source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, seqs, nreport=100, scan_rc=True): count_table = [counts for counts in self.count(seqs, nreport, scan_rc)] return np.sum(np.array(count_table), 0)
total_count
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, seqs, nreport=100, scan_rc=True):\n count_table = [counts for counts in self.count(seqs, nreport, scan_rc)]\n return np.sum(np.array(count_table), 0)\n", "role": "user" }, { "content": "total_count", "role": "assistant" } ]
def x(self, seqs, scan_rc=True, normalize=False): self.set_threshold(threshold=0.0) if normalize and len(self.meanstd) == 0: self.set_meanstd() means = np.array([self.meanstd[m][0] for m in self.motif_ids]) stds = np.array([self.meanstd[m][1] for m in self.motif_ids]) for matches in self.scan(seqs, 1, scan_rc): scores = np.array([sorted(m, key=lambda x: x[0])[0][0] for m in matches if len(m) > 0]) if normalize: scores = (scores - means) / stds yield scores
best_score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, seqs, scan_rc=True, normalize=False):\n self.set_threshold(threshold=0.0)\n if normalize and len(self.meanstd) == 0:\n self.set_meanstd()\n means = np.array([self.meanstd[m][0] for m in self.motif_ids])\n stds = np.array([self.meanstd[m][1] for m in self.motif_ids])\n for matches in self.scan(seqs, 1, scan_rc):\n scores = np.array([sorted(m, key=lambda x: x[0])[0][0] for m in\n matches if len(m) > 0])\n if normalize:\n scores = (scores - means) / stds\n yield scores\n", "role": "user" }, { "content": "best_score", "role": "assistant" } ]
def x(self, seqs, scan_rc=True): self.set_threshold(threshold=0.0) for matches in self.scan(seqs, 1, scan_rc): yield [m[0] for m in matches]
best_match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, seqs, scan_rc=True):\n self.set_threshold(threshold=0.0)\n for matches in self.scan(seqs, 1, scan_rc):\n yield [m[0] for m in matches]\n", "role": "user" }, { "content": "best_match", "role": "assistant" } ]
def x(self, seqs, nreport=100, scan_rc=True, normalize=False): if not self.threshold: sys.stderr.write( 'Using default threshold of 0.95. This is likely not optimal!\n') self.set_threshold(threshold=0.95) seqs = as_fasta(seqs, genome=self.genome) it = self._scan_sequences(seqs.seqs, nreport, scan_rc) if normalize: if len(self.meanstd) == 0: self.set_meanstd() mean_std = [self.meanstd.get(m_id) for m_id in self.motif_ids] means = [x[0] for x in mean_std] stds = [x[1] for x in mean_std] for result in it: if normalize: zresult = [] for i, mrow in enumerate(result): mrow = [((x[0] - means[i]) / stds[i], x[1], x[2]) for x in mrow ] zresult.append(mrow) yield zresult else: yield result
scan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, seqs, nreport=100, scan_rc=True, normalize=False):\n if not self.threshold:\n sys.stderr.write(\n 'Using default threshold of 0.95. This is likely not optimal!\\n')\n self.set_threshold(threshold=0.95)\n seqs = as_fasta(seqs, genome=self.genome)\n it = self._scan_sequences(seqs.seqs, nreport, scan_rc)\n if normalize:\n if len(self.meanstd) == 0:\n self.set_meanstd()\n mean_std = [self.meanstd.get(m_id) for m_id in self.motif_ids]\n means = [x[0] for x in mean_std]\n stds = [x[1] for x in mean_std]\n for result in it:\n if normalize:\n zresult = []\n for i, mrow in enumerate(result):\n mrow = [((x[0] - means[i]) / stds[i], x[1], x[2]) for x in mrow\n ]\n zresult.append(mrow)\n yield zresult\n else:\n yield result\n", "role": "user" }, { "content": "scan", "role": "assistant" } ]
def x(args): outputfile = args.outfile if outputfile and not outputfile.endswith('.png'): outputfile += '.png' motifs = read_motifs(args.pwmfile, fmt='pwm') ids = [] if args.ids: ids = args.ids.split(',') else: ids = [m.id for m in motifs] motifs = [m for m in motifs if m.id in ids] stats = ['phyper_at_fpr', 'roc_auc', 'pr_auc', 'enr_at_fpr', 'recall_at_fdr', 'roc_values', 'matches_at_fpr'] plot_x = [] plot_y = [] legend = [] f_out = sys.stdout if args.outdir: if not os.path.exists(args.outdir): os.makedirs(args.outdir) f_out = open(args.outdir + '/gimme.roc.report.txt', 'w') f_out.write( """Motif # matches # matches background P-value log10 P-value ROC AUC PR AUC Enr. at 1% FPR Recall at 10% FDR """ ) for motif_stats in calc_stats_iterator(motifs, args.sample, args. background, genome=args.genome, stats=stats, ncpus=args.ncpus): for motif in motifs: if str(motif) in motif_stats: if outputfile: x, y = motif_stats[str(motif)]['roc_values'] plot_x.append(x) plot_y.append(y) legend.append(motif.id) log_pvalue = np.inf if motif_stats[str(motif)]['phyper_at_fpr'] > 0: log_pvalue = -np.log10(motif_stats[str(motif)][ 'phyper_at_fpr']) f_out.write( '{}\t{:d}\t{:d}\t{:.2e}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.2f}\t{:0.4f}\n' .format(motif.id, motif_stats[str(motif)][ 'matches_at_fpr'][0], motif_stats[str(motif)][ 'matches_at_fpr'][1], motif_stats[str(motif)][ 'phyper_at_fpr'], log_pvalue, motif_stats[str(motif)][ 'roc_auc'], motif_stats[str(motif)]['pr_auc'], motif_stats[str(motif)]['enr_at_fpr'], motif_stats[str( motif)]['recall_at_fdr'])) f_out.close() if args.outdir: html_report(args.outdir, args.outdir + '/gimme.roc.report.txt', args.pwmfile, 0.01) if outputfile: roc_plot(outputfile, plot_x, plot_y, ids=legend)
roc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n outputfile = args.outfile\n if outputfile and not outputfile.endswith('.png'):\n outputfile += '.png'\n motifs = read_motifs(args.pwmfile, fmt='pwm')\n ids = []\n if args.ids:\n ids = args.ids.split(',')\n else:\n ids = [m.id for m in motifs]\n motifs = [m for m in motifs if m.id in ids]\n stats = ['phyper_at_fpr', 'roc_auc', 'pr_auc', 'enr_at_fpr',\n 'recall_at_fdr', 'roc_values', 'matches_at_fpr']\n plot_x = []\n plot_y = []\n legend = []\n f_out = sys.stdout\n if args.outdir:\n if not os.path.exists(args.outdir):\n os.makedirs(args.outdir)\n f_out = open(args.outdir + '/gimme.roc.report.txt', 'w')\n f_out.write(\n \"\"\"Motif\t# matches\t# matches background\tP-value\tlog10 P-value\tROC AUC\tPR AUC\tEnr. at 1% FPR\tRecall at 10% FDR\n\"\"\"\n )\n for motif_stats in calc_stats_iterator(motifs, args.sample, args.\n background, genome=args.genome, stats=stats, ncpus=args.ncpus):\n for motif in motifs:\n if str(motif) in motif_stats:\n if outputfile:\n x, y = motif_stats[str(motif)]['roc_values']\n plot_x.append(x)\n plot_y.append(y)\n legend.append(motif.id)\n log_pvalue = np.inf\n if motif_stats[str(motif)]['phyper_at_fpr'] > 0:\n log_pvalue = -np.log10(motif_stats[str(motif)][\n 'phyper_at_fpr'])\n f_out.write(\n '{}\\t{:d}\\t{:d}\\t{:.2e}\\t{:.3f}\\t{:.3f}\\t{:.3f}\\t{:.2f}\\t{:0.4f}\\n'\n .format(motif.id, motif_stats[str(motif)][\n 'matches_at_fpr'][0], motif_stats[str(motif)][\n 'matches_at_fpr'][1], motif_stats[str(motif)][\n 'phyper_at_fpr'], log_pvalue, motif_stats[str(motif)][\n 'roc_auc'], motif_stats[str(motif)]['pr_auc'],\n motif_stats[str(motif)]['enr_at_fpr'], motif_stats[str(\n motif)]['recall_at_fdr']))\n f_out.close()\n if args.outdir:\n html_report(args.outdir, args.outdir + '/gimme.roc.report.txt',\n args.pwmfile, 0.01)\n if outputfile:\n roc_plot(outputfile, plot_x, plot_y, ids=legend)\n", "role": "user" }, { "content": "roc", "role": "assistant" } ]
def x(p1, p2): return 2 - np.sum([((a - b) ** 2) for a, b in zip(p1, p2)])
ssd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p1, p2):\n return 2 - np.sum([((a - b) ** 2) for a, b in zip(p1, p2)])\n", "role": "user" }, { "content": "ssd", "role": "assistant" } ]
def x(m1, m2, seq=None): l1 = len(m1) l2 = len(m2) l = max(l1, l2) if seq is None: seq = RCDB L = len(seq) result1 = pfmscan(seq, m1.pwm, m1.pwm_min_score(), len(seq), False, True) result2 = pfmscan(seq, m2.pwm, m2.pwm_min_score(), len(seq), False, True) result3 = pfmscan(seq, m2.rc().pwm, m2.rc().pwm_min_score(), len(seq), False, True) result1 = np.array(result1) result2 = np.array(result2) result3 = np.array(result3) c = [] for i in range(l1 - l1 // 3): c.append([1 - distance.correlation(result1[:L - l - i], result2[i:L - l]), i, 1]) c.append([1 - distance.correlation(result1[:L - l - i], result3[i:L - l]), i, -1]) for i in range(l2 - l2 // 3): c.append([1 - distance.correlation(result1[i:L - l], result2[:L - l - i]), -i, 1]) c.append([1 - distance.correlation(result1[i:L - l], result3[:L - l - i]), -i, -1]) return sorted(c, key=lambda x: x[0])[-1]
seqcor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(m1, m2, seq=None):\n l1 = len(m1)\n l2 = len(m2)\n l = max(l1, l2)\n if seq is None:\n seq = RCDB\n L = len(seq)\n result1 = pfmscan(seq, m1.pwm, m1.pwm_min_score(), len(seq), False, True)\n result2 = pfmscan(seq, m2.pwm, m2.pwm_min_score(), len(seq), False, True)\n result3 = pfmscan(seq, m2.rc().pwm, m2.rc().pwm_min_score(), len(seq), \n False, True)\n result1 = np.array(result1)\n result2 = np.array(result2)\n result3 = np.array(result3)\n c = []\n for i in range(l1 - l1 // 3):\n c.append([1 - distance.correlation(result1[:L - l - i], result2[i:L -\n l]), i, 1])\n c.append([1 - distance.correlation(result1[:L - l - i], result3[i:L -\n l]), i, -1])\n for i in range(l2 - l2 // 3):\n c.append([1 - distance.correlation(result1[i:L - l], result2[:L - l -\n i]), -i, 1])\n c.append([1 - distance.correlation(result1[i:L - l], result3[:L - l -\n i]), -i, -1])\n return sorted(c, key=lambda x: x[0])[-1]\n", "role": "user" }, { "content": "seqcor", "role": "assistant" } ]
def x(self, m1, m2, match='total', metric='wic', combine='mean', pval=False): if metric == 'seqcor': return seqcor(m1, m2) elif match == 'partial': if pval: return self.pvalue(m1, m2, 'total', metric, combine, self. max_partial(m1.pwm, m2.pwm, metric, combine)) elif metric in ['pcc', 'ed', 'distance', 'wic', 'chisq', 'ssd']: return self.max_partial(m1.pwm, m2.pwm, metric, combine) else: return self.max_partial(m1.pfm, m2.pfm, metric, combine) elif match == 'total': if pval: return self.pvalue(m1, m2, match, metric, combine, self. max_total(m1.pwm, m2.pwm, metric, combine)) elif metric in ['pcc', 'akl']: return self.max_total(m1.wiggle_pwm(), m2.wiggle_pwm(), metric, combine) elif metric in ['ed', 'distance', 'wic', 'chisq', 'pcc', 'ssd']: return self.max_total(m1.pwm, m2.pwm, metric, combine) else: return self.max_total(m1.pfm, m2.pfm, metric, combine) elif match == 'subtotal': if metric in ['pcc', 'ed', 'distance', 'wic', 'chisq', 'ssd']: return self.max_subtotal(m1.pwm, m2.pwm, metric, combine) else: return self.max_subtotal(m1.pfm, m2.pfm, metric, combine)
compare_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, m1, m2, match='total', metric='wic', combine='mean', pval=False):\n if metric == 'seqcor':\n return seqcor(m1, m2)\n elif match == 'partial':\n if pval:\n return self.pvalue(m1, m2, 'total', metric, combine, self.\n max_partial(m1.pwm, m2.pwm, metric, combine))\n elif metric in ['pcc', 'ed', 'distance', 'wic', 'chisq', 'ssd']:\n return self.max_partial(m1.pwm, m2.pwm, metric, combine)\n else:\n return self.max_partial(m1.pfm, m2.pfm, metric, combine)\n elif match == 'total':\n if pval:\n return self.pvalue(m1, m2, match, metric, combine, self.\n max_total(m1.pwm, m2.pwm, metric, combine))\n elif metric in ['pcc', 'akl']:\n return self.max_total(m1.wiggle_pwm(), m2.wiggle_pwm(), metric,\n combine)\n elif metric in ['ed', 'distance', 'wic', 'chisq', 'pcc', 'ssd']:\n return self.max_total(m1.pwm, m2.pwm, metric, combine)\n else:\n return self.max_total(m1.pfm, m2.pfm, metric, combine)\n elif match == 'subtotal':\n if metric in ['pcc', 'ed', 'distance', 'wic', 'chisq', 'ssd']:\n return self.max_subtotal(m1.pwm, m2.pwm, metric, combine)\n else:\n return self.max_subtotal(m1.pfm, m2.pfm, metric, combine)\n", "role": "user" }, { "content": "compare_motifs", "role": "assistant" } ]
def x(self, motifs, dbmotifs, match, metric, combine, pval=False, parallel= True, trim=None, ncpus=None): if trim: for m in motifs: m.trim(trim) for m in dbmotifs: m.trim(trim) scores = {} if parallel: if ncpus is None: ncpus = int(MotifConfig().get_default_params()['ncpus']) pool = Pool(processes=ncpus, maxtasksperchild=1000) batch_len = len(dbmotifs) // ncpus if batch_len <= 0: batch_len = 1 jobs = [] for i in range(0, len(dbmotifs), batch_len): p = pool.apply_async(_get_all_scores, args=(self, motifs, dbmotifs[i:i + batch_len], match, metric, combine, pval)) jobs.append(p) pool.close() for job in jobs: result = job.get() for m1, v in result.items(): for m2, s in v.items(): if m1 not in scores: scores[m1] = {} scores[m1][m2] = s pool.join() else: scores = _get_all_scores(self, motifs, dbmotifs, match, metric, combine, pval) return scores
get_all_scores
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, motifs, dbmotifs, match, metric, combine, pval=False, parallel=\n True, trim=None, ncpus=None):\n if trim:\n for m in motifs:\n m.trim(trim)\n for m in dbmotifs:\n m.trim(trim)\n scores = {}\n if parallel:\n if ncpus is None:\n ncpus = int(MotifConfig().get_default_params()['ncpus'])\n pool = Pool(processes=ncpus, maxtasksperchild=1000)\n batch_len = len(dbmotifs) // ncpus\n if batch_len <= 0:\n batch_len = 1\n jobs = []\n for i in range(0, len(dbmotifs), batch_len):\n p = pool.apply_async(_get_all_scores, args=(self, motifs,\n dbmotifs[i:i + batch_len], match, metric, combine, pval))\n jobs.append(p)\n pool.close()\n for job in jobs:\n result = job.get()\n for m1, v in result.items():\n for m2, s in v.items():\n if m1 not in scores:\n scores[m1] = {}\n scores[m1][m2] = s\n pool.join()\n else:\n scores = _get_all_scores(self, motifs, dbmotifs, match, metric,\n combine, pval)\n return scores\n", "role": "user" }, { "content": "get_all_scores", "role": "assistant" } ]
def x(self, motifs, dbmotifs=None, match='partial', metric='wic', combine= 'mean', parallel=True, ncpus=None): if dbmotifs is None: pwm = self.config.get_default_params()['motif_db'] pwmdir = self.config.get_motif_dir() dbmotifs = os.path.join(pwmdir, pwm) motifs = parse_motifs(motifs) dbmotifs = parse_motifs(dbmotifs) dbmotif_lookup = dict([(m.id, m) for m in dbmotifs]) scores = self.get_all_scores(motifs, dbmotifs, match, metric, combine, parallel=parallel, ncpus=ncpus) for motif in scores: scores[motif] = sorted(scores[motif].items(), key=lambda x: x[1][0])[-1 ] for motif in motifs: dbmotif, score = scores[motif.id] pval, pos, orient = self.compare_motifs(motif, dbmotif_lookup[ dbmotif], match, metric, combine, True) scores[motif.id] = [dbmotif, list(score) + [pval]] return scores
get_closest_match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, motifs, dbmotifs=None, match='partial', metric='wic', combine=\n 'mean', parallel=True, ncpus=None):\n if dbmotifs is None:\n pwm = self.config.get_default_params()['motif_db']\n pwmdir = self.config.get_motif_dir()\n dbmotifs = os.path.join(pwmdir, pwm)\n motifs = parse_motifs(motifs)\n dbmotifs = parse_motifs(dbmotifs)\n dbmotif_lookup = dict([(m.id, m) for m in dbmotifs])\n scores = self.get_all_scores(motifs, dbmotifs, match, metric, combine,\n parallel=parallel, ncpus=ncpus)\n for motif in scores:\n scores[motif] = sorted(scores[motif].items(), key=lambda x: x[1][0])[-1\n ]\n for motif in motifs:\n dbmotif, score = scores[motif.id]\n pval, pos, orient = self.compare_motifs(motif, dbmotif_lookup[\n dbmotif], match, metric, combine, True)\n scores[motif.id] = [dbmotif, list(score) + [pval]]\n return scores\n", "role": "user" }, { "content": "get_closest_match", "role": "assistant" } ]
def x(balancers): t = prettytable.PrettyTable(['Name', 'DNS', 'Ports', 'Zones', 'Created']) t.align = 'l' for b in balancers: ports = [('%s: %s -> %s' % (l[2], l[0], l[1])) for l in b.listeners] ports = '\n'.join(ports) zones = '\n'.join(b.availability_zones) t.add_row([b.name, b.dns_name, ports, zones, b.created_time]) return t
elb_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(balancers):\n t = prettytable.PrettyTable(['Name', 'DNS', 'Ports', 'Zones', 'Created'])\n t.align = 'l'\n for b in balancers:\n ports = [('%s: %s -> %s' % (l[2], l[0], l[1])) for l in b.listeners]\n ports = '\\n'.join(ports)\n zones = '\\n'.join(b.availability_zones)\n t.add_row([b.name, b.dns_name, ports, zones, b.created_time])\n return t\n", "role": "user" }, { "content": "elb_table", "role": "assistant" } ]
def x(instances): t = prettytable.PrettyTable(['ID', 'State', 'Monitored', 'Image', 'Name', 'Type', 'SSH key', 'DNS']) t.align = 'l' for i in instances: name = i.tags.get('Name', '') t.add_row([i.id, i.state, i.monitored, i.image_id, name, i. instance_type, i.key_name, i.dns_name]) return t
ec2_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(instances):\n t = prettytable.PrettyTable(['ID', 'State', 'Monitored', 'Image',\n 'Name', 'Type', 'SSH key', 'DNS'])\n t.align = 'l'\n for i in instances:\n name = i.tags.get('Name', '')\n t.add_row([i.id, i.state, i.monitored, i.image_id, name, i.\n instance_type, i.key_name, i.dns_name])\n return t\n", "role": "user" }, { "content": "ec2_table", "role": "assistant" } ]
def x(images): t = prettytable.PrettyTable(['ID', 'State', 'Name', 'Owner', 'Root device', 'Is public', 'Description']) t.align = 'l' for i in images: t.add_row([i.id, i.state, i.name, i.ownerId, i.root_device_type, i. is_public, i.description]) return t
ec2_image_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(images):\n t = prettytable.PrettyTable(['ID', 'State', 'Name', 'Owner',\n 'Root device', 'Is public', 'Description'])\n t.align = 'l'\n for i in images:\n t.add_row([i.id, i.state, i.name, i.ownerId, i.root_device_type, i.\n is_public, i.description])\n return t\n", "role": "user" }, { "content": "ec2_image_table", "role": "assistant" } ]
def x(stream, buffer_size, partial=False, axis=None): data = [] count = 0 for item in stream: data.append(item) count += 1 if count < buffer_size: continue try: yield __stack_data(data, axis=axis) except (TypeError, AttributeError): raise DataError('Malformed data stream: {}'.format(data)) finally: data = [] count = 0 if data and partial: yield __stack_data(data, axis=axis)
buffer_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stream, buffer_size, partial=False, axis=None):\n data = []\n count = 0\n for item in stream:\n data.append(item)\n count += 1\n if count < buffer_size:\n continue\n try:\n yield __stack_data(data, axis=axis)\n except (TypeError, AttributeError):\n raise DataError('Malformed data stream: {}'.format(data))\n finally:\n data = []\n count = 0\n if data and partial:\n yield __stack_data(data, axis=axis)\n", "role": "user" }, { "content": "buffer_stream", "role": "assistant" } ]
def x(stream, *keys): if not keys: raise PescadorError('Unable to generate tuples from an empty item set') for data in stream: try: yield tuple(data[key] for key in keys) except TypeError: raise DataError('Malformed data stream: {}'.format(data))
tuples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stream, *keys):\n if not keys:\n raise PescadorError('Unable to generate tuples from an empty item set')\n for data in stream:\n try:\n yield tuple(data[key] for key in keys)\n except TypeError:\n raise DataError('Malformed data stream: {}'.format(data))\n", "role": "user" }, { "content": "tuples", "role": "assistant" } ]
def x(stream, inputs=None, outputs=None): flatten_inputs, flatten_outputs = False, False if inputs and isinstance(inputs, six.string_types): inputs = [inputs] flatten_inputs = True if outputs and isinstance(outputs, six.string_types): outputs = [outputs] flatten_outputs = True inputs, outputs = inputs or [], outputs or [] if not inputs + outputs: raise PescadorError( 'At least one key must be given for `inputs` or `outputs`') for data in stream: try: x = list(data[key] for key in inputs) or None if len(inputs) == 1 and flatten_inputs: x = x[0] y = list(data[key] for key in outputs) or None if len(outputs) == 1 and flatten_outputs: y = y[0] yield x, y except TypeError: raise DataError('Malformed data stream: {}'.format(data))
keras_tuples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stream, inputs=None, outputs=None):\n flatten_inputs, flatten_outputs = False, False\n if inputs and isinstance(inputs, six.string_types):\n inputs = [inputs]\n flatten_inputs = True\n if outputs and isinstance(outputs, six.string_types):\n outputs = [outputs]\n flatten_outputs = True\n inputs, outputs = inputs or [], outputs or []\n if not inputs + outputs:\n raise PescadorError(\n 'At least one key must be given for `inputs` or `outputs`')\n for data in stream:\n try:\n x = list(data[key] for key in inputs) or None\n if len(inputs) == 1 and flatten_inputs:\n x = x[0]\n y = list(data[key] for key in outputs) or None\n if len(outputs) == 1 and flatten_outputs:\n y = y[0]\n yield x, y\n except TypeError:\n raise DataError('Malformed data stream: {}'.format(data))\n", "role": "user" }, { "content": "keras_tuples", "role": "assistant" } ]
def x(args): fastafile = args.fastafile pwmfile = args.pwmfile lwidth = args.width if not lwidth: f = Fasta(fastafile) lwidth = len(f.items()[0][1]) f = None jobs = [] motifs = pwmfile_to_motifs(pwmfile) ids = [motif.id for motif in motifs] if args.ids: ids = args.ids.split(',') n_cpus = int(MotifConfig().get_default_params()['ncpus']) pool = Pool(processes=n_cpus, maxtasksperchild=1000) for motif in motifs: if motif.id in ids: outfile = os.path.join('%s_histogram' % motif.id) jobs.append(pool.apply_async(motif_localization, (fastafile, motif, lwidth, outfile, args.cutoff))) for job in jobs: job.get()
location
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n fastafile = args.fastafile\n pwmfile = args.pwmfile\n lwidth = args.width\n if not lwidth:\n f = Fasta(fastafile)\n lwidth = len(f.items()[0][1])\n f = None\n jobs = []\n motifs = pwmfile_to_motifs(pwmfile)\n ids = [motif.id for motif in motifs]\n if args.ids:\n ids = args.ids.split(',')\n n_cpus = int(MotifConfig().get_default_params()['ncpus'])\n pool = Pool(processes=n_cpus, maxtasksperchild=1000)\n for motif in motifs:\n if motif.id in ids:\n outfile = os.path.join('%s_histogram' % motif.id)\n jobs.append(pool.apply_async(motif_localization, (fastafile,\n motif, lwidth, outfile, args.cutoff)))\n for job in jobs:\n job.get()\n", "role": "user" }, { "content": "location", "role": "assistant" } ]
def x(fname): if 'PATH' not in os.environ or not os.environ['PATH']: path = os.defpath else: path = os.environ['PATH'] for p in ([fname] + [os.path.join(x, fname) for x in path.split(os. pathsep)]): p = os.path.abspath(p) if os.access(p, os.X_OK) and not os.path.isdir(p): return p p = sp.Popen('locate %s' % fname, shell=True, stdout=sp.PIPE, stderr=sp .PIPE) stdout, stderr = p.communicate() if not stderr: for p in stdout.decode().split('\n'): if os.path.basename(p) == fname and os.access(p, os.X_OK ) and not os.path.isdir(p): return p
which
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n if 'PATH' not in os.environ or not os.environ['PATH']:\n path = os.defpath\n else:\n path = os.environ['PATH']\n for p in ([fname] + [os.path.join(x, fname) for x in path.split(os.\n pathsep)]):\n p = os.path.abspath(p)\n if os.access(p, os.X_OK) and not os.path.isdir(p):\n return p\n p = sp.Popen('locate %s' % fname, shell=True, stdout=sp.PIPE, stderr=sp\n .PIPE)\n stdout, stderr = p.communicate()\n if not stderr:\n for p in stdout.decode().split('\\n'):\n if os.path.basename(p) == fname and os.access(p, os.X_OK\n ) and not os.path.isdir(p):\n return p\n", "role": "user" }, { "content": "which", "role": "assistant" } ]
def x(dirname, ext): try: files = os.listdir(dirname) except OSError: if os.path.exists(dirname): cmd = 'find {0} -maxdepth 1 -name "*"'.format(dirname) p = sp.Popen(cmd, shell=True, stdout=sp.PIPE, stderr=sp.PIPE) stdout, _stderr = p.communicate() files = [os.path.basename(fname) for fname in stdout.decode(). splitlines()] else: raise retfiles = [os.path.join(dirname, fname) for fname in files if os.path. splitext(fname)[-1] in ext] return retfiles
find_by_ext
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dirname, ext):\n try:\n files = os.listdir(dirname)\n except OSError:\n if os.path.exists(dirname):\n cmd = 'find {0} -maxdepth 1 -name \"*\"'.format(dirname)\n p = sp.Popen(cmd, shell=True, stdout=sp.PIPE, stderr=sp.PIPE)\n stdout, _stderr = p.communicate()\n files = [os.path.basename(fname) for fname in stdout.decode().\n splitlines()]\n else:\n raise\n retfiles = [os.path.join(dirname, fname) for fname in files if os.path.\n splitext(fname)[-1] in ext]\n return retfiles\n", "role": "user" }, { "content": "find_by_ext", "role": "assistant" } ]
def x(): config = MotifConfig() d = config.get_motif_dir() m = config.get_default_params()['motif_db'] if not d or not m: raise ValueError('default motif database not configured') fname = os.path.join(d, m) with open(fname) as f: motifs = read_motifs(f) return motifs
default_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n config = MotifConfig()\n d = config.get_motif_dir()\n m = config.get_default_params()['motif_db']\n if not d or not m:\n raise ValueError('default motif database not configured')\n fname = os.path.join(d, m)\n with open(fname) as f:\n motifs = read_motifs(f)\n return motifs\n", "role": "user" }, { "content": "default_motifs", "role": "assistant" } ]
def x(align): width = len(align[0]) nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3} pfm = [[(0) for _ in range(4)] for _ in range(width)] for row in align: for i in range(len(row)): pfm[i][nucs[row[i]]] += 1 m = Motif(pfm) m.align = align[:] return m
motif_from_align
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(align):\n width = len(align[0])\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n pfm = [[(0) for _ in range(4)] for _ in range(width)]\n for row in align:\n for i in range(len(row)):\n pfm[i][nucs[row[i]]] += 1\n m = Motif(pfm)\n m.align = align[:]\n return m\n", "role": "user" }, { "content": "motif_from_align", "role": "assistant" } ]
def x(cons, n=12): width = len(cons) nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3} pfm = [[(0) for _ in range(4)] for _ in range(width)] m = Motif() for i, char in enumerate(cons): for nuc in m.iupac[char.upper()]: pfm[i][nucs[nuc]] = n / len(m.iupac[char.upper()]) m = Motif(pfm) m.id = cons return m
motif_from_consensus
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cons, n=12):\n width = len(cons)\n nucs = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n pfm = [[(0) for _ in range(4)] for _ in range(width)]\n m = Motif()\n for i, char in enumerate(cons):\n for nuc in m.iupac[char.upper()]:\n pfm[i][nucs[nuc]] = n / len(m.iupac[char.upper()])\n m = Motif(pfm)\n m.id = cons\n return m\n", "role": "user" }, { "content": "motif_from_consensus", "role": "assistant" } ]
def x(motifs): if isinstance(motifs, six.string_types): with open(motifs) as f: if motifs.endswith('pwm') or motifs.endswith('pfm'): motifs = read_motifs(f, fmt='pwm') elif motifs.endswith('transfac'): motifs = read_motifs(f, fmt='transfac') else: motifs = read_motifs(f) elif isinstance(motifs, Motif): motifs = [motifs] elif not isinstance(list(motifs)[0], Motif): raise ValueError('Not a list of motifs') return list(motifs)
parse_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(motifs):\n if isinstance(motifs, six.string_types):\n with open(motifs) as f:\n if motifs.endswith('pwm') or motifs.endswith('pfm'):\n motifs = read_motifs(f, fmt='pwm')\n elif motifs.endswith('transfac'):\n motifs = read_motifs(f, fmt='transfac')\n else:\n motifs = read_motifs(f)\n elif isinstance(motifs, Motif):\n motifs = [motifs]\n elif not isinstance(list(motifs)[0], Motif):\n raise ValueError('Not a list of motifs')\n return list(motifs)\n", "role": "user" }, { "content": "parse_motifs", "role": "assistant" } ]
def x(handle, fmt): if fmt.lower() == 'pwm': motifs = _read_motifs_pwm(handle) if fmt.lower() == 'transfac': motifs = _read_motifs_transfac(handle) if fmt.lower() == 'xxmotif': motifs = _read_motifs_xxmotif(handle) if fmt.lower() == 'align': motifs = _read_motifs_align(handle) if fmt.lower() == 'jaspar': motifs = _read_motifs_jaspar(handle) if handle.name: base = os.path.splitext(handle.name)[0] map_file = base + '.motif2factors.txt' if os.path.exists(map_file): m2f_direct = {} m2f_indirect = {} for line in open(map_file): try: motif, *factor_info = line.strip().split('\t') if len(factor_info) == 1: m2f_direct[motif] = factor_info[0].split(',') elif len(factor_info) == 3: if factor_info[2] == 'Y': m2f_direct[motif] = m2f_direct.get(motif, []) + [ factor_info[0]] else: m2f_indirect[motif] = m2f_indirect.get(motif, [] ) + [factor_info[0]] except: pass for motif in motifs: if motif.id in m2f_direct: motif.factors[DIRECT_NAME] = m2f_direct[motif.id] if motif.id in m2f_indirect: motif.factors[INDIRECT_NAME] = m2f_indirect[motif.id] for motif in motifs: for n in [DIRECT_NAME, INDIRECT_NAME]: motif.factors[n] = list(set(motif.factors[n])) return motifs
read_motifs_from_filehandle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, fmt):\n if fmt.lower() == 'pwm':\n motifs = _read_motifs_pwm(handle)\n if fmt.lower() == 'transfac':\n motifs = _read_motifs_transfac(handle)\n if fmt.lower() == 'xxmotif':\n motifs = _read_motifs_xxmotif(handle)\n if fmt.lower() == 'align':\n motifs = _read_motifs_align(handle)\n if fmt.lower() == 'jaspar':\n motifs = _read_motifs_jaspar(handle)\n if handle.name:\n base = os.path.splitext(handle.name)[0]\n map_file = base + '.motif2factors.txt'\n if os.path.exists(map_file):\n m2f_direct = {}\n m2f_indirect = {}\n for line in open(map_file):\n try:\n motif, *factor_info = line.strip().split('\\t')\n if len(factor_info) == 1:\n m2f_direct[motif] = factor_info[0].split(',')\n elif len(factor_info) == 3:\n if factor_info[2] == 'Y':\n m2f_direct[motif] = m2f_direct.get(motif, []) + [\n factor_info[0]]\n else:\n m2f_indirect[motif] = m2f_indirect.get(motif, []\n ) + [factor_info[0]]\n except:\n pass\n for motif in motifs:\n if motif.id in m2f_direct:\n motif.factors[DIRECT_NAME] = m2f_direct[motif.id]\n if motif.id in m2f_indirect:\n motif.factors[INDIRECT_NAME] = m2f_indirect[motif.id]\n for motif in motifs:\n for n in [DIRECT_NAME, INDIRECT_NAME]:\n motif.factors[n] = list(set(motif.factors[n]))\n return motifs\n", "role": "user" }, { "content": "read_motifs_from_filehandle", "role": "assistant" } ]
def x(infile=None, fmt='pwm', as_dict=False): if infile is None or isinstance(infile, six.string_types): infile = pwmfile_location(infile) with open(infile) as f: motifs = _read_motifs_from_filehandle(f, fmt) else: motifs = _read_motifs_from_filehandle(infile, fmt) if as_dict: motifs = {m.id: m for m in motifs} return motifs
read_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile=None, fmt='pwm', as_dict=False):\n if infile is None or isinstance(infile, six.string_types):\n infile = pwmfile_location(infile)\n with open(infile) as f:\n motifs = _read_motifs_from_filehandle(f, fmt)\n else:\n motifs = _read_motifs_from_filehandle(infile, fmt)\n if as_dict:\n motifs = {m.id: m for m in motifs}\n return motifs\n", "role": "user" }, { "content": "read_motifs", "role": "assistant" } ]
def x(self): ic = 0 for row in self.pwm: ic += 2.0 + np.sum([(row[x] * log(row[x]) / log(2)) for x in range( 4) if row[x] > 0]) return ic
information_content
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ic = 0\n for row in self.pwm:\n ic += 2.0 + np.sum([(row[x] * log(row[x]) / log(2)) for x in range(\n 4) if row[x] > 0])\n return ic\n", "role": "user" }, { "content": "information_content", "role": "assistant" } ]
def x(self): if self.min_score is None: score = 0 for row in self.pwm: score += log(min(row) / 0.25 + 0.01) self.min_score = score return self.min_score
pwm_min_score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.min_score is None:\n score = 0\n for row in self.pwm:\n score += log(min(row) / 0.25 + 0.01)\n self.min_score = score\n return self.min_score\n", "role": "user" }, { "content": "pwm_min_score", "role": "assistant" } ]
def x(self): if self.max_score is None: score = 0 for row in self.pwm: score += log(max(row) / 0.25 + 0.01) self.max_score = score return self.max_score
pwm_max_score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.max_score is None:\n score = 0\n for row in self.pwm:\n score += log(max(row) / 0.25 + 0.01)\n self.max_score = score\n return self.max_score\n", "role": "user" }, { "content": "pwm_max_score", "role": "assistant" } ]
def x(self, kmer): if len(kmer) != len(self.pwm): raise Exception('incorrect k-mer length') score = 0.0 d = {'A': 0, 'C': 1, 'G': 2, 'T': 3} for nuc, row in zip(kmer.upper(), self.pwm): score += log(row[d[nuc]] / 0.25 + 0.01) return score
score_kmer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kmer):\n if len(kmer) != len(self.pwm):\n raise Exception('incorrect k-mer length')\n score = 0.0\n d = {'A': 0, 'C': 1, 'G': 2, 'T': 3}\n for nuc, row in zip(kmer.upper(), self.pwm):\n score += log(row[d[nuc]] / 0.25 + 0.01)\n return score\n", "role": "user" }, { "content": "score_kmer", "role": "assistant" } ]
def x(self, pfm, pseudo=0.001): return [[((x + pseudo) / (float(np.sum(row)) + pseudo * 4)) for x in row] for row in pfm]
pfm_to_pwm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pfm, pseudo=0.001):\n return [[((x + pseudo) / (float(np.sum(row)) + pseudo * 4)) for x in\n row] for row in pfm]\n", "role": "user" }, { "content": "pfm_to_pwm", "role": "assistant" } ]
def x(self): m = '//\n' m += 'NA {}\n'.format(self.id) m += 'P0\tA\tC\tG\tT\n' for i, row in enumerate(self.pfm): m += '{}\t{}\n'.format(i, '\t'.join([str(int(x)) for x in row])) m += '//' return m
to_motevo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n m = '//\\n'\n m += 'NA {}\\n'.format(self.id)\n m += 'P0\\tA\\tC\\tG\\tT\\n'\n for i, row in enumerate(self.pfm):\n m += '{}\\t{}\\n'.format(i, '\\t'.join([str(int(x)) for x in row]))\n m += '//'\n return m\n", "role": "user" }, { "content": "to_motevo", "role": "assistant" } ]
def x(self): m = '%s\t%s\t%s\n' % ('DE', self.id, 'unknown') for i, (row, cons) in enumerate(zip(self.pfm, self.to_consensus())): m += '%i\t%s\t%s\n' % (i, '\t'.join([str(int(x)) for x in row]), cons) m += 'XX' return m
to_transfac
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n m = '%s\\t%s\\t%s\\n' % ('DE', self.id, 'unknown')\n for i, (row, cons) in enumerate(zip(self.pfm, self.to_consensus())):\n m += '%i\\t%s\\t%s\\n' % (i, '\\t'.join([str(int(x)) for x in row]), cons)\n m += 'XX'\n return m\n", "role": "user" }, { "content": "to_transfac", "role": "assistant" } ]
def x(self): motif_id = self.id.replace(' ', '_') m = 'MOTIF %s\n' % motif_id m += 'BL MOTIF %s width=0 seqs=0\n' % motif_id m += 'letter-probability matrix: alength= 4 w= %s nsites= %s E= 0\n' % (len (self), np.sum(self.pfm[0])) m += '\n'.join(['\t'.join([('%s' % x) for x in row]) for row in self.pwm]) return m
to_meme
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n motif_id = self.id.replace(' ', '_')\n m = 'MOTIF %s\\n' % motif_id\n m += 'BL MOTIF %s width=0 seqs=0\\n' % motif_id\n m += 'letter-probability matrix: alength= 4 w= %s nsites= %s E= 0\\n' % (len\n (self), np.sum(self.pfm[0]))\n m += '\\n'.join(['\\t'.join([('%s' % x) for x in row]) for row in self.pwm])\n return m\n", "role": "user" }, { "content": "to_meme", "role": "assistant" } ]
def x(self, row1, row2=None): if row2 is None: row2 = [0.25, 0.25, 0.25, 0.25] score = 0 for a, b in zip(row1, row2): if a > 0: score += a * log(a / b) / log(2) return score
ic_pos
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, row1, row2=None):\n if row2 is None:\n row2 = [0.25, 0.25, 0.25, 0.25]\n score = 0\n for a, b in zip(row1, row2):\n if a > 0:\n score += a * log(a / b) / log(2)\n return score\n", "role": "user" }, { "content": "ic_pos", "role": "assistant" } ]
def x(self, row1, row2): mean1 = np.mean(row1) mean2 = np.mean(row2) a = 0 x = 0 y = 0 for n1, n2 in zip(row1, row2): a += (n1 - mean1) * (n2 - mean2) x += (n1 - mean1) ** 2 y += (n2 - mean2) ** 2 if a == 0: return 0 else: return a / sqrt(x * y)
pcc_pos
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, row1, row2):\n mean1 = np.mean(row1)\n mean2 = np.mean(row2)\n a = 0\n x = 0\n y = 0\n for n1, n2 in zip(row1, row2):\n a += (n1 - mean1) * (n2 - mean2)\n x += (n1 - mean1) ** 2\n y += (n2 - mean2) ** 2\n if a == 0:\n return 0\n else:\n return a / sqrt(x * y)\n", "role": "user" }, { "content": "pcc_pos", "role": "assistant" } ]
def x(self): m = Motif() m.pfm = [row[::-1] for row in self.pfm[::-1]] m.pwm = [row[::-1] for row in self.pwm[::-1]] m.id = self.id + '_revcomp' return m
rc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n m = Motif()\n m.pfm = [row[::-1] for row in self.pfm[::-1]]\n m.pwm = [row[::-1] for row in self.pwm[::-1]]\n m.id = self.id + '_revcomp'\n return m\n", "role": "user" }, { "content": "rc", "role": "assistant" } ]
def x(self, edge_ic_cutoff=0.4): pwm = self.pwm[:] while len(pwm) > 0 and self.ic_pos(pwm[0]) < edge_ic_cutoff: pwm = pwm[1:] self.pwm = self.pwm[1:] self.pfm = self.pfm[1:] while len(pwm) > 0 and self.ic_pos(pwm[-1]) < edge_ic_cutoff: pwm = pwm[:-1] self.pwm = self.pwm[:-1] self.pfm = self.pfm[:-1] self.consensus = None self.min_score = None self.max_score = None self.wiggled_pwm = None return self
trim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, edge_ic_cutoff=0.4):\n pwm = self.pwm[:]\n while len(pwm) > 0 and self.ic_pos(pwm[0]) < edge_ic_cutoff:\n pwm = pwm[1:]\n self.pwm = self.pwm[1:]\n self.pfm = self.pfm[1:]\n while len(pwm) > 0 and self.ic_pos(pwm[-1]) < edge_ic_cutoff:\n pwm = pwm[:-1]\n self.pwm = self.pwm[:-1]\n self.pfm = self.pfm[:-1]\n self.consensus = None\n self.min_score = None\n self.max_score = None\n self.wiggled_pwm = None\n return self\n", "role": "user" }, { "content": "trim", "role": "assistant" } ]
def x(self, fa): regexp = ''.join([('[' + ''.join(self.iupac[x.upper()]) + ']') for x in self.to_consensusv2()]) p = re.compile(regexp) matches = {} for name, seq in fa.items(): matches[name] = [] for match in p.finditer(seq): middle = (match.span()[1] + match.span()[0]) / 2 matches[name].append(middle) return matches
consensus_scan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fa):\n regexp = ''.join([('[' + ''.join(self.iupac[x.upper()]) + ']') for x in\n self.to_consensusv2()])\n p = re.compile(regexp)\n matches = {}\n for name, seq in fa.items():\n matches[name] = []\n for match in p.finditer(seq):\n middle = (match.span()[1] + match.span()[0]) / 2\n matches[name].append(middle)\n return matches\n", "role": "user" }, { "content": "consensus_scan", "role": "assistant" } ]
def x(self, fa, cutoff=0.9, nreport=50, scan_rc=True): c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score() ) * cutoff pwm = self.pwm matches = {} for name, seq in fa.items(): matches[name] = [] result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc) for _, pos, _ in result: matches[name].append(pos) return matches
pwm_scan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fa, cutoff=0.9, nreport=50, scan_rc=True):\n c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score()\n ) * cutoff\n pwm = self.pwm\n matches = {}\n for name, seq in fa.items():\n matches[name] = []\n result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc)\n for _, pos, _ in result:\n matches[name].append(pos)\n return matches\n", "role": "user" }, { "content": "pwm_scan", "role": "assistant" } ]
def x(self, fa, cutoff=0.9, nreport=50, scan_rc=True): c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score() ) * cutoff pwm = self.pwm matches = {} for name, seq in fa.items(): matches[name] = [] result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc) for score, pos, strand in result: matches[name].append((pos, score, strand)) return matches
pwm_scan_all
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fa, cutoff=0.9, nreport=50, scan_rc=True):\n c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score()\n ) * cutoff\n pwm = self.pwm\n matches = {}\n for name, seq in fa.items():\n matches[name] = []\n result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc)\n for score, pos, strand in result:\n matches[name].append((pos, score, strand))\n return matches\n", "role": "user" }, { "content": "pwm_scan_all", "role": "assistant" } ]
def x(self, fa, gfffile, cutoff=0.9, nreport=50, scan_rc=True, append=False): if append: out = open(gfffile, 'a') else: out = open(gfffile, 'w') c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score() ) * cutoff pwm = self.pwm strandmap = {(-1): '-', '-1': '-', '-': '-', '1': '+', (1): '+', '+': '+'} gff_line = """{} pfmscan misc_feature {} {} {:.3f} {} . motif_name "{}" ; motif_instance "{}\" """ for name, seq in fa.items(): result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc) for score, pos, strand in result: out.write(gff_line.format(name, pos, pos + len(pwm), score, strandmap[strand], self.id, seq[pos:pos + len(pwm)])) out.close()
pwm_scan_to_gff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fa, gfffile, cutoff=0.9, nreport=50, scan_rc=True, append=False):\n if append:\n out = open(gfffile, 'a')\n else:\n out = open(gfffile, 'w')\n c = self.pwm_min_score() + (self.pwm_max_score() - self.pwm_min_score()\n ) * cutoff\n pwm = self.pwm\n strandmap = {(-1): '-', '-1': '-', '-': '-', '1': '+', (1): '+', '+': '+'}\n gff_line = \"\"\"{}\tpfmscan\tmisc_feature\t{}\t{}\t{:.3f}\t{}\t.\tmotif_name \"{}\" ; motif_instance \"{}\\\"\n\"\"\"\n for name, seq in fa.items():\n result = pfmscan(seq.upper(), pwm, c, nreport, scan_rc)\n for score, pos, strand in result:\n out.write(gff_line.format(name, pos, pos + len(pwm), score,\n strandmap[strand], self.id, seq[pos:pos + len(pwm)]))\n out.close()\n", "role": "user" }, { "content": "pwm_scan_to_gff", "role": "assistant" } ]
def x(self, other, pos, orientation, include_bg=False): pfm1 = self.pfm[:] pfm2 = other.pfm[:] if orientation < 0: pfm2 = [row[::-1] for row in pfm2[::-1]] pfm1_count = float(np.sum(pfm1[0])) pfm2_count = float(np.sum(pfm2[0])) if include_bg: if len(pfm1) > len(pfm2) + pos: pfm2 += [[(pfm2_count / 4.0) for x in range(4)] for i in range( -(len(pfm1) - len(pfm2) - pos), 0)] elif len(pfm2) + pos > len(pfm1): pfm1 += [[(pfm1_count / 4.0) for x in range(4)] for i in range( -(len(pfm2) - len(pfm1) + pos), 0)] if pos < 0: pfm1 = [[(pfm1_count / 4.0) for x in range(4)] for i in range(-pos) ] + pfm1 elif pos > 0: pfm2 = [[(pfm2_count / 4.0) for x in range(4)] for i in range(pos) ] + pfm2 else: if len(pfm1) > len(pfm2) + pos: pfm2 += [[(pfm1[i][x] / pfm1_count * pfm2_count) for x in range (4)] for i in range(-(len(pfm1) - len(pfm2) - pos), 0)] elif len(pfm2) + pos > len(pfm1): pfm1 += [[(pfm2[i][x] / pfm2_count * pfm1_count) for x in range (4)] for i in range(-(len(pfm2) - len(pfm1) + pos), 0)] if pos < 0: pfm1 = [[(pfm2[i][x] / pfm2_count * pfm1_count) for x in range( 4)] for i in range(-pos)] + pfm1 elif pos > 0: pfm2 = [[(pfm1[i][x] / pfm1_count * pfm2_count) for x in range( 4)] for i in range(pos)] + pfm2 pfm = [[(a + b) for a, b in zip(x, y)] for x, y in zip(pfm1, pfm2)] m = Motif(pfm) m.id = m.to_consensus() return m
average_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, pos, orientation, include_bg=False):\n pfm1 = self.pfm[:]\n pfm2 = other.pfm[:]\n if orientation < 0:\n pfm2 = [row[::-1] for row in pfm2[::-1]]\n pfm1_count = float(np.sum(pfm1[0]))\n pfm2_count = float(np.sum(pfm2[0]))\n if include_bg:\n if len(pfm1) > len(pfm2) + pos:\n pfm2 += [[(pfm2_count / 4.0) for x in range(4)] for i in range(\n -(len(pfm1) - len(pfm2) - pos), 0)]\n elif len(pfm2) + pos > len(pfm1):\n pfm1 += [[(pfm1_count / 4.0) for x in range(4)] for i in range(\n -(len(pfm2) - len(pfm1) + pos), 0)]\n if pos < 0:\n pfm1 = [[(pfm1_count / 4.0) for x in range(4)] for i in range(-pos)\n ] + pfm1\n elif pos > 0:\n pfm2 = [[(pfm2_count / 4.0) for x in range(4)] for i in range(pos)\n ] + pfm2\n else:\n if len(pfm1) > len(pfm2) + pos:\n pfm2 += [[(pfm1[i][x] / pfm1_count * pfm2_count) for x in range\n (4)] for i in range(-(len(pfm1) - len(pfm2) - pos), 0)]\n elif len(pfm2) + pos > len(pfm1):\n pfm1 += [[(pfm2[i][x] / pfm2_count * pfm1_count) for x in range\n (4)] for i in range(-(len(pfm2) - len(pfm1) + pos), 0)]\n if pos < 0:\n pfm1 = [[(pfm2[i][x] / pfm2_count * pfm1_count) for x in range(\n 4)] for i in range(-pos)] + pfm1\n elif pos > 0:\n pfm2 = [[(pfm1[i][x] / pfm1_count * pfm2_count) for x in range(\n 4)] for i in range(pos)] + pfm2\n pfm = [[(a + b) for a, b in zip(x, y)] for x, y in zip(pfm1, pfm2)]\n m = Motif(pfm)\n m.id = m.to_consensus()\n return m\n", "role": "user" }, { "content": "average_motifs", "role": "assistant" } ]
def x(self, precision=4): if not self.pwm: return '' fmt = '{{:.{:d}f}}'.format(precision) return '\n'.join(['\t'.join([fmt.format(p) for p in row]) for row in self.pwm])
pwm_to_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, precision=4):\n if not self.pwm:\n return ''\n fmt = '{{:.{:d}f}}'.format(precision)\n return '\\n'.join(['\\t'.join([fmt.format(p) for p in row]) for row in\n self.pwm])\n", "role": "user" }, { "content": "pwm_to_str", "role": "assistant" } ]
def x(self, precision=4, extra_str=''): motif_id = self.id if extra_str: motif_id += '_%s' % extra_str if not self.pwm: self.pwm = [self.iupac_pwm[char] for char in self.consensus.upper()] return '>%s\n%s' % (motif_id, self._pwm_to_str(precision))
to_pwm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, precision=4, extra_str=''):\n motif_id = self.id\n if extra_str:\n motif_id += '_%s' % extra_str\n if not self.pwm:\n self.pwm = [self.iupac_pwm[char] for char in self.consensus.upper()]\n return '>%s\\n%s' % (motif_id, self._pwm_to_str(precision))\n", "role": "user" }, { "content": "to_pwm", "role": "assistant" } ]
def x(self, fname, fmt='PNG', add_left=0, seqlogo=None, height=6): if not seqlogo: seqlogo = self.seqlogo if not seqlogo: raise ValueError('seqlogo not specified or configured') VALID_FORMATS = ['EPS', 'GIF', 'PDF', 'PNG'] N = 1000 fmt = fmt.upper() if not fmt in VALID_FORMATS: sys.stderr.write('Invalid motif format\n') return if fname[-4:].upper() == '.%s' % fmt: fname = fname[:-4] seqs = [] if add_left == 0: seqs = ['' for i in range(N)] else: for nuc in ['A', 'C', 'T', 'G']: seqs += [(nuc * add_left) for i in range(N // 4)] for pos in range(len(self.pwm)): vals = [self.pwm[pos][0] * N] for i in range(1, 4): vals.append(vals[i - 1] + self.pwm[pos][i] * N) if vals[3] - N != 0: vals[3] = N for i in range(N): if i <= vals[0]: seqs[i] += 'A' elif i <= vals[1]: seqs[i] += 'C' elif i <= vals[2]: seqs[i] += 'G' elif i <= vals[3]: seqs[i] += 'T' f = NamedTemporaryFile(mode='w', dir=mytmpdir()) for seq in seqs: f.write('%s\n' % seq) f.flush() makelogo = '{0} -f {1} -F {2} -c -a -h {3} -w {4} -o {5} -b -n -Y' cmd = makelogo.format(seqlogo, f.name, fmt, height, len(self) + add_left, fname) sp.call(cmd, shell=True)
to_img
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fname, fmt='PNG', add_left=0, seqlogo=None, height=6):\n if not seqlogo:\n seqlogo = self.seqlogo\n if not seqlogo:\n raise ValueError('seqlogo not specified or configured')\n VALID_FORMATS = ['EPS', 'GIF', 'PDF', 'PNG']\n N = 1000\n fmt = fmt.upper()\n if not fmt in VALID_FORMATS:\n sys.stderr.write('Invalid motif format\\n')\n return\n if fname[-4:].upper() == '.%s' % fmt:\n fname = fname[:-4]\n seqs = []\n if add_left == 0:\n seqs = ['' for i in range(N)]\n else:\n for nuc in ['A', 'C', 'T', 'G']:\n seqs += [(nuc * add_left) for i in range(N // 4)]\n for pos in range(len(self.pwm)):\n vals = [self.pwm[pos][0] * N]\n for i in range(1, 4):\n vals.append(vals[i - 1] + self.pwm[pos][i] * N)\n if vals[3] - N != 0:\n vals[3] = N\n for i in range(N):\n if i <= vals[0]:\n seqs[i] += 'A'\n elif i <= vals[1]:\n seqs[i] += 'C'\n elif i <= vals[2]:\n seqs[i] += 'G'\n elif i <= vals[3]:\n seqs[i] += 'T'\n f = NamedTemporaryFile(mode='w', dir=mytmpdir())\n for seq in seqs:\n f.write('%s\\n' % seq)\n f.flush()\n makelogo = '{0} -f {1} -F {2} -c -a -h {3} -w {4} -o {5} -b -n -Y'\n cmd = makelogo.format(seqlogo, f.name, fmt, height, len(self) +\n add_left, fname)\n sp.call(cmd, shell=True)\n", "role": "user" }, { "content": "to_img", "role": "assistant" } ]
def x(self): random_pfm = [[c for c in row] for row in self.pfm] random.shuffle(random_pfm) m = Motif(pfm=random_pfm) m.id = 'random' return m
randomize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n random_pfm = [[c for c in row] for row in self.pfm]\n random.shuffle(random_pfm)\n m = Motif(pfm=random_pfm)\n m.id = 'random'\n return m\n", "role": "user" }, { "content": "randomize", "role": "assistant" } ]
def x(args): infile = args.inputfile genome = args.genome outdir = args.outdir pwmfile = args.pwmfile methods = args.methods ncpus = args.ncpus if not os.path.exists(infile): raise ValueError('file {} does not exist'.format(infile)) if methods: methods = [x.strip() for x in methods.split(',')] run_maelstrom(infile, genome, outdir, pwmfile, methods=methods, ncpus=ncpus )
maelstrom
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n infile = args.inputfile\n genome = args.genome\n outdir = args.outdir\n pwmfile = args.pwmfile\n methods = args.methods\n ncpus = args.ncpus\n if not os.path.exists(infile):\n raise ValueError('file {} does not exist'.format(infile))\n if methods:\n methods = [x.strip() for x in methods.split(',')]\n run_maelstrom(infile, genome, outdir, pwmfile, methods=methods, ncpus=ncpus\n )\n", "role": "user" }, { "content": "maelstrom", "role": "assistant" } ]
def x(socket, data, flags=0, copy=True, track=False): header, payload = [], [] for key in sorted(data.keys()): arr = data[key] if not isinstance(arr, np.ndarray): raise DataError('Only ndarray types can be serialized') header.append(dict(dtype=str(arr.dtype), shape=arr.shape, key=key, aligned=arr.flags['ALIGNED'])) payload.append(arr) msg = [json.dumps(header).encode('ascii')] msg.extend(payload) return socket.send_multipart(msg, flags, copy=copy, track=track)
zmq_send_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(socket, data, flags=0, copy=True, track=False):\n header, payload = [], []\n for key in sorted(data.keys()):\n arr = data[key]\n if not isinstance(arr, np.ndarray):\n raise DataError('Only ndarray types can be serialized')\n header.append(dict(dtype=str(arr.dtype), shape=arr.shape, key=key,\n aligned=arr.flags['ALIGNED']))\n payload.append(arr)\n msg = [json.dumps(header).encode('ascii')]\n msg.extend(payload)\n return socket.send_multipart(msg, flags, copy=copy, track=track)\n", "role": "user" }, { "content": "zmq_send_data", "role": "assistant" } ]
def x(socket, flags=0, copy=True, track=False): data = dict() msg = socket.recv_multipart(flags=flags, copy=copy, track=track) headers = json.loads(msg[0].decode('ascii')) if len(headers) == 0: raise StopIteration for header, payload in zip(headers, msg[1:]): data[header['key']] = np.frombuffer(buffer(payload), dtype=header[ 'dtype']) data[header['key']].shape = header['shape'] if six.PY2: continue data[header['key']].flags['ALIGNED'] = header['aligned'] return data
zmq_recv_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(socket, flags=0, copy=True, track=False):\n data = dict()\n msg = socket.recv_multipart(flags=flags, copy=copy, track=track)\n headers = json.loads(msg[0].decode('ascii'))\n if len(headers) == 0:\n raise StopIteration\n for header, payload in zip(headers, msg[1:]):\n data[header['key']] = np.frombuffer(buffer(payload), dtype=header[\n 'dtype'])\n data[header['key']].shape = header['shape']\n if six.PY2:\n continue\n data[header['key']].flags['ALIGNED'] = header['aligned']\n return data\n", "role": "user" }, { "content": "zmq_recv_data", "role": "assistant" } ]
def x(self, max_iter=None): context = zmq.Context() if six.PY2: warnings.warn( 'zmq_stream cannot preserve numpy array alignment in Python 2', RuntimeWarning) try: socket = context.socket(zmq.PAIR) port = socket.bind_to_random_port('tcp://*', min_port=self.min_port, max_port=self.max_port, max_tries=self.max_tries) terminate = mp.Event() worker = mp.Process(target=SafeFunction(zmq_worker), args=[port, self.streamer, terminate], kwargs=dict(copy=self.copy, max_iter =max_iter)) worker.daemon = True worker.start() while True: yield zmq_recv_data(socket) except StopIteration: pass except: six.reraise(*sys.exc_info()) finally: terminate.set() worker.join(self.timeout) if worker.is_alive(): worker.terminate() context.destroy()
iterate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, max_iter=None):\n context = zmq.Context()\n if six.PY2:\n warnings.warn(\n 'zmq_stream cannot preserve numpy array alignment in Python 2',\n RuntimeWarning)\n try:\n socket = context.socket(zmq.PAIR)\n port = socket.bind_to_random_port('tcp://*', min_port=self.min_port,\n max_port=self.max_port, max_tries=self.max_tries)\n terminate = mp.Event()\n worker = mp.Process(target=SafeFunction(zmq_worker), args=[port,\n self.streamer, terminate], kwargs=dict(copy=self.copy, max_iter\n =max_iter))\n worker.daemon = True\n worker.start()\n while True:\n yield zmq_recv_data(socket)\n except StopIteration:\n pass\n except:\n six.reraise(*sys.exc_info())\n finally:\n terminate.set()\n worker.join(self.timeout)\n if worker.is_alive():\n worker.terminate()\n context.destroy()\n", "role": "user" }, { "content": "iterate", "role": "assistant" } ]
def x(self): p = re.compile('a|c|g|t|n') for seq_id in self.fasta_dict.keys(): self.fasta_dict[seq_id] = p.sub('N', self.fasta_dict[seq_id]) return self
hardmask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n p = re.compile('a|c|g|t|n')\n for seq_id in self.fasta_dict.keys():\n self.fasta_dict[seq_id] = p.sub('N', self.fasta_dict[seq_id])\n return self\n", "role": "user" }, { "content": "hardmask", "role": "assistant" } ]
def x(self, n, l=None): random_f = Fasta() if l: ids = self.ids[:] random.shuffle(ids) i = 0 while i < n and len(ids) > 0: seq_id = ids.pop() if len(self[seq_id]) >= l: start = random.randint(0, len(self[seq_id]) - l) random_f['random%s' % (i + 1)] = self[seq_id][start:start + l] i += 1 if len(random_f) != n: sys.stderr.write('Not enough sequences of required length') return else: return random_f else: choice = random.sample(self.ids, n) for i in range(n): random_f[choice[i]] = self[choice[i]] return random_f
get_random
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, l=None):\n random_f = Fasta()\n if l:\n ids = self.ids[:]\n random.shuffle(ids)\n i = 0\n while i < n and len(ids) > 0:\n seq_id = ids.pop()\n if len(self[seq_id]) >= l:\n start = random.randint(0, len(self[seq_id]) - l)\n random_f['random%s' % (i + 1)] = self[seq_id][start:start + l]\n i += 1\n if len(random_f) != n:\n sys.stderr.write('Not enough sequences of required length')\n return\n else:\n return random_f\n else:\n choice = random.sample(self.ids, n)\n for i in range(n):\n random_f[choice[i]] = self[choice[i]]\n return random_f\n", "role": "user" }, { "content": "get_random", "role": "assistant" } ]
def x(self, fname): f = open(fname, 'w') fa_str = '\n'.join([('>%s\n%s' % (id, self._format_seq(seq))) for id, seq in self.items()]) f.write(fa_str) f.close()
writefasta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fname):\n f = open(fname, 'w')\n fa_str = '\\n'.join([('>%s\\n%s' % (id, self._format_seq(seq))) for id,\n seq in self.items()])\n f.write(fa_str)\n f.close()\n", "role": "user" }, { "content": "writefasta", "role": "assistant" } ]
def x(motifs, match='total', metric='wic', combine='mean', pval=True, threshold=0.95, trim_edges=False, edge_ic_cutoff=0.2, include_bg=True, progress=True, ncpus=None): if type([]) != type(motifs): motifs = read_motifs(motifs, fmt='pwm') mc = MotifComparer() if trim_edges: for motif in motifs: motif.trim(edge_ic_cutoff) nodes = [MotifTree(m) for m in motifs] scores = {} motif_nodes = dict([(n.motif.id, n) for n in nodes]) motifs = [n.motif for n in nodes] if progress: sys.stderr.write('Calculating initial scores\n') result = mc.get_all_scores(motifs, motifs, match, metric, combine, pval, parallel=True, ncpus=ncpus) for m1, other_motifs in result.items(): for m2, score in other_motifs.items(): if m1 == m2: if pval: motif_nodes[m1].maxscore = 1 - score[0] else: motif_nodes[m1].maxscore = score[0] else: if pval: score = [1 - score[0]] + score[1:] scores[motif_nodes[m1], motif_nodes[m2]] = score cluster_nodes = [node for node in nodes] ave_count = 1 total = len(cluster_nodes) while len(cluster_nodes) > 1: l = sorted(scores.keys(), key=lambda x: scores[x][0]) i = -1 n1, n2 = l[i] while n1 not in cluster_nodes or n2 not in cluster_nodes: i -= 1 n1, n2 = l[i] if len(n1.motif) > 0 and len(n2.motif) > 0: score, pos, orientation = scores[n1, n2] ave_motif = n1.motif.average_motifs(n2.motif, pos, orientation, include_bg=include_bg) ave_motif.trim(edge_ic_cutoff) if len(ave_motif) == 0: ave_motif = Motif([[0.25, 0.25, 0.25, 0.25]]) ave_motif.id = 'Average_%s' % ave_count ave_count += 1 new_node = MotifTree(ave_motif) if pval: new_node.maxscore = 1 - mc.compare_motifs(new_node.motif, new_node.motif, match, metric, combine, pval)[0] else: new_node.maxscore = mc.compare_motifs(new_node.motif, new_node.motif, match, metric, combine, pval)[0] new_node.mergescore = score n1.parent = new_node n2.parent = new_node new_node.left = n1 new_node.right = n2 cmp_nodes = dict([(node.motif, node) for node in nodes if not node.parent]) if progress: progress = (1 - len(cmp_nodes) / float(total)) * 100 sys.stderr.write('\rClustering [{0}{1}] {2}%'.format('#' * (int(progress) // 10), ' ' * (10 - int(progress) // 10), int(progress))) result = mc.get_all_scores([new_node.motif], list(cmp_nodes. keys()), match, metric, combine, pval, parallel=True) for motif, n in cmp_nodes.items(): x = result[new_node.motif.id][motif.id] if pval: x = [1 - x[0]] + x[1:] scores[new_node, n] = x nodes.append(new_node) cluster_nodes = [node for node in nodes if not node.parent] if progress: sys.stderr.write('\n') root = nodes[-1] for node in [node for node in nodes if not node.left]: node.parent.checkMerge(root, threshold) return root
cluster_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(motifs, match='total', metric='wic', combine='mean', pval=True,\n threshold=0.95, trim_edges=False, edge_ic_cutoff=0.2, include_bg=True,\n progress=True, ncpus=None):\n if type([]) != type(motifs):\n motifs = read_motifs(motifs, fmt='pwm')\n mc = MotifComparer()\n if trim_edges:\n for motif in motifs:\n motif.trim(edge_ic_cutoff)\n nodes = [MotifTree(m) for m in motifs]\n scores = {}\n motif_nodes = dict([(n.motif.id, n) for n in nodes])\n motifs = [n.motif for n in nodes]\n if progress:\n sys.stderr.write('Calculating initial scores\\n')\n result = mc.get_all_scores(motifs, motifs, match, metric, combine, pval,\n parallel=True, ncpus=ncpus)\n for m1, other_motifs in result.items():\n for m2, score in other_motifs.items():\n if m1 == m2:\n if pval:\n motif_nodes[m1].maxscore = 1 - score[0]\n else:\n motif_nodes[m1].maxscore = score[0]\n else:\n if pval:\n score = [1 - score[0]] + score[1:]\n scores[motif_nodes[m1], motif_nodes[m2]] = score\n cluster_nodes = [node for node in nodes]\n ave_count = 1\n total = len(cluster_nodes)\n while len(cluster_nodes) > 1:\n l = sorted(scores.keys(), key=lambda x: scores[x][0])\n i = -1\n n1, n2 = l[i]\n while n1 not in cluster_nodes or n2 not in cluster_nodes:\n i -= 1\n n1, n2 = l[i]\n if len(n1.motif) > 0 and len(n2.motif) > 0:\n score, pos, orientation = scores[n1, n2]\n ave_motif = n1.motif.average_motifs(n2.motif, pos, orientation,\n include_bg=include_bg)\n ave_motif.trim(edge_ic_cutoff)\n if len(ave_motif) == 0:\n ave_motif = Motif([[0.25, 0.25, 0.25, 0.25]])\n ave_motif.id = 'Average_%s' % ave_count\n ave_count += 1\n new_node = MotifTree(ave_motif)\n if pval:\n new_node.maxscore = 1 - mc.compare_motifs(new_node.motif,\n new_node.motif, match, metric, combine, pval)[0]\n else:\n new_node.maxscore = mc.compare_motifs(new_node.motif,\n new_node.motif, match, metric, combine, pval)[0]\n new_node.mergescore = score\n n1.parent = new_node\n n2.parent = new_node\n new_node.left = n1\n new_node.right = n2\n cmp_nodes = dict([(node.motif, node) for node in nodes if not\n node.parent])\n if progress:\n progress = (1 - len(cmp_nodes) / float(total)) * 100\n sys.stderr.write('\\rClustering [{0}{1}] {2}%'.format('#' *\n (int(progress) // 10), ' ' * (10 - int(progress) // 10),\n int(progress)))\n result = mc.get_all_scores([new_node.motif], list(cmp_nodes.\n keys()), match, metric, combine, pval, parallel=True)\n for motif, n in cmp_nodes.items():\n x = result[new_node.motif.id][motif.id]\n if pval:\n x = [1 - x[0]] + x[1:]\n scores[new_node, n] = x\n nodes.append(new_node)\n cluster_nodes = [node for node in nodes if not node.parent]\n if progress:\n sys.stderr.write('\\n')\n root = nodes[-1]\n for node in [node for node in nodes if not node.left]:\n node.parent.checkMerge(root, threshold)\n return root\n", "role": "user" }, { "content": "cluster_motifs", "role": "assistant" } ]
def x(batch): n = None for value in six.itervalues(batch): if n is None: n = len(value) elif len(value) != n: raise PescadorError('Unequal field lengths') return n
batch_length
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(batch):\n n = None\n for value in six.itervalues(batch):\n if n is None:\n n = len(value)\n elif len(value) != n:\n raise PescadorError('Unequal field lengths')\n return n\n", "role": "user" }, { "content": "batch_length", "role": "assistant" } ]
def x(self): self.distribution_ = 1.0 / self.n_streams * np.ones(self.n_streams) self.valid_streams_ = np.ones(self.n_streams, dtype=bool) self.streams_ = [None] * self.k self.stream_weights_ = np.zeros(self.k) self.stream_counts_ = np.zeros(self.k, dtype=int) self.stream_idxs_ = np.zeros(self.k, dtype=int) for idx in range(self.k): if not (self.distribution_ > 0).any(): break self.stream_idxs_[idx] = self.rng.choice(self.n_streams, p=self. distribution_) self.streams_[idx], self.stream_weights_[idx] = self._new_stream(self .stream_idxs_[idx]) self.weight_norm_ = np.sum(self.stream_weights_)
activate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.distribution_ = 1.0 / self.n_streams * np.ones(self.n_streams)\n self.valid_streams_ = np.ones(self.n_streams, dtype=bool)\n self.streams_ = [None] * self.k\n self.stream_weights_ = np.zeros(self.k)\n self.stream_counts_ = np.zeros(self.k, dtype=int)\n self.stream_idxs_ = np.zeros(self.k, dtype=int)\n for idx in range(self.k):\n if not (self.distribution_ > 0).any():\n break\n self.stream_idxs_[idx] = self.rng.choice(self.n_streams, p=self.\n distribution_)\n self.streams_[idx], self.stream_weights_[idx] = self._new_stream(self\n .stream_idxs_[idx])\n self.weight_norm_ = np.sum(self.stream_weights_)\n", "role": "user" }, { "content": "activate", "role": "assistant" } ]
def x(self, idx): if self.rate is not None: n_stream = 1 + self.rng.poisson(lam=self.rate) else: n_stream = None if not self.with_replacement: self.distribution_[idx] = 0.0 if (self.distribution_ > 0).any(): self.distribution_[:] /= np.sum(self.distribution_) return self.streamers[idx].iterate(max_iter=n_stream), self.weights[idx]
new_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx):\n if self.rate is not None:\n n_stream = 1 + self.rng.poisson(lam=self.rate)\n else:\n n_stream = None\n if not self.with_replacement:\n self.distribution_[idx] = 0.0\n if (self.distribution_ > 0).any():\n self.distribution_[:] /= np.sum(self.distribution_)\n return self.streamers[idx].iterate(max_iter=n_stream), self.weights[idx]\n", "role": "user" }, { "content": "new_stream", "role": "assistant" } ]
def x(self, max_iter=None): if max_iter is None: max_iter = np.inf with self as active_mux: n = 0 while n < max_iter and active_mux._streamers_available(): idx = active_mux._next_sample_index() try: yield six.advance_iterator(active_mux.streams_[idx]) n += 1 active_mux.stream_counts_[idx] += 1 except StopIteration: active_mux._on_stream_exhausted(idx) active_mux._replace_stream(idx)
iterate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, max_iter=None):\n if max_iter is None:\n max_iter = np.inf\n with self as active_mux:\n n = 0\n while n < max_iter and active_mux._streamers_available():\n idx = active_mux._next_sample_index()\n try:\n yield six.advance_iterator(active_mux.streams_[idx])\n n += 1\n active_mux.stream_counts_[idx] += 1\n except StopIteration:\n active_mux._on_stream_exhausted(idx)\n active_mux._replace_stream(idx)\n", "role": "user" }, { "content": "iterate", "role": "assistant" } ]
def x(self): return self.rng.choice(self.n_active, p=self.stream_weights_ / self. weight_norm_)
next_sample_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self.rng.choice(self.n_active, p=self.stream_weights_ / self.\n weight_norm_)\n", "role": "user" }, { "content": "next_sample_index", "role": "assistant" } ]
def x(self, idx): n_samples_to_stream = None if self.rate is not None: n_samples_to_stream = 1 + self.rng.poisson(lam=self.rate) streamer = self.streamers[idx].iterate(max_iter=n_samples_to_stream) weight = self.weights[idx] if self.mode != 'with_replacement': self.distribution_[idx] = 0.0 if (self.distribution_ > 0).any(): self.distribution_[:] /= np.sum(self.distribution_) return streamer, weight
activate_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx):\n n_samples_to_stream = None\n if self.rate is not None:\n n_samples_to_stream = 1 + self.rng.poisson(lam=self.rate)\n streamer = self.streamers[idx].iterate(max_iter=n_samples_to_stream)\n weight = self.weights[idx]\n if self.mode != 'with_replacement':\n self.distribution_[idx] = 0.0\n if (self.distribution_ > 0).any():\n self.distribution_[:] /= np.sum(self.distribution_)\n return streamer, weight\n", "role": "user" }, { "content": "activate_stream", "role": "assistant" } ]
def x(self, idx): self.stream_idxs_[idx] = self.rng.choice(self.n_streams, p=self. distribution_) self.streams_[idx], self.stream_weights_[idx] = self._activate_stream(self .stream_idxs_[idx]) self.stream_counts_[idx] = 0
new_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx):\n self.stream_idxs_[idx] = self.rng.choice(self.n_streams, p=self.\n distribution_)\n self.streams_[idx], self.stream_weights_[idx] = self._activate_stream(self\n .stream_idxs_[idx])\n self.stream_counts_[idx] = 0\n", "role": "user" }, { "content": "new_stream", "role": "assistant" } ]
def x(self): self.streams_ = [None] * self.n_streams self.stream_weights_ = np.array(self.weights, dtype=float) self.stream_counts_ = np.zeros(self.n_streams, dtype=int) for idx in range(self.n_streams): self._new_stream(idx) self.weight_norm_ = np.sum(self.stream_weights_)
activate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.streams_ = [None] * self.n_streams\n self.stream_weights_ = np.array(self.weights, dtype=float)\n self.stream_counts_ = np.zeros(self.n_streams, dtype=int)\n for idx in range(self.n_streams):\n self._new_stream(idx)\n self.weight_norm_ = np.sum(self.stream_weights_)\n", "role": "user" }, { "content": "activate", "role": "assistant" } ]
def x(self): return self.rng.choice(self.n_streams, p=self.stream_weights_ / self. weight_norm_)
next_sample_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self.rng.choice(self.n_streams, p=self.stream_weights_ / self.\n weight_norm_)\n", "role": "user" }, { "content": "next_sample_index", "role": "assistant" } ]
def x(self, idx): if self.stream_weights_[idx]: self.streams_[idx] = self.streamers[idx].iterate() else: self.streams_[idx] = None self.stream_counts_[idx] = 0
new_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx):\n if self.stream_weights_[idx]:\n self.streams_[idx] = self.streamers[idx].iterate()\n else:\n self.streams_[idx] = None\n self.stream_counts_[idx] = 0\n", "role": "user" }, { "content": "new_stream", "role": "assistant" } ]
def x(self): idx = self.active_index_ self.active_index_ += 1 if self.active_index_ >= len(self.streams_): self.active_index_ = 0 while self.streams_[idx] is None: idx = self.active_index_ self.active_index_ += 1 if self.active_index_ >= len(self.streams_): self.active_index_ = 0 return idx
next_sample_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n idx = self.active_index_\n self.active_index_ += 1\n if self.active_index_ >= len(self.streams_):\n self.active_index_ = 0\n while self.streams_[idx] is None:\n idx = self.active_index_\n self.active_index_ += 1\n if self.active_index_ >= len(self.streams_):\n self.active_index_ = 0\n return idx\n", "role": "user" }, { "content": "next_sample_index", "role": "assistant" } ]
def x(self, idx): stream_index = self.stream_idxs_[idx] self.streams_[idx] = self.streamers[stream_index].iterate() self.stream_counts_[idx] = 0
new_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx):\n stream_index = self.stream_idxs_[idx]\n self.streams_[idx] = self.streamers[stream_index].iterate()\n self.stream_counts_[idx] = 0\n", "role": "user" }, { "content": "new_stream", "role": "assistant" } ]
def x(self, idx=None): self.streams_[idx] = None if not self._streamers_available(): if self.mode == 'exhaustive': pass elif self.mode == 'cycle': self._setup_streams(permute=False) elif self.mode == 'permuted_cycle': self._setup_streams(permute=True)
replace_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx=None):\n self.streams_[idx] = None\n if not self._streamers_available():\n if self.mode == 'exhaustive':\n pass\n elif self.mode == 'cycle':\n self._setup_streams(permute=False)\n elif self.mode == 'permuted_cycle':\n self._setup_streams(permute=True)\n", "role": "user" }, { "content": "replace_stream", "role": "assistant" } ]
def x(self): try: next_stream = six.advance_iterator(self.stream_generator_) except StopIteration: if self.mode == 'cycle': self.stream_generator_ = self.chain_streamer_.iterate() next_stream = six.advance_iterator(self.stream_generator_) else: next_stream = None if next_stream is not None: streamer = next_stream.iterate() self.streams_[0] = streamer self.stream_counts_[0] = 0
new_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n next_stream = six.advance_iterator(self.stream_generator_)\n except StopIteration:\n if self.mode == 'cycle':\n self.stream_generator_ = self.chain_streamer_.iterate()\n next_stream = six.advance_iterator(self.stream_generator_)\n else:\n next_stream = None\n if next_stream is not None:\n streamer = next_stream.iterate()\n self.streams_[0] = streamer\n self.stream_counts_[0] = 0\n", "role": "user" }, { "content": "new_stream", "role": "assistant" } ]
def x(X, Y, paths): shuffled_idxs = np.random.permutation(np.arange(len(X))) for i in range(len(paths)): X_i = X[shuffled_idxs[i::len(paths)]] Y_i = Y[shuffled_idxs[i::len(paths)]] np.savez(paths[i], X=X_i, Y=Y_i)
split_and_save_datasets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, Y, paths):\n shuffled_idxs = np.random.permutation(np.arange(len(X)))\n for i in range(len(paths)):\n X_i = X[shuffled_idxs[i::len(paths)]]\n Y_i = Y[shuffled_idxs[i::len(paths)]]\n np.savez(paths[i], X=X_i, Y=Y_i)\n", "role": "user" }, { "content": "split_and_save_datasets", "role": "assistant" } ]
def x(npz_path): npz_data = np.load(npz_path) X = npz_data['X'] y = npz_data['Y'] n = X.shape[0] while True: i = np.random.randint(0, n) yield {'X': X[i], 'Y': y[i]}
npz_generator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(npz_path):\n npz_data = np.load(npz_path)\n X = npz_data['X']\n y = npz_data['Y']\n n = X.shape[0]\n while True:\n i = np.random.randint(0, n)\n yield {'X': X[i], 'Y': y[i]}\n", "role": "user" }, { "content": "npz_generator", "role": "assistant" } ]
def x(k, good, bad, N): pvalues = [phyper_single(x, good, bad, N) for x in range(k + 1, N + 1)] return np.sum(pvalues)
phyper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(k, good, bad, N):\n pvalues = [phyper_single(x, good, bad, N) for x in range(k + 1, N + 1)]\n return np.sum(pvalues)\n", "role": "user" }, { "content": "phyper", "role": "assistant" } ]
def x(bedfile, width, outfile): BUFSIZE = 10000 f = open(bedfile) out = open(outfile, 'w') lines = f.readlines(BUFSIZE) line_count = 0 while lines: for line in lines: line_count += 1 if not line.startswith('#') and not line.startswith('track' ) and not line.startswith('browser'): vals = line.strip().split('\t') try: start, end = int(vals[1]), int(vals[2]) except ValueError: print( 'Error on line %s while reading %s. Is the file in BED or WIG format?' % (line_count, bedfile)) sys.exit(1) start = (start + end) // 2 - width // 2 if start < 0: start = 0 end = start + width if len(vals) > 3: out.write('%s\t%s\t%s\t%s\n' % (vals[0], start, end, '\t'.join(vals[3:]))) else: out.write('%s\t%s\t%s\n' % (vals[0], start, end)) lines = f.readlines(BUFSIZE) out.close() f.close()
write_equalwidth_bedfile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bedfile, width, outfile):\n BUFSIZE = 10000\n f = open(bedfile)\n out = open(outfile, 'w')\n lines = f.readlines(BUFSIZE)\n line_count = 0\n while lines:\n for line in lines:\n line_count += 1\n if not line.startswith('#') and not line.startswith('track'\n ) and not line.startswith('browser'):\n vals = line.strip().split('\\t')\n try:\n start, end = int(vals[1]), int(vals[2])\n except ValueError:\n print(\n 'Error on line %s while reading %s. Is the file in BED or WIG format?'\n % (line_count, bedfile))\n sys.exit(1)\n start = (start + end) // 2 - width // 2\n if start < 0:\n start = 0\n end = start + width\n if len(vals) > 3:\n out.write('%s\\t%s\\t%s\\t%s\\n' % (vals[0], start, end,\n '\\t'.join(vals[3:])))\n else:\n out.write('%s\\t%s\\t%s\\n' % (vals[0], start, end))\n lines = f.readlines(BUFSIZE)\n out.close()\n f.close()\n", "role": "user" }, { "content": "write_equalwidth_bedfile", "role": "assistant" } ]
def x(sample, background, mtc=None, len_sample=None, len_back=None): INF = 'Inf' if mtc not in [None, 'Bonferroni', 'Benjamini-Hochberg', 'None']: raise RuntimeError('Unknown correction: %s' % mtc) sig = {} p_value = {} n_sample = {} n_back = {} if not len_sample: len_sample = sample.seqn() if not len_back: len_back = background.seqn() for motif in sample.motifs.keys(): p = 'NA' s = 'NA' q = len(sample.motifs[motif]) m = 0 if background.motifs.get(motif): m = len(background.motifs[motif]) n = len_back - m k = len_sample p = phyper(q - 1, m, n, k) if p != 0: s = -(log(p) / log(10)) else: s = INF else: s = INF p = 0.0 sig[motif] = s p_value[motif] = p n_sample[motif] = q n_back[motif] = m if mtc == 'Bonferroni': for motif in p_value.keys(): if p_value[motif] != 'NA': p_value[motif] = p_value[motif] * len(p_value.keys()) if p_value[motif] > 1: p_value[motif] = 1 elif mtc == 'Benjamini-Hochberg': motifs = sorted(p_value.keys(), key=lambda x: -p_value[x]) l = len(p_value) c = l for m in motifs: if p_value[m] != 'NA': p_value[m] = p_value[m] * l / c c -= 1 return sig, p_value, n_sample, n_back
calc_motif_enrichment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sample, background, mtc=None, len_sample=None, len_back=None):\n INF = 'Inf'\n if mtc not in [None, 'Bonferroni', 'Benjamini-Hochberg', 'None']:\n raise RuntimeError('Unknown correction: %s' % mtc)\n sig = {}\n p_value = {}\n n_sample = {}\n n_back = {}\n if not len_sample:\n len_sample = sample.seqn()\n if not len_back:\n len_back = background.seqn()\n for motif in sample.motifs.keys():\n p = 'NA'\n s = 'NA'\n q = len(sample.motifs[motif])\n m = 0\n if background.motifs.get(motif):\n m = len(background.motifs[motif])\n n = len_back - m\n k = len_sample\n p = phyper(q - 1, m, n, k)\n if p != 0:\n s = -(log(p) / log(10))\n else:\n s = INF\n else:\n s = INF\n p = 0.0\n sig[motif] = s\n p_value[motif] = p\n n_sample[motif] = q\n n_back[motif] = m\n if mtc == 'Bonferroni':\n for motif in p_value.keys():\n if p_value[motif] != 'NA':\n p_value[motif] = p_value[motif] * len(p_value.keys())\n if p_value[motif] > 1:\n p_value[motif] = 1\n elif mtc == 'Benjamini-Hochberg':\n motifs = sorted(p_value.keys(), key=lambda x: -p_value[x])\n l = len(p_value)\n c = l\n for m in motifs:\n if p_value[m] != 'NA':\n p_value[m] = p_value[m] * l / c\n c -= 1\n return sig, p_value, n_sample, n_back\n", "role": "user" }, { "content": "calc_motif_enrichment", "role": "assistant" } ]
def x(motifs, cutoff, default=0.9): cutoffs = {} if os.path.isfile(str(cutoff)): for i, line in enumerate(open(cutoff)): if line != 'Motif\tScore\tCutoff\n': try: motif, _, c = line.strip().split('\t') c = float(c) cutoffs[motif] = c except Exception as e: sys.stderr.write( 'Error parsing cutoff file, line {0}: {1}\n'.format (e, i + 1)) sys.exit(1) else: for motif in motifs: cutoffs[motif.id] = float(cutoff) for motif in motifs: if not motif.id in cutoffs: sys.stderr.write('No cutoff found for {0}, using default {1}\n' .format(motif.id, default)) cutoffs[motif.id] = default return cutoffs
parse_cutoff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(motifs, cutoff, default=0.9):\n cutoffs = {}\n if os.path.isfile(str(cutoff)):\n for i, line in enumerate(open(cutoff)):\n if line != 'Motif\\tScore\\tCutoff\\n':\n try:\n motif, _, c = line.strip().split('\\t')\n c = float(c)\n cutoffs[motif] = c\n except Exception as e:\n sys.stderr.write(\n 'Error parsing cutoff file, line {0}: {1}\\n'.format\n (e, i + 1))\n sys.exit(1)\n else:\n for motif in motifs:\n cutoffs[motif.id] = float(cutoff)\n for motif in motifs:\n if not motif.id in cutoffs:\n sys.stderr.write('No cutoff found for {0}, using default {1}\\n'\n .format(motif.id, default))\n cutoffs[motif.id] = default\n return cutoffs\n", "role": "user" }, { "content": "parse_cutoff", "role": "assistant" } ]
def x(fname): if not (isinstance(fname, str) or isinstance(fname, unicode)): raise ValueError('{} is not a file name!', fname) if not os.path.isfile(fname): raise ValueError('{} is not a file!', fname) ext = os.path.splitext(fname)[1].lower() if ext in ['bed']: return 'bed' elif ext in ['fa', 'fasta']: return 'fasta' elif ext in ['narrowpeak']: return 'narrowpeak' try: Fasta(fname) return 'fasta' except: pass p = re.compile('^(#|track|browser)') with open(fname) as f: for line in f.readlines(): line = line.strip() if not p.search(line): break region_p = re.compile('^(.+):(\\d+)-(\\d+)$') if region_p.search(line): return 'region' else: vals = line.split('\t') if len(vals) >= 3: try: _, _ = int(vals[1]), int(vals[2]) except ValueError: return 'unknown' if len(vals) == 10: try: _, _ = int(vals[4]), int(vals[9]) return 'narrowpeak' except ValueError: return 'unknown' pass return 'bed' return 'unknown'
determine_file_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n if not (isinstance(fname, str) or isinstance(fname, unicode)):\n raise ValueError('{} is not a file name!', fname)\n if not os.path.isfile(fname):\n raise ValueError('{} is not a file!', fname)\n ext = os.path.splitext(fname)[1].lower()\n if ext in ['bed']:\n return 'bed'\n elif ext in ['fa', 'fasta']:\n return 'fasta'\n elif ext in ['narrowpeak']:\n return 'narrowpeak'\n try:\n Fasta(fname)\n return 'fasta'\n except:\n pass\n p = re.compile('^(#|track|browser)')\n with open(fname) as f:\n for line in f.readlines():\n line = line.strip()\n if not p.search(line):\n break\n region_p = re.compile('^(.+):(\\\\d+)-(\\\\d+)$')\n if region_p.search(line):\n return 'region'\n else:\n vals = line.split('\\t')\n if len(vals) >= 3:\n try:\n _, _ = int(vals[1]), int(vals[2])\n except ValueError:\n return 'unknown'\n if len(vals) == 10:\n try:\n _, _ = int(vals[4]), int(vals[9])\n return 'narrowpeak'\n except ValueError:\n return 'unknown'\n pass\n return 'bed'\n return 'unknown'\n", "role": "user" }, { "content": "determine_file_type", "role": "assistant" } ]
def x(seqs): region_p = re.compile('^(.+):(\\d+)-(\\d+)$') if isinstance(seqs, Fasta): return 'fasta' elif isinstance(seqs, list): if len(seqs) == 0: raise ValueError('empty list of sequences to scan') elif region_p.search(seqs[0]): return 'regions' else: raise ValueError('unknown region type') elif isinstance(seqs, str) or isinstance(seqs, unicode): if os.path.isfile(seqs): ftype = determine_file_type(seqs) if ftype == 'unknown': raise ValueError('unknown type') elif ftype == 'narrowpeak': raise ValueError( 'narrowPeak not yet supported in this function') else: return ftype + 'file' else: raise ValueError('no file found with name {}'.format(seqs)) else: raise ValueError('unknown type {}'.format(type(seqs).__name__))
get_seqs_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seqs):\n region_p = re.compile('^(.+):(\\\\d+)-(\\\\d+)$')\n if isinstance(seqs, Fasta):\n return 'fasta'\n elif isinstance(seqs, list):\n if len(seqs) == 0:\n raise ValueError('empty list of sequences to scan')\n elif region_p.search(seqs[0]):\n return 'regions'\n else:\n raise ValueError('unknown region type')\n elif isinstance(seqs, str) or isinstance(seqs, unicode):\n if os.path.isfile(seqs):\n ftype = determine_file_type(seqs)\n if ftype == 'unknown':\n raise ValueError('unknown type')\n elif ftype == 'narrowpeak':\n raise ValueError(\n 'narrowPeak not yet supported in this function')\n else:\n return ftype + 'file'\n else:\n raise ValueError('no file found with name {}'.format(seqs))\n else:\n raise ValueError('unknown type {}'.format(type(seqs).__name__))\n", "role": "user" }, { "content": "get_seqs_type", "role": "assistant" } ]
def x(fname): size = os.path.getsize(fname) with open(fname, 'r+') as f: checksum = hashlib.md5(mmap.mmap(f.fileno(), size)).hexdigest() return checksum
file_checksum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n size = os.path.getsize(fname)\n with open(fname, 'r+') as f:\n checksum = hashlib.md5(mmap.mmap(f.fileno(), size)).hexdigest()\n return checksum\n", "role": "user" }, { "content": "file_checksum", "role": "assistant" } ]
def x(genomebuild, gene_file): pred_bin = 'genePredToBed' pred = find_executable(pred_bin) if not pred: sys.stderr.write('{} not found in path!\n'.format(pred_bin)) sys.exit(1) tmp = NamedTemporaryFile(delete=False, suffix='.gz') anno = [] f = urlopen(UCSC_GENE_URL.format(genomebuild)) p = re.compile('\\w+.Gene.txt.gz') for line in f.readlines(): m = p.search(line.decode()) if m: anno.append(m.group(0)) sys.stderr.write('Retrieving gene annotation for {}\n'.format(genomebuild)) url = '' for a in ANNOS: if a in anno: url = UCSC_GENE_URL.format(genomebuild) + a break if url: sys.stderr.write('Using {}\n'.format(url)) urlretrieve(url, tmp.name) with gzip.open(tmp.name) as f: cols = f.readline().decode(errors='ignore').split('\t') start_col = 1 for i, col in enumerate(cols): if col == '+' or col == '-': start_col = i - 1 break end_col = start_col + 10 cmd = 'zcat {} | cut -f{}-{} | {} /dev/stdin {}' print(cmd.format(tmp.name, start_col, end_col, pred, gene_file)) sp.call(cmd.format(tmp.name, start_col, end_col, pred, gene_file), shell=True) else: sys.stderr.write('No annotation found!')
download_annotation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(genomebuild, gene_file):\n pred_bin = 'genePredToBed'\n pred = find_executable(pred_bin)\n if not pred:\n sys.stderr.write('{} not found in path!\\n'.format(pred_bin))\n sys.exit(1)\n tmp = NamedTemporaryFile(delete=False, suffix='.gz')\n anno = []\n f = urlopen(UCSC_GENE_URL.format(genomebuild))\n p = re.compile('\\\\w+.Gene.txt.gz')\n for line in f.readlines():\n m = p.search(line.decode())\n if m:\n anno.append(m.group(0))\n sys.stderr.write('Retrieving gene annotation for {}\\n'.format(genomebuild))\n url = ''\n for a in ANNOS:\n if a in anno:\n url = UCSC_GENE_URL.format(genomebuild) + a\n break\n if url:\n sys.stderr.write('Using {}\\n'.format(url))\n urlretrieve(url, tmp.name)\n with gzip.open(tmp.name) as f:\n cols = f.readline().decode(errors='ignore').split('\\t')\n start_col = 1\n for i, col in enumerate(cols):\n if col == '+' or col == '-':\n start_col = i - 1\n break\n end_col = start_col + 10\n cmd = 'zcat {} | cut -f{}-{} | {} /dev/stdin {}'\n print(cmd.format(tmp.name, start_col, end_col, pred, gene_file))\n sp.call(cmd.format(tmp.name, start_col, end_col, pred, gene_file),\n shell=True)\n else:\n sys.stderr.write('No annotation found!')\n", "role": "user" }, { "content": "download_annotation", "role": "assistant" } ]
def x(self, dirname): if not os.path.exists(dirname): print('Directory %s does not exist!' % dirname) sys.exit(1)
check_dir
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dirname):\n if not os.path.exists(dirname):\n print('Directory %s does not exist!' % dirname)\n sys.exit(1)\n", "role": "user" }, { "content": "check_dir", "role": "assistant" } ]
def x(self, fasta, index): out = open(index, 'wb') f = open(fasta) line = f.readline() offset = f.tell() line = f.readline() while line: out.write(pack(self.pack_char, offset)) offset = f.tell() line = f.readline() f.close() out.close()
make_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fasta, index):\n out = open(index, 'wb')\n f = open(fasta)\n line = f.readline()\n offset = f.tell()\n line = f.readline()\n while line:\n out.write(pack(self.pack_char, offset))\n offset = f.tell()\n line = f.readline()\n f.close()\n out.close()\n", "role": "user" }, { "content": "make_index", "role": "assistant" } ]
def x(self, fasta_dir=None, index_dir=None): if not fasta_dir: fasta_dir = self.fasta_dir if not index_dir: index_dir = self.index_dir if not fasta_dir: print('fasta_dir not defined!') sys.exit(1) if not index_dir: print('index_dir not defined!') sys.exit(1) index_dir = os.path.abspath(index_dir) fasta_dir = os.path.abspath(fasta_dir) self.index_dir = index_dir if not os.path.exists(index_dir): try: os.mkdir(index_dir) except OSError as e: if e.args[0] == 13: sys.stderr.write( """No permission to create index directory. Superuser access needed? """ ) sys.exit() else: sys.stderr.write(e) self._check_dir(fasta_dir) self._check_dir(index_dir) fastafiles = find_by_ext(fasta_dir, FASTA_EXT) if not fastafiles: msg = 'No fastafiles found in {} with extension in {}'.format(fasta_dir , ','.join(FASTA_EXT)) raise IOError(msg) param_file = os.path.join(index_dir, self.param_file) size_file = os.path.join(index_dir, self.size_file) try: out = open(param_file, 'w') except IOError as e: if e.args[0] == 13: sys.stderr.write( """No permission to create files in index directory. Superuser access needed? """ ) sys.exit() else: sys.stderr.write(e) s_out = open(size_file, 'w') for fasta_file in fastafiles: f = open(fasta_file) line = f.readline() if not line.startswith('>'): sys.stderr.write( '%s is not a valid FASTA file, expected > at first line\n' % fasta_file) sys.exit() seqname = line.strip().replace('>', '') line = f.readline() line_size = len(line.strip()) total_size = 0 while line: line = line.strip() if line.startswith('>'): sys.stderr.write( """Sorry, can only index genomes with one sequence per FASTA file %s contains multiple sequences """ % fasta_file) sys.exit() total_size += len(line) line = f.readline() index_file = os.path.join(index_dir, '%s.index' % seqname) out.write('{}\t{}\t{}\t{}\t{}\n'.format(seqname, fasta_file, index_file, line_size, total_size)) s_out.write('{}\t{}\n'.format(seqname, total_size)) self._make_index(fasta_file, index_file) f.close() out.close() s_out.close() self._read_index_file()
create_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fasta_dir=None, index_dir=None):\n if not fasta_dir:\n fasta_dir = self.fasta_dir\n if not index_dir:\n index_dir = self.index_dir\n if not fasta_dir:\n print('fasta_dir not defined!')\n sys.exit(1)\n if not index_dir:\n print('index_dir not defined!')\n sys.exit(1)\n index_dir = os.path.abspath(index_dir)\n fasta_dir = os.path.abspath(fasta_dir)\n self.index_dir = index_dir\n if not os.path.exists(index_dir):\n try:\n os.mkdir(index_dir)\n except OSError as e:\n if e.args[0] == 13:\n sys.stderr.write(\n \"\"\"No permission to create index directory. Superuser access needed?\n\"\"\"\n )\n sys.exit()\n else:\n sys.stderr.write(e)\n self._check_dir(fasta_dir)\n self._check_dir(index_dir)\n fastafiles = find_by_ext(fasta_dir, FASTA_EXT)\n if not fastafiles:\n msg = 'No fastafiles found in {} with extension in {}'.format(fasta_dir\n , ','.join(FASTA_EXT))\n raise IOError(msg)\n param_file = os.path.join(index_dir, self.param_file)\n size_file = os.path.join(index_dir, self.size_file)\n try:\n out = open(param_file, 'w')\n except IOError as e:\n if e.args[0] == 13:\n sys.stderr.write(\n \"\"\"No permission to create files in index directory. Superuser access needed?\n\"\"\"\n )\n sys.exit()\n else:\n sys.stderr.write(e)\n s_out = open(size_file, 'w')\n for fasta_file in fastafiles:\n f = open(fasta_file)\n line = f.readline()\n if not line.startswith('>'):\n sys.stderr.write(\n '%s is not a valid FASTA file, expected > at first line\\n' %\n fasta_file)\n sys.exit()\n seqname = line.strip().replace('>', '')\n line = f.readline()\n line_size = len(line.strip())\n total_size = 0\n while line:\n line = line.strip()\n if line.startswith('>'):\n sys.stderr.write(\n \"\"\"Sorry, can only index genomes with one sequence per FASTA file\n%s contains multiple sequences\n\"\"\"\n % fasta_file)\n sys.exit()\n total_size += len(line)\n line = f.readline()\n index_file = os.path.join(index_dir, '%s.index' % seqname)\n out.write('{}\\t{}\\t{}\\t{}\\t{}\\n'.format(seqname, fasta_file,\n index_file, line_size, total_size))\n s_out.write('{}\\t{}\\n'.format(seqname, total_size))\n self._make_index(fasta_file, index_file)\n f.close()\n out.close()\n s_out.close()\n self._read_index_file()\n", "role": "user" }, { "content": "create_index", "role": "assistant" } ]
def x(self): param_file = os.path.join(self.index_dir, self.param_file) with open(param_file) as f: for line in f.readlines(): name, fasta_file, index_file, line_size, total_size = line.strip( ).split('\t') self.size[name] = int(total_size) self.fasta_file[name] = fasta_file self.index_file[name] = index_file self.line_size[name] = int(line_size)
read_index_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n param_file = os.path.join(self.index_dir, self.param_file)\n with open(param_file) as f:\n for line in f.readlines():\n name, fasta_file, index_file, line_size, total_size = line.strip(\n ).split('\\t')\n self.size[name] = int(total_size)\n self.fasta_file[name] = fasta_file\n self.index_file[name] = index_file\n self.line_size[name] = int(line_size)\n", "role": "user" }, { "content": "read_index_file", "role": "assistant" } ]
def x(self, fasta, offset, nr_lines): fasta.seek(offset) lines = [fasta.readline().strip() for _ in range(nr_lines)] return ''.join(lines)
read_seq_from_fasta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fasta, offset, nr_lines):\n fasta.seek(offset)\n lines = [fasta.readline().strip() for _ in range(nr_lines)]\n return ''.join(lines)\n", "role": "user" }, { "content": "read_seq_from_fasta", "role": "assistant" } ]
def x(self, chr, coords): if not self.index_dir: print('Index dir is not defined!') sys.exit() fasta_file = self.fasta_file[chr] index_file = self.index_file[chr] line_size = self.line_size[chr] total_size = self.size[chr] index = open(index_file, 'rb') fasta = open(fasta_file) seqs = [] for coordset in coords: seq = '' for start, end in coordset: if start > total_size: raise ValueError( '%s: %s, invalid start, greater than sequence length!' % (chr, start)) if start < 0: raise ValueError('Invalid start, < 0!') if end > total_size: raise ValueError('Invalid end, greater than sequence length!') seq += self._read(index, fasta, start, end, line_size) seqs.append(seq) index.close() fasta.close() return seqs
get_sequences
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chr, coords):\n if not self.index_dir:\n print('Index dir is not defined!')\n sys.exit()\n fasta_file = self.fasta_file[chr]\n index_file = self.index_file[chr]\n line_size = self.line_size[chr]\n total_size = self.size[chr]\n index = open(index_file, 'rb')\n fasta = open(fasta_file)\n seqs = []\n for coordset in coords:\n seq = ''\n for start, end in coordset:\n if start > total_size:\n raise ValueError(\n '%s: %s, invalid start, greater than sequence length!' %\n (chr, start))\n if start < 0:\n raise ValueError('Invalid start, < 0!')\n if end > total_size:\n raise ValueError('Invalid end, greater than sequence length!')\n seq += self._read(index, fasta, start, end, line_size)\n seqs.append(seq)\n index.close()\n fasta.close()\n return seqs\n", "role": "user" }, { "content": "get_sequences", "role": "assistant" } ]
def x(self, chrom, start, end, strand=None): if not self.index_dir: print('Index dir is not defined!') sys.exit() fasta_file = self.fasta_file[chrom] index_file = self.index_file[chrom] line_size = self.line_size[chrom] total_size = self.size[chrom] if start > total_size: raise ValueError( 'Invalid start {0}, greater than sequence length {1} of {2}!'. format(start, total_size, chrom)) if start < 0: raise ValueError('Invalid start, < 0!') if end > total_size: raise ValueError( 'Invalid end {0}, greater than sequence length {1} of {2}!'. format(end, total_size, chrom)) index = open(index_file, 'rb') fasta = open(fasta_file) seq = self._read(index, fasta, start, end, line_size) index.close() fasta.close() if strand and strand == '-': seq = rc(seq) return seq
get_sequence
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chrom, start, end, strand=None):\n if not self.index_dir:\n print('Index dir is not defined!')\n sys.exit()\n fasta_file = self.fasta_file[chrom]\n index_file = self.index_file[chrom]\n line_size = self.line_size[chrom]\n total_size = self.size[chrom]\n if start > total_size:\n raise ValueError(\n 'Invalid start {0}, greater than sequence length {1} of {2}!'.\n format(start, total_size, chrom))\n if start < 0:\n raise ValueError('Invalid start, < 0!')\n if end > total_size:\n raise ValueError(\n 'Invalid end {0}, greater than sequence length {1} of {2}!'.\n format(end, total_size, chrom))\n index = open(index_file, 'rb')\n fasta = open(fasta_file)\n seq = self._read(index, fasta, start, end, line_size)\n index.close()\n fasta.close()\n if strand and strand == '-':\n seq = rc(seq)\n return seq\n", "role": "user" }, { "content": "get_sequence", "role": "assistant" } ]
def x(self, chrom=None): if len(self.size) == 0: raise LookupError('no chromosomes in index, is the index correct?') if chrom: if chrom in self.size: return self.size[chrom] else: raise KeyError('chromosome {} not in index'.format(chrom)) total = 0 for size in self.size.values(): total += size return total
get_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chrom=None):\n if len(self.size) == 0:\n raise LookupError('no chromosomes in index, is the index correct?')\n if chrom:\n if chrom in self.size:\n return self.size[chrom]\n else:\n raise KeyError('chromosome {} not in index'.format(chrom))\n total = 0\n for size in self.size.values():\n total += size\n return total\n", "role": "user" }, { "content": "get_size", "role": "assistant" } ]
def x(name): tool = name.lower() if tool not in __tools__: raise ValueError('Tool {0} not found!\n'.format(name)) t = __tools__[tool]() if not t.is_installed(): sys.stderr.write('Tool {0} not installed!\n'.format(tool)) if not t.is_configured(): sys.stderr.write('Tool {0} not configured!\n'.format(tool)) return t
get_tool
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name):\n tool = name.lower()\n if tool not in __tools__:\n raise ValueError('Tool {0} not found!\\n'.format(name))\n t = __tools__[tool]()\n if not t.is_installed():\n sys.stderr.write('Tool {0} not installed!\\n'.format(tool))\n if not t.is_configured():\n sys.stderr.write('Tool {0} not configured!\\n'.format(tool))\n return t\n", "role": "user" }, { "content": "get_tool", "role": "assistant" } ]
def x(name, verbose=True): m = get_tool(name) tool_bin = which(m.cmd) if tool_bin: if verbose: print('Found {} in {}'.format(m.name, tool_bin)) return tool_bin else: print("Couldn't find {}".format(m.name))
locate_tool
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, verbose=True):\n m = get_tool(name)\n tool_bin = which(m.cmd)\n if tool_bin:\n if verbose:\n print('Found {} in {}'.format(m.name, tool_bin))\n return tool_bin\n else:\n print(\"Couldn't find {}\".format(m.name))\n", "role": "user" }, { "content": "locate_tool", "role": "assistant" } ]
def x(self): if self.local_bin: return self.local_bin else: return self.config.bin(self.name)
bin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.local_bin:\n return self.local_bin\n else:\n return self.config.bin(self.name)\n", "role": "user" }, { "content": "bin", "role": "assistant" } ]
def x(self): return self.is_configured() and os.access(self.bin(), os.X_OK)
is_installed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self.is_configured() and os.access(self.bin(), os.X_OK)\n", "role": "user" }, { "content": "is_installed", "role": "assistant" } ]
def x(self, fastafile, params=None, tmp=None): if not self.is_configured(): raise ValueError('%s is not configured' % self.name) if not self.is_installed(): raise ValueError('%s is not installed or not correctly configured' % self.name) self.tmpdir = mkdtemp(prefix='{0}.'.format(self.name), dir=tmp) fastafile = os.path.abspath(fastafile) try: return self._run_program(self.bin(), fastafile, params) except KeyboardInterrupt: return [], 'Killed', 'Killed'
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fastafile, params=None, tmp=None):\n if not self.is_configured():\n raise ValueError('%s is not configured' % self.name)\n if not self.is_installed():\n raise ValueError('%s is not installed or not correctly configured' %\n self.name)\n self.tmpdir = mkdtemp(prefix='{0}.'.format(self.name), dir=tmp)\n fastafile = os.path.abspath(fastafile)\n try:\n return self._run_program(self.bin(), fastafile, params)\n except KeyboardInterrupt:\n return [], 'Killed', 'Killed'\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, params=None): prm = self.default_params.copy() if params is not None: prm.update(params) if prm['background']: prm['background'] = os.path.abspath(prm['background']) prm['background'] = ' --negSet {0} '.format(prm['background']) prm['strand'] = '' if not prm['single']: prm['strand'] = ' --revcomp ' return prm
parse_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, params=None):\n prm = self.default_params.copy()\n if params is not None:\n prm.update(params)\n if prm['background']:\n prm['background'] = os.path.abspath(prm['background'])\n prm['background'] = ' --negSet {0} '.format(prm['background'])\n prm['strand'] = ''\n if not prm['single']:\n prm['strand'] = ' --revcomp '\n return prm\n", "role": "user" }, { "content": "parse_params", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): params = self._parse_params(params) outfile = os.path.join(self.tmpdir, os.path.basename(fastafile.replace( '.fa', '.pwm'))) stdout = '' stderr = '' cmd = '%s %s %s --localization --batch %s %s' % (bin, self.tmpdir, fastafile, params['background'], params['strand']) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) out, err = p.communicate() stdout += out.decode() stderr += err.decode() motifs = [] if os.path.exists(outfile): motifs = read_motifs(outfile, fmt='xxmotif') for m in motifs: m.id = '{0}_{1}'.format(self.name, m.id) else: stdout += '\nMotif file {0} not found!\n'.format(outfile) stderr += '\nMotif file {0} not found!\n'.format(outfile) return motifs, stdout, stderr
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n outfile = os.path.join(self.tmpdir, os.path.basename(fastafile.replace(\n '.fa', '.pwm')))\n stdout = ''\n stderr = ''\n cmd = '%s %s %s --localization --batch %s %s' % (bin, self.tmpdir,\n fastafile, params['background'], params['strand'])\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n motifs = []\n if os.path.exists(outfile):\n motifs = read_motifs(outfile, fmt='xxmotif')\n for m in motifs:\n m.id = '{0}_{1}'.format(self.name, m.id)\n else:\n stdout += '\\nMotif file {0} not found!\\n'.format(outfile)\n stderr += '\\nMotif file {0} not found!\\n'.format(outfile)\n return motifs, stdout, stderr\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, params=None): prm = self.default_params.copy() if params is not None: prm.update(params) if not prm['background']: print('Background file needed!') sys.exit() prm['background'] = os.path.abspath(prm['background']) prm['strand'] = '' if prm['single']: prm['strand'] = ' -strand + ' return prm
parse_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, params=None):\n prm = self.default_params.copy()\n if params is not None:\n prm.update(params)\n if not prm['background']:\n print('Background file needed!')\n sys.exit()\n prm['background'] = os.path.abspath(prm['background'])\n prm['strand'] = ''\n if prm['single']:\n prm['strand'] = ' -strand + '\n return prm\n", "role": "user" }, { "content": "parse_params", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): params = self._parse_params(params) outfile = NamedTemporaryFile(mode='w', dir=self.tmpdir, prefix= 'homer_w{}.'.format(params['width'])).name cmd = '%s denovo -i %s -b %s -len %s -S %s %s -o %s -p 8' % (bin, fastafile, params['background'], params['width'], params['number'], params['strand'], outfile) stderr = '' stdout = 'Running command:\n{}\n'.format(cmd) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, cwd=self.tmpdir) out, err = p.communicate() stdout += out.decode() stderr += err.decode() motifs = [] if os.path.exists(outfile): motifs = read_motifs(outfile, fmt='pwm') for i, m in enumerate(motifs): m.id = '{}_{}_{}'.format(self.name, params['width'], i + 1) return motifs, stdout, stderr
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n outfile = NamedTemporaryFile(mode='w', dir=self.tmpdir, prefix=\n 'homer_w{}.'.format(params['width'])).name\n cmd = '%s denovo -i %s -b %s -len %s -S %s %s -o %s -p 8' % (bin,\n fastafile, params['background'], params['width'], params['number'],\n params['strand'], outfile)\n stderr = ''\n stdout = 'Running command:\\n{}\\n'.format(cmd)\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE, cwd=self.tmpdir)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n motifs = []\n if os.path.exists(outfile):\n motifs = read_motifs(outfile, fmt='pwm')\n for i, m in enumerate(motifs):\n m.id = '{}_{}_{}'.format(self.name, params['width'], i + 1)\n return motifs, stdout, stderr\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, fo): motifs = [] p = re.compile( '^\\d+\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)\\s+(\\d+\\.\\d+)' ) pwm = [] motif_id = '' for line in fo.readlines(): if line.startswith('Motif #'): if pwm: m = Motif(pwm) m.id = 'BioProspector_w%s_%s' % (len(m), motif_id) motifs.append(m) motif_id = line.split('#')[1].split(':')[0] pwm = [] else: m = p.search(line) if m: pwm.append([(float(m.group(x)) / 100.0) for x in range(1, 5)]) if pwm: m = Motif(pwm) m.id = 'BioProspector_w%s_%s' % (len(m), motif_id) motifs.append(m) return motifs
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fo):\n motifs = []\n p = re.compile(\n '^\\\\d+\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)\\\\s+(\\\\d+\\\\.\\\\d+)'\n )\n pwm = []\n motif_id = ''\n for line in fo.readlines():\n if line.startswith('Motif #'):\n if pwm:\n m = Motif(pwm)\n m.id = 'BioProspector_w%s_%s' % (len(m), motif_id)\n motifs.append(m)\n motif_id = line.split('#')[1].split(':')[0]\n pwm = []\n else:\n m = p.search(line)\n if m:\n pwm.append([(float(m.group(x)) / 100.0) for x in range(1, 5)])\n if pwm:\n m = Motif(pwm)\n m.id = 'BioProspector_w%s_%s' % (len(m), motif_id)\n motifs.append(m)\n return motifs\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): params = self._parse_params(params) default_params = {'width': 10} if params is not None: default_params.update(params) fgfile, summitfile, outfile = self._prepare_files(fastafile) current_path = os.getcwd() os.chdir(self.tmpdir) cmd = ( '{} -i {} -w {} -dna 4 -iteration 50 -chain 20 -seqprop -0.1 -strand 2 -peaklocation {} -t_dof 3 -dep 2' .format(bin, fgfile, params['width'], summitfile)) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate() os.chdir(current_path) motifs = [] if os.path.exists(outfile): with open(outfile) as f: motifs = self.parse(f) for i, m in enumerate(motifs): m.id = 'HMS_w{}_{}'.format(params['width'], i + 1) return motifs, stdout, stderr
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n default_params = {'width': 10}\n if params is not None:\n default_params.update(params)\n fgfile, summitfile, outfile = self._prepare_files(fastafile)\n current_path = os.getcwd()\n os.chdir(self.tmpdir)\n cmd = (\n '{} -i {} -w {} -dna 4 -iteration 50 -chain 20 -seqprop -0.1 -strand 2 -peaklocation {} -t_dof 3 -dep 2'\n .format(bin, fgfile, params['width'], summitfile))\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n stdout, stderr = p.communicate()\n os.chdir(current_path)\n motifs = []\n if os.path.exists(outfile):\n with open(outfile) as f:\n motifs = self.parse(f)\n for i, m in enumerate(motifs):\n m.id = 'HMS_w{}_{}'.format(params['width'], i + 1)\n return motifs, stdout, stderr\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, fo): motifs = [] m = [[float(x) for x in fo.readline().strip().split(' ')] for i in range(4) ] matrix = [[m[0][i], m[1][i], m[2][i], m[3][i]] for i in range(len(m[0]))] motifs = [Motif(matrix)] motifs[-1].id = self.name return motifs
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fo):\n motifs = []\n m = [[float(x) for x in fo.readline().strip().split(' ')] for i in range(4)\n ]\n matrix = [[m[0][i], m[1][i], m[2][i], m[3][i]] for i in range(len(m[0]))]\n motifs = [Motif(matrix)]\n motifs[-1].id = self.name\n return motifs\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, bin, fastafile, params=None): params = self._parse_params(params) fgfile = os.path.join(self.tmpdir, 'AMD.in.fa') outfile = fgfile + '.Matrix' shutil.copy(fastafile, fgfile) current_path = os.getcwd() os.chdir(self.tmpdir) stdout = '' stderr = '' cmd = '%s -F %s -B %s' % (bin, fgfile, params['background']) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) out, err = p.communicate() stdout += out.decode() stderr += err.decode() os.chdir(current_path) motifs = [] if os.path.exists(outfile): f = open(outfile) motifs = self.parse(f) f.close() return motifs, stdout, stderr
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bin, fastafile, params=None):\n params = self._parse_params(params)\n fgfile = os.path.join(self.tmpdir, 'AMD.in.fa')\n outfile = fgfile + '.Matrix'\n shutil.copy(fastafile, fgfile)\n current_path = os.getcwd()\n os.chdir(self.tmpdir)\n stdout = ''\n stderr = ''\n cmd = '%s -F %s -B %s' % (bin, fgfile, params['background'])\n p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)\n out, err = p.communicate()\n stdout += out.decode()\n stderr += err.decode()\n os.chdir(current_path)\n motifs = []\n if os.path.exists(outfile):\n f = open(outfile)\n motifs = self.parse(f)\n f.close()\n return motifs, stdout, stderr\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(self, fo): motifs = [] p = re.compile('\\d+\\s+([\\d.]+)\\s+([\\d.]+)\\s+([\\d.]+)\\s+([\\d.]+)') wm = [] name = '' for line in fo.readlines(): if line.startswith('Motif') and line.strip().endswith(':'): if name: motifs.append(Motif(wm)) motifs[-1].id = name name = '' wm = [] name = '%s_%s' % (self.name, line.split(':')[0]) else: m = p.search(line) if m: wm.append([float(m.group(x)) for x in range(1, 5)]) motifs.append(Motif(wm)) motifs[-1].id = name return motifs
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fo):\n motifs = []\n p = re.compile('\\\\d+\\\\s+([\\\\d.]+)\\\\s+([\\\\d.]+)\\\\s+([\\\\d.]+)\\\\s+([\\\\d.]+)')\n wm = []\n name = ''\n for line in fo.readlines():\n if line.startswith('Motif') and line.strip().endswith(':'):\n if name:\n motifs.append(Motif(wm))\n motifs[-1].id = name\n name = ''\n wm = []\n name = '%s_%s' % (self.name, line.split(':')[0])\n else:\n m = p.search(line)\n if m:\n wm.append([float(m.group(x)) for x in range(1, 5)])\n motifs.append(Motif(wm))\n motifs[-1].id = name\n return motifs\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]