source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, seqs, nreport=100, scan_rc=True):
count_table = [counts for counts in self.count(seqs, nreport, scan_rc)]
return np.sum(np.array(count_table), 0)
|
total_count
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, seqs, nreport=100, scan_rc=True):\n count_table = [counts for counts in self.count(seqs, nreport, scan_rc)]\n return np.sum(np.array(count_table), 0)\n",
"role": "user"
},
{
"content": "total_count",
"role": "assistant"
}
] |
def x(self, seqs, scan_rc=True, normalize=False):
self.set_threshold(threshold=0.0)
if normalize and len(self.meanstd) == 0:
self.set_meanstd()
means = np.array([self.meanstd[m][0] for m in self.motif_ids])
stds = np.array([self.meanstd[m][1] for m in self.motif_ids])
for matches in self.scan(seqs, 1, scan_rc):
scores = np.array([sorted(m, key=lambda x: x[0])[0][0] for m in
matches if len(m) > 0])
if normalize:
scores = (scores - means) / stds
yield scores
|
best_score
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, seqs, scan_rc=True, normalize=False):\n self.set_threshold(threshold=0.0)\n if normalize and len(self.meanstd) == 0:\n self.set_meanstd()\n means = np.array([self.meanstd[m][0] for m in self.motif_ids])\n stds = np.array([self.meanstd[m][1] for m in self.motif_ids])\n for matches in self.scan(seqs, 1, scan_rc):\n scores = np.array([sorted(m, key=lambda x: x[0])[0][0] for m in\n matches if len(m) > 0])\n if normalize:\n scores = (scores - means) / stds\n yield scores\n",
"role": "user"
},
{
"content": "best_score",
"role": "assistant"
}
] |
def x(self, seqs, scan_rc=True):
self.set_threshold(threshold=0.0)
for matches in self.scan(seqs, 1, scan_rc):
yield [m[0] for m in matches]
|
best_match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, seqs, scan_rc=True):\n self.set_threshold(threshold=0.0)\n for matches in self.scan(seqs, 1, scan_rc):\n yield [m[0] for m in matches]\n",
"role": "user"
},
{
"content": "best_match",
"role": "assistant"
}
] |
def x(self, seqs, nreport=100, scan_rc=True, normalize=False):
if not self.threshold:
sys.stderr.write(
'Using default threshold of 0.95. This is likely not optimal!\n')
self.set_threshold(threshold=0.95)
seqs = as_fasta(seqs, genome=self.genome)
it = self._scan_sequences(seqs.seqs, nreport, scan_rc)
if normalize:
if len(self.meanstd) == 0:
self.set_meanstd()
mean_std = [self.meanstd.get(m_id) for m_id in self.motif_ids]
means = [x[0] for x in mean_std]
stds = [x[1] for x in mean_std]
for result in it:
if normalize:
zresult = []
for i, mrow in enumerate(result):
mrow = [((x[0] - means[i]) / stds[i], x[1], x[2]) for x in mrow
]
zresult.append(mrow)
yield zresult
else:
yield result
|
scan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, seqs, nreport=100, scan_rc=True, normalize=False):\n if not self.threshold:\n sys.stderr.write(\n 'Using default threshold of 0.95. This is likely not optimal!\\n')\n self.set_threshold(threshold=0.95)\n seqs = as_fasta(seqs, genome=self.genome)\n it = self._scan_sequences(seqs.seqs, nreport, scan_rc)\n if normalize:\n if len(self.meanstd) == 0:\n self.set_meanstd()\n mean_std = [self.meanstd.get(m_id) for m_id in self.motif_ids]\n means = [x[0] for x in mean_std]\n stds = [x[1] for x in mean_std]\n for result in it:\n if normalize:\n zresult = []\n for i, mrow in enumerate(result):\n mrow = [((x[0] - means[i]) / stds[i], x[1], x[2]) for x in mrow\n ]\n zresult.append(mrow)\n yield zresult\n else:\n yield result\n",
"role": "user"
},
{
"content": "scan",
"role": "assistant"
}
] |
def x(args):
outputfile = args.outfile
if outputfile and not outputfile.endswith('.png'):
outputfile += '.png'
motifs = read_motifs(args.pwmfile, fmt='pwm')
ids = []
if args.ids:
ids = args.ids.split(',')
else:
ids = [m.id for m in motifs]
motifs = [m for m in motifs if m.id in ids]
stats = ['phyper_at_fpr', 'roc_auc', 'pr_auc', 'enr_at_fpr',
'recall_at_fdr', 'roc_values', 'matches_at_fpr']
plot_x = []
plot_y = []
legend = []
f_out = sys.stdout
if args.outdir:
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
f_out = open(args.outdir + '/gimme.roc.report.txt', 'w')
f_out.write(
"""Motif # matches # matches background P-value log10 P-value ROC AUC PR AUC Enr. at 1% FPR Recall at 10% FDR
"""
)
for motif_stats in calc_stats_iterator(motifs, args.sample, args.
background, genome=args.genome, stats=stats, ncpus=args.ncpus):
for motif in motifs:
if str(motif) in motif_stats:
if outputfile:
x, y = motif_stats[str(motif)]['roc_values']
plot_x.append(x)
plot_y.append(y)
legend.append(motif.id)
log_pvalue = np.inf
if motif_stats[str(motif)]['phyper_at_fpr'] > 0:
log_pvalue = -np.log10(motif_stats[str(motif)][
'phyper_at_fpr'])
f_out.write(
'{}\t{:d}\t{:d}\t{:.2e}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.2f}\t{:0.4f}\n'
.format(motif.id, motif_stats[str(motif)][
'matches_at_fpr'][0], motif_stats[str(motif)][
'matches_at_fpr'][1], motif_stats[str(motif)][
'phyper_at_fpr'], log_pvalue, motif_stats[str(motif)][
'roc_auc'], motif_stats[str(motif)]['pr_auc'],
motif_stats[str(motif)]['enr_at_fpr'], motif_stats[str(
motif)]['recall_at_fdr']))
f_out.close()
if args.outdir:
html_report(args.outdir, args.outdir + '/gimme.roc.report.txt',
args.pwmfile, 0.01)
if outputfile:
roc_plot(outputfile, plot_x, plot_y, ids=legend)
|
roc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n outputfile = args.outfile\n if outputfile and not outputfile.endswith('.png'):\n outputfile += '.png'\n motifs = read_motifs(args.pwmfile, fmt='pwm')\n ids = []\n if args.ids:\n ids = args.ids.split(',')\n else:\n ids = [m.id for m in motifs]\n motifs = [m for m in motifs if m.id in ids]\n stats = ['phyper_at_fpr', 'roc_auc', 'pr_auc', 'enr_at_fpr',\n 'recall_at_fdr', 'roc_values', 'matches_at_fpr']\n plot_x = []\n plot_y = []\n legend = []\n f_out = sys.stdout\n if args.outdir:\n if not os.path.exists(args.outdir):\n os.makedirs(args.outdir)\n f_out = open(args.outdir + '/gimme.roc.report.txt', 'w')\n f_out.write(\n \"\"\"Motif\t# matches\t# matches background\tP-value\tlog10 P-value\tROC AUC\tPR AUC\tEnr. at 1% FPR\tRecall at 10% FDR\n\"\"\"\n )\n for motif_stats in calc_stats_iterator(motifs, args.sample, args.\n background, genome=args.genome, stats=stats, ncpus=args.ncpus):\n for motif in motifs:\n if str(motif) in motif_stats:\n if outputfile:\n x, y = motif_stats[str(motif)]['roc_values']\n plot_x.append(x)\n plot_y.append(y)\n legend.append(motif.id)\n log_pvalue = np.inf\n if motif_stats[str(motif)]['phyper_at_fpr'] > 0:\n log_pvalue = -np.log10(motif_stats[str(motif)][\n 'phyper_at_fpr'])\n f_out.write(\n '{}\\t{:d}\\t{:d}\\t{:.2e}\\t{:.3f}\\t{:.3f}\\t{:.3f}\\t{:.2f}\\t{:0.4f}\\n'\n .format(motif.id, motif_stats[str(motif)][\n 'matches_at_fpr'][0], motif_stats[str(motif)][\n 'matches_at_fpr'][1], motif_stats[str(motif)][\n 'phyper_at_fpr'], log_pvalue, motif_stats[str(motif)][\n 'roc_auc'], motif_stats[str(motif)]['pr_auc'],\n motif_stats[str(motif)]['enr_at_fpr'], motif_stats[str(\n motif)]['recall_at_fdr']))\n f_out.close()\n if args.outdir:\n html_report(args.outdir, args.outdir + '/gimme.roc.report.txt',\n args.pwmfile, 0.01)\n if outputfile:\n roc_plot(outputfile, plot_x, plot_y, ids=legend)\n",
"role": "user"
},
{
"content": "roc",
"role": "assistant"
}
] |
def x(p1, p2):
return 2 - np.sum([((a - b) ** 2) for a, b in zip(p1, p2)])
|
ssd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p1, p2):\n return 2 - np.sum([((a - b) ** 2) for a, b in zip(p1, p2)])\n",
"role": "user"
},
{
"content": "ssd",
"role": "assistant"
}
] |
def x(m1, m2, seq=None):
l1 = len(m1)
l2 = len(m2)
l = max(l1, l2)
if seq is None:
seq = RCDB
L = len(seq)
result1 = pfmscan(seq, m1.pwm, m1.pwm_min_score(), len(seq), False, True)
result2 = pfmscan(seq, m2.pwm, m2.pwm_min_score(), len(seq), False, True)
result3 = pfmscan(seq, m2.rc().pwm, m2.rc().pwm_min_score(), len(seq),
False, True)
result1 = np.array(result1)
result2 = np.array(result2)
result3 = np.array(result3)
c = []
for i in range(l1 - l1 // 3):
c.append([1 - distance.correlation(result1[:L - l - i], result2[i:L -
l]), i, 1])
c.append([1 - distance.correlation(result1[:L - l - i], result3[i:L -
l]), i, -1])
for i in range(l2 - l2 // 3):
c.append([1 - distance.correlation(result1[i:L - l], result2[:L - l -
i]), -i, 1])
c.append([1 - distance.correlation(result1[i:L - l], result3[:L - l -
i]), -i, -1])
return sorted(c, key=lambda x: x[0])[-1]
|
seqcor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(m1, m2, seq=None):\n l1 = len(m1)\n l2 = len(m2)\n l = max(l1, l2)\n if seq is None:\n seq = RCDB\n L = len(seq)\n result1 = pfmscan(seq, m1.pwm, m1.pwm_min_score(), len(seq), False, True)\n result2 = pfmscan(seq, m2.pwm, m2.pwm_min_score(), len(seq), False, True)\n result3 = pfmscan(seq, m2.rc().pwm, m2.rc().pwm_min_score(), len(seq), \n False, True)\n result1 = np.array(result1)\n result2 = np.array(result2)\n result3 = np.array(result3)\n c = []\n for i in range(l1 - l1 // 3):\n c.append([1 - distance.correlation(result1[:L - l - i], result2[i:L -\n l]), i, 1])\n c.append([1 - distance.correlation(result1[:L - l - i], result3[i:L -\n l]), i, -1])\n for i in range(l2 - l2 // 3):\n c.append([1 - distance.correlation(result1[i:L - l], result2[:L - l -\n i]), -i, 1])\n c.append([1 - distance.correlation(result1[i:L - l], result3[:L - l -\n i]), -i, -1])\n return sorted(c, key=lambda x: x[0])[-1]\n",
"role": "user"
},
{
"content": "seqcor",
"role": "assistant"
}
] |
def x(self, m1, m2, match='total', metric='wic', combine='mean', pval=False):
if metric == 'seqcor':
return seqcor(m1, m2)
elif match == 'partial':
if pval:
return self.pvalue(m1, m2, 'total', metric, combine, self.
max_partial(m1.pwm, m2.pwm, metric, combine))
elif metric in ['pcc', 'ed', 'distance', 'wic', 'chisq', 'ssd']:
return self.max_partial(m1.pwm, m2.pwm, metric, combine)
else:
return self.max_partial(m1.pfm, m2.pfm, metric, combine)
elif match == 'total':
if pval:
return self.pvalue(m1, m2, match, metric, combine, self.
max_total(m1.pwm, m2.pwm, metric, combine))
elif metric in ['pcc', 'akl']:
return self.max_total(m1.wiggle_pwm(), m2.wiggle_pwm(), metric,
combine)
elif metric in ['ed', 'distance', 'wic', 'chisq', 'pcc', 'ssd']:
return self.max_total(m1.pwm, m2.pwm, metric, combine)
else:
return self.max_total(m1.pfm, m2.pfm, metric, combine)
elif match == 'subtotal':
if metric in ['pcc', 'ed', 'distance', 'wic', 'chisq', 'ssd']:
return self.max_subtotal(m1.pwm, m2.pwm, metric, combine)
else:
return self.max_subtotal(m1.pfm, m2.pfm, metric, combine)
|
compare_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, m1, m2, match='total', metric='wic', combine='mean', pval=False):\n if metric == 'seqcor':\n return seqcor(m1, m2)\n elif match == 'partial':\n if pval:\n return self.pvalue(m1, m2, 'total', metric, combine, self.\n max_partial(m1.pwm, m2.pwm, metric, combine))\n elif metric in ['pcc', 'ed', 'distance', 'wic', 'chisq', 'ssd']:\n return self.max_partial(m1.pwm, m2.pwm, metric, combine)\n else:\n return self.max_partial(m1.pfm, m2.pfm, metric, combine)\n elif match == 'total':\n if pval:\n return self.pvalue(m1, m2, match, metric, combine, self.\n max_total(m1.pwm, m2.pwm, metric, combine))\n elif metric in ['pcc', 'akl']:\n return self.max_total(m1.wiggle_pwm(), m2.wiggle_pwm(), metric,\n combine)\n elif metric in ['ed', 'distance', 'wic', 'chisq', 'pcc', 'ssd']:\n return self.max_total(m1.pwm, m2.pwm, metric, combine)\n else:\n return self.max_total(m1.pfm, m2.pfm, metric, combine)\n elif match == 'subtotal':\n if metric in ['pcc', 'ed', 'distance', 'wic', 'chisq', 'ssd']:\n return self.max_subtotal(m1.pwm, m2.pwm, metric, combine)\n else:\n return self.max_subtotal(m1.pfm, m2.pfm, metric, combine)\n",
"role": "user"
},
{
"content": "compare_motifs",
"role": "assistant"
}
] |
def x(self, motifs, dbmotifs, match, metric, combine, pval=False, parallel=
True, trim=None, ncpus=None):
if trim:
for m in motifs:
m.trim(trim)
for m in dbmotifs:
m.trim(trim)
scores = {}
if parallel:
if ncpus is None:
ncpus = int(MotifConfig().get_default_params()['ncpus'])
pool = Pool(processes=ncpus, maxtasksperchild=1000)
batch_len = len(dbmotifs) // ncpus
if batch_len <= 0:
batch_len = 1
jobs = []
for i in range(0, len(dbmotifs), batch_len):
p = pool.apply_async(_get_all_scores, args=(self, motifs,
dbmotifs[i:i + batch_len], match, metric, combine, pval))
jobs.append(p)
pool.close()
for job in jobs:
result = job.get()
for m1, v in result.items():
for m2, s in v.items():
if m1 not in scores:
scores[m1] = {}
scores[m1][m2] = s
pool.join()
else:
scores = _get_all_scores(self, motifs, dbmotifs, match, metric,
combine, pval)
return scores
|
get_all_scores
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, motifs, dbmotifs, match, metric, combine, pval=False, parallel=\n True, trim=None, ncpus=None):\n if trim:\n for m in motifs:\n m.trim(trim)\n for m in dbmotifs:\n m.trim(trim)\n scores = {}\n if parallel:\n if ncpus is None:\n ncpus = int(MotifConfig().get_default_params()['ncpus'])\n pool = Pool(processes=ncpus, maxtasksperchild=1000)\n batch_len = len(dbmotifs) // ncpus\n if batch_len <= 0:\n batch_len = 1\n jobs = []\n for i in range(0, len(dbmotifs), batch_len):\n p = pool.apply_async(_get_all_scores, args=(self, motifs,\n dbmotifs[i:i + batch_len], match, metric, combine, pval))\n jobs.append(p)\n pool.close()\n for job in jobs:\n result = job.get()\n for m1, v in result.items():\n for m2, s in v.items():\n if m1 not in scores:\n scores[m1] = {}\n scores[m1][m2] = s\n pool.join()\n else:\n scores = _get_all_scores(self, motifs, dbmotifs, match, metric,\n combine, pval)\n return scores\n",
"role": "user"
},
{
"content": "get_all_scores",
"role": "assistant"
}
] |
def x(self, motifs, dbmotifs=None, match='partial', metric='wic', combine=
'mean', parallel=True, ncpus=None):
if dbmotifs is None:
pwm = self.config.get_default_params()['motif_db']
pwmdir = self.config.get_motif_dir()
dbmotifs = os.path.join(pwmdir, pwm)
motifs = parse_motifs(motifs)
dbmotifs = parse_motifs(dbmotifs)
dbmotif_lookup = dict([(m.id, m) for m in dbmotifs])
scores = self.get_all_scores(motifs, dbmotifs, match, metric, combine,
parallel=parallel, ncpus=ncpus)
for motif in scores:
scores[motif] = sorted(scores[motif].items(), key=lambda x: x[1][0])[-1
]
for motif in motifs:
dbmotif, score = scores[motif.id]
pval, pos, orient = self.compare_motifs(motif, dbmotif_lookup[
dbmotif], match, metric, combine, True)
scores[motif.id] = [dbmotif, list(score) + [pval]]
return scores
|
get_closest_match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, motifs, dbmotifs=None, match='partial', metric='wic', combine=\n 'mean', parallel=True, ncpus=None):\n if dbmotifs is None:\n pwm = self.config.get_default_params()['motif_db']\n pwmdir = self.config.get_motif_dir()\n dbmotifs = os.path.join(pwmdir, pwm)\n motifs = parse_motifs(motifs)\n dbmotifs = parse_motifs(dbmotifs)\n dbmotif_lookup = dict([(m.id, m) for m in dbmotifs])\n scores = self.get_all_scores(motifs, dbmotifs, match, metric, combine,\n parallel=parallel, ncpus=ncpus)\n for motif in scores:\n scores[motif] = sorted(scores[motif].items(), key=lambda x: x[1][0])[-1\n ]\n for motif in motifs:\n dbmotif, score = scores[motif.id]\n pval, pos, orient = self.compare_motifs(motif, dbmotif_lookup[\n dbmotif], match, metric, combine, True)\n scores[motif.id] = [dbmotif, list(score) + [pval]]\n return scores\n",
"role": "user"
},
{
"content": "get_closest_match",
"role": "assistant"
}
] |
def x(balancers):
t = prettytable.PrettyTable(['Name', 'DNS', 'Ports', 'Zones', 'Created'])
t.align = 'l'
for b in balancers:
ports = [('%s: %s -> %s' % (l[2], l[0], l[1])) for l in b.listeners]
ports = '\n'.join(ports)
zones = '\n'.join(b.availability_zones)
t.add_row([b.name, b.dns_name, ports, zones, b.created_time])
return t
|
elb_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(balancers):\n t = prettytable.PrettyTable(['Name', 'DNS', 'Ports', 'Zones', 'Created'])\n t.align = 'l'\n for b in balancers:\n ports = [('%s: %s -> %s' % (l[2], l[0], l[1])) for l in b.listeners]\n ports = '\\n'.join(ports)\n zones = '\\n'.join(b.availability_zones)\n t.add_row([b.name, b.dns_name, ports, zones, b.created_time])\n return t\n",
"role": "user"
},
{
"content": "elb_table",
"role": "assistant"
}
] |
def x(instances):
t = prettytable.PrettyTable(['ID', 'State', 'Monitored', 'Image',
'Name', 'Type', 'SSH key', 'DNS'])
t.align = 'l'
for i in instances:
name = i.tags.get('Name', '')
t.add_row([i.id, i.state, i.monitored, i.image_id, name, i.
instance_type, i.key_name, i.dns_name])
return t
|
ec2_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(instances):\n t = prettytable.PrettyTable(['ID', 'State', 'Monitored', 'Image',\n 'Name', 'Type', 'SSH key', 'DNS'])\n t.align = 'l'\n for i in instances:\n name = i.tags.get('Name', '')\n t.add_row([i.id, i.state, i.monitored, i.image_id, name, i.\n instance_type, i.key_name, i.dns_name])\n return t\n",
"role": "user"
},
{
"content": "ec2_table",
"role": "assistant"
}
] |
def x(images):
t = prettytable.PrettyTable(['ID', 'State', 'Name', 'Owner',
'Root device', 'Is public', 'Description'])
t.align = 'l'
for i in images:
t.add_row([i.id, i.state, i.name, i.ownerId, i.root_device_type, i.
is_public, i.description])
return t
|
ec2_image_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(images):\n t = prettytable.PrettyTable(['ID', 'State', 'Name', 'Owner',\n 'Root device', 'Is public', 'Description'])\n t.align = 'l'\n for i in images:\n t.add_row([i.id, i.state, i.name, i.ownerId, i.root_device_type, i.\n is_public, i.description])\n return t\n",
"role": "user"
},
{
"content": "ec2_image_table",
"role": "assistant"
}
] |
def x(stream, buffer_size, partial=False, axis=None):
data = []
count = 0
for item in stream:
data.append(item)
count += 1
if count < buffer_size:
continue
try:
yield __stack_data(data, axis=axis)
except (TypeError, AttributeError):
raise DataError('Malformed data stream: {}'.format(data))
finally:
data = []
count = 0
if data and partial:
yield __stack_data(data, axis=axis)
|
buffer_stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stream, buffer_size, partial=False, axis=None):\n data = []\n count = 0\n for item in stream:\n data.append(item)\n count += 1\n if count < buffer_size:\n continue\n try:\n yield __stack_data(data, axis=axis)\n except (TypeError, AttributeError):\n raise DataError('Malformed data stream: {}'.format(data))\n finally:\n data = []\n count = 0\n if data and partial:\n yield __stack_data(data, axis=axis)\n",
"role": "user"
},
{
"content": "buffer_stream",
"role": "assistant"
}
] |
def x(stream, *keys):
if not keys:
raise PescadorError('Unable to generate tuples from an empty item set')
for data in stream:
try:
yield tuple(data[key] for key in keys)
except TypeError:
raise DataError('Malformed data stream: {}'.format(data))
|
tuples
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stream, *keys):\n if not keys:\n raise PescadorError('Unable to generate tuples from an empty item set')\n for data in stream:\n try:\n yield tuple(data[key] for key in keys)\n except TypeError:\n raise DataError('Malformed data stream: {}'.format(data))\n",
"role": "user"
},
{
"content": "tuples",
"role": "assistant"
}
] |
def x(stream, inputs=None, outputs=None):
flatten_inputs, flatten_outputs = False, False
if inputs and isinstance(inputs, six.string_types):
inputs = [inputs]
flatten_inputs = True
if outputs and isinstance(outputs, six.string_types):
outputs = [outputs]
flatten_outputs = True
inputs, outputs = inputs or [], outputs or []
if not inputs + outputs:
raise PescadorError(
'At least one key must be given for `inputs` or `outputs`')
for data in stream:
try:
x = list(data[key] for key in inputs) or None
if len(inputs) == 1 and flatten_inputs:
x = x[0]
y = list(data[key] for key in outputs) or None
if len(outputs) == 1 and flatten_outputs:
y = y[0]
yield x, y
except TypeError:
raise DataError('Malformed data stream: {}'.format(data))
|
keras_tuples
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stream, inputs=None, outputs=None):\n flatten_inputs, flatten_outputs = False, False\n if inputs and isinstance(inputs, six.string_types):\n inputs = [inputs]\n flatten_inputs = True\n if outputs and isinstance(outputs, six.string_types):\n outputs = [outputs]\n flatten_outputs = True\n inputs, outputs = inputs or [], outputs or []\n if not inputs + outputs:\n raise PescadorError(\n 'At least one key must be given for `inputs` or `outputs`')\n for data in stream:\n try:\n x = list(data[key] for key in inputs) or None\n if len(inputs) == 1 and flatten_inputs:\n x = x[0]\n y = list(data[key] for key in outputs) or None\n if len(outputs) == 1 and flatten_outputs:\n y = y[0]\n yield x, y\n except TypeError:\n raise DataError('Malformed data stream: {}'.format(data))\n",
"role": "user"
},
{
"content": "keras_tuples",
"role": "assistant"
}
] |
def x(args):
fastafile = args.fastafile
pwmfile = args.pwmfile
lwidth = args.width
if not lwidth:
f = Fasta(fastafile)
lwidth = len(f.items()[0][1])
f = None
jobs = []
motifs = pwmfile_to_motifs(pwmfile)
ids = [motif.id for motif in motifs]
if args.ids:
ids = args.ids.split(',')
n_cpus = int(MotifConfig().get_default_params()['ncpus'])
pool = Pool(processes=n_cpus, maxtasksperchild=1000)
for motif in motifs:
if motif.id in ids:
outfile = os.path.join('%s_histogram' % motif.id)
jobs.append(pool.apply_async(motif_localization, (fastafile,
motif, lwidth, outfile, args.cutoff)))
for job in jobs:
job.get()
|
location
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n fastafile = args.fastafile\n pwmfile = args.pwmfile\n lwidth = args.width\n if not lwidth:\n f = Fasta(fastafile)\n lwidth = len(f.items()[0][1])\n f = None\n jobs = []\n motifs = pwmfile_to_motifs(pwmfile)\n ids = [motif.id for motif in motifs]\n if args.ids:\n ids = args.ids.split(',')\n n_cpus = int(MotifConfig().get_default_params()['ncpus'])\n pool = Pool(processes=n_cpus, maxtasksperchild=1000)\n for motif in motifs:\n if motif.id in ids:\n outfile = os.path.join('%s_histogram' % motif.id)\n jobs.append(pool.apply_async(motif_localization, (fastafile,\n motif, lwidth, outfile, args.cutoff)))\n for job in jobs:\n job.get()\n",
"role": "user"
},
{
"content": "location",
"role": "assistant"
}
] |
def x(fname):
if 'PATH' not in os.environ or not os.environ['PATH']:
path = os.defpath
else:
path = os.environ['PATH']
for p in ([fname] + [os.path.join(x, fname) for x in path.split(os.
pathsep)]):
p = os.path.abspath(p)
if os.access(p, os.X_OK) and not os.path.isdir(p):
return p
p = sp.Popen('locate %s' % fname, shell=True, stdout=sp.PIPE, stderr=sp
.PIPE)
stdout, stderr = p.communicate()
if not stderr:
for p in stdout.decode().split('\n'):
if os.path.basename(p) == fname and os.access(p, os.X_OK
) and not os.path.isdir(p):
return p
|
which
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n if 'PATH' not in os.environ or not os.environ['PATH']:\n path = os.defpath\n else:\n path = os.environ['PATH']\n for p in ([fname] + [os.path.join(x, fname) for x in path.split(os.\n pathsep)]):\n p = os.path.abspath(p)\n if os.access(p, os.X_OK) and not os.path.isdir(p):\n return p\n p = sp.Popen('locate %s' % fname, shell=True, stdout=sp.PIPE, stderr=sp\n .PIPE)\n stdout, stderr = p.communicate()\n if not stderr:\n for p in stdout.decode().split('\\n'):\n if os.path.basename(p) == fname and os.access(p, os.X_OK\n ) and not os.path.isdir(p):\n return p\n",
"role": "user"
},
{
"content": "which",
"role": "assistant"
}
] |
def x(dirname, ext):
try:
files = os.listdir(dirname)
except OSError:
if os.path.exists(dirname):
cmd = 'find {0} -maxdepth 1 -name "*"'.format(dirname)
p = sp.Popen(cmd, shell=True, stdout=sp.PIPE, stderr=sp.PIPE)
stdout, _stderr = p.communicate()
files = [os.path.basename(fname) for fname in stdout.decode().
splitlines()]
else:
raise
retfiles = [os.path.join(dirname, fname) for fname in files if os.path.
splitext(fname)[-1] in ext]
return retfiles
|
find_by_ext
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dirname, ext):\n try:\n files = os.listdir(dirname)\n except OSError:\n if os.path.exists(dirname):\n cmd = 'find {0} -maxdepth 1 -name \"*\"'.format(dirname)\n p = sp.Popen(cmd, shell=True, stdout=sp.PIPE, stderr=sp.PIPE)\n stdout, _stderr = p.communicate()\n files = [os.path.basename(fname) for fname in stdout.decode().\n splitlines()]\n else:\n raise\n retfiles = [os.path.join(dirname, fname) for fname in files if os.path.\n splitext(fname)[-1] in ext]\n return retfiles\n",
"role": "user"
},
{
"content": "find_by_ext",
"role": "assistant"
}
] |
def x():
config = MotifConfig()
d = config.get_motif_dir()
m = config.get_default_params()['motif_db']
if not d or not m:
raise ValueError('default motif database not configured')
fname = os.path.join(d, m)
with open(fname) as f:
motifs = read_motifs(f)
return motifs
|
default_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n config = MotifConfig()\n d = config.get_motif_dir()\n m = config.get_default_params()['motif_db']\n if not d or not m:\n raise ValueError('default motif database not configured')\n fname = os.path.join(d, m)\n with open(fname) as f:\n motifs = read_motifs(f)\n return motifs\n",
"role": "user"
},
{
"content": "default_motifs",
"role": "assistant"
}
] |
def x(align):
width = len(align[0])
nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
pfm = [[(0) for _ in range(4)] for _ in range(width)]
for row in align:
for i in range(len(row)):
pfm[i][nucs[row[i]]] += 1
m = Motif(pfm)
m.align = align[:]
return m
|
motif_from_align
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(align):\n width = len(align[0])\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n pfm = [[(0) for _ in range(4)] for _ in range(width)]\n for row in align:\n for i in range(len(row)):\n pfm[i][nucs[row[i]]] += 1\n m = Motif(pfm)\n m.align = align[:]\n return m\n",
"role": "user"
},
{
"content": "motif_from_align",
"role": "assistant"
}
] |
def x(cons, n=12):
width = len(cons)
nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
pfm = [[(0) for _ in range(4)] for _ in range(width)]
m = Motif()
for i, char in enumerate(cons):
for nuc in m.iupac[char.upper()]:
pfm[i][nucs[nuc]] = n / len(m.iupac[char.upper()])
m = Motif(pfm)
m.id = cons
return m
|
motif_from_consensus
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cons, n=12):\n width = len(cons)\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n pfm = [[(0) for _ in range(4)] for _ in range(width)]\n m = Motif()\n for i, char in enumerate(cons):\n for nuc in m.iupac[char.upper()]:\n pfm[i][nucs[nuc]] = n / len(m.iupac[char.upper()])\n m = Motif(pfm)\n m.id = cons\n return m\n",
"role": "user"
},
{
"content": "motif_from_consensus",
"role": "assistant"
}
] |
def x(motifs):
if isinstance(motifs, six.string_types):
with open(motifs) as f:
if motifs.endswith('pwm') or motifs.endswith('pfm'):
motifs = read_motifs(f, fmt='pwm')
elif motifs.endswith('transfac'):
motifs = read_motifs(f, fmt='transfac')
else:
motifs = read_motifs(f)
elif isinstance(motifs, Motif):
motifs = [motifs]
elif not isinstance(list(motifs)[0], Motif):
raise ValueError('Not a list of motifs')
return list(motifs)
|
parse_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(motifs):\n if isinstance(motifs, six.string_types):\n with open(motifs) as f:\n if motifs.endswith('pwm') or motifs.endswith('pfm'):\n motifs = read_motifs(f, fmt='pwm')\n elif motifs.endswith('transfac'):\n motifs = read_motifs(f, fmt='transfac')\n else:\n motifs = read_motifs(f)\n elif isinstance(motifs, Motif):\n motifs = [motifs]\n elif not isinstance(list(motifs)[0], Motif):\n raise ValueError('Not a list of motifs')\n return list(motifs)\n",
"role": "user"
},
{
"content": "parse_motifs",
"role": "assistant"
}
] |
def x(handle, fmt):
if fmt.lower() == 'pwm':
motifs = _read_motifs_pwm(handle)
if fmt.lower() == 'transfac':
motifs = _read_motifs_transfac(handle)
if fmt.lower() == 'xxmotif':
motifs = _read_motifs_xxmotif(handle)
if fmt.lower() == 'align':
motifs = _read_motifs_align(handle)
if fmt.lower() == 'jaspar':
motifs = _read_motifs_jaspar(handle)
if handle.name:
base = os.path.splitext(handle.name)[0]
map_file = base + '.motif2factors.txt'
if os.path.exists(map_file):
m2f_direct = {}
m2f_indirect = {}
for line in open(map_file):
try:
motif, *factor_info = line.strip().split('\t')
if len(factor_info) == 1:
m2f_direct[motif] = factor_info[0].split(',')
elif len(factor_info) == 3:
if factor_info[2] == 'Y':
m2f_direct[motif] = m2f_direct.get(motif, []) + [
factor_info[0]]
else:
m2f_indirect[motif] = m2f_indirect.get(motif, []
) + [factor_info[0]]
except:
pass
for motif in motifs:
if motif.id in m2f_direct:
motif.factors[DIRECT_NAME] = m2f_direct[motif.id]
if motif.id in m2f_indirect:
motif.factors[INDIRECT_NAME] = m2f_indirect[motif.id]
for motif in motifs:
for n in [DIRECT_NAME, INDIRECT_NAME]:
motif.factors[n] = list(set(motif.factors[n]))
return motifs
|
read_motifs_from_filehandle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, fmt):\n if fmt.lower() == 'pwm':\n motifs = _read_motifs_pwm(handle)\n if fmt.lower() == 'transfac':\n motifs = _read_motifs_transfac(handle)\n if fmt.lower() == 'xxmotif':\n motifs = _read_motifs_xxmotif(handle)\n if fmt.lower() == 'align':\n motifs = _read_motifs_align(handle)\n if fmt.lower() == 'jaspar':\n motifs = _read_motifs_jaspar(handle)\n if handle.name:\n base = os.path.splitext(handle.name)[0]\n map_file = base + '.motif2factors.txt'\n if os.path.exists(map_file):\n m2f_direct = {}\n m2f_indirect = {}\n for line in open(map_file):\n try:\n motif, *factor_info = line.strip().split('\\t')\n if len(factor_info) == 1:\n m2f_direct[motif] = factor_info[0].split(',')\n elif len(factor_info) == 3:\n if factor_info[2] == 'Y':\n m2f_direct[motif] = m2f_direct.get(motif, []) + [\n factor_info[0]]\n else:\n m2f_indirect[motif] = m2f_indirect.get(motif, []\n ) + [factor_info[0]]\n except:\n pass\n for motif in motifs:\n if motif.id in m2f_direct:\n motif.factors[DIRECT_NAME] = m2f_direct[motif.id]\n if motif.id in m2f_indirect:\n motif.factors[INDIRECT_NAME] = m2f_indirect[motif.id]\n for motif in motifs:\n for n in [DIRECT_NAME, INDIRECT_NAME]:\n motif.factors[n] = list(set(motif.factors[n]))\n return motifs\n",
"role": "user"
},
{
"content": "read_motifs_from_filehandle",
"role": "assistant"
}
] |
def x(infile=None, fmt='pwm', as_dict=False):
if infile is None or isinstance(infile, six.string_types):
infile = pwmfile_location(infile)
with open(infile) as f:
motifs = _read_motifs_from_filehandle(f, fmt)
else:
motifs = _read_motifs_from_filehandle(infile, fmt)
if as_dict:
motifs = {m.id: m for m in motifs}
return motifs
|
read_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile=None, fmt='pwm', as_dict=False):\n if infile is None or isinstance(infile, six.string_types):\n infile = pwmfile_location(infile)\n with open(infile) as f:\n motifs = _read_motifs_from_filehandle(f, fmt)\n else:\n motifs = _read_motifs_from_filehandle(infile, fmt)\n if as_dict:\n motifs = {m.id: m for m in motifs}\n return motifs\n",
"role": "user"
},
{
"content": "read_motifs",
"role": "assistant"
}
] |
def x(self):
ic = 0
for row in self.pwm:
ic += 2.0 + np.sum([(row[x] * log(row[x]) / log(2)) for x in range(
4) if row[x] > 0])
return ic
|
information_content
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n ic = 0\n for row in self.pwm:\n ic += 2.0 + np.sum([(row[x] * log(row[x]) / log(2)) for x in range(\n 4) if row[x] > 0])\n return ic\n",
"role": "user"
},
{
"content": "information_content",
"role": "assistant"
}
] |
def x(self):
if self.min_score is None:
score = 0
for row in self.pwm:
score += log(min(row) / 0.25 + 0.01)
self.min_score = score
return self.min_score
|
pwm_min_score
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.min_score is None:\n score = 0\n for row in self.pwm:\n score += log(min(row) / 0.25 + 0.01)\n self.min_score = score\n return self.min_score\n",
"role": "user"
},
{
"content": "pwm_min_score",
"role": "assistant"
}
] |
def x(self):
if self.max_score is None:
score = 0
for row in self.pwm:
score += log(max(row) / 0.25 + 0.01)
self.max_score = score
return self.max_score
|
pwm_max_score
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.max_score is None:\n score = 0\n for row in self.pwm:\n score += log(max(row) / 0.25 + 0.01)\n self.max_score = score\n return self.max_score\n",
"role": "user"
},
{
"content": "pwm_max_score",
"role": "assistant"
}
] |
def x(self, kmer):
if len(kmer) != len(self.pwm):
raise Exception('incorrect k-mer length')
score = 0.0
d = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
for nuc, row in zip(kmer.upper(), self.pwm):
score += log(row[d[nuc]] / 0.25 + 0.01)
return score
|
score_kmer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kmer):\n if len(kmer) != len(self.pwm):\n raise Exception('incorrect k-mer length')\n score = 0.0\n d = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n for nuc, row in zip(kmer.upper(), self.pwm):\n score += log(row[d[nuc]] / 0.25 + 0.01)\n return score\n",
"role": "user"
},
{
"content": "score_kmer",
"role": "assistant"
}
] |
def x(self, pfm, pseudo=0.001):
return [[((x + pseudo) / (float(np.sum(row)) + pseudo * 4)) for x in
row] for row in pfm]
|
pfm_to_pwm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pfm, pseudo=0.001):\n return [[((x + pseudo) / (float(np.sum(row)) + pseudo * 4)) for x in\n row] for row in pfm]\n",
"role": "user"
},
{
"content": "pfm_to_pwm",
"role": "assistant"
}
] |
def x(self):
m = '//\n'
m += 'NA {}\n'.format(self.id)
m += 'P0\tA\tC\tG\tT\n'
for i, row in enumerate(self.pfm):
m += '{}\t{}\n'.format(i, '\t'.join([str(int(x)) for x in row]))
m += '//'
return m
|
to_motevo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n m = '//\\n'\n m += 'NA {}\\n'.format(self.id)\n m += 'P0\\tA\\tC\\tG\\tT\\n'\n for i, row in enumerate(self.pfm):\n m += '{}\\t{}\\n'.format(i, '\\t'.join([str(int(x)) for x in row]))\n m += '//'\n return m\n",
"role": "user"
},
{
"content": "to_motevo",
"role": "assistant"
}
] |
def x(self):
m = '%s\t%s\t%s\n' % ('DE', self.id, 'unknown')
for i, (row, cons) in enumerate(zip(self.pfm, self.to_consensus())):
m += '%i\t%s\t%s\n' % (i, '\t'.join([str(int(x)) for x in row]), cons)
m += 'XX'
return m
|
to_transfac
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n m = '%s\\t%s\\t%s\\n' % ('DE', self.id, 'unknown')\n for i, (row, cons) in enumerate(zip(self.pfm, self.to_consensus())):\n m += '%i\\t%s\\t%s\\n' % (i, '\\t'.join([str(int(x)) for x in row]), cons)\n m += 'XX'\n return m\n",
"role": "user"
},
{
"content": "to_transfac",
"role": "assistant"
}
] |
def x(self):
motif_id = self.id.replace(' ', '_')
m = 'MOTIF %s\n' % motif_id
m += 'BL MOTIF %s width=0 seqs=0\n' % motif_id
m += 'letter-probability matrix: alength= 4 w= %s nsites= %s E= 0\n' % (len
(self), np.sum(self.pfm[0]))
m += '\n'.join(['\t'.join([('%s' % x) for x in row]) for row in self.pwm])
return m
|
to_meme
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n motif_id = self.id.replace(' ', '_')\n m = 'MOTIF %s\\n' % motif_id\n m += 'BL MOTIF %s width=0 seqs=0\\n' % motif_id\n m += 'letter-probability matrix: alength= 4 w= %s nsites= %s E= 0\\n' % (len\n (self), np.sum(self.pfm[0]))\n m += '\\n'.join(['\\t'.join([('%s' % x) for x in row]) for row in self.pwm])\n return m\n",
"role": "user"
},
{
"content": "to_meme",
"role": "assistant"
}
] |
def x(self, row1, row2=None):
if row2 is None:
row2 = [0.25, 0.25, 0.25, 0.25]
score = 0
for a, b in zip(row1, row2):
if a > 0:
score += a * log(a / b) / log(2)
return score
|
ic_pos
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row1, row2=None):\n if row2 is None:\n row2 = [0.25, 0.25, 0.25, 0.25]\n score = 0\n for a, b in zip(row1, row2):\n if a > 0:\n score += a * log(a / b) / log(2)\n return score\n",
"role": "user"
},
{
"content": "ic_pos",
"role": "assistant"
}
] |
def x(self, row1, row2):
mean1 = np.mean(row1)
mean2 = np.mean(row2)
a = 0
x = 0
y = 0
for n1, n2 in zip(row1, row2):
a += (n1 - mean1) * (n2 - mean2)
x += (n1 - mean1) ** 2
y += (n2 - mean2) ** 2
if a == 0:
return 0
else:
return a / sqrt(x * y)
|
pcc_pos
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row1, row2):\n mean1 = np.mean(row1)\n mean2 = np.mean(row2)\n a = 0\n x = 0\n y = 0\n for n1, n2 in zip(row1, row2):\n a += (n1 - mean1) * (n2 - mean2)\n x += (n1 - mean1) ** 2\n y += (n2 - mean2) ** 2\n if a == 0:\n return 0\n else:\n return a / sqrt(x * y)\n",
"role": "user"
},
{
"content": "pcc_pos",
"role": "assistant"
}
] |
def x(self):
m = Motif()
m.pfm = [row[::-1] for row in self.pfm[::-1]]
m.pwm = [row[::-1] for row in self.pwm[::-1]]
m.id = self.id + '_revcomp'
return m
|
rc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n m = Motif()\n m.pfm = [row[::-1] for row in self.pfm[::-1]]\n m.pwm = [row[::-1] for row in self.pwm[::-1]]\n m.id = self.id + '_revcomp'\n return m\n",
"role": "user"
},
{
"content": "rc",
"role": "assistant"
}
] |
def x(self, edge_ic_cutoff=0.4):
pwm = self.pwm[:]
while len(pwm) > 0 and self.ic_pos(pwm[0]) < edge_ic_cutoff:
pwm = pwm[1:]
self.pwm = self.pwm[1:]
self.pfm = self.pfm[1:]
while len(pwm) > 0 and self.ic_pos(pwm[-1]) < edge_ic_cutoff:
pwm = pwm[:-1]
self.pwm = self.pwm[:-1]
self.pfm = self.pfm[:-1]
self.consensus = None
self.min_score = None
self.max_score = None
self.wiggled_pwm = None
return self
|
trim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, edge_ic_cutoff=0.4):\n pwm = self.pwm[:]\n while len(pwm) > 0 and self.ic_pos(pwm[0]) < edge_ic_cutoff:\n pwm = pwm[1:]\n self.pwm = self.pwm[1:]\n self.pfm = self.pfm[1:]\n while len(pwm) > 0 and self.ic_pos(pwm[-1]) < edge_ic_cutoff:\n pwm = pwm[:-1]\n self.pwm = self.pwm[:-1]\n self.pfm = self.pfm[:-1]\n self.consensus = None\n self.min_score = None\n self.max_score = None\n self.wiggled_pwm = None\n return self\n",
"role": "user"
},
{
"content": "trim",
"role": "assistant"
}
] |
def x(self, fa):
regexp = ''.join([('[' + ''.join(self.iupac[x.upper()]) + ']') for x in
self.to_consensusv2()])
p = re.compile(regexp)
matches = {}
for name, seq in fa.items():
matches[name] = []
for match in p.finditer(seq):
middle = (match.span()[1] + match.span()[0]) / 2
matches[name].append(middle)
return matches
|
consensus_scan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fa):\n regexp = ''.join([('[' + ''.join(self.iupac[x.upper()]) + ']') for x in\n self.to_consensusv2()])\n p = re.compile(regexp)\n matches = {}\n for name, seq in fa.items():\n matches[name] = []\n for match in p.finditer(seq):\n middle = (match.span()[1] + match.span()[0]) / 2\n matches[name].append(middle)\n return matches\n",
"role": "user"
},
{
"content": "consensus_scan",
"role": "assistant"
}
] |
def x(self, fa, cutoff=0.9, nreport=50, scan_rc=True):
c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score()
) * cutoff
pwm = self.pwm
matches = {}
for name, seq in fa.items():
matches[name] = []
result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc)
for _, pos, _ in result:
matches[name].append(pos)
return matches
|
pwm_scan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fa, cutoff=0.9, nreport=50, scan_rc=True):\n c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score()\n ) * cutoff\n pwm = self.pwm\n matches = {}\n for name, seq in fa.items():\n matches[name] = []\n result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc)\n for _, pos, _ in result:\n matches[name].append(pos)\n return matches\n",
"role": "user"
},
{
"content": "pwm_scan",
"role": "assistant"
}
] |
def x(self, fa, cutoff=0.9, nreport=50, scan_rc=True):
c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score()
) * cutoff
pwm = self.pwm
matches = {}
for name, seq in fa.items():
matches[name] = []
result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc)
for score, pos, strand in result:
matches[name].append((pos, score, strand))
return matches
|
pwm_scan_all
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fa, cutoff=0.9, nreport=50, scan_rc=True):\n c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score()\n ) * cutoff\n pwm = self.pwm\n matches = {}\n for name, seq in fa.items():\n matches[name] = []\n result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc)\n for score, pos, strand in result:\n matches[name].append((pos, score, strand))\n return matches\n",
"role": "user"
},
{
"content": "pwm_scan_all",
"role": "assistant"
}
] |
def x(self, fa, gfffile, cutoff=0.9, nreport=50, scan_rc=True, append=False):
if append:
out = open(gfffile, 'a')
else:
out = open(gfffile, 'w')
c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score()
) * cutoff
pwm = self.pwm
strandmap = {(-1): '-', '-1': '-', '-': '-', '1': '+', (1): '+', '+': '+'}
gff_line = """{} pfmscan misc_feature {} {} {:.3f} {} . motif_name "{}" ; motif_instance "{}\"
"""
for name, seq in fa.items():
result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc)
for score, pos, strand in result:
out.write(gff_line.format(name, pos, pos + len(pwm), score,
strandmap[strand], self.id, seq[pos:pos + len(pwm)]))
out.close()
|
pwm_scan_to_gff
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fa, gfffile, cutoff=0.9, nreport=50, scan_rc=True, append=False):\n if append:\n out = open(gfffile, 'a')\n else:\n out = open(gfffile, 'w')\n c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score()\n ) * cutoff\n pwm = self.pwm\n strandmap = {(-1): '-', '-1': '-', '-': '-', '1': '+', (1): '+', '+': '+'}\n gff_line = \"\"\"{}\tpfmscan\tmisc_feature\t{}\t{}\t{:.3f}\t{}\t.\tmotif_name \"{}\" ; motif_instance \"{}\\\"\n\"\"\"\n for name, seq in fa.items():\n result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc)\n for score, pos, strand in result:\n out.write(gff_line.format(name, pos, pos + len(pwm), score,\n strandmap[strand], self.id, seq[pos:pos + len(pwm)]))\n out.close()\n",
"role": "user"
},
{
"content": "pwm_scan_to_gff",
"role": "assistant"
}
] |
def x(self, other, pos, orientation, include_bg=False):
pfm1 = self.pfm[:]
pfm2 = other.pfm[:]
if orientation < 0:
pfm2 = [row[::-1] for row in pfm2[::-1]]
pfm1_count = float(np.sum(pfm1[0]))
pfm2_count = float(np.sum(pfm2[0]))
if include_bg:
if len(pfm1) > len(pfm2) + pos:
pfm2 += [[(pfm2_count / 4.0) for x in range(4)] for i in range(
-(len(pfm1) - len(pfm2) - pos), 0)]
elif len(pfm2) + pos > len(pfm1):
pfm1 += [[(pfm1_count / 4.0) for x in range(4)] for i in range(
-(len(pfm2) - len(pfm1) + pos), 0)]
if pos < 0:
pfm1 = [[(pfm1_count / 4.0) for x in range(4)] for i in range(-pos)
] + pfm1
elif pos > 0:
pfm2 = [[(pfm2_count / 4.0) for x in range(4)] for i in range(pos)
] + pfm2
else:
if len(pfm1) > len(pfm2) + pos:
pfm2 += [[(pfm1[i][x] / pfm1_count * pfm2_count) for x in range
(4)] for i in range(-(len(pfm1) - len(pfm2) - pos), 0)]
elif len(pfm2) + pos > len(pfm1):
pfm1 += [[(pfm2[i][x] / pfm2_count * pfm1_count) for x in range
(4)] for i in range(-(len(pfm2) - len(pfm1) + pos), 0)]
if pos < 0:
pfm1 = [[(pfm2[i][x] / pfm2_count * pfm1_count) for x in range(
4)] for i in range(-pos)] + pfm1
elif pos > 0:
pfm2 = [[(pfm1[i][x] / pfm1_count * pfm2_count) for x in range(
4)] for i in range(pos)] + pfm2
pfm = [[(a + b) for a, b in zip(x, y)] for x, y in zip(pfm1, pfm2)]
m = Motif(pfm)
m.id = m.to_consensus()
return m
|
average_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other, pos, orientation, include_bg=False):\n pfm1 = self.pfm[:]\n pfm2 = other.pfm[:]\n if orientation < 0:\n pfm2 = [row[::-1] for row in pfm2[::-1]]\n pfm1_count = float(np.sum(pfm1[0]))\n pfm2_count = float(np.sum(pfm2[0]))\n if include_bg:\n if len(pfm1) > len(pfm2) + pos:\n pfm2 += [[(pfm2_count / 4.0) for x in range(4)] for i in range(\n -(len(pfm1) - len(pfm2) - pos), 0)]\n elif len(pfm2) + pos > len(pfm1):\n pfm1 += [[(pfm1_count / 4.0) for x in range(4)] for i in range(\n -(len(pfm2) - len(pfm1) + pos), 0)]\n if pos < 0:\n pfm1 = [[(pfm1_count / 4.0) for x in range(4)] for i in range(-pos)\n ] + pfm1\n elif pos > 0:\n pfm2 = [[(pfm2_count / 4.0) for x in range(4)] for i in range(pos)\n ] + pfm2\n else:\n if len(pfm1) > len(pfm2) + pos:\n pfm2 += [[(pfm1[i][x] / pfm1_count * pfm2_count) for x in range\n (4)] for i in range(-(len(pfm1) - len(pfm2) - pos), 0)]\n elif len(pfm2) + pos > len(pfm1):\n pfm1 += [[(pfm2[i][x] / pfm2_count * pfm1_count) for x in range\n (4)] for i in range(-(len(pfm2) - len(pfm1) + pos), 0)]\n if pos < 0:\n pfm1 = [[(pfm2[i][x] / pfm2_count * pfm1_count) for x in range(\n 4)] for i in range(-pos)] + pfm1\n elif pos > 0:\n pfm2 = [[(pfm1[i][x] / pfm1_count * pfm2_count) for x in range(\n 4)] for i in range(pos)] + pfm2\n pfm = [[(a + b) for a, b in zip(x, y)] for x, y in zip(pfm1, pfm2)]\n m = Motif(pfm)\n m.id = m.to_consensus()\n return m\n",
"role": "user"
},
{
"content": "average_motifs",
"role": "assistant"
}
] |
def x(self, precision=4):
if not self.pwm:
return ''
fmt = '{{:.{:d}f}}'.format(precision)
return '\n'.join(['\t'.join([fmt.format(p) for p in row]) for row in
self.pwm])
|
pwm_to_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, precision=4):\n if not self.pwm:\n return ''\n fmt = '{{:.{:d}f}}'.format(precision)\n return '\\n'.join(['\\t'.join([fmt.format(p) for p in row]) for row in\n self.pwm])\n",
"role": "user"
},
{
"content": "pwm_to_str",
"role": "assistant"
}
] |
def x(self, precision=4, extra_str=''):
motif_id = self.id
if extra_str:
motif_id += '_%s' % extra_str
if not self.pwm:
self.pwm = [self.iupac_pwm[char] for char in self.consensus.upper()]
return '>%s\n%s' % (motif_id, self._pwm_to_str(precision))
|
to_pwm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, precision=4, extra_str=''):\n motif_id = self.id\n if extra_str:\n motif_id += '_%s' % extra_str\n if not self.pwm:\n self.pwm = [self.iupac_pwm[char] for char in self.consensus.upper()]\n return '>%s\\n%s' % (motif_id, self._pwm_to_str(precision))\n",
"role": "user"
},
{
"content": "to_pwm",
"role": "assistant"
}
] |
def x(self, fname, fmt='PNG', add_left=0, seqlogo=None, height=6):
if not seqlogo:
seqlogo = self.seqlogo
if not seqlogo:
raise ValueError('seqlogo not specified or configured')
VALID_FORMATS = ['EPS', 'GIF', 'PDF', 'PNG']
N = 1000
fmt = fmt.upper()
if not fmt in VALID_FORMATS:
sys.stderr.write('Invalid motif format\n')
return
if fname[-4:].upper() == '.%s' % fmt:
fname = fname[:-4]
seqs = []
if add_left == 0:
seqs = ['' for i in range(N)]
else:
for nuc in ['A', 'C', 'T', 'G']:
seqs += [(nuc * add_left) for i in range(N // 4)]
for pos in range(len(self.pwm)):
vals = [self.pwm[pos][0] * N]
for i in range(1, 4):
vals.append(vals[i - 1] + self.pwm[pos][i] * N)
if vals[3] - N != 0:
vals[3] = N
for i in range(N):
if i <= vals[0]:
seqs[i] += 'A'
elif i <= vals[1]:
seqs[i] += 'C'
elif i <= vals[2]:
seqs[i] += 'G'
elif i <= vals[3]:
seqs[i] += 'T'
f = NamedTemporaryFile(mode='w', dir=mytmpdir())
for seq in seqs:
f.write('%s\n' % seq)
f.flush()
makelogo = '{0} -f {1} -F {2} -c -a -h {3} -w {4} -o {5} -b -n -Y'
cmd = makelogo.format(seqlogo, f.name, fmt, height, len(self) +
add_left, fname)
sp.call(cmd, shell=True)
|
to_img
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fname, fmt='PNG', add_left=0, seqlogo=None, height=6):\n if not seqlogo:\n seqlogo = self.seqlogo\n if not seqlogo:\n raise ValueError('seqlogo not specified or configured')\n VALID_FORMATS = ['EPS', 'GIF', 'PDF', 'PNG']\n N = 1000\n fmt = fmt.upper()\n if not fmt in VALID_FORMATS:\n sys.stderr.write('Invalid motif format\\n')\n return\n if fname[-4:].upper() == '.%s' % fmt:\n fname = fname[:-4]\n seqs = []\n if add_left == 0:\n seqs = ['' for i in range(N)]\n else:\n for nuc in ['A', 'C', 'T', 'G']:\n seqs += [(nuc * add_left) for i in range(N // 4)]\n for pos in range(len(self.pwm)):\n vals = [self.pwm[pos][0] * N]\n for i in range(1, 4):\n vals.append(vals[i - 1] + self.pwm[pos][i] * N)\n if vals[3] - N != 0:\n vals[3] = N\n for i in range(N):\n if i <= vals[0]:\n seqs[i] += 'A'\n elif i <= vals[1]:\n seqs[i] += 'C'\n elif i <= vals[2]:\n seqs[i] += 'G'\n elif i <= vals[3]:\n seqs[i] += 'T'\n f = NamedTemporaryFile(mode='w', dir=mytmpdir())\n for seq in seqs:\n f.write('%s\\n' % seq)\n f.flush()\n makelogo = '{0} -f {1} -F {2} -c -a -h {3} -w {4} -o {5} -b -n -Y'\n cmd = makelogo.format(seqlogo, f.name, fmt, height, len(self) +\n add_left, fname)\n sp.call(cmd, shell=True)\n",
"role": "user"
},
{
"content": "to_img",
"role": "assistant"
}
] |
def x(self):
random_pfm = [[c for c in row] for row in self.pfm]
random.shuffle(random_pfm)
m = Motif(pfm=random_pfm)
m.id = 'random'
return m
|
randomize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n random_pfm = [[c for c in row] for row in self.pfm]\n random.shuffle(random_pfm)\n m = Motif(pfm=random_pfm)\n m.id = 'random'\n return m\n",
"role": "user"
},
{
"content": "randomize",
"role": "assistant"
}
] |
def x(args):
infile = args.inputfile
genome = args.genome
outdir = args.outdir
pwmfile = args.pwmfile
methods = args.methods
ncpus = args.ncpus
if not os.path.exists(infile):
raise ValueError('file {} does not exist'.format(infile))
if methods:
methods = [x.strip() for x in methods.split(',')]
run_maelstrom(infile, genome, outdir, pwmfile, methods=methods, ncpus=ncpus
)
|
maelstrom
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n infile = args.inputfile\n genome = args.genome\n outdir = args.outdir\n pwmfile = args.pwmfile\n methods = args.methods\n ncpus = args.ncpus\n if not os.path.exists(infile):\n raise ValueError('file {} does not exist'.format(infile))\n if methods:\n methods = [x.strip() for x in methods.split(',')]\n run_maelstrom(infile, genome, outdir, pwmfile, methods=methods, ncpus=ncpus\n )\n",
"role": "user"
},
{
"content": "maelstrom",
"role": "assistant"
}
] |
def x(socket, data, flags=0, copy=True, track=False):
header, payload = [], []
for key in sorted(data.keys()):
arr = data[key]
if not isinstance(arr, np.ndarray):
raise DataError('Only ndarray types can be serialized')
header.append(dict(dtype=str(arr.dtype), shape=arr.shape, key=key,
aligned=arr.flags['ALIGNED']))
payload.append(arr)
msg = [json.dumps(header).encode('ascii')]
msg.extend(payload)
return socket.send_multipart(msg, flags, copy=copy, track=track)
|
zmq_send_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(socket, data, flags=0, copy=True, track=False):\n header, payload = [], []\n for key in sorted(data.keys()):\n arr = data[key]\n if not isinstance(arr, np.ndarray):\n raise DataError('Only ndarray types can be serialized')\n header.append(dict(dtype=str(arr.dtype), shape=arr.shape, key=key,\n aligned=arr.flags['ALIGNED']))\n payload.append(arr)\n msg = [json.dumps(header).encode('ascii')]\n msg.extend(payload)\n return socket.send_multipart(msg, flags, copy=copy, track=track)\n",
"role": "user"
},
{
"content": "zmq_send_data",
"role": "assistant"
}
] |
def x(socket, flags=0, copy=True, track=False):
data = dict()
msg = socket.recv_multipart(flags=flags, copy=copy, track=track)
headers = json.loads(msg[0].decode('ascii'))
if len(headers) == 0:
raise StopIteration
for header, payload in zip(headers, msg[1:]):
data[header['key']] = np.frombuffer(buffer(payload), dtype=header[
'dtype'])
data[header['key']].shape = header['shape']
if six.PY2:
continue
data[header['key']].flags['ALIGNED'] = header['aligned']
return data
|
zmq_recv_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(socket, flags=0, copy=True, track=False):\n data = dict()\n msg = socket.recv_multipart(flags=flags, copy=copy, track=track)\n headers = json.loads(msg[0].decode('ascii'))\n if len(headers) == 0:\n raise StopIteration\n for header, payload in zip(headers, msg[1:]):\n data[header['key']] = np.frombuffer(buffer(payload), dtype=header[\n 'dtype'])\n data[header['key']].shape = header['shape']\n if six.PY2:\n continue\n data[header['key']].flags['ALIGNED'] = header['aligned']\n return data\n",
"role": "user"
},
{
"content": "zmq_recv_data",
"role": "assistant"
}
] |
def x(self, max_iter=None):
context = zmq.Context()
if six.PY2:
warnings.warn(
'zmq_stream cannot preserve numpy array alignment in Python 2',
RuntimeWarning)
try:
socket = context.socket(zmq.PAIR)
port = socket.bind_to_random_port('tcp://*', min_port=self.min_port,
max_port=self.max_port, max_tries=self.max_tries)
terminate = mp.Event()
worker = mp.Process(target=SafeFunction(zmq_worker), args=[port,
self.streamer, terminate], kwargs=dict(copy=self.copy, max_iter
=max_iter))
worker.daemon = True
worker.start()
while True:
yield zmq_recv_data(socket)
except StopIteration:
pass
except:
six.reraise(*sys.exc_info())
finally:
terminate.set()
worker.join(self.timeout)
if worker.is_alive():
worker.terminate()
context.destroy()
|
iterate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, max_iter=None):\n context = zmq.Context()\n if six.PY2:\n warnings.warn(\n 'zmq_stream cannot preserve numpy array alignment in Python 2',\n RuntimeWarning)\n try:\n socket = context.socket(zmq.PAIR)\n port = socket.bind_to_random_port('tcp://*', min_port=self.min_port,\n max_port=self.max_port, max_tries=self.max_tries)\n terminate = mp.Event()\n worker = mp.Process(target=SafeFunction(zmq_worker), args=[port,\n self.streamer, terminate], kwargs=dict(copy=self.copy, max_iter\n =max_iter))\n worker.daemon = True\n worker.start()\n while True:\n yield zmq_recv_data(socket)\n except StopIteration:\n pass\n except:\n six.reraise(*sys.exc_info())\n finally:\n terminate.set()\n worker.join(self.timeout)\n if worker.is_alive():\n worker.terminate()\n context.destroy()\n",
"role": "user"
},
{
"content": "iterate",
"role": "assistant"
}
] |
def x(self):
p = re.compile('a|c|g|t|n')
for seq_id in self.fasta_dict.keys():
self.fasta_dict[seq_id] = p.sub('N', self.fasta_dict[seq_id])
return self
|
hardmask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n p = re.compile('a|c|g|t|n')\n for seq_id in self.fasta_dict.keys():\n self.fasta_dict[seq_id] = p.sub('N', self.fasta_dict[seq_id])\n return self\n",
"role": "user"
},
{
"content": "hardmask",
"role": "assistant"
}
] |
def x(self, n, l=None):
random_f = Fasta()
if l:
ids = self.ids[:]
random.shuffle(ids)
i = 0
while i < n and len(ids) > 0:
seq_id = ids.pop()
if len(self[seq_id]) >= l:
start = random.randint(0, len(self[seq_id]) - l)
random_f['random%s' % (i + 1)] = self[seq_id][start:start + l]
i += 1
if len(random_f) != n:
sys.stderr.write('Not enough sequences of required length')
return
else:
return random_f
else:
choice = random.sample(self.ids, n)
for i in range(n):
random_f[choice[i]] = self[choice[i]]
return random_f
|
get_random
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, l=None):\n random_f = Fasta()\n if l:\n ids = self.ids[:]\n random.shuffle(ids)\n i = 0\n while i < n and len(ids) > 0:\n seq_id = ids.pop()\n if len(self[seq_id]) >= l:\n start = random.randint(0, len(self[seq_id]) - l)\n random_f['random%s' % (i + 1)] = self[seq_id][start:start + l]\n i += 1\n if len(random_f) != n:\n sys.stderr.write('Not enough sequences of required length')\n return\n else:\n return random_f\n else:\n choice = random.sample(self.ids, n)\n for i in range(n):\n random_f[choice[i]] = self[choice[i]]\n return random_f\n",
"role": "user"
},
{
"content": "get_random",
"role": "assistant"
}
] |
def x(self, fname):
f = open(fname, 'w')
fa_str = '\n'.join([('>%s\n%s' % (id, self._format_seq(seq))) for id,
seq in self.items()])
f.write(fa_str)
f.close()
|
writefasta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fname):\n f = open(fname, 'w')\n fa_str = '\\n'.join([('>%s\\n%s' % (id, self._format_seq(seq))) for id,\n seq in self.items()])\n f.write(fa_str)\n f.close()\n",
"role": "user"
},
{
"content": "writefasta",
"role": "assistant"
}
] |
def x(motifs, match='total', metric='wic', combine='mean', pval=True,
threshold=0.95, trim_edges=False, edge_ic_cutoff=0.2, include_bg=True,
progress=True, ncpus=None):
if type([]) != type(motifs):
motifs = read_motifs(motifs, fmt='pwm')
mc = MotifComparer()
if trim_edges:
for motif in motifs:
motif.trim(edge_ic_cutoff)
nodes = [MotifTree(m) for m in motifs]
scores = {}
motif_nodes = dict([(n.motif.id, n) for n in nodes])
motifs = [n.motif for n in nodes]
if progress:
sys.stderr.write('Calculating initial scores\n')
result = mc.get_all_scores(motifs, motifs, match, metric, combine, pval,
parallel=True, ncpus=ncpus)
for m1, other_motifs in result.items():
for m2, score in other_motifs.items():
if m1 == m2:
if pval:
motif_nodes[m1].maxscore = 1 - score[0]
else:
motif_nodes[m1].maxscore = score[0]
else:
if pval:
score = [1 - score[0]] + score[1:]
scores[motif_nodes[m1], motif_nodes[m2]] = score
cluster_nodes = [node for node in nodes]
ave_count = 1
total = len(cluster_nodes)
while len(cluster_nodes) > 1:
l = sorted(scores.keys(), key=lambda x: scores[x][0])
i = -1
n1, n2 = l[i]
while n1 not in cluster_nodes or n2 not in cluster_nodes:
i -= 1
n1, n2 = l[i]
if len(n1.motif) > 0 and len(n2.motif) > 0:
score, pos, orientation = scores[n1, n2]
ave_motif = n1.motif.average_motifs(n2.motif, pos, orientation,
include_bg=include_bg)
ave_motif.trim(edge_ic_cutoff)
if len(ave_motif) == 0:
ave_motif = Motif([[0.25, 0.25, 0.25, 0.25]])
ave_motif.id = 'Average_%s' % ave_count
ave_count += 1
new_node = MotifTree(ave_motif)
if pval:
new_node.maxscore = 1 - mc.compare_motifs(new_node.motif,
new_node.motif, match, metric, combine, pval)[0]
else:
new_node.maxscore = mc.compare_motifs(new_node.motif,
new_node.motif, match, metric, combine, pval)[0]
new_node.mergescore = score
n1.parent = new_node
n2.parent = new_node
new_node.left = n1
new_node.right = n2
cmp_nodes = dict([(node.motif, node) for node in nodes if not
node.parent])
if progress:
progress = (1 - len(cmp_nodes) / float(total)) * 100
sys.stderr.write('\rClustering [{0}{1}] {2}%'.format('#' *
(int(progress) // 10), ' ' * (10 - int(progress) // 10),
int(progress)))
result = mc.get_all_scores([new_node.motif], list(cmp_nodes.
keys()), match, metric, combine, pval, parallel=True)
for motif, n in cmp_nodes.items():
x = result[new_node.motif.id][motif.id]
if pval:
x = [1 - x[0]] + x[1:]
scores[new_node, n] = x
nodes.append(new_node)
cluster_nodes = [node for node in nodes if not node.parent]
if progress:
sys.stderr.write('\n')
root = nodes[-1]
for node in [node for node in nodes if not node.left]:
node.parent.checkMerge(root, threshold)
return root
|
cluster_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(motifs, match='total', metric='wic', combine='mean', pval=True,\n threshold=0.95, trim_edges=False, edge_ic_cutoff=0.2, include_bg=True,\n progress=True, ncpus=None):\n if type([]) != type(motifs):\n motifs = read_motifs(motifs, fmt='pwm')\n mc = MotifComparer()\n if trim_edges:\n for motif in motifs:\n motif.trim(edge_ic_cutoff)\n nodes = [MotifTree(m) for m in motifs]\n scores = {}\n motif_nodes = dict([(n.motif.id, n) for n in nodes])\n motifs = [n.motif for n in nodes]\n if progress:\n sys.stderr.write('Calculating initial scores\\n')\n result = mc.get_all_scores(motifs, motifs, match, metric, combine, pval,\n parallel=True, ncpus=ncpus)\n for m1, other_motifs in result.items():\n for m2, score in other_motifs.items():\n if m1 == m2:\n if pval:\n motif_nodes[m1].maxscore = 1 - score[0]\n else:\n motif_nodes[m1].maxscore = score[0]\n else:\n if pval:\n score = [1 - score[0]] + score[1:]\n scores[motif_nodes[m1], motif_nodes[m2]] = score\n cluster_nodes = [node for node in nodes]\n ave_count = 1\n total = len(cluster_nodes)\n while len(cluster_nodes) > 1:\n l = sorted(scores.keys(), key=lambda x: scores[x][0])\n i = -1\n n1, n2 = l[i]\n while n1 not in cluster_nodes or n2 not in cluster_nodes:\n i -= 1\n n1, n2 = l[i]\n if len(n1.motif) > 0 and len(n2.motif) > 0:\n score, pos, orientation = scores[n1, n2]\n ave_motif = n1.motif.average_motifs(n2.motif, pos, orientation,\n include_bg=include_bg)\n ave_motif.trim(edge_ic_cutoff)\n if len(ave_motif) == 0:\n ave_motif = Motif([[0.25, 0.25, 0.25, 0.25]])\n ave_motif.id = 'Average_%s' % ave_count\n ave_count += 1\n new_node = MotifTree(ave_motif)\n if pval:\n new_node.maxscore = 1 - mc.compare_motifs(new_node.motif,\n new_node.motif, match, metric, combine, pval)[0]\n else:\n new_node.maxscore = mc.compare_motifs(new_node.motif,\n new_node.motif, match, metric, combine, pval)[0]\n new_node.mergescore = score\n n1.parent = new_node\n n2.parent = new_node\n new_node.left = n1\n new_node.right = n2\n cmp_nodes = dict([(node.motif, node) for node in nodes if not\n node.parent])\n if progress:\n progress = (1 - len(cmp_nodes) / float(total)) * 100\n sys.stderr.write('\\rClustering [{0}{1}] {2}%'.format('#' *\n (int(progress) // 10), ' ' * (10 - int(progress) // 10),\n int(progress)))\n result = mc.get_all_scores([new_node.motif], list(cmp_nodes.\n keys()), match, metric, combine, pval, parallel=True)\n for motif, n in cmp_nodes.items():\n x = result[new_node.motif.id][motif.id]\n if pval:\n x = [1 - x[0]] + x[1:]\n scores[new_node, n] = x\n nodes.append(new_node)\n cluster_nodes = [node for node in nodes if not node.parent]\n if progress:\n sys.stderr.write('\\n')\n root = nodes[-1]\n for node in [node for node in nodes if not node.left]:\n node.parent.checkMerge(root, threshold)\n return root\n",
"role": "user"
},
{
"content": "cluster_motifs",
"role": "assistant"
}
] |
def x(batch):
n = None
for value in six.itervalues(batch):
if n is None:
n = len(value)
elif len(value) != n:
raise PescadorError('Unequal field lengths')
return n
|
batch_length
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(batch):\n n = None\n for value in six.itervalues(batch):\n if n is None:\n n = len(value)\n elif len(value) != n:\n raise PescadorError('Unequal field lengths')\n return n\n",
"role": "user"
},
{
"content": "batch_length",
"role": "assistant"
}
] |
def x(self):
self.distribution_ = 1.0 / self.n_streams * np.ones(self.n_streams)
self.valid_streams_ = np.ones(self.n_streams, dtype=bool)
self.streams_ = [None] * self.k
self.stream_weights_ = np.zeros(self.k)
self.stream_counts_ = np.zeros(self.k, dtype=int)
self.stream_idxs_ = np.zeros(self.k, dtype=int)
for idx in range(self.k):
if not (self.distribution_ > 0).any():
break
self.stream_idxs_[idx] = self.rng.choice(self.n_streams, p=self.
distribution_)
self.streams_[idx], self.stream_weights_[idx] = self._new_stream(self
.stream_idxs_[idx])
self.weight_norm_ = np.sum(self.stream_weights_)
|
activate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.distribution_ = 1.0 / self.n_streams * np.ones(self.n_streams)\n self.valid_streams_ = np.ones(self.n_streams, dtype=bool)\n self.streams_ = [None] * self.k\n self.stream_weights_ = np.zeros(self.k)\n self.stream_counts_ = np.zeros(self.k, dtype=int)\n self.stream_idxs_ = np.zeros(self.k, dtype=int)\n for idx in range(self.k):\n if not (self.distribution_ > 0).any():\n break\n self.stream_idxs_[idx] = self.rng.choice(self.n_streams, p=self.\n distribution_)\n self.streams_[idx], self.stream_weights_[idx] = self._new_stream(self\n .stream_idxs_[idx])\n self.weight_norm_ = np.sum(self.stream_weights_)\n",
"role": "user"
},
{
"content": "activate",
"role": "assistant"
}
] |
def x(self, idx):
if self.rate is not None:
n_stream = 1 + self.rng.poisson(lam=self.rate)
else:
n_stream = None
if not self.with_replacement:
self.distribution_[idx] = 0.0
if (self.distribution_ > 0).any():
self.distribution_[:] /= np.sum(self.distribution_)
return self.streamers[idx].iterate(max_iter=n_stream), self.weights[idx]
|
new_stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx):\n if self.rate is not None:\n n_stream = 1 + self.rng.poisson(lam=self.rate)\n else:\n n_stream = None\n if not self.with_replacement:\n self.distribution_[idx] = 0.0\n if (self.distribution_ > 0).any():\n self.distribution_[:] /= np.sum(self.distribution_)\n return self.streamers[idx].iterate(max_iter=n_stream), self.weights[idx]\n",
"role": "user"
},
{
"content": "new_stream",
"role": "assistant"
}
] |
def x(self, max_iter=None):
if max_iter is None:
max_iter = np.inf
with self as active_mux:
n = 0
while n < max_iter and active_mux._streamers_available():
idx = active_mux._next_sample_index()
try:
yield six.advance_iterator(active_mux.streams_[idx])
n += 1
active_mux.stream_counts_[idx] += 1
except StopIteration:
active_mux._on_stream_exhausted(idx)
active_mux._replace_stream(idx)
|
iterate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, max_iter=None):\n if max_iter is None:\n max_iter = np.inf\n with self as active_mux:\n n = 0\n while n < max_iter and active_mux._streamers_available():\n idx = active_mux._next_sample_index()\n try:\n yield six.advance_iterator(active_mux.streams_[idx])\n n += 1\n active_mux.stream_counts_[idx] += 1\n except StopIteration:\n active_mux._on_stream_exhausted(idx)\n active_mux._replace_stream(idx)\n",
"role": "user"
},
{
"content": "iterate",
"role": "assistant"
}
] |
def x(self):
return self.rng.choice(self.n_active, p=self.stream_weights_ / self.
weight_norm_)
|
next_sample_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self.rng.choice(self.n_active, p=self.stream_weights_ / self.\n weight_norm_)\n",
"role": "user"
},
{
"content": "next_sample_index",
"role": "assistant"
}
] |
def x(self, idx):
n_samples_to_stream = None
if self.rate is not None:
n_samples_to_stream = 1 + self.rng.poisson(lam=self.rate)
streamer = self.streamers[idx].iterate(max_iter=n_samples_to_stream)
weight = self.weights[idx]
if self.mode != 'with_replacement':
self.distribution_[idx] = 0.0
if (self.distribution_ > 0).any():
self.distribution_[:] /= np.sum(self.distribution_)
return streamer, weight
|
activate_stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx):\n n_samples_to_stream = None\n if self.rate is not None:\n n_samples_to_stream = 1 + self.rng.poisson(lam=self.rate)\n streamer = self.streamers[idx].iterate(max_iter=n_samples_to_stream)\n weight = self.weights[idx]\n if self.mode != 'with_replacement':\n self.distribution_[idx] = 0.0\n if (self.distribution_ > 0).any():\n self.distribution_[:] /= np.sum(self.distribution_)\n return streamer, weight\n",
"role": "user"
},
{
"content": "activate_stream",
"role": "assistant"
}
] |
def x(self, idx):
self.stream_idxs_[idx] = self.rng.choice(self.n_streams, p=self.
distribution_)
self.streams_[idx], self.stream_weights_[idx] = self._activate_stream(self
.stream_idxs_[idx])
self.stream_counts_[idx] = 0
|
new_stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx):\n self.stream_idxs_[idx] = self.rng.choice(self.n_streams, p=self.\n distribution_)\n self.streams_[idx], self.stream_weights_[idx] = self._activate_stream(self\n .stream_idxs_[idx])\n self.stream_counts_[idx] = 0\n",
"role": "user"
},
{
"content": "new_stream",
"role": "assistant"
}
] |
def x(self):
self.streams_ = [None] * self.n_streams
self.stream_weights_ = np.array(self.weights, dtype=float)
self.stream_counts_ = np.zeros(self.n_streams, dtype=int)
for idx in range(self.n_streams):
self._new_stream(idx)
self.weight_norm_ = np.sum(self.stream_weights_)
|
activate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.streams_ = [None] * self.n_streams\n self.stream_weights_ = np.array(self.weights, dtype=float)\n self.stream_counts_ = np.zeros(self.n_streams, dtype=int)\n for idx in range(self.n_streams):\n self._new_stream(idx)\n self.weight_norm_ = np.sum(self.stream_weights_)\n",
"role": "user"
},
{
"content": "activate",
"role": "assistant"
}
] |
def x(self):
return self.rng.choice(self.n_streams, p=self.stream_weights_ / self.
weight_norm_)
|
next_sample_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self.rng.choice(self.n_streams, p=self.stream_weights_ / self.\n weight_norm_)\n",
"role": "user"
},
{
"content": "next_sample_index",
"role": "assistant"
}
] |
def x(self, idx):
if self.stream_weights_[idx]:
self.streams_[idx] = self.streamers[idx].iterate()
else:
self.streams_[idx] = None
self.stream_counts_[idx] = 0
|
new_stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx):\n if self.stream_weights_[idx]:\n self.streams_[idx] = self.streamers[idx].iterate()\n else:\n self.streams_[idx] = None\n self.stream_counts_[idx] = 0\n",
"role": "user"
},
{
"content": "new_stream",
"role": "assistant"
}
] |
def x(self):
idx = self.active_index_
self.active_index_ += 1
if self.active_index_ >= len(self.streams_):
self.active_index_ = 0
while self.streams_[idx] is None:
idx = self.active_index_
self.active_index_ += 1
if self.active_index_ >= len(self.streams_):
self.active_index_ = 0
return idx
|
next_sample_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n idx = self.active_index_\n self.active_index_ += 1\n if self.active_index_ >= len(self.streams_):\n self.active_index_ = 0\n while self.streams_[idx] is None:\n idx = self.active_index_\n self.active_index_ += 1\n if self.active_index_ >= len(self.streams_):\n self.active_index_ = 0\n return idx\n",
"role": "user"
},
{
"content": "next_sample_index",
"role": "assistant"
}
] |
def x(self, idx):
stream_index = self.stream_idxs_[idx]
self.streams_[idx] = self.streamers[stream_index].iterate()
self.stream_counts_[idx] = 0
|
new_stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx):\n stream_index = self.stream_idxs_[idx]\n self.streams_[idx] = self.streamers[stream_index].iterate()\n self.stream_counts_[idx] = 0\n",
"role": "user"
},
{
"content": "new_stream",
"role": "assistant"
}
] |
def x(self, idx=None):
self.streams_[idx] = None
if not self._streamers_available():
if self.mode == 'exhaustive':
pass
elif self.mode == 'cycle':
self._setup_streams(permute=False)
elif self.mode == 'permuted_cycle':
self._setup_streams(permute=True)
|
replace_stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx=None):\n self.streams_[idx] = None\n if not self._streamers_available():\n if self.mode == 'exhaustive':\n pass\n elif self.mode == 'cycle':\n self._setup_streams(permute=False)\n elif self.mode == 'permuted_cycle':\n self._setup_streams(permute=True)\n",
"role": "user"
},
{
"content": "replace_stream",
"role": "assistant"
}
] |
def x(self):
try:
next_stream = six.advance_iterator(self.stream_generator_)
except StopIteration:
if self.mode == 'cycle':
self.stream_generator_ = self.chain_streamer_.iterate()
next_stream = six.advance_iterator(self.stream_generator_)
else:
next_stream = None
if next_stream is not None:
streamer = next_stream.iterate()
self.streams_[0] = streamer
self.stream_counts_[0] = 0
|
new_stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n next_stream = six.advance_iterator(self.stream_generator_)\n except StopIteration:\n if self.mode == 'cycle':\n self.stream_generator_ = self.chain_streamer_.iterate()\n next_stream = six.advance_iterator(self.stream_generator_)\n else:\n next_stream = None\n if next_stream is not None:\n streamer = next_stream.iterate()\n self.streams_[0] = streamer\n self.stream_counts_[0] = 0\n",
"role": "user"
},
{
"content": "new_stream",
"role": "assistant"
}
] |
def x(X, Y, paths):
shuffled_idxs = np.random.permutation(np.arange(len(X)))
for i in range(len(paths)):
X_i = X[shuffled_idxs[i::len(paths)]]
Y_i = Y[shuffled_idxs[i::len(paths)]]
np.savez(paths[i], X=X_i, Y=Y_i)
|
split_and_save_datasets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, Y, paths):\n shuffled_idxs = np.random.permutation(np.arange(len(X)))\n for i in range(len(paths)):\n X_i = X[shuffled_idxs[i::len(paths)]]\n Y_i = Y[shuffled_idxs[i::len(paths)]]\n np.savez(paths[i], X=X_i, Y=Y_i)\n",
"role": "user"
},
{
"content": "split_and_save_datasets",
"role": "assistant"
}
] |
def x(npz_path):
npz_data = np.load(npz_path)
X = npz_data['X']
y = npz_data['Y']
n = X.shape[0]
while True:
i = np.random.randint(0, n)
yield {'X': X[i], 'Y': y[i]}
|
npz_generator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(npz_path):\n npz_data = np.load(npz_path)\n X = npz_data['X']\n y = npz_data['Y']\n n = X.shape[0]\n while True:\n i = np.random.randint(0, n)\n yield {'X': X[i], 'Y': y[i]}\n",
"role": "user"
},
{
"content": "npz_generator",
"role": "assistant"
}
] |
def x(k, good, bad, N):
pvalues = [phyper_single(x, good, bad, N) for x in range(k + 1, N + 1)]
return np.sum(pvalues)
|
phyper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(k, good, bad, N):\n pvalues = [phyper_single(x, good, bad, N) for x in range(k + 1, N + 1)]\n return np.sum(pvalues)\n",
"role": "user"
},
{
"content": "phyper",
"role": "assistant"
}
] |
def x(bedfile, width, outfile):
BUFSIZE = 10000
f = open(bedfile)
out = open(outfile, 'w')
lines = f.readlines(BUFSIZE)
line_count = 0
while lines:
for line in lines:
line_count += 1
if not line.startswith('#') and not line.startswith('track'
) and not line.startswith('browser'):
vals = line.strip().split('\t')
try:
start, end = int(vals[1]), int(vals[2])
except ValueError:
print(
'Error on line %s while reading %s. Is the file in BED or WIG format?'
% (line_count, bedfile))
sys.exit(1)
start = (start + end) // 2 - width // 2
if start < 0:
start = 0
end = start + width
if len(vals) > 3:
out.write('%s\t%s\t%s\t%s\n' % (vals[0], start, end,
'\t'.join(vals[3:])))
else:
out.write('%s\t%s\t%s\n' % (vals[0], start, end))
lines = f.readlines(BUFSIZE)
out.close()
f.close()
|
write_equalwidth_bedfile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bedfile, width, outfile):\n BUFSIZE = 10000\n f = open(bedfile)\n out = open(outfile, 'w')\n lines = f.readlines(BUFSIZE)\n line_count = 0\n while lines:\n for line in lines:\n line_count += 1\n if not line.startswith('#') and not line.startswith('track'\n ) and not line.startswith('browser'):\n vals = line.strip().split('\\t')\n try:\n start, end = int(vals[1]), int(vals[2])\n except ValueError:\n print(\n 'Error on line %s while reading %s. Is the file in BED or WIG format?'\n % (line_count, bedfile))\n sys.exit(1)\n start = (start + end) // 2 - width // 2\n if start < 0:\n start = 0\n end = start + width\n if len(vals) > 3:\n out.write('%s\\t%s\\t%s\\t%s\\n' % (vals[0], start, end,\n '\\t'.join(vals[3:])))\n else:\n out.write('%s\\t%s\\t%s\\n' % (vals[0], start, end))\n lines = f.readlines(BUFSIZE)\n out.close()\n f.close()\n",
"role": "user"
},
{
"content": "write_equalwidth_bedfile",
"role": "assistant"
}
] |
def x(sample, background, mtc=None, len_sample=None, len_back=None):
INF = 'Inf'
if mtc not in [None, 'Bonferroni', 'Benjamini-Hochberg', 'None']:
raise RuntimeError('Unknown correction: %s' % mtc)
sig = {}
p_value = {}
n_sample = {}
n_back = {}
if not len_sample:
len_sample = sample.seqn()
if not len_back:
len_back = background.seqn()
for motif in sample.motifs.keys():
p = 'NA'
s = 'NA'
q = len(sample.motifs[motif])
m = 0
if background.motifs.get(motif):
m = len(background.motifs[motif])
n = len_back - m
k = len_sample
p = phyper(q - 1, m, n, k)
if p != 0:
s = -(log(p) / log(10))
else:
s = INF
else:
s = INF
p = 0.0
sig[motif] = s
p_value[motif] = p
n_sample[motif] = q
n_back[motif] = m
if mtc == 'Bonferroni':
for motif in p_value.keys():
if p_value[motif] != 'NA':
p_value[motif] = p_value[motif] * len(p_value.keys())
if p_value[motif] > 1:
p_value[motif] = 1
elif mtc == 'Benjamini-Hochberg':
motifs = sorted(p_value.keys(), key=lambda x: -p_value[x])
l = len(p_value)
c = l
for m in motifs:
if p_value[m] != 'NA':
p_value[m] = p_value[m] * l / c
c -= 1
return sig, p_value, n_sample, n_back
|
calc_motif_enrichment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sample, background, mtc=None, len_sample=None, len_back=None):\n INF = 'Inf'\n if mtc not in [None, 'Bonferroni', 'Benjamini-Hochberg', 'None']:\n raise RuntimeError('Unknown correction: %s' % mtc)\n sig = {}\n p_value = {}\n n_sample = {}\n n_back = {}\n if not len_sample:\n len_sample = sample.seqn()\n if not len_back:\n len_back = background.seqn()\n for motif in sample.motifs.keys():\n p = 'NA'\n s = 'NA'\n q = len(sample.motifs[motif])\n m = 0\n if background.motifs.get(motif):\n m = len(background.motifs[motif])\n n = len_back - m\n k = len_sample\n p = phyper(q - 1, m, n, k)\n if p != 0:\n s = -(log(p) / log(10))\n else:\n s = INF\n else:\n s = INF\n p = 0.0\n sig[motif] = s\n p_value[motif] = p\n n_sample[motif] = q\n n_back[motif] = m\n if mtc == 'Bonferroni':\n for motif in p_value.keys():\n if p_value[motif] != 'NA':\n p_value[motif] = p_value[motif] * len(p_value.keys())\n if p_value[motif] > 1:\n p_value[motif] = 1\n elif mtc == 'Benjamini-Hochberg':\n motifs = sorted(p_value.keys(), key=lambda x: -p_value[x])\n l = len(p_value)\n c = l\n for m in motifs:\n if p_value[m] != 'NA':\n p_value[m] = p_value[m] * l / c\n c -= 1\n return sig, p_value, n_sample, n_back\n",
"role": "user"
},
{
"content": "calc_motif_enrichment",
"role": "assistant"
}
] |
def x(motifs, cutoff, default=0.9):
cutoffs = {}
if os.path.isfile(str(cutoff)):
for i, line in enumerate(open(cutoff)):
if line != 'Motif\tScore\tCutoff\n':
try:
motif, _, c = line.strip().split('\t')
c = float(c)
cutoffs[motif] = c
except Exception as e:
sys.stderr.write(
'Error parsing cutoff file, line {0}: {1}\n'.format
(e, i + 1))
sys.exit(1)
else:
for motif in motifs:
cutoffs[motif.id] = float(cutoff)
for motif in motifs:
if not motif.id in cutoffs:
sys.stderr.write('No cutoff found for {0}, using default {1}\n'
.format(motif.id, default))
cutoffs[motif.id] = default
return cutoffs
|
parse_cutoff
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(motifs, cutoff, default=0.9):\n cutoffs = {}\n if os.path.isfile(str(cutoff)):\n for i, line in enumerate(open(cutoff)):\n if line != 'Motif\\tScore\\tCutoff\\n':\n try:\n motif, _, c = line.strip().split('\\t')\n c = float(c)\n cutoffs[motif] = c\n except Exception as e:\n sys.stderr.write(\n 'Error parsing cutoff file, line {0}: {1}\\n'.format\n (e, i + 1))\n sys.exit(1)\n else:\n for motif in motifs:\n cutoffs[motif.id] = float(cutoff)\n for motif in motifs:\n if not motif.id in cutoffs:\n sys.stderr.write('No cutoff found for {0}, using default {1}\\n'\n .format(motif.id, default))\n cutoffs[motif.id] = default\n return cutoffs\n",
"role": "user"
},
{
"content": "parse_cutoff",
"role": "assistant"
}
] |
def x(fname):
if not (isinstance(fname, str) or isinstance(fname, unicode)):
raise ValueError('{} is not a file name!', fname)
if not os.path.isfile(fname):
raise ValueError('{} is not a file!', fname)
ext = os.path.splitext(fname)[1].lower()
if ext in ['bed']:
return 'bed'
elif ext in ['fa', 'fasta']:
return 'fasta'
elif ext in ['narrowpeak']:
return 'narrowpeak'
try:
Fasta(fname)
return 'fasta'
except:
pass
p = re.compile('^(#|track|browser)')
with open(fname) as f:
for line in f.readlines():
line = line.strip()
if not p.search(line):
break
region_p = re.compile('^(.+):(\\d+)-(\\d+)$')
if region_p.search(line):
return 'region'
else:
vals = line.split('\t')
if len(vals) >= 3:
try:
_, _ = int(vals[1]), int(vals[2])
except ValueError:
return 'unknown'
if len(vals) == 10:
try:
_, _ = int(vals[4]), int(vals[9])
return 'narrowpeak'
except ValueError:
return 'unknown'
pass
return 'bed'
return 'unknown'
|
determine_file_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n if not (isinstance(fname, str) or isinstance(fname, unicode)):\n raise ValueError('{} is not a file name!', fname)\n if not os.path.isfile(fname):\n raise ValueError('{} is not a file!', fname)\n ext = os.path.splitext(fname)[1].lower()\n if ext in ['bed']:\n return 'bed'\n elif ext in ['fa', 'fasta']:\n return 'fasta'\n elif ext in ['narrowpeak']:\n return 'narrowpeak'\n try:\n Fasta(fname)\n return 'fasta'\n except:\n pass\n p = re.compile('^(#|track|browser)')\n with open(fname) as f:\n for line in f.readlines():\n line = line.strip()\n if not p.search(line):\n break\n region_p = re.compile('^(.+):(\\\\d+)-(\\\\d+)$')\n if region_p.search(line):\n return 'region'\n else:\n vals = line.split('\\t')\n if len(vals) >= 3:\n try:\n _, _ = int(vals[1]), int(vals[2])\n except ValueError:\n return 'unknown'\n if len(vals) == 10:\n try:\n _, _ = int(vals[4]), int(vals[9])\n return 'narrowpeak'\n except ValueError:\n return 'unknown'\n pass\n return 'bed'\n return 'unknown'\n",
"role": "user"
},
{
"content": "determine_file_type",
"role": "assistant"
}
] |
def x(seqs):
region_p = re.compile('^(.+):(\\d+)-(\\d+)$')
if isinstance(seqs, Fasta):
return 'fasta'
elif isinstance(seqs, list):
if len(seqs) == 0:
raise ValueError('empty list of sequences to scan')
elif region_p.search(seqs[0]):
return 'regions'
else:
raise ValueError('unknown region type')
elif isinstance(seqs, str) or isinstance(seqs, unicode):
if os.path.isfile(seqs):
ftype = determine_file_type(seqs)
if ftype == 'unknown':
raise ValueError('unknown type')
elif ftype == 'narrowpeak':
raise ValueError(
'narrowPeak not yet supported in this function')
else:
return ftype + 'file'
else:
raise ValueError('no file found with name {}'.format(seqs))
else:
raise ValueError('unknown type {}'.format(type(seqs).__name__))
|
get_seqs_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seqs):\n region_p = re.compile('^(.+):(\\\\d+)-(\\\\d+)$')\n if isinstance(seqs, Fasta):\n return 'fasta'\n elif isinstance(seqs, list):\n if len(seqs) == 0:\n raise ValueError('empty list of sequences to scan')\n elif region_p.search(seqs[0]):\n return 'regions'\n else:\n raise ValueError('unknown region type')\n elif isinstance(seqs, str) or isinstance(seqs, unicode):\n if os.path.isfile(seqs):\n ftype = determine_file_type(seqs)\n if ftype == 'unknown':\n raise ValueError('unknown type')\n elif ftype == 'narrowpeak':\n raise ValueError(\n 'narrowPeak not yet supported in this function')\n else:\n return ftype + 'file'\n else:\n raise ValueError('no file found with name {}'.format(seqs))\n else:\n raise ValueError('unknown type {}'.format(type(seqs).__name__))\n",
"role": "user"
},
{
"content": "get_seqs_type",
"role": "assistant"
}
] |
def x(fname):
size = os.path.getsize(fname)
with open(fname, 'r+') as f:
checksum = hashlib.md5(mmap.mmap(f.fileno(), size)).hexdigest()
return checksum
|
file_checksum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n size = os.path.getsize(fname)\n with open(fname, 'r+') as f:\n checksum = hashlib.md5(mmap.mmap(f.fileno(), size)).hexdigest()\n return checksum\n",
"role": "user"
},
{
"content": "file_checksum",
"role": "assistant"
}
] |
def x(genomebuild, gene_file):
pred_bin = 'genePredToBed'
pred = find_executable(pred_bin)
if not pred:
sys.stderr.write('{} not found in path!\n'.format(pred_bin))
sys.exit(1)
tmp = NamedTemporaryFile(delete=False, suffix='.gz')
anno = []
f = urlopen(UCSC_GENE_URL.format(genomebuild))
p = re.compile('\\w+.Gene.txt.gz')
for line in f.readlines():
m = p.search(line.decode())
if m:
anno.append(m.group(0))
sys.stderr.write('Retrieving gene annotation for {}\n'.format(genomebuild))
url = ''
for a in ANNOS:
if a in anno:
url = UCSC_GENE_URL.format(genomebuild) + a
break
if url:
sys.stderr.write('Using {}\n'.format(url))
urlretrieve(url, tmp.name)
with gzip.open(tmp.name) as f:
cols = f.readline().decode(errors='ignore').split('\t')
start_col = 1
for i, col in enumerate(cols):
if col == '+' or col == '-':
start_col = i - 1
break
end_col = start_col + 10
cmd = 'zcat {} | cut -f{}-{} | {} /dev/stdin {}'
print(cmd.format(tmp.name, start_col, end_col, pred, gene_file))
sp.call(cmd.format(tmp.name, start_col, end_col, pred, gene_file),
shell=True)
else:
sys.stderr.write('No annotation found!')
|
download_annotation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(genomebuild, gene_file):\n pred_bin = 'genePredToBed'\n pred = find_executable(pred_bin)\n if not pred:\n sys.stderr.write('{} not found in path!\\n'.format(pred_bin))\n sys.exit(1)\n tmp = NamedTemporaryFile(delete=False, suffix='.gz')\n anno = []\n f = urlopen(UCSC_GENE_URL.format(genomebuild))\n p = re.compile('\\\\w+.Gene.txt.gz')\n for line in f.readlines():\n m = p.search(line.decode())\n if m:\n anno.append(m.group(0))\n sys.stderr.write('Retrieving gene annotation for {}\\n'.format(genomebuild))\n url = ''\n for a in ANNOS:\n if a in anno:\n url = UCSC_GENE_URL.format(genomebuild) + a\n break\n if url:\n sys.stderr.write('Using {}\\n'.format(url))\n urlretrieve(url, tmp.name)\n with gzip.open(tmp.name) as f:\n cols = f.readline().decode(errors='ignore').split('\\t')\n start_col = 1\n for i, col in enumerate(cols):\n if col == '+' or col == '-':\n start_col = i - 1\n break\n end_col = start_col + 10\n cmd = 'zcat {} | cut -f{}-{} | {} /dev/stdin {}'\n print(cmd.format(tmp.name, start_col, end_col, pred, gene_file))\n sp.call(cmd.format(tmp.name, start_col, end_col, pred, gene_file),\n shell=True)\n else:\n sys.stderr.write('No annotation found!')\n",
"role": "user"
},
{
"content": "download_annotation",
"role": "assistant"
}
] |
def x(self, dirname):
if not os.path.exists(dirname):
print('Directory %s does not exist!' % dirname)
sys.exit(1)
|
check_dir
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dirname):\n if not os.path.exists(dirname):\n print('Directory %s does not exist!' % dirname)\n sys.exit(1)\n",
"role": "user"
},
{
"content": "check_dir",
"role": "assistant"
}
] |
def x(self, fasta, index):
out = open(index, 'wb')
f = open(fasta)
line = f.readline()
offset = f.tell()
line = f.readline()
while line:
out.write(pack(self.pack_char, offset))
offset = f.tell()
line = f.readline()
f.close()
out.close()
|
make_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fasta, index):\n out = open(index, 'wb')\n f = open(fasta)\n line = f.readline()\n offset = f.tell()\n line = f.readline()\n while line:\n out.write(pack(self.pack_char, offset))\n offset = f.tell()\n line = f.readline()\n f.close()\n out.close()\n",
"role": "user"
},
{
"content": "make_index",
"role": "assistant"
}
] |
def x(self, fasta_dir=None, index_dir=None):
if not fasta_dir:
fasta_dir = self.fasta_dir
if not index_dir:
index_dir = self.index_dir
if not fasta_dir:
print('fasta_dir not defined!')
sys.exit(1)
if not index_dir:
print('index_dir not defined!')
sys.exit(1)
index_dir = os.path.abspath(index_dir)
fasta_dir = os.path.abspath(fasta_dir)
self.index_dir = index_dir
if not os.path.exists(index_dir):
try:
os.mkdir(index_dir)
except OSError as e:
if e.args[0] == 13:
sys.stderr.write(
"""No permission to create index directory. Superuser access needed?
"""
)
sys.exit()
else:
sys.stderr.write(e)
self._check_dir(fasta_dir)
self._check_dir(index_dir)
fastafiles = find_by_ext(fasta_dir, FASTA_EXT)
if not fastafiles:
msg = 'No fastafiles found in {} with extension in {}'.format(fasta_dir
, ','.join(FASTA_EXT))
raise IOError(msg)
param_file = os.path.join(index_dir, self.param_file)
size_file = os.path.join(index_dir, self.size_file)
try:
out = open(param_file, 'w')
except IOError as e:
if e.args[0] == 13:
sys.stderr.write(
"""No permission to create files in index directory. Superuser access needed?
"""
)
sys.exit()
else:
sys.stderr.write(e)
s_out = open(size_file, 'w')
for fasta_file in fastafiles:
f = open(fasta_file)
line = f.readline()
if not line.startswith('>'):
sys.stderr.write(
'%s is not a valid FASTA file, expected > at first line\n' %
fasta_file)
sys.exit()
seqname = line.strip().replace('>', '')
line = f.readline()
line_size = len(line.strip())
total_size = 0
while line:
line = line.strip()
if line.startswith('>'):
sys.stderr.write(
"""Sorry, can only index genomes with one sequence per FASTA file
%s contains multiple sequences
"""
% fasta_file)
sys.exit()
total_size += len(line)
line = f.readline()
index_file = os.path.join(index_dir, '%s.index' % seqname)
out.write('{}\t{}\t{}\t{}\t{}\n'.format(seqname, fasta_file,
index_file, line_size, total_size))
s_out.write('{}\t{}\n'.format(seqname, total_size))
self._make_index(fasta_file, index_file)
f.close()
out.close()
s_out.close()
self._read_index_file()
|
create_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fasta_dir=None, index_dir=None):\n if not fasta_dir:\n fasta_dir = self.fasta_dir\n if not index_dir:\n index_dir = self.index_dir\n if not fasta_dir:\n print('fasta_dir not defined!')\n sys.exit(1)\n if not index_dir:\n print('index_dir not defined!')\n sys.exit(1)\n index_dir = os.path.abspath(index_dir)\n fasta_dir = os.path.abspath(fasta_dir)\n self.index_dir = index_dir\n if not os.path.exists(index_dir):\n try:\n os.mkdir(index_dir)\n except OSError as e:\n if e.args[0] == 13:\n sys.stderr.write(\n \"\"\"No permission to create index directory. Superuser access needed?\n\"\"\"\n )\n sys.exit()\n else:\n sys.stderr.write(e)\n self._check_dir(fasta_dir)\n self._check_dir(index_dir)\n fastafiles = find_by_ext(fasta_dir, FASTA_EXT)\n if not fastafiles:\n msg = 'No fastafiles found in {} with extension in {}'.format(fasta_dir\n , ','.join(FASTA_EXT))\n raise IOError(msg)\n param_file = os.path.join(index_dir, self.param_file)\n size_file = os.path.join(index_dir, self.size_file)\n try:\n out = open(param_file, 'w')\n except IOError as e:\n if e.args[0] == 13:\n sys.stderr.write(\n \"\"\"No permission to create files in index directory. Superuser access needed?\n\"\"\"\n )\n sys.exit()\n else:\n sys.stderr.write(e)\n s_out = open(size_file, 'w')\n for fasta_file in fastafiles:\n f = open(fasta_file)\n line = f.readline()\n if not line.startswith('>'):\n sys.stderr.write(\n '%s is not a valid FASTA file, expected > at first line\\n' %\n fasta_file)\n sys.exit()\n seqname = line.strip().replace('>', '')\n line = f.readline()\n line_size = len(line.strip())\n total_size = 0\n while line:\n line = line.strip()\n if line.startswith('>'):\n sys.stderr.write(\n \"\"\"Sorry, can only index genomes with one sequence per FASTA file\n%s contains multiple sequences\n\"\"\"\n % fasta_file)\n sys.exit()\n total_size += len(line)\n line = f.readline()\n index_file = os.path.join(index_dir, '%s.index' % seqname)\n out.write('{}\\t{}\\t{}\\t{}\\t{}\\n'.format(seqname, fasta_file,\n index_file, line_size, total_size))\n s_out.write('{}\\t{}\\n'.format(seqname, total_size))\n self._make_index(fasta_file, index_file)\n f.close()\n out.close()\n s_out.close()\n self._read_index_file()\n",
"role": "user"
},
{
"content": "create_index",
"role": "assistant"
}
] |
def x(self):
param_file = os.path.join(self.index_dir, self.param_file)
with open(param_file) as f:
for line in f.readlines():
name, fasta_file, index_file, line_size, total_size = line.strip(
).split('\t')
self.size[name] = int(total_size)
self.fasta_file[name] = fasta_file
self.index_file[name] = index_file
self.line_size[name] = int(line_size)
|
read_index_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n param_file = os.path.join(self.index_dir, self.param_file)\n with open(param_file) as f:\n for line in f.readlines():\n name, fasta_file, index_file, line_size, total_size = line.strip(\n ).split('\\t')\n self.size[name] = int(total_size)\n self.fasta_file[name] = fasta_file\n self.index_file[name] = index_file\n self.line_size[name] = int(line_size)\n",
"role": "user"
},
{
"content": "read_index_file",
"role": "assistant"
}
] |
def x(self, fasta, offset, nr_lines):
fasta.seek(offset)
lines = [fasta.readline().strip() for _ in range(nr_lines)]
return ''.join(lines)
|
read_seq_from_fasta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fasta, offset, nr_lines):\n fasta.seek(offset)\n lines = [fasta.readline().strip() for _ in range(nr_lines)]\n return ''.join(lines)\n",
"role": "user"
},
{
"content": "read_seq_from_fasta",
"role": "assistant"
}
] |
def x(self, chr, coords):
if not self.index_dir:
print('Index dir is not defined!')
sys.exit()
fasta_file = self.fasta_file[chr]
index_file = self.index_file[chr]
line_size = self.line_size[chr]
total_size = self.size[chr]
index = open(index_file, 'rb')
fasta = open(fasta_file)
seqs = []
for coordset in coords:
seq = ''
for start, end in coordset:
if start > total_size:
raise ValueError(
'%s: %s, invalid start, greater than sequence length!' %
(chr, start))
if start < 0:
raise ValueError('Invalid start, < 0!')
if end > total_size:
raise ValueError('Invalid end, greater than sequence length!')
seq += self._read(index, fasta, start, end, line_size)
seqs.append(seq)
index.close()
fasta.close()
return seqs
|
get_sequences
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chr, coords):\n if not self.index_dir:\n print('Index dir is not defined!')\n sys.exit()\n fasta_file = self.fasta_file[chr]\n index_file = self.index_file[chr]\n line_size = self.line_size[chr]\n total_size = self.size[chr]\n index = open(index_file, 'rb')\n fasta = open(fasta_file)\n seqs = []\n for coordset in coords:\n seq = ''\n for start, end in coordset:\n if start > total_size:\n raise ValueError(\n '%s: %s, invalid start, greater than sequence length!' %\n (chr, start))\n if start < 0:\n raise ValueError('Invalid start, < 0!')\n if end > total_size:\n raise ValueError('Invalid end, greater than sequence length!')\n seq += self._read(index, fasta, start, end, line_size)\n seqs.append(seq)\n index.close()\n fasta.close()\n return seqs\n",
"role": "user"
},
{
"content": "get_sequences",
"role": "assistant"
}
] |
def x(self, chrom, start, end, strand=None):
if not self.index_dir:
print('Index dir is not defined!')
sys.exit()
fasta_file = self.fasta_file[chrom]
index_file = self.index_file[chrom]
line_size = self.line_size[chrom]
total_size = self.size[chrom]
if start > total_size:
raise ValueError(
'Invalid start {0}, greater than sequence length {1} of {2}!'.
format(start, total_size, chrom))
if start < 0:
raise ValueError('Invalid start, < 0!')
if end > total_size:
raise ValueError(
'Invalid end {0}, greater than sequence length {1} of {2}!'.
format(end, total_size, chrom))
index = open(index_file, 'rb')
fasta = open(fasta_file)
seq = self._read(index, fasta, start, end, line_size)
index.close()
fasta.close()
if strand and strand == '-':
seq = rc(seq)
return seq
|
get_sequence
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chrom, start, end, strand=None):\n if not self.index_dir:\n print('Index dir is not defined!')\n sys.exit()\n fasta_file = self.fasta_file[chrom]\n index_file = self.index_file[chrom]\n line_size = self.line_size[chrom]\n total_size = self.size[chrom]\n if start > total_size:\n raise ValueError(\n 'Invalid start {0}, greater than sequence length {1} of {2}!'.\n format(start, total_size, chrom))\n if start < 0:\n raise ValueError('Invalid start, < 0!')\n if end > total_size:\n raise ValueError(\n 'Invalid end {0}, greater than sequence length {1} of {2}!'.\n format(end, total_size, chrom))\n index = open(index_file, 'rb')\n fasta = open(fasta_file)\n seq = self._read(index, fasta, start, end, line_size)\n index.close()\n fasta.close()\n if strand and strand == '-':\n seq = rc(seq)\n return seq\n",
"role": "user"
},
{
"content": "get_sequence",
"role": "assistant"
}
] |
def x(self, chrom=None):
if len(self.size) == 0:
raise LookupError('no chromosomes in index, is the index correct?')
if chrom:
if chrom in self.size:
return self.size[chrom]
else:
raise KeyError('chromosome {} not in index'.format(chrom))
total = 0
for size in self.size.values():
total += size
return total
|
get_size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chrom=None):\n if len(self.size) == 0:\n raise LookupError('no chromosomes in index, is the index correct?')\n if chrom:\n if chrom in self.size:\n return self.size[chrom]\n else:\n raise KeyError('chromosome {} not in index'.format(chrom))\n total = 0\n for size in self.size.values():\n total += size\n return total\n",
"role": "user"
},
{
"content": "get_size",
"role": "assistant"
}
] |
def x(name):
tool = name.lower()
if tool not in __tools__:
raise ValueError('Tool {0} not found!\n'.format(name))
t = __tools__[tool]()
if not t.is_installed():
sys.stderr.write('Tool {0} not installed!\n'.format(tool))
if not t.is_configured():
sys.stderr.write('Tool {0} not configured!\n'.format(tool))
return t
|
get_tool
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n tool = name.lower()\n if tool not in __tools__:\n raise ValueError('Tool {0} not found!\\n'.format(name))\n t = __tools__[tool]()\n if not t.is_installed():\n sys.stderr.write('Tool {0} not installed!\\n'.format(tool))\n if not t.is_configured():\n sys.stderr.write('Tool {0} not configured!\\n'.format(tool))\n return t\n",
"role": "user"
},
{
"content": "get_tool",
"role": "assistant"
}
] |
def x(name, verbose=True):
m = get_tool(name)
tool_bin = which(m.cmd)
if tool_bin:
if verbose:
print('Found {} in {}'.format(m.name, tool_bin))
return tool_bin
else:
print("Couldn't find {}".format(m.name))
|
locate_tool
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, verbose=True):\n m = get_tool(name)\n tool_bin = which(m.cmd)\n if tool_bin:\n if verbose:\n print('Found {} in {}'.format(m.name, tool_bin))\n return tool_bin\n else:\n print(\"Couldn't find {}\".format(m.name))\n",
"role": "user"
},
{
"content": "locate_tool",
"role": "assistant"
}
] |
def x(self):
if self.local_bin:
return self.local_bin
else:
return self.config.bin(self.name)
|
bin
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.local_bin:\n return self.local_bin\n else:\n return self.config.bin(self.name)\n",
"role": "user"
},
{
"content": "bin",
"role": "assistant"
}
] |
def x(self):
return self.is_configured() and os.access(self.bin(), os.X_OK)
|
is_installed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self.is_configured() and os.access(self.bin(), os.X_OK)\n",
"role": "user"
},
{
"content": "is_installed",
"role": "assistant"
}
] |
def x(self, fastafile, params=None, tmp=None):
if not self.is_configured():
raise ValueError('%s is not configured' % self.name)
if not self.is_installed():
raise ValueError('%s is not installed or not correctly configured' %
self.name)
self.tmpdir = mkdtemp(prefix='{0}.'.format(self.name), dir=tmp)
fastafile = os.path.abspath(fastafile)
try:
return self._run_program(self.bin(), fastafile, params)
except KeyboardInterrupt:
return [], 'Killed', 'Killed'
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fastafile, params=None, tmp=None):\n if not self.is_configured():\n raise ValueError('%s is not configured' % self.name)\n if not self.is_installed():\n raise ValueError('%s is not installed or not correctly configured' %\n self.name)\n self.tmpdir = mkdtemp(prefix='{0}.'.format(self.name), dir=tmp)\n fastafile = os.path.abspath(fastafile)\n try:\n return self._run_program(self.bin(), fastafile, params)\n except KeyboardInterrupt:\n return [], 'Killed', 'Killed'\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, params=None):
prm = self.default_params.copy()
if params is not None:
prm.update(params)
if prm['background']:
prm['background'] = os.path.abspath(prm['background'])
prm['background'] = ' --negSet {0} '.format(prm['background'])
prm['strand'] = ''
if not prm['single']:
prm['strand'] = ' --revcomp '
return prm
|
parse_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, params=None):\n prm = self.default_params.copy()\n if params is not None:\n prm.update(params)\n if prm['background']:\n prm['background'] = os.path.abspath(prm['background'])\n prm['background'] = ' --negSet {0} '.format(prm['background'])\n prm['strand'] = ''\n if not prm['single']:\n prm['strand'] = ' --revcomp '\n return prm\n",
"role": "user"
},
{
"content": "parse_params",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
params = self._parse_params(params)
outfile = os.path.join(self.tmpdir, os.path.basename(fastafile.replace(
'.fa', '.pwm')))
stdout = ''
stderr = ''
cmd = '%s %s %s --localization --batch %s %s' % (bin, self.tmpdir,
fastafile, params['background'], params['strand'])
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
out, err = p.communicate()
stdout += out.decode()
stderr += err.decode()
motifs = []
if os.path.exists(outfile):
motifs = read_motifs(outfile, fmt='xxmotif')
for m in motifs:
m.id = '{0}_{1}'.format(self.name, m.id)
else:
stdout += '\nMotif file {0} not found!\n'.format(outfile)
stderr += '\nMotif file {0} not found!\n'.format(outfile)
return motifs, stdout, stderr
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n outfile = os.path.join(self.tmpdir, os.path.basename(fastafile.replace(\n '.fa', '.pwm')))\n stdout = ''\n stderr = ''\n cmd = '%s %s %s --localization --batch %s %s' % (bin, self.tmpdir,\n fastafile, params['background'], params['strand'])\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n motifs = []\n if os.path.exists(outfile):\n motifs = read_motifs(outfile, fmt='xxmotif')\n for m in motifs:\n m.id = '{0}_{1}'.format(self.name, m.id)\n else:\n stdout += '\\nMotif file {0} not found!\\n'.format(outfile)\n stderr += '\\nMotif file {0} not found!\\n'.format(outfile)\n return motifs, stdout, stderr\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, params=None):
prm = self.default_params.copy()
if params is not None:
prm.update(params)
if not prm['background']:
print('Background file needed!')
sys.exit()
prm['background'] = os.path.abspath(prm['background'])
prm['strand'] = ''
if prm['single']:
prm['strand'] = ' -strand + '
return prm
|
parse_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, params=None):\n prm = self.default_params.copy()\n if params is not None:\n prm.update(params)\n if not prm['background']:\n print('Background file needed!')\n sys.exit()\n prm['background'] = os.path.abspath(prm['background'])\n prm['strand'] = ''\n if prm['single']:\n prm['strand'] = ' -strand + '\n return prm\n",
"role": "user"
},
{
"content": "parse_params",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
params = self._parse_params(params)
outfile = NamedTemporaryFile(mode='w', dir=self.tmpdir, prefix=
'homer_w{}.'.format(params['width'])).name
cmd = '%s denovo -i %s -b %s -len %s -S %s %s -o %s -p 8' % (bin,
fastafile, params['background'], params['width'], params['number'],
params['strand'], outfile)
stderr = ''
stdout = 'Running command:\n{}\n'.format(cmd)
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, cwd=self.tmpdir)
out, err = p.communicate()
stdout += out.decode()
stderr += err.decode()
motifs = []
if os.path.exists(outfile):
motifs = read_motifs(outfile, fmt='pwm')
for i, m in enumerate(motifs):
m.id = '{}_{}_{}'.format(self.name, params['width'], i + 1)
return motifs, stdout, stderr
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n outfile = NamedTemporaryFile(mode='w', dir=self.tmpdir, prefix=\n 'homer_w{}.'.format(params['width'])).name\n cmd = '%s denovo -i %s -b %s -len %s -S %s %s -o %s -p 8' % (bin,\n fastafile, params['background'], params['width'], params['number'],\n params['strand'], outfile)\n stderr = ''\n stdout = 'Running command:\\n{}\\n'.format(cmd)\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, cwd=self.tmpdir)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n motifs = []\n if os.path.exists(outfile):\n motifs = read_motifs(outfile, fmt='pwm')\n for i, m in enumerate(motifs):\n m.id = '{}_{}_{}'.format(self.name, params['width'], i + 1)\n return motifs, stdout, stderr\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, fo):
motifs = []
p = re.compile(
'^\\d+\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)'
)
pwm = []
motif_id = ''
for line in fo.readlines():
if line.startswith('Motif #'):
if pwm:
m = Motif(pwm)
m.id = 'BioProspector_w%s_%s' % (len(m), motif_id)
motifs.append(m)
motif_id = line.split('#')[1].split(':')[0]
pwm = []
else:
m = p.search(line)
if m:
pwm.append([(float(m.group(x)) / 100.0) for x in range(1, 5)])
if pwm:
m = Motif(pwm)
m.id = 'BioProspector_w%s_%s' % (len(m), motif_id)
motifs.append(m)
return motifs
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fo):\n motifs = []\n p = re.compile(\n '^\\\\d+\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)'\n )\n pwm = []\n motif_id = ''\n for line in fo.readlines():\n if line.startswith('Motif #'):\n if pwm:\n m = Motif(pwm)\n m.id = 'BioProspector_w%s_%s' % (len(m), motif_id)\n motifs.append(m)\n motif_id = line.split('#')[1].split(':')[0]\n pwm = []\n else:\n m = p.search(line)\n if m:\n pwm.append([(float(m.group(x)) / 100.0) for x in range(1, 5)])\n if pwm:\n m = Motif(pwm)\n m.id = 'BioProspector_w%s_%s' % (len(m), motif_id)\n motifs.append(m)\n return motifs\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
params = self._parse_params(params)
default_params = {'width': 10}
if params is not None:
default_params.update(params)
fgfile, summitfile, outfile = self._prepare_files(fastafile)
current_path = os.getcwd()
os.chdir(self.tmpdir)
cmd = (
'{} -i {} -w {} -dna 4 -iteration 50 -chain 20 -seqprop -0.1 -strand 2 -peaklocation {} -t_dof 3 -dep 2'
.format(bin, fgfile, params['width'], summitfile))
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
stdout, stderr = p.communicate()
os.chdir(current_path)
motifs = []
if os.path.exists(outfile):
with open(outfile) as f:
motifs = self.parse(f)
for i, m in enumerate(motifs):
m.id = 'HMS_w{}_{}'.format(params['width'], i + 1)
return motifs, stdout, stderr
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n default_params = {'width': 10}\n if params is not None:\n default_params.update(params)\n fgfile, summitfile, outfile = self._prepare_files(fastafile)\n current_path = os.getcwd()\n os.chdir(self.tmpdir)\n cmd = (\n '{} -i {} -w {} -dna 4 -iteration 50 -chain 20 -seqprop -0.1 -strand 2 -peaklocation {} -t_dof 3 -dep 2'\n .format(bin, fgfile, params['width'], summitfile))\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n stdout, stderr = p.communicate()\n os.chdir(current_path)\n motifs = []\n if os.path.exists(outfile):\n with open(outfile) as f:\n motifs = self.parse(f)\n for i, m in enumerate(motifs):\n m.id = 'HMS_w{}_{}'.format(params['width'], i + 1)\n return motifs, stdout, stderr\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, fo):
motifs = []
m = [[float(x) for x in fo.readline().strip().split(' ')] for i in range(4)
]
matrix = [[m[0][i], m[1][i], m[2][i], m[3][i]] for i in range(len(m[0]))]
motifs = [Motif(matrix)]
motifs[-1].id = self.name
return motifs
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fo):\n motifs = []\n m = [[float(x) for x in fo.readline().strip().split(' ')] for i in range(4)\n ]\n matrix = [[m[0][i], m[1][i], m[2][i], m[3][i]] for i in range(len(m[0]))]\n motifs = [Motif(matrix)]\n motifs[-1].id = self.name\n return motifs\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, bin, fastafile, params=None):
params = self._parse_params(params)
fgfile = os.path.join(self.tmpdir, 'AMD.in.fa')
outfile = fgfile + '.Matrix'
shutil.copy(fastafile, fgfile)
current_path = os.getcwd()
os.chdir(self.tmpdir)
stdout = ''
stderr = ''
cmd = '%s -F %s -B %s' % (bin, fgfile, params['background'])
p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
out, err = p.communicate()
stdout += out.decode()
stderr += err.decode()
os.chdir(current_path)
motifs = []
if os.path.exists(outfile):
f = open(outfile)
motifs = self.parse(f)
f.close()
return motifs, stdout, stderr
|
run_program
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n fgfile = os.path.join(self.tmpdir, 'AMD.in.fa')\n outfile = fgfile + '.Matrix'\n shutil.copy(fastafile, fgfile)\n current_path = os.getcwd()\n os.chdir(self.tmpdir)\n stdout = ''\n stderr = ''\n cmd = '%s -F %s -B %s' % (bin, fgfile, params['background'])\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n os.chdir(current_path)\n motifs = []\n if os.path.exists(outfile):\n f = open(outfile)\n motifs = self.parse(f)\n f.close()\n return motifs, stdout, stderr\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(self, fo):
motifs = []
p = re.compile('\\d+\\s+([\\d.]+)\\s+([\\d.]+)\\s+([\\d.]+)\\s+([\\d.]+)')
wm = []
name = ''
for line in fo.readlines():
if line.startswith('Motif') and line.strip().endswith(':'):
if name:
motifs.append(Motif(wm))
motifs[-1].id = name
name = ''
wm = []
name = '%s_%s' % (self.name, line.split(':')[0])
else:
m = p.search(line)
if m:
wm.append([float(m.group(x)) for x in range(1, 5)])
motifs.append(Motif(wm))
motifs[-1].id = name
return motifs
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fo):\n motifs = []\n p = re.compile('\\\\d+\\\\s+([\\\\d.]+)\\\\s+([\\\\d.]+)\\\\s+([\\\\d.]+)\\\\s+([\\\\d.]+)')\n wm = []\n name = ''\n for line in fo.readlines():\n if line.startswith('Motif') and line.strip().endswith(':'):\n if name:\n motifs.append(Motif(wm))\n motifs[-1].id = name\n name = ''\n wm = []\n name = '%s_%s' % (self.name, line.split(':')[0])\n else:\n m = p.search(line)\n if m:\n wm.append([float(m.group(x)) for x in range(1, 5)])\n motifs.append(Motif(wm))\n motifs[-1].id = name\n return motifs\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.