-btn']).click()\n self.css1(path['back-btn']).click()\n logger.debug('updated %d preferences' % count)\n return self.preferences\n", "role": "user" }, { "content": "addPrefs", "role": "assistant" } ]
def x(f, char, glyphs_dict): from ...ext.freetype import FT_LOAD_RENDER, FT_LOAD_NO_HINTING, FT_LOAD_NO_AUTOHINT flags = FT_LOAD_RENDER | FT_LOAD_NO_HINTING | FT_LOAD_NO_AUTOHINT face = _load_font(f['face'], f['bold'], f['italic']) face.set_char_size(f['size'] * 64) face.load_char(char, flags) bitmap = face.glyph.bitmap width = face.glyph.bitmap.width height = face.glyph.bitmap.rows bitmap = np.array(bitmap.buffer) w0 = bitmap.size // height if bitmap.size > 0 else 0 bitmap.shape = height, w0 bitmap = bitmap[:, :width].astype(np.ubyte) left = face.glyph.bitmap_left top = face.glyph.bitmap_top advance = face.glyph.advance.x / 64.0 glyph = dict(char=char, offset=(left, top), bitmap=bitmap, advance= advance, kerning={}) glyphs_dict[char] = glyph for other_char, other_glyph in glyphs_dict.items(): kerning = face.get_kerning(other_char, char) glyph['kerning'][other_char] = kerning.x / 64.0 kerning = face.get_kerning(char, other_char) other_glyph['kerning'][char] = kerning.x / 64.0
load_glyph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, char, glyphs_dict):\n from ...ext.freetype import FT_LOAD_RENDER, FT_LOAD_NO_HINTING, FT_LOAD_NO_AUTOHINT\n flags = FT_LOAD_RENDER | FT_LOAD_NO_HINTING | FT_LOAD_NO_AUTOHINT\n face = _load_font(f['face'], f['bold'], f['italic'])\n face.set_char_size(f['size'] * 64)\n face.load_char(char, flags)\n bitmap = face.glyph.bitmap\n width = face.glyph.bitmap.width\n height = face.glyph.bitmap.rows\n bitmap = np.array(bitmap.buffer)\n w0 = bitmap.size // height if bitmap.size > 0 else 0\n bitmap.shape = height, w0\n bitmap = bitmap[:, :width].astype(np.ubyte)\n left = face.glyph.bitmap_left\n top = face.glyph.bitmap_top\n advance = face.glyph.advance.x / 64.0\n glyph = dict(char=char, offset=(left, top), bitmap=bitmap, advance=\n advance, kerning={})\n glyphs_dict[char] = glyph\n for other_char, other_glyph in glyphs_dict.items():\n kerning = face.get_kerning(other_char, char)\n glyph['kerning'][other_char] = kerning.x / 64.0\n kerning = face.get_kerning(char, other_char)\n other_glyph['kerning'][char] = kerning.x / 64.0\n", "role": "user" }, { "content": "load_glyph", "role": "assistant" } ]
def x(self, node, clipper): if node in self._clippers: self.detach(self._clippers.pop(node)) if clipper is not None: self.attach(clipper) self._clippers[node] = clipper
set_clipper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node, clipper):\n if node in self._clippers:\n self.detach(self._clippers.pop(node))\n if clipper is not None:\n self.attach(clipper)\n self._clippers[node] = clipper\n", "role": "user" }, { "content": "set_clipper", "role": "assistant" } ]
def x(self, event): doc = self.document_node scene = self.scene_node root = self.root_node self.transforms.visual_transform = self.node_transform(scene) self.transforms.scene_transform = scene.node_transform(doc) self.transforms.document_transform = doc.node_transform(root) Node._update_trsys(self, event)
update_trsys
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n doc = self.document_node\n scene = self.scene_node\n root = self.root_node\n self.transforms.visual_transform = self.node_transform(scene)\n self.transforms.scene_transform = scene.node_transform(doc)\n self.transforms.document_transform = doc.node_transform(root)\n Node._update_trsys(self, event)\n", "role": "user" }, { "content": "update_trsys", "role": "assistant" } ]
def x(cfnumber): numeric_type = cf.CFNumberGetType(cfnumber) cfnum_to_ctype = {kCFNumberSInt8Type: c_int8, kCFNumberSInt16Type: c_int16, kCFNumberSInt32Type: c_int32, kCFNumberSInt64Type: c_int64, kCFNumberFloat32Type: c_float, kCFNumberFloat64Type: c_double, kCFNumberCharType: c_byte, kCFNumberShortType: c_short, kCFNumberIntType: c_int, kCFNumberLongType: c_long, kCFNumberLongLongType: c_longlong, kCFNumberFloatType: c_float, kCFNumberDoubleType: c_double, kCFNumberCFIndexType: CFIndex, kCFNumberCGFloatType: CGFloat} if numeric_type in cfnum_to_ctype: t = cfnum_to_ctype[numeric_type] result = t() if cf.CFNumberGetValue(cfnumber, numeric_type, byref(result)): return result.value else: raise Exception('cfnumber_to_number: unhandled CFNumber type %d' % numeric_type)
cfnumber_to_number
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cfnumber):\n numeric_type = cf.CFNumberGetType(cfnumber)\n cfnum_to_ctype = {kCFNumberSInt8Type: c_int8, kCFNumberSInt16Type:\n c_int16, kCFNumberSInt32Type: c_int32, kCFNumberSInt64Type: c_int64,\n kCFNumberFloat32Type: c_float, kCFNumberFloat64Type: c_double,\n kCFNumberCharType: c_byte, kCFNumberShortType: c_short,\n kCFNumberIntType: c_int, kCFNumberLongType: c_long,\n kCFNumberLongLongType: c_longlong, kCFNumberFloatType: c_float,\n kCFNumberDoubleType: c_double, kCFNumberCFIndexType: CFIndex,\n kCFNumberCGFloatType: CGFloat}\n if numeric_type in cfnum_to_ctype:\n t = cfnum_to_ctype[numeric_type]\n result = t()\n if cf.CFNumberGetValue(cfnumber, numeric_type, byref(result)):\n return result.value\n else:\n raise Exception('cfnumber_to_number: unhandled CFNumber type %d' %\n numeric_type)\n", "role": "user" }, { "content": "cfnumber_to_number", "role": "assistant" } ]
def x(cftype): if not cftype: return None typeID = cf.CFGetTypeID(cftype) if typeID in known_cftypes: convert_function = known_cftypes[typeID] return convert_function(cftype) else: return cftype
cftype_to_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cftype):\n if not cftype:\n return None\n typeID = cf.CFGetTypeID(cftype)\n if typeID in known_cftypes:\n convert_function = known_cftypes[typeID]\n return convert_function(cftype)\n else:\n return cftype\n", "role": "user" }, { "content": "cftype_to_value", "role": "assistant" } ]
def x(cfset): count = cf.CFSetGetCount(cfset) buffer = (c_void_p * count)() cf.CFSetGetValues(cfset, byref(buffer)) return set([cftype_to_value(c_void_p(buffer[i])) for i in range(count)])
cfset_to_set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cfset):\n count = cf.CFSetGetCount(cfset)\n buffer = (c_void_p * count)()\n cf.CFSetGetValues(cfset, byref(buffer))\n return set([cftype_to_value(c_void_p(buffer[i])) for i in range(count)])\n", "role": "user" }, { "content": "cfset_to_set", "role": "assistant" } ]
def x(cfarray): count = cf.CFArrayGetCount(cfarray) return [cftype_to_value(c_void_p(cf.CFArrayGetValueAtIndex(cfarray, i)) ) for i in range(count)]
cfarray_to_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cfarray):\n count = cf.CFArrayGetCount(cfarray)\n return [cftype_to_value(c_void_p(cf.CFArrayGetValueAtIndex(cfarray, i))\n ) for i in range(count)]\n", "role": "user" }, { "content": "cfarray_to_list", "role": "assistant" } ]
def x(self, encoding): if encoding in self.typecodes: return self.typecodes[encoding] elif encoding[0:1] == b'^' and encoding[1:] in self.typecodes: return POINTER(self.typecodes[encoding[1:]]) elif encoding[0:1] == b'^' and encoding[1:] in [CGImageEncoding, NSZoneEncoding]: return c_void_p elif encoding[0:1] == b'r' and encoding[1:] in self.typecodes: return self.typecodes[encoding[1:]] elif encoding[0:2] == b'r^' and encoding[2:] in self.typecodes: return POINTER(self.typecodes[encoding[2:]]) else: raise Exception('unknown encoding for %s: %s' % (self.name, encoding))
ctype_for_encoding
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, encoding):\n if encoding in self.typecodes:\n return self.typecodes[encoding]\n elif encoding[0:1] == b'^' and encoding[1:] in self.typecodes:\n return POINTER(self.typecodes[encoding[1:]])\n elif encoding[0:1] == b'^' and encoding[1:] in [CGImageEncoding,\n NSZoneEncoding]:\n return c_void_p\n elif encoding[0:1] == b'r' and encoding[1:] in self.typecodes:\n return self.typecodes[encoding[1:]]\n elif encoding[0:2] == b'r^' and encoding[2:] in self.typecodes:\n return POINTER(self.typecodes[encoding[2:]])\n else:\n raise Exception('unknown encoding for %s: %s' % (self.name, encoding))\n", "role": "user" }, { "content": "ctype_for_encoding", "role": "assistant" } ]
def x(self, encoding): encoding = ensure_bytes(encoding) typecodes = parse_type_encoding(encoding) typecodes.insert(1, b'@:') encoding = b''.join(typecodes) def x(f): def x(objc_cls, objc_cmd, *args): py_cls = ObjCClass(objc_cls) py_cls.objc_cmd = objc_cmd args = convert_method_arguments(encoding, args) result = f(py_cls, *args) if isinstance(result, ObjCClass): result = result.ptr.value elif isinstance(result, ObjCInstance): result = result.ptr.value return result name = f.__name__.replace('_', ':') self.add_class_method(objc_class_method, name, encoding) return objc_class_method return decorator
classmethod
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, encoding):\n encoding = ensure_bytes(encoding)\n typecodes = parse_type_encoding(encoding)\n typecodes.insert(1, b'@:')\n encoding = b''.join(typecodes)\n\n def x(f):\n\n def x(objc_cls, objc_cmd, *args):\n py_cls = ObjCClass(objc_cls)\n py_cls.objc_cmd = objc_cmd\n args = convert_method_arguments(encoding, args)\n result = f(py_cls, *args)\n if isinstance(result, ObjCClass):\n result = result.ptr.value\n elif isinstance(result, ObjCInstance):\n result = result.ptr.value\n return result\n name = f.__name__.replace('_', ':')\n self.add_class_method(objc_class_method, name, encoding)\n return objc_class_method\n return decorator\n", "role": "user" }, { "content": "classmethod", "role": "assistant" } ]
def x(self, P0, P1, itemsize=None, **kwargs): itemsize = itemsize or 1 itemcount = len(P0) // itemsize V = np.empty(itemcount, dtype=self.vtype) for name in self.vtype.names: if name not in ['collection_index', 'P0', 'P1', 'index']: V[name] = kwargs.get(name, self._defaults[name]) V['P0'] = P0 V['P1'] = P1 V = V.repeat(4, axis=0) V['index'] = np.resize([0, 1, 2, 3], 4 * itemcount * itemsize) I = np.ones((itemcount, 6), dtype=int) I[:] = 0, 1, 2, 0, 2, 3 I[:] += 4 * np.arange(itemcount)[:, np.newaxis] I = I.ravel() if self.utype: U = np.zeros(itemcount, dtype=self.utype) for name in self.utype.names: if name not in ['__unused__']: U[name] = kwargs.get(name, self._defaults[name]) else: U = None Collection.append(self, vertices=V, uniforms=U, indices=I, itemsize=4 * itemcount)
append
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, P0, P1, itemsize=None, **kwargs):\n itemsize = itemsize or 1\n itemcount = len(P0) // itemsize\n V = np.empty(itemcount, dtype=self.vtype)\n for name in self.vtype.names:\n if name not in ['collection_index', 'P0', 'P1', 'index']:\n V[name] = kwargs.get(name, self._defaults[name])\n V['P0'] = P0\n V['P1'] = P1\n V = V.repeat(4, axis=0)\n V['index'] = np.resize([0, 1, 2, 3], 4 * itemcount * itemsize)\n I = np.ones((itemcount, 6), dtype=int)\n I[:] = 0, 1, 2, 0, 2, 3\n I[:] += 4 * np.arange(itemcount)[:, np.newaxis]\n I = I.ravel()\n if self.utype:\n U = np.zeros(itemcount, dtype=self.utype)\n for name in self.utype.names:\n if name not in ['__unused__']:\n U[name] = kwargs.get(name, self._defaults[name])\n else:\n U = None\n Collection.append(self, vertices=V, uniforms=U, indices=I, itemsize=4 *\n itemcount)\n", "role": "user" }, { "content": "append", "role": "assistant" } ]
def x(volumes, clipped=False, n_volume_max=5): declarations = '' before_loop = '' in_loop = '' after_loop = '' for index in range(n_volume_max): declarations += 'uniform $sampler_type u_volumetex_{0:d};\n'.format( index) before_loop += 'dummy = $sample(u_volumetex_{0:d}, loc).g;\n'.format( index) declarations += 'uniform $sampler_type dummy1;\n' declarations += 'float dummy;\n' for label in sorted(volumes): index = volumes[label]['index'] declarations += 'uniform float u_weight_{0:d};\n'.format(index) declarations += 'uniform int u_enabled_{0:d};\n'.format(index) before_loop += 'float max_val_{0:d} = 0;\n'.format(index) in_loop += 'if(u_enabled_{0:d} == 1) {{\n\n'.format(index) if clipped: in_loop += """if(loc.r > u_clip_min.r && loc.r < u_clip_max.r && loc.g > u_clip_min.g && loc.g < u_clip_max.g && loc.b > u_clip_min.b && loc.b < u_clip_max.b) { """ in_loop += '// Sample texture for layer {0}\n'.format(label) in_loop += 'val = $sample(u_volumetex_{0:d}, loc).g;\n'.format(index) if volumes[label].get('multiply') is not None: index_other = volumes[volumes[label]['multiply']]['index'] in_loop += ( 'if (val != 0) {{ val *= $sample(u_volumetex_{0:d}, loc).g; }}\n' .format(index_other)) in_loop += 'max_val_{0:d} = max(val, max_val_{0:d});\n\n'.format(index) if clipped: in_loop += '}\n\n' in_loop += '}\n\n' after_loop += '// Compute final color for layer {0}\n'.format(label) after_loop += ( """color = $cmap{0:d}(max_val_{0:d}); color.a *= u_weight_{0:d}; total_color += color.a * color; max_alpha = max(color.a, max_alpha); count += color.a; """ .format(index)) if not clipped: before_loop += '\nfloat val3 = u_clip_min.g + u_clip_max.g;\n\n' before_loop = indent(before_loop, ' ' * 4).strip() in_loop = indent(in_loop, ' ' * 16).strip() after_loop = indent(after_loop, ' ' * 4).strip() return FRAG_SHADER.format(declarations=declarations, before_loop= before_loop, in_loop=in_loop, after_loop=after_loop)
get_frag_shader
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(volumes, clipped=False, n_volume_max=5):\n declarations = ''\n before_loop = ''\n in_loop = ''\n after_loop = ''\n for index in range(n_volume_max):\n declarations += 'uniform $sampler_type u_volumetex_{0:d};\\n'.format(\n index)\n before_loop += 'dummy = $sample(u_volumetex_{0:d}, loc).g;\\n'.format(\n index)\n declarations += 'uniform $sampler_type dummy1;\\n'\n declarations += 'float dummy;\\n'\n for label in sorted(volumes):\n index = volumes[label]['index']\n declarations += 'uniform float u_weight_{0:d};\\n'.format(index)\n declarations += 'uniform int u_enabled_{0:d};\\n'.format(index)\n before_loop += 'float max_val_{0:d} = 0;\\n'.format(index)\n in_loop += 'if(u_enabled_{0:d} == 1) {{\\n\\n'.format(index)\n if clipped:\n in_loop += \"\"\"if(loc.r > u_clip_min.r && loc.r < u_clip_max.r &&\n loc.g > u_clip_min.g && loc.g < u_clip_max.g &&\n loc.b > u_clip_min.b && loc.b < u_clip_max.b) {\n\n\"\"\"\n in_loop += '// Sample texture for layer {0}\\n'.format(label)\n in_loop += 'val = $sample(u_volumetex_{0:d}, loc).g;\\n'.format(index)\n if volumes[label].get('multiply') is not None:\n index_other = volumes[volumes[label]['multiply']]['index']\n in_loop += (\n 'if (val != 0) {{ val *= $sample(u_volumetex_{0:d}, loc).g; }}\\n'\n .format(index_other))\n in_loop += 'max_val_{0:d} = max(val, max_val_{0:d});\\n\\n'.format(index)\n if clipped:\n in_loop += '}\\n\\n'\n in_loop += '}\\n\\n'\n after_loop += '// Compute final color for layer {0}\\n'.format(label)\n after_loop += (\n \"\"\"color = $cmap{0:d}(max_val_{0:d});\ncolor.a *= u_weight_{0:d};\ntotal_color += color.a * color;\nmax_alpha = max(color.a, max_alpha);\ncount += color.a;\n\n\"\"\"\n .format(index))\n if not clipped:\n before_loop += '\\nfloat val3 = u_clip_min.g + u_clip_max.g;\\n\\n'\n before_loop = indent(before_loop, ' ' * 4).strip()\n in_loop = indent(in_loop, ' ' * 16).strip()\n after_loop = indent(after_loop, ' ' * 4).strip()\n return FRAG_SHADER.format(declarations=declarations, before_loop=\n before_loop, in_loop=in_loop, after_loop=after_loop)\n", "role": "user" }, { "content": "get_frag_shader", "role": "assistant" } ]
def x(display=EGL_DEFAULT_DISPLAY): res = _lib.eglGetDisplay(display) if not res or res == EGL_NO_DISPLAY: raise RuntimeError('Could not create display') return res
eglGetDisplay
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(display=EGL_DEFAULT_DISPLAY):\n res = _lib.eglGetDisplay(display)\n if not res or res == EGL_NO_DISPLAY:\n raise RuntimeError('Could not create display')\n return res\n", "role": "user" }, { "content": "eglGetDisplay", "role": "assistant" } ]
def x(display): majorVersion = (_c_int * 1)() minorVersion = (_c_int * 1)() res = _lib.eglInitialize(display, majorVersion, minorVersion) if res == EGL_FALSE: raise RuntimeError('Could not initialize') return majorVersion[0], minorVersion[0]
eglInitialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(display):\n majorVersion = (_c_int * 1)()\n minorVersion = (_c_int * 1)()\n res = _lib.eglInitialize(display, majorVersion, minorVersion)\n if res == EGL_FALSE:\n raise RuntimeError('Could not initialize')\n return majorVersion[0], minorVersion[0]\n", "role": "user" }, { "content": "eglInitialize", "role": "assistant" } ]
def x(display, name): out = _lib.eglQueryString(display, name) if not out: raise RuntimeError('Could not query %s' % name) return out
eglQueryString
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(display, name):\n out = _lib.eglQueryString(display, name)\n if not out:\n raise RuntimeError('Could not query %s' % name)\n return out\n", "role": "user" }, { "content": "eglQueryString", "role": "assistant" } ]
def x(self, indexed=None): if indexed is None: if self._edges is None: self._compute_edges(indexed=None) return self._edges elif indexed == 'faces': if self._edges_indexed_by_faces is None: self._compute_edges(indexed='faces') return self._edges_indexed_by_faces else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
get_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indexed=None):\n if indexed is None:\n if self._edges is None:\n self._compute_edges(indexed=None)\n return self._edges\n elif indexed == 'faces':\n if self._edges_indexed_by_faces is None:\n self._compute_edges(indexed='faces')\n return self._edges_indexed_by_faces\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n", "role": "user" }, { "content": "get_edges", "role": "assistant" } ]
def x(self, faces): self._faces = faces self._edges = None self._edges_indexed_by_faces = None self._vertex_faces = None self._vertices_indexed_by_faces = None self.reset_normals() self._vertex_colors_indexed_by_faces = None self._face_colors_indexed_by_faces = None
set_faces
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, faces):\n self._faces = faces\n self._edges = None\n self._edges_indexed_by_faces = None\n self._vertex_faces = None\n self._vertices_indexed_by_faces = None\n self.reset_normals()\n self._vertex_colors_indexed_by_faces = None\n self._face_colors_indexed_by_faces = None\n", "role": "user" }, { "content": "set_faces", "role": "assistant" } ]
def x(self, indexed=None): if indexed is None: if (self._vertices is None and self._vertices_indexed_by_faces is not None): self._compute_unindexed_vertices() return self._vertices elif indexed == 'faces': if (self._vertices_indexed_by_faces is None and self._vertices is not None): self._vertices_indexed_by_faces = self._vertices[self.get_faces()] return self._vertices_indexed_by_faces else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
get_vertices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indexed=None):\n if indexed is None:\n if (self._vertices is None and self._vertices_indexed_by_faces is not\n None):\n self._compute_unindexed_vertices()\n return self._vertices\n elif indexed == 'faces':\n if (self._vertices_indexed_by_faces is None and self._vertices is not\n None):\n self._vertices_indexed_by_faces = self._vertices[self.get_faces()]\n return self._vertices_indexed_by_faces\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n", "role": "user" }, { "content": "get_vertices", "role": "assistant" } ]
def x(self): if self._vertices_indexed_by_faces is not None: v = self._vertices_indexed_by_faces elif self._vertices is not None: v = self._vertices else: return None bounds = [(v[:, ax].min(), v[:, ax].max()) for ax in range(v.shape[1])] return bounds
get_bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._vertices_indexed_by_faces is not None:\n v = self._vertices_indexed_by_faces\n elif self._vertices is not None:\n v = self._vertices\n else:\n return None\n bounds = [(v[:, ax].min(), v[:, ax].max()) for ax in range(v.shape[1])]\n return bounds\n", "role": "user" }, { "content": "get_bounds", "role": "assistant" } ]
def x(self, verts=None, indexed=None, reset_normals=True): if indexed is None: if verts is not None: self._vertices = verts self._vertices_indexed_by_faces = None elif indexed == 'faces': self._vertices = None if verts is not None: self._vertices_indexed_by_faces = verts else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'") if reset_normals: self.reset_normals()
set_vertices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, verts=None, indexed=None, reset_normals=True):\n if indexed is None:\n if verts is not None:\n self._vertices = verts\n self._vertices_indexed_by_faces = None\n elif indexed == 'faces':\n self._vertices = None\n if verts is not None:\n self._vertices_indexed_by_faces = verts\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n if reset_normals:\n self.reset_normals()\n", "role": "user" }, { "content": "set_vertices", "role": "assistant" } ]
def x(self): for v in (self._vertex_colors, self._vertex_colors_indexed_by_faces, self._vertex_colors_indexed_by_edges): if v is not None: return True return False
has_vertex_color
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for v in (self._vertex_colors, self._vertex_colors_indexed_by_faces,\n self._vertex_colors_indexed_by_edges):\n if v is not None:\n return True\n return False\n", "role": "user" }, { "content": "has_vertex_color", "role": "assistant" } ]
def x(self): for v in (self._face_colors, self._face_colors_indexed_by_faces, self. _face_colors_indexed_by_edges): if v is not None: return True return False
has_face_color
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for v in (self._face_colors, self._face_colors_indexed_by_faces, self.\n _face_colors_indexed_by_edges):\n if v is not None:\n return True\n return False\n", "role": "user" }, { "content": "has_face_color", "role": "assistant" } ]
def x(self, indexed=None): if self._face_normals is None: v = self.get_vertices(indexed='faces') self._face_normals = np.cross(v[:, 1] - v[:, 0], v[:, 2] - v[:, 0]) if indexed is None: return self._face_normals elif indexed == 'faces': if self._face_normals_indexed_by_faces is None: norms = np.empty((self._face_normals.shape[0], 3, 3), dtype=np. float32) norms[:] = self._face_normals[:, np.newaxis, :] self._face_normals_indexed_by_faces = norms return self._face_normals_indexed_by_faces else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
get_face_normals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indexed=None):\n if self._face_normals is None:\n v = self.get_vertices(indexed='faces')\n self._face_normals = np.cross(v[:, 1] - v[:, 0], v[:, 2] - v[:, 0])\n if indexed is None:\n return self._face_normals\n elif indexed == 'faces':\n if self._face_normals_indexed_by_faces is None:\n norms = np.empty((self._face_normals.shape[0], 3, 3), dtype=np.\n float32)\n norms[:] = self._face_normals[:, np.newaxis, :]\n self._face_normals_indexed_by_faces = norms\n return self._face_normals_indexed_by_faces\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n", "role": "user" }, { "content": "get_face_normals", "role": "assistant" } ]
def x(self, indexed=None): if self._vertex_normals is None: faceNorms = self.get_face_normals() vertFaces = self.get_vertex_faces() self._vertex_normals = np.empty(self._vertices.shape, dtype=np.float32) for vindex in xrange(self._vertices.shape[0]): faces = vertFaces[vindex] if len(faces) == 0: self._vertex_normals[vindex] = 0, 0, 0 continue norms = faceNorms[faces] norm = norms.sum(axis=0) renorm = (norm ** 2).sum() ** 0.5 if renorm > 0: norm /= renorm self._vertex_normals[vindex] = norm if indexed is None: return self._vertex_normals elif indexed == 'faces': return self._vertex_normals[self.get_faces()] else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
get_vertex_normals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indexed=None):\n if self._vertex_normals is None:\n faceNorms = self.get_face_normals()\n vertFaces = self.get_vertex_faces()\n self._vertex_normals = np.empty(self._vertices.shape, dtype=np.float32)\n for vindex in xrange(self._vertices.shape[0]):\n faces = vertFaces[vindex]\n if len(faces) == 0:\n self._vertex_normals[vindex] = 0, 0, 0\n continue\n norms = faceNorms[faces]\n norm = norms.sum(axis=0)\n renorm = (norm ** 2).sum() ** 0.5\n if renorm > 0:\n norm /= renorm\n self._vertex_normals[vindex] = norm\n if indexed is None:\n return self._vertex_normals\n elif indexed == 'faces':\n return self._vertex_normals[self.get_faces()]\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n", "role": "user" }, { "content": "get_vertex_normals", "role": "assistant" } ]
def x(self, indexed=None): if indexed is None: return self._vertex_colors elif indexed == 'faces': if self._vertex_colors_indexed_by_faces is None: self._vertex_colors_indexed_by_faces = self._vertex_colors[self .get_faces()] return self._vertex_colors_indexed_by_faces else: raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
get_vertex_colors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indexed=None):\n if indexed is None:\n return self._vertex_colors\n elif indexed == 'faces':\n if self._vertex_colors_indexed_by_faces is None:\n self._vertex_colors_indexed_by_faces = self._vertex_colors[self\n .get_faces()]\n return self._vertex_colors_indexed_by_faces\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n", "role": "user" }, { "content": "get_vertex_colors", "role": "assistant" } ]