source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(X, n_clusters, method='balanced', rng=None):
n_samples = X.shape[0]
if rng is None:
cent_idx = np.random.choice(n_samples, replace=False, size=n_clusters)
else:
cent_idx = rng.choice(n_samples, replace=False, size=n_clusters)
centers = X[cent_idx, :]
mean_X = np.mean(X, axis=0)
if method == 'balanced':
centers[n_clusters - 1] = n_clusters * mean_X - np.sum(centers[:
n_clusters - 1], axis=0)
return centers
|
kmeans_init
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, n_clusters, method='balanced', rng=None):\n n_samples = X.shape[0]\n if rng is None:\n cent_idx = np.random.choice(n_samples, replace=False, size=n_clusters)\n else:\n cent_idx = rng.choice(n_samples, replace=False, size=n_clusters)\n centers = X[cent_idx, :]\n mean_X = np.mean(X, axis=0)\n if method == 'balanced':\n centers[n_clusters - 1] = n_clusters * mean_X - np.sum(centers[:\n n_clusters - 1], axis=0)\n return centers\n",
"role": "user"
},
{
"content": "kmeans_init",
"role": "assistant"
}
] |
def x(X, centers):
dist2cents = scipy.spatial.distance.cdist(X, centers, metric='seuclidean')
membs = np.argmin(dist2cents, axis=1)
return membs
|
assign_clusters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, centers):\n dist2cents = scipy.spatial.distance.cdist(X, centers, metric='seuclidean')\n membs = np.argmin(dist2cents, axis=1)\n return membs\n",
"role": "user"
},
{
"content": "assign_clusters",
"role": "assistant"
}
] |
def x(X, center):
dmemb2cen = scipy.spatial.distance.cdist(X, center.reshape(1, X.shape[1
]), metric='seuclidean')
return np.sum(dmemb2cen)
|
cal_dist2center
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, center):\n dmemb2cen = scipy.spatial.distance.cdist(X, center.reshape(1, X.shape[1\n ]), metric='seuclidean')\n return np.sum(dmemb2cen)\n",
"role": "user"
},
{
"content": "cal_dist2center",
"role": "assistant"
}
] |
def x(X, membs, n_clusters):
centers = np.empty(shape=(n_clusters, X.shape[1]), dtype=float)
sse = np.empty(shape=n_clusters, dtype=float)
for clust_id in range(n_clusters):
memb_ids = np.where(membs == clust_id)[0]
if memb_ids.shape[0] == 0:
memb_ids = np.random.choice(X.shape[0], size=1)
centers[clust_id, :] = np.mean(X[memb_ids, :], axis=0)
sse[clust_id] = _cal_dist2center(X[memb_ids, :], centers[clust_id, :])
return centers, sse
|
update_centers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, membs, n_clusters):\n centers = np.empty(shape=(n_clusters, X.shape[1]), dtype=float)\n sse = np.empty(shape=n_clusters, dtype=float)\n for clust_id in range(n_clusters):\n memb_ids = np.where(membs == clust_id)[0]\n if memb_ids.shape[0] == 0:\n memb_ids = np.random.choice(X.shape[0], size=1)\n centers[clust_id, :] = np.mean(X[memb_ids, :], axis=0)\n sse[clust_id] = _cal_dist2center(X[memb_ids, :], centers[clust_id, :])\n return centers, sse\n",
"role": "user"
},
{
"content": "update_centers",
"role": "assistant"
}
] |
def x(X, n_clusters, max_iter, tol):
membs = np.empty(shape=X.shape[0], dtype=int)
centers = _kmeans_init(X, n_clusters)
sse_last = 9999.9
n_iter = 0
for it in range(1, max_iter):
membs = _assign_clusters(X, centers)
centers, sse_arr = _update_centers(X, membs, n_clusters)
sse_total = np.sum(sse_arr)
if np.abs(sse_total - sse_last) < tol:
n_iter = it
break
sse_last = sse_total
return centers, membs, sse_total, sse_arr, n_iter
|
kmeans_run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, n_clusters, max_iter, tol):\n membs = np.empty(shape=X.shape[0], dtype=int)\n centers = _kmeans_init(X, n_clusters)\n sse_last = 9999.9\n n_iter = 0\n for it in range(1, max_iter):\n membs = _assign_clusters(X, centers)\n centers, sse_arr = _update_centers(X, membs, n_clusters)\n sse_total = np.sum(sse_arr)\n if np.abs(sse_total - sse_last) < tol:\n n_iter = it\n break\n sse_last = sse_total\n return centers, membs, sse_total, sse_arr, n_iter\n",
"role": "user"
},
{
"content": "kmeans_run",
"role": "assistant"
}
] |
def x(X, n_clusters, max_iter, n_trials, tol):
n_samples, n_features = X.shape[0], X.shape[1]
centers_best = np.empty(shape=(n_clusters, n_features), dtype=float)
labels_best = np.empty(shape=n_samples, dtype=int)
for i in range(n_trials):
centers, labels, sse_tot, sse_arr, n_iter = _kmeans_run(X,
n_clusters, max_iter, tol)
if i == 0:
sse_tot_best = sse_tot
sse_arr_best = sse_arr
n_iter_best = n_iter
centers_best = centers.copy()
labels_best = labels.copy()
if sse_tot < sse_tot_best:
sse_tot_best = sse_tot
sse_arr_best = sse_arr
n_iter_best = n_iter
centers_best = centers.copy()
labels_best = labels.copy()
return centers_best, labels_best, sse_arr_best, n_iter_best
|
kmeans
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, n_clusters, max_iter, n_trials, tol):\n n_samples, n_features = X.shape[0], X.shape[1]\n centers_best = np.empty(shape=(n_clusters, n_features), dtype=float)\n labels_best = np.empty(shape=n_samples, dtype=int)\n for i in range(n_trials):\n centers, labels, sse_tot, sse_arr, n_iter = _kmeans_run(X,\n n_clusters, max_iter, tol)\n if i == 0:\n sse_tot_best = sse_tot\n sse_arr_best = sse_arr\n n_iter_best = n_iter\n centers_best = centers.copy()\n labels_best = labels.copy()\n if sse_tot < sse_tot_best:\n sse_tot_best = sse_tot\n sse_arr_best = sse_arr\n n_iter_best = n_iter\n centers_best = centers.copy()\n labels_best = labels.copy()\n return centers_best, labels_best, sse_arr_best, n_iter_best\n",
"role": "user"
},
{
"content": "kmeans",
"role": "assistant"
}
] |
def x(self, X):
self.centers_, self.labels_, self.sse_arr_, self.n_iter_ = _kmeans(X,
self.n_clusters, self.max_iter, self.n_trials, self.tol)
|
fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n self.centers_, self.labels_, self.sse_arr_, self.n_iter_ = _kmeans(X,\n self.n_clusters, self.max_iter, self.n_trials, self.tol)\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
] |
def x(tree, n_clusters, membs):
assert n_clusters >= 2
assert n_clusters <= len(tree.leaves())
cut_centers = dict()
for i in range(n_clusters - 1):
if i == 0:
search_set = set(tree.children(0))
node_set, cut_set = set(), set()
else:
search_set = node_set.union(cut_set)
node_set, cut_set = set(), set()
if i + 2 == n_clusters:
cut_set = search_set
else:
for _ in range(len(search_set)):
n = search_set.pop()
if n.data['ilev'] is None or n.data['ilev'] > i + 2:
cut_set.add(n)
else:
nid = n.identifier
if n.data['ilev'] - 2 == i:
node_set = node_set.union(set(tree.children(nid)))
conv_membs = membs.copy()
for node in cut_set:
nid = node.identifier
label = node.data['label']
cut_centers[label] = node.data['center']
sub_leaves = tree.leaves(nid)
for leaf in sub_leaves:
indx = np.where(conv_membs == leaf)[0]
conv_membs[indx] = nid
return conv_membs, cut_centers
|
cut_tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tree, n_clusters, membs):\n assert n_clusters >= 2\n assert n_clusters <= len(tree.leaves())\n cut_centers = dict()\n for i in range(n_clusters - 1):\n if i == 0:\n search_set = set(tree.children(0))\n node_set, cut_set = set(), set()\n else:\n search_set = node_set.union(cut_set)\n node_set, cut_set = set(), set()\n if i + 2 == n_clusters:\n cut_set = search_set\n else:\n for _ in range(len(search_set)):\n n = search_set.pop()\n if n.data['ilev'] is None or n.data['ilev'] > i + 2:\n cut_set.add(n)\n else:\n nid = n.identifier\n if n.data['ilev'] - 2 == i:\n node_set = node_set.union(set(tree.children(nid)))\n conv_membs = membs.copy()\n for node in cut_set:\n nid = node.identifier\n label = node.data['label']\n cut_centers[label] = node.data['center']\n sub_leaves = tree.leaves(nid)\n for leaf in sub_leaves:\n indx = np.where(conv_membs == leaf)[0]\n conv_membs[indx] = nid\n return conv_membs, cut_centers\n",
"role": "user"
},
{
"content": "cut_tree",
"role": "assistant"
}
] |
def x(tree, label, ilev, X=None, size=None, center=None, sse=None, parent=None
):
if size is None:
size = X.shape[0]
if center is None:
center = np.mean(X, axis=0)
if sse is None:
sse = _kmeans._cal_dist2center(X, center)
center = list(center)
datadict = {'size': size, 'center': center, 'label': label, 'sse': sse,
'ilev': None}
if parent is None:
tree.create_node(label, label, data=datadict)
else:
tree.create_node(label, label, parent=parent, data=datadict)
tree.get_node(parent).data['ilev'] = ilev
return tree
|
add_tree_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tree, label, ilev, X=None, size=None, center=None, sse=None, parent=None\n ):\n if size is None:\n size = X.shape[0]\n if center is None:\n center = np.mean(X, axis=0)\n if sse is None:\n sse = _kmeans._cal_dist2center(X, center)\n center = list(center)\n datadict = {'size': size, 'center': center, 'label': label, 'sse': sse,\n 'ilev': None}\n if parent is None:\n tree.create_node(label, label, data=datadict)\n else:\n tree.create_node(label, label, parent=parent, data=datadict)\n tree.get_node(parent).data['ilev'] = ilev\n return tree\n",
"role": "user"
},
{
"content": "add_tree_node",
"role": "assistant"
}
] |
def x(X, n_clusters, n_trials, max_iter, tol):
membs = np.empty(shape=X.shape[0], dtype=int)
centers = dict()
sse_arr = dict()
tree = treelib.Tree()
tree = _add_tree_node(tree, 0, ilev=0, X=X)
km = _kmeans.KMeans(n_clusters=2, n_trials=n_trials, max_iter=max_iter,
tol=tol)
for i in range(1, n_clusters):
sel_clust_id, sel_memb_ids = _select_cluster_2_split(membs, tree)
X_sub = X[sel_memb_ids, :]
km.fit(X_sub)
tree = _add_tree_node(tree, 2 * i - 1, i, size=np.sum(km.labels_ ==
0), center=km.centers_[0], sse=km.sse_arr_[0], parent=sel_clust_id)
tree = _add_tree_node(tree, 2 * i, i, size=np.sum(km.labels_ == 1),
center=km.centers_[1], sse=km.sse_arr_[1], parent=sel_clust_id)
pred_labels = km.labels_
pred_labels[np.where(pred_labels == 1)[0]] = 2 * i
pred_labels[np.where(pred_labels == 0)[0]] = 2 * i - 1
membs[sel_memb_ids] = pred_labels
for n in tree.leaves():
label = n.data['label']
centers[label] = n.data['center']
sse_arr[label] = n.data['sse']
return centers, membs, sse_arr, tree
|
bisect_kmeans
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, n_clusters, n_trials, max_iter, tol):\n membs = np.empty(shape=X.shape[0], dtype=int)\n centers = dict()\n sse_arr = dict()\n tree = treelib.Tree()\n tree = _add_tree_node(tree, 0, ilev=0, X=X)\n km = _kmeans.KMeans(n_clusters=2, n_trials=n_trials, max_iter=max_iter,\n tol=tol)\n for i in range(1, n_clusters):\n sel_clust_id, sel_memb_ids = _select_cluster_2_split(membs, tree)\n X_sub = X[sel_memb_ids, :]\n km.fit(X_sub)\n tree = _add_tree_node(tree, 2 * i - 1, i, size=np.sum(km.labels_ ==\n 0), center=km.centers_[0], sse=km.sse_arr_[0], parent=sel_clust_id)\n tree = _add_tree_node(tree, 2 * i, i, size=np.sum(km.labels_ == 1),\n center=km.centers_[1], sse=km.sse_arr_[1], parent=sel_clust_id)\n pred_labels = km.labels_\n pred_labels[np.where(pred_labels == 1)[0]] = 2 * i\n pred_labels[np.where(pred_labels == 0)[0]] = 2 * i - 1\n membs[sel_memb_ids] = pred_labels\n for n in tree.leaves():\n label = n.data['label']\n centers[label] = n.data['center']\n sse_arr[label] = n.data['sse']\n return centers, membs, sse_arr, tree\n",
"role": "user"
},
{
"content": "bisect_kmeans",
"role": "assistant"
}
] |
def x(self):
dics = []
dics_bool = []
for i, chain in enumerate(self.parent.chains):
p = chain.posterior
if p is None:
dics_bool.append(False)
self._logger.warn(
'You need to set the posterior for chain %s to get the DIC' %
chain.name)
else:
dics_bool.append(True)
num_params = chain.chain.shape[1]
means = np.array([np.average(chain.chain[:, ii], weights=chain.
weights) for ii in range(num_params)])
d = -2 * p
d_of_mean = griddata(chain.chain, d, means, method='nearest')[0]
mean_d = np.average(d, weights=chain.weights)
p_d = mean_d - d_of_mean
dic = mean_d + p_d
dics.append(dic)
if len(dics) > 0:
dics -= np.min(dics)
dics_fin = []
i = 0
for b in dics_bool:
if not b:
dics_fin.append(None)
else:
dics_fin.append(dics[i])
i += 1
return dics_fin
|
dic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n dics = []\n dics_bool = []\n for i, chain in enumerate(self.parent.chains):\n p = chain.posterior\n if p is None:\n dics_bool.append(False)\n self._logger.warn(\n 'You need to set the posterior for chain %s to get the DIC' %\n chain.name)\n else:\n dics_bool.append(True)\n num_params = chain.chain.shape[1]\n means = np.array([np.average(chain.chain[:, ii], weights=chain.\n weights) for ii in range(num_params)])\n d = -2 * p\n d_of_mean = griddata(chain.chain, d, means, method='nearest')[0]\n mean_d = np.average(d, weights=chain.weights)\n p_d = mean_d - d_of_mean\n dic = mean_d + p_d\n dics.append(dic)\n if len(dics) > 0:\n dics -= np.min(dics)\n dics_fin = []\n i = 0\n for b in dics_bool:\n if not b:\n dics_fin.append(None)\n else:\n dics_fin.append(dics[i])\n i += 1\n return dics_fin\n",
"role": "user"
},
{
"content": "dic",
"role": "assistant"
}
] |
def x(self):
bics = []
bics_bool = []
for i, chain in enumerate(self.parent.chains):
p, n_data, n_free = (chain.posterior, chain.num_eff_data_points,
chain.num_free_params)
if p is None or n_data is None or n_free is None:
bics_bool.append(False)
missing = ''
if p is None:
missing += 'posterior, '
if n_data is None:
missing += 'num_eff_data_points, '
if n_free is None:
missing += 'num_free_params, '
self._logger.warn(
'You need to set %s for chain %s to get the BIC' % (missing
[:-2], chain.name))
else:
bics_bool.append(True)
bics.append(n_free * np.log(n_data) - 2 * np.max(p))
if len(bics) > 0:
bics -= np.min(bics)
bics_fin = []
i = 0
for b in bics_bool:
if not b:
bics_fin.append(None)
else:
bics_fin.append(bics[i])
i += 1
return bics_fin
|
bic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n bics = []\n bics_bool = []\n for i, chain in enumerate(self.parent.chains):\n p, n_data, n_free = (chain.posterior, chain.num_eff_data_points,\n chain.num_free_params)\n if p is None or n_data is None or n_free is None:\n bics_bool.append(False)\n missing = ''\n if p is None:\n missing += 'posterior, '\n if n_data is None:\n missing += 'num_eff_data_points, '\n if n_free is None:\n missing += 'num_free_params, '\n self._logger.warn(\n 'You need to set %s for chain %s to get the BIC' % (missing\n [:-2], chain.name))\n else:\n bics_bool.append(True)\n bics.append(n_free * np.log(n_data) - 2 * np.max(p))\n if len(bics) > 0:\n bics -= np.min(bics)\n bics_fin = []\n i = 0\n for b in bics_bool:\n if not b:\n bics_fin.append(None)\n else:\n bics_fin.append(bics[i])\n i += 1\n return bics_fin\n",
"role": "user"
},
{
"content": "bic",
"role": "assistant"
}
] |
def x(self):
aics = []
aics_bool = []
for i, chain in enumerate(self.parent.chains):
p, n_data, n_free = (chain.posterior, chain.num_eff_data_points,
chain.num_free_params)
if p is None or n_data is None or n_free is None:
aics_bool.append(False)
missing = ''
if p is None:
missing += 'posterior, '
if n_data is None:
missing += 'num_eff_data_points, '
if n_free is None:
missing += 'num_free_params, '
self._logger.warn(
'You need to set %s for chain %s to get the AIC' % (missing
[:-2], chain.name))
else:
aics_bool.append(True)
c_cor = 1.0 * n_free * (n_free + 1) / (n_data - n_free - 1)
aics.append(2.0 * (n_free + c_cor - np.max(p)))
if len(aics) > 0:
aics -= np.min(aics)
aics_fin = []
i = 0
for b in aics_bool:
if not b:
aics_fin.append(None)
else:
aics_fin.append(aics[i])
i += 1
return aics_fin
|
aic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n aics = []\n aics_bool = []\n for i, chain in enumerate(self.parent.chains):\n p, n_data, n_free = (chain.posterior, chain.num_eff_data_points,\n chain.num_free_params)\n if p is None or n_data is None or n_free is None:\n aics_bool.append(False)\n missing = ''\n if p is None:\n missing += 'posterior, '\n if n_data is None:\n missing += 'num_eff_data_points, '\n if n_free is None:\n missing += 'num_free_params, '\n self._logger.warn(\n 'You need to set %s for chain %s to get the AIC' % (missing\n [:-2], chain.name))\n else:\n aics_bool.append(True)\n c_cor = 1.0 * n_free * (n_free + 1) / (n_data - n_free - 1)\n aics.append(2.0 * (n_free + c_cor - np.max(p)))\n if len(aics) > 0:\n aics -= np.min(aics)\n aics_fin = []\n i = 0\n for b in aics_bool:\n if not b:\n aics_fin.append(None)\n else:\n aics_fin.append(aics[i])\n i += 1\n return aics_fin\n",
"role": "user"
},
{
"content": "aic",
"role": "assistant"
}
] |
def x(self, caption=None, label='tab:model_comp', hlines=True, aic=True,
bic=True, dic=True, sort='bic', descending=True):
if sort == 'bic':
assert bic, 'You cannot sort by BIC if you turn it off'
if sort == 'aic':
assert aic, 'You cannot sort by AIC if you turn it off'
if sort == 'dic':
assert dic, 'You cannot sort by DIC if you turn it off'
if caption is None:
caption = ''
if label is None:
label = ''
base_string = get_latex_table_frame(caption, label)
end_text = ' \\\\ \n'
num_cols = 1 + (1 if aic else 0) + (1 if bic else 0)
column_text = 'c' * (num_cols + 1)
center_text = ''
hline_text = '\\hline\n'
if hlines:
center_text += hline_text
center_text += '\tModel' + (' & AIC' if aic else '') + (' & BIC ' if
bic else '') + (' & DIC ' if dic else '') + end_text
if hlines:
center_text += '\t' + hline_text
if aic:
aics = self.aic()
else:
aics = np.zeros(len(self.parent.chains))
if bic:
bics = self.bic()
else:
bics = np.zeros(len(self.parent.chains))
if dic:
dics = self.dic()
else:
dics = np.zeros(len(self.parent.chains))
if sort == 'bic':
to_sort = bics
elif sort == 'aic':
to_sort = aics
elif sort == 'dic':
to_sort = dics
else:
raise ValueError('sort %s not recognised, must be dic, aic or dic' %
sort)
good = [i for i, t in enumerate(to_sort) if t is not None]
names = [self.parent.chains[g].name for g in good]
aics = [aics[g] for g in good]
bics = [bics[g] for g in good]
to_sort = bics if sort == 'bic' else aics
indexes = np.argsort(to_sort)
if descending:
indexes = indexes[::-1]
for i in indexes:
line = '\t' + names[i]
if aic:
line += ' & %5.1f ' % aics[i]
if bic:
line += ' & %5.1f ' % bics[i]
if dic:
line += ' & %5.1f ' % dics[i]
line += end_text
center_text += line
if hlines:
center_text += '\t' + hline_text
return base_string % (column_text, center_text)
|
comparison_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, caption=None, label='tab:model_comp', hlines=True, aic=True,\n bic=True, dic=True, sort='bic', descending=True):\n if sort == 'bic':\n assert bic, 'You cannot sort by BIC if you turn it off'\n if sort == 'aic':\n assert aic, 'You cannot sort by AIC if you turn it off'\n if sort == 'dic':\n assert dic, 'You cannot sort by DIC if you turn it off'\n if caption is None:\n caption = ''\n if label is None:\n label = ''\n base_string = get_latex_table_frame(caption, label)\n end_text = ' \\\\\\\\ \\n'\n num_cols = 1 + (1 if aic else 0) + (1 if bic else 0)\n column_text = 'c' * (num_cols + 1)\n center_text = ''\n hline_text = '\\\\hline\\n'\n if hlines:\n center_text += hline_text\n center_text += '\\tModel' + (' & AIC' if aic else '') + (' & BIC ' if\n bic else '') + (' & DIC ' if dic else '') + end_text\n if hlines:\n center_text += '\\t' + hline_text\n if aic:\n aics = self.aic()\n else:\n aics = np.zeros(len(self.parent.chains))\n if bic:\n bics = self.bic()\n else:\n bics = np.zeros(len(self.parent.chains))\n if dic:\n dics = self.dic()\n else:\n dics = np.zeros(len(self.parent.chains))\n if sort == 'bic':\n to_sort = bics\n elif sort == 'aic':\n to_sort = aics\n elif sort == 'dic':\n to_sort = dics\n else:\n raise ValueError('sort %s not recognised, must be dic, aic or dic' %\n sort)\n good = [i for i, t in enumerate(to_sort) if t is not None]\n names = [self.parent.chains[g].name for g in good]\n aics = [aics[g] for g in good]\n bics = [bics[g] for g in good]\n to_sort = bics if sort == 'bic' else aics\n indexes = np.argsort(to_sort)\n if descending:\n indexes = indexes[::-1]\n for i in indexes:\n line = '\\t' + names[i]\n if aic:\n line += ' & %5.1f ' % aics[i]\n if bic:\n line += ' & %5.1f ' % bics[i]\n if dic:\n line += ' & %5.1f ' % dics[i]\n line += end_text\n center_text += line\n if hlines:\n center_text += '\\t' + hline_text\n return base_string % (column_text, center_text)\n",
"role": "user"
},
{
"content": "comparison_table",
"role": "assistant"
}
] |
def x(self, data):
if len(data.shape) == 1 and self.num_dim == 1:
data = np.atleast_2d(data).T
_d = np.dot(data - self.mean, self.A)
neighbors = self.tree.query_ball_point(_d, self.sigma * self.truncation)
out = []
for i, n in enumerate(neighbors):
if len(n) >= self.nmin:
diff = self.d[n, :] - _d[i]
distsq = np.sum(diff * diff, axis=1)
else:
dist, n = self.tree.query(_d[i], k=self.nmin)
distsq = dist * dist
out.append(np.sum(self.weights[n] * np.exp(self.sigma_fact * distsq)))
return np.array(out)
|
evaluate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n if len(data.shape) == 1 and self.num_dim == 1:\n data = np.atleast_2d(data).T\n _d = np.dot(data - self.mean, self.A)\n neighbors = self.tree.query_ball_point(_d, self.sigma * self.truncation)\n out = []\n for i, n in enumerate(neighbors):\n if len(n) >= self.nmin:\n diff = self.d[n, :] - _d[i]\n distsq = np.sum(diff * diff, axis=1)\n else:\n dist, n = self.tree.query(_d[i], k=self.nmin)\n distsq = dist * dist\n out.append(np.sum(self.weights[n] * np.exp(self.sigma_fact * distsq)))\n return np.array(out)\n",
"role": "user"
},
{
"content": "evaluate",
"role": "assistant"
}
] |
def x(self, parameters=None, truth=None, extents=None, display=False,
filename=None, chains=None, convolve=None, figsize=None, plot_weights=
True, plot_posterior=True, log_weight=None):
chains, parameters, truth, extents, _ = self._sanitise(chains,
parameters, truth, extents)
n = len(parameters)
extra = 0
if plot_weights:
plot_weights = plot_weights and np.any([np.any(c.weights != 1.0) for
c in chains])
plot_posterior = plot_posterior and np.any([(c.posterior is not None) for
c in chains])
if plot_weights:
extra += 1
if plot_posterior:
extra += 1
if figsize is None:
figsize = 8, 0.75 + (n + extra)
fig, axes = plt.subplots(figsize=figsize, nrows=n + extra, squeeze=
False, sharex=True)
for i, axes_row in enumerate(axes):
ax = axes_row[0]
if i >= extra:
p = parameters[i - n]
for chain in chains:
if p in chain.parameters:
chain_row = chain.get_data(p)
self._plot_walk(ax, p, chain_row, extents=extents.get(p
), convolve=convolve, color=chain.config['color'])
if truth.get(p) is not None:
self._plot_walk_truth(ax, truth.get(p))
elif i == 0 and plot_posterior:
for chain in chains:
if chain.posterior is not None:
self._plot_walk(ax, '$\\log(P)$', chain.posterior -
chain.posterior.max(), convolve=convolve, color=
chain.config['color'])
else:
if log_weight is None:
log_weight = np.any([(chain.weights.mean() < 0.1) for chain in
chains])
if log_weight:
for chain in chains:
self._plot_walk(ax, '$\\log_{10}(w)$', np.log10(chain.
weights), convolve=convolve, color=chain.config[
'color'])
else:
for chain in chains:
self._plot_walk(ax, '$w$', chain.weights, convolve=
convolve, color=chain.config['color'])
if filename is not None:
if isinstance(filename, str):
filename = [filename]
for f in filename:
self._save_fig(fig, f, 300)
if display:
plt.show()
return fig
|
plot_walks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameters=None, truth=None, extents=None, display=False,\n filename=None, chains=None, convolve=None, figsize=None, plot_weights=\n True, plot_posterior=True, log_weight=None):\n chains, parameters, truth, extents, _ = self._sanitise(chains,\n parameters, truth, extents)\n n = len(parameters)\n extra = 0\n if plot_weights:\n plot_weights = plot_weights and np.any([np.any(c.weights != 1.0) for\n c in chains])\n plot_posterior = plot_posterior and np.any([(c.posterior is not None) for\n c in chains])\n if plot_weights:\n extra += 1\n if plot_posterior:\n extra += 1\n if figsize is None:\n figsize = 8, 0.75 + (n + extra)\n fig, axes = plt.subplots(figsize=figsize, nrows=n + extra, squeeze=\n False, sharex=True)\n for i, axes_row in enumerate(axes):\n ax = axes_row[0]\n if i >= extra:\n p = parameters[i - n]\n for chain in chains:\n if p in chain.parameters:\n chain_row = chain.get_data(p)\n self._plot_walk(ax, p, chain_row, extents=extents.get(p\n ), convolve=convolve, color=chain.config['color'])\n if truth.get(p) is not None:\n self._plot_walk_truth(ax, truth.get(p))\n elif i == 0 and plot_posterior:\n for chain in chains:\n if chain.posterior is not None:\n self._plot_walk(ax, '$\\\\log(P)$', chain.posterior -\n chain.posterior.max(), convolve=convolve, color=\n chain.config['color'])\n else:\n if log_weight is None:\n log_weight = np.any([(chain.weights.mean() < 0.1) for chain in\n chains])\n if log_weight:\n for chain in chains:\n self._plot_walk(ax, '$\\\\log_{10}(w)$', np.log10(chain.\n weights), convolve=convolve, color=chain.config[\n 'color'])\n else:\n for chain in chains:\n self._plot_walk(ax, '$w$', chain.weights, convolve=\n convolve, color=chain.config['color'])\n if filename is not None:\n if isinstance(filename, str):\n filename = [filename]\n for f in filename:\n self._save_fig(fig, f, 300)\n if display:\n plt.show()\n return fig\n",
"role": "user"
},
{
"content": "plot_walks",
"role": "assistant"
}
] |
def x(self, parameters=None, truth=None, extents=None, display=False,
filename=None, chains=None, col_wrap=4, figsize=None, blind=None):
chains, parameters, truth, extents, blind = self._sanitise(chains,
parameters, truth, extents, blind=blind)
n = len(parameters)
num_cols = min(n, col_wrap)
num_rows = int(np.ceil(1.0 * n / col_wrap))
if figsize is None:
figsize = 1.0
if isinstance(figsize, float):
figsize_float = figsize
figsize = num_cols * 2 * figsize, num_rows * 2 * figsize
else:
figsize_float = 1.0
summary = self.parent.config['summary']
label_font_size = self.parent.config['label_font_size']
tick_font_size = self.parent.config['tick_font_size']
max_ticks = self.parent.config['max_ticks']
diagonal_tick_labels = self.parent.config['diagonal_tick_labels']
if summary is None:
summary = len(self.parent.chains) == 1
hspace = (0.8 if summary else 0.5) / figsize_float
fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=
figsize, squeeze=False)
fig.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.1, wspace=
0.05, hspace=hspace)
formatter = ScalarFormatter(useOffset=False)
formatter.set_powerlimits((-3, 4))
for i, ax in enumerate(axes.flatten()):
if i >= len(parameters):
ax.set_axis_off()
continue
p = parameters[i]
ax.set_yticks([])
if p in blind:
ax.set_xticks([])
else:
if diagonal_tick_labels:
_ = [l.set_rotation(45) for l in ax.get_xticklabels()]
_ = [l.set_fontsize(tick_font_size) for l in ax.get_xticklabels()]
ax.xaxis.set_major_locator(MaxNLocator(max_ticks, prune='lower'))
ax.xaxis.set_major_formatter(formatter)
ax.set_xlim(extents.get(p) or self._get_parameter_extents(p, chains))
max_val = None
for chain in chains:
if p in chain.parameters:
param_summary = summary and p not in blind
m = self._plot_bars(ax, p, chain, summary=param_summary)
if max_val is None or m > max_val:
max_val = m
self._add_truth(ax, truth, None, py=p)
ax.set_ylim(0, 1.1 * max_val)
ax.set_xlabel(p, fontsize=label_font_size)
if filename is not None:
if isinstance(filename, str):
filename = [filename]
for f in filename:
self._save_fig(fig, f, 300)
if display:
plt.show()
return fig
|
plot_distributions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameters=None, truth=None, extents=None, display=False,\n filename=None, chains=None, col_wrap=4, figsize=None, blind=None):\n chains, parameters, truth, extents, blind = self._sanitise(chains,\n parameters, truth, extents, blind=blind)\n n = len(parameters)\n num_cols = min(n, col_wrap)\n num_rows = int(np.ceil(1.0 * n / col_wrap))\n if figsize is None:\n figsize = 1.0\n if isinstance(figsize, float):\n figsize_float = figsize\n figsize = num_cols * 2 * figsize, num_rows * 2 * figsize\n else:\n figsize_float = 1.0\n summary = self.parent.config['summary']\n label_font_size = self.parent.config['label_font_size']\n tick_font_size = self.parent.config['tick_font_size']\n max_ticks = self.parent.config['max_ticks']\n diagonal_tick_labels = self.parent.config['diagonal_tick_labels']\n if summary is None:\n summary = len(self.parent.chains) == 1\n hspace = (0.8 if summary else 0.5) / figsize_float\n fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=\n figsize, squeeze=False)\n fig.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.1, wspace=\n 0.05, hspace=hspace)\n formatter = ScalarFormatter(useOffset=False)\n formatter.set_powerlimits((-3, 4))\n for i, ax in enumerate(axes.flatten()):\n if i >= len(parameters):\n ax.set_axis_off()\n continue\n p = parameters[i]\n ax.set_yticks([])\n if p in blind:\n ax.set_xticks([])\n else:\n if diagonal_tick_labels:\n _ = [l.set_rotation(45) for l in ax.get_xticklabels()]\n _ = [l.set_fontsize(tick_font_size) for l in ax.get_xticklabels()]\n ax.xaxis.set_major_locator(MaxNLocator(max_ticks, prune='lower'))\n ax.xaxis.set_major_formatter(formatter)\n ax.set_xlim(extents.get(p) or self._get_parameter_extents(p, chains))\n max_val = None\n for chain in chains:\n if p in chain.parameters:\n param_summary = summary and p not in blind\n m = self._plot_bars(ax, p, chain, summary=param_summary)\n if max_val is None or m > max_val:\n max_val = m\n self._add_truth(ax, truth, None, py=p)\n ax.set_ylim(0, 1.1 * max_val)\n ax.set_xlabel(p, fontsize=label_font_size)\n if filename is not None:\n if isinstance(filename, str):\n filename = [filename]\n for f in filename:\n self._save_fig(fig, f, 300)\n if display:\n plt.show()\n return fig\n",
"role": "user"
},
{
"content": "plot_distributions",
"role": "assistant"
}
] |
def x(self, parameters=None, truth=None, extents=None, display=False,
filename=None, chains=None, figsize=1.0, errorbar=False,
include_truth_chain=True, blind=None, watermark=None,
extra_parameter_spacing=0.5, vertical_spacing_ratio=1.0, show_names=True):
wide_extents = not errorbar
chains, parameters, truth, extents, blind = self._sanitise(chains,
parameters, truth, extents, blind=blind, wide_extents=wide_extents)
all_names = [c.name for c in self.parent.chains]
if isinstance(truth, str):
assert truth in all_names, 'Truth chain %s is not in the list of added chains %s' % (
truth, all_names)
if not include_truth_chain:
chains = [c for c in chains if c.name != truth]
truth = self.parent.analysis.get_summary(chains=truth, parameters=
parameters)
max_param = self._get_size_of_texts(parameters)
fid_dpi = 65
param_width = extra_parameter_spacing + max(0.5, max_param / fid_dpi)
if show_names:
max_model_name = self._get_size_of_texts([chain.name for chain in
chains])
model_width = 0.25 + max_model_name / fid_dpi
gridspec_kw = {'width_ratios': [model_width] + [param_width] * len(
parameters), 'height_ratios': [1] * len(chains)}
ncols = 1 + len(parameters)
else:
model_width = 0
gridspec_kw = {'width_ratios': [param_width] * len(parameters),
'height_ratios': [1] * len(chains)}
ncols = len(parameters)
top_spacing = 0.3
bottom_spacing = 0.2
row_height = (0.5 if not errorbar else 0.3) * vertical_spacing_ratio
width = param_width * len(parameters) + model_width
height = top_spacing + bottom_spacing + row_height * len(chains)
top_ratio = 1 - top_spacing / height
bottom_ratio = bottom_spacing / height
figsize = width * figsize, height * figsize
fig, axes = plt.subplots(nrows=len(chains), ncols=ncols, figsize=
figsize, squeeze=False, gridspec_kw=gridspec_kw)
fig.subplots_adjust(left=0.05, right=0.95, top=top_ratio, bottom=
bottom_ratio, wspace=0.0, hspace=0.0)
label_font_size = self.parent.config['label_font_size']
legend_color_text = self.parent.config['legend_color_text']
max_vals = {}
for i, row in enumerate(axes):
chain = chains[i]
cs, ws, ps = chain.chain, chain.weights, chain.parameters
gs, ns = chain.grid, chain.name
colour = chain.config['color']
if show_names:
ax_first = row[0]
ax_first.set_axis_off()
text_colour = 'k' if not legend_color_text else colour
ax_first.text(0, 0.5, ns, transform=ax_first.transAxes,
fontsize=label_font_size, verticalalignment='center', color
=text_colour, weight='medium')
cols = row[1:]
else:
cols = row
for ax, p in zip(cols, parameters):
if i > 0:
ax.spines['top'].set_visible(False)
if i < len(chains) - 1:
ax.spines['bottom'].set_visible(False)
if i < len(chains) - 1 or p in blind:
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlim(extents[p])
if i == 0:
ax.set_title('$%s$' % p, fontsize=label_font_size)
truth_value = truth.get(p)
if truth_value is not None:
if isinstance(truth_value, float) or isinstance(truth_value,
int):
truth_mean = truth_value
truth_min, truth_max = None, None
elif len(truth_value) == 1:
truth_mean = truth_value
truth_min, truth_max = None, None
elif len(truth_value) == 2:
truth_min, truth_max = truth_value
truth_mean = None
else:
truth_min, truth_mean, truth_max = truth_value
if truth_mean is not None:
ax.axvline(truth_mean, **self.parent.config_truth)
if truth_min is not None and truth_max is not None:
ax.axvspan(truth_min, truth_max, color=self.parent.
config_truth['color'], alpha=0.15, lw=0)
if p not in ps:
continue
if errorbar:
fv = self.parent.analysis.get_parameter_summary(chain, p)
if fv[0] is not None and fv[2] is not None:
diff = np.abs(np.diff(fv))
ax.errorbar([fv[1]], 0, xerr=[[diff[0]], [diff[1]]],
fmt='o', color=colour)
else:
m = self._plot_bars(ax, p, chain)
if max_vals.get(p) is None or m > max_vals.get(p):
max_vals[p] = m
for i, row in enumerate(axes):
index = 1 if show_names else 0
for ax, p in zip(row[index:], parameters):
if not errorbar:
ax.set_ylim(0, 1.1 * max_vals[p])
dpi = 300
if watermark:
ax = None
self._add_watermark(fig, ax, figsize, watermark, dpi=dpi,
size_scale=0.8)
if filename is not None:
if isinstance(filename, str):
filename = [filename]
for f in filename:
self._save_fig(fig, f, dpi)
if display:
plt.show()
return fig
|
plot_summary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameters=None, truth=None, extents=None, display=False,\n filename=None, chains=None, figsize=1.0, errorbar=False,\n include_truth_chain=True, blind=None, watermark=None,\n extra_parameter_spacing=0.5, vertical_spacing_ratio=1.0, show_names=True):\n wide_extents = not errorbar\n chains, parameters, truth, extents, blind = self._sanitise(chains,\n parameters, truth, extents, blind=blind, wide_extents=wide_extents)\n all_names = [c.name for c in self.parent.chains]\n if isinstance(truth, str):\n assert truth in all_names, 'Truth chain %s is not in the list of added chains %s' % (\n truth, all_names)\n if not include_truth_chain:\n chains = [c for c in chains if c.name != truth]\n truth = self.parent.analysis.get_summary(chains=truth, parameters=\n parameters)\n max_param = self._get_size_of_texts(parameters)\n fid_dpi = 65\n param_width = extra_parameter_spacing + max(0.5, max_param / fid_dpi)\n if show_names:\n max_model_name = self._get_size_of_texts([chain.name for chain in\n chains])\n model_width = 0.25 + max_model_name / fid_dpi\n gridspec_kw = {'width_ratios': [model_width] + [param_width] * len(\n parameters), 'height_ratios': [1] * len(chains)}\n ncols = 1 + len(parameters)\n else:\n model_width = 0\n gridspec_kw = {'width_ratios': [param_width] * len(parameters),\n 'height_ratios': [1] * len(chains)}\n ncols = len(parameters)\n top_spacing = 0.3\n bottom_spacing = 0.2\n row_height = (0.5 if not errorbar else 0.3) * vertical_spacing_ratio\n width = param_width * len(parameters) + model_width\n height = top_spacing + bottom_spacing + row_height * len(chains)\n top_ratio = 1 - top_spacing / height\n bottom_ratio = bottom_spacing / height\n figsize = width * figsize, height * figsize\n fig, axes = plt.subplots(nrows=len(chains), ncols=ncols, figsize=\n figsize, squeeze=False, gridspec_kw=gridspec_kw)\n fig.subplots_adjust(left=0.05, right=0.95, top=top_ratio, bottom=\n bottom_ratio, wspace=0.0, hspace=0.0)\n label_font_size = self.parent.config['label_font_size']\n legend_color_text = self.parent.config['legend_color_text']\n max_vals = {}\n for i, row in enumerate(axes):\n chain = chains[i]\n cs, ws, ps = chain.chain, chain.weights, chain.parameters\n gs, ns = chain.grid, chain.name\n colour = chain.config['color']\n if show_names:\n ax_first = row[0]\n ax_first.set_axis_off()\n text_colour = 'k' if not legend_color_text else colour\n ax_first.text(0, 0.5, ns, transform=ax_first.transAxes,\n fontsize=label_font_size, verticalalignment='center', color\n =text_colour, weight='medium')\n cols = row[1:]\n else:\n cols = row\n for ax, p in zip(cols, parameters):\n if i > 0:\n ax.spines['top'].set_visible(False)\n if i < len(chains) - 1:\n ax.spines['bottom'].set_visible(False)\n if i < len(chains) - 1 or p in blind:\n ax.set_xticks([])\n ax.set_yticks([])\n ax.set_xlim(extents[p])\n if i == 0:\n ax.set_title('$%s$' % p, fontsize=label_font_size)\n truth_value = truth.get(p)\n if truth_value is not None:\n if isinstance(truth_value, float) or isinstance(truth_value,\n int):\n truth_mean = truth_value\n truth_min, truth_max = None, None\n elif len(truth_value) == 1:\n truth_mean = truth_value\n truth_min, truth_max = None, None\n elif len(truth_value) == 2:\n truth_min, truth_max = truth_value\n truth_mean = None\n else:\n truth_min, truth_mean, truth_max = truth_value\n if truth_mean is not None:\n ax.axvline(truth_mean, **self.parent.config_truth)\n if truth_min is not None and truth_max is not None:\n ax.axvspan(truth_min, truth_max, color=self.parent.\n config_truth['color'], alpha=0.15, lw=0)\n if p not in ps:\n continue\n if errorbar:\n fv = self.parent.analysis.get_parameter_summary(chain, p)\n if fv[0] is not None and fv[2] is not None:\n diff = np.abs(np.diff(fv))\n ax.errorbar([fv[1]], 0, xerr=[[diff[0]], [diff[1]]],\n fmt='o', color=colour)\n else:\n m = self._plot_bars(ax, p, chain)\n if max_vals.get(p) is None or m > max_vals.get(p):\n max_vals[p] = m\n for i, row in enumerate(axes):\n index = 1 if show_names else 0\n for ax, p in zip(row[index:], parameters):\n if not errorbar:\n ax.set_ylim(0, 1.1 * max_vals[p])\n dpi = 300\n if watermark:\n ax = None\n self._add_watermark(fig, ax, figsize, watermark, dpi=dpi,\n size_scale=0.8)\n if filename is not None:\n if isinstance(filename, str):\n filename = [filename]\n for f in filename:\n self._save_fig(fig, f, dpi)\n if display:\n plt.show()\n return fig\n",
"role": "user"
},
{
"content": "plot_summary",
"role": "assistant"
}
] |
def x(self, chain=None, threshold=0.05):
if chain is None:
return np.all([self.gelman_rubin(k, threshold=threshold) for k in
range(len(self.parent.chains))])
index = self.parent._get_chain(chain)
assert len(index
) == 1, 'Please specify only one chain, have %d chains' % len(index)
chain = self.parent.chains[index[0]]
num_walkers = chain.walkers
parameters = chain.parameters
name = chain.name
data = chain.chain
chains = np.split(data, num_walkers)
assert num_walkers > 1, 'Cannot run Gelman-Rubin statistic with only one walker'
m = 1.0 * len(chains)
n = 1.0 * chains[0].shape[0]
all_mean = np.mean(data, axis=0)
chain_means = np.array([np.mean(c, axis=0) for c in chains])
chain_var = np.array([np.var(c, axis=0, ddof=1) for c in chains])
b = n / (m - 1) * ((chain_means - all_mean) ** 2).sum(axis=0)
w = 1 / m * chain_var.sum(axis=0)
var = (n - 1) * w / n + b / n
v = var + b / (n * m)
R = np.sqrt(v / w)
passed = np.abs(R - 1) < threshold
print('Gelman-Rubin Statistic values for chain %s' % name)
for p, v, pas in zip(parameters, R, passed):
param = 'Param %d' % p if isinstance(p, int) else p
print('%s: %7.5f (%s)' % (param, v, 'Passed' if pas else 'Failed'))
return np.all(passed)
|
gelman_rubin
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chain=None, threshold=0.05):\n if chain is None:\n return np.all([self.gelman_rubin(k, threshold=threshold) for k in\n range(len(self.parent.chains))])\n index = self.parent._get_chain(chain)\n assert len(index\n ) == 1, 'Please specify only one chain, have %d chains' % len(index)\n chain = self.parent.chains[index[0]]\n num_walkers = chain.walkers\n parameters = chain.parameters\n name = chain.name\n data = chain.chain\n chains = np.split(data, num_walkers)\n assert num_walkers > 1, 'Cannot run Gelman-Rubin statistic with only one walker'\n m = 1.0 * len(chains)\n n = 1.0 * chains[0].shape[0]\n all_mean = np.mean(data, axis=0)\n chain_means = np.array([np.mean(c, axis=0) for c in chains])\n chain_var = np.array([np.var(c, axis=0, ddof=1) for c in chains])\n b = n / (m - 1) * ((chain_means - all_mean) ** 2).sum(axis=0)\n w = 1 / m * chain_var.sum(axis=0)\n var = (n - 1) * w / n + b / n\n v = var + b / (n * m)\n R = np.sqrt(v / w)\n passed = np.abs(R - 1) < threshold\n print('Gelman-Rubin Statistic values for chain %s' % name)\n for p, v, pas in zip(parameters, R, passed):\n param = 'Param %d' % p if isinstance(p, int) else p\n print('%s: %7.5f (%s)' % (param, v, 'Passed' if pas else 'Failed'))\n return np.all(passed)\n",
"role": "user"
},
{
"content": "gelman_rubin",
"role": "assistant"
}
] |
def x(self, chain=None, first=0.1, last=0.5, threshold=0.05):
if chain is None:
return np.all([self.geweke(k, threshold=threshold) for k in range(
len(self.parent.chains))])
index = self.parent._get_chain(chain)
assert len(index
) == 1, 'Please specify only one chain, have %d chains' % len(index)
chain = self.parent.chains[index[0]]
num_walkers = chain.walkers
assert num_walkers is not None and num_walkers > 0, 'You need to specify the number of walkers to use the Geweke diagnostic.'
name = chain.name
data = chain.chain
chains = np.split(data, num_walkers)
n = 1.0 * chains[0].shape[0]
n_start = int(np.floor(first * n))
n_end = int(np.floor((1 - last) * n))
mean_start = np.array([np.mean(c[:n_start, i]) for c in chains for i in
range(c.shape[1])])
var_start = np.array([(self._spec(c[:n_start, i]) / c[:n_start, i].size
) for c in chains for i in range(c.shape[1])])
mean_end = np.array([np.mean(c[n_end:, i]) for c in chains for i in
range(c.shape[1])])
var_end = np.array([(self._spec(c[n_end:, i]) / c[n_end:, i].size) for
c in chains for i in range(c.shape[1])])
zs = (mean_start - mean_end) / np.sqrt(var_start + var_end)
_, pvalue = normaltest(zs)
print('Gweke Statistic for chain %s has p-value %e' % (name, pvalue))
return pvalue > threshold
|
geweke
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chain=None, first=0.1, last=0.5, threshold=0.05):\n if chain is None:\n return np.all([self.geweke(k, threshold=threshold) for k in range(\n len(self.parent.chains))])\n index = self.parent._get_chain(chain)\n assert len(index\n ) == 1, 'Please specify only one chain, have %d chains' % len(index)\n chain = self.parent.chains[index[0]]\n num_walkers = chain.walkers\n assert num_walkers is not None and num_walkers > 0, 'You need to specify the number of walkers to use the Geweke diagnostic.'\n name = chain.name\n data = chain.chain\n chains = np.split(data, num_walkers)\n n = 1.0 * chains[0].shape[0]\n n_start = int(np.floor(first * n))\n n_end = int(np.floor((1 - last) * n))\n mean_start = np.array([np.mean(c[:n_start, i]) for c in chains for i in\n range(c.shape[1])])\n var_start = np.array([(self._spec(c[:n_start, i]) / c[:n_start, i].size\n ) for c in chains for i in range(c.shape[1])])\n mean_end = np.array([np.mean(c[n_end:, i]) for c in chains for i in\n range(c.shape[1])])\n var_end = np.array([(self._spec(c[n_end:, i]) / c[n_end:, i].size) for\n c in chains for i in range(c.shape[1])])\n zs = (mean_start - mean_end) / np.sqrt(var_start + var_end)\n _, pvalue = normaltest(zs)\n print('Gweke Statistic for chain %s has p-value %e' % (name, pvalue))\n return pvalue > threshold\n",
"role": "user"
},
{
"content": "geweke",
"role": "assistant"
}
] |
def x(self, parameters=None, transpose=False, caption=None, label=
'tab:model_params', hlines=True, blank_fill='--'):
if parameters is None:
parameters = self.parent._all_parameters
for p in parameters:
assert isinstance(p, str
), 'Generating a LaTeX table requires all parameters have labels'
num_parameters = len(parameters)
num_chains = len(self.parent.chains)
fit_values = self.get_summary(squeeze=False)
if label is None:
label = ''
if caption is None:
caption = ''
end_text = ' \\\\ \n'
if transpose:
column_text = 'c' * (num_chains + 1)
else:
column_text = 'c' * (num_parameters + 1)
center_text = ''
hline_text = '\\hline\n'
if hlines:
center_text += hline_text + '\t\t'
if transpose:
center_text += ' & '.join(['Parameter'] + [c.name for c in self.
parent.chains]) + end_text
if hlines:
center_text += '\t\t' + hline_text
for p in parameters:
arr = ['\t\t' + p]
for chain_res in fit_values:
if p in chain_res:
arr.append(self.get_parameter_text(*chain_res[p], wrap=
True))
else:
arr.append(blank_fill)
center_text += ' & '.join(arr) + end_text
else:
center_text += ' & '.join(['Model'] + parameters) + end_text
if hlines:
center_text += '\t\t' + hline_text
for name, chain_res in zip([c.name for c in self.parent.chains],
fit_values):
arr = ['\t\t' + name]
for p in parameters:
if p in chain_res:
arr.append(self.get_parameter_text(*chain_res[p], wrap=
True))
else:
arr.append(blank_fill)
center_text += ' & '.join(arr) + end_text
if hlines:
center_text += '\t\t' + hline_text
final_text = get_latex_table_frame(caption, label) % (column_text,
center_text)
return final_text
|
get_latex_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameters=None, transpose=False, caption=None, label=\n 'tab:model_params', hlines=True, blank_fill='--'):\n if parameters is None:\n parameters = self.parent._all_parameters\n for p in parameters:\n assert isinstance(p, str\n ), 'Generating a LaTeX table requires all parameters have labels'\n num_parameters = len(parameters)\n num_chains = len(self.parent.chains)\n fit_values = self.get_summary(squeeze=False)\n if label is None:\n label = ''\n if caption is None:\n caption = ''\n end_text = ' \\\\\\\\ \\n'\n if transpose:\n column_text = 'c' * (num_chains + 1)\n else:\n column_text = 'c' * (num_parameters + 1)\n center_text = ''\n hline_text = '\\\\hline\\n'\n if hlines:\n center_text += hline_text + '\\t\\t'\n if transpose:\n center_text += ' & '.join(['Parameter'] + [c.name for c in self.\n parent.chains]) + end_text\n if hlines:\n center_text += '\\t\\t' + hline_text\n for p in parameters:\n arr = ['\\t\\t' + p]\n for chain_res in fit_values:\n if p in chain_res:\n arr.append(self.get_parameter_text(*chain_res[p], wrap=\n True))\n else:\n arr.append(blank_fill)\n center_text += ' & '.join(arr) + end_text\n else:\n center_text += ' & '.join(['Model'] + parameters) + end_text\n if hlines:\n center_text += '\\t\\t' + hline_text\n for name, chain_res in zip([c.name for c in self.parent.chains],\n fit_values):\n arr = ['\\t\\t' + name]\n for p in parameters:\n if p in chain_res:\n arr.append(self.get_parameter_text(*chain_res[p], wrap=\n True))\n else:\n arr.append(blank_fill)\n center_text += ' & '.join(arr) + end_text\n if hlines:\n center_text += '\\t\\t' + hline_text\n final_text = get_latex_table_frame(caption, label) % (column_text,\n center_text)\n return final_text\n",
"role": "user"
},
{
"content": "get_latex_table",
"role": "assistant"
}
] |
def x(self, squeeze=True, parameters=None, chains=None):
results = []
if chains is None:
chains = self.parent.chains
else:
if isinstance(chains, (int, str)):
chains = [chains]
chains = [self.parent.chains[i] for c in chains for i in self.
parent._get_chain(c)]
for chain in chains:
res = {}
params_to_find = (parameters if parameters is not None else chain.
parameters)
for p in params_to_find:
if p not in chain.parameters:
continue
summary = self.get_parameter_summary(chain, p)
res[p] = summary
results.append(res)
if squeeze and len(results) == 1:
return results[0]
return results
|
get_summary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, squeeze=True, parameters=None, chains=None):\n results = []\n if chains is None:\n chains = self.parent.chains\n else:\n if isinstance(chains, (int, str)):\n chains = [chains]\n chains = [self.parent.chains[i] for c in chains for i in self.\n parent._get_chain(c)]\n for chain in chains:\n res = {}\n params_to_find = (parameters if parameters is not None else chain.\n parameters)\n for p in params_to_find:\n if p not in chain.parameters:\n continue\n summary = self.get_parameter_summary(chain, p)\n res[p] = summary\n results.append(res)\n if squeeze and len(results) == 1:\n return results[0]\n return results\n",
"role": "user"
},
{
"content": "get_summary",
"role": "assistant"
}
] |
def x(self, parameters=None, squeeze=True, chains=None):
results = []
if chains is None:
chains = self.parent.chains
else:
if isinstance(chains, (int, str)):
chains = [chains]
chains = [self.parent.chains[i] for c in chains for i in self.
parent._get_chain(c)]
if isinstance(parameters, str):
parameters = [parameters]
for chain in chains:
if chain.posterior_max_index is None:
results.append(None)
continue
res = {}
params_to_find = (parameters if parameters is not None else chain.
parameters)
for p in params_to_find:
if p in chain.parameters:
res[p] = chain.posterior_max_params[p]
results.append(res)
if squeeze and len(results) == 1:
return results[0]
return results
|
get_max_posteriors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameters=None, squeeze=True, chains=None):\n results = []\n if chains is None:\n chains = self.parent.chains\n else:\n if isinstance(chains, (int, str)):\n chains = [chains]\n chains = [self.parent.chains[i] for c in chains for i in self.\n parent._get_chain(c)]\n if isinstance(parameters, str):\n parameters = [parameters]\n for chain in chains:\n if chain.posterior_max_index is None:\n results.append(None)\n continue\n res = {}\n params_to_find = (parameters if parameters is not None else chain.\n parameters)\n for p in params_to_find:\n if p in chain.parameters:\n res[p] = chain.posterior_max_params[p]\n results.append(res)\n if squeeze and len(results) == 1:\n return results[0]\n return results\n",
"role": "user"
},
{
"content": "get_max_posteriors",
"role": "assistant"
}
] |
def x(self, chain=0, parameters=None):
parameters, cov = self.get_covariance(chain=chain, parameters=parameters)
diag = np.sqrt(np.diag(cov))
divisor = diag[None, :] * diag[:, None]
correlations = cov / divisor
return parameters, correlations
|
get_correlations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chain=0, parameters=None):\n parameters, cov = self.get_covariance(chain=chain, parameters=parameters)\n diag = np.sqrt(np.diag(cov))\n divisor = diag[None, :] * diag[:, None]\n correlations = cov / divisor\n return parameters, correlations\n",
"role": "user"
},
{
"content": "get_correlations",
"role": "assistant"
}
] |
def x(self, chain=0, parameters=None):
index = self.parent._get_chain(chain)
assert len(index
) == 1, 'Please specify only one chain, have %d chains' % len(index)
chain = self.parent.chains[index[0]]
if parameters is None:
parameters = chain.parameters
data = chain.get_data(parameters)
cov = np.atleast_2d(np.cov(data, aweights=chain.weights, rowvar=False))
return parameters, cov
|
get_covariance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chain=0, parameters=None):\n index = self.parent._get_chain(chain)\n assert len(index\n ) == 1, 'Please specify only one chain, have %d chains' % len(index)\n chain = self.parent.chains[index[0]]\n if parameters is None:\n parameters = chain.parameters\n data = chain.get_data(parameters)\n cov = np.atleast_2d(np.cov(data, aweights=chain.weights, rowvar=False))\n return parameters, cov\n",
"role": "user"
},
{
"content": "get_covariance",
"role": "assistant"
}
] |
def x(self, chain=0, parameters=None, caption='Parameter Correlations',
label='tab:parameter_correlations'):
parameters, cor = self.get_correlations(chain=chain, parameters=parameters)
return self._get_2d_latex_table(parameters, cor, caption, label)
|
get_correlation_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chain=0, parameters=None, caption='Parameter Correlations',\n label='tab:parameter_correlations'):\n parameters, cor = self.get_correlations(chain=chain, parameters=parameters)\n return self._get_2d_latex_table(parameters, cor, caption, label)\n",
"role": "user"
},
{
"content": "get_correlation_table",
"role": "assistant"
}
] |
def x(self, chain=0, parameters=None, caption='Parameter Covariance', label
='tab:parameter_covariance'):
parameters, cov = self.get_covariance(chain=chain, parameters=parameters)
return self._get_2d_latex_table(parameters, cov, caption, label)
|
get_covariance_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chain=0, parameters=None, caption='Parameter Covariance', label\n ='tab:parameter_covariance'):\n parameters, cov = self.get_covariance(chain=chain, parameters=parameters)\n return self._get_2d_latex_table(parameters, cov, caption, label)\n",
"role": "user"
},
{
"content": "get_covariance_table",
"role": "assistant"
}
] |
def x(self, lower, maximum, upper, wrap=False):
if lower is None or upper is None:
return ''
upper_error = upper - maximum
lower_error = maximum - lower
if upper_error != 0 and lower_error != 0:
resolution = min(np.floor(np.log10(np.abs(upper_error))), np.floor(
np.log10(np.abs(lower_error))))
elif upper_error == 0 and lower_error != 0:
resolution = np.floor(np.log10(np.abs(lower_error)))
elif upper_error != 0 and lower_error == 0:
resolution = np.floor(np.log10(np.abs(upper_error)))
else:
resolution = np.floor(np.log10(np.abs(maximum)))
factor = 0
fmt = '%0.1f'
r = 1
if np.abs(resolution) > 2:
factor = -resolution
if resolution == 2:
fmt = '%0.0f'
factor = -1
r = 0
if resolution == 1:
fmt = '%0.0f'
if resolution == -1:
fmt = '%0.2f'
r = 2
elif resolution == -2:
fmt = '%0.3f'
r = 3
upper_error *= 10 ** factor
lower_error *= 10 ** factor
maximum *= 10 ** factor
upper_error = round(upper_error, r)
lower_error = round(lower_error, r)
maximum = round(maximum, r)
if maximum == -0.0:
maximum = 0.0
if resolution == 2:
upper_error *= 10 ** -factor
lower_error *= 10 ** -factor
maximum *= 10 ** -factor
factor = 0
fmt = '%0.0f'
upper_error_text = fmt % upper_error
lower_error_text = fmt % lower_error
if upper_error_text == lower_error_text:
text = '%s\\pm %s' % (fmt, '%s') % (maximum, lower_error_text)
else:
text = '%s^{+%s}_{-%s}' % (fmt, '%s', '%s') % (maximum,
upper_error_text, lower_error_text)
if factor != 0:
text = '\\left( %s \\right) \\times 10^{%d}' % (text, -factor)
if wrap:
text = '$%s$' % text
return text
|
get_parameter_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lower, maximum, upper, wrap=False):\n if lower is None or upper is None:\n return ''\n upper_error = upper - maximum\n lower_error = maximum - lower\n if upper_error != 0 and lower_error != 0:\n resolution = min(np.floor(np.log10(np.abs(upper_error))), np.floor(\n np.log10(np.abs(lower_error))))\n elif upper_error == 0 and lower_error != 0:\n resolution = np.floor(np.log10(np.abs(lower_error)))\n elif upper_error != 0 and lower_error == 0:\n resolution = np.floor(np.log10(np.abs(upper_error)))\n else:\n resolution = np.floor(np.log10(np.abs(maximum)))\n factor = 0\n fmt = '%0.1f'\n r = 1\n if np.abs(resolution) > 2:\n factor = -resolution\n if resolution == 2:\n fmt = '%0.0f'\n factor = -1\n r = 0\n if resolution == 1:\n fmt = '%0.0f'\n if resolution == -1:\n fmt = '%0.2f'\n r = 2\n elif resolution == -2:\n fmt = '%0.3f'\n r = 3\n upper_error *= 10 ** factor\n lower_error *= 10 ** factor\n maximum *= 10 ** factor\n upper_error = round(upper_error, r)\n lower_error = round(lower_error, r)\n maximum = round(maximum, r)\n if maximum == -0.0:\n maximum = 0.0\n if resolution == 2:\n upper_error *= 10 ** -factor\n lower_error *= 10 ** -factor\n maximum *= 10 ** -factor\n factor = 0\n fmt = '%0.0f'\n upper_error_text = fmt % upper_error\n lower_error_text = fmt % lower_error\n if upper_error_text == lower_error_text:\n text = '%s\\\\pm %s' % (fmt, '%s') % (maximum, lower_error_text)\n else:\n text = '%s^{+%s}_{-%s}' % (fmt, '%s', '%s') % (maximum,\n upper_error_text, lower_error_text)\n if factor != 0:\n text = '\\\\left( %s \\\\right) \\\\times 10^{%d}' % (text, -factor)\n if wrap:\n text = '$%s$' % text\n return text\n",
"role": "user"
},
{
"content": "get_parameter_text",
"role": "assistant"
}
] |
def x(self, chain, parameters=None, name=None, weights=None, posterior=None,
walkers=None, grid=False, num_eff_data_points=None, num_free_params=
None, color=None, linewidth=None, linestyle=None, kde=None, shade=None,
shade_alpha=None, power=None, marker_style=None, marker_size=None,
marker_alpha=None, plot_contour=None, plot_point=None, statistics=None,
cloud=None, shade_gradient=None, bar_shade=None, bins=None, smooth=None,
color_params=None, plot_color_params=None, cmap=None, num_cloud=None):
is_dict = False
assert chain is not None, 'You cannot have a chain of None'
if isinstance(chain, str):
if chain.endswith('txt'):
chain = np.loadtxt(chain)
else:
chain = np.load(chain)
elif isinstance(chain, dict):
assert parameters is None, 'You cannot pass a dictionary and specify parameter names'
is_dict = True
parameters = list(chain.keys())
chain = np.array([chain[p] for p in parameters]).T
elif isinstance(chain, list):
chain = np.array(chain).T
if grid:
assert walkers is None, 'If grid is set, walkers should not be'
assert weights is not None, 'If grid is set, you need to supply weights'
if len(weights.shape) > 1:
assert not is_dict, 'We cannot construct a meshgrid from a dictionary, as the parametersare no longer ordered. Please pass in a flattened array instead.'
self._logger.info('Constructing meshgrid for grid results')
meshes = np.meshgrid(*[u for u in chain.T], indexing='ij')
chain = np.vstack([m.flatten() for m in meshes]).T
weights = weights.flatten()
assert weights.size == chain[:, 0
].size, 'Error, given weight array size disagrees with parameter sampling'
if len(chain.shape) == 1:
chain = chain[None].T
if name is None:
name = 'Chain %d' % len(self.chains)
if power is not None:
assert isinstance(power, int) or isinstance(power, float
), 'Power should be numeric, but is %s' % type(power)
if self._default_parameters is None and parameters is not None:
self._default_parameters = parameters
if parameters is None:
if self._default_parameters is not None:
assert chain.shape[1] == len(self._default_parameters
), 'Chain has %d dimensions, but default parameters have %d dimensions' % (
chain.shape[1], len(self._default_parameters))
parameters = self._default_parameters
self._logger.debug('Adding chain using default parameters')
else:
self._logger.debug('Adding chain with no parameter names')
parameters = [('%d' % x) for x in range(chain.shape[1])]
else:
self._logger.debug('Adding chain with defined parameters')
assert len(parameters) <= chain.shape[1
], 'Have only %d columns in chain, but have been given %d parameters names! Please double check this.' % (
chain.shape[1], len(parameters))
for p in parameters:
if p not in self._all_parameters:
self._all_parameters.append(p)
if grid:
kde = None
if color is not None:
color = self.color_finder.get_formatted([color])[0]
c = Chain(chain, parameters, name, weights=weights, posterior=posterior,
walkers=walkers, grid=grid, num_free_params=num_free_params,
num_eff_data_points=num_eff_data_points, color=color, linewidth=
linewidth, linestyle=linestyle, kde=kde, shade_alpha=shade_alpha,
power=power, marker_style=marker_style, marker_size=marker_size,
marker_alpha=marker_alpha, plot_contour=plot_contour, plot_point=
plot_point, statistics=statistics, cloud=cloud, shade=shade,
shade_gradient=shade_gradient, bar_shade=bar_shade, bins=bins,
smooth=smooth, color_params=color_params, plot_color_params=
plot_color_params, cmap=cmap, num_cloud=num_cloud)
self.chains.append(c)
self._init_params()
return self
|
add_chain
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chain, parameters=None, name=None, weights=None, posterior=None,\n walkers=None, grid=False, num_eff_data_points=None, num_free_params=\n None, color=None, linewidth=None, linestyle=None, kde=None, shade=None,\n shade_alpha=None, power=None, marker_style=None, marker_size=None,\n marker_alpha=None, plot_contour=None, plot_point=None, statistics=None,\n cloud=None, shade_gradient=None, bar_shade=None, bins=None, smooth=None,\n color_params=None, plot_color_params=None, cmap=None, num_cloud=None):\n is_dict = False\n assert chain is not None, 'You cannot have a chain of None'\n if isinstance(chain, str):\n if chain.endswith('txt'):\n chain = np.loadtxt(chain)\n else:\n chain = np.load(chain)\n elif isinstance(chain, dict):\n assert parameters is None, 'You cannot pass a dictionary and specify parameter names'\n is_dict = True\n parameters = list(chain.keys())\n chain = np.array([chain[p] for p in parameters]).T\n elif isinstance(chain, list):\n chain = np.array(chain).T\n if grid:\n assert walkers is None, 'If grid is set, walkers should not be'\n assert weights is not None, 'If grid is set, you need to supply weights'\n if len(weights.shape) > 1:\n assert not is_dict, 'We cannot construct a meshgrid from a dictionary, as the parametersare no longer ordered. Please pass in a flattened array instead.'\n self._logger.info('Constructing meshgrid for grid results')\n meshes = np.meshgrid(*[u for u in chain.T], indexing='ij')\n chain = np.vstack([m.flatten() for m in meshes]).T\n weights = weights.flatten()\n assert weights.size == chain[:, 0\n ].size, 'Error, given weight array size disagrees with parameter sampling'\n if len(chain.shape) == 1:\n chain = chain[None].T\n if name is None:\n name = 'Chain %d' % len(self.chains)\n if power is not None:\n assert isinstance(power, int) or isinstance(power, float\n ), 'Power should be numeric, but is %s' % type(power)\n if self._default_parameters is None and parameters is not None:\n self._default_parameters = parameters\n if parameters is None:\n if self._default_parameters is not None:\n assert chain.shape[1] == len(self._default_parameters\n ), 'Chain has %d dimensions, but default parameters have %d dimensions' % (\n chain.shape[1], len(self._default_parameters))\n parameters = self._default_parameters\n self._logger.debug('Adding chain using default parameters')\n else:\n self._logger.debug('Adding chain with no parameter names')\n parameters = [('%d' % x) for x in range(chain.shape[1])]\n else:\n self._logger.debug('Adding chain with defined parameters')\n assert len(parameters) <= chain.shape[1\n ], 'Have only %d columns in chain, but have been given %d parameters names! Please double check this.' % (\n chain.shape[1], len(parameters))\n for p in parameters:\n if p not in self._all_parameters:\n self._all_parameters.append(p)\n if grid:\n kde = None\n if color is not None:\n color = self.color_finder.get_formatted([color])[0]\n c = Chain(chain, parameters, name, weights=weights, posterior=posterior,\n walkers=walkers, grid=grid, num_free_params=num_free_params,\n num_eff_data_points=num_eff_data_points, color=color, linewidth=\n linewidth, linestyle=linestyle, kde=kde, shade_alpha=shade_alpha,\n power=power, marker_style=marker_style, marker_size=marker_size,\n marker_alpha=marker_alpha, plot_contour=plot_contour, plot_point=\n plot_point, statistics=statistics, cloud=cloud, shade=shade,\n shade_gradient=shade_gradient, bar_shade=bar_shade, bins=bins,\n smooth=smooth, color_params=color_params, plot_color_params=\n plot_color_params, cmap=cmap, num_cloud=num_cloud)\n self.chains.append(c)\n self._init_params()\n return self\n",
"role": "user"
},
{
"content": "add_chain",
"role": "assistant"
}
] |
def x(self, chain=-1):
if isinstance(chain, str) or isinstance(chain, int):
chain = [chain]
chain = sorted([i for c in chain for i in self._get_chain(c)])[::-1]
assert len(chain) == len(list(set(chain))
), 'Error, you are trying to remove a chain more than once.'
for index in chain:
del self.chains[index]
seen = set()
self._all_parameters = [p for c in self.chains for p in c.parameters if
not (p in seen or seen.add(p))]
self._init_params()
return self
|
remove_chain
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chain=-1):\n if isinstance(chain, str) or isinstance(chain, int):\n chain = [chain]\n chain = sorted([i for c in chain for i in self._get_chain(c)])[::-1]\n assert len(chain) == len(list(set(chain))\n ), 'Error, you are trying to remove a chain more than once.'\n for index in chain:\n del self.chains[index]\n seen = set()\n self._all_parameters = [p for c in self.chains for p in c.parameters if\n not (p in seen or seen.add(p))]\n self._init_params()\n return self\n",
"role": "user"
},
{
"content": "remove_chain",
"role": "assistant"
}
] |
def x(self, **kwargs):
if kwargs.get('ls') is None and kwargs.get('linestyle') is None:
kwargs['ls'] = '--'
kwargs['dashes'] = 3, 3
if kwargs.get('color') is None:
kwargs['color'] = '#000000'
self.config_truth = kwargs
self._configured_truth = True
return self
|
configure_truth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n if kwargs.get('ls') is None and kwargs.get('linestyle') is None:\n kwargs['ls'] = '--'\n kwargs['dashes'] = 3, 3\n if kwargs.get('color') is None:\n kwargs['color'] = '#000000'\n self.config_truth = kwargs\n self._configured_truth = True\n return self\n",
"role": "user"
},
{
"content": "configure_truth",
"role": "assistant"
}
] |
def x(self, chain=0):
indexes = self._get_chain(chain)
con = ChainConsumer()
for index in indexes:
chain = self.chains[index]
assert chain.walkers is not None, 'The chain you have selected was not added with any walkers!'
num_walkers = chain.walkers
data = np.split(chain.chain, num_walkers)
ws = np.split(chain.weights, num_walkers)
for j, (c, w) in enumerate(zip(data, ws)):
con.add_chain(c, weights=w, name='Chain %d' % j, parameters=
chain.parameters)
return con
|
divide_chain
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chain=0):\n indexes = self._get_chain(chain)\n con = ChainConsumer()\n for index in indexes:\n chain = self.chains[index]\n assert chain.walkers is not None, 'The chain you have selected was not added with any walkers!'\n num_walkers = chain.walkers\n data = np.split(chain.chain, num_walkers)\n ws = np.split(chain.weights, num_walkers)\n for j, (c, w) in enumerate(zip(data, ws)):\n con.add_chain(c, weights=w, name='Chain %d' % j, parameters=\n chain.parameters)\n return con\n",
"role": "user"
},
{
"content": "divide_chain",
"role": "assistant"
}
] |
def x(args):
if args.fpr < 0 or args.fpr > 1:
print('Please specify a FPR between 0 and 1')
sys.exit(1)
motifs = read_motifs(args.pwmfile)
s = Scanner()
s.set_motifs(args.pwmfile)
s.set_threshold(args.fpr, filename=args.inputfile)
print('Motif\tScore\tCutoff')
for motif in motifs:
min_score = motif.pwm_min_score()
max_score = motif.pwm_max_score()
opt_score = s.threshold[motif.id]
if opt_score is None:
opt_score = motif.pwm_max_score()
threshold = (opt_score - min_score) / (max_score - min_score)
print('{0}\t{1}\t{2}'.format(motif.id, opt_score, threshold))
|
threshold
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n if args.fpr < 0 or args.fpr > 1:\n print('Please specify a FPR between 0 and 1')\n sys.exit(1)\n motifs = read_motifs(args.pwmfile)\n s = Scanner()\n s.set_motifs(args.pwmfile)\n s.set_threshold(args.fpr, filename=args.inputfile)\n print('Motif\\tScore\\tCutoff')\n for motif in motifs:\n min_score = motif.pwm_min_score()\n max_score = motif.pwm_max_score()\n opt_score = s.threshold[motif.id]\n if opt_score is None:\n opt_score = motif.pwm_max_score()\n threshold = (opt_score - min_score) / (max_score - min_score)\n print('{0}\\t{1}\\t{2}'.format(motif.id, opt_score, threshold))\n",
"role": "user"
},
{
"content": "threshold",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals):
y_true = np.hstack((np.ones(len(fg_vals)), np.zeros(len(bg_vals))))
y_score = np.hstack((fg_vals, bg_vals))
return y_true, y_score
|
values_to_labels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals):\n y_true = np.hstack((np.ones(len(fg_vals)), np.zeros(len(bg_vals))))\n y_score = np.hstack((fg_vals, bg_vals))\n return y_true, y_score\n",
"role": "user"
},
{
"content": "values_to_labels",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals, fdr_cutoff=0.1):
if len(fg_vals) == 0:
return 0.0
y_true, y_score = values_to_labels(fg_vals, bg_vals)
precision, recall, _ = precision_recall_curve(y_true, y_score)
fdr = 1 - precision
cutoff_index = next(i for i, x in enumerate(fdr) if x <= fdr_cutoff)
return recall[cutoff_index]
|
recall_at_fdr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals, fdr_cutoff=0.1):\n if len(fg_vals) == 0:\n return 0.0\n y_true, y_score = values_to_labels(fg_vals, bg_vals)\n precision, recall, _ = precision_recall_curve(y_true, y_score)\n fdr = 1 - precision\n cutoff_index = next(i for i, x in enumerate(fdr) if x <= fdr_cutoff)\n return recall[cutoff_index]\n",
"role": "user"
},
{
"content": "recall_at_fdr",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals, fpr=0.01):
fg_vals = np.array(fg_vals)
s = scoreatpercentile(bg_vals, 100 - fpr * 100)
return [sum(fg_vals >= s), sum(bg_vals >= s)]
|
matches_at_fpr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals, fpr=0.01):\n fg_vals = np.array(fg_vals)\n s = scoreatpercentile(bg_vals, 100 - fpr * 100)\n return [sum(fg_vals >= s), sum(bg_vals >= s)]\n",
"role": "user"
},
{
"content": "matches_at_fpr",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals, fpr=0.01):
fg_vals = np.array(fg_vals)
s = scoreatpercentile(bg_vals, 100 - fpr * 100)
table = [[sum(fg_vals >= s), sum(bg_vals >= s)], [sum(fg_vals < s), sum
(bg_vals < s)]]
return fisher_exact(table, alternative='greater')[1]
|
phyper_at_fpr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals, fpr=0.01):\n fg_vals = np.array(fg_vals)\n s = scoreatpercentile(bg_vals, 100 - fpr * 100)\n table = [[sum(fg_vals >= s), sum(bg_vals >= s)], [sum(fg_vals < s), sum\n (bg_vals < s)]]\n return fisher_exact(table, alternative='greater')[1]\n",
"role": "user"
},
{
"content": "phyper_at_fpr",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals, fpr=0.01):
fg_vals = np.array(fg_vals)
s = scoreatpercentile(bg_vals, 100 - 100 * fpr)
return len(fg_vals[fg_vals >= s]) / float(len(fg_vals))
|
fraction_fpr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals, fpr=0.01):\n fg_vals = np.array(fg_vals)\n s = scoreatpercentile(bg_vals, 100 - 100 * fpr)\n return len(fg_vals[fg_vals >= s]) / float(len(fg_vals))\n",
"role": "user"
},
{
"content": "fraction_fpr",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals, fpr=0.01):
bg_vals = np.array(bg_vals)
return scoreatpercentile(bg_vals, 100 - 100 * fpr)
|
score_at_fpr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals, fpr=0.01):\n bg_vals = np.array(bg_vals)\n return scoreatpercentile(bg_vals, 100 - 100 * fpr)\n",
"role": "user"
},
{
"content": "score_at_fpr",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals, fpr=0.01):
pos = np.array(fg_vals)
neg = np.array(bg_vals)
s = scoreatpercentile(neg, 100 - fpr * 100)
neg_matches = float(len(neg[neg >= s]))
if neg_matches == 0:
return float('inf')
return len(pos[pos >= s]) / neg_matches * len(neg) / float(len(pos))
|
enr_at_fpr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals, fpr=0.01):\n pos = np.array(fg_vals)\n neg = np.array(bg_vals)\n s = scoreatpercentile(neg, 100 - fpr * 100)\n neg_matches = float(len(neg[neg >= s]))\n if neg_matches == 0:\n return float('inf')\n return len(pos[pos >= s]) / neg_matches * len(neg) / float(len(pos))\n",
"role": "user"
},
{
"content": "enr_at_fpr",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals, minbg=2):
scores = np.hstack((fg_vals, bg_vals))
idx = np.argsort(scores)
x = np.hstack((np.ones(len(fg_vals)), np.zeros(len(bg_vals))))
xsort = x[idx]
l_fg = len(fg_vals)
l_bg = len(bg_vals)
m = 0
s = 0
for i in range(len(scores), 0, -1):
bgcount = float(len(xsort[i:][xsort[i:] == 0]))
if bgcount >= minbg:
enr = len(xsort[i:][xsort[i:] == 1]) / l_fg / (bgcount / l_bg)
if enr > m:
m = enr
s = scores[idx[i]]
return m
|
max_enrichment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals, minbg=2):\n scores = np.hstack((fg_vals, bg_vals))\n idx = np.argsort(scores)\n x = np.hstack((np.ones(len(fg_vals)), np.zeros(len(bg_vals))))\n xsort = x[idx]\n l_fg = len(fg_vals)\n l_bg = len(bg_vals)\n m = 0\n s = 0\n for i in range(len(scores), 0, -1):\n bgcount = float(len(xsort[i:][xsort[i:] == 0]))\n if bgcount >= minbg:\n enr = len(xsort[i:][xsort[i:] == 1]) / l_fg / (bgcount / l_bg)\n if enr > m:\n m = enr\n s = scores[idx[i]]\n return m\n",
"role": "user"
},
{
"content": "max_enrichment",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals):
fg_len = len(fg_vals)
total_len = len(fg_vals) + len(bg_vals)
if not isinstance(fg_vals, np.ndarray):
fg_vals = np.array(fg_vals)
if not isinstance(bg_vals, np.ndarray):
bg_vals = np.array(bg_vals)
fg_rank = stats.rankdata(fg_vals)
total_rank = stats.rankdata(np.hstack((fg_vals, bg_vals)))
slopes = []
for i in range(len(fg_vals)):
slope = (fg_len - fg_rank[i] + 1) / fg_len / ((total_len -
total_rank[i] + 1) / total_len)
slopes.append(slope)
return np.mean(slopes)
|
mncp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals):\n fg_len = len(fg_vals)\n total_len = len(fg_vals) + len(bg_vals)\n if not isinstance(fg_vals, np.ndarray):\n fg_vals = np.array(fg_vals)\n if not isinstance(bg_vals, np.ndarray):\n bg_vals = np.array(bg_vals)\n fg_rank = stats.rankdata(fg_vals)\n total_rank = stats.rankdata(np.hstack((fg_vals, bg_vals)))\n slopes = []\n for i in range(len(fg_vals)):\n slope = (fg_len - fg_rank[i] + 1) / fg_len / ((total_len -\n total_rank[i] + 1) / total_len)\n slopes.append(slope)\n return np.mean(slopes)\n",
"role": "user"
},
{
"content": "mncp",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals):
y_true, y_score = values_to_labels(fg_vals, bg_vals)
return average_precision_score(y_true, y_score)
|
pr_auc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals):\n y_true, y_score = values_to_labels(fg_vals, bg_vals)\n return average_precision_score(y_true, y_score)\n",
"role": "user"
},
{
"content": "pr_auc",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals):
y_true, y_score = values_to_labels(fg_vals, bg_vals)
return roc_auc_score(y_true, y_score)
|
roc_auc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals):\n y_true, y_score = values_to_labels(fg_vals, bg_vals)\n return roc_auc_score(y_true, y_score)\n",
"role": "user"
},
{
"content": "roc_auc",
"role": "assistant"
}
] |
def x(x_bla, y_bla, xlim=0.1):
x = x_bla[:]
y = y_bla[:]
x.sort()
y.sort()
u = {}
for i in (x + y):
u[i] = 1
vals = sorted(u.keys())
len_x = float(len(x))
len_y = float(len(y))
new_x = []
new_y = []
x_p = 0
y_p = 0
for val in vals[::-1]:
while len(x) > 0 and x[-1] >= val:
x.pop()
x_p += 1
while len(y) > 0 and y[-1] >= val:
y.pop()
y_p += 1
new_y.append((len_x - x_p) / len_x)
new_x.append((len_y - y_p) / len_y)
new_x = 1 - np.array(new_x)
new_y = 1 - np.array(new_y)
x = new_x
y = new_y
if len(x) != len(y):
raise ValueError('Unequal!')
if not xlim:
xlim = 1.0
auc = 0.0
bla = zip(stats.rankdata(x), range(len(x)))
bla = sorted(bla, key=lambda x: x[1])
prev_x = x[bla[0][1]]
prev_y = y[bla[0][1]]
index = 1
while index < len(bla) and x[bla[index][1]] <= xlim:
_, i = bla[index]
auc += y[i] * (x[i] - prev_x) - (x[i] - prev_x) * (y[i] - prev_y) / 2.0
prev_x = x[i]
prev_y = y[i]
index += 1
if index < len(bla):
rank, i = bla[index]
auc += prev_y * (xlim - prev_x) + (y[i] - prev_y) / (x[i] - prev_x) * (
xlim - prev_x) * (xlim - prev_x) / 2
return auc
|
roc_auc_xlim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x_bla, y_bla, xlim=0.1):\n x = x_bla[:]\n y = y_bla[:]\n x.sort()\n y.sort()\n u = {}\n for i in (x + y):\n u[i] = 1\n vals = sorted(u.keys())\n len_x = float(len(x))\n len_y = float(len(y))\n new_x = []\n new_y = []\n x_p = 0\n y_p = 0\n for val in vals[::-1]:\n while len(x) > 0 and x[-1] >= val:\n x.pop()\n x_p += 1\n while len(y) > 0 and y[-1] >= val:\n y.pop()\n y_p += 1\n new_y.append((len_x - x_p) / len_x)\n new_x.append((len_y - y_p) / len_y)\n new_x = 1 - np.array(new_x)\n new_y = 1 - np.array(new_y)\n x = new_x\n y = new_y\n if len(x) != len(y):\n raise ValueError('Unequal!')\n if not xlim:\n xlim = 1.0\n auc = 0.0\n bla = zip(stats.rankdata(x), range(len(x)))\n bla = sorted(bla, key=lambda x: x[1])\n prev_x = x[bla[0][1]]\n prev_y = y[bla[0][1]]\n index = 1\n while index < len(bla) and x[bla[index][1]] <= xlim:\n _, i = bla[index]\n auc += y[i] * (x[i] - prev_x) - (x[i] - prev_x) * (y[i] - prev_y) / 2.0\n prev_x = x[i]\n prev_y = y[i]\n index += 1\n if index < len(bla):\n rank, i = bla[index]\n auc += prev_y * (xlim - prev_x) + (y[i] - prev_y) / (x[i] - prev_x) * (\n xlim - prev_x) * (xlim - prev_x) / 2\n return auc\n",
"role": "user"
},
{
"content": "roc_auc_xlim",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals):
if len(fg_vals) == 0:
return 0
y_true, y_score = values_to_labels(fg_vals, bg_vals)
fpr, tpr, _thresholds = roc_curve(y_true, y_score)
return fpr, tpr
|
roc_values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals):\n if len(fg_vals) == 0:\n return 0\n y_true, y_score = values_to_labels(fg_vals, bg_vals)\n fpr, tpr, _thresholds = roc_curve(y_true, y_score)\n return fpr, tpr\n",
"role": "user"
},
{
"content": "roc_values",
"role": "assistant"
}
] |
def x(fg_vals, bg_vals):
x, y = roc_values(fg_vals, bg_vals)
x, y = x[1:], y[1:]
p = y / (y + x)
filt = np.logical_and(p * y > 0, p + y > 0)
p = p[filt]
y = y[filt]
f = 2 * p * y / (p + y)
if len(f) > 0:
return np.nanmax(f)
else:
return None
|
max_fmeasure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_vals, bg_vals):\n x, y = roc_values(fg_vals, bg_vals)\n x, y = x[1:], y[1:]\n p = y / (y + x)\n filt = np.logical_and(p * y > 0, p + y > 0)\n p = p[filt]\n y = y[filt]\n f = 2 * p * y / (p + y)\n if len(f) > 0:\n return np.nanmax(f)\n else:\n return None\n",
"role": "user"
},
{
"content": "max_fmeasure",
"role": "assistant"
}
] |
def x(fg_pos, bg_pos=None):
if len(fg_pos) == 0:
return 1.0
a = np.array(fg_pos, dtype='float') / max(fg_pos)
p = kstest(a, 'uniform')[1]
return p
|
ks_pvalue
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_pos, bg_pos=None):\n if len(fg_pos) == 0:\n return 1.0\n a = np.array(fg_pos, dtype='float') / max(fg_pos)\n p = kstest(a, 'uniform')[1]\n return p\n",
"role": "user"
},
{
"content": "ks_pvalue",
"role": "assistant"
}
] |
def x(fg_pos, bg_pos=None):
p = ks_pvalue(fg_pos, max(fg_pos))
if p > 0:
return -np.log10(p)
else:
return np.inf
|
ks_significance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fg_pos, bg_pos=None):\n p = ks_pvalue(fg_pos, max(fg_pos))\n if p > 0:\n return -np.log10(p)\n else:\n return np.inf\n",
"role": "user"
},
{
"content": "ks_significance",
"role": "assistant"
}
] |
def x():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = 1, img_rows, img_cols
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = img_rows, img_cols, 1
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
return input_shape, (x_train, y_train), (x_test, y_test)
|
setup_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n (x_train, y_train), (x_test, y_test) = mnist.load_data()\n if K.image_data_format() == 'channels_first':\n x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)\n x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)\n input_shape = 1, img_rows, img_cols\n else:\n x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)\n x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)\n input_shape = img_rows, img_cols, 1\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n x_train /= 255\n x_test /= 255\n print('x_train shape:', x_train.shape)\n print(x_train.shape[0], 'train samples')\n print(x_test.shape[0], 'test samples')\n y_train = keras.utils.to_categorical(y_train, num_classes)\n y_test = keras.utils.to_categorical(y_test, num_classes)\n return input_shape, (x_train, y_train), (x_test, y_test)\n",
"role": "user"
},
{
"content": "setup_data",
"role": "assistant"
}
] |
def x(input_shape):
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape
=input_shape))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=
keras.optimizers.Adadelta(), metrics=['accuracy'])
return model
|
build_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_shape):\n model = Sequential()\n model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape\n =input_shape))\n model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))\n model.add(MaxPooling2D(pool_size=(2, 2)))\n model.add(Dropout(0.25))\n model.add(Flatten())\n model.add(Dense(128, activation='relu'))\n model.add(Dropout(0.5))\n model.add(Dense(num_classes, activation='softmax'))\n model.compile(loss=keras.losses.categorical_crossentropy, optimizer=\n keras.optimizers.Adadelta(), metrics=['accuracy'])\n return model\n",
"role": "user"
},
{
"content": "build_model",
"role": "assistant"
}
] |
def x(X, y):
X = np.atleast_2d(X)
y = np.atleast_1d(y)
n = X.shape[0]
while True:
i = np.random.randint(0, n)
yield {'X': X[i], 'y': y[i]}
|
sampler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, y):\n X = np.atleast_2d(X)\n y = np.atleast_1d(y)\n n = X.shape[0]\n while True:\n i = np.random.randint(0, n)\n yield {'X': X[i], 'y': y[i]}\n",
"role": "user"
},
{
"content": "sampler",
"role": "assistant"
}
] |
def x(stream, key='X', scale=0.1):
for data in stream:
noise_shape = data[key].shape
noise = scale * np.random.randn(*noise_shape)
data[key] = data[key] + noise
yield data
|
additive_noise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stream, key='X', scale=0.1):\n for data in stream:\n noise_shape = data[key].shape\n noise = scale * np.random.randn(*noise_shape)\n data[key] = data[key] + noise\n yield data\n",
"role": "user"
},
{
"content": "additive_noise",
"role": "assistant"
}
] |
def x(user_params=None):
config = MotifConfig()
if user_params is None:
user_params = {}
params = config.get_default_params()
params.update(user_params)
if params.get('torque'):
logger.debug('Using torque')
else:
logger.debug('Using multiprocessing')
params['background'] = [x.strip() for x in params['background'].split(',')]
logger.debug('Parameters:')
for param, value in params.items():
logger.debug(' %s: %s', param, value)
if params['max_time']:
try:
max_time = params['max_time'] = float(params['max_time'])
except Exception:
logger.debug('Could not parse max_time value, setting to no limit')
params['max_time'] = -1
if params['max_time'] > 0:
logger.debug('Time limit for motif prediction: %0.2f hours', max_time)
params['max_time'] = 3600 * params['max_time']
logger.debug('Max_time in seconds %0.0f', max_time)
else:
logger.debug('No time limit for motif prediction')
return params
|
parse_denovo_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(user_params=None):\n config = MotifConfig()\n if user_params is None:\n user_params = {}\n params = config.get_default_params()\n params.update(user_params)\n if params.get('torque'):\n logger.debug('Using torque')\n else:\n logger.debug('Using multiprocessing')\n params['background'] = [x.strip() for x in params['background'].split(',')]\n logger.debug('Parameters:')\n for param, value in params.items():\n logger.debug(' %s: %s', param, value)\n if params['max_time']:\n try:\n max_time = params['max_time'] = float(params['max_time'])\n except Exception:\n logger.debug('Could not parse max_time value, setting to no limit')\n params['max_time'] = -1\n if params['max_time'] > 0:\n logger.debug('Time limit for motif prediction: %0.2f hours', max_time)\n params['max_time'] = 3600 * params['max_time']\n logger.debug('Max_time in seconds %0.0f', max_time)\n else:\n logger.debug('No time limit for motif prediction')\n return params\n",
"role": "user"
},
{
"content": "parse_denovo_params",
"role": "assistant"
}
] |
def x(df, method='stuart'):
tmpdf = NamedTemporaryFile()
tmpscript = NamedTemporaryFile(mode='w')
tmpranks = NamedTemporaryFile()
df.to_csv(tmpdf.name, sep='\t', index=False)
script = (
"""
library(RobustRankAggreg);
a = read.table("{}", header=TRUE);
x = lapply(a, as.vector);
result = aggregateRanks(x, method="{}");
result$p.adjust = p.adjust(result$Score);
write.table(result, file="{}", sep=" ", quote=FALSE, row.names=FALSE);
"""
.format(tmpdf.name, method, tmpranks.name))
tmpscript.write(script)
tmpscript.flush()
p = sp.Popen(['Rscript', tmpscript.name], stdout=sp.PIPE, stderr=sp.PIPE)
stderr, stdout = p.communicate()
df = pd.read_table(tmpranks.name, index_col=0)
return df['p.adjust']
|
rankagg_R
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, method='stuart'):\n tmpdf = NamedTemporaryFile()\n tmpscript = NamedTemporaryFile(mode='w')\n tmpranks = NamedTemporaryFile()\n df.to_csv(tmpdf.name, sep='\\t', index=False)\n script = (\n \"\"\" \nlibrary(RobustRankAggreg); \na = read.table(\"{}\", header=TRUE); \nx = lapply(a, as.vector); \nresult = aggregateRanks(x, method=\"{}\"); \nresult$p.adjust = p.adjust(result$Score); \n write.table(result, file=\"{}\", sep=\"\t\", quote=FALSE, row.names=FALSE); \n\"\"\"\n .format(tmpdf.name, method, tmpranks.name))\n tmpscript.write(script)\n tmpscript.flush()\n p = sp.Popen(['Rscript', tmpscript.name], stdout=sp.PIPE, stderr=sp.PIPE)\n stderr, stdout = p.communicate()\n df = pd.read_table(tmpranks.name, index_col=0)\n return df['p.adjust']\n",
"role": "user"
},
{
"content": "rankagg_R",
"role": "assistant"
}
] |
def x(df, method='stuart'):
rmat = pd.DataFrame(index=df.iloc[:, 0])
step = 1 / rmat.shape[0]
for col in df.columns:
rmat[col] = pd.DataFrame({col: np.arange(step, 1 + step, step)},
index=df[col]).loc[rmat.index]
rmat = rmat.apply(sorted, 1, result_type='expand')
p = rmat.apply(qStuart, 1)
df = pd.DataFrame({'p.adjust': multipletests(p, method='h')[1]}, index=
rmat.index).sort_values('p.adjust')
return df['p.adjust']
|
rankagg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, method='stuart'):\n rmat = pd.DataFrame(index=df.iloc[:, 0])\n step = 1 / rmat.shape[0]\n for col in df.columns:\n rmat[col] = pd.DataFrame({col: np.arange(step, 1 + step, step)},\n index=df[col]).loc[rmat.index]\n rmat = rmat.apply(sorted, 1, result_type='expand')\n p = rmat.apply(qStuart, 1)\n df = pd.DataFrame({'p.adjust': multipletests(p, method='h')[1]}, index=\n rmat.index).sort_values('p.adjust')\n return df['p.adjust']\n",
"role": "user"
},
{
"content": "rankagg",
"role": "assistant"
}
] |
def x(n_ops=100):
while True:
X = np.random.uniform(size=(64, 64))
yield dict(X=costly_function(X, n_ops), y=np.random.randint(10,
size=(1,)))
|
data_gen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n_ops=100):\n while True:\n X = np.random.uniform(size=(64, 64))\n yield dict(X=costly_function(X, n_ops), y=np.random.randint(10,\n size=(1,)))\n",
"role": "user"
},
{
"content": "data_gen",
"role": "assistant"
}
] |
def x(motifs, fg_fa, bg_fa, bg_name=None):
try:
stats = calc_stats(motifs, fg_fa, bg_fa, ncpus=1)
except Exception as e:
raise
sys.stderr.write('ERROR: {}\n'.format(str(e)))
stats = {}
if not bg_name:
bg_name = 'default'
return bg_name, stats
|
mp_calc_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(motifs, fg_fa, bg_fa, bg_name=None):\n try:\n stats = calc_stats(motifs, fg_fa, bg_fa, ncpus=1)\n except Exception as e:\n raise\n sys.stderr.write('ERROR: {}\\n'.format(str(e)))\n stats = {}\n if not bg_name:\n bg_name = 'default'\n return bg_name, stats\n",
"role": "user"
},
{
"content": "mp_calc_stats",
"role": "assistant"
}
] |
def x(job_name, t, fastafile, params):
try:
result = t.run(fastafile, params, mytmpdir())
except Exception as e:
result = [], '', '{} failed to run: {}'.format(job_name, e)
return job_name, result
|
run_tool
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job_name, t, fastafile, params):\n try:\n result = t.run(fastafile, params, mytmpdir())\n except Exception as e:\n result = [], '', '{} failed to run: {}'.format(job_name, e)\n return job_name, result\n",
"role": "user"
},
{
"content": "run_tool",
"role": "assistant"
}
] |
def x(fastafile, outfile, analysis='small', organism='hg18', single=False,
background='', tools=None, job_server=None, ncpus=8, max_time=-1,
stats_fg=None, stats_bg=None):
if tools is None:
tools = {}
config = MotifConfig()
if not tools:
tools = dict([(x, 1) for x in config.get_default_params['tools'].
split(',')])
wmin = 5
step = 1
if analysis in ['large', 'xl']:
step = 2
wmin = 6
analysis_max = {'xs': 5, 'small': 8, 'medium': 10, 'large': 14, 'xl': 20}
wmax = analysis_max[analysis]
if analysis == 'xs':
sys.stderr.write('Setting analysis xs to small')
analysis = 'small'
if not job_server:
n_cpus = int(config.get_default_params()['ncpus'])
job_server = Pool(processes=n_cpus, maxtasksperchild=1000)
jobs = {}
result = PredictionResult(outfile, fg_file=stats_fg, background=
stats_bg, job_server=job_server)
toolio = [x[1]() for x in inspect.getmembers(tool_classes, lambda x:
inspect.isclass(x) and issubclass(x, tool_classes.MotifProgram)) if
x[0] != 'MotifProgram']
params = {'analysis': analysis, 'background': background, 'single':
single, 'organism': organism}
for t in [tool for tool in toolio if not tool.use_width]:
if t.name in tools and tools[t.name]:
logger.debug('Starting %s job', t.name)
job_name = t.name
jobs[job_name] = job_server.apply_async(_run_tool, (job_name, t,
fastafile, params), callback=result.add_motifs)
else:
logger.debug('Skipping %s', t.name)
for t in [tool for tool in toolio if tool.use_width]:
if t.name in tools and tools[t.name]:
for i in range(wmin, wmax + 1, step):
logger.debug('Starting %s job, width %s', t.name, i)
job_name = '%s_width_%s' % (t.name, i)
my_params = params.copy()
my_params['width'] = i
jobs[job_name] = job_server.apply_async(_run_tool, (
job_name, t, fastafile, my_params), callback=result.
add_motifs)
else:
logger.debug('Skipping %s', t.name)
logger.info('all jobs submitted')
for job in jobs.values():
job.get()
result.wait_for_stats()
return result
|
pp_predict_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fastafile, outfile, analysis='small', organism='hg18', single=False,\n background='', tools=None, job_server=None, ncpus=8, max_time=-1,\n stats_fg=None, stats_bg=None):\n if tools is None:\n tools = {}\n config = MotifConfig()\n if not tools:\n tools = dict([(x, 1) for x in config.get_default_params['tools'].\n split(',')])\n wmin = 5\n step = 1\n if analysis in ['large', 'xl']:\n step = 2\n wmin = 6\n analysis_max = {'xs': 5, 'small': 8, 'medium': 10, 'large': 14, 'xl': 20}\n wmax = analysis_max[analysis]\n if analysis == 'xs':\n sys.stderr.write('Setting analysis xs to small')\n analysis = 'small'\n if not job_server:\n n_cpus = int(config.get_default_params()['ncpus'])\n job_server = Pool(processes=n_cpus, maxtasksperchild=1000)\n jobs = {}\n result = PredictionResult(outfile, fg_file=stats_fg, background=\n stats_bg, job_server=job_server)\n toolio = [x[1]() for x in inspect.getmembers(tool_classes, lambda x: \n inspect.isclass(x) and issubclass(x, tool_classes.MotifProgram)) if\n x[0] != 'MotifProgram']\n params = {'analysis': analysis, 'background': background, 'single':\n single, 'organism': organism}\n for t in [tool for tool in toolio if not tool.use_width]:\n if t.name in tools and tools[t.name]:\n logger.debug('Starting %s job', t.name)\n job_name = t.name\n jobs[job_name] = job_server.apply_async(_run_tool, (job_name, t,\n fastafile, params), callback=result.add_motifs)\n else:\n logger.debug('Skipping %s', t.name)\n for t in [tool for tool in toolio if tool.use_width]:\n if t.name in tools and tools[t.name]:\n for i in range(wmin, wmax + 1, step):\n logger.debug('Starting %s job, width %s', t.name, i)\n job_name = '%s_width_%s' % (t.name, i)\n my_params = params.copy()\n my_params['width'] = i\n jobs[job_name] = job_server.apply_async(_run_tool, (\n job_name, t, fastafile, my_params), callback=result.\n add_motifs)\n else:\n logger.debug('Skipping %s', t.name)\n logger.info('all jobs submitted')\n for job in jobs.values():\n job.get()\n result.wait_for_stats()\n return result\n",
"role": "user"
},
{
"content": "pp_predict_motifs",
"role": "assistant"
}
] |
def x(infile, bgfile, outfile, params=None, stats_fg=None, stats_bg=None):
required_params = ['tools', 'available_tools', 'analysis', 'genome',
'use_strand', 'max_time']
if params is None:
params = parse_denovo_params()
else:
for p in required_params:
if p not in params:
params = parse_denovo_params()
break
tools = dict([(x.strip(), x in [y.strip() for y in params['tools'].
split(',')]) for x in params['available_tools'].split(',')])
analysis = params['analysis']
logger.info('starting motif prediction (%s)', analysis)
logger.info('tools: %s', ', '.join([x for x in tools.keys() if tools[x]]))
result = pp_predict_motifs(infile, outfile, analysis, params.get(
'genome', None), params['use_strand'], bgfile, tools, None,
max_time=params['max_time'], stats_fg=stats_fg, stats_bg=stats_bg)
motifs = result.motifs
logger.info('predicted %s motifs', len(motifs))
logger.debug('written to %s', outfile)
if len(motifs) == 0:
logger.info('no motifs found')
result.motifs = []
return result
|
predict_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infile, bgfile, outfile, params=None, stats_fg=None, stats_bg=None):\n required_params = ['tools', 'available_tools', 'analysis', 'genome',\n 'use_strand', 'max_time']\n if params is None:\n params = parse_denovo_params()\n else:\n for p in required_params:\n if p not in params:\n params = parse_denovo_params()\n break\n tools = dict([(x.strip(), x in [y.strip() for y in params['tools'].\n split(',')]) for x in params['available_tools'].split(',')])\n analysis = params['analysis']\n logger.info('starting motif prediction (%s)', analysis)\n logger.info('tools: %s', ', '.join([x for x in tools.keys() if tools[x]]))\n result = pp_predict_motifs(infile, outfile, analysis, params.get(\n 'genome', None), params['use_strand'], bgfile, tools, None,\n max_time=params['max_time'], stats_fg=stats_fg, stats_bg=stats_bg)\n motifs = result.motifs\n logger.info('predicted %s motifs', len(motifs))\n logger.debug('written to %s', outfile)\n if len(motifs) == 0:\n logger.info('no motifs found')\n result.motifs = []\n return result\n",
"role": "user"
},
{
"content": "predict_motifs",
"role": "assistant"
}
] |
def x(self, args):
self.lock.acquire()
if args is None or len(args) != 2 or len(args[1]) != 3:
try:
job = args[0]
logger.warn('job %s failed', job)
self.finished.append(job)
except Exception:
logger.warn('job failed')
return
job, (motifs, stdout, stderr) = args
logger.info('%s finished, found %s motifs', job, len(motifs))
for motif in motifs:
if self.do_counter:
self.counter += 1
motif.id = 'gimme_{}_'.format(self.counter) + motif.id
f = open(self.outfile, 'a')
f.write('%s\n' % motif.to_pfm())
f.close()
self.motifs.append(motif)
if self.do_stats and len(motifs) > 0:
logger.debug('Starting stats job of %s motifs', len(motifs))
for bg_name, bg_fa in self.background.items():
job = self.job_server.apply_async(mp_calc_stats, (motifs, self.
fg_fa, bg_fa, bg_name), callback=self.add_stats)
self.stat_jobs.append(job)
logger.debug('stdout %s: %s', job, stdout)
logger.debug('stdout %s: %s', job, stderr)
self.finished.append(job)
self.lock.release()
|
add_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, args):\n self.lock.acquire()\n if args is None or len(args) != 2 or len(args[1]) != 3:\n try:\n job = args[0]\n logger.warn('job %s failed', job)\n self.finished.append(job)\n except Exception:\n logger.warn('job failed')\n return\n job, (motifs, stdout, stderr) = args\n logger.info('%s finished, found %s motifs', job, len(motifs))\n for motif in motifs:\n if self.do_counter:\n self.counter += 1\n motif.id = 'gimme_{}_'.format(self.counter) + motif.id\n f = open(self.outfile, 'a')\n f.write('%s\\n' % motif.to_pfm())\n f.close()\n self.motifs.append(motif)\n if self.do_stats and len(motifs) > 0:\n logger.debug('Starting stats job of %s motifs', len(motifs))\n for bg_name, bg_fa in self.background.items():\n job = self.job_server.apply_async(mp_calc_stats, (motifs, self.\n fg_fa, bg_fa, bg_name), callback=self.add_stats)\n self.stat_jobs.append(job)\n logger.debug('stdout %s: %s', job, stdout)\n logger.debug('stdout %s: %s', job, stderr)\n self.finished.append(job)\n self.lock.release()\n",
"role": "user"
},
{
"content": "add_motifs",
"role": "assistant"
}
] |
def x(self):
logging.debug('waiting for statistics to finish')
for job in self.stat_jobs:
job.get()
sleep(2)
|
wait_for_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n logging.debug('waiting for statistics to finish')\n for job in self.stat_jobs:\n job.get()\n sleep(2)\n",
"role": "user"
},
{
"content": "wait_for_stats",
"role": "assistant"
}
] |
def x(self, args):
bg_name, stats = args
logger.debug('Stats: %s %s', bg_name, stats)
for motif_id in stats.keys():
if motif_id not in self.stats:
self.stats[motif_id] = {}
self.stats[motif_id][bg_name] = stats[motif_id]
|
add_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, args):\n bg_name, stats = args\n logger.debug('Stats: %s %s', bg_name, stats)\n for motif_id in stats.keys():\n if motif_id not in self.stats:\n self.stats[motif_id] = {}\n self.stats[motif_id][bg_name] = stats[motif_id]\n",
"role": "user"
},
{
"content": "add_stats",
"role": "assistant"
}
] |
def x(inputfile, params, outdir):
bedfile = os.path.join(outdir, 'input.from.narrowpeak.bed')
p = re.compile('^(#|track|browser)')
width = int(params['width'])
logger.info('preparing input (narrowPeak to BED, width %s)', width)
warn_no_summit = True
with open(bedfile, 'w') as f_out:
with open(inputfile) as f_in:
for line in f_in:
if p.search(line):
continue
vals = line.strip().split('\t')
start, end = int(vals[1]), int(vals[2])
summit = int(vals[9])
if summit == -1:
if warn_no_summit:
logger.warn(
'No summit present in narrowPeak file, using the peak center.'
)
warn_no_summit = False
summit = (end - start) // 2
start = start + summit - width // 2
end = start + width
f_out.write('{}\t{}\t{}\t{}\n'.format(vals[0], start, end,
vals[6]))
prepare_denovo_input_bed(bedfile, params, outdir)
|
prepare_denovo_input_narrowpeak
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputfile, params, outdir):\n bedfile = os.path.join(outdir, 'input.from.narrowpeak.bed')\n p = re.compile('^(#|track|browser)')\n width = int(params['width'])\n logger.info('preparing input (narrowPeak to BED, width %s)', width)\n warn_no_summit = True\n with open(bedfile, 'w') as f_out:\n with open(inputfile) as f_in:\n for line in f_in:\n if p.search(line):\n continue\n vals = line.strip().split('\\t')\n start, end = int(vals[1]), int(vals[2])\n summit = int(vals[9])\n if summit == -1:\n if warn_no_summit:\n logger.warn(\n 'No summit present in narrowPeak file, using the peak center.'\n )\n warn_no_summit = False\n summit = (end - start) // 2\n start = start + summit - width // 2\n end = start + width\n f_out.write('{}\\t{}\\t{}\\t{}\\n'.format(vals[0], start, end,\n vals[6]))\n prepare_denovo_input_bed(bedfile, params, outdir)\n",
"role": "user"
},
{
"content": "prepare_denovo_input_narrowpeak",
"role": "assistant"
}
] |
def x(inputfile, params, outdir):
logger.info('preparing input (BED)')
width = int(params['width'])
bedfile = os.path.join(outdir, 'input.bed')
write_equalwidth_bedfile(inputfile, width, bedfile)
abs_max = int(params['abs_max'])
fraction = float(params['fraction'])
pred_bedfile = os.path.join(outdir, 'prediction.bed')
val_bedfile = os.path.join(outdir, 'validation.bed')
logger.debug(
'Splitting %s into prediction set (%s) and validation set (%s)',
bedfile, pred_bedfile, val_bedfile)
divide_file(bedfile, pred_bedfile, val_bedfile, fraction, abs_max)
config = MotifConfig()
genome = Genome(params['genome'])
for infile in [pred_bedfile, val_bedfile]:
genome.track2fasta(infile, infile.replace('.bed', '.fa'))
lwidth = int(params['lwidth'])
extend = (lwidth - width) // 2
genome.track2fasta(val_bedfile, os.path.join(outdir, 'localization.fa'),
extend_up=extend, extend_down=extend, stranded=params['use_strand'])
|
prepare_denovo_input_bed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputfile, params, outdir):\n logger.info('preparing input (BED)')\n width = int(params['width'])\n bedfile = os.path.join(outdir, 'input.bed')\n write_equalwidth_bedfile(inputfile, width, bedfile)\n abs_max = int(params['abs_max'])\n fraction = float(params['fraction'])\n pred_bedfile = os.path.join(outdir, 'prediction.bed')\n val_bedfile = os.path.join(outdir, 'validation.bed')\n logger.debug(\n 'Splitting %s into prediction set (%s) and validation set (%s)',\n bedfile, pred_bedfile, val_bedfile)\n divide_file(bedfile, pred_bedfile, val_bedfile, fraction, abs_max)\n config = MotifConfig()\n genome = Genome(params['genome'])\n for infile in [pred_bedfile, val_bedfile]:\n genome.track2fasta(infile, infile.replace('.bed', '.fa'))\n lwidth = int(params['lwidth'])\n extend = (lwidth - width) // 2\n genome.track2fasta(val_bedfile, os.path.join(outdir, 'localization.fa'),\n extend_up=extend, extend_down=extend, stranded=params['use_strand'])\n",
"role": "user"
},
{
"content": "prepare_denovo_input_bed",
"role": "assistant"
}
] |
def x(inputfile, params, outdir):
fraction = float(params['fraction'])
abs_max = int(params['abs_max'])
logger.info('preparing input (FASTA)')
pred_fa = os.path.join(outdir, 'prediction.fa')
val_fa = os.path.join(outdir, 'validation.fa')
loc_fa = os.path.join(outdir, 'localization.fa')
logger.debug(
'Splitting %s into prediction set (%s) and validation set (%s)',
inputfile, pred_fa, val_fa)
divide_fa_file(inputfile, pred_fa, val_fa, fraction, abs_max)
shutil.copy(val_fa, loc_fa)
seqs = Fasta(loc_fa).seqs
lwidth = len(seqs[0])
all_same_width = not False in [(len(seq) == lwidth) for seq in seqs]
if not all_same_width:
logger.warn(
'PLEASE NOTE: FASTA file contains sequences of different lengths. Positional preference plots might be incorrect!'
)
|
prepare_denovo_input_fa
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputfile, params, outdir):\n fraction = float(params['fraction'])\n abs_max = int(params['abs_max'])\n logger.info('preparing input (FASTA)')\n pred_fa = os.path.join(outdir, 'prediction.fa')\n val_fa = os.path.join(outdir, 'validation.fa')\n loc_fa = os.path.join(outdir, 'localization.fa')\n logger.debug(\n 'Splitting %s into prediction set (%s) and validation set (%s)',\n inputfile, pred_fa, val_fa)\n divide_fa_file(inputfile, pred_fa, val_fa, fraction, abs_max)\n shutil.copy(val_fa, loc_fa)\n seqs = Fasta(loc_fa).seqs\n lwidth = len(seqs[0])\n all_same_width = not False in [(len(seq) == lwidth) for seq in seqs]\n if not all_same_width:\n logger.warn(\n 'PLEASE NOTE: FASTA file contains sequences of different lengths. Positional preference plots might be incorrect!'\n )\n",
"role": "user"
},
{
"content": "prepare_denovo_input_fa",
"role": "assistant"
}
] |
def x(bg_type, fafile, outfile, genome='hg18', width=200, nr_times=10,
custom_background=None):
width = int(width)
config = MotifConfig()
fg = Fasta(fafile)
if bg_type in ['genomic', 'gc']:
if not genome:
logger.error('Need a genome to create background')
sys.exit(1)
if bg_type == 'random':
f = MarkovFasta(fg, k=1, n=nr_times * len(fg))
logger.debug('Random background: %s', outfile)
elif bg_type == 'genomic':
logger.debug('Creating genomic background')
f = RandomGenomicFasta(genome, width, nr_times * len(fg))
elif bg_type == 'gc':
logger.debug('Creating GC matched background')
f = MatchedGcFasta(fafile, genome, nr_times * len(fg))
logger.debug('GC matched background: %s', outfile)
elif bg_type == 'promoter':
fname = Genome(genome).filename
gene_file = fname.replace('.fa', '.annotation.bed.gz')
if not gene_file:
gene_file = os.path.join(config.get_gene_dir(), '%s.bed' % genome)
if not os.path.exists(gene_file):
print('Could not find a gene file for genome {}')
print('Did you use the --annotation flag for genomepy?')
print('Alternatively make sure there is a file called {}.bed in {}'
.format(genome, config.get_gene_dir()))
raise ValueError()
logger.info(
'Creating random promoter background (%s, using genes in %s)',
genome, gene_file)
f = PromoterFasta(gene_file, genome, width, nr_times * len(fg))
logger.debug('Random promoter background: %s', outfile)
elif bg_type == 'custom':
bg_file = custom_background
if not bg_file:
raise IOError('Background file not specified!')
if not os.path.exists(bg_file):
raise IOError('Custom background file %s does not exist!', bg_file)
else:
logger.info('Copying custom background file %s to %s.', bg_file,
outfile)
f = Fasta(bg_file)
l = np.median([len(seq) for seq in f.seqs])
if l < width * 0.95 or l > width * 1.05:
logger.warn(
'The custom background file %s contains sequences with a median length of %s, while GimmeMotifs predicts motifs in sequences of length %s. This will influence the statistics! It is recommended to use background sequences of the same length.'
, bg_file, l, width)
f.writefasta(outfile)
return len(f)
|
create_background
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bg_type, fafile, outfile, genome='hg18', width=200, nr_times=10,\n custom_background=None):\n width = int(width)\n config = MotifConfig()\n fg = Fasta(fafile)\n if bg_type in ['genomic', 'gc']:\n if not genome:\n logger.error('Need a genome to create background')\n sys.exit(1)\n if bg_type == 'random':\n f = MarkovFasta(fg, k=1, n=nr_times * len(fg))\n logger.debug('Random background: %s', outfile)\n elif bg_type == 'genomic':\n logger.debug('Creating genomic background')\n f = RandomGenomicFasta(genome, width, nr_times * len(fg))\n elif bg_type == 'gc':\n logger.debug('Creating GC matched background')\n f = MatchedGcFasta(fafile, genome, nr_times * len(fg))\n logger.debug('GC matched background: %s', outfile)\n elif bg_type == 'promoter':\n fname = Genome(genome).filename\n gene_file = fname.replace('.fa', '.annotation.bed.gz')\n if not gene_file:\n gene_file = os.path.join(config.get_gene_dir(), '%s.bed' % genome)\n if not os.path.exists(gene_file):\n print('Could not find a gene file for genome {}')\n print('Did you use the --annotation flag for genomepy?')\n print('Alternatively make sure there is a file called {}.bed in {}'\n .format(genome, config.get_gene_dir()))\n raise ValueError()\n logger.info(\n 'Creating random promoter background (%s, using genes in %s)',\n genome, gene_file)\n f = PromoterFasta(gene_file, genome, width, nr_times * len(fg))\n logger.debug('Random promoter background: %s', outfile)\n elif bg_type == 'custom':\n bg_file = custom_background\n if not bg_file:\n raise IOError('Background file not specified!')\n if not os.path.exists(bg_file):\n raise IOError('Custom background file %s does not exist!', bg_file)\n else:\n logger.info('Copying custom background file %s to %s.', bg_file,\n outfile)\n f = Fasta(bg_file)\n l = np.median([len(seq) for seq in f.seqs])\n if l < width * 0.95 or l > width * 1.05:\n logger.warn(\n 'The custom background file %s contains sequences with a median length of %s, while GimmeMotifs predicts motifs in sequences of length %s. This will influence the statistics! It is recommended to use background sequences of the same length.'\n , bg_file, l, width)\n f.writefasta(outfile)\n return len(f)\n",
"role": "user"
},
{
"content": "create_background",
"role": "assistant"
}
] |
def x(outdir, background=None, genome='hg38', width=200, custom_background=None
):
if background is None:
background = ['random']
nr_sequences = {}
if 'gc' in background:
pred_bg = 'gc'
else:
pred_bg = background[0]
create_background(pred_bg, os.path.join(outdir, 'prediction.fa'), os.
path.join(outdir, 'prediction.bg.fa'), genome=genome, width=width,
custom_background=custom_background)
bg_info = {}
nr_sequences = {}
for bg in background:
fname = os.path.join(outdir, 'bg.{}.fa'.format(bg))
nr_sequences[bg] = create_background(bg, os.path.join(outdir,
'validation.fa'), fname, genome=genome, width=width,
custom_background=custom_background)
bg_info[bg] = fname
return bg_info
|
create_backgrounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(outdir, background=None, genome='hg38', width=200, custom_background=None\n ):\n if background is None:\n background = ['random']\n nr_sequences = {}\n if 'gc' in background:\n pred_bg = 'gc'\n else:\n pred_bg = background[0]\n create_background(pred_bg, os.path.join(outdir, 'prediction.fa'), os.\n path.join(outdir, 'prediction.bg.fa'), genome=genome, width=width,\n custom_background=custom_background)\n bg_info = {}\n nr_sequences = {}\n for bg in background:\n fname = os.path.join(outdir, 'bg.{}.fa'.format(bg))\n nr_sequences[bg] = create_background(bg, os.path.join(outdir,\n 'validation.fa'), fname, genome=genome, width=width,\n custom_background=custom_background)\n bg_info[bg] = fname\n return bg_info\n",
"role": "user"
},
{
"content": "create_backgrounds",
"role": "assistant"
}
] |
def x(stats, metrics=None):
if metrics is None:
metrics = ('max_enrichment', 3), ('roc_auc', 0.55), ('enr_at_fpr', 0.55
)
for stat_name, min_value in metrics:
if stats.get(stat_name, 0) < min_value:
return False
return True
|
is_significant
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stats, metrics=None):\n if metrics is None:\n metrics = ('max_enrichment', 3), ('roc_auc', 0.55), ('enr_at_fpr', 0.55\n )\n for stat_name, min_value in metrics:\n if stats.get(stat_name, 0) < min_value:\n return False\n return True\n",
"role": "user"
},
{
"content": "is_significant",
"role": "assistant"
}
] |
def x(fname, result, bg, metrics=None):
sig_motifs = []
with open(fname, 'w') as f:
for motif in result.motifs:
stats = result.stats.get('%s_%s' % (motif.id, motif.
to_consensus()), {}).get(bg, {})
if _is_significant(stats, metrics):
f.write('%s\n' % motif.to_pfm())
sig_motifs.append(motif)
logger.info('%s motifs are significant', len(sig_motifs))
logger.debug('written to %s', fname)
return sig_motifs
|
filter_significant_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname, result, bg, metrics=None):\n sig_motifs = []\n with open(fname, 'w') as f:\n for motif in result.motifs:\n stats = result.stats.get('%s_%s' % (motif.id, motif.\n to_consensus()), {}).get(bg, {})\n if _is_significant(stats, metrics):\n f.write('%s\\n' % motif.to_pfm())\n sig_motifs.append(motif)\n logger.info('%s motifs are significant', len(sig_motifs))\n logger.debug('written to %s', fname)\n return sig_motifs\n",
"role": "user"
},
{
"content": "filter_significant_motifs",
"role": "assistant"
}
] |
def x(single_pwm, clus_pwm, clusters, fg_fa, background, stats=None,
metrics=('roc_auc', 'recall_at_fdr')):
motifs = read_motifs(single_pwm) + read_motifs(clus_pwm)
motifs = dict([(str(m), m) for m in motifs])
clustered_motifs = []
for clus, singles in clusters:
for motif in set([clus] + singles):
if str(motif) not in stats:
clustered_motifs.append(motifs[str(motif)])
new_stats = {}
for bg, bg_fa in background.items():
for m, s in calc_stats(clustered_motifs, fg_fa, bg_fa).items():
if m not in new_stats:
new_stats[m] = {}
new_stats[m][bg] = s
stats.update(new_stats)
rank = rank_motifs(stats, metrics)
best_motifs = []
for clus, singles in clusters:
if len(singles) > 1:
eval_motifs = singles
if clus not in motifs:
eval_motifs.append(clus)
eval_motifs = [motifs[str(e)] for e in eval_motifs]
best_motif = sorted(eval_motifs, key=lambda x: rank[str(x)])[-1]
best_motifs.append(best_motif)
else:
best_motifs.append(clus)
for bg in background:
stats[str(best_motifs[-1])][bg]['num_cluster'] = len(singles)
best_motifs = sorted(best_motifs, key=lambda x: rank[str(x)], reverse=True)
return best_motifs
|
best_motif_in_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(single_pwm, clus_pwm, clusters, fg_fa, background, stats=None,\n metrics=('roc_auc', 'recall_at_fdr')):\n motifs = read_motifs(single_pwm) + read_motifs(clus_pwm)\n motifs = dict([(str(m), m) for m in motifs])\n clustered_motifs = []\n for clus, singles in clusters:\n for motif in set([clus] + singles):\n if str(motif) not in stats:\n clustered_motifs.append(motifs[str(motif)])\n new_stats = {}\n for bg, bg_fa in background.items():\n for m, s in calc_stats(clustered_motifs, fg_fa, bg_fa).items():\n if m not in new_stats:\n new_stats[m] = {}\n new_stats[m][bg] = s\n stats.update(new_stats)\n rank = rank_motifs(stats, metrics)\n best_motifs = []\n for clus, singles in clusters:\n if len(singles) > 1:\n eval_motifs = singles\n if clus not in motifs:\n eval_motifs.append(clus)\n eval_motifs = [motifs[str(e)] for e in eval_motifs]\n best_motif = sorted(eval_motifs, key=lambda x: rank[str(x)])[-1]\n best_motifs.append(best_motif)\n else:\n best_motifs.append(clus)\n for bg in background:\n stats[str(best_motifs[-1])][bg]['num_cluster'] = len(singles)\n best_motifs = sorted(best_motifs, key=lambda x: rank[str(x)], reverse=True)\n return best_motifs\n",
"role": "user"
},
{
"content": "best_motif_in_cluster",
"role": "assistant"
}
] |
def x(motifs, stats=None):
final_motifs = []
for i, motif in enumerate(motifs):
old = str(motif)
motif.id = 'GimmeMotifs_{}'.format(i + 1)
final_motifs.append(motif)
if stats:
stats[str(motif)] = stats[old].copy()
if stats:
return final_motifs, stats
else:
return final_motifs
|
rename_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(motifs, stats=None):\n final_motifs = []\n for i, motif in enumerate(motifs):\n old = str(motif)\n motif.id = 'GimmeMotifs_{}'.format(i + 1)\n final_motifs.append(motif)\n if stats:\n stats[str(motif)] = stats[old].copy()\n if stats:\n return final_motifs, stats\n else:\n return final_motifs\n",
"role": "user"
},
{
"content": "rename_motifs",
"role": "assistant"
}
] |
def x(inputfile, outdir, params=None, filter_significant=True, cluster=True,
create_report=True):
if outdir is None:
outdir = 'gimmemotifs_{}'.format(datetime.date.today().strftime(
'%d_%m_%Y'))
tmpdir = os.path.join(outdir, 'intermediate')
for d in [outdir, tmpdir]:
if not os.path.exists(d):
os.mkdir(d)
logger = logging.getLogger('gimme')
logfile = os.path.join(outdir, 'gimmemotifs.log')
fh = logging.FileHandler(logfile, 'w')
fh.setLevel(logging.DEBUG)
file_formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(file_formatter)
logger.addHandler(fh)
logger = logging.getLogger('gimme.denovo.gimme_motifs')
params = parse_denovo_params(params)
input_type, background = check_denovo_input(inputfile, params)
logger.info('starting full motif analysis')
logger.debug('Using temporary directory %s', mytmpdir())
if input_type == 'bed':
prepare_denovo_input_bed(inputfile, params, tmpdir)
elif input_type == 'narrowpeak':
prepare_denovo_input_narrowpeak(inputfile, params, tmpdir)
elif input_type == 'fasta':
prepare_denovo_input_fa(inputfile, params, tmpdir)
else:
logger.error('Unknown input file.')
sys.exit(1)
background = create_backgrounds(tmpdir, background, params.get('genome',
None), params['width'], params.get('custom_background', None))
result = predict_motifs(os.path.join(tmpdir, 'prediction.fa'), os.path.
join(tmpdir, 'prediction.bg.fa'), os.path.join(tmpdir,
'all_motifs.pfm'), params=params, stats_fg=os.path.join(tmpdir,
'validation.fa'), stats_bg=background)
if len(result.motifs) == 0:
logger.info('finished')
return []
stats_file = os.path.join(tmpdir, 'stats.{}.txt')
write_stats(result.stats, stats_file)
bg = sorted(background, key=lambda x: BG_RANK[x])[0]
if filter_significant:
motifs = filter_significant_motifs(os.path.join(tmpdir,
'significant_motifs.pfm'), result, bg)
if len(motifs) == 0:
logger.info('no significant motifs')
return
pwmfile = os.path.join(tmpdir, 'significant_motifs.pfm')
else:
logger.info('not filtering for significance')
motifs = result.motifs
pwmfile = os.path.join(tmpdir, 'all_motifs.pfm')
if cluster:
clusters = cluster_motifs_with_report(pwmfile, os.path.join(tmpdir,
'clustered_motifs.pfm'), outdir, 0.95, title=inputfile)
best_motifs = best_motif_in_cluster(pwmfile, os.path.join(tmpdir,
'clustered_motifs.pfm'), clusters, os.path.join(tmpdir,
'validation.fa'), background, result.stats)
final_motifs, stats = rename_motifs(best_motifs, result.stats)
else:
logger.info('not clustering')
rank = rank_motifs(result.stats)
sorted_motifs = sorted(motifs, key=lambda x: rank[str(x)], reverse=True
)
final_motifs, stats = rename_motifs(sorted_motifs, result.stats)
with open(os.path.join(outdir, 'motifs.pwm'), 'w') as f:
for m in final_motifs:
f.write('{}\n'.format(m.to_pwm()))
if create_report:
bg = dict([(b, os.path.join(tmpdir, 'bg.{}.fa'.format(b))) for b in
background])
create_denovo_motif_report(inputfile, os.path.join(outdir,
'motifs.pwm'), os.path.join(tmpdir, 'validation.fa'), bg, os.
path.join(tmpdir, 'localization.fa'), outdir, params, stats)
with open(os.path.join(outdir, 'params.txt'), 'w') as f:
for k, v in params.items():
f.write('{}\t{}\n'.format(k, v))
if not params.get('keep_intermediate'):
logger.debug(
'Deleting intermediate files. Please specifify the -k option if you want to keep these files.'
)
shutil.rmtree(tmpdir)
logger.info('finished')
logger.info('output dir: %s', outdir)
if cluster:
logger.info('report: %s', os.path.join(outdir, 'motif_report.html'))
return final_motifs
|
gimme_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputfile, outdir, params=None, filter_significant=True, cluster=True,\n create_report=True):\n if outdir is None:\n outdir = 'gimmemotifs_{}'.format(datetime.date.today().strftime(\n '%d_%m_%Y'))\n tmpdir = os.path.join(outdir, 'intermediate')\n for d in [outdir, tmpdir]:\n if not os.path.exists(d):\n os.mkdir(d)\n logger = logging.getLogger('gimme')\n logfile = os.path.join(outdir, 'gimmemotifs.log')\n fh = logging.FileHandler(logfile, 'w')\n fh.setLevel(logging.DEBUG)\n file_formatter = logging.Formatter(\n '%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n fh.setFormatter(file_formatter)\n logger.addHandler(fh)\n logger = logging.getLogger('gimme.denovo.gimme_motifs')\n params = parse_denovo_params(params)\n input_type, background = check_denovo_input(inputfile, params)\n logger.info('starting full motif analysis')\n logger.debug('Using temporary directory %s', mytmpdir())\n if input_type == 'bed':\n prepare_denovo_input_bed(inputfile, params, tmpdir)\n elif input_type == 'narrowpeak':\n prepare_denovo_input_narrowpeak(inputfile, params, tmpdir)\n elif input_type == 'fasta':\n prepare_denovo_input_fa(inputfile, params, tmpdir)\n else:\n logger.error('Unknown input file.')\n sys.exit(1)\n background = create_backgrounds(tmpdir, background, params.get('genome',\n None), params['width'], params.get('custom_background', None))\n result = predict_motifs(os.path.join(tmpdir, 'prediction.fa'), os.path.\n join(tmpdir, 'prediction.bg.fa'), os.path.join(tmpdir,\n 'all_motifs.pfm'), params=params, stats_fg=os.path.join(tmpdir,\n 'validation.fa'), stats_bg=background)\n if len(result.motifs) == 0:\n logger.info('finished')\n return []\n stats_file = os.path.join(tmpdir, 'stats.{}.txt')\n write_stats(result.stats, stats_file)\n bg = sorted(background, key=lambda x: BG_RANK[x])[0]\n if filter_significant:\n motifs = filter_significant_motifs(os.path.join(tmpdir,\n 'significant_motifs.pfm'), result, bg)\n if len(motifs) == 0:\n logger.info('no significant motifs')\n return\n pwmfile = os.path.join(tmpdir, 'significant_motifs.pfm')\n else:\n logger.info('not filtering for significance')\n motifs = result.motifs\n pwmfile = os.path.join(tmpdir, 'all_motifs.pfm')\n if cluster:\n clusters = cluster_motifs_with_report(pwmfile, os.path.join(tmpdir,\n 'clustered_motifs.pfm'), outdir, 0.95, title=inputfile)\n best_motifs = best_motif_in_cluster(pwmfile, os.path.join(tmpdir,\n 'clustered_motifs.pfm'), clusters, os.path.join(tmpdir,\n 'validation.fa'), background, result.stats)\n final_motifs, stats = rename_motifs(best_motifs, result.stats)\n else:\n logger.info('not clustering')\n rank = rank_motifs(result.stats)\n sorted_motifs = sorted(motifs, key=lambda x: rank[str(x)], reverse=True\n )\n final_motifs, stats = rename_motifs(sorted_motifs, result.stats)\n with open(os.path.join(outdir, 'motifs.pwm'), 'w') as f:\n for m in final_motifs:\n f.write('{}\\n'.format(m.to_pwm()))\n if create_report:\n bg = dict([(b, os.path.join(tmpdir, 'bg.{}.fa'.format(b))) for b in\n background])\n create_denovo_motif_report(inputfile, os.path.join(outdir,\n 'motifs.pwm'), os.path.join(tmpdir, 'validation.fa'), bg, os.\n path.join(tmpdir, 'localization.fa'), outdir, params, stats)\n with open(os.path.join(outdir, 'params.txt'), 'w') as f:\n for k, v in params.items():\n f.write('{}\\t{}\\n'.format(k, v))\n if not params.get('keep_intermediate'):\n logger.debug(\n 'Deleting intermediate files. Please specifify the -k option if you want to keep these files.'\n )\n shutil.rmtree(tmpdir)\n logger.info('finished')\n logger.info('output dir: %s', outdir)\n if cluster:\n logger.info('report: %s', os.path.join(outdir, 'motif_report.html'))\n return final_motifs\n",
"role": "user"
},
{
"content": "gimme_motifs",
"role": "assistant"
}
] |
def x(cls, dbname):
def x(subclass):
cls._dbs[dbname] = subclass
subclass.name = dbname
return subclass
return decorator
|
register_db
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, dbname):\n\n def x(subclass):\n cls._dbs[dbname] = subclass\n subclass.name = dbname\n return subclass\n return decorator\n",
"role": "user"
},
{
"content": "register_db",
"role": "assistant"
}
] |
def x(inputfile, method='hypergeom', scoring=None, outfile=None, motiffile=
None, pwmfile=None, genome=None, fpr=0.01, ncpus=None, subsample=None):
if scoring and scoring not in ['score', 'count']:
raise ValueError("valid values are 'score' and 'count'")
config = MotifConfig()
if inputfile.endswith('feather'):
df = pd.read_feather(inputfile)
df = df.set_index(df.columns[0])
else:
df = pd.read_table(inputfile, index_col=0, comment='#')
clf = Moap.create(method, ncpus=ncpus)
if clf.ptype == 'classification':
if df.shape[1] != 1:
raise ValueError('1 column expected for {}'.format(method))
elif np.dtype('object') in set(df.dtypes):
raise ValueError('columns should all be numeric for {}'.format(method))
if motiffile is None:
if genome is None:
raise ValueError('need a genome')
pwmfile = pwmfile_location(pwmfile)
try:
motifs = read_motifs(pwmfile)
except:
sys.stderr.write("can't read motifs from {}".format(pwmfile))
raise
s = Scanner(ncpus=ncpus)
sys.stderr.write(pwmfile + '\n')
s.set_motifs(pwmfile)
s.set_genome(genome)
s.set_background(genome=genome)
sys.stderr.write('scanning for motifs\n')
motif_names = [m.id for m in read_motifs(pwmfile)]
scores = []
if method == 'classic' or scoring == 'count':
s.set_threshold(fpr=fpr)
for row in s.count(list(df.index)):
scores.append(row)
else:
for row in s.best_score(list(df.index), normalize=True):
scores.append(row)
motifs = pd.DataFrame(scores, index=df.index, columns=motif_names)
else:
motifs = pd.read_table(motiffile, index_col=0, comment='#')
if outfile and os.path.exists(outfile):
out = pd.read_table(outfile, index_col=0, comment='#')
ncols = df.shape[1]
if ncols == 1:
ncols = len(df.iloc[:, 0].unique())
if out.shape[0] == motifs.shape[1] and out.shape[1] == ncols:
logger.warn('%s output already exists... skipping', method)
return out
if subsample is not None:
n = int(subsample * df.shape[0])
logger.debug('Subsampling %d regions', n)
df = df.sample(n)
motifs = motifs.loc[df.index]
if method == 'lightningregressor':
outdir = os.path.dirname(outfile)
tmpname = os.path.join(outdir, '.lightning.tmp')
clf.fit(motifs, df, tmpdir=tmpname)
shutil.rmtree(tmpname)
else:
clf.fit(motifs, df)
if outfile:
with open(outfile, 'w') as f:
f.write('# maelstrom - GimmeMotifs version {}\n'.format(
__version__))
f.write('# method: {} with motif {}\n'.format(method, scoring))
if genome:
f.write('# genome: {}\n'.format(genome))
if motiffile:
f.write('# motif table: {}\n'.format(motiffile))
f.write('# {}\n'.format(clf.act_description))
with open(outfile, 'a') as f:
clf.act_.to_csv(f, sep='\t')
return clf.act_
|
moap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputfile, method='hypergeom', scoring=None, outfile=None, motiffile=\n None, pwmfile=None, genome=None, fpr=0.01, ncpus=None, subsample=None):\n if scoring and scoring not in ['score', 'count']:\n raise ValueError(\"valid values are 'score' and 'count'\")\n config = MotifConfig()\n if inputfile.endswith('feather'):\n df = pd.read_feather(inputfile)\n df = df.set_index(df.columns[0])\n else:\n df = pd.read_table(inputfile, index_col=0, comment='#')\n clf = Moap.create(method, ncpus=ncpus)\n if clf.ptype == 'classification':\n if df.shape[1] != 1:\n raise ValueError('1 column expected for {}'.format(method))\n elif np.dtype('object') in set(df.dtypes):\n raise ValueError('columns should all be numeric for {}'.format(method))\n if motiffile is None:\n if genome is None:\n raise ValueError('need a genome')\n pwmfile = pwmfile_location(pwmfile)\n try:\n motifs = read_motifs(pwmfile)\n except:\n sys.stderr.write(\"can't read motifs from {}\".format(pwmfile))\n raise\n s = Scanner(ncpus=ncpus)\n sys.stderr.write(pwmfile + '\\n')\n s.set_motifs(pwmfile)\n s.set_genome(genome)\n s.set_background(genome=genome)\n sys.stderr.write('scanning for motifs\\n')\n motif_names = [m.id for m in read_motifs(pwmfile)]\n scores = []\n if method == 'classic' or scoring == 'count':\n s.set_threshold(fpr=fpr)\n for row in s.count(list(df.index)):\n scores.append(row)\n else:\n for row in s.best_score(list(df.index), normalize=True):\n scores.append(row)\n motifs = pd.DataFrame(scores, index=df.index, columns=motif_names)\n else:\n motifs = pd.read_table(motiffile, index_col=0, comment='#')\n if outfile and os.path.exists(outfile):\n out = pd.read_table(outfile, index_col=0, comment='#')\n ncols = df.shape[1]\n if ncols == 1:\n ncols = len(df.iloc[:, 0].unique())\n if out.shape[0] == motifs.shape[1] and out.shape[1] == ncols:\n logger.warn('%s output already exists... skipping', method)\n return out\n if subsample is not None:\n n = int(subsample * df.shape[0])\n logger.debug('Subsampling %d regions', n)\n df = df.sample(n)\n motifs = motifs.loc[df.index]\n if method == 'lightningregressor':\n outdir = os.path.dirname(outfile)\n tmpname = os.path.join(outdir, '.lightning.tmp')\n clf.fit(motifs, df, tmpdir=tmpname)\n shutil.rmtree(tmpname)\n else:\n clf.fit(motifs, df)\n if outfile:\n with open(outfile, 'w') as f:\n f.write('# maelstrom - GimmeMotifs version {}\\n'.format(\n __version__))\n f.write('# method: {} with motif {}\\n'.format(method, scoring))\n if genome:\n f.write('# genome: {}\\n'.format(genome))\n if motiffile:\n f.write('# motif table: {}\\n'.format(motiffile))\n f.write('# {}\\n'.format(clf.act_description))\n with open(outfile, 'a') as f:\n clf.act_.to_csv(f, sep='\\t')\n return clf.act_\n",
"role": "user"
},
{
"content": "moap",
"role": "assistant"
}
] |
def x(cls, name, ncpus=None):
try:
return cls._predictors[name.lower()](ncpus=ncpus)
except KeyError:
raise Exception('Unknown class')
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, name, ncpus=None):\n try:\n return cls._predictors[name.lower()](ncpus=ncpus)\n except KeyError:\n raise Exception('Unknown class')\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(cls, name):
def x(subclass):
cls._predictors[name.lower()] = subclass
subclass.name = name.lower()
return subclass
return decorator
|
register_predictor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, name):\n\n def x(subclass):\n cls._predictors[name.lower()] = subclass\n subclass.name = name.lower()\n return subclass\n return decorator\n",
"role": "user"
},
{
"content": "register_predictor",
"role": "assistant"
}
] |
def x(self):
preds = [self.create(x) for x in self._predictors.keys()]
return [x.name for x in preds if x.ptype == 'classification']
|
list_classification_predictors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n preds = [self.create(x) for x in self._predictors.keys()]\n return [x.name for x in preds if x.ptype == 'classification']\n",
"role": "user"
},
{
"content": "list_classification_predictors",
"role": "assistant"
}
] |
def x(self):
if six.callable(self.streamer):
self.stream_ = self.streamer(*self.args, **self.kwargs)
else:
self.stream_ = iter(self.streamer)
|
activate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if six.callable(self.streamer):\n self.stream_ = self.streamer(*self.args, **self.kwargs)\n else:\n self.stream_ = iter(self.streamer)\n",
"role": "user"
},
{
"content": "activate",
"role": "assistant"
}
] |
def x(self, max_iter=None):
with self as active_streamer:
for n, obj in enumerate(active_streamer.stream_):
if max_iter is not None and n >= max_iter:
break
yield obj
|
iterate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, max_iter=None):\n with self as active_streamer:\n for n, obj in enumerate(active_streamer.stream_):\n if max_iter is not None and n >= max_iter:\n break\n yield obj\n",
"role": "user"
},
{
"content": "iterate",
"role": "assistant"
}
] |
def x(self, max_iter=None):
count = 0
while True:
for obj in self.iterate():
count += 1
if max_iter is not None and count > max_iter:
return
yield obj
|
cycle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, max_iter=None):\n count = 0\n while True:\n for obj in self.iterate():\n count += 1\n if max_iter is not None and count > max_iter:\n return\n yield obj\n",
"role": "user"
},
{
"content": "cycle",
"role": "assistant"
}
] |
def x(motifs, fg_file, bg_file, genome=None, stats=None, ncpus=None):
if not stats:
stats = rocmetrics.__all__
if isinstance(motifs, Motif):
all_motifs = [motifs]
elif type([]) == type(motifs):
all_motifs = motifs
else:
all_motifs = read_motifs(motifs, fmt='pwm')
if ncpus is None:
ncpus = int(MotifConfig().get_default_params()['ncpus'])
chunksize = 240
for i in range(0, len(all_motifs), chunksize):
result = {}
logger.debug('chunk %s of %s', i / chunksize + 1, len(all_motifs) //
chunksize + 1)
motifs = all_motifs[i:i + chunksize]
fg_total = scan_to_best_match(fg_file, motifs, ncpus=ncpus, genome=
genome)
bg_total = scan_to_best_match(bg_file, motifs, ncpus=ncpus, genome=
genome)
logger.debug('calculating statistics')
if ncpus == 1:
it = _single_stats(motifs, stats, fg_total, bg_total)
else:
it = _mp_stats(motifs, stats, fg_total, bg_total, ncpus)
for motif_id, s, ret in it:
if motif_id not in result:
result[motif_id] = {}
result[motif_id][s] = ret
yield result
|
calc_stats_iterator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(motifs, fg_file, bg_file, genome=None, stats=None, ncpus=None):\n if not stats:\n stats = rocmetrics.__all__\n if isinstance(motifs, Motif):\n all_motifs = [motifs]\n elif type([]) == type(motifs):\n all_motifs = motifs\n else:\n all_motifs = read_motifs(motifs, fmt='pwm')\n if ncpus is None:\n ncpus = int(MotifConfig().get_default_params()['ncpus'])\n chunksize = 240\n for i in range(0, len(all_motifs), chunksize):\n result = {}\n logger.debug('chunk %s of %s', i / chunksize + 1, len(all_motifs) //\n chunksize + 1)\n motifs = all_motifs[i:i + chunksize]\n fg_total = scan_to_best_match(fg_file, motifs, ncpus=ncpus, genome=\n genome)\n bg_total = scan_to_best_match(bg_file, motifs, ncpus=ncpus, genome=\n genome)\n logger.debug('calculating statistics')\n if ncpus == 1:\n it = _single_stats(motifs, stats, fg_total, bg_total)\n else:\n it = _mp_stats(motifs, stats, fg_total, bg_total, ncpus)\n for motif_id, s, ret in it:\n if motif_id not in result:\n result[motif_id] = {}\n result[motif_id][s] = ret\n yield result\n",
"role": "user"
},
{
"content": "calc_stats_iterator",
"role": "assistant"
}
] |
def x(motifs, fg_file, bg_file, genome=None, stats=None, ncpus=None):
result = {}
for batch_result in calc_stats_iterator(motifs, fg_file, bg_file,
genome=genome, stats=stats, ncpus=ncpus):
for motif_id in batch_result:
if motif_id not in result:
result[motif_id] = {}
for s, ret in batch_result[motif_id].items():
result[motif_id][s] = ret
return result
|
calc_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(motifs, fg_file, bg_file, genome=None, stats=None, ncpus=None):\n result = {}\n for batch_result in calc_stats_iterator(motifs, fg_file, bg_file,\n genome=genome, stats=stats, ncpus=ncpus):\n for motif_id in batch_result:\n if motif_id not in result:\n result[motif_id] = {}\n for s, ret in batch_result[motif_id].items():\n result[motif_id][s] = ret\n return result\n",
"role": "user"
},
{
"content": "calc_stats",
"role": "assistant"
}
] |
def x(stats, metrics=('roc_auc', 'recall_at_fdr')):
rank = {}
combined_metrics = []
motif_ids = stats.keys()
background = list(stats.values())[0].keys()
for metric in metrics:
mean_metric_stats = [np.mean([stats[m][bg][metric] for bg in
background]) for m in motif_ids]
ranked_metric_stats = rankdata(mean_metric_stats)
combined_metrics.append(ranked_metric_stats)
for motif, val in zip(motif_ids, np.mean(combined_metrics, 0)):
rank[motif] = val
return rank
|
rank_motifs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stats, metrics=('roc_auc', 'recall_at_fdr')):\n rank = {}\n combined_metrics = []\n motif_ids = stats.keys()\n background = list(stats.values())[0].keys()\n for metric in metrics:\n mean_metric_stats = [np.mean([stats[m][bg][metric] for bg in\n background]) for m in motif_ids]\n ranked_metric_stats = rankdata(mean_metric_stats)\n combined_metrics.append(ranked_metric_stats)\n for motif, val in zip(motif_ids, np.mean(combined_metrics, 0)):\n rank[motif] = val\n return rank\n",
"role": "user"
},
{
"content": "rank_motifs",
"role": "assistant"
}
] |
def x(stats, fname, header=None):
for bg in list(stats.values())[0].keys():
f = open(fname.format(bg), 'w')
if header:
f.write(header)
stat_keys = sorted(list(list(stats.values())[0].values())[0].keys())
f.write('{}\t{}\n'.format('Motif', '\t'.join(stat_keys)))
for motif in stats:
m_stats = stats.get(str(motif), {}).get(bg)
if m_stats:
f.write('{}\t{}\n'.format('_'.join(motif.split('_')[:-1]),
'\t'.join([str(m_stats[k]) for k in stat_keys])))
else:
logger.warn('No stats for motif {0}, skipping this motif!'.
format(motif.id))
f.close()
return
|
write_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stats, fname, header=None):\n for bg in list(stats.values())[0].keys():\n f = open(fname.format(bg), 'w')\n if header:\n f.write(header)\n stat_keys = sorted(list(list(stats.values())[0].values())[0].keys())\n f.write('{}\\t{}\\n'.format('Motif', '\\t'.join(stat_keys)))\n for motif in stats:\n m_stats = stats.get(str(motif), {}).get(bg)\n if m_stats:\n f.write('{}\\t{}\\n'.format('_'.join(motif.split('_')[:-1]),\n '\\t'.join([str(m_stats[k]) for k in stat_keys])))\n else:\n logger.warn('No stats for motif {0}, skipping this motif!'.\n format(motif.id))\n f.close()\n return\n",
"role": "user"
},
{
"content": "write_stats",
"role": "assistant"
}
] |
def x(motif, fg_file, bg_file):
try:
stats = calc_stats(motif, fg_file, bg_file, stats=['roc_values'],
ncpus=1)
x, y = list(stats.values())[0]['roc_values']
return None, x, y
except Exception as e:
print(motif)
print(motif.id)
raise
error = e
return error, [], []
|
get_roc_values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(motif, fg_file, bg_file):\n try:\n stats = calc_stats(motif, fg_file, bg_file, stats=['roc_values'],\n ncpus=1)\n x, y = list(stats.values())[0]['roc_values']\n return None, x, y\n except Exception as e:\n print(motif)\n print(motif.id)\n raise\n error = e\n return error, [], []\n",
"role": "user"
},
{
"content": "get_roc_values",
"role": "assistant"
}
] |
def x(pwmfile, fgfa, background, outdir):
motifs = read_motifs(pwmfile, fmt='pwm', as_dict=True)
ncpus = int(MotifConfig().get_default_params()['ncpus'])
pool = Pool(processes=ncpus)
jobs = {}
for bg, fname in background.items():
for m_id, m in motifs.items():
k = '{}_{}'.format(str(m), bg)
jobs[k] = pool.apply_async(get_roc_values, (motifs[m_id], fgfa,
fname))
imgdir = os.path.join(outdir, 'images')
if not os.path.exists(imgdir):
os.mkdir(imgdir)
roc_img_file = os.path.join(outdir, 'images', '{}_roc.{}.png')
for motif in motifs.values():
for bg in background:
k = '{}_{}'.format(str(motif), bg)
error, x, y = jobs[k].get()
if error:
logger.error('Error in thread: %s', error)
logger.error('Motif: %s', motif)
sys.exit(1)
roc_plot(roc_img_file.format(motif.id, bg), x, y)
|
create_roc_plots
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pwmfile, fgfa, background, outdir):\n motifs = read_motifs(pwmfile, fmt='pwm', as_dict=True)\n ncpus = int(MotifConfig().get_default_params()['ncpus'])\n pool = Pool(processes=ncpus)\n jobs = {}\n for bg, fname in background.items():\n for m_id, m in motifs.items():\n k = '{}_{}'.format(str(m), bg)\n jobs[k] = pool.apply_async(get_roc_values, (motifs[m_id], fgfa,\n fname))\n imgdir = os.path.join(outdir, 'images')\n if not os.path.exists(imgdir):\n os.mkdir(imgdir)\n roc_img_file = os.path.join(outdir, 'images', '{}_roc.{}.png')\n for motif in motifs.values():\n for bg in background:\n k = '{}_{}'.format(str(motif), bg)\n error, x, y = jobs[k].get()\n if error:\n logger.error('Error in thread: %s', error)\n logger.error('Motif: %s', motif)\n sys.exit(1)\n roc_plot(roc_img_file.format(motif.id, bg), x, y)\n",
"role": "user"
},
{
"content": "create_roc_plots",
"role": "assistant"
}
] |
def x(inputfile, motifs, closest_match, stats, outdir):
my_stats = {}
for motif in motifs:
match = closest_match[motif.id]
my_stats[str(motif)] = {}
for bg in list(stats.values())[0].keys():
if str(motif) not in stats:
logger.error('####')
logger.error('{} not found'.format(str(motif)))
for s in sorted(stats.keys()):
logger.error(s)
logger.error('####')
else:
my_stats[str(motif)][bg] = stats[str(motif)][bg].copy()
my_stats[str(motif)][bg]['best_match'] = '_'.join(match[0].
split('_')[:-1])
my_stats[str(motif)][bg]['best_match_pvalue'] = match[1][-1]
header = '# GimmeMotifs version {}\n# Inputfile: {}\n'.format(__version__,
inputfile)
write_stats(my_stats, os.path.join(outdir, 'stats.{}.txt'), header=header)
|
create_text_report
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputfile, motifs, closest_match, stats, outdir):\n my_stats = {}\n for motif in motifs:\n match = closest_match[motif.id]\n my_stats[str(motif)] = {}\n for bg in list(stats.values())[0].keys():\n if str(motif) not in stats:\n logger.error('####')\n logger.error('{} not found'.format(str(motif)))\n for s in sorted(stats.keys()):\n logger.error(s)\n logger.error('####')\n else:\n my_stats[str(motif)][bg] = stats[str(motif)][bg].copy()\n my_stats[str(motif)][bg]['best_match'] = '_'.join(match[0].\n split('_')[:-1])\n my_stats[str(motif)][bg]['best_match_pvalue'] = match[1][-1]\n header = '# GimmeMotifs version {}\\n# Inputfile: {}\\n'.format(__version__,\n inputfile)\n write_stats(my_stats, os.path.join(outdir, 'stats.{}.txt'), header=header)\n",
"role": "user"
},
{
"content": "create_text_report",
"role": "assistant"
}
] |
def x(inputfile, pwm, background, closest_match, outdir, stats, best_id=None):
if best_id is None:
best_id = {}
logger.debug('Creating graphical report')
class ReportMotif(object):
"""Placeholder for motif stats."""
pass
config = MotifConfig()
imgdir = os.path.join(outdir, 'images')
if not os.path.exists(imgdir):
os.mkdir(imgdir)
motifs = read_motifs(pwm, fmt='pwm')
roc_img_file = '%s_roc.%s'
dbpwm = config.get_default_params()['motif_db']
pwmdir = config.get_motif_dir()
dbmotifs = read_motifs(os.path.join(pwmdir, dbpwm), as_dict=True)
report_motifs = []
for motif in motifs:
rm = ReportMotif()
rm.id = motif.id
rm.id_href = {'href': '#%s' % motif.id}
rm.id_name = {'name': motif.id}
rm.img = {'src': os.path.join('images', '%s.png' % motif.id)}
motif.to_img(os.path.join(outdir, 'images/{}.png'.format(motif.id)),
fmt='PNG')
rm.best = 'Gimme'
rm.consensus = motif.to_consensus()
rm.stars = int(np.mean([stats[str(motif)][bg].get('stars', 0) for
bg in background]) + 0.5)
rm.bg = {}
for bg in background:
rm.bg[bg] = {}
this_stats = stats.get(str(motif), {}).get(bg)
rm.bg[bg]['e'] = '%0.2f' % this_stats.get('enr_at_fpr', 1.0)
rm.bg[bg]['p'] = '%0.2f' % this_stats.get('phyper_at_fpr', 1.0)
rm.bg[bg]['auc'] = '%0.3f' % this_stats.get('roc_auc', 0.5)
rm.bg[bg]['mncp'] = '%0.3f' % this_stats.get('mncp', 1.0)
rm.bg[bg]['roc_img'] = {'src': 'images/' + os.path.basename(
roc_img_file % (motif.id, bg)) + '.png'}
rm.bg[bg][u'roc_img_link'] = {u'href': 'images/' + os.path.
basename(roc_img_file % (motif.id, bg)) + '.png'}
rm.histogram_img = {'data': 'images/%s_histogram.svg' % motif.id}
rm.histogram_link = {'href': 'images/%s_histogram.svg' % motif.id}
match_id = closest_match[motif.id][0]
dbmotifs[match_id].to_img(os.path.join(outdir, 'images/{}.png'.
format(match_id)), fmt='PNG')
rm.match_img = {'src': 'images/{}.png'.format(match_id)}
rm.match_id = closest_match[motif.id][0]
rm.match_pval = '%0.2e' % closest_match[motif.id][1][-1]
report_motifs.append(rm)
total_report = os.path.join(outdir, 'motif_report.html')
star_img = os.path.join(config.get_template_dir(), 'star.png')
shutil.copyfile(star_img, os.path.join(outdir, 'images', 'star.png'))
env = jinja2.Environment(loader=jinja2.FileSystemLoader([config.
get_template_dir()]))
template = env.get_template('report_template.jinja.html')
result = template.render(motifs=report_motifs, inputfile=inputfile,
date=datetime.today().strftime('%d/%m/%Y'), version=__version__,
bg_types=list(background.keys()))
with open(total_report, 'wb') as f:
f.write(result.encode('utf-8'))
|
create_graphical_report
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputfile, pwm, background, closest_match, outdir, stats, best_id=None):\n if best_id is None:\n best_id = {}\n logger.debug('Creating graphical report')\n\n\n class ReportMotif(object):\n \"\"\"Placeholder for motif stats.\"\"\"\n pass\n config = MotifConfig()\n imgdir = os.path.join(outdir, 'images')\n if not os.path.exists(imgdir):\n os.mkdir(imgdir)\n motifs = read_motifs(pwm, fmt='pwm')\n roc_img_file = '%s_roc.%s'\n dbpwm = config.get_default_params()['motif_db']\n pwmdir = config.get_motif_dir()\n dbmotifs = read_motifs(os.path.join(pwmdir, dbpwm), as_dict=True)\n report_motifs = []\n for motif in motifs:\n rm = ReportMotif()\n rm.id = motif.id\n rm.id_href = {'href': '#%s' % motif.id}\n rm.id_name = {'name': motif.id}\n rm.img = {'src': os.path.join('images', '%s.png' % motif.id)}\n motif.to_img(os.path.join(outdir, 'images/{}.png'.format(motif.id)),\n fmt='PNG')\n rm.best = 'Gimme'\n rm.consensus = motif.to_consensus()\n rm.stars = int(np.mean([stats[str(motif)][bg].get('stars', 0) for\n bg in background]) + 0.5)\n rm.bg = {}\n for bg in background:\n rm.bg[bg] = {}\n this_stats = stats.get(str(motif), {}).get(bg)\n rm.bg[bg]['e'] = '%0.2f' % this_stats.get('enr_at_fpr', 1.0)\n rm.bg[bg]['p'] = '%0.2f' % this_stats.get('phyper_at_fpr', 1.0)\n rm.bg[bg]['auc'] = '%0.3f' % this_stats.get('roc_auc', 0.5)\n rm.bg[bg]['mncp'] = '%0.3f' % this_stats.get('mncp', 1.0)\n rm.bg[bg]['roc_img'] = {'src': 'images/' + os.path.basename(\n roc_img_file % (motif.id, bg)) + '.png'}\n rm.bg[bg][u'roc_img_link'] = {u'href': 'images/' + os.path.\n basename(roc_img_file % (motif.id, bg)) + '.png'}\n rm.histogram_img = {'data': 'images/%s_histogram.svg' % motif.id}\n rm.histogram_link = {'href': 'images/%s_histogram.svg' % motif.id}\n match_id = closest_match[motif.id][0]\n dbmotifs[match_id].to_img(os.path.join(outdir, 'images/{}.png'.\n format(match_id)), fmt='PNG')\n rm.match_img = {'src': 'images/{}.png'.format(match_id)}\n rm.match_id = closest_match[motif.id][0]\n rm.match_pval = '%0.2e' % closest_match[motif.id][1][-1]\n report_motifs.append(rm)\n total_report = os.path.join(outdir, 'motif_report.html')\n star_img = os.path.join(config.get_template_dir(), 'star.png')\n shutil.copyfile(star_img, os.path.join(outdir, 'images', 'star.png'))\n env = jinja2.Environment(loader=jinja2.FileSystemLoader([config.\n get_template_dir()]))\n template = env.get_template('report_template.jinja.html')\n result = template.render(motifs=report_motifs, inputfile=inputfile,\n date=datetime.today().strftime('%d/%m/%Y'), version=__version__,\n bg_types=list(background.keys()))\n with open(total_report, 'wb') as f:\n f.write(result.encode('utf-8'))\n",
"role": "user"
},
{
"content": "create_graphical_report",
"role": "assistant"
}
] |
def x(inputfile, pwmfile, fgfa, background, locfa, outdir, params, stats=None):
logger.info('creating reports')
motifs = read_motifs(pwmfile, fmt='pwm')
create_roc_plots(pwmfile, fgfa, background, outdir)
mc = MotifComparer()
closest_match = mc.get_closest_match(motifs)
if stats is None:
stats = {}
for bg, bgfa in background.items():
for m, s in calc_stats(motifs, fgfa, bgfa).items():
if m not in stats:
stats[m] = {}
stats[m][bg] = s
stats = add_star(stats)
if not params:
params = {}
cutoff_fpr = params.get('cutoff_fpr', 0.9)
lwidth = np.median([len(seq) for seq in Fasta(locfa).seqs])
logger.debug('Creating localization plots')
for motif in motifs:
logger.debug(' {} {}'.format(motif.id, motif))
outfile = os.path.join(outdir, 'images/{}_histogram.svg'.format(
motif.id))
motif_localization(locfa, motif, lwidth, outfile, cutoff=cutoff_fpr)
_create_text_report(inputfile, motifs, closest_match, stats, outdir)
_create_graphical_report(inputfile, pwmfile, background, closest_match,
outdir, stats)
|
create_denovo_motif_report
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputfile, pwmfile, fgfa, background, locfa, outdir, params, stats=None):\n logger.info('creating reports')\n motifs = read_motifs(pwmfile, fmt='pwm')\n create_roc_plots(pwmfile, fgfa, background, outdir)\n mc = MotifComparer()\n closest_match = mc.get_closest_match(motifs)\n if stats is None:\n stats = {}\n for bg, bgfa in background.items():\n for m, s in calc_stats(motifs, fgfa, bgfa).items():\n if m not in stats:\n stats[m] = {}\n stats[m][bg] = s\n stats = add_star(stats)\n if not params:\n params = {}\n cutoff_fpr = params.get('cutoff_fpr', 0.9)\n lwidth = np.median([len(seq) for seq in Fasta(locfa).seqs])\n logger.debug('Creating localization plots')\n for motif in motifs:\n logger.debug(' {} {}'.format(motif.id, motif))\n outfile = os.path.join(outdir, 'images/{}_histogram.svg'.format(\n motif.id))\n motif_localization(locfa, motif, lwidth, outfile, cutoff=cutoff_fpr)\n _create_text_report(inputfile, motifs, closest_match, stats, outdir)\n _create_graphical_report(inputfile, pwmfile, background, closest_match,\n outdir, stats)\n",
"role": "user"
},
{
"content": "create_denovo_motif_report",
"role": "assistant"
}
] |
def x(ax):
ax.set_frame_on(False)
ax.axes.get_yaxis().set_visible(False)
ax.axes.get_xaxis().set_visible(False)
|
axes_off
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ax):\n ax.set_frame_on(False)\n ax.axes.get_yaxis().set_visible(False)\n ax.axes.get_xaxis().set_visible(False)\n",
"role": "user"
},
{
"content": "axes_off",
"role": "assistant"
}
] |
def x(plotdata, outfile):
fig_h = 2
fig_w = 7
nrows = len(plotdata)
ncols = 2
fig = plt.figure(figsize=(fig_w, nrows * fig_h))
for i, (motif, dbmotif, pval) in enumerate(plotdata):
text = 'Motif: %s\nBest match: %s\np-value: %0.2e' % (motif.id,
dbmotif.id, pval)
grid = ImageGrid(fig, (nrows, ncols, i * 2 + 1), nrows_ncols=(2, 1),
axes_pad=0)
for j in range(2):
axes_off(grid[j])
tmp = NamedTemporaryFile(dir=mytmpdir(), suffix='.png')
motif.to_img(tmp.name, fmt='PNG', height=6)
grid[0].imshow(plt.imread(tmp.name), interpolation='none')
tmp = NamedTemporaryFile(dir=mytmpdir(), suffix='.png')
dbmotif.to_img(tmp.name, fmt='PNG')
grid[1].imshow(plt.imread(tmp.name), interpolation='none')
ax = plt.subplot(nrows, ncols, i * 2 + 2)
axes_off(ax)
ax.text(0, 0.5, text, horizontalalignment='left', verticalalignment
='center')
plt.savefig(outfile, dpi=300, bbox_inches='tight')
plt.close(fig)
|
match_plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(plotdata, outfile):\n fig_h = 2\n fig_w = 7\n nrows = len(plotdata)\n ncols = 2\n fig = plt.figure(figsize=(fig_w, nrows * fig_h))\n for i, (motif, dbmotif, pval) in enumerate(plotdata):\n text = 'Motif: %s\\nBest match: %s\\np-value: %0.2e' % (motif.id,\n dbmotif.id, pval)\n grid = ImageGrid(fig, (nrows, ncols, i * 2 + 1), nrows_ncols=(2, 1),\n axes_pad=0)\n for j in range(2):\n axes_off(grid[j])\n tmp = NamedTemporaryFile(dir=mytmpdir(), suffix='.png')\n motif.to_img(tmp.name, fmt='PNG', height=6)\n grid[0].imshow(plt.imread(tmp.name), interpolation='none')\n tmp = NamedTemporaryFile(dir=mytmpdir(), suffix='.png')\n dbmotif.to_img(tmp.name, fmt='PNG')\n grid[1].imshow(plt.imread(tmp.name), interpolation='none')\n ax = plt.subplot(nrows, ncols, i * 2 + 2)\n axes_off(ax)\n ax.text(0, 0.5, text, horizontalalignment='left', verticalalignment\n ='center')\n plt.savefig(outfile, dpi=300, bbox_inches='tight')\n plt.close(fig)\n",
"role": "user"
},
{
"content": "match_plot",
"role": "assistant"
}
] |
def x(outfile, tree, data, circle=True, vmin=None, vmax=None, dpi=300):
try:
from ete3 import Tree, faces, AttrFace, TreeStyle, NodeStyle
except ImportError:
print('Please install ete3 to use this functionality')
sys.exit(1)
t, ts = _get_motif_tree(tree, data, circle, vmin, vmax)
t.render(outfile, tree_style=ts, w=100, dpi=dpi, units='mm')
if circle:
img = Image.open(outfile)
size = img.size[0]
spacer = 50
img.crop((0, 0, size, size / 2 + spacer)).save(outfile)
|
motif_tree_plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(outfile, tree, data, circle=True, vmin=None, vmax=None, dpi=300):\n try:\n from ete3 import Tree, faces, AttrFace, TreeStyle, NodeStyle\n except ImportError:\n print('Please install ete3 to use this functionality')\n sys.exit(1)\n t, ts = _get_motif_tree(tree, data, circle, vmin, vmax)\n t.render(outfile, tree_style=ts, w=100, dpi=dpi, units='mm')\n if circle:\n img = Image.open(outfile)\n size = img.size[0]\n spacer = 50\n img.crop((0, 0, size, size / 2 + spacer)).save(outfile)\n",
"role": "user"
},
{
"content": "motif_tree_plot",
"role": "assistant"
}
] |
def x(fname):
if not os.path.exists(fname):
logger.error('Inputfile %s does not exist!', fname)
sys.exit(1)
for i, line in enumerate(open(fname)):
if line.startswith('#') or line.startswith('track') or line.startswith(
'browser'):
pass
else:
vals = line.strip().split('\t')
if len(vals) < 3:
logger.error(
'Expecting tab-seperated values (chromosome<tab>start<tab>end) on line %s of file %s'
, i + 1, fname)
sys.exit(1)
try:
start, end = int(vals[1]), int(vals[2])
except ValueError:
logger.error(
'No valid integer coordinates on line %s of file %s', i +
1, fname)
sys.exit(1)
if len(vals) > 3:
try:
float(vals[3])
except ValueError:
pass
|
check_bed_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n if not os.path.exists(fname):\n logger.error('Inputfile %s does not exist!', fname)\n sys.exit(1)\n for i, line in enumerate(open(fname)):\n if line.startswith('#') or line.startswith('track') or line.startswith(\n 'browser'):\n pass\n else:\n vals = line.strip().split('\\t')\n if len(vals) < 3:\n logger.error(\n 'Expecting tab-seperated values (chromosome<tab>start<tab>end) on line %s of file %s'\n , i + 1, fname)\n sys.exit(1)\n try:\n start, end = int(vals[1]), int(vals[2])\n except ValueError:\n logger.error(\n 'No valid integer coordinates on line %s of file %s', i +\n 1, fname)\n sys.exit(1)\n if len(vals) > 3:\n try:\n float(vals[3])\n except ValueError:\n pass\n",
"role": "user"
},
{
"content": "check_bed_file",
"role": "assistant"
}
] |
def x(inputfile, params):
background = params['background']
input_type = determine_file_type(inputfile)
if input_type == 'fasta':
valid_bg = FA_VALID_BGS
elif input_type in ['bed', 'narrowpeak']:
genome = params['genome']
valid_bg = BED_VALID_BGS
if 'genomic' in background or 'gc' in background:
Genome(genome)
check_bed_file(inputfile)
else:
sys.stderr.write('Format of inputfile {} not recognized.\n'.format(
inputfile))
sys.stderr.write('Input should be FASTA, BED or narrowPeak.\n')
sys.stderr.write(
'See https://genome.ucsc.edu/FAQ/FAQformat.html for specifications.\n'
)
sys.exit(1)
for bg in background:
if not bg in valid_bg:
logger.info("Input type is %s, ignoring background type '%s'",
input_type, bg)
background = [bg for bg in background if bg in valid_bg]
if len(background) == 0:
logger.error('No valid backgrounds specified!')
sys.exit(1)
return input_type, background
|
check_denovo_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputfile, params):\n background = params['background']\n input_type = determine_file_type(inputfile)\n if input_type == 'fasta':\n valid_bg = FA_VALID_BGS\n elif input_type in ['bed', 'narrowpeak']:\n genome = params['genome']\n valid_bg = BED_VALID_BGS\n if 'genomic' in background or 'gc' in background:\n Genome(genome)\n check_bed_file(inputfile)\n else:\n sys.stderr.write('Format of inputfile {} not recognized.\\n'.format(\n inputfile))\n sys.stderr.write('Input should be FASTA, BED or narrowPeak.\\n')\n sys.stderr.write(\n 'See https://genome.ucsc.edu/FAQ/FAQformat.html for specifications.\\n'\n )\n sys.exit(1)\n for bg in background:\n if not bg in valid_bg:\n logger.info(\"Input type is %s, ignoring background type '%s'\",\n input_type, bg)\n background = [bg for bg in background if bg in valid_bg]\n if len(background) == 0:\n logger.error('No valid backgrounds specified!')\n sys.exit(1)\n return input_type, background\n",
"role": "user"
},
{
"content": "check_denovo_input",
"role": "assistant"
}
] |
def x(fname, motifs, ncpus=None, genome=None, score=False):
s = Scanner(ncpus=ncpus)
s.set_motifs(motifs)
s.set_threshold(threshold=0.0)
if genome:
s.set_genome(genome)
if isinstance(motifs, six.string_types):
motifs = read_motifs(motifs)
logger.debug('scanning %s...', fname)
result = dict([(m.id, []) for m in motifs])
if score:
it = s.best_score(fname)
else:
it = s.best_match(fname)
for scores in it:
for motif, score in zip(motifs, scores):
result[motif.id].append(score)
del s
return result
|
scan_to_best_match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname, motifs, ncpus=None, genome=None, score=False):\n s = Scanner(ncpus=ncpus)\n s.set_motifs(motifs)\n s.set_threshold(threshold=0.0)\n if genome:\n s.set_genome(genome)\n if isinstance(motifs, six.string_types):\n motifs = read_motifs(motifs)\n logger.debug('scanning %s...', fname)\n result = dict([(m.id, []) for m in motifs])\n if score:\n it = s.best_score(fname)\n else:\n it = s.best_match(fname)\n for scores in it:\n for motif, score in zip(motifs, scores):\n result[motif.id].append(score)\n del s\n return result\n",
"role": "user"
},
{
"content": "scan_to_best_match",
"role": "assistant"
}
] |
def x(self, fname=None, genome=None, length=200, nseq=10000):
length = int(length)
if genome and fname:
raise ValueError('Need either genome or filename for background.')
if fname:
if not os.path.exists(fname):
raise IOError('Background file {} does not exist!'.format(fname))
self.background = Fasta(fname)
self.background_hash = file_checksum(fname)
return
if not genome:
if self.genome:
genome = self.genome
logger.info('Using default background: genome {} with length {}'
.format(genome, length))
else:
raise ValueError('Need either genome or filename for background.')
logger.info('Using background: genome {} with length {}'.format(genome,
length))
with Cache(CACHE_DIR) as cache:
self.background_hash = '{}\\{}'.format(genome, int(length))
fa = cache.get(self.background_hash)
if not fa:
fa = RandomGenomicFasta(genome, length, nseq)
cache.set(self.background_hash, fa)
self.background = fa
|
set_background
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fname=None, genome=None, length=200, nseq=10000):\n length = int(length)\n if genome and fname:\n raise ValueError('Need either genome or filename for background.')\n if fname:\n if not os.path.exists(fname):\n raise IOError('Background file {} does not exist!'.format(fname))\n self.background = Fasta(fname)\n self.background_hash = file_checksum(fname)\n return\n if not genome:\n if self.genome:\n genome = self.genome\n logger.info('Using default background: genome {} with length {}'\n .format(genome, length))\n else:\n raise ValueError('Need either genome or filename for background.')\n logger.info('Using background: genome {} with length {}'.format(genome,\n length))\n with Cache(CACHE_DIR) as cache:\n self.background_hash = '{}\\\\{}'.format(genome, int(length))\n fa = cache.get(self.background_hash)\n if not fa:\n fa = RandomGenomicFasta(genome, length, nseq)\n cache.set(self.background_hash, fa)\n self.background = fa\n",
"role": "user"
},
{
"content": "set_background",
"role": "assistant"
}
] |
def x(self, fpr=None, threshold=None):
if threshold and fpr:
raise ValueError('Need either fpr or threshold.')
if fpr:
fpr = float(fpr)
if not 0.0 < fpr < 1.0:
raise ValueError('Parameter fpr should be between 0 and 1')
if not self.motifs:
raise ValueError('please run set_motifs() first')
thresholds = {}
motifs = read_motifs(self.motifs)
if threshold is not None:
self.threshold = parse_threshold_values(self.motifs, threshold)
return
if not self.background:
try:
self.set_background()
except:
raise ValueError('please run set_background() first')
seqs = self.background.seqs
with Cache(CACHE_DIR) as cache:
scan_motifs = []
for motif in motifs:
k = '{}|{}|{:.4f}'.format(motif.hash(), self.background_hash, fpr)
threshold = cache.get(k)
if threshold is None:
scan_motifs.append(motif)
elif np.isclose(threshold, motif.pwm_max_score()):
thresholds[motif.id] = None
elif np.isclose(threshold, motif.pwm_min_score()):
thresholds[motif.id] = 0.0
else:
thresholds[motif.id] = threshold
if len(scan_motifs) > 0:
logger.info('Determining FPR-based threshold')
for motif, threshold in self._threshold_from_seqs(scan_motifs,
seqs, fpr):
k = '{}|{}|{:.4f}'.format(motif.hash(), self.
background_hash, fpr)
cache.set(k, threshold)
if np.isclose(threshold, motif.pwm_max_score()):
thresholds[motif.id] = None
elif np.isclose(threshold, motif.pwm_min_score()):
thresholds[motif.id] = 0.0
else:
thresholds[motif.id] = threshold
self.threshold_str = '{}_{}_{}'.format(fpr, threshold, self.background_hash
)
self.threshold = thresholds
|
set_threshold
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fpr=None, threshold=None):\n if threshold and fpr:\n raise ValueError('Need either fpr or threshold.')\n if fpr:\n fpr = float(fpr)\n if not 0.0 < fpr < 1.0:\n raise ValueError('Parameter fpr should be between 0 and 1')\n if not self.motifs:\n raise ValueError('please run set_motifs() first')\n thresholds = {}\n motifs = read_motifs(self.motifs)\n if threshold is not None:\n self.threshold = parse_threshold_values(self.motifs, threshold)\n return\n if not self.background:\n try:\n self.set_background()\n except:\n raise ValueError('please run set_background() first')\n seqs = self.background.seqs\n with Cache(CACHE_DIR) as cache:\n scan_motifs = []\n for motif in motifs:\n k = '{}|{}|{:.4f}'.format(motif.hash(), self.background_hash, fpr)\n threshold = cache.get(k)\n if threshold is None:\n scan_motifs.append(motif)\n elif np.isclose(threshold, motif.pwm_max_score()):\n thresholds[motif.id] = None\n elif np.isclose(threshold, motif.pwm_min_score()):\n thresholds[motif.id] = 0.0\n else:\n thresholds[motif.id] = threshold\n if len(scan_motifs) > 0:\n logger.info('Determining FPR-based threshold')\n for motif, threshold in self._threshold_from_seqs(scan_motifs,\n seqs, fpr):\n k = '{}|{}|{:.4f}'.format(motif.hash(), self.\n background_hash, fpr)\n cache.set(k, threshold)\n if np.isclose(threshold, motif.pwm_max_score()):\n thresholds[motif.id] = None\n elif np.isclose(threshold, motif.pwm_min_score()):\n thresholds[motif.id] = 0.0\n else:\n thresholds[motif.id] = threshold\n self.threshold_str = '{}_{}_{}'.format(fpr, threshold, self.background_hash\n )\n self.threshold = thresholds\n",
"role": "user"
},
{
"content": "set_threshold",
"role": "assistant"
}
] |
def x(self, seqs, nreport=100, scan_rc=True):
for matches in self.scan(seqs, nreport, scan_rc):
counts = [len(m) for m in matches]
yield counts
|
count
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, seqs, nreport=100, scan_rc=True):\n for matches in self.scan(seqs, nreport, scan_rc):\n counts = [len(m) for m in matches]\n yield counts\n",
"role": "user"
},
{
"content": "count",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.