source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): try: super().load_ext() except OSError: del self.memoryflag if hydpy.pub.options.warnmissingobsfile: warnings.warn( f'The `memory flag` of sequence {objecttools.nodephrase(self)} had to be set to `False` due to the following problem: {sys.exc_info()[1]}' ) except BaseException: if hydpy.pub.options.warnmissingobsfile: warnings.warn(str(sys.exc_info()[1]))
load_ext
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n super().load_ext()\n except OSError:\n del self.memoryflag\n if hydpy.pub.options.warnmissingobsfile:\n warnings.warn(\n f'The `memory flag` of sequence {objecttools.nodephrase(self)} had to be set to `False` due to the following problem: {sys.exc_info()[1]}'\n )\n except BaseException:\n if hydpy.pub.options.warnmissingobsfile:\n warnings.warn(str(sys.exc_info()[1]))\n", "role": "user" }, { "content": "load_ext", "role": "assistant" } ]
def x(self, idx): for name in self: if getattr(self, '_%s_diskflag' % name): path = getattr(self, '_%s_path' % name) file_ = open(path, 'rb+') ndim = getattr(self, '_%s_ndim' % name) position = 8 * idx for idim in range(ndim): length = getattr(self, '_%s_length_%d' % (name, idim)) position *= length file_.seek(position) setattr(self, '_%s_file' % name, file_)
open_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx):\n for name in self:\n if getattr(self, '_%s_diskflag' % name):\n path = getattr(self, '_%s_path' % name)\n file_ = open(path, 'rb+')\n ndim = getattr(self, '_%s_ndim' % name)\n position = 8 * idx\n for idim in range(ndim):\n length = getattr(self, '_%s_length_%d' % (name, idim))\n position *= length\n file_.seek(position)\n setattr(self, '_%s_file' % name, file_)\n", "role": "user" }, { "content": "open_files", "role": "assistant" } ]
def x(self): for name in self: if getattr(self, '_%s_diskflag' % name): file_ = getattr(self, '_%s_file' % name) file_.close()
close_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for name in self:\n if getattr(self, '_%s_diskflag' % name):\n file_ = getattr(self, '_%s_file' % name)\n file_.close()\n", "role": "user" }, { "content": "close_files", "role": "assistant" } ]
def x(self, idx): for name in self: ndim = getattr(self, '_%s_ndim' % name) diskflag = getattr(self, '_%s_diskflag' % name) ramflag = getattr(self, '_%s_ramflag' % name) if diskflag: file_ = getattr(self, '_%s_file' % name) length_tot = 1 shape = [] for jdx in range(ndim): length = getattr(self, '_%s_length_%s' % (name, jdx)) length_tot *= length shape.append(length) raw = file_.read(length_tot * 8) values = struct.unpack(length_tot * 'd', raw) if ndim: values = numpy.array(values).reshape(shape) else: values = values[0] elif ramflag: array = getattr(self, '_%s_array' % name) values = array[idx] if diskflag or ramflag: if ndim == 0: setattr(self, name, values) else: getattr(self, name)[:] = values
load_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx):\n for name in self:\n ndim = getattr(self, '_%s_ndim' % name)\n diskflag = getattr(self, '_%s_diskflag' % name)\n ramflag = getattr(self, '_%s_ramflag' % name)\n if diskflag:\n file_ = getattr(self, '_%s_file' % name)\n length_tot = 1\n shape = []\n for jdx in range(ndim):\n length = getattr(self, '_%s_length_%s' % (name, jdx))\n length_tot *= length\n shape.append(length)\n raw = file_.read(length_tot * 8)\n values = struct.unpack(length_tot * 'd', raw)\n if ndim:\n values = numpy.array(values).reshape(shape)\n else:\n values = values[0]\n elif ramflag:\n array = getattr(self, '_%s_array' % name)\n values = array[idx]\n if diskflag or ramflag:\n if ndim == 0:\n setattr(self, name, values)\n else:\n getattr(self, name)[:] = values\n", "role": "user" }, { "content": "load_data", "role": "assistant" } ]
def x(self, idx): for name in self: actual = getattr(self, name) diskflag = getattr(self, '_%s_diskflag' % name) ramflag = getattr(self, '_%s_ramflag' % name) if diskflag: file_ = getattr(self, '_%s_file' % name) ndim = getattr(self, '_%s_ndim' % name) length_tot = 1 for jdx in range(ndim): length = getattr(self, '_%s_length_%s' % (name, jdx)) length_tot *= length if ndim: raw = struct.pack(length_tot * 'd', *actual.flatten()) else: raw = struct.pack('d', actual) file_.write(raw) elif ramflag: array = getattr(self, '_%s_array' % name) array[idx] = actual
save_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx):\n for name in self:\n actual = getattr(self, name)\n diskflag = getattr(self, '_%s_diskflag' % name)\n ramflag = getattr(self, '_%s_ramflag' % name)\n if diskflag:\n file_ = getattr(self, '_%s_file' % name)\n ndim = getattr(self, '_%s_ndim' % name)\n length_tot = 1\n for jdx in range(ndim):\n length = getattr(self, '_%s_length_%s' % (name, jdx))\n length_tot *= length\n if ndim:\n raw = struct.pack(length_tot * 'd', *actual.flatten())\n else:\n raw = struct.pack('d', actual)\n file_.write(raw)\n elif ramflag:\n array = getattr(self, '_%s_array' % name)\n array[idx] = actual\n", "role": "user" }, { "content": "save_data", "role": "assistant" } ]
def x(self, idx: int) ->None: if self._sim_ramflag: self.sim[0] = self._sim_array[idx] elif self._sim_diskflag: raw = self._sim_file.read(8) self.sim[0] = struct.unpack('d', raw)
load_simdata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx: int) ->None:\n if self._sim_ramflag:\n self.sim[0] = self._sim_array[idx]\n elif self._sim_diskflag:\n raw = self._sim_file.read(8)\n self.sim[0] = struct.unpack('d', raw)\n", "role": "user" }, { "content": "load_simdata", "role": "assistant" } ]
def x(self, idx: int) ->None: if self._sim_ramflag: self._sim_array[idx] = self.sim[0] elif self._sim_diskflag: raw = struct.pack('d', self.sim[0]) self._sim_file.write(raw)
save_simdata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx: int) ->None:\n if self._sim_ramflag:\n self._sim_array[idx] = self.sim[0]\n elif self._sim_diskflag:\n raw = struct.pack('d', self.sim[0])\n self._sim_file.write(raw)\n", "role": "user" }, { "content": "save_simdata", "role": "assistant" } ]
def x(self, idx: int) ->None: if self._obs_ramflag: self.obs[0] = self._obs_array[idx] elif self._obs_diskflag: raw = self._obs_file.read(8) self.obs[0] = struct.unpack('d', raw)
load_obsdata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx: int) ->None:\n if self._obs_ramflag:\n self.obs[0] = self._obs_array[idx]\n elif self._obs_diskflag:\n raw = self._obs_file.read(8)\n self.obs[0] = struct.unpack('d', raw)\n", "role": "user" }, { "content": "load_obsdata", "role": "assistant" } ]
def x(self): control = self.subpars.pars.control self(control.ft * control.fhru)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n control = self.subpars.pars.control\n self(control.ft * control.fhru)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control self(con.hinz * con.lai)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n self(con.hinz * con.lai)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control self(con.relwb * con.nfk)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n self(con.relwb * con.nfk)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control self(con.relwz * con.nfk)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n self(con.relwz * con.nfk)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control self(con.eqb * con.tind)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n self(con.eqb * con.tind)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control self(con.eqi1 * con.tind)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n self(con.eqi1 * con.tind)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control self(con.eqi2 * con.tind)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n self(con.eqi2 * con.tind)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control self(con.eqd1 * con.tind)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n self(con.eqd1 * con.tind)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control self(con.eqd2 * con.tind)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n self(con.eqd2 * con.tind)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control self(con.ft * 1000.0 / self.simulationstep.seconds)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n self(con.ft * 1000.0 / self.simulationstep.seconds)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): return tuple(up for up in self._up2down.keys() if up in self._up2down. values())
router_numbers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return tuple(up for up in self._up2down.keys() if up in self._up2down.\n values())\n", "role": "user" }, { "content": "router_numbers", "role": "assistant" } ]
def x(self): elements = devicetools.Elements() for supplier in self._supplier_numbers: element = self._get_suppliername(supplier) try: outlet = self._get_nodename(self._up2down[supplier]) except TypeError: outlet = self.last_node elements += devicetools.Element(element, outlets=outlet) return elements
supplier_elements
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n elements = devicetools.Elements()\n for supplier in self._supplier_numbers:\n element = self._get_suppliername(supplier)\n try:\n outlet = self._get_nodename(self._up2down[supplier])\n except TypeError:\n outlet = self.last_node\n elements += devicetools.Element(element, outlets=outlet)\n return elements\n", "role": "user" }, { "content": "supplier_elements", "role": "assistant" } ]
def x(self): elements = devicetools.Elements() for router in self._router_numbers: element = self._get_routername(router) inlet = self._get_nodename(router) try: outlet = self._get_nodename(self._up2down[router]) except TypeError: outlet = self.last_node elements += devicetools.Element(element, inlets=inlet, outlets=outlet) return elements
router_elements
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n elements = devicetools.Elements()\n for router in self._router_numbers:\n element = self._get_routername(router)\n inlet = self._get_nodename(router)\n try:\n outlet = self._get_nodename(self._up2down[router])\n except TypeError:\n outlet = self.last_node\n elements += devicetools.Element(element, inlets=inlet, outlets=outlet)\n return elements\n", "role": "user" }, { "content": "router_elements", "role": "assistant" } ]
def x(self): return devicetools.Nodes(self.node_prefix + routers for routers in self ._router_numbers) + devicetools.Node(self.last_node)
nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return devicetools.Nodes(self.node_prefix + routers for routers in self\n ._router_numbers) + devicetools.Node(self.last_node)\n", "role": "user" }, { "content": "nodes", "role": "assistant" } ]
def x(self): return selectiontools.Selection(self.selection_name, self.nodes, self. elements)
selection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return selectiontools.Selection(self.selection_name, self.nodes, self.\n elements)\n", "role": "user" }, { "content": "selection", "role": "assistant" } ]
def x(strings) ->numpy.ndarray: maxlen = 0 for name in strings: maxlen = max(maxlen, len(name)) chars = numpy.full((len(strings), maxlen), b'', dtype='|S1') for idx, name in enumerate(strings): for jdx, char in enumerate(name): chars[idx, jdx] = char.encode('utf-8') return chars
str2chars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(strings) ->numpy.ndarray:\n maxlen = 0\n for name in strings:\n maxlen = max(maxlen, len(name))\n chars = numpy.full((len(strings), maxlen), b'', dtype='|S1')\n for idx, name in enumerate(strings):\n for jdx, char in enumerate(name):\n chars[idx, jdx] = char.encode('utf-8')\n return chars\n", "role": "user" }, { "content": "str2chars", "role": "assistant" } ]
def x(chars) ->List[str]: strings = collections.deque() for subchars in chars: substrings = collections.deque() for char in subchars: if char: substrings.append(char.decode('utf-8')) else: substrings.append('') strings.append(''.join(substrings)) return list(strings)
chars2str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(chars) ->List[str]:\n strings = collections.deque()\n for subchars in chars:\n substrings = collections.deque()\n for char in subchars:\n if char:\n substrings.append(char.decode('utf-8'))\n else:\n substrings.append('')\n strings.append(''.join(substrings))\n return list(strings)\n", "role": "user" }, { "content": "chars2str", "role": "assistant" } ]
def x(ncfile, name, length) ->None: try: ncfile.createDimension(name, length) except BaseException: objecttools.augment_excmessage( 'While trying to add dimension `%s` with length `%d` to the NetCDF file `%s`' % (name, length, get_filepath(ncfile)))
create_dimension
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ncfile, name, length) ->None:\n try:\n ncfile.createDimension(name, length)\n except BaseException:\n objecttools.augment_excmessage(\n 'While trying to add dimension `%s` with length `%d` to the NetCDF file `%s`'\n % (name, length, get_filepath(ncfile)))\n", "role": "user" }, { "content": "create_dimension", "role": "assistant" } ]
def x(ncfile, name, datatype, dimensions) ->None: default = fillvalue if datatype == 'f8' else None try: ncfile.createVariable(name, datatype, dimensions=dimensions, fill_value=default) ncfile[name].long_name = name except BaseException: objecttools.augment_excmessage( 'While trying to add variable `%s` with datatype `%s` and dimensions `%s` to the NetCDF file `%s`' % (name, datatype, dimensions, get_filepath(ncfile)))
create_variable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ncfile, name, datatype, dimensions) ->None:\n default = fillvalue if datatype == 'f8' else None\n try:\n ncfile.createVariable(name, datatype, dimensions=dimensions,\n fill_value=default)\n ncfile[name].long_name = name\n except BaseException:\n objecttools.augment_excmessage(\n 'While trying to add variable `%s` with datatype `%s` and dimensions `%s` to the NetCDF file `%s`'\n % (name, datatype, dimensions, get_filepath(ncfile)))\n", "role": "user" }, { "content": "create_variable", "role": "assistant" } ]
def x(ncfile, name) ->netcdf4.Variable: try: return ncfile[name] except (IndexError, KeyError): raise OSError('NetCDF file `%s` does not contain variable `%s`.' % (get_filepath(ncfile), name))
query_variable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ncfile, name) ->netcdf4.Variable:\n try:\n return ncfile[name]\n except (IndexError, KeyError):\n raise OSError('NetCDF file `%s` does not contain variable `%s`.' %\n (get_filepath(ncfile), name))\n", "role": "user" }, { "content": "query_variable", "role": "assistant" } ]
def x(ncfile) ->timetools.Timegrid: timepoints = ncfile[varmapping['timepoints']] refdate = timetools.Date.from_cfunits(timepoints.units) return timetools.Timegrid.from_timepoints(timepoints=timepoints[:], refdate=refdate, unit=timepoints.units.strip().split()[0])
query_timegrid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ncfile) ->timetools.Timegrid:\n timepoints = ncfile[varmapping['timepoints']]\n refdate = timetools.Date.from_cfunits(timepoints.units)\n return timetools.Timegrid.from_timepoints(timepoints=timepoints[:],\n refdate=refdate, unit=timepoints.units.strip().split()[0])\n", "role": "user" }, { "content": "query_timegrid", "role": "assistant" } ]
def x(ncfile, name) ->numpy.ndarray: variable = query_variable(ncfile, name) maskedarray = variable[:] fillvalue_ = getattr(variable, '_FillValue', numpy.nan) if not numpy.isnan(fillvalue_): maskedarray[maskedarray.mask] = numpy.nan return maskedarray.data
query_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ncfile, name) ->numpy.ndarray:\n variable = query_variable(ncfile, name)\n maskedarray = variable[:]\n fillvalue_ = getattr(variable, '_FillValue', numpy.nan)\n if not numpy.isnan(fillvalue_):\n maskedarray[maskedarray.mask] = numpy.nan\n return maskedarray.data\n", "role": "user" }, { "content": "query_array", "role": "assistant" } ]
def x(self, sequence, infoarray) ->None: if isinstance(sequence, sequencetools.ModelSequence): descr = sequence.descr_model else: descr = 'node' if self._isolate: descr = '%s_%s' % (descr, sequence.descr_sequence) if infoarray is not None and infoarray.info['type'] != 'unmodified': descr = '%s_%s' % (descr, infoarray.info['type']) dirpath = sequence.dirpath_ext try: files = self.folders[dirpath] except KeyError: files: Dict[str, 'NetCDFFile'] = collections.OrderedDict() self.folders[dirpath] = files try: file_ = files[descr] except KeyError: file_ = NetCDFFile(name=descr, flatten=self._flatten, isolate=self. _isolate, timeaxis=self._timeaxis, dirpath=dirpath) files[descr] = file_ file_.log(sequence, infoarray)
log
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sequence, infoarray) ->None:\n if isinstance(sequence, sequencetools.ModelSequence):\n descr = sequence.descr_model\n else:\n descr = 'node'\n if self._isolate:\n descr = '%s_%s' % (descr, sequence.descr_sequence)\n if infoarray is not None and infoarray.info['type'] != 'unmodified':\n descr = '%s_%s' % (descr, infoarray.info['type'])\n dirpath = sequence.dirpath_ext\n try:\n files = self.folders[dirpath]\n except KeyError:\n files: Dict[str, 'NetCDFFile'] = collections.OrderedDict()\n self.folders[dirpath] = files\n try:\n file_ = files[descr]\n except KeyError:\n file_ = NetCDFFile(name=descr, flatten=self._flatten, isolate=self.\n _isolate, timeaxis=self._timeaxis, dirpath=dirpath)\n files[descr] = file_\n file_.log(sequence, infoarray)\n", "role": "user" }, { "content": "log", "role": "assistant" } ]
def x(self) ->None: for folder in self.folders.values(): for file_ in folder.values(): file_.read()
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n for folder in self.folders.values():\n for file_ in folder.values():\n file_.read()\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self) ->None: if self.folders: init = hydpy.pub.timegrids.init timeunits = init.firstdate.to_cfunits('hours') timepoints = init.to_timepoints('hours') for folder in self.folders.values(): for file_ in folder.values(): file_.write(timeunits, timepoints)
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n if self.folders:\n init = hydpy.pub.timegrids.init\n timeunits = init.firstdate.to_cfunits('hours')\n timepoints = init.to_timepoints('hours')\n for folder in self.folders.values():\n for file_ in folder.values():\n file_.write(timeunits, timepoints)\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self) ->Tuple[str, ...]: return tuple(sorted(set(itertools.chain(*(_.keys() for _ in self. folders.values())))))
filenames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[str, ...]:\n return tuple(sorted(set(itertools.chain(*(_.keys() for _ in self.\n folders.values())))))\n", "role": "user" }, { "content": "filenames", "role": "assistant" } ]
def x(self, sequence, infoarray) ->None: aggregated = infoarray is not None and infoarray.info['type' ] != 'unmodified' descr = sequence.descr_sequence if aggregated: descr = '_'.join([descr, infoarray.info['type']]) if descr in self.variables: var_ = self.variables[descr] else: if aggregated: cls = NetCDFVariableAgg elif self._flatten: cls = NetCDFVariableFlat else: cls = NetCDFVariableDeep var_ = cls(name=descr, isolate=self._isolate, timeaxis=self._timeaxis) self.variables[descr] = var_ var_.log(sequence, infoarray)
log
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sequence, infoarray) ->None:\n aggregated = infoarray is not None and infoarray.info['type'\n ] != 'unmodified'\n descr = sequence.descr_sequence\n if aggregated:\n descr = '_'.join([descr, infoarray.info['type']])\n if descr in self.variables:\n var_ = self.variables[descr]\n else:\n if aggregated:\n cls = NetCDFVariableAgg\n elif self._flatten:\n cls = NetCDFVariableFlat\n else:\n cls = NetCDFVariableDeep\n var_ = cls(name=descr, isolate=self._isolate, timeaxis=self._timeaxis)\n self.variables[descr] = var_\n var_.log(sequence, infoarray)\n", "role": "user" }, { "content": "log", "role": "assistant" } ]
def x(self) ->str: return os.path.join(self._dirpath, self.name + '.nc')
filepath
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->str:\n return os.path.join(self._dirpath, self.name + '.nc')\n", "role": "user" }, { "content": "filepath", "role": "assistant" } ]
def x(self) ->None: try: with netcdf4.Dataset(self.filepath, 'r') as ncfile: timegrid = query_timegrid(ncfile) for variable in self.variables.values(): variable.read(ncfile, timegrid) except BaseException: objecttools.augment_excmessage( f'While trying to read data from NetCDF file `{self.filepath}`')
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->None:\n try:\n with netcdf4.Dataset(self.filepath, 'r') as ncfile:\n timegrid = query_timegrid(ncfile)\n for variable in self.variables.values():\n variable.read(ncfile, timegrid)\n except BaseException:\n objecttools.augment_excmessage(\n f'While trying to read data from NetCDF file `{self.filepath}`')\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self, timeunit, timepoints) ->None: with netcdf4.Dataset(self.filepath, 'w') as ncfile: ncfile.Conventions = 'CF-1.6' self._insert_timepoints(ncfile, timepoints, timeunit) for variable in self.variables.values(): variable.write(ncfile)
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeunit, timepoints) ->None:\n with netcdf4.Dataset(self.filepath, 'w') as ncfile:\n ncfile.Conventions = 'CF-1.6'\n self._insert_timepoints(ncfile, timepoints, timeunit)\n for variable in self.variables.values():\n variable.write(ncfile)\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self, name_subdevice) ->int: try: return self.dict_[name_subdevice] except KeyError: raise OSError( 'No data for sequence `%s` and (sub)device `%s` in NetCDF file `%s` available.' % (self.name_sequence, name_subdevice, self.name_ncfile))
get_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name_subdevice) ->int:\n try:\n return self.dict_[name_subdevice]\n except KeyError:\n raise OSError(\n 'No data for sequence `%s` and (sub)device `%s` in NetCDF file `%s` available.'\n % (self.name_sequence, name_subdevice, self.name_ncfile))\n", "role": "user" }, { "content": "get_index", "role": "assistant" } ]
def x(self, sequence, infoarray) ->None: descr_device = sequence.descr_device self.sequences[descr_device] = sequence self.arrays[descr_device] = infoarray
log
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sequence, infoarray) ->None:\n descr_device = sequence.descr_device\n self.sequences[descr_device] = sequence\n self.arrays[descr_device] = infoarray\n", "role": "user" }, { "content": "log", "role": "assistant" } ]
def x(self, ncfile) ->None: prefix = self.prefix nmb_subdevices = '%s%s' % (prefix, dimmapping['nmb_subdevices']) nmb_characters = '%s%s' % (prefix, dimmapping['nmb_characters']) subdevices = '%s%s' % (prefix, varmapping['subdevices']) statchars = str2chars(self.subdevicenames) create_dimension(ncfile, nmb_subdevices, statchars.shape[0]) create_dimension(ncfile, nmb_characters, statchars.shape[1]) create_variable(ncfile, subdevices, 'S1', (nmb_subdevices, nmb_characters)) ncfile[subdevices][:, :] = statchars
insert_subdevices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ncfile) ->None:\n prefix = self.prefix\n nmb_subdevices = '%s%s' % (prefix, dimmapping['nmb_subdevices'])\n nmb_characters = '%s%s' % (prefix, dimmapping['nmb_characters'])\n subdevices = '%s%s' % (prefix, varmapping['subdevices'])\n statchars = str2chars(self.subdevicenames)\n create_dimension(ncfile, nmb_subdevices, statchars.shape[0])\n create_dimension(ncfile, nmb_characters, statchars.shape[1])\n create_variable(ncfile, subdevices, 'S1', (nmb_subdevices, nmb_characters))\n ncfile[subdevices][:, :] = statchars\n", "role": "user" }, { "content": "insert_subdevices", "role": "assistant" } ]
def x(self, ncfile) ->List[str]: tests = [('%s%s' % (prefix, varmapping['subdevices'])) for prefix in ( '%s_' % self.name, '')] for subdevices in tests: try: chars = ncfile[subdevices][:] break except (IndexError, KeyError): pass else: raise IOError( 'NetCDF file `%s` does neither contain a variable named `%s` nor `%s` for defining the coordinate locations of variable `%s`.' % (get_filepath(ncfile), tests[0], tests[1], self.name)) return chars2str(chars)
query_subdevices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ncfile) ->List[str]:\n tests = [('%s%s' % (prefix, varmapping['subdevices'])) for prefix in (\n '%s_' % self.name, '')]\n for subdevices in tests:\n try:\n chars = ncfile[subdevices][:]\n break\n except (IndexError, KeyError):\n pass\n else:\n raise IOError(\n 'NetCDF file `%s` does neither contain a variable named `%s` nor `%s` for defining the coordinate locations of variable `%s`.'\n % (get_filepath(ncfile), tests[0], tests[1], self.name))\n return chars2str(chars)\n", "role": "user" }, { "content": "query_subdevices", "role": "assistant" } ]
def x(self, ncfile) ->Subdevice2Index: subdevices = self.query_subdevices(ncfile) self._test_duplicate_exists(ncfile, subdevices) subdev2index = {subdev: idx for idx, subdev in enumerate(subdevices)} return Subdevice2Index(subdev2index, self.name, get_filepath(ncfile))
query_subdevice2index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ncfile) ->Subdevice2Index:\n subdevices = self.query_subdevices(ncfile)\n self._test_duplicate_exists(ncfile, subdevices)\n subdev2index = {subdev: idx for idx, subdev in enumerate(subdevices)}\n return Subdevice2Index(subdev2index, self.name, get_filepath(ncfile))\n", "role": "user" }, { "content": "query_subdevice2index", "role": "assistant" } ]
def x(self, timeentry, placeentry) ->Tuple[Any, Any]: if self._timeaxis: return placeentry, timeentry return timeentry, placeentry
sort_timeplaceentries
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeentry, placeentry) ->Tuple[Any, Any]:\n if self._timeaxis:\n return placeentry, timeentry\n return timeentry, placeentry\n", "role": "user" }, { "content": "sort_timeplaceentries", "role": "assistant" } ]
def x(self, placeindex) ->Union[Tuple[slice, int], Tuple[int, slice]]: return self.sort_timeplaceentries(slice(None), int(placeindex))
get_timeplaceslice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, placeindex) ->Union[Tuple[slice, int], Tuple[int, slice]]:\n return self.sort_timeplaceentries(slice(None), int(placeindex))\n", "role": "user" }, { "content": "get_timeplaceslice", "role": "assistant" } ]
def x(self) ->Tuple[str, ...]: self: NetCDFVariableBase return tuple(self.sequences.keys())
subdevicenames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[str, ...]:\n self: NetCDFVariableBase\n return tuple(self.sequences.keys())\n", "role": "user" }, { "content": "subdevicenames", "role": "assistant" } ]
def x(self, ncfile) ->None: self: NetCDFVariableBase self.insert_subdevices(ncfile) dimensions = self.dimensions array = self.array for dimension, length in zip(dimensions[2:], array.shape[2:]): create_dimension(ncfile, dimension, length) create_variable(ncfile, self.name, 'f8', dimensions) ncfile[self.name][:] = array
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ncfile) ->None:\n self: NetCDFVariableBase\n self.insert_subdevices(ncfile)\n dimensions = self.dimensions\n array = self.array\n for dimension, length in zip(dimensions[2:], array.shape[2:]):\n create_dimension(ncfile, dimension, length)\n create_variable(ncfile, self.name, 'f8', dimensions)\n ncfile[self.name][:] = array\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self) ->Tuple[str, ...]: self: NetCDFVariableBase return self.sort_timeplaceentries(dimmapping['nmb_timepoints'], '%s%s' % (self.prefix, dimmapping['nmb_subdevices']))
dimensions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[str, ...]:\n self: NetCDFVariableBase\n return self.sort_timeplaceentries(dimmapping['nmb_timepoints'], '%s%s' %\n (self.prefix, dimmapping['nmb_subdevices']))\n", "role": "user" }, { "content": "dimensions", "role": "assistant" } ]
def x(self, idx, shape) ->Tuple[IntOrSlice, ...]: slices = list(self.get_timeplaceslice(idx)) for length in shape: slices.append(slice(0, length)) return tuple(slices)
get_slices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx, shape) ->Tuple[IntOrSlice, ...]:\n slices = list(self.get_timeplaceslice(idx))\n for length in shape:\n slices.append(slice(0, length))\n return tuple(slices)\n", "role": "user" }, { "content": "get_slices", "role": "assistant" } ]
def x(self) ->Tuple[int, ...]: nmb_place = len(self.sequences) nmb_time = len(hydpy.pub.timegrids.init) nmb_others = collections.deque() for sequence in self.sequences.values(): nmb_others.append(sequence.shape) nmb_others_max = tuple(numpy.max(nmb_others, axis=0)) return self.sort_timeplaceentries(nmb_time, nmb_place) + nmb_others_max
shape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[int, ...]:\n nmb_place = len(self.sequences)\n nmb_time = len(hydpy.pub.timegrids.init)\n nmb_others = collections.deque()\n for sequence in self.sequences.values():\n nmb_others.append(sequence.shape)\n nmb_others_max = tuple(numpy.max(nmb_others, axis=0))\n return self.sort_timeplaceentries(nmb_time, nmb_place) + nmb_others_max\n", "role": "user" }, { "content": "shape", "role": "assistant" } ]
def x(self) ->numpy.ndarray: array = numpy.full(self.shape, fillvalue, dtype=float) for idx, (descr, subarray) in enumerate(self.arrays.items()): sequence = self.sequences[descr] array[self.get_slices(idx, sequence.shape)] = subarray return array
array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->numpy.ndarray:\n array = numpy.full(self.shape, fillvalue, dtype=float)\n for idx, (descr, subarray) in enumerate(self.arrays.items()):\n sequence = self.sequences[descr]\n array[self.get_slices(idx, sequence.shape)] = subarray\n return array\n", "role": "user" }, { "content": "array", "role": "assistant" } ]
def x(self) ->Tuple[str, ...]: nmb_timepoints = dimmapping['nmb_timepoints'] nmb_subdevices = '%s%s' % (self.prefix, dimmapping['nmb_subdevices']) dimensions = list(self.sort_timeplaceentries(nmb_timepoints, nmb_subdevices)) for idx in range(list(self.sequences.values())[0].NDIM): dimensions.append('%saxis%d' % (self.prefix, idx + 3)) return tuple(dimensions)
dimensions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[str, ...]:\n nmb_timepoints = dimmapping['nmb_timepoints']\n nmb_subdevices = '%s%s' % (self.prefix, dimmapping['nmb_subdevices'])\n dimensions = list(self.sort_timeplaceentries(nmb_timepoints,\n nmb_subdevices))\n for idx in range(list(self.sequences.values())[0].NDIM):\n dimensions.append('%saxis%d' % (self.prefix, idx + 3))\n return tuple(dimensions)\n", "role": "user" }, { "content": "dimensions", "role": "assistant" } ]
def x(self, ncfile, timegrid_data) ->None: array = query_array(ncfile, self.name) subdev2index = self.query_subdevice2index(ncfile) for subdevice, sequence in self.sequences.items(): idx = subdev2index.get_index(subdevice) values = array[self.get_slices(idx, sequence.shape)] sequence.series = sequence.adjust_series(timegrid_data, values)
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ncfile, timegrid_data) ->None:\n array = query_array(ncfile, self.name)\n subdev2index = self.query_subdevice2index(ncfile)\n for subdevice, sequence in self.sequences.items():\n idx = subdev2index.get_index(subdevice)\n values = array[self.get_slices(idx, sequence.shape)]\n sequence.series = sequence.adjust_series(timegrid_data, values)\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self) ->Tuple[int, int]: return self.sort_timeplaceentries(len(hydpy.pub.timegrids.init), len( self.sequences))
shape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[int, int]:\n return self.sort_timeplaceentries(len(hydpy.pub.timegrids.init), len(\n self.sequences))\n", "role": "user" }, { "content": "shape", "role": "assistant" } ]
def x(self) ->numpy.ndarray: array = numpy.full(self.shape, fillvalue, dtype=float) for idx, subarray in enumerate(self.arrays.values()): array[self.get_timeplaceslice(idx)] = subarray return array
array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->numpy.ndarray:\n array = numpy.full(self.shape, fillvalue, dtype=float)\n for idx, subarray in enumerate(self.arrays.values()):\n array[self.get_timeplaceslice(idx)] = subarray\n return array\n", "role": "user" }, { "content": "array", "role": "assistant" } ]
def x(self) ->Tuple[int, int]: return self.sort_timeplaceentries(len(hydpy.pub.timegrids.init), sum( len(seq) for seq in self.sequences.values()))
shape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[int, int]:\n return self.sort_timeplaceentries(len(hydpy.pub.timegrids.init), sum(\n len(seq) for seq in self.sequences.values()))\n", "role": "user" }, { "content": "shape", "role": "assistant" } ]
def x(self) ->numpy.ndarray: array = numpy.full(self.shape, fillvalue, dtype=float) idx0 = 0 idxs: List[Any] = [slice(None)] for seq, subarray in zip(self.sequences.values(), self.arrays.values()): for prod in self._product(seq.shape): subsubarray = subarray[tuple(idxs + list(prod))] array[self.get_timeplaceslice(idx0)] = subsubarray idx0 += 1 return array
array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->numpy.ndarray:\n array = numpy.full(self.shape, fillvalue, dtype=float)\n idx0 = 0\n idxs: List[Any] = [slice(None)]\n for seq, subarray in zip(self.sequences.values(), self.arrays.values()):\n for prod in self._product(seq.shape):\n subsubarray = subarray[tuple(idxs + list(prod))]\n array[self.get_timeplaceslice(idx0)] = subsubarray\n idx0 += 1\n return array\n", "role": "user" }, { "content": "array", "role": "assistant" } ]
def x(self) ->Tuple[str, ...]: stats: List[str] = collections.deque() for devicename, seq in self.sequences.items(): if seq.NDIM: temp = devicename + '_' for prod in self._product(seq.shape): stats.append(temp + '_'.join(str(idx) for idx in prod)) else: stats.append(devicename) return tuple(stats)
subdevicenames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Tuple[str, ...]:\n stats: List[str] = collections.deque()\n for devicename, seq in self.sequences.items():\n if seq.NDIM:\n temp = devicename + '_'\n for prod in self._product(seq.shape):\n stats.append(temp + '_'.join(str(idx) for idx in prod))\n else:\n stats.append(devicename)\n return tuple(stats)\n", "role": "user" }, { "content": "subdevicenames", "role": "assistant" } ]
def x(shape) ->Iterator[Tuple[int, ...]]: return itertools.product(*(range(nmb) for nmb in shape))
product
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(shape) ->Iterator[Tuple[int, ...]]:\n return itertools.product(*(range(nmb) for nmb in shape))\n", "role": "user" }, { "content": "product", "role": "assistant" } ]
def x(self, ncfile, timegrid_data) ->None: array = query_array(ncfile, self.name) idxs: Tuple[Any] = (slice(None),) subdev2index = self.query_subdevice2index(ncfile) for devicename, seq in self.sequences.items(): if seq.NDIM: if self._timeaxis: subshape = (array.shape[1],) + seq.shape else: subshape = (array.shape[0],) + seq.shape subarray = numpy.empty(subshape) temp = devicename + '_' for prod in self._product(seq.shape): station = temp + '_'.join(str(idx) for idx in prod) idx0 = subdev2index.get_index(station) subarray[idxs + prod] = array[self.get_timeplaceslice(idx0)] else: idx = subdev2index.get_index(devicename) subarray = array[self.get_timeplaceslice(idx)] seq.series = seq.adjust_series(timegrid_data, subarray)
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ncfile, timegrid_data) ->None:\n array = query_array(ncfile, self.name)\n idxs: Tuple[Any] = (slice(None),)\n subdev2index = self.query_subdevice2index(ncfile)\n for devicename, seq in self.sequences.items():\n if seq.NDIM:\n if self._timeaxis:\n subshape = (array.shape[1],) + seq.shape\n else:\n subshape = (array.shape[0],) + seq.shape\n subarray = numpy.empty(subshape)\n temp = devicename + '_'\n for prod in self._product(seq.shape):\n station = temp + '_'.join(str(idx) for idx in prod)\n idx0 = subdev2index.get_index(station)\n subarray[idxs + prod] = array[self.get_timeplaceslice(idx0)]\n else:\n idx = subdev2index.get_index(devicename)\n subarray = array[self.get_timeplaceslice(idx)]\n seq.series = seq.adjust_series(timegrid_data, subarray)\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self, ncfile) ->None: self.insert_subdevices(ncfile) create_variable(ncfile, self.name, 'f8', self.dimensions) ncfile[self.name][:] = self.array
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ncfile) ->None:\n self.insert_subdevices(ncfile)\n create_variable(ncfile, self.name, 'f8', self.dimensions)\n ncfile[self.name][:] = self.array\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self): maxdt = self.subpars.pars.control.maxdt seconds = self.simulationstep.seconds self.value = numpy.ceil(seconds / maxdt)
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n maxdt = self.subpars.pars.control.maxdt\n seconds = self.simulationstep.seconds\n self.value = numpy.ceil(seconds / maxdt)\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self): con = self.subpars.pars.control der = self.subpars for toy, qs in con.q: setattr(self, str(toy), 2.0 * con.v + der.seconds / der.nmbsubsteps * qs) self.refresh()
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n con = self.subpars.pars.control\n der = self.subpars\n for toy, qs in con.q:\n setattr(self, str(toy), 2.0 * con.v + der.seconds / der.nmbsubsteps *\n qs)\n self.refresh()\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x() ->Tuple[devicetools.Nodes, devicetools.Elements]: from hydpy import TestIO TestIO.clear() from hydpy.core.filetools import SequenceManager hydpy.pub.sequencemanager = SequenceManager() with TestIO(): hydpy.pub.sequencemanager.inputdirpath = 'inputpath' hydpy.pub.sequencemanager.fluxdirpath = 'outputpath' hydpy.pub.sequencemanager.statedirpath = 'outputpath' hydpy.pub.sequencemanager.nodedirpath = 'nodepath' hydpy.pub.timegrids = '2000-01-01', '2000-01-05', '1d' from hydpy import Node, Nodes, Element, Elements, prepare_model node1 = Node('node1') node2 = Node('node2', variable='T') nodes = Nodes(node1, node2) element1 = Element('element1', outlets=node1) element2 = Element('element2', outlets=node1) element3 = Element('element3', outlets=node1) elements = Elements(element1, element2, element3) from hydpy.models import lland_v1, lland_v2 element1.model = prepare_model(lland_v1) element2.model = prepare_model(lland_v1) element3.model = prepare_model(lland_v2) from hydpy.models.lland import ACKER for idx, element in enumerate(elements): parameters = element.model.parameters parameters.control.nhru(idx + 1) parameters.control.lnk(ACKER) parameters.derived.absfhru(10.0) with hydpy.pub.options.printprogress(False): nodes.prepare_simseries() elements.prepare_inputseries() elements.prepare_fluxseries() elements.prepare_stateseries() def x(seq, value1_): value2_ = value1_ + len(seq.series.flatten()) values_ = numpy.arange(value1_, value2_, dtype=float) seq.testarray = values_.reshape(seq.seriesshape) seq.series = seq.testarray.copy() return value2_ import numpy value1 = 0 for subname, seqname in zip(['inputs', 'fluxes', 'states'], ['nied', 'nkor', 'bowa']): for element in elements: subseqs = getattr(element.model.sequences, subname) value1 = init_values(getattr(subseqs, seqname), value1) for node in nodes: value1 = init_values(node.sequences.sim, value1) return nodes, elements
prepare_io_example_1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x() ->Tuple[devicetools.Nodes, devicetools.Elements]:\n from hydpy import TestIO\n TestIO.clear()\n from hydpy.core.filetools import SequenceManager\n hydpy.pub.sequencemanager = SequenceManager()\n with TestIO():\n hydpy.pub.sequencemanager.inputdirpath = 'inputpath'\n hydpy.pub.sequencemanager.fluxdirpath = 'outputpath'\n hydpy.pub.sequencemanager.statedirpath = 'outputpath'\n hydpy.pub.sequencemanager.nodedirpath = 'nodepath'\n hydpy.pub.timegrids = '2000-01-01', '2000-01-05', '1d'\n from hydpy import Node, Nodes, Element, Elements, prepare_model\n node1 = Node('node1')\n node2 = Node('node2', variable='T')\n nodes = Nodes(node1, node2)\n element1 = Element('element1', outlets=node1)\n element2 = Element('element2', outlets=node1)\n element3 = Element('element3', outlets=node1)\n elements = Elements(element1, element2, element3)\n from hydpy.models import lland_v1, lland_v2\n element1.model = prepare_model(lland_v1)\n element2.model = prepare_model(lland_v1)\n element3.model = prepare_model(lland_v2)\n from hydpy.models.lland import ACKER\n for idx, element in enumerate(elements):\n parameters = element.model.parameters\n parameters.control.nhru(idx + 1)\n parameters.control.lnk(ACKER)\n parameters.derived.absfhru(10.0)\n with hydpy.pub.options.printprogress(False):\n nodes.prepare_simseries()\n elements.prepare_inputseries()\n elements.prepare_fluxseries()\n elements.prepare_stateseries()\n\n def x(seq, value1_):\n value2_ = value1_ + len(seq.series.flatten())\n values_ = numpy.arange(value1_, value2_, dtype=float)\n seq.testarray = values_.reshape(seq.seriesshape)\n seq.series = seq.testarray.copy()\n return value2_\n import numpy\n value1 = 0\n for subname, seqname in zip(['inputs', 'fluxes', 'states'], ['nied',\n 'nkor', 'bowa']):\n for element in elements:\n subseqs = getattr(element.model.sequences, subname)\n value1 = init_values(getattr(subseqs, seqname), value1)\n for node in nodes:\n value1 = init_values(node.sequences.sim, value1)\n return nodes, elements\n", "role": "user" }, { "content": "prepare_io_example_1", "role": "assistant" } ]
def x() ->None: testtools.TestIO.clear() shutil.copytree(os.path.join(data.__path__[0], 'LahnH'), os.path.join( iotesting.__path__[0], 'LahnH')) seqpath = os.path.join(iotesting.__path__[0], 'LahnH', 'series') for folder in ('output', 'node', 'temp'): os.makedirs(os.path.join(seqpath, folder))
prepare_full_example_1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x() ->None:\n testtools.TestIO.clear()\n shutil.copytree(os.path.join(data.__path__[0], 'LahnH'), os.path.join(\n iotesting.__path__[0], 'LahnH'))\n seqpath = os.path.join(iotesting.__path__[0], 'LahnH', 'series')\n for folder in ('output', 'node', 'temp'):\n os.makedirs(os.path.join(seqpath, folder))\n", "role": "user" }, { "content": "prepare_full_example_1", "role": "assistant" } ]
def x(lastdate='1996-01-05') ->(hydpytools.HydPy, hydpy.pub, testtools.TestIO): prepare_full_example_1() with testtools.TestIO(): hp = hydpytools.HydPy('LahnH') hydpy.pub.timegrids = '1996-01-01', lastdate, '1d' hp.prepare_everything() return hp, hydpy.pub, testtools.TestIO
prepare_full_example_2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lastdate='1996-01-05') ->(hydpytools.HydPy, hydpy.pub, testtools.TestIO):\n prepare_full_example_1()\n with testtools.TestIO():\n hp = hydpytools.HydPy('LahnH')\n hydpy.pub.timegrids = '1996-01-01', lastdate, '1d'\n hp.prepare_everything()\n return hp, hydpy.pub, testtools.TestIO\n", "role": "user" }, { "content": "prepare_full_example_2", "role": "assistant" } ]
def x(self, pc, radius): postalcodes = self.get(pc) if postalcodes is None: raise PostalCodeNotFoundException( "Could not find postal code you're searching for.") else: pc = postalcodes[0] radius = float(radius) """ Bounding box calculations updated from pyzipcode """ earth_radius = 6371 dlat = radius / earth_radius dlon = asin(sin(dlat) / cos(radians(pc.latitude))) lat_delta = degrees(dlat) lon_delta = degrees(dlon) if lat_delta < 0: lat_range = pc.latitude + lat_delta, pc.latitude - lat_delta else: lat_range = pc.latitude - lat_delta, pc.latitude + lat_delta long_range = pc.longitude - lat_delta, pc.longitude + lon_delta return format_result(self.conn_manager.query(PC_RANGE_QUERY % ( long_range[0], long_range[1], lat_range[0], lat_range[1])))
get_postalcodes_around_radius
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pc, radius):\n postalcodes = self.get(pc)\n if postalcodes is None:\n raise PostalCodeNotFoundException(\n \"Could not find postal code you're searching for.\")\n else:\n pc = postalcodes[0]\n radius = float(radius)\n \"\"\"\n Bounding box calculations updated from pyzipcode\n \"\"\"\n earth_radius = 6371\n dlat = radius / earth_radius\n dlon = asin(sin(dlat) / cos(radians(pc.latitude)))\n lat_delta = degrees(dlat)\n lon_delta = degrees(dlon)\n if lat_delta < 0:\n lat_range = pc.latitude + lat_delta, pc.latitude - lat_delta\n else:\n lat_range = pc.latitude - lat_delta, pc.latitude + lat_delta\n long_range = pc.longitude - lat_delta, pc.longitude + lon_delta\n return format_result(self.conn_manager.query(PC_RANGE_QUERY % (\n long_range[0], long_range[1], lat_range[0], lat_range[1])))\n", "role": "user" }, { "content": "get_postalcodes_around_radius", "role": "assistant" } ]
def x(ids='shots'): url = ( 'http://stats.nba.com/stats/commonallplayers?IsOnlyCurrentSeason=0&LeagueID=00&Season=2015-16' ) response = requests.get(url, headers=HEADERS) response.raise_for_status() headers = response.json()['resultSets'][0]['headers'] players = response.json()['resultSets'][0]['rowSet'] df = pd.DataFrame(players, columns=headers) if '0.17' in pd.__version__: df = df.apply(pd.to_numeric, args=('ignore',)) else: df = df.convert_objects(convert_numeric=True) if ids == 'shots': df = df.query('(FROM_YEAR >= 2001) or (TO_YEAR >= 2001)') df = df.reset_index(drop=True) df = df.iloc[:, 0:2] return df if ids == 'all_players': df = df.iloc[:, 0:2] return df if ids == 'all_data': return df else: er = ( "Invalid 'ids' value. It must be 'shots', 'all_shots', or 'all_data'." ) raise ValueError(er)
get_all_player_ids
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ids='shots'):\n url = (\n 'http://stats.nba.com/stats/commonallplayers?IsOnlyCurrentSeason=0&LeagueID=00&Season=2015-16'\n )\n response = requests.get(url, headers=HEADERS)\n response.raise_for_status()\n headers = response.json()['resultSets'][0]['headers']\n players = response.json()['resultSets'][0]['rowSet']\n df = pd.DataFrame(players, columns=headers)\n if '0.17' in pd.__version__:\n df = df.apply(pd.to_numeric, args=('ignore',))\n else:\n df = df.convert_objects(convert_numeric=True)\n if ids == 'shots':\n df = df.query('(FROM_YEAR >= 2001) or (TO_YEAR >= 2001)')\n df = df.reset_index(drop=True)\n df = df.iloc[:, 0:2]\n return df\n if ids == 'all_players':\n df = df.iloc[:, 0:2]\n return df\n if ids == 'all_data':\n return df\n else:\n er = (\n \"Invalid 'ids' value. It must be 'shots', 'all_shots', or 'all_data'.\"\n )\n raise ValueError(er)\n", "role": "user" }, { "content": "get_all_player_ids", "role": "assistant" } ]
def x(player): players_df = get_all_player_ids('all_data') player = players_df[players_df.DISPLAY_LAST_COMMA_FIRST == player] if len(player) == 0: er = 'Invalid player name passed or there is no player with that name.' raise ValueError(er) player_id = player.PERSON_ID.values return player_id
get_player_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(player):\n players_df = get_all_player_ids('all_data')\n player = players_df[players_df.DISPLAY_LAST_COMMA_FIRST == player]\n if len(player) == 0:\n er = 'Invalid player name passed or there is no player with that name.'\n raise ValueError(er)\n player_id = player.PERSON_ID.values\n return player_id\n", "role": "user" }, { "content": "get_player_id", "role": "assistant" } ]
def x(): df = get_all_player_ids('all_data') df = pd.DataFrame({'TEAM_NAME': df.TEAM_NAME.unique(), 'TEAM_ID': df. TEAM_ID.unique()}) return df
get_all_team_ids
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n df = get_all_player_ids('all_data')\n df = pd.DataFrame({'TEAM_NAME': df.TEAM_NAME.unique(), 'TEAM_ID': df.\n TEAM_ID.unique()})\n return df\n", "role": "user" }, { "content": "get_all_team_ids", "role": "assistant" } ]
def x(team_name): df = get_all_team_ids() df = df[df.TEAM_NAME == team_name] if len(df) == 0: er = 'Invalid team name or there is no team with that name.' raise ValueError(er) team_id = df.TEAM_ID.iloc[0] return team_id
get_team_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(team_name):\n df = get_all_team_ids()\n df = df[df.TEAM_NAME == team_name]\n if len(df) == 0:\n er = 'Invalid team name or there is no team with that name.'\n raise ValueError(er)\n team_id = df.TEAM_ID.iloc[0]\n return team_id\n", "role": "user" }, { "content": "get_team_id", "role": "assistant" } ]
def x(player_id): url = 'http://stats.nba.com/media/players/230x185/' + str(player_id ) + '.png' img_file = str(player_id) + '.png' pic = urlretrieve(url, img_file) player_img = plt.imread(pic[0]) return player_img
get_player_img
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(player_id):\n url = 'http://stats.nba.com/media/players/230x185/' + str(player_id\n ) + '.png'\n img_file = str(player_id) + '.png'\n pic = urlretrieve(url, img_file)\n player_img = plt.imread(pic[0])\n return player_img\n", "role": "user" }, { "content": "get_player_img", "role": "assistant" } ]
def x(self): logs = self.response.json()['resultSets'][0]['rowSet'] headers = self.response.json()['resultSets'][0]['headers'] df = pd.DataFrame(logs, columns=headers) df.GAME_DATE = pd.to_datetime(df.GAME_DATE) return df
get_game_logs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n logs = self.response.json()['resultSets'][0]['rowSet']\n headers = self.response.json()['resultSets'][0]['headers']\n df = pd.DataFrame(logs, columns=headers)\n df.GAME_DATE = pd.to_datetime(df.GAME_DATE)\n return df\n", "role": "user" }, { "content": "get_game_logs", "role": "assistant" } ]
def x(self, date): df = self.get_game_logs() game_id = df[df.GAME_DATE == date].Game_ID.values[0] return game_id
get_game_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, date):\n df = self.get_game_logs()\n game_id = df[df.GAME_DATE == date].Game_ID.values[0]\n return game_id\n", "role": "user" }, { "content": "get_game_id", "role": "assistant" } ]
def x(self, parameters): self.url_paramaters.update(parameters) self.response = requests.get(self.base_url, params=self.url_paramaters, headers=HEADERS) self.response.raise_for_status() return self
update_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameters):\n self.url_paramaters.update(parameters)\n self.response = requests.get(self.base_url, params=self.url_paramaters,\n headers=HEADERS)\n self.response.raise_for_status()\n return self\n", "role": "user" }, { "content": "update_params", "role": "assistant" } ]
def x(self): shots = self.response.json()['resultSets'][0]['rowSet'] headers = self.response.json()['resultSets'][0]['headers'] return pd.DataFrame(shots, columns=headers)
get_shots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n shots = self.response.json()['resultSets'][0]['rowSet']\n headers = self.response.json()['resultSets'][0]['headers']\n return pd.DataFrame(shots, columns=headers)\n", "role": "user" }, { "content": "get_shots", "role": "assistant" } ]
def x(self): self._build_socket() self._connect_socket() self._build_file_socket() self._send_connect_msg()
connect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._build_socket()\n self._connect_socket()\n self._build_file_socket()\n self._send_connect_msg()\n", "role": "user" }, { "content": "connect", "role": "assistant" } ]
def x(self, subject, callback, queue=''): s = Subscription(sid=self._next_sid, subject=subject, queue=queue, callback=callback, connetion=self) self._subscriptions[s.sid] = s self._send('SUB %s %s %d' % (s.subject, s.queue, s.sid)) self._next_sid += 1 return s
subscribe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subject, callback, queue=''):\n s = Subscription(sid=self._next_sid, subject=subject, queue=queue,\n callback=callback, connetion=self)\n self._subscriptions[s.sid] = s\n self._send('SUB %s %s %d' % (s.subject, s.queue, s.sid))\n self._next_sid += 1\n return s\n", "role": "user" }, { "content": "subscribe", "role": "assistant" } ]
def x(self, subscription, max=None): if max is None: self._send('UNSUB %d' % subscription.sid) self._subscriptions.pop(subscription.sid) else: subscription.max = max self._send('UNSUB %d %s' % (subscription.sid, max))
unsubscribe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subscription, max=None):\n if max is None:\n self._send('UNSUB %d' % subscription.sid)\n self._subscriptions.pop(subscription.sid)\n else:\n subscription.max = max\n self._send('UNSUB %d %s' % (subscription.sid, max))\n", "role": "user" }, { "content": "unsubscribe", "role": "assistant" } ]
def x(self, subject, msg, reply=None): if msg is None: msg = '' if reply is None: command = 'PUB %s %d' % (subject, len(msg)) else: command = 'PUB %s %s %d' % (subject, reply, len(msg)) self._send(command) self._send(msg)
publish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subject, msg, reply=None):\n if msg is None:\n msg = ''\n if reply is None:\n command = 'PUB %s %d' % (subject, len(msg))\n else:\n command = 'PUB %s %s %d' % (subject, reply, len(msg))\n self._send(command)\n self._send(msg)\n", "role": "user" }, { "content": "publish", "role": "assistant" } ]
def x(self, subject, callback, msg=None): inbox = self._build_inbox() s = self.subscribe(inbox, callback) self.unsubscribe(s, 1) self.publish(subject, msg, inbox) return s
request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, subject, callback, msg=None):\n inbox = self._build_inbox()\n s = self.subscribe(inbox, callback)\n self.unsubscribe(s, 1)\n self.publish(subject, msg, inbox)\n return s\n", "role": "user" }, { "content": "request", "role": "assistant" } ]
def x(self, duration=None, count=0): start = time.time() total = 0 while True: type, result = self._recv(MSG, PING, OK) if type is MSG: total += 1 if self._handle_msg(result) is False: break if count and total >= count: break elif type is PING: self._handle_ping() if duration and time.time() - start > duration: break
wait
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, duration=None, count=0):\n start = time.time()\n total = 0\n while True:\n type, result = self._recv(MSG, PING, OK)\n if type is MSG:\n total += 1\n if self._handle_msg(result) is False:\n break\n if count and total >= count:\n break\n elif type is PING:\n self._handle_ping()\n if duration and time.time() - start > duration:\n break\n", "role": "user" }, { "content": "wait", "role": "assistant" } ]
def x(ax=None, color='gray', lw=1, outer_lines=False): if ax is None: ax = plt.gca() hoop = Circle((0, 0), radius=7.5, linewidth=lw, color=color, fill=False) backboard = Rectangle((-30, -12.5), 60, 0, linewidth=lw, color=color) outer_box = Rectangle((-80, -47.5), 160, 190, linewidth=lw, color=color, fill=False) inner_box = Rectangle((-60, -47.5), 120, 190, linewidth=lw, color=color, fill=False) top_free_throw = Arc((0, 142.5), 120, 120, theta1=0, theta2=180, linewidth=lw, color=color, fill=False) bottom_free_throw = Arc((0, 142.5), 120, 120, theta1=180, theta2=0, linewidth=lw, color=color, linestyle='dashed') restricted = Arc((0, 0), 80, 80, theta1=0, theta2=180, linewidth=lw, color=color) corner_three_a = Rectangle((-220, -47.5), 0, 140, linewidth=lw, color=color ) corner_three_b = Rectangle((220, -47.5), 0, 140, linewidth=lw, color=color) three_arc = Arc((0, 0), 475, 475, theta1=22, theta2=158, linewidth=lw, color=color) center_outer_arc = Arc((0, 422.5), 120, 120, theta1=180, theta2=0, linewidth=lw, color=color) center_inner_arc = Arc((0, 422.5), 40, 40, theta1=180, theta2=0, linewidth=lw, color=color) court_elements = [hoop, backboard, outer_box, inner_box, top_free_throw, bottom_free_throw, restricted, corner_three_a, corner_three_b, three_arc, center_outer_arc, center_inner_arc] if outer_lines: outer_lines = Rectangle((-250, -47.5), 500, 470, linewidth=lw, color=color, fill=False) court_elements.append(outer_lines) for element in court_elements: ax.add_patch(element) return ax
draw_court
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ax=None, color='gray', lw=1, outer_lines=False):\n if ax is None:\n ax = plt.gca()\n hoop = Circle((0, 0), radius=7.5, linewidth=lw, color=color, fill=False)\n backboard = Rectangle((-30, -12.5), 60, 0, linewidth=lw, color=color)\n outer_box = Rectangle((-80, -47.5), 160, 190, linewidth=lw, color=color,\n fill=False)\n inner_box = Rectangle((-60, -47.5), 120, 190, linewidth=lw, color=color,\n fill=False)\n top_free_throw = Arc((0, 142.5), 120, 120, theta1=0, theta2=180,\n linewidth=lw, color=color, fill=False)\n bottom_free_throw = Arc((0, 142.5), 120, 120, theta1=180, theta2=0,\n linewidth=lw, color=color, linestyle='dashed')\n restricted = Arc((0, 0), 80, 80, theta1=0, theta2=180, linewidth=lw,\n color=color)\n corner_three_a = Rectangle((-220, -47.5), 0, 140, linewidth=lw, color=color\n )\n corner_three_b = Rectangle((220, -47.5), 0, 140, linewidth=lw, color=color)\n three_arc = Arc((0, 0), 475, 475, theta1=22, theta2=158, linewidth=lw,\n color=color)\n center_outer_arc = Arc((0, 422.5), 120, 120, theta1=180, theta2=0,\n linewidth=lw, color=color)\n center_inner_arc = Arc((0, 422.5), 40, 40, theta1=180, theta2=0,\n linewidth=lw, color=color)\n court_elements = [hoop, backboard, outer_box, inner_box, top_free_throw,\n bottom_free_throw, restricted, corner_three_a, corner_three_b,\n three_arc, center_outer_arc, center_inner_arc]\n if outer_lines:\n outer_lines = Rectangle((-250, -47.5), 500, 470, linewidth=lw,\n color=color, fill=False)\n court_elements.append(outer_lines)\n for element in court_elements:\n ax.add_patch(element)\n return ax\n", "role": "user" }, { "content": "draw_court", "role": "assistant" } ]
def x(x, y, kind='scatter', title='', color='b', cmap=None, xlim=(-250, 250 ), ylim=(422.5, -47.5), court_color='gray', court_lw=1, outer_lines= False, flip_court=False, kde_shade=True, gridsize=None, ax=None, despine=False, **kwargs): if ax is None: ax = plt.gca() if cmap is None: cmap = sns.light_palette(color, as_cmap=True) if not flip_court: ax.set_xlim(xlim) ax.set_ylim(ylim) else: ax.set_xlim(xlim[::-1]) ax.set_ylim(ylim[::-1]) ax.tick_params(labelbottom='off', labelleft='off') ax.set_title(title, fontsize=18) draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines) if kind == 'scatter': ax.scatter(x, y, c=color, **kwargs) elif kind == 'kde': sns.kdeplot(x, y, shade=kde_shade, cmap=cmap, ax=ax, **kwargs) ax.set_xlabel('') ax.set_ylabel('') elif kind == 'hex': if gridsize is None: from seaborn.distributions import _freedman_diaconis_bins x_bin = _freedman_diaconis_bins(x) y_bin = _freedman_diaconis_bins(y) gridsize = int(np.mean([x_bin, y_bin])) ax.hexbin(x, y, gridsize=gridsize, cmap=cmap, **kwargs) else: raise ValueError("kind must be 'scatter', 'kde', or 'hex'.") for spine in ax.spines: ax.spines[spine].set_lw(court_lw) ax.spines[spine].set_color(court_color) if despine: ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) return ax
shot_chart
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, kind='scatter', title='', color='b', cmap=None, xlim=(-250, 250\n ), ylim=(422.5, -47.5), court_color='gray', court_lw=1, outer_lines=\n False, flip_court=False, kde_shade=True, gridsize=None, ax=None,\n despine=False, **kwargs):\n if ax is None:\n ax = plt.gca()\n if cmap is None:\n cmap = sns.light_palette(color, as_cmap=True)\n if not flip_court:\n ax.set_xlim(xlim)\n ax.set_ylim(ylim)\n else:\n ax.set_xlim(xlim[::-1])\n ax.set_ylim(ylim[::-1])\n ax.tick_params(labelbottom='off', labelleft='off')\n ax.set_title(title, fontsize=18)\n draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)\n if kind == 'scatter':\n ax.scatter(x, y, c=color, **kwargs)\n elif kind == 'kde':\n sns.kdeplot(x, y, shade=kde_shade, cmap=cmap, ax=ax, **kwargs)\n ax.set_xlabel('')\n ax.set_ylabel('')\n elif kind == 'hex':\n if gridsize is None:\n from seaborn.distributions import _freedman_diaconis_bins\n x_bin = _freedman_diaconis_bins(x)\n y_bin = _freedman_diaconis_bins(y)\n gridsize = int(np.mean([x_bin, y_bin]))\n ax.hexbin(x, y, gridsize=gridsize, cmap=cmap, **kwargs)\n else:\n raise ValueError(\"kind must be 'scatter', 'kde', or 'hex'.\")\n for spine in ax.spines:\n ax.spines[spine].set_lw(court_lw)\n ax.spines[spine].set_color(court_color)\n if despine:\n ax.spines['top'].set_visible(False)\n ax.spines['bottom'].set_visible(False)\n ax.spines['right'].set_visible(False)\n ax.spines['left'].set_visible(False)\n return ax\n", "role": "user" }, { "content": "shot_chart", "role": "assistant" } ]
def x(x, y, data=None, joint_type='scatter', title='', joint_color='b', cmap=None, xlim=(-250, 250), ylim=(422.5, -47.5), court_color='gray', court_lw=1, outer_lines=False, flip_court=False, joint_kde_shade=True, gridsize=None, marginals_color='b', marginals_type='both', marginals_kde_shade=True, size=(12, 11), space=0, despine=False, joint_kws=None, marginal_kws=None, **kwargs): if joint_kws is None: joint_kws = {} joint_kws.update(kwargs) if marginal_kws is None: marginal_kws = {} if cmap is None: cmap = sns.light_palette(joint_color, as_cmap=True) if flip_court: xlim = xlim[::-1] ylim = ylim[::-1] grid = sns.JointGrid(x=x, y=y, data=data, xlim=xlim, ylim=ylim, space=space ) if joint_type == 'scatter': grid = grid.plot_joint(plt.scatter, color=joint_color, **joint_kws) elif joint_type == 'kde': grid = grid.plot_joint(sns.kdeplot, cmap=cmap, shade= joint_kde_shade, **joint_kws) elif joint_type == 'hex': if gridsize is None: from seaborn.distributions import _freedman_diaconis_bins x_bin = _freedman_diaconis_bins(x) y_bin = _freedman_diaconis_bins(y) gridsize = int(np.mean([x_bin, y_bin])) grid = grid.plot_joint(plt.hexbin, gridsize=gridsize, cmap=cmap, ** joint_kws) else: raise ValueError("joint_type must be 'scatter', 'kde', or 'hex'.") if marginals_type == 'both': grid = grid.plot_marginals(sns.distplot, color=marginals_color, ** marginal_kws) elif marginals_type == 'hist': grid = grid.plot_marginals(sns.distplot, color=marginals_color, kde =False, **marginal_kws) elif marginals_type == 'kde': grid = grid.plot_marginals(sns.kdeplot, color=marginals_color, shade=marginals_kde_shade, **marginal_kws) else: raise ValueError("marginals_type must be 'both', 'hist', or 'kde'.") grid.fig.set_size_inches(size) ax = grid.fig.get_axes()[0] draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines) grid.set_axis_labels(xlabel='', ylabel='') ax.tick_params(labelbottom='off', labelleft='off') ax.set_title(title, y=1.2, fontsize=18) for spine in ax.spines: ax.spines[spine].set_lw(court_lw) ax.spines[spine].set_color(court_color) grid.ax_marg_x.spines[spine].set_lw(court_lw) grid.ax_marg_x.spines[spine].set_color(court_color) grid.ax_marg_y.spines[spine].set_lw(court_lw) grid.ax_marg_y.spines[spine].set_color(court_color) if despine: ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) return grid
shot_chart_jointgrid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, data=None, joint_type='scatter', title='', joint_color='b',\n cmap=None, xlim=(-250, 250), ylim=(422.5, -47.5), court_color='gray',\n court_lw=1, outer_lines=False, flip_court=False, joint_kde_shade=True,\n gridsize=None, marginals_color='b', marginals_type='both',\n marginals_kde_shade=True, size=(12, 11), space=0, despine=False,\n joint_kws=None, marginal_kws=None, **kwargs):\n if joint_kws is None:\n joint_kws = {}\n joint_kws.update(kwargs)\n if marginal_kws is None:\n marginal_kws = {}\n if cmap is None:\n cmap = sns.light_palette(joint_color, as_cmap=True)\n if flip_court:\n xlim = xlim[::-1]\n ylim = ylim[::-1]\n grid = sns.JointGrid(x=x, y=y, data=data, xlim=xlim, ylim=ylim, space=space\n )\n if joint_type == 'scatter':\n grid = grid.plot_joint(plt.scatter, color=joint_color, **joint_kws)\n elif joint_type == 'kde':\n grid = grid.plot_joint(sns.kdeplot, cmap=cmap, shade=\n joint_kde_shade, **joint_kws)\n elif joint_type == 'hex':\n if gridsize is None:\n from seaborn.distributions import _freedman_diaconis_bins\n x_bin = _freedman_diaconis_bins(x)\n y_bin = _freedman_diaconis_bins(y)\n gridsize = int(np.mean([x_bin, y_bin]))\n grid = grid.plot_joint(plt.hexbin, gridsize=gridsize, cmap=cmap, **\n joint_kws)\n else:\n raise ValueError(\"joint_type must be 'scatter', 'kde', or 'hex'.\")\n if marginals_type == 'both':\n grid = grid.plot_marginals(sns.distplot, color=marginals_color, **\n marginal_kws)\n elif marginals_type == 'hist':\n grid = grid.plot_marginals(sns.distplot, color=marginals_color, kde\n =False, **marginal_kws)\n elif marginals_type == 'kde':\n grid = grid.plot_marginals(sns.kdeplot, color=marginals_color,\n shade=marginals_kde_shade, **marginal_kws)\n else:\n raise ValueError(\"marginals_type must be 'both', 'hist', or 'kde'.\")\n grid.fig.set_size_inches(size)\n ax = grid.fig.get_axes()[0]\n draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)\n grid.set_axis_labels(xlabel='', ylabel='')\n ax.tick_params(labelbottom='off', labelleft='off')\n ax.set_title(title, y=1.2, fontsize=18)\n for spine in ax.spines:\n ax.spines[spine].set_lw(court_lw)\n ax.spines[spine].set_color(court_color)\n grid.ax_marg_x.spines[spine].set_lw(court_lw)\n grid.ax_marg_x.spines[spine].set_color(court_color)\n grid.ax_marg_y.spines[spine].set_lw(court_lw)\n grid.ax_marg_y.spines[spine].set_color(court_color)\n if despine:\n ax.spines['top'].set_visible(False)\n ax.spines['bottom'].set_visible(False)\n ax.spines['right'].set_visible(False)\n ax.spines['left'].set_visible(False)\n return grid\n", "role": "user" }, { "content": "shot_chart_jointgrid", "role": "assistant" } ]
def x(x, y, data=None, kind='scatter', title='', color='b', cmap=None, xlim =(-250, 250), ylim=(422.5, -47.5), court_color='gray', court_lw=1, outer_lines=False, flip_court=False, size=(12, 11), space=0, despine= False, joint_kws=None, marginal_kws=None, **kwargs): if cmap is None: cmap = sns.light_palette(color, as_cmap=True) if kind not in ['scatter', 'kde', 'hex']: raise ValueError("kind must be 'scatter', 'kde', or 'hex'.") grid = sns.jointplot(x=x, y=y, data=data, stat_func=None, kind=kind, space=0, color=color, cmap=cmap, joint_kws=joint_kws, marginal_kws= marginal_kws, **kwargs) grid.fig.set_size_inches(size) ax = grid.ax_joint if not flip_court: ax.set_xlim(xlim) ax.set_ylim(ylim) else: ax.set_xlim(xlim[::-1]) ax.set_ylim(ylim[::-1]) draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines) ax.set_xlabel('') ax.set_ylabel('') ax.tick_params(labelbottom='off', labelleft='off') ax.set_title(title, y=1.2, fontsize=18) for spine in ax.spines: ax.spines[spine].set_lw(court_lw) ax.spines[spine].set_color(court_color) grid.ax_marg_x.spines[spine].set_lw(court_lw) grid.ax_marg_x.spines[spine].set_color(court_color) grid.ax_marg_y.spines[spine].set_lw(court_lw) grid.ax_marg_y.spines[spine].set_color(court_color) if despine: ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) return grid
shot_chart_jointplot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, data=None, kind='scatter', title='', color='b', cmap=None, xlim\n =(-250, 250), ylim=(422.5, -47.5), court_color='gray', court_lw=1,\n outer_lines=False, flip_court=False, size=(12, 11), space=0, despine=\n False, joint_kws=None, marginal_kws=None, **kwargs):\n if cmap is None:\n cmap = sns.light_palette(color, as_cmap=True)\n if kind not in ['scatter', 'kde', 'hex']:\n raise ValueError(\"kind must be 'scatter', 'kde', or 'hex'.\")\n grid = sns.jointplot(x=x, y=y, data=data, stat_func=None, kind=kind,\n space=0, color=color, cmap=cmap, joint_kws=joint_kws, marginal_kws=\n marginal_kws, **kwargs)\n grid.fig.set_size_inches(size)\n ax = grid.ax_joint\n if not flip_court:\n ax.set_xlim(xlim)\n ax.set_ylim(ylim)\n else:\n ax.set_xlim(xlim[::-1])\n ax.set_ylim(ylim[::-1])\n draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)\n ax.set_xlabel('')\n ax.set_ylabel('')\n ax.tick_params(labelbottom='off', labelleft='off')\n ax.set_title(title, y=1.2, fontsize=18)\n for spine in ax.spines:\n ax.spines[spine].set_lw(court_lw)\n ax.spines[spine].set_color(court_color)\n grid.ax_marg_x.spines[spine].set_lw(court_lw)\n grid.ax_marg_x.spines[spine].set_color(court_color)\n grid.ax_marg_y.spines[spine].set_lw(court_lw)\n grid.ax_marg_y.spines[spine].set_color(court_color)\n if despine:\n ax.spines['top'].set_visible(False)\n ax.spines['bottom'].set_visible(False)\n ax.spines['right'].set_visible(False)\n ax.spines['left'].set_visible(False)\n return grid\n", "role": "user" }, { "content": "shot_chart_jointplot", "role": "assistant" } ]
def x(x, y, z, title='', cmap=plt.cm.YlOrRd, bins=20, xlim=(-250, 250), ylim=(422.5, -47.5), facecolor='lightgray', facecolor_alpha=0.4, court_color='black', court_lw=0.5, outer_lines=False, flip_court=False, ax=None, **kwargs): mean, xedges, yedges, binnumber = binned_statistic_2d(x=x, y=y, values= z, statistic='mean', bins=bins) if ax is None: ax = plt.gca() if not flip_court: ax.set_xlim(xlim) ax.set_ylim(ylim) else: ax.set_xlim(xlim[::-1]) ax.set_ylim(ylim[::-1]) ax.tick_params(labelbottom='off', labelleft='off') ax.set_title(title, fontsize=18) ax.patch.set_facecolor(facecolor) ax.patch.set_alpha(facecolor_alpha) draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines) heatmap = ax.imshow(mean.T, origin='lower', extent=[xedges[0], xedges[- 1], yedges[0], yedges[-1]], interpolation='nearest', cmap=cmap) return heatmap
heatmap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, z, title='', cmap=plt.cm.YlOrRd, bins=20, xlim=(-250, 250),\n ylim=(422.5, -47.5), facecolor='lightgray', facecolor_alpha=0.4,\n court_color='black', court_lw=0.5, outer_lines=False, flip_court=False,\n ax=None, **kwargs):\n mean, xedges, yedges, binnumber = binned_statistic_2d(x=x, y=y, values=\n z, statistic='mean', bins=bins)\n if ax is None:\n ax = plt.gca()\n if not flip_court:\n ax.set_xlim(xlim)\n ax.set_ylim(ylim)\n else:\n ax.set_xlim(xlim[::-1])\n ax.set_ylim(ylim[::-1])\n ax.tick_params(labelbottom='off', labelleft='off')\n ax.set_title(title, fontsize=18)\n ax.patch.set_facecolor(facecolor)\n ax.patch.set_alpha(facecolor_alpha)\n draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)\n heatmap = ax.imshow(mean.T, origin='lower', extent=[xedges[0], xedges[-\n 1], yedges[0], yedges[-1]], interpolation='nearest', cmap=cmap)\n return heatmap\n", "role": "user" }, { "content": "heatmap", "role": "assistant" } ]
def x(figure, line_color='gray', line_width=1): figure.circle(x=0, y=0, radius=7.5, fill_alpha=0, line_color=line_color, line_width=line_width) figure.line(x=range(-30, 31), y=-12.5, line_color=line_color) figure.rect(x=0, y=47.5, width=160, height=190, fill_alpha=0, line_color=line_color, line_width=line_width) figure.line(x=-60, y=np.arange(-47.5, 143.5), line_color=line_color, line_width=line_width) figure.line(x=60, y=np.arange(-47.5, 143.5), line_color=line_color, line_width=line_width) figure.arc(x=0, y=0, radius=40, start_angle=pi, end_angle=0, line_color =line_color, line_width=line_width) figure.arc(x=0, y=142.5, radius=60, start_angle=pi, end_angle=0, line_color=line_color) figure.arc(x=0, y=142.5, radius=60, start_angle=0, end_angle=pi, line_color=line_color, line_dash='dashed') figure.line(x=-220, y=np.arange(-47.5, 92.5), line_color=line_color, line_width=line_width) figure.line(x=220, y=np.arange(-47.5, 92.5), line_color=line_color, line_width=line_width) figure.arc(x=0, y=0, radius=237.5, start_angle=3.528, end_angle=-0.3863, line_color=line_color, line_width=line_width) figure.arc(x=0, y=422.5, radius=60, start_angle=0, end_angle=pi, line_color=line_color, line_width=line_width) figure.arc(x=0, y=422.5, radius=20, start_angle=0, end_angle=pi, line_color=line_color, line_width=line_width) figure.rect(x=0, y=187.5, width=500, height=470, fill_alpha=0, line_color=line_color, line_width=line_width) return figure
bokeh_draw_court
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(figure, line_color='gray', line_width=1):\n figure.circle(x=0, y=0, radius=7.5, fill_alpha=0, line_color=line_color,\n line_width=line_width)\n figure.line(x=range(-30, 31), y=-12.5, line_color=line_color)\n figure.rect(x=0, y=47.5, width=160, height=190, fill_alpha=0,\n line_color=line_color, line_width=line_width)\n figure.line(x=-60, y=np.arange(-47.5, 143.5), line_color=line_color,\n line_width=line_width)\n figure.line(x=60, y=np.arange(-47.5, 143.5), line_color=line_color,\n line_width=line_width)\n figure.arc(x=0, y=0, radius=40, start_angle=pi, end_angle=0, line_color\n =line_color, line_width=line_width)\n figure.arc(x=0, y=142.5, radius=60, start_angle=pi, end_angle=0,\n line_color=line_color)\n figure.arc(x=0, y=142.5, radius=60, start_angle=0, end_angle=pi,\n line_color=line_color, line_dash='dashed')\n figure.line(x=-220, y=np.arange(-47.5, 92.5), line_color=line_color,\n line_width=line_width)\n figure.line(x=220, y=np.arange(-47.5, 92.5), line_color=line_color,\n line_width=line_width)\n figure.arc(x=0, y=0, radius=237.5, start_angle=3.528, end_angle=-0.3863,\n line_color=line_color, line_width=line_width)\n figure.arc(x=0, y=422.5, radius=60, start_angle=0, end_angle=pi,\n line_color=line_color, line_width=line_width)\n figure.arc(x=0, y=422.5, radius=20, start_angle=0, end_angle=pi,\n line_color=line_color, line_width=line_width)\n figure.rect(x=0, y=187.5, width=500, height=470, fill_alpha=0,\n line_color=line_color, line_width=line_width)\n return figure\n", "role": "user" }, { "content": "bokeh_draw_court", "role": "assistant" } ]
def x(data, x='LOC_X', y='LOC_Y', fill_color='#1f77b4', scatter_size=10, fill_alpha=0.4, line_alpha=0.4, court_line_color='gray', court_line_width=1, hover_tool=False, tooltips=None, **kwargs): source = ColumnDataSource(data) fig = figure(width=700, height=658, x_range=[-250, 250], y_range=[422.5, -47.5], min_border=0, x_axis_type=None, y_axis_type=None, outline_line_color='black', **kwargs) fig.scatter(x, y, source=source, size=scatter_size, color=fill_color, alpha=fill_alpha, line_alpha=line_alpha) bokeh_draw_court(fig, line_color=court_line_color, line_width= court_line_width) if hover_tool: hover = HoverTool(renderers=[fig.renderers[0]], tooltips=tooltips) fig.add_tools(hover) return fig
bokeh_shot_chart
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, x='LOC_X', y='LOC_Y', fill_color='#1f77b4', scatter_size=10,\n fill_alpha=0.4, line_alpha=0.4, court_line_color='gray',\n court_line_width=1, hover_tool=False, tooltips=None, **kwargs):\n source = ColumnDataSource(data)\n fig = figure(width=700, height=658, x_range=[-250, 250], y_range=[422.5,\n -47.5], min_border=0, x_axis_type=None, y_axis_type=None,\n outline_line_color='black', **kwargs)\n fig.scatter(x, y, source=source, size=scatter_size, color=fill_color,\n alpha=fill_alpha, line_alpha=line_alpha)\n bokeh_draw_court(fig, line_color=court_line_color, line_width=\n court_line_width)\n if hover_tool:\n hover = HoverTool(renderers=[fig.renderers[0]], tooltips=tooltips)\n fig.add_tools(hover)\n return fig\n", "role": "user" }, { "content": "bokeh_shot_chart", "role": "assistant" } ]
def x(X, membs, n_clusters, distance): centers = np.empty(shape=(n_clusters, X.shape[1]), dtype=float) sse = np.empty(shape=n_clusters, dtype=float) for clust_id in range(n_clusters): memb_ids = np.where(membs == clust_id)[0] X_clust = X[memb_ids, :] dist = np.empty(shape=memb_ids.shape[0], dtype=float) for i, x in enumerate(X_clust): dist[i] = np.sum(scipy.spatial.distance.cdist(X_clust, np.array ([x]), distance)) inx_min = np.argmin(dist) centers[clust_id, :] = X_clust[inx_min, :] sse[clust_id] = dist[inx_min] return centers, sse
update_centers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, membs, n_clusters, distance):\n centers = np.empty(shape=(n_clusters, X.shape[1]), dtype=float)\n sse = np.empty(shape=n_clusters, dtype=float)\n for clust_id in range(n_clusters):\n memb_ids = np.where(membs == clust_id)[0]\n X_clust = X[memb_ids, :]\n dist = np.empty(shape=memb_ids.shape[0], dtype=float)\n for i, x in enumerate(X_clust):\n dist[i] = np.sum(scipy.spatial.distance.cdist(X_clust, np.array\n ([x]), distance))\n inx_min = np.argmin(dist)\n centers[clust_id, :] = X_clust[inx_min, :]\n sse[clust_id] = dist[inx_min]\n return centers, sse\n", "role": "user" }, { "content": "update_centers", "role": "assistant" } ]
def x(X, n_clusters, distance, max_iter, tol, rng): membs = np.empty(shape=X.shape[0], dtype=int) centers = kmeans._kmeans_init(X, n_clusters, method='', rng=rng) sse_last = 9999.9 n_iter = 0 for it in range(1, max_iter): membs = kmeans._assign_clusters(X, centers) centers, sse_arr = _update_centers(X, membs, n_clusters, distance) sse_total = np.sum(sse_arr) if np.abs(sse_total - sse_last) < tol: n_iter = it break sse_last = sse_total return centers, membs, sse_total, sse_arr, n_iter
kmedoids_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, n_clusters, distance, max_iter, tol, rng):\n membs = np.empty(shape=X.shape[0], dtype=int)\n centers = kmeans._kmeans_init(X, n_clusters, method='', rng=rng)\n sse_last = 9999.9\n n_iter = 0\n for it in range(1, max_iter):\n membs = kmeans._assign_clusters(X, centers)\n centers, sse_arr = _update_centers(X, membs, n_clusters, distance)\n sse_total = np.sum(sse_arr)\n if np.abs(sse_total - sse_last) < tol:\n n_iter = it\n break\n sse_last = sse_total\n return centers, membs, sse_total, sse_arr, n_iter\n", "role": "user" }, { "content": "kmedoids_run", "role": "assistant" } ]
def x(self, X): self.centers_, self.labels_, self.sse_arr_, self.n_iter_ = _kmedoids(X, self.n_clusters, self.distance, self.max_iter, self.n_trials, self. tol, self.rng)
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X):\n self.centers_, self.labels_, self.sse_arr_, self.n_iter_ = _kmedoids(X,\n self.n_clusters, self.distance, self.max_iter, self.n_trials, self.\n tol, self.rng)\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(K, n_clusters, wmemb, kernel_dist): n_samples = K.shape[0] for j in range(n_clusters): memb_j = np.where(wmemb == j)[0] size_j = memb_j.shape[0] K_sub_j = K[memb_j][:, memb_j] kernel_dist[:, j] = 1 + np.sum(K_sub_j) / (size_j * size_j) kernel_dist[:, j] -= 2 * np.sum(K[:, memb_j], axis=1) / size_j return
kernelized_dist2centers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(K, n_clusters, wmemb, kernel_dist):\n n_samples = K.shape[0]\n for j in range(n_clusters):\n memb_j = np.where(wmemb == j)[0]\n size_j = memb_j.shape[0]\n K_sub_j = K[memb_j][:, memb_j]\n kernel_dist[:, j] = 1 + np.sum(K_sub_j) / (size_j * size_j)\n kernel_dist[:, j] -= 2 * np.sum(K[:, memb_j], axis=1) / size_j\n return\n", "role": "user" }, { "content": "kernelized_dist2centers", "role": "assistant" } ]
def x(X, n_mixtures, init_method): init_priors = np.ones(shape=n_mixtures, dtype=float) / n_mixtures if init_method == 'kmeans': km = _kmeans.KMeans(n_clusters=n_mixtures, n_trials=20) km.fit(X) init_means = km.centers_ else: inx_rand = np.random.choice(X.shape[0], size=n_mixtures) init_means = X[inx_rand, :] if np.any(np.isnan(init_means)): raise ValueError('Init means are NaN! ') n_features = X.shape[1] init_covars = np.empty(shape=(n_mixtures, n_features, n_features), dtype=float) for i in range(n_mixtures): init_covars[i] = np.eye(n_features) return init_priors, init_means, init_covars
init_mixture_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, n_mixtures, init_method):\n init_priors = np.ones(shape=n_mixtures, dtype=float) / n_mixtures\n if init_method == 'kmeans':\n km = _kmeans.KMeans(n_clusters=n_mixtures, n_trials=20)\n km.fit(X)\n init_means = km.centers_\n else:\n inx_rand = np.random.choice(X.shape[0], size=n_mixtures)\n init_means = X[inx_rand, :]\n if np.any(np.isnan(init_means)):\n raise ValueError('Init means are NaN! ')\n n_features = X.shape[1]\n init_covars = np.empty(shape=(n_mixtures, n_features, n_features),\n dtype=float)\n for i in range(n_mixtures):\n init_covars[i] = np.eye(n_features)\n return init_priors, init_means, init_covars\n", "role": "user" }, { "content": "init_mixture_params", "role": "assistant" } ]
def x(x, mean, covar): n_dim = mean.shape[0] dx = x - mean covar_inv = scipy.linalg.inv(covar) covar_det = scipy.linalg.det(covar) den = np.dot(np.dot(dx.T, covar_inv), dx) + n_dim * np.log(2 * np.pi ) + np.log(covar_det) return -1 / 2 * den
log_density_single
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, mean, covar):\n n_dim = mean.shape[0]\n dx = x - mean\n covar_inv = scipy.linalg.inv(covar)\n covar_det = scipy.linalg.det(covar)\n den = np.dot(np.dot(dx.T, covar_inv), dx) + n_dim * np.log(2 * np.pi\n ) + np.log(covar_det)\n return -1 / 2 * den\n", "role": "user" }, { "content": "log_density_single", "role": "assistant" } ]
def x(X, means, covars): n_samples, n_dim = X.shape n_components = means.shape[0] assert means.shape[0] == covars.shape[0] log_proba = np.empty(shape=(n_samples, n_components), dtype=float) for i, (mu, cov) in enumerate(zip(means, covars)): try: cov_chol = scipy.linalg.cholesky(cov, lower=True) except scipy.linalg.LinAlgError: try: cov_chol = scipy.linalg.cholesky(cov + Lambda * np.eye( n_dim), lower=True) except: raise ValueError( 'Triangular Matrix Decomposition not performed!\n') cov_log_det = 2 * np.sum(np.log(np.diagonal(cov_chol))) try: cov_solve = scipy.linalg.solve_triangular(cov_chol, (X - mu).T, lower=True).T except: raise ValueError('Solve_triangular not perormed!\n') log_proba[:, i] = -0.5 * (np.sum(cov_solve ** 2, axis=1) + n_dim * np.log(2 * np.pi) + cov_log_det) return log_proba
log_multivariate_density
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, means, covars):\n n_samples, n_dim = X.shape\n n_components = means.shape[0]\n assert means.shape[0] == covars.shape[0]\n log_proba = np.empty(shape=(n_samples, n_components), dtype=float)\n for i, (mu, cov) in enumerate(zip(means, covars)):\n try:\n cov_chol = scipy.linalg.cholesky(cov, lower=True)\n except scipy.linalg.LinAlgError:\n try:\n cov_chol = scipy.linalg.cholesky(cov + Lambda * np.eye(\n n_dim), lower=True)\n except:\n raise ValueError(\n 'Triangular Matrix Decomposition not performed!\\n')\n cov_log_det = 2 * np.sum(np.log(np.diagonal(cov_chol)))\n try:\n cov_solve = scipy.linalg.solve_triangular(cov_chol, (X - mu).T,\n lower=True).T\n except:\n raise ValueError('Solve_triangular not perormed!\\n')\n log_proba[:, i] = -0.5 * (np.sum(cov_solve ** 2, axis=1) + n_dim *\n np.log(2 * np.pi) + cov_log_det)\n return log_proba\n", "role": "user" }, { "content": "log_multivariate_density", "role": "assistant" } ]
def x(X, means, covars): logden = _log_multivariate_density(X, means, covars) logden_max = logden.max(axis=1) log_likelihood = np.log(np.sum(np.exp(logden.T - logden_max) + Epsilon, axis=0)) log_likelihood += logden_max post_proba = np.exp(logden - log_likelihood[:, np.newaxis]) return log_likelihood, post_proba
log_likelihood_per_sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, means, covars):\n logden = _log_multivariate_density(X, means, covars)\n logden_max = logden.max(axis=1)\n log_likelihood = np.log(np.sum(np.exp(logden.T - logden_max) + Epsilon,\n axis=0))\n log_likelihood += logden_max\n post_proba = np.exp(logden - log_likelihood[:, np.newaxis])\n return log_likelihood, post_proba\n", "role": "user" }, { "content": "log_likelihood_per_sample", "role": "assistant" } ]
def x(priors, means, covars): for i, (p, m, cv) in enumerate(zip(priors, means, covars)): if np.any(np.isinf(p)) or np.any(np.isnan(p)): raise ValueError('Component %d of priors is not valid ' % i) if np.any(np.isinf(m)) or np.any(np.isnan(m)): raise ValueError('Component %d of means is not valid ' % i) if np.any(np.isinf(cv)) or np.any(np.isnan(cv)): raise ValueError('Component %d of covars is not valid ' % i) if not np.allclose(cv, cv.T) or np.any(scipy.linalg.eigvalsh(cv) <= 0): raise ValueError( 'Component %d of covars must be positive-definite' % i)
validate_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(priors, means, covars):\n for i, (p, m, cv) in enumerate(zip(priors, means, covars)):\n if np.any(np.isinf(p)) or np.any(np.isnan(p)):\n raise ValueError('Component %d of priors is not valid ' % i)\n if np.any(np.isinf(m)) or np.any(np.isnan(m)):\n raise ValueError('Component %d of means is not valid ' % i)\n if np.any(np.isinf(cv)) or np.any(np.isnan(cv)):\n raise ValueError('Component %d of covars is not valid ' % i)\n if not np.allclose(cv, cv.T) or np.any(scipy.linalg.eigvalsh(cv) <= 0):\n raise ValueError(\n 'Component %d of covars must be positive-definite' % i)\n", "role": "user" }, { "content": "validate_params", "role": "assistant" } ]
def x(X, posteriors): sum_post_proba = np.sum(posteriors, axis=0) prior_proba = sum_post_proba / (sum_post_proba.sum() + Epsilon) means = np.dot(posteriors.T, X) / (sum_post_proba[:, np.newaxis] + Epsilon) n_components = posteriors.shape[1] n_features = X.shape[1] covars = np.empty(shape=(n_components, n_features, n_features), dtype=float ) for i in range(n_components): post_i = posteriors[:, i] mean_i = means[i] diff_i = X - mean_i with np.errstate(under='ignore'): covar_i = np.dot(post_i * diff_i.T, diff_i) / (post_i.sum() + Epsilon) covars[i] = covar_i + Lambda * np.eye(n_features) _validate_params(prior_proba, means, covars) return prior_proba, means, covars
maximization_step
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, posteriors):\n sum_post_proba = np.sum(posteriors, axis=0)\n prior_proba = sum_post_proba / (sum_post_proba.sum() + Epsilon)\n means = np.dot(posteriors.T, X) / (sum_post_proba[:, np.newaxis] + Epsilon)\n n_components = posteriors.shape[1]\n n_features = X.shape[1]\n covars = np.empty(shape=(n_components, n_features, n_features), dtype=float\n )\n for i in range(n_components):\n post_i = posteriors[:, i]\n mean_i = means[i]\n diff_i = X - mean_i\n with np.errstate(under='ignore'):\n covar_i = np.dot(post_i * diff_i.T, diff_i) / (post_i.sum() +\n Epsilon)\n covars[i] = covar_i + Lambda * np.eye(n_features)\n _validate_params(prior_proba, means, covars)\n return prior_proba, means, covars\n", "role": "user" }, { "content": "maximization_step", "role": "assistant" } ]
def x(self, X): params_dict = _fit_gmm_params(X=X, n_mixtures=self.n_clusters, n_init= self.n_trials, init_method=self.init_method, n_iter=self.max_iter, tol=self.tol) self.priors_ = params_dict['priors'] self.means_ = params_dict['means'] self.covars_ = params_dict['covars'] self.converged = True self.labels_ = self.predict(X)
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X):\n params_dict = _fit_gmm_params(X=X, n_mixtures=self.n_clusters, n_init=\n self.n_trials, init_method=self.init_method, n_iter=self.max_iter,\n tol=self.tol)\n self.priors_ = params_dict['priors']\n self.means_ = params_dict['means']\n self.covars_ = params_dict['covars']\n self.converged = True\n self.labels_ = self.predict(X)\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]