source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
try:
super().load_ext()
except OSError:
del self.memoryflag
if hydpy.pub.options.warnmissingobsfile:
warnings.warn(
f'The `memory flag` of sequence {objecttools.nodephrase(self)} had to be set to `False` due to the following problem: {sys.exc_info()[1]}'
)
except BaseException:
if hydpy.pub.options.warnmissingobsfile:
warnings.warn(str(sys.exc_info()[1]))
|
load_ext
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n super().load_ext()\n except OSError:\n del self.memoryflag\n if hydpy.pub.options.warnmissingobsfile:\n warnings.warn(\n f'The `memory flag` of sequence {objecttools.nodephrase(self)} had to be set to `False` due to the following problem: {sys.exc_info()[1]}'\n )\n except BaseException:\n if hydpy.pub.options.warnmissingobsfile:\n warnings.warn(str(sys.exc_info()[1]))\n",
"role": "user"
},
{
"content": "load_ext",
"role": "assistant"
}
] |
def x(self, idx):
for name in self:
if getattr(self, '_%s_diskflag' % name):
path = getattr(self, '_%s_path' % name)
file_ = open(path, 'rb+')
ndim = getattr(self, '_%s_ndim' % name)
position = 8 * idx
for idim in range(ndim):
length = getattr(self, '_%s_length_%d' % (name, idim))
position *= length
file_.seek(position)
setattr(self, '_%s_file' % name, file_)
|
open_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx):\n for name in self:\n if getattr(self, '_%s_diskflag' % name):\n path = getattr(self, '_%s_path' % name)\n file_ = open(path, 'rb+')\n ndim = getattr(self, '_%s_ndim' % name)\n position = 8 * idx\n for idim in range(ndim):\n length = getattr(self, '_%s_length_%d' % (name, idim))\n position *= length\n file_.seek(position)\n setattr(self, '_%s_file' % name, file_)\n",
"role": "user"
},
{
"content": "open_files",
"role": "assistant"
}
] |
def x(self):
for name in self:
if getattr(self, '_%s_diskflag' % name):
file_ = getattr(self, '_%s_file' % name)
file_.close()
|
close_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for name in self:\n if getattr(self, '_%s_diskflag' % name):\n file_ = getattr(self, '_%s_file' % name)\n file_.close()\n",
"role": "user"
},
{
"content": "close_files",
"role": "assistant"
}
] |
def x(self, idx):
for name in self:
ndim = getattr(self, '_%s_ndim' % name)
diskflag = getattr(self, '_%s_diskflag' % name)
ramflag = getattr(self, '_%s_ramflag' % name)
if diskflag:
file_ = getattr(self, '_%s_file' % name)
length_tot = 1
shape = []
for jdx in range(ndim):
length = getattr(self, '_%s_length_%s' % (name, jdx))
length_tot *= length
shape.append(length)
raw = file_.read(length_tot * 8)
values = struct.unpack(length_tot * 'd', raw)
if ndim:
values = numpy.array(values).reshape(shape)
else:
values = values[0]
elif ramflag:
array = getattr(self, '_%s_array' % name)
values = array[idx]
if diskflag or ramflag:
if ndim == 0:
setattr(self, name, values)
else:
getattr(self, name)[:] = values
|
load_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx):\n for name in self:\n ndim = getattr(self, '_%s_ndim' % name)\n diskflag = getattr(self, '_%s_diskflag' % name)\n ramflag = getattr(self, '_%s_ramflag' % name)\n if diskflag:\n file_ = getattr(self, '_%s_file' % name)\n length_tot = 1\n shape = []\n for jdx in range(ndim):\n length = getattr(self, '_%s_length_%s' % (name, jdx))\n length_tot *= length\n shape.append(length)\n raw = file_.read(length_tot * 8)\n values = struct.unpack(length_tot * 'd', raw)\n if ndim:\n values = numpy.array(values).reshape(shape)\n else:\n values = values[0]\n elif ramflag:\n array = getattr(self, '_%s_array' % name)\n values = array[idx]\n if diskflag or ramflag:\n if ndim == 0:\n setattr(self, name, values)\n else:\n getattr(self, name)[:] = values\n",
"role": "user"
},
{
"content": "load_data",
"role": "assistant"
}
] |
def x(self, idx):
for name in self:
actual = getattr(self, name)
diskflag = getattr(self, '_%s_diskflag' % name)
ramflag = getattr(self, '_%s_ramflag' % name)
if diskflag:
file_ = getattr(self, '_%s_file' % name)
ndim = getattr(self, '_%s_ndim' % name)
length_tot = 1
for jdx in range(ndim):
length = getattr(self, '_%s_length_%s' % (name, jdx))
length_tot *= length
if ndim:
raw = struct.pack(length_tot * 'd', *actual.flatten())
else:
raw = struct.pack('d', actual)
file_.write(raw)
elif ramflag:
array = getattr(self, '_%s_array' % name)
array[idx] = actual
|
save_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx):\n for name in self:\n actual = getattr(self, name)\n diskflag = getattr(self, '_%s_diskflag' % name)\n ramflag = getattr(self, '_%s_ramflag' % name)\n if diskflag:\n file_ = getattr(self, '_%s_file' % name)\n ndim = getattr(self, '_%s_ndim' % name)\n length_tot = 1\n for jdx in range(ndim):\n length = getattr(self, '_%s_length_%s' % (name, jdx))\n length_tot *= length\n if ndim:\n raw = struct.pack(length_tot * 'd', *actual.flatten())\n else:\n raw = struct.pack('d', actual)\n file_.write(raw)\n elif ramflag:\n array = getattr(self, '_%s_array' % name)\n array[idx] = actual\n",
"role": "user"
},
{
"content": "save_data",
"role": "assistant"
}
] |
def x(self, idx: int) ->None:
if self._sim_ramflag:
self.sim[0] = self._sim_array[idx]
elif self._sim_diskflag:
raw = self._sim_file.read(8)
self.sim[0] = struct.unpack('d', raw)
|
load_simdata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx: int) ->None:\n if self._sim_ramflag:\n self.sim[0] = self._sim_array[idx]\n elif self._sim_diskflag:\n raw = self._sim_file.read(8)\n self.sim[0] = struct.unpack('d', raw)\n",
"role": "user"
},
{
"content": "load_simdata",
"role": "assistant"
}
] |
def x(self, idx: int) ->None:
if self._sim_ramflag:
self._sim_array[idx] = self.sim[0]
elif self._sim_diskflag:
raw = struct.pack('d', self.sim[0])
self._sim_file.write(raw)
|
save_simdata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx: int) ->None:\n if self._sim_ramflag:\n self._sim_array[idx] = self.sim[0]\n elif self._sim_diskflag:\n raw = struct.pack('d', self.sim[0])\n self._sim_file.write(raw)\n",
"role": "user"
},
{
"content": "save_simdata",
"role": "assistant"
}
] |
def x(self, idx: int) ->None:
if self._obs_ramflag:
self.obs[0] = self._obs_array[idx]
elif self._obs_diskflag:
raw = self._obs_file.read(8)
self.obs[0] = struct.unpack('d', raw)
|
load_obsdata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx: int) ->None:\n if self._obs_ramflag:\n self.obs[0] = self._obs_array[idx]\n elif self._obs_diskflag:\n raw = self._obs_file.read(8)\n self.obs[0] = struct.unpack('d', raw)\n",
"role": "user"
},
{
"content": "load_obsdata",
"role": "assistant"
}
] |
def x(self):
control = self.subpars.pars.control
self(control.ft * control.fhru)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n control = self.subpars.pars.control\n self(control.ft * control.fhru)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(con.hinz * con.lai)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(con.hinz * con.lai)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(con.relwb * con.nfk)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(con.relwb * con.nfk)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(con.relwz * con.nfk)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(con.relwz * con.nfk)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(con.eqb * con.tind)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(con.eqb * con.tind)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(con.eqi1 * con.tind)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(con.eqi1 * con.tind)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(con.eqi2 * con.tind)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(con.eqi2 * con.tind)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(con.eqd1 * con.tind)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(con.eqd1 * con.tind)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(con.eqd2 * con.tind)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(con.eqd2 * con.tind)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
self(con.ft * 1000.0 / self.simulationstep.seconds)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n self(con.ft * 1000.0 / self.simulationstep.seconds)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
return tuple(up for up in self._up2down.keys() if up in self._up2down.
values())
|
router_numbers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return tuple(up for up in self._up2down.keys() if up in self._up2down.\n values())\n",
"role": "user"
},
{
"content": "router_numbers",
"role": "assistant"
}
] |
def x(self):
elements = devicetools.Elements()
for supplier in self._supplier_numbers:
element = self._get_suppliername(supplier)
try:
outlet = self._get_nodename(self._up2down[supplier])
except TypeError:
outlet = self.last_node
elements += devicetools.Element(element, outlets=outlet)
return elements
|
supplier_elements
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n elements = devicetools.Elements()\n for supplier in self._supplier_numbers:\n element = self._get_suppliername(supplier)\n try:\n outlet = self._get_nodename(self._up2down[supplier])\n except TypeError:\n outlet = self.last_node\n elements += devicetools.Element(element, outlets=outlet)\n return elements\n",
"role": "user"
},
{
"content": "supplier_elements",
"role": "assistant"
}
] |
def x(self):
elements = devicetools.Elements()
for router in self._router_numbers:
element = self._get_routername(router)
inlet = self._get_nodename(router)
try:
outlet = self._get_nodename(self._up2down[router])
except TypeError:
outlet = self.last_node
elements += devicetools.Element(element, inlets=inlet, outlets=outlet)
return elements
|
router_elements
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n elements = devicetools.Elements()\n for router in self._router_numbers:\n element = self._get_routername(router)\n inlet = self._get_nodename(router)\n try:\n outlet = self._get_nodename(self._up2down[router])\n except TypeError:\n outlet = self.last_node\n elements += devicetools.Element(element, inlets=inlet, outlets=outlet)\n return elements\n",
"role": "user"
},
{
"content": "router_elements",
"role": "assistant"
}
] |
def x(self):
return devicetools.Nodes(self.node_prefix + routers for routers in self
._router_numbers) + devicetools.Node(self.last_node)
|
nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return devicetools.Nodes(self.node_prefix + routers for routers in self\n ._router_numbers) + devicetools.Node(self.last_node)\n",
"role": "user"
},
{
"content": "nodes",
"role": "assistant"
}
] |
def x(self):
return selectiontools.Selection(self.selection_name, self.nodes, self.
elements)
|
selection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return selectiontools.Selection(self.selection_name, self.nodes, self.\n elements)\n",
"role": "user"
},
{
"content": "selection",
"role": "assistant"
}
] |
def x(strings) ->numpy.ndarray:
maxlen = 0
for name in strings:
maxlen = max(maxlen, len(name))
chars = numpy.full((len(strings), maxlen), b'', dtype='|S1')
for idx, name in enumerate(strings):
for jdx, char in enumerate(name):
chars[idx, jdx] = char.encode('utf-8')
return chars
|
str2chars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(strings) ->numpy.ndarray:\n maxlen = 0\n for name in strings:\n maxlen = max(maxlen, len(name))\n chars = numpy.full((len(strings), maxlen), b'', dtype='|S1')\n for idx, name in enumerate(strings):\n for jdx, char in enumerate(name):\n chars[idx, jdx] = char.encode('utf-8')\n return chars\n",
"role": "user"
},
{
"content": "str2chars",
"role": "assistant"
}
] |
def x(chars) ->List[str]:
strings = collections.deque()
for subchars in chars:
substrings = collections.deque()
for char in subchars:
if char:
substrings.append(char.decode('utf-8'))
else:
substrings.append('')
strings.append(''.join(substrings))
return list(strings)
|
chars2str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(chars) ->List[str]:\n strings = collections.deque()\n for subchars in chars:\n substrings = collections.deque()\n for char in subchars:\n if char:\n substrings.append(char.decode('utf-8'))\n else:\n substrings.append('')\n strings.append(''.join(substrings))\n return list(strings)\n",
"role": "user"
},
{
"content": "chars2str",
"role": "assistant"
}
] |
def x(ncfile, name, length) ->None:
try:
ncfile.createDimension(name, length)
except BaseException:
objecttools.augment_excmessage(
'While trying to add dimension `%s` with length `%d` to the NetCDF file `%s`'
% (name, length, get_filepath(ncfile)))
|
create_dimension
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ncfile, name, length) ->None:\n try:\n ncfile.createDimension(name, length)\n except BaseException:\n objecttools.augment_excmessage(\n 'While trying to add dimension `%s` with length `%d` to the NetCDF file `%s`'\n % (name, length, get_filepath(ncfile)))\n",
"role": "user"
},
{
"content": "create_dimension",
"role": "assistant"
}
] |
def x(ncfile, name, datatype, dimensions) ->None:
default = fillvalue if datatype == 'f8' else None
try:
ncfile.createVariable(name, datatype, dimensions=dimensions,
fill_value=default)
ncfile[name].long_name = name
except BaseException:
objecttools.augment_excmessage(
'While trying to add variable `%s` with datatype `%s` and dimensions `%s` to the NetCDF file `%s`'
% (name, datatype, dimensions, get_filepath(ncfile)))
|
create_variable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ncfile, name, datatype, dimensions) ->None:\n default = fillvalue if datatype == 'f8' else None\n try:\n ncfile.createVariable(name, datatype, dimensions=dimensions,\n fill_value=default)\n ncfile[name].long_name = name\n except BaseException:\n objecttools.augment_excmessage(\n 'While trying to add variable `%s` with datatype `%s` and dimensions `%s` to the NetCDF file `%s`'\n % (name, datatype, dimensions, get_filepath(ncfile)))\n",
"role": "user"
},
{
"content": "create_variable",
"role": "assistant"
}
] |
def x(ncfile, name) ->netcdf4.Variable:
try:
return ncfile[name]
except (IndexError, KeyError):
raise OSError('NetCDF file `%s` does not contain variable `%s`.' %
(get_filepath(ncfile), name))
|
query_variable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ncfile, name) ->netcdf4.Variable:\n try:\n return ncfile[name]\n except (IndexError, KeyError):\n raise OSError('NetCDF file `%s` does not contain variable `%s`.' %\n (get_filepath(ncfile), name))\n",
"role": "user"
},
{
"content": "query_variable",
"role": "assistant"
}
] |
def x(ncfile) ->timetools.Timegrid:
timepoints = ncfile[varmapping['timepoints']]
refdate = timetools.Date.from_cfunits(timepoints.units)
return timetools.Timegrid.from_timepoints(timepoints=timepoints[:],
refdate=refdate, unit=timepoints.units.strip().split()[0])
|
query_timegrid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ncfile) ->timetools.Timegrid:\n timepoints = ncfile[varmapping['timepoints']]\n refdate = timetools.Date.from_cfunits(timepoints.units)\n return timetools.Timegrid.from_timepoints(timepoints=timepoints[:],\n refdate=refdate, unit=timepoints.units.strip().split()[0])\n",
"role": "user"
},
{
"content": "query_timegrid",
"role": "assistant"
}
] |
def x(ncfile, name) ->numpy.ndarray:
variable = query_variable(ncfile, name)
maskedarray = variable[:]
fillvalue_ = getattr(variable, '_FillValue', numpy.nan)
if not numpy.isnan(fillvalue_):
maskedarray[maskedarray.mask] = numpy.nan
return maskedarray.data
|
query_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ncfile, name) ->numpy.ndarray:\n variable = query_variable(ncfile, name)\n maskedarray = variable[:]\n fillvalue_ = getattr(variable, '_FillValue', numpy.nan)\n if not numpy.isnan(fillvalue_):\n maskedarray[maskedarray.mask] = numpy.nan\n return maskedarray.data\n",
"role": "user"
},
{
"content": "query_array",
"role": "assistant"
}
] |
def x(self, sequence, infoarray) ->None:
if isinstance(sequence, sequencetools.ModelSequence):
descr = sequence.descr_model
else:
descr = 'node'
if self._isolate:
descr = '%s_%s' % (descr, sequence.descr_sequence)
if infoarray is not None and infoarray.info['type'] != 'unmodified':
descr = '%s_%s' % (descr, infoarray.info['type'])
dirpath = sequence.dirpath_ext
try:
files = self.folders[dirpath]
except KeyError:
files: Dict[str, 'NetCDFFile'] = collections.OrderedDict()
self.folders[dirpath] = files
try:
file_ = files[descr]
except KeyError:
file_ = NetCDFFile(name=descr, flatten=self._flatten, isolate=self.
_isolate, timeaxis=self._timeaxis, dirpath=dirpath)
files[descr] = file_
file_.log(sequence, infoarray)
|
log
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sequence, infoarray) ->None:\n if isinstance(sequence, sequencetools.ModelSequence):\n descr = sequence.descr_model\n else:\n descr = 'node'\n if self._isolate:\n descr = '%s_%s' % (descr, sequence.descr_sequence)\n if infoarray is not None and infoarray.info['type'] != 'unmodified':\n descr = '%s_%s' % (descr, infoarray.info['type'])\n dirpath = sequence.dirpath_ext\n try:\n files = self.folders[dirpath]\n except KeyError:\n files: Dict[str, 'NetCDFFile'] = collections.OrderedDict()\n self.folders[dirpath] = files\n try:\n file_ = files[descr]\n except KeyError:\n file_ = NetCDFFile(name=descr, flatten=self._flatten, isolate=self.\n _isolate, timeaxis=self._timeaxis, dirpath=dirpath)\n files[descr] = file_\n file_.log(sequence, infoarray)\n",
"role": "user"
},
{
"content": "log",
"role": "assistant"
}
] |
def x(self) ->None:
for folder in self.folders.values():
for file_ in folder.values():
file_.read()
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n for folder in self.folders.values():\n for file_ in folder.values():\n file_.read()\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self) ->None:
if self.folders:
init = hydpy.pub.timegrids.init
timeunits = init.firstdate.to_cfunits('hours')
timepoints = init.to_timepoints('hours')
for folder in self.folders.values():
for file_ in folder.values():
file_.write(timeunits, timepoints)
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n if self.folders:\n init = hydpy.pub.timegrids.init\n timeunits = init.firstdate.to_cfunits('hours')\n timepoints = init.to_timepoints('hours')\n for folder in self.folders.values():\n for file_ in folder.values():\n file_.write(timeunits, timepoints)\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self) ->Tuple[str, ...]:
return tuple(sorted(set(itertools.chain(*(_.keys() for _ in self.
folders.values())))))
|
filenames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[str, ...]:\n return tuple(sorted(set(itertools.chain(*(_.keys() for _ in self.\n folders.values())))))\n",
"role": "user"
},
{
"content": "filenames",
"role": "assistant"
}
] |
def x(self, sequence, infoarray) ->None:
aggregated = infoarray is not None and infoarray.info['type'
] != 'unmodified'
descr = sequence.descr_sequence
if aggregated:
descr = '_'.join([descr, infoarray.info['type']])
if descr in self.variables:
var_ = self.variables[descr]
else:
if aggregated:
cls = NetCDFVariableAgg
elif self._flatten:
cls = NetCDFVariableFlat
else:
cls = NetCDFVariableDeep
var_ = cls(name=descr, isolate=self._isolate, timeaxis=self._timeaxis)
self.variables[descr] = var_
var_.log(sequence, infoarray)
|
log
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sequence, infoarray) ->None:\n aggregated = infoarray is not None and infoarray.info['type'\n ] != 'unmodified'\n descr = sequence.descr_sequence\n if aggregated:\n descr = '_'.join([descr, infoarray.info['type']])\n if descr in self.variables:\n var_ = self.variables[descr]\n else:\n if aggregated:\n cls = NetCDFVariableAgg\n elif self._flatten:\n cls = NetCDFVariableFlat\n else:\n cls = NetCDFVariableDeep\n var_ = cls(name=descr, isolate=self._isolate, timeaxis=self._timeaxis)\n self.variables[descr] = var_\n var_.log(sequence, infoarray)\n",
"role": "user"
},
{
"content": "log",
"role": "assistant"
}
] |
def x(self) ->str:
return os.path.join(self._dirpath, self.name + '.nc')
|
filepath
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->str:\n return os.path.join(self._dirpath, self.name + '.nc')\n",
"role": "user"
},
{
"content": "filepath",
"role": "assistant"
}
] |
def x(self) ->None:
try:
with netcdf4.Dataset(self.filepath, 'r') as ncfile:
timegrid = query_timegrid(ncfile)
for variable in self.variables.values():
variable.read(ncfile, timegrid)
except BaseException:
objecttools.augment_excmessage(
f'While trying to read data from NetCDF file `{self.filepath}`')
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->None:\n try:\n with netcdf4.Dataset(self.filepath, 'r') as ncfile:\n timegrid = query_timegrid(ncfile)\n for variable in self.variables.values():\n variable.read(ncfile, timegrid)\n except BaseException:\n objecttools.augment_excmessage(\n f'While trying to read data from NetCDF file `{self.filepath}`')\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self, timeunit, timepoints) ->None:
with netcdf4.Dataset(self.filepath, 'w') as ncfile:
ncfile.Conventions = 'CF-1.6'
self._insert_timepoints(ncfile, timepoints, timeunit)
for variable in self.variables.values():
variable.write(ncfile)
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timeunit, timepoints) ->None:\n with netcdf4.Dataset(self.filepath, 'w') as ncfile:\n ncfile.Conventions = 'CF-1.6'\n self._insert_timepoints(ncfile, timepoints, timeunit)\n for variable in self.variables.values():\n variable.write(ncfile)\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self, name_subdevice) ->int:
try:
return self.dict_[name_subdevice]
except KeyError:
raise OSError(
'No data for sequence `%s` and (sub)device `%s` in NetCDF file `%s` available.'
% (self.name_sequence, name_subdevice, self.name_ncfile))
|
get_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name_subdevice) ->int:\n try:\n return self.dict_[name_subdevice]\n except KeyError:\n raise OSError(\n 'No data for sequence `%s` and (sub)device `%s` in NetCDF file `%s` available.'\n % (self.name_sequence, name_subdevice, self.name_ncfile))\n",
"role": "user"
},
{
"content": "get_index",
"role": "assistant"
}
] |
def x(self, sequence, infoarray) ->None:
descr_device = sequence.descr_device
self.sequences[descr_device] = sequence
self.arrays[descr_device] = infoarray
|
log
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sequence, infoarray) ->None:\n descr_device = sequence.descr_device\n self.sequences[descr_device] = sequence\n self.arrays[descr_device] = infoarray\n",
"role": "user"
},
{
"content": "log",
"role": "assistant"
}
] |
def x(self, ncfile) ->None:
prefix = self.prefix
nmb_subdevices = '%s%s' % (prefix, dimmapping['nmb_subdevices'])
nmb_characters = '%s%s' % (prefix, dimmapping['nmb_characters'])
subdevices = '%s%s' % (prefix, varmapping['subdevices'])
statchars = str2chars(self.subdevicenames)
create_dimension(ncfile, nmb_subdevices, statchars.shape[0])
create_dimension(ncfile, nmb_characters, statchars.shape[1])
create_variable(ncfile, subdevices, 'S1', (nmb_subdevices, nmb_characters))
ncfile[subdevices][:, :] = statchars
|
insert_subdevices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ncfile) ->None:\n prefix = self.prefix\n nmb_subdevices = '%s%s' % (prefix, dimmapping['nmb_subdevices'])\n nmb_characters = '%s%s' % (prefix, dimmapping['nmb_characters'])\n subdevices = '%s%s' % (prefix, varmapping['subdevices'])\n statchars = str2chars(self.subdevicenames)\n create_dimension(ncfile, nmb_subdevices, statchars.shape[0])\n create_dimension(ncfile, nmb_characters, statchars.shape[1])\n create_variable(ncfile, subdevices, 'S1', (nmb_subdevices, nmb_characters))\n ncfile[subdevices][:, :] = statchars\n",
"role": "user"
},
{
"content": "insert_subdevices",
"role": "assistant"
}
] |
def x(self, ncfile) ->List[str]:
tests = [('%s%s' % (prefix, varmapping['subdevices'])) for prefix in (
'%s_' % self.name, '')]
for subdevices in tests:
try:
chars = ncfile[subdevices][:]
break
except (IndexError, KeyError):
pass
else:
raise IOError(
'NetCDF file `%s` does neither contain a variable named `%s` nor `%s` for defining the coordinate locations of variable `%s`.'
% (get_filepath(ncfile), tests[0], tests[1], self.name))
return chars2str(chars)
|
query_subdevices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ncfile) ->List[str]:\n tests = [('%s%s' % (prefix, varmapping['subdevices'])) for prefix in (\n '%s_' % self.name, '')]\n for subdevices in tests:\n try:\n chars = ncfile[subdevices][:]\n break\n except (IndexError, KeyError):\n pass\n else:\n raise IOError(\n 'NetCDF file `%s` does neither contain a variable named `%s` nor `%s` for defining the coordinate locations of variable `%s`.'\n % (get_filepath(ncfile), tests[0], tests[1], self.name))\n return chars2str(chars)\n",
"role": "user"
},
{
"content": "query_subdevices",
"role": "assistant"
}
] |
def x(self, ncfile) ->Subdevice2Index:
subdevices = self.query_subdevices(ncfile)
self._test_duplicate_exists(ncfile, subdevices)
subdev2index = {subdev: idx for idx, subdev in enumerate(subdevices)}
return Subdevice2Index(subdev2index, self.name, get_filepath(ncfile))
|
query_subdevice2index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ncfile) ->Subdevice2Index:\n subdevices = self.query_subdevices(ncfile)\n self._test_duplicate_exists(ncfile, subdevices)\n subdev2index = {subdev: idx for idx, subdev in enumerate(subdevices)}\n return Subdevice2Index(subdev2index, self.name, get_filepath(ncfile))\n",
"role": "user"
},
{
"content": "query_subdevice2index",
"role": "assistant"
}
] |
def x(self, timeentry, placeentry) ->Tuple[Any, Any]:
if self._timeaxis:
return placeentry, timeentry
return timeentry, placeentry
|
sort_timeplaceentries
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timeentry, placeentry) ->Tuple[Any, Any]:\n if self._timeaxis:\n return placeentry, timeentry\n return timeentry, placeentry\n",
"role": "user"
},
{
"content": "sort_timeplaceentries",
"role": "assistant"
}
] |
def x(self, placeindex) ->Union[Tuple[slice, int], Tuple[int, slice]]:
return self.sort_timeplaceentries(slice(None), int(placeindex))
|
get_timeplaceslice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, placeindex) ->Union[Tuple[slice, int], Tuple[int, slice]]:\n return self.sort_timeplaceentries(slice(None), int(placeindex))\n",
"role": "user"
},
{
"content": "get_timeplaceslice",
"role": "assistant"
}
] |
def x(self) ->Tuple[str, ...]:
self: NetCDFVariableBase
return tuple(self.sequences.keys())
|
subdevicenames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[str, ...]:\n self: NetCDFVariableBase\n return tuple(self.sequences.keys())\n",
"role": "user"
},
{
"content": "subdevicenames",
"role": "assistant"
}
] |
def x(self, ncfile) ->None:
self: NetCDFVariableBase
self.insert_subdevices(ncfile)
dimensions = self.dimensions
array = self.array
for dimension, length in zip(dimensions[2:], array.shape[2:]):
create_dimension(ncfile, dimension, length)
create_variable(ncfile, self.name, 'f8', dimensions)
ncfile[self.name][:] = array
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ncfile) ->None:\n self: NetCDFVariableBase\n self.insert_subdevices(ncfile)\n dimensions = self.dimensions\n array = self.array\n for dimension, length in zip(dimensions[2:], array.shape[2:]):\n create_dimension(ncfile, dimension, length)\n create_variable(ncfile, self.name, 'f8', dimensions)\n ncfile[self.name][:] = array\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self) ->Tuple[str, ...]:
self: NetCDFVariableBase
return self.sort_timeplaceentries(dimmapping['nmb_timepoints'], '%s%s' %
(self.prefix, dimmapping['nmb_subdevices']))
|
dimensions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[str, ...]:\n self: NetCDFVariableBase\n return self.sort_timeplaceentries(dimmapping['nmb_timepoints'], '%s%s' %\n (self.prefix, dimmapping['nmb_subdevices']))\n",
"role": "user"
},
{
"content": "dimensions",
"role": "assistant"
}
] |
def x(self, idx, shape) ->Tuple[IntOrSlice, ...]:
slices = list(self.get_timeplaceslice(idx))
for length in shape:
slices.append(slice(0, length))
return tuple(slices)
|
get_slices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx, shape) ->Tuple[IntOrSlice, ...]:\n slices = list(self.get_timeplaceslice(idx))\n for length in shape:\n slices.append(slice(0, length))\n return tuple(slices)\n",
"role": "user"
},
{
"content": "get_slices",
"role": "assistant"
}
] |
def x(self) ->Tuple[int, ...]:
nmb_place = len(self.sequences)
nmb_time = len(hydpy.pub.timegrids.init)
nmb_others = collections.deque()
for sequence in self.sequences.values():
nmb_others.append(sequence.shape)
nmb_others_max = tuple(numpy.max(nmb_others, axis=0))
return self.sort_timeplaceentries(nmb_time, nmb_place) + nmb_others_max
|
shape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[int, ...]:\n nmb_place = len(self.sequences)\n nmb_time = len(hydpy.pub.timegrids.init)\n nmb_others = collections.deque()\n for sequence in self.sequences.values():\n nmb_others.append(sequence.shape)\n nmb_others_max = tuple(numpy.max(nmb_others, axis=0))\n return self.sort_timeplaceentries(nmb_time, nmb_place) + nmb_others_max\n",
"role": "user"
},
{
"content": "shape",
"role": "assistant"
}
] |
def x(self) ->numpy.ndarray:
array = numpy.full(self.shape, fillvalue, dtype=float)
for idx, (descr, subarray) in enumerate(self.arrays.items()):
sequence = self.sequences[descr]
array[self.get_slices(idx, sequence.shape)] = subarray
return array
|
array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->numpy.ndarray:\n array = numpy.full(self.shape, fillvalue, dtype=float)\n for idx, (descr, subarray) in enumerate(self.arrays.items()):\n sequence = self.sequences[descr]\n array[self.get_slices(idx, sequence.shape)] = subarray\n return array\n",
"role": "user"
},
{
"content": "array",
"role": "assistant"
}
] |
def x(self) ->Tuple[str, ...]:
nmb_timepoints = dimmapping['nmb_timepoints']
nmb_subdevices = '%s%s' % (self.prefix, dimmapping['nmb_subdevices'])
dimensions = list(self.sort_timeplaceentries(nmb_timepoints,
nmb_subdevices))
for idx in range(list(self.sequences.values())[0].NDIM):
dimensions.append('%saxis%d' % (self.prefix, idx + 3))
return tuple(dimensions)
|
dimensions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[str, ...]:\n nmb_timepoints = dimmapping['nmb_timepoints']\n nmb_subdevices = '%s%s' % (self.prefix, dimmapping['nmb_subdevices'])\n dimensions = list(self.sort_timeplaceentries(nmb_timepoints,\n nmb_subdevices))\n for idx in range(list(self.sequences.values())[0].NDIM):\n dimensions.append('%saxis%d' % (self.prefix, idx + 3))\n return tuple(dimensions)\n",
"role": "user"
},
{
"content": "dimensions",
"role": "assistant"
}
] |
def x(self, ncfile, timegrid_data) ->None:
array = query_array(ncfile, self.name)
subdev2index = self.query_subdevice2index(ncfile)
for subdevice, sequence in self.sequences.items():
idx = subdev2index.get_index(subdevice)
values = array[self.get_slices(idx, sequence.shape)]
sequence.series = sequence.adjust_series(timegrid_data, values)
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ncfile, timegrid_data) ->None:\n array = query_array(ncfile, self.name)\n subdev2index = self.query_subdevice2index(ncfile)\n for subdevice, sequence in self.sequences.items():\n idx = subdev2index.get_index(subdevice)\n values = array[self.get_slices(idx, sequence.shape)]\n sequence.series = sequence.adjust_series(timegrid_data, values)\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self) ->Tuple[int, int]:
return self.sort_timeplaceentries(len(hydpy.pub.timegrids.init), len(
self.sequences))
|
shape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[int, int]:\n return self.sort_timeplaceentries(len(hydpy.pub.timegrids.init), len(\n self.sequences))\n",
"role": "user"
},
{
"content": "shape",
"role": "assistant"
}
] |
def x(self) ->numpy.ndarray:
array = numpy.full(self.shape, fillvalue, dtype=float)
for idx, subarray in enumerate(self.arrays.values()):
array[self.get_timeplaceslice(idx)] = subarray
return array
|
array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->numpy.ndarray:\n array = numpy.full(self.shape, fillvalue, dtype=float)\n for idx, subarray in enumerate(self.arrays.values()):\n array[self.get_timeplaceslice(idx)] = subarray\n return array\n",
"role": "user"
},
{
"content": "array",
"role": "assistant"
}
] |
def x(self) ->Tuple[int, int]:
return self.sort_timeplaceentries(len(hydpy.pub.timegrids.init), sum(
len(seq) for seq in self.sequences.values()))
|
shape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[int, int]:\n return self.sort_timeplaceentries(len(hydpy.pub.timegrids.init), sum(\n len(seq) for seq in self.sequences.values()))\n",
"role": "user"
},
{
"content": "shape",
"role": "assistant"
}
] |
def x(self) ->numpy.ndarray:
array = numpy.full(self.shape, fillvalue, dtype=float)
idx0 = 0
idxs: List[Any] = [slice(None)]
for seq, subarray in zip(self.sequences.values(), self.arrays.values()):
for prod in self._product(seq.shape):
subsubarray = subarray[tuple(idxs + list(prod))]
array[self.get_timeplaceslice(idx0)] = subsubarray
idx0 += 1
return array
|
array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->numpy.ndarray:\n array = numpy.full(self.shape, fillvalue, dtype=float)\n idx0 = 0\n idxs: List[Any] = [slice(None)]\n for seq, subarray in zip(self.sequences.values(), self.arrays.values()):\n for prod in self._product(seq.shape):\n subsubarray = subarray[tuple(idxs + list(prod))]\n array[self.get_timeplaceslice(idx0)] = subsubarray\n idx0 += 1\n return array\n",
"role": "user"
},
{
"content": "array",
"role": "assistant"
}
] |
def x(self) ->Tuple[str, ...]:
stats: List[str] = collections.deque()
for devicename, seq in self.sequences.items():
if seq.NDIM:
temp = devicename + '_'
for prod in self._product(seq.shape):
stats.append(temp + '_'.join(str(idx) for idx in prod))
else:
stats.append(devicename)
return tuple(stats)
|
subdevicenames
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Tuple[str, ...]:\n stats: List[str] = collections.deque()\n for devicename, seq in self.sequences.items():\n if seq.NDIM:\n temp = devicename + '_'\n for prod in self._product(seq.shape):\n stats.append(temp + '_'.join(str(idx) for idx in prod))\n else:\n stats.append(devicename)\n return tuple(stats)\n",
"role": "user"
},
{
"content": "subdevicenames",
"role": "assistant"
}
] |
def x(shape) ->Iterator[Tuple[int, ...]]:
return itertools.product(*(range(nmb) for nmb in shape))
|
product
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(shape) ->Iterator[Tuple[int, ...]]:\n return itertools.product(*(range(nmb) for nmb in shape))\n",
"role": "user"
},
{
"content": "product",
"role": "assistant"
}
] |
def x(self, ncfile, timegrid_data) ->None:
array = query_array(ncfile, self.name)
idxs: Tuple[Any] = (slice(None),)
subdev2index = self.query_subdevice2index(ncfile)
for devicename, seq in self.sequences.items():
if seq.NDIM:
if self._timeaxis:
subshape = (array.shape[1],) + seq.shape
else:
subshape = (array.shape[0],) + seq.shape
subarray = numpy.empty(subshape)
temp = devicename + '_'
for prod in self._product(seq.shape):
station = temp + '_'.join(str(idx) for idx in prod)
idx0 = subdev2index.get_index(station)
subarray[idxs + prod] = array[self.get_timeplaceslice(idx0)]
else:
idx = subdev2index.get_index(devicename)
subarray = array[self.get_timeplaceslice(idx)]
seq.series = seq.adjust_series(timegrid_data, subarray)
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ncfile, timegrid_data) ->None:\n array = query_array(ncfile, self.name)\n idxs: Tuple[Any] = (slice(None),)\n subdev2index = self.query_subdevice2index(ncfile)\n for devicename, seq in self.sequences.items():\n if seq.NDIM:\n if self._timeaxis:\n subshape = (array.shape[1],) + seq.shape\n else:\n subshape = (array.shape[0],) + seq.shape\n subarray = numpy.empty(subshape)\n temp = devicename + '_'\n for prod in self._product(seq.shape):\n station = temp + '_'.join(str(idx) for idx in prod)\n idx0 = subdev2index.get_index(station)\n subarray[idxs + prod] = array[self.get_timeplaceslice(idx0)]\n else:\n idx = subdev2index.get_index(devicename)\n subarray = array[self.get_timeplaceslice(idx)]\n seq.series = seq.adjust_series(timegrid_data, subarray)\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self, ncfile) ->None:
self.insert_subdevices(ncfile)
create_variable(ncfile, self.name, 'f8', self.dimensions)
ncfile[self.name][:] = self.array
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ncfile) ->None:\n self.insert_subdevices(ncfile)\n create_variable(ncfile, self.name, 'f8', self.dimensions)\n ncfile[self.name][:] = self.array\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self):
maxdt = self.subpars.pars.control.maxdt
seconds = self.simulationstep.seconds
self.value = numpy.ceil(seconds / maxdt)
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n maxdt = self.subpars.pars.control.maxdt\n seconds = self.simulationstep.seconds\n self.value = numpy.ceil(seconds / maxdt)\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self):
con = self.subpars.pars.control
der = self.subpars
for toy, qs in con.q:
setattr(self, str(toy), 2.0 * con.v + der.seconds / der.nmbsubsteps *
qs)
self.refresh()
|
update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n con = self.subpars.pars.control\n der = self.subpars\n for toy, qs in con.q:\n setattr(self, str(toy), 2.0 * con.v + der.seconds / der.nmbsubsteps *\n qs)\n self.refresh()\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x() ->Tuple[devicetools.Nodes, devicetools.Elements]:
from hydpy import TestIO
TestIO.clear()
from hydpy.core.filetools import SequenceManager
hydpy.pub.sequencemanager = SequenceManager()
with TestIO():
hydpy.pub.sequencemanager.inputdirpath = 'inputpath'
hydpy.pub.sequencemanager.fluxdirpath = 'outputpath'
hydpy.pub.sequencemanager.statedirpath = 'outputpath'
hydpy.pub.sequencemanager.nodedirpath = 'nodepath'
hydpy.pub.timegrids = '2000-01-01', '2000-01-05', '1d'
from hydpy import Node, Nodes, Element, Elements, prepare_model
node1 = Node('node1')
node2 = Node('node2', variable='T')
nodes = Nodes(node1, node2)
element1 = Element('element1', outlets=node1)
element2 = Element('element2', outlets=node1)
element3 = Element('element3', outlets=node1)
elements = Elements(element1, element2, element3)
from hydpy.models import lland_v1, lland_v2
element1.model = prepare_model(lland_v1)
element2.model = prepare_model(lland_v1)
element3.model = prepare_model(lland_v2)
from hydpy.models.lland import ACKER
for idx, element in enumerate(elements):
parameters = element.model.parameters
parameters.control.nhru(idx + 1)
parameters.control.lnk(ACKER)
parameters.derived.absfhru(10.0)
with hydpy.pub.options.printprogress(False):
nodes.prepare_simseries()
elements.prepare_inputseries()
elements.prepare_fluxseries()
elements.prepare_stateseries()
def x(seq, value1_):
value2_ = value1_ + len(seq.series.flatten())
values_ = numpy.arange(value1_, value2_, dtype=float)
seq.testarray = values_.reshape(seq.seriesshape)
seq.series = seq.testarray.copy()
return value2_
import numpy
value1 = 0
for subname, seqname in zip(['inputs', 'fluxes', 'states'], ['nied',
'nkor', 'bowa']):
for element in elements:
subseqs = getattr(element.model.sequences, subname)
value1 = init_values(getattr(subseqs, seqname), value1)
for node in nodes:
value1 = init_values(node.sequences.sim, value1)
return nodes, elements
|
prepare_io_example_1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x() ->Tuple[devicetools.Nodes, devicetools.Elements]:\n from hydpy import TestIO\n TestIO.clear()\n from hydpy.core.filetools import SequenceManager\n hydpy.pub.sequencemanager = SequenceManager()\n with TestIO():\n hydpy.pub.sequencemanager.inputdirpath = 'inputpath'\n hydpy.pub.sequencemanager.fluxdirpath = 'outputpath'\n hydpy.pub.sequencemanager.statedirpath = 'outputpath'\n hydpy.pub.sequencemanager.nodedirpath = 'nodepath'\n hydpy.pub.timegrids = '2000-01-01', '2000-01-05', '1d'\n from hydpy import Node, Nodes, Element, Elements, prepare_model\n node1 = Node('node1')\n node2 = Node('node2', variable='T')\n nodes = Nodes(node1, node2)\n element1 = Element('element1', outlets=node1)\n element2 = Element('element2', outlets=node1)\n element3 = Element('element3', outlets=node1)\n elements = Elements(element1, element2, element3)\n from hydpy.models import lland_v1, lland_v2\n element1.model = prepare_model(lland_v1)\n element2.model = prepare_model(lland_v1)\n element3.model = prepare_model(lland_v2)\n from hydpy.models.lland import ACKER\n for idx, element in enumerate(elements):\n parameters = element.model.parameters\n parameters.control.nhru(idx + 1)\n parameters.control.lnk(ACKER)\n parameters.derived.absfhru(10.0)\n with hydpy.pub.options.printprogress(False):\n nodes.prepare_simseries()\n elements.prepare_inputseries()\n elements.prepare_fluxseries()\n elements.prepare_stateseries()\n\n def x(seq, value1_):\n value2_ = value1_ + len(seq.series.flatten())\n values_ = numpy.arange(value1_, value2_, dtype=float)\n seq.testarray = values_.reshape(seq.seriesshape)\n seq.series = seq.testarray.copy()\n return value2_\n import numpy\n value1 = 0\n for subname, seqname in zip(['inputs', 'fluxes', 'states'], ['nied',\n 'nkor', 'bowa']):\n for element in elements:\n subseqs = getattr(element.model.sequences, subname)\n value1 = init_values(getattr(subseqs, seqname), value1)\n for node in nodes:\n value1 = init_values(node.sequences.sim, value1)\n return nodes, elements\n",
"role": "user"
},
{
"content": "prepare_io_example_1",
"role": "assistant"
}
] |
def x() ->None:
testtools.TestIO.clear()
shutil.copytree(os.path.join(data.__path__[0], 'LahnH'), os.path.join(
iotesting.__path__[0], 'LahnH'))
seqpath = os.path.join(iotesting.__path__[0], 'LahnH', 'series')
for folder in ('output', 'node', 'temp'):
os.makedirs(os.path.join(seqpath, folder))
|
prepare_full_example_1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x() ->None:\n testtools.TestIO.clear()\n shutil.copytree(os.path.join(data.__path__[0], 'LahnH'), os.path.join(\n iotesting.__path__[0], 'LahnH'))\n seqpath = os.path.join(iotesting.__path__[0], 'LahnH', 'series')\n for folder in ('output', 'node', 'temp'):\n os.makedirs(os.path.join(seqpath, folder))\n",
"role": "user"
},
{
"content": "prepare_full_example_1",
"role": "assistant"
}
] |
def x(lastdate='1996-01-05') ->(hydpytools.HydPy, hydpy.pub, testtools.TestIO):
prepare_full_example_1()
with testtools.TestIO():
hp = hydpytools.HydPy('LahnH')
hydpy.pub.timegrids = '1996-01-01', lastdate, '1d'
hp.prepare_everything()
return hp, hydpy.pub, testtools.TestIO
|
prepare_full_example_2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lastdate='1996-01-05') ->(hydpytools.HydPy, hydpy.pub, testtools.TestIO):\n prepare_full_example_1()\n with testtools.TestIO():\n hp = hydpytools.HydPy('LahnH')\n hydpy.pub.timegrids = '1996-01-01', lastdate, '1d'\n hp.prepare_everything()\n return hp, hydpy.pub, testtools.TestIO\n",
"role": "user"
},
{
"content": "prepare_full_example_2",
"role": "assistant"
}
] |
def x(self, pc, radius):
postalcodes = self.get(pc)
if postalcodes is None:
raise PostalCodeNotFoundException(
"Could not find postal code you're searching for.")
else:
pc = postalcodes[0]
radius = float(radius)
"""
Bounding box calculations updated from pyzipcode
"""
earth_radius = 6371
dlat = radius / earth_radius
dlon = asin(sin(dlat) / cos(radians(pc.latitude)))
lat_delta = degrees(dlat)
lon_delta = degrees(dlon)
if lat_delta < 0:
lat_range = pc.latitude + lat_delta, pc.latitude - lat_delta
else:
lat_range = pc.latitude - lat_delta, pc.latitude + lat_delta
long_range = pc.longitude - lat_delta, pc.longitude + lon_delta
return format_result(self.conn_manager.query(PC_RANGE_QUERY % (
long_range[0], long_range[1], lat_range[0], lat_range[1])))
|
get_postalcodes_around_radius
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pc, radius):\n postalcodes = self.get(pc)\n if postalcodes is None:\n raise PostalCodeNotFoundException(\n \"Could not find postal code you're searching for.\")\n else:\n pc = postalcodes[0]\n radius = float(radius)\n \"\"\"\n Bounding box calculations updated from pyzipcode\n \"\"\"\n earth_radius = 6371\n dlat = radius / earth_radius\n dlon = asin(sin(dlat) / cos(radians(pc.latitude)))\n lat_delta = degrees(dlat)\n lon_delta = degrees(dlon)\n if lat_delta < 0:\n lat_range = pc.latitude + lat_delta, pc.latitude - lat_delta\n else:\n lat_range = pc.latitude - lat_delta, pc.latitude + lat_delta\n long_range = pc.longitude - lat_delta, pc.longitude + lon_delta\n return format_result(self.conn_manager.query(PC_RANGE_QUERY % (\n long_range[0], long_range[1], lat_range[0], lat_range[1])))\n",
"role": "user"
},
{
"content": "get_postalcodes_around_radius",
"role": "assistant"
}
] |
def x(ids='shots'):
url = (
'http://stats.nba.com/stats/commonallplayers?IsOnlyCurrentSeason=0&LeagueID=00&Season=2015-16'
)
response = requests.get(url, headers=HEADERS)
response.raise_for_status()
headers = response.json()['resultSets'][0]['headers']
players = response.json()['resultSets'][0]['rowSet']
df = pd.DataFrame(players, columns=headers)
if '0.17' in pd.__version__:
df = df.apply(pd.to_numeric, args=('ignore',))
else:
df = df.convert_objects(convert_numeric=True)
if ids == 'shots':
df = df.query('(FROM_YEAR >= 2001) or (TO_YEAR >= 2001)')
df = df.reset_index(drop=True)
df = df.iloc[:, 0:2]
return df
if ids == 'all_players':
df = df.iloc[:, 0:2]
return df
if ids == 'all_data':
return df
else:
er = (
"Invalid 'ids' value. It must be 'shots', 'all_shots', or 'all_data'."
)
raise ValueError(er)
|
get_all_player_ids
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ids='shots'):\n url = (\n 'http://stats.nba.com/stats/commonallplayers?IsOnlyCurrentSeason=0&LeagueID=00&Season=2015-16'\n )\n response = requests.get(url, headers=HEADERS)\n response.raise_for_status()\n headers = response.json()['resultSets'][0]['headers']\n players = response.json()['resultSets'][0]['rowSet']\n df = pd.DataFrame(players, columns=headers)\n if '0.17' in pd.__version__:\n df = df.apply(pd.to_numeric, args=('ignore',))\n else:\n df = df.convert_objects(convert_numeric=True)\n if ids == 'shots':\n df = df.query('(FROM_YEAR >= 2001) or (TO_YEAR >= 2001)')\n df = df.reset_index(drop=True)\n df = df.iloc[:, 0:2]\n return df\n if ids == 'all_players':\n df = df.iloc[:, 0:2]\n return df\n if ids == 'all_data':\n return df\n else:\n er = (\n \"Invalid 'ids' value. It must be 'shots', 'all_shots', or 'all_data'.\"\n )\n raise ValueError(er)\n",
"role": "user"
},
{
"content": "get_all_player_ids",
"role": "assistant"
}
] |
def x(player):
players_df = get_all_player_ids('all_data')
player = players_df[players_df.DISPLAY_LAST_COMMA_FIRST == player]
if len(player) == 0:
er = 'Invalid player name passed or there is no player with that name.'
raise ValueError(er)
player_id = player.PERSON_ID.values
return player_id
|
get_player_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(player):\n players_df = get_all_player_ids('all_data')\n player = players_df[players_df.DISPLAY_LAST_COMMA_FIRST == player]\n if len(player) == 0:\n er = 'Invalid player name passed or there is no player with that name.'\n raise ValueError(er)\n player_id = player.PERSON_ID.values\n return player_id\n",
"role": "user"
},
{
"content": "get_player_id",
"role": "assistant"
}
] |
def x():
df = get_all_player_ids('all_data')
df = pd.DataFrame({'TEAM_NAME': df.TEAM_NAME.unique(), 'TEAM_ID': df.
TEAM_ID.unique()})
return df
|
get_all_team_ids
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n df = get_all_player_ids('all_data')\n df = pd.DataFrame({'TEAM_NAME': df.TEAM_NAME.unique(), 'TEAM_ID': df.\n TEAM_ID.unique()})\n return df\n",
"role": "user"
},
{
"content": "get_all_team_ids",
"role": "assistant"
}
] |
def x(team_name):
df = get_all_team_ids()
df = df[df.TEAM_NAME == team_name]
if len(df) == 0:
er = 'Invalid team name or there is no team with that name.'
raise ValueError(er)
team_id = df.TEAM_ID.iloc[0]
return team_id
|
get_team_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(team_name):\n df = get_all_team_ids()\n df = df[df.TEAM_NAME == team_name]\n if len(df) == 0:\n er = 'Invalid team name or there is no team with that name.'\n raise ValueError(er)\n team_id = df.TEAM_ID.iloc[0]\n return team_id\n",
"role": "user"
},
{
"content": "get_team_id",
"role": "assistant"
}
] |
def x(player_id):
url = 'http://stats.nba.com/media/players/230x185/' + str(player_id
) + '.png'
img_file = str(player_id) + '.png'
pic = urlretrieve(url, img_file)
player_img = plt.imread(pic[0])
return player_img
|
get_player_img
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(player_id):\n url = 'http://stats.nba.com/media/players/230x185/' + str(player_id\n ) + '.png'\n img_file = str(player_id) + '.png'\n pic = urlretrieve(url, img_file)\n player_img = plt.imread(pic[0])\n return player_img\n",
"role": "user"
},
{
"content": "get_player_img",
"role": "assistant"
}
] |
def x(self):
logs = self.response.json()['resultSets'][0]['rowSet']
headers = self.response.json()['resultSets'][0]['headers']
df = pd.DataFrame(logs, columns=headers)
df.GAME_DATE = pd.to_datetime(df.GAME_DATE)
return df
|
get_game_logs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n logs = self.response.json()['resultSets'][0]['rowSet']\n headers = self.response.json()['resultSets'][0]['headers']\n df = pd.DataFrame(logs, columns=headers)\n df.GAME_DATE = pd.to_datetime(df.GAME_DATE)\n return df\n",
"role": "user"
},
{
"content": "get_game_logs",
"role": "assistant"
}
] |
def x(self, date):
df = self.get_game_logs()
game_id = df[df.GAME_DATE == date].Game_ID.values[0]
return game_id
|
get_game_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, date):\n df = self.get_game_logs()\n game_id = df[df.GAME_DATE == date].Game_ID.values[0]\n return game_id\n",
"role": "user"
},
{
"content": "get_game_id",
"role": "assistant"
}
] |
def x(self, parameters):
self.url_paramaters.update(parameters)
self.response = requests.get(self.base_url, params=self.url_paramaters,
headers=HEADERS)
self.response.raise_for_status()
return self
|
update_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameters):\n self.url_paramaters.update(parameters)\n self.response = requests.get(self.base_url, params=self.url_paramaters,\n headers=HEADERS)\n self.response.raise_for_status()\n return self\n",
"role": "user"
},
{
"content": "update_params",
"role": "assistant"
}
] |
def x(self):
shots = self.response.json()['resultSets'][0]['rowSet']
headers = self.response.json()['resultSets'][0]['headers']
return pd.DataFrame(shots, columns=headers)
|
get_shots
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n shots = self.response.json()['resultSets'][0]['rowSet']\n headers = self.response.json()['resultSets'][0]['headers']\n return pd.DataFrame(shots, columns=headers)\n",
"role": "user"
},
{
"content": "get_shots",
"role": "assistant"
}
] |
def x(self):
self._build_socket()
self._connect_socket()
self._build_file_socket()
self._send_connect_msg()
|
connect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._build_socket()\n self._connect_socket()\n self._build_file_socket()\n self._send_connect_msg()\n",
"role": "user"
},
{
"content": "connect",
"role": "assistant"
}
] |
def x(self, subject, callback, queue=''):
s = Subscription(sid=self._next_sid, subject=subject, queue=queue,
callback=callback, connetion=self)
self._subscriptions[s.sid] = s
self._send('SUB %s %s %d' % (s.subject, s.queue, s.sid))
self._next_sid += 1
return s
|
subscribe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subject, callback, queue=''):\n s = Subscription(sid=self._next_sid, subject=subject, queue=queue,\n callback=callback, connetion=self)\n self._subscriptions[s.sid] = s\n self._send('SUB %s %s %d' % (s.subject, s.queue, s.sid))\n self._next_sid += 1\n return s\n",
"role": "user"
},
{
"content": "subscribe",
"role": "assistant"
}
] |
def x(self, subscription, max=None):
if max is None:
self._send('UNSUB %d' % subscription.sid)
self._subscriptions.pop(subscription.sid)
else:
subscription.max = max
self._send('UNSUB %d %s' % (subscription.sid, max))
|
unsubscribe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subscription, max=None):\n if max is None:\n self._send('UNSUB %d' % subscription.sid)\n self._subscriptions.pop(subscription.sid)\n else:\n subscription.max = max\n self._send('UNSUB %d %s' % (subscription.sid, max))\n",
"role": "user"
},
{
"content": "unsubscribe",
"role": "assistant"
}
] |
def x(self, subject, msg, reply=None):
if msg is None:
msg = ''
if reply is None:
command = 'PUB %s %d' % (subject, len(msg))
else:
command = 'PUB %s %s %d' % (subject, reply, len(msg))
self._send(command)
self._send(msg)
|
publish
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subject, msg, reply=None):\n if msg is None:\n msg = ''\n if reply is None:\n command = 'PUB %s %d' % (subject, len(msg))\n else:\n command = 'PUB %s %s %d' % (subject, reply, len(msg))\n self._send(command)\n self._send(msg)\n",
"role": "user"
},
{
"content": "publish",
"role": "assistant"
}
] |
def x(self, subject, callback, msg=None):
inbox = self._build_inbox()
s = self.subscribe(inbox, callback)
self.unsubscribe(s, 1)
self.publish(subject, msg, inbox)
return s
|
request
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, subject, callback, msg=None):\n inbox = self._build_inbox()\n s = self.subscribe(inbox, callback)\n self.unsubscribe(s, 1)\n self.publish(subject, msg, inbox)\n return s\n",
"role": "user"
},
{
"content": "request",
"role": "assistant"
}
] |
def x(self, duration=None, count=0):
start = time.time()
total = 0
while True:
type, result = self._recv(MSG, PING, OK)
if type is MSG:
total += 1
if self._handle_msg(result) is False:
break
if count and total >= count:
break
elif type is PING:
self._handle_ping()
if duration and time.time() - start > duration:
break
|
wait
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, duration=None, count=0):\n start = time.time()\n total = 0\n while True:\n type, result = self._recv(MSG, PING, OK)\n if type is MSG:\n total += 1\n if self._handle_msg(result) is False:\n break\n if count and total >= count:\n break\n elif type is PING:\n self._handle_ping()\n if duration and time.time() - start > duration:\n break\n",
"role": "user"
},
{
"content": "wait",
"role": "assistant"
}
] |
def x(ax=None, color='gray', lw=1, outer_lines=False):
if ax is None:
ax = plt.gca()
hoop = Circle((0, 0), radius=7.5, linewidth=lw, color=color, fill=False)
backboard = Rectangle((-30, -12.5), 60, 0, linewidth=lw, color=color)
outer_box = Rectangle((-80, -47.5), 160, 190, linewidth=lw, color=color,
fill=False)
inner_box = Rectangle((-60, -47.5), 120, 190, linewidth=lw, color=color,
fill=False)
top_free_throw = Arc((0, 142.5), 120, 120, theta1=0, theta2=180,
linewidth=lw, color=color, fill=False)
bottom_free_throw = Arc((0, 142.5), 120, 120, theta1=180, theta2=0,
linewidth=lw, color=color, linestyle='dashed')
restricted = Arc((0, 0), 80, 80, theta1=0, theta2=180, linewidth=lw,
color=color)
corner_three_a = Rectangle((-220, -47.5), 0, 140, linewidth=lw, color=color
)
corner_three_b = Rectangle((220, -47.5), 0, 140, linewidth=lw, color=color)
three_arc = Arc((0, 0), 475, 475, theta1=22, theta2=158, linewidth=lw,
color=color)
center_outer_arc = Arc((0, 422.5), 120, 120, theta1=180, theta2=0,
linewidth=lw, color=color)
center_inner_arc = Arc((0, 422.5), 40, 40, theta1=180, theta2=0,
linewidth=lw, color=color)
court_elements = [hoop, backboard, outer_box, inner_box, top_free_throw,
bottom_free_throw, restricted, corner_three_a, corner_three_b,
three_arc, center_outer_arc, center_inner_arc]
if outer_lines:
outer_lines = Rectangle((-250, -47.5), 500, 470, linewidth=lw,
color=color, fill=False)
court_elements.append(outer_lines)
for element in court_elements:
ax.add_patch(element)
return ax
|
draw_court
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ax=None, color='gray', lw=1, outer_lines=False):\n if ax is None:\n ax = plt.gca()\n hoop = Circle((0, 0), radius=7.5, linewidth=lw, color=color, fill=False)\n backboard = Rectangle((-30, -12.5), 60, 0, linewidth=lw, color=color)\n outer_box = Rectangle((-80, -47.5), 160, 190, linewidth=lw, color=color,\n fill=False)\n inner_box = Rectangle((-60, -47.5), 120, 190, linewidth=lw, color=color,\n fill=False)\n top_free_throw = Arc((0, 142.5), 120, 120, theta1=0, theta2=180,\n linewidth=lw, color=color, fill=False)\n bottom_free_throw = Arc((0, 142.5), 120, 120, theta1=180, theta2=0,\n linewidth=lw, color=color, linestyle='dashed')\n restricted = Arc((0, 0), 80, 80, theta1=0, theta2=180, linewidth=lw,\n color=color)\n corner_three_a = Rectangle((-220, -47.5), 0, 140, linewidth=lw, color=color\n )\n corner_three_b = Rectangle((220, -47.5), 0, 140, linewidth=lw, color=color)\n three_arc = Arc((0, 0), 475, 475, theta1=22, theta2=158, linewidth=lw,\n color=color)\n center_outer_arc = Arc((0, 422.5), 120, 120, theta1=180, theta2=0,\n linewidth=lw, color=color)\n center_inner_arc = Arc((0, 422.5), 40, 40, theta1=180, theta2=0,\n linewidth=lw, color=color)\n court_elements = [hoop, backboard, outer_box, inner_box, top_free_throw,\n bottom_free_throw, restricted, corner_three_a, corner_three_b,\n three_arc, center_outer_arc, center_inner_arc]\n if outer_lines:\n outer_lines = Rectangle((-250, -47.5), 500, 470, linewidth=lw,\n color=color, fill=False)\n court_elements.append(outer_lines)\n for element in court_elements:\n ax.add_patch(element)\n return ax\n",
"role": "user"
},
{
"content": "draw_court",
"role": "assistant"
}
] |
def x(x, y, kind='scatter', title='', color='b', cmap=None, xlim=(-250, 250
), ylim=(422.5, -47.5), court_color='gray', court_lw=1, outer_lines=
False, flip_court=False, kde_shade=True, gridsize=None, ax=None,
despine=False, **kwargs):
if ax is None:
ax = plt.gca()
if cmap is None:
cmap = sns.light_palette(color, as_cmap=True)
if not flip_court:
ax.set_xlim(xlim)
ax.set_ylim(ylim)
else:
ax.set_xlim(xlim[::-1])
ax.set_ylim(ylim[::-1])
ax.tick_params(labelbottom='off', labelleft='off')
ax.set_title(title, fontsize=18)
draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)
if kind == 'scatter':
ax.scatter(x, y, c=color, **kwargs)
elif kind == 'kde':
sns.kdeplot(x, y, shade=kde_shade, cmap=cmap, ax=ax, **kwargs)
ax.set_xlabel('')
ax.set_ylabel('')
elif kind == 'hex':
if gridsize is None:
from seaborn.distributions import _freedman_diaconis_bins
x_bin = _freedman_diaconis_bins(x)
y_bin = _freedman_diaconis_bins(y)
gridsize = int(np.mean([x_bin, y_bin]))
ax.hexbin(x, y, gridsize=gridsize, cmap=cmap, **kwargs)
else:
raise ValueError("kind must be 'scatter', 'kde', or 'hex'.")
for spine in ax.spines:
ax.spines[spine].set_lw(court_lw)
ax.spines[spine].set_color(court_color)
if despine:
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
return ax
|
shot_chart
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, kind='scatter', title='', color='b', cmap=None, xlim=(-250, 250\n ), ylim=(422.5, -47.5), court_color='gray', court_lw=1, outer_lines=\n False, flip_court=False, kde_shade=True, gridsize=None, ax=None,\n despine=False, **kwargs):\n if ax is None:\n ax = plt.gca()\n if cmap is None:\n cmap = sns.light_palette(color, as_cmap=True)\n if not flip_court:\n ax.set_xlim(xlim)\n ax.set_ylim(ylim)\n else:\n ax.set_xlim(xlim[::-1])\n ax.set_ylim(ylim[::-1])\n ax.tick_params(labelbottom='off', labelleft='off')\n ax.set_title(title, fontsize=18)\n draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)\n if kind == 'scatter':\n ax.scatter(x, y, c=color, **kwargs)\n elif kind == 'kde':\n sns.kdeplot(x, y, shade=kde_shade, cmap=cmap, ax=ax, **kwargs)\n ax.set_xlabel('')\n ax.set_ylabel('')\n elif kind == 'hex':\n if gridsize is None:\n from seaborn.distributions import _freedman_diaconis_bins\n x_bin = _freedman_diaconis_bins(x)\n y_bin = _freedman_diaconis_bins(y)\n gridsize = int(np.mean([x_bin, y_bin]))\n ax.hexbin(x, y, gridsize=gridsize, cmap=cmap, **kwargs)\n else:\n raise ValueError(\"kind must be 'scatter', 'kde', or 'hex'.\")\n for spine in ax.spines:\n ax.spines[spine].set_lw(court_lw)\n ax.spines[spine].set_color(court_color)\n if despine:\n ax.spines['top'].set_visible(False)\n ax.spines['bottom'].set_visible(False)\n ax.spines['right'].set_visible(False)\n ax.spines['left'].set_visible(False)\n return ax\n",
"role": "user"
},
{
"content": "shot_chart",
"role": "assistant"
}
] |
def x(x, y, data=None, joint_type='scatter', title='', joint_color='b',
cmap=None, xlim=(-250, 250), ylim=(422.5, -47.5), court_color='gray',
court_lw=1, outer_lines=False, flip_court=False, joint_kde_shade=True,
gridsize=None, marginals_color='b', marginals_type='both',
marginals_kde_shade=True, size=(12, 11), space=0, despine=False,
joint_kws=None, marginal_kws=None, **kwargs):
if joint_kws is None:
joint_kws = {}
joint_kws.update(kwargs)
if marginal_kws is None:
marginal_kws = {}
if cmap is None:
cmap = sns.light_palette(joint_color, as_cmap=True)
if flip_court:
xlim = xlim[::-1]
ylim = ylim[::-1]
grid = sns.JointGrid(x=x, y=y, data=data, xlim=xlim, ylim=ylim, space=space
)
if joint_type == 'scatter':
grid = grid.plot_joint(plt.scatter, color=joint_color, **joint_kws)
elif joint_type == 'kde':
grid = grid.plot_joint(sns.kdeplot, cmap=cmap, shade=
joint_kde_shade, **joint_kws)
elif joint_type == 'hex':
if gridsize is None:
from seaborn.distributions import _freedman_diaconis_bins
x_bin = _freedman_diaconis_bins(x)
y_bin = _freedman_diaconis_bins(y)
gridsize = int(np.mean([x_bin, y_bin]))
grid = grid.plot_joint(plt.hexbin, gridsize=gridsize, cmap=cmap, **
joint_kws)
else:
raise ValueError("joint_type must be 'scatter', 'kde', or 'hex'.")
if marginals_type == 'both':
grid = grid.plot_marginals(sns.distplot, color=marginals_color, **
marginal_kws)
elif marginals_type == 'hist':
grid = grid.plot_marginals(sns.distplot, color=marginals_color, kde
=False, **marginal_kws)
elif marginals_type == 'kde':
grid = grid.plot_marginals(sns.kdeplot, color=marginals_color,
shade=marginals_kde_shade, **marginal_kws)
else:
raise ValueError("marginals_type must be 'both', 'hist', or 'kde'.")
grid.fig.set_size_inches(size)
ax = grid.fig.get_axes()[0]
draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)
grid.set_axis_labels(xlabel='', ylabel='')
ax.tick_params(labelbottom='off', labelleft='off')
ax.set_title(title, y=1.2, fontsize=18)
for spine in ax.spines:
ax.spines[spine].set_lw(court_lw)
ax.spines[spine].set_color(court_color)
grid.ax_marg_x.spines[spine].set_lw(court_lw)
grid.ax_marg_x.spines[spine].set_color(court_color)
grid.ax_marg_y.spines[spine].set_lw(court_lw)
grid.ax_marg_y.spines[spine].set_color(court_color)
if despine:
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
return grid
|
shot_chart_jointgrid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, data=None, joint_type='scatter', title='', joint_color='b',\n cmap=None, xlim=(-250, 250), ylim=(422.5, -47.5), court_color='gray',\n court_lw=1, outer_lines=False, flip_court=False, joint_kde_shade=True,\n gridsize=None, marginals_color='b', marginals_type='both',\n marginals_kde_shade=True, size=(12, 11), space=0, despine=False,\n joint_kws=None, marginal_kws=None, **kwargs):\n if joint_kws is None:\n joint_kws = {}\n joint_kws.update(kwargs)\n if marginal_kws is None:\n marginal_kws = {}\n if cmap is None:\n cmap = sns.light_palette(joint_color, as_cmap=True)\n if flip_court:\n xlim = xlim[::-1]\n ylim = ylim[::-1]\n grid = sns.JointGrid(x=x, y=y, data=data, xlim=xlim, ylim=ylim, space=space\n )\n if joint_type == 'scatter':\n grid = grid.plot_joint(plt.scatter, color=joint_color, **joint_kws)\n elif joint_type == 'kde':\n grid = grid.plot_joint(sns.kdeplot, cmap=cmap, shade=\n joint_kde_shade, **joint_kws)\n elif joint_type == 'hex':\n if gridsize is None:\n from seaborn.distributions import _freedman_diaconis_bins\n x_bin = _freedman_diaconis_bins(x)\n y_bin = _freedman_diaconis_bins(y)\n gridsize = int(np.mean([x_bin, y_bin]))\n grid = grid.plot_joint(plt.hexbin, gridsize=gridsize, cmap=cmap, **\n joint_kws)\n else:\n raise ValueError(\"joint_type must be 'scatter', 'kde', or 'hex'.\")\n if marginals_type == 'both':\n grid = grid.plot_marginals(sns.distplot, color=marginals_color, **\n marginal_kws)\n elif marginals_type == 'hist':\n grid = grid.plot_marginals(sns.distplot, color=marginals_color, kde\n =False, **marginal_kws)\n elif marginals_type == 'kde':\n grid = grid.plot_marginals(sns.kdeplot, color=marginals_color,\n shade=marginals_kde_shade, **marginal_kws)\n else:\n raise ValueError(\"marginals_type must be 'both', 'hist', or 'kde'.\")\n grid.fig.set_size_inches(size)\n ax = grid.fig.get_axes()[0]\n draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)\n grid.set_axis_labels(xlabel='', ylabel='')\n ax.tick_params(labelbottom='off', labelleft='off')\n ax.set_title(title, y=1.2, fontsize=18)\n for spine in ax.spines:\n ax.spines[spine].set_lw(court_lw)\n ax.spines[spine].set_color(court_color)\n grid.ax_marg_x.spines[spine].set_lw(court_lw)\n grid.ax_marg_x.spines[spine].set_color(court_color)\n grid.ax_marg_y.spines[spine].set_lw(court_lw)\n grid.ax_marg_y.spines[spine].set_color(court_color)\n if despine:\n ax.spines['top'].set_visible(False)\n ax.spines['bottom'].set_visible(False)\n ax.spines['right'].set_visible(False)\n ax.spines['left'].set_visible(False)\n return grid\n",
"role": "user"
},
{
"content": "shot_chart_jointgrid",
"role": "assistant"
}
] |
def x(x, y, data=None, kind='scatter', title='', color='b', cmap=None, xlim
=(-250, 250), ylim=(422.5, -47.5), court_color='gray', court_lw=1,
outer_lines=False, flip_court=False, size=(12, 11), space=0, despine=
False, joint_kws=None, marginal_kws=None, **kwargs):
if cmap is None:
cmap = sns.light_palette(color, as_cmap=True)
if kind not in ['scatter', 'kde', 'hex']:
raise ValueError("kind must be 'scatter', 'kde', or 'hex'.")
grid = sns.jointplot(x=x, y=y, data=data, stat_func=None, kind=kind,
space=0, color=color, cmap=cmap, joint_kws=joint_kws, marginal_kws=
marginal_kws, **kwargs)
grid.fig.set_size_inches(size)
ax = grid.ax_joint
if not flip_court:
ax.set_xlim(xlim)
ax.set_ylim(ylim)
else:
ax.set_xlim(xlim[::-1])
ax.set_ylim(ylim[::-1])
draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)
ax.set_xlabel('')
ax.set_ylabel('')
ax.tick_params(labelbottom='off', labelleft='off')
ax.set_title(title, y=1.2, fontsize=18)
for spine in ax.spines:
ax.spines[spine].set_lw(court_lw)
ax.spines[spine].set_color(court_color)
grid.ax_marg_x.spines[spine].set_lw(court_lw)
grid.ax_marg_x.spines[spine].set_color(court_color)
grid.ax_marg_y.spines[spine].set_lw(court_lw)
grid.ax_marg_y.spines[spine].set_color(court_color)
if despine:
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
return grid
|
shot_chart_jointplot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, data=None, kind='scatter', title='', color='b', cmap=None, xlim\n =(-250, 250), ylim=(422.5, -47.5), court_color='gray', court_lw=1,\n outer_lines=False, flip_court=False, size=(12, 11), space=0, despine=\n False, joint_kws=None, marginal_kws=None, **kwargs):\n if cmap is None:\n cmap = sns.light_palette(color, as_cmap=True)\n if kind not in ['scatter', 'kde', 'hex']:\n raise ValueError(\"kind must be 'scatter', 'kde', or 'hex'.\")\n grid = sns.jointplot(x=x, y=y, data=data, stat_func=None, kind=kind,\n space=0, color=color, cmap=cmap, joint_kws=joint_kws, marginal_kws=\n marginal_kws, **kwargs)\n grid.fig.set_size_inches(size)\n ax = grid.ax_joint\n if not flip_court:\n ax.set_xlim(xlim)\n ax.set_ylim(ylim)\n else:\n ax.set_xlim(xlim[::-1])\n ax.set_ylim(ylim[::-1])\n draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)\n ax.set_xlabel('')\n ax.set_ylabel('')\n ax.tick_params(labelbottom='off', labelleft='off')\n ax.set_title(title, y=1.2, fontsize=18)\n for spine in ax.spines:\n ax.spines[spine].set_lw(court_lw)\n ax.spines[spine].set_color(court_color)\n grid.ax_marg_x.spines[spine].set_lw(court_lw)\n grid.ax_marg_x.spines[spine].set_color(court_color)\n grid.ax_marg_y.spines[spine].set_lw(court_lw)\n grid.ax_marg_y.spines[spine].set_color(court_color)\n if despine:\n ax.spines['top'].set_visible(False)\n ax.spines['bottom'].set_visible(False)\n ax.spines['right'].set_visible(False)\n ax.spines['left'].set_visible(False)\n return grid\n",
"role": "user"
},
{
"content": "shot_chart_jointplot",
"role": "assistant"
}
] |
def x(x, y, z, title='', cmap=plt.cm.YlOrRd, bins=20, xlim=(-250, 250),
ylim=(422.5, -47.5), facecolor='lightgray', facecolor_alpha=0.4,
court_color='black', court_lw=0.5, outer_lines=False, flip_court=False,
ax=None, **kwargs):
mean, xedges, yedges, binnumber = binned_statistic_2d(x=x, y=y, values=
z, statistic='mean', bins=bins)
if ax is None:
ax = plt.gca()
if not flip_court:
ax.set_xlim(xlim)
ax.set_ylim(ylim)
else:
ax.set_xlim(xlim[::-1])
ax.set_ylim(ylim[::-1])
ax.tick_params(labelbottom='off', labelleft='off')
ax.set_title(title, fontsize=18)
ax.patch.set_facecolor(facecolor)
ax.patch.set_alpha(facecolor_alpha)
draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)
heatmap = ax.imshow(mean.T, origin='lower', extent=[xedges[0], xedges[-
1], yedges[0], yedges[-1]], interpolation='nearest', cmap=cmap)
return heatmap
|
heatmap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, z, title='', cmap=plt.cm.YlOrRd, bins=20, xlim=(-250, 250),\n ylim=(422.5, -47.5), facecolor='lightgray', facecolor_alpha=0.4,\n court_color='black', court_lw=0.5, outer_lines=False, flip_court=False,\n ax=None, **kwargs):\n mean, xedges, yedges, binnumber = binned_statistic_2d(x=x, y=y, values=\n z, statistic='mean', bins=bins)\n if ax is None:\n ax = plt.gca()\n if not flip_court:\n ax.set_xlim(xlim)\n ax.set_ylim(ylim)\n else:\n ax.set_xlim(xlim[::-1])\n ax.set_ylim(ylim[::-1])\n ax.tick_params(labelbottom='off', labelleft='off')\n ax.set_title(title, fontsize=18)\n ax.patch.set_facecolor(facecolor)\n ax.patch.set_alpha(facecolor_alpha)\n draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)\n heatmap = ax.imshow(mean.T, origin='lower', extent=[xedges[0], xedges[-\n 1], yedges[0], yedges[-1]], interpolation='nearest', cmap=cmap)\n return heatmap\n",
"role": "user"
},
{
"content": "heatmap",
"role": "assistant"
}
] |
def x(figure, line_color='gray', line_width=1):
figure.circle(x=0, y=0, radius=7.5, fill_alpha=0, line_color=line_color,
line_width=line_width)
figure.line(x=range(-30, 31), y=-12.5, line_color=line_color)
figure.rect(x=0, y=47.5, width=160, height=190, fill_alpha=0,
line_color=line_color, line_width=line_width)
figure.line(x=-60, y=np.arange(-47.5, 143.5), line_color=line_color,
line_width=line_width)
figure.line(x=60, y=np.arange(-47.5, 143.5), line_color=line_color,
line_width=line_width)
figure.arc(x=0, y=0, radius=40, start_angle=pi, end_angle=0, line_color
=line_color, line_width=line_width)
figure.arc(x=0, y=142.5, radius=60, start_angle=pi, end_angle=0,
line_color=line_color)
figure.arc(x=0, y=142.5, radius=60, start_angle=0, end_angle=pi,
line_color=line_color, line_dash='dashed')
figure.line(x=-220, y=np.arange(-47.5, 92.5), line_color=line_color,
line_width=line_width)
figure.line(x=220, y=np.arange(-47.5, 92.5), line_color=line_color,
line_width=line_width)
figure.arc(x=0, y=0, radius=237.5, start_angle=3.528, end_angle=-0.3863,
line_color=line_color, line_width=line_width)
figure.arc(x=0, y=422.5, radius=60, start_angle=0, end_angle=pi,
line_color=line_color, line_width=line_width)
figure.arc(x=0, y=422.5, radius=20, start_angle=0, end_angle=pi,
line_color=line_color, line_width=line_width)
figure.rect(x=0, y=187.5, width=500, height=470, fill_alpha=0,
line_color=line_color, line_width=line_width)
return figure
|
bokeh_draw_court
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(figure, line_color='gray', line_width=1):\n figure.circle(x=0, y=0, radius=7.5, fill_alpha=0, line_color=line_color,\n line_width=line_width)\n figure.line(x=range(-30, 31), y=-12.5, line_color=line_color)\n figure.rect(x=0, y=47.5, width=160, height=190, fill_alpha=0,\n line_color=line_color, line_width=line_width)\n figure.line(x=-60, y=np.arange(-47.5, 143.5), line_color=line_color,\n line_width=line_width)\n figure.line(x=60, y=np.arange(-47.5, 143.5), line_color=line_color,\n line_width=line_width)\n figure.arc(x=0, y=0, radius=40, start_angle=pi, end_angle=0, line_color\n =line_color, line_width=line_width)\n figure.arc(x=0, y=142.5, radius=60, start_angle=pi, end_angle=0,\n line_color=line_color)\n figure.arc(x=0, y=142.5, radius=60, start_angle=0, end_angle=pi,\n line_color=line_color, line_dash='dashed')\n figure.line(x=-220, y=np.arange(-47.5, 92.5), line_color=line_color,\n line_width=line_width)\n figure.line(x=220, y=np.arange(-47.5, 92.5), line_color=line_color,\n line_width=line_width)\n figure.arc(x=0, y=0, radius=237.5, start_angle=3.528, end_angle=-0.3863,\n line_color=line_color, line_width=line_width)\n figure.arc(x=0, y=422.5, radius=60, start_angle=0, end_angle=pi,\n line_color=line_color, line_width=line_width)\n figure.arc(x=0, y=422.5, radius=20, start_angle=0, end_angle=pi,\n line_color=line_color, line_width=line_width)\n figure.rect(x=0, y=187.5, width=500, height=470, fill_alpha=0,\n line_color=line_color, line_width=line_width)\n return figure\n",
"role": "user"
},
{
"content": "bokeh_draw_court",
"role": "assistant"
}
] |
def x(data, x='LOC_X', y='LOC_Y', fill_color='#1f77b4', scatter_size=10,
fill_alpha=0.4, line_alpha=0.4, court_line_color='gray',
court_line_width=1, hover_tool=False, tooltips=None, **kwargs):
source = ColumnDataSource(data)
fig = figure(width=700, height=658, x_range=[-250, 250], y_range=[422.5,
-47.5], min_border=0, x_axis_type=None, y_axis_type=None,
outline_line_color='black', **kwargs)
fig.scatter(x, y, source=source, size=scatter_size, color=fill_color,
alpha=fill_alpha, line_alpha=line_alpha)
bokeh_draw_court(fig, line_color=court_line_color, line_width=
court_line_width)
if hover_tool:
hover = HoverTool(renderers=[fig.renderers[0]], tooltips=tooltips)
fig.add_tools(hover)
return fig
|
bokeh_shot_chart
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, x='LOC_X', y='LOC_Y', fill_color='#1f77b4', scatter_size=10,\n fill_alpha=0.4, line_alpha=0.4, court_line_color='gray',\n court_line_width=1, hover_tool=False, tooltips=None, **kwargs):\n source = ColumnDataSource(data)\n fig = figure(width=700, height=658, x_range=[-250, 250], y_range=[422.5,\n -47.5], min_border=0, x_axis_type=None, y_axis_type=None,\n outline_line_color='black', **kwargs)\n fig.scatter(x, y, source=source, size=scatter_size, color=fill_color,\n alpha=fill_alpha, line_alpha=line_alpha)\n bokeh_draw_court(fig, line_color=court_line_color, line_width=\n court_line_width)\n if hover_tool:\n hover = HoverTool(renderers=[fig.renderers[0]], tooltips=tooltips)\n fig.add_tools(hover)\n return fig\n",
"role": "user"
},
{
"content": "bokeh_shot_chart",
"role": "assistant"
}
] |
def x(X, membs, n_clusters, distance):
centers = np.empty(shape=(n_clusters, X.shape[1]), dtype=float)
sse = np.empty(shape=n_clusters, dtype=float)
for clust_id in range(n_clusters):
memb_ids = np.where(membs == clust_id)[0]
X_clust = X[memb_ids, :]
dist = np.empty(shape=memb_ids.shape[0], dtype=float)
for i, x in enumerate(X_clust):
dist[i] = np.sum(scipy.spatial.distance.cdist(X_clust, np.array
([x]), distance))
inx_min = np.argmin(dist)
centers[clust_id, :] = X_clust[inx_min, :]
sse[clust_id] = dist[inx_min]
return centers, sse
|
update_centers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, membs, n_clusters, distance):\n centers = np.empty(shape=(n_clusters, X.shape[1]), dtype=float)\n sse = np.empty(shape=n_clusters, dtype=float)\n for clust_id in range(n_clusters):\n memb_ids = np.where(membs == clust_id)[0]\n X_clust = X[memb_ids, :]\n dist = np.empty(shape=memb_ids.shape[0], dtype=float)\n for i, x in enumerate(X_clust):\n dist[i] = np.sum(scipy.spatial.distance.cdist(X_clust, np.array\n ([x]), distance))\n inx_min = np.argmin(dist)\n centers[clust_id, :] = X_clust[inx_min, :]\n sse[clust_id] = dist[inx_min]\n return centers, sse\n",
"role": "user"
},
{
"content": "update_centers",
"role": "assistant"
}
] |
def x(X, n_clusters, distance, max_iter, tol, rng):
membs = np.empty(shape=X.shape[0], dtype=int)
centers = kmeans._kmeans_init(X, n_clusters, method='', rng=rng)
sse_last = 9999.9
n_iter = 0
for it in range(1, max_iter):
membs = kmeans._assign_clusters(X, centers)
centers, sse_arr = _update_centers(X, membs, n_clusters, distance)
sse_total = np.sum(sse_arr)
if np.abs(sse_total - sse_last) < tol:
n_iter = it
break
sse_last = sse_total
return centers, membs, sse_total, sse_arr, n_iter
|
kmedoids_run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, n_clusters, distance, max_iter, tol, rng):\n membs = np.empty(shape=X.shape[0], dtype=int)\n centers = kmeans._kmeans_init(X, n_clusters, method='', rng=rng)\n sse_last = 9999.9\n n_iter = 0\n for it in range(1, max_iter):\n membs = kmeans._assign_clusters(X, centers)\n centers, sse_arr = _update_centers(X, membs, n_clusters, distance)\n sse_total = np.sum(sse_arr)\n if np.abs(sse_total - sse_last) < tol:\n n_iter = it\n break\n sse_last = sse_total\n return centers, membs, sse_total, sse_arr, n_iter\n",
"role": "user"
},
{
"content": "kmedoids_run",
"role": "assistant"
}
] |
def x(self, X):
self.centers_, self.labels_, self.sse_arr_, self.n_iter_ = _kmedoids(X,
self.n_clusters, self.distance, self.max_iter, self.n_trials, self.
tol, self.rng)
|
fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n self.centers_, self.labels_, self.sse_arr_, self.n_iter_ = _kmedoids(X,\n self.n_clusters, self.distance, self.max_iter, self.n_trials, self.\n tol, self.rng)\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
] |
def x(K, n_clusters, wmemb, kernel_dist):
n_samples = K.shape[0]
for j in range(n_clusters):
memb_j = np.where(wmemb == j)[0]
size_j = memb_j.shape[0]
K_sub_j = K[memb_j][:, memb_j]
kernel_dist[:, j] = 1 + np.sum(K_sub_j) / (size_j * size_j)
kernel_dist[:, j] -= 2 * np.sum(K[:, memb_j], axis=1) / size_j
return
|
kernelized_dist2centers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(K, n_clusters, wmemb, kernel_dist):\n n_samples = K.shape[0]\n for j in range(n_clusters):\n memb_j = np.where(wmemb == j)[0]\n size_j = memb_j.shape[0]\n K_sub_j = K[memb_j][:, memb_j]\n kernel_dist[:, j] = 1 + np.sum(K_sub_j) / (size_j * size_j)\n kernel_dist[:, j] -= 2 * np.sum(K[:, memb_j], axis=1) / size_j\n return\n",
"role": "user"
},
{
"content": "kernelized_dist2centers",
"role": "assistant"
}
] |
def x(X, n_mixtures, init_method):
init_priors = np.ones(shape=n_mixtures, dtype=float) / n_mixtures
if init_method == 'kmeans':
km = _kmeans.KMeans(n_clusters=n_mixtures, n_trials=20)
km.fit(X)
init_means = km.centers_
else:
inx_rand = np.random.choice(X.shape[0], size=n_mixtures)
init_means = X[inx_rand, :]
if np.any(np.isnan(init_means)):
raise ValueError('Init means are NaN! ')
n_features = X.shape[1]
init_covars = np.empty(shape=(n_mixtures, n_features, n_features),
dtype=float)
for i in range(n_mixtures):
init_covars[i] = np.eye(n_features)
return init_priors, init_means, init_covars
|
init_mixture_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, n_mixtures, init_method):\n init_priors = np.ones(shape=n_mixtures, dtype=float) / n_mixtures\n if init_method == 'kmeans':\n km = _kmeans.KMeans(n_clusters=n_mixtures, n_trials=20)\n km.fit(X)\n init_means = km.centers_\n else:\n inx_rand = np.random.choice(X.shape[0], size=n_mixtures)\n init_means = X[inx_rand, :]\n if np.any(np.isnan(init_means)):\n raise ValueError('Init means are NaN! ')\n n_features = X.shape[1]\n init_covars = np.empty(shape=(n_mixtures, n_features, n_features),\n dtype=float)\n for i in range(n_mixtures):\n init_covars[i] = np.eye(n_features)\n return init_priors, init_means, init_covars\n",
"role": "user"
},
{
"content": "init_mixture_params",
"role": "assistant"
}
] |
def x(x, mean, covar):
n_dim = mean.shape[0]
dx = x - mean
covar_inv = scipy.linalg.inv(covar)
covar_det = scipy.linalg.det(covar)
den = np.dot(np.dot(dx.T, covar_inv), dx) + n_dim * np.log(2 * np.pi
) + np.log(covar_det)
return -1 / 2 * den
|
log_density_single
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, mean, covar):\n n_dim = mean.shape[0]\n dx = x - mean\n covar_inv = scipy.linalg.inv(covar)\n covar_det = scipy.linalg.det(covar)\n den = np.dot(np.dot(dx.T, covar_inv), dx) + n_dim * np.log(2 * np.pi\n ) + np.log(covar_det)\n return -1 / 2 * den\n",
"role": "user"
},
{
"content": "log_density_single",
"role": "assistant"
}
] |
def x(X, means, covars):
n_samples, n_dim = X.shape
n_components = means.shape[0]
assert means.shape[0] == covars.shape[0]
log_proba = np.empty(shape=(n_samples, n_components), dtype=float)
for i, (mu, cov) in enumerate(zip(means, covars)):
try:
cov_chol = scipy.linalg.cholesky(cov, lower=True)
except scipy.linalg.LinAlgError:
try:
cov_chol = scipy.linalg.cholesky(cov + Lambda * np.eye(
n_dim), lower=True)
except:
raise ValueError(
'Triangular Matrix Decomposition not performed!\n')
cov_log_det = 2 * np.sum(np.log(np.diagonal(cov_chol)))
try:
cov_solve = scipy.linalg.solve_triangular(cov_chol, (X - mu).T,
lower=True).T
except:
raise ValueError('Solve_triangular not perormed!\n')
log_proba[:, i] = -0.5 * (np.sum(cov_solve ** 2, axis=1) + n_dim *
np.log(2 * np.pi) + cov_log_det)
return log_proba
|
log_multivariate_density
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, means, covars):\n n_samples, n_dim = X.shape\n n_components = means.shape[0]\n assert means.shape[0] == covars.shape[0]\n log_proba = np.empty(shape=(n_samples, n_components), dtype=float)\n for i, (mu, cov) in enumerate(zip(means, covars)):\n try:\n cov_chol = scipy.linalg.cholesky(cov, lower=True)\n except scipy.linalg.LinAlgError:\n try:\n cov_chol = scipy.linalg.cholesky(cov + Lambda * np.eye(\n n_dim), lower=True)\n except:\n raise ValueError(\n 'Triangular Matrix Decomposition not performed!\\n')\n cov_log_det = 2 * np.sum(np.log(np.diagonal(cov_chol)))\n try:\n cov_solve = scipy.linalg.solve_triangular(cov_chol, (X - mu).T,\n lower=True).T\n except:\n raise ValueError('Solve_triangular not perormed!\\n')\n log_proba[:, i] = -0.5 * (np.sum(cov_solve ** 2, axis=1) + n_dim *\n np.log(2 * np.pi) + cov_log_det)\n return log_proba\n",
"role": "user"
},
{
"content": "log_multivariate_density",
"role": "assistant"
}
] |
def x(X, means, covars):
logden = _log_multivariate_density(X, means, covars)
logden_max = logden.max(axis=1)
log_likelihood = np.log(np.sum(np.exp(logden.T - logden_max) + Epsilon,
axis=0))
log_likelihood += logden_max
post_proba = np.exp(logden - log_likelihood[:, np.newaxis])
return log_likelihood, post_proba
|
log_likelihood_per_sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, means, covars):\n logden = _log_multivariate_density(X, means, covars)\n logden_max = logden.max(axis=1)\n log_likelihood = np.log(np.sum(np.exp(logden.T - logden_max) + Epsilon,\n axis=0))\n log_likelihood += logden_max\n post_proba = np.exp(logden - log_likelihood[:, np.newaxis])\n return log_likelihood, post_proba\n",
"role": "user"
},
{
"content": "log_likelihood_per_sample",
"role": "assistant"
}
] |
def x(priors, means, covars):
for i, (p, m, cv) in enumerate(zip(priors, means, covars)):
if np.any(np.isinf(p)) or np.any(np.isnan(p)):
raise ValueError('Component %d of priors is not valid ' % i)
if np.any(np.isinf(m)) or np.any(np.isnan(m)):
raise ValueError('Component %d of means is not valid ' % i)
if np.any(np.isinf(cv)) or np.any(np.isnan(cv)):
raise ValueError('Component %d of covars is not valid ' % i)
if not np.allclose(cv, cv.T) or np.any(scipy.linalg.eigvalsh(cv) <= 0):
raise ValueError(
'Component %d of covars must be positive-definite' % i)
|
validate_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(priors, means, covars):\n for i, (p, m, cv) in enumerate(zip(priors, means, covars)):\n if np.any(np.isinf(p)) or np.any(np.isnan(p)):\n raise ValueError('Component %d of priors is not valid ' % i)\n if np.any(np.isinf(m)) or np.any(np.isnan(m)):\n raise ValueError('Component %d of means is not valid ' % i)\n if np.any(np.isinf(cv)) or np.any(np.isnan(cv)):\n raise ValueError('Component %d of covars is not valid ' % i)\n if not np.allclose(cv, cv.T) or np.any(scipy.linalg.eigvalsh(cv) <= 0):\n raise ValueError(\n 'Component %d of covars must be positive-definite' % i)\n",
"role": "user"
},
{
"content": "validate_params",
"role": "assistant"
}
] |
def x(X, posteriors):
sum_post_proba = np.sum(posteriors, axis=0)
prior_proba = sum_post_proba / (sum_post_proba.sum() + Epsilon)
means = np.dot(posteriors.T, X) / (sum_post_proba[:, np.newaxis] + Epsilon)
n_components = posteriors.shape[1]
n_features = X.shape[1]
covars = np.empty(shape=(n_components, n_features, n_features), dtype=float
)
for i in range(n_components):
post_i = posteriors[:, i]
mean_i = means[i]
diff_i = X - mean_i
with np.errstate(under='ignore'):
covar_i = np.dot(post_i * diff_i.T, diff_i) / (post_i.sum() +
Epsilon)
covars[i] = covar_i + Lambda * np.eye(n_features)
_validate_params(prior_proba, means, covars)
return prior_proba, means, covars
|
maximization_step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, posteriors):\n sum_post_proba = np.sum(posteriors, axis=0)\n prior_proba = sum_post_proba / (sum_post_proba.sum() + Epsilon)\n means = np.dot(posteriors.T, X) / (sum_post_proba[:, np.newaxis] + Epsilon)\n n_components = posteriors.shape[1]\n n_features = X.shape[1]\n covars = np.empty(shape=(n_components, n_features, n_features), dtype=float\n )\n for i in range(n_components):\n post_i = posteriors[:, i]\n mean_i = means[i]\n diff_i = X - mean_i\n with np.errstate(under='ignore'):\n covar_i = np.dot(post_i * diff_i.T, diff_i) / (post_i.sum() +\n Epsilon)\n covars[i] = covar_i + Lambda * np.eye(n_features)\n _validate_params(prior_proba, means, covars)\n return prior_proba, means, covars\n",
"role": "user"
},
{
"content": "maximization_step",
"role": "assistant"
}
] |
def x(self, X):
params_dict = _fit_gmm_params(X=X, n_mixtures=self.n_clusters, n_init=
self.n_trials, init_method=self.init_method, n_iter=self.max_iter,
tol=self.tol)
self.priors_ = params_dict['priors']
self.means_ = params_dict['means']
self.covars_ = params_dict['covars']
self.converged = True
self.labels_ = self.predict(X)
|
fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n params_dict = _fit_gmm_params(X=X, n_mixtures=self.n_clusters, n_init=\n self.n_trials, init_method=self.init_method, n_iter=self.max_iter,\n tol=self.tol)\n self.priors_ = params_dict['priors']\n self.means_ = params_dict['means']\n self.covars_ = params_dict['covars']\n self.converged = True\n self.labels_ = self.predict(X)\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.