source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, event):
self._update_transforms()
if self._central_widget is not None:
self._central_widget.size = self.size
if len(self._vp_stack) == 0:
self.context.set_viewport(0, 0, *self.physical_size)
|
on_resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n self._update_transforms()\n if self._central_widget is not None:\n self._central_widget.size = self.size\n if len(self._vp_stack) == 0:\n self.context.set_viewport(0, 0, *self.physical_size)\n",
"role": "user"
},
{
"content": "on_resize",
"role": "assistant"
}
] |
def x(self, event):
self.events.mouse_press.disconnect(self._process_mouse_event)
self.events.mouse_move.disconnect(self._process_mouse_event)
self.events.mouse_release.disconnect(self._process_mouse_event)
self.events.mouse_wheel.disconnect(self._process_mouse_event)
|
on_close
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n self.events.mouse_press.disconnect(self._process_mouse_event)\n self.events.mouse_move.disconnect(self._process_mouse_event)\n self.events.mouse_release.disconnect(self._process_mouse_event)\n self.events.mouse_wheel.disconnect(self._process_mouse_event)\n",
"role": "user"
},
{
"content": "on_close",
"role": "assistant"
}
] |
def x(self, viewport):
vp = list(viewport)
if vp[2] < 0:
vp[0] += vp[2]
vp[2] *= -1
if vp[3] < 0:
vp[1] += vp[3]
vp[3] *= -1
self._vp_stack.append(vp)
try:
self.context.set_viewport(*vp)
except:
self._vp_stack.pop()
raise
self._update_transforms()
|
push_viewport
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, viewport):\n vp = list(viewport)\n if vp[2] < 0:\n vp[0] += vp[2]\n vp[2] *= -1\n if vp[3] < 0:\n vp[1] += vp[3]\n vp[3] *= -1\n self._vp_stack.append(vp)\n try:\n self.context.set_viewport(*vp)\n except:\n self._vp_stack.pop()\n raise\n self._update_transforms()\n",
"role": "user"
},
{
"content": "push_viewport",
"role": "assistant"
}
] |
def x(self):
vp = self._vp_stack.pop()
if len(self._vp_stack) > 0:
self.context.set_viewport(*self._vp_stack[-1])
else:
self.context.set_viewport(0, 0, *self.physical_size)
self._update_transforms()
return vp
|
pop_viewport
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n vp = self._vp_stack.pop()\n if len(self._vp_stack) > 0:\n self.context.set_viewport(*self._vp_stack[-1])\n else:\n self.context.set_viewport(0, 0, *self.physical_size)\n self._update_transforms()\n return vp\n",
"role": "user"
},
{
"content": "pop_viewport",
"role": "assistant"
}
] |
def x(self, fbo, offset, csize):
self._fb_stack.append((fbo, offset, csize))
try:
fbo.activate()
h, w = fbo.color_buffer.shape[:2]
self.push_viewport((0, 0, w, h))
except Exception:
self._fb_stack.pop()
raise
self._update_transforms()
|
push_fbo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fbo, offset, csize):\n self._fb_stack.append((fbo, offset, csize))\n try:\n fbo.activate()\n h, w = fbo.color_buffer.shape[:2]\n self.push_viewport((0, 0, w, h))\n except Exception:\n self._fb_stack.pop()\n raise\n self._update_transforms()\n",
"role": "user"
},
{
"content": "push_fbo",
"role": "assistant"
}
] |
def x(self):
fbo = self._fb_stack.pop()
fbo[0].deactivate()
self.pop_viewport()
if len(self._fb_stack) > 0:
old_fbo = self._fb_stack[-1]
old_fbo[0].activate()
self._update_transforms()
return fbo
|
pop_fbo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n fbo = self._fb_stack.pop()\n fbo[0].deactivate()\n self.pop_viewport()\n if len(self._fb_stack) > 0:\n old_fbo = self._fb_stack[-1]\n old_fbo[0].activate()\n self._update_transforms()\n return fbo\n",
"role": "user"
},
{
"content": "pop_fbo",
"role": "assistant"
}
] |
def x(self):
if len(self._fb_stack) == 0:
fb_size = fb_rect = None
else:
fb, origin, fb_size = self._fb_stack[-1]
fb_rect = origin + fb_size
if len(self._vp_stack) == 0:
viewport = None
else:
viewport = self._vp_stack[-1]
self.transforms.configure(viewport=viewport, fbo_size=fb_size, fbo_rect
=fb_rect)
|
update_transforms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if len(self._fb_stack) == 0:\n fb_size = fb_rect = None\n else:\n fb, origin, fb_size = self._fb_stack[-1]\n fb_rect = origin + fb_size\n if len(self._vp_stack) == 0:\n viewport = None\n else:\n viewport = self._vp_stack[-1]\n self.transforms.configure(viewport=viewport, fbo_size=fb_size, fbo_rect\n =fb_rect)\n",
"role": "user"
},
{
"content": "update_transforms",
"role": "assistant"
}
] |
def x(self):
value = self._wrapping
return value[0] if all([(v == value[0]) for v in value]) else value
|
wrapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n value = self._wrapping\n return value[0] if all([(v == value[0]) for v in value]) else value\n",
"role": "user"
},
{
"content": "wrapping",
"role": "assistant"
}
] |
def x(self, shape, format=None, internalformat=None):
return self._resize(shape, format, internalformat)
|
resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shape, format=None, internalformat=None):\n return self._resize(shape, format, internalformat)\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(self, shape, format=None, internalformat=None):
shape = self._normalize_shape(shape)
if not self._resizable:
raise RuntimeError('Texture is not resizable')
if format is None:
format = self._formats[shape[-1]]
if self._format and self._inv_formats[self._format
] == self._inv_formats[format]:
format = self._format
else:
format = check_enum(format)
if internalformat is None:
if self._internalformat and self._inv_internalformats[self.
_internalformat] == shape[-1]:
internalformat = self._internalformat
else:
internalformat = check_enum(internalformat)
if format not in self._inv_formats:
raise ValueError('Invalid texture format: %r.' % format)
elif shape[-1] != self._inv_formats[format]:
raise ValueError(
'Format does not match with given shape. (format expects %d elements, data has %d)'
% (self._inv_formats[format], shape[-1]))
if internalformat is None:
pass
elif internalformat not in self._inv_internalformats:
raise ValueError(
'Invalid texture internalformat: %r. Allowed formats: %r' % (
internalformat, self._inv_internalformats))
elif shape[-1] != self._inv_internalformats[internalformat]:
raise ValueError('Internalformat does not match with given shape.')
self._shape = shape
self._format = format
self._internalformat = internalformat
self._glir.command('SIZE', self._id, self._shape, self._format, self.
_internalformat)
|
resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shape, format=None, internalformat=None):\n shape = self._normalize_shape(shape)\n if not self._resizable:\n raise RuntimeError('Texture is not resizable')\n if format is None:\n format = self._formats[shape[-1]]\n if self._format and self._inv_formats[self._format\n ] == self._inv_formats[format]:\n format = self._format\n else:\n format = check_enum(format)\n if internalformat is None:\n if self._internalformat and self._inv_internalformats[self.\n _internalformat] == shape[-1]:\n internalformat = self._internalformat\n else:\n internalformat = check_enum(internalformat)\n if format not in self._inv_formats:\n raise ValueError('Invalid texture format: %r.' % format)\n elif shape[-1] != self._inv_formats[format]:\n raise ValueError(\n 'Format does not match with given shape. (format expects %d elements, data has %d)'\n % (self._inv_formats[format], shape[-1]))\n if internalformat is None:\n pass\n elif internalformat not in self._inv_internalformats:\n raise ValueError(\n 'Invalid texture internalformat: %r. Allowed formats: %r' % (\n internalformat, self._inv_internalformats))\n elif shape[-1] != self._inv_internalformats[internalformat]:\n raise ValueError('Internalformat does not match with given shape.')\n self._shape = shape\n self._format = format\n self._internalformat = internalformat\n self._glir.command('SIZE', self._id, self._shape, self._format, self.\n _internalformat)\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(self, data, offset=None, copy=False):
return self._set_data(data, offset, copy)
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, offset=None, copy=False):\n return self._set_data(data, offset, copy)\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(self, data, offset=None, copy=False):
data = np.array(data, copy=copy)
data = self._normalize_shape(data)
if offset is None:
self._resize(data.shape)
elif all([(i == 0) for i in offset]) and data.shape == self._shape:
self._resize(data.shape)
offset = offset or tuple([(0) for i in range(self._ndim)])
assert len(offset) == self._ndim
for i in range(len(data.shape) - 1):
if offset[i] + data.shape[i] > self._shape[i]:
raise ValueError('Data is too large')
self._glir.command('DATA', self._id, offset, data)
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, offset=None, copy=False):\n data = np.array(data, copy=copy)\n data = self._normalize_shape(data)\n if offset is None:\n self._resize(data.shape)\n elif all([(i == 0) for i in offset]) and data.shape == self._shape:\n self._resize(data.shape)\n offset = offset or tuple([(0) for i in range(self._ndim)])\n assert len(offset) == self._ndim\n for i in range(len(data.shape) - 1):\n if offset[i] + data.shape[i] > self._shape[i]:\n raise ValueError('Data is too large')\n self._glir.command('DATA', self._id, offset, data)\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(self, data, offset=None, copy=False):
self._set_emulated_shape(data)
Texture2D.set_data(self, self._normalize_emulated_shape(data), offset, copy
)
self._update_variables()
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, offset=None, copy=False):\n self._set_emulated_shape(data)\n Texture2D.set_data(self, self._normalize_emulated_shape(data), offset, copy\n )\n self._update_variables()\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(self, shape, format=None, internalformat=None):
self._set_emulated_shape(shape)
Texture2D.resize(self, self._normalize_emulated_shape(shape), format,
internalformat)
self._update_variables()
|
resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shape, format=None, internalformat=None):\n self._set_emulated_shape(shape)\n Texture2D.resize(self, self._normalize_emulated_shape(shape), format,\n internalformat)\n self._update_variables()\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(self, width, height):
best_height = best_width = np.inf
best_index = -1
for i in range(len(self._atlas_nodes)):
y = self._fit(i, width, height)
if y >= 0:
node = self._atlas_nodes[i]
if y + height < best_height or y + height == best_height and node[2
] < best_width:
best_height = y + height
best_index = i
best_width = node[2]
region = node[0], y, width, height
if best_index == -1:
return None
node = region[0], region[1] + height, width
self._atlas_nodes.insert(best_index, node)
i = best_index + 1
while i < len(self._atlas_nodes):
node = self._atlas_nodes[i]
prev_node = self._atlas_nodes[i - 1]
if node[0] < prev_node[0] + prev_node[2]:
shrink = prev_node[0] + prev_node[2] - node[0]
x, y, w = self._atlas_nodes[i]
self._atlas_nodes[i] = x + shrink, y, w - shrink
if self._atlas_nodes[i][2] <= 0:
del self._atlas_nodes[i]
i -= 1
else:
break
else:
break
i += 1
i = 0
while i < len(self._atlas_nodes) - 1:
node = self._atlas_nodes[i]
next_node = self._atlas_nodes[i + 1]
if node[1] == next_node[1]:
self._atlas_nodes[i] = node[0], node[1], node[2] + next_node[2]
del self._atlas_nodes[i + 1]
else:
i += 1
return region
|
get_free_region
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, width, height):\n best_height = best_width = np.inf\n best_index = -1\n for i in range(len(self._atlas_nodes)):\n y = self._fit(i, width, height)\n if y >= 0:\n node = self._atlas_nodes[i]\n if y + height < best_height or y + height == best_height and node[2\n ] < best_width:\n best_height = y + height\n best_index = i\n best_width = node[2]\n region = node[0], y, width, height\n if best_index == -1:\n return None\n node = region[0], region[1] + height, width\n self._atlas_nodes.insert(best_index, node)\n i = best_index + 1\n while i < len(self._atlas_nodes):\n node = self._atlas_nodes[i]\n prev_node = self._atlas_nodes[i - 1]\n if node[0] < prev_node[0] + prev_node[2]:\n shrink = prev_node[0] + prev_node[2] - node[0]\n x, y, w = self._atlas_nodes[i]\n self._atlas_nodes[i] = x + shrink, y, w - shrink\n if self._atlas_nodes[i][2] <= 0:\n del self._atlas_nodes[i]\n i -= 1\n else:\n break\n else:\n break\n i += 1\n i = 0\n while i < len(self._atlas_nodes) - 1:\n node = self._atlas_nodes[i]\n next_node = self._atlas_nodes[i + 1]\n if node[1] == next_node[1]:\n self._atlas_nodes[i] = node[0], node[1], node[2] + next_node[2]\n del self._atlas_nodes[i + 1]\n else:\n i += 1\n return region\n",
"role": "user"
},
{
"content": "get_free_region",
"role": "assistant"
}
] |
def x(self, index, width, height):
node = self._atlas_nodes[index]
x, y = node[0], node[1]
width_left = width
if x + width > self._shape[1]:
return -1
i = index
while width_left > 0:
node = self._atlas_nodes[i]
y = max(y, node[1])
if y + height > self._shape[0]:
return -1
width_left -= node[2]
i += 1
return y
|
fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index, width, height):\n node = self._atlas_nodes[index]\n x, y = node[0], node[1]\n width_left = width\n if x + width > self._shape[1]:\n return -1\n i = index\n while width_left > 0:\n node = self._atlas_nodes[i]\n y = max(y, node[1])\n if y + height > self._shape[0]:\n return -1\n width_left -= node[2]\n i += 1\n return y\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
] |
def x(x, type='row'):
if isinstance(x, (list, tuple)):
x = np.array(x)
if isinstance(x, np.ndarray):
assert x.ndim == 1
if type == 'column':
x = x[:, None]
return x
|
vector_or_scalar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, type='row'):\n if isinstance(x, (list, tuple)):\n x = np.array(x)\n if isinstance(x, np.ndarray):\n assert x.ndim == 1\n if type == 'column':\n x = x[:, None]\n return x\n",
"role": "user"
},
{
"content": "vector_or_scalar",
"role": "assistant"
}
] |
def x(x, type='row'):
if isinstance(x, (list, tuple)):
x = np.array(x, dtype=np.float32)
elif not isinstance(x, np.ndarray):
x = np.array([x], dtype=np.float32)
assert x.ndim == 1
if type == 'column':
x = x[:, None]
return x
|
vector
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, type='row'):\n if isinstance(x, (list, tuple)):\n x = np.array(x, dtype=np.float32)\n elif not isinstance(x, np.ndarray):\n x = np.array([x], dtype=np.float32)\n assert x.ndim == 1\n if type == 'column':\n x = x[:, None]\n return x\n",
"role": "user"
},
{
"content": "vector",
"role": "assistant"
}
] |
def x(x, cmin=None, cmax=None, clip=True):
if not isinstance(x, np.ndarray):
x = np.array(x)
if cmin is None:
cmin = x.min()
if cmax is None:
cmax = x.max()
if cmin == cmax:
return 0.5 * np.ones(x.shape)
else:
cmin, cmax = float(cmin), float(cmax)
y = (x - cmin) * 1.0 / (cmax - cmin)
if clip:
y = np.clip(y, 0.0, 1.0)
return y
|
normalize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, cmin=None, cmax=None, clip=True):\n if not isinstance(x, np.ndarray):\n x = np.array(x)\n if cmin is None:\n cmin = x.min()\n if cmax is None:\n cmax = x.max()\n if cmin == cmax:\n return 0.5 * np.ones(x.shape)\n else:\n cmin, cmax = float(cmin), float(cmax)\n y = (x - cmin) * 1.0 / (cmax - cmin)\n if clip:\n y = np.clip(y, 0.0, 1.0)\n return y\n",
"role": "user"
},
{
"content": "normalize",
"role": "assistant"
}
] |
def x(a, b, x):
x = np.clip(x, 0.0, 1.0)
return (1.0 - x) * a + x * b
|
mix_simple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, x):\n x = np.clip(x, 0.0, 1.0)\n return (1.0 - x) * a + x * b\n",
"role": "user"
},
{
"content": "mix_simple",
"role": "assistant"
}
] |
def x(edge0, edge1, x):
x = np.clip((x - edge0) / (edge1 - edge0), 0.0, 1.0)
return x * x * (3 - 2 * x)
|
smoothstep
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(edge0, edge1, x):\n x = np.clip((x - edge0) / (edge1 - edge0), 0.0, 1.0)\n return x * x * (3 - 2 * x)\n",
"role": "user"
},
{
"content": "smoothstep",
"role": "assistant"
}
] |
def x(colors, x, controls=None):
x = x.ravel()
"""Step interpolation from a set of colors. x belongs in [0, 1]."""
assert (controls[0], controls[-1]) == (0.0, 1.0)
ncolors = len(colors)
assert ncolors == len(controls) - 1
assert ncolors >= 2
x_step = _find_controls(x, controls, ncolors - 1)
return colors[x_step, ...]
|
step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(colors, x, controls=None):\n x = x.ravel()\n \"\"\"Step interpolation from a set of colors. x belongs in [0, 1].\"\"\"\n assert (controls[0], controls[-1]) == (0.0, 1.0)\n ncolors = len(colors)\n assert ncolors == len(controls) - 1\n assert ncolors >= 2\n x_step = _find_controls(x, controls, ncolors - 1)\n return colors[x_step, ...]\n",
"role": "user"
},
{
"content": "step",
"role": "assistant"
}
] |
def x(controls=None):
assert (controls[0], controls[-1]) == (0.0, 1.0)
ncolors = len(controls)
assert ncolors >= 2
if ncolors == 2:
s = ' return mix($color_0, $color_1, t);\n'
else:
s = ''
for i in range(ncolors - 1):
if i == 0:
ifs = 'if (t < %.6f)' % controls[i + 1]
elif i == ncolors - 2:
ifs = 'else'
else:
ifs = 'else if (t < %.6f)' % controls[i + 1]
adj_t = '(t - %s) / %s' % (controls[i], controls[i + 1] -
controls[i])
s += '%s {\n return mix($color_%d, $color_%d, %s);\n} ' % (ifs,
i, i + 1, adj_t)
return 'vec4 colormap(float t) {\n%s\n}' % s
|
glsl_mix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(controls=None):\n assert (controls[0], controls[-1]) == (0.0, 1.0)\n ncolors = len(controls)\n assert ncolors >= 2\n if ncolors == 2:\n s = ' return mix($color_0, $color_1, t);\\n'\n else:\n s = ''\n for i in range(ncolors - 1):\n if i == 0:\n ifs = 'if (t < %.6f)' % controls[i + 1]\n elif i == ncolors - 2:\n ifs = 'else'\n else:\n ifs = 'else if (t < %.6f)' % controls[i + 1]\n adj_t = '(t - %s) / %s' % (controls[i], controls[i + 1] -\n controls[i])\n s += '%s {\\n return mix($color_%d, $color_%d, %s);\\n} ' % (ifs,\n i, i + 1, adj_t)\n return 'vec4 colormap(float t) {\\n%s\\n}' % s\n",
"role": "user"
},
{
"content": "glsl_mix",
"role": "assistant"
}
] |
def x(template, colors):
for i in range(len(colors) - 1, -1, -1):
color = colors[i]
assert len(color) == 4
vec4_color = 'vec4(%.3f, %.3f, %.3f, %.3f)' % tuple(color)
template = template.replace('$color_%d' % i, vec4_color)
return template
|
process_glsl_template
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(template, colors):\n for i in range(len(colors) - 1, -1, -1):\n color = colors[i]\n assert len(color) == 4\n vec4_color = 'vec4(%.3f, %.3f, %.3f, %.3f)' % tuple(color)\n template = template.replace('$color_%d' % i, vec4_color)\n return template\n",
"role": "user"
},
{
"content": "process_glsl_template",
"role": "assistant"
}
] |
def x(name, *args, **kwargs):
if isinstance(name, BaseColormap):
cmap = name
else:
if not isinstance(name, string_types):
raise TypeError('colormap must be a Colormap or string name')
if name not in _colormaps:
raise KeyError('colormap name %s not found' % name)
cmap = _colormaps[name]
if inspect.isclass(cmap):
cmap = cmap(*args, **kwargs)
return cmap
|
get_colormap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, *args, **kwargs):\n if isinstance(name, BaseColormap):\n cmap = name\n else:\n if not isinstance(name, string_types):\n raise TypeError('colormap must be a Colormap or string name')\n if name not in _colormaps:\n raise KeyError('colormap name %s not found' % name)\n cmap = _colormaps[name]\n if inspect.isclass(cmap):\n cmap = cmap(*args, **kwargs)\n return cmap\n",
"role": "user"
},
{
"content": "get_colormap",
"role": "assistant"
}
] |
def x(self, x):
return self._map_function(self.colors.rgba, x, self._controls)
|
map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n return self._map_function(self.colors.rgba, x, self._controls)\n",
"role": "user"
},
{
"content": "map",
"role": "assistant"
}
] |
def x(self):
render_to_doc = self.transforms.get_transform('document', 'visual')
vec = render_to_doc.map([self.border_width, self.border_width, 0])
origin = render_to_doc.map([0, 0, 0])
visual_border_width = [vec[0] - origin[0], vec[1] - origin[1]]
visual_border_width[1] *= -1
return visual_border_width
|
visual_border_width
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n render_to_doc = self.transforms.get_transform('document', 'visual')\n vec = render_to_doc.map([self.border_width, self.border_width, 0])\n origin = render_to_doc.map([0, 0, 0])\n visual_border_width = [vec[0] - origin[0], vec[1] - origin[1]]\n visual_border_width[1] *= -1\n return visual_border_width\n",
"role": "user"
},
{
"content": "visual_border_width",
"role": "assistant"
}
] |
def x(self, fig):
fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi)
if self.close_mpl:
import matplotlib.pyplot as plt
plt.close(fig)
self.crawl_fig(fig)
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fig):\n fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi)\n if self.close_mpl:\n import matplotlib.pyplot as plt\n plt.close(fig)\n self.crawl_fig(fig)\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(transform, ax=None, data=None, return_trans=False, force_trans=None):
if isinstance(transform, transforms.BlendedGenericTransform):
warnings.warn(
'Blended transforms not yet supported. Zoom behavior may not work as expected.'
)
if force_trans is not None:
if data is not None:
data = (transform - force_trans).transform(data)
transform = force_trans
code = 'display'
if ax is not None:
for c, trans in [('data', ax.transData), ('axes', ax.transAxes), (
'figure', ax.figure.transFigure), ('display', transforms.
IdentityTransform())]:
if transform.contains_branch(trans):
code, transform = c, transform - trans
break
if data is not None:
if return_trans:
return code, transform.transform(data), transform
else:
return code, transform.transform(data)
elif return_trans:
return code, transform
else:
return code
|
process_transform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(transform, ax=None, data=None, return_trans=False, force_trans=None):\n if isinstance(transform, transforms.BlendedGenericTransform):\n warnings.warn(\n 'Blended transforms not yet supported. Zoom behavior may not work as expected.'\n )\n if force_trans is not None:\n if data is not None:\n data = (transform - force_trans).transform(data)\n transform = force_trans\n code = 'display'\n if ax is not None:\n for c, trans in [('data', ax.transData), ('axes', ax.transAxes), (\n 'figure', ax.figure.transFigure), ('display', transforms.\n IdentityTransform())]:\n if transform.contains_branch(trans):\n code, transform = c, transform - trans\n break\n if data is not None:\n if return_trans:\n return code, transform.transform(data), transform\n else:\n return code, transform.transform(data)\n elif return_trans:\n return code, transform\n else:\n return code\n",
"role": "user"
},
{
"content": "process_transform",
"role": "assistant"
}
] |
def x(self, fig):
with self.renderer.draw_figure(fig=fig, props=utils.
get_figure_properties(fig)):
for ax in fig.axes:
self.crawl_ax(ax)
|
crawl_fig
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fig):\n with self.renderer.draw_figure(fig=fig, props=utils.\n get_figure_properties(fig)):\n for ax in fig.axes:\n self.crawl_ax(ax)\n",
"role": "user"
},
{
"content": "crawl_fig",
"role": "assistant"
}
] |
def x(self, ax):
with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)):
for line in ax.lines:
self.draw_line(ax, line)
for text in ax.texts:
self.draw_text(ax, text)
for text, ttp in zip([ax.xaxis.label, ax.yaxis.label, ax.title], [
'xlabel', 'ylabel', 'title']):
if hasattr(text, 'get_text') and text.get_text():
self.draw_text(ax, text, force_trans=ax.transAxes,
text_type=ttp)
for artist in ax.artists:
if isinstance(artist, matplotlib.text.Text):
self.draw_text(ax, artist)
for patch in ax.patches:
self.draw_patch(ax, patch)
for collection in ax.collections:
self.draw_collection(ax, collection)
for image in ax.images:
self.draw_image(ax, image)
legend = ax.get_legend()
if legend is not None:
props = utils.get_legend_properties(ax, legend)
with self.renderer.draw_legend(legend=legend, props=props):
if props['visible']:
self.crawl_legend(ax, legend)
|
crawl_ax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ax):\n with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)):\n for line in ax.lines:\n self.draw_line(ax, line)\n for text in ax.texts:\n self.draw_text(ax, text)\n for text, ttp in zip([ax.xaxis.label, ax.yaxis.label, ax.title], [\n 'xlabel', 'ylabel', 'title']):\n if hasattr(text, 'get_text') and text.get_text():\n self.draw_text(ax, text, force_trans=ax.transAxes,\n text_type=ttp)\n for artist in ax.artists:\n if isinstance(artist, matplotlib.text.Text):\n self.draw_text(ax, artist)\n for patch in ax.patches:\n self.draw_patch(ax, patch)\n for collection in ax.collections:\n self.draw_collection(ax, collection)\n for image in ax.images:\n self.draw_image(ax, image)\n legend = ax.get_legend()\n if legend is not None:\n props = utils.get_legend_properties(ax, legend)\n with self.renderer.draw_legend(legend=legend, props=props):\n if props['visible']:\n self.crawl_legend(ax, legend)\n",
"role": "user"
},
{
"content": "crawl_ax",
"role": "assistant"
}
] |
def x(self, ax, legend):
legendElements = list(utils.iter_all_children(legend._legend_box,
skipContainers=True))
legendElements.append(legend.legendPatch)
for child in legendElements:
child.set_zorder(1000000.0 + child.get_zorder())
try:
if isinstance(child, matplotlib.patches.Patch):
self.draw_patch(ax, child, force_trans=ax.transAxes)
elif isinstance(child, matplotlib.text.Text):
if not (child is legend.get_children()[-1] and child.
get_text() == 'None'):
self.draw_text(ax, child, force_trans=ax.transAxes)
elif isinstance(child, matplotlib.lines.Line2D):
self.draw_line(ax, child, force_trans=ax.transAxes)
elif isinstance(child, matplotlib.collections.Collection):
self.draw_collection(ax, child, force_pathtrans=ax.transAxes)
else:
warnings.warn('Legend element %s not impemented' % child)
except NotImplementedError:
warnings.warn('Legend element %s not impemented' % child)
|
crawl_legend
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ax, legend):\n legendElements = list(utils.iter_all_children(legend._legend_box,\n skipContainers=True))\n legendElements.append(legend.legendPatch)\n for child in legendElements:\n child.set_zorder(1000000.0 + child.get_zorder())\n try:\n if isinstance(child, matplotlib.patches.Patch):\n self.draw_patch(ax, child, force_trans=ax.transAxes)\n elif isinstance(child, matplotlib.text.Text):\n if not (child is legend.get_children()[-1] and child.\n get_text() == 'None'):\n self.draw_text(ax, child, force_trans=ax.transAxes)\n elif isinstance(child, matplotlib.lines.Line2D):\n self.draw_line(ax, child, force_trans=ax.transAxes)\n elif isinstance(child, matplotlib.collections.Collection):\n self.draw_collection(ax, child, force_pathtrans=ax.transAxes)\n else:\n warnings.warn('Legend element %s not impemented' % child)\n except NotImplementedError:\n warnings.warn('Legend element %s not impemented' % child)\n",
"role": "user"
},
{
"content": "crawl_legend",
"role": "assistant"
}
] |
def x(self, ax, line, force_trans=None):
coordinates, data = self.process_transform(line.get_transform(), ax,
line.get_xydata(), force_trans=force_trans)
linestyle = utils.get_line_style(line)
if linestyle['dasharray'] is None:
linestyle = None
markerstyle = utils.get_marker_style(line)
if markerstyle['marker'] in ['None', 'none', None] or markerstyle[
'markerpath'][0].size == 0:
markerstyle = None
label = line.get_label()
if markerstyle or linestyle:
self.renderer.draw_marked_line(data=data, coordinates=coordinates,
linestyle=linestyle, markerstyle=markerstyle, label=label,
mplobj=line)
|
draw_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ax, line, force_trans=None):\n coordinates, data = self.process_transform(line.get_transform(), ax,\n line.get_xydata(), force_trans=force_trans)\n linestyle = utils.get_line_style(line)\n if linestyle['dasharray'] is None:\n linestyle = None\n markerstyle = utils.get_marker_style(line)\n if markerstyle['marker'] in ['None', 'none', None] or markerstyle[\n 'markerpath'][0].size == 0:\n markerstyle = None\n label = line.get_label()\n if markerstyle or linestyle:\n self.renderer.draw_marked_line(data=data, coordinates=coordinates,\n linestyle=linestyle, markerstyle=markerstyle, label=label,\n mplobj=line)\n",
"role": "user"
},
{
"content": "draw_line",
"role": "assistant"
}
] |
def x(self, ax, text, force_trans=None, text_type=None):
content = text.get_text()
if content:
transform = text.get_transform()
position = text.get_position()
coords, position = self.process_transform(transform, ax, position,
force_trans=force_trans)
style = utils.get_text_style(text)
self.renderer.draw_text(text=content, position=position,
coordinates=coords, text_type=text_type, style=style, mplobj=text)
|
draw_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ax, text, force_trans=None, text_type=None):\n content = text.get_text()\n if content:\n transform = text.get_transform()\n position = text.get_position()\n coords, position = self.process_transform(transform, ax, position,\n force_trans=force_trans)\n style = utils.get_text_style(text)\n self.renderer.draw_text(text=content, position=position,\n coordinates=coords, text_type=text_type, style=style, mplobj=text)\n",
"role": "user"
},
{
"content": "draw_text",
"role": "assistant"
}
] |
def x(self, ax, patch, force_trans=None):
vertices, pathcodes = utils.SVG_path(patch.get_path())
transform = patch.get_transform()
coordinates, vertices = self.process_transform(transform, ax, vertices,
force_trans=force_trans)
linestyle = utils.get_path_style(patch, fill=patch.get_fill())
self.renderer.draw_path(data=vertices, coordinates=coordinates,
pathcodes=pathcodes, style=linestyle, mplobj=patch)
|
draw_patch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ax, patch, force_trans=None):\n vertices, pathcodes = utils.SVG_path(patch.get_path())\n transform = patch.get_transform()\n coordinates, vertices = self.process_transform(transform, ax, vertices,\n force_trans=force_trans)\n linestyle = utils.get_path_style(patch, fill=patch.get_fill())\n self.renderer.draw_path(data=vertices, coordinates=coordinates,\n pathcodes=pathcodes, style=linestyle, mplobj=patch)\n",
"role": "user"
},
{
"content": "draw_patch",
"role": "assistant"
}
] |
def x(self, ax, collection, force_pathtrans=None, force_offsettrans=None):
transform, transOffset, offsets, paths = collection._prepare_points()
offset_coords, offsets = self.process_transform(transOffset, ax,
offsets, force_trans=force_offsettrans)
path_coords = self.process_transform(transform, ax, force_trans=
force_pathtrans)
processed_paths = [utils.SVG_path(path) for path in paths]
processed_paths = [(self.process_transform(transform, ax, path[0],
force_trans=force_pathtrans)[1], path[1]) for path in processed_paths]
path_transforms = collection.get_transforms()
try:
path_transforms = [t.get_matrix() for t in path_transforms]
except AttributeError:
pass
styles = {'linewidth': collection.get_linewidths(), 'facecolor':
collection.get_facecolors(), 'edgecolor': collection.get_edgecolors
(), 'alpha': collection._alpha, 'zorder': collection.get_zorder()}
offset_dict = {'data': 'before', 'screen': 'after'}
offset_order = offset_dict[collection.get_offset_position()]
self.renderer.draw_path_collection(paths=processed_paths,
path_coordinates=path_coords, path_transforms=path_transforms,
offsets=offsets, offset_coordinates=offset_coords, offset_order=
offset_order, styles=styles, mplobj=collection)
|
draw_collection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ax, collection, force_pathtrans=None, force_offsettrans=None):\n transform, transOffset, offsets, paths = collection._prepare_points()\n offset_coords, offsets = self.process_transform(transOffset, ax,\n offsets, force_trans=force_offsettrans)\n path_coords = self.process_transform(transform, ax, force_trans=\n force_pathtrans)\n processed_paths = [utils.SVG_path(path) for path in paths]\n processed_paths = [(self.process_transform(transform, ax, path[0],\n force_trans=force_pathtrans)[1], path[1]) for path in processed_paths]\n path_transforms = collection.get_transforms()\n try:\n path_transforms = [t.get_matrix() for t in path_transforms]\n except AttributeError:\n pass\n styles = {'linewidth': collection.get_linewidths(), 'facecolor':\n collection.get_facecolors(), 'edgecolor': collection.get_edgecolors\n (), 'alpha': collection._alpha, 'zorder': collection.get_zorder()}\n offset_dict = {'data': 'before', 'screen': 'after'}\n offset_order = offset_dict[collection.get_offset_position()]\n self.renderer.draw_path_collection(paths=processed_paths,\n path_coordinates=path_coords, path_transforms=path_transforms,\n offsets=offsets, offset_coordinates=offset_coords, offset_order=\n offset_order, styles=styles, mplobj=collection)\n",
"role": "user"
},
{
"content": "draw_collection",
"role": "assistant"
}
] |
def x(self, ax, image):
self.renderer.draw_image(imdata=utils.image_to_base64(image), extent=
image.get_extent(), coordinates='data', style={'alpha': image.
get_alpha(), 'zorder': image.get_zorder()}, mplobj=image)
|
draw_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ax, image):\n self.renderer.draw_image(imdata=utils.image_to_base64(image), extent=\n image.get_extent(), coordinates='data', style={'alpha': image.\n get_alpha(), 'zorder': image.get_zorder()}, mplobj=image)\n",
"role": "user"
},
{
"content": "draw_image",
"role": "assistant"
}
] |
def x(self, data, coordinates, linestyle, markerstyle, label, mplobj=None):
if linestyle is not None:
self.draw_line(data, coordinates, linestyle, label, mplobj)
if markerstyle is not None:
self.draw_markers(data, coordinates, markerstyle, label, mplobj)
|
draw_marked_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, coordinates, linestyle, markerstyle, label, mplobj=None):\n if linestyle is not None:\n self.draw_line(data, coordinates, linestyle, label, mplobj)\n if markerstyle is not None:\n self.draw_markers(data, coordinates, markerstyle, label, mplobj)\n",
"role": "user"
},
{
"content": "draw_marked_line",
"role": "assistant"
}
] |
def x(self, data, coordinates, style, label, mplobj=None):
pathcodes = ['M'] + (data.shape[0] - 1) * ['L']
pathstyle = dict(facecolor='none', **style)
pathstyle['edgecolor'] = pathstyle.pop('color')
pathstyle['edgewidth'] = pathstyle.pop('linewidth')
self.draw_path(data=data, coordinates=coordinates, pathcodes=pathcodes,
style=pathstyle, mplobj=mplobj)
|
draw_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, coordinates, style, label, mplobj=None):\n pathcodes = ['M'] + (data.shape[0] - 1) * ['L']\n pathstyle = dict(facecolor='none', **style)\n pathstyle['edgecolor'] = pathstyle.pop('color')\n pathstyle['edgewidth'] = pathstyle.pop('linewidth')\n self.draw_path(data=data, coordinates=coordinates, pathcodes=pathcodes,\n style=pathstyle, mplobj=mplobj)\n",
"role": "user"
},
{
"content": "draw_line",
"role": "assistant"
}
] |
def x(paths, path_transforms, offsets, styles):
N = max(len(paths), len(offsets))
if not path_transforms:
path_transforms = [np.eye(3)]
edgecolor = styles['edgecolor']
if np.size(edgecolor) == 0:
edgecolor = ['none']
facecolor = styles['facecolor']
if np.size(facecolor) == 0:
facecolor = ['none']
elements = [paths, path_transforms, offsets, edgecolor, styles[
'linewidth'], facecolor]
it = itertools
return it.islice(py3k.zip(*py3k.map(it.cycle, elements)), N)
|
iter_path_collection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(paths, path_transforms, offsets, styles):\n N = max(len(paths), len(offsets))\n if not path_transforms:\n path_transforms = [np.eye(3)]\n edgecolor = styles['edgecolor']\n if np.size(edgecolor) == 0:\n edgecolor = ['none']\n facecolor = styles['facecolor']\n if np.size(facecolor) == 0:\n facecolor = ['none']\n elements = [paths, path_transforms, offsets, edgecolor, styles[\n 'linewidth'], facecolor]\n it = itertools\n return it.islice(py3k.zip(*py3k.map(it.cycle, elements)), N)\n",
"role": "user"
},
{
"content": "iter_path_collection",
"role": "assistant"
}
] |
def x(self, paths, path_coordinates, path_transforms, offsets,
offset_coordinates, offset_order, styles, mplobj=None):
if offset_order == 'before':
raise NotImplementedError('offset before transform')
for tup in self._iter_path_collection(paths, path_transforms, offsets,
styles):
path, path_transform, offset, ec, lw, fc = tup
vertices, pathcodes = path
path_transform = transforms.Affine2D(path_transform)
vertices = path_transform.transform(vertices)
if path_coordinates == 'figure':
path_coordinates = 'points'
style = {'edgecolor': utils.color_to_hex(ec), 'facecolor': utils.
color_to_hex(fc), 'edgewidth': lw, 'dasharray': '10,0', 'alpha':
styles['alpha'], 'zorder': styles['zorder']}
self.draw_path(data=vertices, coordinates=path_coordinates,
pathcodes=pathcodes, style=style, offset=offset,
offset_coordinates=offset_coordinates, mplobj=mplobj)
|
draw_path_collection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, paths, path_coordinates, path_transforms, offsets,\n offset_coordinates, offset_order, styles, mplobj=None):\n if offset_order == 'before':\n raise NotImplementedError('offset before transform')\n for tup in self._iter_path_collection(paths, path_transforms, offsets,\n styles):\n path, path_transform, offset, ec, lw, fc = tup\n vertices, pathcodes = path\n path_transform = transforms.Affine2D(path_transform)\n vertices = path_transform.transform(vertices)\n if path_coordinates == 'figure':\n path_coordinates = 'points'\n style = {'edgecolor': utils.color_to_hex(ec), 'facecolor': utils.\n color_to_hex(fc), 'edgewidth': lw, 'dasharray': '10,0', 'alpha':\n styles['alpha'], 'zorder': styles['zorder']}\n self.draw_path(data=vertices, coordinates=path_coordinates,\n pathcodes=pathcodes, style=style, offset=offset,\n offset_coordinates=offset_coordinates, mplobj=mplobj)\n",
"role": "user"
},
{
"content": "draw_path_collection",
"role": "assistant"
}
] |
def x(self, data, coordinates, style, label, mplobj=None):
vertices, pathcodes = style['markerpath']
pathstyle = dict((key, style[key]) for key in ['alpha', 'edgecolor',
'facecolor', 'zorder', 'edgewidth'])
pathstyle['dasharray'] = '10,0'
for vertex in data:
self.draw_path(data=vertices, coordinates='points', pathcodes=
pathcodes, style=pathstyle, offset=vertex, offset_coordinates=
coordinates, mplobj=mplobj)
|
draw_markers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, coordinates, style, label, mplobj=None):\n vertices, pathcodes = style['markerpath']\n pathstyle = dict((key, style[key]) for key in ['alpha', 'edgecolor',\n 'facecolor', 'zorder', 'edgewidth'])\n pathstyle['dasharray'] = '10,0'\n for vertex in data:\n self.draw_path(data=vertices, coordinates='points', pathcodes=\n pathcodes, style=pathstyle, offset=vertex, offset_coordinates=\n coordinates, mplobj=mplobj)\n",
"role": "user"
},
{
"content": "draw_markers",
"role": "assistant"
}
] |
def x(self, data, coordinates, pathcodes, style, offset=None,
offset_coordinates='data', mplobj=None):
raise NotImplementedError()
|
draw_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, coordinates, pathcodes, style, offset=None,\n offset_coordinates='data', mplobj=None):\n raise NotImplementedError()\n",
"role": "user"
},
{
"content": "draw_path",
"role": "assistant"
}
] |
def x(cls, times, delta_t=DEFAULT_OBSERVATION_TIME):
times_arr = np.asarray(times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int)
intervals_arr = np.vstack((times_arr, times_arr + 1)).T
order = TimeMOC.time_resolution_to_order(delta_t)
return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)
|
from_times
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, times, delta_t=DEFAULT_OBSERVATION_TIME):\n times_arr = np.asarray(times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int)\n intervals_arr = np.vstack((times_arr, times_arr + 1)).T\n order = TimeMOC.time_resolution_to_order(delta_t)\n return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)\n",
"role": "user"
},
{
"content": "from_times",
"role": "assistant"
}
] |
def x(cls, min_times, max_times, delta_t=DEFAULT_OBSERVATION_TIME):
min_times_arr = np.asarray(min_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int)
max_times_arr = np.asarray(max_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int)
intervals_arr = np.vstack((min_times_arr, max_times_arr + 1)).T
order = TimeMOC.time_resolution_to_order(delta_t)
return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)
|
from_time_ranges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, min_times, max_times, delta_t=DEFAULT_OBSERVATION_TIME):\n min_times_arr = np.asarray(min_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int)\n max_times_arr = np.asarray(max_times.jd * TimeMOC.DAY_MICRO_SEC, dtype=int)\n intervals_arr = np.vstack((min_times_arr, max_times_arr + 1)).T\n order = TimeMOC.time_resolution_to_order(delta_t)\n return TimeMOC(IntervalSet(intervals_arr)).degrade_to_order(order)\n",
"role": "user"
},
{
"content": "from_time_ranges",
"role": "assistant"
}
] |
def x(self):
time_delta = 1 << 2 * (IntervalSet.HPY_MAX_ORDER - self.max_order)
intervals_arr = self._interval_set._intervals
intervals_arr[:, 0] = np.maximum(intervals_arr[:, 0] - time_delta, 0)
intervals_arr[:, 1] = np.minimum(intervals_arr[:, 1] + time_delta, (1 <<
58) - 1)
self._interval_set = IntervalSet(intervals_arr)
|
add_neighbours
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n time_delta = 1 << 2 * (IntervalSet.HPY_MAX_ORDER - self.max_order)\n intervals_arr = self._interval_set._intervals\n intervals_arr[:, 0] = np.maximum(intervals_arr[:, 0] - time_delta, 0)\n intervals_arr[:, 1] = np.minimum(intervals_arr[:, 1] + time_delta, (1 <<\n 58) - 1)\n self._interval_set = IntervalSet(intervals_arr)\n",
"role": "user"
},
{
"content": "add_neighbours",
"role": "assistant"
}
] |
def x(self):
time_delta = 1 << 2 * (IntervalSet.HPY_MAX_ORDER - self.max_order)
intervals_arr = self._interval_set._intervals
intervals_arr[:, 0] = np.minimum(intervals_arr[:, 0] + time_delta, (1 <<
58) - 1)
intervals_arr[:, 1] = np.maximum(intervals_arr[:, 1] - time_delta, 0)
good_intervals = intervals_arr[:, 1] > intervals_arr[:, 0]
self._interval_set = IntervalSet(intervals_arr[good_intervals])
|
remove_neighbours
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n time_delta = 1 << 2 * (IntervalSet.HPY_MAX_ORDER - self.max_order)\n intervals_arr = self._interval_set._intervals\n intervals_arr[:, 0] = np.minimum(intervals_arr[:, 0] + time_delta, (1 <<\n 58) - 1)\n intervals_arr[:, 1] = np.maximum(intervals_arr[:, 1] - time_delta, 0)\n good_intervals = intervals_arr[:, 1] > intervals_arr[:, 0]\n self._interval_set = IntervalSet(intervals_arr[good_intervals])\n",
"role": "user"
},
{
"content": "remove_neighbours",
"role": "assistant"
}
] |
def x(self, another_moc, order_op):
max_order = max(self.max_order, another_moc.max_order)
if order_op > max_order:
message = (
"""Requested time resolution for the operation cannot be applied.
The TimeMoc object resulting from the operation is of time resolution {0} sec."""
.format(TimeMOC.order_to_time_resolution(max_order).sec))
warnings.warn(message, UserWarning)
self_degradation = self.degrade_to_order(order_op)
another_moc_degradation = another_moc.degrade_to_order(order_op)
result = self_degradation, another_moc_degradation
return result
|
process_degradation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, another_moc, order_op):\n max_order = max(self.max_order, another_moc.max_order)\n if order_op > max_order:\n message = (\n \"\"\"Requested time resolution for the operation cannot be applied.\nThe TimeMoc object resulting from the operation is of time resolution {0} sec.\"\"\"\n .format(TimeMOC.order_to_time_resolution(max_order).sec))\n warnings.warn(message, UserWarning)\n self_degradation = self.degrade_to_order(order_op)\n another_moc_degradation = another_moc.degrade_to_order(order_op)\n result = self_degradation, another_moc_degradation\n return result\n",
"role": "user"
},
{
"content": "process_degradation",
"role": "assistant"
}
] |
def x(self, another_moc, delta_t=DEFAULT_OBSERVATION_TIME):
order_op = TimeMOC.time_resolution_to_order(delta_t)
self_degraded, moc_degraded = self._process_degradation(another_moc,
order_op)
return super(TimeMOC, self_degraded).intersection(moc_degraded)
|
intersection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, another_moc, delta_t=DEFAULT_OBSERVATION_TIME):\n order_op = TimeMOC.time_resolution_to_order(delta_t)\n self_degraded, moc_degraded = self._process_degradation(another_moc,\n order_op)\n return super(TimeMOC, self_degraded).intersection(moc_degraded)\n",
"role": "user"
},
{
"content": "intersection",
"role": "assistant"
}
] |
def x(self):
if self._interval_set.empty():
return 0
total_time_us = 0
for start_time, stop_time in self._interval_set._intervals:
total_time_us = total_time_us + (stop_time - start_time)
duration = TimeDelta(total_time_us / 1000000.0, format='sec', scale='tdb')
return duration
|
total_duration
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._interval_set.empty():\n return 0\n total_time_us = 0\n for start_time, stop_time in self._interval_set._intervals:\n total_time_us = total_time_us + (stop_time - start_time)\n duration = TimeDelta(total_time_us / 1000000.0, format='sec', scale='tdb')\n return duration\n",
"role": "user"
},
{
"content": "total_duration",
"role": "assistant"
}
] |
def x(self):
result = self.total_duration.jd / (self.max_time - self.min_time).jd
return result
|
consistency
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = self.total_duration.jd / (self.max_time - self.min_time).jd\n return result\n",
"role": "user"
},
{
"content": "consistency",
"role": "assistant"
}
] |
def x(self):
min_time = Time(self._interval_set.min / TimeMOC.DAY_MICRO_SEC, format=
'jd', scale='tdb')
return min_time
|
min_time
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n min_time = Time(self._interval_set.min / TimeMOC.DAY_MICRO_SEC, format=\n 'jd', scale='tdb')\n return min_time\n",
"role": "user"
},
{
"content": "min_time",
"role": "assistant"
}
] |
def x(self):
max_time = Time(self._interval_set.max / TimeMOC.DAY_MICRO_SEC, format=
'jd', scale='tdb')
return max_time
|
max_time
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n max_time = Time(self._interval_set.max / TimeMOC.DAY_MICRO_SEC, format=\n 'jd', scale='tdb')\n return max_time\n",
"role": "user"
},
{
"content": "max_time",
"role": "assistant"
}
] |
def x(self, times, keep_inside=True, delta_t=DEFAULT_OBSERVATION_TIME):
current_max_order = self.max_order
new_max_order = TimeMOC.time_resolution_to_order(delta_t)
if new_max_order > current_max_order:
message = (
"""Requested time resolution filtering cannot be applied.
Filtering is applied with a time resolution of {0} sec."""
.format(TimeMOC.order_to_time_resolution(current_max_order).sec))
warnings.warn(message, UserWarning)
rough_tmoc = self.degrade_to_order(new_max_order)
pix_arr = times.jd * TimeMOC.DAY_MICRO_SEC
pix_arr = pix_arr.astype(int)
intervals_arr = rough_tmoc._interval_set._intervals
inf_arr = np.vstack([(pix_arr[i] >= intervals_arr[:, 0]) for i in range
(pix_arr.shape[0])])
sup_arr = np.vstack([(pix_arr[i] <= intervals_arr[:, 1]) for i in range
(pix_arr.shape[0])])
if keep_inside:
res = inf_arr & sup_arr
filtered_rows = np.any(res, axis=1)
else:
res = ~inf_arr | ~sup_arr
filtered_rows = np.all(res, axis=1)
return filtered_rows
|
contains
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, times, keep_inside=True, delta_t=DEFAULT_OBSERVATION_TIME):\n current_max_order = self.max_order\n new_max_order = TimeMOC.time_resolution_to_order(delta_t)\n if new_max_order > current_max_order:\n message = (\n \"\"\"Requested time resolution filtering cannot be applied.\nFiltering is applied with a time resolution of {0} sec.\"\"\"\n .format(TimeMOC.order_to_time_resolution(current_max_order).sec))\n warnings.warn(message, UserWarning)\n rough_tmoc = self.degrade_to_order(new_max_order)\n pix_arr = times.jd * TimeMOC.DAY_MICRO_SEC\n pix_arr = pix_arr.astype(int)\n intervals_arr = rough_tmoc._interval_set._intervals\n inf_arr = np.vstack([(pix_arr[i] >= intervals_arr[:, 0]) for i in range\n (pix_arr.shape[0])])\n sup_arr = np.vstack([(pix_arr[i] <= intervals_arr[:, 1]) for i in range\n (pix_arr.shape[0])])\n if keep_inside:\n res = inf_arr & sup_arr\n filtered_rows = np.any(res, axis=1)\n else:\n res = ~inf_arr | ~sup_arr\n filtered_rows = np.all(res, axis=1)\n return filtered_rows\n",
"role": "user"
},
{
"content": "contains",
"role": "assistant"
}
] |
def x(self, title='TimeMoc', view=(None, None)):
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.pyplot as plt
if self._interval_set.empty():
print('Nothing to print. This TimeMoc object is empty.')
return
plot_order = 15
if self.max_order > plot_order:
plotted_moc = self.degrade_to_order(plot_order)
else:
plotted_moc = self
min_jd = plotted_moc.min_time.jd if not view[0] else view[0].jd
max_jd = plotted_moc.max_time.jd if not view[1] else view[1].jd
if max_jd < min_jd:
raise ValueError(
'Invalid selection: max_jd = {0} must be > to min_jd = {1}'.
format(max_jd, min_jd))
fig1 = plt.figure(figsize=(9.5, 5))
ax = fig1.add_subplot(111)
ax.set_xlabel('iso')
ax.get_yaxis().set_visible(False)
size = 2000
delta = (max_jd - min_jd) / size
min_jd_time = min_jd
ax.set_xticks([0, size])
ax.set_xticklabels(Time([min_jd_time, max_jd], format='jd', scale='tdb'
).iso, rotation=70)
y = np.zeros(size)
for s_time_us, e_time_us in plotted_moc._interval_set._intervals:
s_index = int((s_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta
)
e_index = int((e_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta
)
y[s_index:e_index + 1] = 1.0
if np.all(y):
y[0] = 0
z = np.tile(y, (int(size // 10), 1))
plt.title(title)
color_map = LinearSegmentedColormap.from_list('w2r', ['#fffff0', '#aa0000']
)
color_map.set_under('w')
color_map.set_bad('gray')
plt.imshow(z, interpolation='bilinear', cmap=color_map)
def x(event):
for txt in ax.texts:
txt.set_visible(False)
text = ax.text(0, 0, '', va='bottom', ha='left')
time = Time(event.xdata * delta + min_jd_time, format='jd', scale='tdb'
)
tx = '{0}'.format(time.iso)
text.set_position((event.xdata - 50, 700))
text.set_rotation(70)
text.set_text(tx)
cid = fig1.canvas.mpl_connect('motion_notify_event', on_mouse_motion)
plt.show()
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, title='TimeMoc', view=(None, None)):\n from matplotlib.colors import LinearSegmentedColormap\n import matplotlib.pyplot as plt\n if self._interval_set.empty():\n print('Nothing to print. This TimeMoc object is empty.')\n return\n plot_order = 15\n if self.max_order > plot_order:\n plotted_moc = self.degrade_to_order(plot_order)\n else:\n plotted_moc = self\n min_jd = plotted_moc.min_time.jd if not view[0] else view[0].jd\n max_jd = plotted_moc.max_time.jd if not view[1] else view[1].jd\n if max_jd < min_jd:\n raise ValueError(\n 'Invalid selection: max_jd = {0} must be > to min_jd = {1}'.\n format(max_jd, min_jd))\n fig1 = plt.figure(figsize=(9.5, 5))\n ax = fig1.add_subplot(111)\n ax.set_xlabel('iso')\n ax.get_yaxis().set_visible(False)\n size = 2000\n delta = (max_jd - min_jd) / size\n min_jd_time = min_jd\n ax.set_xticks([0, size])\n ax.set_xticklabels(Time([min_jd_time, max_jd], format='jd', scale='tdb'\n ).iso, rotation=70)\n y = np.zeros(size)\n for s_time_us, e_time_us in plotted_moc._interval_set._intervals:\n s_index = int((s_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta\n )\n e_index = int((e_time_us / TimeMOC.DAY_MICRO_SEC - min_jd_time) / delta\n )\n y[s_index:e_index + 1] = 1.0\n if np.all(y):\n y[0] = 0\n z = np.tile(y, (int(size // 10), 1))\n plt.title(title)\n color_map = LinearSegmentedColormap.from_list('w2r', ['#fffff0', '#aa0000']\n )\n color_map.set_under('w')\n color_map.set_bad('gray')\n plt.imshow(z, interpolation='bilinear', cmap=color_map)\n\n def x(event):\n for txt in ax.texts:\n txt.set_visible(False)\n text = ax.text(0, 0, '', va='bottom', ha='left')\n time = Time(event.xdata * delta + min_jd_time, format='jd', scale='tdb'\n )\n tx = '{0}'.format(time.iso)\n text.set_position((event.xdata - 50, 700))\n text.set_rotation(70)\n text.set_text(tx)\n cid = fig1.canvas.mpl_connect('motion_notify_event', on_mouse_motion)\n plt.show()\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(self, client, subhooks=()):
new_data = self.fetch(client)
updated = {}
if not subhooks:
subhooks = [self.name]
for subhook in subhooks:
new_key = self.extract_key(new_data, subhook)
if new_key != self.previous_keys.get(subhook):
updated[subhook] = new_key
if updated:
logger.debug('Hook %s: data changed from %r to %r', self.name, self
.previous_keys, updated)
self.previous_keys.update(updated)
return True, new_data
return False, None
|
handle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, client, subhooks=()):\n new_data = self.fetch(client)\n updated = {}\n if not subhooks:\n subhooks = [self.name]\n for subhook in subhooks:\n new_key = self.extract_key(new_data, subhook)\n if new_key != self.previous_keys.get(subhook):\n updated[subhook] = new_key\n if updated:\n logger.debug('Hook %s: data changed from %r to %r', self.name, self\n .previous_keys, updated)\n self.previous_keys.update(updated)\n return True, new_data\n return False, None\n",
"role": "user"
},
{
"content": "handle",
"role": "assistant"
}
] |
def x(text, font, anchor_x, anchor_y, lowres_size):
canvas = context.get_current_canvas()
canvas.context.flush_commands()
text_vtype = np.dtype([('a_position', np.float32, 2), ('a_texcoord', np
.float32, 2)])
vertices = np.zeros(len(text) * 4, dtype=text_vtype)
prev = None
width = height = ascender = descender = 0
ratio, slop = 1.0 / font.ratio, font.slop
x_off = -slop
if sys.version[0] == '2' and isinstance(text, str):
text = text.decode('utf-8')
orig_viewport = canvas.context.get_viewport()
for ii, char in enumerate(text):
glyph = font[char]
kerning = glyph['kerning'].get(prev, 0.0) * ratio
x0 = x_off + glyph['offset'][0] * ratio + kerning
y0 = glyph['offset'][1] * ratio + slop
x1 = x0 + glyph['size'][0]
y1 = y0 - glyph['size'][1]
u0, v0, u1, v1 = glyph['texcoords']
position = [[x0, y0], [x0, y1], [x1, y1], [x1, y0]]
texcoords = [[u0, v0], [u0, v1], [u1, v1], [u1, v0]]
vi = ii * 4
vertices['a_position'][vi:vi + 4] = position
vertices['a_texcoord'][vi:vi + 4] = texcoords
x_move = glyph['advance'] * ratio + kerning
x_off += x_move
ascender = max(ascender, y0 - slop)
descender = min(descender, y1 + slop)
width += x_move
height = max(height, glyph['size'][1] - 2 * slop)
prev = char
for char in 'hy':
glyph = font[char]
y0 = glyph['offset'][1] * ratio + slop
y1 = y0 - glyph['size'][1]
ascender = max(ascender, y0 - slop)
descender = min(descender, y1 + slop)
height = max(height, glyph['size'][1] - 2 * slop)
if orig_viewport is not None:
canvas.context.set_viewport(*orig_viewport)
width -= glyph['advance'] * ratio - (glyph['size'][0] - 2 * slop)
dx = dy = 0
if anchor_y == 'top':
dy = -ascender
elif anchor_y in ('center', 'middle'):
dy = -(height / 2 + descender)
elif anchor_y == 'bottom':
dy = -descender
if anchor_x == 'right':
dx = -width
elif anchor_x == 'center':
dx = -width / 2.0
vertices['a_position'] += dx, dy
vertices['a_position'] /= lowres_size
return vertices
|
text_to_vbo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, font, anchor_x, anchor_y, lowres_size):\n canvas = context.get_current_canvas()\n canvas.context.flush_commands()\n text_vtype = np.dtype([('a_position', np.float32, 2), ('a_texcoord', np\n .float32, 2)])\n vertices = np.zeros(len(text) * 4, dtype=text_vtype)\n prev = None\n width = height = ascender = descender = 0\n ratio, slop = 1.0 / font.ratio, font.slop\n x_off = -slop\n if sys.version[0] == '2' and isinstance(text, str):\n text = text.decode('utf-8')\n orig_viewport = canvas.context.get_viewport()\n for ii, char in enumerate(text):\n glyph = font[char]\n kerning = glyph['kerning'].get(prev, 0.0) * ratio\n x0 = x_off + glyph['offset'][0] * ratio + kerning\n y0 = glyph['offset'][1] * ratio + slop\n x1 = x0 + glyph['size'][0]\n y1 = y0 - glyph['size'][1]\n u0, v0, u1, v1 = glyph['texcoords']\n position = [[x0, y0], [x0, y1], [x1, y1], [x1, y0]]\n texcoords = [[u0, v0], [u0, v1], [u1, v1], [u1, v0]]\n vi = ii * 4\n vertices['a_position'][vi:vi + 4] = position\n vertices['a_texcoord'][vi:vi + 4] = texcoords\n x_move = glyph['advance'] * ratio + kerning\n x_off += x_move\n ascender = max(ascender, y0 - slop)\n descender = min(descender, y1 + slop)\n width += x_move\n height = max(height, glyph['size'][1] - 2 * slop)\n prev = char\n for char in 'hy':\n glyph = font[char]\n y0 = glyph['offset'][1] * ratio + slop\n y1 = y0 - glyph['size'][1]\n ascender = max(ascender, y0 - slop)\n descender = min(descender, y1 + slop)\n height = max(height, glyph['size'][1] - 2 * slop)\n if orig_viewport is not None:\n canvas.context.set_viewport(*orig_viewport)\n width -= glyph['advance'] * ratio - (glyph['size'][0] - 2 * slop)\n dx = dy = 0\n if anchor_y == 'top':\n dy = -ascender\n elif anchor_y in ('center', 'middle'):\n dy = -(height / 2 + descender)\n elif anchor_y == 'bottom':\n dy = -descender\n if anchor_x == 'right':\n dx = -width\n elif anchor_x == 'center':\n dx = -width / 2.0\n vertices['a_position'] += dx, dy\n vertices['a_position'] /= lowres_size\n return vertices\n",
"role": "user"
},
{
"content": "text_to_vbo",
"role": "assistant"
}
] |
def x(self, char):
assert isinstance(char, string_types) and len(char) == 1
assert char not in self._glyphs
_load_glyph(self._font, char, self._glyphs)
glyph = self._glyphs[char]
bitmap = glyph['bitmap']
data = np.zeros((bitmap.shape[0] + 2 * self._spread, bitmap.shape[1] +
2 * self._spread), np.uint8)
data[self._spread:-self._spread, self._spread:-self._spread] = bitmap
height = data.shape[0] // self.ratio
width = data.shape[1] // self.ratio
region = self._atlas.get_free_region(width + 2, height + 2)
if region is None:
raise RuntimeError('Cannot store glyph')
x, y, w, h = region
x, y, w, h = x + 1, y + 1, w - 2, h - 2
self._renderer.render_to_texture(data, self._atlas, (x, y), (w, h))
u0 = x / float(self._atlas.shape[1])
v0 = y / float(self._atlas.shape[0])
u1 = (x + w) / float(self._atlas.shape[1])
v1 = (y + h) / float(self._atlas.shape[0])
texcoords = u0, v0, u1, v1
glyph.update(dict(size=(w, h), texcoords=texcoords))
|
load_char
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, char):\n assert isinstance(char, string_types) and len(char) == 1\n assert char not in self._glyphs\n _load_glyph(self._font, char, self._glyphs)\n glyph = self._glyphs[char]\n bitmap = glyph['bitmap']\n data = np.zeros((bitmap.shape[0] + 2 * self._spread, bitmap.shape[1] + \n 2 * self._spread), np.uint8)\n data[self._spread:-self._spread, self._spread:-self._spread] = bitmap\n height = data.shape[0] // self.ratio\n width = data.shape[1] // self.ratio\n region = self._atlas.get_free_region(width + 2, height + 2)\n if region is None:\n raise RuntimeError('Cannot store glyph')\n x, y, w, h = region\n x, y, w, h = x + 1, y + 1, w - 2, h - 2\n self._renderer.render_to_texture(data, self._atlas, (x, y), (w, h))\n u0 = x / float(self._atlas.shape[1])\n v0 = y / float(self._atlas.shape[0])\n u1 = (x + w) / float(self._atlas.shape[1])\n v1 = (y + h) / float(self._atlas.shape[0])\n texcoords = u0, v0, u1, v1\n glyph.update(dict(size=(w, h), texcoords=texcoords))\n",
"role": "user"
},
{
"content": "load_char",
"role": "assistant"
}
] |
def x(self, face, bold=False, italic=False):
key = '%s-%s-%s' % (face, bold, italic)
if key not in self._fonts:
font = dict(face=face, bold=bold, italic=italic)
self._fonts[key] = TextureFont(font, self._renderer)
return self._fonts[key]
|
get_font
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, face, bold=False, italic=False):\n key = '%s-%s-%s' % (face, bold, italic)\n if key not in self._fonts:\n font = dict(face=face, bold=bold, italic=italic)\n self._fonts[key] = TextureFont(font, self._renderer)\n return self._fonts[key]\n",
"role": "user"
},
{
"content": "get_font",
"role": "assistant"
}
] |
def x(x, n_fft=1024, step=512, fs=2 * np.pi, window='hann'):
x = np.asarray(x, float)
if x.ndim != 1:
raise ValueError('x must be 1D')
if window is not None:
if window not in ('hann',):
raise ValueError('window must be "hann" or None')
w = np.hanning(n_fft)
else:
w = np.ones(n_fft)
n_fft = int(n_fft)
step = max(n_fft // 2, 1) if step is None else int(step)
fs = float(fs)
zero_pad = n_fft - len(x)
if zero_pad > 0:
x = np.concatenate((x, np.zeros(zero_pad, float)))
n_freqs = n_fft // 2 + 1
n_estimates = (len(x) - n_fft) // step + 1
result = np.empty((n_freqs, n_estimates), np.complex128)
for ii in range(n_estimates):
result[:, ii] = np.fft.rfft(w * x[ii * step:ii * step + n_fft]) / n_fft
return result
|
stft
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, n_fft=1024, step=512, fs=2 * np.pi, window='hann'):\n x = np.asarray(x, float)\n if x.ndim != 1:\n raise ValueError('x must be 1D')\n if window is not None:\n if window not in ('hann',):\n raise ValueError('window must be \"hann\" or None')\n w = np.hanning(n_fft)\n else:\n w = np.ones(n_fft)\n n_fft = int(n_fft)\n step = max(n_fft // 2, 1) if step is None else int(step)\n fs = float(fs)\n zero_pad = n_fft - len(x)\n if zero_pad > 0:\n x = np.concatenate((x, np.zeros(zero_pad, float)))\n n_freqs = n_fft // 2 + 1\n n_estimates = (len(x) - n_fft) // step + 1\n result = np.empty((n_freqs, n_estimates), np.complex128)\n for ii in range(n_estimates):\n result[:, ii] = np.fft.rfft(w * x[ii * step:ii * step + n_fft]) / n_fft\n return result\n",
"role": "user"
},
{
"content": "stft",
"role": "assistant"
}
] |
def x(n_fft, fs):
return np.arange(0, n_fft // 2 + 1) / float(n_fft) * float(fs)
|
fft_freqs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n_fft, fs):\n return np.arange(0, n_fft // 2 + 1) / float(n_fft) * float(fs)\n",
"role": "user"
},
{
"content": "fft_freqs",
"role": "assistant"
}
] |
def x(self, pos=None, color=None, width=None, connect=None, arrows=None):
if arrows is not None:
self._arrows = arrows
self._arrows_changed = True
LineVisual.set_data(self, pos, color, width, connect)
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pos=None, color=None, width=None, connect=None, arrows=None):\n if arrows is not None:\n self._arrows = arrows\n self._arrows_changed = True\n LineVisual.set_data(self, pos, color, width, connect)\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(text):
def x(text):
replying_to = []
split_text = text.split()
for index, token in enumerate(split_text):
if token.startswith('@'):
replying_to.append(token[1:])
else:
message = split_text[index:]
break
rply_msg = ''
if len(replying_to) > 0:
rply_msg = 'Replying to '
for token in replying_to[:-1]:
rply_msg += token + ','
if len(replying_to) > 1:
rply_msg += 'and '
rply_msg += replying_to[-1] + '. '
return rply_msg + ' '.join(message)
text = reply_to(text)
text = text.replace('@', ' ')
return ' '.join([token for token in text.split() if 'http:' not in
token and 'https:' not in token])
|
strip_html
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n\n def x(text):\n replying_to = []\n split_text = text.split()\n for index, token in enumerate(split_text):\n if token.startswith('@'):\n replying_to.append(token[1:])\n else:\n message = split_text[index:]\n break\n rply_msg = ''\n if len(replying_to) > 0:\n rply_msg = 'Replying to '\n for token in replying_to[:-1]:\n rply_msg += token + ','\n if len(replying_to) > 1:\n rply_msg += 'and '\n rply_msg += replying_to[-1] + '. '\n return rply_msg + ' '.join(message)\n text = reply_to(text)\n text = text.replace('@', ' ')\n return ' '.join([token for token in text.split() if 'http:' not in\n token and 'https:' not in token])\n",
"role": "user"
},
{
"content": "strip_html",
"role": "assistant"
}
] |
def x(user_id, message, additional_params={}):
url = 'https://api.twitter.com/1.1/statuses/update.json'
params = {'status': message}
params.update(additional_params)
r = make_twitter_request(url, user_id, params, request_type='POST')
print(r.text)
return 'Successfully posted a tweet {}'.format(message)
|
post_tweet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(user_id, message, additional_params={}):\n url = 'https://api.twitter.com/1.1/statuses/update.json'\n params = {'status': message}\n params.update(additional_params)\n r = make_twitter_request(url, user_id, params, request_type='POST')\n print(r.text)\n return 'Successfully posted a tweet {}'.format(message)\n",
"role": "user"
},
{
"content": "post_tweet",
"role": "assistant"
}
] |
def x(url, user_id, params={}, request_type='GET'):
if request_type == 'GET':
return requests.get(url, auth=get_twitter_auth(user_id), params=params)
elif request_type == 'POST':
return requests.post(url, auth=get_twitter_auth(user_id), params=params
)
|
make_twitter_request
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(url, user_id, params={}, request_type='GET'):\n if request_type == 'GET':\n return requests.get(url, auth=get_twitter_auth(user_id), params=params)\n elif request_type == 'POST':\n return requests.post(url, auth=get_twitter_auth(user_id), params=params\n )\n",
"role": "user"
},
{
"content": "make_twitter_request",
"role": "assistant"
}
] |
def x(user_id, search_location):
url = 'https://api.twitter.com/1.1/geo/search.json'
params = {'query': search_location}
response = make_twitter_request(url, user_id, params).json()
return response
|
geo_search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(user_id, search_location):\n url = 'https://api.twitter.com/1.1/geo/search.json'\n params = {'query': search_location}\n response = make_twitter_request(url, user_id, params).json()\n return response\n",
"role": "user"
},
{
"content": "geo_search",
"role": "assistant"
}
] |
def x(processed_tweets, speech_convertor=None):
return ['tweet number {num} by {user}. {text}.'.format(num=index + 1,
user=user, text=text) for index, (user, text) in enumerate(
processed_tweets)]
|
read_out_tweets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(processed_tweets, speech_convertor=None):\n return ['tweet number {num} by {user}. {text}.'.format(num=index + 1,\n user=user, text=text) for index, (user, text) in enumerate(\n processed_tweets)]\n",
"role": "user"
},
{
"content": "read_out_tweets",
"role": "assistant"
}
] |
def x(user_id, params):
url = 'https://api.twitter.com/1.1/search/tweets.json'
response = make_twitter_request(url, user_id, params)
return process_tweets(response.json()['statuses'])
|
search_for_tweets_about
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(user_id, params):\n url = 'https://api.twitter.com/1.1/search/tweets.json'\n response = make_twitter_request(url, user_id, params)\n return process_tweets(response.json()['statuses'])\n",
"role": "user"
},
{
"content": "search_for_tweets_about",
"role": "assistant"
}
] |
def x(self, val):
if not isinstance(val, type({})):
raise ValueError(type({}))
self.read()
self.config.update(val)
self.save()
|
add_val
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, val):\n if not isinstance(val, type({})):\n raise ValueError(type({}))\n self.read()\n self.config.update(val)\n self.save()\n",
"role": "user"
},
{
"content": "add_val",
"role": "assistant"
}
] |
def x(fname):
fmt = op.splitext(fname)[1].lower()
if fmt == '.gz':
fmt = op.splitext(op.splitext(fname)[0])[1].lower()
if fmt in '.obj':
return WavefrontReader.read(fname)
elif not format:
raise ValueError('read_mesh needs could not determine format.')
else:
raise ValueError('read_mesh does not understand format %s.' % fmt)
|
read_mesh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n fmt = op.splitext(fname)[1].lower()\n if fmt == '.gz':\n fmt = op.splitext(op.splitext(fname)[0])[1].lower()\n if fmt in '.obj':\n return WavefrontReader.read(fname)\n elif not format:\n raise ValueError('read_mesh needs could not determine format.')\n else:\n raise ValueError('read_mesh does not understand format %s.' % fmt)\n",
"role": "user"
},
{
"content": "read_mesh",
"role": "assistant"
}
] |
def x(fname, vertices, faces, normals, texcoords, name='', format='obj',
overwrite=False, reshape_faces=True):
if op.isfile(fname) and not overwrite:
raise IOError('file "%s" exists, use overwrite=True' % fname)
if format not in 'obj':
raise ValueError('Only "obj" format writing currently supported')
WavefrontWriter.write(fname, vertices, faces, normals, texcoords, name,
reshape_faces)
|
write_mesh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname, vertices, faces, normals, texcoords, name='', format='obj',\n overwrite=False, reshape_faces=True):\n if op.isfile(fname) and not overwrite:\n raise IOError('file \"%s\" exists, use overwrite=True' % fname)\n if format not in 'obj':\n raise ValueError('Only \"obj\" format writing currently supported')\n WavefrontWriter.write(fname, vertices, faces, normals, texcoords, name,\n reshape_faces)\n",
"role": "user"
},
{
"content": "write_mesh",
"role": "assistant"
}
] |
def x(config):
pyglet_config = pyglet.gl.Config()
pyglet_config.red_size = config['red_size']
pyglet_config.green_size = config['green_size']
pyglet_config.blue_size = config['blue_size']
pyglet_config.alpha_size = config['alpha_size']
pyglet_config.accum_red_size = 0
pyglet_config.accum_green_size = 0
pyglet_config.accum_blue_size = 0
pyglet_config.accum_alpha_size = 0
pyglet_config.depth_size = config['depth_size']
pyglet_config.stencil_size = config['stencil_size']
pyglet_config.double_buffer = config['double_buffer']
pyglet_config.stereo = config['stereo']
pyglet_config.samples = config['samples']
return pyglet_config
|
set_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config):\n pyglet_config = pyglet.gl.Config()\n pyglet_config.red_size = config['red_size']\n pyglet_config.green_size = config['green_size']\n pyglet_config.blue_size = config['blue_size']\n pyglet_config.alpha_size = config['alpha_size']\n pyglet_config.accum_red_size = 0\n pyglet_config.accum_green_size = 0\n pyglet_config.accum_blue_size = 0\n pyglet_config.accum_alpha_size = 0\n pyglet_config.depth_size = config['depth_size']\n pyglet_config.stencil_size = config['stencil_size']\n pyglet_config.double_buffer = config['double_buffer']\n pyglet_config.stereo = config['stereo']\n pyglet_config.samples = config['samples']\n return pyglet_config\n",
"role": "user"
},
{
"content": "set_config",
"role": "assistant"
}
] |
def x(self, vert, frag):
if not vert or not frag:
raise ValueError('Vertex and fragment code must both be non-empty')
vert, frag = preprocess(vert), preprocess(frag)
self._shaders = vert, frag
self._glir.command('SHADERS', self._id, vert, frag)
for key, val in self._user_variables.items():
self._pending_variables[key] = val
self._user_variables = {}
self._parse_variables_from_code()
|
set_shaders
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vert, frag):\n if not vert or not frag:\n raise ValueError('Vertex and fragment code must both be non-empty')\n vert, frag = preprocess(vert), preprocess(frag)\n self._shaders = vert, frag\n self._glir.command('SHADERS', self._id, vert, frag)\n for key, val in self._user_variables.items():\n self._pending_variables[key] = val\n self._user_variables = {}\n self._parse_variables_from_code()\n",
"role": "user"
},
{
"content": "set_shaders",
"role": "assistant"
}
] |
def x(self):
code = '\n\n'.join(self._shaders)
code = re.sub('(.*)(//.*)', '\\1', code, re.M)
var_regexp = (
'\\s*VARIABLE\\s+((highp|mediump|lowp)\\s+)?(?P<type>\\w+)\\s+(?P<name>\\w+)\\s*(\\[(?P<size>\\d+)\\])?(\\s*\\=\\s*[0-9.]+)?\\s*;'
)
self._code_variables = {}
for kind in ('uniform', 'attribute', 'varying', 'const'):
regex = re.compile(var_regexp.replace('VARIABLE', kind), flags=re.
MULTILINE)
for m in re.finditer(regex, code):
gtype = m.group('type')
size = int(m.group('size')) if m.group('size') else -1
this_kind = kind
if size >= 1:
for i in range(size):
name = '%s[%d]' % (m.group('name'), i)
self._code_variables[name] = kind, gtype, name, -1
this_kind = 'uniform_array'
name = m.group('name')
self._code_variables[name] = this_kind, gtype, name, size
self._process_pending_variables()
|
parse_variables_from_code
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n code = '\\n\\n'.join(self._shaders)\n code = re.sub('(.*)(//.*)', '\\\\1', code, re.M)\n var_regexp = (\n '\\\\s*VARIABLE\\\\s+((highp|mediump|lowp)\\\\s+)?(?P<type>\\\\w+)\\\\s+(?P<name>\\\\w+)\\\\s*(\\\\[(?P<size>\\\\d+)\\\\])?(\\\\s*\\\\=\\\\s*[0-9.]+)?\\\\s*;'\n )\n self._code_variables = {}\n for kind in ('uniform', 'attribute', 'varying', 'const'):\n regex = re.compile(var_regexp.replace('VARIABLE', kind), flags=re.\n MULTILINE)\n for m in re.finditer(regex, code):\n gtype = m.group('type')\n size = int(m.group('size')) if m.group('size') else -1\n this_kind = kind\n if size >= 1:\n for i in range(size):\n name = '%s[%d]' % (m.group('name'), i)\n self._code_variables[name] = kind, gtype, name, -1\n this_kind = 'uniform_array'\n name = m.group('name')\n self._code_variables[name] = this_kind, gtype, name, size\n self._process_pending_variables()\n",
"role": "user"
},
{
"content": "parse_variables_from_code",
"role": "assistant"
}
] |
def x(self, data):
if not isinstance(data, VertexBuffer):
raise ValueError('Program.bind() requires a VertexBuffer.')
for name in data.dtype.names:
self[name] = data[name]
|
bind
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n if not isinstance(data, VertexBuffer):\n raise ValueError('Program.bind() requires a VertexBuffer.')\n for name in data.dtype.names:\n self[name] = data[name]\n",
"role": "user"
},
{
"content": "bind",
"role": "assistant"
}
] |
def x(self):
self._pending_variables, pending = {}, self._pending_variables
for name, data in pending.items():
self[name] = data
|
process_pending_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._pending_variables, pending = {}, self._pending_variables\n for name, data in pending.items():\n self[name] = data\n",
"role": "user"
},
{
"content": "process_pending_variables",
"role": "assistant"
}
] |
def x(self, mode='triangles', indices=None, check_error=True):
self._buffer = None
mode = check_enum(mode)
if mode not in ['points', 'lines', 'line_strip', 'line_loop',
'triangles', 'triangle_strip', 'triangle_fan']:
raise ValueError('Invalid draw mode: %r' % mode)
for name in self._pending_variables:
logger.warn('Variable %r is given but not known.' % name)
self._pending_variables = {}
attributes = [vbo for vbo in self._user_variables.values() if
isinstance(vbo, DataBuffer)]
sizes = [a.size for a in attributes]
if len(attributes) < 1:
raise RuntimeError('Must have at least one attribute')
if not all(s == sizes[0] for s in sizes[1:]):
msg = '\n'.join([('%s: %s' % (str(a), a.size)) for a in attributes])
raise RuntimeError(
'All attributes must have the same size, got:\n%s' % msg)
canvas = get_current_canvas()
assert canvas is not None
canvas.context.glir.associate(self.glir)
if isinstance(indices, IndexBuffer):
canvas.context.glir.associate(indices.glir)
logger.debug('Program drawing %r with index buffer' % mode)
gltypes = {np.dtype(np.uint8): 'UNSIGNED_BYTE', np.dtype(np.uint16):
'UNSIGNED_SHORT', np.dtype(np.uint32): 'UNSIGNED_INT'}
selection = indices.id, gltypes[indices.dtype], indices.size
canvas.context.glir.command('DRAW', self._id, mode, selection)
elif indices is None:
selection = 0, attributes[0].size
logger.debug('Program drawing %r with %r' % (mode, selection))
canvas.context.glir.command('DRAW', self._id, mode, selection)
else:
raise TypeError('Invalid index: %r (must be IndexBuffer)' % indices)
canvas.context.flush_commands()
|
draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode='triangles', indices=None, check_error=True):\n self._buffer = None\n mode = check_enum(mode)\n if mode not in ['points', 'lines', 'line_strip', 'line_loop',\n 'triangles', 'triangle_strip', 'triangle_fan']:\n raise ValueError('Invalid draw mode: %r' % mode)\n for name in self._pending_variables:\n logger.warn('Variable %r is given but not known.' % name)\n self._pending_variables = {}\n attributes = [vbo for vbo in self._user_variables.values() if\n isinstance(vbo, DataBuffer)]\n sizes = [a.size for a in attributes]\n if len(attributes) < 1:\n raise RuntimeError('Must have at least one attribute')\n if not all(s == sizes[0] for s in sizes[1:]):\n msg = '\\n'.join([('%s: %s' % (str(a), a.size)) for a in attributes])\n raise RuntimeError(\n 'All attributes must have the same size, got:\\n%s' % msg)\n canvas = get_current_canvas()\n assert canvas is not None\n canvas.context.glir.associate(self.glir)\n if isinstance(indices, IndexBuffer):\n canvas.context.glir.associate(indices.glir)\n logger.debug('Program drawing %r with index buffer' % mode)\n gltypes = {np.dtype(np.uint8): 'UNSIGNED_BYTE', np.dtype(np.uint16):\n 'UNSIGNED_SHORT', np.dtype(np.uint32): 'UNSIGNED_INT'}\n selection = indices.id, gltypes[indices.dtype], indices.size\n canvas.context.glir.command('DRAW', self._id, mode, selection)\n elif indices is None:\n selection = 0, attributes[0].size\n logger.debug('Program drawing %r with %r' % (mode, selection))\n canvas.context.glir.command('DRAW', self._id, mode, selection)\n else:\n raise TypeError('Invalid index: %r (must be IndexBuffer)' % indices)\n canvas.context.flush_commands()\n",
"role": "user"
},
{
"content": "draw",
"role": "assistant"
}
] |
def x(self, x=None, y=None, z=None, colors=None):
if x is not None:
if self._x is None or len(x) != len(self._x):
self.__vertices = None
self._x = x
if y is not None:
if self._y is None or len(y) != len(self._y):
self.__vertices = None
self._y = y
if z is not None:
if self._x is not None and z.shape[0] != len(self._x):
raise TypeError('Z values must have shape (len(x), len(y))')
if self._y is not None and z.shape[1] != len(self._y):
raise TypeError('Z values must have shape (len(x), len(y))')
self._z = z
if (self.__vertices is not None and self._z.shape != self.
__vertices.shape[:2]):
self.__vertices = None
if self._z is None:
return
update_mesh = False
new_vertices = False
if self.__vertices is None:
new_vertices = True
self.__vertices = np.empty((self._z.shape[0], self._z.shape[1], 3),
dtype=np.float32)
self.generate_faces()
self.__meshdata.set_faces(self.__faces)
update_mesh = True
if new_vertices or x is not None:
if x is None:
if self._x is None:
x = np.arange(self._z.shape[0])
else:
x = self._x
self.__vertices[:, :, 0] = x.reshape(len(x), 1)
update_mesh = True
if new_vertices or y is not None:
if y is None:
if self._y is None:
y = np.arange(self._z.shape[1])
else:
y = self._y
self.__vertices[:, :, 1] = y.reshape(1, len(y))
update_mesh = True
if new_vertices or z is not None:
self.__vertices[..., 2] = self._z
update_mesh = True
if colors is not None:
self.__meshdata.set_vertex_colors(colors)
update_mesh = True
if update_mesh:
self.__meshdata.set_vertices(self.__vertices.reshape(self.
__vertices.shape[0] * self.__vertices.shape[1], 3))
MeshVisual.set_data(self, meshdata=self.__meshdata)
|
set_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x=None, y=None, z=None, colors=None):\n if x is not None:\n if self._x is None or len(x) != len(self._x):\n self.__vertices = None\n self._x = x\n if y is not None:\n if self._y is None or len(y) != len(self._y):\n self.__vertices = None\n self._y = y\n if z is not None:\n if self._x is not None and z.shape[0] != len(self._x):\n raise TypeError('Z values must have shape (len(x), len(y))')\n if self._y is not None and z.shape[1] != len(self._y):\n raise TypeError('Z values must have shape (len(x), len(y))')\n self._z = z\n if (self.__vertices is not None and self._z.shape != self.\n __vertices.shape[:2]):\n self.__vertices = None\n if self._z is None:\n return\n update_mesh = False\n new_vertices = False\n if self.__vertices is None:\n new_vertices = True\n self.__vertices = np.empty((self._z.shape[0], self._z.shape[1], 3),\n dtype=np.float32)\n self.generate_faces()\n self.__meshdata.set_faces(self.__faces)\n update_mesh = True\n if new_vertices or x is not None:\n if x is None:\n if self._x is None:\n x = np.arange(self._z.shape[0])\n else:\n x = self._x\n self.__vertices[:, :, 0] = x.reshape(len(x), 1)\n update_mesh = True\n if new_vertices or y is not None:\n if y is None:\n if self._y is None:\n y = np.arange(self._z.shape[1])\n else:\n y = self._y\n self.__vertices[:, :, 1] = y.reshape(1, len(y))\n update_mesh = True\n if new_vertices or z is not None:\n self.__vertices[..., 2] = self._z\n update_mesh = True\n if colors is not None:\n self.__meshdata.set_vertex_colors(colors)\n update_mesh = True\n if update_mesh:\n self.__meshdata.set_vertices(self.__vertices.reshape(self.\n __vertices.shape[0] * self.__vertices.shape[1], 3))\n MeshVisual.set_data(self, meshdata=self.__meshdata)\n",
"role": "user"
},
{
"content": "set_data",
"role": "assistant"
}
] |
def x(self):
if self._simplified is None:
self._simplified = SimplifiedChainTransform(self)
return self._simplified
|
simplified
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._simplified is None:\n self._simplified = SimplifiedChainTransform(self)\n return self._simplified\n",
"role": "user"
},
{
"content": "simplified",
"role": "assistant"
}
] |
def x(self, coords):
for tr in reversed(self.transforms):
coords = tr.map(coords)
return coords
|
map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, coords):\n for tr in reversed(self.transforms):\n coords = tr.map(coords)\n return coords\n",
"role": "user"
},
{
"content": "map",
"role": "assistant"
}
] |
def x(self, coords):
for tr in self.transforms:
coords = tr.imap(coords)
return coords
|
imap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, coords):\n for tr in self.transforms:\n coords = tr.imap(coords)\n return coords\n",
"role": "user"
},
{
"content": "imap",
"role": "assistant"
}
] |
def x(self, tr):
self.transforms.append(tr)
tr.changed.connect(self._subtr_changed)
self._rebuild_shaders()
self.update()
|
append
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tr):\n self.transforms.append(tr)\n tr.changed.connect(self._subtr_changed)\n self._rebuild_shaders()\n self.update()\n",
"role": "user"
},
{
"content": "append",
"role": "assistant"
}
] |
def x(self, tr):
self.transforms.insert(0, tr)
tr.changed.connect(self._subtr_changed)
self._rebuild_shaders()
self.update()
|
prepend
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tr):\n self.transforms.insert(0, tr)\n tr.changed.connect(self._subtr_changed)\n self._rebuild_shaders()\n self.update()\n",
"role": "user"
},
{
"content": "prepend",
"role": "assistant"
}
] |
def x(self, event):
transforms = self._chain.transforms[:]
if len(transforms) == 0:
self.transforms = []
return
if event is not None:
for source in event.sources[::-1]:
if source in self.transforms:
self.update(event)
return
new_chain = []
while len(transforms) > 0:
tr = transforms.pop(0)
if isinstance(tr, ChainTransform) and not tr.dynamic:
transforms = tr.transforms[:] + transforms
else:
new_chain.append(tr)
cont = True
tr = new_chain
while cont:
new_tr = [tr[0]]
cont = False
for t2 in tr[1:]:
t1 = new_tr[-1]
pr = t1 * t2
if not t1.dynamic and not t2.dynamic and not isinstance(pr,
ChainTransform):
cont = True
new_tr.pop()
new_tr.append(pr)
else:
new_tr.append(t2)
tr = new_tr
self.transforms = tr
|
source_changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event):\n transforms = self._chain.transforms[:]\n if len(transforms) == 0:\n self.transforms = []\n return\n if event is not None:\n for source in event.sources[::-1]:\n if source in self.transforms:\n self.update(event)\n return\n new_chain = []\n while len(transforms) > 0:\n tr = transforms.pop(0)\n if isinstance(tr, ChainTransform) and not tr.dynamic:\n transforms = tr.transforms[:] + transforms\n else:\n new_chain.append(tr)\n cont = True\n tr = new_chain\n while cont:\n new_tr = [tr[0]]\n cont = False\n for t2 in tr[1:]:\n t1 = new_tr[-1]\n pr = t1 * t2\n if not t1.dynamic and not t2.dynamic and not isinstance(pr,\n ChainTransform):\n cont = True\n new_tr.pop()\n new_tr.append(pr)\n else:\n new_tr.append(t2)\n tr = new_tr\n self.transforms = tr\n",
"role": "user"
},
{
"content": "source_changed",
"role": "assistant"
}
] |
def x(messages):
return pack_string(struct.pack('>l', len(messages)) + ''.join(map(
pack_string, messages)))
|
pack_iterable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(messages):\n return pack_string(struct.pack('>l', len(messages)) + ''.join(map(\n pack_string, messages)))\n",
"role": "user"
},
{
"content": "pack_iterable",
"role": "assistant"
}
] |
def x(message):
import string
hexified = []
for char in message:
if char in '\n\r \t' or char not in string.printable:
hexified.append('\\x%02x' % ord(char))
else:
hexified.append(char)
return ''.join(hexified)
|
hexify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(message):\n import string\n hexified = []\n for char in message:\n if char in '\\n\\r \\t' or char not in string.printable:\n hexified.append('\\\\x%02x' % ord(char))\n else:\n hexified.append(char)\n return ''.join(hexified)\n",
"role": "user"
},
{
"content": "hexify",
"role": "assistant"
}
] |
def x(total, objects):
for index, obj in enumerate(objects):
start = index * total / len(objects)
stop = (index + 1) * total / len(objects)
yield stop - start, obj
|
distribute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(total, objects):\n for index, obj in enumerate(objects):\n start = index * total / len(objects)\n stop = (index + 1) * total / len(objects)\n yield stop - start, obj\n",
"role": "user"
},
{
"content": "distribute",
"role": "assistant"
}
] |
def x(self):
for _, item in self.queue.items():
if item['status'] in ['paused', 'running', 'stopping', 'killing']:
item['status'] = 'queued'
item['start'] = ''
item['end'] = ''
|
clean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for _, item in self.queue.items():\n if item['status'] in ['paused', 'running', 'stopping', 'killing']:\n item['status'] = 'queued'\n item['start'] = ''\n item['end'] = ''\n",
"role": "user"
},
{
"content": "clean",
"role": "assistant"
}
] |
def x(self):
for key in list(self.queue.keys()):
if self.queue[key]['status'] in ['done', 'failed']:
del self.queue[key]
self.write()
|
clear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for key in list(self.queue.keys()):\n if self.queue[key]['status'] in ['done', 'failed']:\n del self.queue[key]\n self.write()\n",
"role": "user"
},
{
"content": "clear",
"role": "assistant"
}
] |
def x(self):
smallest = None
for key in self.queue.keys():
if self.queue[key]['status'] == 'queued':
if smallest is None or key < smallest:
smallest = key
return smallest
|
next
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n smallest = None\n for key in self.queue.keys():\n if self.queue[key]['status'] == 'queued':\n if smallest is None or key < smallest:\n smallest = key\n return smallest\n",
"role": "user"
},
{
"content": "next",
"role": "assistant"
}
] |
def x(self):
queue_path = os.path.join(self.config_dir, 'queue')
if os.path.exists(queue_path):
queue_file = open(queue_path, 'rb')
try:
self.queue = pickle.load(queue_file)
except Exception:
print('Queue file corrupted, deleting old queue')
os.remove(queue_path)
self.queue = {}
queue_file.close()
else:
self.queue = {}
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n queue_path = os.path.join(self.config_dir, 'queue')\n if os.path.exists(queue_path):\n queue_file = open(queue_path, 'rb')\n try:\n self.queue = pickle.load(queue_file)\n except Exception:\n print('Queue file corrupted, deleting old queue')\n os.remove(queue_path)\n self.queue = {}\n queue_file.close()\n else:\n self.queue = {}\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self):
queue_path = os.path.join(self.config_dir, 'queue')
queue_file = open(queue_path, 'wb+')
try:
pickle.dump(self.queue, queue_file, -1)
except Exception:
print('Error while writing to queue file. Wrong file permissions?')
queue_file.close()
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n queue_path = os.path.join(self.config_dir, 'queue')\n queue_file = open(queue_path, 'wb+')\n try:\n pickle.dump(self.queue, queue_file, -1)\n except Exception:\n print('Error while writing to queue file. Wrong file permissions?')\n queue_file.close()\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self, command):
self.queue[self.next_key] = command
self.queue[self.next_key]['status'] = 'queued'
self.queue[self.next_key]['returncode'] = ''
self.queue[self.next_key]['stdout'] = ''
self.queue[self.next_key]['stderr'] = ''
self.queue[self.next_key]['start'] = ''
self.queue[self.next_key]['end'] = ''
self.next_key += 1
self.write()
|
add_new
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, command):\n self.queue[self.next_key] = command\n self.queue[self.next_key]['status'] = 'queued'\n self.queue[self.next_key]['returncode'] = ''\n self.queue[self.next_key]['stdout'] = ''\n self.queue[self.next_key]['stderr'] = ''\n self.queue[self.next_key]['start'] = ''\n self.queue[self.next_key]['end'] = ''\n self.next_key += 1\n self.write()\n",
"role": "user"
},
{
"content": "add_new",
"role": "assistant"
}
] |
def x(self, key):
if key in self.queue:
del self.queue[key]
self.write()
return True
return False
|
remove
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key):\n if key in self.queue:\n del self.queue[key]\n self.write()\n return True\n return False\n",
"role": "user"
},
{
"content": "remove",
"role": "assistant"
}
] |
def x(self, key):
if key in self.queue:
if self.queue[key]['status'] in ['failed', 'done']:
new_entry = {'command': self.queue[key]['command'], 'path':
self.queue[key]['path']}
self.add_new(new_entry)
self.write()
return True
return False
|
restart
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key):\n if key in self.queue:\n if self.queue[key]['status'] in ['failed', 'done']:\n new_entry = {'command': self.queue[key]['command'], 'path':\n self.queue[key]['path']}\n self.add_new(new_entry)\n self.write()\n return True\n return False\n",
"role": "user"
},
{
"content": "restart",
"role": "assistant"
}
] |
def x(self, first, second):
allowed_states = ['queued', 'stashed']
if first in self.queue and second in self.queue and self.queue[first][
'status'] in allowed_states and self.queue[second]['status'
] in allowed_states:
tmp = self.queue[second].copy()
self.queue[second] = self.queue[first].copy()
self.queue[first] = tmp
self.write()
return True
return False
|
switch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, first, second):\n allowed_states = ['queued', 'stashed']\n if first in self.queue and second in self.queue and self.queue[first][\n 'status'] in allowed_states and self.queue[second]['status'\n ] in allowed_states:\n tmp = self.queue[second].copy()\n self.queue[second] = self.queue[first].copy()\n self.queue[first] = tmp\n self.write()\n return True\n return False\n",
"role": "user"
},
{
"content": "switch",
"role": "assistant"
}
] |
def x(socket):
answer = b''
while True:
packet = socket.recv(4096)
if not packet:
break
answer += packet
response = pickle.loads(answer)
socket.close()
return response
|
receive_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(socket):\n answer = b''\n while True:\n packet = socket.recv(4096)\n if not packet:\n break\n answer += packet\n response = pickle.loads(answer)\n socket.close()\n return response\n",
"role": "user"
},
{
"content": "receive_data",
"role": "assistant"
}
] |
def x(root_dir):
config_dir = os.path.join(root_dir, '.config/pueue')
try:
client = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
socket_path = os.path.join(config_dir, 'pueue.sock')
if os.path.exists(socket_path):
client.connect(socket_path)
else:
print("Socket doesn't exist")
raise Exception
except:
print('Error connecting to socket. Make sure the daemon is running')
sys.exit(1)
return client
|
connect_socket
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(root_dir):\n config_dir = os.path.join(root_dir, '.config/pueue')\n try:\n client = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)\n socket_path = os.path.join(config_dir, 'pueue.sock')\n if os.path.exists(socket_path):\n client.connect(socket_path)\n else:\n print(\"Socket doesn't exist\")\n raise Exception\n except:\n print('Error connecting to socket. Make sure the daemon is running')\n sys.exit(1)\n return client\n",
"role": "user"
},
{
"content": "connect_socket",
"role": "assistant"
}
] |
def x(conn, raw):
frame_type = struct.unpack('>l', raw[0:4])[0]
message = raw[4:]
if frame_type == FRAME_TYPE_MESSAGE:
return Message(conn, frame_type, message)
elif frame_type == FRAME_TYPE_RESPONSE:
return Response(conn, frame_type, message)
elif frame_type == FRAME_TYPE_ERROR:
return Error(conn, frame_type, message)
else:
raise TypeError('Unknown frame type: %s' % frame_type)
|
from_raw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(conn, raw):\n frame_type = struct.unpack('>l', raw[0:4])[0]\n message = raw[4:]\n if frame_type == FRAME_TYPE_MESSAGE:\n return Message(conn, frame_type, message)\n elif frame_type == FRAME_TYPE_RESPONSE:\n return Response(conn, frame_type, message)\n elif frame_type == FRAME_TYPE_ERROR:\n return Error(conn, frame_type, message)\n else:\n raise TypeError('Unknown frame type: %s' % frame_type)\n",
"role": "user"
},
{
"content": "from_raw",
"role": "assistant"
}
] |
def x(cls, data):
return struct.pack('>ll', len(data) + 4, cls.FRAME_TYPE) + data
|
pack
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, data):\n return struct.pack('>ll', len(data) + 4, cls.FRAME_TYPE) + data\n",
"role": "user"
},
{
"content": "pack",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.