source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(X, n_clusters, method='balanced', rng=None): n_samples = X.shape[0] if rng is None: cent_idx = np.random.choice(n_samples, replace=False, size=n_clusters) else: cent_idx = rng.choice(n_samples, replace=False, size=n_clusters) centers = X[cent_idx, :] mean_X = np.mean(X, axis=0) if method == 'balanced': centers[n_clusters - 1] = n_clusters * mean_X - np.sum(centers[: n_clusters - 1], axis=0) return centers
kmeans_init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, n_clusters, method='balanced', rng=None):\n n_samples = X.shape[0]\n if rng is None:\n cent_idx = np.random.choice(n_samples, replace=False, size=n_clusters)\n else:\n cent_idx = rng.choice(n_samples, replace=False, size=n_clusters)\n centers = X[cent_idx, :]\n mean_X = np.mean(X, axis=0)\n if method == 'balanced':\n centers[n_clusters - 1] = n_clusters * mean_X - np.sum(centers[:\n n_clusters - 1], axis=0)\n return centers\n", "role": "user" }, { "content": "kmeans_init", "role": "assistant" } ]
def x(X, centers): dist2cents = scipy.spatial.distance.cdist(X, centers, metric='seuclidean') membs = np.argmin(dist2cents, axis=1) return membs
assign_clusters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, centers):\n dist2cents = scipy.spatial.distance.cdist(X, centers, metric='seuclidean')\n membs = np.argmin(dist2cents, axis=1)\n return membs\n", "role": "user" }, { "content": "assign_clusters", "role": "assistant" } ]
def x(X, center): dmemb2cen = scipy.spatial.distance.cdist(X, center.reshape(1, X.shape[1 ]), metric='seuclidean') return np.sum(dmemb2cen)
cal_dist2center
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, center):\n dmemb2cen = scipy.spatial.distance.cdist(X, center.reshape(1, X.shape[1\n ]), metric='seuclidean')\n return np.sum(dmemb2cen)\n", "role": "user" }, { "content": "cal_dist2center", "role": "assistant" } ]
def x(X, membs, n_clusters): centers = np.empty(shape=(n_clusters, X.shape[1]), dtype=float) sse = np.empty(shape=n_clusters, dtype=float) for clust_id in range(n_clusters): memb_ids = np.where(membs == clust_id)[0] if memb_ids.shape[0] == 0: memb_ids = np.random.choice(X.shape[0], size=1) centers[clust_id, :] = np.mean(X[memb_ids, :], axis=0) sse[clust_id] = _cal_dist2center(X[memb_ids, :], centers[clust_id, :]) return centers, sse
update_centers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, membs, n_clusters):\n centers = np.empty(shape=(n_clusters, X.shape[1]), dtype=float)\n sse = np.empty(shape=n_clusters, dtype=float)\n for clust_id in range(n_clusters):\n memb_ids = np.where(membs == clust_id)[0]\n if memb_ids.shape[0] == 0:\n memb_ids = np.random.choice(X.shape[0], size=1)\n centers[clust_id, :] = np.mean(X[memb_ids, :], axis=0)\n sse[clust_id] = _cal_dist2center(X[memb_ids, :], centers[clust_id, :])\n return centers, sse\n", "role": "user" }, { "content": "update_centers", "role": "assistant" } ]
def x(X, n_clusters, max_iter, tol): membs = np.empty(shape=X.shape[0], dtype=int) centers = _kmeans_init(X, n_clusters) sse_last = 9999.9 n_iter = 0 for it in range(1, max_iter): membs = _assign_clusters(X, centers) centers, sse_arr = _update_centers(X, membs, n_clusters) sse_total = np.sum(sse_arr) if np.abs(sse_total - sse_last) < tol: n_iter = it break sse_last = sse_total return centers, membs, sse_total, sse_arr, n_iter
kmeans_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, n_clusters, max_iter, tol):\n membs = np.empty(shape=X.shape[0], dtype=int)\n centers = _kmeans_init(X, n_clusters)\n sse_last = 9999.9\n n_iter = 0\n for it in range(1, max_iter):\n membs = _assign_clusters(X, centers)\n centers, sse_arr = _update_centers(X, membs, n_clusters)\n sse_total = np.sum(sse_arr)\n if np.abs(sse_total - sse_last) < tol:\n n_iter = it\n break\n sse_last = sse_total\n return centers, membs, sse_total, sse_arr, n_iter\n", "role": "user" }, { "content": "kmeans_run", "role": "assistant" } ]
def x(X, n_clusters, max_iter, n_trials, tol): n_samples, n_features = X.shape[0], X.shape[1] centers_best = np.empty(shape=(n_clusters, n_features), dtype=float) labels_best = np.empty(shape=n_samples, dtype=int) for i in range(n_trials): centers, labels, sse_tot, sse_arr, n_iter = _kmeans_run(X, n_clusters, max_iter, tol) if i == 0: sse_tot_best = sse_tot sse_arr_best = sse_arr n_iter_best = n_iter centers_best = centers.copy() labels_best = labels.copy() if sse_tot < sse_tot_best: sse_tot_best = sse_tot sse_arr_best = sse_arr n_iter_best = n_iter centers_best = centers.copy() labels_best = labels.copy() return centers_best, labels_best, sse_arr_best, n_iter_best
kmeans
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, n_clusters, max_iter, n_trials, tol):\n n_samples, n_features = X.shape[0], X.shape[1]\n centers_best = np.empty(shape=(n_clusters, n_features), dtype=float)\n labels_best = np.empty(shape=n_samples, dtype=int)\n for i in range(n_trials):\n centers, labels, sse_tot, sse_arr, n_iter = _kmeans_run(X,\n n_clusters, max_iter, tol)\n if i == 0:\n sse_tot_best = sse_tot\n sse_arr_best = sse_arr\n n_iter_best = n_iter\n centers_best = centers.copy()\n labels_best = labels.copy()\n if sse_tot < sse_tot_best:\n sse_tot_best = sse_tot\n sse_arr_best = sse_arr\n n_iter_best = n_iter\n centers_best = centers.copy()\n labels_best = labels.copy()\n return centers_best, labels_best, sse_arr_best, n_iter_best\n", "role": "user" }, { "content": "kmeans", "role": "assistant" } ]
def x(self, X): self.centers_, self.labels_, self.sse_arr_, self.n_iter_ = _kmeans(X, self.n_clusters, self.max_iter, self.n_trials, self.tol)
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X):\n self.centers_, self.labels_, self.sse_arr_, self.n_iter_ = _kmeans(X,\n self.n_clusters, self.max_iter, self.n_trials, self.tol)\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(tree, n_clusters, membs): assert n_clusters >= 2 assert n_clusters <= len(tree.leaves()) cut_centers = dict() for i in range(n_clusters - 1): if i == 0: search_set = set(tree.children(0)) node_set, cut_set = set(), set() else: search_set = node_set.union(cut_set) node_set, cut_set = set(), set() if i + 2 == n_clusters: cut_set = search_set else: for _ in range(len(search_set)): n = search_set.pop() if n.data['ilev'] is None or n.data['ilev'] > i + 2: cut_set.add(n) else: nid = n.identifier if n.data['ilev'] - 2 == i: node_set = node_set.union(set(tree.children(nid))) conv_membs = membs.copy() for node in cut_set: nid = node.identifier label = node.data['label'] cut_centers[label] = node.data['center'] sub_leaves = tree.leaves(nid) for leaf in sub_leaves: indx = np.where(conv_membs == leaf)[0] conv_membs[indx] = nid return conv_membs, cut_centers
cut_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tree, n_clusters, membs):\n assert n_clusters >= 2\n assert n_clusters <= len(tree.leaves())\n cut_centers = dict()\n for i in range(n_clusters - 1):\n if i == 0:\n search_set = set(tree.children(0))\n node_set, cut_set = set(), set()\n else:\n search_set = node_set.union(cut_set)\n node_set, cut_set = set(), set()\n if i + 2 == n_clusters:\n cut_set = search_set\n else:\n for _ in range(len(search_set)):\n n = search_set.pop()\n if n.data['ilev'] is None or n.data['ilev'] > i + 2:\n cut_set.add(n)\n else:\n nid = n.identifier\n if n.data['ilev'] - 2 == i:\n node_set = node_set.union(set(tree.children(nid)))\n conv_membs = membs.copy()\n for node in cut_set:\n nid = node.identifier\n label = node.data['label']\n cut_centers[label] = node.data['center']\n sub_leaves = tree.leaves(nid)\n for leaf in sub_leaves:\n indx = np.where(conv_membs == leaf)[0]\n conv_membs[indx] = nid\n return conv_membs, cut_centers\n", "role": "user" }, { "content": "cut_tree", "role": "assistant" } ]
def x(tree, label, ilev, X=None, size=None, center=None, sse=None, parent=None ): if size is None: size = X.shape[0] if center is None: center = np.mean(X, axis=0) if sse is None: sse = _kmeans._cal_dist2center(X, center) center = list(center) datadict = {'size': size, 'center': center, 'label': label, 'sse': sse, 'ilev': None} if parent is None: tree.create_node(label, label, data=datadict) else: tree.create_node(label, label, parent=parent, data=datadict) tree.get_node(parent).data['ilev'] = ilev return tree
add_tree_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tree, label, ilev, X=None, size=None, center=None, sse=None, parent=None\n ):\n if size is None:\n size = X.shape[0]\n if center is None:\n center = np.mean(X, axis=0)\n if sse is None:\n sse = _kmeans._cal_dist2center(X, center)\n center = list(center)\n datadict = {'size': size, 'center': center, 'label': label, 'sse': sse,\n 'ilev': None}\n if parent is None:\n tree.create_node(label, label, data=datadict)\n else:\n tree.create_node(label, label, parent=parent, data=datadict)\n tree.get_node(parent).data['ilev'] = ilev\n return tree\n", "role": "user" }, { "content": "add_tree_node", "role": "assistant" } ]
def x(X, n_clusters, n_trials, max_iter, tol): membs = np.empty(shape=X.shape[0], dtype=int) centers = dict() sse_arr = dict() tree = treelib.Tree() tree = _add_tree_node(tree, 0, ilev=0, X=X) km = _kmeans.KMeans(n_clusters=2, n_trials=n_trials, max_iter=max_iter, tol=tol) for i in range(1, n_clusters): sel_clust_id, sel_memb_ids = _select_cluster_2_split(membs, tree) X_sub = X[sel_memb_ids, :] km.fit(X_sub) tree = _add_tree_node(tree, 2 * i - 1, i, size=np.sum(km.labels_ == 0), center=km.centers_[0], sse=km.sse_arr_[0], parent=sel_clust_id) tree = _add_tree_node(tree, 2 * i, i, size=np.sum(km.labels_ == 1), center=km.centers_[1], sse=km.sse_arr_[1], parent=sel_clust_id) pred_labels = km.labels_ pred_labels[np.where(pred_labels == 1)[0]] = 2 * i pred_labels[np.where(pred_labels == 0)[0]] = 2 * i - 1 membs[sel_memb_ids] = pred_labels for n in tree.leaves(): label = n.data['label'] centers[label] = n.data['center'] sse_arr[label] = n.data['sse'] return centers, membs, sse_arr, tree
bisect_kmeans
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, n_clusters, n_trials, max_iter, tol):\n membs = np.empty(shape=X.shape[0], dtype=int)\n centers = dict()\n sse_arr = dict()\n tree = treelib.Tree()\n tree = _add_tree_node(tree, 0, ilev=0, X=X)\n km = _kmeans.KMeans(n_clusters=2, n_trials=n_trials, max_iter=max_iter,\n tol=tol)\n for i in range(1, n_clusters):\n sel_clust_id, sel_memb_ids = _select_cluster_2_split(membs, tree)\n X_sub = X[sel_memb_ids, :]\n km.fit(X_sub)\n tree = _add_tree_node(tree, 2 * i - 1, i, size=np.sum(km.labels_ ==\n 0), center=km.centers_[0], sse=km.sse_arr_[0], parent=sel_clust_id)\n tree = _add_tree_node(tree, 2 * i, i, size=np.sum(km.labels_ == 1),\n center=km.centers_[1], sse=km.sse_arr_[1], parent=sel_clust_id)\n pred_labels = km.labels_\n pred_labels[np.where(pred_labels == 1)[0]] = 2 * i\n pred_labels[np.where(pred_labels == 0)[0]] = 2 * i - 1\n membs[sel_memb_ids] = pred_labels\n for n in tree.leaves():\n label = n.data['label']\n centers[label] = n.data['center']\n sse_arr[label] = n.data['sse']\n return centers, membs, sse_arr, tree\n", "role": "user" }, { "content": "bisect_kmeans", "role": "assistant" } ]
def x(self): dics = [] dics_bool = [] for i, chain in enumerate(self.parent.chains): p = chain.posterior if p is None: dics_bool.append(False) self._logger.warn( 'You need to set the posterior for chain %s to get the DIC' % chain.name) else: dics_bool.append(True) num_params = chain.chain.shape[1] means = np.array([np.average(chain.chain[:, ii], weights=chain. weights) for ii in range(num_params)]) d = -2 * p d_of_mean = griddata(chain.chain, d, means, method='nearest')[0] mean_d = np.average(d, weights=chain.weights) p_d = mean_d - d_of_mean dic = mean_d + p_d dics.append(dic) if len(dics) > 0: dics -= np.min(dics) dics_fin = [] i = 0 for b in dics_bool: if not b: dics_fin.append(None) else: dics_fin.append(dics[i]) i += 1 return dics_fin
dic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n dics = []\n dics_bool = []\n for i, chain in enumerate(self.parent.chains):\n p = chain.posterior\n if p is None:\n dics_bool.append(False)\n self._logger.warn(\n 'You need to set the posterior for chain %s to get the DIC' %\n chain.name)\n else:\n dics_bool.append(True)\n num_params = chain.chain.shape[1]\n means = np.array([np.average(chain.chain[:, ii], weights=chain.\n weights) for ii in range(num_params)])\n d = -2 * p\n d_of_mean = griddata(chain.chain, d, means, method='nearest')[0]\n mean_d = np.average(d, weights=chain.weights)\n p_d = mean_d - d_of_mean\n dic = mean_d + p_d\n dics.append(dic)\n if len(dics) > 0:\n dics -= np.min(dics)\n dics_fin = []\n i = 0\n for b in dics_bool:\n if not b:\n dics_fin.append(None)\n else:\n dics_fin.append(dics[i])\n i += 1\n return dics_fin\n", "role": "user" }, { "content": "dic", "role": "assistant" } ]
def x(self): bics = [] bics_bool = [] for i, chain in enumerate(self.parent.chains): p, n_data, n_free = (chain.posterior, chain.num_eff_data_points, chain.num_free_params) if p is None or n_data is None or n_free is None: bics_bool.append(False) missing = '' if p is None: missing += 'posterior, ' if n_data is None: missing += 'num_eff_data_points, ' if n_free is None: missing += 'num_free_params, ' self._logger.warn( 'You need to set %s for chain %s to get the BIC' % (missing [:-2], chain.name)) else: bics_bool.append(True) bics.append(n_free * np.log(n_data) - 2 * np.max(p)) if len(bics) > 0: bics -= np.min(bics) bics_fin = [] i = 0 for b in bics_bool: if not b: bics_fin.append(None) else: bics_fin.append(bics[i]) i += 1 return bics_fin
bic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n bics = []\n bics_bool = []\n for i, chain in enumerate(self.parent.chains):\n p, n_data, n_free = (chain.posterior, chain.num_eff_data_points,\n chain.num_free_params)\n if p is None or n_data is None or n_free is None:\n bics_bool.append(False)\n missing = ''\n if p is None:\n missing += 'posterior, '\n if n_data is None:\n missing += 'num_eff_data_points, '\n if n_free is None:\n missing += 'num_free_params, '\n self._logger.warn(\n 'You need to set %s for chain %s to get the BIC' % (missing\n [:-2], chain.name))\n else:\n bics_bool.append(True)\n bics.append(n_free * np.log(n_data) - 2 * np.max(p))\n if len(bics) > 0:\n bics -= np.min(bics)\n bics_fin = []\n i = 0\n for b in bics_bool:\n if not b:\n bics_fin.append(None)\n else:\n bics_fin.append(bics[i])\n i += 1\n return bics_fin\n", "role": "user" }, { "content": "bic", "role": "assistant" } ]
def x(self): aics = [] aics_bool = [] for i, chain in enumerate(self.parent.chains): p, n_data, n_free = (chain.posterior, chain.num_eff_data_points, chain.num_free_params) if p is None or n_data is None or n_free is None: aics_bool.append(False) missing = '' if p is None: missing += 'posterior, ' if n_data is None: missing += 'num_eff_data_points, ' if n_free is None: missing += 'num_free_params, ' self._logger.warn( 'You need to set %s for chain %s to get the AIC' % (missing [:-2], chain.name)) else: aics_bool.append(True) c_cor = 1.0 * n_free * (n_free + 1) / (n_data - n_free - 1) aics.append(2.0 * (n_free + c_cor - np.max(p))) if len(aics) > 0: aics -= np.min(aics) aics_fin = [] i = 0 for b in aics_bool: if not b: aics_fin.append(None) else: aics_fin.append(aics[i]) i += 1 return aics_fin
aic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n aics = []\n aics_bool = []\n for i, chain in enumerate(self.parent.chains):\n p, n_data, n_free = (chain.posterior, chain.num_eff_data_points,\n chain.num_free_params)\n if p is None or n_data is None or n_free is None:\n aics_bool.append(False)\n missing = ''\n if p is None:\n missing += 'posterior, '\n if n_data is None:\n missing += 'num_eff_data_points, '\n if n_free is None:\n missing += 'num_free_params, '\n self._logger.warn(\n 'You need to set %s for chain %s to get the AIC' % (missing\n [:-2], chain.name))\n else:\n aics_bool.append(True)\n c_cor = 1.0 * n_free * (n_free + 1) / (n_data - n_free - 1)\n aics.append(2.0 * (n_free + c_cor - np.max(p)))\n if len(aics) > 0:\n aics -= np.min(aics)\n aics_fin = []\n i = 0\n for b in aics_bool:\n if not b:\n aics_fin.append(None)\n else:\n aics_fin.append(aics[i])\n i += 1\n return aics_fin\n", "role": "user" }, { "content": "aic", "role": "assistant" } ]
def x(self, caption=None, label='tab:model_comp', hlines=True, aic=True, bic=True, dic=True, sort='bic', descending=True): if sort == 'bic': assert bic, 'You cannot sort by BIC if you turn it off' if sort == 'aic': assert aic, 'You cannot sort by AIC if you turn it off' if sort == 'dic': assert dic, 'You cannot sort by DIC if you turn it off' if caption is None: caption = '' if label is None: label = '' base_string = get_latex_table_frame(caption, label) end_text = ' \\\\ \n' num_cols = 1 + (1 if aic else 0) + (1 if bic else 0) column_text = 'c' * (num_cols + 1) center_text = '' hline_text = '\\hline\n' if hlines: center_text += hline_text center_text += '\tModel' + (' & AIC' if aic else '') + (' & BIC ' if bic else '') + (' & DIC ' if dic else '') + end_text if hlines: center_text += '\t' + hline_text if aic: aics = self.aic() else: aics = np.zeros(len(self.parent.chains)) if bic: bics = self.bic() else: bics = np.zeros(len(self.parent.chains)) if dic: dics = self.dic() else: dics = np.zeros(len(self.parent.chains)) if sort == 'bic': to_sort = bics elif sort == 'aic': to_sort = aics elif sort == 'dic': to_sort = dics else: raise ValueError('sort %s not recognised, must be dic, aic or dic' % sort) good = [i for i, t in enumerate(to_sort) if t is not None] names = [self.parent.chains[g].name for g in good] aics = [aics[g] for g in good] bics = [bics[g] for g in good] to_sort = bics if sort == 'bic' else aics indexes = np.argsort(to_sort) if descending: indexes = indexes[::-1] for i in indexes: line = '\t' + names[i] if aic: line += ' & %5.1f ' % aics[i] if bic: line += ' & %5.1f ' % bics[i] if dic: line += ' & %5.1f ' % dics[i] line += end_text center_text += line if hlines: center_text += '\t' + hline_text return base_string % (column_text, center_text)
comparison_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, caption=None, label='tab:model_comp', hlines=True, aic=True,\n bic=True, dic=True, sort='bic', descending=True):\n if sort == 'bic':\n assert bic, 'You cannot sort by BIC if you turn it off'\n if sort == 'aic':\n assert aic, 'You cannot sort by AIC if you turn it off'\n if sort == 'dic':\n assert dic, 'You cannot sort by DIC if you turn it off'\n if caption is None:\n caption = ''\n if label is None:\n label = ''\n base_string = get_latex_table_frame(caption, label)\n end_text = ' \\\\\\\\ \\n'\n num_cols = 1 + (1 if aic else 0) + (1 if bic else 0)\n column_text = 'c' * (num_cols + 1)\n center_text = ''\n hline_text = '\\\\hline\\n'\n if hlines:\n center_text += hline_text\n center_text += '\\tModel' + (' & AIC' if aic else '') + (' & BIC ' if\n bic else '') + (' & DIC ' if dic else '') + end_text\n if hlines:\n center_text += '\\t' + hline_text\n if aic:\n aics = self.aic()\n else:\n aics = np.zeros(len(self.parent.chains))\n if bic:\n bics = self.bic()\n else:\n bics = np.zeros(len(self.parent.chains))\n if dic:\n dics = self.dic()\n else:\n dics = np.zeros(len(self.parent.chains))\n if sort == 'bic':\n to_sort = bics\n elif sort == 'aic':\n to_sort = aics\n elif sort == 'dic':\n to_sort = dics\n else:\n raise ValueError('sort %s not recognised, must be dic, aic or dic' %\n sort)\n good = [i for i, t in enumerate(to_sort) if t is not None]\n names = [self.parent.chains[g].name for g in good]\n aics = [aics[g] for g in good]\n bics = [bics[g] for g in good]\n to_sort = bics if sort == 'bic' else aics\n indexes = np.argsort(to_sort)\n if descending:\n indexes = indexes[::-1]\n for i in indexes:\n line = '\\t' + names[i]\n if aic:\n line += ' & %5.1f ' % aics[i]\n if bic:\n line += ' & %5.1f ' % bics[i]\n if dic:\n line += ' & %5.1f ' % dics[i]\n line += end_text\n center_text += line\n if hlines:\n center_text += '\\t' + hline_text\n return base_string % (column_text, center_text)\n", "role": "user" }, { "content": "comparison_table", "role": "assistant" } ]
def x(self, data): if len(data.shape) == 1 and self.num_dim == 1: data = np.atleast_2d(data).T _d = np.dot(data - self.mean, self.A) neighbors = self.tree.query_ball_point(_d, self.sigma * self.truncation) out = [] for i, n in enumerate(neighbors): if len(n) >= self.nmin: diff = self.d[n, :] - _d[i] distsq = np.sum(diff * diff, axis=1) else: dist, n = self.tree.query(_d[i], k=self.nmin) distsq = dist * dist out.append(np.sum(self.weights[n] * np.exp(self.sigma_fact * distsq))) return np.array(out)
evaluate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n if len(data.shape) == 1 and self.num_dim == 1:\n data = np.atleast_2d(data).T\n _d = np.dot(data - self.mean, self.A)\n neighbors = self.tree.query_ball_point(_d, self.sigma * self.truncation)\n out = []\n for i, n in enumerate(neighbors):\n if len(n) >= self.nmin:\n diff = self.d[n, :] - _d[i]\n distsq = np.sum(diff * diff, axis=1)\n else:\n dist, n = self.tree.query(_d[i], k=self.nmin)\n distsq = dist * dist\n out.append(np.sum(self.weights[n] * np.exp(self.sigma_fact * distsq)))\n return np.array(out)\n", "role": "user" }, { "content": "evaluate", "role": "assistant" } ]
def x(self, parameters=None, truth=None, extents=None, display=False, filename=None, chains=None, convolve=None, figsize=None, plot_weights= True, plot_posterior=True, log_weight=None): chains, parameters, truth, extents, _ = self._sanitise(chains, parameters, truth, extents) n = len(parameters) extra = 0 if plot_weights: plot_weights = plot_weights and np.any([np.any(c.weights != 1.0) for c in chains]) plot_posterior = plot_posterior and np.any([(c.posterior is not None) for c in chains]) if plot_weights: extra += 1 if plot_posterior: extra += 1 if figsize is None: figsize = 8, 0.75 + (n + extra) fig, axes = plt.subplots(figsize=figsize, nrows=n + extra, squeeze= False, sharex=True) for i, axes_row in enumerate(axes): ax = axes_row[0] if i >= extra: p = parameters[i - n] for chain in chains: if p in chain.parameters: chain_row = chain.get_data(p) self._plot_walk(ax, p, chain_row, extents=extents.get(p ), convolve=convolve, color=chain.config['color']) if truth.get(p) is not None: self._plot_walk_truth(ax, truth.get(p)) elif i == 0 and plot_posterior: for chain in chains: if chain.posterior is not None: self._plot_walk(ax, '$\\log(P)$', chain.posterior - chain.posterior.max(), convolve=convolve, color= chain.config['color']) else: if log_weight is None: log_weight = np.any([(chain.weights.mean() < 0.1) for chain in chains]) if log_weight: for chain in chains: self._plot_walk(ax, '$\\log_{10}(w)$', np.log10(chain. weights), convolve=convolve, color=chain.config[ 'color']) else: for chain in chains: self._plot_walk(ax, '$w$', chain.weights, convolve= convolve, color=chain.config['color']) if filename is not None: if isinstance(filename, str): filename = [filename] for f in filename: self._save_fig(fig, f, 300) if display: plt.show() return fig
plot_walks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameters=None, truth=None, extents=None, display=False,\n filename=None, chains=None, convolve=None, figsize=None, plot_weights=\n True, plot_posterior=True, log_weight=None):\n chains, parameters, truth, extents, _ = self._sanitise(chains,\n parameters, truth, extents)\n n = len(parameters)\n extra = 0\n if plot_weights:\n plot_weights = plot_weights and np.any([np.any(c.weights != 1.0) for\n c in chains])\n plot_posterior = plot_posterior and np.any([(c.posterior is not None) for\n c in chains])\n if plot_weights:\n extra += 1\n if plot_posterior:\n extra += 1\n if figsize is None:\n figsize = 8, 0.75 + (n + extra)\n fig, axes = plt.subplots(figsize=figsize, nrows=n + extra, squeeze=\n False, sharex=True)\n for i, axes_row in enumerate(axes):\n ax = axes_row[0]\n if i >= extra:\n p = parameters[i - n]\n for chain in chains:\n if p in chain.parameters:\n chain_row = chain.get_data(p)\n self._plot_walk(ax, p, chain_row, extents=extents.get(p\n ), convolve=convolve, color=chain.config['color'])\n if truth.get(p) is not None:\n self._plot_walk_truth(ax, truth.get(p))\n elif i == 0 and plot_posterior:\n for chain in chains:\n if chain.posterior is not None:\n self._plot_walk(ax, '$\\\\log(P)$', chain.posterior -\n chain.posterior.max(), convolve=convolve, color=\n chain.config['color'])\n else:\n if log_weight is None:\n log_weight = np.any([(chain.weights.mean() < 0.1) for chain in\n chains])\n if log_weight:\n for chain in chains:\n self._plot_walk(ax, '$\\\\log_{10}(w)$', np.log10(chain.\n weights), convolve=convolve, color=chain.config[\n 'color'])\n else:\n for chain in chains:\n self._plot_walk(ax, '$w$', chain.weights, convolve=\n convolve, color=chain.config['color'])\n if filename is not None:\n if isinstance(filename, str):\n filename = [filename]\n for f in filename:\n self._save_fig(fig, f, 300)\n if display:\n plt.show()\n return fig\n", "role": "user" }, { "content": "plot_walks", "role": "assistant" } ]
def x(self, parameters=None, truth=None, extents=None, display=False, filename=None, chains=None, col_wrap=4, figsize=None, blind=None): chains, parameters, truth, extents, blind = self._sanitise(chains, parameters, truth, extents, blind=blind) n = len(parameters) num_cols = min(n, col_wrap) num_rows = int(np.ceil(1.0 * n / col_wrap)) if figsize is None: figsize = 1.0 if isinstance(figsize, float): figsize_float = figsize figsize = num_cols * 2 * figsize, num_rows * 2 * figsize else: figsize_float = 1.0 summary = self.parent.config['summary'] label_font_size = self.parent.config['label_font_size'] tick_font_size = self.parent.config['tick_font_size'] max_ticks = self.parent.config['max_ticks'] diagonal_tick_labels = self.parent.config['diagonal_tick_labels'] if summary is None: summary = len(self.parent.chains) == 1 hspace = (0.8 if summary else 0.5) / figsize_float fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize= figsize, squeeze=False) fig.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.1, wspace= 0.05, hspace=hspace) formatter = ScalarFormatter(useOffset=False) formatter.set_powerlimits((-3, 4)) for i, ax in enumerate(axes.flatten()): if i >= len(parameters): ax.set_axis_off() continue p = parameters[i] ax.set_yticks([]) if p in blind: ax.set_xticks([]) else: if diagonal_tick_labels: _ = [l.set_rotation(45) for l in ax.get_xticklabels()] _ = [l.set_fontsize(tick_font_size) for l in ax.get_xticklabels()] ax.xaxis.set_major_locator(MaxNLocator(max_ticks, prune='lower')) ax.xaxis.set_major_formatter(formatter) ax.set_xlim(extents.get(p) or self._get_parameter_extents(p, chains)) max_val = None for chain in chains: if p in chain.parameters: param_summary = summary and p not in blind m = self._plot_bars(ax, p, chain, summary=param_summary) if max_val is None or m > max_val: max_val = m self._add_truth(ax, truth, None, py=p) ax.set_ylim(0, 1.1 * max_val) ax.set_xlabel(p, fontsize=label_font_size) if filename is not None: if isinstance(filename, str): filename = [filename] for f in filename: self._save_fig(fig, f, 300) if display: plt.show() return fig
plot_distributions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameters=None, truth=None, extents=None, display=False,\n filename=None, chains=None, col_wrap=4, figsize=None, blind=None):\n chains, parameters, truth, extents, blind = self._sanitise(chains,\n parameters, truth, extents, blind=blind)\n n = len(parameters)\n num_cols = min(n, col_wrap)\n num_rows = int(np.ceil(1.0 * n / col_wrap))\n if figsize is None:\n figsize = 1.0\n if isinstance(figsize, float):\n figsize_float = figsize\n figsize = num_cols * 2 * figsize, num_rows * 2 * figsize\n else:\n figsize_float = 1.0\n summary = self.parent.config['summary']\n label_font_size = self.parent.config['label_font_size']\n tick_font_size = self.parent.config['tick_font_size']\n max_ticks = self.parent.config['max_ticks']\n diagonal_tick_labels = self.parent.config['diagonal_tick_labels']\n if summary is None:\n summary = len(self.parent.chains) == 1\n hspace = (0.8 if summary else 0.5) / figsize_float\n fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=\n figsize, squeeze=False)\n fig.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.1, wspace=\n 0.05, hspace=hspace)\n formatter = ScalarFormatter(useOffset=False)\n formatter.set_powerlimits((-3, 4))\n for i, ax in enumerate(axes.flatten()):\n if i >= len(parameters):\n ax.set_axis_off()\n continue\n p = parameters[i]\n ax.set_yticks([])\n if p in blind:\n ax.set_xticks([])\n else:\n if diagonal_tick_labels:\n _ = [l.set_rotation(45) for l in ax.get_xticklabels()]\n _ = [l.set_fontsize(tick_font_size) for l in ax.get_xticklabels()]\n ax.xaxis.set_major_locator(MaxNLocator(max_ticks, prune='lower'))\n ax.xaxis.set_major_formatter(formatter)\n ax.set_xlim(extents.get(p) or self._get_parameter_extents(p, chains))\n max_val = None\n for chain in chains:\n if p in chain.parameters:\n param_summary = summary and p not in blind\n m = self._plot_bars(ax, p, chain, summary=param_summary)\n if max_val is None or m > max_val:\n max_val = m\n self._add_truth(ax, truth, None, py=p)\n ax.set_ylim(0, 1.1 * max_val)\n ax.set_xlabel(p, fontsize=label_font_size)\n if filename is not None:\n if isinstance(filename, str):\n filename = [filename]\n for f in filename:\n self._save_fig(fig, f, 300)\n if display:\n plt.show()\n return fig\n", "role": "user" }, { "content": "plot_distributions", "role": "assistant" } ]
def x(self, parameters=None, truth=None, extents=None, display=False, filename=None, chains=None, figsize=1.0, errorbar=False, include_truth_chain=True, blind=None, watermark=None, extra_parameter_spacing=0.5, vertical_spacing_ratio=1.0, show_names=True): wide_extents = not errorbar chains, parameters, truth, extents, blind = self._sanitise(chains, parameters, truth, extents, blind=blind, wide_extents=wide_extents) all_names = [c.name for c in self.parent.chains] if isinstance(truth, str): assert truth in all_names, 'Truth chain %s is not in the list of added chains %s' % ( truth, all_names) if not include_truth_chain: chains = [c for c in chains if c.name != truth] truth = self.parent.analysis.get_summary(chains=truth, parameters= parameters) max_param = self._get_size_of_texts(parameters) fid_dpi = 65 param_width = extra_parameter_spacing + max(0.5, max_param / fid_dpi) if show_names: max_model_name = self._get_size_of_texts([chain.name for chain in chains]) model_width = 0.25 + max_model_name / fid_dpi gridspec_kw = {'width_ratios': [model_width] + [param_width] * len( parameters), 'height_ratios': [1] * len(chains)} ncols = 1 + len(parameters) else: model_width = 0 gridspec_kw = {'width_ratios': [param_width] * len(parameters), 'height_ratios': [1] * len(chains)} ncols = len(parameters) top_spacing = 0.3 bottom_spacing = 0.2 row_height = (0.5 if not errorbar else 0.3) * vertical_spacing_ratio width = param_width * len(parameters) + model_width height = top_spacing + bottom_spacing + row_height * len(chains) top_ratio = 1 - top_spacing / height bottom_ratio = bottom_spacing / height figsize = width * figsize, height * figsize fig, axes = plt.subplots(nrows=len(chains), ncols=ncols, figsize= figsize, squeeze=False, gridspec_kw=gridspec_kw) fig.subplots_adjust(left=0.05, right=0.95, top=top_ratio, bottom= bottom_ratio, wspace=0.0, hspace=0.0) label_font_size = self.parent.config['label_font_size'] legend_color_text = self.parent.config['legend_color_text'] max_vals = {} for i, row in enumerate(axes): chain = chains[i] cs, ws, ps = chain.chain, chain.weights, chain.parameters gs, ns = chain.grid, chain.name colour = chain.config['color'] if show_names: ax_first = row[0] ax_first.set_axis_off() text_colour = 'k' if not legend_color_text else colour ax_first.text(0, 0.5, ns, transform=ax_first.transAxes, fontsize=label_font_size, verticalalignment='center', color =text_colour, weight='medium') cols = row[1:] else: cols = row for ax, p in zip(cols, parameters): if i > 0: ax.spines['top'].set_visible(False) if i < len(chains) - 1: ax.spines['bottom'].set_visible(False) if i < len(chains) - 1 or p in blind: ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim(extents[p]) if i == 0: ax.set_title('$%s$' % p, fontsize=label_font_size) truth_value = truth.get(p) if truth_value is not None: if isinstance(truth_value, float) or isinstance(truth_value, int): truth_mean = truth_value truth_min, truth_max = None, None elif len(truth_value) == 1: truth_mean = truth_value truth_min, truth_max = None, None elif len(truth_value) == 2: truth_min, truth_max = truth_value truth_mean = None else: truth_min, truth_mean, truth_max = truth_value if truth_mean is not None: ax.axvline(truth_mean, **self.parent.config_truth) if truth_min is not None and truth_max is not None: ax.axvspan(truth_min, truth_max, color=self.parent. config_truth['color'], alpha=0.15, lw=0) if p not in ps: continue if errorbar: fv = self.parent.analysis.get_parameter_summary(chain, p) if fv[0] is not None and fv[2] is not None: diff = np.abs(np.diff(fv)) ax.errorbar([fv[1]], 0, xerr=[[diff[0]], [diff[1]]], fmt='o', color=colour) else: m = self._plot_bars(ax, p, chain) if max_vals.get(p) is None or m > max_vals.get(p): max_vals[p] = m for i, row in enumerate(axes): index = 1 if show_names else 0 for ax, p in zip(row[index:], parameters): if not errorbar: ax.set_ylim(0, 1.1 * max_vals[p]) dpi = 300 if watermark: ax = None self._add_watermark(fig, ax, figsize, watermark, dpi=dpi, size_scale=0.8) if filename is not None: if isinstance(filename, str): filename = [filename] for f in filename: self._save_fig(fig, f, dpi) if display: plt.show() return fig
plot_summary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameters=None, truth=None, extents=None, display=False,\n filename=None, chains=None, figsize=1.0, errorbar=False,\n include_truth_chain=True, blind=None, watermark=None,\n extra_parameter_spacing=0.5, vertical_spacing_ratio=1.0, show_names=True):\n wide_extents = not errorbar\n chains, parameters, truth, extents, blind = self._sanitise(chains,\n parameters, truth, extents, blind=blind, wide_extents=wide_extents)\n all_names = [c.name for c in self.parent.chains]\n if isinstance(truth, str):\n assert truth in all_names, 'Truth chain %s is not in the list of added chains %s' % (\n truth, all_names)\n if not include_truth_chain:\n chains = [c for c in chains if c.name != truth]\n truth = self.parent.analysis.get_summary(chains=truth, parameters=\n parameters)\n max_param = self._get_size_of_texts(parameters)\n fid_dpi = 65\n param_width = extra_parameter_spacing + max(0.5, max_param / fid_dpi)\n if show_names:\n max_model_name = self._get_size_of_texts([chain.name for chain in\n chains])\n model_width = 0.25 + max_model_name / fid_dpi\n gridspec_kw = {'width_ratios': [model_width] + [param_width] * len(\n parameters), 'height_ratios': [1] * len(chains)}\n ncols = 1 + len(parameters)\n else:\n model_width = 0\n gridspec_kw = {'width_ratios': [param_width] * len(parameters),\n 'height_ratios': [1] * len(chains)}\n ncols = len(parameters)\n top_spacing = 0.3\n bottom_spacing = 0.2\n row_height = (0.5 if not errorbar else 0.3) * vertical_spacing_ratio\n width = param_width * len(parameters) + model_width\n height = top_spacing + bottom_spacing + row_height * len(chains)\n top_ratio = 1 - top_spacing / height\n bottom_ratio = bottom_spacing / height\n figsize = width * figsize, height * figsize\n fig, axes = plt.subplots(nrows=len(chains), ncols=ncols, figsize=\n figsize, squeeze=False, gridspec_kw=gridspec_kw)\n fig.subplots_adjust(left=0.05, right=0.95, top=top_ratio, bottom=\n bottom_ratio, wspace=0.0, hspace=0.0)\n label_font_size = self.parent.config['label_font_size']\n legend_color_text = self.parent.config['legend_color_text']\n max_vals = {}\n for i, row in enumerate(axes):\n chain = chains[i]\n cs, ws, ps = chain.chain, chain.weights, chain.parameters\n gs, ns = chain.grid, chain.name\n colour = chain.config['color']\n if show_names:\n ax_first = row[0]\n ax_first.set_axis_off()\n text_colour = 'k' if not legend_color_text else colour\n ax_first.text(0, 0.5, ns, transform=ax_first.transAxes,\n fontsize=label_font_size, verticalalignment='center', color\n =text_colour, weight='medium')\n cols = row[1:]\n else:\n cols = row\n for ax, p in zip(cols, parameters):\n if i > 0:\n ax.spines['top'].set_visible(False)\n if i < len(chains) - 1:\n ax.spines['bottom'].set_visible(False)\n if i < len(chains) - 1 or p in blind:\n ax.set_xticks([])\n ax.set_yticks([])\n ax.set_xlim(extents[p])\n if i == 0:\n ax.set_title('$%s$' % p, fontsize=label_font_size)\n truth_value = truth.get(p)\n if truth_value is not None:\n if isinstance(truth_value, float) or isinstance(truth_value,\n int):\n truth_mean = truth_value\n truth_min, truth_max = None, None\n elif len(truth_value) == 1:\n truth_mean = truth_value\n truth_min, truth_max = None, None\n elif len(truth_value) == 2:\n truth_min, truth_max = truth_value\n truth_mean = None\n else:\n truth_min, truth_mean, truth_max = truth_value\n if truth_mean is not None:\n ax.axvline(truth_mean, **self.parent.config_truth)\n if truth_min is not None and truth_max is not None:\n ax.axvspan(truth_min, truth_max, color=self.parent.\n config_truth['color'], alpha=0.15, lw=0)\n if p not in ps:\n continue\n if errorbar:\n fv = self.parent.analysis.get_parameter_summary(chain, p)\n if fv[0] is not None and fv[2] is not None:\n diff = np.abs(np.diff(fv))\n ax.errorbar([fv[1]], 0, xerr=[[diff[0]], [diff[1]]],\n fmt='o', color=colour)\n else:\n m = self._plot_bars(ax, p, chain)\n if max_vals.get(p) is None or m > max_vals.get(p):\n max_vals[p] = m\n for i, row in enumerate(axes):\n index = 1 if show_names else 0\n for ax, p in zip(row[index:], parameters):\n if not errorbar:\n ax.set_ylim(0, 1.1 * max_vals[p])\n dpi = 300\n if watermark:\n ax = None\n self._add_watermark(fig, ax, figsize, watermark, dpi=dpi,\n size_scale=0.8)\n if filename is not None:\n if isinstance(filename, str):\n filename = [filename]\n for f in filename:\n self._save_fig(fig, f, dpi)\n if display:\n plt.show()\n return fig\n", "role": "user" }, { "content": "plot_summary", "role": "assistant" } ]
def x(self, chain=None, threshold=0.05): if chain is None: return np.all([self.gelman_rubin(k, threshold=threshold) for k in range(len(self.parent.chains))]) index = self.parent._get_chain(chain) assert len(index ) == 1, 'Please specify only one chain, have %d chains' % len(index) chain = self.parent.chains[index[0]] num_walkers = chain.walkers parameters = chain.parameters name = chain.name data = chain.chain chains = np.split(data, num_walkers) assert num_walkers > 1, 'Cannot run Gelman-Rubin statistic with only one walker' m = 1.0 * len(chains) n = 1.0 * chains[0].shape[0] all_mean = np.mean(data, axis=0) chain_means = np.array([np.mean(c, axis=0) for c in chains]) chain_var = np.array([np.var(c, axis=0, ddof=1) for c in chains]) b = n / (m - 1) * ((chain_means - all_mean) ** 2).sum(axis=0) w = 1 / m * chain_var.sum(axis=0) var = (n - 1) * w / n + b / n v = var + b / (n * m) R = np.sqrt(v / w) passed = np.abs(R - 1) < threshold print('Gelman-Rubin Statistic values for chain %s' % name) for p, v, pas in zip(parameters, R, passed): param = 'Param %d' % p if isinstance(p, int) else p print('%s: %7.5f (%s)' % (param, v, 'Passed' if pas else 'Failed')) return np.all(passed)
gelman_rubin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chain=None, threshold=0.05):\n if chain is None:\n return np.all([self.gelman_rubin(k, threshold=threshold) for k in\n range(len(self.parent.chains))])\n index = self.parent._get_chain(chain)\n assert len(index\n ) == 1, 'Please specify only one chain, have %d chains' % len(index)\n chain = self.parent.chains[index[0]]\n num_walkers = chain.walkers\n parameters = chain.parameters\n name = chain.name\n data = chain.chain\n chains = np.split(data, num_walkers)\n assert num_walkers > 1, 'Cannot run Gelman-Rubin statistic with only one walker'\n m = 1.0 * len(chains)\n n = 1.0 * chains[0].shape[0]\n all_mean = np.mean(data, axis=0)\n chain_means = np.array([np.mean(c, axis=0) for c in chains])\n chain_var = np.array([np.var(c, axis=0, ddof=1) for c in chains])\n b = n / (m - 1) * ((chain_means - all_mean) ** 2).sum(axis=0)\n w = 1 / m * chain_var.sum(axis=0)\n var = (n - 1) * w / n + b / n\n v = var + b / (n * m)\n R = np.sqrt(v / w)\n passed = np.abs(R - 1) < threshold\n print('Gelman-Rubin Statistic values for chain %s' % name)\n for p, v, pas in zip(parameters, R, passed):\n param = 'Param %d' % p if isinstance(p, int) else p\n print('%s: %7.5f (%s)' % (param, v, 'Passed' if pas else 'Failed'))\n return np.all(passed)\n", "role": "user" }, { "content": "gelman_rubin", "role": "assistant" } ]
def x(self, chain=None, first=0.1, last=0.5, threshold=0.05): if chain is None: return np.all([self.geweke(k, threshold=threshold) for k in range( len(self.parent.chains))]) index = self.parent._get_chain(chain) assert len(index ) == 1, 'Please specify only one chain, have %d chains' % len(index) chain = self.parent.chains[index[0]] num_walkers = chain.walkers assert num_walkers is not None and num_walkers > 0, 'You need to specify the number of walkers to use the Geweke diagnostic.' name = chain.name data = chain.chain chains = np.split(data, num_walkers) n = 1.0 * chains[0].shape[0] n_start = int(np.floor(first * n)) n_end = int(np.floor((1 - last) * n)) mean_start = np.array([np.mean(c[:n_start, i]) for c in chains for i in range(c.shape[1])]) var_start = np.array([(self._spec(c[:n_start, i]) / c[:n_start, i].size ) for c in chains for i in range(c.shape[1])]) mean_end = np.array([np.mean(c[n_end:, i]) for c in chains for i in range(c.shape[1])]) var_end = np.array([(self._spec(c[n_end:, i]) / c[n_end:, i].size) for c in chains for i in range(c.shape[1])]) zs = (mean_start - mean_end) / np.sqrt(var_start + var_end) _, pvalue = normaltest(zs) print('Gweke Statistic for chain %s has p-value %e' % (name, pvalue)) return pvalue > threshold
geweke
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chain=None, first=0.1, last=0.5, threshold=0.05):\n if chain is None:\n return np.all([self.geweke(k, threshold=threshold) for k in range(\n len(self.parent.chains))])\n index = self.parent._get_chain(chain)\n assert len(index\n ) == 1, 'Please specify only one chain, have %d chains' % len(index)\n chain = self.parent.chains[index[0]]\n num_walkers = chain.walkers\n assert num_walkers is not None and num_walkers > 0, 'You need to specify the number of walkers to use the Geweke diagnostic.'\n name = chain.name\n data = chain.chain\n chains = np.split(data, num_walkers)\n n = 1.0 * chains[0].shape[0]\n n_start = int(np.floor(first * n))\n n_end = int(np.floor((1 - last) * n))\n mean_start = np.array([np.mean(c[:n_start, i]) for c in chains for i in\n range(c.shape[1])])\n var_start = np.array([(self._spec(c[:n_start, i]) / c[:n_start, i].size\n ) for c in chains for i in range(c.shape[1])])\n mean_end = np.array([np.mean(c[n_end:, i]) for c in chains for i in\n range(c.shape[1])])\n var_end = np.array([(self._spec(c[n_end:, i]) / c[n_end:, i].size) for\n c in chains for i in range(c.shape[1])])\n zs = (mean_start - mean_end) / np.sqrt(var_start + var_end)\n _, pvalue = normaltest(zs)\n print('Gweke Statistic for chain %s has p-value %e' % (name, pvalue))\n return pvalue > threshold\n", "role": "user" }, { "content": "geweke", "role": "assistant" } ]
def x(self, parameters=None, transpose=False, caption=None, label= 'tab:model_params', hlines=True, blank_fill='--'): if parameters is None: parameters = self.parent._all_parameters for p in parameters: assert isinstance(p, str ), 'Generating a LaTeX table requires all parameters have labels' num_parameters = len(parameters) num_chains = len(self.parent.chains) fit_values = self.get_summary(squeeze=False) if label is None: label = '' if caption is None: caption = '' end_text = ' \\\\ \n' if transpose: column_text = 'c' * (num_chains + 1) else: column_text = 'c' * (num_parameters + 1) center_text = '' hline_text = '\\hline\n' if hlines: center_text += hline_text + '\t\t' if transpose: center_text += ' & '.join(['Parameter'] + [c.name for c in self. parent.chains]) + end_text if hlines: center_text += '\t\t' + hline_text for p in parameters: arr = ['\t\t' + p] for chain_res in fit_values: if p in chain_res: arr.append(self.get_parameter_text(*chain_res[p], wrap= True)) else: arr.append(blank_fill) center_text += ' & '.join(arr) + end_text else: center_text += ' & '.join(['Model'] + parameters) + end_text if hlines: center_text += '\t\t' + hline_text for name, chain_res in zip([c.name for c in self.parent.chains], fit_values): arr = ['\t\t' + name] for p in parameters: if p in chain_res: arr.append(self.get_parameter_text(*chain_res[p], wrap= True)) else: arr.append(blank_fill) center_text += ' & '.join(arr) + end_text if hlines: center_text += '\t\t' + hline_text final_text = get_latex_table_frame(caption, label) % (column_text, center_text) return final_text
get_latex_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameters=None, transpose=False, caption=None, label=\n 'tab:model_params', hlines=True, blank_fill='--'):\n if parameters is None:\n parameters = self.parent._all_parameters\n for p in parameters:\n assert isinstance(p, str\n ), 'Generating a LaTeX table requires all parameters have labels'\n num_parameters = len(parameters)\n num_chains = len(self.parent.chains)\n fit_values = self.get_summary(squeeze=False)\n if label is None:\n label = ''\n if caption is None:\n caption = ''\n end_text = ' \\\\\\\\ \\n'\n if transpose:\n column_text = 'c' * (num_chains + 1)\n else:\n column_text = 'c' * (num_parameters + 1)\n center_text = ''\n hline_text = '\\\\hline\\n'\n if hlines:\n center_text += hline_text + '\\t\\t'\n if transpose:\n center_text += ' & '.join(['Parameter'] + [c.name for c in self.\n parent.chains]) + end_text\n if hlines:\n center_text += '\\t\\t' + hline_text\n for p in parameters:\n arr = ['\\t\\t' + p]\n for chain_res in fit_values:\n if p in chain_res:\n arr.append(self.get_parameter_text(*chain_res[p], wrap=\n True))\n else:\n arr.append(blank_fill)\n center_text += ' & '.join(arr) + end_text\n else:\n center_text += ' & '.join(['Model'] + parameters) + end_text\n if hlines:\n center_text += '\\t\\t' + hline_text\n for name, chain_res in zip([c.name for c in self.parent.chains],\n fit_values):\n arr = ['\\t\\t' + name]\n for p in parameters:\n if p in chain_res:\n arr.append(self.get_parameter_text(*chain_res[p], wrap=\n True))\n else:\n arr.append(blank_fill)\n center_text += ' & '.join(arr) + end_text\n if hlines:\n center_text += '\\t\\t' + hline_text\n final_text = get_latex_table_frame(caption, label) % (column_text,\n center_text)\n return final_text\n", "role": "user" }, { "content": "get_latex_table", "role": "assistant" } ]
def x(self, squeeze=True, parameters=None, chains=None): results = [] if chains is None: chains = self.parent.chains else: if isinstance(chains, (int, str)): chains = [chains] chains = [self.parent.chains[i] for c in chains for i in self. parent._get_chain(c)] for chain in chains: res = {} params_to_find = (parameters if parameters is not None else chain. parameters) for p in params_to_find: if p not in chain.parameters: continue summary = self.get_parameter_summary(chain, p) res[p] = summary results.append(res) if squeeze and len(results) == 1: return results[0] return results
get_summary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, squeeze=True, parameters=None, chains=None):\n results = []\n if chains is None:\n chains = self.parent.chains\n else:\n if isinstance(chains, (int, str)):\n chains = [chains]\n chains = [self.parent.chains[i] for c in chains for i in self.\n parent._get_chain(c)]\n for chain in chains:\n res = {}\n params_to_find = (parameters if parameters is not None else chain.\n parameters)\n for p in params_to_find:\n if p not in chain.parameters:\n continue\n summary = self.get_parameter_summary(chain, p)\n res[p] = summary\n results.append(res)\n if squeeze and len(results) == 1:\n return results[0]\n return results\n", "role": "user" }, { "content": "get_summary", "role": "assistant" } ]
def x(self, parameters=None, squeeze=True, chains=None): results = [] if chains is None: chains = self.parent.chains else: if isinstance(chains, (int, str)): chains = [chains] chains = [self.parent.chains[i] for c in chains for i in self. parent._get_chain(c)] if isinstance(parameters, str): parameters = [parameters] for chain in chains: if chain.posterior_max_index is None: results.append(None) continue res = {} params_to_find = (parameters if parameters is not None else chain. parameters) for p in params_to_find: if p in chain.parameters: res[p] = chain.posterior_max_params[p] results.append(res) if squeeze and len(results) == 1: return results[0] return results
get_max_posteriors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameters=None, squeeze=True, chains=None):\n results = []\n if chains is None:\n chains = self.parent.chains\n else:\n if isinstance(chains, (int, str)):\n chains = [chains]\n chains = [self.parent.chains[i] for c in chains for i in self.\n parent._get_chain(c)]\n if isinstance(parameters, str):\n parameters = [parameters]\n for chain in chains:\n if chain.posterior_max_index is None:\n results.append(None)\n continue\n res = {}\n params_to_find = (parameters if parameters is not None else chain.\n parameters)\n for p in params_to_find:\n if p in chain.parameters:\n res[p] = chain.posterior_max_params[p]\n results.append(res)\n if squeeze and len(results) == 1:\n return results[0]\n return results\n", "role": "user" }, { "content": "get_max_posteriors", "role": "assistant" } ]
def x(self, chain=0, parameters=None): parameters, cov = self.get_covariance(chain=chain, parameters=parameters) diag = np.sqrt(np.diag(cov)) divisor = diag[None, :] * diag[:, None] correlations = cov / divisor return parameters, correlations
get_correlations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chain=0, parameters=None):\n parameters, cov = self.get_covariance(chain=chain, parameters=parameters)\n diag = np.sqrt(np.diag(cov))\n divisor = diag[None, :] * diag[:, None]\n correlations = cov / divisor\n return parameters, correlations\n", "role": "user" }, { "content": "get_correlations", "role": "assistant" } ]
def x(self, chain=0, parameters=None): index = self.parent._get_chain(chain) assert len(index ) == 1, 'Please specify only one chain, have %d chains' % len(index) chain = self.parent.chains[index[0]] if parameters is None: parameters = chain.parameters data = chain.get_data(parameters) cov = np.atleast_2d(np.cov(data, aweights=chain.weights, rowvar=False)) return parameters, cov
get_covariance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chain=0, parameters=None):\n index = self.parent._get_chain(chain)\n assert len(index\n ) == 1, 'Please specify only one chain, have %d chains' % len(index)\n chain = self.parent.chains[index[0]]\n if parameters is None:\n parameters = chain.parameters\n data = chain.get_data(parameters)\n cov = np.atleast_2d(np.cov(data, aweights=chain.weights, rowvar=False))\n return parameters, cov\n", "role": "user" }, { "content": "get_covariance", "role": "assistant" } ]
def x(self, chain=0, parameters=None, caption='Parameter Correlations', label='tab:parameter_correlations'): parameters, cor = self.get_correlations(chain=chain, parameters=parameters) return self._get_2d_latex_table(parameters, cor, caption, label)
get_correlation_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chain=0, parameters=None, caption='Parameter Correlations',\n label='tab:parameter_correlations'):\n parameters, cor = self.get_correlations(chain=chain, parameters=parameters)\n return self._get_2d_latex_table(parameters, cor, caption, label)\n", "role": "user" }, { "content": "get_correlation_table", "role": "assistant" } ]
def x(self, chain=0, parameters=None, caption='Parameter Covariance', label ='tab:parameter_covariance'): parameters, cov = self.get_covariance(chain=chain, parameters=parameters) return self._get_2d_latex_table(parameters, cov, caption, label)
get_covariance_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chain=0, parameters=None, caption='Parameter Covariance', label\n ='tab:parameter_covariance'):\n parameters, cov = self.get_covariance(chain=chain, parameters=parameters)\n return self._get_2d_latex_table(parameters, cov, caption, label)\n", "role": "user" }, { "content": "get_covariance_table", "role": "assistant" } ]
def x(self, lower, maximum, upper, wrap=False): if lower is None or upper is None: return '' upper_error = upper - maximum lower_error = maximum - lower if upper_error != 0 and lower_error != 0: resolution = min(np.floor(np.log10(np.abs(upper_error))), np.floor( np.log10(np.abs(lower_error)))) elif upper_error == 0 and lower_error != 0: resolution = np.floor(np.log10(np.abs(lower_error))) elif upper_error != 0 and lower_error == 0: resolution = np.floor(np.log10(np.abs(upper_error))) else: resolution = np.floor(np.log10(np.abs(maximum))) factor = 0 fmt = '%0.1f' r = 1 if np.abs(resolution) > 2: factor = -resolution if resolution == 2: fmt = '%0.0f' factor = -1 r = 0 if resolution == 1: fmt = '%0.0f' if resolution == -1: fmt = '%0.2f' r = 2 elif resolution == -2: fmt = '%0.3f' r = 3 upper_error *= 10 ** factor lower_error *= 10 ** factor maximum *= 10 ** factor upper_error = round(upper_error, r) lower_error = round(lower_error, r) maximum = round(maximum, r) if maximum == -0.0: maximum = 0.0 if resolution == 2: upper_error *= 10 ** -factor lower_error *= 10 ** -factor maximum *= 10 ** -factor factor = 0 fmt = '%0.0f' upper_error_text = fmt % upper_error lower_error_text = fmt % lower_error if upper_error_text == lower_error_text: text = '%s\\pm %s' % (fmt, '%s') % (maximum, lower_error_text) else: text = '%s^{+%s}_{-%s}' % (fmt, '%s', '%s') % (maximum, upper_error_text, lower_error_text) if factor != 0: text = '\\left( %s \\right) \\times 10^{%d}' % (text, -factor) if wrap: text = '$%s$' % text return text
get_parameter_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lower, maximum, upper, wrap=False):\n if lower is None or upper is None:\n return ''\n upper_error = upper - maximum\n lower_error = maximum - lower\n if upper_error != 0 and lower_error != 0:\n resolution = min(np.floor(np.log10(np.abs(upper_error))), np.floor(\n np.log10(np.abs(lower_error))))\n elif upper_error == 0 and lower_error != 0:\n resolution = np.floor(np.log10(np.abs(lower_error)))\n elif upper_error != 0 and lower_error == 0:\n resolution = np.floor(np.log10(np.abs(upper_error)))\n else:\n resolution = np.floor(np.log10(np.abs(maximum)))\n factor = 0\n fmt = '%0.1f'\n r = 1\n if np.abs(resolution) > 2:\n factor = -resolution\n if resolution == 2:\n fmt = '%0.0f'\n factor = -1\n r = 0\n if resolution == 1:\n fmt = '%0.0f'\n if resolution == -1:\n fmt = '%0.2f'\n r = 2\n elif resolution == -2:\n fmt = '%0.3f'\n r = 3\n upper_error *= 10 ** factor\n lower_error *= 10 ** factor\n maximum *= 10 ** factor\n upper_error = round(upper_error, r)\n lower_error = round(lower_error, r)\n maximum = round(maximum, r)\n if maximum == -0.0:\n maximum = 0.0\n if resolution == 2:\n upper_error *= 10 ** -factor\n lower_error *= 10 ** -factor\n maximum *= 10 ** -factor\n factor = 0\n fmt = '%0.0f'\n upper_error_text = fmt % upper_error\n lower_error_text = fmt % lower_error\n if upper_error_text == lower_error_text:\n text = '%s\\\\pm %s' % (fmt, '%s') % (maximum, lower_error_text)\n else:\n text = '%s^{+%s}_{-%s}' % (fmt, '%s', '%s') % (maximum,\n upper_error_text, lower_error_text)\n if factor != 0:\n text = '\\\\left( %s \\\\right) \\\\times 10^{%d}' % (text, -factor)\n if wrap:\n text = '$%s$' % text\n return text\n", "role": "user" }, { "content": "get_parameter_text", "role": "assistant" } ]
def x(self, chain, parameters=None, name=None, weights=None, posterior=None, walkers=None, grid=False, num_eff_data_points=None, num_free_params= None, color=None, linewidth=None, linestyle=None, kde=None, shade=None, shade_alpha=None, power=None, marker_style=None, marker_size=None, marker_alpha=None, plot_contour=None, plot_point=None, statistics=None, cloud=None, shade_gradient=None, bar_shade=None, bins=None, smooth=None, color_params=None, plot_color_params=None, cmap=None, num_cloud=None): is_dict = False assert chain is not None, 'You cannot have a chain of None' if isinstance(chain, str): if chain.endswith('txt'): chain = np.loadtxt(chain) else: chain = np.load(chain) elif isinstance(chain, dict): assert parameters is None, 'You cannot pass a dictionary and specify parameter names' is_dict = True parameters = list(chain.keys()) chain = np.array([chain[p] for p in parameters]).T elif isinstance(chain, list): chain = np.array(chain).T if grid: assert walkers is None, 'If grid is set, walkers should not be' assert weights is not None, 'If grid is set, you need to supply weights' if len(weights.shape) > 1: assert not is_dict, 'We cannot construct a meshgrid from a dictionary, as the parametersare no longer ordered. Please pass in a flattened array instead.' self._logger.info('Constructing meshgrid for grid results') meshes = np.meshgrid(*[u for u in chain.T], indexing='ij') chain = np.vstack([m.flatten() for m in meshes]).T weights = weights.flatten() assert weights.size == chain[:, 0 ].size, 'Error, given weight array size disagrees with parameter sampling' if len(chain.shape) == 1: chain = chain[None].T if name is None: name = 'Chain %d' % len(self.chains) if power is not None: assert isinstance(power, int) or isinstance(power, float ), 'Power should be numeric, but is %s' % type(power) if self._default_parameters is None and parameters is not None: self._default_parameters = parameters if parameters is None: if self._default_parameters is not None: assert chain.shape[1] == len(self._default_parameters ), 'Chain has %d dimensions, but default parameters have %d dimensions' % ( chain.shape[1], len(self._default_parameters)) parameters = self._default_parameters self._logger.debug('Adding chain using default parameters') else: self._logger.debug('Adding chain with no parameter names') parameters = [('%d' % x) for x in range(chain.shape[1])] else: self._logger.debug('Adding chain with defined parameters') assert len(parameters) <= chain.shape[1 ], 'Have only %d columns in chain, but have been given %d parameters names! Please double check this.' % ( chain.shape[1], len(parameters)) for p in parameters: if p not in self._all_parameters: self._all_parameters.append(p) if grid: kde = None if color is not None: color = self.color_finder.get_formatted([color])[0] c = Chain(chain, parameters, name, weights=weights, posterior=posterior, walkers=walkers, grid=grid, num_free_params=num_free_params, num_eff_data_points=num_eff_data_points, color=color, linewidth= linewidth, linestyle=linestyle, kde=kde, shade_alpha=shade_alpha, power=power, marker_style=marker_style, marker_size=marker_size, marker_alpha=marker_alpha, plot_contour=plot_contour, plot_point= plot_point, statistics=statistics, cloud=cloud, shade=shade, shade_gradient=shade_gradient, bar_shade=bar_shade, bins=bins, smooth=smooth, color_params=color_params, plot_color_params= plot_color_params, cmap=cmap, num_cloud=num_cloud) self.chains.append(c) self._init_params() return self
add_chain
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chain, parameters=None, name=None, weights=None, posterior=None,\n walkers=None, grid=False, num_eff_data_points=None, num_free_params=\n None, color=None, linewidth=None, linestyle=None, kde=None, shade=None,\n shade_alpha=None, power=None, marker_style=None, marker_size=None,\n marker_alpha=None, plot_contour=None, plot_point=None, statistics=None,\n cloud=None, shade_gradient=None, bar_shade=None, bins=None, smooth=None,\n color_params=None, plot_color_params=None, cmap=None, num_cloud=None):\n is_dict = False\n assert chain is not None, 'You cannot have a chain of None'\n if isinstance(chain, str):\n if chain.endswith('txt'):\n chain = np.loadtxt(chain)\n else:\n chain = np.load(chain)\n elif isinstance(chain, dict):\n assert parameters is None, 'You cannot pass a dictionary and specify parameter names'\n is_dict = True\n parameters = list(chain.keys())\n chain = np.array([chain[p] for p in parameters]).T\n elif isinstance(chain, list):\n chain = np.array(chain).T\n if grid:\n assert walkers is None, 'If grid is set, walkers should not be'\n assert weights is not None, 'If grid is set, you need to supply weights'\n if len(weights.shape) > 1:\n assert not is_dict, 'We cannot construct a meshgrid from a dictionary, as the parametersare no longer ordered. Please pass in a flattened array instead.'\n self._logger.info('Constructing meshgrid for grid results')\n meshes = np.meshgrid(*[u for u in chain.T], indexing='ij')\n chain = np.vstack([m.flatten() for m in meshes]).T\n weights = weights.flatten()\n assert weights.size == chain[:, 0\n ].size, 'Error, given weight array size disagrees with parameter sampling'\n if len(chain.shape) == 1:\n chain = chain[None].T\n if name is None:\n name = 'Chain %d' % len(self.chains)\n if power is not None:\n assert isinstance(power, int) or isinstance(power, float\n ), 'Power should be numeric, but is %s' % type(power)\n if self._default_parameters is None and parameters is not None:\n self._default_parameters = parameters\n if parameters is None:\n if self._default_parameters is not None:\n assert chain.shape[1] == len(self._default_parameters\n ), 'Chain has %d dimensions, but default parameters have %d dimensions' % (\n chain.shape[1], len(self._default_parameters))\n parameters = self._default_parameters\n self._logger.debug('Adding chain using default parameters')\n else:\n self._logger.debug('Adding chain with no parameter names')\n parameters = [('%d' % x) for x in range(chain.shape[1])]\n else:\n self._logger.debug('Adding chain with defined parameters')\n assert len(parameters) <= chain.shape[1\n ], 'Have only %d columns in chain, but have been given %d parameters names! Please double check this.' % (\n chain.shape[1], len(parameters))\n for p in parameters:\n if p not in self._all_parameters:\n self._all_parameters.append(p)\n if grid:\n kde = None\n if color is not None:\n color = self.color_finder.get_formatted([color])[0]\n c = Chain(chain, parameters, name, weights=weights, posterior=posterior,\n walkers=walkers, grid=grid, num_free_params=num_free_params,\n num_eff_data_points=num_eff_data_points, color=color, linewidth=\n linewidth, linestyle=linestyle, kde=kde, shade_alpha=shade_alpha,\n power=power, marker_style=marker_style, marker_size=marker_size,\n marker_alpha=marker_alpha, plot_contour=plot_contour, plot_point=\n plot_point, statistics=statistics, cloud=cloud, shade=shade,\n shade_gradient=shade_gradient, bar_shade=bar_shade, bins=bins,\n smooth=smooth, color_params=color_params, plot_color_params=\n plot_color_params, cmap=cmap, num_cloud=num_cloud)\n self.chains.append(c)\n self._init_params()\n return self\n", "role": "user" }, { "content": "add_chain", "role": "assistant" } ]
def x(self, chain=-1): if isinstance(chain, str) or isinstance(chain, int): chain = [chain] chain = sorted([i for c in chain for i in self._get_chain(c)])[::-1] assert len(chain) == len(list(set(chain)) ), 'Error, you are trying to remove a chain more than once.' for index in chain: del self.chains[index] seen = set() self._all_parameters = [p for c in self.chains for p in c.parameters if not (p in seen or seen.add(p))] self._init_params() return self
remove_chain
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chain=-1):\n if isinstance(chain, str) or isinstance(chain, int):\n chain = [chain]\n chain = sorted([i for c in chain for i in self._get_chain(c)])[::-1]\n assert len(chain) == len(list(set(chain))\n ), 'Error, you are trying to remove a chain more than once.'\n for index in chain:\n del self.chains[index]\n seen = set()\n self._all_parameters = [p for c in self.chains for p in c.parameters if\n not (p in seen or seen.add(p))]\n self._init_params()\n return self\n", "role": "user" }, { "content": "remove_chain", "role": "assistant" } ]
def x(self, **kwargs): if kwargs.get('ls') is None and kwargs.get('linestyle') is None: kwargs['ls'] = '--' kwargs['dashes'] = 3, 3 if kwargs.get('color') is None: kwargs['color'] = '#000000' self.config_truth = kwargs self._configured_truth = True return self
configure_truth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n if kwargs.get('ls') is None and kwargs.get('linestyle') is None:\n kwargs['ls'] = '--'\n kwargs['dashes'] = 3, 3\n if kwargs.get('color') is None:\n kwargs['color'] = '#000000'\n self.config_truth = kwargs\n self._configured_truth = True\n return self\n", "role": "user" }, { "content": "configure_truth", "role": "assistant" } ]
def x(self, chain=0): indexes = self._get_chain(chain) con = ChainConsumer() for index in indexes: chain = self.chains[index] assert chain.walkers is not None, 'The chain you have selected was not added with any walkers!' num_walkers = chain.walkers data = np.split(chain.chain, num_walkers) ws = np.split(chain.weights, num_walkers) for j, (c, w) in enumerate(zip(data, ws)): con.add_chain(c, weights=w, name='Chain %d' % j, parameters= chain.parameters) return con
divide_chain
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chain=0):\n indexes = self._get_chain(chain)\n con = ChainConsumer()\n for index in indexes:\n chain = self.chains[index]\n assert chain.walkers is not None, 'The chain you have selected was not added with any walkers!'\n num_walkers = chain.walkers\n data = np.split(chain.chain, num_walkers)\n ws = np.split(chain.weights, num_walkers)\n for j, (c, w) in enumerate(zip(data, ws)):\n con.add_chain(c, weights=w, name='Chain %d' % j, parameters=\n chain.parameters)\n return con\n", "role": "user" }, { "content": "divide_chain", "role": "assistant" } ]
def x(args): if args.fpr < 0 or args.fpr > 1: print('Please specify a FPR between 0 and 1') sys.exit(1) motifs = read_motifs(args.pwmfile) s = Scanner() s.set_motifs(args.pwmfile) s.set_threshold(args.fpr, filename=args.inputfile) print('Motif\tScore\tCutoff') for motif in motifs: min_score = motif.pwm_min_score() max_score = motif.pwm_max_score() opt_score = s.threshold[motif.id] if opt_score is None: opt_score = motif.pwm_max_score() threshold = (opt_score - min_score) / (max_score - min_score) print('{0}\t{1}\t{2}'.format(motif.id, opt_score, threshold))
threshold
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n if args.fpr < 0 or args.fpr > 1:\n print('Please specify a FPR between 0 and 1')\n sys.exit(1)\n motifs = read_motifs(args.pwmfile)\n s = Scanner()\n s.set_motifs(args.pwmfile)\n s.set_threshold(args.fpr, filename=args.inputfile)\n print('Motif\\tScore\\tCutoff')\n for motif in motifs:\n min_score = motif.pwm_min_score()\n max_score = motif.pwm_max_score()\n opt_score = s.threshold[motif.id]\n if opt_score is None:\n opt_score = motif.pwm_max_score()\n threshold = (opt_score - min_score) / (max_score - min_score)\n print('{0}\\t{1}\\t{2}'.format(motif.id, opt_score, threshold))\n", "role": "user" }, { "content": "threshold", "role": "assistant" } ]
def x(fg_vals, bg_vals): y_true = np.hstack((np.ones(len(fg_vals)), np.zeros(len(bg_vals)))) y_score = np.hstack((fg_vals, bg_vals)) return y_true, y_score
values_to_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals):\n y_true = np.hstack((np.ones(len(fg_vals)), np.zeros(len(bg_vals))))\n y_score = np.hstack((fg_vals, bg_vals))\n return y_true, y_score\n", "role": "user" }, { "content": "values_to_labels", "role": "assistant" } ]
def x(fg_vals, bg_vals, fdr_cutoff=0.1): if len(fg_vals) == 0: return 0.0 y_true, y_score = values_to_labels(fg_vals, bg_vals) precision, recall, _ = precision_recall_curve(y_true, y_score) fdr = 1 - precision cutoff_index = next(i for i, x in enumerate(fdr) if x <= fdr_cutoff) return recall[cutoff_index]
recall_at_fdr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals, fdr_cutoff=0.1):\n if len(fg_vals) == 0:\n return 0.0\n y_true, y_score = values_to_labels(fg_vals, bg_vals)\n precision, recall, _ = precision_recall_curve(y_true, y_score)\n fdr = 1 - precision\n cutoff_index = next(i for i, x in enumerate(fdr) if x <= fdr_cutoff)\n return recall[cutoff_index]\n", "role": "user" }, { "content": "recall_at_fdr", "role": "assistant" } ]
def x(fg_vals, bg_vals, fpr=0.01): fg_vals = np.array(fg_vals) s = scoreatpercentile(bg_vals, 100 - fpr * 100) return [sum(fg_vals >= s), sum(bg_vals >= s)]
matches_at_fpr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals, fpr=0.01):\n fg_vals = np.array(fg_vals)\n s = scoreatpercentile(bg_vals, 100 - fpr * 100)\n return [sum(fg_vals >= s), sum(bg_vals >= s)]\n", "role": "user" }, { "content": "matches_at_fpr", "role": "assistant" } ]
def x(fg_vals, bg_vals, fpr=0.01): fg_vals = np.array(fg_vals) s = scoreatpercentile(bg_vals, 100 - fpr * 100) table = [[sum(fg_vals >= s), sum(bg_vals >= s)], [sum(fg_vals < s), sum (bg_vals < s)]] return fisher_exact(table, alternative='greater')[1]
phyper_at_fpr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals, fpr=0.01):\n fg_vals = np.array(fg_vals)\n s = scoreatpercentile(bg_vals, 100 - fpr * 100)\n table = [[sum(fg_vals >= s), sum(bg_vals >= s)], [sum(fg_vals < s), sum\n (bg_vals < s)]]\n return fisher_exact(table, alternative='greater')[1]\n", "role": "user" }, { "content": "phyper_at_fpr", "role": "assistant" } ]
def x(fg_vals, bg_vals, fpr=0.01): fg_vals = np.array(fg_vals) s = scoreatpercentile(bg_vals, 100 - 100 * fpr) return len(fg_vals[fg_vals >= s]) / float(len(fg_vals))
fraction_fpr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals, fpr=0.01):\n fg_vals = np.array(fg_vals)\n s = scoreatpercentile(bg_vals, 100 - 100 * fpr)\n return len(fg_vals[fg_vals >= s]) / float(len(fg_vals))\n", "role": "user" }, { "content": "fraction_fpr", "role": "assistant" } ]
def x(fg_vals, bg_vals, fpr=0.01): bg_vals = np.array(bg_vals) return scoreatpercentile(bg_vals, 100 - 100 * fpr)
score_at_fpr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals, fpr=0.01):\n bg_vals = np.array(bg_vals)\n return scoreatpercentile(bg_vals, 100 - 100 * fpr)\n", "role": "user" }, { "content": "score_at_fpr", "role": "assistant" } ]
def x(fg_vals, bg_vals, fpr=0.01): pos = np.array(fg_vals) neg = np.array(bg_vals) s = scoreatpercentile(neg, 100 - fpr * 100) neg_matches = float(len(neg[neg >= s])) if neg_matches == 0: return float('inf') return len(pos[pos >= s]) / neg_matches * len(neg) / float(len(pos))
enr_at_fpr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals, fpr=0.01):\n pos = np.array(fg_vals)\n neg = np.array(bg_vals)\n s = scoreatpercentile(neg, 100 - fpr * 100)\n neg_matches = float(len(neg[neg >= s]))\n if neg_matches == 0:\n return float('inf')\n return len(pos[pos >= s]) / neg_matches * len(neg) / float(len(pos))\n", "role": "user" }, { "content": "enr_at_fpr", "role": "assistant" } ]
def x(fg_vals, bg_vals, minbg=2): scores = np.hstack((fg_vals, bg_vals)) idx = np.argsort(scores) x = np.hstack((np.ones(len(fg_vals)), np.zeros(len(bg_vals)))) xsort = x[idx] l_fg = len(fg_vals) l_bg = len(bg_vals) m = 0 s = 0 for i in range(len(scores), 0, -1): bgcount = float(len(xsort[i:][xsort[i:] == 0])) if bgcount >= minbg: enr = len(xsort[i:][xsort[i:] == 1]) / l_fg / (bgcount / l_bg) if enr > m: m = enr s = scores[idx[i]] return m
max_enrichment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals, minbg=2):\n scores = np.hstack((fg_vals, bg_vals))\n idx = np.argsort(scores)\n x = np.hstack((np.ones(len(fg_vals)), np.zeros(len(bg_vals))))\n xsort = x[idx]\n l_fg = len(fg_vals)\n l_bg = len(bg_vals)\n m = 0\n s = 0\n for i in range(len(scores), 0, -1):\n bgcount = float(len(xsort[i:][xsort[i:] == 0]))\n if bgcount >= minbg:\n enr = len(xsort[i:][xsort[i:] == 1]) / l_fg / (bgcount / l_bg)\n if enr > m:\n m = enr\n s = scores[idx[i]]\n return m\n", "role": "user" }, { "content": "max_enrichment", "role": "assistant" } ]
def x(fg_vals, bg_vals): fg_len = len(fg_vals) total_len = len(fg_vals) + len(bg_vals) if not isinstance(fg_vals, np.ndarray): fg_vals = np.array(fg_vals) if not isinstance(bg_vals, np.ndarray): bg_vals = np.array(bg_vals) fg_rank = stats.rankdata(fg_vals) total_rank = stats.rankdata(np.hstack((fg_vals, bg_vals))) slopes = [] for i in range(len(fg_vals)): slope = (fg_len - fg_rank[i] + 1) / fg_len / ((total_len - total_rank[i] + 1) / total_len) slopes.append(slope) return np.mean(slopes)
mncp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals):\n fg_len = len(fg_vals)\n total_len = len(fg_vals) + len(bg_vals)\n if not isinstance(fg_vals, np.ndarray):\n fg_vals = np.array(fg_vals)\n if not isinstance(bg_vals, np.ndarray):\n bg_vals = np.array(bg_vals)\n fg_rank = stats.rankdata(fg_vals)\n total_rank = stats.rankdata(np.hstack((fg_vals, bg_vals)))\n slopes = []\n for i in range(len(fg_vals)):\n slope = (fg_len - fg_rank[i] + 1) / fg_len / ((total_len -\n total_rank[i] + 1) / total_len)\n slopes.append(slope)\n return np.mean(slopes)\n", "role": "user" }, { "content": "mncp", "role": "assistant" } ]
def x(fg_vals, bg_vals): y_true, y_score = values_to_labels(fg_vals, bg_vals) return average_precision_score(y_true, y_score)
pr_auc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals):\n y_true, y_score = values_to_labels(fg_vals, bg_vals)\n return average_precision_score(y_true, y_score)\n", "role": "user" }, { "content": "pr_auc", "role": "assistant" } ]
def x(fg_vals, bg_vals): y_true, y_score = values_to_labels(fg_vals, bg_vals) return roc_auc_score(y_true, y_score)
roc_auc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals):\n y_true, y_score = values_to_labels(fg_vals, bg_vals)\n return roc_auc_score(y_true, y_score)\n", "role": "user" }, { "content": "roc_auc", "role": "assistant" } ]
def x(x_bla, y_bla, xlim=0.1): x = x_bla[:] y = y_bla[:] x.sort() y.sort() u = {} for i in (x + y): u[i] = 1 vals = sorted(u.keys()) len_x = float(len(x)) len_y = float(len(y)) new_x = [] new_y = [] x_p = 0 y_p = 0 for val in vals[::-1]: while len(x) > 0 and x[-1] >= val: x.pop() x_p += 1 while len(y) > 0 and y[-1] >= val: y.pop() y_p += 1 new_y.append((len_x - x_p) / len_x) new_x.append((len_y - y_p) / len_y) new_x = 1 - np.array(new_x) new_y = 1 - np.array(new_y) x = new_x y = new_y if len(x) != len(y): raise ValueError('Unequal!') if not xlim: xlim = 1.0 auc = 0.0 bla = zip(stats.rankdata(x), range(len(x))) bla = sorted(bla, key=lambda x: x[1]) prev_x = x[bla[0][1]] prev_y = y[bla[0][1]] index = 1 while index < len(bla) and x[bla[index][1]] <= xlim: _, i = bla[index] auc += y[i] * (x[i] - prev_x) - (x[i] - prev_x) * (y[i] - prev_y) / 2.0 prev_x = x[i] prev_y = y[i] index += 1 if index < len(bla): rank, i = bla[index] auc += prev_y * (xlim - prev_x) + (y[i] - prev_y) / (x[i] - prev_x) * ( xlim - prev_x) * (xlim - prev_x) / 2 return auc
roc_auc_xlim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_bla, y_bla, xlim=0.1):\n x = x_bla[:]\n y = y_bla[:]\n x.sort()\n y.sort()\n u = {}\n for i in (x + y):\n u[i] = 1\n vals = sorted(u.keys())\n len_x = float(len(x))\n len_y = float(len(y))\n new_x = []\n new_y = []\n x_p = 0\n y_p = 0\n for val in vals[::-1]:\n while len(x) > 0 and x[-1] >= val:\n x.pop()\n x_p += 1\n while len(y) > 0 and y[-1] >= val:\n y.pop()\n y_p += 1\n new_y.append((len_x - x_p) / len_x)\n new_x.append((len_y - y_p) / len_y)\n new_x = 1 - np.array(new_x)\n new_y = 1 - np.array(new_y)\n x = new_x\n y = new_y\n if len(x) != len(y):\n raise ValueError('Unequal!')\n if not xlim:\n xlim = 1.0\n auc = 0.0\n bla = zip(stats.rankdata(x), range(len(x)))\n bla = sorted(bla, key=lambda x: x[1])\n prev_x = x[bla[0][1]]\n prev_y = y[bla[0][1]]\n index = 1\n while index < len(bla) and x[bla[index][1]] <= xlim:\n _, i = bla[index]\n auc += y[i] * (x[i] - prev_x) - (x[i] - prev_x) * (y[i] - prev_y) / 2.0\n prev_x = x[i]\n prev_y = y[i]\n index += 1\n if index < len(bla):\n rank, i = bla[index]\n auc += prev_y * (xlim - prev_x) + (y[i] - prev_y) / (x[i] - prev_x) * (\n xlim - prev_x) * (xlim - prev_x) / 2\n return auc\n", "role": "user" }, { "content": "roc_auc_xlim", "role": "assistant" } ]
def x(fg_vals, bg_vals): if len(fg_vals) == 0: return 0 y_true, y_score = values_to_labels(fg_vals, bg_vals) fpr, tpr, _thresholds = roc_curve(y_true, y_score) return fpr, tpr
roc_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals):\n if len(fg_vals) == 0:\n return 0\n y_true, y_score = values_to_labels(fg_vals, bg_vals)\n fpr, tpr, _thresholds = roc_curve(y_true, y_score)\n return fpr, tpr\n", "role": "user" }, { "content": "roc_values", "role": "assistant" } ]
def x(fg_vals, bg_vals): x, y = roc_values(fg_vals, bg_vals) x, y = x[1:], y[1:] p = y / (y + x) filt = np.logical_and(p * y > 0, p + y > 0) p = p[filt] y = y[filt] f = 2 * p * y / (p + y) if len(f) > 0: return np.nanmax(f) else: return None
max_fmeasure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_vals, bg_vals):\n x, y = roc_values(fg_vals, bg_vals)\n x, y = x[1:], y[1:]\n p = y / (y + x)\n filt = np.logical_and(p * y > 0, p + y > 0)\n p = p[filt]\n y = y[filt]\n f = 2 * p * y / (p + y)\n if len(f) > 0:\n return np.nanmax(f)\n else:\n return None\n", "role": "user" }, { "content": "max_fmeasure", "role": "assistant" } ]
def x(fg_pos, bg_pos=None): if len(fg_pos) == 0: return 1.0 a = np.array(fg_pos, dtype='float') / max(fg_pos) p = kstest(a, 'uniform')[1] return p
ks_pvalue
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_pos, bg_pos=None):\n if len(fg_pos) == 0:\n return 1.0\n a = np.array(fg_pos, dtype='float') / max(fg_pos)\n p = kstest(a, 'uniform')[1]\n return p\n", "role": "user" }, { "content": "ks_pvalue", "role": "assistant" } ]
def x(fg_pos, bg_pos=None): p = ks_pvalue(fg_pos, max(fg_pos)) if p > 0: return -np.log10(p) else: return np.inf
ks_significance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fg_pos, bg_pos=None):\n p = ks_pvalue(fg_pos, max(fg_pos))\n if p > 0:\n return -np.log10(p)\n else:\n return np.inf\n", "role": "user" }, { "content": "ks_significance", "role": "assistant" } ]
def x(): (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = 1, img_rows, img_cols else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = img_rows, img_cols, 1 x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) return input_shape, (x_train, y_train), (x_test, y_test)
setup_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n (x_train, y_train), (x_test, y_test) = mnist.load_data()\n if K.image_data_format() == 'channels_first':\n x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)\n x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)\n input_shape = 1, img_rows, img_cols\n else:\n x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)\n x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)\n input_shape = img_rows, img_cols, 1\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n x_train /= 255\n x_test /= 255\n print('x_train shape:', x_train.shape)\n print(x_train.shape[0], 'train samples')\n print(x_test.shape[0], 'test samples')\n y_train = keras.utils.to_categorical(y_train, num_classes)\n y_test = keras.utils.to_categorical(y_test, num_classes)\n return input_shape, (x_train, y_train), (x_test, y_test)\n", "role": "user" }, { "content": "setup_data", "role": "assistant" } ]
def x(input_shape): model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape =input_shape)) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer= keras.optimizers.Adadelta(), metrics=['accuracy']) return model
build_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_shape):\n model = Sequential()\n model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape\n =input_shape))\n model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))\n model.add(MaxPooling2D(pool_size=(2, 2)))\n model.add(Dropout(0.25))\n model.add(Flatten())\n model.add(Dense(128, activation='relu'))\n model.add(Dropout(0.5))\n model.add(Dense(num_classes, activation='softmax'))\n model.compile(loss=keras.losses.categorical_crossentropy, optimizer=\n keras.optimizers.Adadelta(), metrics=['accuracy'])\n return model\n", "role": "user" }, { "content": "build_model", "role": "assistant" } ]
def x(X, y): X = np.atleast_2d(X) y = np.atleast_1d(y) n = X.shape[0] while True: i = np.random.randint(0, n) yield {'X': X[i], 'y': y[i]}
sampler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, y):\n X = np.atleast_2d(X)\n y = np.atleast_1d(y)\n n = X.shape[0]\n while True:\n i = np.random.randint(0, n)\n yield {'X': X[i], 'y': y[i]}\n", "role": "user" }, { "content": "sampler", "role": "assistant" } ]
def x(stream, key='X', scale=0.1): for data in stream: noise_shape = data[key].shape noise = scale * np.random.randn(*noise_shape) data[key] = data[key] + noise yield data
additive_noise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stream, key='X', scale=0.1):\n for data in stream:\n noise_shape = data[key].shape\n noise = scale * np.random.randn(*noise_shape)\n data[key] = data[key] + noise\n yield data\n", "role": "user" }, { "content": "additive_noise", "role": "assistant" } ]
def x(user_params=None): config = MotifConfig() if user_params is None: user_params = {} params = config.get_default_params() params.update(user_params) if params.get('torque'): logger.debug('Using torque') else: logger.debug('Using multiprocessing') params['background'] = [x.strip() for x in params['background'].split(',')] logger.debug('Parameters:') for param, value in params.items(): logger.debug(' %s: %s', param, value) if params['max_time']: try: max_time = params['max_time'] = float(params['max_time']) except Exception: logger.debug('Could not parse max_time value, setting to no limit') params['max_time'] = -1 if params['max_time'] > 0: logger.debug('Time limit for motif prediction: %0.2f hours', max_time) params['max_time'] = 3600 * params['max_time'] logger.debug('Max_time in seconds %0.0f', max_time) else: logger.debug('No time limit for motif prediction') return params
parse_denovo_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(user_params=None):\n config = MotifConfig()\n if user_params is None:\n user_params = {}\n params = config.get_default_params()\n params.update(user_params)\n if params.get('torque'):\n logger.debug('Using torque')\n else:\n logger.debug('Using multiprocessing')\n params['background'] = [x.strip() for x in params['background'].split(',')]\n logger.debug('Parameters:')\n for param, value in params.items():\n logger.debug(' %s: %s', param, value)\n if params['max_time']:\n try:\n max_time = params['max_time'] = float(params['max_time'])\n except Exception:\n logger.debug('Could not parse max_time value, setting to no limit')\n params['max_time'] = -1\n if params['max_time'] > 0:\n logger.debug('Time limit for motif prediction: %0.2f hours', max_time)\n params['max_time'] = 3600 * params['max_time']\n logger.debug('Max_time in seconds %0.0f', max_time)\n else:\n logger.debug('No time limit for motif prediction')\n return params\n", "role": "user" }, { "content": "parse_denovo_params", "role": "assistant" } ]
def x(df, method='stuart'): tmpdf = NamedTemporaryFile() tmpscript = NamedTemporaryFile(mode='w') tmpranks = NamedTemporaryFile() df.to_csv(tmpdf.name, sep='\t', index=False) script = ( """ library(RobustRankAggreg); a = read.table("{}", header=TRUE); x = lapply(a, as.vector); result = aggregateRanks(x, method="{}"); result$p.adjust = p.adjust(result$Score); write.table(result, file="{}", sep=" ", quote=FALSE, row.names=FALSE); """ .format(tmpdf.name, method, tmpranks.name)) tmpscript.write(script) tmpscript.flush() p = sp.Popen(['Rscript', tmpscript.name], stdout=sp.PIPE, stderr=sp.PIPE) stderr, stdout = p.communicate() df = pd.read_table(tmpranks.name, index_col=0) return df['p.adjust']
rankagg_R
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, method='stuart'):\n tmpdf = NamedTemporaryFile()\n tmpscript = NamedTemporaryFile(mode='w')\n tmpranks = NamedTemporaryFile()\n df.to_csv(tmpdf.name, sep='\\t', index=False)\n script = (\n \"\"\" \nlibrary(RobustRankAggreg); \na = read.table(\"{}\", header=TRUE); \nx = lapply(a, as.vector); \nresult = aggregateRanks(x, method=\"{}\"); \nresult$p.adjust = p.adjust(result$Score); \n write.table(result, file=\"{}\", sep=\"\t\", quote=FALSE, row.names=FALSE); \n\"\"\"\n .format(tmpdf.name, method, tmpranks.name))\n tmpscript.write(script)\n tmpscript.flush()\n p = sp.Popen(['Rscript', tmpscript.name], stdout=sp.PIPE, stderr=sp.PIPE)\n stderr, stdout = p.communicate()\n df = pd.read_table(tmpranks.name, index_col=0)\n return df['p.adjust']\n", "role": "user" }, { "content": "rankagg_R", "role": "assistant" } ]
def x(df, method='stuart'): rmat = pd.DataFrame(index=df.iloc[:, 0]) step = 1 / rmat.shape[0] for col in df.columns: rmat[col] = pd.DataFrame({col: np.arange(step, 1 + step, step)}, index=df[col]).loc[rmat.index] rmat = rmat.apply(sorted, 1, result_type='expand') p = rmat.apply(qStuart, 1) df = pd.DataFrame({'p.adjust': multipletests(p, method='h')[1]}, index= rmat.index).sort_values('p.adjust') return df['p.adjust']
rankagg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, method='stuart'):\n rmat = pd.DataFrame(index=df.iloc[:, 0])\n step = 1 / rmat.shape[0]\n for col in df.columns:\n rmat[col] = pd.DataFrame({col: np.arange(step, 1 + step, step)},\n index=df[col]).loc[rmat.index]\n rmat = rmat.apply(sorted, 1, result_type='expand')\n p = rmat.apply(qStuart, 1)\n df = pd.DataFrame({'p.adjust': multipletests(p, method='h')[1]}, index=\n rmat.index).sort_values('p.adjust')\n return df['p.adjust']\n", "role": "user" }, { "content": "rankagg", "role": "assistant" } ]
def x(n_ops=100): while True: X = np.random.uniform(size=(64, 64)) yield dict(X=costly_function(X, n_ops), y=np.random.randint(10, size=(1,)))
data_gen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n_ops=100):\n while True:\n X = np.random.uniform(size=(64, 64))\n yield dict(X=costly_function(X, n_ops), y=np.random.randint(10,\n size=(1,)))\n", "role": "user" }, { "content": "data_gen", "role": "assistant" } ]
def x(motifs, fg_fa, bg_fa, bg_name=None): try: stats = calc_stats(motifs, fg_fa, bg_fa, ncpus=1) except Exception as e: raise sys.stderr.write('ERROR: {}\n'.format(str(e))) stats = {} if not bg_name: bg_name = 'default' return bg_name, stats
mp_calc_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(motifs, fg_fa, bg_fa, bg_name=None):\n try:\n stats = calc_stats(motifs, fg_fa, bg_fa, ncpus=1)\n except Exception as e:\n raise\n sys.stderr.write('ERROR: {}\\n'.format(str(e)))\n stats = {}\n if not bg_name:\n bg_name = 'default'\n return bg_name, stats\n", "role": "user" }, { "content": "mp_calc_stats", "role": "assistant" } ]
def x(job_name, t, fastafile, params): try: result = t.run(fastafile, params, mytmpdir()) except Exception as e: result = [], '', '{} failed to run: {}'.format(job_name, e) return job_name, result
run_tool
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(job_name, t, fastafile, params):\n try:\n result = t.run(fastafile, params, mytmpdir())\n except Exception as e:\n result = [], '', '{} failed to run: {}'.format(job_name, e)\n return job_name, result\n", "role": "user" }, { "content": "run_tool", "role": "assistant" } ]
def x(fastafile, outfile, analysis='small', organism='hg18', single=False, background='', tools=None, job_server=None, ncpus=8, max_time=-1, stats_fg=None, stats_bg=None): if tools is None: tools = {} config = MotifConfig() if not tools: tools = dict([(x, 1) for x in config.get_default_params['tools']. split(',')]) wmin = 5 step = 1 if analysis in ['large', 'xl']: step = 2 wmin = 6 analysis_max = {'xs': 5, 'small': 8, 'medium': 10, 'large': 14, 'xl': 20} wmax = analysis_max[analysis] if analysis == 'xs': sys.stderr.write('Setting analysis xs to small') analysis = 'small' if not job_server: n_cpus = int(config.get_default_params()['ncpus']) job_server = Pool(processes=n_cpus, maxtasksperchild=1000) jobs = {} result = PredictionResult(outfile, fg_file=stats_fg, background= stats_bg, job_server=job_server) toolio = [x[1]() for x in inspect.getmembers(tool_classes, lambda x: inspect.isclass(x) and issubclass(x, tool_classes.MotifProgram)) if x[0] != 'MotifProgram'] params = {'analysis': analysis, 'background': background, 'single': single, 'organism': organism} for t in [tool for tool in toolio if not tool.use_width]: if t.name in tools and tools[t.name]: logger.debug('Starting %s job', t.name) job_name = t.name jobs[job_name] = job_server.apply_async(_run_tool, (job_name, t, fastafile, params), callback=result.add_motifs) else: logger.debug('Skipping %s', t.name) for t in [tool for tool in toolio if tool.use_width]: if t.name in tools and tools[t.name]: for i in range(wmin, wmax + 1, step): logger.debug('Starting %s job, width %s', t.name, i) job_name = '%s_width_%s' % (t.name, i) my_params = params.copy() my_params['width'] = i jobs[job_name] = job_server.apply_async(_run_tool, ( job_name, t, fastafile, my_params), callback=result. add_motifs) else: logger.debug('Skipping %s', t.name) logger.info('all jobs submitted') for job in jobs.values(): job.get() result.wait_for_stats() return result
pp_predict_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fastafile, outfile, analysis='small', organism='hg18', single=False,\n background='', tools=None, job_server=None, ncpus=8, max_time=-1,\n stats_fg=None, stats_bg=None):\n if tools is None:\n tools = {}\n config = MotifConfig()\n if not tools:\n tools = dict([(x, 1) for x in config.get_default_params['tools'].\n split(',')])\n wmin = 5\n step = 1\n if analysis in ['large', 'xl']:\n step = 2\n wmin = 6\n analysis_max = {'xs': 5, 'small': 8, 'medium': 10, 'large': 14, 'xl': 20}\n wmax = analysis_max[analysis]\n if analysis == 'xs':\n sys.stderr.write('Setting analysis xs to small')\n analysis = 'small'\n if not job_server:\n n_cpus = int(config.get_default_params()['ncpus'])\n job_server = Pool(processes=n_cpus, maxtasksperchild=1000)\n jobs = {}\n result = PredictionResult(outfile, fg_file=stats_fg, background=\n stats_bg, job_server=job_server)\n toolio = [x[1]() for x in inspect.getmembers(tool_classes, lambda x: \n inspect.isclass(x) and issubclass(x, tool_classes.MotifProgram)) if\n x[0] != 'MotifProgram']\n params = {'analysis': analysis, 'background': background, 'single':\n single, 'organism': organism}\n for t in [tool for tool in toolio if not tool.use_width]:\n if t.name in tools and tools[t.name]:\n logger.debug('Starting %s job', t.name)\n job_name = t.name\n jobs[job_name] = job_server.apply_async(_run_tool, (job_name, t,\n fastafile, params), callback=result.add_motifs)\n else:\n logger.debug('Skipping %s', t.name)\n for t in [tool for tool in toolio if tool.use_width]:\n if t.name in tools and tools[t.name]:\n for i in range(wmin, wmax + 1, step):\n logger.debug('Starting %s job, width %s', t.name, i)\n job_name = '%s_width_%s' % (t.name, i)\n my_params = params.copy()\n my_params['width'] = i\n jobs[job_name] = job_server.apply_async(_run_tool, (\n job_name, t, fastafile, my_params), callback=result.\n add_motifs)\n else:\n logger.debug('Skipping %s', t.name)\n logger.info('all jobs submitted')\n for job in jobs.values():\n job.get()\n result.wait_for_stats()\n return result\n", "role": "user" }, { "content": "pp_predict_motifs", "role": "assistant" } ]
def x(infile, bgfile, outfile, params=None, stats_fg=None, stats_bg=None): required_params = ['tools', 'available_tools', 'analysis', 'genome', 'use_strand', 'max_time'] if params is None: params = parse_denovo_params() else: for p in required_params: if p not in params: params = parse_denovo_params() break tools = dict([(x.strip(), x in [y.strip() for y in params['tools']. split(',')]) for x in params['available_tools'].split(',')]) analysis = params['analysis'] logger.info('starting motif prediction (%s)', analysis) logger.info('tools: %s', ', '.join([x for x in tools.keys() if tools[x]])) result = pp_predict_motifs(infile, outfile, analysis, params.get( 'genome', None), params['use_strand'], bgfile, tools, None, max_time=params['max_time'], stats_fg=stats_fg, stats_bg=stats_bg) motifs = result.motifs logger.info('predicted %s motifs', len(motifs)) logger.debug('written to %s', outfile) if len(motifs) == 0: logger.info('no motifs found') result.motifs = [] return result
predict_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile, bgfile, outfile, params=None, stats_fg=None, stats_bg=None):\n required_params = ['tools', 'available_tools', 'analysis', 'genome',\n 'use_strand', 'max_time']\n if params is None:\n params = parse_denovo_params()\n else:\n for p in required_params:\n if p not in params:\n params = parse_denovo_params()\n break\n tools = dict([(x.strip(), x in [y.strip() for y in params['tools'].\n split(',')]) for x in params['available_tools'].split(',')])\n analysis = params['analysis']\n logger.info('starting motif prediction (%s)', analysis)\n logger.info('tools: %s', ', '.join([x for x in tools.keys() if tools[x]]))\n result = pp_predict_motifs(infile, outfile, analysis, params.get(\n 'genome', None), params['use_strand'], bgfile, tools, None,\n max_time=params['max_time'], stats_fg=stats_fg, stats_bg=stats_bg)\n motifs = result.motifs\n logger.info('predicted %s motifs', len(motifs))\n logger.debug('written to %s', outfile)\n if len(motifs) == 0:\n logger.info('no motifs found')\n result.motifs = []\n return result\n", "role": "user" }, { "content": "predict_motifs", "role": "assistant" } ]
def x(self, args): self.lock.acquire() if args is None or len(args) != 2 or len(args[1]) != 3: try: job = args[0] logger.warn('job %s failed', job) self.finished.append(job) except Exception: logger.warn('job failed') return job, (motifs, stdout, stderr) = args logger.info('%s finished, found %s motifs', job, len(motifs)) for motif in motifs: if self.do_counter: self.counter += 1 motif.id = 'gimme_{}_'.format(self.counter) + motif.id f = open(self.outfile, 'a') f.write('%s\n' % motif.to_pfm()) f.close() self.motifs.append(motif) if self.do_stats and len(motifs) > 0: logger.debug('Starting stats job of %s motifs', len(motifs)) for bg_name, bg_fa in self.background.items(): job = self.job_server.apply_async(mp_calc_stats, (motifs, self. fg_fa, bg_fa, bg_name), callback=self.add_stats) self.stat_jobs.append(job) logger.debug('stdout %s: %s', job, stdout) logger.debug('stdout %s: %s', job, stderr) self.finished.append(job) self.lock.release()
add_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, args):\n self.lock.acquire()\n if args is None or len(args) != 2 or len(args[1]) != 3:\n try:\n job = args[0]\n logger.warn('job %s failed', job)\n self.finished.append(job)\n except Exception:\n logger.warn('job failed')\n return\n job, (motifs, stdout, stderr) = args\n logger.info('%s finished, found %s motifs', job, len(motifs))\n for motif in motifs:\n if self.do_counter:\n self.counter += 1\n motif.id = 'gimme_{}_'.format(self.counter) + motif.id\n f = open(self.outfile, 'a')\n f.write('%s\\n' % motif.to_pfm())\n f.close()\n self.motifs.append(motif)\n if self.do_stats and len(motifs) > 0:\n logger.debug('Starting stats job of %s motifs', len(motifs))\n for bg_name, bg_fa in self.background.items():\n job = self.job_server.apply_async(mp_calc_stats, (motifs, self.\n fg_fa, bg_fa, bg_name), callback=self.add_stats)\n self.stat_jobs.append(job)\n logger.debug('stdout %s: %s', job, stdout)\n logger.debug('stdout %s: %s', job, stderr)\n self.finished.append(job)\n self.lock.release()\n", "role": "user" }, { "content": "add_motifs", "role": "assistant" } ]
def x(self): logging.debug('waiting for statistics to finish') for job in self.stat_jobs: job.get() sleep(2)
wait_for_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n logging.debug('waiting for statistics to finish')\n for job in self.stat_jobs:\n job.get()\n sleep(2)\n", "role": "user" }, { "content": "wait_for_stats", "role": "assistant" } ]
def x(self, args): bg_name, stats = args logger.debug('Stats: %s %s', bg_name, stats) for motif_id in stats.keys(): if motif_id not in self.stats: self.stats[motif_id] = {} self.stats[motif_id][bg_name] = stats[motif_id]
add_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, args):\n bg_name, stats = args\n logger.debug('Stats: %s %s', bg_name, stats)\n for motif_id in stats.keys():\n if motif_id not in self.stats:\n self.stats[motif_id] = {}\n self.stats[motif_id][bg_name] = stats[motif_id]\n", "role": "user" }, { "content": "add_stats", "role": "assistant" } ]
def x(inputfile, params, outdir): bedfile = os.path.join(outdir, 'input.from.narrowpeak.bed') p = re.compile('^(#|track|browser)') width = int(params['width']) logger.info('preparing input (narrowPeak to BED, width %s)', width) warn_no_summit = True with open(bedfile, 'w') as f_out: with open(inputfile) as f_in: for line in f_in: if p.search(line): continue vals = line.strip().split('\t') start, end = int(vals[1]), int(vals[2]) summit = int(vals[9]) if summit == -1: if warn_no_summit: logger.warn( 'No summit present in narrowPeak file, using the peak center.' ) warn_no_summit = False summit = (end - start) // 2 start = start + summit - width // 2 end = start + width f_out.write('{}\t{}\t{}\t{}\n'.format(vals[0], start, end, vals[6])) prepare_denovo_input_bed(bedfile, params, outdir)
prepare_denovo_input_narrowpeak
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputfile, params, outdir):\n bedfile = os.path.join(outdir, 'input.from.narrowpeak.bed')\n p = re.compile('^(#|track|browser)')\n width = int(params['width'])\n logger.info('preparing input (narrowPeak to BED, width %s)', width)\n warn_no_summit = True\n with open(bedfile, 'w') as f_out:\n with open(inputfile) as f_in:\n for line in f_in:\n if p.search(line):\n continue\n vals = line.strip().split('\\t')\n start, end = int(vals[1]), int(vals[2])\n summit = int(vals[9])\n if summit == -1:\n if warn_no_summit:\n logger.warn(\n 'No summit present in narrowPeak file, using the peak center.'\n )\n warn_no_summit = False\n summit = (end - start) // 2\n start = start + summit - width // 2\n end = start + width\n f_out.write('{}\\t{}\\t{}\\t{}\\n'.format(vals[0], start, end,\n vals[6]))\n prepare_denovo_input_bed(bedfile, params, outdir)\n", "role": "user" }, { "content": "prepare_denovo_input_narrowpeak", "role": "assistant" } ]
def x(inputfile, params, outdir): logger.info('preparing input (BED)') width = int(params['width']) bedfile = os.path.join(outdir, 'input.bed') write_equalwidth_bedfile(inputfile, width, bedfile) abs_max = int(params['abs_max']) fraction = float(params['fraction']) pred_bedfile = os.path.join(outdir, 'prediction.bed') val_bedfile = os.path.join(outdir, 'validation.bed') logger.debug( 'Splitting %s into prediction set (%s) and validation set (%s)', bedfile, pred_bedfile, val_bedfile) divide_file(bedfile, pred_bedfile, val_bedfile, fraction, abs_max) config = MotifConfig() genome = Genome(params['genome']) for infile in [pred_bedfile, val_bedfile]: genome.track2fasta(infile, infile.replace('.bed', '.fa')) lwidth = int(params['lwidth']) extend = (lwidth - width) // 2 genome.track2fasta(val_bedfile, os.path.join(outdir, 'localization.fa'), extend_up=extend, extend_down=extend, stranded=params['use_strand'])
prepare_denovo_input_bed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputfile, params, outdir):\n logger.info('preparing input (BED)')\n width = int(params['width'])\n bedfile = os.path.join(outdir, 'input.bed')\n write_equalwidth_bedfile(inputfile, width, bedfile)\n abs_max = int(params['abs_max'])\n fraction = float(params['fraction'])\n pred_bedfile = os.path.join(outdir, 'prediction.bed')\n val_bedfile = os.path.join(outdir, 'validation.bed')\n logger.debug(\n 'Splitting %s into prediction set (%s) and validation set (%s)',\n bedfile, pred_bedfile, val_bedfile)\n divide_file(bedfile, pred_bedfile, val_bedfile, fraction, abs_max)\n config = MotifConfig()\n genome = Genome(params['genome'])\n for infile in [pred_bedfile, val_bedfile]:\n genome.track2fasta(infile, infile.replace('.bed', '.fa'))\n lwidth = int(params['lwidth'])\n extend = (lwidth - width) // 2\n genome.track2fasta(val_bedfile, os.path.join(outdir, 'localization.fa'),\n extend_up=extend, extend_down=extend, stranded=params['use_strand'])\n", "role": "user" }, { "content": "prepare_denovo_input_bed", "role": "assistant" } ]
def x(inputfile, params, outdir): fraction = float(params['fraction']) abs_max = int(params['abs_max']) logger.info('preparing input (FASTA)') pred_fa = os.path.join(outdir, 'prediction.fa') val_fa = os.path.join(outdir, 'validation.fa') loc_fa = os.path.join(outdir, 'localization.fa') logger.debug( 'Splitting %s into prediction set (%s) and validation set (%s)', inputfile, pred_fa, val_fa) divide_fa_file(inputfile, pred_fa, val_fa, fraction, abs_max) shutil.copy(val_fa, loc_fa) seqs = Fasta(loc_fa).seqs lwidth = len(seqs[0]) all_same_width = not False in [(len(seq) == lwidth) for seq in seqs] if not all_same_width: logger.warn( 'PLEASE NOTE: FASTA file contains sequences of different lengths. Positional preference plots might be incorrect!' )
prepare_denovo_input_fa
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputfile, params, outdir):\n fraction = float(params['fraction'])\n abs_max = int(params['abs_max'])\n logger.info('preparing input (FASTA)')\n pred_fa = os.path.join(outdir, 'prediction.fa')\n val_fa = os.path.join(outdir, 'validation.fa')\n loc_fa = os.path.join(outdir, 'localization.fa')\n logger.debug(\n 'Splitting %s into prediction set (%s) and validation set (%s)',\n inputfile, pred_fa, val_fa)\n divide_fa_file(inputfile, pred_fa, val_fa, fraction, abs_max)\n shutil.copy(val_fa, loc_fa)\n seqs = Fasta(loc_fa).seqs\n lwidth = len(seqs[0])\n all_same_width = not False in [(len(seq) == lwidth) for seq in seqs]\n if not all_same_width:\n logger.warn(\n 'PLEASE NOTE: FASTA file contains sequences of different lengths. Positional preference plots might be incorrect!'\n )\n", "role": "user" }, { "content": "prepare_denovo_input_fa", "role": "assistant" } ]
def x(bg_type, fafile, outfile, genome='hg18', width=200, nr_times=10, custom_background=None): width = int(width) config = MotifConfig() fg = Fasta(fafile) if bg_type in ['genomic', 'gc']: if not genome: logger.error('Need a genome to create background') sys.exit(1) if bg_type == 'random': f = MarkovFasta(fg, k=1, n=nr_times * len(fg)) logger.debug('Random background: %s', outfile) elif bg_type == 'genomic': logger.debug('Creating genomic background') f = RandomGenomicFasta(genome, width, nr_times * len(fg)) elif bg_type == 'gc': logger.debug('Creating GC matched background') f = MatchedGcFasta(fafile, genome, nr_times * len(fg)) logger.debug('GC matched background: %s', outfile) elif bg_type == 'promoter': fname = Genome(genome).filename gene_file = fname.replace('.fa', '.annotation.bed.gz') if not gene_file: gene_file = os.path.join(config.get_gene_dir(), '%s.bed' % genome) if not os.path.exists(gene_file): print('Could not find a gene file for genome {}') print('Did you use the --annotation flag for genomepy?') print('Alternatively make sure there is a file called {}.bed in {}' .format(genome, config.get_gene_dir())) raise ValueError() logger.info( 'Creating random promoter background (%s, using genes in %s)', genome, gene_file) f = PromoterFasta(gene_file, genome, width, nr_times * len(fg)) logger.debug('Random promoter background: %s', outfile) elif bg_type == 'custom': bg_file = custom_background if not bg_file: raise IOError('Background file not specified!') if not os.path.exists(bg_file): raise IOError('Custom background file %s does not exist!', bg_file) else: logger.info('Copying custom background file %s to %s.', bg_file, outfile) f = Fasta(bg_file) l = np.median([len(seq) for seq in f.seqs]) if l < width * 0.95 or l > width * 1.05: logger.warn( 'The custom background file %s contains sequences with a median length of %s, while GimmeMotifs predicts motifs in sequences of length %s. This will influence the statistics! It is recommended to use background sequences of the same length.' , bg_file, l, width) f.writefasta(outfile) return len(f)
create_background
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bg_type, fafile, outfile, genome='hg18', width=200, nr_times=10,\n custom_background=None):\n width = int(width)\n config = MotifConfig()\n fg = Fasta(fafile)\n if bg_type in ['genomic', 'gc']:\n if not genome:\n logger.error('Need a genome to create background')\n sys.exit(1)\n if bg_type == 'random':\n f = MarkovFasta(fg, k=1, n=nr_times * len(fg))\n logger.debug('Random background: %s', outfile)\n elif bg_type == 'genomic':\n logger.debug('Creating genomic background')\n f = RandomGenomicFasta(genome, width, nr_times * len(fg))\n elif bg_type == 'gc':\n logger.debug('Creating GC matched background')\n f = MatchedGcFasta(fafile, genome, nr_times * len(fg))\n logger.debug('GC matched background: %s', outfile)\n elif bg_type == 'promoter':\n fname = Genome(genome).filename\n gene_file = fname.replace('.fa', '.annotation.bed.gz')\n if not gene_file:\n gene_file = os.path.join(config.get_gene_dir(), '%s.bed' % genome)\n if not os.path.exists(gene_file):\n print('Could not find a gene file for genome {}')\n print('Did you use the --annotation flag for genomepy?')\n print('Alternatively make sure there is a file called {}.bed in {}'\n .format(genome, config.get_gene_dir()))\n raise ValueError()\n logger.info(\n 'Creating random promoter background (%s, using genes in %s)',\n genome, gene_file)\n f = PromoterFasta(gene_file, genome, width, nr_times * len(fg))\n logger.debug('Random promoter background: %s', outfile)\n elif bg_type == 'custom':\n bg_file = custom_background\n if not bg_file:\n raise IOError('Background file not specified!')\n if not os.path.exists(bg_file):\n raise IOError('Custom background file %s does not exist!', bg_file)\n else:\n logger.info('Copying custom background file %s to %s.', bg_file,\n outfile)\n f = Fasta(bg_file)\n l = np.median([len(seq) for seq in f.seqs])\n if l < width * 0.95 or l > width * 1.05:\n logger.warn(\n 'The custom background file %s contains sequences with a median length of %s, while GimmeMotifs predicts motifs in sequences of length %s. This will influence the statistics! It is recommended to use background sequences of the same length.'\n , bg_file, l, width)\n f.writefasta(outfile)\n return len(f)\n", "role": "user" }, { "content": "create_background", "role": "assistant" } ]
def x(outdir, background=None, genome='hg38', width=200, custom_background=None ): if background is None: background = ['random'] nr_sequences = {} if 'gc' in background: pred_bg = 'gc' else: pred_bg = background[0] create_background(pred_bg, os.path.join(outdir, 'prediction.fa'), os. path.join(outdir, 'prediction.bg.fa'), genome=genome, width=width, custom_background=custom_background) bg_info = {} nr_sequences = {} for bg in background: fname = os.path.join(outdir, 'bg.{}.fa'.format(bg)) nr_sequences[bg] = create_background(bg, os.path.join(outdir, 'validation.fa'), fname, genome=genome, width=width, custom_background=custom_background) bg_info[bg] = fname return bg_info
create_backgrounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(outdir, background=None, genome='hg38', width=200, custom_background=None\n ):\n if background is None:\n background = ['random']\n nr_sequences = {}\n if 'gc' in background:\n pred_bg = 'gc'\n else:\n pred_bg = background[0]\n create_background(pred_bg, os.path.join(outdir, 'prediction.fa'), os.\n path.join(outdir, 'prediction.bg.fa'), genome=genome, width=width,\n custom_background=custom_background)\n bg_info = {}\n nr_sequences = {}\n for bg in background:\n fname = os.path.join(outdir, 'bg.{}.fa'.format(bg))\n nr_sequences[bg] = create_background(bg, os.path.join(outdir,\n 'validation.fa'), fname, genome=genome, width=width,\n custom_background=custom_background)\n bg_info[bg] = fname\n return bg_info\n", "role": "user" }, { "content": "create_backgrounds", "role": "assistant" } ]
def x(stats, metrics=None): if metrics is None: metrics = ('max_enrichment', 3), ('roc_auc', 0.55), ('enr_at_fpr', 0.55 ) for stat_name, min_value in metrics: if stats.get(stat_name, 0) < min_value: return False return True
is_significant
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stats, metrics=None):\n if metrics is None:\n metrics = ('max_enrichment', 3), ('roc_auc', 0.55), ('enr_at_fpr', 0.55\n )\n for stat_name, min_value in metrics:\n if stats.get(stat_name, 0) < min_value:\n return False\n return True\n", "role": "user" }, { "content": "is_significant", "role": "assistant" } ]
def x(fname, result, bg, metrics=None): sig_motifs = [] with open(fname, 'w') as f: for motif in result.motifs: stats = result.stats.get('%s_%s' % (motif.id, motif. to_consensus()), {}).get(bg, {}) if _is_significant(stats, metrics): f.write('%s\n' % motif.to_pfm()) sig_motifs.append(motif) logger.info('%s motifs are significant', len(sig_motifs)) logger.debug('written to %s', fname) return sig_motifs
filter_significant_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname, result, bg, metrics=None):\n sig_motifs = []\n with open(fname, 'w') as f:\n for motif in result.motifs:\n stats = result.stats.get('%s_%s' % (motif.id, motif.\n to_consensus()), {}).get(bg, {})\n if _is_significant(stats, metrics):\n f.write('%s\\n' % motif.to_pfm())\n sig_motifs.append(motif)\n logger.info('%s motifs are significant', len(sig_motifs))\n logger.debug('written to %s', fname)\n return sig_motifs\n", "role": "user" }, { "content": "filter_significant_motifs", "role": "assistant" } ]
def x(single_pwm, clus_pwm, clusters, fg_fa, background, stats=None, metrics=('roc_auc', 'recall_at_fdr')): motifs = read_motifs(single_pwm) + read_motifs(clus_pwm) motifs = dict([(str(m), m) for m in motifs]) clustered_motifs = [] for clus, singles in clusters: for motif in set([clus] + singles): if str(motif) not in stats: clustered_motifs.append(motifs[str(motif)]) new_stats = {} for bg, bg_fa in background.items(): for m, s in calc_stats(clustered_motifs, fg_fa, bg_fa).items(): if m not in new_stats: new_stats[m] = {} new_stats[m][bg] = s stats.update(new_stats) rank = rank_motifs(stats, metrics) best_motifs = [] for clus, singles in clusters: if len(singles) > 1: eval_motifs = singles if clus not in motifs: eval_motifs.append(clus) eval_motifs = [motifs[str(e)] for e in eval_motifs] best_motif = sorted(eval_motifs, key=lambda x: rank[str(x)])[-1] best_motifs.append(best_motif) else: best_motifs.append(clus) for bg in background: stats[str(best_motifs[-1])][bg]['num_cluster'] = len(singles) best_motifs = sorted(best_motifs, key=lambda x: rank[str(x)], reverse=True) return best_motifs
best_motif_in_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(single_pwm, clus_pwm, clusters, fg_fa, background, stats=None,\n metrics=('roc_auc', 'recall_at_fdr')):\n motifs = read_motifs(single_pwm) + read_motifs(clus_pwm)\n motifs = dict([(str(m), m) for m in motifs])\n clustered_motifs = []\n for clus, singles in clusters:\n for motif in set([clus] + singles):\n if str(motif) not in stats:\n clustered_motifs.append(motifs[str(motif)])\n new_stats = {}\n for bg, bg_fa in background.items():\n for m, s in calc_stats(clustered_motifs, fg_fa, bg_fa).items():\n if m not in new_stats:\n new_stats[m] = {}\n new_stats[m][bg] = s\n stats.update(new_stats)\n rank = rank_motifs(stats, metrics)\n best_motifs = []\n for clus, singles in clusters:\n if len(singles) > 1:\n eval_motifs = singles\n if clus not in motifs:\n eval_motifs.append(clus)\n eval_motifs = [motifs[str(e)] for e in eval_motifs]\n best_motif = sorted(eval_motifs, key=lambda x: rank[str(x)])[-1]\n best_motifs.append(best_motif)\n else:\n best_motifs.append(clus)\n for bg in background:\n stats[str(best_motifs[-1])][bg]['num_cluster'] = len(singles)\n best_motifs = sorted(best_motifs, key=lambda x: rank[str(x)], reverse=True)\n return best_motifs\n", "role": "user" }, { "content": "best_motif_in_cluster", "role": "assistant" } ]
def x(motifs, stats=None): final_motifs = [] for i, motif in enumerate(motifs): old = str(motif) motif.id = 'GimmeMotifs_{}'.format(i + 1) final_motifs.append(motif) if stats: stats[str(motif)] = stats[old].copy() if stats: return final_motifs, stats else: return final_motifs
rename_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(motifs, stats=None):\n final_motifs = []\n for i, motif in enumerate(motifs):\n old = str(motif)\n motif.id = 'GimmeMotifs_{}'.format(i + 1)\n final_motifs.append(motif)\n if stats:\n stats[str(motif)] = stats[old].copy()\n if stats:\n return final_motifs, stats\n else:\n return final_motifs\n", "role": "user" }, { "content": "rename_motifs", "role": "assistant" } ]
def x(inputfile, outdir, params=None, filter_significant=True, cluster=True, create_report=True): if outdir is None: outdir = 'gimmemotifs_{}'.format(datetime.date.today().strftime( '%d_%m_%Y')) tmpdir = os.path.join(outdir, 'intermediate') for d in [outdir, tmpdir]: if not os.path.exists(d): os.mkdir(d) logger = logging.getLogger('gimme') logfile = os.path.join(outdir, 'gimmemotifs.log') fh = logging.FileHandler(logfile, 'w') fh.setLevel(logging.DEBUG) file_formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(file_formatter) logger.addHandler(fh) logger = logging.getLogger('gimme.denovo.gimme_motifs') params = parse_denovo_params(params) input_type, background = check_denovo_input(inputfile, params) logger.info('starting full motif analysis') logger.debug('Using temporary directory %s', mytmpdir()) if input_type == 'bed': prepare_denovo_input_bed(inputfile, params, tmpdir) elif input_type == 'narrowpeak': prepare_denovo_input_narrowpeak(inputfile, params, tmpdir) elif input_type == 'fasta': prepare_denovo_input_fa(inputfile, params, tmpdir) else: logger.error('Unknown input file.') sys.exit(1) background = create_backgrounds(tmpdir, background, params.get('genome', None), params['width'], params.get('custom_background', None)) result = predict_motifs(os.path.join(tmpdir, 'prediction.fa'), os.path. join(tmpdir, 'prediction.bg.fa'), os.path.join(tmpdir, 'all_motifs.pfm'), params=params, stats_fg=os.path.join(tmpdir, 'validation.fa'), stats_bg=background) if len(result.motifs) == 0: logger.info('finished') return [] stats_file = os.path.join(tmpdir, 'stats.{}.txt') write_stats(result.stats, stats_file) bg = sorted(background, key=lambda x: BG_RANK[x])[0] if filter_significant: motifs = filter_significant_motifs(os.path.join(tmpdir, 'significant_motifs.pfm'), result, bg) if len(motifs) == 0: logger.info('no significant motifs') return pwmfile = os.path.join(tmpdir, 'significant_motifs.pfm') else: logger.info('not filtering for significance') motifs = result.motifs pwmfile = os.path.join(tmpdir, 'all_motifs.pfm') if cluster: clusters = cluster_motifs_with_report(pwmfile, os.path.join(tmpdir, 'clustered_motifs.pfm'), outdir, 0.95, title=inputfile) best_motifs = best_motif_in_cluster(pwmfile, os.path.join(tmpdir, 'clustered_motifs.pfm'), clusters, os.path.join(tmpdir, 'validation.fa'), background, result.stats) final_motifs, stats = rename_motifs(best_motifs, result.stats) else: logger.info('not clustering') rank = rank_motifs(result.stats) sorted_motifs = sorted(motifs, key=lambda x: rank[str(x)], reverse=True ) final_motifs, stats = rename_motifs(sorted_motifs, result.stats) with open(os.path.join(outdir, 'motifs.pwm'), 'w') as f: for m in final_motifs: f.write('{}\n'.format(m.to_pwm())) if create_report: bg = dict([(b, os.path.join(tmpdir, 'bg.{}.fa'.format(b))) for b in background]) create_denovo_motif_report(inputfile, os.path.join(outdir, 'motifs.pwm'), os.path.join(tmpdir, 'validation.fa'), bg, os. path.join(tmpdir, 'localization.fa'), outdir, params, stats) with open(os.path.join(outdir, 'params.txt'), 'w') as f: for k, v in params.items(): f.write('{}\t{}\n'.format(k, v)) if not params.get('keep_intermediate'): logger.debug( 'Deleting intermediate files. Please specifify the -k option if you want to keep these files.' ) shutil.rmtree(tmpdir) logger.info('finished') logger.info('output dir: %s', outdir) if cluster: logger.info('report: %s', os.path.join(outdir, 'motif_report.html')) return final_motifs
gimme_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputfile, outdir, params=None, filter_significant=True, cluster=True,\n create_report=True):\n if outdir is None:\n outdir = 'gimmemotifs_{}'.format(datetime.date.today().strftime(\n '%d_%m_%Y'))\n tmpdir = os.path.join(outdir, 'intermediate')\n for d in [outdir, tmpdir]:\n if not os.path.exists(d):\n os.mkdir(d)\n logger = logging.getLogger('gimme')\n logfile = os.path.join(outdir, 'gimmemotifs.log')\n fh = logging.FileHandler(logfile, 'w')\n fh.setLevel(logging.DEBUG)\n file_formatter = logging.Formatter(\n '%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n fh.setFormatter(file_formatter)\n logger.addHandler(fh)\n logger = logging.getLogger('gimme.denovo.gimme_motifs')\n params = parse_denovo_params(params)\n input_type, background = check_denovo_input(inputfile, params)\n logger.info('starting full motif analysis')\n logger.debug('Using temporary directory %s', mytmpdir())\n if input_type == 'bed':\n prepare_denovo_input_bed(inputfile, params, tmpdir)\n elif input_type == 'narrowpeak':\n prepare_denovo_input_narrowpeak(inputfile, params, tmpdir)\n elif input_type == 'fasta':\n prepare_denovo_input_fa(inputfile, params, tmpdir)\n else:\n logger.error('Unknown input file.')\n sys.exit(1)\n background = create_backgrounds(tmpdir, background, params.get('genome',\n None), params['width'], params.get('custom_background', None))\n result = predict_motifs(os.path.join(tmpdir, 'prediction.fa'), os.path.\n join(tmpdir, 'prediction.bg.fa'), os.path.join(tmpdir,\n 'all_motifs.pfm'), params=params, stats_fg=os.path.join(tmpdir,\n 'validation.fa'), stats_bg=background)\n if len(result.motifs) == 0:\n logger.info('finished')\n return []\n stats_file = os.path.join(tmpdir, 'stats.{}.txt')\n write_stats(result.stats, stats_file)\n bg = sorted(background, key=lambda x: BG_RANK[x])[0]\n if filter_significant:\n motifs = filter_significant_motifs(os.path.join(tmpdir,\n 'significant_motifs.pfm'), result, bg)\n if len(motifs) == 0:\n logger.info('no significant motifs')\n return\n pwmfile = os.path.join(tmpdir, 'significant_motifs.pfm')\n else:\n logger.info('not filtering for significance')\n motifs = result.motifs\n pwmfile = os.path.join(tmpdir, 'all_motifs.pfm')\n if cluster:\n clusters = cluster_motifs_with_report(pwmfile, os.path.join(tmpdir,\n 'clustered_motifs.pfm'), outdir, 0.95, title=inputfile)\n best_motifs = best_motif_in_cluster(pwmfile, os.path.join(tmpdir,\n 'clustered_motifs.pfm'), clusters, os.path.join(tmpdir,\n 'validation.fa'), background, result.stats)\n final_motifs, stats = rename_motifs(best_motifs, result.stats)\n else:\n logger.info('not clustering')\n rank = rank_motifs(result.stats)\n sorted_motifs = sorted(motifs, key=lambda x: rank[str(x)], reverse=True\n )\n final_motifs, stats = rename_motifs(sorted_motifs, result.stats)\n with open(os.path.join(outdir, 'motifs.pwm'), 'w') as f:\n for m in final_motifs:\n f.write('{}\\n'.format(m.to_pwm()))\n if create_report:\n bg = dict([(b, os.path.join(tmpdir, 'bg.{}.fa'.format(b))) for b in\n background])\n create_denovo_motif_report(inputfile, os.path.join(outdir,\n 'motifs.pwm'), os.path.join(tmpdir, 'validation.fa'), bg, os.\n path.join(tmpdir, 'localization.fa'), outdir, params, stats)\n with open(os.path.join(outdir, 'params.txt'), 'w') as f:\n for k, v in params.items():\n f.write('{}\\t{}\\n'.format(k, v))\n if not params.get('keep_intermediate'):\n logger.debug(\n 'Deleting intermediate files. Please specifify the -k option if you want to keep these files.'\n )\n shutil.rmtree(tmpdir)\n logger.info('finished')\n logger.info('output dir: %s', outdir)\n if cluster:\n logger.info('report: %s', os.path.join(outdir, 'motif_report.html'))\n return final_motifs\n", "role": "user" }, { "content": "gimme_motifs", "role": "assistant" } ]
def x(cls, dbname): def x(subclass): cls._dbs[dbname] = subclass subclass.name = dbname return subclass return decorator
register_db
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, dbname):\n\n def x(subclass):\n cls._dbs[dbname] = subclass\n subclass.name = dbname\n return subclass\n return decorator\n", "role": "user" }, { "content": "register_db", "role": "assistant" } ]
def x(inputfile, method='hypergeom', scoring=None, outfile=None, motiffile= None, pwmfile=None, genome=None, fpr=0.01, ncpus=None, subsample=None): if scoring and scoring not in ['score', 'count']: raise ValueError("valid values are 'score' and 'count'") config = MotifConfig() if inputfile.endswith('feather'): df = pd.read_feather(inputfile) df = df.set_index(df.columns[0]) else: df = pd.read_table(inputfile, index_col=0, comment='#') clf = Moap.create(method, ncpus=ncpus) if clf.ptype == 'classification': if df.shape[1] != 1: raise ValueError('1 column expected for {}'.format(method)) elif np.dtype('object') in set(df.dtypes): raise ValueError('columns should all be numeric for {}'.format(method)) if motiffile is None: if genome is None: raise ValueError('need a genome') pwmfile = pwmfile_location(pwmfile) try: motifs = read_motifs(pwmfile) except: sys.stderr.write("can't read motifs from {}".format(pwmfile)) raise s = Scanner(ncpus=ncpus) sys.stderr.write(pwmfile + '\n') s.set_motifs(pwmfile) s.set_genome(genome) s.set_background(genome=genome) sys.stderr.write('scanning for motifs\n') motif_names = [m.id for m in read_motifs(pwmfile)] scores = [] if method == 'classic' or scoring == 'count': s.set_threshold(fpr=fpr) for row in s.count(list(df.index)): scores.append(row) else: for row in s.best_score(list(df.index), normalize=True): scores.append(row) motifs = pd.DataFrame(scores, index=df.index, columns=motif_names) else: motifs = pd.read_table(motiffile, index_col=0, comment='#') if outfile and os.path.exists(outfile): out = pd.read_table(outfile, index_col=0, comment='#') ncols = df.shape[1] if ncols == 1: ncols = len(df.iloc[:, 0].unique()) if out.shape[0] == motifs.shape[1] and out.shape[1] == ncols: logger.warn('%s output already exists... skipping', method) return out if subsample is not None: n = int(subsample * df.shape[0]) logger.debug('Subsampling %d regions', n) df = df.sample(n) motifs = motifs.loc[df.index] if method == 'lightningregressor': outdir = os.path.dirname(outfile) tmpname = os.path.join(outdir, '.lightning.tmp') clf.fit(motifs, df, tmpdir=tmpname) shutil.rmtree(tmpname) else: clf.fit(motifs, df) if outfile: with open(outfile, 'w') as f: f.write('# maelstrom - GimmeMotifs version {}\n'.format( __version__)) f.write('# method: {} with motif {}\n'.format(method, scoring)) if genome: f.write('# genome: {}\n'.format(genome)) if motiffile: f.write('# motif table: {}\n'.format(motiffile)) f.write('# {}\n'.format(clf.act_description)) with open(outfile, 'a') as f: clf.act_.to_csv(f, sep='\t') return clf.act_
moap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputfile, method='hypergeom', scoring=None, outfile=None, motiffile=\n None, pwmfile=None, genome=None, fpr=0.01, ncpus=None, subsample=None):\n if scoring and scoring not in ['score', 'count']:\n raise ValueError(\"valid values are 'score' and 'count'\")\n config = MotifConfig()\n if inputfile.endswith('feather'):\n df = pd.read_feather(inputfile)\n df = df.set_index(df.columns[0])\n else:\n df = pd.read_table(inputfile, index_col=0, comment='#')\n clf = Moap.create(method, ncpus=ncpus)\n if clf.ptype == 'classification':\n if df.shape[1] != 1:\n raise ValueError('1 column expected for {}'.format(method))\n elif np.dtype('object') in set(df.dtypes):\n raise ValueError('columns should all be numeric for {}'.format(method))\n if motiffile is None:\n if genome is None:\n raise ValueError('need a genome')\n pwmfile = pwmfile_location(pwmfile)\n try:\n motifs = read_motifs(pwmfile)\n except:\n sys.stderr.write(\"can't read motifs from {}\".format(pwmfile))\n raise\n s = Scanner(ncpus=ncpus)\n sys.stderr.write(pwmfile + '\\n')\n s.set_motifs(pwmfile)\n s.set_genome(genome)\n s.set_background(genome=genome)\n sys.stderr.write('scanning for motifs\\n')\n motif_names = [m.id for m in read_motifs(pwmfile)]\n scores = []\n if method == 'classic' or scoring == 'count':\n s.set_threshold(fpr=fpr)\n for row in s.count(list(df.index)):\n scores.append(row)\n else:\n for row in s.best_score(list(df.index), normalize=True):\n scores.append(row)\n motifs = pd.DataFrame(scores, index=df.index, columns=motif_names)\n else:\n motifs = pd.read_table(motiffile, index_col=0, comment='#')\n if outfile and os.path.exists(outfile):\n out = pd.read_table(outfile, index_col=0, comment='#')\n ncols = df.shape[1]\n if ncols == 1:\n ncols = len(df.iloc[:, 0].unique())\n if out.shape[0] == motifs.shape[1] and out.shape[1] == ncols:\n logger.warn('%s output already exists... skipping', method)\n return out\n if subsample is not None:\n n = int(subsample * df.shape[0])\n logger.debug('Subsampling %d regions', n)\n df = df.sample(n)\n motifs = motifs.loc[df.index]\n if method == 'lightningregressor':\n outdir = os.path.dirname(outfile)\n tmpname = os.path.join(outdir, '.lightning.tmp')\n clf.fit(motifs, df, tmpdir=tmpname)\n shutil.rmtree(tmpname)\n else:\n clf.fit(motifs, df)\n if outfile:\n with open(outfile, 'w') as f:\n f.write('# maelstrom - GimmeMotifs version {}\\n'.format(\n __version__))\n f.write('# method: {} with motif {}\\n'.format(method, scoring))\n if genome:\n f.write('# genome: {}\\n'.format(genome))\n if motiffile:\n f.write('# motif table: {}\\n'.format(motiffile))\n f.write('# {}\\n'.format(clf.act_description))\n with open(outfile, 'a') as f:\n clf.act_.to_csv(f, sep='\\t')\n return clf.act_\n", "role": "user" }, { "content": "moap", "role": "assistant" } ]
def x(cls, name, ncpus=None): try: return cls._predictors[name.lower()](ncpus=ncpus) except KeyError: raise Exception('Unknown class')
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, name, ncpus=None):\n try:\n return cls._predictors[name.lower()](ncpus=ncpus)\n except KeyError:\n raise Exception('Unknown class')\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(cls, name): def x(subclass): cls._predictors[name.lower()] = subclass subclass.name = name.lower() return subclass return decorator
register_predictor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, name):\n\n def x(subclass):\n cls._predictors[name.lower()] = subclass\n subclass.name = name.lower()\n return subclass\n return decorator\n", "role": "user" }, { "content": "register_predictor", "role": "assistant" } ]
def x(self): preds = [self.create(x) for x in self._predictors.keys()] return [x.name for x in preds if x.ptype == 'classification']
list_classification_predictors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n preds = [self.create(x) for x in self._predictors.keys()]\n return [x.name for x in preds if x.ptype == 'classification']\n", "role": "user" }, { "content": "list_classification_predictors", "role": "assistant" } ]
def x(self): if six.callable(self.streamer): self.stream_ = self.streamer(*self.args, **self.kwargs) else: self.stream_ = iter(self.streamer)
activate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if six.callable(self.streamer):\n self.stream_ = self.streamer(*self.args, **self.kwargs)\n else:\n self.stream_ = iter(self.streamer)\n", "role": "user" }, { "content": "activate", "role": "assistant" } ]
def x(self, max_iter=None): with self as active_streamer: for n, obj in enumerate(active_streamer.stream_): if max_iter is not None and n >= max_iter: break yield obj
iterate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, max_iter=None):\n with self as active_streamer:\n for n, obj in enumerate(active_streamer.stream_):\n if max_iter is not None and n >= max_iter:\n break\n yield obj\n", "role": "user" }, { "content": "iterate", "role": "assistant" } ]
def x(self, max_iter=None): count = 0 while True: for obj in self.iterate(): count += 1 if max_iter is not None and count > max_iter: return yield obj
cycle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, max_iter=None):\n count = 0\n while True:\n for obj in self.iterate():\n count += 1\n if max_iter is not None and count > max_iter:\n return\n yield obj\n", "role": "user" }, { "content": "cycle", "role": "assistant" } ]
def x(motifs, fg_file, bg_file, genome=None, stats=None, ncpus=None): if not stats: stats = rocmetrics.__all__ if isinstance(motifs, Motif): all_motifs = [motifs] elif type([]) == type(motifs): all_motifs = motifs else: all_motifs = read_motifs(motifs, fmt='pwm') if ncpus is None: ncpus = int(MotifConfig().get_default_params()['ncpus']) chunksize = 240 for i in range(0, len(all_motifs), chunksize): result = {} logger.debug('chunk %s of %s', i / chunksize + 1, len(all_motifs) // chunksize + 1) motifs = all_motifs[i:i + chunksize] fg_total = scan_to_best_match(fg_file, motifs, ncpus=ncpus, genome= genome) bg_total = scan_to_best_match(bg_file, motifs, ncpus=ncpus, genome= genome) logger.debug('calculating statistics') if ncpus == 1: it = _single_stats(motifs, stats, fg_total, bg_total) else: it = _mp_stats(motifs, stats, fg_total, bg_total, ncpus) for motif_id, s, ret in it: if motif_id not in result: result[motif_id] = {} result[motif_id][s] = ret yield result
calc_stats_iterator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(motifs, fg_file, bg_file, genome=None, stats=None, ncpus=None):\n if not stats:\n stats = rocmetrics.__all__\n if isinstance(motifs, Motif):\n all_motifs = [motifs]\n elif type([]) == type(motifs):\n all_motifs = motifs\n else:\n all_motifs = read_motifs(motifs, fmt='pwm')\n if ncpus is None:\n ncpus = int(MotifConfig().get_default_params()['ncpus'])\n chunksize = 240\n for i in range(0, len(all_motifs), chunksize):\n result = {}\n logger.debug('chunk %s of %s', i / chunksize + 1, len(all_motifs) //\n chunksize + 1)\n motifs = all_motifs[i:i + chunksize]\n fg_total = scan_to_best_match(fg_file, motifs, ncpus=ncpus, genome=\n genome)\n bg_total = scan_to_best_match(bg_file, motifs, ncpus=ncpus, genome=\n genome)\n logger.debug('calculating statistics')\n if ncpus == 1:\n it = _single_stats(motifs, stats, fg_total, bg_total)\n else:\n it = _mp_stats(motifs, stats, fg_total, bg_total, ncpus)\n for motif_id, s, ret in it:\n if motif_id not in result:\n result[motif_id] = {}\n result[motif_id][s] = ret\n yield result\n", "role": "user" }, { "content": "calc_stats_iterator", "role": "assistant" } ]
def x(motifs, fg_file, bg_file, genome=None, stats=None, ncpus=None): result = {} for batch_result in calc_stats_iterator(motifs, fg_file, bg_file, genome=genome, stats=stats, ncpus=ncpus): for motif_id in batch_result: if motif_id not in result: result[motif_id] = {} for s, ret in batch_result[motif_id].items(): result[motif_id][s] = ret return result
calc_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(motifs, fg_file, bg_file, genome=None, stats=None, ncpus=None):\n result = {}\n for batch_result in calc_stats_iterator(motifs, fg_file, bg_file,\n genome=genome, stats=stats, ncpus=ncpus):\n for motif_id in batch_result:\n if motif_id not in result:\n result[motif_id] = {}\n for s, ret in batch_result[motif_id].items():\n result[motif_id][s] = ret\n return result\n", "role": "user" }, { "content": "calc_stats", "role": "assistant" } ]
def x(stats, metrics=('roc_auc', 'recall_at_fdr')): rank = {} combined_metrics = [] motif_ids = stats.keys() background = list(stats.values())[0].keys() for metric in metrics: mean_metric_stats = [np.mean([stats[m][bg][metric] for bg in background]) for m in motif_ids] ranked_metric_stats = rankdata(mean_metric_stats) combined_metrics.append(ranked_metric_stats) for motif, val in zip(motif_ids, np.mean(combined_metrics, 0)): rank[motif] = val return rank
rank_motifs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stats, metrics=('roc_auc', 'recall_at_fdr')):\n rank = {}\n combined_metrics = []\n motif_ids = stats.keys()\n background = list(stats.values())[0].keys()\n for metric in metrics:\n mean_metric_stats = [np.mean([stats[m][bg][metric] for bg in\n background]) for m in motif_ids]\n ranked_metric_stats = rankdata(mean_metric_stats)\n combined_metrics.append(ranked_metric_stats)\n for motif, val in zip(motif_ids, np.mean(combined_metrics, 0)):\n rank[motif] = val\n return rank\n", "role": "user" }, { "content": "rank_motifs", "role": "assistant" } ]
def x(stats, fname, header=None): for bg in list(stats.values())[0].keys(): f = open(fname.format(bg), 'w') if header: f.write(header) stat_keys = sorted(list(list(stats.values())[0].values())[0].keys()) f.write('{}\t{}\n'.format('Motif', '\t'.join(stat_keys))) for motif in stats: m_stats = stats.get(str(motif), {}).get(bg) if m_stats: f.write('{}\t{}\n'.format('_'.join(motif.split('_')[:-1]), '\t'.join([str(m_stats[k]) for k in stat_keys]))) else: logger.warn('No stats for motif {0}, skipping this motif!'. format(motif.id)) f.close() return
write_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stats, fname, header=None):\n for bg in list(stats.values())[0].keys():\n f = open(fname.format(bg), 'w')\n if header:\n f.write(header)\n stat_keys = sorted(list(list(stats.values())[0].values())[0].keys())\n f.write('{}\\t{}\\n'.format('Motif', '\\t'.join(stat_keys)))\n for motif in stats:\n m_stats = stats.get(str(motif), {}).get(bg)\n if m_stats:\n f.write('{}\\t{}\\n'.format('_'.join(motif.split('_')[:-1]),\n '\\t'.join([str(m_stats[k]) for k in stat_keys])))\n else:\n logger.warn('No stats for motif {0}, skipping this motif!'.\n format(motif.id))\n f.close()\n return\n", "role": "user" }, { "content": "write_stats", "role": "assistant" } ]
def x(motif, fg_file, bg_file): try: stats = calc_stats(motif, fg_file, bg_file, stats=['roc_values'], ncpus=1) x, y = list(stats.values())[0]['roc_values'] return None, x, y except Exception as e: print(motif) print(motif.id) raise error = e return error, [], []
get_roc_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(motif, fg_file, bg_file):\n try:\n stats = calc_stats(motif, fg_file, bg_file, stats=['roc_values'],\n ncpus=1)\n x, y = list(stats.values())[0]['roc_values']\n return None, x, y\n except Exception as e:\n print(motif)\n print(motif.id)\n raise\n error = e\n return error, [], []\n", "role": "user" }, { "content": "get_roc_values", "role": "assistant" } ]
def x(pwmfile, fgfa, background, outdir): motifs = read_motifs(pwmfile, fmt='pwm', as_dict=True) ncpus = int(MotifConfig().get_default_params()['ncpus']) pool = Pool(processes=ncpus) jobs = {} for bg, fname in background.items(): for m_id, m in motifs.items(): k = '{}_{}'.format(str(m), bg) jobs[k] = pool.apply_async(get_roc_values, (motifs[m_id], fgfa, fname)) imgdir = os.path.join(outdir, 'images') if not os.path.exists(imgdir): os.mkdir(imgdir) roc_img_file = os.path.join(outdir, 'images', '{}_roc.{}.png') for motif in motifs.values(): for bg in background: k = '{}_{}'.format(str(motif), bg) error, x, y = jobs[k].get() if error: logger.error('Error in thread: %s', error) logger.error('Motif: %s', motif) sys.exit(1) roc_plot(roc_img_file.format(motif.id, bg), x, y)
create_roc_plots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pwmfile, fgfa, background, outdir):\n motifs = read_motifs(pwmfile, fmt='pwm', as_dict=True)\n ncpus = int(MotifConfig().get_default_params()['ncpus'])\n pool = Pool(processes=ncpus)\n jobs = {}\n for bg, fname in background.items():\n for m_id, m in motifs.items():\n k = '{}_{}'.format(str(m), bg)\n jobs[k] = pool.apply_async(get_roc_values, (motifs[m_id], fgfa,\n fname))\n imgdir = os.path.join(outdir, 'images')\n if not os.path.exists(imgdir):\n os.mkdir(imgdir)\n roc_img_file = os.path.join(outdir, 'images', '{}_roc.{}.png')\n for motif in motifs.values():\n for bg in background:\n k = '{}_{}'.format(str(motif), bg)\n error, x, y = jobs[k].get()\n if error:\n logger.error('Error in thread: %s', error)\n logger.error('Motif: %s', motif)\n sys.exit(1)\n roc_plot(roc_img_file.format(motif.id, bg), x, y)\n", "role": "user" }, { "content": "create_roc_plots", "role": "assistant" } ]
def x(inputfile, motifs, closest_match, stats, outdir): my_stats = {} for motif in motifs: match = closest_match[motif.id] my_stats[str(motif)] = {} for bg in list(stats.values())[0].keys(): if str(motif) not in stats: logger.error('####') logger.error('{} not found'.format(str(motif))) for s in sorted(stats.keys()): logger.error(s) logger.error('####') else: my_stats[str(motif)][bg] = stats[str(motif)][bg].copy() my_stats[str(motif)][bg]['best_match'] = '_'.join(match[0]. split('_')[:-1]) my_stats[str(motif)][bg]['best_match_pvalue'] = match[1][-1] header = '# GimmeMotifs version {}\n# Inputfile: {}\n'.format(__version__, inputfile) write_stats(my_stats, os.path.join(outdir, 'stats.{}.txt'), header=header)
create_text_report
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputfile, motifs, closest_match, stats, outdir):\n my_stats = {}\n for motif in motifs:\n match = closest_match[motif.id]\n my_stats[str(motif)] = {}\n for bg in list(stats.values())[0].keys():\n if str(motif) not in stats:\n logger.error('####')\n logger.error('{} not found'.format(str(motif)))\n for s in sorted(stats.keys()):\n logger.error(s)\n logger.error('####')\n else:\n my_stats[str(motif)][bg] = stats[str(motif)][bg].copy()\n my_stats[str(motif)][bg]['best_match'] = '_'.join(match[0].\n split('_')[:-1])\n my_stats[str(motif)][bg]['best_match_pvalue'] = match[1][-1]\n header = '# GimmeMotifs version {}\\n# Inputfile: {}\\n'.format(__version__,\n inputfile)\n write_stats(my_stats, os.path.join(outdir, 'stats.{}.txt'), header=header)\n", "role": "user" }, { "content": "create_text_report", "role": "assistant" } ]
def x(inputfile, pwm, background, closest_match, outdir, stats, best_id=None): if best_id is None: best_id = {} logger.debug('Creating graphical report') class ReportMotif(object): """Placeholder for motif stats.""" pass config = MotifConfig() imgdir = os.path.join(outdir, 'images') if not os.path.exists(imgdir): os.mkdir(imgdir) motifs = read_motifs(pwm, fmt='pwm') roc_img_file = '%s_roc.%s' dbpwm = config.get_default_params()['motif_db'] pwmdir = config.get_motif_dir() dbmotifs = read_motifs(os.path.join(pwmdir, dbpwm), as_dict=True) report_motifs = [] for motif in motifs: rm = ReportMotif() rm.id = motif.id rm.id_href = {'href': '#%s' % motif.id} rm.id_name = {'name': motif.id} rm.img = {'src': os.path.join('images', '%s.png' % motif.id)} motif.to_img(os.path.join(outdir, 'images/{}.png'.format(motif.id)), fmt='PNG') rm.best = 'Gimme' rm.consensus = motif.to_consensus() rm.stars = int(np.mean([stats[str(motif)][bg].get('stars', 0) for bg in background]) + 0.5) rm.bg = {} for bg in background: rm.bg[bg] = {} this_stats = stats.get(str(motif), {}).get(bg) rm.bg[bg]['e'] = '%0.2f' % this_stats.get('enr_at_fpr', 1.0) rm.bg[bg]['p'] = '%0.2f' % this_stats.get('phyper_at_fpr', 1.0) rm.bg[bg]['auc'] = '%0.3f' % this_stats.get('roc_auc', 0.5) rm.bg[bg]['mncp'] = '%0.3f' % this_stats.get('mncp', 1.0) rm.bg[bg]['roc_img'] = {'src': 'images/' + os.path.basename( roc_img_file % (motif.id, bg)) + '.png'} rm.bg[bg][u'roc_img_link'] = {u'href': 'images/' + os.path. basename(roc_img_file % (motif.id, bg)) + '.png'} rm.histogram_img = {'data': 'images/%s_histogram.svg' % motif.id} rm.histogram_link = {'href': 'images/%s_histogram.svg' % motif.id} match_id = closest_match[motif.id][0] dbmotifs[match_id].to_img(os.path.join(outdir, 'images/{}.png'. format(match_id)), fmt='PNG') rm.match_img = {'src': 'images/{}.png'.format(match_id)} rm.match_id = closest_match[motif.id][0] rm.match_pval = '%0.2e' % closest_match[motif.id][1][-1] report_motifs.append(rm) total_report = os.path.join(outdir, 'motif_report.html') star_img = os.path.join(config.get_template_dir(), 'star.png') shutil.copyfile(star_img, os.path.join(outdir, 'images', 'star.png')) env = jinja2.Environment(loader=jinja2.FileSystemLoader([config. get_template_dir()])) template = env.get_template('report_template.jinja.html') result = template.render(motifs=report_motifs, inputfile=inputfile, date=datetime.today().strftime('%d/%m/%Y'), version=__version__, bg_types=list(background.keys())) with open(total_report, 'wb') as f: f.write(result.encode('utf-8'))
create_graphical_report
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputfile, pwm, background, closest_match, outdir, stats, best_id=None):\n if best_id is None:\n best_id = {}\n logger.debug('Creating graphical report')\n\n\n class ReportMotif(object):\n \"\"\"Placeholder for motif stats.\"\"\"\n pass\n config = MotifConfig()\n imgdir = os.path.join(outdir, 'images')\n if not os.path.exists(imgdir):\n os.mkdir(imgdir)\n motifs = read_motifs(pwm, fmt='pwm')\n roc_img_file = '%s_roc.%s'\n dbpwm = config.get_default_params()['motif_db']\n pwmdir = config.get_motif_dir()\n dbmotifs = read_motifs(os.path.join(pwmdir, dbpwm), as_dict=True)\n report_motifs = []\n for motif in motifs:\n rm = ReportMotif()\n rm.id = motif.id\n rm.id_href = {'href': '#%s' % motif.id}\n rm.id_name = {'name': motif.id}\n rm.img = {'src': os.path.join('images', '%s.png' % motif.id)}\n motif.to_img(os.path.join(outdir, 'images/{}.png'.format(motif.id)),\n fmt='PNG')\n rm.best = 'Gimme'\n rm.consensus = motif.to_consensus()\n rm.stars = int(np.mean([stats[str(motif)][bg].get('stars', 0) for\n bg in background]) + 0.5)\n rm.bg = {}\n for bg in background:\n rm.bg[bg] = {}\n this_stats = stats.get(str(motif), {}).get(bg)\n rm.bg[bg]['e'] = '%0.2f' % this_stats.get('enr_at_fpr', 1.0)\n rm.bg[bg]['p'] = '%0.2f' % this_stats.get('phyper_at_fpr', 1.0)\n rm.bg[bg]['auc'] = '%0.3f' % this_stats.get('roc_auc', 0.5)\n rm.bg[bg]['mncp'] = '%0.3f' % this_stats.get('mncp', 1.0)\n rm.bg[bg]['roc_img'] = {'src': 'images/' + os.path.basename(\n roc_img_file % (motif.id, bg)) + '.png'}\n rm.bg[bg][u'roc_img_link'] = {u'href': 'images/' + os.path.\n basename(roc_img_file % (motif.id, bg)) + '.png'}\n rm.histogram_img = {'data': 'images/%s_histogram.svg' % motif.id}\n rm.histogram_link = {'href': 'images/%s_histogram.svg' % motif.id}\n match_id = closest_match[motif.id][0]\n dbmotifs[match_id].to_img(os.path.join(outdir, 'images/{}.png'.\n format(match_id)), fmt='PNG')\n rm.match_img = {'src': 'images/{}.png'.format(match_id)}\n rm.match_id = closest_match[motif.id][0]\n rm.match_pval = '%0.2e' % closest_match[motif.id][1][-1]\n report_motifs.append(rm)\n total_report = os.path.join(outdir, 'motif_report.html')\n star_img = os.path.join(config.get_template_dir(), 'star.png')\n shutil.copyfile(star_img, os.path.join(outdir, 'images', 'star.png'))\n env = jinja2.Environment(loader=jinja2.FileSystemLoader([config.\n get_template_dir()]))\n template = env.get_template('report_template.jinja.html')\n result = template.render(motifs=report_motifs, inputfile=inputfile,\n date=datetime.today().strftime('%d/%m/%Y'), version=__version__,\n bg_types=list(background.keys()))\n with open(total_report, 'wb') as f:\n f.write(result.encode('utf-8'))\n", "role": "user" }, { "content": "create_graphical_report", "role": "assistant" } ]
def x(inputfile, pwmfile, fgfa, background, locfa, outdir, params, stats=None): logger.info('creating reports') motifs = read_motifs(pwmfile, fmt='pwm') create_roc_plots(pwmfile, fgfa, background, outdir) mc = MotifComparer() closest_match = mc.get_closest_match(motifs) if stats is None: stats = {} for bg, bgfa in background.items(): for m, s in calc_stats(motifs, fgfa, bgfa).items(): if m not in stats: stats[m] = {} stats[m][bg] = s stats = add_star(stats) if not params: params = {} cutoff_fpr = params.get('cutoff_fpr', 0.9) lwidth = np.median([len(seq) for seq in Fasta(locfa).seqs]) logger.debug('Creating localization plots') for motif in motifs: logger.debug(' {} {}'.format(motif.id, motif)) outfile = os.path.join(outdir, 'images/{}_histogram.svg'.format( motif.id)) motif_localization(locfa, motif, lwidth, outfile, cutoff=cutoff_fpr) _create_text_report(inputfile, motifs, closest_match, stats, outdir) _create_graphical_report(inputfile, pwmfile, background, closest_match, outdir, stats)
create_denovo_motif_report
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputfile, pwmfile, fgfa, background, locfa, outdir, params, stats=None):\n logger.info('creating reports')\n motifs = read_motifs(pwmfile, fmt='pwm')\n create_roc_plots(pwmfile, fgfa, background, outdir)\n mc = MotifComparer()\n closest_match = mc.get_closest_match(motifs)\n if stats is None:\n stats = {}\n for bg, bgfa in background.items():\n for m, s in calc_stats(motifs, fgfa, bgfa).items():\n if m not in stats:\n stats[m] = {}\n stats[m][bg] = s\n stats = add_star(stats)\n if not params:\n params = {}\n cutoff_fpr = params.get('cutoff_fpr', 0.9)\n lwidth = np.median([len(seq) for seq in Fasta(locfa).seqs])\n logger.debug('Creating localization plots')\n for motif in motifs:\n logger.debug(' {} {}'.format(motif.id, motif))\n outfile = os.path.join(outdir, 'images/{}_histogram.svg'.format(\n motif.id))\n motif_localization(locfa, motif, lwidth, outfile, cutoff=cutoff_fpr)\n _create_text_report(inputfile, motifs, closest_match, stats, outdir)\n _create_graphical_report(inputfile, pwmfile, background, closest_match,\n outdir, stats)\n", "role": "user" }, { "content": "create_denovo_motif_report", "role": "assistant" } ]
def x(ax): ax.set_frame_on(False) ax.axes.get_yaxis().set_visible(False) ax.axes.get_xaxis().set_visible(False)
axes_off
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ax):\n ax.set_frame_on(False)\n ax.axes.get_yaxis().set_visible(False)\n ax.axes.get_xaxis().set_visible(False)\n", "role": "user" }, { "content": "axes_off", "role": "assistant" } ]
def x(plotdata, outfile): fig_h = 2 fig_w = 7 nrows = len(plotdata) ncols = 2 fig = plt.figure(figsize=(fig_w, nrows * fig_h)) for i, (motif, dbmotif, pval) in enumerate(plotdata): text = 'Motif: %s\nBest match: %s\np-value: %0.2e' % (motif.id, dbmotif.id, pval) grid = ImageGrid(fig, (nrows, ncols, i * 2 + 1), nrows_ncols=(2, 1), axes_pad=0) for j in range(2): axes_off(grid[j]) tmp = NamedTemporaryFile(dir=mytmpdir(), suffix='.png') motif.to_img(tmp.name, fmt='PNG', height=6) grid[0].imshow(plt.imread(tmp.name), interpolation='none') tmp = NamedTemporaryFile(dir=mytmpdir(), suffix='.png') dbmotif.to_img(tmp.name, fmt='PNG') grid[1].imshow(plt.imread(tmp.name), interpolation='none') ax = plt.subplot(nrows, ncols, i * 2 + 2) axes_off(ax) ax.text(0, 0.5, text, horizontalalignment='left', verticalalignment ='center') plt.savefig(outfile, dpi=300, bbox_inches='tight') plt.close(fig)
match_plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(plotdata, outfile):\n fig_h = 2\n fig_w = 7\n nrows = len(plotdata)\n ncols = 2\n fig = plt.figure(figsize=(fig_w, nrows * fig_h))\n for i, (motif, dbmotif, pval) in enumerate(plotdata):\n text = 'Motif: %s\\nBest match: %s\\np-value: %0.2e' % (motif.id,\n dbmotif.id, pval)\n grid = ImageGrid(fig, (nrows, ncols, i * 2 + 1), nrows_ncols=(2, 1),\n axes_pad=0)\n for j in range(2):\n axes_off(grid[j])\n tmp = NamedTemporaryFile(dir=mytmpdir(), suffix='.png')\n motif.to_img(tmp.name, fmt='PNG', height=6)\n grid[0].imshow(plt.imread(tmp.name), interpolation='none')\n tmp = NamedTemporaryFile(dir=mytmpdir(), suffix='.png')\n dbmotif.to_img(tmp.name, fmt='PNG')\n grid[1].imshow(plt.imread(tmp.name), interpolation='none')\n ax = plt.subplot(nrows, ncols, i * 2 + 2)\n axes_off(ax)\n ax.text(0, 0.5, text, horizontalalignment='left', verticalalignment\n ='center')\n plt.savefig(outfile, dpi=300, bbox_inches='tight')\n plt.close(fig)\n", "role": "user" }, { "content": "match_plot", "role": "assistant" } ]
def x(outfile, tree, data, circle=True, vmin=None, vmax=None, dpi=300): try: from ete3 import Tree, faces, AttrFace, TreeStyle, NodeStyle except ImportError: print('Please install ete3 to use this functionality') sys.exit(1) t, ts = _get_motif_tree(tree, data, circle, vmin, vmax) t.render(outfile, tree_style=ts, w=100, dpi=dpi, units='mm') if circle: img = Image.open(outfile) size = img.size[0] spacer = 50 img.crop((0, 0, size, size / 2 + spacer)).save(outfile)
motif_tree_plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(outfile, tree, data, circle=True, vmin=None, vmax=None, dpi=300):\n try:\n from ete3 import Tree, faces, AttrFace, TreeStyle, NodeStyle\n except ImportError:\n print('Please install ete3 to use this functionality')\n sys.exit(1)\n t, ts = _get_motif_tree(tree, data, circle, vmin, vmax)\n t.render(outfile, tree_style=ts, w=100, dpi=dpi, units='mm')\n if circle:\n img = Image.open(outfile)\n size = img.size[0]\n spacer = 50\n img.crop((0, 0, size, size / 2 + spacer)).save(outfile)\n", "role": "user" }, { "content": "motif_tree_plot", "role": "assistant" } ]
def x(fname): if not os.path.exists(fname): logger.error('Inputfile %s does not exist!', fname) sys.exit(1) for i, line in enumerate(open(fname)): if line.startswith('#') or line.startswith('track') or line.startswith( 'browser'): pass else: vals = line.strip().split('\t') if len(vals) < 3: logger.error( 'Expecting tab-seperated values (chromosome<tab>start<tab>end) on line %s of file %s' , i + 1, fname) sys.exit(1) try: start, end = int(vals[1]), int(vals[2]) except ValueError: logger.error( 'No valid integer coordinates on line %s of file %s', i + 1, fname) sys.exit(1) if len(vals) > 3: try: float(vals[3]) except ValueError: pass
check_bed_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n if not os.path.exists(fname):\n logger.error('Inputfile %s does not exist!', fname)\n sys.exit(1)\n for i, line in enumerate(open(fname)):\n if line.startswith('#') or line.startswith('track') or line.startswith(\n 'browser'):\n pass\n else:\n vals = line.strip().split('\\t')\n if len(vals) < 3:\n logger.error(\n 'Expecting tab-seperated values (chromosome<tab>start<tab>end) on line %s of file %s'\n , i + 1, fname)\n sys.exit(1)\n try:\n start, end = int(vals[1]), int(vals[2])\n except ValueError:\n logger.error(\n 'No valid integer coordinates on line %s of file %s', i +\n 1, fname)\n sys.exit(1)\n if len(vals) > 3:\n try:\n float(vals[3])\n except ValueError:\n pass\n", "role": "user" }, { "content": "check_bed_file", "role": "assistant" } ]
def x(inputfile, params): background = params['background'] input_type = determine_file_type(inputfile) if input_type == 'fasta': valid_bg = FA_VALID_BGS elif input_type in ['bed', 'narrowpeak']: genome = params['genome'] valid_bg = BED_VALID_BGS if 'genomic' in background or 'gc' in background: Genome(genome) check_bed_file(inputfile) else: sys.stderr.write('Format of inputfile {} not recognized.\n'.format( inputfile)) sys.stderr.write('Input should be FASTA, BED or narrowPeak.\n') sys.stderr.write( 'See https://genome.ucsc.edu/FAQ/FAQformat.html for specifications.\n' ) sys.exit(1) for bg in background: if not bg in valid_bg: logger.info("Input type is %s, ignoring background type '%s'", input_type, bg) background = [bg for bg in background if bg in valid_bg] if len(background) == 0: logger.error('No valid backgrounds specified!') sys.exit(1) return input_type, background
check_denovo_input
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputfile, params):\n background = params['background']\n input_type = determine_file_type(inputfile)\n if input_type == 'fasta':\n valid_bg = FA_VALID_BGS\n elif input_type in ['bed', 'narrowpeak']:\n genome = params['genome']\n valid_bg = BED_VALID_BGS\n if 'genomic' in background or 'gc' in background:\n Genome(genome)\n check_bed_file(inputfile)\n else:\n sys.stderr.write('Format of inputfile {} not recognized.\\n'.format(\n inputfile))\n sys.stderr.write('Input should be FASTA, BED or narrowPeak.\\n')\n sys.stderr.write(\n 'See https://genome.ucsc.edu/FAQ/FAQformat.html for specifications.\\n'\n )\n sys.exit(1)\n for bg in background:\n if not bg in valid_bg:\n logger.info(\"Input type is %s, ignoring background type '%s'\",\n input_type, bg)\n background = [bg for bg in background if bg in valid_bg]\n if len(background) == 0:\n logger.error('No valid backgrounds specified!')\n sys.exit(1)\n return input_type, background\n", "role": "user" }, { "content": "check_denovo_input", "role": "assistant" } ]
def x(fname, motifs, ncpus=None, genome=None, score=False): s = Scanner(ncpus=ncpus) s.set_motifs(motifs) s.set_threshold(threshold=0.0) if genome: s.set_genome(genome) if isinstance(motifs, six.string_types): motifs = read_motifs(motifs) logger.debug('scanning %s...', fname) result = dict([(m.id, []) for m in motifs]) if score: it = s.best_score(fname) else: it = s.best_match(fname) for scores in it: for motif, score in zip(motifs, scores): result[motif.id].append(score) del s return result
scan_to_best_match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname, motifs, ncpus=None, genome=None, score=False):\n s = Scanner(ncpus=ncpus)\n s.set_motifs(motifs)\n s.set_threshold(threshold=0.0)\n if genome:\n s.set_genome(genome)\n if isinstance(motifs, six.string_types):\n motifs = read_motifs(motifs)\n logger.debug('scanning %s...', fname)\n result = dict([(m.id, []) for m in motifs])\n if score:\n it = s.best_score(fname)\n else:\n it = s.best_match(fname)\n for scores in it:\n for motif, score in zip(motifs, scores):\n result[motif.id].append(score)\n del s\n return result\n", "role": "user" }, { "content": "scan_to_best_match", "role": "assistant" } ]
def x(self, fname=None, genome=None, length=200, nseq=10000): length = int(length) if genome and fname: raise ValueError('Need either genome or filename for background.') if fname: if not os.path.exists(fname): raise IOError('Background file {} does not exist!'.format(fname)) self.background = Fasta(fname) self.background_hash = file_checksum(fname) return if not genome: if self.genome: genome = self.genome logger.info('Using default background: genome {} with length {}' .format(genome, length)) else: raise ValueError('Need either genome or filename for background.') logger.info('Using background: genome {} with length {}'.format(genome, length)) with Cache(CACHE_DIR) as cache: self.background_hash = '{}\\{}'.format(genome, int(length)) fa = cache.get(self.background_hash) if not fa: fa = RandomGenomicFasta(genome, length, nseq) cache.set(self.background_hash, fa) self.background = fa
set_background
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fname=None, genome=None, length=200, nseq=10000):\n length = int(length)\n if genome and fname:\n raise ValueError('Need either genome or filename for background.')\n if fname:\n if not os.path.exists(fname):\n raise IOError('Background file {} does not exist!'.format(fname))\n self.background = Fasta(fname)\n self.background_hash = file_checksum(fname)\n return\n if not genome:\n if self.genome:\n genome = self.genome\n logger.info('Using default background: genome {} with length {}'\n .format(genome, length))\n else:\n raise ValueError('Need either genome or filename for background.')\n logger.info('Using background: genome {} with length {}'.format(genome,\n length))\n with Cache(CACHE_DIR) as cache:\n self.background_hash = '{}\\\\{}'.format(genome, int(length))\n fa = cache.get(self.background_hash)\n if not fa:\n fa = RandomGenomicFasta(genome, length, nseq)\n cache.set(self.background_hash, fa)\n self.background = fa\n", "role": "user" }, { "content": "set_background", "role": "assistant" } ]
def x(self, fpr=None, threshold=None): if threshold and fpr: raise ValueError('Need either fpr or threshold.') if fpr: fpr = float(fpr) if not 0.0 < fpr < 1.0: raise ValueError('Parameter fpr should be between 0 and 1') if not self.motifs: raise ValueError('please run set_motifs() first') thresholds = {} motifs = read_motifs(self.motifs) if threshold is not None: self.threshold = parse_threshold_values(self.motifs, threshold) return if not self.background: try: self.set_background() except: raise ValueError('please run set_background() first') seqs = self.background.seqs with Cache(CACHE_DIR) as cache: scan_motifs = [] for motif in motifs: k = '{}|{}|{:.4f}'.format(motif.hash(), self.background_hash, fpr) threshold = cache.get(k) if threshold is None: scan_motifs.append(motif) elif np.isclose(threshold, motif.pwm_max_score()): thresholds[motif.id] = None elif np.isclose(threshold, motif.pwm_min_score()): thresholds[motif.id] = 0.0 else: thresholds[motif.id] = threshold if len(scan_motifs) > 0: logger.info('Determining FPR-based threshold') for motif, threshold in self._threshold_from_seqs(scan_motifs, seqs, fpr): k = '{}|{}|{:.4f}'.format(motif.hash(), self. background_hash, fpr) cache.set(k, threshold) if np.isclose(threshold, motif.pwm_max_score()): thresholds[motif.id] = None elif np.isclose(threshold, motif.pwm_min_score()): thresholds[motif.id] = 0.0 else: thresholds[motif.id] = threshold self.threshold_str = '{}_{}_{}'.format(fpr, threshold, self.background_hash ) self.threshold = thresholds
set_threshold
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fpr=None, threshold=None):\n if threshold and fpr:\n raise ValueError('Need either fpr or threshold.')\n if fpr:\n fpr = float(fpr)\n if not 0.0 < fpr < 1.0:\n raise ValueError('Parameter fpr should be between 0 and 1')\n if not self.motifs:\n raise ValueError('please run set_motifs() first')\n thresholds = {}\n motifs = read_motifs(self.motifs)\n if threshold is not None:\n self.threshold = parse_threshold_values(self.motifs, threshold)\n return\n if not self.background:\n try:\n self.set_background()\n except:\n raise ValueError('please run set_background() first')\n seqs = self.background.seqs\n with Cache(CACHE_DIR) as cache:\n scan_motifs = []\n for motif in motifs:\n k = '{}|{}|{:.4f}'.format(motif.hash(), self.background_hash, fpr)\n threshold = cache.get(k)\n if threshold is None:\n scan_motifs.append(motif)\n elif np.isclose(threshold, motif.pwm_max_score()):\n thresholds[motif.id] = None\n elif np.isclose(threshold, motif.pwm_min_score()):\n thresholds[motif.id] = 0.0\n else:\n thresholds[motif.id] = threshold\n if len(scan_motifs) > 0:\n logger.info('Determining FPR-based threshold')\n for motif, threshold in self._threshold_from_seqs(scan_motifs,\n seqs, fpr):\n k = '{}|{}|{:.4f}'.format(motif.hash(), self.\n background_hash, fpr)\n cache.set(k, threshold)\n if np.isclose(threshold, motif.pwm_max_score()):\n thresholds[motif.id] = None\n elif np.isclose(threshold, motif.pwm_min_score()):\n thresholds[motif.id] = 0.0\n else:\n thresholds[motif.id] = threshold\n self.threshold_str = '{}_{}_{}'.format(fpr, threshold, self.background_hash\n )\n self.threshold = thresholds\n", "role": "user" }, { "content": "set_threshold", "role": "assistant" } ]
def x(self, seqs, nreport=100, scan_rc=True): for matches in self.scan(seqs, nreport, scan_rc): counts = [len(m) for m in matches] yield counts
count
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, seqs, nreport=100, scan_rc=True):\n for matches in self.scan(seqs, nreport, scan_rc):\n counts = [len(m) for m in matches]\n yield counts\n", "role": "user" }, { "content": "count", "role": "assistant" } ]