source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(labs):
labs, n_dim = _check_color_dim(labs)
y = (labs[:, 0] + 16.0) / 116.0
x = labs[:, 1] / 500.0 + y
z = y - labs[:, 2] / 200.0
xyz = np.concatenate(([x], [y], [z]))
over = xyz > 0.2068966
xyz[over] = xyz[over] ** 3.0
xyz[~over] = (xyz[~over] - 0.13793103448275862) / 7.787
rgbs = np.dot(_xyz2rgb_norm, xyz).T
over = rgbs > 0.0031308
rgbs[over] = 1.055 * rgbs[over] ** (1.0 / 2.4) - 0.055
rgbs[~over] *= 12.92
if n_dim == 4:
rgbs = np.concatenate((rgbs, labs[:, 3]), axis=1)
rgbs = np.clip(rgbs, 0.0, 1.0)
return rgbs
|
lab_to_rgb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labs):\n labs, n_dim = _check_color_dim(labs)\n y = (labs[:, 0] + 16.0) / 116.0\n x = labs[:, 1] / 500.0 + y\n z = y - labs[:, 2] / 200.0\n xyz = np.concatenate(([x], [y], [z]))\n over = xyz > 0.2068966\n xyz[over] = xyz[over] ** 3.0\n xyz[~over] = (xyz[~over] - 0.13793103448275862) / 7.787\n rgbs = np.dot(_xyz2rgb_norm, xyz).T\n over = rgbs > 0.0031308\n rgbs[over] = 1.055 * rgbs[over] ** (1.0 / 2.4) - 0.055\n rgbs[~over] *= 12.92\n if n_dim == 4:\n rgbs = np.concatenate((rgbs, labs[:, 3]), axis=1)\n rgbs = np.clip(rgbs, 0.0, 1.0)\n return rgbs\n",
"role": "user"
},
{
"content": "lab_to_rgb",
"role": "assistant"
}
] |
def x(self, tags):
value = tags.get(self.name, '')
for name in self.alternate_tags:
value = value or tags.get(name, '')
value = value or self.default
return value
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tags):\n value = tags.get(self.name, '')\n for name in self.alternate_tags:\n value = value or tags.get(name, '')\n value = value or self.default\n return value\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(code):
m = re.search('^\\s*' + re_func_decl + '\\s*{', code, re.M)
if m is None:
print(code)
raise Exception(
'Failed to parse function signature. Full code is printed above.')
rtype, name, args = m.groups()[:3]
if args == 'void' or args.strip() == '':
args = []
else:
args = [tuple(arg.strip().split(' ')) for arg in args.split(',')]
return name, args, rtype
|
parse_function_signature
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(code):\n m = re.search('^\\\\s*' + re_func_decl + '\\\\s*{', code, re.M)\n if m is None:\n print(code)\n raise Exception(\n 'Failed to parse function signature. Full code is printed above.')\n rtype, name, args = m.groups()[:3]\n if args == 'void' or args.strip() == '':\n args = []\n else:\n args = [tuple(arg.strip().split(' ')) for arg in args.split(',')]\n return name, args, rtype\n",
"role": "user"
},
{
"content": "parse_function_signature",
"role": "assistant"
}
] |
def x(code):
regex = '^\\s*' + re_func_decl + '\\s*{'
funcs = []
while True:
m = re.search(regex, code, re.M)
if m is None:
return funcs
rtype, name, args = m.groups()[:3]
if args == 'void' or args.strip() == '':
args = []
else:
args = [tuple(arg.strip().split(' ')) for arg in args.split(',')]
funcs.append((name, args, rtype))
code = code[m.end():]
|
find_functions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(code):\n regex = '^\\\\s*' + re_func_decl + '\\\\s*{'\n funcs = []\n while True:\n m = re.search(regex, code, re.M)\n if m is None:\n return funcs\n rtype, name, args = m.groups()[:3]\n if args == 'void' or args.strip() == '':\n args = []\n else:\n args = [tuple(arg.strip().split(' ')) for arg in args.split(',')]\n funcs.append((name, args, rtype))\n code = code[m.end():]\n",
"role": "user"
},
{
"content": "find_functions",
"role": "assistant"
}
] |
def x(code):
prots = []
lines = code.split('\n')
for line in lines:
m = re.match('\\s*' + re_func_prot, line)
if m is not None:
rtype, name, args = m.groups()[:3]
if args == 'void' or args.strip() == '':
args = []
else:
args = [tuple(arg.strip().split(' ')) for arg in args.split
(',')]
prots.append((name, args, rtype))
return prots
|
find_prototypes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(code):\n prots = []\n lines = code.split('\\n')\n for line in lines:\n m = re.match('\\\\s*' + re_func_prot, line)\n if m is not None:\n rtype, name, args = m.groups()[:3]\n if args == 'void' or args.strip() == '':\n args = []\n else:\n args = [tuple(arg.strip().split(' ')) for arg in args.split\n (',')]\n prots.append((name, args, rtype))\n return prots\n",
"role": "user"
},
{
"content": "find_prototypes",
"role": "assistant"
}
] |
def x(code):
vars = {}
lines = code.split('\n')
for line in lines:
m = re.match('\\s*' + re_prog_var_declaration + '\\s*(=|;)', line)
if m is not None:
vtype, dtype, names = m.groups()[:3]
for name in names.split(','):
vars[name.strip()] = vtype, dtype
return vars
|
find_program_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(code):\n vars = {}\n lines = code.split('\\n')\n for line in lines:\n m = re.match('\\\\s*' + re_prog_var_declaration + '\\\\s*(=|;)', line)\n if m is not None:\n vtype, dtype, names = m.groups()[:3]\n for name in names.split(','):\n vars[name.strip()] = vtype, dtype\n return vars\n",
"role": "user"
},
{
"content": "find_program_variables",
"role": "assistant"
}
] |
def x(c):
func = sdl2.SDL_GL_SetAttribute
func(sdl2.SDL_GL_RED_SIZE, c['red_size'])
func(sdl2.SDL_GL_GREEN_SIZE, c['green_size'])
func(sdl2.SDL_GL_BLUE_SIZE, c['blue_size'])
func(sdl2.SDL_GL_ALPHA_SIZE, c['alpha_size'])
func(sdl2.SDL_GL_DEPTH_SIZE, c['depth_size'])
func(sdl2.SDL_GL_STENCIL_SIZE, c['stencil_size'])
func(sdl2.SDL_GL_DOUBLEBUFFER, 1 if c['double_buffer'] else 0)
samps = c['samples']
func(sdl2.SDL_GL_MULTISAMPLEBUFFERS, 1 if samps > 0 else 0)
func(sdl2.SDL_GL_MULTISAMPLESAMPLES, samps if samps > 0 else 0)
func(sdl2.SDL_GL_STEREO, c['stereo'])
|
set_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c):\n func = sdl2.SDL_GL_SetAttribute\n func(sdl2.SDL_GL_RED_SIZE, c['red_size'])\n func(sdl2.SDL_GL_GREEN_SIZE, c['green_size'])\n func(sdl2.SDL_GL_BLUE_SIZE, c['blue_size'])\n func(sdl2.SDL_GL_ALPHA_SIZE, c['alpha_size'])\n func(sdl2.SDL_GL_DEPTH_SIZE, c['depth_size'])\n func(sdl2.SDL_GL_STENCIL_SIZE, c['stencil_size'])\n func(sdl2.SDL_GL_DOUBLEBUFFER, 1 if c['double_buffer'] else 0)\n samps = c['samples']\n func(sdl2.SDL_GL_MULTISAMPLEBUFFERS, 1 if samps > 0 else 0)\n func(sdl2.SDL_GL_MULTISAMPLESAMPLES, samps if samps > 0 else 0)\n func(sdl2.SDL_GL_STEREO, c['stereo'])\n",
"role": "user"
},
{
"content": "set_config",
"role": "assistant"
}
] |
def x(self, message=None, end_session=False, card_obj=None,
reprompt_message=None, is_ssml=None):
response = dict(self.base_response)
if message:
response['response'] = self.create_speech(message, is_ssml)
response['response']['shouldEndSession'] = end_session
if card_obj:
response['response']['card'] = card_obj
if reprompt_message:
response['response']['reprompt'] = self.create_speech(reprompt_message,
is_ssml)
return Response(response)
|
create_response
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message=None, end_session=False, card_obj=None,\n reprompt_message=None, is_ssml=None):\n response = dict(self.base_response)\n if message:\n response['response'] = self.create_speech(message, is_ssml)\n response['response']['shouldEndSession'] = end_session\n if card_obj:\n response['response']['card'] = card_obj\n if reprompt_message:\n response['response']['reprompt'] = self.create_speech(reprompt_message,\n is_ssml)\n return Response(response)\n",
"role": "user"
},
{
"content": "create_response",
"role": "assistant"
}
] |
def x(self, title=None, subtitle=None, content=None, card_type='Simple'):
card = {'type': card_type}
if title:
card['title'] = title
if subtitle:
card['subtitle'] = subtitle
if content:
card['content'] = content
return card
|
create_card
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, title=None, subtitle=None, content=None, card_type='Simple'):\n card = {'type': card_type}\n if title:\n card['title'] = title\n if subtitle:\n card['subtitle'] = subtitle\n if content:\n card['content'] = content\n return card\n",
"role": "user"
},
{
"content": "create_card",
"role": "assistant"
}
] |
def x(self, intent):
def x(func):
self._handlers['IntentRequest'][intent] = func
return func
return _handler
|
intent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, intent):\n\n def x(func):\n self._handlers['IntentRequest'][intent] = func\n return func\n return _handler\n",
"role": "user"
},
{
"content": "intent",
"role": "assistant"
}
] |
def x(self, request_type):
def x(func):
self._handlers[request_type] = func
return func
return _handler
|
request
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request_type):\n\n def x(func):\n self._handlers[request_type] = func\n return func\n return _handler\n",
"role": "user"
},
{
"content": "request",
"role": "assistant"
}
] |
def x(self, request_json, metadata=None):
request = Request(request_json)
request.metadata = metadata
handler_fn = self._handlers[self._default]
if not request.is_intent() and request.request_type() in self._handlers:
""" Route request to a non intent handler """
handler_fn = self._handlers[request.request_type()]
elif request.is_intent() and request.intent_name() in self._handlers[
'IntentRequest']:
""" Route to right intent handler """
handler_fn = self._handlers['IntentRequest'][request.intent_name()]
response = handler_fn(request)
response.set_session(request.session)
return response.to_json()
|
route_request
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request_json, metadata=None):\n request = Request(request_json)\n request.metadata = metadata\n handler_fn = self._handlers[self._default]\n if not request.is_intent() and request.request_type() in self._handlers:\n \"\"\" Route request to a non intent handler \"\"\"\n handler_fn = self._handlers[request.request_type()]\n elif request.is_intent() and request.intent_name() in self._handlers[\n 'IntentRequest']:\n \"\"\" Route to right intent handler \"\"\"\n handler_fn = self._handlers['IntentRequest'][request.intent_name()]\n response = handler_fn(request)\n response.set_session(request.session)\n return response.to_json()\n",
"role": "user"
},
{
"content": "route_request",
"role": "assistant"
}
] |
def x(self, viewbox):
self._viewbox = viewbox
viewbox.events.mouse_press.connect(self.viewbox_mouse_event)
viewbox.events.mouse_release.connect(self.viewbox_mouse_event)
viewbox.events.mouse_move.connect(self.viewbox_mouse_event)
viewbox.events.mouse_wheel.connect(self.viewbox_mouse_event)
viewbox.events.resize.connect(self.viewbox_resize_event)
|
viewbox_set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, viewbox):\n self._viewbox = viewbox\n viewbox.events.mouse_press.connect(self.viewbox_mouse_event)\n viewbox.events.mouse_release.connect(self.viewbox_mouse_event)\n viewbox.events.mouse_move.connect(self.viewbox_mouse_event)\n viewbox.events.mouse_wheel.connect(self.viewbox_mouse_event)\n viewbox.events.resize.connect(self.viewbox_resize_event)\n",
"role": "user"
},
{
"content": "viewbox_set",
"role": "assistant"
}
] |
def x(self, viewbox):
self._viewbox = None
viewbox.events.mouse_press.disconnect(self.viewbox_mouse_event)
viewbox.events.mouse_release.disconnect(self.viewbox_mouse_event)
viewbox.events.mouse_move.disconnect(self.viewbox_mouse_event)
viewbox.events.mouse_wheel.disconnect(self.viewbox_mouse_event)
viewbox.events.resize.disconnect(self.viewbox_resize_event)
|
viewbox_unset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, viewbox):\n self._viewbox = None\n viewbox.events.mouse_press.disconnect(self.viewbox_mouse_event)\n viewbox.events.mouse_release.disconnect(self.viewbox_mouse_event)\n viewbox.events.mouse_move.disconnect(self.viewbox_mouse_event)\n viewbox.events.mouse_wheel.disconnect(self.viewbox_mouse_event)\n viewbox.events.resize.disconnect(self.viewbox_resize_event)\n",
"role": "user"
},
{
"content": "viewbox_unset",
"role": "assistant"
}
] |
def x(self, x=None, y=None, z=None, margin=0.05):
init = self._xlim is None
bounds = [None, None, None]
if x is not None:
bounds[0] = float(x[0]), float(x[1])
if y is not None:
bounds[1] = float(y[0]), float(y[1])
if z is not None:
bounds[2] = float(z[0]), float(z[1])
if self._viewbox is None:
self._set_range_args = bounds[0], bounds[1], bounds[2], margin
return
self._resetting = True
if all([(b is None) for b in bounds]):
bounds = self._viewbox.get_scene_bounds()
else:
for i in range(3):
if bounds[i] is None:
bounds[i] = self._viewbox.get_scene_bounds(i)
ranges = [(b[1] - b[0]) for b in bounds]
margins = [(r * margin or 0.1) for r in ranges]
bounds_margins = [(b[0] - m, b[1] + m) for b, m in zip(bounds, margins)]
self._xlim, self._ylim, self._zlim = bounds_margins
if not init or self._center is None:
self._center = [(b[0] + r / 2) for b, r in zip(bounds, ranges)]
self._set_range(init)
self._resetting = False
self.view_changed()
|
set_range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x=None, y=None, z=None, margin=0.05):\n init = self._xlim is None\n bounds = [None, None, None]\n if x is not None:\n bounds[0] = float(x[0]), float(x[1])\n if y is not None:\n bounds[1] = float(y[0]), float(y[1])\n if z is not None:\n bounds[2] = float(z[0]), float(z[1])\n if self._viewbox is None:\n self._set_range_args = bounds[0], bounds[1], bounds[2], margin\n return\n self._resetting = True\n if all([(b is None) for b in bounds]):\n bounds = self._viewbox.get_scene_bounds()\n else:\n for i in range(3):\n if bounds[i] is None:\n bounds[i] = self._viewbox.get_scene_bounds(i)\n ranges = [(b[1] - b[0]) for b in bounds]\n margins = [(r * margin or 0.1) for r in ranges]\n bounds_margins = [(b[0] - m, b[1] + m) for b, m in zip(bounds, margins)]\n self._xlim, self._ylim, self._zlim = bounds_margins\n if not init or self._center is None:\n self._center = [(b[0] + r / 2) for b, r in zip(bounds, ranges)]\n self._set_range(init)\n self._resetting = False\n self.view_changed()\n",
"role": "user"
},
{
"content": "set_range",
"role": "assistant"
}
] |
def x(self):
D = {}
for key in self._state_props:
D[key] = getattr(self, key)
return D
|
get_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n D = {}\n for key in self._state_props:\n D[key] = getattr(self, key)\n return D\n",
"role": "user"
},
{
"content": "get_state",
"role": "assistant"
}
] |
def x(self, state=None, **kwargs):
D = state or {}
D.update(kwargs)
for key, val in D.items():
if key not in self._state_props:
raise KeyError('Not a valid camera state property %r' % key)
setattr(self, key, val)
|
set_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, state=None, **kwargs):\n D = state or {}\n D.update(kwargs)\n for key, val in D.items():\n if key not in self._state_props:\n raise KeyError('Not a valid camera state property %r' % key)\n setattr(self, key, val)\n",
"role": "user"
},
{
"content": "set_state",
"role": "assistant"
}
] |
def x(self, camera):
cam1, cam2 = self, camera
while cam1 in cam2._linked_cameras:
cam2._linked_cameras.remove(cam1)
while cam2 in cam1._linked_cameras:
cam1._linked_cameras.remove(cam2)
cam1._linked_cameras.append(cam2)
cam2._linked_cameras.append(cam1)
|
link
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, camera):\n cam1, cam2 = self, camera\n while cam1 in cam2._linked_cameras:\n cam2._linked_cameras.remove(cam1)\n while cam2 in cam1._linked_cameras:\n cam1._linked_cameras.remove(cam2)\n cam1._linked_cameras.append(cam2)\n cam2._linked_cameras.append(cam1)\n",
"role": "user"
},
{
"content": "link",
"role": "assistant"
}
] |
def x(self):
if self._resetting:
return
if self._viewbox:
if self._xlim is None:
args = self._set_range_args or ()
self.set_range(*args)
if self._default_state is None:
self.set_default_state()
self._update_transform()
|
view_changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._resetting:\n return\n if self._viewbox:\n if self._xlim is None:\n args = self._set_range_args or ()\n self.set_range(*args)\n if self._default_state is None:\n self.set_default_state()\n self._update_transform()\n",
"role": "user"
},
{
"content": "view_changed",
"role": "assistant"
}
] |
def x(self, event):
if event.old is not None:
event.old.events.key_press.disconnect(self.viewbox_key_event)
event.old.events.key_release.disconnect(self.viewbox_key_event)
if event.new is not None:
event.new.events.key_press.connect(self.viewbox_key_event)
event.new.events.key_release.connect(self.viewbox_key_event)
|
on_canvas_change
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n if event.old is not None:\n event.old.events.key_press.disconnect(self.viewbox_key_event)\n event.old.events.key_release.disconnect(self.viewbox_key_event)\n if event.new is not None:\n event.new.events.key_press.connect(self.viewbox_key_event)\n event.new.events.key_release.connect(self.viewbox_key_event)\n",
"role": "user"
},
{
"content": "on_canvas_change",
"role": "assistant"
}
] |
def x(self, tr):
pre_tr = self.pre_transform
if pre_tr is None:
self._scene_transform = tr
else:
self._transform_cache.roll()
self._scene_transform = self._transform_cache.get([pre_tr, tr])
self._scene_transform.dynamic = True
self._viewbox.scene.transform = self._scene_transform
self._viewbox.update()
for cam in self._linked_cameras:
if cam is self._linked_cameras_no_update:
continue
try:
cam._linked_cameras_no_update = self
cam.set_state(self.get_state())
finally:
cam._linked_cameras_no_update = None
|
set_scene_transform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tr):\n pre_tr = self.pre_transform\n if pre_tr is None:\n self._scene_transform = tr\n else:\n self._transform_cache.roll()\n self._scene_transform = self._transform_cache.get([pre_tr, tr])\n self._scene_transform.dynamic = True\n self._viewbox.scene.transform = self._scene_transform\n self._viewbox.update()\n for cam in self._linked_cameras:\n if cam is self._linked_cameras_no_update:\n continue\n try:\n cam._linked_cameras_no_update = self\n cam.set_state(self.get_state())\n finally:\n cam._linked_cameras_no_update = None\n",
"role": "user"
},
{
"content": "set_scene_transform",
"role": "assistant"
}
] |
def x(c):
glformat = QGLFormat()
glformat.setRedBufferSize(c['red_size'])
glformat.setGreenBufferSize(c['green_size'])
glformat.setBlueBufferSize(c['blue_size'])
glformat.setAlphaBufferSize(c['alpha_size'])
if QT5_NEW_API:
glformat.setSwapBehavior(glformat.DoubleBuffer if c['double_buffer'
] else glformat.SingleBuffer)
else:
glformat.setAccum(False)
glformat.setRgba(True)
glformat.setDoubleBuffer(True if c['double_buffer'] else False)
glformat.setDepth(True if c['depth_size'] else False)
glformat.setStencil(True if c['stencil_size'] else False)
glformat.setSampleBuffers(True if c['samples'] else False)
glformat.setDepthBufferSize(c['depth_size'] if c['depth_size'] else 0)
glformat.setStencilBufferSize(c['stencil_size'] if c['stencil_size'] else 0
)
glformat.setSamples(c['samples'] if c['samples'] else 0)
glformat.setStereo(c['stereo'])
return glformat
|
set_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c):\n glformat = QGLFormat()\n glformat.setRedBufferSize(c['red_size'])\n glformat.setGreenBufferSize(c['green_size'])\n glformat.setBlueBufferSize(c['blue_size'])\n glformat.setAlphaBufferSize(c['alpha_size'])\n if QT5_NEW_API:\n glformat.setSwapBehavior(glformat.DoubleBuffer if c['double_buffer'\n ] else glformat.SingleBuffer)\n else:\n glformat.setAccum(False)\n glformat.setRgba(True)\n glformat.setDoubleBuffer(True if c['double_buffer'] else False)\n glformat.setDepth(True if c['depth_size'] else False)\n glformat.setStencil(True if c['stencil_size'] else False)\n glformat.setSampleBuffers(True if c['samples'] else False)\n glformat.setDepthBufferSize(c['depth_size'] if c['depth_size'] else 0)\n glformat.setStencilBufferSize(c['stencil_size'] if c['stencil_size'] else 0\n )\n glformat.setSamples(c['samples'] if c['samples'] else 0)\n glformat.setStereo(c['stereo'])\n return glformat\n",
"role": "user"
},
{
"content": "set_config",
"role": "assistant"
}
] |
def x(self):
winid = self.winId()
if IS_RPI:
nw = (ctypes.c_int * 3)(winid, self.width(), self.height())
return ctypes.pointer(nw)
elif IS_LINUX:
return int(winid)
ctypes.pythonapi.PyCapsule_GetName.restype = ctypes.c_char_p
ctypes.pythonapi.PyCapsule_GetName.argtypes = [ctypes.py_object]
ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.c_void_p
ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [ctypes.py_object,
ctypes.c_char_p]
name = ctypes.pythonapi.PyCapsule_GetName(winid)
handle = ctypes.pythonapi.PyCapsule_GetPointer(winid, name)
return handle
|
get_window_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n winid = self.winId()\n if IS_RPI:\n nw = (ctypes.c_int * 3)(winid, self.width(), self.height())\n return ctypes.pointer(nw)\n elif IS_LINUX:\n return int(winid)\n ctypes.pythonapi.PyCapsule_GetName.restype = ctypes.c_char_p\n ctypes.pythonapi.PyCapsule_GetName.argtypes = [ctypes.py_object]\n ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.c_void_p\n ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [ctypes.py_object,\n ctypes.c_char_p]\n name = ctypes.pythonapi.PyCapsule_GetName(winid)\n handle = ctypes.pythonapi.PyCapsule_GetPointer(winid, name)\n return handle\n",
"role": "user"
},
{
"content": "get_window_id",
"role": "assistant"
}
] |
def x(x):
x1 = x[0]
x2 = x[1]
f = (4 - 2.1 * (x1 * x1) + x1 * x1 * x1 * x1 / 3.0) * (x1 * x1
) + x1 * x2 + (-4 + 4 * (x2 * x2)) * (x2 * x2)
return f
|
obj
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n x1 = x[0]\n x2 = x[1]\n f = (4 - 2.1 * (x1 * x1) + x1 * x1 * x1 * x1 / 3.0) * (x1 * x1\n ) + x1 * x2 + (-4 + 4 * (x2 * x2)) * (x2 * x2)\n return f\n",
"role": "user"
},
{
"content": "obj",
"role": "assistant"
}
] |
def x(mode='agg', *args, **kwargs):
if mode == 'raw':
return RawPathCollection(*args, **kwargs)
elif mode == 'agg+':
return AggPathCollection(*args, **kwargs)
return AggFastPathCollection(*args, **kwargs)
|
PathCollection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mode='agg', *args, **kwargs):\n if mode == 'raw':\n return RawPathCollection(*args, **kwargs)\n elif mode == 'agg+':\n return AggPathCollection(*args, **kwargs)\n return AggFastPathCollection(*args, **kwargs)\n",
"role": "user"
},
{
"content": "PathCollection",
"role": "assistant"
}
] |
def x(self, coords):
m = np.empty(coords.shape)
m[:, :3] = coords[:, :3] * self.scale[np.newaxis, :3] + coords[:, 3:
] * self.translate[np.newaxis, :3]
m[:, 3] = coords[:, 3]
return m
|
map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, coords):\n m = np.empty(coords.shape)\n m[:, :3] = coords[:, :3] * self.scale[np.newaxis, :3] + coords[:, 3:\n ] * self.translate[np.newaxis, :3]\n m[:, 3] = coords[:, 3]\n return m\n",
"role": "user"
},
{
"content": "map",
"role": "assistant"
}
] |
def x(self, move):
move = as_vec4(move, default=(0, 0, 0, 0))
self.translate = self.translate + move
|
move
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, move):\n move = as_vec4(move, default=(0, 0, 0, 0))\n self.translate = self.translate + move\n",
"role": "user"
},
{
"content": "move",
"role": "assistant"
}
] |
def x(self, zoom, center=(0, 0, 0), mapped=True):
zoom = as_vec4(zoom, default=(1, 1, 1, 1))
center = as_vec4(center, default=(0, 0, 0, 0))
scale = self.scale * zoom
if mapped:
trans = center - (center - self.translate) * zoom
else:
trans = self.scale * (1 - zoom) * center + self.translate
self._set_st(scale=scale, translate=trans)
|
zoom
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, zoom, center=(0, 0, 0), mapped=True):\n zoom = as_vec4(zoom, default=(1, 1, 1, 1))\n center = as_vec4(center, default=(0, 0, 0, 0))\n scale = self.scale * zoom\n if mapped:\n trans = center - (center - self.translate) * zoom\n else:\n trans = self.scale * (1 - zoom) * center + self.translate\n self._set_st(scale=scale, translate=trans)\n",
"role": "user"
},
{
"content": "zoom",
"role": "assistant"
}
] |
def x(cls, x0, x1):
t = cls()
t.set_mapping(x0, x1)
return t
|
from_mapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, x0, x1):\n t = cls()\n t.set_mapping(x0, x1)\n return t\n",
"role": "user"
},
{
"content": "from_mapping",
"role": "assistant"
}
] |
def x(self, x0, x1, update=True):
if isinstance(x0, Rect):
x0 = x0._transform_in()[:3]
if isinstance(x1, Rect):
x1 = x1._transform_in()[:3]
x0 = np.asarray(x0)
x1 = np.asarray(x1)
if x0.ndim != 2 or x0.shape[0] != 2 or x1.ndim != 2 or x1.shape[0] != 2:
raise TypeError('set_mapping requires array inputs of shape (2, N).')
denom = x0[1] - x0[0]
mask = denom == 0
denom[mask] = 1.0
s = (x1[1] - x1[0]) / denom
s[mask] = 1.0
s[x0[1] == x0[0]] = 1.0
t = x1[0] - s * x0[0]
s = as_vec4(s, default=(1, 1, 1, 1))
t = as_vec4(t, default=(0, 0, 0, 0))
self._set_st(scale=s, translate=t, update=update)
|
set_mapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x0, x1, update=True):\n if isinstance(x0, Rect):\n x0 = x0._transform_in()[:3]\n if isinstance(x1, Rect):\n x1 = x1._transform_in()[:3]\n x0 = np.asarray(x0)\n x1 = np.asarray(x1)\n if x0.ndim != 2 or x0.shape[0] != 2 or x1.ndim != 2 or x1.shape[0] != 2:\n raise TypeError('set_mapping requires array inputs of shape (2, N).')\n denom = x0[1] - x0[0]\n mask = denom == 0\n denom[mask] = 1.0\n s = (x1[1] - x1[0]) / denom\n s[mask] = 1.0\n s[x0[1] == x0[0]] = 1.0\n t = x1[0] - s * x0[0]\n s = as_vec4(s, default=(1, 1, 1, 1))\n t = as_vec4(t, default=(0, 0, 0, 0))\n self._set_st(scale=s, translate=t, update=update)\n",
"role": "user"
},
{
"content": "set_mapping",
"role": "assistant"
}
] |
def x(self, pos):
self.matrix = np.dot(self.matrix, transforms.translate(pos[0, :3]))
|
translate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pos):\n self.matrix = np.dot(self.matrix, transforms.translate(pos[0, :3]))\n",
"role": "user"
},
{
"content": "translate",
"role": "assistant"
}
] |
def x(self, scale, center=None):
scale = transforms.scale(as_vec4(scale, default=(1, 1, 1, 1))[0, :3])
if center is not None:
center = as_vec4(center)[0, :3]
scale = np.dot(np.dot(transforms.translate(-center), scale),
transforms.translate(center))
self.matrix = np.dot(self.matrix, scale)
|
scale
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, scale, center=None):\n scale = transforms.scale(as_vec4(scale, default=(1, 1, 1, 1))[0, :3])\n if center is not None:\n center = as_vec4(center)[0, :3]\n scale = np.dot(np.dot(transforms.translate(-center), scale),\n transforms.translate(center))\n self.matrix = np.dot(self.matrix, scale)\n",
"role": "user"
},
{
"content": "scale",
"role": "assistant"
}
] |
def x(self, angle, axis):
self.matrix = np.dot(self.matrix, transforms.rotate(angle, axis))
|
rotate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, angle, axis):\n self.matrix = np.dot(self.matrix, transforms.rotate(angle, axis))\n",
"role": "user"
},
{
"content": "rotate",
"role": "assistant"
}
] |
def x(self, points1, points2):
self.matrix = transforms.affine_map(points1, points2).T
|
set_mapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, points1, points2):\n self.matrix = transforms.affine_map(points1, points2).T\n",
"role": "user"
},
{
"content": "set_mapping",
"role": "assistant"
}
] |
def x(self, l, r, b, t, n, f):
self.matrix = transforms.ortho(l, r, b, t, n, f)
|
set_ortho
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, l, r, b, t, n, f):\n self.matrix = transforms.ortho(l, r, b, t, n, f)\n",
"role": "user"
},
{
"content": "set_ortho",
"role": "assistant"
}
] |
def x(self, fov, aspect, near, far):
self.matrix = transforms.perspective(fov, aspect, near, far)
|
set_perspective
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fov, aspect, near, far):\n self.matrix = transforms.perspective(fov, aspect, near, far)\n",
"role": "user"
},
{
"content": "set_perspective",
"role": "assistant"
}
] |
def x(self, l, r, b, t, n, f):
self.matrix = transforms.frustum(l, r, b, t, n, f)
|
set_frustum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, l, r, b, t, n, f):\n self.matrix = transforms.frustum(l, r, b, t, n, f)\n",
"role": "user"
},
{
"content": "set_frustum",
"role": "assistant"
}
] |
def x(v):
res = np.zeros(v.shape, dtype=np.int32)
tt = v >> 16
tt_zero = tt == 0
tt_not_zero = ~tt_zero
t_h = tt >> 8
t_zero_h = (t_h == 0) & tt_not_zero
t_not_zero_h = ~t_zero_h & tt_not_zero
res[t_zero_h] = LogTable256[tt[t_zero_h]] + 16
res[t_not_zero_h] = LogTable256[t_h[t_not_zero_h]] + 24
t_l = v >> 8
t_zero_l = (t_l == 0) & tt_zero
t_not_zero_l = ~t_zero_l & tt_zero
res[t_zero_l] = LogTable256[v[t_zero_l]]
res[t_not_zero_l] = LogTable256[t_l[t_not_zero_l]] + 8
return res
|
log2_lut
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(v):\n res = np.zeros(v.shape, dtype=np.int32)\n tt = v >> 16\n tt_zero = tt == 0\n tt_not_zero = ~tt_zero\n t_h = tt >> 8\n t_zero_h = (t_h == 0) & tt_not_zero\n t_not_zero_h = ~t_zero_h & tt_not_zero\n res[t_zero_h] = LogTable256[tt[t_zero_h]] + 16\n res[t_not_zero_h] = LogTable256[t_h[t_not_zero_h]] + 24\n t_l = v >> 8\n t_zero_l = (t_l == 0) & tt_zero\n t_not_zero_l = ~t_zero_l & tt_zero\n res[t_zero_l] = LogTable256[v[t_zero_l]]\n res[t_not_zero_l] = LogTable256[t_l[t_not_zero_l]] + 8\n return res\n",
"role": "user"
},
{
"content": "log2_lut",
"role": "assistant"
}
] |
def x(uniq):
order = log2_lut(uniq >> 2) >> 1
ipix = uniq - (1 << 2 * (order + 1))
return order, ipix
|
uniq2orderipix_lut
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uniq):\n order = log2_lut(uniq >> 2) >> 1\n ipix = uniq - (1 << 2 * (order + 1))\n return order, ipix\n",
"role": "user"
},
{
"content": "uniq2orderipix_lut",
"role": "assistant"
}
] |
def x(uniq):
order = np.log2(uniq // 4) // 2
order = order.astype(int)
ipix = uniq - 4 * 4 ** order
return order, ipix
|
uniq2orderipix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(uniq):\n order = np.log2(uniq // 4) // 2\n order = order.astype(int)\n ipix = uniq - 4 * 4 ** order\n return order, ipix\n",
"role": "user"
},
{
"content": "uniq2orderipix",
"role": "assistant"
}
] |
def x(target, data, usage):
if isinstance(data, int):
size = data
data = None
else:
size = data.nbytes
GL.glBufferData(target, size, data, usage)
|
glBufferData
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(target, data, usage):\n if isinstance(data, int):\n size = data\n data = None\n else:\n size = data.nbytes\n GL.glBufferData(target, size, data, usage)\n",
"role": "user"
},
{
"content": "glBufferData",
"role": "assistant"
}
] |
def x(self, data=None, **kwargs):
if data is None:
pos = None
else:
if isinstance(data, tuple):
pos = np.array(data).T.astype(np.float32)
else:
pos = np.atleast_1d(data).astype(np.float32)
if pos.ndim == 1:
pos = pos[:, np.newaxis]
elif pos.ndim > 2:
raise ValueError('data must have at most two dimensions')
if pos.size == 0:
pos = self._line.pos
if len(kwargs) == 0:
raise TypeError(
'neither line points nor line propertiesare provided')
elif pos.shape[1] == 1:
x = np.arange(pos.shape[0], dtype=np.float32)[:, np.newaxis]
pos = np.concatenate((x, pos), axis=1)
elif pos.shape[1] > 3:
raise TypeError('Too many coordinates given (%s; max is 3).' %
pos.shape[1])
line_kwargs = {}
for k in self._line_kwargs:
if k in kwargs:
k_ = self._kw_trans[k] if k in self._kw_trans else k
line_kwargs[k] = kwargs.pop(k_)
if pos is not None or len(line_kwargs) > 0:
self._line.set_data(pos=pos, **line_kwargs)
marker_kwargs = {}
for k in self._marker_kwargs:
if k in kwargs:
k_ = self._kw_trans[k] if k in self._kw_trans else k
marker_kwargs[k_] = kwargs.pop(k)
if pos is not None or len(marker_kwargs) > 0:
self._markers.set_data(pos=pos, **marker_kwargs)
if len(kwargs) > 0:
raise TypeError('Invalid keyword arguments: %s' % kwargs.keys())
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data=None, **kwargs):\n if data is None:\n pos = None\n else:\n if isinstance(data, tuple):\n pos = np.array(data).T.astype(np.float32)\n else:\n pos = np.atleast_1d(data).astype(np.float32)\n if pos.ndim == 1:\n pos = pos[:, np.newaxis]\n elif pos.ndim > 2:\n raise ValueError('data must have at most two dimensions')\n if pos.size == 0:\n pos = self._line.pos\n if len(kwargs) == 0:\n raise TypeError(\n 'neither line points nor line propertiesare provided')\n elif pos.shape[1] == 1:\n x = np.arange(pos.shape[0], dtype=np.float32)[:, np.newaxis]\n pos = np.concatenate((x, pos), axis=1)\n elif pos.shape[1] > 3:\n raise TypeError('Too many coordinates given (%s; max is 3).' %\n pos.shape[1])\n line_kwargs = {}\n for k in self._line_kwargs:\n if k in kwargs:\n k_ = self._kw_trans[k] if k in self._kw_trans else k\n line_kwargs[k] = kwargs.pop(k_)\n if pos is not None or len(line_kwargs) > 0:\n self._line.set_data(pos=pos, **line_kwargs)\n marker_kwargs = {}\n for k in self._marker_kwargs:\n if k in kwargs:\n k_ = self._kw_trans[k] if k in self._kw_trans else k\n marker_kwargs[k_] = kwargs.pop(k)\n if pos is not None or len(marker_kwargs) > 0:\n self._markers.set_data(pos=pos, **marker_kwargs)\n if len(kwargs) > 0:\n raise TypeError('Invalid keyword arguments: %s' % kwargs.keys())\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(self, pos=None, color=None):
if pos is not None:
pos = float(pos)
xy = self._pos
if self._is_vertical:
xy[0, 0] = pos
xy[0, 1] = -1
xy[1, 0] = pos
xy[1, 1] = 1
else:
xy[0, 0] = -1
xy[0, 1] = pos
xy[1, 0] = 1
xy[1, 1] = pos
self._changed['pos'] = True
if color is not None:
color = np.array(color, dtype=np.float32)
if color.ndim != 1 or color.shape[0] != 4:
raise ValueError(
'color must be a 4 element float rgba tuple, list or array')
self._color = color
self._changed['color'] = True
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pos=None, color=None):\n if pos is not None:\n pos = float(pos)\n xy = self._pos\n if self._is_vertical:\n xy[0, 0] = pos\n xy[0, 1] = -1\n xy[1, 0] = pos\n xy[1, 1] = 1\n else:\n xy[0, 0] = -1\n xy[0, 1] = pos\n xy[1, 0] = 1\n xy[1, 1] = pos\n self._changed['pos'] = True\n if color is not None:\n color = np.array(color, dtype=np.float32)\n if color.ndim != 1 or color.shape[0] != 4:\n raise ValueError(\n 'color must be a 4 element float rgba tuple, list or array')\n self._color = color\n self._changed['color'] = True\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(self, axis, view):
is_vertical = self._is_vertical
pos = self._pos
if axis == 0 and is_vertical:
return pos[0, 0], pos[0, 0]
elif axis == 1 and not is_vertical:
return self._pos[0, 1], self._pos[0, 1]
return None
|
compute_bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, axis, view):\n is_vertical = self._is_vertical\n pos = self._pos\n if axis == 0 and is_vertical:\n return pos[0, 0], pos[0, 0]\n elif axis == 1 and not is_vertical:\n return self._pos[0, 1], self._pos[0, 1]\n return None\n",
"role": "user"
},
{
"content": "compute_bounds",
"role": "assistant"
}
] |
def x(p1, p2, p3):
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
points = []
_curve3_recursive_bezier(points, x1, y1, x2, y2, x3, y3)
dx, dy = points[0][0] - x1, points[0][1] - y1
if dx * dx + dy * dy > 1e-10:
points.insert(0, (x1, y1))
dx, dy = points[-1][0] - x3, points[-1][1] - y3
if dx * dx + dy * dy > 1e-10:
points.append((x3, y3))
return np.array(points).reshape(len(points), 2)
|
curve3_bezier
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p1, p2, p3):\n x1, y1 = p1\n x2, y2 = p2\n x3, y3 = p3\n points = []\n _curve3_recursive_bezier(points, x1, y1, x2, y2, x3, y3)\n dx, dy = points[0][0] - x1, points[0][1] - y1\n if dx * dx + dy * dy > 1e-10:\n points.insert(0, (x1, y1))\n dx, dy = points[-1][0] - x3, points[-1][1] - y3\n if dx * dx + dy * dy > 1e-10:\n points.append((x3, y3))\n return np.array(points).reshape(len(points), 2)\n",
"role": "user"
},
{
"content": "curve3_bezier",
"role": "assistant"
}
] |
def x(p1, p2, p3, p4):
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
x4, y4 = p4
points = []
_curve4_recursive_bezier(points, x1, y1, x2, y2, x3, y3, x4, y4)
dx, dy = points[0][0] - x1, points[0][1] - y1
if dx * dx + dy * dy > 1e-10:
points.insert(0, (x1, y1))
dx, dy = points[-1][0] - x4, points[-1][1] - y4
if dx * dx + dy * dy > 1e-10:
points.append((x4, y4))
return np.array(points).reshape(len(points), 2)
|
curve4_bezier
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p1, p2, p3, p4):\n x1, y1 = p1\n x2, y2 = p2\n x3, y3 = p3\n x4, y4 = p4\n points = []\n _curve4_recursive_bezier(points, x1, y1, x2, y2, x3, y3, x4, y4)\n dx, dy = points[0][0] - x1, points[0][1] - y1\n if dx * dx + dy * dy > 1e-10:\n points.insert(0, (x1, y1))\n dx, dy = points[-1][0] - x4, points[-1][1] - y4\n if dx * dx + dy * dy > 1e-10:\n points.append((x4, y4))\n return np.array(points).reshape(len(points), 2)\n",
"role": "user"
},
{
"content": "curve4_bezier",
"role": "assistant"
}
] |
def x(self, data, texture, offset, size):
assert isinstance(texture, Texture2D)
set_state(blend=False, depth_test=False)
orig_tex = Texture2D(255 - data, format='luminance', wrapping=
'clamp_to_edge', interpolation='nearest')
edf_neg_tex = self._render_edf(orig_tex)
orig_tex[:, :, 0] = data
edf_pos_tex = self._render_edf(orig_tex)
self.program_insert['u_texture'] = orig_tex
self.program_insert['u_pos_texture'] = edf_pos_tex
self.program_insert['u_neg_texture'] = edf_neg_tex
self.fbo_to[-1].color_buffer = texture
with self.fbo_to[-1]:
set_viewport(tuple(offset) + tuple(size))
self.program_insert.draw('triangle_strip')
|
render_to_texture
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, texture, offset, size):\n assert isinstance(texture, Texture2D)\n set_state(blend=False, depth_test=False)\n orig_tex = Texture2D(255 - data, format='luminance', wrapping=\n 'clamp_to_edge', interpolation='nearest')\n edf_neg_tex = self._render_edf(orig_tex)\n orig_tex[:, :, 0] = data\n edf_pos_tex = self._render_edf(orig_tex)\n self.program_insert['u_texture'] = orig_tex\n self.program_insert['u_pos_texture'] = edf_pos_tex\n self.program_insert['u_neg_texture'] = edf_neg_tex\n self.fbo_to[-1].color_buffer = texture\n with self.fbo_to[-1]:\n set_viewport(tuple(offset) + tuple(size))\n self.program_insert.draw('triangle_strip')\n",
"role": "user"
},
{
"content": "render_to_texture",
"role": "assistant"
}
] |
def x(self, orig_tex):
sdf_size = orig_tex.shape[:2]
comp_texs = []
for _ in range(2):
tex = Texture2D(sdf_size + (4,), format='rgba', interpolation=
'nearest', wrapping='clamp_to_edge')
comp_texs.append(tex)
self.fbo_to[0].color_buffer = comp_texs[0]
self.fbo_to[1].color_buffer = comp_texs[1]
for program in self.programs[1:]:
program['u_texh'], program['u_texw'] = sdf_size
last_rend = 0
with self.fbo_to[last_rend]:
set_viewport(0, 0, sdf_size[1], sdf_size[0])
self.program_seed['u_texture'] = orig_tex
self.program_seed.draw('triangle_strip')
stepsize = (np.array(sdf_size) // 2).max()
while stepsize > 0:
self.program_flood['u_step'] = stepsize
self.program_flood['u_texture'] = comp_texs[last_rend]
last_rend = 1 if last_rend == 0 else 0
with self.fbo_to[last_rend]:
set_viewport(0, 0, sdf_size[1], sdf_size[0])
self.program_flood.draw('triangle_strip')
stepsize //= 2
return comp_texs[last_rend]
|
render_edf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, orig_tex):\n sdf_size = orig_tex.shape[:2]\n comp_texs = []\n for _ in range(2):\n tex = Texture2D(sdf_size + (4,), format='rgba', interpolation=\n 'nearest', wrapping='clamp_to_edge')\n comp_texs.append(tex)\n self.fbo_to[0].color_buffer = comp_texs[0]\n self.fbo_to[1].color_buffer = comp_texs[1]\n for program in self.programs[1:]:\n program['u_texh'], program['u_texw'] = sdf_size\n last_rend = 0\n with self.fbo_to[last_rend]:\n set_viewport(0, 0, sdf_size[1], sdf_size[0])\n self.program_seed['u_texture'] = orig_tex\n self.program_seed.draw('triangle_strip')\n stepsize = (np.array(sdf_size) // 2).max()\n while stepsize > 0:\n self.program_flood['u_step'] = stepsize\n self.program_flood['u_texture'] = comp_texs[last_rend]\n last_rend = 1 if last_rend == 0 else 0\n with self.fbo_to[last_rend]:\n set_viewport(0, 0, sdf_size[1], sdf_size[0])\n self.program_flood.draw('triangle_strip')\n stepsize //= 2\n return comp_texs[last_rend]\n",
"role": "user"
},
{
"content": "render_edf",
"role": "assistant"
}
] |
def x(self, intent_num=0):
print('Name of intent number : ', intent_num)
slot_type_mappings = load_builtin_slots()
intent_name = read_from_user(str)
print('How many slots?')
num_slots = read_from_user(int)
slot_list = []
for i in range(num_slots):
print('Slot name no.', i + 1)
slot_name = read_from_user(str).strip()
print(
'Slot type? Enter a number for AMAZON supported types below,else enter a string for a Custom Slot'
)
print(json.dumps(slot_type_mappings, indent=True))
slot_type_str = read_from_user(str)
try:
slot_type = slot_type_mappings[int(slot_type_str)]['name']
except:
slot_type = slot_type_str
slot_list += [self.build_slot(slot_name, slot_type)]
self.add_intent(intent_name, slot_list)
|
add_intent_interactive
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, intent_num=0):\n print('Name of intent number : ', intent_num)\n slot_type_mappings = load_builtin_slots()\n intent_name = read_from_user(str)\n print('How many slots?')\n num_slots = read_from_user(int)\n slot_list = []\n for i in range(num_slots):\n print('Slot name no.', i + 1)\n slot_name = read_from_user(str).strip()\n print(\n 'Slot type? Enter a number for AMAZON supported types below,else enter a string for a Custom Slot'\n )\n print(json.dumps(slot_type_mappings, indent=True))\n slot_type_str = read_from_user(str)\n try:\n slot_type = slot_type_mappings[int(slot_type_str)]['name']\n except:\n slot_type = slot_type_str\n slot_list += [self.build_slot(slot_name, slot_type)]\n self.add_intent(intent_name, slot_list)\n",
"role": "user"
},
{
"content": "add_intent_interactive",
"role": "assistant"
}
] |
def x(self, filename):
if os.path.exists(filename):
with open(filename) as fp:
return IntentSchema(json.load(fp, object_pairs_hook=OrderedDict))
else:
print('File does not exist')
return IntentSchema()
|
from_filename
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n if os.path.exists(filename):\n with open(filename) as fp:\n return IntentSchema(json.load(fp, object_pairs_hook=OrderedDict))\n else:\n print('File does not exist')\n return IntentSchema()\n",
"role": "user"
},
{
"content": "from_filename",
"role": "assistant"
}
] |
def x(request):
user_id = request.access_token()
if user_id in twitter_cache.users():
user_cache = twitter_cache.get_user_state(user_id)
user_cache['amzn_id'] = request.user_id()
base_message = ('Welcome to Twitter, {} . How may I help you today ?'
.format(user_cache['screen_name']))
print(user_cache)
if 'pending_action' in user_cache:
base_message += ' You have one pending action . '
print('Found pending action')
if 'description' in user_cache['pending_action']:
print('Found description')
base_message += user_cache['pending_action']['description']
return r.create_response(base_message)
card = r.create_card(title='Please log into twitter', card_type=
'LinkAccount')
return r.create_response(message=
"Welcome to twitter, looks like you haven't logged in! Log in via the alexa app."
, card_obj=card, end_session=True)
|
launch_request_handler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n user_id = request.access_token()\n if user_id in twitter_cache.users():\n user_cache = twitter_cache.get_user_state(user_id)\n user_cache['amzn_id'] = request.user_id()\n base_message = ('Welcome to Twitter, {} . How may I help you today ?'\n .format(user_cache['screen_name']))\n print(user_cache)\n if 'pending_action' in user_cache:\n base_message += ' You have one pending action . '\n print('Found pending action')\n if 'description' in user_cache['pending_action']:\n print('Found description')\n base_message += user_cache['pending_action']['description']\n return r.create_response(base_message)\n card = r.create_card(title='Please log into twitter', card_type=\n 'LinkAccount')\n return r.create_response(message=\n \"Welcome to twitter, looks like you haven't logged in! Log in via the alexa app.\"\n , card_obj=card, end_session=True)\n",
"role": "user"
},
{
"content": "launch_request_handler",
"role": "assistant"
}
] |
def x(request):
tweet = request.get_slot_value('Tweet')
tweet = tweet if tweet else ''
if tweet:
user_state = twitter_cache.get_user_state(request.access_token())
def x():
return post_tweet(request.access_token(), tweet)
message = (
"""I am ready to post the tweet, {} ,
Please say yes to confirm or stop to cancel ."""
.format(tweet))
user_state['pending_action'] = {'action': action, 'description':
message}
return r.create_response(message=message, end_session=False)
else:
message = ' '.join([
"I'm sorry, I couldn't understand what you wanted to tweet .",
'Please prepend the message with either post or tweet .'])
return alexa.create_response(message=message, end_session=False)
|
post_tweet_intent_handler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n tweet = request.get_slot_value('Tweet')\n tweet = tweet if tweet else ''\n if tweet:\n user_state = twitter_cache.get_user_state(request.access_token())\n\n def x():\n return post_tweet(request.access_token(), tweet)\n message = (\n \"\"\"I am ready to post the tweet, {} ,\n Please say yes to confirm or stop to cancel .\"\"\"\n .format(tweet))\n user_state['pending_action'] = {'action': action, 'description':\n message}\n return r.create_response(message=message, end_session=False)\n else:\n message = ' '.join([\n \"I'm sorry, I couldn't understand what you wanted to tweet .\",\n 'Please prepend the message with either post or tweet .'])\n return alexa.create_response(message=message, end_session=False)\n",
"role": "user"
},
{
"content": "post_tweet_intent_handler",
"role": "assistant"
}
] |
def x(request, tweet_list_builder, msg_prefix=''):
tweets = tweet_list_builder(request.access_token())
print(len(tweets), 'tweets found')
if tweets:
twitter_cache.initialize_user_queue(user_id=request.access_token(),
queue=tweets)
text_to_read_out = twitter_cache.user_queue(request.access_token()
).read_out_next(MAX_RESPONSE_TWEETS)
message = (msg_prefix + text_to_read_out +
", say 'next' to hear more, or reply to a tweet by number.")
return alexa.create_response(message=message, end_session=False)
else:
return alexa.create_response(message=
'Sorry, no tweets found, please try something else',
end_session=False)
|
tweet_list_handler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request, tweet_list_builder, msg_prefix=''):\n tweets = tweet_list_builder(request.access_token())\n print(len(tweets), 'tweets found')\n if tweets:\n twitter_cache.initialize_user_queue(user_id=request.access_token(),\n queue=tweets)\n text_to_read_out = twitter_cache.user_queue(request.access_token()\n ).read_out_next(MAX_RESPONSE_TWEETS)\n message = (msg_prefix + text_to_read_out +\n \", say 'next' to hear more, or reply to a tweet by number.\")\n return alexa.create_response(message=message, end_session=False)\n else:\n return alexa.create_response(message=\n 'Sorry, no tweets found, please try something else',\n end_session=False)\n",
"role": "user"
},
{
"content": "tweet_list_handler",
"role": "assistant"
}
] |
def x(request):
slots = request.get_slot_map()
if 'Index' in slots and slots['Index']:
index = int(slots['Index'])
elif 'Ordinal' in slots and slots['Index']:
parse_ordinal = lambda inp: int(''.join([l for l in inp if l in
string.digits]))
index = parse_ordinal(slots['Ordinal'])
else:
return False
index = index - 1
user_state = twitter_cache.get_user_state(request.access_token())
queue = user_state['user_queue'].queue()
if index < len(queue):
tweet_to_analyze = queue[index]
user_state['focus_tweet'] = tweet_to_analyze
return index + 1
twitter_cache.serialize()
return False
|
focused_on_tweet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n slots = request.get_slot_map()\n if 'Index' in slots and slots['Index']:\n index = int(slots['Index'])\n elif 'Ordinal' in slots and slots['Index']:\n parse_ordinal = lambda inp: int(''.join([l for l in inp if l in\n string.digits]))\n index = parse_ordinal(slots['Ordinal'])\n else:\n return False\n index = index - 1\n user_state = twitter_cache.get_user_state(request.access_token())\n queue = user_state['user_queue'].queue()\n if index < len(queue):\n tweet_to_analyze = queue[index]\n user_state['focus_tweet'] = tweet_to_analyze\n return index + 1\n twitter_cache.serialize()\n return False\n",
"role": "user"
},
{
"content": "focused_on_tweet",
"role": "assistant"
}
] |
def x(request):
message = "Sorry, couldn't find anything in your next queue"
end_session = True
if True:
user_queue = twitter_cache.user_queue(request.access_token())
if not user_queue.is_finished():
message = user_queue.read_out_next(MAX_RESPONSE_TWEETS)
if not user_queue.is_finished():
end_session = False
message = (message +
". Please, say 'next' if you want me to read out more. ")
return alexa.create_response(message=message, end_session=end_session)
|
next_intent_handler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n message = \"Sorry, couldn't find anything in your next queue\"\n end_session = True\n if True:\n user_queue = twitter_cache.user_queue(request.access_token())\n if not user_queue.is_finished():\n message = user_queue.read_out_next(MAX_RESPONSE_TWEETS)\n if not user_queue.is_finished():\n end_session = False\n message = (message +\n \". Please, say 'next' if you want me to read out more. \")\n return alexa.create_response(message=message, end_session=end_session)\n",
"role": "user"
},
{
"content": "next_intent_handler",
"role": "assistant"
}
] |
def x(backend_name=None, call_reuse=True):
global default_app
if default_app is not None:
names = default_app.backend_name.lower().replace('(', ' ').strip(') ')
names = [name for name in names.split(' ') if name]
if backend_name and backend_name.lower() not in names:
raise RuntimeError(
'Can only select a backend once, already using %s.' % names)
else:
if call_reuse:
default_app.reuse()
return default_app
default_app = Application(backend_name)
return default_app
|
use_app
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(backend_name=None, call_reuse=True):\n global default_app\n if default_app is not None:\n names = default_app.backend_name.lower().replace('(', ' ').strip(') ')\n names = [name for name in names.split(' ') if name]\n if backend_name and backend_name.lower() not in names:\n raise RuntimeError(\n 'Can only select a backend once, already using %s.' % names)\n else:\n if call_reuse:\n default_app.reuse()\n return default_app\n default_app = Application(backend_name)\n return default_app\n",
"role": "user"
},
{
"content": "use_app",
"role": "assistant"
}
] |
def x(target, data, usage):
if isinstance(data, int):
size = data
data = ctypes.c_voidp(0)
else:
if not data.flags['C_CONTIGUOUS'] or not data.flags['ALIGNED']:
data = data.copy('C')
data_ = data
size = data_.nbytes
data = data_.ctypes.data
res = _lib.glBufferData(target, size, data, usage)
|
glBufferData
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(target, data, usage):\n if isinstance(data, int):\n size = data\n data = ctypes.c_voidp(0)\n else:\n if not data.flags['C_CONTIGUOUS'] or not data.flags['ALIGNED']:\n data = data.copy('C')\n data_ = data\n size = data_.nbytes\n data = data_.ctypes.data\n res = _lib.glBufferData(target, size, data, usage)\n",
"role": "user"
},
{
"content": "glBufferData",
"role": "assistant"
}
] |
def x(self, vertices=None, faces=None, vertex_colors=None, face_colors=None,
color=None, meshdata=None):
if meshdata is not None:
self._meshdata = meshdata
else:
self._meshdata = MeshData(vertices=vertices, faces=faces,
vertex_colors=vertex_colors, face_colors=face_colors)
self._bounds = self._meshdata.get_bounds()
if color is not None:
self._color = Color(color)
self.mesh_data_changed()
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vertices=None, faces=None, vertex_colors=None, face_colors=None,\n color=None, meshdata=None):\n if meshdata is not None:\n self._meshdata = meshdata\n else:\n self._meshdata = MeshData(vertices=vertices, faces=faces,\n vertex_colors=vertex_colors, face_colors=face_colors)\n self._bounds = self._meshdata.get_bounds()\n if color is not None:\n self._color = Color(color)\n self.mesh_data_changed()\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(self, axis, view=None):
if view is None:
view = self
if axis not in self._vshare.bounds:
self._vshare.bounds[axis] = self._compute_bounds(axis, view)
return self._vshare.bounds[axis]
|
bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, axis, view=None):\n if view is None:\n view = self\n if axis not in self._vshare.bounds:\n self._vshare.bounds[axis] = self._compute_bounds(axis, view)\n return self._vshare.bounds[axis]\n",
"role": "user"
},
{
"content": "bounds",
"role": "assistant"
}
] |
def x(self, preset=None, **kwargs):
self._vshare.gl_state = kwargs
self._vshare.gl_state['preset'] = preset
|
set_gl_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, preset=None, **kwargs):\n self._vshare.gl_state = kwargs\n self._vshare.gl_state['preset'] = preset\n",
"role": "user"
},
{
"content": "set_gl_state",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
if len(args) == 1:
self._vshare.gl_state['preset'] = args[0]
elif len(args) != 0:
raise TypeError('Only one positional argument allowed.')
self._vshare.gl_state.update(kwargs)
|
update_gl_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n if len(args) == 1:\n self._vshare.gl_state['preset'] = args[0]\n elif len(args) != 0:\n raise TypeError('Only one positional argument allowed.')\n self._vshare.gl_state.update(kwargs)\n",
"role": "user"
},
{
"content": "update_gl_state",
"role": "assistant"
}
] |
def x(self, shader, name):
assert name in ('pre', 'post')
key = shader, name
if key in self._hooks:
return self._hooks[key]
hook = StatementList()
if shader == 'vert':
self.view_program.vert[name] = hook
elif shader == 'frag':
self.view_program.frag[name] = hook
self._hooks[key] = hook
return hook
|
get_hook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shader, name):\n assert name in ('pre', 'post')\n key = shader, name\n if key in self._hooks:\n return self._hooks[key]\n hook = StatementList()\n if shader == 'vert':\n self.view_program.vert[name] = hook\n elif shader == 'frag':\n self.view_program.frag[name] = hook\n self._hooks[key] = hook\n return hook\n",
"role": "user"
},
{
"content": "get_hook",
"role": "assistant"
}
] |
def x(self, filt, view=None):
if view is None:
self._vshare.filters.append(filt)
for view in self._vshare.views.keys():
filt._attach(view)
else:
view._filters.append(filt)
filt._attach(view)
|
attach
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filt, view=None):\n if view is None:\n self._vshare.filters.append(filt)\n for view in self._vshare.views.keys():\n filt._attach(view)\n else:\n view._filters.append(filt)\n filt._attach(view)\n",
"role": "user"
},
{
"content": "attach",
"role": "assistant"
}
] |
def x(self, filt, view=None):
if view is None:
self._vshare.filters.remove(filt)
for view in self._vshare.views.keys():
filt._detach(view)
else:
view._filters.remove(filt)
filt._detach(view)
|
detach
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filt, view=None):\n if view is None:\n self._vshare.filters.remove(filt)\n for view in self._vshare.views.keys():\n filt._detach(view)\n else:\n view._filters.remove(filt)\n filt._detach(view)\n",
"role": "user"
},
{
"content": "detach",
"role": "assistant"
}
] |
def x(self, visual):
visual.transforms = self.transforms
visual._prepare_transforms(visual)
self._subvisuals.append(visual)
visual.events.update.connect(self._subv_update)
self.update()
|
add_subvisual
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, visual):\n visual.transforms = self.transforms\n visual._prepare_transforms(visual)\n self._subvisuals.append(visual)\n visual.events.update.connect(self._subv_update)\n self.update()\n",
"role": "user"
},
{
"content": "add_subvisual",
"role": "assistant"
}
] |
def x(self, visual):
visual.events.update.disconnect(self._subv_update)
self._subvisuals.remove(visual)
self.update()
|
remove_subvisual
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, visual):\n visual.events.update.disconnect(self._subv_update)\n self._subvisuals.remove(visual)\n self.update()\n",
"role": "user"
},
{
"content": "remove_subvisual",
"role": "assistant"
}
] |
def x(self):
if not self.visible:
return
if self._prepare_draw(view=self) is False:
return
for v in self._subvisuals:
if v.visible:
v.draw()
|
draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.visible:\n return\n if self._prepare_draw(view=self) is False:\n return\n for v in self._subvisuals:\n if v.visible:\n v.draw()\n",
"role": "user"
},
{
"content": "draw",
"role": "assistant"
}
] |
def x(self, preset=None, **kwargs):
for v in self._subvisuals:
v.set_gl_state(preset=preset, **kwargs)
|
set_gl_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, preset=None, **kwargs):\n for v in self._subvisuals:\n v.set_gl_state(preset=preset, **kwargs)\n",
"role": "user"
},
{
"content": "set_gl_state",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
for v in self._subvisuals:
v.update_gl_state(*args, **kwargs)
|
update_gl_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n for v in self._subvisuals:\n v.update_gl_state(*args, **kwargs)\n",
"role": "user"
},
{
"content": "update_gl_state",
"role": "assistant"
}
] |
def x(self, filt, view=None):
for v in self._subvisuals:
v.attach(filt, v)
|
attach
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filt, view=None):\n for v in self._subvisuals:\n v.attach(filt, v)\n",
"role": "user"
},
{
"content": "attach",
"role": "assistant"
}
] |
def x(self, filt, view=None):
for v in self._subvisuals:
v.detach(filt, v)
|
detach
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filt, view=None):\n for v in self._subvisuals:\n v.detach(filt, v)\n",
"role": "user"
},
{
"content": "detach",
"role": "assistant"
}
] |
def x(self, product, quantity=None, mode='buy', stop_limit=None,
auto_margin=None, name_counter=None):
if not isinstance(product, type('')) or not isinstance(name_counter,
type('')) and name_counter is not None:
raise ValueError('product and name_counter have to be a string')
if not isinstance(stop_limit, type({})) and stop_limit is not None:
raise ValueError('it has to be a dictionary')
if quantity is not None and auto_margin is not None:
raise ValueError('quantity and auto_margin are exclusive')
elif quantity is None and auto_margin is None:
raise ValueError('need at least one quantity')
mov = self.new_mov(product)
mov.open()
mov.set_mode(mode)
if quantity is not None:
mov.set_quantity(quantity)
try:
margin = mov.get_unit_value() * quantity
except TimeoutError:
mov.close()
logger.warning('market closed for %s' % mov.product)
return False
elif auto_margin is not None:
unit_value = mov.get_unit_value()
mov.set_quantity(auto_margin * unit_value)
margin = auto_margin
if stop_limit is not None:
mov.set_limit('gain', stop_limit['gain'][0], stop_limit['gain'][1])
mov.set_limit('loss', stop_limit['loss'][0], stop_limit['loss'][1])
try:
mov.confirm()
except (exceptions.MaxQuantLimit, exceptions.MinQuantLimit) as e:
logger.warning(e.err)
mov.set_quantity(e.quant)
mov.confirm()
except Exception:
logger.exception('undefined error in movement confirmation')
mov_logger.info(f'added {mov.product} movement of {mov.quantity} ' +
f'with margin of {margin}')
mov_logger.debug(f'stop_limit: {stop_limit}')
|
addMov
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, product, quantity=None, mode='buy', stop_limit=None,\n auto_margin=None, name_counter=None):\n if not isinstance(product, type('')) or not isinstance(name_counter,\n type('')) and name_counter is not None:\n raise ValueError('product and name_counter have to be a string')\n if not isinstance(stop_limit, type({})) and stop_limit is not None:\n raise ValueError('it has to be a dictionary')\n if quantity is not None and auto_margin is not None:\n raise ValueError('quantity and auto_margin are exclusive')\n elif quantity is None and auto_margin is None:\n raise ValueError('need at least one quantity')\n mov = self.new_mov(product)\n mov.open()\n mov.set_mode(mode)\n if quantity is not None:\n mov.set_quantity(quantity)\n try:\n margin = mov.get_unit_value() * quantity\n except TimeoutError:\n mov.close()\n logger.warning('market closed for %s' % mov.product)\n return False\n elif auto_margin is not None:\n unit_value = mov.get_unit_value()\n mov.set_quantity(auto_margin * unit_value)\n margin = auto_margin\n if stop_limit is not None:\n mov.set_limit('gain', stop_limit['gain'][0], stop_limit['gain'][1])\n mov.set_limit('loss', stop_limit['loss'][0], stop_limit['loss'][1])\n try:\n mov.confirm()\n except (exceptions.MaxQuantLimit, exceptions.MinQuantLimit) as e:\n logger.warning(e.err)\n mov.set_quantity(e.quant)\n mov.confirm()\n except Exception:\n logger.exception('undefined error in movement confirmation')\n mov_logger.info(f'added {mov.product} movement of {mov.quantity} ' +\n f'with margin of {margin}')\n mov_logger.debug(f'stop_limit: {stop_limit}')\n",
"role": "user"
},
{
"content": "addMov",
"role": "assistant"
}
] |
def x(self):
soup = BeautifulSoup(self.css1(path['movs-table']).html, 'html.parser')
poss = []
for label in soup.find_all('tr'):
pos_id = label['id']
pos_list = [x for x in self.positions if x.id == pos_id]
if pos_list:
pos = pos_list[0]
pos.update(label)
else:
pos = self.new_pos(label)
pos.get_gain()
poss.append(pos)
self.positions.clear()
self.positions.extend(poss)
logger.debug('%d positions update' % len(poss))
return self.positions
|
checkPos
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n soup = BeautifulSoup(self.css1(path['movs-table']).html, 'html.parser')\n poss = []\n for label in soup.find_all('tr'):\n pos_id = label['id']\n pos_list = [x for x in self.positions if x.id == pos_id]\n if pos_list:\n pos = pos_list[0]\n pos.update(label)\n else:\n pos = self.new_pos(label)\n pos.get_gain()\n poss.append(pos)\n self.positions.clear()\n self.positions.extend(poss)\n logger.debug('%d positions update' % len(poss))\n return self.positions\n",
"role": "user"
},
{
"content": "checkPos",
"role": "assistant"
}
] |
def x(self):
if not self.preferences:
logger.debug('no preferences')
return None
soup = BeautifulSoup(self.xpath(path['stock-table'])[0].html, 'html.parser'
)
count = 0
for product in soup.select('div.tradebox'):
prod_name = product.select('span.instrument-name')[0].text
stk_name = [x for x in self.preferences if x.lower() in prod_name.
lower()]
if not stk_name:
continue
name = prod_name
if not [x for x in self.stocks if x.product == name]:
self.stocks.append(Stock(name))
stock = [x for x in self.stocks if x.product == name][0]
if 'tradebox-market-closed' in product['class']:
stock.market = False
if not stock.market:
logger.debug('market closed for %s' % stock.product)
continue
sell_price = product.select('div.tradebox-price-sell')[0].text
buy_price = product.select('div.tradebox-price-buy')[0].text
sent = int(product.select(path['sent'])[0].text.strip('%')) / 100
stock.new_rec([sell_price, buy_price, sent])
count += 1
logger.debug(f'added %d stocks' % count)
return self.stocks
|
checkStock
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.preferences:\n logger.debug('no preferences')\n return None\n soup = BeautifulSoup(self.xpath(path['stock-table'])[0].html, 'html.parser'\n )\n count = 0\n for product in soup.select('div.tradebox'):\n prod_name = product.select('span.instrument-name')[0].text\n stk_name = [x for x in self.preferences if x.lower() in prod_name.\n lower()]\n if not stk_name:\n continue\n name = prod_name\n if not [x for x in self.stocks if x.product == name]:\n self.stocks.append(Stock(name))\n stock = [x for x in self.stocks if x.product == name][0]\n if 'tradebox-market-closed' in product['class']:\n stock.market = False\n if not stock.market:\n logger.debug('market closed for %s' % stock.product)\n continue\n sell_price = product.select('div.tradebox-price-sell')[0].text\n buy_price = product.select('div.tradebox-price-buy')[0].text\n sent = int(product.select(path['sent'])[0].text.strip('%')) / 100\n stock.new_rec([sell_price, buy_price, sent])\n count += 1\n logger.debug(f'added %d stocks' % count)\n return self.stocks\n",
"role": "user"
},
{
"content": "checkStock",
"role": "assistant"
}
] |
def x(self):
self.preferences.clear()
tradebox_num = len(self.css('div.tradebox'))
for i in range(tradebox_num):
self.xpath(path['trade-box'])[0].right_click()
self.css1('div.item-trade-contextmenu-list-remove').click()
logger.info('cleared preferences')
|
clearPrefs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.preferences.clear()\n tradebox_num = len(self.css('div.tradebox'))\n for i in range(tradebox_num):\n self.xpath(path['trade-box'])[0].right_click()\n self.css1('div.item-trade-contextmenu-list-remove').click()\n logger.info('cleared preferences')\n",
"role": "user"
},
{
"content": "clearPrefs",
"role": "assistant"
}
] |
def x(self, prefs=[]):
if len(prefs) == len(self.preferences) == 0:
logger.debug('no preferences')
return None
self.preferences.extend(prefs)
self.css1(path['search-btn']).click()
count = 0
for pref in self.preferences:
self.css1(path['search-pref']).fill(pref)
self.css1(path['pref-icon']).click()
btn = self.css1('div.add-to-watchlist-popup-item .icon-wrapper')
if not self.css1('svg', btn)['class'] is None:
btn.click()
count += 1
self.css1(path['pref-icon']).click()
self.css1(path['back-btn']).click()
self.css1(path['back-btn']).click()
logger.debug('updated %d preferences' % count)
return self.preferences
|
addPrefs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, prefs=[]):\n if len(prefs) == len(self.preferences) == 0:\n logger.debug('no preferences')\n return None\n self.preferences.extend(prefs)\n self.css1(path['search-btn']).click()\n count = 0\n for pref in self.preferences:\n self.css1(path['search-pref']).fill(pref)\n self.css1(path['pref-icon']).click()\n btn = self.css1('div.add-to-watchlist-popup-item .icon-wrapper')\n if not self.css1('svg', btn)['class'] is None:\n btn.click()\n count += 1\n self.css1(path['pref-icon']).click()\n self.css1(path['back-btn']).click()\n self.css1(path['back-btn']).click()\n logger.debug('updated %d preferences' % count)\n return self.preferences\n",
"role": "user"
},
{
"content": "addPrefs",
"role": "assistant"
}
] |
def x(f, char, glyphs_dict):
from ...ext.freetype import FT_LOAD_RENDER, FT_LOAD_NO_HINTING, FT_LOAD_NO_AUTOHINT
flags = FT_LOAD_RENDER | FT_LOAD_NO_HINTING | FT_LOAD_NO_AUTOHINT
face = _load_font(f['face'], f['bold'], f['italic'])
face.set_char_size(f['size'] * 64)
face.load_char(char, flags)
bitmap = face.glyph.bitmap
width = face.glyph.bitmap.width
height = face.glyph.bitmap.rows
bitmap = np.array(bitmap.buffer)
w0 = bitmap.size // height if bitmap.size > 0 else 0
bitmap.shape = height, w0
bitmap = bitmap[:, :width].astype(np.ubyte)
left = face.glyph.bitmap_left
top = face.glyph.bitmap_top
advance = face.glyph.advance.x / 64.0
glyph = dict(char=char, offset=(left, top), bitmap=bitmap, advance=
advance, kerning={})
glyphs_dict[char] = glyph
for other_char, other_glyph in glyphs_dict.items():
kerning = face.get_kerning(other_char, char)
glyph['kerning'][other_char] = kerning.x / 64.0
kerning = face.get_kerning(char, other_char)
other_glyph['kerning'][char] = kerning.x / 64.0
|
load_glyph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, char, glyphs_dict):\n from ...ext.freetype import FT_LOAD_RENDER, FT_LOAD_NO_HINTING, FT_LOAD_NO_AUTOHINT\n flags = FT_LOAD_RENDER | FT_LOAD_NO_HINTING | FT_LOAD_NO_AUTOHINT\n face = _load_font(f['face'], f['bold'], f['italic'])\n face.set_char_size(f['size'] * 64)\n face.load_char(char, flags)\n bitmap = face.glyph.bitmap\n width = face.glyph.bitmap.width\n height = face.glyph.bitmap.rows\n bitmap = np.array(bitmap.buffer)\n w0 = bitmap.size // height if bitmap.size > 0 else 0\n bitmap.shape = height, w0\n bitmap = bitmap[:, :width].astype(np.ubyte)\n left = face.glyph.bitmap_left\n top = face.glyph.bitmap_top\n advance = face.glyph.advance.x / 64.0\n glyph = dict(char=char, offset=(left, top), bitmap=bitmap, advance=\n advance, kerning={})\n glyphs_dict[char] = glyph\n for other_char, other_glyph in glyphs_dict.items():\n kerning = face.get_kerning(other_char, char)\n glyph['kerning'][other_char] = kerning.x / 64.0\n kerning = face.get_kerning(char, other_char)\n other_glyph['kerning'][char] = kerning.x / 64.0\n",
"role": "user"
},
{
"content": "load_glyph",
"role": "assistant"
}
] |
def x(self, node, clipper):
if node in self._clippers:
self.detach(self._clippers.pop(node))
if clipper is not None:
self.attach(clipper)
self._clippers[node] = clipper
|
set_clipper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node, clipper):\n if node in self._clippers:\n self.detach(self._clippers.pop(node))\n if clipper is not None:\n self.attach(clipper)\n self._clippers[node] = clipper\n",
"role": "user"
},
{
"content": "set_clipper",
"role": "assistant"
}
] |
def x(self, event):
doc = self.document_node
scene = self.scene_node
root = self.root_node
self.transforms.visual_transform = self.node_transform(scene)
self.transforms.scene_transform = scene.node_transform(doc)
self.transforms.document_transform = doc.node_transform(root)
Node._update_trsys(self, event)
|
update_trsys
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n doc = self.document_node\n scene = self.scene_node\n root = self.root_node\n self.transforms.visual_transform = self.node_transform(scene)\n self.transforms.scene_transform = scene.node_transform(doc)\n self.transforms.document_transform = doc.node_transform(root)\n Node._update_trsys(self, event)\n",
"role": "user"
},
{
"content": "update_trsys",
"role": "assistant"
}
] |
def x(cfnumber):
numeric_type = cf.CFNumberGetType(cfnumber)
cfnum_to_ctype = {kCFNumberSInt8Type: c_int8, kCFNumberSInt16Type:
c_int16, kCFNumberSInt32Type: c_int32, kCFNumberSInt64Type: c_int64,
kCFNumberFloat32Type: c_float, kCFNumberFloat64Type: c_double,
kCFNumberCharType: c_byte, kCFNumberShortType: c_short,
kCFNumberIntType: c_int, kCFNumberLongType: c_long,
kCFNumberLongLongType: c_longlong, kCFNumberFloatType: c_float,
kCFNumberDoubleType: c_double, kCFNumberCFIndexType: CFIndex,
kCFNumberCGFloatType: CGFloat}
if numeric_type in cfnum_to_ctype:
t = cfnum_to_ctype[numeric_type]
result = t()
if cf.CFNumberGetValue(cfnumber, numeric_type, byref(result)):
return result.value
else:
raise Exception('cfnumber_to_number: unhandled CFNumber type %d' %
numeric_type)
|
cfnumber_to_number
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cfnumber):\n numeric_type = cf.CFNumberGetType(cfnumber)\n cfnum_to_ctype = {kCFNumberSInt8Type: c_int8, kCFNumberSInt16Type:\n c_int16, kCFNumberSInt32Type: c_int32, kCFNumberSInt64Type: c_int64,\n kCFNumberFloat32Type: c_float, kCFNumberFloat64Type: c_double,\n kCFNumberCharType: c_byte, kCFNumberShortType: c_short,\n kCFNumberIntType: c_int, kCFNumberLongType: c_long,\n kCFNumberLongLongType: c_longlong, kCFNumberFloatType: c_float,\n kCFNumberDoubleType: c_double, kCFNumberCFIndexType: CFIndex,\n kCFNumberCGFloatType: CGFloat}\n if numeric_type in cfnum_to_ctype:\n t = cfnum_to_ctype[numeric_type]\n result = t()\n if cf.CFNumberGetValue(cfnumber, numeric_type, byref(result)):\n return result.value\n else:\n raise Exception('cfnumber_to_number: unhandled CFNumber type %d' %\n numeric_type)\n",
"role": "user"
},
{
"content": "cfnumber_to_number",
"role": "assistant"
}
] |
def x(cftype):
if not cftype:
return None
typeID = cf.CFGetTypeID(cftype)
if typeID in known_cftypes:
convert_function = known_cftypes[typeID]
return convert_function(cftype)
else:
return cftype
|
cftype_to_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cftype):\n if not cftype:\n return None\n typeID = cf.CFGetTypeID(cftype)\n if typeID in known_cftypes:\n convert_function = known_cftypes[typeID]\n return convert_function(cftype)\n else:\n return cftype\n",
"role": "user"
},
{
"content": "cftype_to_value",
"role": "assistant"
}
] |
def x(cfset):
count = cf.CFSetGetCount(cfset)
buffer = (c_void_p * count)()
cf.CFSetGetValues(cfset, byref(buffer))
return set([cftype_to_value(c_void_p(buffer[i])) for i in range(count)])
|
cfset_to_set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cfset):\n count = cf.CFSetGetCount(cfset)\n buffer = (c_void_p * count)()\n cf.CFSetGetValues(cfset, byref(buffer))\n return set([cftype_to_value(c_void_p(buffer[i])) for i in range(count)])\n",
"role": "user"
},
{
"content": "cfset_to_set",
"role": "assistant"
}
] |
def x(cfarray):
count = cf.CFArrayGetCount(cfarray)
return [cftype_to_value(c_void_p(cf.CFArrayGetValueAtIndex(cfarray, i))
) for i in range(count)]
|
cfarray_to_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cfarray):\n count = cf.CFArrayGetCount(cfarray)\n return [cftype_to_value(c_void_p(cf.CFArrayGetValueAtIndex(cfarray, i))\n ) for i in range(count)]\n",
"role": "user"
},
{
"content": "cfarray_to_list",
"role": "assistant"
}
] |
def x(self, encoding):
if encoding in self.typecodes:
return self.typecodes[encoding]
elif encoding[0:1] == b'^' and encoding[1:] in self.typecodes:
return POINTER(self.typecodes[encoding[1:]])
elif encoding[0:1] == b'^' and encoding[1:] in [CGImageEncoding,
NSZoneEncoding]:
return c_void_p
elif encoding[0:1] == b'r' and encoding[1:] in self.typecodes:
return self.typecodes[encoding[1:]]
elif encoding[0:2] == b'r^' and encoding[2:] in self.typecodes:
return POINTER(self.typecodes[encoding[2:]])
else:
raise Exception('unknown encoding for %s: %s' % (self.name, encoding))
|
ctype_for_encoding
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, encoding):\n if encoding in self.typecodes:\n return self.typecodes[encoding]\n elif encoding[0:1] == b'^' and encoding[1:] in self.typecodes:\n return POINTER(self.typecodes[encoding[1:]])\n elif encoding[0:1] == b'^' and encoding[1:] in [CGImageEncoding,\n NSZoneEncoding]:\n return c_void_p\n elif encoding[0:1] == b'r' and encoding[1:] in self.typecodes:\n return self.typecodes[encoding[1:]]\n elif encoding[0:2] == b'r^' and encoding[2:] in self.typecodes:\n return POINTER(self.typecodes[encoding[2:]])\n else:\n raise Exception('unknown encoding for %s: %s' % (self.name, encoding))\n",
"role": "user"
},
{
"content": "ctype_for_encoding",
"role": "assistant"
}
] |
def x(self, encoding):
encoding = ensure_bytes(encoding)
typecodes = parse_type_encoding(encoding)
typecodes.insert(1, b'@:')
encoding = b''.join(typecodes)
def x(f):
def x(objc_cls, objc_cmd, *args):
py_cls = ObjCClass(objc_cls)
py_cls.objc_cmd = objc_cmd
args = convert_method_arguments(encoding, args)
result = f(py_cls, *args)
if isinstance(result, ObjCClass):
result = result.ptr.value
elif isinstance(result, ObjCInstance):
result = result.ptr.value
return result
name = f.__name__.replace('_', ':')
self.add_class_method(objc_class_method, name, encoding)
return objc_class_method
return decorator
|
classmethod
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, encoding):\n encoding = ensure_bytes(encoding)\n typecodes = parse_type_encoding(encoding)\n typecodes.insert(1, b'@:')\n encoding = b''.join(typecodes)\n\n def x(f):\n\n def x(objc_cls, objc_cmd, *args):\n py_cls = ObjCClass(objc_cls)\n py_cls.objc_cmd = objc_cmd\n args = convert_method_arguments(encoding, args)\n result = f(py_cls, *args)\n if isinstance(result, ObjCClass):\n result = result.ptr.value\n elif isinstance(result, ObjCInstance):\n result = result.ptr.value\n return result\n name = f.__name__.replace('_', ':')\n self.add_class_method(objc_class_method, name, encoding)\n return objc_class_method\n return decorator\n",
"role": "user"
},
{
"content": "classmethod",
"role": "assistant"
}
] |
def x(self, P0, P1, itemsize=None, **kwargs):
itemsize = itemsize or 1
itemcount = len(P0) // itemsize
V = np.empty(itemcount, dtype=self.vtype)
for name in self.vtype.names:
if name not in ['collection_index', 'P0', 'P1', 'index']:
V[name] = kwargs.get(name, self._defaults[name])
V['P0'] = P0
V['P1'] = P1
V = V.repeat(4, axis=0)
V['index'] = np.resize([0, 1, 2, 3], 4 * itemcount * itemsize)
I = np.ones((itemcount, 6), dtype=int)
I[:] = 0, 1, 2, 0, 2, 3
I[:] += 4 * np.arange(itemcount)[:, np.newaxis]
I = I.ravel()
if self.utype:
U = np.zeros(itemcount, dtype=self.utype)
for name in self.utype.names:
if name not in ['__unused__']:
U[name] = kwargs.get(name, self._defaults[name])
else:
U = None
Collection.append(self, vertices=V, uniforms=U, indices=I, itemsize=4 *
itemcount)
|
append
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, P0, P1, itemsize=None, **kwargs):\n itemsize = itemsize or 1\n itemcount = len(P0) // itemsize\n V = np.empty(itemcount, dtype=self.vtype)\n for name in self.vtype.names:\n if name not in ['collection_index', 'P0', 'P1', 'index']:\n V[name] = kwargs.get(name, self._defaults[name])\n V['P0'] = P0\n V['P1'] = P1\n V = V.repeat(4, axis=0)\n V['index'] = np.resize([0, 1, 2, 3], 4 * itemcount * itemsize)\n I = np.ones((itemcount, 6), dtype=int)\n I[:] = 0, 1, 2, 0, 2, 3\n I[:] += 4 * np.arange(itemcount)[:, np.newaxis]\n I = I.ravel()\n if self.utype:\n U = np.zeros(itemcount, dtype=self.utype)\n for name in self.utype.names:\n if name not in ['__unused__']:\n U[name] = kwargs.get(name, self._defaults[name])\n else:\n U = None\n Collection.append(self, vertices=V, uniforms=U, indices=I, itemsize=4 *\n itemcount)\n",
"role": "user"
},
{
"content": "append",
"role": "assistant"
}
] |
def x(volumes, clipped=False, n_volume_max=5):
declarations = ''
before_loop = ''
in_loop = ''
after_loop = ''
for index in range(n_volume_max):
declarations += 'uniform $sampler_type u_volumetex_{0:d};\n'.format(
index)
before_loop += 'dummy = $sample(u_volumetex_{0:d}, loc).g;\n'.format(
index)
declarations += 'uniform $sampler_type dummy1;\n'
declarations += 'float dummy;\n'
for label in sorted(volumes):
index = volumes[label]['index']
declarations += 'uniform float u_weight_{0:d};\n'.format(index)
declarations += 'uniform int u_enabled_{0:d};\n'.format(index)
before_loop += 'float max_val_{0:d} = 0;\n'.format(index)
in_loop += 'if(u_enabled_{0:d} == 1) {{\n\n'.format(index)
if clipped:
in_loop += """if(loc.r > u_clip_min.r && loc.r < u_clip_max.r &&
loc.g > u_clip_min.g && loc.g < u_clip_max.g &&
loc.b > u_clip_min.b && loc.b < u_clip_max.b) {
"""
in_loop += '// Sample texture for layer {0}\n'.format(label)
in_loop += 'val = $sample(u_volumetex_{0:d}, loc).g;\n'.format(index)
if volumes[label].get('multiply') is not None:
index_other = volumes[volumes[label]['multiply']]['index']
in_loop += (
'if (val != 0) {{ val *= $sample(u_volumetex_{0:d}, loc).g; }}\n'
.format(index_other))
in_loop += 'max_val_{0:d} = max(val, max_val_{0:d});\n\n'.format(index)
if clipped:
in_loop += '}\n\n'
in_loop += '}\n\n'
after_loop += '// Compute final color for layer {0}\n'.format(label)
after_loop += (
"""color = $cmap{0:d}(max_val_{0:d});
color.a *= u_weight_{0:d};
total_color += color.a * color;
max_alpha = max(color.a, max_alpha);
count += color.a;
"""
.format(index))
if not clipped:
before_loop += '\nfloat val3 = u_clip_min.g + u_clip_max.g;\n\n'
before_loop = indent(before_loop, ' ' * 4).strip()
in_loop = indent(in_loop, ' ' * 16).strip()
after_loop = indent(after_loop, ' ' * 4).strip()
return FRAG_SHADER.format(declarations=declarations, before_loop=
before_loop, in_loop=in_loop, after_loop=after_loop)
|
get_frag_shader
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(volumes, clipped=False, n_volume_max=5):\n declarations = ''\n before_loop = ''\n in_loop = ''\n after_loop = ''\n for index in range(n_volume_max):\n declarations += 'uniform $sampler_type u_volumetex_{0:d};\\n'.format(\n index)\n before_loop += 'dummy = $sample(u_volumetex_{0:d}, loc).g;\\n'.format(\n index)\n declarations += 'uniform $sampler_type dummy1;\\n'\n declarations += 'float dummy;\\n'\n for label in sorted(volumes):\n index = volumes[label]['index']\n declarations += 'uniform float u_weight_{0:d};\\n'.format(index)\n declarations += 'uniform int u_enabled_{0:d};\\n'.format(index)\n before_loop += 'float max_val_{0:d} = 0;\\n'.format(index)\n in_loop += 'if(u_enabled_{0:d} == 1) {{\\n\\n'.format(index)\n if clipped:\n in_loop += \"\"\"if(loc.r > u_clip_min.r && loc.r < u_clip_max.r &&\n loc.g > u_clip_min.g && loc.g < u_clip_max.g &&\n loc.b > u_clip_min.b && loc.b < u_clip_max.b) {\n\n\"\"\"\n in_loop += '// Sample texture for layer {0}\\n'.format(label)\n in_loop += 'val = $sample(u_volumetex_{0:d}, loc).g;\\n'.format(index)\n if volumes[label].get('multiply') is not None:\n index_other = volumes[volumes[label]['multiply']]['index']\n in_loop += (\n 'if (val != 0) {{ val *= $sample(u_volumetex_{0:d}, loc).g; }}\\n'\n .format(index_other))\n in_loop += 'max_val_{0:d} = max(val, max_val_{0:d});\\n\\n'.format(index)\n if clipped:\n in_loop += '}\\n\\n'\n in_loop += '}\\n\\n'\n after_loop += '// Compute final color for layer {0}\\n'.format(label)\n after_loop += (\n \"\"\"color = $cmap{0:d}(max_val_{0:d});\ncolor.a *= u_weight_{0:d};\ntotal_color += color.a * color;\nmax_alpha = max(color.a, max_alpha);\ncount += color.a;\n\n\"\"\"\n .format(index))\n if not clipped:\n before_loop += '\\nfloat val3 = u_clip_min.g + u_clip_max.g;\\n\\n'\n before_loop = indent(before_loop, ' ' * 4).strip()\n in_loop = indent(in_loop, ' ' * 16).strip()\n after_loop = indent(after_loop, ' ' * 4).strip()\n return FRAG_SHADER.format(declarations=declarations, before_loop=\n before_loop, in_loop=in_loop, after_loop=after_loop)\n",
"role": "user"
},
{
"content": "get_frag_shader",
"role": "assistant"
}
] |
def x(display=EGL_DEFAULT_DISPLAY):
res = _lib.eglGetDisplay(display)
if not res or res == EGL_NO_DISPLAY:
raise RuntimeError('Could not create display')
return res
|
eglGetDisplay
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(display=EGL_DEFAULT_DISPLAY):\n res = _lib.eglGetDisplay(display)\n if not res or res == EGL_NO_DISPLAY:\n raise RuntimeError('Could not create display')\n return res\n",
"role": "user"
},
{
"content": "eglGetDisplay",
"role": "assistant"
}
] |
def x(display):
majorVersion = (_c_int * 1)()
minorVersion = (_c_int * 1)()
res = _lib.eglInitialize(display, majorVersion, minorVersion)
if res == EGL_FALSE:
raise RuntimeError('Could not initialize')
return majorVersion[0], minorVersion[0]
|
eglInitialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(display):\n majorVersion = (_c_int * 1)()\n minorVersion = (_c_int * 1)()\n res = _lib.eglInitialize(display, majorVersion, minorVersion)\n if res == EGL_FALSE:\n raise RuntimeError('Could not initialize')\n return majorVersion[0], minorVersion[0]\n",
"role": "user"
},
{
"content": "eglInitialize",
"role": "assistant"
}
] |
def x(display, name):
out = _lib.eglQueryString(display, name)
if not out:
raise RuntimeError('Could not query %s' % name)
return out
|
eglQueryString
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(display, name):\n out = _lib.eglQueryString(display, name)\n if not out:\n raise RuntimeError('Could not query %s' % name)\n return out\n",
"role": "user"
},
{
"content": "eglQueryString",
"role": "assistant"
}
] |
def x(self, indexed=None):
if indexed is None:
if self._edges is None:
self._compute_edges(indexed=None)
return self._edges
elif indexed == 'faces':
if self._edges_indexed_by_faces is None:
self._compute_edges(indexed='faces')
return self._edges_indexed_by_faces
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
|
get_edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indexed=None):\n if indexed is None:\n if self._edges is None:\n self._compute_edges(indexed=None)\n return self._edges\n elif indexed == 'faces':\n if self._edges_indexed_by_faces is None:\n self._compute_edges(indexed='faces')\n return self._edges_indexed_by_faces\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n",
"role": "user"
},
{
"content": "get_edges",
"role": "assistant"
}
] |
def x(self, faces):
self._faces = faces
self._edges = None
self._edges_indexed_by_faces = None
self._vertex_faces = None
self._vertices_indexed_by_faces = None
self.reset_normals()
self._vertex_colors_indexed_by_faces = None
self._face_colors_indexed_by_faces = None
|
set_faces
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, faces):\n self._faces = faces\n self._edges = None\n self._edges_indexed_by_faces = None\n self._vertex_faces = None\n self._vertices_indexed_by_faces = None\n self.reset_normals()\n self._vertex_colors_indexed_by_faces = None\n self._face_colors_indexed_by_faces = None\n",
"role": "user"
},
{
"content": "set_faces",
"role": "assistant"
}
] |
def x(self, indexed=None):
if indexed is None:
if (self._vertices is None and self._vertices_indexed_by_faces is not
None):
self._compute_unindexed_vertices()
return self._vertices
elif indexed == 'faces':
if (self._vertices_indexed_by_faces is None and self._vertices is not
None):
self._vertices_indexed_by_faces = self._vertices[self.get_faces()]
return self._vertices_indexed_by_faces
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
|
get_vertices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indexed=None):\n if indexed is None:\n if (self._vertices is None and self._vertices_indexed_by_faces is not\n None):\n self._compute_unindexed_vertices()\n return self._vertices\n elif indexed == 'faces':\n if (self._vertices_indexed_by_faces is None and self._vertices is not\n None):\n self._vertices_indexed_by_faces = self._vertices[self.get_faces()]\n return self._vertices_indexed_by_faces\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n",
"role": "user"
},
{
"content": "get_vertices",
"role": "assistant"
}
] |
def x(self):
if self._vertices_indexed_by_faces is not None:
v = self._vertices_indexed_by_faces
elif self._vertices is not None:
v = self._vertices
else:
return None
bounds = [(v[:, ax].min(), v[:, ax].max()) for ax in range(v.shape[1])]
return bounds
|
get_bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._vertices_indexed_by_faces is not None:\n v = self._vertices_indexed_by_faces\n elif self._vertices is not None:\n v = self._vertices\n else:\n return None\n bounds = [(v[:, ax].min(), v[:, ax].max()) for ax in range(v.shape[1])]\n return bounds\n",
"role": "user"
},
{
"content": "get_bounds",
"role": "assistant"
}
] |
def x(self, verts=None, indexed=None, reset_normals=True):
if indexed is None:
if verts is not None:
self._vertices = verts
self._vertices_indexed_by_faces = None
elif indexed == 'faces':
self._vertices = None
if verts is not None:
self._vertices_indexed_by_faces = verts
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
if reset_normals:
self.reset_normals()
|
set_vertices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, verts=None, indexed=None, reset_normals=True):\n if indexed is None:\n if verts is not None:\n self._vertices = verts\n self._vertices_indexed_by_faces = None\n elif indexed == 'faces':\n self._vertices = None\n if verts is not None:\n self._vertices_indexed_by_faces = verts\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n if reset_normals:\n self.reset_normals()\n",
"role": "user"
},
{
"content": "set_vertices",
"role": "assistant"
}
] |
def x(self):
for v in (self._vertex_colors, self._vertex_colors_indexed_by_faces,
self._vertex_colors_indexed_by_edges):
if v is not None:
return True
return False
|
has_vertex_color
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for v in (self._vertex_colors, self._vertex_colors_indexed_by_faces,\n self._vertex_colors_indexed_by_edges):\n if v is not None:\n return True\n return False\n",
"role": "user"
},
{
"content": "has_vertex_color",
"role": "assistant"
}
] |
def x(self):
for v in (self._face_colors, self._face_colors_indexed_by_faces, self.
_face_colors_indexed_by_edges):
if v is not None:
return True
return False
|
has_face_color
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for v in (self._face_colors, self._face_colors_indexed_by_faces, self.\n _face_colors_indexed_by_edges):\n if v is not None:\n return True\n return False\n",
"role": "user"
},
{
"content": "has_face_color",
"role": "assistant"
}
] |
def x(self, indexed=None):
if self._face_normals is None:
v = self.get_vertices(indexed='faces')
self._face_normals = np.cross(v[:, 1] - v[:, 0], v[:, 2] - v[:, 0])
if indexed is None:
return self._face_normals
elif indexed == 'faces':
if self._face_normals_indexed_by_faces is None:
norms = np.empty((self._face_normals.shape[0], 3, 3), dtype=np.
float32)
norms[:] = self._face_normals[:, np.newaxis, :]
self._face_normals_indexed_by_faces = norms
return self._face_normals_indexed_by_faces
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
|
get_face_normals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indexed=None):\n if self._face_normals is None:\n v = self.get_vertices(indexed='faces')\n self._face_normals = np.cross(v[:, 1] - v[:, 0], v[:, 2] - v[:, 0])\n if indexed is None:\n return self._face_normals\n elif indexed == 'faces':\n if self._face_normals_indexed_by_faces is None:\n norms = np.empty((self._face_normals.shape[0], 3, 3), dtype=np.\n float32)\n norms[:] = self._face_normals[:, np.newaxis, :]\n self._face_normals_indexed_by_faces = norms\n return self._face_normals_indexed_by_faces\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n",
"role": "user"
},
{
"content": "get_face_normals",
"role": "assistant"
}
] |
def x(self, indexed=None):
if self._vertex_normals is None:
faceNorms = self.get_face_normals()
vertFaces = self.get_vertex_faces()
self._vertex_normals = np.empty(self._vertices.shape, dtype=np.float32)
for vindex in xrange(self._vertices.shape[0]):
faces = vertFaces[vindex]
if len(faces) == 0:
self._vertex_normals[vindex] = 0, 0, 0
continue
norms = faceNorms[faces]
norm = norms.sum(axis=0)
renorm = (norm ** 2).sum() ** 0.5
if renorm > 0:
norm /= renorm
self._vertex_normals[vindex] = norm
if indexed is None:
return self._vertex_normals
elif indexed == 'faces':
return self._vertex_normals[self.get_faces()]
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
|
get_vertex_normals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indexed=None):\n if self._vertex_normals is None:\n faceNorms = self.get_face_normals()\n vertFaces = self.get_vertex_faces()\n self._vertex_normals = np.empty(self._vertices.shape, dtype=np.float32)\n for vindex in xrange(self._vertices.shape[0]):\n faces = vertFaces[vindex]\n if len(faces) == 0:\n self._vertex_normals[vindex] = 0, 0, 0\n continue\n norms = faceNorms[faces]\n norm = norms.sum(axis=0)\n renorm = (norm ** 2).sum() ** 0.5\n if renorm > 0:\n norm /= renorm\n self._vertex_normals[vindex] = norm\n if indexed is None:\n return self._vertex_normals\n elif indexed == 'faces':\n return self._vertex_normals[self.get_faces()]\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n",
"role": "user"
},
{
"content": "get_vertex_normals",
"role": "assistant"
}
] |
def x(self, indexed=None):
if indexed is None:
return self._vertex_colors
elif indexed == 'faces':
if self._vertex_colors_indexed_by_faces is None:
self._vertex_colors_indexed_by_faces = self._vertex_colors[self
.get_faces()]
return self._vertex_colors_indexed_by_faces
else:
raise Exception("Invalid indexing mode. Accepts: None, 'faces'")
|
get_vertex_colors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indexed=None):\n if indexed is None:\n return self._vertex_colors\n elif indexed == 'faces':\n if self._vertex_colors_indexed_by_faces is None:\n self._vertex_colors_indexed_by_faces = self._vertex_colors[self\n .get_faces()]\n return self._vertex_colors_indexed_by_faces\n else:\n raise Exception(\"Invalid indexing mode. Accepts: None, 'faces'\")\n",
"role": "user"
},
{
"content": "get_vertex_colors",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.