source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, event): self._update_transforms() if self._central_widget is not None: self._central_widget.size = self.size if len(self._vp_stack) == 0: self.context.set_viewport(0, 0, *self.physical_size)
on_resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n self._update_transforms()\n if self._central_widget is not None:\n self._central_widget.size = self.size\n if len(self._vp_stack) == 0:\n self.context.set_viewport(0, 0, *self.physical_size)\n", "role": "user" }, { "content": "on_resize", "role": "assistant" } ]
def x(self, event): self.events.mouse_press.disconnect(self._process_mouse_event) self.events.mouse_move.disconnect(self._process_mouse_event) self.events.mouse_release.disconnect(self._process_mouse_event) self.events.mouse_wheel.disconnect(self._process_mouse_event)
on_close
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n self.events.mouse_press.disconnect(self._process_mouse_event)\n self.events.mouse_move.disconnect(self._process_mouse_event)\n self.events.mouse_release.disconnect(self._process_mouse_event)\n self.events.mouse_wheel.disconnect(self._process_mouse_event)\n", "role": "user" }, { "content": "on_close", "role": "assistant" } ]
def x(self, viewport): vp = list(viewport) if vp[2] < 0: vp[0] += vp[2] vp[2] *= -1 if vp[3] < 0: vp[1] += vp[3] vp[3] *= -1 self._vp_stack.append(vp) try: self.context.set_viewport(*vp) except: self._vp_stack.pop() raise self._update_transforms()
push_viewport
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, viewport):\n vp = list(viewport)\n if vp[2] < 0:\n vp[0] += vp[2]\n vp[2] *= -1\n if vp[3] < 0:\n vp[1] += vp[3]\n vp[3] *= -1\n self._vp_stack.append(vp)\n try:\n self.context.set_viewport(*vp)\n except:\n self._vp_stack.pop()\n raise\n self._update_transforms()\n", "role": "user" }, { "content": "push_viewport", "role": "assistant" } ]
def x(self): vp = self._vp_stack.pop() if len(self._vp_stack) > 0: self.context.set_viewport(*self._vp_stack[-1]) else: self.context.set_viewport(0, 0, *self.physical_size) self._update_transforms() return vp
pop_viewport
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n vp = self._vp_stack.pop()\n if len(self._vp_stack) > 0:\n self.context.set_viewport(*self._vp_stack[-1])\n else:\n self.context.set_viewport(0, 0, *self.physical_size)\n self._update_transforms()\n return vp\n", "role": "user" }, { "content": "pop_viewport", "role": "assistant" } ]
def x(self, fbo, offset, csize): self._fb_stack.append((fbo, offset, csize)) try: fbo.activate() h, w = fbo.color_buffer.shape[:2] self.push_viewport((0, 0, w, h)) except Exception: self._fb_stack.pop() raise self._update_transforms()
push_fbo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fbo, offset, csize):\n self._fb_stack.append((fbo, offset, csize))\n try:\n fbo.activate()\n h, w = fbo.color_buffer.shape[:2]\n self.push_viewport((0, 0, w, h))\n except Exception:\n self._fb_stack.pop()\n raise\n self._update_transforms()\n", "role": "user" }, { "content": "push_fbo", "role": "assistant" } ]
def x(self): fbo = self._fb_stack.pop() fbo[0].deactivate() self.pop_viewport() if len(self._fb_stack) > 0: old_fbo = self._fb_stack[-1] old_fbo[0].activate() self._update_transforms() return fbo
pop_fbo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n fbo = self._fb_stack.pop()\n fbo[0].deactivate()\n self.pop_viewport()\n if len(self._fb_stack) > 0:\n old_fbo = self._fb_stack[-1]\n old_fbo[0].activate()\n self._update_transforms()\n return fbo\n", "role": "user" }, { "content": "pop_fbo", "role": "assistant" } ]
def x(self): if len(self._fb_stack) == 0: fb_size = fb_rect = None else: fb, origin, fb_size = self._fb_stack[-1] fb_rect = origin + fb_size if len(self._vp_stack) == 0: viewport = None else: viewport = self._vp_stack[-1] self.transforms.configure(viewport=viewport, fbo_size=fb_size, fbo_rect =fb_rect)
update_transforms
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if len(self._fb_stack) == 0:\n fb_size = fb_rect = None\n else:\n fb, origin, fb_size = self._fb_stack[-1]\n fb_rect = origin + fb_size\n if len(self._vp_stack) == 0:\n viewport = None\n else:\n viewport = self._vp_stack[-1]\n self.transforms.configure(viewport=viewport, fbo_size=fb_size, fbo_rect\n =fb_rect)\n", "role": "user" }, { "content": "update_transforms", "role": "assistant" } ]
def x(self): value = self._wrapping return value[0] if all([(v == value[0]) for v in value]) else value
wrapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n value = self._wrapping\n return value[0] if all([(v == value[0]) for v in value]) else value\n", "role": "user" }, { "content": "wrapping", "role": "assistant" } ]
def x(self, shape, format=None, internalformat=None): return self._resize(shape, format, internalformat)
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shape, format=None, internalformat=None):\n return self._resize(shape, format, internalformat)\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(self, shape, format=None, internalformat=None): shape = self._normalize_shape(shape) if not self._resizable: raise RuntimeError('Texture is not resizable') if format is None: format = self._formats[shape[-1]] if self._format and self._inv_formats[self._format ] == self._inv_formats[format]: format = self._format else: format = check_enum(format) if internalformat is None: if self._internalformat and self._inv_internalformats[self. _internalformat] == shape[-1]: internalformat = self._internalformat else: internalformat = check_enum(internalformat) if format not in self._inv_formats: raise ValueError('Invalid texture format: %r.' % format) elif shape[-1] != self._inv_formats[format]: raise ValueError( 'Format does not match with given shape. (format expects %d elements, data has %d)' % (self._inv_formats[format], shape[-1])) if internalformat is None: pass elif internalformat not in self._inv_internalformats: raise ValueError( 'Invalid texture internalformat: %r. Allowed formats: %r' % ( internalformat, self._inv_internalformats)) elif shape[-1] != self._inv_internalformats[internalformat]: raise ValueError('Internalformat does not match with given shape.') self._shape = shape self._format = format self._internalformat = internalformat self._glir.command('SIZE', self._id, self._shape, self._format, self. _internalformat)
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shape, format=None, internalformat=None):\n shape = self._normalize_shape(shape)\n if not self._resizable:\n raise RuntimeError('Texture is not resizable')\n if format is None:\n format = self._formats[shape[-1]]\n if self._format and self._inv_formats[self._format\n ] == self._inv_formats[format]:\n format = self._format\n else:\n format = check_enum(format)\n if internalformat is None:\n if self._internalformat and self._inv_internalformats[self.\n _internalformat] == shape[-1]:\n internalformat = self._internalformat\n else:\n internalformat = check_enum(internalformat)\n if format not in self._inv_formats:\n raise ValueError('Invalid texture format: %r.' % format)\n elif shape[-1] != self._inv_formats[format]:\n raise ValueError(\n 'Format does not match with given shape. (format expects %d elements, data has %d)'\n % (self._inv_formats[format], shape[-1]))\n if internalformat is None:\n pass\n elif internalformat not in self._inv_internalformats:\n raise ValueError(\n 'Invalid texture internalformat: %r. Allowed formats: %r' % (\n internalformat, self._inv_internalformats))\n elif shape[-1] != self._inv_internalformats[internalformat]:\n raise ValueError('Internalformat does not match with given shape.')\n self._shape = shape\n self._format = format\n self._internalformat = internalformat\n self._glir.command('SIZE', self._id, self._shape, self._format, self.\n _internalformat)\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(self, data, offset=None, copy=False): return self._set_data(data, offset, copy)
set_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, offset=None, copy=False):\n return self._set_data(data, offset, copy)\n", "role": "user" }, { "content": "set_data", "role": "assistant" } ]
def x(self, data, offset=None, copy=False): data = np.array(data, copy=copy) data = self._normalize_shape(data) if offset is None: self._resize(data.shape) elif all([(i == 0) for i in offset]) and data.shape == self._shape: self._resize(data.shape) offset = offset or tuple([(0) for i in range(self._ndim)]) assert len(offset) == self._ndim for i in range(len(data.shape) - 1): if offset[i] + data.shape[i] > self._shape[i]: raise ValueError('Data is too large') self._glir.command('DATA', self._id, offset, data)
set_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, offset=None, copy=False):\n data = np.array(data, copy=copy)\n data = self._normalize_shape(data)\n if offset is None:\n self._resize(data.shape)\n elif all([(i == 0) for i in offset]) and data.shape == self._shape:\n self._resize(data.shape)\n offset = offset or tuple([(0) for i in range(self._ndim)])\n assert len(offset) == self._ndim\n for i in range(len(data.shape) - 1):\n if offset[i] + data.shape[i] > self._shape[i]:\n raise ValueError('Data is too large')\n self._glir.command('DATA', self._id, offset, data)\n", "role": "user" }, { "content": "set_data", "role": "assistant" } ]
def x(self, data, offset=None, copy=False): self._set_emulated_shape(data) Texture2D.set_data(self, self._normalize_emulated_shape(data), offset, copy ) self._update_variables()
set_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, offset=None, copy=False):\n self._set_emulated_shape(data)\n Texture2D.set_data(self, self._normalize_emulated_shape(data), offset, copy\n )\n self._update_variables()\n", "role": "user" }, { "content": "set_data", "role": "assistant" } ]
def x(self, shape, format=None, internalformat=None): self._set_emulated_shape(shape) Texture2D.resize(self, self._normalize_emulated_shape(shape), format, internalformat) self._update_variables()
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shape, format=None, internalformat=None):\n self._set_emulated_shape(shape)\n Texture2D.resize(self, self._normalize_emulated_shape(shape), format,\n internalformat)\n self._update_variables()\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(self, width, height): best_height = best_width = np.inf best_index = -1 for i in range(len(self._atlas_nodes)): y = self._fit(i, width, height) if y >= 0: node = self._atlas_nodes[i] if y + height < best_height or y + height == best_height and node[2 ] < best_width: best_height = y + height best_index = i best_width = node[2] region = node[0], y, width, height if best_index == -1: return None node = region[0], region[1] + height, width self._atlas_nodes.insert(best_index, node) i = best_index + 1 while i < len(self._atlas_nodes): node = self._atlas_nodes[i] prev_node = self._atlas_nodes[i - 1] if node[0] < prev_node[0] + prev_node[2]: shrink = prev_node[0] + prev_node[2] - node[0] x, y, w = self._atlas_nodes[i] self._atlas_nodes[i] = x + shrink, y, w - shrink if self._atlas_nodes[i][2] <= 0: del self._atlas_nodes[i] i -= 1 else: break else: break i += 1 i = 0 while i < len(self._atlas_nodes) - 1: node = self._atlas_nodes[i] next_node = self._atlas_nodes[i + 1] if node[1] == next_node[1]: self._atlas_nodes[i] = node[0], node[1], node[2] + next_node[2] del self._atlas_nodes[i + 1] else: i += 1 return region
get_free_region
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, width, height):\n best_height = best_width = np.inf\n best_index = -1\n for i in range(len(self._atlas_nodes)):\n y = self._fit(i, width, height)\n if y >= 0:\n node = self._atlas_nodes[i]\n if y + height < best_height or y + height == best_height and node[2\n ] < best_width:\n best_height = y + height\n best_index = i\n best_width = node[2]\n region = node[0], y, width, height\n if best_index == -1:\n return None\n node = region[0], region[1] + height, width\n self._atlas_nodes.insert(best_index, node)\n i = best_index + 1\n while i < len(self._atlas_nodes):\n node = self._atlas_nodes[i]\n prev_node = self._atlas_nodes[i - 1]\n if node[0] < prev_node[0] + prev_node[2]:\n shrink = prev_node[0] + prev_node[2] - node[0]\n x, y, w = self._atlas_nodes[i]\n self._atlas_nodes[i] = x + shrink, y, w - shrink\n if self._atlas_nodes[i][2] <= 0:\n del self._atlas_nodes[i]\n i -= 1\n else:\n break\n else:\n break\n i += 1\n i = 0\n while i < len(self._atlas_nodes) - 1:\n node = self._atlas_nodes[i]\n next_node = self._atlas_nodes[i + 1]\n if node[1] == next_node[1]:\n self._atlas_nodes[i] = node[0], node[1], node[2] + next_node[2]\n del self._atlas_nodes[i + 1]\n else:\n i += 1\n return region\n", "role": "user" }, { "content": "get_free_region", "role": "assistant" } ]
def x(self, index, width, height): node = self._atlas_nodes[index] x, y = node[0], node[1] width_left = width if x + width > self._shape[1]: return -1 i = index while width_left > 0: node = self._atlas_nodes[i] y = max(y, node[1]) if y + height > self._shape[0]: return -1 width_left -= node[2] i += 1 return y
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index, width, height):\n node = self._atlas_nodes[index]\n x, y = node[0], node[1]\n width_left = width\n if x + width > self._shape[1]:\n return -1\n i = index\n while width_left > 0:\n node = self._atlas_nodes[i]\n y = max(y, node[1])\n if y + height > self._shape[0]:\n return -1\n width_left -= node[2]\n i += 1\n return y\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(x, type='row'): if isinstance(x, (list, tuple)): x = np.array(x) if isinstance(x, np.ndarray): assert x.ndim == 1 if type == 'column': x = x[:, None] return x
vector_or_scalar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, type='row'):\n if isinstance(x, (list, tuple)):\n x = np.array(x)\n if isinstance(x, np.ndarray):\n assert x.ndim == 1\n if type == 'column':\n x = x[:, None]\n return x\n", "role": "user" }, { "content": "vector_or_scalar", "role": "assistant" } ]
def x(x, type='row'): if isinstance(x, (list, tuple)): x = np.array(x, dtype=np.float32) elif not isinstance(x, np.ndarray): x = np.array([x], dtype=np.float32) assert x.ndim == 1 if type == 'column': x = x[:, None] return x
vector
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, type='row'):\n if isinstance(x, (list, tuple)):\n x = np.array(x, dtype=np.float32)\n elif not isinstance(x, np.ndarray):\n x = np.array([x], dtype=np.float32)\n assert x.ndim == 1\n if type == 'column':\n x = x[:, None]\n return x\n", "role": "user" }, { "content": "vector", "role": "assistant" } ]
def x(x, cmin=None, cmax=None, clip=True): if not isinstance(x, np.ndarray): x = np.array(x) if cmin is None: cmin = x.min() if cmax is None: cmax = x.max() if cmin == cmax: return 0.5 * np.ones(x.shape) else: cmin, cmax = float(cmin), float(cmax) y = (x - cmin) * 1.0 / (cmax - cmin) if clip: y = np.clip(y, 0.0, 1.0) return y
normalize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, cmin=None, cmax=None, clip=True):\n if not isinstance(x, np.ndarray):\n x = np.array(x)\n if cmin is None:\n cmin = x.min()\n if cmax is None:\n cmax = x.max()\n if cmin == cmax:\n return 0.5 * np.ones(x.shape)\n else:\n cmin, cmax = float(cmin), float(cmax)\n y = (x - cmin) * 1.0 / (cmax - cmin)\n if clip:\n y = np.clip(y, 0.0, 1.0)\n return y\n", "role": "user" }, { "content": "normalize", "role": "assistant" } ]
def x(a, b, x): x = np.clip(x, 0.0, 1.0) return (1.0 - x) * a + x * b
mix_simple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, x):\n x = np.clip(x, 0.0, 1.0)\n return (1.0 - x) * a + x * b\n", "role": "user" }, { "content": "mix_simple", "role": "assistant" } ]
def x(edge0, edge1, x): x = np.clip((x - edge0) / (edge1 - edge0), 0.0, 1.0) return x * x * (3 - 2 * x)
smoothstep
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(edge0, edge1, x):\n x = np.clip((x - edge0) / (edge1 - edge0), 0.0, 1.0)\n return x * x * (3 - 2 * x)\n", "role": "user" }, { "content": "smoothstep", "role": "assistant" } ]
def x(colors, x, controls=None): x = x.ravel() """Step interpolation from a set of colors. x belongs in [0, 1].""" assert (controls[0], controls[-1]) == (0.0, 1.0) ncolors = len(colors) assert ncolors == len(controls) - 1 assert ncolors >= 2 x_step = _find_controls(x, controls, ncolors - 1) return colors[x_step, ...]
step
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(colors, x, controls=None):\n x = x.ravel()\n \"\"\"Step interpolation from a set of colors. x belongs in [0, 1].\"\"\"\n assert (controls[0], controls[-1]) == (0.0, 1.0)\n ncolors = len(colors)\n assert ncolors == len(controls) - 1\n assert ncolors >= 2\n x_step = _find_controls(x, controls, ncolors - 1)\n return colors[x_step, ...]\n", "role": "user" }, { "content": "step", "role": "assistant" } ]
def x(controls=None): assert (controls[0], controls[-1]) == (0.0, 1.0) ncolors = len(controls) assert ncolors >= 2 if ncolors == 2: s = ' return mix($color_0, $color_1, t);\n' else: s = '' for i in range(ncolors - 1): if i == 0: ifs = 'if (t < %.6f)' % controls[i + 1] elif i == ncolors - 2: ifs = 'else' else: ifs = 'else if (t < %.6f)' % controls[i + 1] adj_t = '(t - %s) / %s' % (controls[i], controls[i + 1] - controls[i]) s += '%s {\n return mix($color_%d, $color_%d, %s);\n} ' % (ifs, i, i + 1, adj_t) return 'vec4 colormap(float t) {\n%s\n}' % s
glsl_mix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(controls=None):\n assert (controls[0], controls[-1]) == (0.0, 1.0)\n ncolors = len(controls)\n assert ncolors >= 2\n if ncolors == 2:\n s = ' return mix($color_0, $color_1, t);\\n'\n else:\n s = ''\n for i in range(ncolors - 1):\n if i == 0:\n ifs = 'if (t < %.6f)' % controls[i + 1]\n elif i == ncolors - 2:\n ifs = 'else'\n else:\n ifs = 'else if (t < %.6f)' % controls[i + 1]\n adj_t = '(t - %s) / %s' % (controls[i], controls[i + 1] -\n controls[i])\n s += '%s {\\n return mix($color_%d, $color_%d, %s);\\n} ' % (ifs,\n i, i + 1, adj_t)\n return 'vec4 colormap(float t) {\\n%s\\n}' % s\n", "role": "user" }, { "content": "glsl_mix", "role": "assistant" } ]
def x(template, colors): for i in range(len(colors) - 1, -1, -1): color = colors[i] assert len(color) == 4 vec4_color = 'vec4(%.3f, %.3f, %.3f, %.3f)' % tuple(color) template = template.replace('$color_%d' % i, vec4_color) return template
process_glsl_template
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(template, colors):\n for i in range(len(colors) - 1, -1, -1):\n color = colors[i]\n assert len(color) == 4\n vec4_color = 'vec4(%.3f, %.3f, %.3f, %.3f)' % tuple(color)\n template = template.replace('$color_%d' % i, vec4_color)\n return template\n", "role": "user" }, { "content": "process_glsl_template", "role": "assistant" } ]
def x(name, *args, **kwargs): if isinstance(name, BaseColormap): cmap = name else: if not isinstance(name, string_types): raise TypeError('colormap must be a Colormap or string name') if name not in _colormaps: raise KeyError('colormap name %s not found' % name) cmap = _colormaps[name] if inspect.isclass(cmap): cmap = cmap(*args, **kwargs) return cmap
get_colormap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, *args, **kwargs):\n if isinstance(name, BaseColormap):\n cmap = name\n else:\n if not isinstance(name, string_types):\n raise TypeError('colormap must be a Colormap or string name')\n if name not in _colormaps:\n raise KeyError('colormap name %s not found' % name)\n cmap = _colormaps[name]\n if inspect.isclass(cmap):\n cmap = cmap(*args, **kwargs)\n return cmap\n", "role": "user" }, { "content": "get_colormap", "role": "assistant" } ]
def x(self, x): return self._map_function(self.colors.rgba, x, self._controls)
map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x):\n return self._map_function(self.colors.rgba, x, self._controls)\n", "role": "user" }, { "content": "map", "role": "assistant" } ]
def x(self): render_to_doc = self.transforms.get_transform('document', 'visual') vec = render_to_doc.map([self.border_width, self.border_width, 0]) origin = render_to_doc.map([0, 0, 0]) visual_border_width = [vec[0] - origin[0], vec[1] - origin[1]] visual_border_width[1] *= -1 return visual_border_width
visual_border_width
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n render_to_doc = self.transforms.get_transform('document', 'visual')\n vec = render_to_doc.map([self.border_width, self.border_width, 0])\n origin = render_to_doc.map([0, 0, 0])\n visual_border_width = [vec[0] - origin[0], vec[1] - origin[1]]\n visual_border_width[1] *= -1\n return visual_border_width\n", "role": "user" }, { "content": "visual_border_width", "role": "assistant" } ]
def x(self, fig): fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi) if self.close_mpl: import matplotlib.pyplot as plt plt.close(fig) self.crawl_fig(fig)
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fig):\n fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi)\n if self.close_mpl:\n import matplotlib.pyplot as plt\n plt.close(fig)\n self.crawl_fig(fig)\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(transform, ax=None, data=None, return_trans=False, force_trans=None): if isinstance(transform, transforms.BlendedGenericTransform): warnings.warn( 'Blended transforms not yet supported. Zoom behavior may not work as expected.' ) if force_trans is not None: if data is not None: data = (transform - force_trans).transform(data) transform = force_trans code = 'display' if ax is not None: for c, trans in [('data', ax.transData), ('axes', ax.transAxes), ( 'figure', ax.figure.transFigure), ('display', transforms. IdentityTransform())]: if transform.contains_branch(trans): code, transform = c, transform - trans break if data is not None: if return_trans: return code, transform.transform(data), transform else: return code, transform.transform(data) elif return_trans: return code, transform else: return code
process_transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(transform, ax=None, data=None, return_trans=False, force_trans=None):\n if isinstance(transform, transforms.BlendedGenericTransform):\n warnings.warn(\n 'Blended transforms not yet supported. Zoom behavior may not work as expected.'\n )\n if force_trans is not None:\n if data is not None:\n data = (transform - force_trans).transform(data)\n transform = force_trans\n code = 'display'\n if ax is not None:\n for c, trans in [('data', ax.transData), ('axes', ax.transAxes), (\n 'figure', ax.figure.transFigure), ('display', transforms.\n IdentityTransform())]:\n if transform.contains_branch(trans):\n code, transform = c, transform - trans\n break\n if data is not None:\n if return_trans:\n return code, transform.transform(data), transform\n else:\n return code, transform.transform(data)\n elif return_trans:\n return code, transform\n else:\n return code\n", "role": "user" }, { "content": "process_transform", "role": "assistant" } ]
def x(self, fig): with self.renderer.draw_figure(fig=fig, props=utils. get_figure_properties(fig)): for ax in fig.axes: self.crawl_ax(ax)
crawl_fig
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fig):\n with self.renderer.draw_figure(fig=fig, props=utils.\n get_figure_properties(fig)):\n for ax in fig.axes:\n self.crawl_ax(ax)\n", "role": "user" }, { "content": "crawl_fig", "role": "assistant" } ]
def x(self, ax): with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)): for line in ax.lines: self.draw_line(ax, line) for text in ax.texts: self.draw_text(ax, text) for text, ttp in zip([ax.xaxis.label, ax.yaxis.label, ax.title], [ 'xlabel', 'ylabel', 'title']): if hasattr(text, 'get_text') and text.get_text(): self.draw_text(ax, text, force_trans=ax.transAxes, text_type=ttp) for artist in ax.artists: if isinstance(artist, matplotlib.text.Text): self.draw_text(ax, artist) for patch in ax.patches: self.draw_patch(ax, patch) for collection in ax.collections: self.draw_collection(ax, collection) for image in ax.images: self.draw_image(ax, image) legend = ax.get_legend() if legend is not None: props = utils.get_legend_properties(ax, legend) with self.renderer.draw_legend(legend=legend, props=props): if props['visible']: self.crawl_legend(ax, legend)
crawl_ax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ax):\n with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)):\n for line in ax.lines:\n self.draw_line(ax, line)\n for text in ax.texts:\n self.draw_text(ax, text)\n for text, ttp in zip([ax.xaxis.label, ax.yaxis.label, ax.title], [\n 'xlabel', 'ylabel', 'title']):\n if hasattr(text, 'get_text') and text.get_text():\n self.draw_text(ax, text, force_trans=ax.transAxes,\n text_type=ttp)\n for artist in ax.artists:\n if isinstance(artist, matplotlib.text.Text):\n self.draw_text(ax, artist)\n for patch in ax.patches:\n self.draw_patch(ax, patch)\n for collection in ax.collections:\n self.draw_collection(ax, collection)\n for image in ax.images:\n self.draw_image(ax, image)\n legend = ax.get_legend()\n if legend is not None:\n props = utils.get_legend_properties(ax, legend)\n with self.renderer.draw_legend(legend=legend, props=props):\n if props['visible']:\n self.crawl_legend(ax, legend)\n", "role": "user" }, { "content": "crawl_ax", "role": "assistant" } ]
def x(self, ax, legend): legendElements = list(utils.iter_all_children(legend._legend_box, skipContainers=True)) legendElements.append(legend.legendPatch) for child in legendElements: child.set_zorder(1000000.0 + child.get_zorder()) try: if isinstance(child, matplotlib.patches.Patch): self.draw_patch(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.text.Text): if not (child is legend.get_children()[-1] and child. get_text() == 'None'): self.draw_text(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.lines.Line2D): self.draw_line(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.collections.Collection): self.draw_collection(ax, child, force_pathtrans=ax.transAxes) else: warnings.warn('Legend element %s not impemented' % child) except NotImplementedError: warnings.warn('Legend element %s not impemented' % child)
crawl_legend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ax, legend):\n legendElements = list(utils.iter_all_children(legend._legend_box,\n skipContainers=True))\n legendElements.append(legend.legendPatch)\n for child in legendElements:\n child.set_zorder(1000000.0 + child.get_zorder())\n try:\n if isinstance(child, matplotlib.patches.Patch):\n self.draw_patch(ax, child, force_trans=ax.transAxes)\n elif isinstance(child, matplotlib.text.Text):\n if not (child is legend.get_children()[-1] and child.\n get_text() == 'None'):\n self.draw_text(ax, child, force_trans=ax.transAxes)\n elif isinstance(child, matplotlib.lines.Line2D):\n self.draw_line(ax, child, force_trans=ax.transAxes)\n elif isinstance(child, matplotlib.collections.Collection):\n self.draw_collection(ax, child, force_pathtrans=ax.transAxes)\n else:\n warnings.warn('Legend element %s not impemented' % child)\n except NotImplementedError:\n warnings.warn('Legend element %s not impemented' % child)\n", "role": "user" }, { "content": "crawl_legend", "role": "assistant" } ]
def x(self, ax, line, force_trans=None): coordinates, data = self.process_transform(line.get_transform(), ax, line.get_xydata(), force_trans=force_trans) linestyle = utils.get_line_style(line) if linestyle['dasharray'] is None: linestyle = None markerstyle = utils.get_marker_style(line) if markerstyle['marker'] in ['None', 'none', None] or markerstyle[ 'markerpath'][0].size == 0: markerstyle = None label = line.get_label() if markerstyle or linestyle: self.renderer.draw_marked_line(data=data, coordinates=coordinates, linestyle=linestyle, markerstyle=markerstyle, label=label, mplobj=line)
draw_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ax, line, force_trans=None):\n coordinates, data = self.process_transform(line.get_transform(), ax,\n line.get_xydata(), force_trans=force_trans)\n linestyle = utils.get_line_style(line)\n if linestyle['dasharray'] is None:\n linestyle = None\n markerstyle = utils.get_marker_style(line)\n if markerstyle['marker'] in ['None', 'none', None] or markerstyle[\n 'markerpath'][0].size == 0:\n markerstyle = None\n label = line.get_label()\n if markerstyle or linestyle:\n self.renderer.draw_marked_line(data=data, coordinates=coordinates,\n linestyle=linestyle, markerstyle=markerstyle, label=label,\n mplobj=line)\n", "role": "user" }, { "content": "draw_line", "role": "assistant" } ]
def x(self, ax, text, force_trans=None, text_type=None): content = text.get_text() if content: transform = text.get_transform() position = text.get_position() coords, position = self.process_transform(transform, ax, position, force_trans=force_trans) style = utils.get_text_style(text) self.renderer.draw_text(text=content, position=position, coordinates=coords, text_type=text_type, style=style, mplobj=text)
draw_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ax, text, force_trans=None, text_type=None):\n content = text.get_text()\n if content:\n transform = text.get_transform()\n position = text.get_position()\n coords, position = self.process_transform(transform, ax, position,\n force_trans=force_trans)\n style = utils.get_text_style(text)\n self.renderer.draw_text(text=content, position=position,\n coordinates=coords, text_type=text_type, style=style, mplobj=text)\n", "role": "user" }, { "content": "draw_text", "role": "assistant" } ]
def x(self, ax, patch, force_trans=None): vertices, pathcodes = utils.SVG_path(patch.get_path()) transform = patch.get_transform() coordinates, vertices = self.process_transform(transform, ax, vertices, force_trans=force_trans) linestyle = utils.get_path_style(patch, fill=patch.get_fill()) self.renderer.draw_path(data=vertices, coordinates=coordinates, pathcodes=pathcodes, style=linestyle, mplobj=patch)
draw_patch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ax, patch, force_trans=None):\n vertices, pathcodes = utils.SVG_path(patch.get_path())\n transform = patch.get_transform()\n coordinates, vertices = self.process_transform(transform, ax, vertices,\n force_trans=force_trans)\n linestyle = utils.get_path_style(patch, fill=patch.get_fill())\n self.renderer.draw_path(data=vertices, coordinates=coordinates,\n pathcodes=pathcodes, style=linestyle, mplobj=patch)\n", "role": "user" }, { "content": "draw_patch", "role": "assistant" } ]
def x(self, ax, collection, force_pathtrans=None, force_offsettrans=None): transform, transOffset, offsets, paths = collection._prepare_points() offset_coords, offsets = self.process_transform(transOffset, ax, offsets, force_trans=force_offsettrans) path_coords = self.process_transform(transform, ax, force_trans= force_pathtrans) processed_paths = [utils.SVG_path(path) for path in paths] processed_paths = [(self.process_transform(transform, ax, path[0], force_trans=force_pathtrans)[1], path[1]) for path in processed_paths] path_transforms = collection.get_transforms() try: path_transforms = [t.get_matrix() for t in path_transforms] except AttributeError: pass styles = {'linewidth': collection.get_linewidths(), 'facecolor': collection.get_facecolors(), 'edgecolor': collection.get_edgecolors (), 'alpha': collection._alpha, 'zorder': collection.get_zorder()} offset_dict = {'data': 'before', 'screen': 'after'} offset_order = offset_dict[collection.get_offset_position()] self.renderer.draw_path_collection(paths=processed_paths, path_coordinates=path_coords, path_transforms=path_transforms, offsets=offsets, offset_coordinates=offset_coords, offset_order= offset_order, styles=styles, mplobj=collection)
draw_collection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ax, collection, force_pathtrans=None, force_offsettrans=None):\n transform, transOffset, offsets, paths = collection._prepare_points()\n offset_coords, offsets = self.process_transform(transOffset, ax,\n offsets, force_trans=force_offsettrans)\n path_coords = self.process_transform(transform, ax, force_trans=\n force_pathtrans)\n processed_paths = [utils.SVG_path(path) for path in paths]\n processed_paths = [(self.process_transform(transform, ax, path[0],\n force_trans=force_pathtrans)[1], path[1]) for path in processed_paths]\n path_transforms = collection.get_transforms()\n try:\n path_transforms = [t.get_matrix() for t in path_transforms]\n except AttributeError:\n pass\n styles = {'linewidth': collection.get_linewidths(), 'facecolor':\n collection.get_facecolors(), 'edgecolor': collection.get_edgecolors\n (), 'alpha': collection._alpha, 'zorder': collection.get_zorder()}\n offset_dict = {'data': 'before', 'screen': 'after'}\n offset_order = offset_dict[collection.get_offset_position()]\n self.renderer.draw_path_collection(paths=processed_paths,\n path_coordinates=path_coords, path_transforms=path_transforms,\n offsets=offsets, offset_coordinates=offset_coords, offset_order=\n offset_order, styles=styles, mplobj=collection)\n", "role": "user" }, { "content": "draw_collection", "role": "assistant" } ]
def x(self, ax, image): self.renderer.draw_image(imdata=utils.image_to_base64(image), extent= image.get_extent(), coordinates='data', style={'alpha': image. get_alpha(), 'zorder': image.get_zorder()}, mplobj=image)
draw_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ax, image):\n self.renderer.draw_image(imdata=utils.image_to_base64(image), extent=\n image.get_extent(), coordinates='data', style={'alpha': image.\n get_alpha(), 'zorder': image.get_zorder()}, mplobj=image)\n", "role": "user" }, { "content": "draw_image", "role": "assistant" } ]
def x(self, data, coordinates, linestyle, markerstyle, label, mplobj=None): if linestyle is not None: self.draw_line(data, coordinates, linestyle, label, mplobj) if markerstyle is not None: self.draw_markers(data, coordinates, markerstyle, label, mplobj)
draw_marked_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, coordinates, linestyle, markerstyle, label, mplobj=None):\n if linestyle is not None:\n self.draw_line(data, coordinates, linestyle, label, mplobj)\n if markerstyle is not None:\n self.draw_markers(data, coordinates, markerstyle, label, mplobj)\n", "role": "user" }, { "content": "draw_marked_line", "role": "assistant" } ]
def x(self, data, coordinates, style, label, mplobj=None): pathcodes = ['M'] + (data.shape[0] - 1) * ['L'] pathstyle = dict(facecolor='none', **style) pathstyle['edgecolor'] = pathstyle.pop('color') pathstyle['edgewidth'] = pathstyle.pop('linewidth') self.draw_path(data=data, coordinates=coordinates, pathcodes=pathcodes, style=pathstyle, mplobj=mplobj)
draw_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, coordinates, style, label, mplobj=None):\n pathcodes = ['M'] + (data.shape[0] - 1) * ['L']\n pathstyle = dict(facecolor='none', **style)\n pathstyle['edgecolor'] = pathstyle.pop('color')\n pathstyle['edgewidth'] = pathstyle.pop('linewidth')\n self.draw_path(data=data, coordinates=coordinates, pathcodes=pathcodes,\n style=pathstyle, mplobj=mplobj)\n", "role": "user" }, { "content": "draw_line", "role": "assistant" } ]
def x(paths, path_transforms, offsets, styles): N = max(len(paths), len(offsets)) if not path_transforms: path_transforms = [np.eye(3)] edgecolor = styles['edgecolor'] if np.size(edgecolor) == 0: edgecolor = ['none'] facecolor = styles['facecolor'] if np.size(facecolor) == 0: facecolor = ['none'] elements = [paths, path_transforms, offsets, edgecolor, styles[ 'linewidth'], facecolor] it = itertools return it.islice(py3k.zip(*py3k.map(it.cycle, elements)), N)
iter_path_collection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(paths, path_transforms, offsets, styles):\n N = max(len(paths), len(offsets))\n if not path_transforms:\n path_transforms = [np.eye(3)]\n edgecolor = styles['edgecolor']\n if np.size(edgecolor) == 0:\n edgecolor = ['none']\n facecolor = styles['facecolor']\n if np.size(facecolor) == 0:\n facecolor = ['none']\n elements = [paths, path_transforms, offsets, edgecolor, styles[\n 'linewidth'], facecolor]\n it = itertools\n return it.islice(py3k.zip(*py3k.map(it.cycle, elements)), N)\n", "role": "user" }, { "content": "iter_path_collection", "role": "assistant" } ]
def x(self, paths, path_coordinates, path_transforms, offsets, offset_coordinates, offset_order, styles, mplobj=None): if offset_order == 'before': raise NotImplementedError('offset before transform') for tup in self._iter_path_collection(paths, path_transforms, offsets, styles): path, path_transform, offset, ec, lw, fc = tup vertices, pathcodes = path path_transform = transforms.Affine2D(path_transform) vertices = path_transform.transform(vertices) if path_coordinates == 'figure': path_coordinates = 'points' style = {'edgecolor': utils.color_to_hex(ec), 'facecolor': utils. color_to_hex(fc), 'edgewidth': lw, 'dasharray': '10,0', 'alpha': styles['alpha'], 'zorder': styles['zorder']} self.draw_path(data=vertices, coordinates=path_coordinates, pathcodes=pathcodes, style=style, offset=offset, offset_coordinates=offset_coordinates, mplobj=mplobj)
draw_path_collection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, paths, path_coordinates, path_transforms, offsets,\n offset_coordinates, offset_order, styles, mplobj=None):\n if offset_order == 'before':\n raise NotImplementedError('offset before transform')\n for tup in self._iter_path_collection(paths, path_transforms, offsets,\n styles):\n path, path_transform, offset, ec, lw, fc = tup\n vertices, pathcodes = path\n path_transform = transforms.Affine2D(path_transform)\n vertices = path_transform.transform(vertices)\n if path_coordinates == 'figure':\n path_coordinates = 'points'\n style = {'edgecolor': utils.color_to_hex(ec), 'facecolor': utils.\n color_to_hex(fc), 'edgewidth': lw, 'dasharray': '10,0', 'alpha':\n styles['alpha'], 'zorder': styles['zorder']}\n self.draw_path(data=vertices, coordinates=path_coordinates,\n pathcodes=pathcodes, style=style, offset=offset,\n offset_coordinates=offset_coordinates, mplobj=mplobj)\n", "role": "user" }, { "content": "draw_path_collection", "role": "assistant" } ]
def x(self, data, coordinates, style, label, mplobj=None): vertices, pathcodes = style['markerpath'] pathstyle = dict((key, style[key]) for key in ['alpha', 'edgecolor', 'facecolor', 'zorder', 'edgewidth']) pathstyle['dasharray'] = '10,0' for vertex in data: self.draw_path(data=vertices, coordinates='points', pathcodes= pathcodes, style=pathstyle, offset=vertex, offset_coordinates= coordinates, mplobj=mplobj)
draw_markers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, coordinates, style, label, mplobj=None):\n vertices, pathcodes = style['markerpath']\n pathstyle = dict((key, style[key]) for key in ['alpha', 'edgecolor',\n 'facecolor', 'zorder', 'edgewidth'])\n pathstyle['dasharray'] = '10,0'\n for vertex in data:\n self.draw_path(data=vertices, coordinates='points', pathcodes=\n pathcodes, style=pathstyle, offset=vertex, offset_coordinates=\n coordinates, mplobj=mplobj)\n", "role": "user" }, { "content": "draw_markers", "role": "assistant" } ]
def x(self, data, coordinates, pathcodes, style, offset=None, offset_coordinates='data', mplobj=None): raise NotImplementedError()
draw_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, coordinates, pathcodes, style, offset=None,\n offset_coordinates='data', mplobj=None):\n raise NotImplementedError()\n", "role": "user" }, { "content": "draw_path", "role": "assistant" } ]
def x(cls, times, delta_t=DEFAULT_OBSERVATION_TIME): times_arr = np.asarray(times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int) intervals_arr = np.vstack((times_arr, times_arr + 1)).T order = TimeMOC.time_resolution_to_order(delta_t) return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)
from_times
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, times, delta_t=DEFAULT_OBSERVATION_TIME):\n times_arr = np.asarray(times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int)\n intervals_arr = np.vstack((times_arr, times_arr + 1)).T\n order = TimeMOC.time_resolution_to_order(delta_t)\n return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)\n", "role": "user" }, { "content": "from_times", "role": "assistant" } ]
def x(cls, min_times, max_times, delta_t=DEFAULT_OBSERVATION_TIME): min_times_arr = np.asarray(min_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int) max_times_arr = np.asarray(max_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int) intervals_arr = np.vstack((min_times_arr, max_times_arr + 1)).T order = TimeMOC.time_resolution_to_order(delta_t) return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)
from_time_ranges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, min_times, max_times, delta_t=DEFAULT_OBSERVATION_TIME):\n min_times_arr = np.asarray(min_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int)\n max_times_arr = np.asarray(max_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int)\n intervals_arr = np.vstack((min_times_arr, max_times_arr + 1)).T\n order = TimeMOC.time_resolution_to_order(delta_t)\n return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)\n", "role": "user" }, { "content": "from_time_ranges", "role": "assistant" } ]
def x(self): time_delta = 1 << 2 * (IntervalSet.HPY_MAX_ORDER - self.max_order) intervals_arr = self._interval_set._intervals intervals_arr[:, 0] = np.maximum(intervals_arr[:, 0] - time_delta, 0) intervals_arr[:, 1] = np.minimum(intervals_arr[:, 1] + time_delta, (1 << 58) - 1) self._interval_set = IntervalSet(intervals_arr)
add_neighbours
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n time_delta = 1 << 2 * (IntervalSet.HPY_MAX_ORDER - self.max_order)\n intervals_arr = self._interval_set._intervals\n intervals_arr[:, 0] = np.maximum(intervals_arr[:, 0] - time_delta, 0)\n intervals_arr[:, 1] = np.minimum(intervals_arr[:, 1] + time_delta, (1 <<\n 58) - 1)\n self._interval_set = IntervalSet(intervals_arr)\n", "role": "user" }, { "content": "add_neighbours", "role": "assistant" } ]
def x(self): time_delta = 1 << 2 * (IntervalSet.HPY_MAX_ORDER - self.max_order) intervals_arr = self._interval_set._intervals intervals_arr[:, 0] = np.minimum(intervals_arr[:, 0] + time_delta, (1 << 58) - 1) intervals_arr[:, 1] = np.maximum(intervals_arr[:, 1] - time_delta, 0) good_intervals = intervals_arr[:, 1] > intervals_arr[:, 0] self._interval_set = IntervalSet(intervals_arr[good_intervals])
remove_neighbours
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n time_delta = 1 << 2 * (IntervalSet.HPY_MAX_ORDER - self.max_order)\n intervals_arr = self._interval_set._intervals\n intervals_arr[:, 0] = np.minimum(intervals_arr[:, 0] + time_delta, (1 <<\n 58) - 1)\n intervals_arr[:, 1] = np.maximum(intervals_arr[:, 1] - time_delta, 0)\n good_intervals = intervals_arr[:, 1] > intervals_arr[:, 0]\n self._interval_set = IntervalSet(intervals_arr[good_intervals])\n", "role": "user" }, { "content": "remove_neighbours", "role": "assistant" } ]
def x(self, another_moc, order_op): max_order = max(self.max_order, another_moc.max_order) if order_op > max_order: message = ( """Requested time resolution for the operation cannot be applied. The TimeMoc object resulting from the operation is of time resolution {0} sec.""" .format(TimeMOC.order_to_time_resolution(max_order).sec)) warnings.warn(message, UserWarning) self_degradation = self.degrade_to_order(order_op) another_moc_degradation = another_moc.degrade_to_order(order_op) result = self_degradation, another_moc_degradation return result
process_degradation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, another_moc, order_op):\n max_order = max(self.max_order, another_moc.max_order)\n if order_op > max_order:\n message = (\n \"\"\"Requested time resolution for the operation cannot be applied.\nThe TimeMoc object resulting from the operation is of time resolution {0} sec.\"\"\"\n .format(TimeMOC.order_to_time_resolution(max_order).sec))\n warnings.warn(message, UserWarning)\n self_degradation = self.degrade_to_order(order_op)\n another_moc_degradation = another_moc.degrade_to_order(order_op)\n result = self_degradation, another_moc_degradation\n return result\n", "role": "user" }, { "content": "process_degradation", "role": "assistant" } ]
def x(self, another_moc, delta_t=DEFAULT_OBSERVATION_TIME): order_op = TimeMOC.time_resolution_to_order(delta_t) self_degraded, moc_degraded = self._process_degradation(another_moc, order_op) return super(TimeMOC, self_degraded).intersection(moc_degraded)
intersection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, another_moc, delta_t=DEFAULT_OBSERVATION_TIME):\n order_op = TimeMOC.time_resolution_to_order(delta_t)\n self_degraded, moc_degraded = self._process_degradation(another_moc,\n order_op)\n return super(TimeMOC, self_degraded).intersection(moc_degraded)\n", "role": "user" }, { "content": "intersection", "role": "assistant" } ]
def x(self): if self._interval_set.empty(): return 0 total_time_us = 0 for start_time, stop_time in self._interval_set._intervals: total_time_us = total_time_us + (stop_time - start_time) duration = TimeDelta(total_time_us / 1000000.0, format='sec', scale='tdb') return duration
total_duration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._interval_set.empty():\n return 0\n total_time_us = 0\n for start_time, stop_time in self._interval_set._intervals:\n total_time_us = total_time_us + (stop_time - start_time)\n duration = TimeDelta(total_time_us / 1000000.0, format='sec', scale='tdb')\n return duration\n", "role": "user" }, { "content": "total_duration", "role": "assistant" } ]
def x(self): result = self.total_duration.jd / (self.max_time - self.min_time).jd return result
consistency
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = self.total_duration.jd / (self.max_time - self.min_time).jd\n return result\n", "role": "user" }, { "content": "consistency", "role": "assistant" } ]
def x(self): min_time = Time(self._interval_set.min / TimeMOC.DAY_MICRO_SEC, format= 'jd', scale='tdb') return min_time
min_time
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n min_time = Time(self._interval_set.min / TimeMOC.DAY_MICRO_SEC, format=\n 'jd', scale='tdb')\n return min_time\n", "role": "user" }, { "content": "min_time", "role": "assistant" } ]
def x(self): max_time = Time(self._interval_set.max / TimeMOC.DAY_MICRO_SEC, format= 'jd', scale='tdb') return max_time
max_time
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n max_time = Time(self._interval_set.max / TimeMOC.DAY_MICRO_SEC, format=\n 'jd', scale='tdb')\n return max_time\n", "role": "user" }, { "content": "max_time", "role": "assistant" } ]
def x(self, times, keep_inside=True, delta_t=DEFAULT_OBSERVATION_TIME): current_max_order = self.max_order new_max_order = TimeMOC.time_resolution_to_order(delta_t) if new_max_order > current_max_order: message = ( """Requested time resolution filtering cannot be applied. Filtering is applied with a time resolution of {0} sec.""" .format(TimeMOC.order_to_time_resolution(current_max_order).sec)) warnings.warn(message, UserWarning) rough_tmoc = self.degrade_to_order(new_max_order) pix_arr = times.jd * TimeMOC.DAY_MICRO_SEC pix_arr = pix_arr.astype(int) intervals_arr = rough_tmoc._interval_set._intervals inf_arr = np.vstack([(pix_arr[i] >= intervals_arr[:, 0]) for i in range (pix_arr.shape[0])]) sup_arr = np.vstack([(pix_arr[i] <= intervals_arr[:, 1]) for i in range (pix_arr.shape[0])]) if keep_inside: res = inf_arr & sup_arr filtered_rows = np.any(res, axis=1) else: res = ~inf_arr | ~sup_arr filtered_rows = np.all(res, axis=1) return filtered_rows
contains
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, times, keep_inside=True, delta_t=DEFAULT_OBSERVATION_TIME):\n current_max_order = self.max_order\n new_max_order = TimeMOC.time_resolution_to_order(delta_t)\n if new_max_order > current_max_order:\n message = (\n \"\"\"Requested time resolution filtering cannot be applied.\nFiltering is applied with a time resolution of {0} sec.\"\"\"\n .format(TimeMOC.order_to_time_resolution(current_max_order).sec))\n warnings.warn(message, UserWarning)\n rough_tmoc = self.degrade_to_order(new_max_order)\n pix_arr = times.jd * TimeMOC.DAY_MICRO_SEC\n pix_arr = pix_arr.astype(int)\n intervals_arr = rough_tmoc._interval_set._intervals\n inf_arr = np.vstack([(pix_arr[i] >= intervals_arr[:, 0]) for i in range\n (pix_arr.shape[0])])\n sup_arr = np.vstack([(pix_arr[i] <= intervals_arr[:, 1]) for i in range\n (pix_arr.shape[0])])\n if keep_inside:\n res = inf_arr & sup_arr\n filtered_rows = np.any(res, axis=1)\n else:\n res = ~inf_arr | ~sup_arr\n filtered_rows = np.all(res, axis=1)\n return filtered_rows\n", "role": "user" }, { "content": "contains", "role": "assistant" } ]
def x(self, title='TimeMoc', view=(None, None)): from matplotlib.colors import LinearSegmentedColormap import matplotlib.pyplot as plt if self._interval_set.empty(): print('Nothing to print. This TimeMoc object is empty.') return plot_order = 15 if self.max_order > plot_order: plotted_moc = self.degrade_to_order(plot_order) else: plotted_moc = self min_jd = plotted_moc.min_time.jd if not view[0] else view[0].jd max_jd = plotted_moc.max_time.jd if not view[1] else view[1].jd if max_jd < min_jd: raise ValueError( 'Invalid selection: max_jd = {0} must be > to min_jd = {1}'. format(max_jd, min_jd)) fig1 = plt.figure(figsize=(9.5, 5)) ax = fig1.add_subplot(111) ax.set_xlabel('iso') ax.get_yaxis().set_visible(False) size = 2000 delta = (max_jd - min_jd) / size min_jd_time = min_jd ax.set_xticks([0, size]) ax.set_xticklabels(Time([min_jd_time, max_jd], format='jd', scale='tdb' ).iso, rotation=70) y = np.zeros(size) for s_time_us, e_time_us in plotted_moc._interval_set._intervals: s_index = int((s_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta ) e_index = int((e_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta ) y[s_index:e_index + 1] = 1.0 if np.all(y): y[0] = 0 z = np.tile(y, (int(size // 10), 1)) plt.title(title) color_map = LinearSegmentedColormap.from_list('w2r', ['#fffff0', '#aa0000'] ) color_map.set_under('w') color_map.set_bad('gray') plt.imshow(z, interpolation='bilinear', cmap=color_map) def x(event): for txt in ax.texts: txt.set_visible(False) text = ax.text(0, 0, '', va='bottom', ha='left') time = Time(event.xdata * delta + min_jd_time, format='jd', scale='tdb' ) tx = '{0}'.format(time.iso) text.set_position((event.xdata - 50, 700)) text.set_rotation(70) text.set_text(tx) cid = fig1.canvas.mpl_connect('motion_notify_event', on_mouse_motion) plt.show()
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, title='TimeMoc', view=(None, None)):\n from matplotlib.colors import LinearSegmentedColormap\n import matplotlib.pyplot as plt\n if self._interval_set.empty():\n print('Nothing to print. This TimeMoc object is empty.')\n return\n plot_order = 15\n if self.max_order > plot_order:\n plotted_moc = self.degrade_to_order(plot_order)\n else:\n plotted_moc = self\n min_jd = plotted_moc.min_time.jd if not view[0] else view[0].jd\n max_jd = plotted_moc.max_time.jd if not view[1] else view[1].jd\n if max_jd < min_jd:\n raise ValueError(\n 'Invalid selection: max_jd = {0} must be > to min_jd = {1}'.\n format(max_jd, min_jd))\n fig1 = plt.figure(figsize=(9.5, 5))\n ax = fig1.add_subplot(111)\n ax.set_xlabel('iso')\n ax.get_yaxis().set_visible(False)\n size = 2000\n delta = (max_jd - min_jd) / size\n min_jd_time = min_jd\n ax.set_xticks([0, size])\n ax.set_xticklabels(Time([min_jd_time, max_jd], format='jd', scale='tdb'\n ).iso, rotation=70)\n y = np.zeros(size)\n for s_time_us, e_time_us in plotted_moc._interval_set._intervals:\n s_index = int((s_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta\n )\n e_index = int((e_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta\n )\n y[s_index:e_index + 1] = 1.0\n if np.all(y):\n y[0] = 0\n z = np.tile(y, (int(size // 10), 1))\n plt.title(title)\n color_map = LinearSegmentedColormap.from_list('w2r', ['#fffff0', '#aa0000']\n )\n color_map.set_under('w')\n color_map.set_bad('gray')\n plt.imshow(z, interpolation='bilinear', cmap=color_map)\n\n def x(event):\n for txt in ax.texts:\n txt.set_visible(False)\n text = ax.text(0, 0, '', va='bottom', ha='left')\n time = Time(event.xdata * delta + min_jd_time, format='jd', scale='tdb'\n )\n tx = '{0}'.format(time.iso)\n text.set_position((event.xdata - 50, 700))\n text.set_rotation(70)\n text.set_text(tx)\n cid = fig1.canvas.mpl_connect('motion_notify_event', on_mouse_motion)\n plt.show()\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(self, client, subhooks=()): new_data = self.fetch(client) updated = {} if not subhooks: subhooks = [self.name] for subhook in subhooks: new_key = self.extract_key(new_data, subhook) if new_key != self.previous_keys.get(subhook): updated[subhook] = new_key if updated: logger.debug('Hook %s: data changed from %r to %r', self.name, self .previous_keys, updated) self.previous_keys.update(updated) return True, new_data return False, None
handle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, client, subhooks=()):\n new_data = self.fetch(client)\n updated = {}\n if not subhooks:\n subhooks = [self.name]\n for subhook in subhooks:\n new_key = self.extract_key(new_data, subhook)\n if new_key != self.previous_keys.get(subhook):\n updated[subhook] = new_key\n if updated:\n logger.debug('Hook %s: data changed from %r to %r', self.name, self\n .previous_keys, updated)\n self.previous_keys.update(updated)\n return True, new_data\n return False, None\n", "role": "user" }, { "content": "handle", "role": "assistant" } ]
def x(text, font, anchor_x, anchor_y, lowres_size): canvas = context.get_current_canvas() canvas.context.flush_commands() text_vtype = np.dtype([('a_position', np.float32, 2), ('a_texcoord', np .float32, 2)]) vertices = np.zeros(len(text) * 4, dtype=text_vtype) prev = None width = height = ascender = descender = 0 ratio, slop = 1.0 / font.ratio, font.slop x_off = -slop if sys.version[0] == '2' and isinstance(text, str): text = text.decode('utf-8') orig_viewport = canvas.context.get_viewport() for ii, char in enumerate(text): glyph = font[char] kerning = glyph['kerning'].get(prev, 0.0) * ratio x0 = x_off + glyph['offset'][0] * ratio + kerning y0 = glyph['offset'][1] * ratio + slop x1 = x0 + glyph['size'][0] y1 = y0 - glyph['size'][1] u0, v0, u1, v1 = glyph['texcoords'] position = [[x0, y0], [x0, y1], [x1, y1], [x1, y0]] texcoords = [[u0, v0], [u0, v1], [u1, v1], [u1, v0]] vi = ii * 4 vertices['a_position'][vi:vi + 4] = position vertices['a_texcoord'][vi:vi + 4] = texcoords x_move = glyph['advance'] * ratio + kerning x_off += x_move ascender = max(ascender, y0 - slop) descender = min(descender, y1 + slop) width += x_move height = max(height, glyph['size'][1] - 2 * slop) prev = char for char in 'hy': glyph = font[char] y0 = glyph['offset'][1] * ratio + slop y1 = y0 - glyph['size'][1] ascender = max(ascender, y0 - slop) descender = min(descender, y1 + slop) height = max(height, glyph['size'][1] - 2 * slop) if orig_viewport is not None: canvas.context.set_viewport(*orig_viewport) width -= glyph['advance'] * ratio - (glyph['size'][0] - 2 * slop) dx = dy = 0 if anchor_y == 'top': dy = -ascender elif anchor_y in ('center', 'middle'): dy = -(height / 2 + descender) elif anchor_y == 'bottom': dy = -descender if anchor_x == 'right': dx = -width elif anchor_x == 'center': dx = -width / 2.0 vertices['a_position'] += dx, dy vertices['a_position'] /= lowres_size return vertices
text_to_vbo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, font, anchor_x, anchor_y, lowres_size):\n canvas = context.get_current_canvas()\n canvas.context.flush_commands()\n text_vtype = np.dtype([('a_position', np.float32, 2), ('a_texcoord', np\n .float32, 2)])\n vertices = np.zeros(len(text) * 4, dtype=text_vtype)\n prev = None\n width = height = ascender = descender = 0\n ratio, slop = 1.0 / font.ratio, font.slop\n x_off = -slop\n if sys.version[0] == '2' and isinstance(text, str):\n text = text.decode('utf-8')\n orig_viewport = canvas.context.get_viewport()\n for ii, char in enumerate(text):\n glyph = font[char]\n kerning = glyph['kerning'].get(prev, 0.0) * ratio\n x0 = x_off + glyph['offset'][0] * ratio + kerning\n y0 = glyph['offset'][1] * ratio + slop\n x1 = x0 + glyph['size'][0]\n y1 = y0 - glyph['size'][1]\n u0, v0, u1, v1 = glyph['texcoords']\n position = [[x0, y0], [x0, y1], [x1, y1], [x1, y0]]\n texcoords = [[u0, v0], [u0, v1], [u1, v1], [u1, v0]]\n vi = ii * 4\n vertices['a_position'][vi:vi + 4] = position\n vertices['a_texcoord'][vi:vi + 4] = texcoords\n x_move = glyph['advance'] * ratio + kerning\n x_off += x_move\n ascender = max(ascender, y0 - slop)\n descender = min(descender, y1 + slop)\n width += x_move\n height = max(height, glyph['size'][1] - 2 * slop)\n prev = char\n for char in 'hy':\n glyph = font[char]\n y0 = glyph['offset'][1] * ratio + slop\n y1 = y0 - glyph['size'][1]\n ascender = max(ascender, y0 - slop)\n descender = min(descender, y1 + slop)\n height = max(height, glyph['size'][1] - 2 * slop)\n if orig_viewport is not None:\n canvas.context.set_viewport(*orig_viewport)\n width -= glyph['advance'] * ratio - (glyph['size'][0] - 2 * slop)\n dx = dy = 0\n if anchor_y == 'top':\n dy = -ascender\n elif anchor_y in ('center', 'middle'):\n dy = -(height / 2 + descender)\n elif anchor_y == 'bottom':\n dy = -descender\n if anchor_x == 'right':\n dx = -width\n elif anchor_x == 'center':\n dx = -width / 2.0\n vertices['a_position'] += dx, dy\n vertices['a_position'] /= lowres_size\n return vertices\n", "role": "user" }, { "content": "text_to_vbo", "role": "assistant" } ]
def x(self, char): assert isinstance(char, string_types) and len(char) == 1 assert char not in self._glyphs _load_glyph(self._font, char, self._glyphs) glyph = self._glyphs[char] bitmap = glyph['bitmap'] data = np.zeros((bitmap.shape[0] + 2 * self._spread, bitmap.shape[1] + 2 * self._spread), np.uint8) data[self._spread:-self._spread, self._spread:-self._spread] = bitmap height = data.shape[0] // self.ratio width = data.shape[1] // self.ratio region = self._atlas.get_free_region(width + 2, height + 2) if region is None: raise RuntimeError('Cannot store glyph') x, y, w, h = region x, y, w, h = x + 1, y + 1, w - 2, h - 2 self._renderer.render_to_texture(data, self._atlas, (x, y), (w, h)) u0 = x / float(self._atlas.shape[1]) v0 = y / float(self._atlas.shape[0]) u1 = (x + w) / float(self._atlas.shape[1]) v1 = (y + h) / float(self._atlas.shape[0]) texcoords = u0, v0, u1, v1 glyph.update(dict(size=(w, h), texcoords=texcoords))
load_char
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, char):\n assert isinstance(char, string_types) and len(char) == 1\n assert char not in self._glyphs\n _load_glyph(self._font, char, self._glyphs)\n glyph = self._glyphs[char]\n bitmap = glyph['bitmap']\n data = np.zeros((bitmap.shape[0] + 2 * self._spread, bitmap.shape[1] + \n 2 * self._spread), np.uint8)\n data[self._spread:-self._spread, self._spread:-self._spread] = bitmap\n height = data.shape[0] // self.ratio\n width = data.shape[1] // self.ratio\n region = self._atlas.get_free_region(width + 2, height + 2)\n if region is None:\n raise RuntimeError('Cannot store glyph')\n x, y, w, h = region\n x, y, w, h = x + 1, y + 1, w - 2, h - 2\n self._renderer.render_to_texture(data, self._atlas, (x, y), (w, h))\n u0 = x / float(self._atlas.shape[1])\n v0 = y / float(self._atlas.shape[0])\n u1 = (x + w) / float(self._atlas.shape[1])\n v1 = (y + h) / float(self._atlas.shape[0])\n texcoords = u0, v0, u1, v1\n glyph.update(dict(size=(w, h), texcoords=texcoords))\n", "role": "user" }, { "content": "load_char", "role": "assistant" } ]
def x(self, face, bold=False, italic=False): key = '%s-%s-%s' % (face, bold, italic) if key not in self._fonts: font = dict(face=face, bold=bold, italic=italic) self._fonts[key] = TextureFont(font, self._renderer) return self._fonts[key]
get_font
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, face, bold=False, italic=False):\n key = '%s-%s-%s' % (face, bold, italic)\n if key not in self._fonts:\n font = dict(face=face, bold=bold, italic=italic)\n self._fonts[key] = TextureFont(font, self._renderer)\n return self._fonts[key]\n", "role": "user" }, { "content": "get_font", "role": "assistant" } ]
def x(x, n_fft=1024, step=512, fs=2 * np.pi, window='hann'): x = np.asarray(x, float) if x.ndim != 1: raise ValueError('x must be 1D') if window is not None: if window not in ('hann',): raise ValueError('window must be "hann" or None') w = np.hanning(n_fft) else: w = np.ones(n_fft) n_fft = int(n_fft) step = max(n_fft // 2, 1) if step is None else int(step) fs = float(fs) zero_pad = n_fft - len(x) if zero_pad > 0: x = np.concatenate((x, np.zeros(zero_pad, float))) n_freqs = n_fft // 2 + 1 n_estimates = (len(x) - n_fft) // step + 1 result = np.empty((n_freqs, n_estimates), np.complex128) for ii in range(n_estimates): result[:, ii] = np.fft.rfft(w * x[ii * step:ii * step + n_fft]) / n_fft return result
stft
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, n_fft=1024, step=512, fs=2 * np.pi, window='hann'):\n x = np.asarray(x, float)\n if x.ndim != 1:\n raise ValueError('x must be 1D')\n if window is not None:\n if window not in ('hann',):\n raise ValueError('window must be \"hann\" or None')\n w = np.hanning(n_fft)\n else:\n w = np.ones(n_fft)\n n_fft = int(n_fft)\n step = max(n_fft // 2, 1) if step is None else int(step)\n fs = float(fs)\n zero_pad = n_fft - len(x)\n if zero_pad > 0:\n x = np.concatenate((x, np.zeros(zero_pad, float)))\n n_freqs = n_fft // 2 + 1\n n_estimates = (len(x) - n_fft) // step + 1\n result = np.empty((n_freqs, n_estimates), np.complex128)\n for ii in range(n_estimates):\n result[:, ii] = np.fft.rfft(w * x[ii * step:ii * step + n_fft]) / n_fft\n return result\n", "role": "user" }, { "content": "stft", "role": "assistant" } ]
def x(n_fft, fs): return np.arange(0, n_fft // 2 + 1) / float(n_fft) * float(fs)
fft_freqs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n_fft, fs):\n return np.arange(0, n_fft // 2 + 1) / float(n_fft) * float(fs)\n", "role": "user" }, { "content": "fft_freqs", "role": "assistant" } ]
def x(self, pos=None, color=None, width=None, connect=None, arrows=None): if arrows is not None: self._arrows = arrows self._arrows_changed = True LineVisual.set_data(self, pos, color, width, connect)
set_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pos=None, color=None, width=None, connect=None, arrows=None):\n if arrows is not None:\n self._arrows = arrows\n self._arrows_changed = True\n LineVisual.set_data(self, pos, color, width, connect)\n", "role": "user" }, { "content": "set_data", "role": "assistant" } ]
def x(text): def x(text): replying_to = [] split_text = text.split() for index, token in enumerate(split_text): if token.startswith('@'): replying_to.append(token[1:]) else: message = split_text[index:] break rply_msg = '' if len(replying_to) > 0: rply_msg = 'Replying to ' for token in replying_to[:-1]: rply_msg += token + ',' if len(replying_to) > 1: rply_msg += 'and ' rply_msg += replying_to[-1] + '. ' return rply_msg + ' '.join(message) text = reply_to(text) text = text.replace('@', ' ') return ' '.join([token for token in text.split() if 'http:' not in token and 'https:' not in token])
strip_html
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n\n def x(text):\n replying_to = []\n split_text = text.split()\n for index, token in enumerate(split_text):\n if token.startswith('@'):\n replying_to.append(token[1:])\n else:\n message = split_text[index:]\n break\n rply_msg = ''\n if len(replying_to) > 0:\n rply_msg = 'Replying to '\n for token in replying_to[:-1]:\n rply_msg += token + ','\n if len(replying_to) > 1:\n rply_msg += 'and '\n rply_msg += replying_to[-1] + '. '\n return rply_msg + ' '.join(message)\n text = reply_to(text)\n text = text.replace('@', ' ')\n return ' '.join([token for token in text.split() if 'http:' not in\n token and 'https:' not in token])\n", "role": "user" }, { "content": "strip_html", "role": "assistant" } ]
def x(user_id, message, additional_params={}): url = 'https://api.twitter.com/1.1/statuses/update.json' params = {'status': message} params.update(additional_params) r = make_twitter_request(url, user_id, params, request_type='POST') print(r.text) return 'Successfully posted a tweet {}'.format(message)
post_tweet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(user_id, message, additional_params={}):\n url = 'https://api.twitter.com/1.1/statuses/update.json'\n params = {'status': message}\n params.update(additional_params)\n r = make_twitter_request(url, user_id, params, request_type='POST')\n print(r.text)\n return 'Successfully posted a tweet {}'.format(message)\n", "role": "user" }, { "content": "post_tweet", "role": "assistant" } ]
def x(url, user_id, params={}, request_type='GET'): if request_type == 'GET': return requests.get(url, auth=get_twitter_auth(user_id), params=params) elif request_type == 'POST': return requests.post(url, auth=get_twitter_auth(user_id), params=params )
make_twitter_request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(url, user_id, params={}, request_type='GET'):\n if request_type == 'GET':\n return requests.get(url, auth=get_twitter_auth(user_id), params=params)\n elif request_type == 'POST':\n return requests.post(url, auth=get_twitter_auth(user_id), params=params\n )\n", "role": "user" }, { "content": "make_twitter_request", "role": "assistant" } ]
def x(user_id, search_location): url = 'https://api.twitter.com/1.1/geo/search.json' params = {'query': search_location} response = make_twitter_request(url, user_id, params).json() return response
geo_search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(user_id, search_location):\n url = 'https://api.twitter.com/1.1/geo/search.json'\n params = {'query': search_location}\n response = make_twitter_request(url, user_id, params).json()\n return response\n", "role": "user" }, { "content": "geo_search", "role": "assistant" } ]
def x(processed_tweets, speech_convertor=None): return ['tweet number {num} by {user}. {text}.'.format(num=index + 1, user=user, text=text) for index, (user, text) in enumerate( processed_tweets)]
read_out_tweets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(processed_tweets, speech_convertor=None):\n return ['tweet number {num} by {user}. {text}.'.format(num=index + 1,\n user=user, text=text) for index, (user, text) in enumerate(\n processed_tweets)]\n", "role": "user" }, { "content": "read_out_tweets", "role": "assistant" } ]
def x(user_id, params): url = 'https://api.twitter.com/1.1/search/tweets.json' response = make_twitter_request(url, user_id, params) return process_tweets(response.json()['statuses'])
search_for_tweets_about
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(user_id, params):\n url = 'https://api.twitter.com/1.1/search/tweets.json'\n response = make_twitter_request(url, user_id, params)\n return process_tweets(response.json()['statuses'])\n", "role": "user" }, { "content": "search_for_tweets_about", "role": "assistant" } ]
def x(self, val): if not isinstance(val, type({})): raise ValueError(type({})) self.read() self.config.update(val) self.save()
add_val
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, val):\n if not isinstance(val, type({})):\n raise ValueError(type({}))\n self.read()\n self.config.update(val)\n self.save()\n", "role": "user" }, { "content": "add_val", "role": "assistant" } ]
def x(fname): fmt = op.splitext(fname)[1].lower() if fmt == '.gz': fmt = op.splitext(op.splitext(fname)[0])[1].lower() if fmt in '.obj': return WavefrontReader.read(fname) elif not format: raise ValueError('read_mesh needs could not determine format.') else: raise ValueError('read_mesh does not understand format %s.' % fmt)
read_mesh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n fmt = op.splitext(fname)[1].lower()\n if fmt == '.gz':\n fmt = op.splitext(op.splitext(fname)[0])[1].lower()\n if fmt in '.obj':\n return WavefrontReader.read(fname)\n elif not format:\n raise ValueError('read_mesh needs could not determine format.')\n else:\n raise ValueError('read_mesh does not understand format %s.' % fmt)\n", "role": "user" }, { "content": "read_mesh", "role": "assistant" } ]
def x(fname, vertices, faces, normals, texcoords, name='', format='obj', overwrite=False, reshape_faces=True): if op.isfile(fname) and not overwrite: raise IOError('file "%s" exists, use overwrite=True' % fname) if format not in 'obj': raise ValueError('Only "obj" format writing currently supported') WavefrontWriter.write(fname, vertices, faces, normals, texcoords, name, reshape_faces)
write_mesh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname, vertices, faces, normals, texcoords, name='', format='obj',\n overwrite=False, reshape_faces=True):\n if op.isfile(fname) and not overwrite:\n raise IOError('file \"%s\" exists, use overwrite=True' % fname)\n if format not in 'obj':\n raise ValueError('Only \"obj\" format writing currently supported')\n WavefrontWriter.write(fname, vertices, faces, normals, texcoords, name,\n reshape_faces)\n", "role": "user" }, { "content": "write_mesh", "role": "assistant" } ]
def x(config): pyglet_config = pyglet.gl.Config() pyglet_config.red_size = config['red_size'] pyglet_config.green_size = config['green_size'] pyglet_config.blue_size = config['blue_size'] pyglet_config.alpha_size = config['alpha_size'] pyglet_config.accum_red_size = 0 pyglet_config.accum_green_size = 0 pyglet_config.accum_blue_size = 0 pyglet_config.accum_alpha_size = 0 pyglet_config.depth_size = config['depth_size'] pyglet_config.stencil_size = config['stencil_size'] pyglet_config.double_buffer = config['double_buffer'] pyglet_config.stereo = config['stereo'] pyglet_config.samples = config['samples'] return pyglet_config
set_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config):\n pyglet_config = pyglet.gl.Config()\n pyglet_config.red_size = config['red_size']\n pyglet_config.green_size = config['green_size']\n pyglet_config.blue_size = config['blue_size']\n pyglet_config.alpha_size = config['alpha_size']\n pyglet_config.accum_red_size = 0\n pyglet_config.accum_green_size = 0\n pyglet_config.accum_blue_size = 0\n pyglet_config.accum_alpha_size = 0\n pyglet_config.depth_size = config['depth_size']\n pyglet_config.stencil_size = config['stencil_size']\n pyglet_config.double_buffer = config['double_buffer']\n pyglet_config.stereo = config['stereo']\n pyglet_config.samples = config['samples']\n return pyglet_config\n", "role": "user" }, { "content": "set_config", "role": "assistant" } ]
def x(self, vert, frag): if not vert or not frag: raise ValueError('Vertex and fragment code must both be non-empty') vert, frag = preprocess(vert), preprocess(frag) self._shaders = vert, frag self._glir.command('SHADERS', self._id, vert, frag) for key, val in self._user_variables.items(): self._pending_variables[key] = val self._user_variables = {} self._parse_variables_from_code()
set_shaders
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vert, frag):\n if not vert or not frag:\n raise ValueError('Vertex and fragment code must both be non-empty')\n vert, frag = preprocess(vert), preprocess(frag)\n self._shaders = vert, frag\n self._glir.command('SHADERS', self._id, vert, frag)\n for key, val in self._user_variables.items():\n self._pending_variables[key] = val\n self._user_variables = {}\n self._parse_variables_from_code()\n", "role": "user" }, { "content": "set_shaders", "role": "assistant" } ]
def x(self): code = '\n\n'.join(self._shaders) code = re.sub('(.*)(//.*)', '\\1', code, re.M) var_regexp = ( '\\s*VARIABLE\\s+((highp|mediump|lowp)\\s+)?(?P<type>\\w+)\\s+(?P<name>\\w+)\\s*(\\[(?P<size>\\d+)\\])?(\\s*\\=\\s*[0-9.]+)?\\s*;' ) self._code_variables = {} for kind in ('uniform', 'attribute', 'varying', 'const'): regex = re.compile(var_regexp.replace('VARIABLE', kind), flags=re. MULTILINE) for m in re.finditer(regex, code): gtype = m.group('type') size = int(m.group('size')) if m.group('size') else -1 this_kind = kind if size >= 1: for i in range(size): name = '%s[%d]' % (m.group('name'), i) self._code_variables[name] = kind, gtype, name, -1 this_kind = 'uniform_array' name = m.group('name') self._code_variables[name] = this_kind, gtype, name, size self._process_pending_variables()
parse_variables_from_code
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n code = '\\n\\n'.join(self._shaders)\n code = re.sub('(.*)(//.*)', '\\\\1', code, re.M)\n var_regexp = (\n '\\\\s*VARIABLE\\\\s+((highp|mediump|lowp)\\\\s+)?(?P<type>\\\\w+)\\\\s+(?P<name>\\\\w+)\\\\s*(\\\\[(?P<size>\\\\d+)\\\\])?(\\\\s*\\\\=\\\\s*[0-9.]+)?\\\\s*;'\n )\n self._code_variables = {}\n for kind in ('uniform', 'attribute', 'varying', 'const'):\n regex = re.compile(var_regexp.replace('VARIABLE', kind), flags=re.\n MULTILINE)\n for m in re.finditer(regex, code):\n gtype = m.group('type')\n size = int(m.group('size')) if m.group('size') else -1\n this_kind = kind\n if size >= 1:\n for i in range(size):\n name = '%s[%d]' % (m.group('name'), i)\n self._code_variables[name] = kind, gtype, name, -1\n this_kind = 'uniform_array'\n name = m.group('name')\n self._code_variables[name] = this_kind, gtype, name, size\n self._process_pending_variables()\n", "role": "user" }, { "content": "parse_variables_from_code", "role": "assistant" } ]
def x(self, data): if not isinstance(data, VertexBuffer): raise ValueError('Program.bind() requires a VertexBuffer.') for name in data.dtype.names: self[name] = data[name]
bind
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n if not isinstance(data, VertexBuffer):\n raise ValueError('Program.bind() requires a VertexBuffer.')\n for name in data.dtype.names:\n self[name] = data[name]\n", "role": "user" }, { "content": "bind", "role": "assistant" } ]
def x(self): self._pending_variables, pending = {}, self._pending_variables for name, data in pending.items(): self[name] = data
process_pending_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._pending_variables, pending = {}, self._pending_variables\n for name, data in pending.items():\n self[name] = data\n", "role": "user" }, { "content": "process_pending_variables", "role": "assistant" } ]
def x(self, mode='triangles', indices=None, check_error=True): self._buffer = None mode = check_enum(mode) if mode not in ['points', 'lines', 'line_strip', 'line_loop', 'triangles', 'triangle_strip', 'triangle_fan']: raise ValueError('Invalid draw mode: %r' % mode) for name in self._pending_variables: logger.warn('Variable %r is given but not known.' % name) self._pending_variables = {} attributes = [vbo for vbo in self._user_variables.values() if isinstance(vbo, DataBuffer)] sizes = [a.size for a in attributes] if len(attributes) < 1: raise RuntimeError('Must have at least one attribute') if not all(s == sizes[0] for s in sizes[1:]): msg = '\n'.join([('%s: %s' % (str(a), a.size)) for a in attributes]) raise RuntimeError( 'All attributes must have the same size, got:\n%s' % msg) canvas = get_current_canvas() assert canvas is not None canvas.context.glir.associate(self.glir) if isinstance(indices, IndexBuffer): canvas.context.glir.associate(indices.glir) logger.debug('Program drawing %r with index buffer' % mode) gltypes = {np.dtype(np.uint8): 'UNSIGNED_BYTE', np.dtype(np.uint16): 'UNSIGNED_SHORT', np.dtype(np.uint32): 'UNSIGNED_INT'} selection = indices.id, gltypes[indices.dtype], indices.size canvas.context.glir.command('DRAW', self._id, mode, selection) elif indices is None: selection = 0, attributes[0].size logger.debug('Program drawing %r with %r' % (mode, selection)) canvas.context.glir.command('DRAW', self._id, mode, selection) else: raise TypeError('Invalid index: %r (must be IndexBuffer)' % indices) canvas.context.flush_commands()
draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode='triangles', indices=None, check_error=True):\n self._buffer = None\n mode = check_enum(mode)\n if mode not in ['points', 'lines', 'line_strip', 'line_loop',\n 'triangles', 'triangle_strip', 'triangle_fan']:\n raise ValueError('Invalid draw mode: %r' % mode)\n for name in self._pending_variables:\n logger.warn('Variable %r is given but not known.' % name)\n self._pending_variables = {}\n attributes = [vbo for vbo in self._user_variables.values() if\n isinstance(vbo, DataBuffer)]\n sizes = [a.size for a in attributes]\n if len(attributes) < 1:\n raise RuntimeError('Must have at least one attribute')\n if not all(s == sizes[0] for s in sizes[1:]):\n msg = '\\n'.join([('%s: %s' % (str(a), a.size)) for a in attributes])\n raise RuntimeError(\n 'All attributes must have the same size, got:\\n%s' % msg)\n canvas = get_current_canvas()\n assert canvas is not None\n canvas.context.glir.associate(self.glir)\n if isinstance(indices, IndexBuffer):\n canvas.context.glir.associate(indices.glir)\n logger.debug('Program drawing %r with index buffer' % mode)\n gltypes = {np.dtype(np.uint8): 'UNSIGNED_BYTE', np.dtype(np.uint16):\n 'UNSIGNED_SHORT', np.dtype(np.uint32): 'UNSIGNED_INT'}\n selection = indices.id, gltypes[indices.dtype], indices.size\n canvas.context.glir.command('DRAW', self._id, mode, selection)\n elif indices is None:\n selection = 0, attributes[0].size\n logger.debug('Program drawing %r with %r' % (mode, selection))\n canvas.context.glir.command('DRAW', self._id, mode, selection)\n else:\n raise TypeError('Invalid index: %r (must be IndexBuffer)' % indices)\n canvas.context.flush_commands()\n", "role": "user" }, { "content": "draw", "role": "assistant" } ]
def x(self, x=None, y=None, z=None, colors=None): if x is not None: if self._x is None or len(x) != len(self._x): self.__vertices = None self._x = x if y is not None: if self._y is None or len(y) != len(self._y): self.__vertices = None self._y = y if z is not None: if self._x is not None and z.shape[0] != len(self._x): raise TypeError('Z values must have shape (len(x), len(y))') if self._y is not None and z.shape[1] != len(self._y): raise TypeError('Z values must have shape (len(x), len(y))') self._z = z if (self.__vertices is not None and self._z.shape != self. __vertices.shape[:2]): self.__vertices = None if self._z is None: return update_mesh = False new_vertices = False if self.__vertices is None: new_vertices = True self.__vertices = np.empty((self._z.shape[0], self._z.shape[1], 3), dtype=np.float32) self.generate_faces() self.__meshdata.set_faces(self.__faces) update_mesh = True if new_vertices or x is not None: if x is None: if self._x is None: x = np.arange(self._z.shape[0]) else: x = self._x self.__vertices[:, :, 0] = x.reshape(len(x), 1) update_mesh = True if new_vertices or y is not None: if y is None: if self._y is None: y = np.arange(self._z.shape[1]) else: y = self._y self.__vertices[:, :, 1] = y.reshape(1, len(y)) update_mesh = True if new_vertices or z is not None: self.__vertices[..., 2] = self._z update_mesh = True if colors is not None: self.__meshdata.set_vertex_colors(colors) update_mesh = True if update_mesh: self.__meshdata.set_vertices(self.__vertices.reshape(self. __vertices.shape[0] * self.__vertices.shape[1], 3)) MeshVisual.set_data(self, meshdata=self.__meshdata)
set_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x=None, y=None, z=None, colors=None):\n if x is not None:\n if self._x is None or len(x) != len(self._x):\n self.__vertices = None\n self._x = x\n if y is not None:\n if self._y is None or len(y) != len(self._y):\n self.__vertices = None\n self._y = y\n if z is not None:\n if self._x is not None and z.shape[0] != len(self._x):\n raise TypeError('Z values must have shape (len(x), len(y))')\n if self._y is not None and z.shape[1] != len(self._y):\n raise TypeError('Z values must have shape (len(x), len(y))')\n self._z = z\n if (self.__vertices is not None and self._z.shape != self.\n __vertices.shape[:2]):\n self.__vertices = None\n if self._z is None:\n return\n update_mesh = False\n new_vertices = False\n if self.__vertices is None:\n new_vertices = True\n self.__vertices = np.empty((self._z.shape[0], self._z.shape[1], 3),\n dtype=np.float32)\n self.generate_faces()\n self.__meshdata.set_faces(self.__faces)\n update_mesh = True\n if new_vertices or x is not None:\n if x is None:\n if self._x is None:\n x = np.arange(self._z.shape[0])\n else:\n x = self._x\n self.__vertices[:, :, 0] = x.reshape(len(x), 1)\n update_mesh = True\n if new_vertices or y is not None:\n if y is None:\n if self._y is None:\n y = np.arange(self._z.shape[1])\n else:\n y = self._y\n self.__vertices[:, :, 1] = y.reshape(1, len(y))\n update_mesh = True\n if new_vertices or z is not None:\n self.__vertices[..., 2] = self._z\n update_mesh = True\n if colors is not None:\n self.__meshdata.set_vertex_colors(colors)\n update_mesh = True\n if update_mesh:\n self.__meshdata.set_vertices(self.__vertices.reshape(self.\n __vertices.shape[0] * self.__vertices.shape[1], 3))\n MeshVisual.set_data(self, meshdata=self.__meshdata)\n", "role": "user" }, { "content": "set_data", "role": "assistant" } ]
def x(self): if self._simplified is None: self._simplified = SimplifiedChainTransform(self) return self._simplified
simplified
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._simplified is None:\n self._simplified = SimplifiedChainTransform(self)\n return self._simplified\n", "role": "user" }, { "content": "simplified", "role": "assistant" } ]
def x(self, coords): for tr in reversed(self.transforms): coords = tr.map(coords) return coords
map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coords):\n for tr in reversed(self.transforms):\n coords = tr.map(coords)\n return coords\n", "role": "user" }, { "content": "map", "role": "assistant" } ]
def x(self, coords): for tr in self.transforms: coords = tr.imap(coords) return coords
imap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, coords):\n for tr in self.transforms:\n coords = tr.imap(coords)\n return coords\n", "role": "user" }, { "content": "imap", "role": "assistant" } ]
def x(self, tr): self.transforms.append(tr) tr.changed.connect(self._subtr_changed) self._rebuild_shaders() self.update()
append
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tr):\n self.transforms.append(tr)\n tr.changed.connect(self._subtr_changed)\n self._rebuild_shaders()\n self.update()\n", "role": "user" }, { "content": "append", "role": "assistant" } ]
def x(self, tr): self.transforms.insert(0, tr) tr.changed.connect(self._subtr_changed) self._rebuild_shaders() self.update()
prepend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tr):\n self.transforms.insert(0, tr)\n tr.changed.connect(self._subtr_changed)\n self._rebuild_shaders()\n self.update()\n", "role": "user" }, { "content": "prepend", "role": "assistant" } ]
def x(self, event): transforms = self._chain.transforms[:] if len(transforms) == 0: self.transforms = [] return if event is not None: for source in event.sources[::-1]: if source in self.transforms: self.update(event) return new_chain = [] while len(transforms) > 0: tr = transforms.pop(0) if isinstance(tr, ChainTransform) and not tr.dynamic: transforms = tr.transforms[:] + transforms else: new_chain.append(tr) cont = True tr = new_chain while cont: new_tr = [tr[0]] cont = False for t2 in tr[1:]: t1 = new_tr[-1] pr = t1 * t2 if not t1.dynamic and not t2.dynamic and not isinstance(pr, ChainTransform): cont = True new_tr.pop() new_tr.append(pr) else: new_tr.append(t2) tr = new_tr self.transforms = tr
source_changed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, event):\n transforms = self._chain.transforms[:]\n if len(transforms) == 0:\n self.transforms = []\n return\n if event is not None:\n for source in event.sources[::-1]:\n if source in self.transforms:\n self.update(event)\n return\n new_chain = []\n while len(transforms) > 0:\n tr = transforms.pop(0)\n if isinstance(tr, ChainTransform) and not tr.dynamic:\n transforms = tr.transforms[:] + transforms\n else:\n new_chain.append(tr)\n cont = True\n tr = new_chain\n while cont:\n new_tr = [tr[0]]\n cont = False\n for t2 in tr[1:]:\n t1 = new_tr[-1]\n pr = t1 * t2\n if not t1.dynamic and not t2.dynamic and not isinstance(pr,\n ChainTransform):\n cont = True\n new_tr.pop()\n new_tr.append(pr)\n else:\n new_tr.append(t2)\n tr = new_tr\n self.transforms = tr\n", "role": "user" }, { "content": "source_changed", "role": "assistant" } ]
def x(messages): return pack_string(struct.pack('>l', len(messages)) + ''.join(map( pack_string, messages)))
pack_iterable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(messages):\n return pack_string(struct.pack('>l', len(messages)) + ''.join(map(\n pack_string, messages)))\n", "role": "user" }, { "content": "pack_iterable", "role": "assistant" } ]
def x(message): import string hexified = [] for char in message: if char in '\n\r \t' or char not in string.printable: hexified.append('\\x%02x' % ord(char)) else: hexified.append(char) return ''.join(hexified)
hexify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(message):\n import string\n hexified = []\n for char in message:\n if char in '\\n\\r \\t' or char not in string.printable:\n hexified.append('\\\\x%02x' % ord(char))\n else:\n hexified.append(char)\n return ''.join(hexified)\n", "role": "user" }, { "content": "hexify", "role": "assistant" } ]
def x(total, objects): for index, obj in enumerate(objects): start = index * total / len(objects) stop = (index + 1) * total / len(objects) yield stop - start, obj
distribute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(total, objects):\n for index, obj in enumerate(objects):\n start = index * total / len(objects)\n stop = (index + 1) * total / len(objects)\n yield stop - start, obj\n", "role": "user" }, { "content": "distribute", "role": "assistant" } ]
def x(self): for _, item in self.queue.items(): if item['status'] in ['paused', 'running', 'stopping', 'killing']: item['status'] = 'queued' item['start'] = '' item['end'] = ''
clean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for _, item in self.queue.items():\n if item['status'] in ['paused', 'running', 'stopping', 'killing']:\n item['status'] = 'queued'\n item['start'] = ''\n item['end'] = ''\n", "role": "user" }, { "content": "clean", "role": "assistant" } ]
def x(self): for key in list(self.queue.keys()): if self.queue[key]['status'] in ['done', 'failed']: del self.queue[key] self.write()
clear
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for key in list(self.queue.keys()):\n if self.queue[key]['status'] in ['done', 'failed']:\n del self.queue[key]\n self.write()\n", "role": "user" }, { "content": "clear", "role": "assistant" } ]
def x(self): smallest = None for key in self.queue.keys(): if self.queue[key]['status'] == 'queued': if smallest is None or key < smallest: smallest = key return smallest
next
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n smallest = None\n for key in self.queue.keys():\n if self.queue[key]['status'] == 'queued':\n if smallest is None or key < smallest:\n smallest = key\n return smallest\n", "role": "user" }, { "content": "next", "role": "assistant" } ]
def x(self): queue_path = os.path.join(self.config_dir, 'queue') if os.path.exists(queue_path): queue_file = open(queue_path, 'rb') try: self.queue = pickle.load(queue_file) except Exception: print('Queue file corrupted, deleting old queue') os.remove(queue_path) self.queue = {} queue_file.close() else: self.queue = {}
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n queue_path = os.path.join(self.config_dir, 'queue')\n if os.path.exists(queue_path):\n queue_file = open(queue_path, 'rb')\n try:\n self.queue = pickle.load(queue_file)\n except Exception:\n print('Queue file corrupted, deleting old queue')\n os.remove(queue_path)\n self.queue = {}\n queue_file.close()\n else:\n self.queue = {}\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self): queue_path = os.path.join(self.config_dir, 'queue') queue_file = open(queue_path, 'wb+') try: pickle.dump(self.queue, queue_file, -1) except Exception: print('Error while writing to queue file. Wrong file permissions?') queue_file.close()
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n queue_path = os.path.join(self.config_dir, 'queue')\n queue_file = open(queue_path, 'wb+')\n try:\n pickle.dump(self.queue, queue_file, -1)\n except Exception:\n print('Error while writing to queue file. Wrong file permissions?')\n queue_file.close()\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self, command): self.queue[self.next_key] = command self.queue[self.next_key]['status'] = 'queued' self.queue[self.next_key]['returncode'] = '' self.queue[self.next_key]['stdout'] = '' self.queue[self.next_key]['stderr'] = '' self.queue[self.next_key]['start'] = '' self.queue[self.next_key]['end'] = '' self.next_key += 1 self.write()
add_new
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, command):\n self.queue[self.next_key] = command\n self.queue[self.next_key]['status'] = 'queued'\n self.queue[self.next_key]['returncode'] = ''\n self.queue[self.next_key]['stdout'] = ''\n self.queue[self.next_key]['stderr'] = ''\n self.queue[self.next_key]['start'] = ''\n self.queue[self.next_key]['end'] = ''\n self.next_key += 1\n self.write()\n", "role": "user" }, { "content": "add_new", "role": "assistant" } ]
def x(self, key): if key in self.queue: del self.queue[key] self.write() return True return False
remove
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key):\n if key in self.queue:\n del self.queue[key]\n self.write()\n return True\n return False\n", "role": "user" }, { "content": "remove", "role": "assistant" } ]
def x(self, key): if key in self.queue: if self.queue[key]['status'] in ['failed', 'done']: new_entry = {'command': self.queue[key]['command'], 'path': self.queue[key]['path']} self.add_new(new_entry) self.write() return True return False
restart
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key):\n if key in self.queue:\n if self.queue[key]['status'] in ['failed', 'done']:\n new_entry = {'command': self.queue[key]['command'], 'path':\n self.queue[key]['path']}\n self.add_new(new_entry)\n self.write()\n return True\n return False\n", "role": "user" }, { "content": "restart", "role": "assistant" } ]
def x(self, first, second): allowed_states = ['queued', 'stashed'] if first in self.queue and second in self.queue and self.queue[first][ 'status'] in allowed_states and self.queue[second]['status' ] in allowed_states: tmp = self.queue[second].copy() self.queue[second] = self.queue[first].copy() self.queue[first] = tmp self.write() return True return False
switch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, first, second):\n allowed_states = ['queued', 'stashed']\n if first in self.queue and second in self.queue and self.queue[first][\n 'status'] in allowed_states and self.queue[second]['status'\n ] in allowed_states:\n tmp = self.queue[second].copy()\n self.queue[second] = self.queue[first].copy()\n self.queue[first] = tmp\n self.write()\n return True\n return False\n", "role": "user" }, { "content": "switch", "role": "assistant" } ]
def x(socket): answer = b'' while True: packet = socket.recv(4096) if not packet: break answer += packet response = pickle.loads(answer) socket.close() return response
receive_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(socket):\n answer = b''\n while True:\n packet = socket.recv(4096)\n if not packet:\n break\n answer += packet\n response = pickle.loads(answer)\n socket.close()\n return response\n", "role": "user" }, { "content": "receive_data", "role": "assistant" } ]
def x(root_dir): config_dir = os.path.join(root_dir, '.config/pueue') try: client = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) socket_path = os.path.join(config_dir, 'pueue.sock') if os.path.exists(socket_path): client.connect(socket_path) else: print("Socket doesn't exist") raise Exception except: print('Error connecting to socket. Make sure the daemon is running') sys.exit(1) return client
connect_socket
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(root_dir):\n config_dir = os.path.join(root_dir, '.config/pueue')\n try:\n client = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)\n socket_path = os.path.join(config_dir, 'pueue.sock')\n if os.path.exists(socket_path):\n client.connect(socket_path)\n else:\n print(\"Socket doesn't exist\")\n raise Exception\n except:\n print('Error connecting to socket. Make sure the daemon is running')\n sys.exit(1)\n return client\n", "role": "user" }, { "content": "connect_socket", "role": "assistant" } ]
def x(conn, raw): frame_type = struct.unpack('>l', raw[0:4])[0] message = raw[4:] if frame_type == FRAME_TYPE_MESSAGE: return Message(conn, frame_type, message) elif frame_type == FRAME_TYPE_RESPONSE: return Response(conn, frame_type, message) elif frame_type == FRAME_TYPE_ERROR: return Error(conn, frame_type, message) else: raise TypeError('Unknown frame type: %s' % frame_type)
from_raw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(conn, raw):\n frame_type = struct.unpack('>l', raw[0:4])[0]\n message = raw[4:]\n if frame_type == FRAME_TYPE_MESSAGE:\n return Message(conn, frame_type, message)\n elif frame_type == FRAME_TYPE_RESPONSE:\n return Response(conn, frame_type, message)\n elif frame_type == FRAME_TYPE_ERROR:\n return Error(conn, frame_type, message)\n else:\n raise TypeError('Unknown frame type: %s' % frame_type)\n", "role": "user" }, { "content": "from_raw", "role": "assistant" } ]
def x(cls, data): return struct.pack('>ll', len(data) + 4, cls.FRAME_TYPE) + data
pack
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, data):\n return struct.pack('>ll', len(data) + 4, cls.FRAME_TYPE) + data\n", "role": "user" }, { "content": "pack", "role": "assistant" } ]